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N otation

g '0 : dynamic flow stress

8 
V J

: strain rate

Ep (eq. (1.6.1.1)) total energy absorbed by the struck’s ship structure

ay: yield stress o f the material

Rt : volume of the damaged material

E^)! (eq(l .6.1.3)) energy absorbed by the side structure for strike other than a mid-span 
strike.

ECL: (eq(1.6.1.3)) energy absorbed considering a mid-span strike.

Mb, Vb : mass and velocity at impact of striking vessel 

Ma, Va : mass and velocity of the struck vessel 

Kt : kinetic energy lost in collision

dm: added mass accounting for the hydrodynamic resistance of the surrounding water 

L: half distance between web frames

2be: effective width of deck plating = 2 • C • td • , by Timoshenko
V a y

E= modulus of elasticity

C= experimental constant varying with the proportions of the plate. C »  1.0.

Y= CTcr /

td= thickness of deck plating.

oa= buckling stress of the frame alone (for calculating aa the span of deck transverse 
taken as the distance between ship’s side and the nearest heavy longitudinal girder).

A — cross sectional area of the frame alone.

H= vertical depth of damage in the struck ship



ts— thickness of the side plating (equivalent thickness allowing for stiffeners) 

n: number of decks involved in collision in the struck ship 

q: intensity of the uniformly distributed load acting on a side transverse 

qc: uniformly distributed load to cause collapse of a side transverse 

s: frame spacing

y: wedge penetration into the deck of the struck ship

Ad: Cross-sectional area o f stiffened decks in the bow structure of the striking vessel
involved in collision

As: Cross-sectional area of stiffened side shell plating of the striking bow

D: distance between decks

Ej: energy absorbed due to membrane tension in the stiffened side shell plating of the 
struck ship

E2: energy absorbed due to membrane tension in the decks of the struck ship 

E3: energy absorbed due to buckling of the decks of the struck ship.

E4: energy absorbed due to the collapse o f the deck transverses in the struck ship

E5: energy absorbed due to the collapse of the side transverses in the struck ship

E6: energy absorbed due to wedge splitting of the decks of struck ship

E :̂ energy absorbed by the bow structure of the striking ship

EfnmorJ Eo: energy absorbed by the struck ship prior to the rupture of hull plating

Es: energy absorbed by the struck ship

Ep total energy absorbed by the structures of the colliding vessels

F: sum of the membrane tension forces in side and deck plating as well as the buckling 
force in the latter, calculated on one side only of the incursion line

I: second moment of area of side transverse about axis of bending

Mp: fully plastic moment

My: yield moment

P: force required to push the striking bow into the deck plating of the struck ship



Pb: force acting on the bow structure of the striking ship during collision 

Pc: Collapse load of a deck transverse flanking the strike

R: reaction force at deck transverse in the struck ship flanking the strike as a result o f the 
impact force

RX1: volume of the deformed portion of side shell plating of the struck ship due to 
membrane force.

RX2: volume of the distorted portion of deck plating of the struck ship due to membrane 
tension force

RT3: volume of the displaced portion of deck plating of the struck ship due to buckling

RT4: volume of the damaged parts of deck transverses in the struck ship

RX5: volume of the damaged portion of the deck plating due to the penetration o f the 
striking bow

Rp,: volume of the damaged material in the bow structure of the striking ship

S: height of the side transverses (i.e. distance between decks or between deck and bottom)

W= indentation at the incursion line

WQ: critical indentation, indentation at the incursion line at which the deck transverses 
flanking the strike start to buckle

W l = indentation at frame No. 1

WL: limiting indentation, indentation beyond which rupture of the hull plating occurs

Y: longitudinal length of damage in the struck ship

Z: longitudinal length o f damage in the bow structure of the striking ship

eu: maximum (ultimate) strain at plating rupture

0: striking ship’s stem half angle

om: average compressive stress at collapse = <D ay

<D: ultimate strength factor = om/o y

O b,<Dd: ultimate strength of bow and deck structure respectively 

ty: angle between the position of side plating before and after collision.



Chapter 1 Introduction and Literature Review

Chapter 1

Introduction and Literature Review

Introduction

The study o f the collisions between ships constitutes an imperative requirement in 

the recent years. The reason for this, is the continuously rising attention that government 

of most countries, the media and as a result the public opinion, attracted for the 

contamination of the environment and the protection of human life.

During the last half century, protection of the environment has been of major 

concern. It is evident, that the technological achievements have caused damage to nature 

resulting from either continuous processes or accidents. The pollution of the marine 

environment has become o f major concern due to the large amount o f accidents occurring 

at sea. Marine pollution is defined as the addition of any substance to the marine 

environment as a result of man’s activities, with a big and generally detrimental effect on i t  

The pollution of the marine environment is stemming from different sources, such as 

from pollutants released from shore, the atmosphere and of course marine structures. It 

has been estimated by Tsokalis et al. (1994) that annually 2.3 million tons of petroleum are 

released into the sea and that 5% of this amount is attributed to tanker accidents.

The percentage of total and partial losses attributed to collision accidents on the total 

amount of total and partial losses is being recorded every year from the Institute of
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London Underwriters. Every year’s edition contains a lot of statistical data on casualties. 

The above — mentioned percentage for the years 1985 -  1996 is varying from 15 — 20%. 

Moreover, collisions have been identified as being the most frequent accidents resulting to 

oil — spills. ISSC (1997) published a table (Table 1.1) from a work carried out by Ventikos, 

which shows that tankers caused the 1/3 of the oil — spills in 1994.

The need for studying collisions becomes quite clear, when specific cases are coming 

in mind. A lot o f accidents occur every year but some of them are of great importance due 

to their adverse results. There are cited below two examples of collisions that occurred 

in i994. The first one occurred in Yangtze River on the first of February 1994 between the 

vessels “Chuanyun 21” and “Changjiang 2023”. The struck vessel “Chuanyun 21”, which 

was a passenger ship sank subsequently after the impact. Ninety-eight people were missing 

and never found. The other one occurred at Bosporus on the thirteenth of March 1994 

between the vessels “Nassia” and “Shipbroker”. The struck vessel “Nassia” was blown up 

as a result of the collision. Twenty-nine people were killed by the explosion and two more 

were seriously injured.

As it can be seen, except the contamination of the marine environment, marine 

accidents often result in loss of lives. Collisions are high — risk accidents that may cost the 

life of many people. It is thus important not only to try to prevent such accidents but also 

to deal with the residual strength of the structure after the occurrence o f the accident in 

order to prepare for safe salvage operations.

Except the pollution of the marine environment and the loss of lives, which remain 

two very ruinous consequences of collisions, loss of property and costly salvage and 

cleaning-up operations are as well to be considered. It is well known that an enormous
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amount of certificates are required for a tanker to sail in the United States Coastal Waters. 

A tanker causing a large oil spill accident could easily result in a bankruptcy crisis for its 

shipping company.

The researchers, realkdng of the role that the accidents of ships play in pollution and 

loss of lives, were motivated to conduct a vast amount of work with the final aim of 

protecting the marine environment, the lives at sea and the affected areas and population.

The environmental pollution is not the only problem. Many times this pollution 

affects the population in the vicinity of the pollution. For example, due to storms in the 

Sea of Japan, a Russian tanker carrying 19000 tons of heavy fuel oil broke into the fore 

part and the aft part of the hull and a large amount of oil was spilled, which caused huge 

damage to the local fishing industry. For this reason, a lot of research work has been 

carried out in the various aspects concerning ship accidents.

The first samples of research work in the field of ship collisions were presented in the 

early fifties. The bulk of the research work from the early fifties to the early seventies was 

devoted to the reactor and nuclear spaces of nuclear powered ships. From the early 

seventies until now, the attention of the researchers has been paid to the development of 

methodologies for designing hull structures, which can sustain the impact induced by a 

striking vessel without rupturing. This is particularly important in the case of oil tankers, 

LNG and LPG carriers or other similar types of ships.

L I Collision S tatistics

The statistical data cited in this chapter were collected from the annual editions o f the 

Institute of London Underwriters “Casualty Statistics 1996”, the annual editions o f Lloyd’s 

Register “World Casualty Statistics”, and the report of ISSC 1997.
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The annual edition of Institute of London Underwriters reports every ship accident 

(collisions, grounding, fire and explosion, machinery and others), which result in total loss 

of the ship. The ships recorded are only those with capacity over 500 gross tons.

The accidents are classified as actual total losses and constructive total losses. 

Moreover, the accidents are classified according to the type of the vessel, their capacity, 

the cause of accident and the age of each vessel.

A ship is considered “total loss”, when the cost of repair is out o f rational limits and 

of course when is impractical for the ship to be repaired. The term “total loss” is 

attributed to ships, which after the occurrence of an accident are yielded to scrap or ships 

that sank during the accident. The “total losses” are subdivided to actual and constructive 

total losses, The term “actual total loss” is attributed to a ship that sank during the 

accident or was totally destroyed. On the other hand, the term “constructive total loss” is 

attributed to a ship, for which the insurance decided that its repair is out of cost bounds.

As it can be seen from Figures 1.1, 1.2, 1.3, the percentage of collisions that resulted 

in total loss of the vessel as defined above, on the total losses of all kinds of accidents is 

for tankers 5.3%, for bulk carriers 28.6%, for general cargo ships 14% and for other types 

o f ships 10.5%.

Daidola (1995) presented a table (Table 1.2) listing 50 major oil spills from tankers 

and combined carriers. The table contains the name of the ship, its size, the volume of the 

oil spill and the location and cause of the accident. The data collected reveal that from the 

fifty recorded oil spills eleven occurred due to collision.

A lot of aspects must be examined through statistics. This will give a clearer image of 

the collision problem and what should be done. Statistics about the geographical location
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of the collisions, the weather conditions, the time of the accident, could be provided. This 

kind of statistical analysis will motivate the authorities to establish new regulations.

1.2 Protection against Collision

In order to reduce the consequences of ship collisions, classification societies, 

researchers and government of countries have tried to adopt adequate measures. These 

measures are mostly consisting of new regulations. The aim of the rules established is to 

prevent loss of lives at sea, to reduce or prevent marine pollution and finally to prevent 

loss of property.

There are two goals that should be achieved. The first one is to adopt preventive 

measures so that the collision accidents do not occur. The second one is to reduce the 

consequences of collision accidents, when they occur.

The first goal is called “Prevention”. Prevention of collisions could be achieved by 

the installation of proper navigational aids on the ships. The rules established enjoin the 

use of such navigational aids. Crew also plays a very important role on the prevention of 

the accidents. From statistical analysis of the accidents, it became clear that most of the 

accidents occurred during the night or during the lunch break of the crew. Apparently, 

because of the involvement of human factor, accidents will continue to occur.

The second goal is called “Mitigation”. Most accidents are caused by human factors 

such as operational mistakes. The complete removal of these factors is impossible and 

accidents will happen. That is the point that “mitigation” comes in scene. The aim is to 

modify the structure of the ships in such a way that the damage, which occurs during

10



Chapter 1 Introduction and Literature Review

collision, would not result in the sinking of the vessel or in the outflow of hazardous 

cargo. The 13th ISSC (1997) in the chapter “Structural design against Collision and 

Grounding” reported some new design concepts and compared them in terms of 

prevention of oil outflow. The increased efficiency of these designs is either through 

improvements in compartmentation of cargo and ballast spaces, or through improvement 

crashworthiness against groundings and collisions.

There have been developed a lot o f designs in order to reduce the oil outflow, some 

of them are shown in Figures 1.5,1.6, 1.7. Many ideas are good and effective but they are 

not cost effective. The cost is a very important restrictive factor, which counts the 

feasibility of the designs. Bearing these in mind, it is needless to say that wider double 

sides, deeper double bottoms, smaller cargo tanks, increased scantlings of structural 

members, and improved material properties of materials enhance the crashworthiness and 

minimize the oil outflow. However, the economic pressure and the ups and downs of the 

shipping market make the fully incorporation o f these features to ship design 

unacceptable. Therefore, there is a need for innovative and jointly practical design ideas to 

be developed.

It is obvious that both of the above-dted goals can not be achieved totally. Acddents 

will continue to occur whatever the navigational aids are and also oil will continue to 

outflow into the sea whatever the structural configuration of a ship is. So the goal to be 

achieved is to find the golden section and maximize the effect o f prevention and 

mitigation.

The part that “prevention” can play is through regulations. The authorities by keeping 

in hand the results of statistical analysis can identify the high-risk areas and impose limits 

on the speed of the vessels, which sail in these high-risk areas.
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On the other hand, die part that “mitigation” can play is through modifying the 

structural configuration o f vessels. The aim is to accomplish the best structural 

configuration in terms of energy absorption before the rupture of the hull, which will 

obviously differ from ship to ship. The tools for this work are the methods provided by 

the researchers and predict the capacity of energy absorption by a ship design. A vast 

amount of research work has been carried out in this direction. The object of research is 

to develop a method, which could accurately predict the energy absorbed during a 

collision.

1.3 A ssum ptions used in  Collision Evaluation

The collision between ships is only one of the possible collision scenarios that have 

been recorded during the years. The others possible scenarios are:

• Supply vessel to offshore structure.

•  Ship to rigid pier or bridge.

•  Ship to artificial island.

The present thesis examines the ship to ship collision and does not deal with the 

other scenarios. Focusing more in any of these collision scenarios, the nature of those is 

usually described as being right angle or oblique, referring to the relative position of the 

struck ship center line to the vector the vector of velocity of the striking ship/object.

Ship to ship collision scenario consisting of a striking ship and a struck ship. The 

striking ship travelling with a certain speed is impacting a struck ship, either stationary or a 

moving one. The impact force is a function of the stiffness of the structure of the two

ships in the contacted area. The load to penetration relationship is different from ship to
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ship collision. The shape of both the striking and struck ship at the end of the collision is 

highly depended on die relative stiffness of the two structures, their geometry and a large 

number of other parameters. The key elements associated with ship to ship collisions are:

• nature of collision: oblique or right angle

•  intensity of collision: speed, displacement, bow shape, draft

•  condition of struck vessel: displacement, draft, speed, relative orientation, 

environmental conditions and structural resistance to collision.

In order to study collisions, which is a very complicated phenomenon, investigators 

are obliged to adopt a number of simplifying assumptions to make the problem solvable. 

The most used assumptions that are made are:

1. Collision between ships is an entirely inelastic process.

2. The structural response of ship’s structures during collision can be estimated 

using static analysis.

3. Structural behaviour can be disconnected from the rigid body response.

4. The behaviour of the material is ductile.

5. The main energy absorption mechanism prior to fracture of the side shell is 

membrane tension.

These assumptions are more or less used in most of the literature dealing with the 

study of collisions. Some of them have been confirmed through experimental tests, while 

others are still being argued.

Assumption (1) is well confirmed from many researchers. It has been proved that the 

energy dissipated in the elastic process is negligible compared to the total energy absorbed 

in a collision.
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Assumption (2) is still under consideration. The static analysis can be applied only if 

the dynamic effects, such as inertia force of the colliding ships and strain-rate sensitivity of 

the material, can be neglected. It is evident that all impacts involve some dynamic effects. 

Therefore, it is needed to determine when a static approach is adequate and when a 

dynamic approach is more suitable. Jones (1976) proposed a criterion for the transition 

from static to dynamic loading. I f  the duration of impact is longer than the corresponding 

natural period of elastic vibration of the hull plating, then a static analysis is adequate; 

otherwise a dynamic approach is required.

Assumption (3) was found to be very rational. McDerrmott et al. (1974) through 

simplified approaches identified the elastic and hydrodynamic (energy absorbed due to the 

hydrodynamic resistance of the surrounding water) energies and concluded that they are 

small compared with the potential plastic energy absorbed in minor collisions that 

terminate just prior to the rupture of the hull plating of the struck ship.

Assumption (4) is used in most o f the methods developed through the years. On the 

other hand, Akita et al. (1972) have detected, in the experimental tests that have 

conducted, two distinctly different failure types in transversely framed side structures, 

when penetrated statically by a rigid bow. The one is a deformation type failure, which is 

characterized by buckling o f decks and stiffeners and a large portion of the external load is 

supported by membrane tension prior to the rupture of the side shell. The other one is a 

crack type failure, which is characterized by a local penetration of a rigid bow, which 

ruptures the side shell and decks as indicated in Figure 1.11.

Finally, assumption (5) has been verified theoretically and experimentally. When the 

penetration overcomes 0.75-1.0 times the thickness of the side shell plating then the 

membrane effect becomes the dominant energy absorption mechanism, until the rupture 

of the shell plating.

14



Chapter 1 Introduction and Literature Review

1.4 D ynam ic E ffects

Although assumption number (2) is extensively used in the theoretical simplified 

methods, it is clear that all impacts will involve some dynamic effects. When the dynamic 

effects are to be taken into account, two important aspects should be considered. The first 

is inertia force and the second is strain-rate sensitivity.

1.4.1 Inertia force

The dynamic effects that collisions involve are described in the term of the “inertia 

force”. When the two ships hit each other a lot of dynamic effects take place as overall 

vibrations of the ships structure and local vibrations of the structural elements. The error 

could be considerable when the duration of impact is less than the natural period o f the 

plating as Jones(1973) has shown.

1.4.2 Strain H ardening E ffect

It is well known that the post-yield plastic flow of iron and mild steel is considerably 

affected by the rate of straining. Mild steel is of great importance in naval architecture and 

ocean engineering because it is extensively used in marine structures.

The most widely used formulation for the dynamic flow stress as a function of the

strain rate 8 is known as the Cowper-Symonds relation: 
V )

q
8

D
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The constants D and q have been investigated but particularly from dynamic tests on 

materials with small strains, whereas the strains in many impact problems in naval 

architecture can be considerably larger and may even reach the rupture strain.

Marsch and Campbell (1963) have shown that the strain rate sensitivity of mild steel 

decreases with increasing strain. The Cowper-Symonds equation ignores this observation 

and might exaggerate the influence of strain rate effects when large strains are involved in 

the calculations.

McDermott et al. (1974) in order to take into account the strain hardening effect 

proposed that in the calculations of the energy absorbed instead of the yield stress of the

G y + a umaterial (ov) could be used the value----------- .
y 2

Hegazy (1980) adopted the proposition of McDermott et al. (1974), which seems to 

work for the approximate theoretical methods.

1.5 E xternal and Internal M echanics o f  Collision.

The analysis of a ship to ship collision is usually separated into the external mechanics 

and the internal mechanics. The external collision dynamics deals with the rigid body 

motions of the colliding vessels. The inner collision dynamics involve the evaluation of the 

force — indentation responses of the striking ship and the struck ship during the collision. 

The internal dynamics represent the structure dynamics while the outer dynamics 

incorporate the virtual impact dynamics and the hydrodynamics. In “internal dynamics” 

the stresses and deformations to both ships are derived on the mere basis of the total 

impact energy and of the initial kinematic configuration of the impact. In “outer 

dynamics” the total impact energy is computed using the working hypotheses of added 

masses accounting for the water resistance.
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To the knowledge of the author two methods have been presented in the external 

collision dynamics field. The first one is coming from Woisin (1987) and the second one is 

from Hegazy (1979), conducted at the University of Newcastle.

The field of inner collision dynamics is swarming with methods. The pioneering 

method was presented by Minorsky (1959) and was followed by a lot of researchers. A 

vast amount of work has been carried out since then, which will be reviewed in the 

following subsection.

1.6Literature R eview

The methods used for the collision resistance of ships are usually classified as minor 

collision methods and major collision methods. A minor collision (or low energy collision) 

is defined as a collision, which take place at relatively low speed where the shell of the 

struck ship is deformed but not ruptured. On the other hand, a major collision (or high- 

energy collision) is defined as a collision, which is associated with high impact speed and 

tend to cause rupture of the hull.

1.6.1 M inor Collision M ethods

McDermott et al. (1974)

McDermott et al. (1974) presented an analytical procedure to evaluate the structure of 

a tank ship from the viewpoint of the actual protection it affords the cargo during minor 

collision.

This research work considers the energy absorption characteristic of the individual 

components and also separates the elastic, plastic and hydrodynamic energies of collision.
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The authors conclude that elastic and hydrodynamic energies are small compared with the 

potential plastic energy available and can be neglected when estimating the energy 

absorbed in minor collisions that terminate just prior to cargo tank rupture.

The method pertains to the approximate theoretical methods and consists from the 

following described mathematical model. Three phenomena are assumed to produce 

plastic deformations:

•  longitudinal plastic bending of the stiffened hull plating

•  plastic membrane tension in the stiffened hull plating and deck

• yielding or buckling of the web-frames (and/or swash bulkheads)

The stiffened hull of the struck ship is analysed as a series of independent longitudinal 

“T-beam” units, each consisting of one longitudinal stiffener and the portion o f hull 

plating that may be assumed to act monolithically with that stiffener. The force transferred 

from each “T-beam” unit to the flanking web-frames is calculated for every indentation in 

order to be discovered if the flanking web-frames collapse. The total energy absorbed is 

finally calculated by adding the plastic bending energy of the stiffened hull, the membrane- 

tension plastic energy and energy absorbed due to the collapse of the web-frames.

Jones (1978)

Jones (1978) in order to extend Minorsky’s method to minor collision problems 

developed the following method. This method pertains to the so called global methods or 

simple design methods, because it establish a simple relationship between the amount of 

energy absorbed from the colliding ships’ structures to values of the volume and area of 

the damaged material.

18
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Considering a rigid perfectly plastic beam with fully clamped supports across a span 2L 

which is subjected to a concentrated load P at the mid span, Jones presented the following 

formula for the energy absorbed by the struck ship’s structure:

fwVEt = 0.030288 • CTy • Rt • —  (1.6.1.1)
v L J

2 L B H  (1.6.1.2)
T 144

where E j is the total energy absorbed (ton-knots2), oy is the yield stress (lb/in2), W is the 

final deflection and RT is the volume of the side shell plating assumed to be involved in 

membrane mechanism (ft2in) (see equation 1.6.1.2), B is the beam breadth, and H is the 

beam thickness.

This formula (equation 1.6.1.1 with os = 30000 lb/in2) for various values o f was

compared with Minorsky’s empirical relation (see Figure 1.9), which gives a family of lines 

radiating from the origin of Fig. in which minor or low energy collision was contained.

Van Mater (1978)

Van Mater (1978) proposed an extension to Jones formula so that the latter could be 

applied to an off centre hit. The geometrical model o f the method is shown in Figure 1.10.

Considering the effect of a concentrated load at variable location on a fully clamped 

beam, Van Mater concluded to the following formula:

1 1
—  +  —  

a b
(1.6 .1.3)
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where ECL is the absorbed energy for mid span strike as introduced by Jones (1978).

Van Mater used the failure criterion proposed by McDermott (1974) to approximate 

the limiting indentation beyond which rupture of the hull occurs. By introducing the result 

in the equation (1.6.1.3) the equation reduces to:

It is evident that this result contains many oversimplifications but it shows clearly that 

a stiffened panel between bulkheads will absorb much less energy before rupture as the 

strike point moves away from the centre span.

The approach taken by both Jones and Van Mater is an oversimplification of 

circumstances that would prevail in an actual collision. The point that these methods wish 

to make clear is that there is hope for the development of a simple Minorsky type 

relationship, which would permit the prediction of the depth of incursion at shell rupture 

for a given input in collision kinetic energy within reasonable upper bound error.

1.6.2M ajor Collision M ethods

Three methods have been well known for calculating the work done in major 

collisions, the first by Minorsky (1959), the second by the structural group at the Naval 

Construction Research Establishment (N.C.R.E.) (1967) and the third by Akita and 

Kitamura (1972). The common objective of these methods was to estimate the energy 

absorbing characteristics of ships’ structures with basic consideration the safe designing of
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nuclear ships. Due to the increased need for safe ships which carry hazardous cargo the 

methods where applied during the years to tankers and LNG carriers.

Minorsky (1959)

Minorsky (1959) in his pioneering paper on ship collision developed a semi-empirical 

procedure based on the overall damage and kinetic energy lost in collision. Twenty-six 

serious collisions in the period until 1959 were analysed for the kinetic energy absorbed in 

the collision and for the extent of the damage. Data were provided by the U.S. Coast 

Guard.

The collision scenario is assumed as a striking ship travelling with a speed VB and 

impacting a stationary ship at right angles.

Defining;

MB, VB as the mass and velocity at impact of striking vessel,

Ma, Va as the mass and velocity of the struck vessel (VA = 0)

U as the final common velocity in the direction of the striking vessel, 

dm as the virtual increase in mass of the struck vessel due to water entrained.

According to the conservation of momentum and energy principal, it is evident:

U-(Mb + Ma +dm )=  Ma Va +M b • Vb (1.6.2.1)

Kt = | m bV | - 1 ( M b +M a + 0 .4 M J-U 2 (1.6.2.2)
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The equation (1.6.2.2) gives the kinetic energy lost in collision, KT, which is the 

difference between the initial kinetic energy and the final energy remaining in the system 

after impact. As it can be seen from the above-mentioned equations the added mass was 

estimated by Minorsky to be 0.4MA.

The second part of the study consisted in selecting a function of the energy-absorbing 

strength members of the colliding ships so that a satisfactory correlation could be 

established between the structural damage and the lost kinetic energy. The members that 

can absorb energy in collision were argued to be those members having depth in the 

direction o f penetration. Such members are the decks, flats and inner and outer bottoms 

of both vessels. Therefore, a “resistance factor” Rx was calculated based on these 

members.

Through calculation, the function that was obtained was:

Et = 414.5 • R t +121900(ton-knots2) (1.6.2.3)

The result was a straight line except an area near the origin, where the relationship 

between KT and RT could not be established due to the considerable scattering of the 

points (see Figure 1.8). This means that the Minorsky formula is only applicable in major 

collisions.

Woisin (1979) based on the experimental results of GKSS (Hamburg), proposed a 

modification on Minorsky’s formula as follows:

Kt = 47• R t + 0 . 5 £ h st |  (MJ) (1.6.2.4)
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where, KT is the loss of kinetic energy, Rx represents the volume of the damaged material, 

hs is the height of broken or heavily deformed longitudinal member, and tg is its thickness.

