
Programming Language Abstractions

for the

Global Network

Keith Sibson

Computing Science

Glasgow University

July 2001

A thesis submitted for the degree of Doctor o f Philosophy.

© Keith Sibson 30th July 2001

ProQuest Number: 13818884

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is d e p e n d e n t u p on the quality of the co p y subm itted .

In the unlikely e v e n t that the author did not send a c o m p le te m anuscript
and there are missing p a g e s , th ese will be n o te d . Also, if m aterial had to be rem o v ed ,

a n o te will in d ica te the d e le tio n .

uest
ProQ uest 13818884

Published by ProQuest LLC(2018). C opyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected a g a in st unauthorized copying under Title 17, United States C o d e

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 4 8 1 0 6 - 1346

GLASGOW '
UNIVERSITY
.LIBRARY:

co PH

A bstract: Increasing demand for Internet-based applications motivates the development of

programming models that ease their implementation. With the research presented in this

thesis, we aim to improve understanding of what is involved when programming applications

for the global network, and in particular the Web. We are primarily concerned with the

development o f language-level programming abstractions that address issues arising from the

failure and performance properties o f the Web. Frequent failure and unpredictable

performance are ever-present aspects o f any Web computation, so we must bring the

properties of the Web into the semantic domain o f our program systems. Our primary goal is

to enable concise and intuitive expression of failure semantics in the context o f concurrency,

which is necessary for efficient Web computation given the large overhead in every network

access.

The main scientific contribution o f this thesis is the development o f a Web programming

model for which a major design goal is the integration o f domain concepts, failure

interpretation, concurrency, and a mechanism for flow o f control after failure. Our model is

the first to successfully achieve a clean integration. We develop a programming language

called Focus, which incorporates two complimentary abstractions. Persistent relative

observables allow reasoning about the dynamic behaviour o f computations in the context of

past behaviours. Examples o f observables are the rate, elapsed time, and success probability

o f http fetches. The mechanics o f our observables mechanism allows the generalisation o f the

observables concept to all computation, and not just Web fetches. This generalisation is key

in our design approach to supervisors, which are abstractions over concurrency designed for

the specification o f failure semantics and concurrency for computations that contain Web

fetches. In essence, supervisors monitor and control the behaviour o f arbitrary concurrent

computations, which are passed as parameters, while retaining a strict separation of

computational logic and control logic.

In conjunction with observables, supervisors allow the writing o f general control functions,

parameterisable both by value and computation. Observables are abstract values that fluctuate

dynamically, and all computations export the same set o f observables. Observables allow

genericity in supervisor control, since the mechanism constrains the value o f observables

within a pattern o f fluctuation around a single number. Whatever the activity o f a

computation, information about its behaviour can be obtained within a range o f values in the

observables. This means that supervisors can be applied independently o f knowledge o f the

program logic for supervised computations.

Supervisors and observables are useful in the context o f the Web due to the multiplicity of

possible failure modes, many o f which require interpretation, and the need for complex flow

of control in the presence of concurrency.

2

This work is dedicated to my mother Alison, who has supported

me in more ways than she knows.

People to whom I am indebted for their help in aiding my

research are my supervisor Richard Connor and Noel Winstanley.

In particular, I would like to thank Richard, for his skillful

guidance, and for teaching me how to be a scientist.

I composed this thesis by myself and the work it contains is my

own. It was funded by an EPSRC studentship.

3

1: Introduction 8

Applications and the Web computational model 8

Failure and Performance Properties o f the Web 13

Distribution Abstraction 16

Human Browsing 18

Programming the Web 22

This Thesis 24

2: Analysing Web Failure and Performance 27

Zeus Study 28

Our Performance Study 32

Failure 33

Latency 34

Average Rate 39

Dynamic Rate Fluctuation 42

Conclusions 52

3: Domain Properties and Flow Control 54

Overloading flow control for failure onto function return 54

Exception handling 57

Service Combinators 59

WebL - Web Language 62

Summary and analysis 67

4: Web Fetching with GP Languages 70

Failure Issues for a Simple Web Fetch Abstraction 70

Implementing Failure Semantics 73

An Approach with Higher Order Functions 76

Use of Methodology with Object-Oriented Languages 79

Analysis 81

5: A Conceptual Domain for Web Programming 84

Persistent Relative Observables 86

Flexibility in Interpreting Failure 90

Diminishing the Impact o f Rate Troughs 92

Patterns o f Human Failure Interpretation 93

Persistence Properties of Observables 95

Generalisation o f Observables to all Computation 97

Observables and Concurrency 100

Summary and Analysis 103

6: Observation and Control w ith Supervisors 105

Focus 106

Supervisors 107

Thread observation and control 109

Examples and Discussion 110

Side effect and thread communication 113

Environments 114

File update and environments 117

Retrial 118

Nested supervisor invocation 119

Examples o f failure semantics 123

Summary 134

7: Analysis of Related W ork 136

Recovery Blocks 137

Concurrent T ransaction Control T echniques 140

Logic Web 142

Real-Time Languages 145

Process Control Language 145

FLEX 147

Real-time Euclid 149

5

Summary 149

8: Exception Handling 151

Exception raising 152

Handler response 154

Exception handler binding and scope 156

Exception handling in C++ 157

Exception handling in Clu 158

Sequels 160

Summary 162

9: Formal Issues 164

Conceptual containment o f Service Combinators by supervisors 164

Implementing the Supervisor Environment Model 172

Supporting Definitions 175

Algorithm Definitions 164

Proof o f Algorithm Equivalence 182

10: Conclusions 193

The Interpreted Exception 193

The Essence o f Internet Computing 194

Concept Integration 196

Further W ork 197

Opinionated Final Words 198

Appendix - The Focus Language 200

Focus Syntax 200

Focus Concepts 203

Focus Compiler 204

Environments 204

Functions, Supervisors, and Environments 206

Garbage Collection 206

6

Threading and Asynchrony

Bibliography

1: Introduction

Applications and the Web computational model

The Worldwide Web, W W W 1, or just the Web, is an enormous collection o f files accessible

on the Internet via the client-server query based Hypertext Transfer Protocol, http [1]. Many

of the files available on the Web are documents written with the presentation-oriented

Hypertext Mark-up Language (HTML), with which Web browser applications can

appropriately display document content [2]. HTML documents can contain embed Universal

Resource Locators (URLs), which are directed links to other documents or files anywhere on

the Web [3]. It is the closure o f all URL reachable resources available via http that constitutes

the content o f the Web, and gives rise to the visual metaphor o f a Web of information.

Recently, the Web has become synonymous with the Internet. In fact, the Web exists only

over a subset o f the physical Internet hardware, and at a layer o f abstraction higher than that

o f the lower level Internet TCP/IP transport protocols. However, the Web is fast becoming

ubiquitous, and today is certainly the most important facet o f the global network.

path

host

URL (http://host/path)

DNS

TCP/IP

HTTPd

Server File System

CGI

Client File System

HTTP

The original computational model conceived for the Web

centres around the integration o f HTML forms, which

when displayed in a browser allow input o f textual

information, and CGI gateways [4][5], which are interfaces

to executable programs residing on Web servers. Browser

applications encode all inputted form data as a single http

query. This is then transmitted to the CGI gateway at the

server, which decodes the query data and invokes the

appropriate executable, which can be written in any

programming language. The CGI gateway passes the

entered form information to the newly invoked process, the

output o f which is streamed to the client browser as it is

produced. In addition to textual input in fields, HTML also

defines checklists and pulldown menus for inputting

selection information. These give added flexibility in presenting application interfaces.

It is a simple arrangement, but the combination o f CGI and HTML forms has proven to be a

flexible model for implementing Web applications. The output o f a CGI execution can itself

WWW is the only known acronym that does not verbally abbreviate its associated phrase.

8

http://host/path

be a form, the structure o f which may be dependent on the previously inputted form data.

Although CGI is stateless, hidden elements in HTML forms allow the passing o f data back

and forth between server and client so that state can be maintained between form submissions.

This means that transactions between server and client can span more than one interaction. In

addition, the CGI executable may choose to store some o f the inputted information long-term,

locally on the server. However, the development o f cookies [6], has allowed the storage of

small amounts o f state at the client-side, and has removed from the server some of the burden

o f storing large amounts o f user-specific state in the long-term.

Microsoft’s Active Server Pages (ASP) [7] and Sun’s similar Java Server Pages (JSP) [8] are

simplifications o f the CGI and HTML forms computational model. Like CGI, all computation

takes place at the server. However, the code for processing form parameters is more tightly

coupled to the HTML document than with CGI, since it is physically embedded within the

document. The server removes this code from the document and executes it before sending

any HTML to the client. Thus, ASP and JSP are indistinguishable from CGI at the client end,

except by observation o f the filename extension in the URL. In addition to processing form

data, ASP and JSP incorporate the functionality o f ‘server-side includes’ [9] by default.

Web search engines such as Altavista [10] provide multiple form transactions in that once

the results o f a search are returned, the user can refine the existing search results according to

new keywords. The server returns the original keywords to the client in hidden form fields,

and these become part o f the input for further form submissions.

Booksellers were among the first companies to realise the commercial potential o f the Web.

When buying a book through the Amazon [11] Web site, the user is presented with a multiple

form interface in order to enter information such as credit card information, shipping details,

and the like, and the inputted data is also entered into a database at the server.

During its execution the CGI application may itself access the Web. For example, Search

Spaniel [12] collates and summarises the search results o f over twenty different search

engines, all from a single query.

To achieve prolonged interaction between client and server, queries and responses carry

with them complete information about preceding state transitions. The repeated making and

breaking o f connections between client and server and the passing back and forth o f

information all incurs substantial overhead, both by communication latency, and by

computational burden at the server. This overhead has motivated a paradigm shift towards a

computational model where much o f the input processing and verification takes place at the

client side, thereby eliminating some CPU overhead at the server and latency. Although there

is still a definite client-server relationship between the interface (client) and application

9

(server), the client becomes a logical extension o f the server’s CPU. Several programming

languages have been developed that act as components of the Web browser application and

are capable o f client side computation. We describe three o f the most prominent.

Programs written with Netscape’s JavaScript language [13] are physically embedded in

HTML documents, and provide a simple event-based computational model that may be used

to program over elements o f the html document and interface with the browser application.

However, JavaScript has no concept o f the world external to its host document, and so can be

nothing more than a small client-side component o f a larger Web application. Microsoft’s

JScript language is compatible with JavaScript except for a small number o f nuances, and is

supported by the Internet Explorer browser.

JavaScript should not be confused with Sun Microsystems Java language [14]. Java is a

general purpose object-oriented programming language with which JavaScript has little in

common. The main feature o f Java relevant to the Web is that it has an applet model, where

applications in the form o f platform independent byte-code can be logically embedded within

html documents. The applications reside on a Web server, and are transmitted to the client

when the container document is downloaded. The application then executes within the context

o f the browser window. Security concerns prevent applets from accessing resources local to

the client, and also prevent the application from directly communicating with any network

host other than the server from which the application originated. In addition to applets, Java

also provides a model for server-side computation based on the servlet [15]. Servlets aid the

integration o f applications with CGI, but unlike ASP they still rely on a loose coupling

between the HTML form and processing code.

Microsoft’s VBScript is a subset o f the Visual Basic programming language. It has a similar

computational model to JavaScript and JScript, but is reputedly easier to learn. The power o f

VBScript comes from the fact that it is primarily intended to integrate with ActiveX [16]

components and ASP. ActiveX components (or controls) can be written with Visual Basic or

C++, and perform the same function as Java applets. However, ActiveX components can be

used in any context that supports COM [17]. Many Microsoft applications support COM, such

as Word and Excel for example, so ActiveX Web components can be used in contexts other

than the Web browser and visa versa. A drawback o f JScript, VBScript, and ActiveX is that

they are all proprietary technologies o f Microsoft and as such work only in conjunction with

Microsoft products. For example, as o f summer 2000 the Netscape browser is used by 25% of

Web users [18], but does not and is never likely to support JScript, VBScript, or ActiveX.

Java and JavaScript enhance the computational model of applications such as search

engines, which reside on Web servers and present their interface globally. Such applications

10

are designed to interact with humans via a browser. However, there are many classes of

purely client-side applications that treat the Web as a passive entity to be queried. The Web

browser application is itself an example o f this, albeit a somewhat superficial one since it

concentrates on content presentation rather than computing over Web infrastructure. Perhaps

the best known ‘real’ example o f a client-side application is the Web crawler (or spider, or

robot), which collects data from Web documents with little or no human interaction. Crawlers

traverse the Web by recursively following embedded URL links. In general, all crawler

applications involve concurrency, with several crawler processes cooperating in order to

achieve greater throughput. Search engine crawlers extract and index the words o f a document

against its URL, but there are many other applications for crawlers, such as email address

harnessing and link integrity checking, for example. There has been little work to enhance the

computational model o f these client-side applications, and traditionally they are programmed

with general purpose (GP) programming languages such as C++ or Java (but not with applets

or servlets), for example. Compaq’s WebL is one o f the few direct approaches to designing a

language for this domain, and we discuss it in Chapter 3 - Domain Properties and Flow

Control.

Mobile code can be considered to be any executable program that moves physical location

before executing. With this loose definition, both JavaScript and Java qualify as having

mobile code. However, JavaScript’s computational domain is restricted, and the Java applet

model is still server-centric in that the client CPU becomes a logical extension o f the server.

The World-Wide Web Consortium maintains a collection o f links to information on mobile

code systems [19]. Truly mobile code forms the basis of what is termed agent based

distributed computing [20]. This is a vision of global computation partly due to Cardelli [21]

where itinerant computational entities roam the Internet gathering information, performing

tasks, and interacting with other agents. An example o f an agent-based application is a Web

crawler that physically moves its execution to a remote site in order to index content or

perform some other task, thereby greatly reducing overhead incurred by connection latency.

The requirements o f a distributed Web crawler best characterise the kind o f issues we wish

to address in the development o f a Web programming model. A distributed Web crawler is a

class o f application that performs frequent Web access and has a requirement for robustness

independent o f human decision making. That is, the crawler agent must be able to

automatically cope with problems such as intermittent server failure and broken links.

Furthermore, since crawler mobility is motivated by performance and reliability issues, it

must be capable o f making mobility decisions based on observations o f performance and

reliability. A crawler agent should only incur the overhead o f changing its locality if it

anticipates improved performance or reliability. The requirements o f this application domain

11

are similar to those o f purely client-side applications, since a client-side application is an

instance o f a distributed agent that does not move. Since robustness and performance are

equally important in many client-side applications, in developing a programming model for

Web computation we take an approach that is general enough to encompass both domains.

Implementing agent based distributed computing over the Web requires abstraction over the

existing protocols (http and TCP/IP) and interfaces (CGI). One way to achieve this is by the

development o f new higher-level protocols and interfaces. However, this approach is

problematical because the Web is an autonomous distributed system with a firmly entrenched

software infrastructure o f server installations. To adopt new protocols and interfaces that

provide a distributed model o f computation requires the installation o f new server software

for all hosts taking part. Moreover, it is unlikely that a single protocol or interface could cater

to the demands o f all, since the most appropriate computational model may differ widely

between applications. A more flexible approach is to build applications that rely on the

standard protocols and interfaces o f the Web, but abstract over them at the language- or

application-level. This allows applications to adopt an appropriate level o f abstraction for

their purposes, at the API- or language-level. For example, an agent based distributed system

might consist o f several servers each exporting a CGI application that sends and receives

executable agents. The protocols that govern security and the marshalling and unmarshalling

of agent entities are not dictated by the server, but by abstractions within the application

program itself or in the language with which it is written.

JavaScript scripts and Java applets have simple mobility models that are not general or

flexible enough to express global computation by themselves. Thus, they are useful only as

part of a model for global computation. General purpose programming languages have the

capability, but are not geared specifically to the task. As a result, there has been much

research into the development o f programming models specifically for agent-based global

computation [22] [23]. However, these models, along with general purpose language models,

JavaScript scripts, and Java applets all fail to address the issues raised by the inherent failure

and performance properties o f the global network. This makes it difficult to program robust

applications. It is clear that agent based computing will be founded on programming models

designed specifically for the computational medium. Due to the ubiquity o f the Web, it is

perhaps the most appropriate infrastructure upon which to build models o f global

computation. This thesis is an attempt to aid the realisation o f global computation by

investigating programming models that directly address the issues raised by failure and

performance on the global network.

12

Failure and Performance Properties of the Web

This thesis is concerned only with failure and performance issues that arise when automating

tasks in the Web domain, and not with automation over Web content. Content formats

change. However, the inherent failure and performance properties o f the Web do not, since

the Internet will always be subject to largely unpredictable fluctuations in bandwidth, node

failure, and unenforceable referential integrity.

Before we continue, it is worth pointing out that there is an important class o f failure that

does relate to the structure o f Web documents. Since Web servers are autonomous

(decentralised control), document hierarchy and individual document structure is beyond the

control o f clients, and is subject to change without notice. If the structure o f a Web document

changes, it is barely an inconvenience for human browsers. If a document moves to a different

location, human browsers can usually locate it again without too much inconvenience. In

contrast, uncontrolled format changes or document relocations are potentially catastrophic for

automated agents that are dependent on those documents. This is because development

techniques traditionally applied to applications dependent on persistent data cannot be

appropriately applied in a Web context. For example, programmers writing applications that

use files stored on local hard disk usually assume that if a file was previously written with a

specific schema, then it can be read according to that same schema. However, Web host

autonomy means that the structure o f Web documents can never be presupposed, since there

is no universal schema for Web data. The issue o f enforcing or deriving structure for Web

documents to allow automated processing is a large subject, and is beyond the scope o f this

thesis. We refer the interested reader to introductory material on semi-structured data [24] [25],

XML [26], and the Document Object Model [27].

The Web exists as a layer over the Internet, and does not mask any o f the failure or

performance properties o f the underlying network substrate. In fact, it introduces several new

failure modes at the http level, such as document not found, for example. In general, for every

Web query there is non-determinism as to,

• whether the query is valid (existence of host, server, and resource),

• how long the query will take to complete, if at all,

• the transfer rate and how it will vary over time,

• how long it will take the server to respond initially (latency), and

• whether any failures experienced are temporary or permanent.

13

To better understand the failure and performance properties of the Web, we examine its

major working parts. There are five main components that constitute the W eb1:

• URL - Uniform Resource Locator. URLs identify single resources on the Web, but not

uniquely (more than one URL can identify the same resource). URLs consist o f protocol,

hostname, and resource path parts.

• HTML - Hypertext Mark-up Language. This is the presentation-oriented language with

which much of the W eb’s content is written. HTML documents can contain embedded

URLs that link to other resources on the Web.

• DNS - Domain Name Service. This is a mechanism to convert textual hostnames into IP

numbers, which form the underlying address space for the Internet [28].

• HTTP - Hypertext Transfer Protocol. Http is a query-based protocol that specifies how

Web servers and clients communicate with each other once a connection has been made.

• TCP/IP - Transmission Control Protocol/Internet Protocol. Http queries and responses

take place via socket connections between the client and Web server. These socket

connections are made and broken, and data transmitted across them, according to

TCP/IP.

We are concerned only with the failure and performance properties o f the Web, and the

components that directly relate to these are http and TCP/IP. Http defines the structure and

formatting o f Web query messages that are sent to servers and o f the responses that are

received by the client. Underlying this is TCP/IP, which is concerned with making and

breaking connections, and in sending and receiving bytes across those connections. Http is an

abstraction over TCP/IP, since it specifies a default port (80) for socket communication, and

restricts data flow to a single query followed by a single response. However, the nature o f the

underlying socket is still exposed. Thus we can easily measure transfer time and connection

(latency) time, and calculate transfer rate as data is streamed across the socket.

It is these measurable aspects o f TCP/IP sockets as they relate to http that allows us to

reason about the failure and performance properties o f individual Web queries. We have

performed an examination of the properties o f many queries, across several geographically

1 Most o f these are shown in the diagram at the beginning o f this chapter.

14

diverse Web servers and at different times o f the day, in order that we may draw some

conclusions about the performance and failure properties o f the Web as a whole. We also

draw from experimental data provided by Zeus Technologies [29]. The details o f both

experiments are somewhat complex, so we describe the methodology and analysis only

briefly here, going into more detail in chapter 2 - Analysing Web Failure and Performance.

The conclusions we have drawn from these experiments are important in justifying our

approach to providing abstraction for Web programming.

Zeus Technologies are undergoing a continuous study o f the availability o f 241 web sites.

Availability is defined as being able to connect to the server and download the front page

within sixty seconds, not including images. Sites under test are checked for availability every

fifteen minutes, which equates to nearly 3,000 tests a month. So far, the experiment has been

running for two years. Availability on a month per month basis ranges from 0% to 100%, but

is on average around 98%. From the Zeus data, we conclude the following.

• Failures are frequent and intermittent.

• Failure by dropped connection is extremely rare.

• Connection failure (timeout) is the most common type o f failure1.

Our own experiments concentrate more on the performance aspects of Web fetches. With an

average sampling granularity o f fifteen minutes, we gathered data over 24 hour periods for

latency, download time, average download rate, and fluctuations o f rate over the download

duration. We chose twelve servers for their diversity in geographical location, server

software, expected usage patterns (load), and perceived bandwidth. Our conclusions can be

summarised as follows.

• Median latency is a function o f geographical distance.

• Anomalies in latency motivate at least one retrial for every timeout.

• Perceived bandwidth is inversely proportional to distance to a small degree.

• Bandwidth fluctuates throughout transfer.

1 Excluding Http 404, Document not found. In classes o f application such as Web crawlers, this is likely to be the
most common form o f failure.

15

• Bandwidth fluctuates more during periods o f network congestion.

• Bandwidth fluctuation is caused by server and network load.

• Average rate for distinct transfers is consistent in the short term, but shows definite

trends according to the time of day.

• Transfers from the same server will achieve similar average rates given similar network

and server load.

• Rate ‘troughs’, where transfer rate drops to zero, are common, even when the network or

server is not under particularly heavy load.

• Troughs are more frequent, and o f longer duration when the network or server is heavily

loaded.

• Troughs can range in duration from several seconds to several minutes.

Since the global network is a collection o f distributed, autonomous nodes, it is inherently

unreliable and exhibits unpredictable performance. Practical analysis confirms this. However,

there is a theoretical result due to Cristian that is perhaps more disconcerting [30]. Given any

system with distributed autonomous nodes, in principle it is impossible to distinguish between

failure and a network link or server that is very slow. A corollary to this is that the failure o f a

network link cannot be distinguished from failure of the server at the end o f the link. These

properties have major implications for all distributed applications that attempt failure

detection. Traditionally, failure detection is achieved by timeout. However, no value for

timeout can ever be entirely reliable, since there is always the possibility that tardiness on the

part o f the server or network link will cause an incorrect interpretation of failure.

Distributed applications must be able to operate in the face o f this non-determinism with

minimal guiding human interaction. One approach to this is to provide a level o f distribution

abstraction by having the programming model mask the non-determinism. Why this is

inappropriate is the subject o f the next section.

Distribution Abstraction

In designing distribution abstractions for the global network, there are three possible

approaches. The first is to provide transparent distribution abstraction that masks the failure

properties and non-determinism of the network. Essentially, this approach attempts to merge

the computational models o f distributed and local computing by making all computation

follow the model of local computation, and ignoring the different failure modes and

16

indeterminacy inherent in distributed computing. Both Obliq [31] and the Linda co-ordination

model [32] attempt this. However, by ignoring failure and indeterminacy, systems produced

with such programming models are unreliable and are incapable o f scaling beyond small

groups of co-located machines that are centrally administered. Local computational models

cannot be applied to the global network, since distribution issues such as latency, failure, and

autonomy are intrinsic aspects o f the domain. If we cannot mask these properties, then we

must expose them.

The second approach is to provide transparent distribution abstraction by uniformly

exposing the failure properties and non-determinism o f the network in all computation. That

is, all computation resembles distributed computation, even if it is local computation that is

taking place beneath the abstraction. CORBA [33] and Emerald [34] are distributed

programming models that attempt this, in that the object interfaces are defined independently

of object locality. Although this approach scales well, it requires programming practice that is

far removed from that o f local programming, and makes local computing more complex than

would be otherwise necessary. For example, in subsuming the local programming model with

that o f distributed programming, every single reference must have the characteristics of a

distributed reference. This means that the interface to all objects and values in the system

must be designed so that the objects and values react in a consistent way to partial failure.

Likewise, the interfaces to all objects must inherently be designed for concurrency. These are

unnecessary restrictions on objects that are local.

Both o f these approaches attempt a transparent integration o f distributed and local

computing. However, this is difficult because the computational models o f distributed and

local computing have irreconcilable differences. Primarily these are a result o f non

determinism in distributed computing as compared with the determinism o f a closely coupled

architecture. Although it is logically possible to paper over the difference between local and

remote access, problems introduced by partial failure and concurrency seem to indicate that

such unification is impractical. Waldo provides compelling arguments that support this,

suggesting that the only viable way to provide distribution abstraction is to relax the

requirement for transparency, so that the programmer becomes aware o f the differences

between local and distributed computing. He states in [35] that:

“The reality o f partial failure has a profound effect on how one designs

interfaces and on the semantics o f the operations in an interface. Partial

failure requires that programs deal with indeterminacy. When a local

component fails, it is possible to know the state o f the system that caused the

17

failure and the state o f the system after failure. No such determination can be

made in the case o f a distributed system. Instead, the interfaces that are used

for the communication must be designed in such a way that it is possible for

the objects to react in a consistent way to possible partial failures.”

Thus, the distributed nature o f objects must be reflected in their interfaces. Java RMI [36],

SR [37], and Occam [38] are all programming systems in which distribution is explicit, and

provide some form of abstraction, such as the automatic marshalling o f parameters to remote

procedure calls, for example. The many different approaches to distribution abstraction each

have their advantages and disadvantages, and no specific approach is generally accepted as

the most appropriate. This suggests that a particular distribution abstraction cannot be all

things to all people. Moreover, all o f these systems require the installation o f special server

software that implements the relevant protocols and interfaces. We have already noted that a

more flexible approach is to use already widely adopted protocols and interfaces, namely

those o f the Web.

Our main concern is that existing programming models for distributed computing do not

address the issues o f failure and performance for the Internet identified in the previous

section, and as a result cannot scale globally. At best, the systems allow the specification of

timeout in order to interpret failure, and embed an exception handling mechanism that can be

used to implement flow control after failure. We see the issue o f providing distribution

abstraction as being distinct from that o f dealing with the properties of the domain. Indeed,

we argue that they are in tension with one another, because instead o f hiding the failure and

performance properties o f the Web with abstraction, they should be exposed, allowing the

explicit programming o f failure models.

It is problematical to model high-level concepts such as distribution directly, due to the

difficulty in masking the failure properties o f the global network. We do not wish to develop

yet another distribution paradigm that enforces a particular computational model. Instead, we

want to provide a level o f abstraction that exposes the properties o f the domain and allows the

implementation of arbitrary higher-level distribution abstractions if necessary. Consequently,

we take a lower level approach, performing a more direct attack on the intrinsic failure

properties and non-determinism of the Web.

Human Browsing

Humans have evolved behavioural means to ease the performing o f manual tasks on the

Web. In this context, a task might be to find information about a specific subject, or buy a

18

particular CD for the cheapest price possible, for example. By examining the methods that

humans employ to achieve them efficiently, we hope to gain some insight as to how such

tasks might be automated. In particular we are interested in how humans deal with the failure

and performance properties o f the Web. There has been some research into human browsing

and task models for the Web [39] [40], These are HCI studies that are primarily concerned

with improving the design o f Web browser applications. The tasks that test subjects perform

tend to be simple, and the studies concentrate on interaction with the browser application

more than interaction with the Web as a concept. Neither study addresses the issues o f failure

and performance, which are our primary concerns. We have been unable to locate any studies

that establish human thought processes with respect to Web failure.

The design o f a high-level programming language is chiefly about easing the mapping o f

human thought processes into something that can be understood by a computer. Thus, we feel

that the insights gained from examining human ‘algorithms’ for Web ‘computation’ are

extremely valuable in ascertaining what concepts should be provided in Web programming

language abstractions. We are interested in human thought processes with respect to Web

failure and performance, and in particular how failure is interpreted and in how task flow is

affected by failure. We have undertaken a study o f these issues, but it is somewhat

philosophical, in that it is entirely based on introspection, and on informal discussion with

experienced Web users. We lacked the resources for extensive HCI experiments. However,

since any insights gained from our study are to be used only in guiding the design o f

programming abstractions, and not as a foundation for design, we feel that intuition alone is

sufficient. In any case, we aim to provide as general a mechanism for failure interpretation as

possible.

Human browsers frequently employ concurrency in order to achieve greater throughput.

However, the level o f concurrency is dependent on local bandwidth. Users with permanent

connections with high local bandwidth tend to download more things concurrently, such as

large archive files, for example. This increases overall throughput, since in general the

bandwidth bottleneck does not lie local to their machine. In addition, since their connection is

permanent, they are not concerned with utilising the bandwidth at all times. They are

interested only with saving their own time, and not in minimising ‘online’ time. Modem users

use concurrency in a different way. Downloading several things concurrently via a modem

connection decreases the overall throughput, due to multiplexing over the line. The bandwidth

bottleneck is local. To avoid this, modem users try to download things sequentially. Also, as a

reaction to the fact that they are not paying for the number o f bytes transferred, but for the

amount o f time spent online, they try to keep the bandwidth utilised at all times in order to

minimise the total online time required in completing the task. For example, when

19

downloading a large archive split into six parts, say, the high bandwidth user will download

all parts at the same time, and unpack them after all have downloaded. In contrast, the modem

user will download them sequentially or perhaps two at a time, and unpack them as they

arrive.

Since modems are slow, humans tend to perform other tasks while downloads proceed. For

example, when reading a document that is split into sequential parts, modem users will read

the current page while downloading the next, whereas high bandwidth users will download

the next page only when they finish reading the current one. In general, users with high

bandwidth are more likely to wait idly while downloads proceed, since there is not enough

time to merit a ‘context switch’ to initiate another action. Our conclusion is that human

browsers employ sophisticated control over the level of concurrency, in computation and data

transfer, in order that it is the most appropriate for their purposes and for their bandwidth.

Concurrency is also employed as part o f the human browsing ‘failure model’. The most

common model for failure in general is the sequential ‘on failure do x instead’. For example,

when accessing their favourite Web site for a particular kind o f information, news, say, the

user has a list o f alternative sites containing the same or similar material. On failure o f the

preferred site, one o f these is invoked. However, human browsers often employ concurrency

here. If their favourite site looks like it might fail, then a secondary site is invoked. Whichever

downloads first is the one read. Pessimistic users can be seen to invoke secondary downloads

speculatively, at the same time as the primary, taking whichever completes first. In general,

we define a class o f behaviour called control behaviour, which encompasses the following

kinds o f behaviour.

• ‘On failure do something else’ where the else may be an equivalent process to one that

failed, or something unrelated.

• ‘Alternate actions’ where two or more downloads or computations are started

simultaneously and whichever completes first is taken as the result, the other being

terminated.

• ‘Independent concurrency’ where two or more unrelated downloads or computations are

performed at the same time.

• ‘Related concurrency’ where one or more downloads or computations are invoked as a

result o f observations o f the behaviour o f one or more ongoing downloads or

computations.

20

In essence, the human ‘skill’ o f browsing is the diagnosis o f failure from visible ‘symptoms’

associated with Web downloads in the context o f several other factors, then the taking of

appropriate action. Those symptoms we can quantify we term as observables. These are:

• Transfer rate.

• Download time.

• Connection latency.

• Amount o f document downloaded so far.

These observables are used in isolation or together in order to interpret failure. Human

browsers have a vague notion o f ‘timeout’ for Web transfers, and may take remedial action if

a fetch does not complete within an acceptable time. However, a human browser is much less

likely to terminate a transfer if it is close to completion, and is likely to take into account

transfer rate. Human browsers use arbitrary combinations o f observables when interpreting

failure. Other factors that are taken into consideration when interpreting failure are as follows.

• Time of day.

• Server locale (geographical distance).

• Perceived server load and network congestion.

• Level o f importance attached to the information being downloaded.

• Previous reliability o f server or URL.

These are factors that are not directly observable from the properties o f an ongoing fetch, but

can be important in interpreting failure in conjunction with observables. Human browsing

behaviours are a reaction to the failure properties outlined in the previous to last section, but

there is something more, something holistic going on here that we want to capture. The rate of

a Web transfer may quicken, slow down, or even drop to zero. Experienced human Web

browsers are good at interpreting these symptoms, and may terminate the transfer, retry it, or

seek alternative sources o f the same information. It is knowledge o f their previous browsing

experiences with that particular site or URL that aids in interpreting the symptoms of failure

and in determining an appropriate response. Human browsers interpret failure based on

21

observations o f the properties o f particular fetches, in a context o f past behaviours, time of

day, and other factors.

W hat is important is that the human browsing model is fundamentally based on the

perception o f failure. This is the type o f failure we are interested in, since we see it as an area

o f weakness in contemporary programming models, which have difficulty in capturing

‘vague’ notions of failure based on context sensitive observation. Most programming

languages are designed to operate within the more deterministic context o f a closely coupled

architecture, where failure is generally absolute. New programming models must be sought

that capture this holistic notion o f Web failure and performance.

Programming the Web

Contemporary general purpose programming languages are designed to write applications

that execute over local file systems. Failures arising from file-system access are absolute, and

are usually repeatable. In contrast, failure in accessing the Web is intermittent, and is not

absolute in that it often requires interpretation, given a number o f factors. When executing

over a file-system, the existence o f a program’s dependent files is usually a precondition for

successful execution. In contrast, the frequency and intermittence o f failure on the Web

means that enforcing program preconditions with respect to Web access is not viable. For

example, on host lookup via a Domain-Name Server (DNS), an intermittent error may result

in failure to resolve a particular hostname, even if the host does exist. In contrast, with a local

file-system a failed attempt to open a file almost certainly means that the file does not exist.

When reading a file from local disk into memory, programmers rarely consider the time that

the read operation will take to complete, since although it is non-deterministic, it is usually so

small as to be irrelevant. The time taken to download Web documents is also non-

deterministic, but is certainly orders of magnitude longer than reading documents of similar

size from the local file system.

Although determinism is technically not a ‘fuzzy’ concept (a computation is either

deterministic or non-deterministic) we use it in a fuzzy context here. If something is more

deterministic, it is more predictable. Computing over the Web is less deterministic than over a

local file system, since the relationship between a Web application and the Web medium is

fundamentally different to the relationship between a traditional application and the

underlying file-system. In spite o f this, designers of Web programming abstractions seem

determined to view the Web as a file system. For example, thejava.net package [41] provides

a Web fetch abstraction that produces a data stream indistinguishable from one produced by

file system abstractions. No facility for examining rate or timing latency is provided by the

abstraction, and must be explicitly programmed if required. In general, the fact that

22

contemporary programming models are geared towards computing over a local file-system

means that the abstractions they provide tend to be inappropriate for computing over the Web.

That is, the underlying semantic space for these general purpose programming languages does

not reflect the properties o f the Web. Forcing programmers to deal with a broad class o f non-

deterministic behaviour introduces complexity because these properties o f the domain must

be mapped into a language whose semantic space is very different. This exacerbates

programmer errors.

In the earlier section on distribution abstraction we argued that it is inappropriate to provide

high-level distribution abstraction in a language designed for general Web programming. We

aim to provide a level o f abstraction that is as flexible as possible, so do not attempt to model

any distribution other than the most primitive actions - Web get and post. Any higher-level

notion o f distribution would be likely to mask the properties o f the domain in some way,

properties that may be useful to some classes o f application. Since Web get and post are

primitive actions, they should be provided as primitive operations in a Web programming

language. We have argued that the nature o f the domain must be exposed, so if the language

incorporates primitive Web fetch operations, then the domain exposure must be associated in

some way with these operations. There are two other concepts that we require of a Web

programming model.

Firstly, the significance o f network overhead motivates concurrency, since we wish to

perform useful work during downloads. This motivation is additional to that o f being able to

express the desirable Web computation behaviours exhibited by human browsers. Human

Flow control Flow control basedFlow Control
mechanism can on observation of

Concurrency Domain

browsing behaviour shows us that we require concurrency for Web fetches and arbitrary

computation. For example, human browsers might read one document while another is

downloading, and this has a direct analogue in automated processing. Secondly, intermittent

and frequent failure (compared with a file system) motivates the adoption o f appropriate flow

control mechanisms for failure. The flow control mechanism must allow behaviours similar to

those o f human browsers. For example, a human browser may initiate a concurrent download

after observing an unacceptable slowdown in another. To this end, the flow control

mechanism must integrate with the concurrency mechanism.

23

To summarise, a Web programming language requires primitive Web fetch operations,

exposure o f the domain properties somehow associated with these operations, concurrency for

Web fetches and arbitrary computation, and a flow control mechanism that integrates with the

concurrency mechanism basing flow control decisions on logic involving quantified domain

properties. The relationship between these concepts is shown in the diagram above.

This Thesis

As the Web becomes more important both economically and culturally, there is a growing

demand for sophisticated application programs in the domain. These applications must be

able to compute over the Web in the face o f its non-deterministic failure and performance

properties, with little or no human interaction. This gives rise to a problem domain that is the

development o f a class o f Web applications for which robustness is key. To program in this

domain, we need a semantic space that reflects the failure and performance properties o f the

Web, constructs for flow control that are appropriate given the frequency o f failure, and a

mechanism that provides concurrency for downloads and arbitrary computation. O f utmost

importance is that these three concepts integrate appropriately. Our approach involves the

design of a domain specific Web programming language, Focus, which is the first language to

successfully integrate these concepts. This is the key scientific contribution o f our thesis,

though we allude to the fact that Focus provides the means to express Web computation more

concisely and more intuitively than contemporary programming languages, as well as being

more flexible in expression.

Our approach is split into two parts. First we define a conceptual domain that exposes the

failure and performance properties o f the Web. This conceptual domain is based on persistent

relative observables. These are quantities associated with ongoing computations (Web

fetches) that reflect the performance o f those computations with respect to previous

behaviour. For example, we define a rate observable that is calculated as a ratio to a historical

average rate for that particular Web server. Second, we define a high-level language construct

called a supervisor, which we embed in a programming language that incorporates our

conceptual domain. Supervisors are abstractions over concurrency that allow the expression

o f computations that control other computations based on queries o f their persistent relative

observables. In essence, supervisors effect concurrent flow control based on a programmed

interpretation o f the significance o f observables for computations passed to them as

parameters.

In Chapter 2, Analysing Web Failure and Performance, we present the methodology and

results o f an experiment to determine the failure and performance characteristics of the Web.

The experimental data confirms what is generally already known: the Web is failure prone,

24

and subject to fluctuations in performance. However, it also exposes some interesting

performance patterns that influence the design of our programming model for the Web.

In Chapter 3, Domain Properties and Flow Control, we outline some methods o f flow

control for failure, including function return code overloading and exception handling. Then

we describe in detail the language WebL, and the Service Combinator Algebra, both o f which

attempt to provide abstraction over the failure and performance properties o f the Web by

integrating means for failure interpretation with exception handling and concurrency. At the

end o f the chapter, we identify three properties we deem as desirable for a certain class of

applications involving the Web, and evaluate Service Combinators and WebL in context.

In Chapter 4, Web Fetching with General Purpose Languages, we describe a methodology

that provides flexible failure interpretation for Web fetches without recourse to specialised

programming language concepts. The methodology makes use o f higher order functions to

parameterise Web fetches with expressions that dictate the conditions for failure. In the

interest o f pragmatism, we also present an approximation to the technique for object-oriented

languages. We claim that our methodology is a useful tool for programming Web applications

with general purpose programming languages, in particular with respect to failure

interpretation, but admit that it has difficulties in integrating with concurrency mechanisms.

Primarily, this is a result o f the serialised nature o f exception handling mechanisms.

Chapter 5, A Conceptual Domain fo r Web Programming, describes a conceptual domain for

Web programming based on the concept o f persistent relative observables. A conceptual

domain is the set o f primitive concepts upon which programming languages are defined. In

our domain ‘observables’ such as transfer rate and time are calculated relative to a historical

context. The benefits o f persistent relative observables include program portability, mobility,

and future proofing, as well as providing the means to define programming languages that

have flexible, efficient, and accurate failure interpretation.

In Chapter 6, Observation and Control with Supervisors, we introduce supervisors, which

are high-level language abstractions that are appropriate for computing over the persistent

relative observables conceptual domain. In essence, supervisors are concurrency constructors,

and rely on the observables o f the concurrent computations they control to interpret failure or

other conditions that require special processing. Major features o f the supervisor mechanism

are the separation o f computational logic from control logic, independence o f control from the

type o f computations being controlled, and a novel mechanism for resolving concurrent

updates.

Chapter 7, Exception Handling, is an in depth study o f exception handling, which is the flow

control mechanism for failure universally adopted by modem general purpose programming

25

languages. We identify the aspects that may differ between mechanisms as being exception

form, flow of control after detection, level o f automatic propagation, type o f exception

interface, and method o f exception binding.

In chapter 8, Related Work, we describe work that is not directly related to programming the

Web but is still relevant in that it involves issues o f abstraction with respect to failure or

performance. We also describe work related to programming the Web but which does not

address the issues o f failure and performance.

In chapter 9, Formal Issues, we prove by simulation that the supervisor construct

conceptually contains the service combinator algebra. We also present an algorithm that

implements the supervisor environment model efficiently and prove its correctness.

Chapter 10 concludes this thesis by summarising its content and scientific contribution, as

well as outlining some areas o f possible future research.

26

2: Analysing Web Failure and Performance

In this chapter we present the methodology and results of two experiments that determine

the failure and performance characteristics o f the Web. First, we examine an undergoing

study by Zeus Technologies [42] that tests the availability and performance of nearly 3001

Internet Service Provider (ISP) Web sites across the world [43]. Then we introduce our own

experiment that concentrates more on the performance aspects that are not fully addressed by

the Zeus study. Finally, we present detailed conclusions.

The failure properties o f Web queries are characterised by the frequency and patterns o f

failure occurrence. The Web has many failure modes. These are the union o f the failure

modes o f the http protocol and o f TCP/IP socket streams [44]. All http failure modes are

absolute, and can be categorised into failure due to an incorrect query on the part o f the client

(malformed URL, requested document does not exist, etc) and failures on the part of the

server (too busy to fulfil request, misconfiguration or internal error, etc). There are several

absolute TCP/IP socket failure modes. Most absolute TCP/IP errors are local in nature, such

as out o f memory and insufficient local stream resources available, for example. Such errors

are rare. The socket protocols optionally keep connections ‘warm’ in the absence o f any other

activity by forcing null transmissions roughly every minute. However, sockets will

automatically return an absolute error if at any point the socket does not respond within a

particular time. This time is not specified, but the protocol documentation suggests

approximately five minutes, which is deemed sufficient to unambiguously indicate socket

failure. It is the implementers o f the operating system that are responsible for deciding the

length o f this ‘absolute’ timeout.

The performance properties o f Web queries are those properties o f Web fetches that are

observable and quantifiable, and change according to factors such as network and server load.

We have identified transfer rate, connection latency, and transfer time, all o f which derive

from the TCP/IP layer. However, we choose to exclude transfer time from our measurements,

since it is dependent upon the size o f resource being downloaded, whereas latency and rate

are not2. The performance properties o f the Web are important, because many classes o f

TCP/IP ‘failure’ manifest themselves in the form of no response, and cannot be distinguished

from each other. Taking a naive approach to this, we can rely on the socket timeouts provided

by the implementers o f operating systems. However, for the class o f applications we are

interested in, such timeouts are inflexible and inefficient. To capture ‘undetectable’ failure

1 The Zeus study is expanding over time, and the number o f sites involved is increasing.

2 There is, in fact, a potential relationship between rate and resource size, which we describe later.

27

modes such as failure o f the server to respond due to software, machine, or network failure

we must interpret failure by using means more sophisticated than timeout alone. This

motivates an analysis o f the Web’s performance properties, in order to determine how they

can help in interpreting failure.

Throughout this thesis, interpreted failure is our primary concern. Absolute failure modes

introduce similar problems to those encountered frequently in traditional programming

domains. Thus, the means to deal with this kind o f failure are well understood. For example,

exception handling is an abstraction for dealing with absolute failure, and we survey the

available mechanisms in chapter 8. In contrast, the concept o f interpreted failure mode is alien

to traditional programming practices, and the purpose o f this chapter is to confirm that it is

this kind o f failure mode that is o f most use when programming in the Web domain.

Zeus Study

According to the Zeus Technologies Web performance site, the purpose o f their study is,

“To measure and record the level of service providing by web hosting

companies. Our only concern here is to measure the availability and

performance o f the http services offered by these companies.”

All hosts are the Web servers o f Internet Service Providers (ISP) hosted in the United

Kingdom, and there are separate studies o f these servers from hosts in the UK and in the

USA. We have independently verified that the choice o f target servers reflects a diversity o f

geography (albeit within the UK) and server types. We assume that since the study shows

diversity in transfer rate performance, this reflects diversity in bandwidth provision.

“This should provide a useful resource for companies looking to

outsource their web hosting as well as a useful benchmark for the web

hosting companies themselves.”

Zeus technologies produce http server and load balancing software products, and the

performance o f such software can relate directly to the measurements in the Zeus study.

However, the study does not attempt to correlate performance data against the type o f server

software in any way, suggesting impartiality. In any case, the Zeus study provides only data,

and any analysis presented in this section is our own.