N .C K E . (1967)

A simple theoretical method was developed and presented by NCRE (1967). The 

formula was confirmed by static tests on a series of models. The striking vessel is assumed 

to have a wedge shaped rigid bow. The formula takes into account only the contribution 

o f the decks of the struck ship. The striking wedge was assumed being resisted by a direct 

crippling stress in the deck, normal to the wedge, and a frictional force tangential to the 

wedge. The crippling stress was found experimentally to be 90 per cent of the 

corresponding 0.3 per cent proof stress for the material of the structure.

With these assumptions, some very simple expressions were derived for the 

penetrating force and the work done:

Penetrating Force = 2 ■ a • A r . a aNsin—+ u -c o s -
2 2 j

= 2 k a t tan— + [x -x (1.6.2.5)

Work Done = Jf  • dx = k • <j • t • tan— + p (1.6.2.6)

where:

A= effective area of contact on each side of wedge 

a= wedge angle

k= (effective area of contact)/(area of plating)= A/Ap 

t= thickness of plating
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(x= coefficient of friction 

x= depth of penetration

Introduction and Literature Review

Considering the outcome of the experiments for the crippling stress and that the 

coefficient of friction was experimentally deduced to be 0.25, then the equation (1.6.2.6) 

concludes to:

Work done = 0.9 • cry ■ t • (tan 8 + 0.25) • x2 (1.6.2.7)

Equation (1.6.2.7) is a very simple Minorsky type formula. The basic limitation to its 

use is that only an infinitely rigid bow was considered. However, Belli (1970) summarized 

the experimental work which had been conducted in Naples since 1961 and found that the 

NCRE method gave good predictions provided appropriate allowance was made for the 

rigid bow assumption.

Akita etaL (1971. 1972)

Akita et al. (1971) conducted a very large amount of work consisting by experiments 

and theoretical analysis of collisions. The experimental results obtained from eight 

idealized ship side models penetrated statically by rigid bows. The ship side models 

consisted of a side shell, two decks and transverse framing. Also the behaviour of eleven 

other side structural designs was examined.

The authors observed that there were two major types of failure in transversely framed 

side structures, which were penetrated statically with rigid bows. A deformation failure 

mode is characterized by buckling of decks and stiffeners ever a relatively large area o f the 

side shell and a large portion of the external load is supported by membrane tension prior
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to the rupture of the side shell. A crack type failure is characterized by a local penetration 

o f a rigid bow, which ruptures the side shell and decks as it can be seen in Figure 1.11. The 

deformation type o f failure occurred when the strain directly below the bow was less than 

about 0.3, while crack type failure were associated with larger strains.

It appears form some dynamic tests on similar structural arrangements, which were 

reported by Akita et al. (1971), that the energy absorbing mechanisms and fracture types 

were similar to those observed in the corresponding static tests. However, the energy 

absorbed in a dynamic test was larger than that which was absorbed in the corresponding 

static tests, a circumstance that was attributed to the influence o f material strain-rate 

sensitivity. It should be remarked that this increase in capacity might not be realized in a 

ship during a collision because this is a highly nonlinear phenomenon, which is very 

sensitive to size. Moreover, Duffey (1971) has shown that the influence of material strain- 

rate sensitivity cannot be properly scaled up from a model to a full sized structure, when 

they are made o f identical materials.

Akita et al. (1971, 1972) have also developed an approximate and simple formula for 

calculating the amount of energy absorbed by the decks of a struck ship during collision. 

The developed formula is based on the same principles as the formula developed by 

NCRE (1967), except that the frictional forces between the deck plating of the striking 

bow were neglected and the value of the crippling stress was taken as 80 per cent of the 

yield strength of the material. Besides, the formula can also take account of the energy 

absorbed by the striking bow during a collision. This was done by introducing a correction 

factor relative to absorbed energy by a rigid stem and depends on the strength ratio of 

stem to side structures.

The proposed formula, when the relation between the absorbed energy and 

penetration by a rigid stem falls into a crack-type fracture, is:
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Es(w) = N ta -ct0 tanS w2 (1.6.2.8)

The relation between the absorbed energy and penetration by a soft stem can be

expressed:

E = p(^)*N td *a0 tand-w 2
A (1.6.2.9)

where:

N = number o f deck layers, 

deck plate thickness 

o0— material constant (use 80% of yield point)

0= half of stem angle

w= sum of penetrations for both stem and side. When a rigid stem is assumed, 

penetration of side only. 

wA= dent in the side o f a struck vessel

p(X)= correction factor relative to absorbed energy by a rigid stem.

X— strength ratio of stem to side structure.

The strength ratio of the stem-side (X) as well as the correction factor of absorbed 

energy are obtained by using a buckling load for the stem and a rupture for the side, which 

can be obtained either as experimental or calculated values.
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1.7 Conclusions

In the minor collisions’ field the methods, which are known were developed by 

Rosenblatt (1971,1972), McDermott et al. (1974), Jones (1978) and Van Mater (1978). The 

first two methods pertain to the approximate theoretical methods. The plastic energy 

absorbed from the side of a struck ship is estimated using plasticity theory and various 

empirical relations from several sources for the load-deflection and energy-absorbing 

characteristics of the structural members, which were deformed during collision. The other 

two methods, which are actually one method and its extension to variable location 

collision cases, pertain to the so-called global methods. The global methods are Minorsky- 

type methods that relate the energy absorbed with the volume of the damaged material 

during a collision. These methods were intended to show that there is feasible to obtain a 

simple design method for the minor collision problem.

In the major collisions’ field the methods, which are most known were developed by 

Minorsky (1959), NCRE (1967) and Akita et al. (1971,1972). All the cited methods pertain 

to the global methods or simple design methods.

The pioneering method that was presented by Minorsky is based on data from twenty- 

six actual collision cases and predicts the absorbed energy for major collisions with a 

reasonable accuracy. The other two methods presented by NCRE and Akita et al., 

concluded to simple formulae based on experimental data.

The methods refer to the major collision problem will be further discussed in chapter 

3 in confrontation with the proposed method developed by Hegazy (1980).
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1.8 A im  o f  the Thesis

Ship to ship collisions is a very complicated phenomenon and the parameters 

involved are too many. There are several ways to study collisions. The ways are through 

experimental tests, finite element analysis, theoretical methods and the global methods (or 

simple design methods). The basic aim of all these methods are to provide guidelines and 

easy-to-use tools to enable designers to upgrade the crashworthiness of ship structures.

The experimental tests are a very useful help to the understanding of the collision 

mechanics. They are a great support to the theoretical studies but they can not be used as a 

design tool. The cost and the scaling difficulties are restrictive factors to the applicability of 

experiments.

Finite element analysis is a very powerful tool. However, it can not be used as a 

design tool because it is a time consuming procedure. Besides, the cost of FEA is so high 

that makes the method inhibitory for use in the preliminary design stage.

The approximate theoretical and the global methods are these, which are appropriate 

for the work of the designers. These methods provide a quick and low-cost approximation 

of the energy that will be absorbed during a collision from a particular ship structure.

In this thesis a method developed by Hegazy (1980) was used to appraise the energy 

absorption capacity of several ship structural designs during a side collision. The method 

was programmed in FORTRAN 90. The energy absorption capacity of different members 

of ship structure is plotted against the indentation and the volume of damaged material. 

The program runs for two different ship designs. The first ship design belongs to a small 

oil tanker with a structural configuration similar to the simplified one proposed by Hegazy.
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Furthermore, the method is modified in terms of the strength calculation of decks. A 

new method calculating the ultimate buckling strength of plates is introduced in the 

Hegazy’s method in order to achieve more accurate results. Results were produced and 

compared.

Moreover, the method is applied on a double hull design. Some modifications were 

made in order for the method to be applicable on a double hull design and work automatic 

for any indentation without interfering with the user. A single hull design was developed 

based on the principal dimensions of the double hull design. That was found to be a good 

way to compare the crashworthiness between single hull and double hull designs.

Finally, a parametric optimization was carried out. The method used gives the ability 

of assessing the energy absorbed from individual part of the structure. That’s why, it is 

easy to see if a certain amount of extra material is given, where is the best part of the ship 

to be enforced in terms of the maximization of the energy absorbed by the structure.

It is believed that the work carried out in this project will provide useful data to the 

designers and the researchers. This thesis is hoped to be a step towards the better 

understanding of collision mechanics.

1.9 Layout o f  the Thesis

The second chapter contains a closer look to the internal mechanics o f collisions. The 

mostly used assumptions are under discussion and an extensive description of the 

mathematical modeling is presented. Finally, the modes o f Failure of the individual 

structural members are examined.
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The third chapter begins with some discussion on the existing methods and their 

advantages and disadvantages. Further, the method that will be used for the calculations is 

cited and some remarks are made. The Fortran program algorithm is then presented. 

Concluding, some indicative results for a small oil tanker are derived and are estimated.

In the fourth chapter a method, developed by Pu and Das, is proposed for the 

calculation of the ultimate buckling strength of the decks. The method was incorporated in 

the program calculating the energy absorbed and some results were derived. The results 

from the modified program and the original one are compared.

In the fifth chapter the method is used to predict the energy absorption capacity of a 

double hull tanker. The assumptions that had to been made and the collapse mechanism 

and geometry are discussed. Finally, results are produced in terms of indentation and 

volume of the damaged material.

In the sixth chapter a single hull mid ship section is developed based on the principal 

dimensions of the double hull design. Furthermore, application of the method on the 

single hull design takes place. The results from the single hull are compared with those 

from the double hull design and some remarks are made.

In the seventh chapter a parametric optimization of the double hull design is 

conducted. The optimization is conducted in terms of most of the structural parameters 

affecting collision. An appraisal of the results takes place and conclusions are cited.

Concluding, the author makes proposals for future work to be carried out.
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Figure 1.1: This figure illustrates the number o f tankers, which were declared as total losses 

and the cause o f the accident.

Fire/Explosion Collision/Contact Wrecked/Stranded 

CAUSE OF ACCIDENT

OtherFoundered

Figure 1.2: This figures illustrates the number o f bulk carriers, which were declared as total 

losses and the cause o f accident.
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Figure 1.3: This figure illustrates the number o f general cargo ships, which were declared 

as total losses and the cause o f accident.
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Figure 1.5: The figure illustrates a concept developed by Van der Laan, aimed to reduce 

replacement oil outflow.
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Figure 1.6: Kitamura proposed the above-illustrated design concept in which conventional 

longitudinally stiffened inner and outer shells are replaced by double skinned 

“Frame Panels”.
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Figure 1.7.a: Mid-ship section o f a design concept proposed by MarcGuardian.
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Figure 1.7.b: Void double hull space type VLCC.
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Figure 1.8: Empirical correlation between resistance to penetration and energy 

absorbed in collision. Minorsky (1959).
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Figure 1.9: Jones formula plotted on a Minorsky graph.
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Figure 1.10: Van Mater’s geometrical model.
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Figure 1.11: Akita et al. (1967) observed that the two above — shown modes were 

responsible for the failure of the ship side models.
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L ist o f  Tables

TANKERS 38%

BULK CARRIERS 10%

COMBINATION SHIPS 2%

CONTAINERS 2%

MISCELLANEOUS 20%

OFFSHORE VESSELS (Tugs, Supply vessels) 3%

PASSENGER 4%

REEFERS 2%

RO-RO 3%

GENERAL CARGO SHIPS 14%

UNKNOWN 2%

TOTAL 100%

Table 1.1: Ships, which caused oil-spills in 1994. Presented by Ventikos.
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Chapter 2

Internal Mechanics ofShip-Ship Collisions

Introduction

In the present chapter a more detailed look on the internal mechanics of ship to ship 

collisions is attempted. The field of the internal collision mechanics includes the evaluation 

of force-indentation response and of the damaged shape for the struck ship during 

collision. In side ship collisions, which comprises the aim of this study, the deformations 

of the structure can be quite large and as a result the structural members in the struck ship 

can experience failure modes such as yielding in buckling, crushing and rupture. 

Imperfections that would be considerably important to the usual design strength response 

will be of less importance to the response associated with ship collisions.

The structure of a struck ship will be deformed globally as well as locally. The 

coupling effects between local and global failure of the structure may be significant and 

their contribution to the resulted damage might have to be taken into account. Dynamic 

effects also, might be important and the demarcation line between the need o f a static 

analysis and the need of a dynamic analysis has not been clearly determined yet.

The finite element analysis is a very powerful tool and it is able to carry out this kind 

of work by minimising the need of assumptions. However, the modelling and computing 

times required make FEA a not easy-to-use tool. Therefore, the efforts of researchers have
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been focused on the development of an easy-to-use tool for the designing procedure o f a 

ship.

The present study attempts to work with an approximate theoretical method. The 

restrictive assumptions o f such methods affect the internal collision mechanics. The local 

and global deformations are assumed decoupled. Furthermore, static analysis of the 

collision is used. The effects of strain hardening and inertia of the ships are neglected.

2.1 Internal M echanics o f  Ship to Ship Collision

The collision problem as it has been already mentioned, is divided in two phases the 

external collision mechanics and the internal collision mechanics. The definition of each 

one is shown below:

■ External Mechanics: It is defined as motion of the ships during the collision

■ Internal Mechanics: It is defined as the deformation and destruction of local ship 

structures.

The behaviour of two ships and their structural members following a collision 

involves the global dynamics of the ship structures in way of collision. External and 

internal mechanics are functions of the iteration forces between the ships, including the 

inertia forces of the ships and the hydrodynamic forces of the surrounding water. [Incecik 

and Samuelides, 1981].

The amount of energy released during collision is not fully dissipated in crushing the 

structures of the colliding ships. The energy is distributed to a number of phenomena 

associated with collision. The energy distribution is as follows:
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1. Energy absorbed due to the rigid body motion of the colliding vessels (Fig. 2.9).

2. Energy absorbed due to the hydrodynamic resistance of the surrounding water.

3. Energy absorbed due to the overall elastic deformation of the struck and striking 

vessel, (see Figure 2.9).

4. Energy absorbed due to the elasto-plastic deformation of the structural members 

around the damaged area of the colliding vessels.

5. Energy absorbed during and after the rupture o f the hull of the struck and/or striking 

ship.

The energy values associated with the internal collision mechanics are the fourth and 

the fifth cited energies. The elasto-plastic deformation of the structural members is 

assumed as only plastic deformation of the structural members. The effect o f the energy 

absorbed during the elastic phase is assumed to be very small compared to the plastic 

energy. [McDermott et al. 1974].

2.2  M ethods o f  Treatm ent

The bulk of methods that have been studying collisions are referred to the internal 

mechanics of collisions. Predicting the deformation and penetration that a ship will 

undergo during collision is of major importance. This can only be achieved through 

studying the internal mechanics o f collisions.

The pioneering Minorsky method is one of the methods that takes into account the 

hydrodynamic energy involved in collision. This was not due to a theoretical analysis but 

due to the use of actual collision data. Minorsky (1959) used the added mass to calculate
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the effect of the surrounding water. This added mass was taken to be 40% of the struck 

ship’s mass.

On the other hand, most of the approximate theoretical methods ignore the effect of 

the surrounding water and the overall bending of the ship. McDermott et al. (1974) 

separated the elastic, plastic and hydrodynamic energy of collision. Through simplified 

approaches concluded that the elastic and hydrodynamic energies are small compared to 

the plastic energy available. Therefore, they can be neglected when estimating the energy 

absorbed in large indentations before the rupture of hull plating. Furthermore, it had been 

confirmed that the elastic energy involved in local elastic deformations and in the overall 

elastic vibratory response to the collision is negligible compared with plastic energy.

Almost all the approximate theoretical methods have adopted the above-dted 

condusions. The deformation of the structural members is treated irrespectively of the 

rigid body motions of the colliding vessels.

2.3 Structural m em bers in volved in  Collision

The models that are used to describe the structures of the colliding vessels are mostly 

simplified. The aim is to conclude in simple formulae for the energy absorption. 

Therefore, most of the methods are using models, which look like the one shown in 

Figure 2.1. This m odd is consisting from the decks (deck plating), the side shell plating, 

side transverses and deck transverses on the decks.

The usual assumption for the striking bow is that is considered to be infinitely stiff. 

This means that the collision energy is fully absorbed by the side structure o f the struck 

ship.
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The way of analysing the individual members o f the structure of the struck ship is up 

to the researcher and the accuracy aimed Most o f the studies employ static analysis, and 

the strain hardening effect is being considered through an increase to the yield stress o f the 

material.

2.4 M athem atical M odelling o f  the Internal Collision M echanics

Bearing in mind, that the present study is dealing with oil tanker designs, the 

structural systems that will be reviewed will be tanker or tanker-like designs. In the 

following paragraphs an analysis is attempted of the behaviour of structural members of 

the struck structure during collision.

The U.S. Coast Guard in the early 1970’s sponsored research to develop an analytical 

procedure to evaluate the structure of tankers from the viewpoint of the actual protection 

it affords the cargo during collision. McDermott et al. (1974) and Rosenblatt & Son (1975) 

developed the required method, which treats minor collision problems. It is a static 

analysis based on simplified models of various structural components in the struck ship. 

The energy absorbed by each component is computed and a summation of all components 

gives the total energy absorbed.

The failure mechanism is the point examined in this chapter. McDermott et al. (1974) 

uses the idealised collision model shown in Figure 2.3, which most of the researchers 

adopted in the study of collisions. Membrane tension in the side shell and stiffeners was 

identified to be the major mechanism absorbing energy in the collision.
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The mathematical model assumed for analysing the structural behaviour of a struck 

ship involves three phenomena producing plastic deformations, longitudinal plastic 

bending of the stiffened hull plating and deck, plastic membrane tension in the stiffened 

hull plating and the deck, and yielding, buckling and/or shearing of the web frames. The 

flow diagrams of the possible structural response are shown in Figure 2.4 and 2.5 for a 

single hull tanker and a double hull respectively.

The collapse mechanism presented by McDermott and Rosenblatt is as follows. 

Initially, the stiffened hull plating will distort in a plastic bending phase, with plastic hinges 

forming in the vicinities o f the strike and the web frames flanking the strike. During this 

phase, insignificant membrane tension will be developed. For a typical tanker with 

longitudinal angles stiffening the hull plating, the longitudinal angle-shaped stiffeners will 

then buckle in the vicinity of the flanking web frames, and possibly “trip” in the vicinity of 

the strike. Subsequently, the stiffened hull will unload momentarily as the strike continues, 

but will reload in a membrane tension phase. The hull will rupture at the end o f this phase, 

with possibly the flanking web frames yielding or buckling before the hull ruptures. In 

such cases, the membrane tension phase will divide into the following two respective sub­

phases: (1) there is no transverse movement of the web frames flanking the strike; and (2) 

the web frames flanking the strike move inward toward the ship’s centreline and the 

damage extends into the adjacent web frame spaces. During these phases, the deck is also 

distorting in membrane tension. However, the deck behaviour is presumed not to affect 

the sequences o f the options listed in Figures 2.4 and 2.5.

As indicated in Figures 2.4 and 2.5, other sequence o f phenomena are possible. In 

example, a hull with longitudinal stiffeners, such as rectangular bars that are not apt to 

buckle or trip, will tend to rupture before significant membrane tension has a chance to 

develop.
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McDermott et al. (1974) assumed that once rupture has been initiated, it will 

propagate throughout the stiffened hull plating to the extent determined by the incursion 

of the striking ship with no further energy absorption by the stiffened hull plating.

This is a description of the sequence of phenomena occurring during collision. The 

above-dted mathematical model has been adopted by most of the researchers developing 

approximate theoretical methods.

2.5 D ifficulties arising due to new  structures

The above mentioned collapse mechanism is good and adequate enough, when it can 

be applied to a structure as mentioned before. The simplified model structure o f the struck 

ship used is sometimes restricting the applicability of the sequence of phenomena 

proposed. This problem came up in the recent years with the diversification of structural 

concepts.

Before the OPA 90 regulations, most of the tank vessels were designed as single­

skinned hulls. In the 1990 Oil Pollution Act, the U.S. Congress mandated the use of 

double-skin tanker designs. All of the new designs have been aimed to reduce oil outflow 

and maximise the energy absorption before rupture o f the hull. Being this, the main 

objective of the designers, the structures that have been produced are very complicated 

and an application of the simplified model shown in Figure 2.1 is not feasible in most of 

these designs. The structural arrangements of the existing tankers offer an array of 

differing characteristics. The more new designs against potential pollution are proposed 

and adopted the more the structural characteristics will differ from one ship to another.
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The differences in transverse sections between a conventional single-hull tanker and 

what might be considered a conventional double-hull tanker were presented by Daidola 

(1995) and are shown in Figure 2.6. In particular, the transverse structure in the wing or 

side tank region can be quite different. The transverse framing of a double hull vessel can 

be narrow and also the struts used to tie the frame together in a single hull vessel are either 

reduced or omitted.

Because of the difference in structural details, single hull and double hull vessels are 

not expected to respond in the same way during collisions. The energy absorption capacity 

will be a function of the width of the double skin, the arrangement of the longitudinal 

girders, the structural configuration, separation of bulkheads as well as material and 

scantlings. Daidola (1995) gave a list of which structural details are critical in the collision 

and grounding response of a single hull and two types of double hull tankers (Table 2.1). It 

is evident, that the structural details involved in collision are quite different for each ship.

It becomes clear that a simplified model as the one proposed by McDermott (1974) 

and Rosenblatt (1975) and further adopted by Hegazy (1980) and other researchers could 

not predict the energy absorbed of a complicated or a unidirectional double hull structure 

during collision without modification of the mathematical model used.
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2 .6  A nalytical presentation o f the failure m odes o f  individual structural 

m em bers and their role in  collision

The conventional single and double hulls consist o f certain characteristics, which can 

affect their energy absorption capacity. These characteristics are shown in Table 2.1 and 

will be further discussed here as well as their modes of failure.

Side stiffened plating: The membrane tension in the shell of a vessel has been

identified as the most significant source of energy absorption during collision.

McDermott et al. (1974) considered the longitudinally stiffened side shell plating to be 

assemblies of independently acting “T-beams”, with each T-beam consisting of one 

longitudinal stiffener and the “effective width” of the plate with which are assumed to act 

as a structural unison. Generally, the effective width is assumed to be equal to the spacing 

between stiffeners and the dividing line between two adjacent T-beams is halfway between 

the stiffeners.

The collapse mechanism of this model is as follows. If  the flange of the stiffener 

ruptures, the rupture is assumed to transmit to the stiffener and the attached plate. 

Subsequently the stiffener buckling (tripping) the side plating is assumed to immediately 

unload in bending and reload in membrane tension. At the end of the membrane tension 

phase the most strained T-beam ruptures and the rupture is assumed to propagate 

immediately to the whole damage height.

Hegazy (1980), in the method he developed for minor and major collisions, considers 

the side shell plating as a plate subjected to out-of-plane load. The effect of the stiffeners 

is introduced as an increase of the thickness of the shell plating (equivalent thickness
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allowing for stiffeners). The side plate is modelled as a beam subjected to concentrated 

transverse load. With the transverse deformation increasing, the importance of bending 

moment and shearing force diminishes and the membrane force develops. At sufficiently 

large transverse displacement the membrane force dominates the behaviour. The formulae 

used for the energy absorbed during the membrane tension phase have been proposed by 

Jones (1973) and further confirmed by Wang and Ohtsubo (1997) (see Appendix B).

Wang and Ohtsubo (1997) presented three different mechanisms for the energy 

absorbed due to the plasticity of the side shell plating. Considering symmetric loading 

situations the models are shown in Figure 2.7. When the striking bow is very large, the 

struck side shell plating will stretch mainly in the longitudinal direction. In this case side 

plate can be modelled as a beam subjected to concentrated transverse load (Fig. 2.7(a)). On 

the other hand, when the striking bow is relatively small and sharp (for example the case 

of a VLCC struck by a small vessel), impact load is very local and concentrated. An 

appropriate model is a plate subjected to a point load (Fig. 2.7(c)). In between the two 

extremes there is another model, a plate subjected to a line load (Fig. 2.7(b)). The contact 

of the striking and struck ships is idealised as a line segment. The work of the authors 

concludes with the suggestion that the relative size of striking and struck vessels should be 

investigated in order to define realistic collision scenarios.

Web Frames: The structural damage stemming from collision is assumed to be 

confined between boundaries formed by adjacent heavy transverse members. Such 

members are the web frames along with the deck and bottom transverses. I f  these 

members collapse then the damage is extended to the area between the next pair o f heavy 

transverse members (web frames).
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McDermott et al. (1974) proposed the following assumptions for the behaviour of the 

web frames. The web frames are assumed to offer resistance to small movements of the 

stiffened hull plating in the longitudinal direction.

The collapse analysis of a web frame flanking the strike is concerned with evaluating 

the transverse forces, from the deformed T-beams units, that result in the incidence of 

yielding or buckling of the web frame. For the evaluation of the transverse force exerted 

on the web frame by the most highly strained T-beam when the web frame is failing is 

suggested an iterative solution. That is because there will be just one of the transverse 

forces exerted on the web frame.

Hegazy (1980) separates the structural parts o f a heavy transverse member. The 

condition that have to be satisfied in order the damage to be extended in the adjacent bays, 

is to have collapse of the side transverse (web frame) and collapse of the deck transverses. 

As deck transverse can be identified as the heavy transverse member on the deck of the 

struck ship concurring with the side transverse (see Fig. 2.1).

The critical buckling load of the deck transverses is first to be calculated. I f  the 

reaction force exerted on the deck transverse reaches the collapse load o f the deck 

transverse then the deck transverse collapses in buckling. The side transverse is assumed to 

be a beam subjected to a uniformly distributed load, which is the component of the 

membrane tension force in the side plating in the transverse direction. I f  this force 

overcomes the collapse load of the side transverse then the latter collapses.

Decks: The decks in the struck ship are structural members with major dimensions in

the direction of collision. This characteristic enables them to play an important role in 

energy absorption during collision.
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McDermott et al. (1974) proposed the following collapse mechanism of the decks. If  

the top of the striking bow is above the deck of the struck ship, the struck deck forms a 

series of low-pitch longitudinal folds (see Fig. 2.3) “gathered” at the location o f maximum 

incursion and extending over a length equal to the damaged length o f the hull. Any deck 

failure is by transverse rupturing resulting from longitudinal membrane tension.

The deck structure is analysed as being divided into elements originally longitudinal 

(each may conveniently be considered a deck stiffened-plate T-beam unit) which stretch 

horizontally in membrane tension over a length equal to the damaged length o f the 

stiffened hull.

Hegazy (1980) proposed the analysis of the decks being subjected to a uniformly 

distributed load at the side of the collision. The decks assumed to absorb energy due to 

membrane tension developed and due to plastic buckling. The membrane tension force on 

the decks is calculated with simple procedures (Appendix C). The plastic buckling strength 

is also calculated through some simplifications (Appendix D). After the rupture o f the hull 

commences another energy absorbing mechanism called wedge splitting of decks.

The method proposed by Hegazy (1980) accounts also for major collision problems. 

It is evident that after the rupture of the shell plating the only energy absorbing 

mechanism is the wedge splitting of decks. Hegazy, in order to calculate the force required 

for the wedge to penetrate to a certain depth in the decks, assumed that part o f the force is 

required to tear the deck and another part is required to push aside the material to permit 

the entry of the wedge. Through these assumptions he came up with a simple formula 

similar to the one proposed by NCRE (1967).
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Wang and Ohtsubo (1997) presented a mathematical model on calculating the energy 

absorption due to folding of the decks during collision and prior to rupture of the hull. 

The idealised model is shown in Fig. 2.8: a plate subjected to concentrated load at its edge. 

Under the indentation of a rigid object the plate buckles and deforms out o f its original 

plane. A fold will occur, which shows that bending stress plays an important role in energy 

absorption. As the penetration increases a second and even a third fold may appear. The 

authors proposed that for calculating the energy absorption capacity the mean resistance 

during the forming of a fold is a reasonable representation of the deck's strength.

Jones (1987) presented a study on the plate tearing for ship collision and grounding 

damage. This situation arises after the rupture of the shell plating. Some experimental 

results were presented for the cutting of steel plates, which were struck on one edge by a 

rigid wedge. The work done by the striking web was analysed in cutting energy, 

distortional energy, elastic energy, and frictional contributions. The elastic energy was 

supposed to be zero since material plasticity dominated the response of the plate tests. 

There were identified five different deformation modes. Jones believed that more 

deformation modes could arise for other materials and test geometries. Finally, empirical 

formulae were developed for the cutting, bending, and friction energies absorbed in the 

steel plates, which appeared to agree reasonably well with the test results.

Transverse bulkheads: The transverse bulkheads are very stiff transverse members, 

which do not buckle, yield or rupture in most of the cases.

McDermott et al. (1974) assumed that transverse bulkheads and the ship bottom do 

not distort in the transverse direction, although the hull longitudinal stiffeners may buckle 

in the vicinity of their connections to a transverse bulkhead. The longitudinal extent of
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damage due to this assumption is restricted between to consecutive transverse bulkheads 

and above the bottom of the ship.

Most o f the researchers have adopted the assumptions that transverse bulkheads are 

not deforming during collision. The stiffness of the transverse bulkheads will result in very 

little energy absorption, when the strike is near them.

2 .7  Conclusions

The review on the internal mechanics of collision gives the opportunity to understand 

better the problems and the unclarity that there is in some of the subjects involving the 

theoretical analysis of collisions. The application of the theoretical methods and the finite 

elements analysis in some new double hull designs have provided us with some results and 

some intended ways of dealing with the problem.

McDermott et al. (1974) proposed the same mathematical model for the analysis of a 

double hull as the one for a single hull tanker. O f course some more assumptions and 

remarks were made for the inner hull engagement. The rupture of the outer hull was 

supposed not to affect the inner hull. The inner hull would rupture only when the striking 

ship was engaging it. The lateral movement o f the web frames plays a very important role 

in the movement of the inner hull.
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Hegazy (1980) has proposed a mathematical model for a double hull design. The 

major restriction of this model is that it assumes that the damage is confined between two 

adjacent web frames.

Daidola (1995) demonstrated the differences between the conventional double hull 

vessels and the unidirectional double hull vessels, which receive increased attention in 

recent years. The theoretical procedures could easily be applied to every structural design, 

when this is disassembled to its individual structural members. The problem is that the 

sequence of phenomena will be different and depended on the structural configuration of 

each design. Thus, it is difficult to be developed a theoretical method, which will be able to 

treat any design produced.

Furthermore, numerical simulations provided a number of results, which have to be 

appraised and incorporated or not to the mathematical modelling of double hull vessels 

collisions.

Paik and Pedersen (1996) presented some results through finite elements analysis of a 

side structure of a double hull vessel due to collision. The conclusions were that in a 

double-skinned structure, the inner platings would possibly deflect from the very 

beginning of the collision process. Rupture of the inner hull is very much dependent on 

the dimensions and arrangements of strength members. That is, the inner hull may not 

rupture even after the bow of the striking ship penetrates till the original position o f the 

inner hull, or the inner hull may rupture even before the bow of the striking ship 

penetrates till the original position of the inner hull.

Kitamura and Kusuba (1997) carried out a series of numerical simulation of side 

damage due to collision adopting ASIS’s methodology based on the explicit FEM
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simulation system. The striking ship was assumed to be in the ballast condition. A Suez 

Max simplified rigid bow was impacting various double side Alternative Designs for 

VLCC in full load condition and a Standard VLCC design. The results showed that the 

difference in energy absorption capacity of Alternative Designs was not so remarkable in 

general, provided that the net steel weight o f double side structure was limited to be 

equivalent to the Standard design.

The above mentioned remarks show that the field o f the internal collision mechanics 

is not an easy one. A lot of simplifications have to be made each time and besides the 

sequence of phenomena occurring during collision could change from one ship to another.

In the present thesis is attempted an extension of the theoretical method proposed by 

Hegazy in order to treat double hull designs with lateral movement of the web frames. It 

was tried to keep the assumptions as general as possible in order for the method to be 

applicable in other double hull structures.
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Figure 2.1: Simplified model of the side structure of the struck ship.

58



Chapter 2 Internal Mechanics o f  Ship to Ship Collisions

Deck

Damaged Length

Hull

Line matching 
incursion o f 
Raked
Striking Bow

Line matching 
incursion o f 
Vertical 
Striking Bow

v

Hull
Damaged Length

Figure 2.2: Assumed collision imprint in the struck ship used by Hegazy (1980).
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account for P - at center web 
frame.

Figure 2.5: Macro flow diagram for side collision plastic-energy analysis of double hull.
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Single Hull Tanker C.L. Double Hull Tanker C.L.

Figure 2.6: Comparison of Transverse sections of a single-hull and a double-hull tanker.

Load

<---------------- ------------------►

2b

2a
(a) Beam Model

2c

(b) Plate Model: Line Load

>

2b

(c) Plate Model: Point

Figure 2.7: Models presented by Wang and Ohtsubo for side ship plate subjected to very 
large out-of-plane load.
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2H

Figure 2.8: In-plane dented plate. Idealised model for the folding mechanism of the decks 
due to impact force. Presented by Wang and Ohtsubo (1997).

Struck Ship

Figure 2.9: Simulation of an oblique collision between to similar ships showing the relative 
movement of the ships.
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L ist o f  Tables

Table 2.1: Critical structural details for a conventional single hull vessel, a conventional 

double hull vessel and a unidirectional double hull vessel. Daidola (1995).

Table 2.1: Critical Structural Details

Conventional Single and D ouble Hulls

side and bottom stiffeners 
web frames 

brackets 
decks 

transverse bulkheads 
outboard bilge 

transverse floors 
material

Unidirectional D ouble H ull

longitudinal girders 
decks 

transverse bulkheads 
outboard bilge 

material
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Chapter 3

Assessment of Collision Resistance of Ships

Introduction

Ship collision accidents often result in extensive damage to property and, less 

frequently, in loss of life. Although continuous efforts are being made to prevent their 

occurrence, it is likely that such accidents will continue to occur. Therefore, it is important 

to examine various methods of reducing the consequences of collision through improved 

vessel design.

Several methods are used for the assessment of collision resistance of ships. In most 

of the methods a large number of experimental data have been introduced in the 

theoretical analysis which might affect the validity of the method, when applied to 

different cases. Besides, the result of methods, which depend on model test data, might 

suffer from scaling effects when applied to full sixed ships. Also, the pioneering 

Minorsky’s method, which is based on actual collision cases between ships and presented 

in 1959, might be proved inaccurate due to the substantial changes in ship design and the 

world shipping fleet during the last 30 years.

The minor collisions were examined from McDermott et al. (1974), Jones (1979) and 

Van Mater (1979). Minorsky (1959), NCRE (1967) and Akita and Kitamura (1972) carried 

out research work in the area of the high-energy collisions. In all o f the high-energy above
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mentioned methods a number of experimental data have been introduced in the 

theoretical analysis, which might not remain valid in other cases.

In this chapter a method proposed by Hegazy (1980a and b) for estimating the energy 

absorbed by ships’ structures during collision is presented. The formulae of this method 

were derived by using theoretical analysis of various structural failure modes of individual 

components suffering disruptive damage and by taking into account all necessary 

parameters resisting collision.

The method that was proposed by Hegazy in two reports (1980a and b), can treat 

both minor and major collision cases. This capability of the method along with the analysis 

of each individual member, which provides optimisation capability of each structural 

member, was the reason that this method was selected among others. Moreover, Hegazy 

(1980a) using the data of a series of test conducted by Akita et al. (1971,1972) and test 

values by Arita et al. (1977) verified the energies calculated by his method. The 

comparison between the theoretical results and test values revealed that the magnitude o f 

the energy absorbed during collision can be reasonable predicted in the theoretical way 

proposed. The above mentioned advantages and the fact that a recently developed method 

is concerned gives hope for an easy and low cost designer tool to be produced.

Although the method agreed reasonably well with the experimental results, Hegazy 

(1980b) suggests that some experiments should be carried out to determine adequate 

corrections to the simple models of structural failure of the different parts of ships’ 

structures used in the analysis. It would be also useful if  the method could be applied to 

some practical cases or to full-scale collision tests.
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3.1 Proposed M ethod  —  H egazy (1980)

The method that will be presented in the following paragraphs was developed by 

Hegazy (1980). This method is then used for the calculations of particular ship designs in 

order to examine its applicability and feasibility when complicated structures are under 

consideration.

The need for the development of a new method by Hegazy came up through a review 

that he conducted, of the most cited works for analyzing the structural response o f ships 

during collisions. The main disadvantages of the existing methods were detected and were 

reported in the paper along with the presentation of the proposed method. These remarks 

will be cited below.

The simple design procedures due to Akita and NCRE neglect the contribution of 

the shell plating to the energy absorption in the struck ship. On the other hand a 

comparison of the semi-empirical relationship of Minorsky and the actual collision cases 

shows a good correlation in the higher energy regions. Minorsky explained the poor 

correlation in the low energy regions by the relatively large errors in the calculated impact 

energies at low speeds resulting from small errors in the reported speeds of the striking 

ship. However these errors are probably not the only reason for the scatter in the low 

energy region. Minorsky’s formula does not take into account all the relevant strength 

parameters, as for example, the effect of the side of the struck ship serving as a protection 

barrier. Considering two vessels of similar dimensions except for the thickness of the 

struck side plating the above mentioned methods would predict the same amount of 

energy to be absorbed by the vessels for similar penetration.

Another point that has to be made is that the above-dted methods do not give any 

information about the energy absorbed at the instant of rupture of the hull o f the struck 

ship.
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Furthermore, Minorsky’s formula contains a constant value, which is independent of 

the resistance factor (this means constant for all collisions). This constant value has been 

interpreted by some writers as being the work that must be done before penetration 

occurs at all. I f  this is so, the value of such constant should be dependent on the struck 

ship and vary from one struck ship to another.

From the result of collision tests conducted by Akita and Kitamura (1972), it was 

observed that in a collision with a weak stem Minorsky’s method tends to overestimate the 

absorbed energy of the side. In the contrary, in tests with very strong stem it tends to 

underestimate the absorbed energy of the side and overestimate that of the stem. In other 

words Minorsky’s formula overestimates the absorbed energy of the stronger structure.

Concluding, the NCRE and Akita methods are based on experimental data and so 

might suffer from the scaling effect when applied to full sized ships. Meanwhile the 

substantial changes in ship design in the last forty years, since Minorsky developed his 

method, could affect the accuracy of the method, when applied to ship collisions now.

Hegazy (1980), through the critical review of the existing methods, believed that there 

was a need for the development of a more comprehensive study as a basis for developing 

practical procedures for prediction of the magnitude of the energy absorbed by the 

structures of colliding vessels with reasonable accuracy.

The method developed by Hegazy is a simple one, which evaluates the amount o f the 

energy absorbed by different parts of ships’ structures during a collision. The formulae 

were derived by using theoretical analysis of various structural failure modes of individual 

components suffering disruptive damage and by taking into account all necessary 

parameters resisting collision. Moreover, by following Minorsky’s general idea, charts
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relating the energy absorbed in collision to the volume of the damaged material in the 

colliding ships* structures were given for minor and major collisions.

At the end, the prediction by such a new method of the energy absorbed by the side 

structure of the struck ship and the striking bow during a collision was verified to be 

reasonable compared to a series o f tests conducted in Japan.

3.2 A ssum ptions

For complicated problems, such as collisions between ships, some simplifying 

assumptions are necessary to make the problem solvable. Through an extensive review of 

the existing methods used to analyse the structural response of ships’ structures during 

collisions, Hegazy found that the following assumptions were generally accepted and were 

used throughout the proposed method:

1. Collision between ships is an entirely inelastic process.

2. The structural response of ships’ structures during collision can be estimated using 

static analysis. Any dynamic effects can be included as an increase in the value of the 

yield stress.

3. The failure criterion is based on the simple philosophy that rupture o f plating occurs 

when the elongation of the hull plating between any of the side transverses (or 

transverse bulkheads) exceeds the stretching limit of steel. In other words, there is
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no possibility of fracture of the plating prior to the attainment of the ductility limit 

of the material.

4. The variation of the deformation along the side of the struck ship is symmetrical 

about the incursion line.

5. The longitudinal extent of damage is the same for the deck, shell plating and all 

damaged longitudinals.

6. The longitudinal damage is likely to be restricted between the transverse bulkheads 

and/or strong side transverses.

7. The striking load is assumed to act along the incursion line only. For a raked striking 

bow a sloping incursion line is assumed, while for a vertical striking bow a vertical 

incursion line is assumed.

8. Straight lines can represent the deformation of the plating between adjacent side 

transverses (Figure 3.5 and 3.6).

9. During the membrane tension phase, the average longitudinal stress in plastically 

deformed portions o f the plating is taken as the yield stress (ay). If  the strain -  

hardening effect is to be taken into account then the value of this average stress 

(OjJ is taken as the mean value of the ultimate stress (ctJ  and the yield stress, i.e.,
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10. The stiffened side plating and deck plating act as independent units, that is, there 

are no in — plane forces between them.

11. The energy absorbed during the plastic bending of shell plating is neglected due to 

its very small value in comparison with that due to membrane effects.

3.3 Theoretical Analysis o f  the Various Com ponents o f  E nergy 

A bsorption

In the following subsections the various assumed structural failure mechanisms 

will be individually examined and analysed in order to evaluate the energy absorbed by 

different parts of ship structures during collision. The collapse mechanism of the side 

structure o f the struck ship depends on whether the deck transverse (i.e. the heavy 

transverse members on deck) flanking the strike reaches or not its own collapse condition. 

Two cases now arise, the first when the damage is confined to one bay (area between the 

heavy transverse members) and the second when the damage is extended to more than 

one bays. The two collapse models are shown in Figures 3.1,3.2.

In the below - cited paragraphs, the formulae for the absorbed energy by each 

structural member of the struck ship will be presented for a general case.
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3.3.1 Determination o f the Critical Indentation Wo

The collapse model of the side structure of the struck ship must be determined 

before the expressions for the absorbed energy are presented. The way that the side 

structure of the struck ship will respond to an impact load must be known, in order to be

clear if the damage will be confined in one bay or if it will be extended to the adjacent

bays. This is being achieved by calculating the value of the indentation CW > at which the 

neighbouring deck transverses will collapse through buckling. This value is called “critical 

indentation WQ”.

Consider a strike at the mid -  span between heavy transverse members. I f  for a 

certain indentation *W’ (at the strike location) stands that 0 < W < WL, where WL is the 

limiting indentation beyond which rupture of the hull plating occurs, then the reaction 

force £R’ acting along the neighbouring deck transverses is less than the collapse load T c’ 

of the deck transverse, then there will not be any significant lateral deflection o f the 

transverse frames flanking the strike. This is the case of the damage confined in one bay.

On the other hand, if R > Pc, then the flanking deck transverses will buckle and 

the collapse model will extend over two more deck transverses.

The value of the critical indentation WQ can be calculated from the above — 

mentioned condition:

R = PC (3.3.1.1)

The reaction force (R) at the neighbouring deck transverses is (on the one side only):

R = F ' slnV (3.3.1.2)
n

where:
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F= the sum of the membrane tension force in shell plating and deck platings as well 

as the buckling force in the latter, calculated for one side only o f the incursion 

line

t|>= angle between the positions of side plating before and after collision:

* - i w11/ = tan 1 —
T L

n— number of decks in the struck ship involved in collision = the number of deck 

transverses on the one side only o f the incursion line.

L= half distance between deck transverses.

As shown in Figure 3.4, the deck transverses are heavy transverse members on decks, 

comprising a frame and an effective part of deck plating associated with the frame as a 

«flange».

Strictly the collapse load of deck transverse (PJ should be determined according to 

the ultimate capacity o f a beam subjected to axial and bending stresses. To simplify the 

problem it is assumed that the collapse load of the deck transverse can be determined 

from the axial capacity of the effective part of the deck plating associated with the frame 

as a flange and the capacity of the frame alone, considering the jointed edges to be simply 

supported. The contribution of the frame alone is calculated from simple buckling 

formula. The resistance of the effective part of the deck plating is determined from the 

ultimate capacity of a postbuckled plate subjected to axial compression. Consequently, the 

final collapse load of the deck transverse will be:

Pc = 2  be - td a y +y <yy -A (3.3.1.3)

where:
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2be= effective width of deck plating = 2 • C • t d • , by Timoshenko
V a y

oy= yield stress of the material 

E= modulus of elasticity

C= experimental constant varying with the proportions of the plate. C » 1.0.

Y= acr /  Oy

td= thickness of deck plating.

oa= buckling stress of the frame alone (for calculating oC[ the span o f deck transverse 

is taken as the distance between ship’s side and the nearest heavy longitudinal 

girder).

A= cross sectional area of the frame alone.

Using equations (3.3.1.2) and (3.3.1.3) the critical indentation WG, beyond which the 

collapse will extend beyond the adjacent deck transverses, can now be determined.

3.4 E nergy A bsorbed b y  D ifferent Parts o f  Ships9 Structures

3.4.1 Energy absorbed due to membrane tension in the stiffened side plating o f  the 

struck ship

The method used by McDermott et al. (1974), Jones (1978) and Van Mater (1978) for 

the structural analysis of minor collisions was considered to be suitable for the evaluation 

o f the energy under consideration. Using the equation proposed from Jones (1973) for
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rigid — plastic beams loaded transversely into the membrane range the following 

expression for the energy absorbed due to membrane tension in hull plating was obtained:

^ W - W ,v
R ,'"  + w ' ] • r t (j)

U - l J T1

R (1) R (2)where, Tl 1 Tl represent the volume of the deformed portion of shell plating for 

both sides of the incursion line in the region (1) and (2), (Figure 3.2) respectively, and they 

are given by:

RT,"l = 2 - L - H - t s 

R ‘2’ = 4 L H t s (3.4.1.2)

H= vertical depth o f damage in the struck ship 

W= indentation at the incursion line 

W l=  indentation at frame No. 1 (see figure 3.2) 

oy= yield stress of the material

ts— thickness of the side plating (equivalent thickness allowing for stiffeners)

It should be pointed out that the effect of in -  plane displacement, which could arise 

due to horizontal bending of the struck ship or from local deformation of the supporting 

structure at the ends o f the span, on the load carrying capacity o f the beam is less 

important at larger lateral deflection, since all beams with the same axial restraint at the 

supports eventually reach the membrane or string state as demonstrated by Jones (1973).
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Incidentally, Castagneto (1962) and Guido (1964) have proved that the effect of horizontal 

bending of the struck ship during collision is negligible.

In this paper, Hegazy has shown also that the value o f the energy absorbed during the 

membrane tension phase of the hull plating, in the case of collision with a raked striking 

bow is always less than that for collision with a vertical bow and depends on bow angle 

and depth of penetration.

3.4.2 Energy absorbed due to membrane tension in the Decks o f  the struck ship

By assuming that for a particular indentation only the shaded area of the deck plating 

shown in Figure 3.7 is considered to be affected by the distortion, the following 

expression for the energy absorbed during the membrane tension phase of deck plating is 

obtained:

e 2 3 ' < V
w - w , \2 w , '2

v2 - L ,
■Rt.

(2) (3.4.2.1)

where, R T (1*,RT <2> are the volumes of distorted portion of deck plating in the 

region (1) and (2), respectively.

RT2<1, = i ( W - W l ) - L t dl.

M (3.4.2.2)

R T2(2)= l 2 L t d l ( W, ) l
i=1
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td= thickness of deck plating (equivalent thickness allowing for stiffeners).

3.4.3 Energy absorbed due to buckling o f  decks o f the struck ship

The plastic buckling problem of a stiffened deck is simplified by assuming that at 

failure the whole deck plating area between side transverses flanking the strike is subject to 

a uniform compressive stress of average value equal to “O day”. The “O d” is a factor 

depending on the scantlings of the deck structure and the system of framing used. The 

procedure for calculating the ultimate strength factor “<D” is given in Appendix A.

The expression for the absorbed energy during the plastic buckling phase of deck 

structure was found to be:

E3 = 2 - < V < V f w ' I

I

h

CM 
_____

U - l J
(3.4.3.1)

p
where, Ta is the volume of the displaced portion of deck plating due to buckling.

R„ra=*2>L-V(W,l
i=1

i=1

i=1 (3.4.3.2)

<Dd= ultimate strength factor of deck plating = crm /  oy 

om= average compressive stress at collapse (see Appendix A)
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Equation (3.4.3.1) shows that the energy absorbed during the buckling phase 

decreases as the indentation W increases. This is because in this case the deck plating is 

subjected to axial and bending stresses and as indentation increases the plate elements 

deflect more and more. I f  the work done against the plastic hinges is neglected then the 

plastic buckling force must decrease and, consequently, the energy absorption also.

Hegazy recognizes that this model of failure may be an over — simplification and 

proposes more work to be done on this aspect.

3.4.4 Energy absorbed due to the buckling o f  deck transverses in the decks o f  the 

struck ship

If  the reaction force overcomes the collapse load of the deck transverses flanking the

strike then the latter collapse. The energy absorbed due to the collapse of all deck

transverses is given by the following equation:

w,
E4 =2 n- jPc -dW (3.4.4.1)

o

Using the equation (3.3.1.3) for Pc, the above — dted formula reduces to:

E„=<v RT4 (3.4.4.2)

where RT4 is the damaged volume of the deck transverses (on both sides of the 

incursion line) involved in a collision. RX4 is given by:
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RT4 = 2 • n • W, • (2 • be • td + y • A) 0.4.4.3)

3.4.5 Energy absorbed due to the collapse o fside transverses o f  the struck ship

The side transverse is considered to be an elastic — perfectly plastic beam with fully 

clamped ends and subjected to a uniformly distributed load q given by:

q = cry *ts * (sinxpi -sinvj/2) (3.4.5.1)

where,

ayts= membrane tension force in side plating per unit height.

The uniformly distributed load for such a beam is given by Jones (1974) to be:

16-M, 
S1

qc = — jS -  (3A5.2)

where,

Mp= the plastic collapse moment of the side transverse section,

S= the height of the side transverse (i.e. the distance between the decks or between 

deck and bottom) in the damaged panel.

Now if q > qc the side transverse fails and the plastic energy absorbed during collapse 

E 5 will be:
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e 5 M p S  ( 3 . 4 . 5 . 3 )
6 12-El

where,

1= second moment of area of the cross section of the side transverse about axis of 

bending.

It is obvious that if q < qc the side transverse does not fail and the energy Es need not 

be calculated. It should be pointed out that the lateral movement of one or more of the 

supports at the end of a side transverse during the loading cannot effect the value o f the 

collapse load as explained by Maier -  Leibnitz, Neil (1965).

Equation (3.4.5.3) gives the amount of energy absorbed in the plastic hinges and is 

derived by assuming an ideal bending moment curvature relation, in which the yield 

moment (My) of the beam coincides with the fully plastic moment (Mp). Hegazy proposed 

this formula with some deliberation. He also proposed experiments to be carried out in 

order to be determined adequate correction to such a simple formula.

3.4.6 Rupture ofhull and deck plating o f  the struck ship

The energy absorbed from the hull and deck plating is given by equation (3.4.1.1),

(3.4.2.1), and (3.4.3.1). These equations remain valid until rupture of the hull occurs. The 

aim of this section is to obtain the value of the limiting indentation beyond which rupture 

of the hull occurs.
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According to the failure criteria used (see assumption 3, section 3.5), when the strain 

due to stretching exceeds the ultimate strain (ductility) of the material (ej, rupture of hull 

and deck plating occurs. Consequendy, the membrane tension forces in the hull and deck 

plating as well as the buckling force in decks no longer exist. A new failure mechanism, 

namely wedge splitting of decks, now occurs due to the penetration of the striking bow in 

the deck plating after the rupture of the latter.

The value of the limiting indentation, beyond which rupture of the hull occurs, was 

obtained by using small deflection geometry. Assuming that the deflection profile is a 

triangle and using small deflection geometry McDermott et al. (1974) gave an expression 

for indentation at rupture, when a mid -  span strike is considered. The limiting indentation 

WL is found to be:

where,

WL= limiting indentation at the incursion line, beyond which rupture of the hull and 

deck plating occurs.

W1 = indentation at deck transverse No. 1 at the instant of hull rupture.

£u— ultimate strain o f the material.