28

The Zeus study consists o f two parts: failure properties experiments and performance

experiments. First, we concern ourselves with failure. This study examines approximately 300

servers in the UK, from two hosts in the UK. The two hosts query alternately, approximately

every fifteen minutes. This equates to nearly 3,000 tests a month for each target server. So far,

the study has been accumulating data for over two years, though the number o f sites under

test is growing, so not all sites have two years of data. ‘Availability’ o f a site is defined as the

download o f its front page (root URL) not failing. The survey classifies three different

possible failure modes:

• Connect - No connection could be formed to the server. This failure mode encompasses

manifest failure o f the intermediate network link, failure to find an IP address via DNS

lookup, and the server refusing the connection.

• Http - A connection was formed with the server, but it sent an invalid http response, an

http status code not between 200 and 399 thus indicating an error, or the server broke the

TCP connection before all data was received.

• Timeout - A connection may or may not have been formed, but the client was unable to

resolve the DNS name, connect to the website and download the front page (excluding

images) within sixty seconds.

In general, Web server availability on a month per month basis from UK testing hosts ranges

from 0% to 100%, but is on average around 98%. There are no availability figures from the

USA. 76% of all failures that occurred were those o f timeout, and the vast majority o f the

remainder were absolute connection errors. Very few http errors were encountered. This

suggests that it is ‘undetectable’ errors in the form of indefinite delay that are the most

significant type o f failure on the Web.

The second part of the Zeus study examines the transfer rate o f the same 300 servers over

time. Average transfer rate across the entire duration o f a fetch is calculated for the download

o f a resource from each target. Image resources are chosen since they tend not to be the result

o f CGI processing, which would give rise to invalid rate measurements. Furthermore, images

o f similar size are chosen in order to eliminate any differences in transfer rate that arise from

downloading resources o f varying size. As with the availability tests, two different client

hosts in the UK take part, but there is an additional host in the USA. The UK hosts alternately

analyse the performance o f target sites approximately every fifteen minutes. The USA host

tests at a larger and more variable granularity.

29

When testing from the UK, the fact that there are two different client hosts testing alternately

gives rise to rate graphs that are spiked. This reflects the fact that the two testing hosts have

different local bandwidths, and in some cases this is the bottleneck.

Transfer rate over 1 day z e u s

I .5*

03 04 05 06 07 00 09 9 23

509

10 II 12 13 14
Time (hours)

22 23 24

[w w w .in w eb .co .u k 30th June 2000 from UK]

An observation from this is that during daytime hours the bottleneck moves from local

bandwidth to intermediate network bandwidth. The spikes for the high bandwidth host fall,

but the transfer rate for the lower bandwidth host remains broadly the same. Thus,

proportionally speaking it is higher bandwidth local connections that suffer more due to

fluctuations in bandwidth arising from the time o f day. This suggests that if an application on

a particular host is expected to perform most o f its Web access during the day, it is probably

not worthwhile investing in a very high bandwidth connection.

Testing from the single host in the USA shows no spiked effect other than that which might

be attributable to time o f day, as shown in the graph below.

30

http://www.inweb.co.uk

00 0 I 02 03 04 05 06 07 08 09 10 I I 12 13 14 15 16 17 18 19 20 2 I 22 23 24 |
Time (hours)

Transfer rate over 1 day
z e u s

[w w w .in w eb .co .u k 15th May 2000 from USA]

From the graph, we can see that the granularity o f testing is much larger for the testing host

in the USA. The Web site does not state why this is so, though we suspect that it is because a

single host must test the same number o f sites, and also takes longer to process each

individual site due to the lower average transfer rate across the Atlantic.

In the USA graph, there is some rate fluctuation due to time o f day, though it is not as

marked as with high bandwidth clients in the UK. The Inweb server is consistently very fast

when accessed from the UK. In addition, the host in the USA has a high local bandwidth.

Thus, we can conclude that the lower bandwidth exhibited by transfers from the UK to USA

than by transfers from the UK to UK is an artefact o f either geographical or topological

distance in the network, or both.

One limitation o f the Zeus study is that all o f the target hosts reside in the UK. In contrast,

the classes o f application we are interested in are expected to exhibit Web access patterns that

are much broader in terms o f geographical diversity. Failure and performance measurements

for sites in the UK are unlikely to give a true reflection o f the properties o f the Internet as a

whole. Although the Zeus study incorporates some testing from a host in the USA, this is not

sufficient diversity for our purposes.

Another issue that arises from the class o f applications that we are interested in is

interpretation o f failure from available information. This is fundamental. Thus, we are

interested in all available Web performance properties as they relate to failure. In this respect,

one shortcoming o f the Zeus performance measurements is that they do not include

connection latency.

31

http://www.inweb.co.uk

In 1995, Bob Metcalfe predicted the imminent collapse o f the Internet due to increasing

numbers o f users outstripping the capabilities o f the network infrastructure [45]. From 1994 to

1996 the number o f Internet hosts almost quadrupled, from 2.2 to 9.5 million [46]. However,

ongoing studies by Matrix.Net indicate that there was a 30% reduction in aggregate Internet

latency over this period [47]. The trend towards lower latencies continues, indicating that

Metcalfe’s prediction is unlikely to ever occur.

Latency will always be an important aspect o f any network access, since it is the only

performance property for which there is a physical bound, namely that dictated by the speed

o f light1. In the future, data rates may be so great as to make transfer time insignificant.

However, connection latency (or response time), will always be bounded by the amount of

time it takes a request to travel at the speed o f light to its destination and for the response to

return. Knowledge o f the global network’s latency performance characteristics will be

critically important if the expected trend towards mobile computation occurs. In the high

bandwidth networks o f the future, latency is likely to be the primary factor degrading the

performance o f distributed applications. Mobile components o f distributed computation can

ameliorate performance by migrating in order to minimise communication overhead.

The human browsing model indicates that observations o f dynamic transfer rate during a

Web fetch is useful in interpreting failure. The transfer rate o f Web fetches can and often do

fall to zero after a time, and may or may not resume. The Zeus study only calculates the

average transfer rate across the entirety of a Web fetch, by dividing the size o f the resource by

the total time taken to download it. In contrast, we are interested in rate at a more fine grained

level, in that we want to understand how rate fluctuates across the duration o f individual

transfers. The lack o f latency, dynamic rate analysis, and limited geographical diversity in the

Zeus study motivates us to perform our own experiments.

Our Performance Study

Our approach concentrates mainly on the performance aspects o f Web fetches. However, we

do record failure when it occurs, and we adopt the same three failure modes o f the Zeus

experiment except that our hard timeout is longer, since we use larger target resources.

Although the Zeus study of failure patterns is extensive, it is not comprehensive since failure

patterns for sites in the UK might differ from those o f servers more geographically distant.

We discuss failure patterns as they relate to geography later in this section.

1 Network infrastructure is tending towards fiber-optic, so we use ‘light’ rather than ‘electromagnetic impulse’.

32

Each of our experiments involves the repeated download o f resources on twelve different

servers over a 24-hour period. We performed two sets o f experiments, from client hosts with

different local bandwidths, but both o f which are in the UK. One client is located on the Joint

Academic Network (Janet) [48] and has a local bandwidth bottleneck o f 10Mbit. Janet has

extremely high bandwidth backbones within the UK. The other client has cable modem

connectivity, with a local bandwidth bottleneck o f 512Kbit downstream and 128Kbit

upstream. Our cable service provider, NTL [49], is corporate and so does not use Janet

infrastructure.

The target servers used in our experiments are chosen for diversity in geography, expected

access frequency, perceived bandwidth, and server software. Expected access frequency is,

where possible, determined from hit counters, or alternatively from the type and content of

the site. For example, Web sites hosting small businesses are likely to be less heavily loaded

than those o f a large ISP. The downloaded resources are video or archive files (AVI, MPEG,

ZIP) between one and two megabytes in size. The common occurrence of these file types and

the fact that they tend to be large makes it easier to locate appropriately sized resources over a

diversity o f server types. Our chosen resources are larger than in the Zeus experiment, since

our study o f dynamic rate fluctuation required that downloads be lengthy.

Our client software (source is available [50]) downloads all twelve resources in sequence,

then repeats, continuing until a 24-hour period had elapsed. Typically, this gives rise to a

sample frequency for each target host o f around 10 minutes for the 10Mbit client, and 20

minutes for the 0.5Mbit client. However, this varies given changing network conditions

throughout the day, sometimes rising to 30 minutes and 50 minutes respectively during

periods o f exceptionally high load. For each transfer, the client records failure, connection

latency, pattern o f dynamic rate fluctuation, and average transfer rate. In the following

sections we deal with each of these in turn.

Failure

Although our software implemented a timeout on downloads, none occurred. This is because

the underlying Java socket implementations implement their own timeout on socket activity

that overrides our lengthier timeout on entire download. Because of the Java socket timeouts,

we cannot distinguish between latency timeout and other connection errors such as

connection refused, for example. Similarly, socket errors are either manifestly terminated

sockets mid-transfer or timeout by the Java socket implementation and we cannot distinguish

between them. However, we can distinguish between connection failures and mid-transfer

failures, and the following table shows the percentage o f failure types for each target host

across all o f our experiments.

33

T1 Fail % Cable Fail %

Server Locality Connect Socket Connect Socket

g2301 m.unileoben.ac.at Austria - - 2.4 -

members.aol.com E. USA - - - -

web.staffs.ac.uk UK - - 0.6 1.1

kelim.jct.ac.il Israel 1.2 - 5.1 -

www.aubum.edu E. USA 10.2 - 9.9 0.5

www.arch.su.edu.au Australia 1.7 - 1.6 -

www.jpweb.co.jp Japan 2.0 - - 0.6

www.fast.co.za S. Africa 0.8 - 0.7 -

liv.auriga.ru Lithuania 2.4 1.9 2.8 0.8

canyonsw.pair.com W. USA 1.2 - - -

www.royalmail.co.uk UK - - - -

www2.cristorei.com.br Brazil - - 1.3 -

In a study o f failure such as this, the amount o f continuous time spent observing the target

servers is important. The longer the time, the better the reflection o f a particular servers’ true

failure characteristics. Our study pales in comparison to the Zeus study, since our testing time

was approximately 48 hours for each server. However, our study incorporates a

geographically diverse set o f servers, unlike the Zeus study.

The data suggests that failure is slightly more common with geographically distant sites,

though because our experiments were over a short time scale, we cannot draw concrete

conclusions. The particularly high failure rate for www.auburn.edu is primarily due to the

fact that the server failed overnight during one o f our tests and coincidentally both T1 and

cable modem experiments were running simultaneously.

Latency

Our measurement o f latency is the time taken to form a socket connection with the server,

send it the request, and receive the resource http header information. In the set o f graphs that

follow, we give a representative sample o f how connection latency is affected by time of day.

34

http://www.aubum.edu
http://www.arch.su.edu.au
http://www.jpweb.co.jp
http://www.fast.co.za
http://www.royalmail.co.uk
http://www.auburn.edu

www.auburn.edu

25000
• •

20000 -w
E 15000 -
> soc<D+■»n_i

10000 -

5000 -

00 02 04 06 08 10 12 14 16 18 20 22 00

www.auburn.edu (zoom)

1000

_ 800 -
</)

^ 600 >» o
o 400 +-»
(0

• •

• •

200

• # ..

0 - \--------------1---------------1--------------1--------------1--------------1-------------- 1--------------1--------------1--------------1---------------1--------------1--------------1

00 02 04 06 08 10 12 14 16 18 20 22 00

kelim.jct.ac.il

12000

^ 10000

£ 8000

o 6000 c
4000(v
2000 -I

0 l I I I l l l l I I l l
00 02 04 06 08 10 12 14 16 18 20 22 00

kelim.jct.ac.il (zoom)

2500 -I

2000 -(0
1500 ->*oL.0> 1000 -

(0
500 -

0 -
00 02 04 06 08 10 12 14 16 18 20 22 00

Time of Day (GMT)

35

http://www.auburn.edu
http://www.auburn.edu

In some servers, there is a marked increase in latency during periods of network congestion,

and in others there is very little. For both servers shown above we chose to use a plot rather

than line graph and show zoomed regions, because periodically, queries experienced

exceptionally high latency. Contrast this with the graph below. The AOL server resides in the

Eastern USA, and the USA is between five and nine hours behind GMT. This means that the

consistent period in the centre o f the graph corresponds to the early morning hours in the

USA.

The pattern o f exceptionally high latencies is repeated in all o f our test servers, with the

exception o f the AOL server running iPlanet, where it is totally absent (see graph below).

This indicates that there might be a problem in Apache, Microsoft, and NCSA servers

whereby intermittently, connection attempts are not responded to for long periods. For

example, the median connection time for the auburn server in the graph above is

approximately 0.3 seconds. However, 13 o f the 467 connection attempts (nearly 3%) took

upwards o f 10 seconds. There is also distinct ‘banding’ o f latencies at 10 and 20 seconds.

Some of these delays occurred at times where server load was low. We know this because the

latency anomalies are not related to time o f day, transfer rate o f these long latency

connections was normal, and fluctuation in rate was also normal (we discuss rate and

variability in later sections). Thus, the intermittent high latencies seem to be an artefact o f the

servers. The fact that the iPlanet server does not seem to suffer from the anomaly at all

supports our conclusion that it is servers and not the network to blame.

members.aol.com

500 -I

400 -
CO

~ 300 -Sk o
O 200 - +■»(Q

-■ 100 -

00 02 04 06 08 10 12 14 16 18 20 22 00

Time of day (GMT)

Although there might be problems with these servers, their behaviour does not break any

semantic rules. That is, their behaviour still falls within what is valid behaviour for a server,

as defined by http. There is nothing in the http 1.1 specification that states a requirement for

timely server response. The only area where timeliness is addressed by the http protocol is

36

with error code 503, service unavailable. According to the protocol, this should be returned

when the server is “temporarily unable to handle the request due to overloading”. The server

can optionally return a value in the header to indicate how long the client should wait before

retrying the request. However, The http specification offers no definition o f what constitutes

overloading. That is, there is no specification o f how long requests should be allowed to

queue at the server.

An ongoing study by Netcraft [51] shows that 62% of all Web sites currently run Apache

and 20% run Microsoft IIS. Thus, this latency anomaly is a tangible world-wide phenomenon

that probably deserves more investigation. It certainly affects failure interpretation. For

example, in a 48-hour period, 1.8% of transfers from www.jpweb.co.jp had an anomalous

latency o f over 12 seconds. In the same period the server suffered 2% actual connection

failures. A Web application might interpret failure on a connection timeout of 10 seconds for

a server, the assumption being that if the server has not responded by this time it has probably

crashed. This might be reasonable for www.jpweb.co.jp, since its median latency is less than

a second. However, because o f the latency anomaly, failure would be interpreted wrongly

approximately 50% of the time.

In the table below, we present our experimental results concerning latency. We measured

latency in milliseconds, and show both mean and median latency. A large discrepancy

between mean and median suggests that the server suffered from the latency anomaly. The

table also shows the type o f server software, number o f network hops to the target,

geographical distance (km), and the time taken for light to travel that distance (ms).

Geographical distance is approximate, rounded up to the nearest thousand kilometres. Note

that geographical distance is not necessary a direct path across the globe. Instead, we model

‘wire length’; calculated by observing the route that packets take through the global network

topology. Australia, Brazil, and Japan are routed via the USA, and Lithuania is routed via

Sweden. Although IP packets are routed dynamically, we observed that in general the same

route is followed for groups o f packets sent in a short time scale. For many sets o f

connections, we checked the route before and after, and did not find any major discrepancies

that might significantly compromise our calculation of geographical distance or hop count.

Light speed in a vacuum is 300,000Km/sec. We use this to calculate the minimum possible

latency for connections between the UK and the target host. Note that we doubled the light

travel time calculated from distance in order to represent the fact that connection latency

corresponds to a round trip.

37

http://www.jpweb.co.jp
http://www.jpweb.co.jp

T1 Latency Cable Latency

Locality Server Hops Dist Light M edn M ean M edn M ean

Austria Apache 16 2000 20 141 188 710 5633

E. USA com iPlanet [52] 21 5000 40 260 262 110 160

U K edu Apache 13 1000 20 50 68 60 87

Israel Apache 18 4000 20 650 786 1490 2040

E. USA edu Apache 26 6000 40 301 820 500 1025

Australia Apache 30 24000 160 1181 1844 1600 3055

Japan Apache 30 19000 120 791 1144 1380 1540

S. Africa NCSA 24 10000 60 1442 1959 1430 1900

Lithuania Unknown 21 2000 20 2098 3002 2210 3127

W. USA com Apache 19 10000 60 280 592 280 562

UK com Microsoft 13 1000 20 110 243 110 122

Brazil Microsoft 20 14000 100 1552 2278 1920 2396

Taking the ratio o f median latency to hops, we see little consistency across servers. This

means that the number o f hops is probably not the primary factor in determining latency.

Likewise, we cannot correlate latency and distance. Consider the graph below, which

indicates that Lithuania, South Africa, and Brazil buck the trend.

T1 Med r— "i C Median Dist

l/T 2500 y

>*o
2000 -

c
o■ *-*(0

1500 -

_l
cm

1000 -

45
<D

500 -

0 -

£> X<SL ^o'

-r 30000

25000 ^

+ 20000 I
-- 15000 o c
- 10000 5

- 5000

^ - / / / ^ O '
& *

* <§>, ^ * • \>

38

We avoid any speculation about possible increase in latencies due to the nature o f network

infrastructure in these countries. However, despite the high latency with respect to distance

and hop count for these servers, there is an obvious crude relationship in that larger distances

and hop counts result in longer latency. Overall though, the relationship between hop-count,

distance, and network and server congestion that determines latency must be a complex one.

In short, it is difficult to draw many conclusions from our studies o f network latency, other

than that networks are significantly slower than light, and that latency is crudely proportional

to hop count and geographical distance. We suspect that server load plays a major role in

determining connection latency. However, it is difficult to introduce control experiments in

this regard. In principle, an artificial situation could be constructed to test the impact o f server

load on connection latency, but such an experiment would require a level o f time and

resources that puts it beyond the scope o f this thesis.

One observation we can make about latency is that for geographically distant servers latency

often remains consistent over time at the lowest latency bound. In general, this consistency

occurs during periods o f low server and network congestion. Any variability arising from

network and server congestion will be ‘upwards’. The graph above for the Israeli server is a

good example o f this behaviour. This indicates that there is a fundamental lower bound on

latency that irrespective of network conditions cannot be improved upon given the same

hardware. This suggests that the fundamental light-speed barrier is important in determining

the lower bound of latency for global communication and that geographical distance and hop

count factors are not responsible for variability in latency.

Average Rate

Transfer time is heavily dependent on the size o f the resource being downloaded, so we

choose transfer rate and latency as our performance measurements. Intuitively, one might

think that transfer rate is independent o f the size o f the resource being downloaded. However,

some Web servers, Apache included, can be configured by the site administrator to prioritise

downloads according to the length o f time they are taking. For example, a server might

www.arch.su.edu.au

20

o0)w
B
*
0)

■4->(0
O'
U)
><

00 02 04 06 08 10 12 14 16 18 20 22 00

Time o f day (GMT)

http://www.arch.su.edu.au

gradually reduce the priority o f long downloads over time, resulting in a trend towards lower

transfer rate that impacts the overall average transfer rate. There is nothing at the http protocol

level that allows determination o f such scheduling policies, and rate trends may not be

distinguishable as policy. It is perhaps to be expected that there can never be a perfect control

group for rate experiments, since heterogeneity is an intrinsic property o f the Web. However,

we attempt to minimise potential anomalies in our results by choosing a diverse range o f

servers, and importantly, remote resources o f approximately the same size (between one and

two Mb). We are particularly interested in how average transfer rate varies with network and

server load. By calculating the average transfer rate for a series o f downloads across a 24-

hour period, we can expose trends in rate for network and server congestion related to the

time of day.

The www.arch.su.edu graph shows the trends in average rate for the test server in Sydney

Australia against time o f day. There is twelve hours o f time difference between server and

client. Because the server is academic, we expect network rather than server load to be the

primary factor affecting transfer rate. We can see that average rate is low during the working

day in Europe, falls even lower as the work day begins in the USA, and drops sharply in the

late evening, as the work day begins in Australia. This suggests that network traffic between

the UK and Australia is routed either through the USA, or by satellite. In this particular case,

tracing packet route shows that the connection is via the USA. Peak rate is around 15K, and

troughs at around 4K at the point o f highest load, which is a 70% reduction in performance.

Although rate varies throughout the day, the fact that transfers at approximately the same time

achieve similar average rates suggests that rate is consistent given similar network and server

load. The canyonsw.pair.com graph shows trends in average rate for a server in California,

which is eight hours behind UK time. Transfer rate from this server seems largely unaffected

by the start o f the workday in the UK, but falls by 70% during the workday in California.

canyonsw.pair.com

70

60

50

40

30

20

10

0
00 02 04 06 08 10 12 14 16 18 20 22 00

Time of Day (GMT)

40

http://www.arch.su.edu

Ra
te

(K
b/

se
c)

The following graph and table shows our results for average rate over a 48-hour period.

Broadly, average transfer rate is inversely proportional to hop count.

T1 Rate e z z i Cable Rate —□ — Hops

300

250

200

150

100

50

0

Rate (Kb/sec)

Locality Hops Dist (km) T1 Cable

Austria 16 2000 93 39

East USA Com 21 5000 59 41

UK Edu 13 1000 256 53

Israel 18 4000 21 10

East USA Edu 26 6000 49 30

Australia 30 24000 12 10

Japan 31 19000 11 14

S. Africa 24 10000 9 10

Lithuania 21 2000 14 14

West USA Com 19 10000 50 43

UK Com 13 1000 80 45

Brazil 20 14000 8 13

41

R
ou

te
r

H
op

s

Dynamic Rate Fluctuation

Transfer rate is calculated by dividing a number of bytes transferred by the amount of time

taken to transfer them. Thus the rate o f transfer for an entire Web fetch is the size in bytes o f

the resource divided by the time taken to download it, after subtracting connection latency

time. However, we are interested not only in the transfer rate for the entire resource, but in

how transfer rate fluctuates across the duration o f a Web fetch. Transfer rate at a particular

moment in time is essentially meaningless, since no bytes can be transferred in zero time.

Instead, we must break down the overall transfer into sampling periods over which we

calculate the rate. There are two pragmatic issues relating to these sampling ‘windows’. Both

derive from the fact that language APIs tend to provide little control over how bytes are read

from a socket stream.

The low-level implementation o f a Web fetch requires repeatedly reading from a socket until

the data stream is exhausted. In both the C and Java implementations o f sockets, we can

specify a maximum number o f bytes to return from a read operation. However, the actual

number o f bytes read can be less than that, and can even be zero. Moreover, the time taken to

complete each read operation is non-deterministic, though is probably upper-bounded

internally. In short, this means that the time for each sampling window cannot be fixed at this

level. The end result is that we have data for the number o f bytes transferred at a series o f

increasing times, but samples are at inconsistent intervals.

Our solution is to keep track o f elapsed time and enforce a minimum sample window time,

by repeatedly invoking read operations and counting bytes until the minimum time has

passed. Then we can approximate rate sampling at regular discrete intervals by linear

interpolation. We calculate the rate for each inconsistent interval by dividing the number o f

bytes transferred since the end o f the last interval by the length of that interval. Then, given

the two values ra and rb for the rate over the interval bounded by times ta and tb respectively,

the transfer rate r at the i* sample point (lying between a and b) is

r = m tj + b

where m is the gradient

m = (rb- ra) / (tb- ta) and b = ra - (m ta)

That is, we calculate rate at the i* discrete window interval by calculating the gradient and

offset of the line passing through the nearest actual samples on either side o f the desired time.

This allows us to calculate the rate at any point in between. There are other methods of

interpolation, such as polynomial and cubic interpolation. These use data points additional to

the two on either side of the target and find a curve that passes through them all. The curve

42

Ra
te

(K
b/

se
c)

Ra

te
(K

b/
se

c)

Ra
te

(K
b/

se
c)

equation can then be solved for rate at a required time. This can give more accurate results if

the sample points are widely spaced, but we found that in many cases the nature o f the curve

fitting would result in negative interpolated rate values, which are unacceptable.

The second pragmatic issue relating to sampling windows is granularity. That is, how long

the sampling window should be. If the window is large, then there is a possibility that

significant fluctuations in rate might be masked. For example, rate might be at 10K, fall to

zero, then rise to 20K all within five seconds. If the window were five seconds long, the rate

observed is 10K, masking the fall to zero and peak at twenty. In contrast, a window of 100

milliseconds might at times indicate a rate o f zero, whereas throughput is actually quite high

100ms window

60

50 -

40 -

30 -

20 -

10 -

10000 15000 200000 5000

700ms window

30 n

25

20 -

10 -

10000 15000 200000 5000

2000ms window

30

25

15 -

10 -

5 -

0 J- ,- r— - - - - - - - - - - - — , - ,--------

0 5000 10000 15000 20000

Time (ms)

at, say, 20K. Window size should

minimise variability in the very short

term, while retaining an accurate picture o f

rate fluctuation overall.

The choice o f window size is essentially

qualitative, but we performed an

experiment, downloading several

resources at different times o f the day,

with different window sizes. For small

windows, the accuracy o f the timer is an

issue. Our language o f implementation is

Java, and we found that the Java system

clock is not accurate below a granularity

o f around 30ms. Thus, we choose a

minimum window size o f 100ms, ranging

up to two seconds. Consider the three

graphs adjacent, which reflect typical

results for small, medium, and large

window sizes. All graphs correspond to

fetches o f the same resource from a single

server under similar network conditions.

We cannot show three graphs for precisely

the same fetch, since only one window

size can be used for any given fetch.

However, we performed experiments

indicating that several transfer of the same

43

resource within a short time scale gave rise to similar patterns o f fluctuation.

A window size of one hundred milliseconds gives rise to a ‘stepped’ effect and jaggedness in

rate fluctuation, and the window size o f two seconds potentially misses significant troughs

and peaks. A window size o f 700 milliseconds is a compromise that appropriately reflects

fluctuation in dynamic rate.

On examining the trends in perceived bandwidth (actual transfer rate), we see that it

fluctuates unpredictably throughout transfer, though fetches generally start slowly. Consider

the following graph, which represents the rate fluctuation o f a transfer from Israel at

18:00GMT. The pattern o f fluctuation is representative o f typical rate fluctuations across the

duration o f different fetches during average network congestion.

kelim .jct.ac.il (18:00 GMT)
18
16
14
12
10
8
6
4
2
0

10000 30000 400000 20000
Time (ms)

We are interested in the degree to which transfer rate throughout a fetch fluctuates in relation

to the time of day (and thus network and server load). To determine the level of fluctuation,

we consider the spread of rate observations about the mean. The larger the spread, the more

fluctuation. One way to calculate the spread o f a data population is by calculating the standard

deviation, SD. In the following equation, n is the size o f the population and x is a member of

the population.

SD = V (Z x2 - (2 x)2 / n(n - 1))

The theoretical basis of standard deviation is complex and beyond the scope of this thesis.

However, one practical concern is that the population from which the data arises should be a

distribution that is approximately Gaussian. Gaussian distributions are represented by a

family o f curves that are defined uniquely by two parameters: the mean and the standard

deviation of the population. Gaussian curves are always symmetrically bell shaped, and the

extent to which the bell is compressed or flattened out is related to the standard deviation of

the population.

44

The two graphs below show histograms for rate. The graph for kelim.jct.ac.il corresponds to

the transfer rate graph shown above. On the histograms, frequency is the number o f rate

observations that fell within that 1 Kb/sec range, or bin.

These kind o f distributions are representative o f the vast majority o f our experimental

results. For the upper histogram, there is a tendency for samples to be o f higher rate. Many

transfers follow this pattern, which corresponds to the situation where rate is broadly

consistent, but periodically troughs.
www.arch.su.edu.au (18:00 GMT)

250 x

200 -

£ 1 0 0 -

25 - r

20 -

kelim.jct.ac.il (18:00 GMT)

o 15co
3O'

10

<o <b & & & r£>
Rate bin (Kb/sec)

The fact that there are more troughs

than spikes causes the skew. When

interpreting failure based on rate, we

are not interested in spikes, only

troughs. In the lower histogram on

the right, individual troughs

represent a larger deviation from the

mean than the troughs o f the Israel

histogram.

Now, skewed distributions (not

Gaussian) tend to inflate standard

deviation. However, since it is

troughs that are relevant for

interpretation of failure, and in

particular may result in erroneous

interpretation o f failure when overall

transfer progress is good, the larger

standard deviation serves as a

cautionary indicator in this respect.

The higher the standard deviation,

the more variable transfer rate. An

inflated standard deviation reflects

the fact that a transfer suffers from

many troughs, which are the most

insidious form o f rate variability.

Thus, although we draw the line at saying non-Gaussian distributions are a positive benefit,

we feel that the implications do not impinge on any conclusions we draw from studies o f

standard deviation.

45

http://www.arch.su.edu.au

The following table contains figures for each target site that represent the average

normalised standard deviation in rate (higher numbers represent increased variability) for

Web fetches sampled over 24 hours. We normalise by dividing the average standard deviation

of all transfers by the average download rate for all transfers. The value then reflects

deviation from average rate in fractional terms that allows us to compare the variability of

sites with different perceived bandwidth. Interestingly, we can conclude that rate fluctuation

does not appear to be a function o f geographical distance and so not a function o f the number

o f intermediate network nodes.

T1 Cable

Locality Dist M ean Rate Std Dev M ean Rate Std Dev

Austria 2000 93 0.31 39 0.54

East USA Com 5000 59 0.40 41 0.65

UK Edu 1000 256 0.39 53 0.62

Israel 4000 21 0.28 10 0.32

East USA Edu 6000 49 0.29 30 0.36

Australia 24000 12 0.29 10 0.36

Japan 19000 11 0.34 14 0.31

S. Africa 10000 9 0.32 10 0.40

Lithuania 2000 14 0.66 14 0.64

West USA Com 10000 50 0.39 43 0.42

UK Com 1000 80 0.85 45 0.90

Brazil 14000 8 0.31 13 0.36

46

Surprisingly, it is a UK server that exhibits the highest variability in rate, for both T1 and

cable connections. Adjacent, we show a graph o f a typical pattern o f dynamic rate fluctuation

for this server. Note that high standard deviation is to be expected if the mean is a large value.

However, we have normalised by

www.royalmail.co.uk (13:00 GMT) divldinS ** the mean in each case’
which allows us to meaningfully

compare the variability o f different

populations.

The bar graph below shows the

same data as in the table, but in a

format from which we can easier

draw conclusions. There is a

suggestion that standard deviation is

inversely proportional to

geographical distance. However, it is

more likely that it is the fact that

90

70

0 5000 10000 15000

Tim e (ms)

closer servers tend to have higher transfer rates, and it is higher transfer rates that give rise to

variability.

^ < 3 ?

Standard Deviation and Distance
30000

c 0.9 o
r 0.8re

- 25000

20000 E

<t) 0.5 15000 o
J5

'10000 g

E 0.2
° 0.1

<o

or <<> CQ>
o.O1' ‘O’

£
<5-

Cable

T1

Dist

For T l connectivity, the AOL server also has a high average variability, and like the Royal

Mail site is likely to be heavily loaded. Server loading may be a significant factor in

determining rate variability in addition to network load. Both are functions o f the time o f day,

but we distinguish between variability introduced by network load and by server load by

47

http://www.royalmail.co.uk

comparing the standard deviation between servers that co-located in network topology but are

known to have different access frequency. We can see that from the table, that East USA Com

(AOL) and East USA Edu (Auburn) are co-located, but have different standard deviation in

average rate. The site with higher expected server load (AOL) has higher rate variability.

Closely following AOL in T1 variability is the UK academic site. Although this site has the

highest average bandwidth, overall that bandwidth is extremely variable. Examination o f a

number o f dynamic rate graphs for this site shows that the morning is the most variable time,

and troughs are frequent.

On the following two pages, we present some graphs and analysis for a particular set of

transfers from the Israel test server. The first pair of graphs show how rate fluctuation is

affected by network and server load. The second pair shows that there is a correspondence

between variability in rate and time o f day.

48

ht
tp

://
ke

lim
.jc

t.a
c.

il/
sc

ie
nc

e/
ph

ys
ic

s/
ra

ac
c1

/c
ha

ir
.a

vi
 (

Is
ra

el
)

ooooLO
CM

Oo
oo

£
jQ

© -C O c £I— ‘iz E jo“ 0) O —
o ® ̂ oy >» JO -F

T3O
CM
CM

05 (/)

o
CM OOOOO

CM

05

O
CO

OO
oo oin

o

o> •;
oa-« £ ® oooo

00o

05

CD

o
oomQ. ooO

OO O
O Oo in o in m oo o in omo

C O C M C M ^ - t - c o c m c m ■<- t -

(oas/qy) ejey (oas/q><) ajey

El
ap

se
d

tr
an

sf
er

 t
im

e
(m

s)

http://kelim.jct.ac.il/science/physics/raacc1/chair.avi

(oas/qx) a jey oes/qx/uoj)e;Aap p jep u ejs

This shows that in addition to decreasing, transfer rate fluctuates more when the network is

under heavy load. That is, data transfer is more ‘bursty’. Furthermore, rate ‘troughs’ are

common, even when the network is not under particularly heavy load. However, troughs are

more frequent, and o f longer duration when the network is heavily loaded. Troughs can range

in duration from several seconds to several minutes. The fact that there is a clear

correspondence between time o f day and standard deviation in rate shows that network and

server load, and not geographical distance, are the primary factors in determining rate

variability during Web fetches.

51

Conclusions

Our experiments allow us to draw several conclusions that may be o f use when

programming Web applications. To summarise, for each conclusion we speculate how they

might relate to programming Web fetches.

• Median latency is a function o f geographical distance - i f the geography of a site is

known to be distant, then programmers may wish to extend any latency timeout over that

normally applied to co-located sites.

• Latency is intermittently very high - an anomaly we suspect to be related to server type

causes exceptionally high latencies to be observed periodically. This anomaly can cause

the majority o f failure interpretations by latency timeout to be erroneous. An appropriate

response to this might be to immediately retry all connections that timeout on latency.

• Perceived bandwidth is inversely proportional to distance - as with latency, programs

should expect geographically distant servers to experience lesser performance than local

servers. For example, a transfer rate o f 4Kb/sec to a site in the UK is poor and might

justify termination. In contrast, for a site in Australia this transfer rate should probably be

deemed acceptable, unless an equivalent resource can be found on a local server.

• Perceived bandwidth is affected by network and server load - during known busy periods

o f the day, programs should expect to observe a reduction in perceived bandwidth.

Programmers may wish to relax performance expectations during these periods.

• Bandwidth fluctuates throughout transfer - fluctuation in transfer rate is more marked

than the transfer rates shown by browser applications would have us believe. When

automating failure interpretation, programmers should remember that rate can drop to

zero for short periods, without indicating that overall transfer progress is poor.

• Bandwidth is more variable during periods o f network congestion - in addition to the

previous point, programmers should take extra care not to inadvertently interpret failure

for a connection based on rate troughs during known periods o f network congestion. We

return to the issue of diminishing the impact o f rate troughs in the context o f calculating

dynamic rate in Chapter 5 - Persistent Relative Observation.

• Bandwidth variability is not a function o f geographical distance — since variability is

primarily a function of server and network load, programmers can ignore server locality

as a factor when rate troughs may be an issue.

52

• Average rate fo r distinct transfers is consistent in the short term - rate shows definite

trends according to the time of day but is unlikely to change much from one minute to the

next. This means that programmers should not expect to see marked differentiation in the

transfer rate o f successive or concurrent fetches to the same server. This property is

important when we later develop a technique for failure interpretation based on relative

observation.

• Rate troughs are common even under moderate network load — troughs, where transfer

rate intermittently drops to zero, can range in duration from several seconds to several

minutes. However, they are more frequent and o f longer duration when the network or

server is heavily loaded. Programmers should understand that rate may drop to zero for

extended periods when the network is congested. Thus, programs should interpret failure

by rate observation less readily when under these conditions.

Now that we have examined the nature o f the Web domain in quantitative terms, we can go

on to examine the models that programming languages employ to detect failure and direct

flow control after the fact. In particular, we are interested in how the domain properties are

mapped into programming languages, and in the appropriateness o f the flow control

mechanisms.

53

3: Domain Properties and Flow Control

To program in the Web domain, we need something in the semantic space that reflects what

is going on at the communication level. A language designed specifically for programming

Web applications should provide fundamental operations for Web access. It is the semantics

o f these operations that expose the nature o f the Web domain. Since Web access is prone to

failure, the primitive access operations should be integrated with an appropriate flow control

abstraction for failure. In turn, this flow control mechanism should allow the expression o f

concurrency. Before we continue, we define some terminology.

A specification o f what constitutes failure is the first part o f a computation’s failure

semantics. The second part is the specification of flow control after failure. In other words, a

computation’s failure semantics specify the meaning o f failure: defining how a computation

fails, and what to do if it does. Failure representation can be a simple or complex value, or

even a procedure-like entity. More discussion o f failure representation can be found in

Chapter 8 - Exception Handling. A language’s failure model defines the failure representation

and the means to program failure semantics (how failure detection can be expressed, and the

possible flows o f control that can be expressed). A particular failure semantics for a

computation is an instance o f what is programmable within the language’s failure model.

Overloading flow control for failure onto function return

During program execution, it is sometimes necessary to determine the existence of

exceptional circumstances that require special processing. In particular, this applies to failures

that can only be detected dynamically. In general, failure to complete an operation is detected

by the operation itself, but the significance o f that failure is known only by the operation’s

invoker, since only the invoker knows to what use the operations results are being put. Thus,

on the detection o f failure, information about the failure must be passed to a higher level of

abstraction so that appropriate remedial action can be taken. For example, a programming

abstraction for network 10 cannot determine the significance of failure to make a connection.

Only its invoker can, and so information about the failure must be propagated up the dynamic

invocation chain. If the detector of failure can determine the significance o f that failure, then

it should not be considered an exceptional circumstance and should instead be handled with

normal flow control by the operation that detects it.

A programming language or operating system may intervene on the programmer’s behalf to

detect dynamic errors such as out o f bounds array indexing or division by zero, for example.

For other errors, programmers write explicit error tests within a function that may cause it to

return an error code instead o f a result, possibly with additional error information in global

54

state. The function’s invoker can then examine the return code and deal with the error in the

context o f knowing its significance. Although this is the most common way to indicate the

presence of errors, there are others, and Levin provides a detailed examination o f the

possibilities [53].

Perhaps the most well known example o f the function return overloading methodology is

that associated with the C programming language. Many C standard library functions return

integers that encode information about their execution. For example, an IO function might

return a positive integer that indicates the number of bytes read, or a negative integer

indicating the occurrence o f an error, the type o f which can be determined from the value

returned. Execution results that cannot be overloaded onto the return value are returned in

reference (pointer) parameters. Consider the example below, written in C.

The read Data function reads lines o f text from a file into a buffer (passed as a reference

parameter), separating them with a percent symbol. The first item o f data in the file is the

number of lines in that file. There are three main reasons why read Data may fail, and these

correspond to the three explicit error tests made:

• The file might not exist or cannot be opened.

• The first entry in the file might not be a number, indicating incorrect file type.

• The number o f entries in the file might not correspond to the integer read.

Before the implementation o f read Data, we define integer codes that correspond to each of

these possible errors. Within read Data, we test the return values o f the file IO function

invocations, and if they indicate an error, we return the appropriate error code to the invoker

o f read Data. The invoker tests the return value o f read Data in a similar manner. On

encountering an error when opening the file with fopen, readData examines errno, which is

a global variable set by many IO functions to carry information about failure in addition to

that in the return code.

55

#define FILE_STRUCTURE_ERROR -1

#define READ_DATA_ERROR -2

int readData(char* fileName, char* buffer) {
int numLines;

int i;
FILE* f = fopen(fileName,”r”);
if(f==NULL) { /* error opening file */

switch(errno)
case FILE_NOT_FOUND: ...

return FILE_NOT_FOUND;

}
if(fscanf(f, “%d”,&numLines) < 0) { /* no line count error */

return FILE_STRUCTURE_ERROR;

}
for(i = 0; i < numLines; i++) {

int numRead;
numRead=fgets(f,buffer);
if(numRead<0) { /* file read error */

return READ_DATA_ERROR;

}
buffer+=numRead;
*buffer++=’%’;

}
return numLines;

}

switch(readData(“file.txt”,aBuffer)) {
case FILE_NOT_FOUND : ...

case FILE_STRUCTURE_ERROR : ...
case READ_DATA_ERROR : ...
default: ...

}

56

Overloading the function return mechanism in C can lead to function implementations that

are difficult to understand, as in the example above. This is because error detection code and

associated control flow code pervades computational logic, undermining structural coherence.

Furthermore, use o f this methodology cannot be captured in function interfaces. This means

that the fact that a function may return an error code and the particular encodings used must

be documented separately to the function signature. This complexity is compounded if side

effect to global state also carries error information.

A separate problem related to the use o f global state to carry failure information is that it

precludes function re-entrancy, thereby compromising concurrency. Re-entrant functions can

be executed simultaneously by two or more concurrent threads o f computation, since they do

not make use o f global variables (or static variables, in C). If a function that is not re-entrant

is executed in a concurrent context, two or more concurrent invocations might attempt to

update the global state on which its execution depends. This can compromise the function’s

intended semantics.

With the function overloading methodology, error tests should be associated with every

function invocation that can fail. However, this is not statically enforced so indolence or

oversight on the part o f the programmer can lead to errors going undetected. In some cases

this can be catastrophic as errors enter the system unexpectedly and only manifest themselves

some time later. Flater proposes [54] some extensions to C that eliminate many explicit tests

o f return codes for standard library functions, and for circumstances such as array bounds

violation and null pointer dereference. However, the extensions do not address the issue o f

propagating error information, since the automatic behaviour on discovering an error code is

to terminate the program. Gehani argues [55] that the function overloading methodology

result in programs that are error-prone, lacking in modularity, have reduced readability, and

are more difficult to reason about formally; concluding that it is inadequate for anything but

the smallest applications.

Exception handling

Exception handling1 is a particular abstraction for programming failure models that has been

widely adopted in varying forms by both general purpose and domain specific programming

languages. Essentially, all forms o f exception handling mechanism amount to the same thing:

automating the process of propagating error information to a higher level o f abstraction that

can handle it in the context o f knowing its significance. Most mechanisms define a small set

o f system exceptions that are detected automatically by the language run-time, and can be

1 We present a detailed survey o f exception handling in chapter 8.

57

handled by the programmer in different ways depending on context. However, the real power

o f exception handling lies in providing the means for programmers to define and raise their

own exceptions.

Programmers are responsible for implementing programming logic that detects the

exceptional situation, and raises an appropriate exception. Thus, exception handling

mechanisms do not directly address what constitutes failure or how failure can be detected

apart from system exceptions. Thus, exception handling mechanisms are independent of any

underlying conceptual domain such as Web observables, for example. Using exception

handling to provide flow control for failure in the context o f Web fetches requires the

programmer to implement mechanisms for exposing the domain properties and failure

detection based on these properties. Thus, in the context of the Web, exception-handling

mechanisms are only two thirds o f a failure model, since they provide only failure

representation and the means to express flow control after failure. What constitutes failure

must be programmed with general program logic, and the methodology applied may differ

between programs, and even within the same program.

In general, exception handling mechanisms are based on the concept o f absolute failure. In

particular, automated support for failure detection in the form o f system exceptions is purely

concerned with absolute failures, such as out o f bounds array indexing, for example.

However, the investigation described in the previous chapter shows that it is perceived (or

interpreted) failure that is more important in the Web domain. If we wish to develop failure

models based on the perceived exception rather than the absolute exception, we require

support to interpret failure based on dynamically available information. In general, exception

handling mechanisms are not good at interpreting failure. Failure interpretation depends on

hardware, the nature o f the substrate (sockets etc) and other issues that we do not want to

address explicitly in programs, since doing so requires implementing sometimes complex

code that is incidental to computational logic. In principle, this could be provided by the

programming system, so as to ease the programming o f domain specific tasks, one approach

is to bring domain concepts in at the language level.

In this chapter, we examine two direct approaches to Web programming language design:

Cardelli and Davies’ Service Combinator algebra [56] and the programming language WebL

[57]. Both attempt to integrate exception handling with mechanisms that directly expose Web

properties in the semantic domain, and aid in the detection o f failure. These are mechanisms

that are absent from general purpose exception handling. The Service Combinator algebra is a

small formalism for specifying reliable Web fetches that is intended to be embedded within a

general purpose language. WebL is a complete Web programming language based, in part, on

service combinators. Throughout this chapter, we are interested primarily in how Service

58

Combinators and WebL expose the domain properties, while integrating mechanisms for

failure interpretation, concurrency, and flow o f control.

Service Combinators

Cardelli and Davies define a small formalism whose computational model is tailored to

programming Web applications, based on the notions o f services and service combinators.

The service combinator algebra is intended to make the communication aspect o f Web

computations more reliable. It allows the construction o f programs that when executed mimic

typical human web reflexes, the 'algorithmic' behaviour exhibited by human browsers when

attempting to retrieve resources on the Web, such as strategies for handling failure and slow

transfer rates with timeout, retry, and concurrent download, for example. Although useful on

its own, the designer’s intention is for the combinator algebra to be integrated with a more

general purpose functional programming language. One major benefit o f the combinator

algebra is that its simplicity and regularity facilitates formal reasoning about programs.