The indentation W1 can be calculated by considering the equilibrium of forces at 

point 1 (see Figure 3.2). The equilibrium of forces in the transverse direction reveals 

(assuming a vertical striking bow and that Pc for all deck transverses in different decks is 

the same):

(3.4.6.1)
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F, • sinvj  ̂-F 2 • sin \\r2 = Pc • n (3.4.6.2)

The suffixes (1) and (2) denote which part o f the distorted hull is being considered 

(see Figure 3.2).

The equilibrium of forces in the longitudinal direction gives:

COSM^ ( 3 4 6 3 )
cosy 2

Substitution from (3.4.6.3) into (3.4.6.2) yields to:

Pc ntan y  2 = tan y < -  — ---------- (3.4.6.4)
F, co sy 1

From the geometry of the figure 3.2, tan^ , tan<|>2 and cos^ can be expressed in terms 

of L, W1 and (WL - W.,) and by using equation (3.4.6.1), equation (3.4.6.4) can be finally 

rewritten as:

^  = V57-^p(l + 0  (3-4.6.S)

Knowing the values of eu, Ft, Pc and n, W1 can be calculated and hence, using 

equation (3.4.6.1), the limiting indentation at the incursion line WL can be calculated as:

WL = L • ̂ /2-eu + W, (3.4.6.6)
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It should be pointed out that the amount of energy absorbed E0 by the struck ship 

just prior to the rupture o f hull and deck plating is calculated as the sum of the expressions

(3.4.1.1), (3.4.2.1), (3.4.3.1), (3.4.4.1) and (3.4.5.1) after replacing the values of W and Wj

by WL and W 1, respectively. Hegazy has shown, as it is of course obvious from the 

formulae used, that the value o f E0 depends on deck and shell plating thickness, system of 

framing, spacing between side transverses, scantlings of transverse frames and 

longitudinals, the vertical depth of damage and the mechanical properties of steel.

These factors are of great importance in the design of tanker vessel. This is one o f the 

reasons that at chapter 7 a parametric optimization was carried out based on the above — 

mentioned factors. The aim is to find out where to put extra material in order to maximize 

the capacity of plastic energy absorption up to the rupture of the hull of a struck ship.

3.4.7 Energy absorbed due to wedge splitting o f  decks

Following the rupture of deck plating the bow of the striking ship will penetrate into 

the deck plating of the struck ship resulting in wedge splitting of these decks. The model 

for the deck and the penetrating bow is shown in figure 3.5. The stem half angle is 0, the 

indentation at which the deck plating is ruptured is WL and the penetration is y.

In calculating the force required for the wedge to penetrate to a certain depth y it is 

assumed that part of the force is required to tear the deck plating and another part is to 

push aside the material to permit the entry of the wedge. These two forces are accounted 

for by the corresponding stresses a and aQ, respectively. Now since before wedge splitting 

the deck plating is ruptured, then o — 0 and the force P required to push the wedge into
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the deck plating is obtained by considering equilibrium of forces in the transverse 

direction.

P = 2 a 0 td - y tan0 (3.4.7.1)

The relation between the energy dissipated by penetration of the wedge into the deck 

plating is obtained as:

Ee = JPdy = <j„ • t,, y2 tan 6 (3.4.7.2)
0

The value of the crippling stress oQ has been examined experimentally using small 

model tests by many investigators. In the NCRE method (1967) the value o f oQ was taken

as 0.9 ay, while Akita et al. (1971) found it to be 0.8 ay.

Hegazy (1980) treated the problem theoretically. According to the plastic sector 

principle the stress along the wedge surface must be equal to the yield shearing stress 

which in turn, according to Mises’ criteria, has the value of 0.5 ay. The relation between a 

and oQ can be written as:

cr = u a 0

_ °y 
CT°  ~  u ~  2 - u

a  a ,  P -4-7.3)

where,

u= coefficient of friction between striking bow and the deck plating of the struck 

ship
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For mild steel on mild steel V  is around 0.74. Substituting this value of “u” in

(3.4.7.3) and then in (3.4.7.2) the final expression for the energy dissipated in wedge 

splitting o f decks is becoming;

E6 =0.6-ay -RT6

(3.4.7.4) 

where,

RT6 = E V  y!! ■ ‘an e (3.4.7.5)
i=1

0= stem half angle of striking bow 

y= penetration into the deck of the struck ship

RX6 represents the volume of the damaged part o f deck plating resulting from the 

penetration of the striking bow.

After describing the whole energy absorbing mechanism of the struck ship, it is 

evident that the total energy absorbed by the side structure of the struck ship can be 

expressed as:

Es =E0 +0.6-CT, -RT6 (3.4.7.6)

This expression is consisting of two terms. The first term gives the energy absorbed 

by the struck ship just prior to the rupture o f hull and deck plating. The second term gives 

the energy absorbed after the rupture of the hull and deck plating. It can be seen from this 

point that the method presented can treat minor and major collisions.
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3.4.8 Energy dissipated in crushing the bow  o f  the striking ship

The amount of energy absorbed by the striking bow may vary from 0 to 100% of the 

total impact energy depending on the ratio between the strength of the bow of the striking 

ship and the strength of the structure of the struck ship. In general, a stiff bow would 

absorb very little energy so that most o f the kinetic energy lost during impact must be 

absorbed by the side of the struck ship. On the other hand, a weak bow may absorb most 

o f the kinetic energy lost during a collision, leaving the side of the struck ship essentially 

undamaged. It should be pointed out that, while the damage suffered by the striking ship 

is such that the buoyancy of the vessel is seldom endangered, the damage to the struck 

ship may cause the vessel to sink, or, in case of a nuclear ship, may lead to a damage at the 

reactor containment vessel. Therefore, it is rational to believe that it is better that the bow 

of the striking ship should be capable of absorbing a certain amount of energy during 

collision, without, of course, jeopardising the strength characteristics required for normal 

operation at sea. This will, probably, result to a smaller penetration of the struck ship.

The main mechanism of damage is assumed to be crumbling of the bow. Although a 

certain amount of tearing may occur, most of the energy absorbed by the striking bow in a 

collision goes into pushing the leading material back into the ship.

The model used for the bow structure is an idealized wedge — type model with 

transverse or longitudinal system of framing. It is assumed that at failure the side and deck 

platings are subject to a uniform compressive stress of average value equal to Ob'a?. <Db is 

the ultimate strength factor of the bow structure. The resolute in the direction of the 

strike, of the forces acting on the overall frame cross — section in the bow structure at 

failure is given by:
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Pb =O b a y As cos0 + ct)b a y -(2-x-tan0-td) (3.4.8.1)

where,

As= the cross sectional area o f the stiffened side plating in the striking bow.

The energy required for crushing the bow is given by the following expression:

Eb= 0 b.ay -RTb (3.4.S.2)

where, R ^ approximately represents the volume of the crushed material in the 

striking bow and is given by the formula below:

R td =
r

(3.4.8.3)As COS0 + — Ad

where,

2= the horizontal damage in the striking bow

Ad= the cross sectional area of the stiffened plating o f decks in the bow structure 

involved in collision taken at the end of the damage length.
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3.5  M inor and M ajor Collisions

There appears to be no universal agreement as to how collisions could be classified. 

What is important for a ship might not be important for the other. Let’s assume a tanker 

and a nuclear vessel. For the tanker, are of great importance the tanks to remain intact 

For the nuclear vessel, it is important that the damage do not affect the reactor 

containment vessel. Nevertheless, Hegazy has used the following commonly used 

definitions in his report

As it has been already mentioned in the introduction, a minor collision is a collision, 

in which the shell plating of a ship could be badly dented but, if fracture did not occur in 

the outer plating of a single hull ship or in the inner plating of a double hull ship, then it 

would be classified as a minor collision.

On the other hand, the term “major collision” is used to describe a collision, which 

causes large inelastic strains and fracture of the shell plating.

3.5.1 M inor Collisions

According to the formulae presented in Hegazy*s report a minor collision may be also 

defined as one in which the indentation W in the hull of the struck ship is less than or 

equal to the limiting indentation WL (as given by equation (3.4.6.6)):

W < W L (3.5.1.1)

In this case the kinetic energy Erp lost during collision is accommodated by plastic 

material response of the struck ship without rupturing as well as the striking bow:
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ET = Ei + E2 + E3 + E4 + E5 + Eb (3.5.1.2)

Where E1} E2, E3, E4, E5 and Eb are given by the equations proposed in the previous 

subsections.

When W = WL equation (3.5.1.2) becomes:

Where E0 is the energy absorbed by the struck ship just prior to the rupture of hull 

and deck plating.

3.5.2 Major Collisions

When W > WL, rupture of the hull and deck plating occurs and the striking bow 

starts to penetrate the decks of the struck ship. The total absorbed energy in this case is 

given by:

Substituing for E6 and Eb from equations (3.4.7.4) and (3.4.8.2), respectively, equation

(3.4.2.1) becomes:

Et ~ Eo + Eb (3.5.1.3)

ET = E0 + E 6 + E b

(3.5.2.1)

Et — E0 + 0.6 • Gy • RT6 + <Pb • Gy • RTb (3.5.2.2)
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For an infinitely rigid bow, the value of is zero. Also if the strain -  hardening 

effect has to be taken into account, then oy in the calculation of the equations (3.4.1.1) and

CTy +  Gy
(3.4.2.1) must be replaced b y ----------, as proposed in assumption 9.

3 .6  Conclusions

Hegazy (1980) in this study proposed a collapse 

every structural member of the struck ship involved in 

this method are:

■ The method is applicable for analysing structural ships’ resistance for both minor 

and major collisions.

■ The collapse model proposed is dependent on the struck ships’ structure. Values, 

which are individual for each ship, are calculated by the method and these are what 

define the shape of the deformed form of the struck ships’ side structure at the 

end of the collision.

The Hegazy’s method was used to calculate the energy absorbed by the struck ship 

during collision with an infinitely rigid bow. The results were compared with the test 

values given by Akita et al. (1977). The comparison of the calculated and recorded energies 

revealed that the theoretical values obtained by using the proposed method agreed 

reasonably well with the measured energies in most of the tests. Compared to the results

model, which takes into account 

collision. The basic advantages of

91



Chapter 3 Assessment o f Collision Resistance o f Ships

from the methods by Minorsky, NCRE, Akita, Hegazy’s method approached much more 

close to the experimental results. It must be pointed out that the three above mentioned 

methods predicted the same amount of energy to be absorbed by all side models, in spite 

of the fact that the models have different thickness of side plating ranging from 1.2mm to 

6.0mm. This occurred because these methods neglect totally the influence of shell plating 

in the struck ship, which must absorb some energy during a collision.

Due to these remarks, Hegazy’s method was used in the present work for analysing 

the side structures of a struck ship during collision. It was found to be a good idea to 

check how the method works on real ship structures, which do not have the design 

simplicity of the assumed idealised models.

3.7  D evelopm ent o f  Fortran code based on H egazy’s M ethod

The basic thought was that the proposed method could serve as an easy-to-use 

designing tool. The aim was to develop a program based on this method, which could be 

used easily and give results in short time. A major difficulty was to construct a program 

that it would be able to apply in different structures.

The simplified Hegazy’s model of the side structure considering decks having similar 

deck transverses is not applicable in an actual ship collision, when the deck transverses 

have different collapse loads. When the penetration is small and the damage is confined in 

one bay (damage confined between two adjacent web frames), the geometrical model is 

easy and the calculation of the energy absorbed is straightway. As the penetration increases 

the weaker deck transverse will collapse at a certain indentation at which the other deck 

transverses will remain intact. Thus, the geometrical model is changing and the damage is
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extended in an unpredictable way (see Fig. 3.9). A new model is needed in order to define 

the indentations at the web frames flanking the strike, which will alter with the damage 

height, and the definition of the damaged region.

The programming was commenced with the simplest case. The first program 

developed was just producing the energy absorbed by a simplified structure with indicative 

scantlings. A number of subprograms were developed calculating the strength of different 

parts o f the structure of the struck ship. The following strength calculations had to be 

conducted:

■ critical buckling stress of deck transverses

■ critical/ultimate buckling stress of deck plate

■ plastic collapse moment o f the side transverse

■ critical buckling stress of side transverse (double hull designs)

Furthermore, some indentations at which the collapse model was going to transform 

had to be calculated. These indentations are:

■ critical indentation WG. Indentation at which the deck transverses flanking the 

strike collapse.

■ limiting indentation WL. Indentation beyond which rupture of the side shell plating 

occurs.

■ W1: Indentation at the deck transverses flanking the strike at the instant of hull 

rupture.

The aim was to make the program automatic to predict the absorbed energy for a 

random indentation rather than calculating the energy, when the form of the damaged 

structure is known. The calculation of the above-mentioned values of the penetration is of
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major importance. During the iterative procedure the program uses these values to define 

the shape of the damaged structure for various values of penetration.

In order the program to be applicable on a double hull design further assumptions 

had to be made. The program’s flow diagram for the simplified model is shown at the end 

of this chapter. The modified program flow diagrams are not presented in the following 

chapters but the sequence of phenomena occurring as well as a discussion for the changes 

required in its case are further cited

3.8 A pplication on a sm all O il Tanker design

The small oil tanker design presented herein was found to be the closest one to the 

proposed simplified model (Hegazy 1980). The vessel is a small single skinned oil tanker 

with a mid-ship form shown in Figure 3.10. The scantlings of the structure required to 

conduct the calculations are shown in the Table 3.1, pg. 113.

In order to produce results, some collision scenarios had to be assumed. The striking 

bow was assumed to be vertical, infinitely rigid and impacting the struck ship in right 

angles at the mid-span between two adjacent web frames. Because o f the structure’s 

magnitude (Depth moulded = 4.822m) and assuming that the striking ship will at least be 

of equal size with the struck ship, only two different scenarios were proposed and 

presented in Fig. 3.11. The first case occurs when the struck ship is in Full Load Condition 

and the striking ship in Ballast Condition (Fig. 3.11(a)). The second case occurs 

irrespectively of the striking ship’s load condition and assuming that the struck ship is in 

Full Load Condition (Fig. 3.11(b)).
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As far as the former case is concerned, the structural members of the struck ship that 

are involved in collision are:

■ main deck plating

■ deck transverse

■ side transverse

■ side shell plating

For this case the appraisal of the absorbed energy is straightway using the simplified 

model proposed by Hegazy. The results produced by the program’s run are shown in Fig. 

3.12-3.19.

The structural members of the struck ship involved in collision for the second 

proposed case are:

■ main deck plating

■ side shell plating

■ bottom plating

■ main deck transverse

■ bottom transverse

■ side transverse

A slight modification on the program is needed in order to cope with this case. The 

difference between this case and the previous one is that there are two deck and bottom 

transverses with two different collapse loads. This means that at a certain penetration 

depth the weaker deck transverses will collapse and the stronger bottom transverses will 

remain intact This progress will result in the extension of the damage to the adjacent bay 

initially for the upper part of the side structure and later on for the lower part. Therefore, 

some assumptions have to be made to deal with the alteration o f the geometry (Fig. 3.9) 

and the definition of the damage height to the adjacent bays.
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The results consist of graphs plotting the total energy absorbed by the side structure 

of the ship, and the energy absorbed by individual structural members against the 

penetration depth. Furthermore, the collision force is plotted against the penetration. 

Finally, the total energy absorbed by the side structure is plotted against the volume of the 

damaged material. In figures 3.13, 3.21 the volume of the damaged side shell plating 

material has been excluded in the calculations. This is, in order this graph to be straight 

comparable with graphs from the global methods (Minorsky, Akita, NCRE, e.g.), which 

neglect the effect of the side shell plating.

3.9 R esults and Conclusions

First Collision Scenario

The first assumed collision scenario is considered. The striking ship (ballast 

condition) impacts the struck ship (full load condition). The damage height is 3.000m. The 

structural members of the struck ship, which are subjected to the impact load are referred 

in the subsection 3.8.

A brief description of the way that the structure deforms is given. As the penetration 

increases the side shell plating and the main deck are loaded in membrane tension and the 

main deck also in buckling. At the penetration value = 0.395m the deck transverses 

flanking the strike collapse and the damage is extended to the adjacent bays. The decks 

and the side shell plating of the adjacent bays are now receiving the impact load also. 

Before the collapse of two more deck transverses, the side shell plating ruptures at an 

indentation W = 2.020m. Subsequently, the rigid vertical bow starts to tear the main deck 

plating of the struck ship. The energy absorbing mechanism is now the wedge splitting of
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the main deck plating. All of these can be shown graphically in Figures 3.16 to 3.23 as well 

as the impact force plotted against the penetration depth.

Second Collision Scenario

In the second collision scenario the whole side structure of the small oil tanker is 

impacted from the rigid striking bow. The structural elements involved in collision are 

cited in subsection 3.8.

The collapse model is a little more complicated than in the first collision scenario. 

The transverses on the main deck and on the bottom deck have different collapse loads. 

The structure has been divided in two structures consisting of the half depth of the side 

shell plating and the main deck or the bottom deck respectively. The energy absorbed 

from each part is being added at each penetration depth.

The weaker deck transverses collapse at the penetration value = 0.355m and the 

damage is extended to the adjacent bays for the upper part of the structure. The stronger 

bottom transverses collapse at the penetration value Wobt = 0.527m and the damage is 

extended to the adjacent bays for the lower part of the structure. Due to the strongest 

bottom transverses the rupture of the side shell plating occurs for a smaller penetration 

depth at the lower part of the structure. As McDermott et al. (1974) proposed, once the 

rupture is initiated is assumed to extend throughout the whole side shell plating. Thus, 

even if the upper part of the structure can absorb more energy before rupture of the hull, 

it ruptures due to the initiation o f the rupture to the lower part o f the structure. The 

penetration value at which rupture occurs is WL = 1.714m. The figures illustrating the 

behaviour of the side structure of the small oil tanker for the second collision scenario are 

Figures 3.20 to 3.27.

Concluding, it is evident that when the first collision scenario is considered, the total 

energy absorbed is lower but due to the weakness of the deck transverses the penetration
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depth, at which rupture o f the hull occurs, is larger than in the second collision scenario. 

On the other hand, considering the whole structure under impact loading the total energy 

absorbed is higher but the penetration depth, at which rupture of the hull occurs, is 

smaller. The rupture in this case is induced from the lower part of the structure, where 

there are the stronger bottom transverses.
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L ist o f  Figures
-   — ■ ■ ■ ..............

PA R T ONE: H egazy’s m ethod  —  Figures illustrating the collapse 
m echanism

deck transverses Pc pc deck transverses

struck ship ‘s side

2L2L

Figure 3.1: Collapse model with no lateral movement of the flanking main transverse 

frame.
A

Transverse Direction

 ►
Longitudinal Direction

<NPart 2Part 2 Part 1

2L 2L

2L

Figure 3.2: Collapse model with lateral movement of the flanking main transverse 

frames.
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Td
Incursion
line Tb

Damage 
depth (H)

Deck transverse

1st deck

Side transverse

2nd deck

Damage length (2L)

Figure 3.3: Collision case involving two decks.

Figure 3.4: Collapse of deck transverse.
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deck plating

deck deck transverse

transverse

side o f the struck 
shipstriking bow

Figure 3.5: Wedge splitting of decks.

2xtan0

Damaged Part 
of the bow.

2xtan0

Figure 3.6: Analysis of striking bow damage.
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Figure 3.7: Membrane tension force in the deck.

2L - i

Figure 3.8: Buckling of deck plating.
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deck

deck transversj

deck

side transverse

Figure 3.9: Damage profile, when the weaker deck transverses on one of the decks 

collapse.

Small Oil Tanker Mid-Ship Section

deck transverse

D = 5.0 m side transverse

bottom transverse

Figure 3.10: Mid-ship section of the Small Oil tanker “Esso Caernarvon”.
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First assum ed C ollision  Scenario

Second assumed Collision Scenario

Figure 3.11: The two assumed collision scenarios are illustrated in this figure, (a) The 

small oil tanker impacted by a vertical and infinitely rigid bow in the ballast 

condition, (b) The small oil tanker impacted by a vertical and infinitely rigid 

bow in the full load condition.
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PA R T TWO: Small O il Tanker -  Results for the first Collision Scenario

Total Energy A bsorbed by the Side structure
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15000VcW
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Penetration:W(m)

Figure 3.12: Total energy absorbed from the side structure regarding the first collision 

scenario.

Total Energy Absorbed against the Volume o f  the Distorted Material
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Volume o f the Distorted Material (m3)

Figure 3.13: Total energy absorbed plotted against the volume o f the damaged material.
From the calculations o f the damaged material volume has been excluded the 
volume o f the damaged side shell plating, in order the calculations to be 
comparable with the global methods.(Minorsky, Akita e.t.c.).
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Energy A bsorbed due to m em brane tension on the Side Shell
p la tin g
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e 3.14: Energy absorbed due to membrane tension in the stiffened side shell plating.

Energy Absorbed due to membrane tension on the Main Deck Plating
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Figure 3.15: Energy absorbed due to membrane tension on the main deck of the struck 

ship.
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Energy Absorbed due to Buckling o f  the Main D eck p la tin g
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Figure 3.16: Energy absorbed due to buckling o f the main deck plating.

Energy Absorbed due to the collapse o f  the Main deck's transverses 
Hanking the strike
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Figure 3.17: Energy absorbed due to the collapse of the main deck transverses flanking the 

strike.
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Energy Absorbed due to Wedge Splitting o f  Main Deck
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e 3.18: Energy absorbed subsequendy after the rupture o f the side shell plating of the 

struck ship. The collapse mechanism is the wedge splitting o f the main deck 

plating.

Im pact Force history: First Collision Scenario
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Penetration:W(m)

Figure 3.19: In this figure the history o f the impact force is shown. The step for the 

penetration 0.377m is due to the involvement o f the adjacent bays.
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PA R T THREE: Small O il Tanker — Results for the second Collision 
Scenario
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Figure 3.20: Total energy absorbed from the side structure o f the struck ship regarding the 

second collision scenario.

Total Energy A bsorbed from  the Side Structure
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Figure 3.21: The total energy absorbed is plotted against the volume of the damaged 
material. The volume o f the damaged side shell plating has not been included 
in the calculations.
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Energy A bsorbed due to membrane tension on the stiffened side shell
p la tin g

16000

14000 —

12000

10000

8000 —  

C
[g 6000 - -  1- _

4000 -

2000

0.00 0.20 0.40 0.60 0.80 100 120 140 160 1.80 2.00 2.20

W(m)

Figure 3.22: Energy absorbed due to membrane tension in the stiffened side shell plating.

Energy Absorbed due to membrane tension on the deck p la tin g
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Figure 3.23: Energy absorbed due to membrane tension on the main deck and bottom 

plating.
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Energy A bsorbed due to the buckling o f  the decks
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3.24: Energy absorbed due to buckling o f the main deck and bottom plating.

Energy Absorbed due to the collapse o f  the deck and bottom  transverses
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Figure 3.25: Energy absorbed due to the collapse of the main deck transverses and the 

bottom transverses.
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Energy Absorbed due to wedge sp litting o f  decks
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e 3.26: Energy absorbed after the rupture of the side shell plating. The collapse 

mechanism is the wedge splitting of the main deck and bottom plating.

Im pact Force history: Second Collision Scenario
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Figure 3.27: This figure illustrates the history o f the impact force. The two steps at the 

penetration values 0.355m and 0.527m are due to the collapse o f the main 

deck transverses and the bottom transverses, respectively.
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L is t  n f  T a b le s

STR U C TU R A L D E T A IL S  O F T H E  O IL  TA N K E R

Length B.P. = 66.380m

Breadth = 10.575m

Depth moulded — 4.822m

Design Draft = 4.335m

Main deck plating thickness: td = 0.0085 m

Bottom Plating thickness: tb = 0.012 m

Side Shell plating thickness: ts = 0.0102 m

Spacing of Main deck’s stiffeners: sd = 0.660 m

Spacing of bottom stiffeners: sb = 0.660 m

Spacing of Side shell stiffeners: ss = 0.660 m

Dimensions o f Main deck stiffeners: 0.155 x 0.077 x 0.0102

Dimensions of bottom stiffeners: 0.280 x 0.077 x 0.012

Dimensions of side shell stiffeners: 0.150x0.065x0.0102

Dimensions of Main deck transverse: 0.713x0.203x0.012

Dimensions of Bottom transverse: 0.865 x 0.203 x 0.012

Dimensions of Side transverse: 0.254x0.130x0.010

Spacing of Web Frames: 1.200 m

Distance between side shell plating and 

the next heavy longitudinal member: 5.350 m

Table 3.1: Structural details o f the small oil tanker design.
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Fortran A lgorithm

START

W<Womdt
and
W<Wobdt

YES

NO

W>Womdt
and
W<Wobdt

YES

NO

W1=0.0

W=0.00

W=W+0.01

W1 Calculation

Read Vessels 
Data from the 
Input File

Carry out preliminary calculations: 
Collapse Loads of deck and bottom 
transverses.
Critical Indentations
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Calculations o f the absorbed 
energies.
1.Membrane tension of shell 
and decks.
2.Buckling of decks
3.Buckling of deck transverses
4.Collapse of side transverses
5.Wedge splitting of decks

Write the desired 
results to the 
output file
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The above shown flow diagram is an oversimplification of the complicated existing 

program code. The volume of the program made its presentation for each case described 

in the present thesis inevitable. The above flowchart describes the code used for the 

calculation of single-skinned vessels. The notation used is shown below:

W: penetration depth

Womdt: critical indentation beyond which the main deck’s transverse starts to buckle. 

Wobdt: critical indentation beyond which the bottom deck’s transverse starts to buckle. 

W l: Indentation at the web frames flanking the strike (see Fig.3.2).

Wlmaxmdt: Maximum indentation at the web frames at the instant of rupture of the hull 

at the main deck height 

Wlmaxbdt: Maximum indentation at the web frames at the instant of rupture o f the hull at 

the bottom deck height.
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Chapter 4

Buckling Strength of the Decks

Introduction

Buckling of stiffened plates is a field, which has attracted much attention. The elastic 

theory, which deals with small deflection buckling of plates loaded up to the elastic critical 

buckling stress aa, is basically used in the design procedure. However, the elastic critical 

buckling stress does not represent the actual capacity of the plate to carry loads. It is 

evident that the plate will continue to carry load beyond the elastic critical load up to the 

point of the plastic yield of the material. This point is characterized by the ultimate 

buckling stress au.