Expressions in the algebra can be manipulated algebraically in interesting ways, and are

amenable to simple proofs o f program correctness.

A service is a high-level primitive that provides the information o f a Web resource, and

encapsulates error detection and handling. Since services correspond to Web server requests,

when invoked they may fail to respond with information, or if they do, it might indicate

failure. The information and error output o f services can be composed in order to create new

services with service combinators, potentially with the introduction o f concurrency. The idea

is to combine two or more similar services, which may be unreliable, in order to provide a

more reliable 'virtual' service. Error recovery policy and concurrency are embedded within the

combined service.

The algebra defines three main types o f service: url, get, and post, which correspond to

simple http document fetch, parameterised get, and post respectively. The latter two services

may be passed any number o f name/value pairs as parameters, and result in an http request

equivalent in encoding to an html form submission. The observable properties o f a service are

its transfer rate in bytes per second, and its time since invocation in seconds. The algebra

provides two combinators, timeout and limit, which allow the specification o f failure

interpretation for arbitrary services through monitoring o f transfer time and rate. Applying

timeout to a service results in a service that fails should its time since invocation exceed a

given constraint. A limited service fails if any o f its constituent services fall below a given

constraint on transfer rate. The limit combinator also allows the specification o f a startup

time, over which the rate constraint is not enforced. The rationale here is that no service will

begin receiving data immediately, so each limited service is given a period to connect before

59

failure can be inferred from transfer rate observation. Thus, the startup time is equivalent to a

constraint on http request latency, since an unconnected service has a rate o f zero.

Timeout and limit are combinators for specifying failure interpretation. The algebra provides

three flow of control combinators for the purpose o f specifying reliability. The sequential and

concurrent combinators afford reliability through redundancy. Both are binary service

operators, represented by the infix *|* and *?* operators respectively. The sequential

combinator returns the result o f either a primary service, or that o f a secondary service should

the primary fail for whatever reason. The secondary service is only invoked on failure of the

primary, and so will not be invoked at all if the primary succeeds. The concurrent combinator

executes both services simultaneously, and whichever completes first is returned as the result

o f the combined service. For both combinators, failure o f both service operands results in

failure o f the combined service. The third combinator for reliability is repeat. This

combinator repeatedly invokes the parameter service until it succeeds.

Finally, two 'primitive' combinators that require no service operands are fa il and stall. Stall

never completes or fails and always has a rate o f zero, and fail immediately fails. The

complete set o f combinators allow the programming o f reliable composite services such as

concurrent and alternative downloads, delayed repetition, and interpreted failure through rate

monitoring and timeout. Consider the following example, presented in [56].

let dbc = function(ticker) is
post("http://www.dbc.com/cgi-bin/htx.exe/squote">

source-'dbcc" TICKER=ticker format-'decimals" tables-'table")
let grayfire = function(ticker) is

index("http://www.grayfire.com/cgi-bin/get-price", ticker)
let getquote = function(ticker) repeat(grayfire(ticker) ? dbc(ticker))
getquote("DEC”)

This program defines two functions for looking up stock quotes based on two different

gateways. It then defines a very reliable function that makes repeated attempts in the case of

failure, alternating between the gateways. It then uses this function to look up the quote for

Digital Equipment Corporation.

The service combinator algebra allows the specification of failure semantics for particular

services or combined services with the timeout and limit combinators. The timeout

combinator applied to a combined service implies failure o f the entire combined service if its

evaluation violates the time constraint. This is irrespective o f observed times for individual

60

http://www.dbc.com/cgi-bin/htx.exe/squote
http://www.grayfire.com/cgi-bin/get-price

http services. Conversely, the semantics o f limit are such that failure o f any individual basic

service within the limited service (combined or otherwise) is implied if its rate of transfer falls

below the specified absolute value. Failure o f a service in this way does not imply failure o f

the combined service produced by limit. Thus, limit does not require any notion o f the rate of

a combined service, but only those individual http services within the combined service.

These semantics can be shown more clearly if we view expressions in the combinator

algebra as dynamic trees. The 'evaluation' o f an expression amounts to collapsing the tree

down to a single service, in a manner defined by the semantics o f the non-leaf nodes. The first

limit(5, 2000, http://hosta.org/ | http://hostb.org)

parameter of the limit combinator is the minimum rate limit, and the second specifies a startup

time for services before rate constraints are applied.

The diagrams show that as we construct the tree, the rate limit propagates down to each basic

http service, but that this is not the case for timeout, which constrains combined services as a

combined services that are composed o f several basic services, some o f which may be

inactive. The concept o f rate can only be sensibly applied to individual basic services - there

is no immediately obvious way to limit the rate o f a combined service as a whole. The limit

propagation design decision has implications for combined service modularity in the context

of nested limits. All constraints set by limit are propagated down to the level of basic services,

so that in the presence o f more than one limit, some services may have more than one

constraint applied to them. In this case, the latency and rate constraints are unified according

to the respective minimum of the two rate and startup times.

Since limits at a higher level o f abstraction override those at a lower level of abstraction if

they are more constraining, limits at the higher level can prevent slow downloads from

succeeding. This is true even if they are constrained only loosely by their immediate limiter,

as in the example above. That is, limits at a high level o f abstraction can prevent slow things

limit(5, 2000) http://hosta.org

con

limit(5, 2000) http://hostb.org

timeout(4, http://hosta.org/ ? http://hostb.org)

http://hosta.org/

timeout(4) seq

http://hostb.org/

whole. These semantics for limit side-step the issue o f having to define the concept o f rate for

61

http://hosta.org/
http://hostb.org
http://hosta.org
http://hostb.org
http://hosta.org/
http://hostb.org
http://hosta.org/
http://hostb.org/

from happening at a lower level of abstraction, even if they are deemed to be proceeding at an

acceptable rate at that level o f abstraction.

One final issue involving rate limits concerns rate variability. In the previous chapter, we

saw that even for transfers that are achieving good progress, dynamic rate frequently spikes

and troughs. The number o f spikes and troughs is inversely proportional to granularity at

which dynamic rate is calculated. For our experiments, we chose a granularity window of

700ms. However, there is no discussion o f dynamic rate calculation in the service combinator

literature, and so we were unable to determine what affect troughs in particular might have on

combinator programs. We have implemented our own service combinator algebra, which is

true to the semantics defined by Cardelli and Davies. This implementation is available online

[58]. Our version o f the algebra incorporates some of our own concepts, but these are not

relevant here and so are discussed later in Chapter 5 - A Conceptual Domain fo r Web

Programming. In writing programs with our service combinator algebra, we found that failure

would often be interpreted erroneously, as a result o f intermittent troughs in dynamic rate. At

the language level, the service combinator algebra does not provide the means to relax rate

constraints in order to ‘overlook’ intermittent rate troughs. As a result we were forced to

apply a ‘smoothing function’ in order to mask brief troughs in rate. We discuss these

techniques in more detail in Chapter 5.

WebL - Web Language

WebL (pronounced ‘webble’), or Web Language, is a programming language designed

specifically for the purpose o f automating tasks on the Web. It incorporates a modified

service combinator algebra integrated with a general purpose exception handling mechanism.

A major feature provided by WebL is a markup algebra, designed for computing over the

structure of HTML and XML documents. We do not discuss the markup algebra further, since

it is designed to address issues arising from the domain o f Web content, and we are interested

primarily in those language concepts that relate to the W eb’s failure and performance

properties. However, since WebL is one o f the few direct attempts at designing a

programming language for Web computation, we examine some concepts o f the underlying

language model additional to those concerned solely with its embedding o f service

combinators.

WebL is dynamically typed. The only static checking o f a WebL program that takes place is

with respect to the context free syntax. Thus, the only errors that are detected before

execution o f a program begins are those of syntax. The one exception to this is errors o f

undeclared identifier usage, which are detected statically. In WebL, it is neither possible, nor

62

necessary, to statically denote a type. Instead, there is an association at run-time between

every WebL value and a dynamic type.

WebL is block structured with lexical scoping, meaning that identifier bindings1 are only

visible within their smallest enclosing program block. However, values assigned to variables

outside of the scope o f their creation carry their closure. All WebL values are immutable, with

the exception o f objects, which have mutable fields. Although all values (with the exception

o f objects) are immutable, a bound variable can be rebound to another value of arbitrary type

at any time, so long as it is in scope. Variable declarations do not require the specification o f a

manifest type, and initialisation is optional. A type is inferred for the variable at the time o f its

first assignment and until then the value, and type, o f the variable is nil. Nil is not compatible

with any other types, the implicit exception to this being during assignment. WebL is type

complete, and all values are first class in that they may be bound to an identifier, form the

result of arbitrary expressions, be passed as parameters to a function, and be returned from a

function.

Object values are mutable, and are created with an initial set o f named fields o f any type.

Object fields are selected with the traditional ‘dot’ notation, but the success o f field selection

depends dynamically on the presence o f the named field. No static knowledge is assumed for

what fields particular objects may contain, or the type o f those fields. New fields can be

dynamically added to an object by using a slight variation on the syntax o f assignment to an

object’s indexed field, namely the use o f the operator instead o f the usual “=” for

assignment.

WebL is not an object-oriented language, since there is no explicit mechanism for creating

an object hierarchy by inheritance. However, an object-style programming methodology is

possible within the WebL object framework by binding functions to the fields of an object. If

these functions are declared to be o f type meth (method), a ‘se lf identifier is automatically

introduced into the scope o f the method’s body. This identifier is bound to the object from the

context o f the method’s invocation.

WebL incorporates a service combinator algebra based on that defined by Cardelli and

Davies. It provides two basic services, get and post that take as their first parameter a URL in

the form of a string, and an object as the second parameter. On service invocation, WebL

marshals the object fields into name-value pairs within an encoded query string, then attempts

to fetch the document referenced by the given URL with either the http GET or POST method

1 We shall use the terms ‘identifier binding* and variable synonymously in the context o f WebL.

63

as appropriate. As with the service combinator algebra, encoding is equivalent to that of

HTML form submission.

The WebL failure model is based on a general purpose exception handling mechanism with

exceptions represented by arbitrary WebL objects. During program execution, every operation

is checked for correctness, and an exception is raised if this is not the case. The failure model

incorporates all forms o f type errors and also operational errors such as division by zero and

arithmetic overflow. In addition to these system exceptions, WebL provides the facility to

define, raise, and handle user exceptions.

The raising o f an exception causes termination o f the active program block and propagation

out of static block scope and up the dynamic invocation chain. For any program block that

may raise or propagate an exception, the programmer can define a series of boolean guard

expressions and associated blocks o f code implementing exception handling logic. If an

exception propagates out o f a guarded block, each guard is evaluated in turn within the

context o f the exception. The first guard that evaluates to true causes its associated handler to

be evaluated and returned as the value o f the propagating block with which the guard is

associated. Since an exception can be any object, for which there is no static information

about its components, guard expressions typically interrogate the structure o f an object in

order to determine which handler should be invoked. In order to avoid dynamic type errors

and the signalling o f additional exceptions, the WebL documentation encourages

programmers to adopt a uniform convention as to the structure o f generated exception objects.

However, the language enforces no such convention, thus allowing a degree o f flexibility in

the construction o f variant exception mechanisms.

In addition to the flow control abstraction provided by its general purpose exception

handling mechanism, WebL incorporates a modified service combinator algebra. This is

integrated with the exception mechanism, and provides the sole means for concurrency in

WebL. Interestingly, WebL generalises the combinator concept, allowing arbitrary

computations to be passed as service operands in addition to primitive Web fetch services and

combined services constituted from Web fetches. The granularity o f this is at the block level.

The combinators provided by WebL are the same as those defined by Cardelli and Davies:

sequential execution, concurrent execution, time-out, repetition, and non-termination.

However, WebL does not provide an equivalent to the limit combinator. This elision is based

on the fact that arbitrary computations can be passed to combinators, and is motivated by the

belief that the concept o f transfer rate cannot be applied to arbitrary computations.

The fail combinator is subsumed in WebL by arbitrary exception objects, which are

propagated in a similar manner to failure in the service combinator algebra. Failure is

64

indicated by raising an appropriate exception object. This is a more flexible failure model

than with Cardelli and Davies’ algebra, since information detailing the nature o f failure can be

carried with the exception. However, the simple failure representation in the service

combinator algebra allows for clean and regular semantics for failure propagation in the

presence o f service combinators. In contrast, with WebL the presence o f service combinators

can result in loss o f failure information, the extent o f which we now go on to detail.

The failure o f any WebL service (primitive or arbitrary computation) results in the

generation of an exception, the dynamic propagation o f which can be affected by the presence

o f an operating service combinator. For sequential and concurrent combinators in the service

combinator algebra, failure of both service operands causes the combined service to propagate

failure. However, when both service operands fail with a WebL combinator there are two

exceptions, and it is not immediately obvious which o f the two exceptions should be

propagated. The service operands will in general raise distinct objects, which may even be o f

differing type. The design decision made in WebL is that for sequential computation, the

propagated exception is that arising from the secondary service, and the exception o f the

primary service is lost. For concurrent computation, the propagated exception is the one

arising from the first service operand, and the secondary exception is lost.

The basic services defined by Cardelli and Davies are non-deterministic but atomic. They

return a complete result, do not terminate, or explicitly fail. Since the service combinator

algebra is intended to be used either alone, integrated with a functional language, or

modularly embedded within a general purpose language, there is no side effect caused by

failed services. However, WebL allows arbitrary computations to be passed to combinators as

service operands, and because WebL is imperative these may cause side effect. WebL does

not undo any side effect caused by services that fail part way through their execution. This

has implications for the sequential combinator.

In WebL, if the primary service o f a sequential combinator computation fails, the

computation performed by that service before the point o f failure is not discarded (with the

exception o f update to variables declared in the local block scope o f that service). There is no

automated roll back or facility for cleanup, and control passes directly to the secondary

service. If the primary updates free variables, and it must if results of its computation are to be

retained beyond its activation, those updates are visible to the secondary service, even if the

primary fails. This means that the behaviour o f the secondary service can be dependent upon

computation performed by the primary service, since update by the primary to variables

common to both o f their scopes is exposed in the secondary. Despite this, the nature o f the

failure in the primary cannot be determined directly by the secondary, since the exception

raised by the primary is not available to the secondary. On success or failure of the secondary

65

service, the programmer is responsible for cleaning up the computation o f the failed primary

service. This could be done in either the secondary service itself since failure o f the primary is

implicit at that point, or in the scope that invoked the combined service. Resource cleanup is

simplified by the fact that WebL has automatic memory management (garbage collection).

The sequential combinator has behaviour analogous to a restricted form o f termination

model exception handler. That is, the secondary service is the ‘handler’ for an exception, but

the details o f that exception is not available. In the program fragments below, we show that

semantics equivalent to that o f the sequential combinator can be implemented with the WebL

exception mechanism alone.

let seq = fun(primary:fun() -> void; secondary:fun() -> void) {
try { primaryO}
catch(e) { secondary()}

}

In this context, the following program:

let pri = fun() { ...p}

let sec = fun() {. . .*}

seq(pri, sec)

is equivalent to, but syntactically more verbose than:

The WebL concurrent service combinator is the only means for expressing concurrency in

WebL. The WebL concurrent combinator differs from that defined by Cardelli and Davies, in

that it does not have strict alternate semantics. With Cardelli and Davies’ algebra, the

concurrent combinator returns the result o f whichever service completes first, and the

computation o f the other service is pre-empted and discarded. WebL is similar in that the

result of the concurrent combinator is the value (if any) o f whichever concurrent block

finishes execution first. However, both blocks must complete (or one or both fail) before

execution continues at the statement following the concurrent combinator. Another difference

66

is that in WebL, concurrent computations are not automatically transactional or mutually

exclusive, and can potentially be cooperative and blocking. However, a variable locking

mechanism is provided that allows the specification o f critical sections for concurrent

cooperating computation.

Summary and analysis

Service Combinators integrate the Web fetch primitives with combinators that allow

constraints to be set on rate, latency, and time observables of Web fetches, and specify

possibly concurrent flow control for failure should any o f the constraints be violated. The

flow control mechanism is a simple concurrent extension o f an exception handler that is

limited by the fact that no failure information is carried by the failure representation.

Combined service expressions are modular in that the pattern of flow control within them is

hidden from the abstraction level that invokes them. This means that a programming language

that embeds the service combinator algebra cannot integrate the service combinator flow

control and concurrency mechanisms with its own mechanisms. The Service Combinator

algebra successfully integrates the concepts o f domain exposure, failure interpretation, flow

control for failure, and concurrency. However, the resulting programming model is ‘closed’ in

that it cannot be embedded seamlessly in another programming language, even one that is

similar to the combinator algebra itself.

WebL attempts to embed Service Combinator concepts in a general purpose imperative

programming language with a traditional exception handling mechanism, in order to add flow

control appropriate to Web computation. However, the exception mechanism interacts with

the ‘computation constructors’ that are the service combinators embedding in a way that can

hamper recovery from failure. Primarily this is due to the fact that there is no automatic

rollback of computation performed by failed or aborted services, and that manual undoing o f

computation is hampered by loss o f exception information. Exception masking is complicated

by the fact that the system may be left in an arbitrary state by an arbitrary number o f

concurrent threads that may or may not have failed at an arbitrary point.

In this thesis, we are particularly interested in how the means to express what constitutes

failure relates to the exposed properties o f the Web domain, and in how flow control after

failure integrates with concurrency and failure detection. For the class o f applications we are

interested in, we have identified the following design goals for a domain specific language:

• Exposing the properties o f the Web domain - any exposure o f domain concepts should be

orthogonal in that it composes in sensible ways with the rest of the language.

67

• What constitutes failure - the mechanism for failure interpretation should be flexible and

orthogonal.

• Flow control after failure - the flow control mechanism should integrate with the rest of

the language and in particular its concurrency mechanism.

In the Service Combinator algebra, all major observables o f the domain (time, rate, and

latency) are exposed only within the algebra, and not outside it. Programmers cannot reason

about the domain outside the context o f a combinator expression. Thus, although it could be

argued that this maintains orthogonality, it is an austere orthogonality since the domain

exposure does not compose directly with the language in which service combinators are

embedded.

The service combinator algebra has the observables o f time, rate, and (indirectly) latency.

Failure interpretation is achieved by setting constraints on the valid quantities that these may

take at run time. What constitutes failure for a particular Web fetch is specified by all the

limit, timeout, and retry combinators on the path from that computation to the root o f the

combinator expression. However, failure can be interpreted only in a limited manner, based

on a simple relationship. For example, for any single fetch the most sophisticated constraint

implies failure on violation o f any one o f a maximum latency or a minimum rate or a

maximum time. No relationship other than ‘or’ can be specified between constraints. The

failure representation is a single failure event value, and so carries with it no information as to

the nature o f the failure.

The failure model for the service combinator algebra is distinct from that o f the language in

which it is embedded. It is not possible to integrate them, since all flow control within a

combined service is hidden. After evaluation, all service combinator expressions represent

either a single resource, or failure. The pattern o f flow control that gives rise to a particular

result depends on the nesting o f combinators, and cannot be determined outside the

combinator expression. Flow control, concurrency, and failure interpretation are intrinsically

integrated. The failure model is independently understandable, but incapable o f composing

with the flow control and concurrency o f a host language. Also, there is a question as to

whether the service combinator algebra’s concurrent flow control mechanism ever could

integrate with the host language, since there is no obvious way to apply rate limits to arbitrary

computation.

WebL does not expose the properties o f the domain with respect to failure and performance.

The only ‘observable’ present is that o f time, which is no more than any general purpose

programming language. Transfer rate and connection latency observables are elided from the

68

failure model due to a belief that they are concepts that cannot be generalised to all

computation. In a sense, the domain specific concepts are orthogonal in that they do compose

in a sensible way with the rest of the language. However, there is only one domain concept in

WebL. Time, which is not particularly domain specific.

In WebL, what constitutes failure is programmable with arbitrary program logic and

indicated by raising o f an exception, as it is with many general purpose programming

languages. However, WebL incorporates a class o f automatically generated system exceptions

that correspond to manifest failures o f Web transfers. The presence o f a timeout combinator

allows failure to be interpreted for an arbitrary computation (that may or may not consist o f

Web fetches) if it violates a time constraint. Failure representation is flexible, in that

exceptions are arbitrary objects, and the mechanisms for failure interpretation (raising an

exception and timeout) are orthogonal. However, failure interpretation is inflexible due to the

limited domain knowledge that is available to make failure interpretation decisions.

The WebL flow control mechanism is an attempt to integrate a traditional exception handler

mechanism with Service Combinators. Although the exception mechanism is flexible, it does

not adhere to the semantics intended for Service Combinators by Cardelli and Davies with

respect to atomicity. Thus, the flow control mechanism as it pertains to Web programming

does not integrate cleanly with the rest o f the language, or with the concurrency mechanism

that is provided solely by the concurrent combinator.

Gaining insight from the design decisions in Service Combinators and WebL, in the next

chapter we attempt to ‘plug the gap’ with respect to failure interpretation in general purpose

exception handling mechanisms. We attempt this without recourse to domain-specific

language level constructs, using only common general purpose programming language

concept.

69

4: Web Fetching with GP Languages

Both Service Combinators and WebL are domain specific languages for programming Web

applications, but the related literature specifies no raison d'etre. That is, the literature does not

justify the requirement for a domain specific language motivated by inappropriateness of

general purpose languages. Thus, before we develop yet another specialised Web language, it

is worth considering whether we can achieve the criteria described at the end o f the previous

chapter within the context of traditional programming models.

The Libwww API [59], which has several language bindings, allows programmers to set a

global latency timeout, which applies to all further download attempts. Individual fetches are

not parameterisable. The Java standard Web package provides no direct support for latency or

transfer timeout. The Web package is probably implemented using the Java socket facilities,

and a global connection timeout can be set for all sockets. However, there are no guarantees

that the Web package is implemented with Java sockets, since in the future they may be

optimised into native code. However, connection (latency) timeout can be explicitly

implemented using concurrency. Transfer timeout can be implemented easily since the Web

fetch abstraction is stream based and bytes must be explicitly read from the stream.

Programmers can check system time and calculate rate between buffer reads. Neither

Libwww nor Java explicitly provides the kind o f Web programming abstraction that we

desire.

In this chapter, we attempt to ‘plug the Web programming gap’ in GP programming

languages by addressing the perceived weaknesses of domain exposure and flexible failure

interpretation. This assumes that flow control for failure is given in the form o f an exception

handling mechanism. We do not develop new programming language constructs, but instead

develop a methodology for Web programming with GP languages that mostly concentrates on

domain exposure and on providing flexible failure semantics (FFS).

Failure Issues for a Simple Web Fetch Abstraction

In this chapter we will present several example programs. Throughout, we assume a simple

Algol-like language, with first-class functions and a simple termination model exception

mechanism, where exceptions are simple names, and are automatically propagated through

the dynamic invocation chain until they are handled1. The implementation o f a simple Web

fetch procedural abstraction for text and HTML is shown below. We do not claim that this is

an ideal implementation, only that it is appropriate and our best attempt.

1 The properties o f exception handling mechanisms are discussed in detail in Chapter 8.

70

let webFetch = function(URL url -> string)

{
try {

let ip = lookupDNS(url.host)

let soc = openSocket(ip, httpPort)
} catch(...) throw connectionError //catch all exceptions

let result = //accumulator for streamed data

try {
soc.write(“HTTP 1.1 GET “ + url.path)
while soc.isOpen() or not soc.isEmpty() do

result := result ++ soc.read(1000) //read 1000 bytes max

} catch(...) throw socketError //catch all
return result

}

let doc = webFetch(new URL(“http://foo.org/”))

Within webFetch, there are four points at which absolute failure can occur:

• Failure to resolve the hostname to an IP address.

• Failure to open the socket due to manifest network failure.

• Failure in writing the http request to the socket stream.

• Failure during a socket stream read.

These absolute failures are all detected internally to the provided DNS and socket

abstractions, and the webFetch abstraction recasts them in a form appropriate for handling by

its own invoker. That is, it abstracts over the nature o f absolute failure by classifying the four

possible kinds o f failure into two: socket failure and connection failure. Thus, the failure

semantics for webFetch is that failure is constituted by socket or connection failure, and the

action taken is the raising o f the corresponding exception. These failure semantics capture all

forms o f absolute failure at the network level that can occur when fetching a Web document,

but there are classes o f possible failure for webFetch that are not absolute. For example:

71

http://foo.org/%e2%80%9d

• No response to connection attempt (server failure or not present).

• No stream response to GET command (server sends no bytes).

• Cessation o f byte streaming at an arbitrary point (server or network failure).

In principle, these failures are undetectable due to the fact that they cannot be distinguished

from long delay. Under these circumstances, failure must be interpreted, by timeout, for

example. There is another class o f failure based on the notion o f acceptability. For example, a

server may fail to respond for a period o f time that is deemed unacceptable. After the

acceptable period has expired, failure to achieve acceptable performance occurs, even if

ultimately the server does respond. To summarise, we classify failures into three categories:

• Absolute — manifest failures in the network or high-level server errors such as document

not found.

• Interpreted - lack o f response at some point, for which it is impossible in principle to

determine whether or not absolute failure has occurred.

• Performance - unacceptable performance for some aspect o f the fetch. Performance

aspects directly relate to the Web transfer observables we identified in the introduction.

These are connection latency, transfer time, and transfer rate.

All absolute failures are captured by the web fetch abstraction, all undetectable failures must

be interpreted, and all performance failures result from the violation o f some constraint on

observable properties o f the fetch. The process o f interpreting undetectable failures is the

same as the process o f detecting performance failure. That is, we interpret undetectable failure

on the violation o f constraints on observables. For example, if a particular Web fetch has

failed to connect after sixty seconds, this implies that the server or intermediate network has

failed. A latency o f sixty seconds would almost certainly also violate performance constraints.

Since undetectable failures manifest themselves in the form o f ‘poor’ performance, we can

coalesce interpreted and performance failures under the single banner o ffailure by constraint

violation.

Before continuing, we should note that socket implementations provided by operating

systems generally map ‘undetectable’ failures onto absolute failures by imposing an

72

underlying timeout. However, these timeouts are o f the order o f minutes, and in general we

are interested in interpreting failure long before they expire.

Implementing Failure Semantics

Since a Web fetch abstraction does not know the context of the fetch it is making, it cannot

be expected to interpret failure and take appropriate action on behalf o f the invoker. There is

an exception for absolute failures, for example when a document or host cannot be found,

since sensible default behaviour can be exercised, such as raising an exception as in the

example above. However, when failure is not absolute, for example when a Web server fails

to respond within a given period or when document transfer rate drops unacceptably, failure

must instead be interpreted. We wish to specify this failure interpretation in a general way.

Thus, the abstraction must somehow be parameterised on each invocation with information as

to what constitutes failure, and what action is to be taken when it occurs. Such

parameterisation specifies the particular failure semantics for that particular Web fetch.

In the previous section, we concluded that failure interpretation should occur on the violation

o f dynamic constraints set on the observables o f each Web fetch. Service Combinators and

WebL (the latter only to a limited degree) expose the properties o f the domain explicitly at the

language level with observables. However, since we are implementing our Web fetch

abstraction with a general purpose programming language, we must implement a mechanism

to expose the properties o f the domain ourselves, with program logic internal to the Web fetch

abstraction. It is this program logic that implements the ‘how’ for failure interpretation, which

is parameterised with the ‘when’ o f constraint values. At this point we must decide on the

different forms o f constraint violation we require. Earlier, we identified the various

performance aspects o f Web fetches as latency, transfer time, and transfer rate. We constrain

these according to the following.

• Maximum latency time in seconds.

• Maximum transfer time in seconds.

• Minimum rate in bytes per second.

The units of measurement (seconds, bytes per second) here are somewhat arbitrary, but not

particularly relevant to the mechanism, apart from the fact that constraint values must be

specified in terms o f the same measurement unit. Whatever the measurement, it can be

expressed in terms o f floating point numbers. Logic internal to the abstraction checks these

73

constraint values against a dynamically calculated rate, time and latency, and automatically

generates an appropriate exception on their violation.

This takes care o f failure interpretation. To complete the specification o f failure semantics,

we statically associate an exception handler with the abstraction. This directs flow control

after the detection o f failure. The Web fetch abstraction with parameterised constraints on

observables follows.

let webFetch =

function(URL url, float minRate, maxTime, maxLatency string)

{
try{

let ip = lookupDNS(url.host)
let soc = openSocketTimed(ip, httpPort, maxLatency)

} catch(...) throw connectionFailure

let result =

try {
let startTime = time()
soc.write(“HTTP 1.1 GET “ + url.path)
while soc.isOpen() or not soc.isEmpty() do {

let t = time()
result := result ++ soc.read(1000) //read 1000 bytes max

let dt = time() - 1
let rate = soc.numBytesRead() / dt
if t - startTime > maxTime do throw timeoutException

if rate < minRate do throw rateException

} catch(...) throw socketFailure

return result

}

let url = new URL(“http://foo.org/”)
let doc = webFetch(url, 10.0, 25.0, 5.0)

catch(connectionFailure) { . . . } //flow control after failure

catch(socketFailure) { . . . }

74

http://foo.org/%e2%80%9d

In the main loop, programming logic repeatedly calculates the current rate and elapsed time

o f the Web transfer. These are then compared against the constraint values and an exception

thrown if current time is greater than the time constraint or if current rate is less than the rate

constraint. In Chapter 2, we saw that dynamic rate is prone to fluctuation. Smoothing

techniques can be applied to diminish the impact o f intermittent rate troughs for which failure

should not be interpreted. For brevity we do not show implement this here. In Chapter 5, we

discuss smoothing techniques in more detail.

The parameter constraints on the dynamic values for observables form a simple ‘or’ relation

for interpreting failure. That is, failure is implied on violation o f either the time or rate or

latency constraints. This may be sufficient for many purposes, but if we wish to imply failure

by a more sophisticated constraint relationship, it is not immediately obvious how we can

supply this information to the Web fetch abstraction. For example, to change failure

interpretation to an ‘and’ relationship between constraints, say, there are two obvious

alternatives. First, we can modify the internal logic o f the abstraction to reflect the new

constraint relationship, and by copy and paste implement another fetch abstraction with the

new relationship.

webFetch : function(URL url, float minRate, maxTime, maxLatency -> string)
webFetchAnd : function(URL url, float minRate, maxTime, maxLatency -> string)

let doc = webFetchAnd(new URL(“http://foo.org/”), 10.0, 25.0)

This method duplicates code, and i f the relationship is complex, it may be difficult to

describe in the abstraction's name, forcing reliance on auxiliary documentation. Moreover, it

assumes that the code for the original abstraction is available. The second alternative is to

parameterise a single abstraction by the appropriate constraint relationship. We have:

type constraintRelation is enumeration [orRelation, andRelation]

webFetch : function(URL url, float minRate, maxTime, maxLatency,

constraintRelation c string)

The following invocation parameterised a Web fetch with different constraint values, and

specifies that constraint violation occurs on simultaneous violation o f all constraints.

75

http://foo.org/%e2%80%9d

let doc = webFetch(new URL(“http://foo.org/”), 10.0, 25.0, 5.0, andRelation)

The Web fetch abstraction can be provided with any number o f associated constraint

relationships defined. However, as the number o f constrainable observables increases, the

number o f possible constraint relationships becomes extremely large. Assuming that the

constrainable quantities (rate, latency, and time) are all o f a single type, in this case they are

floating point numbers, the number o f possible constraining expressions is lower bounded by

nbl. Here, n is the number o f quantities, b is the number o f infix boolean operators in the host

language, and i is the number o f inequality operators. Although many of these permutations

are relatively unlikely, such as a constraining expression involving a maximum rate, for

example, and many pairs o f relationships are equivalent in meaning, it is unreasonable to

restrict the programmer to only those constraint relationships that the abstraction designer

deems useful. Instead, it is desirable to allow maximum generality, with the specification o f

an arbitrary constraining expression for each Web fetch.

An Approach with Higher Order Functions

We present a methodology that allows the programmer to parameterise a Web fetch

abstraction with a constraining expression directly. Our methodology involves the use o f

higher order functions (or first-class functions, implicitly). We require the following

declarations.

type Constraint is function(float rate, time, latency bool)
webFetch : function(URL, Constraint -» string)

webFetch repeatedly evaluates its constraint parameter while the document downloads,

passing to it the dynamically calculated latency, rate, and elapsed time values. It raises an

exception if the constraint function ever returns false. The following code implements a Web

fetch for which the conditions o f failure are met on the truth o f an arbitrary expression (in

italics).

76

http://foo.org/%e2%80%9d

let myConstraint = function(float rate, time, latency bool) is
return not (latency > 5.0 or (time > 20.0 and rate < 10.0j)

let doc = webFetch(new URL(“http://foo.org/”), myConstraint)

It does this without modifying the Web fetch operation, which consequently can be provided

in a library, without source. In our example, the constraint values are hard coded into the

expression. For generalisation, the manifest values in the constraint expression should be

parameterisable. We achieve this with a constraint function generator. In this way, any

number o f specialised constraints can be generated from a single template.

let myConstraintGen =

function(float minRate, maxTime, maxLatency Constraint) is
function(float rate, time, latency ->• bool) is

return not (latency > maxLatency or
(rate < minRate and time > maxTime))

let myConstraint = myConstraintGen(5.0, 20.0, 10.0)
webFetch(new URL(“http://foo.org/”), myConstraint)

On violation o f the constraint, webFetch raises a socketError exception. However, this

carries little information as to the nature o f failure. For example, on failure, the invoker o f a

download cannot determine whether failure was absolute or interpreted by the constraint, and

if the latter, how the constraint was violated. We can implement a mechanism that allows

such determination with our exception handling mechanism. Here, the constraint function

returns nothing, but may raise an exception that webFetch will propagate to its invoker.

77

http://foo.org/%e2%80%9d
http://foo.org/%e2%80%9d

let myConstraint = function(float rate, time, latency ->• void) is
if latency > 5.0 then throw latencyException

else if time > 20.0 and rate < 10.0 then throw timeRateException

try webFetch(new URL(“http://foo.org/”), myConstraint)

catch latencyException {. . . }

catch timeRateException {. . . }
catch { . . . } //catch absolute failures raised by webFetch

In the example, we have embedded the constraint values within the constraint function.

However, we can apply constraint generators as before, in order to allow parameterisation by

constraint values. The incorporation o f exception handling completes the means for full

parameterisation of failure semantics.

Since we now have a means to express arbitrary relationships between constraint, we can

introduce new observables that alone are not directly performance related, but may be useful

for interpreting failure in conjunction with other observable. Such an observable is download

completion percentage. As soon as the header information for any http resource is

downloaded, the size o f the resource in bytes is known. The amount o f a resource downloaded

at a particular time during transfer may influence the decision as to whether or not failure

should be interpreted. For example, a programmer may specify constraints on time and rate

for a particular transfer, but be willing to relax these constraints should the download be close

to completion. We define the completion observable to be a number between zero and one

that reflects the proportion o f resource that has been downloaded. Given the definition:

type Constraint is function(float rate, time, latency, completion -» bool)

We can create constraints of the form:

let myConstraint = function(float rate, time, latency -» bool) is
return not ((time > 20.0 or rate < 10.0) and completion < 0.75)

This enforces a constraint on tim e and rate only i f m ore than 25% o f the docum ent

has yet to be dow nloaded.

78

http://foo.org/%e2%80%9d

Use of Methodology with Object-Oriented Languages

Many modem languages used for programming Web applications, notably Java, do not

provide higher-order functions. This precludes direct use o f the technique described above.

However, object-oriented languages allow an approximation o f the methodology using

dynamic binding. Instead of a function, a constraint is an object with a single method that

causes evaluation o f the constraint. Consider the following code, in Java-like syntax.

79

class WebServices { //in library

public static Document webFetch(URL url, Constraint c)
raises ConstraintException, WebException { . . . }

}

class ConstraintException {. . . } //in library

class Constraint { //in library
abstract void eval(float rate, float time, float latency)

raises ConstraintException;

}

class MyLatencyException public ConstraintException { . . . }

class MyConstraint {
private float maxLatency, minRate, maxTime;
public MyConstraint(float _maxTime, float jninRate, float jnaxLatency)

{ . . . }

public void eval(float rate, float time, float latency) {
if(latency > maxLatency) throw new MyLatencyException(...);
if(rate < minRate && time > maxTime)

throw new ConstraintException (...);

}

}

WebServices.webFetch(new URL(“http://foo.org/”),

new MyConstraint(5.0, 10.0, 20.0));

There is more syntactic overhead in the creation o f constraints than when using higher-order

functions, but importantly, the use o f constraints has similar minimal overhead.

80

http://foo.org/%e2%80%9d

Analysis

Our methodology allows the specification o f constraints on the values o f dynamic Web fetch

observables for which failure is implied should they be violated. For a Web fetch abstraction,

the constraint values, the boolean logic o f each constraint, and the relationship between

constraints are all parameterisable. Our methodology provides the means for expressing what

constitutes failure in a manner that is more flexible than that o f the Service Combinator

algebra and WebL. The FFS model allows Web fetch abstractions to be parameterised with

the ‘how’ for failure interpretation, as well as the ‘when’. Moreover, since our methodology

allows for exception generation to be associated with the constraint logic rather than the Web

fetch abstraction, flow control for failure is also parameterisable. The nature o f a particular

instance o f failure is then available outside the Web fetch abstraction. In contrast, Service

Combinators do not and cannot distinguish between different forms o f failure, since the

failure representation is minimal and the flow of control after failure hidden.

As they pertain to our FFS methodology, the three criteria for Web programming systems

introduced in the last chapter are:

• Exposing the properties o f the Web domain - The FFS domain concepts are embedded

within the Web fetch abstraction, so the domain is not exposed explicitly. To an extent, it

is possible to reason about the domain in general programming logic, but this reasoning is

limited to the construction o f the constraints, and analysis of information returned in

exceptions generated by the Web fetch. The level o f domain exposure is limited because

we cannot compute with, express, or store actual domain quantities. However, the domain

exposure that there is is orthogonal since constraints are quantified with floating point

numbers and constraint relationships are expressed in the boolean algebra o f the

programming language.

• What constitutes failure - Failure is interpreted by specification o f an arbitrary boolean

algebraic expression involving constraints on observables, and. is constituted by violation

o f these constraints. Failure is represented by exceptions in accordance with mechanism

of the language in which methodology is applied. Failure interpretation is extremely

flexible, and this is certainly the strongest aspect o f our methodology.

• Flow control after failure - Flow control after failure is achieved by exception

propagation out o f the Web fetch abstraction. The particular exceptions that are generated

for different failure conditions is a parameter o f the Web fetch abstraction. However, this

81

is not the case for programming languages that require static exception interfaces1, since

the Web fetch abstraction must declare the number and type of exceptions that it may

generate. This means that the designer of the Web fetch abstraction chooses the particular

exceptions that can be generated, but the programmer can still influence flow o f control

after failure to an extent, since they specify the logic o f the exception handlers. In any

case, the mechanism for flow control after Web failure integrates with the flow control for

failure mechanism for rest o f the language, since they are both the same exception

handling mechanism.

There is a significant drawback o f our methodology with regards to integrating concurrency

and flow control for failure. Primarily, this is a result o f the fact that an exception handling

mechanism is essentially a serialised model o f flow control that does not directly extend to a

concurrent context. WebL is an example o f what happens when attempting to integrate

exception handling and concurrency, and exception propagation in the Service Combinator

algebra only works because it has the simplest possible failure representation.

There have been other attempts at integrating exception handling and concurrency. In the Oz

programming language [60], exception handling is thread-wise. Concurrent threads escape

their enclosing try-scope. The following code will execute computations SI and S2

concurrently:

thread S1 end S2

However,

try thread S1 end S2 end

is equivalent to

thread S1 end
try S2 end

1 See Chapter 8 - Exception Handling.

82

That is, the block SI escapes the exception context, the exception block being recursively

propagated down until it reaches a non-concurrent context. This amounts to the fact that

exceptions can not be defined in a concurrent context.

Arche [7], Ada 95, Ada 83, Modula-3 [15], SR [6], Real-Time Euclid [12], and Java are all

languages with concurrency and exception handling mechanisms. However, in all o f them, the

exception handling mechanism is serialised, defined only on a thread basis. Some languages

allow programming of concurrent exception resolution since the handler can communicate

with other computations, but this is complex. Other languages (such as CSP and Ada 83, for

example) simply have no features to interrupt or in any other way asynchronously inform the

participating computations when one o f them has raised an exception.

Recent research by Romanovsky [61] outlines the state o f the art in concurrent exception

resolution, and proposes methodology that is implemetable with the Java exception handling

mechanism. Although the methodology allows sophisticated resolution logic, it is limited by

the fact that all exceptions must be o f a standard form and cannot be parameterised. The

methodology is based on the concept of concurrent atomic actions, which we return to in

Chapter 7 - Analysis o f Related Work. Concurrent atomic actions provide a heavyweight

solution to the problem of automated error recovery and are primarily intended for distributed

computing. Since we do not wish to address the issue o f distribution directly, we feel that they

are inappropriate for our needs, which are for lightweight threading only.

In conclusion, we have presented a methodology for implementing flexible failure semantics

in GP languages based on higher order functions. There is no evidence o f any other failure

interpretation techniques in use that are as flexible as the FFS model. However, the FFS

model fails to fully integrate failure interpretation, flow control for failure, and concurrency,

because exception handling is a serialised model. The fact that there is no programming

language that integrates exception handling and concurrency to the extent we desire suggests

that we should take an approach that is not based on GP exception handling mechanisms.

Since exception handling is in mismatch with our intended programming domain, we intend

to develop a language model from the ground up, with the goal o f integrating failure

interpretation, flow control for failure, and concurrency.

83

5: A Conceptual Domain for Web Programming

In the first chapter, we stated that in asynchronous distributed systems failure detectors

utilising timeout alone can only be approximations. This is because there are classes of

system and network failure that cannot be distinguished from slowness. Consequently,

timeout is not an accurate means o f failure interpretation. In addition to inaccuracy, the use of

timeout as the sole means o f failure interpretation can also lead to inefficiency. This is due to

the forced formulation o f an upper bound o f execution time for the timed computation.

Programmers must estimate a value for timeout that accounts for the worst possible case - the

maximum possible time passing during execution o f the service before which failure can be

interpreted unambiguously (in pragmatic terms). This means that the required timeout must be

significantly longer than the mean time until failure, which is the average o f the times at

which failure is actually detectable. This can cause substantial delay in execution, while

waiting for the timeout o f a failed computation to expire before taking remedial action. For

example, we can specify timeouts o f ten minutes for all fetches. Programs would still work,

and failure interpretation would likely be very accurate in that failure would rarely be

incorrectly assumed. However, this is grossly inefficient, and exacerbated by the fact that

failure is a common occurrence on the Web.

In developing a programming system for Web computation, we intend to provide accuracy

and efficiency when interpreting the failure o f non-deterministic computations. Improving the

accuracy o f failure interpretation alone leads to increased efficiency, since the sooner one can

be certain o f failure, the less time is wasted before taking remedial action. Our approach

identifies a set o f observables additional to timeout that can be used together in determining

the likely future behaviour o f Web transfers - a notion that is important for accurate failure

interpretation. In making a determination o f future behaviour, we see it as fundamental that

the more information available, the more accurate any failure interpretation.

In a Web programming system, perhaps more important than accuracy and efficiency is

flexibility in failure interpretation and flow control. In the Web domain, the concept o f failure

itself is paradoxically unimportant. That is, failure need not even be defined if there is

sufficient means for the programmer to express classes o f program behaviour based on

interpretation o f observables. In this domain, ‘failure’ is failure to produce a document within

certain parameters, which can only be specified by the programmer. Exception handling

mechanisms in traditional programming languages make available certain classes of

behaviour, and these are intended for ‘exceptional’ or ‘failure’ circumstances that are

absolute. However, in the Web domain failure is not exceptional in any way, and it is rarely

absolute. With observables, we gain the ability to specify flexible patterns o f interpreting

84

behaviour, in addition to ‘better’ detection o f ‘failure’ with less time wasted in making the

detection.

Before attempting to design novel programming language abstractions for Web

programming, we must consider exactly what it is we wish to compute over. As we saw in

Chapter 2 - Analysing Web Failure and Performance, the global network is inherently

unreliable in that connections can arbitrarily fail to initiate, and data transfers can fail at any

time and are subject to largely unpredictable fluctuations in bandwidth and latency. We

require failure interpretation based on observables so that we can distinguish between slow

and failed Web queries more accurately than with timeout alone. Traditional programming

languages are not designed primarily for the task o f computing over the Web. The multiplicity

o f failure modes, and the difficulty in detecting some of them motivates the development of

new concepts that relate to the W eb’s computational properties. These concepts can then be

incorporated into programming languages designed specifically for Web computation.

The notion o f ‘what we can compute over’ is referred to as a conceptual domain. A

conceptual domain is a set o f concepts such as integers, structures, and arrays, for example, in

terms o f which programming languages are defined. Programming languages draw from one

or more conceptual domains in order to define their universe o f discourse, which is the set o f

concepts that can be legally expressed in the programming language. The universe of

discourse is always a subset o f the union o f available conceptual domains. For example,

three-dimensional arrays might be present in the conceptual domain, but cannot be expressed

in the language so are not in the universe o f discourse. Programming languages are concrete

computational models describing denotations that allow us to express computations over the

universe o f discourse. Since conceptual domains are the foundations on which we construct

languages, the mapping from the computational model into the conceptual domain becomes

more difficult the further removed the domain from the type o f computations we wish to

perform. That is, the design of a programming language is aided by a conceptual domain that

is appropriate for the intended application class o f that programming language. In this

chapter, we describe a conceptual domain designed specifically as a foundation for

programming languages that map high-level Web programming abstractions to the domain.

According to Cardelli, observables are “the events or states that can in principle be detected”

[62]. This definition is borrowed from its use in 20th century physics where it was formalised

in the Copenhagen Interpretation o f quantum physics. In classical physics, the observables of

a system such as particle energy and momentum, for example, are considered well defined

entities that change their values over time according to certain dynamic laws and which can in

principle be observed without disturbing the system itself and thus distorting their quantities.

It is a fundamental finding o f quantum physics that this is not the case. Although the same is

85

certainly true for the web observables we are interested in, we do not believe that the act of

measuring them will alter their values significantly enough to compromise any results we

obtain.

We aim to extend the concept o f observable so that it can form the basis o f an algebra for

reasoning about the dynamic behaviour o f computations involving the Web. That is, we wish

to define a conceptual domain for Web programming languages based on the concept of

observable. For now, we identify the particular observable properties o f individual http

connections that might be useful in interpreting failure to be transfer rate, elapsed time, and

latency time.

In the Service Combinator algebra, WebL, and our FFS model, programs that interpret

failure in some way contain manifest values corresponding to acceptability limits on some or

all o f these observables. For example, a program might contain constraint values

corresponding to a maximum time and minimum rate. In WebL and Service Combinators,

there is an ‘or’ relationship between these constraints, meaning that failure is interpreted on

violation o f either constraint. However, the FFS model examined the possibility o f using other

relationships, such as an ‘and’ relationship, for example, where failure is interpreted only on

the conjunction o f two or more constraint violations. A major design goal o f our conceptual

domain is to allow flexible failure interpretation similar to that o f the FFS model by allowing

constraints on a number o f observables with potentially sophisticated relationships between

those constraints. Our conceptual domain is to achieve this, but in a manner that is more

amenable to integration with concurrency mechanisms.

Persistent Relative Observables

The basis o f our conceptual domain is the persistent relative observable, which is an

extension o f the basic observable. Persistent relative observables are quantities, observable

with respect to some computation, whose values are determined relative to a historical context

for previous executions of the same computation. Since the properties o f the particular

observables we have identified are directly related to individual http transfers, we are

interested in the non-deterministic computations that fetch Web documents. However,

because the result o f an observation is calculated relatively, we can generalise the concept to

all computation, and not just fetches. That is, for rate defined in bytes per-second, say, we can

assume that all deterministic computations execute at rate x. This means that observations

relative to a historical context exhibit the same relative value for rate (one) every time they

are executed, side-stepping the issue of having to define the notion o f bytes per-second for

arbitrary computation.

86

When accessing the Web, it is difficult to infer any meaning for the quantities o f observables

if there is no historical context to that particular access. For example, given a value for the

rate o f a Web transfer, qualitative assessments such as ‘too slow’ or ‘very fast’ are not

particularly meaningful unless there is a context o f comparison with previous invocations of

the same or equivalent Web transfers. This is due to differences in bandwidth and geography

across the Internet. ‘Equivalent’ here could mean a fetch from the same physical server in the

case o f rate and latency, but must refer to a fetch o f the same physical document in the case of

elapsed time since download time is related to document size.

When writing a program with Service Combinators, WebL, or the FFS model with the

intention o f addressing robustness, the programmer quantifies what constitutes failure in

terms o f constraints on observables. These constraints are specified in terms o f absolute units

o f measurement, such as bytes per-second or seconds. For example, failure for a particular

download could be implied if the transfer rate falls below five kilobytes per second, and the

value five is manifest somewhere in the program source. What is critical here is that this value

makes a concrete assumption about the speed o f the local network connection. Failure

assumptions are based on network context: five kilobytes per second may be a slow transfer

rate for a download to a system with T1 connectivity. However, this transfer rate is fast for a

system having only a modem. In general, failure semantics specified for a computation on one

machine may result in entirely different behaviour on another, because the notion of

‘acceptable performance’ is entirely different. Programs specifying constraints on observables

in terms of absolute units o f measurement cannot be reliably executed on different machines

without source-level modification, or without complex programming logic that explicitly

takes account o f the network context. By the same argument, the use o f absolute measurement

units poses problems for programs that are mobile in the network. Finally, absolute

measurement units compromise program longevity, since over time the bandwidth o f the

global network is increasing and latency decreasing, and with these changes the notion of

what is acceptable performance. For programs to be portable, mobile, and future proof,

computation with observables should usually be independent o f absolute measurements.

The values of persistent relative observables associated with a Web fetch are calculated

relative to the average1 value observable on previous executions o f equivalent Web fetches.

That is, the act o f querying an ongoing Web fetch at any point in its duration results in a

floating point number that is a ratio o f the current observable value relative to the average

value exhibited on previous invocations. For example, if the relative rate observable of a Web

fetch is seen to be 0.5, this indicates that the fetch is proceeding at half the rate it did, on

1 We leave unspecified whether this average is the mean, median, or even some other function.

87

average, during previous transfers. Similarly, if the relative time o f a Web fetch is seen to be

2.3, say, this indicates that the fetch has so far taken approximately twice as long as previous

attempts, and has still not completed. Persistent relative observables provide a historical

context to observations that is independent o f absolute measurement units.

An important concept in interpreting failure is acceptability based on the norm. That is,

failure is only interpreted in circumstances where the observable properties o f a Web fetch

deviate from those that are to be expected. Our persistence mechanism maintains a historical

context for all Web fetches, and when observations o f ongoing Web fetches are made, it

compares the values of current dynamic observables with those in the historical context. We

define ‘normal’ or ‘acceptable’ transfer progress to be when a transfer’s current observables

are similar to those in the historical context. Querying our mechanism with respect to a

particular transfer returns a value that is the ratio o f the current absolute observable value to

the historical context for that transfer. There are exceptions to this for some observables, but

in general, a result close to 1.0 indicates acceptable progress, by our definition.

In order to remove any ambiguity before presenting examples, we define each observable in

some detail:

• We define persistent relative elapsed tim e as the ratio o f the current elapsed transfer time

to a single value that represents the historical context for elapsed time. The historical

context is calculated by the average o f all download times for that URL. The current and

historical times must be expressed in terms o f the same measurement unit.

• We define persistent relative latency tim e as the ratio o f the current elapsed latency time

to a value that is the historical elapsed latency context for the particular Web server

involved. Elapsed latency is the time from the invocation o f Web fetch to the point at

which rate becomes non-zero. After this, latency time remains static at its last calculated

value. The historical context is calculated in a similar manner to elapsed time. However,

latency historical context is associated with servers, so many different URLs might have

the same historical context for latency.

Before defining rate, we describe another observable that we have identified: completion

represents the progress of a fetch towards completion. It differs from other observables in that

there is no historical context. Instead, the completion observable indicates the amount o f a

document that has been transferred at the moment off observation.

88

• The completion observable is defined as the ratio o f current bytes transferred to the size

o f the Web resource in bytes. Thus, completion is zero until rate becomes non-zero, and

cannot rise above 1.0.

We define rate in terms o f completion:

• Persistent relative tran sfe r ra te is the ratio o f a currently calculated rate to a single value

that represents a historical context for previous invocations. The current rate is defined

methematically as the slope (gradient) of the completion observable and since completion

never decreases, rate is always a positive number. The calculated rate must be specified in

the same units as the historical rate. We do not enforce any particular means for

calculating historical rate, but typically, it would be calculated by an accumulation of

average rates over download duration, requiring the number o f invocations for that fetch

to be stored. Rate is associated with particular Web servers so many different URLs

might have the same historical context for rate.

In addition to the rate, time, latency, and completion observables, we have identified one

more: probability o f success uses the historical context for observables to allow reasoning

about the likelihood of success for a Web fetch, in terms o f its previously observed success

rate. Querying a Web fetch for probability o f success returns the ratio of the number o f

successful invocations to the total number of invocations. This gives a number between zero

and one that is an approximation to probability o f success for future executions. Later

examples show that probability o f success is a useful observable in conjunction with the

others. For example, a low probability o f success might indicate that a site is regularly offline,

so in conjunction with a large observable latency, failure could be interpreted more readily.

• Persistent relative probability of success is defined as the ratio o f the number o f

successful downloads to the number of attempts for a particular URL. There is no

current observable as such, and the relative observable remains static across the duration

o f document fetch. The historical context contains only the number o f invocations and

number o f completions, which are discrete quantities and so have no associated units of

measurement.

89

In all the definitions so far, we have assumed that a persistent context actually exists for the

URLs or servers from which we are downloading. However, since there will always be a first

time for downloading a URL, we must consider the issue o f first time transfer observables.

On the first time downloading a URL, there is no persistent context from which to calculate

ratios. Instead o f seeding the persistent context with arbitrary absolute values, we instead

choose to define the value o f observables for first time transfers. We are interested in

acceptability based on the norm, but there is no real notion o f what is normal for a first time

transfer. We must have the persistence mechanism do a little work:

• Rate - throughout the first time transfer, rate is calculated relative to the average rate seen

so far for that transfer.

• Time - time is estimated according to the current rate o f transfer and remaining amount o f

document to be downloaded.

• Latency - latency is calculated relative to the average network latency. This is the same as

the network relative observable, defined later.

• Probability - 1 .0 throughout duration.

• Completion - as normal.

Now that we understand how persistent relative observables are calculated, we can consider

ways in which their values might be used in interpreting failure.

Flexibility in Interpreting Failure

For time, rate, and latency, acceptable progress for a Web fetch is indicated by a relative

observable value close to 1.0. For rate, deviations either side o f 1.0 indicate that a

computation has an observable behaviour either better or worse than that ‘which is to be

expected’, based on historical observation. For example, a Web transfer with an observed rate

o f less than 1.0 implies a slower transfer, whereas a rate greater than 1.0 indicates an increase

in bandwidth. In general, any rate greater than 1.0 may be deemed acceptable, and values less

than 1.0 cover a range o f acceptability. A relative time greater than 1.0 indicates that a

transfer is taking longer than before and the greater the value, the less acceptable. Any

relative time less than 1.0 would typically be acceptable. Latency is similar to time in this

context. Note that the concept o f acceptability for a particular observable may be dependent

90

upon the value o f other observables. For example, a high time observable is more acceptable

if rate is also high.

There is a different notion o f acceptability for the probability and completion observables,

since they cannot exhibit values greater than one. Their observables are generally only useful

when considered along with others. However, we consider the ability to arbitrarily correlate

the values o f different observables in our domain to be the primary source o f flexible failure

interpretation.

As a Web fetch proceeds in real time, its observables fluctuate. At a particular point in time,

the current values o f observables can be correlated to provide a holistic view o f transfer

progress. That is, a higher level interpretation o f transfer progress can be formed from the

union of observations than that possible given values for observables in isolation. For

example, consider the four graphs

rate

abs time

time

abs time

latency

abs time

completic î

a b abs timec

adjacent that show the observable

behaviour o f a hypothetical Web

transfer over absolute time. The curve

for rate does not reflect a true transfer,

since these tend to be highly variable

(Chapter 2), but we use a smooth curve

for simplicity. All four graphs have the

same horizontal time axis, and each

vertical broken line represents a

moment in real time for which

observations are particularly o f interest,

aiding visual correlation o f

observables, a is the average connect

time taken for previous invocations o f

equivalent Web transfers. That is, it

represents the absolute average latency

time in the historical context o f that

transfer, b is the absolute latency time

for the current transfer, and C is the

historical completion time.

In the top graph, which shows relative

rate across transfer duration, we see

that initially, the transfer rate is greater

91

than that seen before, but soon falls below the historical average and gradually approaches

zero. The second graph shows relative time linearly increasing. At absolute time c, relative

time rises above 1.0, meaning that the transfer is taking longer than is perhaps to be expected.

In the third graph, relative latency rises above 1.0 at time a, indicating that adverse network

conditions are causing this transfer to suffer from greater latency than before. Latency

continues to rise until it is approximately twice the historical average, at which point the

transfer begins. During transfer relative latency is no longer a factor, and its value remains

steady. The end o f latency at point b correlates with the sudden jump in rate as the transfer

begins, and with the ascent o f completion percentage in the final graph. Completion

percentage only begins to rise at this point because until latency ends, no data is being

transferred.

Observation o f rate or time in isolation might seem to indicate that interpreting failure would

be reasonable, since rate has fallen to almost zero, and the fetch is taking longer than

expected. However, when considered with completion percentage, it is apparent that despite

the low transfer rate, its overall progress has been quite good since the download is near to

completion. Given this, we might want to overlook the rate and extend the time constraint a

little longer, for example.

Diminishing the Impact of Rate Troughs

In Chapter 3, we discussed the issue o f rate troughs relating to our implementation o f the

service combinator algebra [58]. Our implementation o f service combinators incorporated

persistent relative observables, so we discuss it here. Rather than constraining values

expressed in terms of absolute measurements, the timeout and limit combinators accept

relative values. We found persistent relative observables to be a useful addition to the service

combinator algebra. However, experimenting with the implementation confirmed a suspicion

that we alluded to in Chapter 2. Even with a dynamic rate window o f 700ms, we found that

failure would frequently be erroneously interpreted due to intermittent troughs in rate. On

analysis we discovered that this failure interpretation would occur at times when overall

transfer progress was good. That is, the troughs in rate are short enough to be o f no

consequence. Since Web fetches are naturally ‘bursty’, and particularly so under heavy

network load (Chapter 2), we are motivated to find a way o f diminishing the impact o f

inconsequential troughs in rate. Our method involves the use o f a ‘smoothing function’, which

reduces variability in dynamic rate.

The particular smoothing technique we used is based on a moving average technique. There

are other potentially applicable techniques, such as splines, for example. However, moving

averages are easy to calculate, and are particularly suitable for incremental calculation as data

92

is dynamically produced. The moving average technique produces smoothed data by

averaging the last n actual data points, in this case dynamically calculated rate. As the ith data

point is calculated, the i-nth data point is no longer used in the calculation. Thus, the

calculation of a moving average is based on a ‘sliding window’ technique. The graph below

shows the actual dynamic rate and corresponding moving average (thick line) for a midday

transfer from a UK academic site. We have found a six point moving average to be an

effective compromise with a 700ms window granularity for rate calculation.

As shown in Chapter 2 - Analysing Web Failure and Performance, a smoothing effect can

also be obtained by increasing the granularity o f dynamic rate calculation. However, doing so

reduces the actual number o f rate observations for a transfer. We feel that applying a

smoothing technique gives a better representation o f dynamic rate.

6 Point Moving Average

350 n

300

— 250 -

42 200 -

100 -

50 -

0 10000 150005000

Time (ms)

Patterns of Human Failure Interpretation

Humans can interpret failure for Web fetches in many different ways. Persistent relative

observables allow the automation o f human-like interpretations. Following are several

example human policies for failure interpretation, and descriptions of how they can be

expressed in terms o f persistent relative observables. The descriptions are in English, but we

assume that they are implementable given even a simple programming language integrated

with persistent relative observables. In the next chapter, we present concrete implementations.

Human: “Don’t waste time waiting for connection to a site that is probably down.”

Here, we wish to minimise the amount o f time before taking remedial action such as retrial

or access of an alternate resource. A low value for probability o f success indicates that a

93

particular resource is frequently unreachable. Correlating this with connection time latency,

we can save time by tightening acceptability limits on latency by an amount proportional to

the inverse of probability. That is, the less likely a resource is available, the less time we are

willing to wait in excess o f ‘normal’ latency time (1.0). The correlation o f latency and

probability here allows failure interpretation to take place earlier, while retaining confidence

that the interpretation is correct.

Human: “Accept intermittent transfer from heavily loaded servers.”

As shown in Chapter 2, heavily loaded servers and network connections can be subject to

patterns o f ‘burst’ transfer as the server and routers struggle to achieve fair time sharing for

all clients. Transfer rate can drop to zero for periods o f several seconds under these

circumstances. Failure interpretations based on rate can be unreliable in this context, since

although overall transfer progress might be acceptable, a rate o f zero even for a short period

might be interpreted as failure. Although we have already discussed methods of minimising

intermittent troughing, under some circumstances we may still wish to explicitly relax rate

constraints. For example, some o f our experiments suggest that that a higher than average

latency indicates heavy server load, so under these circumstances we might allow violation of

a rate constraint more than once before interpreting failure.

Human: “Invest more time in transfers that are close to completion.”

Many Web servers allow site administrators to set policy for client priority. The graphs for

the hypothetical Web fetch above exemplify possible behaviour for servers that reduce the

priority o f a transfer the longer it continues. This policy manifests itself as a gradual decrease

in transfer rate while downloading large resources. Under these circumstances, failure

interpretation becomes more likely towards the end o f transfer. If failure is interpreted and

remedial action taken, it is possible that download o f alternate resources and in particular

retrial o f the same resource will exhibit similar behaviour. Towards the end of a transfer, it

might make sense to invest more time in the hope that completion is forthcoming. To this end,

rate and time can be correlated with completion percentage, so that rate and time constraints

are relaxed if the resource is close to being completely downloaded. We might relax the rate

and time constraints by a factor proportional to completion percentage.

94

Human: “Be pessimistic in the morning, expecting downloads to take longer.”

In chapter 2, we demonstrated that network load increases at certain times of the day, for

example early in the morning when people generally arrive at work. It can be useful to adjust

constraints based on the time o f day. We can adopt a pessimistic approach to download, by

loosening all constraint values by a multiplicative factor if the time of day falls within a

specified range.

Human: “Expect fetches with higher than average latency to take longer overall.”

As shown in chapter 2, transfer rate is only partially dependent on geographical location. For

example, rates for transfers between Australia and Europe are often comparable to transfers

internal to Europe. However, latency is always a major factor in geographically distant

transfers, especially if they are routed through satellite communication channels. I f there is a

significant latency overrun, this impacts the overall download time, and may result in

premature timeout. For example, if a fetch takes five times longer to connect than usual, but

its transfer rate is acceptable after that, then it makes sense to relax any overall timeout, since

a significant portion o f the overall timeout has been ‘used up’ by latency.

These policies for failure interpretation are only some o f those that might be adopted by a

human browser. Our conceptual domain is an effective basis for the expression of many more

useful failure interpretation policies.

Persistence Properties of Observables

The graphs above show how observables might fluctuate across the duration of a single Web

fetch. In addition to these short-term fluctuations, persistent relative observables for Web

fetches fluctuate according to long- and medium-term trends in the network environment. The

three graphs below show typical observable behaviour for a Web fetch over many executions.

The vertical axes represent average observables over completed Web fetches. The horizontal

axes represent a series o f successful Web fetch invocations over time, and for simplicity, we

assume that the time increments between them are the same at approximately one hour. Since

our conceptual domain incorporates persistence, the Web fetches may be over several

program invocations, and the historical context is maintained.

95

The top graph shows the absolute rate observed, on average, for many invocations o f a

particular Web fetch. The nth fetch is observed to proceed, averaged across its duration, at half

the previously seen rate. After that, however, the trend in rate begins climbing again, very

slowly. Such observables are typical o f a

site in North America accessed from

Europe, for example. That is, at mid-day in

Europe a slow-down in Trans-Atlantic

network traffic is observable as the

workday begins in North America. The

next graph shows how the average relative

rate fluctuates, and should be compared

against the absolute rate. The ‘dip’

corresponds to the halving o f the absolute

rate, and we see a relative rate of 0.5.

However, as time goes on, the relative rate

is seen to rise towards 1.0 because the

lower absolute rate begins to influence the

average o f the persistent historical context

for that Web fetch. In this way, the

perception o f rate adapts to changes in the

network environment. The final graph

shows similar adaptation o f relative time.

When the average rate o f transfer halves, the average download time rises to approximately

twice that seen previously, and this manifests itself as an observed relative time o f 2.0. Like

the relative rate, this adapts over time.

The persistence mechanism for our domain absorbs changes in the network environment.

The rapidity with which changes are absorbed depends on factors such as the size of the

history (window size) and how the history is calculated. We do not concretise our persistence

mechanism in this respect, since various schemes may be o f use in different situations. For

example, an application that performs frequent access to a small set o f sites might perform

better with a small window size, in order to have the persistent context closely follow trends

arising from the time of day.

The latency, completion, and probability observables behave in a similar manner to rate and

time with respect to persistence. It is worth noting at this point that since the completion

observable is intrinsically linked to document size, it immediately absorbs changes in size

absolute rate
Ri

R/2

relative rate

1.0j

0.5

relative time
i

2.0

1.0

n executions

n executions

n executions

96

resulting from document update, because the observable has no persistent context as such and

depends only on current document size.

The persistent time observable for a document may be compromised by changes in

document size. If the size o f a document changes, so will the average time to download it.

However, like changes in the network environment, the persistence mechanism is capable o f

absorbing them, assuming that changes in size are not radical. Future work is to analyse the

patterns on the Web o f changes in document size. I f it is found that documents frequently

change size, and the difference in size is often great, then it might be worthwhile addressing

this fact directly in the mechanism. For example, the persistence mechanism could track

document size, and if it changes adjust the time value in the persistent context by an amount

proportional to the change in document size. Although such change makes an assumption

about rate being consistent across transfer duration, a mechanism similar to this is likely to

improve the reliability o f the persistent context.

Generalisation of Observables to all Computation

Some o f the observables we have identified are useful for non-deterministic computational

operations other than Web fetch. For example, elapsed time and probability o f success are

meaningful for all atomic operations whose progress is non-deterministic. To bring other non-

deterministic operations into our conceptual domain, we must find sensible default values for

those observables that are not significant with respect to that type o f operation. That is,

observables of a non-deterministic operation that are not significant should be deterministic.

A deterministic operation is a special case o f this, in that all o f its observables are

deterministic. We see the incorporation o f all computation within our conceptual domain as a

logical generalisation, since it allows the domain to be specified in terms that are independent

of the type o f computation being performed. To do this, we need to generalise the concept o f

persistent relative observable to all deterministic atomic computational operations.

Deterministic operations have predictable observables. By ‘deterministic operations’ we

mean an atomic unit o f computation with deterministic progress. For example, it may be

guaranteed to execute in unit time. In the Focus run-time system, described later,

mathematical operations, string operations, and file system operations are all atomic,

deterministic, and execute synchronously. However, these units o f computation map to

several underlying operations on the physical hardware, some o f which may be asynchronous.

In general, units of computation don’t have totally deterministic progress on real machines

due to memory caches and hard disc seek times, for example. However, we choose to ignore

the issue o f non-deterministic computational progress for synchronous units o f computation in

language run-time systems. These units o f computation are executed on a closely coupled

97

architecture, and the time scales involved are orders o f magnitude smaller than those of

network access. We are not interested in the performance o f closely coupled architectures. In

essence, we split the instruction set o f our programming language into two classes,

deterministic operations and non-deterministic operations. Internal to the language run-time

system, these two classes map directly to synchronous and asynchronous execution. That is,

they do not block any other concurrently executing threads. All synchronous operations

execute in ‘unit time’. Asynchronous operations do not execute in unit time, and may or may

not execute in a predictable time.

Failure o f non-deterministic operations is inferred by deviation in observables from what is

considered ‘normal’. Thus, observables for deterministic operations should be predictably

normal, given the intuition that it is not generally useful to interpret failure for deterministic

operations within the context o f our conceptual domain. For example, the transfer rate in

Kb/sec of a subtraction operation is not particularly meaningful, and is difficult to define. For

Web fetches, which are non-deterministic, persistent relative observables fluctuate in a pattern

around the number one, which along with zero is a grounding value. An observable o f one

indicates normal computational progress, or more accurately, acceptable computational

progress. Thus, we choose the number one as the default observable value for deterministic

operations. However, we do not enforce this indiscriminately. For non-deterministic

operations other than Web fetch, observables that are not meaningful adopt the default value.

Meaningful observables retain the semantics defined for Web fetches.

Given that in our domain, all operations export the same set o f observables, we can reason

with single operations and sequences o f operations (aggregate computations) in the same way.

As an aggregate computation proceeds, its observables are available seamlessly between the

completion of one computation and the execution o f the next. In this way, we abstract over

the actual nature o f computation taking place, whether they are primitive operations such as

string concatenation, or more abstract sequences. However, the granularity o f persistence for

relative observables is at the operation level. This means that at any given moment, the

persistent relative observable o f an aggregate computation is actually the persistent relative

observable of the atomic operation currently being executed.

Consider the following program fragment, in which a Web fetch is preceded by a sleep

operation, and followed by a deterministic string computation. Sleep here is an example of

how we can add a new operation to the conceptual domain and map persistent relative

observables onto it in a meaningful way. Although it can be argued that sleep is a

deterministic operation we treat it as non-deterministic because internal to the language run

time system, sleep must be executed asynchronously. This allows the observables to change

98

throughout its execution. The graphs below are an example o f how the values o f observables

might fluctuate over the execution of the aggregate computation.

sleep n

let html = get (“http://www.protean.org/ “)

processHTML(html)

In the first graph, we observe the absolute rate o f the computation as time passes. R is the

average absolute rate that has been seen before for the Web fetch, in bytes per-second, say.

n t

absolute rate

R/2

time

relative r̂ ti
A

0.5

time

relative tim|e

time

completior|
A

t timen

The actual value o f R is o f little concern;

more interesting is the relative rate o f the

current transfer with respect to R.

Moreover, we do not wish to define the

absolute value o f rate for deterministic

operations. Thus, our domain abstracts

over these absolute values, and they are

never directly observable. The second

graph, shows that the curve for relative

rate follows that o f the absolute rate, but

here we have a more sensible unit o f

measurement for the vertical axis since we

can obtain a rate value for the

deterministic portions o f the aggregate

computation. Sleeping has no meaningful

absolute rate, and so we define it’s relative

rate as one. However, we define its time

and completion observables to increase

monotonically (never decreasing) towards

one. After n units o f time have passed,

relative rate drops sharply to zero as the

Web fetch begins and experiences

connection latency. Once the connection is

made, data begins to transfer and rate is

seen to fluctuate. We assume that the

progress o f the fetch is acceptable, and it

99

http://www.protean.org/

completes normally, after which the deterministic string operation is invoked and all

observables snap to the number one.

Given the set o f available observables, program logic must dictate whether or not to interpret

failure. Typically, this program logic is applied for the duration o f the entire aggregate

computation, since we have abstracted over the nature o f computation and cannot directly

determine what operation is being performed. However, since deterministic operations never

have observables that deviate from what is considered acceptable, failure interpretation will

not occur while deterministic portions o f the aggregate computation are executing. This

means that we can apply failure interpretation logic uniformly across a computation, secure in

the knowledge that failure will only be interpreted during the non-deterministic portions of

the aggregate computation.

The persistent relative observables domain alone is not sufficient to define a programming

language. However, because we have defined the concept o f observable for all computation, it

can be easily unified with other conceptual domains in the construction o f Web programming

languages. Moreover, by identifying generalised observables within a distinct conceptual

domain, we do not limit the means by which they can be reasoned about at a higher level.

That is, the domain is designed to allow failure interpretation independent o f any particular

means for specifying remedial action once failure has occurred; the design o f which is left to

language implementers.

Observables and Concurrency

Concurrency is important in any system that has large 10 overhead, since it allows the

processor to be utilised during periods it would otherwise be idle, waiting for relatively slow

hardware. Accesses to the global network are subject to unpredictably high levels o f overhead

in the order o f seconds, so any programming language designed for computation in this

domain should incorporate concurrency. Concurrency is a concept introduced within the

computational model of a language, and not its conceptual domain, so we do not deal with it

directly here. However, we assume that any language incorporating our conceptual domain

will support concurrency, and so we must ensure that the properties o f persistent relative

observables are in concordance with concurrency. Moreover, to improve the effectiveness and

flexibility o f our domain, we wish to identify any interplay between observables and

concurrency, and attempt to incorporate concepts within our domain that are useful in a

concurrent context.

Aggregate computations are sequential. Issues such as concurrent update by computation

and synchronisation are beyond the scope o f our domain, as they should be dealt with by the

programming language’s concurrent computational model. Our domain has no properties that

100

preclude the concurrent execution o f aggregate computations, and observations o f individual

computations can take place independently. The only aspect of our conceptual domain that

potentially interferes with concurrency is the persistence mechanism. On successful download

o f a resource, the associated persistent historical context is updated. In a concurrent context,

there may be consistency issues with respect to this update. Although we do not see them as

being significant, we avoid the problem by demanding that individual updates o f the

persistent historical context be atomic transactions. This ensures that the historical context can

never be observed in an inconsistent state.

Concurrency allows synchronous Web fetches to be made in an asynchronous context, with

corresponding improvements in processor usage and program efficiency. Efficiency aside,

concurrency is valuable in its flexibility as a structuring tool for computations. For example,

human browsers often invoke several simultaneous Web fetches. In some cases, two or more

o f these fetches may be co-dependent in some way. Large files are often split into several

component archives, which can be downloaded concurrently. Success o f the overall download

is dependent upon successful download o f all components. Another form o f concurrency

employed by human browsers is that o f alternate download. For example, a human browser

wishing to read the days news headlines might attempt to fetch the CNN homepage. If the

fetch is not achieving acceptable progress, then the human browser might invoke a fetch of

the MSNBC homepage concurrent with the CNN fetch. The human browser reads the content

of whichever fetch completes first. In this way, human browsers adopt a form o f concurrent

scheduling policy, based on observations o f progress. Such scheduling policies may be based

on comparative observations. For example, pessimistic human browsers might concurrently

invoke fetches o f CNN and MSNBC from the outset, and terminate the slower of the two. We

class the general form o f this behaviour as alternate computation, where the results of two or

more computations are equally valid, and whichever completes first forms the result o f the

overall concurrent computation.

There is a need for comparison o f absolute observables. However, in our conceptual domain,

observables for a transfer are calculated relative to a historical context for that transfer. This

means that a comparison between the persistent relative observables o f two distinct fetches is

not particularly meaningful. For example, consider a concurrent download, invoked from

Europe, o f two equivalent documents U and J from the USA and Japan respectively. J has an

absolute rate o f lOKb/sec and a historical rate context o f 5Kb/sec, whereas U has a rate of

20Kb/sec and a historical context o f 40Kb/sec. These absolute rates result in relative rates o f

2.0 and 0.5 respectively. An observer deciding to terminate U on the basis o f a comparison

between relative rates is actually terminating the transfer most likely to complete first. This

101

example shows that comparisons o f persistent relative observables have no relationship to

comparisons o f absolute observables.

Our conceptual domain elides absolute measurements and so removes classes o f error in

programs by making them location and hardware independent. Moreover, the generalisation

of our conceptual domain to all computation is critically dependent on the fact that we mask

the absolute units o f measurement for observables associated with deterministic computation.

However, since absolute measurements are useful in many situations, it is unreasonable to

prevent programmers from using them entirely. For this reason, we have developed an

extension to our conceptual domain we term network relativity, which approximates absolute

units o f measurement without compromising their secretion with respect to deterministic

computation.

A network relative observable allows the observation o f progress for computation in terms

relative to the average progress o f all computation. For example, the network relative rate

observable for a Web fetch is calculated by taking the ratio o f current dynamic rate to the

average o f all persistent rates stored. If the average download rate for all transfers is

lOKb/sec, and the dynamic rate o f a Web fetch is 7Kb/sec, then the network relative rate for

that fetch is 0.7. Network relativity allows meaningful comparisons between the observables

of different computations (fetches). The concept applies to each class o f observable as

follows.

• Rate - ratio o f dynamic rate to average rate o f all fetches. This is a directly meaningful

approximation to absolute rate.

• Probability - How frequently this download succeeds compared with others.

• Latency — returns value relative to average network latency.

• Completion - network relative is not meaningful for completion, so we do not include it

as network relative.

• Time - network relative is not meaningful since download time is related to document

size.

• Deterministic computations - always one, since is calculated by dynamic observable ratio

with historical context for all deterministic computations, which is one.

102

Like persistent relative observables, network relative observables are independent o f

absolute units o f measurement. They are particularly useful for comparative analysis of

observables for different computations.

Summary and Analysis

We have described a conceptual domain providing persistent relative observables, which is

an abstraction with the following properties:

• It gives language designers the means to provide constructs that allow flexible failure

interpretation in terms o f relationships between constraints on observables.

• The separation o f observables as a distinct concept allows the implementation o f arbitrary

mechanisms that control program flow based on a high-level interpretation o f fluctuation

in observables.

• Languages incorporating the conceptual domain can provide abstractions that capture the

notion o f ‘acceptability based on the norm’ without overhead.

• The persistent context o f programs automatically adapts to changes in the network

environment, making them future proof.

• Programs are portable and mobile, since values associated with observables are expressed

in terms independent of absolute units o f absolute measurement.

• Persistent relative observables allow genericity in control, since for all computation

observable values are constrained within a pattern of fluctuation around a single number,

1.0 .

• Generalisation of observables to all computation simplifies unification between our

conceptual domain and traditional conceptual domains, since it allows failure

interpretation logic to be applied uniformly.

Traditional programming languages do not generally include directly the concepts o f rate,

latency, completion percentage, or probability o f success because they are not present in their

conceptual domains. This places a burden on the programmer who wishes to implement

failure interpretation and control based on these concepts, since the language’s computational

model may be inappropriate. By providing the concept o f observables orthogonally within a

conceptual domain, we encourage language designers to provide abstractions that are

appropriate to computation in the Web domain.

103

The only notion relevant to Web programming provided by traditional conceptual domains

is that o f time. An indirect consequence o f this is that traditional programming abstractions

tend to place a heavy reliance on timeout as a means for interpreting failure. We have argued

that timeout as a means for failure interpretation is inflexible, inefficient, and unreliable. Even

without any exercises in comparative programming, it is self evident that each property o f our

conceptual domain listed above is provided in a more direct manner than is possible with

traditional conceptual domains and languages. This eases the design and implementation o f

Web programming languages and abstractions. Whether these properties are useful for Web

programming itself is a separate hypothesis that we address in the next chapter by designing a

programming language that incorporates the observables conceptual domain. We intend to

show that persistent relative observables can be incorporated into a high-level programming

language that successfully integrates the concepts o f concurrency, flow control for failure,

and flexible failure interpretation in the Web domain.

104

6: Observation and Control with Supervisors

In this chapter, we describe the supervisor programming abstraction, which is intended to

allow effective computation over the persistent relative observables conceptual domain. The

primary design goal o f supervisors is to achieve clean integration o f concurrency, flexible

failure interpretation, and flow o f control for failure. Supervisors are abstractions over

concurrency that are syntactically similar to functions, but are intended for the specification of

failure semantics in Web computations. In essence, supervisors monitor and control

concurrent computations passed to them as parameters. At run time, each supervisor

corresponds to a distinguished thread. This thread is responsible for interpreting the

conditions o f failure (or other circumstances that require intervention) in the monitored

computations, and directing concurrent flow of control for appropriate action.

Research by Randell [63] indicates that programming abstractions for failure prone

computation should allow the syntactic and semantic separation o f control logic from

computational logic. Web computation is inherently failure prone, and the design o f the

supervisor abstraction reflects this by enforcing the strict separation o f computational logic

and control logic. With supervisors, no cooperation or communication in general computation

is possible between the distinguished thread and the threads it supervises. The supervisor

abstraction is modular, since the internal logic o f supervisors and supervised computations is

mutually hidden.

Whatever the activity o f a computation, information about its behaviour is observable in its

set o f persistent relative observables. The values o f observables are constrained within a

pattern o f fluctuation around a single number, 1.0. All computations export the same

observables, and many exhibit similar patterns o f fluctuation in observables. This means that

the same supervisor can control a broad class o f computations, giving a degree o f genericity

to supervisors. Similarly, many different supervisors may be applicable to a particular

computation, engendering different failure interpretation and control flow characteristics in

each case. Observables are the only means by which supervisors can obtain information about

executing computations. Thus, the development o f supervisors is not directly related to

knowledge o f the program logic for supervised computations, but is based on patterns of

expected fluctuations in observables.

Once failure has been interpreted by whatever means, supervisors provide support for

automated backward error recovery. In essence, backward error recovery is concerned with

returning the system to a previously known reliable state, before the occurrence o f failure.

This differs from forward error recovery, which is concerned with ‘handling’ the failure and

repairing state, rather than returning to a previous state. Exception handling mechanisms are

105

designed for forward error recovery and recovery blocks provide automated backward error

recovery. We describe recovery blocks in Chapter 7 - Analysis o f Related Work, and

exception handling in Chapter 8. Research indicates that manual repair o f erroneous state is

difficult since it places a large cognitive burden on the programmer [94]. This supports the

idea that backward rather than forward error recovery is more appropriate when computing in

a failure-prone non-deterministic context. Failure is non-deterministic and common on the

Web, and in Web programs there can be an arbitrary amount o f state made erroneous by

computation dependent on network connections that fail. Thus, automated backward error

recovery is perhaps most appropriate in this context.

Focus

Supervisors can be embedded in any language that incorporates the persistent relative

observables conceptual domain. However, we present a concrete programming language

called Focus (Flow O f Control Using Supervisors), in which supeivisors are the sole construct

for concurrency. Focus is an imperative programming language designed to allow the

expression o f computations over the Web in a concise, flexible, and easily understood

manner. It is an experimental language, primarily intended as a vehicle for the supervisor

abstraction. Although the language model is designed to integrate well with supervisors, we

do not assert that its structure is either ideal or necessary for them. Indeed, we intend that

supervisors be amenable to integration with a broad range o f different languages, including

object-oriented and functional languages.

Focus is a simple language that contains minimal clutter, so that we can present the

supervisor concept clearly. However, in the presentation o f some examples assume the

existence o f language concepts not present in Focus, without explanation o f how they might

fit within the language model. In particular, we refer to parametric polymorphism [64],

Supervisors are independent o f polymorphism, but its presence affords extra flexibility as

they would to any programming language. There are no conceptual barriers to augmenting

Focus with mechanisms for polymorphism.

Focus has the following properties, which are generally thought to be beneficial in any high-

level language:

• Strongly and statically typed - all type checking takes place at compile time, and the

compiler and run-time system together ensure that every execution is sound in that it has a

defined meaning.

106

• First class values - values o f all types have the full range o f applicability normally

granted to simple types such as integers, say. That is, all values, including function and

supervisor values, can be bound to identifiers, assigned to locations, and be passed to and

form the result o f functions and supervisors [65].

• Orthogonal - there are no arbitrary restrictions on the applicability or composability o f

operations or data types, language features are independent, combine in regular ways, and

uniform syntax is applied wherever possible.

• Block structured - static nesting o f scope for arbitrary sequences o f commands. Blocks

may have values and so are valid anywhere that an expression is.

• Explicit locations - values that are mutable must be explicitly declared as such.

Moreover, locations must be explicitly dereferenced, distinguishing between 1-values and

r-values in program text.

• Automatic memory management — a language with no concept o f deletion removes a

major burden o f complexity from programmers. Focus automatically retains all reachable

values.

Focus is a Web programming language, and incorporates fundamental concepts to this end:

• Atomic Web fetch operation - the Focus model o f download replaces the notion o f a

transfer stream with an atomic fetch, and documents download completely or not at all.

• File system unified with locations - after declaration, files are indistinguishable from

locations, and are updated in the same way. The motivation behind this abstraction will

become clearer when we describe the supervisor mechanism for controlling concurrent

update.

A more detailed description o f focus is presented in the appendix, including a formal BNF

syntax definition, and a description o f its implementation.

Supervisors

Supervisors are concurrency constructors with associated program logic. They are

syntactically similar to functions in that they are parameterised by arbitrary expressions,

which in turn are bound to formal parameters within an expression that is the body o f the

supervisor. This implicitly separates the control logic in the supervisor body from

107

computational logic in the parameter expressions. The parameter passing mechanism for

supervisors is that the parameter expressions are evaluated asynchronously. Expressions

passed as parameters to a supervisor are not evaluated eagerly before supervisor invocation.

Instead, the evaluations o f the parameter expressions begin concurrently, with each other and

with execution o f the supervisor body.

A view o f the parameter expressions as their dynamic evaluations, and not the value they

compute, gives rise to entities we term as threads, and the dynamic view o f the supervisor

body we term as the distinguished thread. In the previous chapter, we defined an aggregate

computation as a computation composed serially from other computations or atomic

operations. An aggregate computation is abstract in that it is not possible to determine the

nature o f computation taking place other than by interpreting fluctuation in its observables.

Each thread in the supervisor model is an aggregate computation as defined in the observables

conceptual domain, but supervisors allow them to exist in a concurrent context. The Focus

run-time system incorporates a concurrent threading environment compatible with the

observables conceptual domain. However, supervisors abstract over this threading

environment and Focus provides no other thread constructor. In Focus, passing parameters to

a supervisor is the only means o f creating concurrency, and threads can only be observed in

the context o f a supervisor body.

When an expression is specified as an actual parameter to a supervisor, it is implicitly used

in the construction o f a thread. The supervisor body can specify observations o f its named

parameter threads with special functions that correspond to the set o f available persistent

relative observables. With program logic, it can drive the scheduling o f threads by

interpreting the significance o f these observations. However, the binding to a formal

parameter has two interpretations: as a thread and as the value that it computes. The use o f a

formal parameter binding refers to a thread only if the context demands a thread type, for

example when passed as a parameter to a thread control or observation function. Otherwise,

the binding refers to a value and the distinguished thread blocks until the result o f the

parameter thread becomes available. The type o f the value that each parameter thread

computes is statically known, and this is checked for compatibility in the context o f identifier

usage.

Consistent with the function view o f supervisors, it is the value computed by the supervisor

body that forms the result o f the overall concurrent computation. The results o f computations

passed to the supervisor are available, and typically the supervisor result will be based upon

these. That is, the results o f some or all o f the concurrent computations are amalgamated in

the supervisor body in order to form the result o f the supervisor. Since the supervisor body is

composed o f arbitrary program logic, it may perform any amount o f supplementary

108

computation in order to achieve this amalgamation. Moreover, it can base flow o f control

decision on the results o f its parameter threads, for itself, or for other parameter threads.

The supervisor body can effect concurrent flow of control according to any state that is

deducible from observing its parameter computations or obtaining their results, and is not

restricted solely to the interpretation o f failure. However, we see the detection and handling o f

dynamic failure conditions in parameter computations to be the major role for supervisors.

For example, programmed failure semantics in a supervisor body might specify that the rate

o f computation for a particular parameter thread should not fall below a specified value; if it

does, then the result o f an alternative parameter thread is returned instead.

Thread observation and control

Despite the absolute control supervisors have over threads, they have no direct knowledge of

the semantics o f computation taking place within an observed thread. Consistent with the

definition o f aggregate computation in the observables conceptual domain, they cannot base

their interpretation of thread's progress on anything other than the set o f observables exported

by that thread. However, we assume that supervisors will be developed in conjunction with

the class o f computations they are to monitor and control. This means that each supervisor

will have programmed within it an underlying knowledge o f the high-level semantics (failure

or otherwise) that may be implied from a particular pattern o f thread observables. Since at

run-time the supervisor body is itself a thread, it may be observed and controlled by a

supervisor higher up the dynamic invocation chain. Nested supervisor invocation is dealt with

in a later section.

The primary ‘observation’ that the supervisor body can make o f a thread is that o f its result

value. Any time a formal parameter is used in a non-thread context, this refers to the value

that the thread computes and the supervisor body blocks until the value becomes available. In

addition to the result value, we define observation functions that map directly to the

observables in our conceptual domain. These are rate, time, latency, completion, and prob

(probability o f success). Each takes a thread parameter, and returns a non-negative floating

point number. When invoked, these functions return the persistent relative observable for the

computation currently being executed by the interrogated thread. We define four observable

thread states, and several related control functions. The supervisor body may suspend,
activate, and retry1 parameter threads. In addition, any thread may invoke suspend without

parameters to suspend itself, which is useful for synchronisation. Threads can be in an active

or suspended state, and we define the active and suspended observation functions, which

1 Thread retrial is discussed separately in a later section.

109

given a thread return either true or false depending on the thread state. A suspended thread

makes no computational progress until activated again. Suspending an already suspended

thread or activating an active thread has no effect.

In addition to the active and suspended states, threads can be fa iled or done, and the

operations failed and done are provided to query this state. Done threads have completed

normally, and their result may be obtained without blocking execution of the supervisor body.

Failed threads have either attempted to execute an operation that cannot be completed, for

example in the case o f a Web document not found or a divide by zero, or have explicitly

invoked their own failure with the fail command. An attempt to obtain the result o f a failed

thread causes failure o f the supervisor body. Failure is automatically propagated through all

static scopes and the dynamic function invocation chain, and stops only when it reaches a

supervised thread. We return to failure propagation in a later section, when we discuss nested

supervisor invocations.

All thread states are mutually exclusive, but the relationships between them are captured in

the state transition diagram below.

active

faileddone

suspended

Although the observation and control functions require a thread parameter, there is no way

for programmers to statically denote a thread type. Thread creation is implicit on passing an

expression to a supervisor as an actual parameter. Active threads cannot escape the context of

a supervisor body by assignment, return, or passing to a function, since they are always forced

into a value context by anything other than an observation or control function. Thus, thread

observation and control functions cannot be invoked outside the context of a supervisor body,

since they cannot be typed.