The type of analysis required is depended on the cause that the plate serves. 

Unserviceability is treated through critical elastic stress, while “ultimate strength” is treated 

through ultimate stress.

However, the ultimate strength of a plate is not always greater than the elastic critical 

buckling strength. For sturdy plates it is possible for yielding to occur before buckling. 

This case is known as plastic (or inelastic) buckling.

In the study of ship collisions the plasticity dominates the behaviour of the plates. 

The theory around such phenomena is called elasto-plastic large deflection analysis. In 

collisions, the interest is concentrated on the plates of the decks and the side shell, which
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are subjected to large compressive loads. A good evaluation of the limit load, beyond 

which the plate yields, lead to a better evaluation of the energy absorbed by the decks.

Elasto-plastic large-deflection theory is quite complicated because there are three 

separate sources of nonlinearity;

• Yielding

• Large deflections

• Restraints from edge pull-in, which appears and becomes significant for really 

large deflections.

Because of the complexity that this field exhibits, there is no analytical method, which 

will give results for every different case. Adequate results can usually be obtained through 

numerical computer base techniques (finite element analysis). In the theoretical study of 

collisions some simplified formulae are employed to deal with this kind of problem.

In the present chapter a method by Pu and Das (1994) calculating the “ultimate 

strength” of stiffened plates will be presented. Furthermore, this method was incorporated 

in the Hegazy’s method for calculating the ultimate strength of the decks o f the struck 

ship. Hegazy (1980) proposed the orthotropic plate theory for the calculation o f the critical 

buckling strength of the deck plating. He also proposed that more investigation of plate 

and deck buckling strength under such conditions was needed.

The effect of the buckling strength’s calculation depends very much on the 

dimensions of the plate and the orientation of the load. The deck plating is considered 

clamped at the edges between two consecutive web frames. The one dimension of the 

plate is always defined as the spacing between web frames. If the plate of the deck under 

consideration is restricted in the transverse direction from a longitudinal bulkhead, which 

is closer to the side shell than the spacing between web frames, then the case is a plate 

compressed on the long edges (Fig. 4.1). Usually in this case, the ultimate strength and the 

elastic buckling strength have no significant difference. On the other hand, if there is no
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longitudinal bulkhead and the length o f the plate is larger in the transverse direction of the 

ship than in the longitudinal, then the case is a long thin plate compressed on its short

edges (Fig. 4.2). In this case the plate may have a significant post-buckling reserve of

strength beyond the critical elastic buckling stress.

4.1 O rthotropic and D iscrete Beam  m ethods

The failure o f a stiffened plate can occur through several different ways. The failure 

modes are:

•  plate failure (local failure of plate between the stiffeners)

•  stiffener-plate column failure, which is further divided in two modes:

1. plate induced failure

2. stiffener induced failure

•  torsional failure of the stiffener

•  overall grillage buckling

The plate will fail when any of the above-mentioned failure mode occur first. In 

shipbuilding care is taken to avoid the overall buckling of a plate and the torsional failure 

of stiffener, because these modes do not give the opportunity of using the post-buckling 

strength. That is, after this kind of failure occurs, the plate collapses with a small additional 

load. It is evident that the orthotropic method does not take into account local buckling as 

well as stiffener related failure modes.

The orthotropic method is based in the simple assumption that the stiffened plate will 

respond as an unstiffened one with two different values of flexural rigidity in the two 

orthogonal dimensions. Hence, the accuracy obtained with this approach depends entirely
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on the degree to which the stiffened plate resembles a uniform orthotropic plate. This 

method obtains quite good accuracy when applied to double wall cross-stiffened panels 

such as a double bottom.

On the other hand, the discrete beam approach is more accurate than the orthotropic 

plate approach for all singly plated stiffened panels, that is, for all types of loads and for 

unidirectional and cross-stiffening. For doubly plated panels the two methods have 

approximately the same accuracy. The discrete beam method’s accuracy is rational because 

it takes into account a number of parameters that have been proved to affect the strength 

of a stiffened plate.

The orthotropic method proposed by Hegazy is illustrated in Appendix D, along with 

the whole method for calculating the ultimate strength factor of the deck plating.

The method presented in the following subsections is a discrete beam method, which 

obtains the critical elastic load of a plate as well as its ultimate strength.
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4.2 Param eters affecting stiffen ed p la tin g  strength

The strength of a stiffened plate is strongly affected by the behaviour o f the plating. 

Because overall buckling of the plate is avoided by design the local buckling o f the plating 

and the column (an effective width of plate associated with a stiffener) failure are the usual 

failure modes. It is clear that the prediction of plate strength plays a very important role.

The parameters affecting the plate’s strength are:

•  plate slenderness

• residual stress

• initial distortion

• boundary condition

• plate aspect ratio

• load type

Aside from the above-mentioned parameters some more are to be considered when a 

stiffened plate is to be calculated.

•  stiffener slenderness

• ratio of stiffener to cross sectional area

• ratio of top flange to web area (stiffener)

• cross-sectional area of the stiffener

• initial stiffener deflection

• relative stiffener deflection

• axial welding stresses in the stiffener

The below-dted method accounts for all of the parameters affecting the strength of a 

stiffened plate through the calculations of the “effective width” of plate associated with 

the stiffener.
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4.3 Proposed M ethod

Pu and Das (1994) through a study on the existing formulae for the calculation of the 

ultimate strength of stiffened plates, remarked that Guedes Soares’ formulae give the best 

ultimate strength prediction of plate panels. The method that was then proposed adapted 

these formulae to Faulkner’s formulation. All the formulae are presented below:

Pu and P a s’s Method

The ultimate strength of stiffened plate is expressed as:

A s + be x t 
A s + b x t

(4.3.1)

where,

for a E > 0.5ao

(4.3.2.a)

for cte < 0.5ao (4.3.2.b)
0 CT.o

where.
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where, E l' is the buckling flexural rigidity of the stiffener. The tangent 

effective width of the plate ( b ') is given by:

f— R„-R5-Rn8

(4.3.4)

' Rg * RnS 0 < R <1

The effective width o f the plate is related to the slenderness as follows:

n.08.*k. R . . R , - R n5

l l . 08-R. -R. -R, ,

P . * l

O S p . S l

(4.3.5)

where,

(4.3.6)

1 . - 1  
P e  p ;

(4.3.7)

R „  = l -
A«t>,

1.08 • «|>
(l + 0.0078n) (4.3.8)

R s = l- (0 .6 2 6 -0 .1 2 1 p e) - p (4.3.9)
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Rn8 = 0.665+ 0.006n+ 0.36-j- + 0.14p{

where,

E

(4.3.10)

(4.3.11)

The residual stress ar can be obtained from the equation:

2n
(4.3.12)

<x3 p:

a 4 +Pr*(1-Pr )P '
for

Pr
(4.3.13.a)

^ -  = 1.0
E

at which:

for p > 1.9.
Pr

(4.3.13.b)

Pr
_ a p ~ a r (4.3.14)

where ap is the proportional limit of the material.

Faulkner suggested that pr for marine structures could be taken 0.5.

The constants a3 and a4 depend on the boundary conditions and their values are: 

a3 = 3.62 a4 = 13.1 for simply supported plates

a3 = 6.31 a4 = 39.8 for clamped plates

Through a large number of experiments in frigates, Faulkner suggested that the mean 

value of plate central deflection can be calculated by:
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—  = 0.128 
t

for t w ^  t,P ^ 3 (4.3.15)

— = 0.15p: for t w < t , P > 3 (4.3.16)

-2- = KP' 
t

for t,., > t (4.3.17)

where K = 0.12 for frigates and 0.15 for merchant ships.

Carlsen pointed out that the initial deflection in most cases meets:

t 200 t
(4.3.18)

It is obvious that the foregoing sequence of calculations must be performed iteratively.

The above-cited method is used to calculate the ultimate strength of transversely 

stiffened decks subjected to impact load as it is shown in figure 4.1 and 4.2, and can not 

be used to calculate the ultimate stress of longitudinally stiffened decks under the same 

loading.

For the longitudinally stiffened decks another formula is used to calculate the ultimate 

strength of the plates between the stiffeners (local buckling) since overall buckling in such 

plates is very unlikely and usually is avoided by design.
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The formula has been proposed by Faulkner et al. (1973) and gives the ultimate 

strength o f wide plates:

CTyu _ 0.9 1.9 \  0 .9a 
P2

(4.3.19)
p* a*P

When the decks are longitudinally stiffened then the equation (4.3.19) is used for the 

calculation of the strength factor of the decks.

4.4 Incorporation o f the proposed  m ethod to the program

Due to the iterative nature of the proposed ultimate strength method it can be easily 

incorporated in a computer program. The Pu and Das method was used from the program 

to calculate the strength of the decks (o f of the struck ship when its decks are transversely 

stiffened.

a u + a
Hegazy (1980) had proposed that the value --------    could be used for the

calculations of the energy absorbed in order to account for the strain rate sensitivity of the 

material. In the results produced in this thesis the yield stress (ay) has been used in the 

energy absorption formulae and only the ultimate strength factor (Oj) o f decks has been 

edited. O d is now calculated with the ultimate strength of the decks and not with the 

critical elastic buckling stress (of).

For the needs of the project a subprogram was developed for the above-dted method 

and was incorporated in the main program calculating the energy absorbed due to 

collision. In this chapter results have been obtained for the small oil tanker that was
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presented in the previous chapter, using the modified method. Detailed experimental data 

was not feasible to be found so the comments on the results are purely theoretical.

4.5 Com parison o f  the results and Conclusions

Results have been produced for two different cases. The small oil tanker was assumed 

to have transversely stiffened decks in the first case. In the second case the tanker was 

assumed to be as in the original design with longitudinally stiffened decks. Only the second 

scenario proposed in chapter three has been considered herein. This means that the whole 

side structure of the ship is under the impact load.

The details that alter due to the usage of the ultimate strength of the decks are:

•  The indentation WG, at which the deck transverses flanking the strike collapse.

•  The indentation at the deck transverses flanking the strike at the instant of 

rupture.

• The energy absorbed from the decks due to plastic buckling.

Figures 4.8 to 4.16 corresponding to transversely framed decks, plot the values 

obtained using the ultimate strength of the decks along with values obtained using the 

orthotropic theory for the critical elastic buckling stress.

Figures 4.16 to 4.24 are being referred to longitudinally framed decks and plot the 

values obtained using ultimate strength of the decks along with the values obtained with 

critical elastic buckling of decks.
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The differences can be clearly seen. The decks of the struck vessel can absorb more 

energy than with the previous method due to the reserve of strength in the post-elastic 

region.

The lack of experimental data does not give us the opportunity to evaluate this 

modification of the method. Considering the graphs proposed by Hegazy, where the 

experimental values were in most of the cases higher than the estimated ones, it is believed 

that this modification gives an even better correlation between the estimated values and 

the experimental tests.
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L ist o f  Figures 

PAR T ONE: Stiffened deck Plating Strength

U nsupported area o f  deck 
plating

deck
plating

Loading

side shell 
platinglongitudinal

bulkhead

web fram es

Figure 4.1: Transversely stiffened deck plating loaded on its long edges.
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Figure 4.2: Transversely stiffened deck plating loaded on its short edges.
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Figure 4.3: Orthotropic method: From a stiffened plate to a plate with different flexural 

rigidities in the two orthogonal directions.

Figure 4.4: Discrete beam method: From a stiffened plate to a stiffener associated with a 

plate having an effective width provided by the method.
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Figure 4.5: Stress distribution on a Post- buckled unstiffened plate.
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Figure 4.6: Weld shrinkage actions on a flat plate.
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Figure 4.7: Effect of residual compressive stress on theoretical critical stress.
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PAR T TWO: Application o f  the m odified m ethod on an assum ed 

Transversely stiffened Small O il Tanker D esign,
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Figure 4.8: Total energy absorbed from the side structure o f a transversely framed small oil 

tanker. The ultimate load o f the deck has been calculated with a discrete beam 

method.
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Figure 4.9: Total energy absorbed plotted against the volume o f the damaged material. The 

volume of the damaged side shell plating has not been included in the 

calculations.

i i i

i i i 
i i i

i
— i—  

i 
i

i i

i i 
i i

i
---------1 - -

i
i

1 1 

1 y /  1
i

i i i 
i i i

_ _  _ J . - 1 .  _ __L_

i
i

-  - 1—  
. L .

i i 
i i

J . y r i .

i y

y  - - -t - -  
. _ j  .

i i 
i i

_ L . . J .

1 1 1 
1 1 I

I
i y* I I

i
i

1 1 
1 1

I 1 1
- - 1 y —
— —  ......... .4—-------- 1—

■ r  - 
-----1------

I I
i - - r 

— 1---------- 1-

i
- 4  ' 

..................1 ------

1 1 
- r  - ■ i  - -  

------- 1---------------1-------

134



Chapter 4 Buckling Strength o f Decks

Energy A bsorbed due to m em brane tension on the stiffened side shell
p la tin g
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Figure 4.10: Energy absorbed due to membrane tension in the stiffened side shell plating.
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Figure 4.11: Energy absorbed due to membrane tension on the main and bottom deck 

plating.
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Energy A bsorbed due to the buckling o f  the decks
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Figure 4.12: Energy absorbed due to the buckling o f the main and bottom deck plating.
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Figure 4.13: Energy absorbed due to the collapse o f the main deck and bottom 

transverses.
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Energy A bsorbed due to wedge sp littin g  o f decks
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Figure 4.14: Energy absorbed due to the wedge splitting o f decks subsequently after 

rupture o f the hull occurs.

Im pact Force history: Second Collision Scenario
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Figure 4.15: This figure illustrates the history o f the impact force for the case o f a 

transversely framed structure. The steps at the indentations 0.275m and

0.423m are showing the extension o f the damage to the adjacent bays, first in 

the upper side structure and then in the lower side structure.
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PAR T THREE: Application o f  the m odified m ethod on the existing 

longitudinally stiffened sm all oil tanker design.

Total Energy Absorbed from the side structure
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Figure 4.16: Total energy absorbed from the side structure of the longitudinally framed oil 

tanker. The difference due to the calculation of the ultimate strength of the 

decks instead o f the critical elastic buckling stress is clearly shown.
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Figure 4.17: Total energy absorbed plotted against the volume o f the damaged material. As 
previously the side shell plating material is not taken into account in the 
calculations.
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Energy A bsorbed due to m em brane tension on the stiffened side shell
p la tin g
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Figure 4.18: Energy absorbed due to membrane tension on the stiffened side shell plating.
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Figure 4.19: Energy absorbed due to membrane tension on the main deck plating and the 

bottom plating by using the ultimate and the critical elastic buckling stress.
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Energy A bsorbed due to the buckling o f  the decks
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4.20: Energy absorbed due to buckling o f the main and bottom deck plating. The 

difference in the energy absorption, when the ultimate stress is considered 

instead o f the critical elastic buckling stress, is shown.

Energy Absorbed due to the collapse o f  the deck and bottom  transverses

16000

14000

12000

10000

8000

6000

4000

I-----2000

0.40 1.80 2.00 2.200.00 0.20 0.60 0.80 1.00 1.20 1.40 1.60

W(m)

Figure 4.21: Energy absorbed due to the collapse o f the main deck’s and bottom deck’s 

transverses.
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Energy A bsorbed due to  w edge sp littin g  o f  decks
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Figure 4.22: Energy absorbed due to the wedge splitting o f decks following the rupture of 

the hull.

Impact Force history: Second Collision Scenario
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Figure 4.23: The impact force is illustrated against the penetration depth. The critical 
indentations for the collapse o f the deck transverses are changing, when the 
ultimate stress of the decks is used. The critical indentation for the deck 
transverse is now Wodt= 0.422m instead o f Wodt= 0.355m obtained by the 
unmodified method. The critical indentation for the bottom transverse is 
Wobt=0.466m instead o f Wobt=0.527m.
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Chapter 5

Estimation of the Crashworthiness 
of a Double-Hull vessel

Introduction

In this chapter is under inspection the collapse mechanism of the double hull tanker. 

The difficulties arising in such an analysis have been generally discussed in chapter 2. 

Theoretical methods as the one used, have to be modified in order to be applied on 

double-hull structures. Some assumptions were made and will be discussed here in order 

to define their necessity and their soundness. Basically, these assumptions refer to the 

sequence of phenomena occurring during impact and their employment was inevitable.

Hereinafter, the collapse mechanism of the structure is described. The modes of 

failure of the individual structural members and the effect of each member to the resulting 

damage are discussed.

The vessel in consideration is a large shuttle tanker. The principal dimensions as well 

as the structural details required are shown in Figure 5.1 It was assumed that due to the 

large moulded depth and the non-symmetrical form of the mid-ship section around the 

horizontal axis more than one collision scenarios should be considered. Thus, results have 

been derived for four different collision scenarios (see subsection 5.4).
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5,1 Introduction o f  the m ethod to  a D ouble H ull design

In chapter 3, where Hegazy’s method was presented, it became clear that the method 

can be easily used for the analysis of a single hull design and even for the analysis of a 

double hull, when the damage is confined between two adjacent web frames. Through the 

theoretical analysis of different designs was discovered that in the absolute majority of the 

cases the web frames flanking the strike collapse before the rupture of the hull.

The differences between the single-skin vessels and the double-skin ones consist 

basically in the unlike sequence of phenomena occurring during the penetration of the 

striking ship into their side structure. Particularly, the vessel considered in this chapter 

exhibits further difficulty due to its complicated side structure (see Figure 5.1). That is due 

to the presence of topside tanks and other sloped structural members.

Moreover, the damage height and location in the particular vessel play an important 

role in the capacity of the energy absorption before the rupture of the hull. When the 

depth of the striking ship is small and the hit is between the topside tank and the double 

bottom structure of the double-skin struck vessel then the value of the energy absorbed 

before rupture of the side shell plating will be obviously small. If  the topside tank or the 

double bottom structures are involved in collision the amount of the damaged material 

increases and so does the value of the energy absorbed.

In the following subsection the assumed occurring sequence of phenomena during 

impact will be discussed.
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5.2 M athem atical m odel for the double-hull tanker

A rigid vertical bow is assumed to strike the double-skin vessel at the mid-span 

between web frames. The angle of encounter is right angled. The damage height is 

dependent on the depth of the striking vessel as well as the relative position of both 

vessels. The side structure of the double hull is shown in Figure 5.2. There are three 

different colors defining three different areas. The definition is as follows:

• Red color: Upper area; from the main deck plating to the bottom of the topside 

tank

• Blue color: Middle area; from the bottom of the topside tank to the inner bottom 

plating

• Green color: Lower area; from the inner bottom plating to the bottom plating 

(double bottom structure).

The side structure has been presented like this in order the definition of the damage 

to be easy and to be easily detected every time, which structural members are involved.

In order to get a general idea of the phenomena occurring during collision at the side 

structure of the struck ship under consideration, a striking bow with depth larger than the 

depth of the struck ship will be theoretically considered. This means that the main deck of 

the bow is assumed to be above the main deck of the struck ship and the bottom of the 

bow is assumed to be below the bottom of the struck ship. The whole depth of the side 

structure will then be deformed (red, blue and green areas, Figure 5.2).

The plastic energy absorbed in a double-skin struck ship before rupture of the hull, 

includes the plastic energy of each hull at the time of its rupture, the plastic energy of the
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decks when the second hull ruptures (membrane and buckling components), and any 

plastic energy absorbed by the web frames up to the instant that the second hull ruptures. 

When longitudinal decks between the double hull exist then there is additional energy 

absorption due to the wedge splitting of these decks before the striking ship engages the 

inner hull.

The wedge splitting mechanism starts in the main deck plating, the inner bottom 

plating and the bottom plating, immediately after the rupture of the outer hull. So the 

relating energies have to be considered also.

In a more analytical way the sequence of phenomena for the particular double­

skinned design are as follows:

1. The striking ship engages the outer hull of the struck ship. The outer side shell plating 

deforms and loads in membrane tension. The energy absorbed is due to membrane 

tension.

2. The main deck plating, the inner bottom plating, the bottom plating and the decks 

between the two hulls absorb energy due to membrane tension and plastic buckling.

3. The penetration reaches the critical value, at which the weaker main deck’s transverse 

collapses and the damage in the upper area extends in the adjacent bays.

4. The penetration reaches the critical value, at which the stronger bottom’s transverse 

collapses and the damage in the lower area extends in the adjacent bays.

5. The side transverses collapse. Energy absorbed through bending of the side 

transverses as beams associated with the plating of the inner and outer hull.

6. The outer hull ruptures and the decks are being tom from the striking bow. Energy 

absorbed due to wedge splitting of decks.
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7. The inner hull is impacted by the striking bow. Energy absorbed due to membrane 

tension. At the end of this phase the inner hull ruptures and the only energy absorbing 

mechanism is the wedge splitting of the main deck plating, the inner bottom plating 

and the bottom plating.

A program has been developed in Fortran 90 to conduct the calculations of the 

energy absorbed from the shuttle tanker. A worksheet in Microsoft Excel was also created 

for the same reason in order to check the results of the program.

The inputs in the program are all the structural details describing the decks, side shell 

plating, and material properties as well as the range of the penetration for which the 

calculations will be conducted. As the penetration increases in every iteration the program 

carries out the following checks:

■ If  the penetration (W) is less than the critical indentation (WJ and also less than 

the limited indentation for the first bay (WL1) then the energy absorbed is:

1. Energy absorbed due to membrane tension in the side shell plating

2. Energy absorbed due to membrane tension in the decks.

3. Energy absorbed due to buckling of the decks.

■ If  the penetration (W) is greater than the critical indentation (WJ and less than 

the limited indentation of the three bays collapse model (W ^ then the deck 

transverses flanking the strike have collapsed and the damage is extended to the 

adjacent bays. The energy absorbed is:

1. Energy absorbed due to membrane tension in the side shell plating

2. Energy absorbed due to membrane tension in the decks

3. Energy absorbed due to buckling of the decks

4. Energy absorbed due to the collapse of the deck transverse
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The above-cited energies are calculated for the extent in the three bays collapse 

model.

■ If  the penetration (W) is greater than the limiting indentation (WL2) then the 

outer hull ruptures and the energy absorbed is:

1. Energy absorbed due to membrane tension of the side shell at the instant 

of rupture

2. Energy absorbed due to membrane tension in the decks at the instant of 

rupture of the outer hull.

3. Energy absorbed due to buckling o f decks at the instant of rupture of outer 

hull.

4. Energy absorbed due to the collapse of the deck transverse at the instant of 

rupture of the outer hull.

5. Energy absorbed due to the wedge splitting of decks.

■ If  the penetration (W) overcomes the value required to reach the inner hull, 

which will be the distance between the two hulls plus the distance that the inner 

hull moved due to the movement o f the web frames, then the energy absorbed is:

1. The summation of the energies calculated in the previous case.

2. Energy absorbed due to membrane tension in the inner hull

When the inner hull is engaged by the striking bow then the analysis is the same 

as the one for the outer hull.

It must be remarked that in the above-cited mathematical model the critical 

indentation (WJ at which the deck transverses collapse is less than the limiting indentation 

(WL1) beyond which rupture of the side shell plating occurs. This means that there will not 

be rupture of the hull before the collapse of the deck transverses flanking the strike.
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These two values are characteristic values of each structure and give us the 

opportunity to know the collapse model of the structure in advance. I f  a side structure 

consists of very strong web frames then (WQ) will be greater than (WL1) and the damage 

will be confined in one bay (speaking for a mid-span right angle strike).

Finally, an output file is produced with the energies absorbed from the individual 

structural members of the struck ship as well as the impact force and the volume of the 

material damaged at each value of the penetration.

5.3 A ssum ptions

Due to the complexity o f the particular double-skin structure some assumptions had 

to be made and are presented through a discussion on the collapse model.

Stiffened Outer Hull: The stiffened outer hull is the first part of the struck ship that is 

subjected to the impact load. As the outer hull is displaced towards the ship interior 

membrane tension forces are present in the stiffened outer hull’s plating. The energy 

absorbed from this member of the ship is due to these membrane forces.

Decks between the Double Hull: The decks between the two hulls are the very next structural 

members that are subjected to the impact load. The decks are absorbing energy due to 

membrane tension forces and due to buckling.
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Stiffened Inner Hull: The stiffened inner hull is the third member that concludes the 

structural members that exist between two adjacent web frames and between deck and 

bottom structures. The stiffened inner hull will be deformed after the collapse of the decks 

between double hull. That will happen if no heavy transverse member collapses before the 

striking bow reaches the inner hull. If  collapse of the heavy deck and bottom transverses 

occur before the indentation reaches the value of the double hull breadth then the damage 

extends to the adjacent bays before any damage to the inner hull is made.

Main Deck Transverse: The structure below the deck of this ship design is somehow 

complicated because the particular ship has a topside tank. The deck transverse in the 

region of the topside tank is triangular and stronger than the rest of the deck transverse. 

The triangular member will not be taken into account when the critical indentation beyond 

which collapse of the member occurs will be calculated. That is due to the strength of the 

triangular member which makes it to stand the force when the rest of the deck transverse 

collapses.

Bottom Transverse: The bottom transverse is subjected to a reaction force, which consists of 

the membrane tension forces coming from the outer and inner hull and the membrane and 

buckling forces coming from the decks between double hull. The share of the reaction 

force acting on the deck and bottom transverse is assumed to be:

Deck transverse'. All the membrane and buckling forces for damage height the height of the 

topside tank measured at the side of the vessel.

Bottom transverse: All the membrane and buckling forces for damage height the height of the 

double bottom structure.
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The length of the bottom transverse for the strength calculations is taken to be the 

unsupported length between two adjacent girders. In any case the damage is assumed to 

confine in one or three bays maximum. This means that the transverses flanking the strike 

might collapse and the damage might extend in the adjacent bays but no further 

transverses will collapse. Thus, the damage is confined in three bays. If  the transverses are 

very strong the damage will be confined in one bay.

Side Transverse Lower and Upper Part The side transverse is the heavy vertical member that 

joins the deck and bottom transverse. The side transverse in this ship consists of two parts 

with different unsupported length. This is the reason that the side transverse will be 

treated as two clamped beams. With this assumption we get different collapse values for 

the side transverse and a more complicated model. Therefore, when the damage extends to 

the adjacent bays due to the different collapse values of the deck, bottom and side 

transverses sloped indentation lines had to be assumed at the web frames.