Examples and Discussion

In this section, we present some small instructive examples. More ‘real-world’ examples are

presented later in this Chapter. In the examples throughout, important sections o f code are

highlighted in bold (as opposed to the convention of highlighting keywords). The following

short example shows how supervisors can amalgamate the results o f the concurrent

computations they supervise.

110

let combine = supervisor(a:int, b:int -> int) is a + b

Syntactically, this supervisor resembles a function. However, a and b are not values but

computations, which execute concurrent with each other and with the supervisor body. The

identifiers a and b in the supervisor body are in a value context, so the body blocks until the

results become available. It then returns the value obtained from adding the results o f the two

computations. Blocking on the completion of a failed thread causes failure, so if either

parameter computation fails, the supervisor body will propagate this failure to its invoker.

The next example shows a supervisor basing control flow decisions on observations of the

computational progress o f its parameter threads, waitfor is a construct that blocks execution

o f a thread until the associated boolean expression becomes true. Although waitfor can be

used anywhere, we expect its primary role to be by the supervisor body. There are timing

guarantees associated with waitfor that ensure the rescheduling o f the thread within a known

finite time after the expression becomes true. There are also timing guarantees with respect to

the frequency o f waitfor expression evaluation. The Focus run time system can be

parameterised in this respect, since the actual time guarantees may be system specific.

However, Focus provides reasonable defaults. Failure to meet any o f these guarantees causes

failure o f the Focus run time system. In pragmatic terms, programmers need not be concerned

with this. The run time system guarantees exist primarily because o f the theoretical demands

on concurrent programming systems with regard to computational progress and process

scheduling.

let alternative = supervisor(a:t, b:t t) is {

waitfor done a or done b
if done a then a else b //last a and b are in value context

}

let html = alternative(get "http://hostA.org/", get "http://hostB.org/")

In this example, we define a supervisor that provides the semantics o f alternative

computation, where either computation is a valid result, and the value returned is that o f the

first computation to complete. The supervisor is invoked to download two documents

concurrently, though the parameter computations may be arbitrary. The body of the

supervisor first synchronises its execution by waiting for completion o f either thread before

111

http://hostA.org/
http://hostB.org/

continuing. In the waitfor conditional, passing a and b to done implies a thread context. The

result o f whichever thread completes first is returned as the value o f the concurrent

computation. The value computed by a thread is obtained by naming it in a non-thread

context, and the supervisor body will block until the result becomes available. In this case no

such blocking will occur, because the supervisor body has already synchronised on the

completion o f one o f the threads.

The next example shows how observables can be used to interpret failure and direct the flow

of control for concurrent computations. We pass constraint values for rate and time as

parameters to the supervisor on invocation. Since parameter computations may be arbitrarily

complex, passing a simple expression with no side effect is an approximation to

parameterisation by value, since the observable properties o f its evaluation are neither

required nor significant.

let priorityAlt = supervisor(pri:t, sec:t, maxTime:float, minRate:float -> t) is {

waitfor (rate pri < minRate and completion > 0)
or time pri > maxTime
or done pri

if done pri then pri else sec

}
let html = priorityAlt(get "http://...", "error", 2.0, 0.33)

Here, the body of the supervisor contains logic to provide asymmetric weighting favourable

to the computation passed as the pri (primary) thread parameter. This is achieved by

considering the sec (secondary) computation only if the computational rate o f the primary

falls below a certain level - in this case one third o f that in the historical context, or if it takes

twice as much time as it did on previous occasions. For document transfers, rate and time are

related since a document that takes twice as long to download as before has on average half

the rate across its duration as before. However, by constraining the dynamically observable

rate in addition to time, we can interpret failure more readily, according to fluctuations not

observable given only an average rate across fetch duration.

The values with which we constrain rate and time are passed as parameter computations to

the supervisor. We use the results o f these computations to determine how the supervisor

body interprets failure. Thus, although they are computations, naming maxTime and

minRate only in a value context means that they are effectively value parameters.

112

In the example, waitfor observes rate and time, and waits until either the constraint on time

or on rate is violated, or if the overall computation completes. Because rate is zero during the

latency phase o f a fetch, we must check completion to ensure that we do not interpret rate

failure erroneously during the latency phase.

Implicitly, if absolute failure o f a thread occurs, its rate becomes zero, consistent with non

termination semantics for failure. Thus, absolute thread failure, for example due to divide by

zero, need not be checked for the primary since it is captured by the observation o f rate.

Thread rate also becomes zero on thread completion. Thus, the check for not done in the

third waitfor is redundant if we assume that minRate is positive, since it is captured by the

rate constraint. However, we include the check for program clarity. The assumption of a non

negative minRate is reasonable since observable rate can never be negative.

The last statement in the supervisor is a conditional that determines whether the primary

computation has succeeded or been interpreted as failed. If failure is interpreted, we return the

result of the secondary, blocking the supervisor body if the secondary has not yet completed.

Side effect and thread communication

The threads involved in a concurrent computation need not be independent. For example,

one thread may have to wait for the results o f another to become available before it can

continue. When a thread requires a series o f partial results that are produced by another

concurrent executing thread, there is a requirement for a means o f communication between

them. The simplest method o f communication between concurrent threads is by update to

shared memory locations. However, program consistency can be compromised by the fact that

thread scheduling is non-deterministic. For example, one thread might attempt to read data

that another has only partially written. Some level o f abstraction is required.

Traditionally, there are two main approaches to abstracting over concurrency

communication: mutual exclusion and message passing. The mutual exclusion approach

avoids consistency problems arising from concurrent access to variables by allowing the

specification o f critical regions, in which only one thread can be executing at any time. The

two main abstractions for creating critical regions are semaphores and monitors. For example,

Java provides semaphores at the language level, and Modula-2 provides monitors. Message

passing is suited to both distributed and locally concurrent computation, and involves the

communication o f information along explicitly created channels, or via an interface similar to

function invocation. Message passing can be synchronous or asynchronous. Synchronous

communication requires that all involved computations synchronise their execution at a

specific point before they communicate, whereas asynchronous communication does not.

Occam (which is based on CSP) and Ada use synchronous message passing.

113

With supervisors, we decided to use a shared memory model, since we consider message

based models as too heavyweight for our lightweight threading mechanism. However, we

have taken an entirely different approach to the standard approaches o f monitors and

semaphores. With these mechanisms, obtaining a lock on location access is the responsibility

o f individual computations. This places some o f the burden o f concurrency control on the

computation itself. A design goal o f the supervisor mechanism is that all control should be the

responsibility o f the supervisor.

In addition to making control the sole responsibility o f the supervisor, we require support for

automated backward error recovery. Over the years, research into coordinated (or concurrent)

atomic actions [66] has been motivated by the requirement to roll back the computation of

failed processes that are taking part in concurrent computations. As concurrent computations

proceed, information flows between the individual processes involved and the number o f

dependencies grows. According to Randell, keeping track o f these dependencies and undoing

updates is a complex task [63]. We return to the issue o f coordinated rollback in the next

Chapter.

We have designed a mechanism that is based on a change o f perspective with respect to

undoing computation. Instead o f allowing computation to be undone when threads fail, our

mechanism takes a more pessimistic approach. This is borne out o f the observation that Web

computations are prone to frequent failure. With our mechanism, the computational effect o f a

particular thread is encapsulated, and not visible to any other thread unless its supervisor

explicitly exposes that effect. Without explicit exposure, the computational effect o f a thread

is implicitly discarded. Thus, automated backward error recovery is achieved simply by

abandoning a thread. No explicit action is required. In the next section, we describe this

mechanism, the supervisor environment model.

Environments

In addition to its return value, supervisors permit side effect, either by the distinguished

thread, or by parameter threads. In this section, we describe how supervisors can explicitly

control this side effect with its environment mechanism , in order to allow computational

interaction between parameter threads.

Environments are logical duplicates o f the system store that are associated with every

individual thread. Within each environment, mutable locations contain values valid with

respect to that particular thread. On supervisor invocation, each nascent parameter thread

captures an environment ‘snapshot’ viewed from the point o f supervisor invocation. The

original environment is the parent environment, and the capture is a child environment. The

thread that is the supervisor body also captures an environment in this way. The child

114

environments with which expressions passed to a supervisor are evaluated, and the child

environment o f the supervisor body, are all isolated from each other. All newly created

threads thus have their own environment to execute over that is distinct from the parent

environment associated with the calling point.

Within each distinct environment, thread updates to mutable locations are not observable

externally. This enforces mutual exclusion o f all concurrent thread computation, since

although concurrent threads may share portions o f their namespace, identical mutable

locations will exist independently, ‘shadowed’ within each captured environment. To allow

cooperation between concurrent threads, we define an expose operation. This operation is

parameterised by thread, and so can only be invoked by a supervisor body. Exposure

reconciles the child environment o f a parameter thread and the environment o f the thread that

invoked the supervisor, its parent. It causes the thread to propagate all updates it has made to

the parent environment, and then recaptures that environment. In other words, any locations

‘dirtied’ by thread update first overwrite those in the parent environment, and then the thread

again captures the parent. This has the effect of unifying the two environments, with updates

made by the thread overriding any interim changes in the parent environment.

Since only the supervisor body can name parameter threads and type an invocation o f the

expose operation, only the supervisor body can cause a thread to be exposed to the parent

environment. Therefore, only the supervisor can effect synchronisation o f parameter thread

communication, by exposing two or more threads to the parent environment, thus unifying the

environments o f threads that have updated shared locations1. However, the distinguished

thread o f the supervisor body cannot communicate with parameter threads in this way (cannot

observe thread update) since it cannot name itself in an expose operation. This ensures mutual

exclusion o f control computation in the distinguished thread and algorithmic computation in

the parameter threads. In order that the supervisor body may have an overall side effect, any

updates made by the distinguished thread are automatically exposed to the parent environment

when the thread completes. The supervisor body can return while parameter threads are still

executing. Such parameter threads can have no further influence on the system, since they

cannot be exposed2. The expose operation is valid at all times, be the thread failed, done,

active, or inactive.

The example below defines a supervisor that has the semantics o f parallel computation, with

the results o f the parameter computations being produced by side effecting update.

1 The order in which the expose operations are applied is significant.

2 There is an exception to this in the case o f nested supervisor invocations. This will be dealt with later.

115

let par = supervisor a:s, b:t) is {
while not done a and not done b do if failed a or failed b do fail
expose a
expose b lib updates take priority

} //supervisor body is void
let x = loc(“”); let y = loc(“”) //locations for side effect initialised to null strings

par({ x := get "http://hostA.org/"}, { y := get "http://hostB.org/"})

In this example, the invocation o f the supervisor specifies the concurrent download o f two

documents and assignment o f the results to two distinct locations. The side effects o f both

computations are unified by the supervisor’s invocation o f expose, updates being propagated

to the store at the level o f the supervisor invocation. Notice how the supervisor requires no

knowledge o f the nature o f the update. In this case, the locations are not even in scope for the

supervisor body, a and b potentially share portions o f their namespace, and so can update the

same locations. For update made by a and b to the same location, those made by b will

override since b is exposed after a.

The Hippo Core Language (HCL) [67], is the precursor to Focus. The fundamental primitive

in HCL is a concurrency constructor for alternate computation, which was briefly described

in the previous chapter. To recapitulate, alternate computation is bilateral concurrent

computation, the result o f which is exclusively that o f whichever computation completes first.

The mutually exclusive effect of computation is in terms o f both the return value and in side

effect o f each part. Consider the example program below, which uses an alt combinator to

invoke alternate computation.

let foo = locf)

let result = alt({ foo := "A"; get "http://hostA.org/doc.html"},
{ foo := "B"; get "http://hostB.org/doc.html"})

Here, only one o f the updates to foo, “A” or “B” will occur, and the corresponding html

document bound to result. If both computations fail, no update occurs, and failure is

propagated instead. Generalised alternate computation can be implemented with the

supervisor construct.

116

http://hostA.org/%22%7d
http://hostB.org/%22%7d
http://hostA.org/doc.html%22%7d
http://hostB.org/doc.html%22%7d

let alt = supervisor ̂a:t, b:t -» t) is {

while ((not done a) or failed a) and ((not done b) or failed b) do

if failed a and failed b do fail
if failed a or done b then { let res = b; expose b; res }
else { let res = a; expose a; re s }

}

The supervisor body ensures that whichever parameter thread succeeds first is exposed and

returned as the result o f the whole concurrent computation. Since the other thread is neither

exposed nor returned, its effect is implicitly discarded. If both threads fail, then the supervisor

explicitly propagates failure to its invoker with the fail command. When either thread fails or

completes the main loop exits and we check for failure o f a. If it has failed, then we return the

result o f b, and likewise in the case o f b being complete. Otherwise, a has completed or b has

failed, and we depend on the result o f a, bearing in mind that if the supervisor blocks on a

failed thread, it will itself fail. The bindings to the identifier res in the final pair o f blocks for

the conditional ensure that the result o f the computation is available before exposure takes

place, by forcing the supervisor body to block on thread result. Although the logic o f the alt
supervisor is arguably quite complex, it is written only once, possibly by programmers with

more expertise than those who use it. Focus contains the alternate computation supervisor

within its standard library.

File update and environments

As mentioned previously, Focus unifies the concept o f update for files and locations by

allowing type equivalence between the file and loc(string) types. Consider the following

program fragment. In Focus, locations are explicitly typed, and are dereferenced with the

keyword ‘a t’.

let f = file(7focus/file.txt”) //map text file to a string location bound to f

let I = locffoo”) //create a location and bind to I
f := at I //write to file f as if it were a string location
I := at I ++ “bar” //append to string location

f and I here are type equivalent, and can be passed to functions that require either loc(string)

or file types, and can be updated in the same way. Although f and 1 in the example are

117

indistinguishable, assignments to f have a different underlying semantics in that they are

mapped to the file system. However, since files are effectively locations as far as the language

and its run time are concerned, the supervisor environment model captures the semantics of

concurrent file update in the same way as location update. Only exposure to the top-level

thread can cause physical update o f the file system. Consistency is ensured for 10

communication between threads at a lower level in the same way as for shadowed locations.

Retrial

Earlier in this chapter, we described three control operations available to supervisor bodies:

activate, suspend, and expose. One further thread control operation, retry, causes the child

environment o f a thread to be reverted to the state at its last capture, and the thread activated

at the entry point of its inception. Reverting the environment to the point o f last capture

reverts it either to the point o f last exposure, or to the point o f thread inception if no expose

has taken place. Retrial may be applied to threads in any state. Since retrial is in effect akin to

the inception o f a new thread, there are no transitions from failed and done to active shown in

the thread state diagram presented earlier in this chapter. The perceived effect o f retrial is the

undoing o f computation performed by the thread and re-execution. However, only

computation since the latest exposure is discarded. If a thread has been exposed more than

once, some update may have propagated permanently to the parent environment. If this

update must be undone, then that is the responsibility o f a higher level supervisor.

We can use the retry operation to repeatedly execute computations that fail non-

deterministically, as shown by the following example.

let ret = supervisor computation:int, maxLatency:int) is {
while not done computation do

if latency computation > maxLatency do retry computation
expose computation

}

A supervisor may implement failure semantics for concurrent threads based not only on

their observables, but also based on the final value that they compute. Thus, the supervisor

can implement a form of acceptance test similar to that o f recovery blocks (discussed in the

next chapter). Consider the following example.

118

let ret = supervisor computation int, minVal:int -> int) is {

while computation < minVal do retry computation
expose computation

computation

}

Here, the computation is repeatedly invoked until it returns an integer result greater than or

equal to minVal. Any side effect that computation may have is not made visible until it

returns a satisfactory result. The reference to computation in the while loop conditional is in

a value context, whereas the reference in the loop body is in a thread context.

Nested supervisor invocation

The expressions that represent supervisor bodies and threads are arbitrary expressions, and

so may themselves contain invocations o f supervised computations. Supervisor invocations in

this context follow the intuition o f function call. A supervised thread invoking a supervisor

‘becomes’ that supervisor from the point o f view of the higher level supervisor. That is,

execution properties such as suspension and rate observed by the higher level supervisor are

those o f the invoked supervisor body. That is, a supervisor observing the activity o f one o f its

parameter threads cannot obtain the observables o f any child threads the parameter thread

may have through invoking a supervisor. Although we could conceivably design a mechanism

whereby the observables o f child threads were available, we believe that only the immediate

supervisor body can interpret the significance o f the observable properties o f the

computations it supervises, so these are not available to concurrent computation at a higher

level.

The situation here is analogous to exception handling; it is generally accepted that the

propagation o f exceptions through multiple levels o f abstraction is inappropriate. As functions

invoke functions, the conceptual distance from the exception raising point to the high level

handling point is to great to be able to handle the exception effectively at the higher level,

since the context o f its raising is no longer understood. We revisit exception propagation in

chapter 8. Our analogy comes from the fact if high level supervisors could monitor the

observables o f child threads (as opposed to parameter threads) then their observations are

crossing boundaries o f abstraction, and could not reasonably be expected to form a basis for

effective failure interpretation, since the conceptual distance is too great and the context o f

invocation unknown. In our discussion o f the service combinator algebra in chapter three, we

show how limit statements at a high-level o f abstraction can prevent slow things from

happening at a much lower level o f abstraction, even i f performance is deemed acceptable at

119

that level. Our semantics for nested supervisor invocation are intended to prevent this kind of

behaviour, based on the belief that only the immediate supervisor is capable of interpreting

thread failure reliably, and on the desire to keep programs simple.

A major difference between nested function and supervisor invocations is in the propagation

of failure. Failure is automatically propagated through dynamic function invocation chains.

Similarly, failure o f functions or supervisors invoked by a supervisor body is also propagated.

However, propagation through a supervisor invocation chain stops when it reaches a

supervised thread. This allows the supervisor body to determine whether to propagate failure

or to attempt remedial action.

At any particular point in time, the current state o f execution o f a Focus program may be

viewed as a tree, where nodes (forks, in the diagram below) represent supervisor invocations,

and arcs (vertical lines) represent threads. Supervisor bodies are also threads at runtime, but

we highlight their distinguished status with a double line. Every arc in the thread tree diagram

has an associated environment. In the following example, the tree represents a point in

execution shortly after the invocation o f supervisor scd and before its return.

let sab = supervisor a:int, b:int) is {
while ...
let result = a //block on a

expose a

}

let scd = supervisor(c;int> b:int) is {
for...
expose c

}

sab

scd

sab({ let foo = scd(42,0); foo + 99 }, { .. .})

Here, the invocation o f scd is nested within the thread a, which in turn is supervised by

sab. The invocation of supervisor sab has no knowledge o f the fact that an extended sub-tree

exists beneath a. Queries o f thread observables and state properties for a are dispatched to the

supervisor body thread for scd. Thread control works similarly in that the thread being

controlled is scd. Thus, sab cannot exercise direct control over c or d.The environment

model described for single level supervisor invocation extends naturally to situations with

120

nested supervisors. Still considering the example above, the exposure o f c by scd causes the

unification o f the environment o f C with its parent environment, associated with a. Remember

that the environment of a is distinct from that o f sab , b, and the top-level parent environment.

Updates performed by c and exposed by scd become visible at the top o f the tree after the

exposure o f a by sab . It may help to think o f exposure to the top-level parent environment as

causing ‘real’ update to system store. However, the environment mechanism makes no

explicit distinction between the top-level environment and other environments.

In addition to supervised threads invoking supervisors, supervisor bodies may invoke other

supervisors. Consider the example below.

let scd = s u p e rv iso r c:int, b : in t) is { ...}

let sa b = s u p e rv iso r a:int, b : in t) is { ^ a
while ...

let foo = scd(a,42))foo + 10 see c i

}

sab ({ ...} , { . . . })

Here, it is the body o f supervisor s a b that invokes scd. In a sense, sa b becomes scd , in a

manner similar to that o f a function application. Although sa b is blocked on the return of

scd , the threads a and b continue to execute. However, they cannot be controlled by sab ,

since it is inactive, synchronously waiting on the completion o f the nested supervisor scd.

This does not mean that a and b cannot be supervised, since they may be passed to any nested

supervisor invocations as parameters. Since supervisor formal parameters are in a thread

context, their passing as parameters to another supervisor does not block on their completion.

Instead, the computations pass directly to the nested supervisor as threads. In the example, the

thread a is passed to scd in this way. Thus, any thread operations invoked by scd on c are

actually applied to the thread originally created and bound to a. Similarly, the observables of

C are those o f a. An important point that relates to threads passed between supervisors in this

way is that threads always retain the environment context o f their inception. This is

significant for thread exposure. For example, if scd exposes the thread C, the environments

unified as part o f that operation are those o f a and the top-level thread, as opposed to a and

121

sab. If the latter were the case, then separation of computation and control would be

compromised, since side effect o f a could be made visible in sab.

The previous two examples have served only to be instructive. To conclude this section we

present two pragmatic examples o f nested supervisors in action. First, we show how invoking

a supervisor within an already supervised thread allows refinement and augmentation o f

failure semantics.

let limitRate = supervisor foo:document -> document) is {

waitfor rate foo < 0.25 and completion > 0
if done foo then foo else fail

}

alt(limitRate get "http://hostA.org/file.zip",
get "http://hostB.org/file.zip")

Here, the predefined supervisor alt is passed two computations one o f which invokes a

supervisor. The supervisor for alternate computation does not directly interpret failure

according to rate, but by wrapping the computation we wish to limit within another supervisor

that does, we can obtain the effect of limiting one branch o f the alternate computation. The alt
supervisor need not be modified or parameterised to this end.

The next example shows how we might split the specification o f failure semantics into two

modular supervisors: one for interpretation and one for recovery. We achieve this by invoking

a supervisor from within the body o f another supervisor.

122

http://hostA.org/file.zip
http://hostB.org/file.zip

let interpret = supervisor(foo:t, recover:supervisor(bar:any) —> t) is {

while not done foo do {
waitfor time foo > 2.0 or done foo

if not done foo do recover foo

}
foo

}

interpret someComputation(),
supervisor foo:any) is

if completion foo = 0.0 then fail else retry foo

)

In this example, failure interpretation and recovery are isolated from each other. The

interpret supervisor tries indefinitely to execute foo to completion. However, if it interprets

failure by timeout, then it passes the still active thread to recover. The recovery supervisor

knows how to recover foo from failure, but may decide that the failure is unrecoverable, in

which case it propagates failure to interpret which, in turn, will fail. Note that the recovery

supervisor does not even need to know the return type o f foo.

This is a simple example, but real situations may demand sophisticated recovery or control

policies for highly concurrent computations. Supervisors allow program aspects such as

control, recovery, and failure interpretation to be modularly separated if required.

Examples of failure semantics

In this section we present supervisors that implement failure semantics similar to that which

might be specified by a human browser. The first few examples implement logic equivalent to

the human thought processes identified in the previous chapter, and so concern themselves

only with failure interpretation. Later examples demonstrate sophisticated control, and we

have already presented several earlier in this chapter. Finally, we present a small exercise in

comparative programming between Focus and a Java-like language, in an attempt to

demonstrate that Focus is more concise and intuitive when implementing in our intended

application domain.

Note that most o f the example supervisors contain literal constraint values. Given that the

constraints are specified independent o f absolute units o f measurement, use o f literal values in

this way is perhaps acceptable. In any case, the constraint values could be passed as

123

parameters to the supervisor if necessary, but for the sake o f brevity we do not. From this

point, we return to the convention o f emphasising keywords in bold text.

Human: “Don’t waste time waiting for connection to a site that is probably down”:

supervisor(computation^, probThreshold:float t) is {
if prob computation < probThreshold then {

waitfor latency computation > 1.2 or not active computation

if done computation then computation else fail
} else computation

}

This supervisor examines its probability o f success o f its parameter computation, and

imposes a latency constraint if it is less than a specified threshold. Otherwise, the Web fetch is

allowed to proceed unconstrained, since we expect success. In either case, success o f the

supervisor is dependent upon the success o f computation. Since the result o f computation is

not relevant to the supervisor, we allow it to be polymorphic by specifying only that the

supervisor return type (t) must be the same as computation.

Human: “Accept intermittent transfer from heavily loaded servers”

supervisor(computation^, latencyThreshold:float t) is {
if latencyThreshold < latency computation then {

let fails = loc(5)
while active computation and at fails != 0 do {

if rate computation < 0.3 then fails := at fails - 1
else fails := 5

sleep 0.5 //allows 0.5*5 = 2.5 second rate trough

}
} else while rate computation > 0.3 do sleep 0.5

if done computation then computation else fail
}

124

Before enforcing any constraints on the Web fetch this supervisor first checks to see whether

the latency o f the fetch was greater than a given threshold. If the fetch fails to connect, then

this check will never be reached. We ignore this possibility for the purpose of brevity. If

latency is higher than the threshold, we assume that the server is heavily loaded, and allow up

to five successive rate constraint violations before interpreting failure. This approximates to

allowing a two and a half second trough in the rate observable. Otherwise, we impose a

simple rate constraint that causes failure on first violation. In Chapter 2 - Analysing Web

Failure and Performance, we showed that under heavy network and server load, dynamic

transfer rate is more variable and prone to troughs. Such a policy might be useful under these

circumstances.

Human: “Invest more time in transfers that are close to completion” :

supervisor(computation:t, timeConstraint:float —> t) is {
let constraint = loc(timeConstraint)

while active computation do {
if time computation > at constraint then

if completion computation > 0.8 and
timeConstraint = at constraint do

constraint := at constraint * 1.5

else fail
computation

}

In this example, the supervisor constrains the parameter computation by time alone.

However, if the time constraint is violated, it checks whether the computation is close to

completion before interpreting failure, and if it is the time constraint is loosened slightly. We

compare constraint against the original constraint parameter to ensure that we grant time

extension only once. Due to the notion o f acceptability based on the norm, it can execute its

failure interpretation over the full duration o f computation, since the time constraint

parameter will certainly be greater than the time observable o f 1.0 for deterministic

computation.

Human: “Be pessimistic in the morning, expecting downloads to take longer” :

125

supervisor^ computation:t, timeConstraint:float, highLoad:range o f int - » t)

is {

let constraint = if hourOfDay() in highLoad then

timeConstraint * 2.0 e ls e timeConstraint

waitfor tim e computation > constraint or not active computation

if d on e computation then computation e ls e fail

}

Again, this supervisor constrains computation by time alone. However, it examines the time

o f day, and if within a certain period extends the given time constraint by a multiplicative

factor. Similar to the last example, the supervisor can execute over the full duration of

computation, since it can be fairly assumed that the given time constraint will not be violated

by deterministic computations. That is, we assume that any actual parameter for

timeConstraint will be greater than 1.0. This supervisor makes no assumption about the

patterns in observable behaviour for completion. The computation may consist o f any

number o f Web fetches, each o f which is constrained in the same way. The time constraint

parameter does not apply to the duration o f the entire computation, but to the individual

operations within it.

Human: “Expect high latency fetches to take longer overall”:

superv isor(computation:t, timeConstraint:float —> t) is {

waitfor rate computation != 1.0 //end of deterministic part

waitfor com p letion computation != 0.0 //end of latency part

let latencyTime = tim e computation //store latency wrt time

let constraint = if la tency computation < 1.0 then timeConstraint

e ls e timeConstraint + (latencyTim e/latency computation)

w aitfor tim e computation > constraint or not active computation

if d on e computation then computation e ls e fail

}

This supervisor waits for the deterministic and latency portions o f a computation to

complete, then examines the latency that occurred. If the latency is better than expected (less

126

than 1.0), a given time constraint is enforced. Otherwise, the given time constraint is extended

by the exact amount of latency overrun. Note that unlike previous examples, this supervisor

makes the assumption that its parameter thread executes only a single web fetch, and

synchronizes itself to the download portion o f that fetch. However, it could be generalised to

accept a computation that performs any number o f web fetches by adding a while loop.

However, we omit this for brevity.

Overall, these examples demonstrate that Focus can express the type o f failure interpretation

exhibited by humans in a concise and easily understood manner. Now we present some

examples for which the emphasis is not only on failure interpretation, but also on control and

recovery. In describing supervisors throughout this chapter, we have already presented

examples o f supervisors with various control flow characteristics. These include supervisors

for alternate, priority, and parallel independent computation, as well as supervisors that use

retrial to achieve behaviour similar to exception handlers and recovery blocks. We have also

shown how nested supervisors allow failure interpretation and recovery policy to be

modularly separated.

An earlier example presented the implementation o f a combinator for binary alternate

computation. If alternate computation o f greater concurrency is required, additional alternate

combinators can be implemented that take the required number o f parameter computations.

However, a more flexible solution is to allow alternate computation with a dynamically

determined number o f parameters. That is, we wish to approximate dynamic process creation

with alternate semantics. The example below achieves this with a recursive function that

invokes the binary alternate combinator.

forward nalt is function(set(string) docum ent)

let nalt = function(urls: set(string) docum ent) is {
if card urls = 0 waitfor false //empty set termination c a se

else alt(get take urls, nalt(urls))

nalt(“http://hostA.org/”, “http://hostB.org/”, “http://hostC.org/”)

127

http://hostA.org/%e2%80%9d
http://hostB.org/%e2%80%9d
http://hostC.org/%e2%80%9d

The first line of this program fragment is a forward declaration that states the type of the

identifier nalt (n-arry alternate). This is required because in Focus, identifiers are not in scope

within their initialising expression, and so the type o f the recursive call would otherwise be

unknown, nalt recurses over a set o f URLs, and the recursion is terminated by a waitfor that

will never succeed. Eventually, one o f the alternates will succeed or all will fail, and the

recursion will unwind. Unlike traditional recursion, this ‘concurrent recursion’ can unwind

from any point in the activation chain. For example, consider the thread tree diagram below

corresponding to the program fragment.

nalt
nalt

nalt
nalt

geta altb getb altc getc waitforalta

If the fetch o f a is the first to succeed, then the rest o f the thread tree is immediately

discarded. The example here is simple, with URLs being passed to nalt which in turn invokes

a Web fetch for each. We can write a nalt function for arbitrary computation by wrapping up

the computations in anonymous functions:

forward nalt is function(set(function(void -> t)) -» t)

let nalt = function(computations: set(function(void -> t)) - > t) is {
if card computations = 0 waitfor false

else alt(take (computations)(), nalt(computations))

nalt(set(function(void -» document) is get “http://hostA.org/”,

function(void document) is get “http://hostB.org/”,

function(void -» document) is get “http://hostC.org/”)

This shows that we can approximate dynamic process creation using recursive supervisors.

Now we consider a more pragmatic example intended to optimise concurrent transfers over

low bandwidth connections such as modems. Our experience indicates that with modem

128

http://hostA.org/%e2%80%9d
http://hostB.org/%e2%80%9d
http://hostC.org/%e2%80%9d

connections, overhead in data transfer results in each o f n concurrent transfers receiving

significantly less than one n‘h o f the available bandwidth. We suspect that this is a result o f

overhead in multiplexing over the line. The following supervisor implements mutual

exclusion o f data transfers for concurrent computations that contain an arbitrary number o f

Web fetches. The intention is to explicitly timeshare bandwidth in a coarse grain manner to

improve overall data throughput. The supervisor enforces mutual exclusion only in the case

where both computations are attempting to stream data over the network, and does not restrict

concurrency during connection phases or during deterministic computation. For brevity, the

example handles only two computations.

129

let connectionMutex = supervisor^ a:void, b: void) is {

let transferring = supervisor c: void) is
completion c > 0.0 and completion c < 1.0

let collision = loc(false)

while not done a and not done b do {
if failed a or failed b do fail
if at collision then {

if active a then {
if not transferring (a) then collision := false
else {suspend a; activate b }

} else {
if not transferring(b) then collision := false
else {suspend b; activate a }

}
}
if transferring(a) and transferring(b) then collision := true
else {activate a; activate b }
sleep 1.0

}
expose a
expose b

}

The initial supervisor declaration by connectionMutex is a simple support supervisor that

returns true or false based on an interpretation o f whether the parameter computation C is

transferring data across the Web. The collision location contains true if both computations are

attempting to transfer data simultaneously. The main loop o f connectionMutex continues

until both computations complete, but causes overall failure if either computation fails. I f the

supervisor detects that both computations are transferring, it sets collision to true, and the

mutual exclusion portion o f the main loop is activated. This ensures that only one o f the two

computations is active, and checks whether it has finished transferring. If it has, then collision

is set to false and both computations are activated. The sleep o f one second at the end o f the

loop corresponds to the time slot given to computations in contention for bandwidth.

130

Our final example is one o f comparative programming between Focus and a Java-like

language. We use pseudo-code instead o f pure Java for this so that the program logic is clear

even to those unfamiliar with Java, and in particular its lightweight threading facilities.

However, our pseudo-code accurately reflects the capabilities o f the Java language model.

Our task is to iterate over a set o f URLs1, checking whether or not they are available, and if

not adding them to a set o f bad URLs. This is a simple task, but we attempt a solution

involving concurrency. The aim is to try and represent a class o f applications that require

integration of Web fetch, concurrency, failure interpretation, and failure recovery.

let urls = set(“http://...”, ...) //set of URLs
let badURLs = set() //accumulated set of failed URLs
let url = take(urls) //URL we are checking

let checkLinks = supervisor (fetcher: void, updater: void)

{
while not done updater do { //keep going until no more urls

while active fetcher do
if latency fetcher > 2.0 or rate fetcher <0.1 do {

expose fetcher //commit to bad url
suspend fetcher //will break loop

}
waitfor not active updater //block until new url ready

expose updater //reveal update of new url to url loc
activate updater
retry fetcher //recaptures env, including new url

}
}

checkLinks({ insert(url, badURLs); get url}, //fetcher
{while not empty(urls) do { url := take(urls); suspend }) //updater

The fetcher computation fetches the URL in the url variable, but pessimistically asserts it as

a bad URL before doing so. The fetcher computation will only be exposed if it fails, so if it

succeeds, the URL will not be recorded as bad. Concurrent with execution o f fetcher,

1 Note that in Focus, sets are not mutable, but for brevity and clarity o f example here, we assume they are.

131

http://...%e2%80%9d

updater removes the first element from the set o f URLs, and updates url with the next URL

to be fetched. This does not interfere with the fetchers view of url, since the update by

updater is not visible. The updater computation suspends itself in order to allow the

supervisor to synchronise the overall computation. The supervisor repeatedly tries to interpret

failure for fetcher, exposing the bad URL if it does, and synchronises re-execution o f fetcher

with the loop o f updater. Now consider an implementation of similar intent with Java:

class URLContext { . . . } //persistence for observables, probably in library

class Fetcher extends Thread
{

//We use Float objects rather than basic float so we can lock on access

public Float latency;
public Float rate;
public URL url;

public Fetcher(URL _url) {
url = _url;
latency = new Float(O);
rate = new Float(MAXFLOAT);

}

public void run() {
... //open socket to URL, while locking and updating latency

... //get HTTP header and check return code

while(socket.read(buffer)>0) {
... //calculate dynamic rate
//we need a critical section for access to the observables

lock rate { rate = dynamicRate;} //locked for block duration

>
... //update URLContext with new latancy and average rate

}
}

class CheckLinks

{

132

static Set urls = ...;
static Set badURLs = ...;

main(String [] args) {
while(!empty(urls)) {

URL url = (URL)urls.take();
float avgRate = URLContext.getRate(url); //persistent rate

float avgLatency = URLContext.getLatency(url);
Thread fetcher = new Fetcher(url);

fetcher.start(); //explicitly start a new thread
while (fetcher.active()) {

float latency, rate;
lock fetcher.latency {

latency = fetcher.latency.getVal();}
lock fetcher.rate {

rate = fetcher.latency;}
if (fetcher.latency > 2.0 * avgRate ||

fetcher.rate < 0.1 * avgLatency) {
badURLs.insert(url);
fetcher.stop();

}

}
}

//result is badURLs

}

}

In the Java implementation, the CheckLinks class does the job o f both the supervisor and

updater computation in the Focus implementation. The observation and control aspect o f the

Java implementation is tightly coupled to the set operations. We can implement this task with

separate threads for updater and fetcher, but this is complex since Java is not designed for

implementing the observation and control paradigm.

We must ensure reads and updates to the latency and rate observables have mutual

exclusion. This must be done with two separate locks. Consider the naive alternative:

133

lock fetcher.latency {
lock fetcher.rate {

latency = fetcher.latency.getVal();

rate = fetcher.latency;

>
}

This could potentially result in deadlock, depending on the order in which locks are

attempted by the fetcher thread. The implementation o f locking here has been affected by the

internal logic o f the fetcher thread. Contrast this with the updater thread and fetcher thread

in the Focus implementation.

Implementing these kind o f concurrent programs in Java is more complex than with Focus,

because it is difficult to model generalised control in Java. In Java, a controlling thread must

have details o f the internal logic and structure o f the threads it controls in order to ensure

mutual exclusion for concurrent updates. In summary, implementing this kind o f task in Java

results in the following:

• Tight coupling between thread logic.

• Lack o f linguistic separation o f control and computational logic.

• Computation specific control (control is only applicable to one computation).

• Requirement for explicit handling o f shared variable update and rollback, in both

computations and their controllers.

Supervisors provide a more concise and intuitive basis for implementing these tasks than

Java, where there is linguistic and semantic separation o f computation and control,

generalised control, and support for concurrent update and automated backwards error

recovery.

Summary

The Focus language contains an embedding o f the supervisor and observables mechanisms.

The supervisor construct is an abstraction layered over the persistent relative observables

mechanism. Supervisors monitor the behaviour o f concurrent computations and control their

scheduling in order to drive failure semantics. Monitoring is effected by a distinguished

thread, which appeals to the observables mechanism in order to interpret conditions o f failure

or synchronisation in a set o f concurrent computations. A set of control operations allows the

134

distinguished thread to direct flow of control. Supervisors associate environments with

individual threads, ensuring the separation o f computation in the supervised threads and

control in the distinguished thread. The environment mechanism provides automated

backward error recovery and allows supervisors to explicitly control the communication

aspect o f cooperating concurrent computations. The supervisor mechanism has the following

desirable properties:

• Flexibility and orthogonality - supervisors are first class entities, and there are no

arbitrary restrictions on their use. For example, supervisors can be invoked from other

supervisors or supervised threads, can be passed to functions or other supervisors, and can

even form the result o f function or supervisor invocations.

• Highly concurrent - supervisors are essentially concurrency constructors. Although the

arrity o f concurrency is specified statically in the declaration o f each supervisor, dynamic

process (thread) creation can be approximated using recursion.

• Separation o f computation and control - the supervisor environment mechanism and type

system with respect to threads ensures that computation in the supervisor body cannot

interfere with computation in parameter threads other than in a controlling capacity.

• Automated backward error recovery - the supervisor environment mechanism means that

all computation is ‘hermetic’. Computational effect is committed only at the whim of the

immediate supervisor for that computation. The decision not to expose the results o f a

computation is equivalent to discarding or undoing its effect.

In Chapter 3 - Domain Properties and Flow Control, we stated three criteria by which we

evaluate Web programming systems. As they pertain to Focus and supervisors, these are:

• Exposing the properties o f the Web domain - are the domain concepts orthogonal in that

they compose in sensible ways with the rest o f the language?

The domain concepts in Focus are language-level atomic Web fetch, which is an ordinary

operation, and persistent relative observables. Since persistent relative observables are defined

for all computation, the exposure o f the domain is uniform across the entire language. The

primitives that access observables can be applied to any computation. Thus, the exposure o f

the domain is an orthogonal concept.

135

• What constitutes failure - how flexible and orthogonal is the mechanism for failure

interpretation?

In a supervisor, failure interpretation is flexible in that can be specified with arbitrary

program logic, possibly involving the use o f observables. Failure interpretation is independent

o f any particular computation, and is linguistically separated from program logic, implying

orthogonality.

• Flow control after failure - does the flow control mechanism integrate with the rest of the

language and in particular its concurrency mechanism?

In programming languages with exception handling mechanisms, problems arise when

exceptions reach the locus o f concurrency. This is because traditional exception handling

mechanisms are serialised models. In contrast, the failure model for supervisors shifts the

emphasis from detecting failure conditions inside a computation and propagating the

information, to detecting them at a higher level, already in the context that knows how to

handle them. This context is the body o f the supervisor, which is also responsible for

controlling concurrency. Consequently, programming logic responsible for detecting failure

and driving concurrent flow control for failure is co-located, and intrinsically linked. In the

traditional sense, supervisors have only a rudimentary exception mechanism. However, the

flexibility provided by supervisors in unifying program logic for failure interpretation,

concurrent flow control, and traditional flow control subsumes the functionality o f

sophisticated exception handling mechanisms. Supervisors and observables provide domain

exposure, flexible failure interpretation, and flow control for failure all in a highly integrated

model.

In Chapter 9 - Formal Issues, we present a correctness proof for an algorithm that allows for

efficient implementation o f the supervisor environment model.

7: Analysis of Related Work

In this chapter we examine work that is potentially applicable in the context o f Web

computation, or has similarities to aspects o f our own research.

136

Recovery Blocks

Recovery blocks attempt to abstract over unreliable computations with software redundancy

[68] [69] and backward error recovery [70]. The mechanism provides functionality for the

detection o f failure in the form o f an acceptance test, which is a boolean block expression that

is linguistically separated from computational program logic. The acceptance test is evaluated

on completion o f a recovery block, and must be true for that block to complete successfully.

On failure o f the acceptance test, the mechanism restores the system to the state just before

entry to the recovery block, under the assumption it is a consistent state, from before the

manifestation of the error that caused failure. It then transfers control to the next alternate

recovery block in sequence. On acceptable completion o f an alternate, the overall result of the

recovery block is as if none o f the other alternates had been executed at all.

The recovery block mechanism is a general solution to the problem of when and how to

switch to redundant code. It deals with both the restoration o f state updated by the failing

block, and with transfer o f control to the redundant code. The recovery block mechanism does

not attempt to diagnose the particular fault that causes an error, or to assess the extent o f any

other damage the fault may have caused. Instead, recovery actions return the system to a state

prior to that of the introduction o f the error then execute an alternate algorithm.

Failure o f the acceptance test for the final alternate results in failure o f the entire recovery

module, and failure is propagated to the enclosing recovery block, if one exists. Failure o f the

entire recovery module also takes place if an error occurs during the execution o f the

acceptance test itself. The acceptance test cannot access identifiers declared locally to any o f

the alternate blocks, and so is at the static scope level o f the enclosing block. However, to aid

in establishing the correctness o f a computation, acceptance tests have the useful property o f

being able to access the free variables o f a recovery block not only for their current value, but

also for their original value before entry to the recovery block. Each alternate attempts to pass

the same acceptance test, but they do not need to produce the same results. This allows the

programming methodology whereby alternates to the primary computation provide only a

degraded service; or no service at all, simply relying on the mechanism to recover a consistent

state.

An acceptance test is similar to the post-condition o f a procedure’s formal specification.

However, formal specification languages are usually at a much higher level than the language

they specify, often containing quantifiers, for example. This is problematical, since in

program logic it can be just as complex and error-prone to evaluate a post-condition as it is to

compute the result being tested. Thus, for pragmatic reasons it is usually necessary to adopt a

somewhat less effective acceptance test than that specified by a program specification. The

137

choice of an appropriate acceptance test must be a trade-off made by the programmer

according to the required levels o f robustness and efficiency.

There may be occasions when it would be convenient for the alternate to know the

circumstances o f failure in a previously terminated alternate. However, the number o f

possible error conditions may be very large, and it is not always easy to distinguish one error

from another. Melliar-Smith argues [105] that it is unreasonable in many cases to expect an

alternate to categorise and accommodate each possible failure explicitly. This is supported by

Randell who claims that,

“ ...errors which are expected to be sufficiently frequent that special

handling would be appropriate can perhaps be regarded as normal program

conditions rather than unforeseeable errors.” [71]

Therefore, alternate blocks are defined as being independent and transactional in that they

either execute to completion, pass the acceptance test and form the result of the whole

recovery block, or the system reverts to the state before the execution o f the alternate began,

and executes the next alternate.

Although alternate blocks are all physically independent from each other they need not be

logically independent. For example, it may be efficient to use a fast heuristic algorithm that

‘almost always works’, and when an exceptional case is discovered, use a slower algorithm

that ‘really always works’ instead. In this example, the result o f one alternate block is more

desirable than another, less efficient block. In general, a set o f alternates encompassing all

acceptable behaviours can be designed and a preferred sequence specified by using the linear

ordering o f alternate blocks in program source. This allows a definite structuring for error

recovery facilities.

The recovery block mechanism is orthogonal in that it can be applied to almost any

language, even those as low-level as assembler. The only requirements are that the recovery

blocks should be explicitly defined, that they should be dynamically nested (associated with

block or procedure activations), and that entry and exit from recovery blocks should be

explicit.

Backward error recovery is difficult to apply in the structuring o f concurrent systems that

achieve ‘progressive’ computation in the face o f errors. In systems that consist o f

communicating processes, state restoration in one process forces cascading state restoration

for all processes dependent on the state being reverted. According to Randell, this frequently

138

leads to a ‘domino effect’, where large amounts o f computation are abandoned and restarted.

In any case, for systems that communicate with the external world, state restoration may be

impossible, even in principle. This is known as the “please ignore incoming missile problem”.

A solution to this problem was proposed with coordinated (or concurrent) atomic actions

[66], which constrain the setting o f recovery points in concurrent computations. Concurrent

atomic actions force entry to recovery blocks to be coordinated with all peer processes. This

provides a ‘fixed-point’ for rollback that avoids cascading failure. The concurrent atomic

action is the state o f the art in coordinated error recovery, but is a heavyweight solution that is

primarily intended for distributed and process concurrent systems.

Supervisors employ a mechanism for automated backward error recovery that is broadly

similar to that o f recovery blocks in that state restoration is implicit. In contrast to the

processes o f concurrent atomic actions, supervisor threads are lightweight. We feel that the

adoption o f such a mechanism would add unnecessary complexity to the supervisor construct.

If distributed failure must be modelled in Focus, applicable language independent approaches

have been identified that implement distributed concurrent atomic actions [61].

Recovery blocks were originally designed to achieve software fau lt tolerance, which

attempts to automate recovery on manifestation o f unanticipated programmer design flaws or

logic errors in program source. In addition to programming errors, Randell argues that they

are also useful in masking anticipated exceptional errors [72]. However, in this context

recovery blocks are less flexible than supervisors. Foremost in this is the fact that recovery

blocks have a fixed flow of control on the detection o f failure. The acceptance test is a

programmed failure detector for a computation, but it cannot direct control flow dynamically,

since the selection o f which alternate algorithm to execute specified in the static ordering of

alternate blocks. An example o f why this is inflexible is the situation where the acceptance

test is capable o f dynamically determining from the circumstances o f failure that execution o f

a particular alternate is likely to succeed. Despite this knowledge, the alternate invoked is the

next in the statically specified sequence.

Perhaps the most important difference between supervisors and recovery blocks is that

unlike supervisors, recovery blocks cannot specify constraints on the dynamic observables o f

a computation, since the acceptance test is evaluated only as a post-condition. Failure can

only be interpreted post-hoc, by analysis o f update to the system’s global state. Thus, the

recovery block mechanism provides no support for the interpretation of failure during the

execution of non-deterministic operations. Primarily, this is because recovery blocks were

originally designed to abstract over software faults.

139

Supervisors can implement the recovery block mechanism, while allowing a more general

solution to providing software redundancy. The solution involves use o f an acceptance test

thread in conjunction with a supervisor, and so is perhaps more complex than the simple

recovery block mechanism. However, if necessary:

• supervisors can retry failed alternates,

• alternates can be executed concurrently and independently for efficiency,

• alternate ordering sequence can be determined dynamically,

• supervisors are parameterisable by their redundant computations,

• the ‘acceptance test’ can retain state between alternate invocations, and

• the test is not a post-condition, but can detect failure dynamically as it occurs.

To summarise, the main benefit o f recovery blocks is that the programmer need not be

concerned with enumerating all possible failures, and can rely on the automated backward

error recovery to restore the system to a consistent state. However, recovery blocks are less

flexible than supervisors in that they have fixed flow o f control on detection o f failure -

execution o f the next alternate in sequence. In addition, acceptance tests provide no support

for the interpretation o f failure during the execution o f the block, since they are essentially

post-hoc conditionals. Supervisors can wholly implement the recovery block mechanism, and

provide greater flexibility in both the interpretation o f failure and the specification o f control

flow.

Concurrent Transaction Control Techniques

According to FOLDOC [73], a transaction is “a unit o f interaction with a database or similar

system that must be treated in a coherent and reliable way independent o f other transactions”.

That is, a transaction must be logically atomic, even though it may be composed o f several

distinct interactions. The purpose o f transactions is to prevent inconsistencies arising through

concurrent access to shared resources. The classic example o f this is where two distinct

processes in a banking system try to perform simultaneous updates to an account. Each update

requires several distinct operations. If there is no transaction mechanism to protect the system,

then the overall result can be one o f several (incorrect) states, depending on how execution o f

the two different processes are interleaved. In order to protect system integrity, concurrency

control techniques must be applied so that transactions are serializable. That is, they are

140

atomic and logically ordered in their effect, despite the fact that they may be executed

concurrently.

Concurrency control schemes for transactions are generally categorised into two areas:

pessimistic and optimistic. Pessimistic schemes are based on the assumption that transactions

frequently access and modify small ‘hot spots’ o f data, and thus commonly interfere with

each other when run concurrently. These schemes force processes to obtain a lock on the data

that the transaction is accessing before it begins. If another transaction has locked the data,

then it cannot proceed, and must retry later. Two phase locking [74] is the most widely known

pessimistic concurrency control technique. It is designed to avoid the possibility o f process

deadlock, but the ‘back-off and retry’ strategy it is based on can lead to process starvation in

some systems. More significantly for us, is that pessimistic schemes rely on the programmer

to perform the locking.

Optimistic schemes are based on the assumption that transactions rarely access the same data

structures, and so there will be few access conflicts between transactions. Given this,

optimistic schemes speculatively allow transactions to proceed, and when they are ready to

commit their effect to store, check to see whether any conflicts did actually occur. If there was

a conflict, then the effect o f one transaction is rolled back to a state before it began. After this,

the transaction can be retried a later time. Most modem database systems, such as Oracle [75],

for example, provide optimistic transactions.

The supervisor environment mechanism is not a transaction mechanism, but it does have

similarities to optimistic transactions. The main focus o f supervisors and the environment

mechanism is to take the responsibility o f concurrency control out o f the hands o f the

computations themselves and make it the primary obligation o f the supervisor construct.

Similarly, optimistic mechanisms do not require the transaction computations to deal with

concurrency issues.

Transactions are intended to be ‘serializable’, meaning that concurrent transactions behave

as if they were executed sequentially, even though they may actually be interleaved.

Thoughout their execution, transactions see a ‘snapshot’ o f the store as o f their start time.

This is similar to supervised threads. However, the commit (expose) o f supervised threads

compromises serializability. Updates by one thread can be ‘merged’ with another in a manner

dependent upon the order o f exposure, and no facility is provided to ensure serializable

computation. However, environment exposure is intended primarily as a means to allow

rollback o f computation (by not exposing) and to allow communication between threads, and

not to commit transactions.

141

Transactions allow operations on objects to be grouped together and provide the atomicity

guarantee - all or nothing execution. Focus environments provide the same functionality, as it

is important for rollback after failure. However, optimistic transaction mechanisms provide

automated support to recognize when data is potentially compromised by certain concurrent

interleaving computations. For the class o f applications for which Focus is intended we do not

believe that this is enough of an issue to provide this kind o f support directly. However, a

future line o f research could be to integrate such a mechanism if these semantics are found to

be desirable.

LogicWeb

The language LogicWeb [76][77] is an extension to the logic programming language Prolog

[78]. It permits programmable behaviour and state to be associated with Web documents,

allowing them to be queried using knowledge-base logic program representations. LogicWeb

allows the programmer to think o f Web computations as goals applied to programs, with no

need for explicit Web page retrieval or parsing. It is a high-level model built around the

notion o f structured data, distributed across the global network, and coupled by logical

relationships. A program incorporated into a page can reason with other Web documents as

part o f its behaviour.

LogicWeb is a 'mobile code' system in that program representations are transmitted across

the network and executed at a destination site. LogicWeb code physically moves from the

server host to the client host in order to execute. This local execution model is analogous to

that o f Java applets and JavaScript programs, which are logically embedded within an html

document and migrate with it to be executed at the local host. The design o f LogicWeb is

geared to the client-side evaluation o f logic goals by the manipulation o f multiple programs

from disparate sources.

A LogicWeb module, which corresponds to an HTML document, contains a program written

in a version o f Prolog extended with new operators. These operators allow the retrieval o f

other LogicWeb modules, and the invocation o f goals within them. The Web itself is viewed

as a directed cyclic graph o f program modules. When modules are downloaded, their

predicates are installed into the current environment, and goal evaluation continues. In

essence then, LogicWeb allows the components o f a logic program to be distributed across

the Web, and integrated on demand.

LogicWeb is an interactive system, and requires the compiler to interface with a browser

application. LogicWeb appends an HTML form interface to every page viewed through the

browser. This allows the user to interact with the system by entering and submitting a goal,

which is redirected to Prolog for evaluation. LogicWeb also responds to input with the mouse.

142

Each time a hyperlink is traversed by a user, the corresponding document is fetched by the

browser, and installed into Prolog as a new module. By default, all Web documents install the

facts my_id, h j e x t , and zero or more link facts. These correspond to the document URL,

HTML source, and the URLs embedded within the document. Thus, all Web documents can

be viewed as LogicWeb modules. However, some Web documents may contain specially

marked up Prolog code. Facts included in this code are installed into the current environment,

and may specify arbitrary information. Most interesting, though, is that relationships between

modules can be expressed by predicates involving the URL link facts, allowing pages to

specify the meaning o f their hyperlinks. This code can be declarative in that it specifies

structural relationships, or can be code that performs some function by executing on link

activation, or both. After the Prolog code, if any, has been installed, the browser displays the

HTML o f the h je x t fact.

There is no persistence o f information across browser sessions, as all installed modules are

lost on ending a session. Moreover, when evaluating a goal in a remote module, the module is

only downloaded once. Further invocations o f that goal will use the same module. This is to

enforce consistency in query results between goal evaluations. Otherwise, a program may fail

where it previously succeeded or succeed with different bindings, behaviour that is

problematical in a logic programming system. Web pages tend to change infrequently, and so

LogicWeb assumes all pages to be constant over the duration o f a computation. Failure to

download a particular document required for goal evaluation results in failure o f the entire

goal. Such failure is not directly distinguishable from normal failure o f a goal. However, an

ad hoc measure is to evaluate the 'true' goal in the context o f a remote document, in which

case it fails if that document cannot be retrieved. Subgoals that fail because o f download

failure do not cause other modules downloaded as part o f the overall goal to be retracted. This

means that there can be a side effect from the failed goal. However, it is possible to manually

keep track o f the modules that are loaded and retract them on goal failure if necessary.

The LogicWeb view o f the Web as a distributed collection o f program modules hides the

pragmatic concerns o f network latency, bandwidth, and non-determinism. With the current

implementation, failure semantics involving timeout or rate limit cannot be specified.

However, recent work by Davidson describes possible additions to LogicWeb whereby these

concerns may be addressed [79]. The proposed augmentation allows communication between

client and server to be viewed as a stream o f data passing between logic programming

processes. This is possible by adapting LogicWeb for the relatively new Concurrent Logic

Programming (CLP) paradigm [80]. CLP allows the viewing o f programs as networks o f

processes connected by streams o f data. With CLP, logic programs can implement

abstractions that make use o f stream AND- and OR- parallelism. These allow several kinds o f

143

interactions between processes, including many-to-one, broadcast (one-to-many), and

blackboard (many-to-many) communication. The proposed mechanism uses a producer-

consumer and stream viewpoint in order to represent http responses. This allows Web

concepts such as download failure, latency, time-out, retry, and transfer rate to be captured at

the program level. In principle, the mechanism also provides the building blocks for

specification o f more complex behaviour.

The current implementation o f LogicWeb extends the Mosaic Web browser. Mosaic

supports the Common Client Interface (CCI) [81], which allows interaction with the browser

application through socket streams. The limitations o f CCI mean that a CGI script (typically

on a local server) must receive each user query, and construct a canonical goal from it that is

then returned to the browser. The browser redirects the canonical goal to Prolog for

evaluation, and displays the result in the browser window. This indirection could have been

made redundant if a solution involving a Prolog interpreter written as a Java applet or with

JavaScript were adopted.

LogicWeb relies on integration with a browser application, since it was designed as a query

language and tool for augmenting the browsing experience. The LogicWeb programming

system and the Mosaic browser can be distributed independently, since the use o f the CCI

does not require modification o f Mosaic at the source level. However, widespread use o f

LogicWeb is hampered by the fact that the popular Netscape and Internet Explorer browsers

do not support the CCI. A solution involving Java or JavaScript would allow uptake o f

LogicWeb by anyone with a browser supporting that technology.

Unlike Focus, LogicWeb views the Web holistically, as a set o f distributed programs.

However, executions o f LogicWeb programs are not distributed. This is because all

computation takes place at the client side, and because the assumption o f document

consistency for the duration o f a LogicWeb session prevents direct communication between

LogicWeb agents. In general, integration with non-LogicWeb applications on the Web (such

as search engines, for example) is not possible, since LogicWeb provides no support for the

http post method. LogicWeb is primarily a language that allows the creation o f interactive

logic systems for the Web. However, as a language, it is significantly higher level than Focus,

and its target application domain is correspondingly smaller.

The use o f CLP and streams allows LogicWeb to implement failure semantics similar to that

possible with supervisors. However, LogicWeb provides no historical context for URLs. It is

possible, though, that these could be implemented reasonably concisely in an ad hoc manner.

In any case, the proposed CLP extensions to LogicWeb have yet to be implemented.

144

Real-Time Languages

Real-time (RT) programming languages [82] are designed in part so that their programs can

be checked for adherence to critical timing constraints. There is a domain overlap between RT

languages and Web programming languages since time is intrinsic to the interpretation of

failure in some Web applications. RT languages allow a degree o f control over timing issues

with constructs in the language semantics, and so the design decisions relating to these

constructs are o f interest to designers o f Web programming languages. By contemporary

criteria, it is important that the programs o f a real-time language be schedulability analysable,

where the maximum time of execution is known statically for all parts o f the program [83]. It

can then be statically determined whether or not the processes o f a schedulability analysable

program fulfil their timing constraints. Achieving schedulability analysis at compile time has

major implications for language structure, since concepts that cannot be statically time-

bounded must be elided, such as unbounded recursion and dynamic memory allocation, for

example. However, analysis o f schedulability is important primarily in the context o f hard

real-time systems. These are systems in which the failure o f a computation to meet its

deadline results in catastrophic (unacceptable) failure o f the entire system, such as in flight or

reactor control, for example. The failure-prone nature o f the global network dictates that it is

an inappropriate medium for the implementation o f hard real-time systems, so in analysing

the domain overlap between real-time programming languages and Web programming

languages, we do not consider facilities for schedulability analysis.

The following three sections describe real-time programming languages for each o f which

some aspect o f their design merits a comparison with Focus.

Process Control Language

The Process Control Language [84] (PCL), is perhaps the earliest real-time PL/I dialect, and

defines a rich real-time tasking model. Although the dialect is somewhat dated (1969),

fulfilling few of the criteria o f a ‘good’ RT programming language that the current state-of-

the-art demands [85], we found one o f its design features o f interest in the context o f a

comparison with Focus. PCL allows the declaration o f variables to be augmented with the

analog (sic) attribute, specifying that the identifier represents an external signal rather than a

normal variable. The analogue attribute is designed to allow high-level interfacing with

external hardware, and so may be specified as being readable, mutable, or both. Once an

identifier is declared as analogue, attributes may provide additional information about it.

These are described in the following list.

145

• History - analogue variables can be declared as having a history, of parameterisable

length. The history is updated when the variable is input or output, and may be queried

throughout the program. In addition, the history can optionally store the times at which

the history values were input or output. All analogue variables have a history o f one by

default, allowing the programmer to query at least the previous value o f an analogue

variable.

• Limit - each time a signal is input or output its value is checked against specified upper

and lower limits. If either limit is exceeded, an exception is raised.

• Scale - this allows the modification o f the value on input or output by an arbitrary

expression.

• Access - this specifies how the signal is to be read or written. The access attribute allows

analogue variables to be orthogonal in that they are applicable in any context where a

normal variable is valid, such are array construction, and on the left or right hand side of

an assignment, for example. In particular, read operations on analogue variables may be

overloaded as use o f the analogue variable’s identifier in normal expressions. The

different values for the access attribute are as follows:

• Reference - the analogue variable is input or output each time its identifier is

encountered in an executable statement. Variables declared as output may only

appear as 1-values.

• Command - the signal is input or output only when specified by an explicit

command.

• Period - the signal is input or output automatically, updating it with a given time

period.

• Interrupt - the signal is input or output each time an event specified by an

(arbitrary) interrupt expression is true. The interrupt expression is given as a

parameter to the access attribute.

Consider the following example, from [84]:

146

DECLARE ALPHA ANALOG INPUT

SCALE (2*ALPHA+A)
LIMITS (2.4, 8)
ACCESS (REFERENCE)
HISTORY (20, 4, TIME);

The variable ALPHA is declared as being analogue input only, meaning that the identifiers

refers to some external device from which the program will read values. The variable is scaled

according to an arbitrary expression, is limited with a lower and upper bound, can be used in

an arbitrary expression but not as an 1-value, and maintains a history o f twenty previous

values accumulated from every fourth input operation. In addition, the history stores the time

at which the values were read.

Given a suitably augmented implementation o f analogue variables, embedded within a

programming language with a primitive Web fetch operation, the combination o f these

facilities provides a level of abstraction analogous to that o f the persistent relative observables

mechanism. The use o f scale, history, and limit in combination allows the calculation of

relative observables and specification o f their constraints, with less syntactic overhead than

implementing similar functionality in a language without analogue variables. However, such

an implementation would be less concise than the Focus implementation o f observables. This

is because with analogue variables, observables must be explicitly implemented for each

operation, the observables are distinct, and there can only be loose coupling between the

observables and their associated operation.

FLEX

An intrinsic concept in FLEX [86] [87] is that o f imprecise computation. The FLEX language

is geared to the writing o f programs that incrementally produce results whose precision

monotonically increases over time. The major novel contribution o f FLEX is that it allows the

dynamic substitution o f a less time consuming computation for a time consuming one,

affording programs a greater likelihood of meeting their time constraints.

FLEX supports a rich variety o f timing and resource constraints, which may be both static

and dynamic. In particular, it provides the constraint block, which is a language construct that

allows the programmer to express relationships between variables. These must be enforced

throughout the execution of a program block, and an exception handler may be provided for

situations in which a constraint cannot be satisfied. Constraint blocks have several associated

attributes, which are updated on the start and finish o f execution. The most interesting o f

these are start: the absolute time that execution begins, finish: an absolute time, and duration:

147

a relative time less than or equal to the interval between start and finish. The values o f these

attributes are retained between executions o f the constraint blocks.

In FLEX, constraints are boolean expressions that can be formed from both constraint block

attributes and normal variables. Constraints are periodically and automatically evaluated by

the run-time system and an exception is thrown if they are not true.

FLEX is an object-oriented language, and constraint blocks are overloaded as objects.

Constraint block objects are named, and they can be referred to by their own code, or by the

code o f other constraint blocks. This allows concurrent processes to work together in

maintaining their constraints and for constraint blocks to compute with the timing history of

other constraint blocks. Consider the following example:

CB1: (duration < (5-CB2.duration)) and (duration<4) {...}
CB2: (duration < (5-CB1.duration)) and (duration<4) {...}

Here, two processes corresponding to constraint blocks collectively must finish within five

minutes, and each process must take no longer than four minutes. For example, if CB1 has

executed for three minutes, then CB2 must complete within two minutes. When CB2

examines the duration o f CB1, CB1 need not be executing and can be complete, since

constraint block attributes are retained after completion o f the block.

The following code shows how a persistent time observable can be implemented for

constraint blocks so that they can be specified in relative terms.

148

float CBDurationHistory := ...
integer histCount := ...

CB: duration < CBDurationHistory * 2.0 ~> timoutError() {

CBDurationHistory := (((CBDurationHistory*histCount)+Clock.get_time-

CB.start)/(histCount+1)
histCount := histCount + 1

>

This example specifies that the constraint block should take no longer than twice the time

taken before for that constraint block, on average. Otherwise, the timoutError exception is

thrown.

Real-time Euclid

RT-Euclid (RTE) [88] is modular, strongly and statically typed, and contains features that

make it real-time and fault-tolerant. The RTE mechanism for device access provides language

level features that could be useful in a Web programming context. The syntax is as follows.

var <id> device atLocation <intExpr> : <typeSpec>

[noLongerThan <timeExpr> : <timeoutReason>]

When the identifier id is referenced as an 1-value or r-value, the device is activated and a

value is read or written, as appropriate. If the operation takes longer than timeExpr to

complete, then timeoutReason is raised as an exception. With an appropriate augmented

embedding (replacing the absolute memory address with a URL) in a language with a

primitive Web fetch operation, this mechanism could map simply to a means o f downloading

Web documents. Use the identifier id would invoke a download o f the document, which the

run-time system would then attempt to convert to type typeSpec.

Summary

Recovery blocks provide the useful concept o f automated backward error recovery, but can

only detect failure as a post-condition. The onus is still on the computation itself to detect the

conditions of dynamic failure.

149

Logic Web attempts to apply the logic-programming paradigm to the Web, and does address

some of the issues arising from the W eb’s failure and performance properties. However, the

target application domain for LogicWeb is more limited than that o f Focus.

Real-time languages are concerned primarily with timing constraints for computation. PCL,

FLEX, and RTE all include language level concepts that are similar in some way to aspects o f

the supervisor mechanism. However, in each case supervisors and persistent relative

observables provide more generalised functionality. Primarily, this is because real-time

languages deal only with time, and the many additional observables directly available in

Focus provide added flexibility.

150

8: Exception Handling

Exception handling mechanisms are the only widely adopted programming language

abstractions related to failure. The languages C++, Java, and Ada95 account for much of

contemporary software implementation, and all three incorporate an exception handling

mechanism. Exception handling mechanisms can take many forms and in the next few

sections we attempt to outline their taxonomy. The main goals o f exception handling

mechanisms can be summarised as follows:

• Reducing the number o f explicit error tests.

• Automating flow control after detection o f errors.

• Separating error handling code from computational logic.

• Bringing failure within the language model to replace ad hoc methodology.

Programmed exception handling involves the predicting o f faults, such as hardware failure

or corrupt input, and their consequences, such as whether the program can continue by taking

special action. It is a mechanism designed to preserve structural clarity in a program by

linguistically separating algorithms that deal with detected errors from those that may

generate them, and by automating error propagation and error handler selection. The

programmer is still responsible for detecting and indicating the presence of errors explicitly in

program logic, but exception mechanisms eliminate the need to ‘redetect’ errors at every level

o f function activation. This reduces the number o f explicit tests that are required.

Since there is a wide range o f exception handling mechanisms, the associated terminology is

diverse. We attempt to compromise as much as possible in this respect. We shall assume the

terms procedure, function, and abstraction layer as having broadly the same meaning. The

latter, however, has additional connotations o f an explicit program module, possibly

containing several procedures or functions. The activation o f a procedure or function implies

the crossing o f a layer o f modular abstraction. The signaller is the abstraction layer that raises

(synonym signals and throws) an exception. The invoker is the abstraction layer that causes

execution in the abstraction layer that ultimately raises an exception.

Goodenough originally defined exceptional conditions as “those brought to the attention o f

an operations invoker, which become part of the normal exit or return” [89]. However, this

definition has been criticised as being too general [90] [91] [92]. Gehani [55] adopts a more

specific definition o f exceptions as “an error or an event that occurs unexpectedly or

151

infrequently”. The most commonly accepted definition of exception, and the one assumed

here, is the union o f ‘error’, ‘exceptional case’, ‘rare situation’, and ‘unusual event’. We do

not include the notion o f ‘unexpected event’, since to be captured by an exception handling

mechanism, events must by the very nature o f exception handling mechanisms be expected,

however infrequently. A programming abstraction that can raise an exception, either explicitly

or implicitly, may be guarded by an exception handler. On the occurrence o f an exception,

control is passed to the handler, which decides what action is to be taken. According to

Goodenough, who presents the seminal work on exception handling,

“ ...exceptions permit the user of an operation to extend [an] operation’s

domain - the set o f inputs for which effects are defined - or its range - the

effects obtained when certain inputs are processed.” [93]

In other words, exceptions allow generalisation o f the abstractions that may raise them, by

defining their behaviour in cases that without exceptions would have resulted in error.

Exceptions are the means to represent a particular kind o f exceptional circumstance. They

may be simple identifiers, special or ordinary data types, data structures, procedures, or

messages.

The majority o f exception handling mechanisms are based on Goodenough's proposals, and

so define exceptions and handlers separately. Mechanisms that declare exceptions and their

handlers together, or unify them, do so out o f the desire for completely statically typed

mechanisms. Knudsden’s sequel construct, described later, is a mechanism that unifies

exceptions and their handlers in this way.

Exception raising

Exceptions are primarily a vehicle for the propagation o f error information from a lower

level of abstraction at which it cannot be reasoned about to a higher level o f abstraction that

can determine its significance from the context o f occurrence. Once an exception is raised,

exception mechanisms can differ in the number o f abstraction levels over which information

is propagated automatically. Homing states that

“ ...[an exception handler] can be placed at a level in the system where there

is sufficient global information to effect a reasonable repair, report the

problem in more user-oriented terms, or decide to start over. However, the

152

more levels [of abstraction] through which [an exception] passes before being

handled, the greater the conceptual distance...between the signaller and the

handier.” [94]

Yemini [95] and Liskov [53] argue similarly, asserting that multilevel propagation increases

coupling between the handler and signaller, compromising modular information hiding since

details o f the signaller’s internal implementation are (required to be) exposed at higher and

intermediate levels o f abstraction. Their arguments contend that only the immediate invoker

o f an abstraction knows the full significance o f any exceptions that are raised from it, and so

automatic propagation o f unchanged exceptions through abstraction layers should be

precluded. If exceptions must be propagated through more than one level o f abstraction, they

must be explicitly raised again. This encourages programmers to re-express the exception in

terms more meaningful at the higher-level o f abstraction.

Yemini’s mechanism, Levin’s mechanism [53], the revised Algol68 [96], and Clu [97], all

allow only a single level o f exception propagation. Cristian [90] and Anderson [98] also

support the concept o f single level propagation. Goodenough’s notation, C++, PL/I [99], Mesa

[100], Ada [101], and WebL1, among others, automatically propagate exceptions through any

number o f abstraction layers until they are handled.

The exception interface is the part o f an abstraction’s interface that explicitly specifies the

exceptions that might be raised or propagated by that abstraction. This enables static

consistency and reliability checks. Both Yemini’s mechanism and Goodenough’s notation

require the static checking o f all procedure interfaces in order to ensure handling o f all

possible raised exceptions. Although this eliminates a large number o f potential programming

errors, it can be a burden to the programmer, since the raising of certain exceptions may have

been precluded by program logic. For example, a possible divide by zero may be obviated by

a dynamic test in program logic, but both mechanisms still require the specification o f a

handler for just such an eventuality since the logic that precludes it cannot be detected

mechanically. Knudsen’s sequel construct is also entirely statically checked, but because o f its

unification o f exceptions and handlers, it is different enough to merit discussion in a separate

section (below). All other mechanisms use at least some dynamic checks.

A problem with any exception handling mechanism that does not consider potentially raised

exceptions to be a part o f an abstraction’s interface is that it is possible for indirect (and even

direct) exception propagation to be completely overlooked until it causes catastrophic failure.

1 We present a detailed survey o f the WebL exception mechanism in a later chapter.

153

This can be due to indolence on the part o f the programmer or, as pointed out by Homing

[102], the fact that non-static exception interfaces tend to be the least well documented and

tested part o f an abstraction.

Exception handlers that are declared at a different level o f abstraction from the raising

context o f its exceptions cannot directly access data local to the signaller. To counter this,

several mechanisms allow the generalisation o f exceptions by parameterising them at the time

of raising. This allows the handler to take more specific action in response to a particular

exception context. However, the amount o f information that is conveyed can be limited by the

parameterisation mechanism. Mechanisms in which exceptions are objects have no restriction

on the passing o f information, since the exception can be o f arbitrary type, and carry as much

information as necessary. C++ [103] and Java [104] are examples o f languages where

exceptions are arbitrary objects.

Mechanisms such as that o f Ada [101] do not allow the parameterisation o f exceptions,

limiting the conveyance o f information to the act o f raising the exception itself. If parameters

are required in such mechanisms, one option is the use o f global variables to temporarily hold

state. However, such a methodology undermines the original purpose o f an exception

handling mechanism, and can be difficult to achieve correctly in the presence o f concurrency.

An alternative is to declare a separate exception and associated handler for each possible

raising point. Each exception is uniquely tied to a particular raising context. For example,

instead o f declaring a single parameterisable file IO exception, the programmer declares many

different file IO exceptions, one for each possible parameterisation. This increases complexity

and decreases program strength since many different handlers with similar functionality must

be developed.

Melliar-Smith points out [105] that the number o f possible failure modes o f a module

increases rapidly as its internals become more complex. He argues that it is impractical to

enumerate all the possible failure modes, let alone design algorithms to detect and handle all

possible failures individually. This is a compelling argument for at least some form of

exception parameterisation. Object exceptions provide the most flexible form of

parameterisation. Exception handling mechanisms for languages with object exceptions and

inclusion polymorphism (Java and C++) are even more flexible, since handlers can be defined

for entire exception subclass hierarchies.

Handler response

With the termination model o f exception handling, activation o f the handler results in the

immediate termination o f all procedure or block frames that the exception propagates through.

154

In contrast, the resumption model allows the handler to resume the signaller after attempting

remedial action, at the operation following the one that caused the exception.

The resumption model is most easily understood by viewing exception handlers as implicit

procedure parameters to the signaller. The invoker o f an operation can declare handler

functions that are then passed to the operation as additional parameters. Internally, the

operation invokes a handler function in order to ‘raise’ an ‘exception’, passing parameters

from its own scope to the handler. Once the handler completes, presumably having taken

remedial action, control is returned to the signaller and execution resumed at the operation

following the handler invocation. If a language has higher-order procedures, the resumption

model can be approximated without recourse to any explicit exception handling mechanism.

Both Goodenough and Levin [53] favour the resumption model o f exception handling. They

base their opinion on the argument that resumption can preserve valuable state information

that may have been accumulated by computation taking place before the exception is raised.

In contrast, Liskov argues [106] that the expressive power o f the termination model is

adequate with respect to the resumption model, in that programming situations resolved

awkwardly with the termination model and simply with the resumption model are infrequent.

Moreover, she contends that the resumption model results in unnecessary coupling between

the signalling abstraction and the exception handler. Cristian [90] and Anderson [98] provide

similar arguments favouring the termination model.

Assuming the absence o f mutual recursion, abstraction layers are normally hierarchical in

that their behaviour is dependent only upon the behaviour o f any abstractions they themselves

invoke as part o f their execution, and not on the abstraction that originally invoked it.

Moreover, hierarchical abstraction layers are modular - in order to understand the

implementation o f a procedure it should not be necessary to examine the implementations o f

the procedures it invokes. The termination model o f exception handling retains these desirable

properties, but the resumption model does not. With resumption, the caller and signaller are

mutually dependent since in the event o f an exception the signaller passes control back to the

caller, which then must modify state in order to correct the execution o f the signaller before

returning control. The invoker must understand aspects o f the signaller’s internal logic in

order to remedy the exception. This compromises modularity and the abstraction hierarchy.

In addition to the termination and resumption handler responses, exception mechanisms

might allow explicit retrial o f the signaller after taking remedial action, causing re-execution

o f the entire abstraction with which the handler is associated. The retrial handler response is a

rare facility. To the best o f this authors knowledge, the only significant programming

language that supports it is Mesa [100]. However, retrial is included as a handler response in

155

the mechanisms described by Yemini (which also supports termination and resumption) and

Cocco [107]. A possible reason for the rarity o f retrial is the fact that it is that it is

implementable within the bounds o f the termination model. It is simple for a terminating

handler to manually re-invoke the signaller if necessary, or cause the original invoker to do so

by side effect. In addition, there is an argument against retrial in general in that there can be

difficulty in avoiding an infinite loop o f executions and retrials in cases where the exceptional

situation cannot be remedied.

Exception handler binding and scope

Exception handler binding is the process o f associating a particular handler with an

exception, instance o f an exception, or class o f exception. Most mechanisms have semi-static

handler binding, meaning that for a particular exception, the handler is statically associated

with the abstraction from which an instance o f that exception may dynamically propagate.

Since different handlers may be associated with a particular exception in different contexts,

the actual handler invoked is not fixed for each exception and some form of dynamic lookup

is necessary. This is the case with the try and catch binding constructs o f Java and C++,

where the same exception type may be handled differently (caught) in different guarded

blocks (tried). Many mechanisms allow default exception handlers, possibly used in

conjunction with other handlers, which are capable of handling any exception. This is useful

when an abstraction may raise several exceptions, and a single handler would suffice for some

or all o f them. As mentioned before, a more general mechanism is exhibited by C++ and Java,

in which exceptions are normal objects. A subtyping hierarchy allows a handler to catch any

exception objects that are subtypes o f the statically specified exception type. C++ and Java

catch exceptions by stating their willingness to handle a particular exception type. Type

ambiguity among several viable handlers is resolved by the static ordering o f handlers in the

program source.

Fully dynamic exception binding mechanisms sacrifice static safety for flexibility. For

example, the Windows NT operating system [108] provides an exception handling mechanism

where handlers controlled by the operating system are invoked dynamically by message

passing. Although this mechanism and other operating system based mechanisms can be

unreliable due to the lack o f static checking, they have the advantage o f providing a uniform

interface for all programming languages and thus allow the propagation o f exceptions across

process boundaries. AML/X [109] is the only programming language (as opposed to operating

system) that has a dynamic binding mechanism. However, this is perhaps not a deliberate

decision on the part o f the language designers, but an artefact o f the language’s dynamic

scoping, which allows the run-time determination o f identifier’s bindings.

156

With statically bound mechanisms, the particular handler that will be bound to an exception

instance is determined at compile time. Yemini’s mechanism and Knudsen’s sequels are both

statically bound, and the raising o f an exception syntactically and semantically resembles a

procedure call. Thus, there is less emphasis on exceptions as distinct entities. Yemini’s

mechanism is o f particular interest, since although it is entirely statically typed, it allows the

full range o f handler responses (termination, resumption, and retrial).

The granularity o f handler association, or handler scope, is usually set at the procedure or

block level. This is a static association between the handler and the abstraction it guards. For

example, in C++ and Java the handler scope has explicit evidence o f handler affiliation with

an exception activation point - there is an explicit association between try and catch blocks.

Depending on the exception handling mechanism, however, handlers can sometimes also be

associated with an expression, an object, or a process. Allowing the association o f handlers

with expressions, although general, tends to reduce program structural coherence due to the

embedding of exceptional code (handlers) within the block and procedure ‘logical units of

computation’. Yemini’s mechanism allows expression handler scope. However, her

mechanism is designed more as a proof o f concept o f a general, orthogonal, statically typed

exception handling mechanism, and does not emphasise textual separation o f exceptional

code from normal program code.

Some exception handling mechanisms allow local handler scope, where the exception is

handled within the abstraction that raises it. For example, Ada allows an ‘except’ statement to

be placed within a procedure that handles exceptions raised within that procedure. Clu has a

similar facility. Local handler scope is o f questionable value, since it is less o f a mechanism

and more o f a syntactic sugar over flow of control with conditional expressions. However, it

does allow the explicit separation o f exceptional code and normal program logic, which

normal flow control cannot achieve.

Exception handling in C++

In C++, exceptions can be o f any type, including primitive values, objects, and pointers or

references to objects or values. However, a particularly common methodology is to derive all

exceptions types from a common Exception base class and raise only references to exception

objects.

Any number o f handlers can be statically bound to distinguished program blocks (try

blocks). Handler selection is achieved by dynamic lookup of the exception type in the handler

list (catch blocks). Thus, C++ has semi-static handler binding. Since C++ allows subclasses,

the possibility o f ambiguity in handler selection arises. This is resolved by appeal to the static

ordering o f handlers in program text.

157

Exceptions can be explicitly raised with the throw keyword, and are automatically

propagated up the dynamic invocation chain terminating each activation frame along the way

until they are handled. If no handler can be found, the program itself is terminated. C++

allows functions and class methods to be augmented with an exception interface, which

specifies the types that can legally be propagated by them. By default, the program is

terminated before an exception can be propagated illegally, but this behaviour can be

reprogrammed if necessary.

Consider the following example.

class MyException : public Exception {

public: int data;

};

void f() {
try {

//do do something that might raise an exception

}
catch(MyException& e) { /*handler for M yExceptions*/}

catch(Exception& e) { /*handler for Exceptions*/}

catch (...) { /*default handler that will catch all exceptions*/}

}

If an exception is raised from the try block, its type will be checked against each of the

handler signatures in order. If a match is made, a binding is made between the exception and

the identifier in the handler signature, and the handler code executed.

The Java exception handling mechanism is very similar to that o f C++-. The main difference

is that Java statically enforces handling o f exceptions named in a method’s exception

interface. However, specification of exception interfaces is optional.

Exception handling in Clu

The arguments that handler resumption and unrestricted exception propagation are

undesirable properties for an exception handling mechanism are compelling [55] [106]. The

Clu programming language [110] incorporates an exception handling mechanism with handler

termination only, and single level propagation. The other properties of Clu’s exception

mechanism can be summarised as follows.

158

• Semi-static handler association with single procedure invocations or blocks o f arbitrary

size, and default handlers are allowed.

• Exceptions are typed identifiers and are parameterisable.

• Procedures must specify in its interface the exceptions that it can signal.

• Handlers may be local scope.

Clu does not automatically propagate exceptions through multiple levels o f abstraction and

all exceptions must be named in procedure interfaces. This means that it is possible to

statically check that all exceptions are handled at the level above that from which they can be

raised. However, the language does not enforce this. Instead, it dynamically converts

unhandled exceptions to the special failure exception. This policy was adopted based on the

argument that it can be proved that some exceptions will not be raised from a procedure, even

if they are specified in the procedure interface. For example, the possibility o f raising a divide

by zero exception can be eliminated by explicit checks in program logic, so there need be no

associated handler. The possibility o f raising the failure exception need not be specified in

procedure interfaces, and the failure exception is automatically propagated. However, default

handlers will catch it. Consider the following example.

p o w er: proctype(real, real) returns (real)

signals(zero_div, complex_result, overflow, underflow)

begin
.. .body of block containing invocations of power...

end
except when zero_div : ...handle zero division...

when overflow, underflow : ...handle either exception...
others : ...all other exceptions (complex_result and failure)...

end

Program blocks may contain two or more procedure invocations that can raise the same

exception, but that exception must be handled differently in each case. The fact that only a

single handler for that exception can be associated with the block can lead to problems in

specifying appropriate flow control. For example, in the program fragment above, if there are

159

two invocations o f power, the significance o f zero_div may be different for each. However,

only one handler can be written. In part, this motivates the inclusion o f a mechanism for local

handler scope, where exceptions must be handled in the routine itself and cannot be

propagated. A procedure that encounters an exceptional condition can handle it directly,

within the exception mechanism but without informing the invoker. This allows the procedure

to mask the exception occurrence if it is thought that the invoker would not be able to handle

the exception, or it is not appropriate for it to do so. If the local finds that it cannot resolve the

problem, then a different exception can be signalled and propagated to the invoker.

The exception handling mechanism in Clu is more constrained than most, and because o f its

simplicity is generally considered to be more conducive to well-structured programs.

However, it can be argued that in the case o f local scope handlers, Clu fails to provide

sufficient textual separation between the standard execution specification and the exceptional

execution specification.

Sequels

The sequel is a language construct due to Knudsen [111][112], and derives from a similar

construct developed by Tennent [113]. Knudsen proposes a mechanism that unifies exceptions

and handlers, and can statically determine which computations should be terminated on the

raising o f an exception.

Sequels are similar to procedures, except that after execution a sequel transfers control to the

termination point of the block in which it was declared instead o f the command following its

invocation. That is, successful execution o f the sequel results in immediate termination for the

block enclosing the declaration o f the sequel. This is in contrast with most exception handling

mechanisms, where the termination level o f an exception is a property o f the raising

statement. Since a sequel may be declared in any outer scope, the mechanism allows multi

level ‘propagation’. However, the target handler is always statically bound to the exception

invocation. Sequels are statically typed exceptions, unified with their handler, and are raised

in a manner similar to procedure invocation.

Sequels may be prefixed. This allows the exception handling flow of control to pass directly

to the sequel of the termination level sequel, which can perform some pre-processing o f the

exception. Control flow then passes to the sequel o f the next inward block, which may itself

perform pre-processing before the next inward block, and so on until the innermost prefixing

sequel (the one originally invoked) is executed. The recursive chain is then unwound back to

outermost sequel, each sequel being given the opportunity to perform post processing, until

finally control passes to the outermost prefixing sequel, which performs its cleanup and

terminates at the level o f its enclosing abstraction. Knudsen states that,

160

“For...exception handling within a specific block to be secure and well-

behaved, one must assume that the outer blocks are in a consistent state. If

such consistency is not ensured, then it is difficult to handle exceptions

because the block cannot assume anything about the state o f outer blocks.”

[I l l]

Knudsen presents the following example o f how the termination properties o f traditional

exception handling mechanisms can be problematical. On the raising o f an exception, if the

termination level is more than one level o f scope outward1, then it is possible that one or more

blocks must be in a particular state before consistent termination of the inner blocks can be

ensured. The primary example of this is the opening o f a file to which the inner blocks write

as part o f exception processing. It is important here for the cleanup actions o f each

intermediate block to depend upon the initially generated exception.

Prefixed sequels are similar in purpose to M esa’s unwind operation, where, if a handler

decides to terminate rather that resume the propagating abstractions, executing an unwind

allows each activation in the propagation chain to perform a cleanup operation before

termination. In Mesa, however, the propagation chain is dynamic, and not static as with

sequels. This means that in Mesa there is no static enforcement o f policy with respect to either

the use o f unwind, or presence o f cleanup code at each abstraction level. Therefore, when

calling another abstraction, an activation might expect to be terminated without notice by an

unhandled exception. Good programming methodology can prevent this kind o f behaviour,

but methodology is inherently weaker than static enforcement.

The concept of virtual sequels is introduced in order to account for irregular behaviour when

directly calling sequels that are not associated with the current scope level. That is, invoking

prefixed sequels in outer blocks leads to the abrupt termination o f all inward blocks with

respect to the declaration of the invoked sequel.

Even though the sequel mechanism is entirely statically typed, it allows for flexible

exception handling. However, it can be argued that in practice, the mechanism is somewhat

complex, and the recursive chaining o f multiple overlaid prefixed virtual sequels can be

difficult to grasp. Moreover, the motivational example presented (file write during exception

handling) may be considered somewhat artificial, and possibly does not demonstrate a general

1 This also applies to mechanisms that do not allow multi-level propagation o f a single exception, since each
level may have a handler that raises a new exception.

161

requirement for an entire mechanism. Finally, the tight coupling between abstraction levels

that results from the use o f multi-level propagating sequels compromises modularity, and is in

direct conflict with the design methodology adopted in Clu.

Summary

There is a need to propagate information from the operation that detects an error up to a

higher level of abstraction so that the error can be handled in an appropriate context. This can

be achieved by overloading the function return mechanism to carry error information,

possibly in conjunction with global state. However, this methodology has several drawbacks:

• Reduced structural coherence due to explicit tests and associated flow control.

• It cannot be captured in function interfaces and must be documented separately.

• Use o f global state compromises concurrency and structural coherency.

• Conformance is not enforced, increasing likelihood of programming errors.

• It is not typed, making the writing o f correct programs more difficult.

• It is difficult to reason about formally.

Exception handling mechanisms provide a language-level alternative to this methodology,

automating the process of error information propagation and handler selection. This means

that programmers are left only with the responsibility o f detecting the original error, and

writing an appropriate recovery routine. With exception handling, error recovery policy can

be modularly separated from computational logic. In conjunction with the fact that the

programmer need not write explicit error propagation code, this greatly improves the clarity

o f program source. There are four main orthogonal aspects o f exception handling

mechanisms, each of which can take more than one form.

• Flow control - the flow of control applied to the operation raising an exception that is

taken on handler activation can be one or more of termination, resumption, and retrial.

Retrial is uncommon, and is to an extent subsumed by termination. Resumption is

intended to prevent loss o f computation up to the point o f detecting an error, but has

several drawbacks, the most important being loss o f modularity. Termination retains

modularity, and is generally seen as the most appropriate behaviour on handler

activation.

162

• Exception form - exceptions can be types, identifiers, values, or objects. In general, the

more information an exception can carry with it, the more flexible the exception

handling mechanism. Ada has an inflexible mechanism, since its exceptions are simple

identifiers that carry no extra information. In contrast, Java exceptions are arbitrary

objects. Object-oriented languages with exceptions as objects have the additional

advantage o f allowing the handling o f more than one exception with a single handler, by

inclusion polymorphism.

• Propagation - when an exception is raised, the number o f abstraction layers through

which it can be automatically propagated before handling is significant. In general, this

is either a single level, or any number o f levels. Single level propagation incurs syntactic

and logical overhead, but is seen as a more modular alternative to multilevel

propagation. It also makes possible a greater degree o f static checking. Despite the

consensus on the benefits o f single level propagation, the contemporary programming

languages Ada, Java, and C++ all allow multilevel propagation.

• Interface and binding - static exception handling mechanisms bind exception

occurrences to their handlers at compile time. The interface resembles a procedure call

and there is less emphasis on exceptions as entities. Semi-static mechanisms are the

most common. These statically associate handlers with abstractions from which

exceptions may propagate, commonly program blocks. In some cases the exception

interface might require all possible exception propagations to be specified explicitly.

Although this can ensure that all exceptions are handled, dynamic checking is still

required in order to select the appropriate handler for a particular exception, since

different handlers may be associated with the same exception in different contexts.

Purely dynamic mechanisms are primarily operating system based, and although they

are flexible and allow exceptions to cross inter-process boundaries, they are untyped and

so unreliable.

163

9: Formal Issues

In this chapter, we present some formal concepts. First, we show that supervisors

conceptually contain the service combinator algebra, by implementation. Second, we describe

an implementation o f the supervisor environment model that is more efficient than the

obvious naive approach and prove its correctness.