Collapse Mechanism for the Complete Structure: Because of the complications that are presented 

in this particular structure, it is very difficult to define in advance the way that the structure 

will deform under an impact load. A good way to conduct this kind of work is with critical 

indentations for each member as was shown previously.

If  we know the critical indentations for every structural member then it is easy to see 

which members will collapse first and which later. This work is needed when the 

prediction of the behavior of the side ship structure in various penetrations is important.

On the other hand for a given deformed struck ship, it is easy to calculate the 

absorbed energy by simply applying the theoretical plastic analysis formulae on each 

individual member.
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5.4 Collision Scenarios

Collision scenarios play a very important role in the amount of energy absorbed from 

the struck ship structure. There are a lot of parameters involved in the definition of a 

collision scenario. In the present study the striking ship impacts the struck ship at right 

angles and at the mid-span between web frames.

The collision scenarios assumed herein were proposed from the Germanischer Lloyd 

in order to estimate the crashworthiness o f a ship. The scenarios are depending on the 

load conditions of the vessels involved. Four different cases were examined:

1. Struck ship in ballast condition. Striking ship in the full load condition.

2. Struck ship in ballast condition. Striking ship in ballast condition.

3. Struck ship in full load condition. Striking ship in full load condition.

4. Struck ship in full load condition. Striking ship in ballast condition.

The scenarios are illustrated in Figures 5.3 to 5.6. The striking ship was assumed to 

have a depth of D = 15.000m. The selection of the depth was based on a statistical search 

from actual ship to ship collisions. Most of the collided vessels were found to have a depth 

around fifteen meters. Also this depth was convenient for showing the irregularities that 

arise during collision. In figures 5.3 to 5.6 can also be seen the structural members of the 

struck ship that will suffer damage, involved in each case.
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5.4.1 Estim ation o f  the Drafts

The designs of the shuttle tanker, which were provided are:

• Midship Section

• General Arrangement Plan

• Longitudinal BHD at C.L.

• Tanktop and Hopper

• Maindeck and Bottom

• Shell Expansion

Stability Booklet for the ship has not been provided to us. Thus, an evaluation for 

the Ballast Condition Draft has to be done. From the General Arrangement Plan, the 

diameter of the propeller of the ship and the height of the propeller’s shaft can be 

measured. The diameter is D = 6.20 m and the height of the shaft from the keel is Hs = 

4.20 m.

The regulations require that in ballast condition a tanker’s propeller must be 300mm 

below water. So the aft draft of the ship must be:

Taft = (Hg -  D /2) + D + 0.3 = 7.10 m

The regulations require that in ballast condition a tanker’s trim must not be greater 

than 300mm. So we assume that the forward draft is:

Tfrw = T ^  -  0.3 = 6.80 m

The above made calculations give us a mean draft in Ballast Condition:

Tmballast — 6.95 m
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For the Full Load Condition we have the Design Draft:

Td = 15.950 m

Therefore, in the estimation of the relative position of the colliding vessels these 

drafts are used. For the striking bow the required drafts were assumed to be those of an 

existing tanker vessel having depth D = 15.000m. The drafts are shown below:

• Td = 9.900 m

• TB = 4.300 m

Results have been derived for all o f the above-dted scenarios and are discussed along 

with the occasionally made assumptions, in the following subsection.

5.4 R esults and Conclusions

The results have been produced for four different collision scenarios. It is very 

interesting to see the difference in the total energy absorbed by the side structure, when 

the damage area is changing. Each scenario is separately discussed and assessed.

First Collision Scenario:

The struck vessel is in ballast condition and the striking vessel is in full load condition. 

The damage hdght is 12.050 m, measured from keel. The structural members involved in 

collision are:

•  bottom plating
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• bottom transverse

• inner bottom plating

• outer hull

•  lower side transverse

• inner hull

• two decks between the two hulls

As the striking bow penetrates towards the centerline of the struck ship the sequence 

o f phenomena occurring is the following.

1. The outer hull is loaded in membrane tension. The decks between the two hulls load in 

membrane tension and in buckling as well as the bottom and the inner bottom deck 

plating.

2. As the penetration depth increases the bottom transverses and the side transverses 

flanking the strike collapse and the damage is extended in the adjacent bays.

3. Rupture of the outer hull occurs at the end of this phase and the rigid bow starts to 

tear the decks plating.

4. The striking bow engages the inner hull. Energy is absorbed due to membrane tension 

in the inner hull plating. The bottom and the inner bottom plating load in membrane 

tension and buckling.

5. The inner hull ruptures and the energy absorbing mechanism is the wedge splitting of 

bottom and inner bottom deck plating.

The results are shown in Figures 5.7 to 5.18. The energy absorbed up to the rupture 

of the inner hull is = 423187 KJ. The maximum penetration before the rupture of 

the inner hull is = 5.630 m.
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Second Collision Scenario:

The struck vessel is in ballast condition and the striking vessel in ballast condition. 

The damage height is 15.000 m. The damaged area is from 0.450 meters above the inner 

bottom plating to 0.950 meters above the third deck between the two hulls (counting from 

the bottom). The structural members that are absorbing energy are:

• three decks between the two hulls

• outer shell plating

• lower and upper part of the side transverse

• inner shell plating

As it can be seen no deck transverses are involved in the calculations. The side 

transverses do not buckle or yield before the rupture of the hulls and the damage is 

confined in one bay.

The sequence of phenomena is as follows:

1. The outer hull is loaded in membrane tension. The decks between the two hulls 

are loaded in membrane tension and in buckling.

2. At the end of this phase rupture of the outer hull occurs. The mechanism that 

absorbs energy now is due to the wedge splitting of the decks between the two 

hulls.

3. The striking bow engages the inner hull, which loads in membrane tension.

4. The inner hull ruptures and the striking bow penetrates into the cargo tank 

without any further resistance.

The results for this scenario are shown in Figures 5.19 to 5.25. The total energy 

absorbed just prior to the rupture of the inner hull is Eminor = 172740 KJ. The maximum 

penetration at the instant o f the inner hull’s rupture is WLMAX = 3.166 m.
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Third Collision Scenario:

The struck vessel is in full load condition and the striking vessel in full load condition. 

The damage height is 15.000 m. The damaged area is from 0.100 m above the first deck 

between the two hulls to 0.800 m below the main deck plating. The structural members 

suffering damage are:

•  two decks between the two hulls

•  outer shell plating

• topside tank’s bottom plating

• inner shell plating

• lower and upper part o f the side transverses

The damage is confined in one bay as previously and the sequence of phenomena is 

as follows:

1. The outer hull loads in membrane tension. The decks between the two hulls load 

in membrane tension and in buckling.

2. The outer hull ruptures and the decks between the two hulls are being tom from 

the striking bow.

3. The bow engages the inner hull, which loads in membrane tension. The topside 

tank’s bottom loads in membrane tension and buckles.

4. The inner hull ruptures and the only energy absorbing mechanism is the wedge 

splitting of the topside tank’s bottom plating.

The results for the third scenario are presented in Figures 5.26 to 5.36. The total 

energy absorbed up to the rupture of the inner hull is = 171822 KJ. The maximum 

penetration just prior to the rupture of the inner hull is = 3.166 m.
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Fourth Collision Scenario:

The struck vessel is in full load condition and the striking vessel is in ballast 

condition. The damage height is 9.450 m. The damaged area is from 1.150 meters above 

the second deck between the two hulls to the main deck (main deck included). The 

structural members involved in the damage are:

• main deck plating

• main deck’s transverses

•  topside tank’s bottom plating

• upper part of side transverses

The sequence of phenomena is as follows:

1. The outer hull loads in membrane tension. The main deck and the deck between 

the double hull load in membrane tension and in buckling.

2. The deck transverses flanking the strike collapse and the damage is extended to 

the adjacent bays.

3. The outer hull ruptures and the striking bow tears the deck between the two hulls 

as well as the main deck.

4. The bow engages the inner hull, which loads in membrane tension.

5. Finally, the inner hull ruptures and the remaining absorbing mechanism is the 

wedge splitting of the main deck and topside tank’s bottom plating.

The results for the third scenario are presented in Figures 5.37 to 5.46. The total 

energy absorbed from the side structure up to the rupture of the inner hull is =

208238 KJ. The maximum penetration just prior to the rupture o f the inner hull is 

= 4.780 m.
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The maximum energies absorbed up to the rupture of the inner hull along with the 

maximum penetrations at the instant of the inner hull rupture are presented conclusively in 

the next table:

Total Energy Absorbed prior to 

the rupture of the inner hull,

E m in o r

Penetration depth at the instant of 

inner hull’s rupture, W l m a x

First Collision Scenario 423187 KJ 5.630 m

Second Collision Scenario 172740 KJ 3.166 m

Third Collision Scenario 171822 KJ 3.166 m

Fourth Collision Scenario 208238 KJ 4.780 m

First Collision 

Scenario

Second Collision 

Scenario

Third Collision 

Scenario

Fourth Collision 

Scenario

Volume of 

Damaged Material 

(including inner 

and outer shell)

10.374 m3 2.727 m3 2.644 m3 3.994 m5

It can be seen that in the second and third scenario, where no deck transverses are 

involved, rupture of the inner hull occurs for identical penetration depths. The damage in 

these two cases is confined between two consecutive web frames and the value of the 

penetration is calculated as the limiting value of the inner hull displacement before rupture 

occurs plus the width of the span between the two hulls.

In the first and fourth cases, where the deck/bottom transverses flanking the strike 

collapse, the maximum penetration depth is dependent on the lateral movement of the 

transverses. The greater strength of the bottom transverse - in the first scenario — provides 

great resistance to penetration and so the energy absorbed is the larger from all the
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scenarios. This is also due to the strong bottom and inner bottom plating. The weaker 

deck transverse -  fourth collision scenario - moves towards the centerline of the vessel 

more easily and that is the reason for the penetration value of 4.780 m. On the other hand, 

the energy required for this penetration depth to be reached is very much smaller than the 

first scenario.

The damaged material in each scenario is shown in the presented table and justifies 

the differences in the energy absorption capacity.

From the obtained results, it becomes evident that the right selection of the structural 

scantlings is not an easy thing. That is why an optimization procedure is required when a 

ship is designed and an easy-to-use prediction method is the way this aim is achieved.
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L ist o f  Figures 

PA R T ONE: D ouble H ull design  —  D am age profiles  —  Collision  
Scenarios.

i m .

4400

6200

11600

22000

5300
Td = 14000

6000

t = 20 2ZQHt = 21

Figure 5.1: Mid-ship section of the shuttle tanker provided by Lloyd’s Register.
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Figure 5.2: Three-dimensional model o f the double hull tanker. The three different colors 

define the areas o f the topside tank, the double shell, and the double bottom 

structures.
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Figure 5.3: Assuming the struck ship in the Ballast Condition and a striking ship with

Depth=15000mm in the Full Load Condition.
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Figure 5.4: Assuming the struck ship in the Ballast Condition and a striking ship with

Depth = 15000mm in the Ballast Condition.
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Figure 5.5: Struck ship is assumed to be in Full Load Condition and a striking ship with

Depth=15000mm in the Full Load Condition.
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Figure 5.6: The struck ship is assumed to be in the Full Load Condition and a striking ship

with Depth=15000mm in the Ballast Condition.
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PAR T TWO: Double-skin tanker - Results for the First Collision 
Scenario

Total Energy A  bsorbed - F irst C ollision Scenario
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Figure 5.7: Total energy absorbed by the side structure o f the double-skin tanker regarding 

the first collision scenario.
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Figure 5.8: Total energy absorbed plotted against the volume o f the damaged material. The 
outer and inner shell volume o f damaged material has not been included in the 
calculations.
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Energy A bsorbed due to m embrane tension on the outer side shell
p la tin g
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Figure 5.9: Energy absorbed due to membrane tension in the stiffened outer hull o f the 

struck vessel.
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Figure 5.10: Energy absorbed due to membrane tension in the decks between the two hulls 

o f the struck vessel.
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E nergy A  bsorbed due to buckling o f  the decks between the tw o
hulls
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Figure 5.11: Energy absorbed due to the buckling o f decks between the two hulls o f the 

struck vessel.
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Figure 5.12: Energy absorbed due to membrane tension in the bottom plating o f the 

struck vessel.
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Energy A bsorbed due to buckling o f  the bottom  deck p la tin g
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Figure 5.13: Energy absorbed due to buckling of the bottom plating o f the struck vessel.
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Figure 5.14: Energy absorbed due to the membrane tension on the inner bottom plating.
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Energy A bsorbed due to buckling o f  the inner bottom  p la tin g
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Figure 5.15: Energy absorbed due to buckling o f the inner bottom plating o f the struck 

vessel.
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Figure 5.16: Energy absorbed due to the collapse o f the bottom transverses flanking the 

strike.
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Energy A bsorbed due to m em brane tension on the inner hull
p la tin g
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Figure 5.17: Energy absorbed due to membrane tension in the inner hull plating.
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Figure 5.18: Energy7 absorbed due to the wedge splitting o f decks (bottom and inner 

bottom plating as well as the two decks between double hull involved.
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PAR T THREE: Double-skin tanker -  Results for the Second Collision 
Scenario

Total Energy A bsorbed - Second Collision Scenario
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Figure 5.19: Total energy absorbed by the side structure o f  the double hull vessel plotted 

against the penetration depth.
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Figure 5.20: Total energy absorbed plotted against the volume o f the damaged material.
The volume o f the inner and outer hull damaged material has been excluded 
the calculations, that is why for a constant amount o f material energy is being 
further absorbed.
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Energy A bsorbed due to m embrane tension on the outer side shell
p la tin g
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Figure 5.21: Energy absorbed due to membrane tension on the outer side shell plating.
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Figure 5.22: Energy absorbed due tot membrane tension on the decks between the two 

hulls.
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Energy A bsorbed due to buckling o f  the decks between the tw o
hulls
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Figure 5.23: Energy absorbed due to the buckling o f the decks between the two hulls.
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Figure 5.24: Energy absorbed due to membrane tension on the inner side shell plating.
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Energy A bsorbed due to the wedge sp littin g  o f  Decks
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Figure 5.25: Energy absorbed due to wedge splitting o f the decks between the two hulls.
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PA R T FOUR: D ouble-skin tanker — Results for the Third Collision 
Scenario

Total Energy A bsorbed - F irst Collision Scenario
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Figure 5.26: Total energy absorbed from the side structure o f the struck vessel plotted 

against the penetration depth.
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Energy A bsorbed due to m em brane tension on the outer side shell
p la tin g
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Figure 5.30: Energy absorbed due to membrane tension on the outer side shell plating.
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Figure 5.31: Energy absorbed due to membrane tension on the decks between the two 

hulls.
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Energy A bsorbed due to buckling o f  the decks between the two
hulls
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Figure 5.32: Energy absorbed due to buckling of the decks between the two hulls.
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Figure 5.33: Energy7 absorbed due to membrane tension on the topside tank’s bottom

plating.
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Energy A bsorbed due to buckling o f  the topside tank's bottom
deck p la tin g
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Figure 5.34: Energy absorbed due to the buckling o f the topside tank’s bottom plating.

Energy A bsorbed due to m embrane tension on the inner side shell
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Figure 5.35: Energy absorbed due to membrane tension on the inner shell plating.
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Energy A bsorbed due to the wedge sp littin g  o f  Decks
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Figure 5.36 : Energy absorbed due to the wedge splitting o f the decks between the two 

hulls as well as the topside tank’s bottom plating.
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PAR T FIVE: Double-skin tanker — Results for the Fourth Collision 
Scenario

Total Energy A bsorbed - Fourth Collision Scenario
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Figure 5.37: Total energy7 absorbed from the side structure o f the struck vessel plotted 

against the penetration depth.

Total Energy Absorbed - Volume o f Damaged Material
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Figure 5.38: Total energy absorbed plotted against the volume o f the damaged material.

The outer and inner shell volumes o f damaged material have not been taken

into account.

181



Chapter 5 Estimation o f the Crashworthiness o f a Double Hull vessel

Energy A bsorbed due to m embrane tension on the outer side shell
p la tin g
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Figure 5.39: Energy absorbed due to membrane tension on the outer shell plating.
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Figure 5.40: Energy absorbed due to membrane tension on the deck between the two 

hulls.
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Energy A bsorbed due to buckling o f  the deck between the tw o
hulls
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Figure 5.41: Energy absorbed due to buckling o f the deck between the two hulls.
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Figure 5.42: Energy absorbed due to membrane tension on the main deck plating.
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Energy A bsorbed due to buckling o f the m ain deck p la tin g
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Figure 5.43: Energy absorbed due to buckling o f the main deck plating.
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Figure 5.44: Energy absorbed due to the collapse o f the main deck’s transverses.
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Energy A bsorbed due to membrane tension on the inner hull
p la tin g
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Figure 5.45: Energy absorbed due to membrane tension on the inner hull plating.
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Figure 5.46: Energy absorbed due to the wedge splitting o f main deck plating, deck 

between the two hulls and topside tank’s bottom plating.
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Chapter 6

Estimation of the Crashworthiness 
of a Single Hull Tanker

Introduction

The estimation of the energy absorbed from a double-skinned tanker was the subject 

of the previous chapter. Results were produced and discussed from the view of internal 

collision mechanics.

The double-hull tankers have been questioned regarding their structural integrity. 

Cracks have been developing and propagating specially in the double bottoms of these 

structures from the early stages o f their service life. A good question then would be, how 

are they doing with energy absorption during collision? Thus, it was found a good idea to 

compare a double-hull vessel with a single-hull vessel having the same principal 

dimensions. It was not feasible to run a search for an existing single hull tanker, so it was 

decided to derive the single-hull vessel through preliminary design methods. The principal 

dimensions of the shuttle tanker were used to calculate the mid-ship section of the single 

hull one. The calculations of the bending moments and shear forces were conducted using 

ABS and Lloyd’s formulae. The thickness and scantlings of stiffeners calculations were 

carried out using ABS equations, because a later edition of these rules was available. 

Further, the mid-ship section was accomplished and calculation of its properties (neutral 

axis, section modulus) took place.
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Finally, the method by Hegazy was applied on the single-skinned tanker to calculate 

the energy absorption capacity of the vessel. Results are compared and discussed, with 

those derived for the double-skin tanker, at the end of this chapter.

6.1 Single-skin tanker

The form of the mid-ship section of the single hull design was assumed similar with 

two other conventional tanker designs that we had in hand. The shape proposed is shown 

in Figure 6.1. As it can be seen it is a single shell and single bottom design. The 

characteristics of the vessel that were calculated are the following:

•  Required Section Modulus

• Frame Spacing

• Web Frame Spacing

The structural members, o f which the scantlings were calculated, are the following:

• Bottom Shell Plating

• Keel Plating

• Side Shell Plating

• Shearstrake

• Deck Plating

• Center Girder

• Side Girders

• Bottom Plating Stiffeners

• Deck Plating Stiffeners

• Side Shell Stiffeners
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•  Transverse Frames

• Web frames

•  Deck Transverse

• Bottom Transverse

The calculations of the scantlings, the choices of the stiffeners, and the calculation of 

the properties of the mid-ship section are shown in Appendix A.

6.2 A pplication o f the proposed  m ethod

The method proposed by Hegazy can be easily applied to a design like the developed 

single-skin tanker. The configuration of this design fits quite good the simplified model 

presented in the method. The only difficulty is the difference between the collapse load of 

the main deck’s and bottom’s transverses.

Four collision scenarios were assumed as in the previous chapter. The scenarios along 

with the damage height at each case are shown in Figures 6.2 to 6.5.

Graphs have been produced plotting the total energy absorbed by the side structures 

as well as the energy absorbed from each individual structural member against the 

penetration.
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6.3 R esults and Conclusions

First Collision Scenario:

The struck vessel is in ballast condition and the striking vessel in full load condition. 

The damage height is 12.050 m, measured from the keel. The structural members involved 

in the damage are:

• bottom plating

• bottom transverse

• side transverse

The sequence of phenomena occurring after the engagement of the side shell plating 

by the striking bow is:

1. The outer hull loads in membrane tension. The bottom plating loads in 

membrane tension and in buckling.

2. The side transverses flanking the strike collapse.

3. Rupture of the hull occurs and the striking bow tears the bottom plating.

The bottom transverses flanking the strike do not collapse before the rupture of the 

hull. This fact yields to the following assumption: The damage is confined in one bay, 

because the deck and bottom transverses, which remain intact, provide a strong boundary 

to the side shell plating. The yield of the side transverses results in an increase of the 

energy absorbed.

The results for this scenario are presented in Figures 6.6 to 6.13. The total energy 

absorbed up to the rupture o f the side shell plating is Eminor = 291425 KJ. The maximum 

penetration at the instant of the hull rupture is WLMAX = 3.280 m.
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Second and Third Collision Scenario:

Second Scenario: The struck vessel is in ballast condition and the struck vessel in ballast 

condition. The damage height is 15.000 m. The damaged area is from 2.650 meters above 

keel to 17.650 m above keel. The structural members suffering damage are:

• side transverses

• side shell plating

The sequence of phenomena occurring is very simple:

1. The side shell plating loads in membrane tension.

2. The side transverses flanking the strike collapse.

3. The side shell plating ruptures and the striking bow enters the cargo tank with no 

further resistance.

The third scenario for this vessel is exactly the same as the second one. The damage 

height is 15.000 m. The damaged area begins at 6.050 m above keel to 0.800 m below the 

main deck plating. The structural members involved are the same as in the second scenario 

and so is the sequence of phenomena.

The results are presented in Figures 6.11 to 6.15. The total energy absorbed up to the 

rupture of the side shell plating is = 120117 KJ. The maximum penetration just prior

to the rupture of the hull is = 1.394 m.

Fourth Collision Scenario:

The struck vessel is in full load condition and the striking vessel in ballast condition. 

The damage height is 9.450 m. The damaged area is from 11.650 meters above keel to the 

main deck (main deck included). The structural members involved in the damage are:

• main deck plating
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• side shell plating

•  deck transverses

• side transverses

The deck transverses flanking the strike do not collapse. The damage is confined in 

one bay. The sequence of phenomena is as the first collision scenario if the bottom plating 

is substituted with the main deck plating.

The results for this case are shown in Figures 6.16 to 6.20. The total energy absorbed 

up to the rupture of the hull is = 83765 KJ. The maximum penetration at the instant 

of hull rupture is WLMAX = 1.394 m.

The results are presented in the table below. The larger amount o f energy was 

absorbed when the damage height was the greater one. This means that the membrane 

tension in the side shell plating plays a dominant role in the energy absorption capacity. In 

none of the scenarios the deck transverses flanking the strike collapsed. This fact kept the 

limiting penetration, beyond which rupture of the hull occurs, constant throughout the 

four cases.

Total Energy Absorbed just prior 

to the rupture o f  the hull,

F'‘“'minor

Penetration depth at the instant o f  

the hull rupture,

Wlmax

First Collision Scenario 291425 KJ 3.280 m

Second and Third Collision 

Scenario

120117 KJ 1.394 m

Fourth Collision Scenario 255683 KJ 3.310 m
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First Collision Scenario Second and Third 

Collision Scenario

Fourth Collision 

Scenario

Volume o f  Damaged 

Material (m3)
5.645 m3 2.351 m3 5.045 m3

6.4 Com parison o f  the Crashworthiness o f  the double and single  —  skin  

tankers

The table below gives the values o f the energy absorbed and maximum penetration 

up to the rupture of the hull obtained for the two tankers. The principal dimensions of the 

two vessels are the same as it has been already mentioned.

Energy absorbed prior to the 

rupture o f  the hull,

Eminor

Penetration depth at the 

instant o f hull rupture,

Wlmax

First Collision 

Scenario

Double-Skin 423187 KJ 5.630 m

Single-Skin 291425 KJ 3.280 m

Second Collision 

Scenario

Double-Skin 172740 KJ 3.166 m

Single-Skin 120117 KJ 1.394 m

Third Collision 

Scenario

Double-Skin 171822 KJ 3.166 m

Single-Skin 120117 KJ 1.394 m

Fourth Collision 

Scenario

Double-Skin 208238 KJ 4.780 m

Single-Skin 255683 KJ 3.310 m
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The double hull design in three of the cases absorbs quite larger amounts of energy 

before the rupture of its inner hull. The single hull tanker absorbs quite large amounts o f 

energy in most of the cases and in the fourth collision scenario it overcomes the energy 

absorbed by the double-hull. This is due to the strong main deck transverse that exist in 

the single hull structure and the increased thickness of the main deck plating, which are 

required for the integrity of the structure. The double-skin tanker has a very strong 

double-bottom structure, which provides a huge resistance to the penetrating bow.

It can be seen that if the fourth collision scenario would occur, the single-skin tanker 

would require more energy from the striking bow up to the rupture of its hull. On the 

other hand, in all the other scenarios the double-skin tanker has undoubtedly an advantage 

against the single-skin tanker.
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L ist o f  Figures

PA R T ONE: Single H u ll Tanker developm ent

deck transverse
longitudinal BHD

web frame

center girder

side girders
bottom transverse

C.L.

Figure 6.1: This figure illustrates the mid-ship section of the developed single hull tanker 

along with definitions of some of the crucial structural members in terms of 

collision damage.

194



Chapter 6 Estimation o f the Crashworthiness o f a Single Hull Tanker
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Figure 6.2: First assumed collision scenario: Struck vessel in Ballast Condition. Striking 

Vessel in Full Load Condition. The damage height is also shown.

15.000m

i

C.L.

Figure 6.3: Second assumed collision scenario: Struck vessel in Ballast Condition. Striking 

vessel in Ballast Condition. The damage height equals the depth of the 

striking ship.
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15.000m

C.L.

Figure 6.4: Third assumed collision scenario: Struck vessel in Full Load Condition. Striking 

vessel in Full Load Condition. The damage height equals the depth of the 

striking ship.

9.550m

C.L.

Figure 6.5: Fourth assumed collision scenario: Struck vessel in Full Load Condition. 

Striking vessel in Ballast condition. The damage height is also shown.
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PAR T TWO: Results derived for the single hull tanker -  First Collision 

Scenario

Total Energy A bsorbed by the Side structure - First Collision
Scenario
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0 0 0.4 0.8 12 1.6 2.0 2.4 2.8 3.63.2 4.0
Penetration: W (m)

Figure 6.6 : Total energy absorbed by the side structure of the single-skin tanker plotted 

against the penetration depth.

Total E nergy A bsorbed  against the Volume o f  the D istorted  M aterial
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S  150000 -
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0.0 0.1 0.2 0.3 0.4 0.70.5 0.6 0.8 0.9 1.0 1.1

Volume of the Distorted Material (m3)

Figure 6.7: Total energy absorbed plotted as a function o f the volume o f the damaged 

material. The volume o f the side shell plating material has not been included 

in the calculations.
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E n ergy A bsorbed  due to m em brane tension on the Side Shell
p la d n g
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Figure 6 .8: Energy absorbed due to membrane tension on the side shell plating.

Energy Absorbed due to membrane tension on the Bottom  Deck
Plating
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Figure 6.9: Energy absorbed due to membrane tension on the bottom deck plating.
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Energy Absorbed due to Buckling o f the Bottom  D eck plating
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Figure 6.10: Energy absorbed due to the buckling o f the bottom plating.

Energy Absorbed due to the collapse o f the Bottom deck's transverses
flanking the strike
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Figure 6.11: Energy absorbed due to the collapse o f the bottom transverses flanking the 

strike.
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Energy Absorbed due to the collapse o f the Side transverses
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Figure 6.12: Energy absorbed due to the collapse o f the side transverses flanking the strike.

E nergy A bsorbed  due to wedge sp littin g  o f  the bottom  deck
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Figure 6.13: Energy7 absorbed due to wedge splitting o f the bottom plating, following the 

rupture o f the side shell plating.
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PAR T THREE: Results derived for the single hull tanker -  Second and 

Third Collision Scenario

Total Energy A bsorbed by the Side structure -  Second and Third Collision Scenarios
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Figure 6.14: Total energy absorbed from the side structure o f the struck vessel plotted 

against the penetration depth.

Total Energy Absorbed against the Volume o f  the D istorted Material
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Figure 6.15: Total energy absorbed plotted as a function o f the volume o f damaged 
material. The side shell plating material has not been included to the 
calculations. The second and the third collision scenario involve purely the side 
shell plating o f the struck vessel. That is why the shape o f the graph look likes 
that.
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Energy Absorbed due to the collapse o f the Side transverses
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PAR T FOUR: Results derived for the single hull tanker - Fourth 

Collision Scenario

Total E nergy A bsorbed by the Side structure  -  Fourth Collision Scenario
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Figure 6.17: Total energy absorbed from the side structure o f the struck vessel plotted 

against the penetration depth.

Total Energy Absorbed against the Volume o f the Distorted Material
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Figure 6.18: Total energy absorbed as a function o f the volume o f the damaged material.

The side shell plating material has been excluded from the calculations. The 

straight line is due to the collapse o f the side transverses flanking the strike.
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E nergy A bsorbed  due to m em brane tension on the Side Shell
p la tin g
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Figure 6.19: Energy absorbed due to membrane tension on the side shell plating of the 

struck vessel.

Energy Absorbed due to membrane tension on the Main Deck Plating
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Figure 6.20: Energy absorbed due to membrane tension on the main deck plating.
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Energy Absorbed due to Buckling o f the Main D eck plating
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Figure 6.21: Energy absorbed due to the buckling o f the main deck plating o f the struck

vessel.

Energy Absorbed due to the collapse o f the Main deck's transverses
flanking the strike
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Figure 6.22: Energy absorbed due to the collapse o f  the main deck’s transverses flanking 

the strike.
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Energy Absorbed due to the collapse o f the Side transverses
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Figure 6.23: Energy absorbed due to the collapse o f the side transverses flanking the strike.
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Figure 6.24: Energy absorbed due to the wedge splitting o f the main deck plating 

following the rupture o f the hull.
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Chapter 7

Parametric Optimisation of the Double Hull 
Tanker

Introduction

The final work carried out in the present thesis is optimisation of the structural 

parameters of the struck ship. The structure was optimised in terms of the energy 

absorption capacity of a vessel in collision. Parameters such as cost and weight o f the 

added material was not taken into account.

The existing methods by Minorsky (1959), Akita (1972), NCRE (1967) are simplified 

formulae, which do not give the ability of an optimisation procedure to be applied in every 

component of a side structure. Moreover, these formulae disregard the effect o f the side 

shell plating in the energy absorption capacity. Minorsky only includes a constant energy 

component in his formula, which has been characterised, from many researchers, to be the 

energy dissipated before the rupture o f the hull. Akita and NCRE methods are exclusively 

based on the mechanism of wedge splitting of decks and so the volume of the damaged 

material is considered to be only the one on the tom decks.

These disadvantages of the global methods make them ineligible to be used for the 

optimisation of a vessel structure. For example, if the above-mentioned methods were 

applied to a vessel with side shell thickness 0.01m and then reapplied to that vessel but
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considering side shell thickness 0.03m then they would predict the same amount of energy 

absorbed for a constant penetration even if the thickness of the side shell was different in 

each case. Further, these formulae do not take account of the lateral movement of the web 

frames. It is evident that when very strong web frames exist in the struck ship’s structure 

then the damage is confined between these web frames. On the other hand, when the web 

frames are weak the damage is extended to the adjacent bays (area between two 

consecutive web frames) and the capacity of the energy absorption increases due to the 

larger volume of the damaged material. Because of the capability to account for each 

individual member, the method proposed by Hegazy was found convenient for an 

optimisation procedure.

The Hegazy’s method will be used herein for parametric optimisation o f the double­

skin vessel. This is, for basic parameters affecting the energy absorption capacity o f the 

struck vessel graphs have been derived plotting the variation of energy adsorbed to the 

variation of each parameter.

Furthermore, a constant amount of material (20 m3) is distributed to one structural 

member each time and the energy absorption capacity of the modified structure is 

calculated. This scenario came up considering the work of a designer. Let’s assume that an 

extra amount of material is available to be placed on a vessel during the design procedure. 

What will be the best place to put the material regarding the energy absorption capacity of 

the vessel?

For this purpose the whole amount of the material is placed on one structural 

member each time (let’s say: enforcement of side shell plating) and when all the structural 

members have been considered, the results are being compared.

For the optimisation procedure, a new collision scenario has been assumed. The 

striking vessel is assumed to have depth greater than the struck vessel. The whole side
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structure of the double-skin vessel, introduced in chapter 5, is now subjected to the impact 

load (see Figure 7.1).

7.1 Web Frame Spacing

The spacing of the web frames plays a very important role in the value of the limited 

indentation beyond which rupture of the hull occurs, (WJ. The larger the spacing is the 

larger the value of the limited indentation becomes. This affects the energy absorption 

capacity because the membrane tension on the side shell and the decks as well as the 

buckling force on the decks are acting as an energy absorbing mechanism for a larger 

penetration. Although the energy absorbed before the rupture of the hull increases with 

the increase of the spacing between web frames, the classification society’s rules restrict its 

value.

In Figure 7.2 is illustrated the energy absorbed by the double hull vessel’s side 

structure up to the rupture of the inner hull against several values of the half-spacing 

between web frames. It is evident that the energy absorption increases about 15% for an 

increase of 20cm in the spacing between web frames.

7.2 D istance betw een the outer and inner hull.

The width of the double hull is another important factor affecting collision. It is 

understood that a larger distance between the hulls increases the penetration depth needed 

from the striking bow to engage the inner hull. Also the energy absorption increases due to 

the existence of decks connecting the two hulls, which resist the penetration.
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The energy absorbed up to the rupture o f the inner hull is plotted against the width of 

the double-hull. The increase in the energy absorption capacity is 1 to 1.5% for an increase 

o f 10 cm in the width o f the double-hull (see Figure 7.3). The increase is not so impressive 

as in the increase o f the web frames’ spacing but 1.5% in this case corresponds to 10000 

KJ.

7.3 D ouble bottom  heigh t

The double bottom height does not seem to affect the energy absorption capacity of 

the particular vessel. The decrement in the energy absorption is almost negligible for an 

increase to the double bottom height up to 0.800 m (see Figure 7.4).

The only role that the double bottom structure plays in the energy absorption capacity 

is seems to be the provision of extra strength to the bottom transverse. Thus, as soon as 

the area of the bottom transverse remains constant the height of the double bottom can 

not affect the capacity of the energy absorption of the structure.

7.4 A ddition o f  M aterial to  the Structure

Since a parametric optimisation without any design and strength constraints was 

considered to be useless, another scenario seemed to be a good idea. By assuming that a 

constant extra amount of material is available, where is the best area to be placed?

Through the designs provided for the double-skin vessel, a rough estimation of the 

volume of material was made. The procedure is as follows: The web frame spacing is 

3.80m and the length of the ship between perpendiculars 228.0m. The number of web
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frames of the vessel's structure was assumed to be (length/spacing) 60. Besides, the cross 

sectional area of the deck transverses, bottom transverses, main deck plating, bottom and 

inner bottom plating, side shell and inner shell plating were calculated. For the deck and 

bottom transverses by multiplying with the number of web frames the volume of the 

material of each individual member obtained. The same was done for the plating areas 

(multiplying with the length of the ship).

Judging from the magnitude of the individual volumes obtained, the constant amount 

to be available for addition to the structure was assumed to be twenty cubic meters (20 

m3). The total volume of the material of the ship was approximately calculated to be 

1300m3. Thus 20 m3 is 1.5% of the total volume, which will probably not increase the cost 

of the structure too much.

Afterwards, the reverse procedure than the one described above the material was 

distributed to each individual member. For example, the 20m3 were added to the bottom 

deck transverse and the thickness of the web became 0.016 instead of 0.012 that it was in 

the original design.

The structural members, which were enforced sequentially, are the following:

• main deck transverse

• bottom transverse

• main deck plating

• bottom plating

• decks between double hull

•  side shell plating

• inner shell plating
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The results obtained for each case are shown in Figures 7.5 to 7.11. The total energy 

absorbed by the side structure is not affected as differendy as it was expected. The added 

material increases of course the energy absorption capacity of the side structure but the 

structural member that it is being placed does not seem to play an important role.

The following table shows the results obtained for each case as well as the energy 

absorbed from the original structure just prior to the rupture of the hull

Enforced Structural Member Energy absorbed by the side 

structure up to the rupture o f  the 

inner shell plating, E m in o r

Penetration depth at the instant o f  

inner hull’s rupture,

W l m a x

None 973025 KJ 6.20 m

Main deck Transverses 991810 KJ 6.20 m

Bottom Transverses 924153 KJ 6.10 m

Main Deck Plating 1040729 KJ 6.22 m

Bottom Plating 1026697 KJ 6.04 m

Decks between Double Hull 1026017 KJ 6.22 m

Side Shell Plating 1026156 KJ 6.25 m

Inner Shell Plating 993558 KJ 6.21 m
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7.5 Conclusions

From the above-cited results is obvious that the increase in the energy absorbed by 

the side structure is not increasing much. Although, the increase is not seemed to be much 

in figures is as follows: For 1.5% increase on the material o f the structure the increase in 

the absorbed energy varies from 2% to 7%.

The only case that the crashworthiness of the vessel is decreased is when the bottom 

transverses are being enforced. It is evident that when the transverses in the decks of the 

struck vessel are very strong the damage can not extend in the adjacent bays and the 

energy absorbed as well as the penetration beyond which rupture of the hull occurs, can 

not reach large values due to the restricted amount of the material between the two 

consecutive web frames. Even if a strong deck transverse collapses, its movement towards 

the centreline of the struck ship is being restricted by its strength. On the other hand, very 

weak deck transverses collapse early and do not leave chances for the best operation of the 

structure in terms of energy absorption capacity. This is the case for the main deck 

transverse, which following the addition of the material, provided better energy absorption 

characteristics to the structure.

The addition of the extra material to the bottom plating, the decks between double­

hull and the side shell plating yielded similar results. Although, the values of the critical 

indentations were different in each of the above-mentioned cases the results are the same.

The addition of material to the bottom plating results in increased energy absorption 

due to membrane tension and buckling and also decreases the critical indentation of the 

bottom transverse by exercising a larger force on it.

The addition of material to the decks between the two hulls increases the total energy 

through the energy absorbed in their wedge splitting.
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The effect of the enforced side shell plating and inner shell plating is apparently the 

increased energy absorbed due to membrane tension.

Finally, the main deck plating proved to be the place to put the extra material. The 

percentage obtained (7% increase in the total energy) is believed to be a satisfactory one 

for the 1.5% material added.

This optimisation procedure made clear that there is no specific formula for 

optimising in general types of ships. Every vessel requires to be analysed singularly and no 

general directions (except the basics) are feasible.
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L ist o f  Figures  ....

PA R T O NE: Param etric O ptim ization
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Figure 7.1: Assumed Collision Scenario for the Optimization Procedure.
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Total E nergy A bsorbed  up to the rupture o f  the Inner hull
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Figure 7.2: Total Energy Absorbed just prior to the rupture o f the inner hull o f the 

double-skin tanker plotted for different values o f the web frame spacing.
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Figure 7.3: Total Energy absorbed by the side structure o f the double-skin vessel just prior 

to the rupture o f  the inner hull plotted for different values o f the distance 

between the two hulls.
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Energy A bsorbed  up to the rupture o f  the Inner hull
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Figure 7.4: Total energy absorbed from the double-skin tanker just prior to the rupture o f 

the inner hull plotted against the double bottom height.
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PAR T TWO: Results obtained b y  adding a constant extra m aterial to a 

particular stm ctural member.

Total Energy Absorbed by the Side Structure of a Double Hull
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Figure 7.5: Total energy absorbed by the side structure o f the double-skin tanker. The 

vessel is assumed in its original form.
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Total Energy Absorbed by the Side Structure of a Double Hull
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Figure 7.6: Total energy absorbed from the side structure o f the struck vessel, when the 

extra material is placed on the main deck transverse.
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Figure 7.7: Total energy absorbed from the side structure o f the struck vessel, when the 

bottom transverse is enforced with the extra material.
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Total E nergy A bsorbed  b y  the side structure
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Figure 7.8: Total energy absorbed from the side structure o f the double-skin tanker, when 

the extra material is placed on the main deck plating.
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Figure 7.9: Total energy absorbed by the side structure o f the struck vessel, when the extra 

material is placed on the bottom plating.
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Total E nergy A bsorbed  b y  the side structure
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Figure 7.10: Total energy absorbed by the side structure o f the double-skin tanker, when 

the extra material is distributed to the decks between the double-hull.
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Figure 7.11: Total energy' absorbed from the side structure o f the double-skin tanker, when 

the extra material is distributed to the side shell plating.
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Total E nergy A bsorbed  b y  the side structure
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Figure 7.12: Total energy absorbed from the side structure o f the double-skin tanker, when 

the inner shell plating is enforced with the extra material.
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Chapter 8

Conclusions and Proposals

2.1 A ssessm ent and Conclusions o f  the Work

The initial aims of the thesis were to extend Hegazy’s method in a way that would make it 

applicable to existing structures, to produce results for a particular structure, to modify the 

method, where possible in order to give better results, and finally to conduct optimization in 

terms of the energy absorption capacity.

The aims of the project have been reached and furthermore additional work has been 

carried out than the planned one. The development of the single hull tanker was not planned 

but became necessary due to the lack of experimental data for comparison, when the results 

from the double hull were derived. The small oil tanker (chapter 3 and 4) also was thought to 

be a good idea for the derivation of results and the verification of the Fortran code's 

soundness due to the simplicity o f it’s midship section.

Conclusions derived from the present study have been cited in each chapter as well as 

assessment of the results and the assumptions. Herein a general evaluation of the derived 

results is attempted in order to give a global consideration of the work carried out.
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In the first chapter and through the literature review carried out it became evident that in 

the minor collisions’ field the methods, which are known were developed by Rosenblatt (1971, 

1972), McDermott et al. (1974), Jones (1978) and Van Mater (1978). The first two methods 

pertain to the approximate theoretical methods. The other two methods, which are actually 

one method and its extension to variable location collision cases, pertain to the so-called 

global methods. The global methods are Minorsky-type methods that relate the energy 

absorbed with the volume of the damaged material during a collision.

In the major collisions’ field the methods, which are most known were developed by 

Minorsky (1959), NCRE (1967) and Akita et al. (1971, 1972). All the cited methods pertain to 

the global methods or simple design methods.

In the second chapter the review on the internal mechanics of collision gives the 

opportunity to understand better the problems and the darkness that there is in some of the 

subjects involving the theoretical analysis of collisions. The application of the theoretical 

methods and the finite elements analysis in some new double hull designs have provided us 

with some results and some intended ways of dealing with the problem.

Some general remarks regarding the way that a structure will follow during collapse due 

to impact loading, show that the field of the internal collision mechanics is not an easy one. A 

lot of simplifications have to be made each time and besides the sequence of phenomena 

occurring during collision could change from one ship to another.

In chapter three a method proposed by Hegazy (1980) is presented. Hegazy (1980) in this 

study proposed a collapse model, which takes into account every structural member of the 

struck ship involved in collision. The basic advantages of this method are:
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•  The method is applicable for analysing structural ships’ resistance for both minor and 

major collisions.

•  The collapse model proposed is dependent on the struck ships’ structure. Values, 

which are individual for each ship, are calculated by the method and these are what 

define the shape of the deformed form of the struck ships’ side structure at the end 

of the collision.

Due to these remarks, Hegazy’s method is used in the present work for analysing the side 

structures of a struck ship during collision. It was found to be a good idea to check how the 

method works on real ship structures, which do not have the design simplicity of the assumed 

idealised models.

Furthermore, the developed program is discussed in chapter 3 and results for a small oil 

tanker are derived. The small oil tanker is considered to be the struck ship in two different 

scenarios. The results show the difference in absorbed energy due to the difference in the 

structural members involved in the collision damage.

In chapter four is attempted a modification of the proposed method in order to achieve a 

better correlation between the experimental tests (Hegazy 1980) and the theoretically 

calculated values. A discrete beam method is introduced for the calculation of the decks 

ultimate strength (Pu and Das 1994), when they are transversely framed. When the decks are 

longitudinally framed overall buckling of the decks is unlikely to occur (Hughes 1988, Hegazy 

1980) and a formula for the ultimate strength o f the wide plates (Faulkner 1973) between 

adjacent stiffeners was introduced. The results produced for the small oil tanker design show a
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sufficient increase in the total energy absorbed by the struck ship, which compared to the 

graphs presented from Hegazy (1980) seems to correlate better with the experimental data.

In chapter five a double-skin tanker is presented and the Hegazy’s method is applied for 

the estimation of the crashworthiness of the structure. A lot of further assumptions had to be 

made in order to calibrate the method to work for the particular structure. The problems are 

arising when the damage is extended to the adjacent bays (space between two consecutive web 

frames) due to the difference of the deck’s and bottom’s transverses critical buckling load. The 

sloped indentation line at the web frames flanking the strike due to different values o f final

indentation W1 (see subsection 3.4.6, Fig. 3.2) at the deck and the bottom transverses had to

be calculated through geometry. Then the final indentation W1 at each different structural 

member had to be estimated for the calculation of the energy absorption. Also the relative 

movement of the inner hull due to the collapse of the web frames flanking the strike was 

estimated in order to calculate the penetration depth at which the striking ship engages the 

inner hull.

The results produced for the double hull tanker were found to be rational compared to 

values obtained through finite element analysis on double-hull vessels by Kitamura (1997).

In chapter 6 a single-skin tanker is developed through preliminary design calculations of 

its midship section. The form of the midship section was based on other single-skin vessels, 

which the author had in hand. The aim is to compare the crashworthiness o f the double-skin 

tanker to a single-skin one having the same principal dimensions. The calculations o f the 

developed single hull’s midship section properties are shown in Appendix A.
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Results have been derived for the energy absorption capacity of the single-hull tanker 

regarding the same four collision scenarios that were assumed for the double-hull vessel. A 

comparative table shows the differences in energy absorbed by the side structures of the two 

ships. The double-skin tanker exhibits much better crashworthiness in three of the cases 

examined and only in the fourth collision scenario the single hull tanker absorbs more energy 

due to the larger volume of its main deck’s transverses and main deck plating.

Finally in chapter seven a parametric optimization is conducted. General parameters of 

double hull designs such as double-hull width, double-bottom height and spacing of the web 

frames have been taken into account in the first part. Then, an assumed constant amount of 

extra material 20 m3 is distributed in an individual structural member each time and the energy 

absorption capacity of the structure is calculated (see subsection 7.4).

This work was done considering the viewpoint of a designer. I f  there is an extra amount 

of material where would be better to place it in terms of the crashworthiness of the vessel? 

The answer for the particular double-skin design is: to the main deck plating. As it was cited 

above the only collision scenario that the double-skin tanker absorbed less energy than the 

single-hull one is the scenario where the upper structures of the struck vessels are considered. 

In the particular area consisting o f the main deck plating, the topside tank (double-skinned 

tanker), the main deck’s transverses, the upper part of the side transverse, and the side shell 

plating, the double-skin tanker seems to be weaker than the single-skin one. Thus, through the 

optimization procedure the answer is that if an increase of 1.5% of the volume of the material 

needed for the vessel’s construction is placed on the main deck’s plating then the result in 

terms of crashworthiness is a 7% increase in the energy absorbed up to the rupture of the 

inner hull.
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The work carried out in the present thesis is hoped to be a step forward to the 

understanding of ship to ship collision mechanics.

8.2 Proposals

The author believes that the development of an approximate theoretical method 

modified through experimental work is the best way for deriving an easy-to-use tool for the 

preliminary design of ships. The theoretical methods have the capability of being applied on 

different structures by modifying the mathematical model used due to the different sequence 

o f phenomena occurring for each individual structure.

On the formulae for the strength calculations of decks, beams and side shell plating due 

to impact loads has been carried out a lot of experimental and theoretical work. This means 

that the tools for the estimation o f the individual structural members exist and besides the 

small scale tests can provide adequate accuracy in order to optimize the existing formulae.

Experimental small-scale tests are being conducted but the scaling effect does not give 

the opportunity of full utilization of this area. Full-scale tests are of great interest, but the cost 

of such tests make them inhibitory. Besides, in full-scale tests there is no opportunity of re­

conducting the tests if something goes wrong.

One major problem is the dynamic behavior of the structures during collision accidents. 

The criterion, when a static approach is adequate and when a dynamic approach is needed, has 

not been clearly established yet. Furthermore, the magnification factor used by the theoretical 

methods to take account of dynamic phenomena could be further examined.
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It is of course understood that the domination of the finite element methods in the 

engineering of structures does not leave enough space for the theoretical methods. But the 

FEA can not provide results without being time and cost consuming. Therefore the author 

believes that a lot of work has to be carried out for the development of adequate simplified 

analytical methods.
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Appendix A 

Mid-ship Section Design Calculations

Longitudinal H ull — girder Strength o f  the assum ed Single H ull Tanker-  ■■■ i i  . . .  ■ ....................— ■ i . i -     . . ■■■ ..............  . i . . .  -  . I

In this paragraph will take place calculations of the longitudinal strength o f the 

assumed ship. It is necessary to obtain the wave bending moment and the induced by wave 

shear force to design the mid-ship section of a ship. For the calculation o f these values 

approximate methods recommended from the classification societies will be used.

Two of those methods are going to be used here. The first originates from ABS in the 

Steel Vessels Part 3, Section 6 “Longitudinal Strength”. The second one originates from 

Lloyd’s Register.

■ ABS m ethod

According to the American Bureau of Shipping the maximum bending moment in steel 

water condition Mg, can be calculated from the following formula:

M s = x L2 5 x B x (CB + 0.5) (ton m)

where:

■ Cst = 0.544 x 1‘0-2

■ L = 240.00 m

■ B = 41.00 m

A.1



Appendix A Midship Section Design Calculations

■ CB = 0.855

From the formula above the steel-water-condition bending moment is calculated to be:

Ms =309486.175 ton m=3036059.377 KNt 'm

Wave Bending M om ents:

The additional bending moment induced by wave in the sagging-condition is given by 

the following formula:

= -k ,C ,L 2B(CB + 0 .7)x lO '3 (KNt m)

where:

kj = 110

Q =  10.75-((300-L)/100)15 = 10.28524

By substituting the values in the formula above and calculating the sagging-condition 

bending moment is found to be:

= -4154741.554 KNt m

The additional bending moment induced by wave in the hogging-condition is given by 

the following formula:
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M wh = + k2C,L2BCb X 1(T3 (KNt m)

where:

k2= 190

By substituting the values in the formula above the hogging-condition bending moment is 

found to be:

H *  = 3945849.922 KNt m

It can be seen that the bending moment in the hogging-condition is the largest. So the 

maximum bending moment induced by wave is:

M t = M S+ M wh = 3036059.377 +3945849.922 = 6981909.299KNt-m

= 711713.486 ton m

■ L loyd’s R egister m ethod

The steel water bending moment will be assumed to be the one calculated in the 

previous section. The additional bending moment induced by wave is calculated from the 

following formula:

M w = 0.01C,L2B(Cb + 0.7) =>

Mw = 376236.19 ton m = 3690877.024 KNt m

So the maximum bending moment according to Lloyd’s regulation is the sum of the 

still water condition and the wave induced bending moment:
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M, = Mg + Mw =3036059.377 + 3690877.024 = 6726936.401 KNt ■ m

Section M odulus

The required hull-girder section modulus for 0.4L amidships is to be obtained from 

the following equation:

where:

Mj : total bending moment as obtained from the equation in the previous 

section.

fp : nominal permissible bending stress = 17.5 K N t/cm 2 = 175000 K N t/m 2 

Finally we obtain the section modulus:

The minimum hull — girder section modulus amidships is not to be less than obtained 

from the following equation:

SM = Mt /  fp

SM = 398966.246 m-cm2 = 39.897 m3 (A-l)

SM = C,C2L2B(Cb +0.7) m-cm2

where:

Q: as defined in the previous section

C2: 0.01 in SI

By substituting and calculating the minimum section modulus is found to be:

SM • = 377703.63m-cm2 = 37.770 m3 (A-2)
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According to the regulations the section modulus to be used is the greater value between 

the (A-l) and (A-2). So the section modulus is SM = 398966.246 m-cm2.