Conceptual containment of Service Combinators by supervisors

Given a basic language L, that includes Web fetch as a primitive operation, there exists a

class o f language L] that adds the service combinator (SC) abstractions to L. There is also a

class o f language L2 that adds persistent relative observables (PRO) and supervisors (S) to L,

and a class o f language L3 that is a combination o f L] and L2. In this framework, the language

L2 is Focus.

L

Now we will show the implementation of abstractions written with L2 that directly provides

the functionality o f the service combinator algebra extensions o f L3. Our implemented

'algebra' provides individual supervisor abstractions in a one to one mapping with the original

algebra and has minimal syntactic overhead. Since L2 can simulate L3 directly, we show that

L2 is conceptually equivalent to L3 and so subsumes Li.

To understand the implementation, it is important to remember that the supervisor construct

and the service combinators both have parameter passing semantics that are not eager. With

these semantics, expressions are passed into enclosing abstractions before evaluation, or in the

case o f supervisors, during evaluation. For example:

limit(2, 3000, (url("http://a.org/") | url("http://b.org/")))

http://a.org/
http://b.org/

Here, the limit is logically applied before the fetch o f the URLs, which is in contrast to

parameter passing mechanisms that evaluate eagerly .Now we present the implementation of

service combinators with supervisors. The basic service results in a string:

type Service is string

Although the Focus type system allows a variety o f mime types, we concern ourselves only

with html documents here in order to keep the program fragments concise. The sequential

combinator evaluates the primary service first, and if it fails returns the secondary service

instead:

let seq = supervisor(primary:Service; secondary:Service -» Service) is {
suspend secondary
waitfor done primary or failed primary
if done primary then primary else {

activate secondary
waitfor done secondary or failed secondary
secondary

}
primary

}

Note that although the implementation immediately suspends the secondary service, there

can be no computational interference from update by the secondary before this occurs. This is

because each thread is isolated within its own environment. In any case, the service

combinator algebra is declarative since services contain no side effect. The suspension and, if

necessary, activation o f the secondary service serves only to provide a pattern o f computation

close to sequential execution in terms o f its temporal behaviour.

The concurrency combinator returns the result of whichever service completes first, when

both are executed concurrently.

165

let con = supervisor(a:Service; b:Service Service) is {
waitfor not active a or not active b
if done a then a
elseif done b or failed a then b
else a

}

The con supervisor waits for either a or b to become inactive. Whichever thread becomes

inactive first has either completed or failed, so we check for completion (done) o f both

threads. If neither has complete, the original inactive thread must have failed, so we force

reliance on the other. Failure o f that thread will result in failure o f the supervisor.

The implementation o f the timeout combinator is shown below. It uses a thread that sleeps

for a known absolute time in order to determine when to infer failure of the service:

let timeout = supervisor(millisecs:int; s:Service -> Service) is {
let timer = supervisor (s:Service; sleepenvoid) is {

while not done s and not failed s do
if done sleeper do fail

s
}
timer(s, sleep millisec)

}

In the inner timer supervisor, if the thread S fails then the return o f the value of s will cause

the propagation of failure out o f the timeout supervisor. The repeat combinator repeatedly

invokes the service until success:

166

let repeat = supervisor(s:Service ->• Service) is {
while not done s do {

while active s do {}
if failed s do retry s

}
s

}

The stall combinator does nothing forever.

let stall = function(void Service) is {waitfor false; "foo"}

The fail combinator is defined trivially, since it maps directly onto a primitive construct o f

the supervisor mechanism.

let scFail = function(void Service) is {fail; "foo"}

Following are global variables for the rate limit and startup time o f URL fetches. Since there

may be several limits in an expression, different values for rateLimit and startup may apply

for different URLs. We will use thread update exposure, controlled by the expose operation,

to ensure the appropriate limit context for each URL in a combined service.

let startup = loc(maxfloat())
let rateLimit = loc(maxfloat())

We must pass a value for rate and time into the limit combinator. However, if we were to

pass simple floating point values1 in, the supervisor body for limit would not be able to pass

their evaluations to the service. This is because the computational context o f supervisor

bodies is isolated from those o f the threads it supervisors. However, the rate constraint and

startup time need to be propagated to all URL fetch services in the nested service so that, in a

sense, the URL fetches can limit themselves. To achieve this, we must take a different

1 More accurately, we pass in simple threads that compute floating point values.

167

approach. Supervisor bodies (in this case limit) cannot expose themselves to parameter

computations. This means that the evaluation o f any particular parameter thread cannot be

communicated to another parameter thread by the supervisor body. However, we note that the

supervisor body for the limit combinator does not need to know what the rate constraint and

startup time actually are. Instead, it only needs to communicate those values to the service

computation. Our solution, then, is that the act o f passing the rate and startup parameters to

the limit combinator causes a side effect to the global variables above. The supervisor body

can then expose this side effect to the service. We achieve this by declaring an abstract type

that causes side effect to the locations above whenever an instance o f that type is created. The

fact that we use abstract data types ensures that only these side effecting values can be passed

to the limit combinator. The abstract data types are defined as follows:

type Time is abstype {
private

type Time is float
public

createTime : function(t:float -» Time) is {
if t < at startup do startup := t; t

}
}

In order to model the service combinators semantics for nested limits (unification according

to most constrained values), the creation o f the Time and Rate values will overwrite the

existing global variables only if they are less than the existing values. Otherwise they remain

unmodified.

type Rate is abstype {
private

type Rate is float
public

createRate : function(r:float Rate) is {
if r < at rateLimit do rateLimit := r; r

}
}

168

An invocation o f limit might look something like:

limit(createTime(5), createRate(IOOO), url("http://foo.org"))

Now we show the implementation o f the limit combinator. Limit waits for the specified

startup and rate threads to evaluate, both o f which may have side effect as described above. It

then exposes these updates to the service. Although the limit variables are global, the

semantics o f expose with respect to environment copying means that any new values for

rateLimit and startup are visible only to the parameter service.

let limit = supervisor(startupSec:Time; bytesPerSec:Rate; s:Service
-> Service) is {

waitfor done startupSec and done bytesPerSec
expose startupSec
expose bytesPerSec
expose s //let s 'see' the limits
s

}

In the service combinator algebra, url is the most primitive service. Individual invocations o f

url are themselves responsible for inferring failure should a constraint imposed by the limit

combinator be violated. The combinator uses a supplementary supervisor to get a handle on

absolute time for the startup period.

169

http://foo.org

let url = function(url:string -» Service) is {
let downloader = supervisor(fetchThread:Service; startupThread:void) is {

while active startupThread do
if failed fetchThread do fail //Abort on absolute failure

while not done fetchThread and not failed fetchThread do
if rate fetchThread < at rateLimit do fail

fetchThread

}
downloader(get url, sleep at startup)

>

The service combinator expression:

limit(5, 2000, (url("http://a.org/M) | url("http://b.org/H)))

would be written in our implemented algebra as:

limit(createTime(5), createRate(2000), con(url("http://a.org/"),
url("http://b.org/")))

The following expression, shown in service combinator syntax for brevity:

limit2(1, 1000, (url("http://b.org/M) | limitn(2, 2000, url("http://a.org/"))))

has the thread tree shown below, after the exposures by the limits. The tree has environment

annotations to show contents of the rateLimit and startup locations. Particular values for

rateLimit and startup apply only to their subtrees.

Note that service combinators have the ‘observables’ o f rate, time, and latency, which are

the same as those o f Focus. However, Focus has the additional historical context for each and

the additional probability observable.

170

http://a.org/M
http://b.org/H
http://a.org/
http://b.org/
http://b.org/M
http://a.org/

url(a)

rateLimit =100 R:-100
rateLimit - 200

tartup = 1

startup = 2 ------ S:=l

rateLimit = 200 url(b) ------------- limit
startup = 2 R:=200

------- S:=2 = con

--------------- limit?

Supervisors are probably not conceptually equivalent to the service combinators provided

by WebL, since it is difficult to directly model the propagation o f exceptions and the

unconstrained update allowed to WebL services. However, we argue that the presence of

unconstrained update is what makes WebL service combinators a weak abstraction when

compared to the more constrained supervisor environment model. In addition, we argue that

WebL’s integration o f an exception handling mechanism with service combinators weakens

the latter. For these reasons, we did not see the merit in attempting a proof o f conceptual

equivalence by implementation, since it is unlikely that one would wish to implement the

combinator semantics o f WebL.

171

Implementing the Supervisor Environment Model

The Focus abstract machine’s execution model is based upon a tree, where every leaf node

represents an executing thread and every internal node is a suspended ‘parent’ thread that has

invoked a supervisor. Thus, branching o f the thread tree indicates concurrency. An execution

cycle o f the abstract machine is a recursive traversal o f the tree, executing a single instruction

for each active thread - the leaf nodes. The root o f the tree we term the master thread; its

failure implies failure o f the entire execution. Failure o f sub-threads, however, may or may

not result in failure o f the program, depending on how their failure is propagated up the tree.

This failure propagation is dependent upon the programmed failure semantics o f the

42 true “hi!”

Dirty flags

42 true “hi!

42 false ‘hi!’

Supervisor

Master thread

42 true “hi!”

42 true “hi!” 42 true

Thread calling supervisor

Store copy

|99 true ‘hi!’

supervisor threads. Thus, only failure of the supervisor results in failure being propagated up

the tree. Failure o f a supervisor is likely to be a result of a supervisors inability to recover

from observed or interpreted failure o f supervised threads.

To naively implement the semantics o f the supervisor environment model the entire active

state space o f the abstract machine must be duplicated for every thread inception, including

supervisor body threads. The usage o f the term environment here distinguishes thread’s state

space copies from a normal store in that it refers to a store where each location has a ‘dirty’

flag, indicating the occurrence o f update. In the naive solution, this large amount o f copying is

required because locations are first class, and so no static reasoning can be achieved with

respect to which locations are accessible dynamically by a thread. Any thread exposure

mandated by a supervisor results in the unification o f environments for the exposed thread

172

and the parent thread, which originally invoked the supervisor. This is followed by the

recapture and duplication o f the unified environment into the exposed thread. An example

outline o f the dynamic tree structure is presented in the diagram above.

This naive solution implements the high-level supervisor environment model as required. It

does, however, incur intolerable execution overhead for several reasons:

• The state space may be extremely large. This is in tension with the fine-grained

granularity o f concurrency in the model as it implies excessive copying.

• A majority o f the state space will, in general, not be accessed by a thread, and as

such need not be duplicated within thread local environments.

• Environment unification requires a search across dirty flags, linear in the size of

the state space.

• Thread exposure can be arbitrarily frequent, incurring the environment unification

and copying overhead each time.

A more efficient solution lies in the use o f read and write shadow stores, which are

analogous to caches. Each thread has two shadow stores, which contain logical location

identifiers and the values within them with respect to the execution o f that thread. That is, a

single location can be present in many different shadow stores at one time, with a different

associated value in each case. However, locations can only be ‘truly’ updated by the master

(or top level) thread. This is consistent with sub-tree threads shadowing the main store.

The write store consists o f location-value pairs that have been written by the thread. I f a

thread never updates a location, that location will never be present in its shadow store. The

read store also consists o f location-value pairs, but is never written to by its associated thread.

Only the immediate supervisor can cause writes to this store.

During execution, instructions may make three types o f request of threads with respect to

locations. Firstly, location inception results in a location being created and inserted into the

write cache o f that thread, uninitialised. The location is statically guaranteed to be initialised

at a later point1. Secondly, location dereference causes the thread to first query its write cache

for the requested location. If present, the location value from that store is returned. Otherwise,

the read cache is checked in the same way. If present in neither store, the request is delegated

1 In principle, the thread may be terminated before initialisation, but in this case the location will reside only on
the stack o f the dying thread.

173

to the parent thread. This can continue recursively until reaching the master thread. Finally,

location update causes the thread to place the location and assigned value into its write cache,

overwriting any value already present.

Another significant event that occurs in the system is thread exposure, directed only by

supervisor threads. On exposure, a thread performs a logical location update to its parent

thread for each location in its write store. Further action is required in addition to the write

store insertions in that each insertion causes a PushDown operation to be applied to all sibling

threads at that level in the tree. PushDown is parameterised by a location and value pair. The

value in this pair is that which is overwritten in the insertion to the parents read store, or the

‘original’ value o f the location with respect to the parent thread, before exposure. If the

location is not in the parent’s write cache to be overwritten as part o f the logical update, then

it must be read according to a normal dereference operation - the value may be present in the

read store or further up the tree. All threads receiving a PushDown operation insert the

location and value parameter pair into its read store. Importantly, this read store insertion does

not overwrite location value pairs in the read store if they are already there. After all

PushDowns have been resolved, the exposed thread purges both its read and write shadow

stores, and continues execution as normal.

The final event that causes action by the run-time environment model is that o f thread retry.

Retry causes the thread to purge its write store, but not its read store, terminate any subthreads

it may have, and reset its program counter and environment to the point o f inception.

We now demonstrate the correctness o f this algorithm by proving that the optimised

environment model is equivalent to the naive environment model. Our proof is constructed

with the functional programming language Haskell [114], and is based on well-known

techniques, a good introduction to which is provided by Thompson [115]. There are several

different formalisms that we can use, but we choose Haskell because our algorithms can be

syntax and type checked, and even executed to provide reassurance that our approach is

correct at each stage. Haskell is often used for proofs o f algorithm correctness, and has many

other benefits in this context [116]. We are interested in the fact that since it is a lazy

functional language, infinite lists can be expressed. We use infinite lists to model

environments and sequences o f abstract machine instructions. Doing so is simpler than being

forced to declare dynamic structures that model the store as it grows, had we based our proof

directly on the implementation. In addition, Haskell is a pure functional language, and so has

referential transparency. The absence o f update allows us to reason with programs easily.

Briefly, in Haskell capitalised identifiers refer to types, the symbol means is o f type,

square brackets denote lists, *++’ is list concatenation, is an infix list construction operator,

174

and parenthesis denote tuples. We will describe other features (in particular standard

functions) o f the language as we encounter them. The ‘data’ keyword is a type specifier

analogous to a union or variant type. A value o f the type may arise from one o f two or more

different constructors. The functions fst and snd project the first and second values in a tuple.

Supporting Definitions

These are the types we are using to represent the various elements o f thread trees:

type Value = Integer --values are simple integers

type Location = String --location identifiers

data Op = Create Location Value | --create a new location with given value

Move Location Location | --updates one location with value from another

InvokeSupervisor CodeSeq [CodeSeq] | -invoke a supervisor

Expose Int | -ex p o se thread index

Nop - a null operation

type CodeSeq = [Op]

type Continuation = CodeSeq -c o d e executed after supervisor completes

type Store = [(Location, Value)] -S to res are lists of location value pairs

type Env = (Store, Store) -environm ents are store tuples

The next type, Thread, represents the actual thread tree:

data Thread = Thread Env CodeSeq |

Supervisor Env Thread [Thread] Continuation

-th is is: Supervisor environment bodythread supervisedthreads continuation

That is, a thread tree is either a single Thread with its associated environment and code

sequence, or a supervisor with environment, distinguished thread (body), a list o f supervised

threads, and a continuation code sequence. The supervisor variant type represents the fork in a

thread tree. Supervisor as a concept here is distinct from the supervisor body, and is a more

abstract entity into which a thread ‘converts’ on supervisor invocation. Thus, the Supervisor

environment is really the parent environment, the environment o f the invoking thread, and the

continuation is the remaining code sequence for that thread. The supervisor body is itself a

thread, with its own environment and code sequence.

Environments are used differently by the two algorithms. The naive algorithm uses the fst

Store as a copy of the entire system store, and locations in the snd Store are dirtied locations.

Location lookups first check snd, then fst. This is equivalent to a dirty flag mechanism. The

optimised algorithm uses fst as its read store, and snd as the write store. Due to the similarity

here, several functions can be shared between the naive and optimised algorithms, easing our

proof o f equivalence. Now we a define a set o f supporting functions. First we have Thread

175

field extraction functions. We use these so that we do not have to distinguish between Threads

and Supervisors in the algorithms, which simplifies matters:

- Thread field extraction functions

g e tO p s :: Thread -> CodeSeq

getOps (Thread _ ops) = ops

getOps (Supervisor ops) = ops

getE nv :: Thread - » Env

getEnv (Thread e _) = e

getEnv (Supervisor e) = e

se tE n v :: Env Thread -> Thread

setEnv env (Thread _ ops) = Thread env ops

setEnv env (Supervisor _ body threads cont) =

Supervisor env body threads cont

Now we define a set o f store functions. These perform operations on stores, such as update

and location insertion, that are used in the main algorithm. Even though environments are

used in different ways by the two different algorithms, many of these store functions are used

in both.

isLoclnStore returns true if loc is present in the Store:

isLoclnStore:: Location -> Store -> Bool

isLoclnStore loc [] = False

isLoclnStore loc store

| loc == fst (head store) = True

| otherwise = isLoclnStore loc (tail store)

storeUpdateLoc modifies a location in a store, or inserts it if it is not present:

storeU pdateLoc:: Location Value -> Store - » Store

storeUpdateLoc loc val [] = [(loc, val)]

storeUpdateLoc loc val ((l,v):rest)

| loc == I = (loc,val):rest

| otherwise = (l,v):(storeUpdateLoc loc val rest)

storeUpdateStore performs a series o f storeUpdateLocs to a target for all locations in a

source store:

storeUpdateStore :: Store - » Store - » Store

storeUpdateStore [] target = target

storeUpdateStore ((loc,val):rest) target =

176

Aside

storeUpdateStore is essentially a biased union. The target store (second parameter) is

unified with the source store, with duplicates being resolved by location bindings in the

source store overriding those in the target. This function is used frequently in the proof

that follows, so we define an infix operator ‘» ’ to represent it more concisely. It may be

helpful to think o f » as representing a flow of location bindings from left to right.

source (») target = storeUpdateStore source target

storeUpdateStore rest (storeUpdateLoc loc val target)

storelnsertStore updates a target store with all locations in a source store, but only if

those locations are not already present in the target. An observation that is critical to the final

stage o f the later proof is that this can be defined in terms o f storeUpdateStore (»):

storelnsertS tore:: Store -> Store -> Store

storelnsertStore st target =

ta rg e t» st - th e stores operands are reversed from storeUpdateStore sem antics

storeDeref returns the value o f a location in the store. Our model requires that the location

is present: This function uses a fold, which is an abstraction over recursion. The details o f fold

are not especially important here, other than it can represent recursion as a single function.

The interested reader is referred to the literature [114].

storeD eref:: Location - » Store - » Value

storeDeref loc store =

foldr (\(loc’,v') v —> if loc' == loc then v' else v) undefined store

storeDerefStore takes all the locations from a store, and looks up their value in another

store, returning the store with the other values for the location

storeD erefStore:: Store - » Store -> Store

storeDerefStore src target = [(loc, storeDeref loc target) | (loc,_) src]

Now we define some functions over environments, most o f which make use o f the store

functions. Both naive and optimised algorithms use many of these environment functions,

since although the environments are used in different ways they have the same structure and

so have similar primitive operations over them.

envllpdate modifies a location in the dirty (or write) Store, or inserts it i f it is not present:

envU pdate:: Location Value -> Env -> Env

177

envUpdate loc val (s1 ,s2) = (s1, storeUpdateLoc loc val s2)

expose performs a series o f updates from one environment to another for dirty (write store)

locations only:

e x p o se :: Env -> Env - » Env

expose (_,s) targetEnv = foldr (\(loc,val) acc -> envUpdate loc val acc) targetEnv s

capture returns an environment with dirty (write store) locations overwriting those in the

fst Store:

cap tu re :: Env -> Env

capture (locs.dlocs) = (dlocs » locs,[])

envDeref looks up a location in the given environment, checking the dirty (write) Store

first. It merges the dirty and non-dirty stores, dirty overriding

envD eref:: Location - » Env -> Value

envDeref loc (Iocs,dirty) =

storeDeref loc (dirty » Iocs)

Algorithm Definitions

Now we can write down a step function for the naive algorithm, step executes a single

operation for every thread in the thread tree.

s te p :: Thread -> Thread

step (Thread env []) = Thread env [] - stepping a completed thread does nothing

Our first non-trivial step follows. This executes an active basic thread (not a supervisor). The

function takes the first operation from the instruction stream, inspects its value and acts

accordingly.

step (Thread env (op:ops)) = case op of

Create loc val - »

Thread (envUpdate loc val env) ops - add the loc and val to environment

Move readLoc writeLoc -> let

val = envDeref readLoc env in -- lookup the value

Thread (envUpdate writeLoc val env) ops - update location and throw away move op

InvokeSupervisor bodyCodeSeq threadCodeSeqs -> let

body = Thread (capture env) bodyCodeSeq

threads = [Thread (capture env) codeSeq | codeSeq < - threadCodeSeqs] in

Supervisor env body threads ops

Nop -> Thread env ops

Expose t - » undefined --not permitted for a normal thread, Focus has static restrictions

178

This next step completes execution o f a supervisor, turning it back into a normal thread.

Remember that the supervisor environment (env) is that associated with the thread that

invoked the supervisor and not the supervisor body.

step (Supervisor env (Thread bodyEnv 0) _ cont) = -- pattern match on empty body CodeSeq

Thread (expose bodyEnv env) cont

This next step executes a single instruction in the body of a supervisor and each o f its

threads. The result is the same for all cases except where the supervisor body executes an

expose operation. We cater for this explicitly.

step (Supervisor env body threads cont) =

case body of

Thread bodyEnv ((Expose t):ops) - » let

(front,(thread:rear)) = splitAt (t-1) threads --get at the threads

e = getEnv thread --the env to be exposed

newEnv = expose e env --expose it to parent env

newBody = Thread bodyEnv ops --throw away expose op

exposedThread = setEnv (capture newEnv) thread --new thread after exp

newThreads = (front ++ [exposedThread] ++ rear) in -rem ake thread list

Supervisor newEnv newBody (map step newThreads) cont

_ Supervisor env (step body) [step thread | thread < - threads] cont

When stepping a supervisor, we step the body and each o f the threads. The result is the same

as for a normal thread in all cases (the result of the _ choice in the case statement), except

when the body executes an expose. In this case, we must resolve a new environment for this

point in the tree that incorporates those updates dirtied by the exposed thread. Note that even

if the body of this supervisor is itself a supervisor, then the result is the same since that

supervisor body cannot expose the threads at this point.

This completes the implementation o f the naive algorithm, which directly implements the

intended semantics for the supervisor environment model. Now we present the optimised step

algorithm, defined by the function step'. In general, we use an apostrophe to represent

functions or values associated with the optimised algorithm.

The optimised algorithm requires a 'push down' operation. This operation is used to insert

locations into the read stores o f threads that might be affected by the exposure o f another

thread. To perform a push down, for every location in the exposed threads write store, we

insert the original value o f it (obtained from the parent environment) into the affected thread’s

read store. We show the implementation o f pushStoreThread here rather than in earlier

supporting functions section, because it is only used by the optimised algorithm.

179

pushStoreThread pushes all locations in the Store into the read store o f the given Thread:

pushS to reT hread :: Store -> Thread -> Thread

pushStoreThread Iocs thread = let

(read, write) = getEnv thread in

setEnv ((storelnsertStore Iocs read), write) thread

We accumulate a ’store chain’ while recursively descending the thread tree. The store chain

is an accumulation o f locations in the write and read stores o f parent environments. In this

way, threads that do not have a location in their read or write stores can obtain them from the

store chain. In the Focus run time system there is no store chain. Here, we use the store chain

to model the fact that in the Focus run time system, threads that read the value o f a location

not in the their immediate environment 'delegate' the read to the parent thread that activated it.

The parent may in turn delegate to its parent, and so on. The store chain represents the search

path a dereference would take back up the thread tree. It is an artefact o f the model, and

represents dynamic behaviour rather than a data structure that is maintained by the Focus run

time system. Actually implementing such a data structure is just as inefficient as the naive

algorithm that copies entire environments.

-- step' performs a single execution step for a thread tree

s te p ':: Thread -> Store -> Thread -- step’ takes a store chain param eter

- this step' represents "execution" of a completed Thread

step' (Thread env []) _ = Thread env []

This step executes a single operation in a Thread. The most significant aspect of it is for the

case where the thread executes an InvokeSupervisor operation. This is the basis of our

optimisation, since the newly created child threads and the distinguished thread receive empty

environments. No copying takes place.

step' (Thread env (op:ops)) storeChain = let

(readStore, writeStore) = env

newStoreChain = storeUpdateStore readStore storeChain in

case op of

Create loc val ->

Thread (envUpdate loc val env) ops

Move readLoc writeLoc -> let

val = envDeref readLoc (newStoreChain, writeStore) in

Thread (envUpdate writeLoc val env) ops

InvokeSupervisor bodyCodeSeq threadCodeSeqs - » let

body = Thread ([],[]) bodyCodeSeq --create with empty store (no copy!)

threads = [Thread ([],[]) threadCodeSeq | threadCodeSeq < - threadCodeSeqs] in

180

Supervisor env body threads ops

N o p -»

Thread env ops

Expose t undefined

-- this step' completes the execution of a Supervisor whose body is finished, reverting the Supervisor to a Thread

s tep 1 (Supervisor env (Thread bodyEnv 0) _ cont) _ =

Thread (expose bodyEnv env) cont -- the supervisor body is exposed automatically on completion

Now we present the final and most important version o f step'. This version executes a single

step for a Supervisor body and Threads, and like the corresponding function in the naive

algorithm, it explicitly takes care o f the case when the supervisor body executes an expose

operation:

step ' (Supervisor env body threads cont) storeChain = let

(readStore.writeStore) = env

newStoreChain = storeUpdateStore (storeUpdateStore (readStore) storeChain) writeStore in

case body of

Thread bodyEnv (Expose fops) -> let

(front,(thread:rear)) = splitAt (t-1) threads --get a t the threads

e = getEnv thread --the environment to be exposed

newEnv = expose e env --expose it to the parent environment

originalValues = storeDerefStore (getWriteStore e) storeChain --get previous values

newBody = pushStoreThread originalValues (Thread bodyEnv ops) --push down to body

exposedThread = Thread (capture newEnv) (getOps thread) -rec rea te exposed thrd

newThreads = (map (pushStoreThread originalValues) front) ++ - r e s t of the threads

[exposedThread] ++ (map (pushStoreThread originalValues) rear)

in Supervisor newEnv newBody [step' thread newStoreChain | thread <- newThreads] cont

_ -> Supervisor env (step' body newStoreChain) [step' thread newStoreChain | thread <- threads] cont

Now we define two functions that run programs (CodeSeqs) to completion for each o f the

algorithms. We call them go and go'.

- The naive algorithm

run :: Thread - » Env

run (Thread env Q) = env

run thread = run (step thread)

g o :: CodeSeq - » Env

go program = run (Thread program 0)

- The optimised algorithm

ru n ':: Thread Env

181

run' (Thread env 0) = env

run' thread = run' (step1 thread 0) --empty store chain created for each step of the tree (not carried over)

g o ':: CodeSeq -> Env

go program = run' (Thread program Q)

Proof of Algorithm Equivalence

Now we can begin to formulate a proof o f equivalence for go and go'. If we can prove that

go and go’ are equivalent for all programs, then we can state that the optimised algorithm

implements the intended semantics for environments. Induction is the obvious approach.

• Prove that for all programs p, go p and go' p result in the same store.

This requires simultaneous induction over programs and the tree structures that can derive

from programs. This is because for a given program, execution o f an InvokeSupervisor

operation results in a subtree where each thread itself has a program. Under such

circumstances, induction is complex. If possible, we would like to eliminate one o f the

inductions. We can achieve this by tackling the proof a step at a time:

• For some definition o f equality over trees t and t' corresponding to partial evaluations of

programs with go and go' respectively, show that t = t' at all stages o f program

execution.

Here, we eliminate the need to perform induction over entire executions o f programs. This is

because our inductive step is the execution o f a single operation by all threads in the tree,

without regard to the rest o f the program. If we can show that step t = step’ t’ for all t and t’

that are equivalent, then we have our result.

To begin, then, we require a method o f equating trees generated by step and trees generated

by step’. Although these will have exactly the same structure after the same number of steps,

the contents o f each thread’s environment will differ. However, the observable system state

with respect to each thread should be the same, and this is the basis for our proof. We use this

notion in defining a function that produces a canonical representation for trees that can be

compared directly.

We need to equate the observable store for every thread, at every level o f the trees. We

define observation functions, which return the observable system store from the point of view

of a particular point in the tree. For the naive algorithm (NA) we define:

o b s :: Env -> Store

obs (allLocs, dirtyLocs) =

storeUpdateStore dirtyLocs allLocs -- overrides allLocs with dirtyLocs

182

For the optimised algorithm (OA) we define:

o b s ':: Store - » Env - » Store -- takes the storeChain at that point and the current environment

obs' storeChain (readStore, writeStore) =

writeStore » readStore » storeChain

obs’ returns the observable system store with respect to the thread that has the environment

consisting o f readStore and writeStore, and has had storeChain passed to it on its

inception. Now we define a function that flattens the tree according to a pre-ordered traversal,

producing a list o f observable states, one for each thread. Since the OA and NA use

environments in different ways, we require one for each:

-- flatten trees produced by step

flattenS tores:: Thread - » [Store]

flattenStores (Thread e _) = [obs e]

flattenStores (Supervisor e t ts _) =

[obs e] ++ flattenStores t ++ concat (map flattenStores ts)

-- flatten trees produced by step’ - we need to produce a storeChain on the way down

flattenStores':: Store -> Thread -> [Store]

flattenStores' storeChain (Thread e _) = [obs11 storeChain]

flattenStores' storeChain (Supervisor e t ts _) = let

newStoreChain = obs' e storeChain in

[storeChain] ++ flattenStores newStoreChain t ++ concat (map (flattenStores newStoreChain) ts)

Note that the definitions o f obs, obs', flattenStores, and flattenStores' are derived from

the definitions o f step and step', and give us our definition o f tree equality. We want to prove

that for all thread trees t, t' that were created by same program p and an equal number o f

applications o f step, step':

flattenStores t = flattenStores' [] t'

We do this by induction over evaluation o f the program, p. For the base case, where the

program has just started and no operations have been executed, we have a flat tree structure

and we prove:

flattenStores (Thread ([],[]) p) = flattenStores' [] (Thread ([],[]) p) (base case)

Then we prove the inductive step, assuming that:

flattenStores t = flattenStores' [] t' (induction hypothesis)

We prove:

flattenStores (step t) = flattenStores' [] (step 't' []) (induction step)

183

Then by induction, this induction applies to the entire execution. From our induction

hypothesis, it must be the case that, for all nodes n in t and the corresponding node n' in t',

that their observable stores are identical. That is:

flattenStores t = flattenStores' [] t' (induction hypothesis)

=> obs (getEnv n) = obs' storeChain (getEnv n')

where storeChain is the result o f recursing down the tree so far. Substituting for getEnv

and the body o f obs and obs’ (defined above) gives us that for an arbitrary node n and its

corresponding node n':

dirtyLocs » allLocs <=> writeStore » readStore » storeChain (lemma)

Summary so far

For all thread trees t, t' which were created by program p and have evaluated an equal number

o f steps we assume:

flattenStores t = flattenStores' [] t' (induction hypothesis)

Therefore, for all nodes n(locs,dirty) in t and the corresponding node n'(readStore,
writeStore) in t', the following must hold:

getOps n = getOps n' -c o d e of each node is identical

obs (getEnv n) = obs' storeChain (getEnv n')

=> dirtyLocs » allLocs <=> writeStore » readStore » storeChain -substituting for getEnv, obs, obs'

Where storeChain is the accumulated environment above node n' in the tree t', as defined in

flattenStores and identically in step'.

To continue, our original inductive step target is:

flattenStores (step t) = flattenStores' [] (step 't' []) (induction step)

We will prove this using induction over storeChain, by proving for all corresponding n, n'
that:

obs (getEnv (step n)) = obs' storeChain (getEnv (step' n' storeChain))

We proceed as follows. The base case for the top-level node is:

obs (getEnv (step n)) = obs' [] (getEnv (step' n' [])) (storeChain base)

Note the empty store chains on the right hand side. For this we can use:

obs (getEnv n) = obs' 0 (getEnv n')

=> dirtyLocs » allLocs o writeStore » readStore » [] -substituting for getEnv, obs, and obs'

= > dirtyLocs » allLocs <=> writeStore » readStore

184

In the last statement, the LHS and RHS are equivalent. This gives us another lemma we can

use later in our case analysis. We must prove the inductive case:

obs (getEnv (step n)) = obs' storeChain (getEnv (step1 n' storeChain)) (storeChain ind. case)

The induction hypothesis for this inner induction is that:

obs (getEnv (step x))

= obs' storeChain (getEnv (step' x' storeChain)) (storeChain induction hypothesis)

holds for all x, x1 nodes higher up the tree than n, n' so that the storeChain passed to the

current node n, n’ is correct. Therefore, the following holds for the current node:

obs (getEnv n) = obs' storeChain (getEnv n')

=> dirtyLocs » allLocs <=> writeStore » readStore » storeChain

We need to prove:

obs (getEnv (step n)) = obs' storeChain (getEnv (step' n' storeChain)) (storeChain ind. case)

We deal with the different case o f step, step’ on n, n’. Since we are performing induction

over store chains, the LHS (naive algorithm) is the same in the base case as with the induction

case, since there is no storeChain. This simplifies the proof somewhat.

Summary of main proof

The induction is over store chains. In short, we have to show that:

obs(LHS) = obs'(RHS base)

obs(LHS) = obs'(RHS inductive)

for each algorithm construct in step, step'.

Our first case is the step o f a Thread that has no operations:

LHS (naive algorithm)

step (Thread env []) = Thread env [] --empty code sequences

RHS (optimised, base)

step' (Thread env []) _ = Thread env []

RHS (optimised, inductive)

step' (Thread env []) _ = Thread env []

All are identical, proving this simple case for n and n’. Now we deal with Threads that

create a location.

--LHS (naive algorithm)

step (Thread (s1,s2) (Create loc v a l : ops))

185

• {definition of step, substituting for case}

= Thread (envUpdate loc val env) ops

• {substituting for envUpdate}

= Thread (s1, storeUpdateStore loc val s2) ops

--RHS (optimised, base, inductive)

step' (Thread (readStore, writeStore) (Create loc v a l : ops) _

• {definition of step, substituting for case}

= Thread (envUpdate loc val (readStore, writeStore)) ops

• {substituting for envUpdate}

= Thread (s1, storeUpdateLoc loc val s2) ops

The base and inductive cases for step' here are identical, because the storeChain is not

used. The LHS = RHS, proving the case. Now we come to the case where n and n’ are

Threads that perform a Move op. First the base case:

--LHS (naive algorithm)

step (Thread (allLocs,dirtyLocs) (Move readLoc writeLoc:ops))

• {definition of step, subst. into case statement.}

= let val = envDeref readLoc (allLocs,dirtyLocs) in

Thread (envUpdate writeLoc val (allLocs,dirtyLocs) ops

• {defn of envDeref}

= Thread (envUpdate writeLoc (storeDeref readLoc (dirtyLocs » allLocs)) (allLocs.dirtyLocs)) ops

--RHS (optimised algorithm, base)

step' (Thread (readStore, writeStore) (Move readLoc writeLoc:ops)) [] --storeChain = []

• {definition of step, subst into case}

= let val = envDeref readLoc (readStore » [], writeStore) in

Thread (envUpdate writelLoc val (readStore,writeStore) ops

• {remove [], subst val}

= Thread (envUpdate writeLoc (envDeref readLoc (readStore, writeStore)) (readStore,writeStore) ops

• {defn of envDeref}

= Thread (envUpdate writeLoc (storeDeref readLoc (writeStore » readStore))

(readStore,writeStore)) ops

Now the LHS and RHS are o f the same form. There are two observables stores on the LHS

and RHS. One pair is LHS (allLocs, dirtyLocs) and RHS (readStore,writeStore). By our

induction hypothesis, these are observationally equivalent. The other observable store pair is

(dirtyLocs » allLocs) on the LHS (naive algorithm) and (writeStore » readStore) on the

RHS (optimised algorithm). This fits one of our lemmas:

dirty » Iocs <=> writeStore » readStore

186

Therefore the same result will be found by each s to re D e re f , and so updated by e n v U p d a te ,

proving the base case. Now we deal with the inductive case for M o v e . Remember that for the

naive algorithm the base and inductive cases are the same, so we need only prove that

LHS(nai've) = RHS(optimised, inductive).

--RHS (optimised, inductive)

step ' (Thread (readStore,writeStore) (Move readLoc writeLoc:ops)) storeChain

• {definition of step', subst into case}

= let val = envDeref readLoc (readStore » storeChain, writeStore) in

Thread (envUpdate writeLoc val (readStore,writeStore) ops

• {subst defn of envDeref}

= let val = storeDeref readLoc (writeStore » readStore » storeChain)

• {subst val}

= Thread (envUpdate writeLoc (storeDeref loc (writeStore » readStore » storeChain))

(readStore,writeStore) ops

This of the same form as the LHS, and the inner store expression fits our lemma:

dirtyLocs » allLocs <=> writeStore » readStore » storeChain

Thus, the same value is dereferenced in each case, proving our inductive case for move.

Now we come to the case for stepping a thread that invokes a supervisor. The effects of

In v o k e S u p e rv is o r on a node spread to its newly invoked children, so we need to show that:

obs (getEnv (step n)) = obs' storeChain (getEnv (step' n' storeChain)) (storeChain ind. case)

for the parent node, and its children. However, proving this for one child node is sufficient

since the children are created with a map, and are all the same (apart from their code, which is

handled by the other proof cases).

--LHS (naive algorithm)

step (Thread (allLocs,dirtyLocs) (InvokeSupervisor bodyCodeSeq th readC odeS eqs: ops)

• {defn of step, subst into case, subst body}

= let threads = [Thread (capture (allLocs,dirtyLocs)) codeSeq | codeSeq < - threadCodeSeqs] in

Supervisor (allLocs,dirtyLocs) (Thread (capture (allLocs,dirtyLocs)) bodyCodeSeq) threads ops

• {subst defn capture}

= let threads = [Thread (dirtyLocs » allLocs, []) codeSeq | codeSeq < - threadsCodeSeqs] in

Supervisor (allLocs,dirtyLocs) (Thread (dirtyLocs » allLocs, []) bodyCodeSeq) threads ops

--RHS (optimised, base)

step' (Thread (readStore, writeStore) (InvokeSupervisor bodyCodeSeq th readC odeSeqs: ops) [] --storeChain []

• {defn of step, subst into case, subst body}

let threads = [Thread ([],[]) threadCodeSeq | threadCodeSeq < - threadCodeSeqs] in

187

Supervisor (readS tore, w riteStore) (Thread ([],[]) bodyCodeSeq) threads ops

The LHS and RHS are o f the same form, but with different environments for the supervisor,

body, and threads. To prove this base case we must prove that the supervisor environments

are equivalent, and that new body thread and child threads have observable system stores that

correspondingly equivalent. Supervisor environments are unchanged from before step, so

assuming the induction hypothesis hold then they are still observationally equivalent. That is,

for the supervisor environment we have:

obs (allLocs,dirtyLocs) <=> obs' storeChain (readStore, writeStore)

• (subst for storeChain, obs, and obs'}

=> dirtyLocs » allLocs <=> writeStore » readStore » []

• (removing []}

=> dirtyLocs » allLocs o writeStore » readStore

This matches a lemma, proving that supervisor stores are equivalent. The new environments

for the supervised threads and the supervisor body are the same. We can prove observational

equivalence simultaneously. For threads C, C1 we have:

obs (getEnv c) <=> obs1 storeChain (getEnv c1)

• (subst for getEnv and storeChain)

=> obs (dlocs » Iocs, []) <=> obs' [] (getEnv n')

• (subst for obs and obs'}

=> dlocs » Iocs » [] o writeStore » readStore » []

• (removing []}

=> dlocs » Iocs <=> writeStore » readStore

This matches our lemma, and proves the base case for supervisor invocation. Now we deal

with the inductive case.

--RHS (optimised, inductive)

step' (Thread (readStore, writeStore) (InvokeSupervisor bodyCodeSeq th readC odeS eqs: ops) storeChain

• (sam e as base case)

let threads = [Thread ([],[]) threadCodeSeq | threadCodeSeq < - threadCodeSeqs] in

Supervisor env (Thread ([],[]) bodyCodeSeq) threads ops

Again we must prove store equivalence:

obs (allLocs, dirtyLocs) o obs' storeChain (readStore, writeStore)

• (subst for obs, and obs'}

=> dirtyLocs » allLocs o writeStore » readStore » storeChain

188

This matches lemma, proving that supervisor stores are equivalent. For body/child threads C,

c' we have:

obs (getEnv c) o obs' storeChain (getEnv c')

• (subst for getEnv}

=> obs (dlocs » Iocs, []) <=> obs' storeChain (getEnv n')

• (subst for obs and obs'}

=> dlocs » Iocs » [] o writeStore » readStore » storeChain

This matches our lemma, and so proves the case for supervisor invocation. There are two

more cases in s tep , s tep ' Thread. These are Nop and E xpose t. Nop is proven trivially, so

we elide it, and E xpose for T hreads is not permitted, so we need not prove anything. The

Focus compiler statically guarantees that threads cannot perform expose operations. This

brings us to s tep , s tep ' Supervisor, which has three cases. The first is the conversion from a

Supervisor to T hread on completion o f the body code:

--LHS (naive algorithm)

step (Supervisor env (Thread bodyEnv 0) _ cont) =

Thread (expose bodyEnv env) cont

--RHS (optimised, base, inductive)

step' (Supervisor env (Thread bodyEnv □) _ cont) _ =

Thread (expose bodyEnv env) cont

All are the same, completing proof for this case. This brings us to the two final cases for

step , s tep ' Supervisor. We attempt the simplest one first, where the supervisor body is not

itself a supervisor, and does not perform an expose.

--LHS (naive algorithm)

step (Supervisor (allLocs,dirtyLocs) body threads cont)

• (defn of step, subst into case}

= Supervisor (allLocs, dirtyLocs) (step body) [step thread | thread < - threads] cont

--RHS (optimised, base)

step' (Supervisor (readStore,writeStore) body threads cont) []

• (defn of step, subst into case}

= let newStoreChain = writeStore » readStore » [] in

Supervisor (readStore,writeStore) (step' body newStoreChain)

[step' thread newStoreChain | thread < - threads] cont

• (subst newStoreChain, remove []}

= Supervisor (readStore,w riteS tore) (step' body (w riteStore » readStore))

[step' thread (w riteStore » readS tore) | thread < - threads] cont

189

We have to prove that the two supervisor environments are equivalent. We omit this since it

follows the same proof pattern we have already demonstrated. Equivalence o f step, step'
Supervisor then comes down to proving that:

obs (step body) = obs' (step* body (writeStore » readStore)) storeChain

obs (step thread) = obs' (step* thread (writeStore » readStore)) storeChain

We have already done this by cases (assuming we now go on to prove the final expose case),

so this base case is complete. We omit the proof for the inductive case, since it follows a

similar pattern to our previous proofs. Thus, we must now prove the final and most difficult

inductive case, for step, step1 Supervisor, where the body performs an expose.

--LHS (naive algorithm)

step (Supervisor env (Thread bodyEnv (Expose t:ops)) threads cont)

• {defn of step, subst into case}

= let (front,(thread:rear)) = splitAt (t-1) threads

(locs.dlocs) = getEnv thread

newEnv = expose (locs.dlocs) env

newBody = Thread bodyEnv ops

exposedThread = setEnv (capture newEnv) thread

newThreads = (front ++ [exposedThread] ++ rear)

in Supervisor newEnv newBody (map step newThreads) cont

• {rewrite, subst for getEnv, expose, capture}

= let (front,(thread:rear)) = splitAt (t-1) threads

newEnv = foldr (\(loc,val) acc - » envUpdate loc val acc) env dlocs

exposedThread = setEnv (snd newEnv » fst newEnv) thread

newBody = (Thread bodyEnv ops) in

Supervisor newEnv newBody (map step (front++[exposedThread]++rear)) cont

Now the RHS; we abbreviate pushStoreThread to pst, and originalValues to vals, for the

purpose of brevity

--RHS (optimised, inductive)

step' (Supervisor env (Thread bodyEnv (Expose t:ops)) threads cont) storeChain

• {defn of step', subst into case}

= let (readStore,writeStore) = env

newStoreChain = writeStore » readStore » storeChain

(front,(thread:rear)) = splitAt (t-1) threads

(tRead.tWrite) = getEnv thread

newEnv = expose (tRead.tWrite) env

vals = storeDerefStore tWrite storeChain -renam ed to vals from originalValues

newBody = pst vals (Thread bodyEnv ops)

190

exposedThread = setEnv (capture newEnv) thread

newThreads = (map (pst vals) front) ++ [exposedThread] ++ (map (pst vals) rear)

in Supervisor newEnv newBody [step' thread newStoreChain | thread < - newThreads] cont

• {subst for expose, newStoreChain}

= let (readStore,writeStore) = env

(front,(thread:rear)) = splitAt (t-1) threads

newEnv = foldr (\(loc,val) acc - » envUpdate loc val acc) env tWrite

exposedThread = setEnv (snd newEnv » fst newEnv) thread

vals = storeDerefStore tWrite storeChain

newBody = pst vals (Thread bodyEnv ops)

newThreads = (map (pst vals) front) ++ [exposedThread] ++ (map (pst vals) rear) in

Supervisor newEnv newBody [step1 thread (writeStore » readStore » storeChain)

| thread < - newThreads] cont

• {subst newThreads}

= let (readStore .writeStore) = env

(front,(thread:rear)) = splitAt (t-1) threads

newEnv = foldr (\(loc,val) acc -> envUpdate loc val acc) env tWrite

exposedThread = setEnv (snd newEnv » fst newEnv) thread

newBody = pst vals (Thread bodyEnv ops)

vals = storeDerefStore tWrite storeChain in

Supervisor newEnv newBody [step' thread (writeStore»readStore»storeChain)

| thread < - (map (pst vals) front) ++ [exposedThread] ++ (map (pst vals) rear)] cont

This is in the same form as the LHS. We can prove that the observable store with respect to

newEnv is equivalent in both the RHS and LHS. We can also prove that exposedThread is

observationally equivalent in the RHS and LHS, and to step, step' exposedThread is the

same by induction. That is, we have:

LHS: obs(newEnv) = RHS: obs'(newEnv) storeChain

LHS: obs(exposedThread) = RHS: obs'(exposedThread) storeChain

We must prove that the new body threads are observationally equivalent. Remember that the

definition o f pushStoreThread (abbreviated to pst) is:

pst Iocs thread = let

(read, write) = getEnv thread in

setEnv ((storelnsertStore Iocs read), write) thread

We have on the LHS:

newBody = Thread bodyEnv ops

• {rewriting}

= let (allLocs,dirtyLocs) = bodyEnv in

191

Thread (allLocs, dirtyLocs) ops

On the RHS:

newBody = pst vals (Thread bodyEnv ops)

• {subst defn pst and getEnv}

= let (read,write) = bodyEnv in

setEnv ((storelnsertStore vals read), write) (Thread bodyEnv ops)

• {defn of storelnsertStore, defn of setEnv}

= let (read .write) = bodyEnv in

Thread ((read » vals), write) ops

• {subst for vals}

= let (read,write) = bodyEnv in

Thread((read » (storeDerefStore tWrite storeChain)), write) ops

We must prove that:

obs (allLocs,dirtyLocs) = obs' ((read » (storeDerefStore tWrite storeChain)), write) storeChain

• {subst defn of obs, obs'}

dirtyLocs » allLocs <=> write » read » (storeDerefStore tWrite storeC hain)» storeChain (*)

Remember that tWrite here is the write store o f the thread being exposed. This gives us our

intended result, because the store dereference o f tWrite in storeChain will return a set of

locations and values that are already in StoreChain. Thus,

(storeDerefStore tWrite storeC hain)» storeChain o storeChain

Rewriting * taking this into account leaves us to prove:

dirtyLocs » allLocs <=> write » read » storeChain

This fits our lemma as before, so we have proven the case. All that remains is observational

equivalence for the threads that are not the exposed threads in the final Supervisor expressions

above. It suffices to do this for one thread. We can now do this before the step, step' since

we have proven equivalence for all other step cases. As a result, the proof for an individual

thread is very similar to the proof for the supervisor body (which is not stepped), and so we

omit it.

We have shown that our optimised algorithm implements the intended environment

semantics in the Focus run-time system.

192

10: Conclusions

This thesis has addressed the issue o f designing abstractions for use in programming Internet

applications. In particular we are interested in those applications that demand prudent

recovery from failure, independent o f human interaction. We have shown that supervisors and

persistent relative observables are useful programming abstractions for programming in the

Web domain.

Its scientific contribution lies in three main areas, which we now discuss.

The Interpreted Exception

In Chapter 2, we presented the results o f an extensive study into the failure and performance

characteristics o f the Web. Although similar studies exist, none are as broad, and in particular

ours is the first to address the issue o f dynamic rate across individual Web transfers and to

present results relating to rate variability. Our experiments have shown us that the Web is a

complex non-deterministic entity, which is amenable to a new approach o f implementing

failure models, more sophisticated than that of traditional methods involving timeout. By

studying the behaviour o f Web observables we gained insight into how they might be applied

to programming Web applications.

From the experimental data we have examined, we find that the majority o f failures that

occur on the Web are the result o f timeout. Timeout accounts for more than three-quarters of

all failures. Timeouts are interpreted failures based on observation o f the properties of a Web

transfer, in this case observation o f the time that the transfer is taking. The nature o f the

corresponding underlying failures cannot be determined, since they are not absolute.

The behaviour o f Web observables gives information that may be used in interpreting failure

based on the notion o f acceptability. Setting a timeout amounts to enforcing a constraint on

the maximum time observable allowed for a particular operation. However, use o f timeout

alone is inflexible, and can be unreliable and inefficient. There are several observables in

addition to time that can be used in setting the bounds o f what is considered acceptable

performance. Failure of the performance o f a Web fetch to fall within these bounds generates

an interpreted exception. We see it as self evident that the more information that is available,

the more confident one can be that any interpretation o f failure based on that information is

appropriate.

Human browsers do not employ concrete notions of absolute failure to the Web. Certainly,

they react to absolute failure when it is encountered, but our experiments and those of Zeus

technologies indicate that interpreted failure is more important since it ‘occurs’ more

193

frequently. By examining the methods o f failure interpretation employed by human browsers,

in conjunction with our quantitative experiments, we identified the observables o f transfer

rate, connection latency, transfer time, and completion percentage. Furthermore, we notice

that humans interpret failure in terms o f complex relationships between constraints on the

values o f observables. An HCI study might have revealed the essence o f this, but we have

instead opted for as flexible an approach as possible since imposing unnecessary limitations

on a programming system by design is imprudent. For example, the failure semantics

employed by an automated agent, mobile in the Internet, are unlikely to be exactly the same

as those o f a human browser performing a similar task. As a result, we wish to allow a full

range o f expression in implementing failure semantics, rather than attempt to model

specifically those failure semantics characteristic in human browsing behaviour.

In Chapter 3 we presented a programming methodology designed to maximise flexibility in

interpreting failure. This methodology is based on the use o f higher-order functions, but also

has an analogous implementation in object oriented programming systems. In short, the

technique allows arbitrary program logic specifying constraints on observables and the

relationships between those constraints to be passed as a parameter to the Web fetch

abstraction. Since this logic can cause the raising o f exceptions, this allows a degree of

parameterisation for flow control after failure. However, exception handling is a serialised

model that does not integrate well with concurrency. Concurrency is extremely important in

Internet computation, since it allows the CPU to be utilised during the periods o f high I/O

overhead incurred by Internet access. This motivates us to seek a new programming model

that exposes domain properties while cleanly integrating concurrency, flexible failure

interpretation, and flow of control for failure. The cradle o f our model is the concept o f a

historical context for the observables o f Web fetches.

The Essence of Internet Computing

Experienced Web users interpret failure based on something more than just the immediately

available observables. Humans use available observables in conjunction with an expectation

o f the likely future behaviour for a particular Web fetch or series o f Web fetches. This

expectation is based on previous experience with that server, URL, country in which the

server resides, and experience of Web failure and performance in general. In short, when

interpreting failure, historical context is key. In Chapter 2, we show that under similar

network and sever load conditions the performance o f a particular Web site is consistent.

Deviations in observable performance characteristics from those experienced in the past

provide an invaluable clue when interpreting failure, or more accurately, when interpreting

performance that is unacceptable.

194

In Chapter 5, we introduced a conceptual domain for Web programming based on the

persistent relative observable. A persistent relative observable differs from a normal

observable in that it is calculated relative to a historical context associated with either a

particular URL or server. Persistent relative observables allow programmers to express

computational logic in terms that are similar to the human failure model for the Web.

However, they are not entirely designed to allow the modelling o f human patterns of failure

interpretation. Persistent relative observables have four very important benefits in their own

right:

• Portability - since persistent relative observables are calculated as a ratio, they are

independent o f absolute units o f measurement. This means that a program can be

executed in any network context without modification, and be expected to exhibit

similar failure semantics. For example, a program statement that dictates the

interpretation o f failure when rate falls below 20% o f the historical average has the same

semantics when executed on systems with T1 connectivity and when executed on a

system with only a modem connection.

• Mobility — by similar arguments to the benefit of portability, applications can be mobile

in the network without having to employ reflection techniques or complicated program

logic that directs program flow to code appropriate to the network context. Mobile

agents can migrate at will, without regard to the connectivity o f their target host.

• Future proofing — programs that contain statements such as "interpret failure on transfer

rate less than 5Kb/sec" make a concrete assumption about the speed o f the local network

connection, and o f the Internet in general. The performance o f the Internet is improving

over time, since perhaps somewhat surprisingly the investment in infrastructure is

outstripping the explosion in usage. Since overall performance is improving, the notion

o f what is acceptable performance is likely to become more constrained. Thus,

statements like those above are likely to be quickly invalidated by the general trend

towards increased bandwidth in the entire Internet. However, with our mechanism

gradual changes in Internet performance are absorbed by the persistence mechanism,

rendering all programs future proof.

• Generalisable to all computation - since persistent relative observables are independent

of absolute units o f measurement, they can be applied in situations that under normal

circumstances would be meaningless. Persistent relative observables allow the

interpretation o f failure by the notion o f acceptability based on the norm. Deterministic

computations have predictable failure and performance characteristics, so we can

195

associate ‘normal’ observables with them. For example, the unit o f measurement Kb/sec

cannot be meaningfully applied to string processing operations. However, given that the

rate o f a deterministic string computation can be considered ‘normal’ at all times, we

can meaningfully associate a persistent relative rate observable o f 1.0.

Portability, mobility, and future proofing for programs are significant benefits. However,

generalisation to all computation is perhaps the most important, because it is fundamental to

the design o f our high-level Web programming abstraction, the supervisor.

Concept Integration

In Chapter 3, we present three design goals for a Web programming system. Primarily, these

are concerned with cleanly and orthogonally integrating the concepts o f concurrency, flexible

failure interpretation, and flow control for failure, while bringing the properties o f the Web

domain into the semantic space. Although we do not claim that these design goals are the

most appropriate for all Web programming models, we feel that languages or systems based

on them are likely to allow the expression o f more concise and intuitive programs than with

more general purpose programming languages.

Supervisors are essentially concurrency constructors, which linguistically and semantically

separate control logic in the supervisor body from computational logic in the parameter

threads. They monitor and control the behaviour o f concurrent computations, but in a general

way that is independent o f the particular computation taking place. Supervisors are founded

on the persistent relative observables mechanism, and all computations export the set o f Web

observables. Since persistent relative observables are generalised to all computation,

supervised computations may consist of an arbitrary sequence o f Web fetches and

deterministic computations, the nature o f which the logic o f the supervisor need not be

concerned with. Supervisors are general control functions that are useful for specifying

generalised failure semantics for a class o f computations. The persistent relative observables

mechanism maps the observable behaviour o f those computations into a uniform pattern so

that computations with very different performance characteristics can be controlled by the

same supervisor.

In supervisors, we have developed a programming language abstraction that exposes the

properties o f the Web domain, while cleanly integrating the means for concurrency, flexible

failure interpretation, and flow control for failure. Focus is the first programming language to

integrate these concepts. Furthermore, by presenting examples we have shown that

supervisors can concisely express many useful patterns o f computation, including some that

196

map directly onto human ‘algorithms’ for Web computation. Since programming is

essentially about mapping the solution to a problem from human thought into something that

a computer can execute, the conciseness and intuitiveness of our example programs suggest

that supervisors are an appropriate abstraction for programming in the Web domain.

The supervisor is a high level abstraction, in particular with respect to its mechanism for

automatic backwards error recovery. However, we show in Chapter 9 that although the

environment mechanism logically duplicates the entire store on each thread inception, this

behaviour can be modelled efficiently. In the same chapter, we show that supervisors

conceptually contain the service combinator algebra.

Further Work

Focus is intended for applications that are affected by the failure and performance

characteristics o f the Internet. Examples o f these are Web crawlers, distributed applications,

and mobile agent systems. To gain insight into the usefulness o f particular language features

and gain insight into how we might refine the language, it is important to deploy such

applications in the target domain. However, to deploy these applications, it is necessary to

have control o f several Web servers. This itself is not a problem, but because Focus is

intended to cope with the failure and performance properties o f the Web, several co-located

severs do not provide an accurate reflection o f the ‘real’ computing environment. To test the

mechanisms that deal with performance and failure we need control o f a diversity o f servers,

particularly in geography and loading. Currently, we do not have the resources for this, but in

the future we hope to be able to deploy a limited set of diverse servers and implement a broad

class o f applications over them.

Although our performance experiments provided some useful results, larger scale

experiments are necessary. We did not control any o f the target servers in our experiments,

and although this heterogeneity and autonomy is intrinsic to the Web, it makes it more

difficult to attribute particular results to specific circumstances. For example, with several

different sites world wide, we could simulate different levels o f load on each o f them under

controlled conditions. This would allow us to distinguish between performance and failure

characteristics that arise from server load and those that arise from network load. Network

load is consistent according to time of day, but server load is largely unpredictable. If we can

distinguish performance and failure patterns that arise from server load and network load,

then this might be useful in determining appropriate action. For example, if a server is found

to be under heavy load, this would encourage the seeking o f alternate resources rather than

retrial. If an area o f the network is under heavy load, retrial at a later time is an option, but it

197

might be sensible to prioritise further Web fetches from servers that are in a different

geographical location.

Studies in comparative programming might show that task implementations in Focus are

more concise, elegant, and intuitive that those written in a traditional GP language such as

Java. This thesis has contained very little comparative programming. However, we do not

claim that our Web programming model is better than that employed by users of Libwww or

the Java Web API. Instead, we state simply that our model is appropriate for the class of

applications that we are interested in, and that in it we have discovered some useful new

concepts and how to integrate them cleanly with existing concepts. Certainly, proving that

Focus is better than Java, say, would be a significant result. However, such a result is unlikely

to change anything. For this reason, and the fact that comparative programming is lengthy and

detracts from the presentation o f concepts, we have chosen not to include it in this thesis.

Opinionated Final Words

Focus is an experimental language and we cannot realistically expect it to be deployed to

any level by the Web programming community at large. Moreover, evolving and maintaining

an industry strength programming language is an enormous task that we do not wish to

undertake. However, the design o f an experimental programming language is not about trying

to encourage people to use that language. Developing a domain specific programming

language from scratch allows researchers to concentrate on important and relevant concepts,

ignoring problems that might arise from issues such as compatibility with existing

infrastructure. Only large software companies and standards organisations have the clout to

change the way the world uses the Web. However, they tend to become involved in an

endless cycle of compromises in order to maintain backward compatibility. For example, in

the 1990’s, Microsoft dominated the operating systems market. However, it is widely

believed that the progression from MS-DOS to Windows 3.1 to Windows 95, was in technical

terms a disaster. Had there been the will to move to carefully designed operating systems and

programming languages that broke from the past, we might already be free o f the long

running ‘software crisis’. Primarily for economic and business-political reasons, this has not

happened.

Perhaps more relevant to us is the Web itself, which is an example o f what happens when we

allow physicists to play with computers. Ever since its rise in popularity, the Web has been

plagued with half-adopted proprietary extensions, largely unimplemented portions o f server

protocols, and compromise extensions intended to patch up the original mistakes. Had the

Web been designed properly from the outset, it is even possible that this thesis would not

have been necessary.

198

We have designed a domain specific language for programming the Web, and we do not

expect people to use it. However, in designing Focus without being distracted by industry

hype, we have produced a clean and simple programming model that captures what we

believe to be the essence o f Internet computing. It is our hope that this contribution to

knowledge will have pragmatic implications for the designers o f Web applications. For

example, we hope that Web application programmers will abandon the sole use of timeout in

favour o f the better model that incorporates all forms of observables. And in particular, we

hope that persistent relative observables are adopted by Web APIs, in some form or another.

199

Appendix - The Focus Language

Focus is a simple language intended primarily as a vehicle for the supervisor construct. In

this appendix, we provide a summary o f the language, and details o f its implementation.

Focus Syntax

Following is a formal syntax definition for Focus, in Backus Normal Form (BNF). The focus

grammar is LL(1).

Program ::= seq \ e

seq ::= dec [; seq] |

E [; seq]

dec ::= 1 e t I = E \ Bind identifier to value

type 1 is T \ Bind identifier to type

forward / is T \ Forward declaration o f identifier as type

EO

supervisor (la b e l : T [, la b e l: T7]* -» T) is E

function (la b e l : T [, la b e l : 71]* -> T) is E

[[I = E] [, I = E] *]

loc (E)

file(E)

s e t ([£] [, £] *)

vector (E..E < - E)

not is

- E

sleep E

card E

take E

waitfor E

Supervisor value

Function value

Structure values

Location value

File value

Set value

Vector value

Logical negation

Arith negation

Set cardinality

Set extraction

Conditional sleep

200

get E

post E a.— E

foreach E do E

while E do E

observerop I

controlop I

EO ::= E 1 [: = E] Assignment, Ihs must be location

E l ::= E2 [o r E2] *

E2 ::= E3 [and E3]*

E3 ::= E 4 [relop E4]

E4 ::= E5 [addop E5]*

E5 ::= E 6 [m u l o p E 6] *

E6 ::= E7 [setop E7]*

E7 ::= E8 ([£] [, E]*) I Function o r supervisor application

E8 [. label]* Structure dereference

E9 E10 [# E]* Vector indexing

E10 ::= at E | Location dereference

if E then E else E \

i f £ d o £ |

(£) I

fail I

Web get

Web post

Set iterator

201

I

literal

{}

observerop ::= rate | latency | time | completion | prob |

active | suspended | failed | done

controlop ::= suspend | activate | retry | expose

relop ::= < | > | = | != | <= | >=

addop ::= + 1 - 1++ Last is string concatenation

mulop ::= mul | div | mod

setop ::= union | intersect | difference

literal ::= true |

false |

numeral \

string |

void

bool

int

string

mime

loc(T)

set(T)

vector(T)

supervisor(T)

function([T] [, T] T)

No type

202

[[I : T] [, I : T]] Structure type

I Type identifier

I standard identifier not a keyword and not containing special characters

Lexical rule - in seq, a new line after E o f type void will be read as a semi-colon symbol, if

the next symbol is not a closing brace.

Focus Concepts

The Focus language model is imperative with block structure and all values are first class

(including functions and supervisors). It is expression based in that there is no restriction on

the application o f language constructs within expressions. Focus is strongly and statically

typed, with type equivalence being defined structurally. However, Focus allows the naming o f

types. The semantics o f equivalence is defined by value equality for scalar types and as

identity for all others. Identity is defined as existing between two values if they were both

originally constructed with respect to the same binding association (let statement). Therefore,

identity cannot exist between anonymous values. Focus is a garbage collected language, and

the allocation and deallocation o f physical memory is entirely automated.

One slightly unusual feature o f Focus is that it provides an explicit location type with the

following syntax (from BNF above):

E ::= l o c (£) {Location value)

Eo ::= E2 [: = £] (Assignment)

ElO ::= at is | ... (Dereference)

The Focus location model requires all declarations o f mutable values to be o f type location.

Any other binding is immutable. This encompasses structure fields, function parameters,

vector and set elements, and is defined recursively, across all types. In the examples below,

note the different meanings o f the assignment operator and the binding association

operator “=”.

203

let a = 0

let b = loc(O)

a:= 42 I/Illegal, a is an integer

b:= 42 I I OK, b is an integer location

b:= b + 1 IIIllegal, adding an integer to a location

b:= at b + 1 11 OK, adding an integer and an integer and assigning into a location

let c = at c

c:= 42 11 Illegal, c is an integer

let d = b

d:= 42 11 OK, d is a location (sharing identity with b, and updates reflect

this)

It is important to understand the concept o f bindings and identifiers here. The identifier a is

bound to the integer value 0, and so all uses o f the identifier a result in this value. However,

the identifier b is bound to an integer location. Therefore, uses o f b result in the location, and

not the value contained therein. In order to obtain the contents o f a location, the keyword at

must be used as a dereference operator.

Focus Compiler

The Focus compiler is classic recursive descent [], and the syntax analysis aspect o f it maps

directly from the BNF definition. Lexical analysis, syntax analysis, and code generation all

take place within a single pass o f program source. There is no persistent byte code

representation for Focus programs. Instead, every time a program is run, it is compiled into a

sequence o f abstract machine instructions on the fly, which are then executed. This

‘sequence’ o f instructions is actually a graph o f instruction objects, each o f which support an

execute operation and a nextlnstruction operation. At run-time one or more threads traverse

this graph.

Environments

As compilation proceeds, a static environment chain is maintained that reflects the

namespace o f the current lexical scope. A static environment is essentially a set o f mappings

from identifiers to integers, where the integers are indices into an array. The idea behind

environments is to compute where declared values are to be stored in memory. As identifiers

are declared, space is reserved for them in a dynamic environment array, and they are given a

unique index within that array. When an identifier is used in program source, the static

environment chain is searched recursively, and if the identifier is found the number o f levels

of scope out and the index within that environment is known. During run time, when a new

204

level o f static scope is entered, a d yn a m ic environment object o f the appropriate size is

created and associated with the thread. This new dynamic environment is associated with a

reference to the previous dynamic environment, in much the same way as the static

environment. The ‘previous’ environment is that for the immediately enclosing level o f

lexical scope. In turn, this environment references the next outermost level o f scope, and so

on. When a level o f dynamic scope is exited, the current dynamic environment is discarded,

and replaced with the one that it references, the next outer scope level.

A major difference between static (compilation) environments and dynamic (run time)

environments is there is no identifier or type information available in dynamic environments.

Instead, during compilation instructions are generated that are parameterised with the scope

and index values calculated from the static environment chain. These values are used to

iterate through the dynamic environment chain and index the appropriate field in the dynamic

environment (essentially an untyped array). In short then, all environment access requires an

index pair, a scope offset and value offset, which are both calculated statically. However,

environment assignments are always performed to the current environment, so only require

the value offset and not the scope offset.

Dynamic environments are created unpopulated. However, in Focus it is not possible to

declare an identifier without binding it to a value. This means that environment fields are

statically guaranteed to be valid (non-empty) when they are first referenced. Note that

en viron m en ts a re n o t m u tab le , they simply store values. Now in Focus, locations are

themselves values, but location update does not change the location, only it’s contents. In the

run-time system, locations are references to heap objects, just like all other non-scalar values.

However, L o c a tio n H ea p O b jec ts are mutable.

Given the previous point, we can now state that environments are independent o f the read

and write stores intended to control concurrent update. Read and write stores capture the

actions o f location read and update. It is the contents o f locations that are shadowed in the

read and write stores. Essentially, the read and write stores present a mapping from the

location value (a reference, which in the implementation is an integer), to the contents o f that

location w ith re sp e c t to the cu rren t th read . Threads need not shadow the contents of

environments since they are not mutable and independent o f whatever level o f concurrency is

present. On a related note, complex cyclic data structures are unaffected by concurrency for

the same reason - they are always immutable. However, any locations within them will be

shadowed correctly by the read and write store mechanism.

205

Functions, Supervisors, and Environments

In Focus, functions and supervisors are first class, meaning that they may be assigned to

locations in outer scope levels and be passed as parameters to other functions or supervisors.

This means that the environment o f a function or supervisor declaration may be completely

different from that o f the invoking context. However, correct semantics for function and

supervisor invocation demands that functions and supervisors must be invoked with the

environment context o f their declaration. This means that they must carry what is called their

‘closure’ through assignment and parameter passing. A closure object is an instruction

reference (code pointer) - the function/supervisor entry point, and an environment reference -

the start o f the environment chain for that function. When a thread calls a function or invokes

a supervisor, the current environment is replaced with the function environment from its

closure. The environment o f the calling context is stored on the stack, to be popped off and

restored when the function or supervisor returns.

Garbage Collection

All run time objects in Focus derive from a HeapObject class which has an abstract method,

mark, and a Boolean, marked. Every subclass o f HeapObject must implement a mark method.

The idea is that invoking mark results in the particular object setting its marked flag, and

recursively invoking mark over anything reachable from it. For example,

CompositeHeapObjects, which represent structure objects at run time, recursively invoke

mark over all their non-scalar components. Locations, threads, and even instructions are all

represented as HeapObjects. Threads recursively mark their stacks, current instruction, and

read and write stores. To garbage collect the entire system, simply invoke mark on the thread

that is the root o f the thread tree.

Focus has scalar values as well as reference values. Internally these are treated as machine

words. Since some heap objects may reference other values, for example structures, vectors,

and locations, they need to be able to determine whether the particular value is a reference or

a scalar. We achieve this with reference maps and flags. For example, when a structure object

is created it is passed an array o f Booleans that associates with an internal array o f values that

constitute the structure fields. By mapping this pointer flag array, the structure heap object

knows which o f the fields are to be converted to HeapObject references and which are scalars

to be ignored. The same mechanism is used for run-time system stacks, where a reference flag

stack is grown and shrunk in parallel with the actual stack. For run-time objects such as

locations and vectors, we need only construct them with a reference flag as opposed to a map.

206

Threading and Asynchrony

Instruction sequences are represented as directed cyclic graphs. Branches in the graph are

caused by conditional instructions (choice) and concurrency (n-split). The execution o f a

concurrency instruction causes the creation o f a new lightweight thread. The Focus run time

system consists o f a tree structure o f these threads, each consisting o f a stack, environment,

code pointer and read and write stores. ‘Executing’ a thread causes it to execute its current

instruction and request the next (advance the code pointer), then executes any child threads it

may have. In this way, executing the top-level thread causes the whole thread tree to be

recursively executed for one cycle. Program execution ends when the top-level thread

executes a Halt instruction.

Usually, instruction execution takes negligible time. However, asynchronous operations

such as Web fetch must be executed asynchronously. Asynch heap objects keep track o f

ongoing asynchronous operations. When an asynchronous operation is executed, the run-time

system creates an appropriate Asynch object and stores it in the thread object, then the thread

scheduler moves on to the next thread, without advancing to the next instruction. The next

time this thread is scheduled, the Asynch object is found and interrogated as to it’s status. If it

is completed or failed, then it is destroyed and the thread is advanced to the next instruction as

normal. Since Asynch objects are heap objects, they are garbage collected along with all other

heap objects. Different implementations o f Asynch (derived classes) are expected to

implement correct handling o f resource release upon their collection.

207

Bibliography

[1] The Hyper Text Transfer Protocol.
http://www.w3.org/Protocols/

[2] W3C Hypertext Markup Page.
http://www.w3.org/Markllp/

[3] Uniform Resource Locators.
http://www.w3.org/Addressing/URL/

[4] The Common Gateway Interface.
http://www.w3.org/CGI/

[5] S. D. Reilly et al - Increasing the Computational Potential o f the World Wide Web.
Technical report CS-96-02, University o f Virginia.
ftp://ftp.cs.virginia.edU/pub/techreports/CS-96-02.ps.Z

[6] Netscape Communications - Persistent client state, http cookies.
Preliminary specification, 1996.
http://home.netscape.com/newsref/std/cookie_spec.html

[7] A. K. Weissinger - ASP in a Nutshell
O’Reilly, February 1999, ISBN: 1565924908

[8] S. McPherson - Java Server Pages: A Developers Perspective.
http://developer.java.sun.com/developer/technicalArticles/Programming/jsp/index.html

[9] C. Musciano - How to Get Started with Server-side Includes.
Netscape World, January 1997.
http://www.netscapeworld.com/netscapeworld/nw-01-1997/nw-01-ssi.html

[10] The Altavista Web search engine.
http://www.altavista.com/

[11] Amazon W eb bookstore.
http://www.amazon.com/

[12] Search Spaniel search engine.
http://www.searchspaniel.com/

[13] ECMA-262 JavaScript Language Specification.
Netscape Corporation white paper.
http://developer.netscape.com/docs/javascript/e262-pdf.pdf

[14] J. Gosling and H. McGilton - The Java language environment.
Sun Microsystems white paper, May 1996.
ftp://ftp.javasoft.com/docs/papers/langenviron-pdf.zip

[15] J. Hunter and W. Crawford - Java Servlet Programming.
O’Reilly, December 1998, ISBN: 156592391X

[16] D. Chappell - Understanding ActiveX and OLE.
Microsoft Press, August 1996, ISBN: 1572312165

[17] S. Williams and C. Kindel - The Component Object Model.

208

http://www.w3.org/Protocols/
http://www.w3.org/Markllp/
http://www.w3.org/Addressing/URL/
http://www.w3.org/CGI/
ftp://ftp.cs.virginia.edU/pub/techreports/CS-96-02.ps.Z
http://home.netscape.com/newsref/std/cookie_spec.html
http://developer.java.sun.com/developer/technicalArticles/Programming/jsp/index.html
http://www.netscapeworld.com/netscapeworld/nw-01-1997/nw-01-ssi.html
http://www.altavista.com/
http://www.amazon.com/
http://www.searchspaniel.com/
http://developer.netscape.com/docs/javascript/e262-pdf.pdf
ftp://ftp.javasoft.com/docs/papers/langenviron-pdf.zip

Microsoft MSDN online, 1994.
http://msdn.microsoft.com/library/default,asp?URL=/library/techart/msdn_comppr.htm

[18] Dorte Toft - Netscape's Browser Share Now 25 Percent
PC World News, July 2000
http://www.pcworld.eom/pcwtoday/article/0,1510,12203,00.html

[19] Mobile Code
http://www.w3.org/MobileCode/

[20] J. Vitek and C. Tschudin (eds.) - Mobile object systems: towards the programmable Internet.
Lecture Notes in Computer Science, vol. 1419, 1998.

[21] Luca Cardelli - Global computation.
ACM Computing Surveys 28(4es), December 1996,
http://www.luca.demon.co.uk/Bibliography.html

[22] Luca Cardelli - Abstractions for Mobile Computation.
Lecture Notes in Computer Science, Vol. 1603, 1999.
http://www.luca.demon.co.uk/Bibliography.html

[23] J. Vitek, C. Tschudin (eds.) - Mobile Object Systems: Towards the Programmable Internet.
Lecture Notes in Computer Science Vol. 1222, Springer, 1998.

[24] P. Buneman - Semi-Structured Data.
16th ACM Symposium on Principles o f Database Systems. ACM Press 1997, pg. 117-121.

[25] D. Suciu - An Overview o f Semi-Structured Data
SIGACT News , vol. 29 , no. 4 , pp. 28-38 , December 1999.

[26] Extensible Markup Language (XML)
http://www.w3.org/XML/

[27] Document Object Model (DOM)
http://www.w3.org/DOM/

[28] P. Mockapetris - Domain Names: Concepts and Facilities.
Network Working Group, RFC 1034.
http://www.faqs.org/rfcs/rfc1034.html

[29] Zeus Technologies Web Performance Survey
http://webperf.net/

[30] F. Cristian - Understanding Fault-Tolerant Distributed Systems.
Communications o f the ACM, Vol. 34(2), Feb 1991, pp56-78.

[31] L. Cardelli - A Language with Distributed Scope.
Computing Systems, 8(l):27-59, January 1995

[32] D.E. Bakken and R.D. Schlichting - Supporting fault-tolerant parallel programming in Linda.
IEEE transactions on parallel and distributed systems, 6(3), March 1995.

[33] The OMG - Common Object Request Broker: Architecture and Specification.
Object Management Group Document Number 91.12.1, 1991.

[34] A. Black et al - Distribution and Abstract Types in Emerald.
IEEE Transactions on Software Engineering, SE-13(1), Jan 1987.

[35] J. Waldo et al - A Note on Distributed Computing.

209

http://msdn.microsoft.com/library/default,asp?URL=/library/techart/msdn_comppr.htm
http://www.pcworld.eom/pcwtoday/article/0,1510,12203,00.html
http://www.w3.org/MobileCode/
http://www.luca.demon.co.uk/Bibliography.html
http://www.luca.demon.co.uk/Bibliography.html
http://www.w3.org/XML/
http://www.w3.org/DOM/
http://www.faqs.org/rfcs/rfc1034.html
http://webperf.net/

Sun Microsystems Technical Report, SMLITR-94-29, Nov 1994.

[36] A. Wollrath and J. Waldo - RMI Tutorial Trail.
http://java.sun.com/docs/books/tutorial/rmi/TOC.html

[37] G. R. Andrews and R. A. Olsson - The Evolution o f the SR Language.
Distributed Computing 1(2), April 1986.

[3 8] D. May - Occam Language
ACM SIGPLAN Notices, 18(4), pp69-79, April 1983.

[39] M.D. Byrne et al - The Tangled Web we Wove: a Taskonomy o f WWW Use.
Proc. CHI’99, pp544-551, Addison Wesley, 1999.

[40] L.D. Catledge and J.E. Pitkow - Characterizing Browsing Strategies in the WWW.
Proc. International World-Wide Web Conference, 1995 (WWW5).
http://www.igd.fhg.de/archive/1995_www95/papers/80/userpatterns/
/UserPatterns. Paper4.formatted.html

[41] Java Standard Edition Platform Documentation.
http://java.sun.com/docs/

[42] Zeus Technologies Ltd
http://www.zeus.com/

[43] Solving the World Wide Wait, Zeus Technologies Web Performance Site
http://webperf.net/

[44] Transmission Control Protocol - RFC 793
http://www.faqs.org/rfcs/rfc793.html

[45] Bob Metcalfe - From the Ether,
Column in Infoworld Magazine, Dec. 4, 1995, page 61

[46] D. Nicholas and P. Williams - Journalism and the Internet, The Changing Information
Environment, Pre-fieldwork literature review.
http://www.soi.city.ac.uk/~pw/ji_lit.html

[47] John S. Quarterman - Imminent Death o f the Internet?
http://www.mids.org/mn/606/death.html

[48] The Joint Academic Network (Janet)
http://www.ja.net/

[49] NTL
http://www.ntl.com/

[50] Keith Sibson - Measuring Web Performance
http://hippo.cs.strath.ac.uk/WebPerformance/

[51] Netcraft Web Server Survey
http://www.netcraft.co.uk/survey/

[52] iPlanet E-Commerce Solutions (Server previously Netscape Enterprise Server)
http://www.iplanet.com/

[53] R. Levin - Program structures for exceptional condition handling.
Ph.D. Thesis, Camegie-Mellon University, June 1977.

210

http://java.sun.com/docs/books/tutorial/rmi/TOC.html
http://www.igd.fhg.de/archive/1995_www95/papers/80/userpatterns/
http://java.sun.com/docs/
http://www.zeus.com/
http://webperf.net/
http://www.faqs.org/rfcs/rfc793.html
http://www.soi.city.ac.uk/~pw/ji_lit.html
http://www.mids.org/mn/606/death.html
http://www.ja.net/
http://www.ntl.com/
http://hippo.cs.strath.ac.uk/WebPerformance/
http://www.netcraft.co.uk/survey/
http://www.iplanet.com/

[54] D.W. Flater et al - Some extensions to the C language for enhanced fault detection.
Software Practice and Experience, 23(6), pp617-628, June 1993.

[55] N. H. Gehani - Exceptional C or C with exceptions.
Software Practice and Experience, 22(10), pp827-848, October 1992.

[56] L. Cardelli and R. Davies - Service Combinators for Web Computing.
IEEE Transactions on Software Engineering, Vol 25, No 3, May-June 1999. pp 309-316.
http://www.luca.demon.co.uk/Bibliography.html

[57] H. Marais - WebL, a programming language for the Web.
In Computer Networks and ISDN Systems (WWW7), 30, pp259-270, April 1998.
http://www.research.digital.com/SRC/personal/Johannes_Marais/pub/www7/

[58] Keith Sibson - Adding Persistent Relative Observables to the Service Combinator Algebra.
http://hippo.cs.strath.ac.uk/ServiceCombinators/

[59] Libwww: The W3C Protocol Library
http://www.w3.org/Library/

[60] The Oz2 Programming Language
http://www.ps.uni-sb.de/oz2/

[61] A. Romanovsky - Extending conventional languages by concurrent exception resolution.
Journal o f Systems Architecture, v. 46, No. 1, pp.79-95. 2000 (author sent preprint).

[62] L. Cardelli - Wide Area Computation.
Lecture Notes in Computer Science, Vol. 1644, Springer, 1999. pp. 10-24
http://www.luca.demon.co.uk/Bibliography.html

[63] B. Randell et al - Reliability issues in computing system design.
ACM Computing surveys, 10(2), June 1978.

[64] L. Cardelli and P. Wegner - On understanding types, data abstraction, and polymorphism.
Computing Surveys, 17(4):471-522, 1985
http://www.luca.demon.co.uk/Bibliography.html

[65] M.P Atkinson and R. Morrison - Persistent First Class Procedures are Enough.
Lecture Notes in Computer Science 181, pp223-240. 1984.

[66] B. Randell et al. - Coordinated Atomic Actions: from Concept to Implementation.
Technical Report, Computing Dept., University o f Newcastle upon Tyne, TR 595, 1997
http://www.cs.ncl.ac.uk/research/trs/papers/595.ps

[67] R. Connor and K. Sibson - HCL: A Language for Internet Data Acquisition.
Proceedings o f Workshop on Internet Programming Languages, ICCL’98.
http://hippo.cs.strath.ac.uk/papers/hcl.ps

[68] B. Randell and J. Xu - The evolution o f the recovery block concept.
Software Fault Tolerance, Lyu ed. Wiley 1995.

[69] J. J. Homing et al - A Program Structure for Error Detection and Recovery.
Operating Systems, LNCS, 172-187, Springer-Verlag, 1974.

[70] System structure for software fault tolerance - B. Randell
IEEE transactions on software engineering, 1(2), June 1975.

[71] B. Randell et al - Fault tolerance.
In Predictably dependable computing systems, ESPRIT basic research series.

211

http://www.luca.demon.co.uk/Bibliography.html
http://www.research.digital.com/SRC/personal/Johannes_Marais/pub/www7/
http://hippo.cs.strath.ac.uk/ServiceCombinators/
http://www.w3.org/Library/
http://www.ps.uni-sb.de/oz2/
http://www.luca.demon.co.uk/Bibliography.html
http://www.luca.demon.co.uk/Bibliography.html
http://www.cs.ncl.ac.uk/research/trs/papers/595.ps
http://hippo.cs.strath.ac.uk/papers/hcl.ps

[72] B. Randell et al - Reliability issues in computing system design.
ACM Computing surveys, 10(2), June 1978.

[73] Free Online Dictionary o f Computing
http://foldoc.doc.ic.ac.uk/

[74] Arnold Pear - Notes on Two Phase Locking and Commit Protocols
http://www.csd.uu.se/~amoldp/distrib/TwoPhase.html

[75] Oracle Corporation
http://www.oracle.com/

[76] S.W. Loke and A Davison - Logic Programming with the World Wide Web.
Proc. 7th ACM Conference on Hypertext 1996, pp235 - 245, March 1996.
(paper) http://www.cs.mu.oz.au/~swloke/papers/TR-95.33.ps.gz
(figures) http://www.cs.mu.oz.au/~swloke/papers/figs1 .ps.gz

[77] S.W. Loke - Adding Logic Programming Behaviour to the World Wide Web.
Ph.D. Thesis, University o f Melbourne, August 1998.
http://www.cs.mu.oz.au/~swloke/logicweb-thesis.html

[78] L. Sterling and E. Shapiro - The Art o f Prolog.
2nd Edition, MIT Press, 1994.

[79] A. Davidon and S.W. Loke - A Concurrent Logic Programming model o f the Web.
University o f Melbourne technical report 98/23. November 1998
http://www.cs.mu.oz.au/~swloke/papers/conmod.ps.gz

[80] E. Shapiro - The Family o f Concurrent Logic Programming Languages.
ACM Computing Surveys Vol. 21(3), Sept 1989, pp413-510.

[81] NCSA Mosaic Common Client Interface
http://www.ncsa.uiuc.edu/SDG/Software/XMosaic/CCI/cci-spec.html

[82] K.M. Kavi ed. - Real-Time Systems, Abstractions, Languages, and Design Methodologies.
IEEE Computer Society Press, 1992.

[83] A.D. Stoyenko - A Schedulability Analyzer for Real Time Euclid.
Proc. IEEE 1987 Real-Time Systems Symposium, pp218-225, 1987.

[84] P.I.P. Boulton - A Process Control Language.
IEEE Transactions on Computers, C -18(ll), 1969, ppl049-1053 (also in [82]).

[85] A.D. Stoyenko - The Evolution and State-of-the-Art o f Real-Time Languages.
Journal o f Systems and Software, pp 61-84, April 1992.

[86] K.B. Kenny and K.J. Lin - Building Flexible Real-Time Systems using the FLEX Language.
Computer, 24(5), pp70-78, May 1991.

[87] K.J. Lin and S.M. Natarajan - Expressing and Maintaining Timing Constraints in FLEX.
Proc. IEEE Symposium Real-Time Systems Symposium, 1988, pp96-105, (also in [82]).

[88] K.M. Kavi and S.M. Yang - Real-Time Euclid: A Language for Reliable Real-Time Systems.
Journal o f Systems and Software, pp85-99, April 1992.

[89] J.B. Goodenough - Exception handling design issues.
ACM SIGPLAN Notices, 10(7), July 1975.

212

http://foldoc.doc.ic.ac.uk/
http://www.csd.uu.se/~amoldp/distrib/TwoPhase.html
http://www.oracle.com/
http://www.cs.mu.oz.au/~swloke/papers/TR-95.33.ps.gz
http://www.cs.mu.oz.au/~swloke/papers/figs1
http://www.cs.mu.oz.au/~swloke/logicweb-thesis.html
http://www.cs.mu.oz.au/~swloke/papers/conmod.ps.gz
http://www.ncsa.uiuc.edu/SDG/Software/XMosaic/CCI/cci-spec.html

[90] F. Cristian - Exception Handling and Tolerance o f Software Faults.
Software Fault Tolerance, Lyu ed. Wiley 1995.

[91] M. D. MacLaren - Exception handling in PL/I.
Proc. ACM Conference on Language Design for Reliable Software, March 1977.

[92] Wasserman - Procedure-oriented exception handling.
Technical Report 27, UCLA.

[93] J.B. Goodenough - Exception handling: issues and a proposed notation.
Communications o f the ACM, 18(12), pp683-696, December 1975.

[94] J.J. Homing - Programming languages for reliable computing systems.
Lecture Notes in Computer Science, 69, pp494-530, 1978.

[95] S. Yemini and D. M. Berry - A modular, verifiable exception handling mechanism.
ACM Transactions on Programming Languages and Systems, 7(2), pp214-143, April 1985.

[96] A. Wijngaarden et al - Revised report on the algorithmic language Algol 68.
Acta Informatica, 5, 1975.

[97] B. Liskov - CLU Reference Manual.
Lecture Notes in Computer Science Vol. 114, Springer, 1981.

[98] T. Anderson and P. A. Lee - Fault Tolerance: Principles and Practice.
Prentice Hall, 1981.

[99] M. D. MacLaren - Exception handling in PL/I.
Proc. ACM Conference on Language Design for Reliable Software, March 1977.

[100] R.E. Sweet - The Mesa programming environment.
SIGPLAN Symposium on Language Issues in Programming Environments, ACM, 1985.

[101] M. Gauthier - Exception handling in Ada-94 (sic).
ACM SIGADA Ada Letters, 15(1), pp70-82, 1995.

[102] J.J. Homing - Effects o f programming languages on reliability.
In Computing Systems Reliability, Cambridge University Press, 1979.

[103] A. Koenig and B. Stroustrup - Exception handling for C++.
Journal o f Object-Oriented Programming, ppl6-33, July 1990.

[104] B . Venners - Exceptions in Java.
Java World, 3(7), July 1998.
http://www.javaworld.com/javaworld/jw-07-1998/jw-07-exceptions.html

[105] P. M. Melliar-Smith and B. Randell - The role o f programmed exception handling.
Proceedings o f an ACM Conference on Language Design for Reliable Software, ACM, 1977.

[106] B. Liskov and A. Snyder - Exception handling in Clu.
IEEE Transactions on Software Engineering, 5(6), pp546-558, November 1979.

[107] N. Cocco and S. Dulli - A mechanism for exception handling and its verification rules.
Journal o f Computer Languages, 7, 1982, pp89-102.

[108] H. Custer - Inside Windows NT.
Microsoft Press, 1993.

213

http://www.javaworld.com/javaworld/jw-07-1998/jw-07-exceptions.html

109] L. R. Nackman et al - AML/X: a programming language for design and manufacturing.
IBM Research Report No. RC11992.

110] B. Liskov et al - Abstraction mechanisms in Clu.
Communications o f the ACM, 20, pp564-576, August 1977.

111] J.L. Knudsen - Exception handling, a static approach.
Software Practice and Experience, 14(5), pp429-449, May 1984.

112] J.L. Knudsen - Better exception handling in block structured systems.
IEEE Software, May 1987.

113] R. D. Tennent - Language design methods based on semantic principles.
Acta Informatica, 8, pp97-l 12, 1977.

114] R. Bird - Introduction to Functional Programming using Haskell.
2nd edition, Prentice Hall, 1998.

115] S. Thompson - Formulating Haskell.
University o f Kent Technical Report 29-92,1993.
http://www.cs.ukc.ac.Uk/pubs/1992/123/index.html

116] J. O'Donnell and G. Riinger - A formal derivation o f a parallel binary addition circuit.
Computing Science Department TR-1995-19, University o f Glasgow (1995).
http://www.dcs.gla.ac.uk/~jtod/publications/adder-TR95-19.ps.gz

http://www.cs.ukc.ac.Uk/pubs/1992/123/index.html
http://www.dcs.gla.ac.uk/~jtod/publications/adder-TR95-19.ps.gz