Frame Spacing

The standard frame spacing S amidships for vessels with transverse framing may be 

obtained from the following equation:

Smax = 2.08*L+438mm for L < 270m

Sm„ = (2.08*240+438)mm => SmflX = 937.2 mm

This is the maximum allowable spacing for the frames. A frame spacing in the order of 

S = 935mm is selected for the ship under study.

The web frames are selected to be every fourth frame. That concludes in a web frame 

spacing in the order o f Swcb = 3740 mm.
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M id  -  sh ip Section prelim inary design

In the paragraphs below will be conducted the calculations of the structural members 

which constitute the mid — ship section of a ship. Calculations of the thickness of deck 

plating, shell plating and bottom plating will take place as well as calculations of the 

scantlings of stiffeners for the length of 0.4L amidships. These calculations will be 

conducted under the regulation o f the American Bureau o f Shipping and the choice o f the 

stiffeners will be such so that the designed ship will have sufficient strength against the 

foregoing calculated loads.

The form of the mid — ship section is based on similar single hull tankers and 

presented in figure A l. It must be noted that the framing of the ship is assumed to be 

multidirectional.

From the previous calculations the section modulus of the mid — ship section is 

required to be SMreq = 398966.246m-cm2. In the following paragraphs the formulae o f Part 

3 of the ABS are used to calculate the thickness and scantlings of the structural members.

Calculation o f  P lating and Girders

Bottom  Shell P lating

The term “bottom plating” refers to the plating from the keel to the upper turn o f the 

bilge for 0.4L amidships. The minimum thickness o f the bottom plating is not to be less 

than obtained from the following equation:

t = — • (L -62.5)-— + 2.5mm =>t = 21.27mm for 122 < L <  305 m
508 \  } Ds
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where:

S: frame spacing = 935mm 

L: length of vessel = 240 m 

d : design draft = 15.950 m 

Ds: depth moulded = 21.200 m

After all other requirements are met, the thickness, t ^  of shell plating amidships 

below the upper turn of bilge for ships of unrestricted class and service is not to be less 

than obtained from the following equation:

Finally for the bottom plating is selected a thickness in the order of tb = 23.000mm.

tm“ S (42-L + 1070)
(L-18.3) mm => t • = 18.591mm for L < 427 m

K eel Plating

The minimum required thickness of the plate keel is obtained from the thickness of

the bottom plating by adding 1.5mm.

hmin= 21.270 + 1.5 = 22.770mm

For the plate keel is selected a thickness in the order o f tkee, = 24.000 mm.

Side Shell P lating

The minimum thickness t o f the side shell plating for the midship 0.4L for vessels

having lengths up to 305 m is to be obtained from the following equation:

A. 7
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t ”“ 645 \
(L -15.2) + 2.5mm = 18.852mm

For the side shell plating is selected a thickness in the order of t8heU = 20.000mm. 

Shearstrake

The thickness of the shearstrake is to be not less than the thickness o f the side shell 

plating nor less than required from the following equation:

t ,„  = ■■ --4'3 8 ^ — m m s u  = 17.14nun for 183 < L < 427 m 
“  1615.4-1.1 L  “

In conclusion the thickness of the shearstrake is selected in the order of

t8«rake = 20.000mm.

D eck Plating

The deck plating is to be o f the thickness necessary to obtain the required hull-girder 

section modulus. Also the thickness outside the line of the openings, or completely across 

the vessel where there are no centreline openings, is not to be less than the maximum of 

the values obtained from the equations:

t — 0.006*sb + 4.7 mm => t = 10.310 mm for sb > 760mm



Appendix A Midship Section Design Calculations

For the deck plating is finally selected a thickness in the order of tdeck = 20.000mm.

Centre Girder

Centre girder plates are to be of the thickness and depths given by the following 

equations:

Thickness Amidships: 

t = 0.056*L + 5.5 mm => t = 18.940mm for L < 427 m

Depth:

d = 32 • B + 190 Vdmm => d = 2186 .83 mm for L < 427 m

So for the centre girder is selected the thickness to be t = 19.000mm and the depth to

be d = 2200.0mm.

Side Girders

The side girder plates are to be of the thickness given by the following equation and 

depth equal to the value obtained for the centre girder:

t = 0.036*L + 6.2 mm => t = 14.840 mm for L < 427 m

For the side girders is selected a thickness in the order of t = 15.000 mm.

M argin Plating

The minimum thickness o f the margin plate is to be obtained from the following 

equation:

A.9
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t = 0.037*L + 0.009*s + 1.5 mm => t = 18.795 mm

For the margin plating is selected a thickness in the order of t = 19.000 mm.

Calculation o f  Stiffeners and Frames

Bottom  Plating Sdffeners

The required section modulus for the bottom plating stiffeners is given from the 

following equation:

SM = 7.8 c h s l2 = 2160.429 cm3

where:

c — 1.3 for bottom longitudinal stiffeners.

h : distance in m from the keel to the load line (d), or two-thirds of the distance to 

the bulkhead of freeboard deck whichever is greater, h = 15.950 m 

s: spacing o f the stiffeners, s=0.955 m

1: distance in m between the supports but is not to be taken as less than 1.83m, 

l=3.740m

Because of the magnitude o f the required section modulus the type of the stiffener was 

not selected from a table for standard stiffeners. The stiffener selected is a T-bar stiffener 

600x200x18 and the calculated section modulus SM = 2178 cm3.

The calculations of the section modulus are shown in Table Al.
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D eck Plating Stiffeners

The required section modulus for the deck plating stiffeners is given from the 

equation:

SM = 7.8 c h s l2 = 652.983 cm3

where: c = 1.2 for deck plating stiffeners.

h, s, 1, as defined in the previous paragraph.

The stiffener selected for the deck plating is a standard one according to the British 

Steel Table shown as Table A2. The stiffener is a bulb stiffener 430x62.5x17 and the 

section modulus provided from the Table is: SM = 700 cm3.

Side Shell Stiffeners

The required section modulus for the side shell plating stiffeners is given from the 

following equation:

SM = 7.8 c h s l2

where:

c = 0.95 for longitudinal shell stiffeners. 

h, s, 1: as defined in the above paragraphs.
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Stiffeners c h s 1 SM(cm*)

Side Upper 0.95 2.620 0.950 3.740 257.980

Side Middle 0.95 6.330 0.950 3.740 623.288

Side Lower 0.95 13.75 0.950 3.740 1353.900

For the upper side shell plate a standard stiffener is selected (Table A2):

Bulb stiffener 320x46x11.5 and SM = 266 cm3.

For the middle part of the side shell plating a standard stiffener is selected (Table A2): 

Bulb stiffener 430x62.5x17 and SM = 700 cm3.

For the lower side shell plating a stiffener with very high section modulus is needed. 

The stiffener was calculated to be a T-bar stiffener 550x200x18 and section modulus 

calculated as shown in Table Al: SM = 1599 cm3.

Transverse Frames

The minimum required section modulus of each transverse frame amidships is to be 

obtained from the following equation:

f  u .u  \
SM = s-T h +

b-hx
33

fn 4 5 ^7 H r -
1 j

cm3 => SM = 9469.685cm3
v y

where:

I : the span in m between the toes of brackets, / = 17.000 m 

s : frame spacing in m, s = 0.935 m

h: vertical distance in m from the middle of I to the load line or 0.4/ whichever is 

greater, h = 5.000 m.

b: horizontal distance in m from the outside of the frames to the first row of deck 

supports, b = 2.000 m.
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Iq: vertical distance in m from the deck at the top of the frame to the bulkhead or 

freeboard deck, hx = 0.00 m.

Because of the magnitude of the required section modulus of the frames there was not 

used a standard beam. The selected beam is calculated to be a T-bar beam 950x250x18 

and section modulus calculated as shown in Table Al: SM = 10072 cm3.

Web Frames

Each web frame amidships and aft is to have a section modulus not less than obtained 

from the following equation:

SM = 4.74-c-s-l cm => SM = 38424.573cm
45K̂  

where:

c : 1.5

s: spacing of the web frames in m, s = 3.740m

/: span in m measured from the line of the bottom transverse to the deck at the top 

of the web frames, /  = 17.000m 

h : vertical distance in m from the middle of I to the load line, h = 5.000m 

h i : as explained in the previous paragraph, h, = 0.00m 

b : as explained in the previous paragraph, b = 2.000m

K : 1.0 where the decks are longitudinally framed and a deck transverse is fitted in 

way of each web frame.
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Appendix A Midship Section Design Calculations

Because of the magnitude of the required section modulus of the web frames there was 

not used a standard beam. The selected beam is calculated to be a T-bar beam 

1500x250x20 and section modulus calculated as shown in Table Al: SM = 41502 cm3.

Properties o f  the M id-Ship Section

Finally, in Table A-3 is illustrated the calculation of the neutral axis of the mid-ship 

section and of the section modulus. As it can be seen the proposed structure satisfy the 

requirements imposed by the classification society in terms of the section modulus. The 

section modulus of the proposed mid-ship section is found to be:

SM — 400811.33 m -cm 2.

A. 14
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Appendix A  -  Figures

deck transverse
longitudinal BHD,

web frame

center girder

side girders
bottom transverse

C.L

Figure Al: Typical midship section of a single hull Oil Tanker. Descriptions of some of 

the above-calculated structural members are also shown.
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Appendix A Calculation of MidShip Section

I Table A-3: M idsh ip  Section  Properties  I

Calculation o f  th e  Neutral A xis o f  the M idship Section
Plating

Member I (cm) t  (cm) A (cm2) z(m) A*z (m*cm2) A*z2 (m2*cma) Ix (m^cm )
Keel Plate 280,00 2,40 672,0 0,00 0,00 0,00 0,032
Bottom Plate 1570,00 2,20 3454,0 0,00 0,00 0,00 0,139
Bilge Plate 370,00 2,20 814,0 1,20 976,80 1172,16 3,142
Side shel Plate 1575,00 2,00 3150,0 10,20 32130,00 327726,00 65116,406
Shearstrake 300,00 2,00 600,0 19,70 11820,00 232854,00 450,000
Main Deck Plate 2050,00 2,00 4100,0 21,20 86920,00 1842704,00 0,137
Longitudinal BHD 1915,00 2,10 4021,5 11,24 45181,55 507614,74 122897,878

IA = 16811,5 i IA*z = 177028,35 || 2912070,90 188467,734

Bottom Stiffeners No. -  22

Member I (cm) I t (cm) A (cm**) z(m ) A*z (m*cm2) A'z2 (m ^cm 2) Ix (rn^cm2)
Web 600,00 2,00 26400,0 0,30 7920,00 2376,00 79200,000
T-bar 200,00 2,00 8800,0 0,61 5359,20 3263,75 0,293

| IA  = 35200,00 | IA*z = 13279,200 5639,75 79200,29

Lower Side Shell Stiffeners No. 15 20

Member I (cm) t  (cm) A (cm2) z (m) A*z (m*cm2) A*z2 (m2*cm2) Ix (m^cm2)

No. 15 55.00
20.00

1,80
1,80

99.00
36.00

6,95
6,85

688,05
246,60

4781,95
1689j21

0,003
0,120

No. 16 55.00
20.00

1,80
1,80

99.00
36.00

6,00
5,90

594,00
212,40

3564,00
1253,16

0,003
0,120

No. 17 55,00 1,80 99,00 5,05 499,95 2524,75 0,003
20,00 1,80 36,00 4,95 178,20 882,09 0,120

No. 18 55.00
20.00

1,80
1,80

99.00
36.00

4,10
4,00

405,90
144,00

1664,19
576,00

0,003
0,120

No. 19 55.00
20.00

1,80
1,80

99.00
36.00

3,15
3,05

311,85
109,80

982,33
334,89

0,003
0,120

No. 20 55.00
20.00

1,80
1,80

99.00
36.00

2,20
2,10

217,80
75,60

479,16
158,76

0,003
0,120

IA = 810,00 IA*z = 3684,15 J 18890,48 J 0,736

Middle Side Shell Stiffeners No. 8 14

Member I (cm) t (cm) A (cm2) z(m) A*z (m*cmz) A*z2 (m2*cm2) Ix (m2*cm2)
No. 8 43,00 1,70 103,00 13,60 1400,80 19050,88 1,886
No. 9 43,00 1,70 103,00 12,65 1302,95 16482,32 1,886
No. 10 43,00 1,70 103,00 11,70 1205,10 14099,67 1,886
No.11 43,00 1,70 103,00 10,75 1107,25 11902,94 1,886
No. 12 43,00 1,70 103,00 9,80 1009,40 9892,12 1,886
No. 13 43,00 1,70 103,00 8,85 911,55 8067,22 1,886
No. 14 43,00 1,70 103,00 7,90 813,70 6428,23 1,886

IA - 721,00 IA*z = 7750,75 85923,37 13,202
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Appendix A Calculation of MidShip Section

Upper Side Shell Stiffeners No. 1 - 7

Member I (cm) t (cm) A (cm1) z(m) A*z (m*cm“) A*z‘ (m^cm1) Ix (m^cm1)
No. 1 32,00 1,15 52,60 20,25 1065,15 21569,29 0,537
No. 2 32,00 1,15 52,60 19,30 1015,18 19592,97 0,537
No. 3 32,00 1,15 52,60 18,35 965,21 17711,60 0,537
No. 4 32,00 1,15 52,60 17,40 915,24 15925,18 0,537
No. 5 32,00 1,15 52,60 16,45 865,27 14233,69 0,537
No. 6 32,00 1,15 52,60 15,50 815,30 12637,15 0,537
No. 7 32,00 1,15 52,60 14,55 765,33 11135,55 0,537

ZA = 368,20 ZA*z = 6406,68 112805,43 | 3,759

Main Deck Stiffeners No. 1 - 2 0

Member I (cm) t(cm ) A (cm2) z(m ) A*z (m*cm2) A*z2 (m^cm^) Ix (mz*cmz)
No. 1 43,00 1,80 110,00 20,93 2302,41 48191,74 1,924
No. 2 43,00 1,80 110,00 20,93 2302A41 48191,74 1,924
No. 3 43,00 1,80 110,00 20,93 2302^41 48191,74 1,924
No. 4 43,00 1,80 110,00 20,93 2302,41 48191,74 1,924
No. 5 43,00 1,80 110,00 20,93 2302,41 48191,74 1,924
No. 6 43,00 1,80 110,00 20,93 2302,41 48191,74 1,924
No. 7 43,00 1,80 110,00 20,93 2302a41 48191,74 1,924
No. 8 43,00 1,80 110,00 20,93 2302,41 48191,74 1,924
No. 9 43,00 1,80 110,00 20,93 2302,41 48191,74 1,924

No. 10 43,00 1,80 110,00 20,93 2302,41 48191,74 1,924
No. 11 43l00 1a80 110,00 20,93 2302,41 48191,74 1,924
No. 12 43,00 1,80 110,00 20,93 2302,41 48191,74 1,924
No. 13 43,00 1,80 110,00 20,93 2302,41 48191,74 1,924
No.14 43,00 1,80 110,00 20,93 2302,41 48191,74 1,924
No. 15 43,00 1,80 110,00 20,93 2302,41 48191,74 1,924
No. 16 43,00 1,80 110,00 20,93 2302,41 48191,74 1,924
No. 17 43,00 1,80 110,00 20,93 2302,41 48191,74 1,924
No. 18 43,00 1,80 110,00 20,93 2302,41 48191,74 1,924
No. 19 43,00 1,80 110,00 20,93 2302,41 48191,74 1,924
No. 20 43,00 1,80 110,00 20,93 2302,41 48191,74 1,924

I ZA = 2200,00 IA*z = 46048,20 963834,87 38,480

Longitudina

The longitudinal bulkh

Calculation

Neutral Axis:
Distance from k ee l: 

Distance from deck:

1 BHD Stiffeners

ead's stiffeners are assumed to be the

of the Neutral Axis, Moment of 1

^bottom 4,690 rn 

Z d e ck  = 16,510 m

same as the side shell's stiffeners. 

nertia and Section Modulus.
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Appendix A Calculation of MidShip Section

Moment of Inertia:

ZAz2 = 4316784,11 m2*cm2
T/=________267741,901 m2*cm2
ZA =________ 58009,90 cm2

I2 = 6617585,1 m2*cm2

Section Modulus:

S^bottom 1411141,69 m*cm2

SMdeck 400811,325 m*cm2

------m ----------------------- ----- ------it—2-------SMrequired= 398966,246 m*cm2
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Appendix B Energy absorbed due to membrane tension in the stiffened side shell plating

Appendix B

Energy absorbed due to membrane tension in the stiffened huii
of the struck ship

Consider a strip of the (vertical) hull side plating in the struck ship, as a rigid perfectly 

plastic beam with fully clamped supports across a span 2L, and subjected to a concentrated 

load p (see Figure Bl). Then it can be shown that:

p 2W 

Pc ts v*s l + 2a ,

where,

W= inwards deflection at load point 

ts= plating thickness

2M„(2L)
Pc= collapse load=

Mq= yield moment= a

a-b

dx-t?

(B-l)

y 4

dx= width of strip 

2-L  • A
a=  r-

2 • W

oy— material yield stress

A= the displacement of the supports in the original plane of the plating 

ol= 0 for full axial restraint
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Appendix B Energy absorbed due io membrane tension in the stiffened side shell plating

a= -0.5 for zero axial restraint

a and b define the load position as shown in Figure Bl.

Substitution gives:

P=Oy-t,-<iX- f i  n
U  b j

W (B-2)

The energy absorbed in plastic deformation of this elementary strip of plating is 

therefore:

rw 1 J \  1
8E, = I PdW = —0 vt.W -  + -  

1 •!« o y la  b
dx (B-3)

For a vertical striking bow the indentation W is constant over the vertical depth of 

damage H (see Figure 1) and the total energy absorbed is therefore:

E , = - a ytsW (B-4)

or,

W RT1B (B-5)

where:

Rx = 2LHts= the volume of the deformed portion of hull plating.



Appendix B Energy absorbed due to membrane tension in the stiffened side shell plating

For mid-span strike, a = b = L and B = 1, therefore, the absorbed energy in this case 

will be:

po _ 1
E. ~ ^ y R T1 (B-7)

V J

It should be pointed out that, from equation (B-2) it follows that the membrane 

tension force per unit height of shell plating is given by:

Ts = o, ' t. (B-8)

ts

H
stiffened side 
plating

side transverse

2L

h

Figure Bl: Membrane tension in stiffened side plating.
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Appendix C Energy absorbed due to membrane tension in the stiffened decks

Appendix C

Energy absorbed due to membrane tension in the stiffened
deck of the struck ship

Consider the right side of the distorted area shown in Figure Cl. Assuming that the

in-plane stress in this zone has reached the yield stress ay, the membrane force acting in an

increment (dx) of the distorted depth is given by:

T, = < y v d *  (C-l)

The total component Tdl of the membrane force in the transverse direction (i.e. in the

direction of the strike) is found by integrating the transverse component of Tx over the

distorted depth, i.e.,

T T x w 2
Tdl = J c ytd Sinv|»xdx s  J <rytd -d x  = o ytd —  (C-2)

o 0 D ^

Similarly, for the other side we get,

W2Td2= a ytd—  (C-3)
2a

The total energy absorbed in plastic in-plane stretching of the plating is therefore:

C.l



Appendix C Energy absorbed due to membrane tension in the stiffened decks

w w
E2 = jTdldW + /T d2dW = - a ytdW: '1 P 

— +  —

va b j
(C-4)

With further rearrangement the equation becomes:

1 w ^ 2RT2B (C-5)

where represents the volume of the distorted part of the deck plating during this 

phase and is given by:

R'T2 — W td L (C-6)

B = -----  as given before in Appendix B.
a-b

For mid-span strike, a = b = L and B = 1, therefore,

E° = - o ,  
3

R12
V w

(C-7)

deck p l a t i n g
u to •o o*o rt)

d x

T

I s i d e  
p l a t i n g

21-

Figure C.l: Membrane tension force in decks.
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Appendix D Buckling Strength o f Deck Structures

Appendix D 

Buckling Strength of Deck Structures

D1 E nergy A bsorbed due to Buckling o f  D eck Structure

Let us assume that at failure the whole deck plating area is subjected to a uniform 

compressive stress of average value equal to Oday, where <X>d is a strength factor depending 

on the scantlings of the deck structure and the system of framing used (see subsection D2 

below).

Consider the right side of Figure D l. The force Tb in the direction of the strike is 

given by:

— x 1Tb = Tb • cos\|/ = Oda tddx—f= =  = (X^a.Cdx-
V x 2 + W ;

d y d

1 + w„

w
Assuming —— is small, then 

x

Tb = ®dOytddx •
1 w 2^1__1 X

v 2 x 2
(D-l)

The increment of buckling energy 8Eb will be

D.l



Appendix D Buckling Strength o f Deck Structures

8Eb = jT bdWx = V o yt( w -TT X

1 w,3)
3 *2J

dx

W
Substitute for Wx =  x and integrate over the length b we get:

b

1 W
Eb = - O da ytd — 1-

1 W2 \

3 b'
(D-2)

Similarly for the other side we have:

1 W
Ea = - O da ytd- 1- 1W

3 a2

2 \
(D-3)

The total energy (E3) absorbed by buckling of deck structure is therefore,

E3 = Ea + E,

Using equations (D-2) and (D-3) and with further rearrangement we finally get:

f 1 w2 ^
3 L

(D-4)
y

where,

Rts — W td L

B =
a-b
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Appendix D Buckling Strength o f Deck Structures

For mid-span strike a = b = L and B = 1, therefore:

1- 1 W
3 L2

2  \

RT3 (D-5)

D 2 Determ ination o f  the Ultim ate Strength Factor <P

Considering the idealised models of deck structures with transverse and longitudinal 

systems of framing given in Table D l. Two modes of failure are to be considered:

a) Buckling of plate surrounded by stiffeners (local buckling)

b) Buckling of the whole stiffened panel (overall buckling)

Local buckling of stiffeners is not considered because it has not appeared to be 

significant in collision tests.

The proposed formulae for calculating the local buckling stress, (act) and overall

buckling stress (a cr) are listed in Table Dl for different systems of deck structures. After

the values of (aCI) and (a cr) have been calculated the ultimate load which the deck plating 

can support is obtained in the following manner:

1. In the case of (ctci) < ( a cr) buckling of the plate between stiffeners occurs, but

this buckling does not represent a true limit to the load carrying capacity of the 

deck panel. The load increases until the stress of the effective width of the plate
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Appendix D Buckling Strength o f Deck Structures

reaches the yield stress (ay). The maximum stress (a m ) which can be carried by 

the panel in this case may be estimated using the following formula:

<*«, = ° y  C0'6)

2. In case of (<Jcr) < (aCJ), overall buckling of the deck panel occurs and the panel 

cannot support any more load, i.e.

<*„=<*« (D-7)

In both cases the ultimate strength factor O will be given by:

O = ^ 2- (D-8)
ay

It should be pointed out, that case (1) might apply to a deck structure with 

longitudinal system of framing (since the overall buckling in this case is so unlikely), while 

case (2) might apply to a transverse system of framing.

D.4



Appendix D Buckling Strength o f Deck Structures

Table D l: Calculation of the critical buckling strength of deck structures.

Transverse System of Framing 

Overall Buckling of Deck Structure

I
a

i
h

cr = min. 71
f mbl

2 a >2“
+ 2D , + D

I a J LmbJ

m= buckling number

b= 2L = distance between web frames

a = distance between ship’s side and the nearest deck girder

A = deck beam cross sectional area

ET F t 3 1 /
D, =-  D = - r  n  D3 =  —(n,D2 +  ji2D, ) +  2D,

1 - H ,H 2 12(1- n  ) 2

t E
D t = G 12 —  G 12 = —t = = *

12 2(l + ̂ n,n2)

t = deck plating thickness

= moment of inertia of deck beam 

s = spacing between deck beams

D.5



Appendix D Buckling Strength o f Deck Structures

Transverse System of Framing 

Local Buckling of Deck Structure

4jt2D

Longitudinal System of Framing 

Overall Buckling of Deck Structure

a

<r = min 71
cr m  ,  2b t

D
la  J

+ 2Dj + D2
vmbj

D , = El2

I2 = moment of inertia of deck longitudinal
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Appendix D Buckling Strength o f Deck Structures

Longitudinal System of Framing 

Local Buckling of Deck Structure

u i n n u u

T

a

(7 =
7C2S2D 1 1

T  ̂  Ts b

c'eck p la ting

j2L

Figure D1: Buckling of deck plating



Appendix E Calculation o f the indentation at the instant o f rupture o f the hull

Appendix E

Calculation of the limiting value of the indentation beyond 

which rupture of the hull occurs

By assuming that the deflection profile is a triangle and using small deflection 

geometry McDermott et al. (1974) give the following approximate expression for 

indentation at rupture:

[ 2 -a - b , , . „ t2
W t = O l f ( a ' E* + b ‘E', )+ W b  ^

where,

ea, eb = strains in legs a and b (see Figure El)

Wb = maximum deflection during bending phase («0.15WL, negligible)

On the other hand, from the condition of geometric compatibility the following 

relations between W, ea and eb exist (see Figure El):

a2(s. + 1)2 -  a2 = W = b2(eb + 1)2 -  b2

which leads to:

f a V
eb + 2eb =(e .  +2e, ) -  -  (E-2)
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Appendix E Calculation o f the indentation at the instant o f rupture o f the hull

According to the failure criteria used rupture will occur when the ultimate value of 

strain (ej of the steel is reached. Since the strain in the shorter leg “a” will be greater than 

that in leg “b”, then:

ea =  eu (B-3)

By neglecting eb2 equation (E-2) will yield:

2e b = T e u(1 + 2 s u)- r  (E-4)

Using equations (E-l), (E-3) and (E-4) the value of the limiting indentation (WJ can 

be expressed in terms of the ultimate strain eu.

For mid-span impact the relation between WL and eu can be obtained directly from 

equation (E-l) by neglecting Wb and putiing a = b = L and ea = eb = eu.

WL = L - ^ F i ;  = 1 . 4 1 4 - L - ^ 7  (E-5)

side transverse

a+e„a

Figure E l : model o f the side shell plating during impact.


