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SUMMARY.

Human essential hypertension is a complex, multifactorial, quantitative trait 

under polygenic control. Several strategies have been developed over the 

last decade to dissect genetic determinants of hypertension. Of these, the 

most successful have been studies identifying rare Mendelian syndromes in 

which a single gene mutation causes high blood pressure (BP). The attempts 

to identify multiple genes, each having a small contribution to the common 

polygenic form of hypertension, have been less successful. Experimental 

models of genetic hypertension have been used to develop paradigms for the 

study of human essential hypertension in order to remove some of the 

complexity inherent in studying human subjects. Several laboratories, using 

diverse crosses between hypertensive and normotensive strains, identified 

several quantitative trait loci (QTLs) for BP regulation. The strategy used to 

identify BP QTLs is known as a genome scan and involves the 

determination of the BP in a large segregating F2 population derived by 

crossing contrasting inbred rat strains, and the genotyping of a large panel of 

polymorphic microsatellite markers with a thorough coverage of the entire 

rat genome. The next step is the production of congenic strains and 

substrains to confirm the existence of the BP QTLs and to narrow down the 

chromosomal region of interest.

The investigations reported in this thesis incorporate the use and validation 

of a “speed” congenic strategy to dissect two BP QTLs identified previously 

on rat chromosome 2. We produced 4 congenic strains through introgression
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of various segments of chromosome 2 from the WKYcia strain into the 

recipient SHRSPcia strain, and vice versa. Transfer of the region of rat 

chromosome 2 containing both BP QTLs from WKYcia into an SHRSPcia 

genetic background lowered both baseline and salt-loaded systolic BP by 

-20 and -40 mmHg in male congenic rats compared with the SHRSP 

parental strain (F=53.4, p<0.005; F=28.0, p<0.0005, respectively). In 

contrast, control animals for stowaway heterozygosity presented no 

deviation from the BP values recorded for the SHRSPda, indicating that if 

such heterozygosity exists, its effect on BP is negligible. Reciprocal 

congenic strain in which one QTL was transferred from SHRSPda onto the 

WKYcia background resulted in statistically significant but smaller BP 

increase. This implicated region contains different candidate genes 

including the Na+-K+ATPase a i isoform {Atplal), natriuretic peptide 

receptor A/Guanylate cyclase A (Gca), angiotensin II receptor type IB 

(Agtrlb), and calcium/calmodulin-dependent protein kinase II delta subunit 

{Camk2d). Sequencing analysis showed no differences in the coding regions 

of the A tp la l gene between the WKYcia strain and the published sequence. 

Two transitions were found between WKYcia and SHRSPda resulting in 

silent mutations. Therefore, the A tp la l gene was not supported as a 

candidate gene for the BP QTL on rat chromosome 2.

Radiation hybrid mapping was performed along with fluorescence in situ 

hybridisation of rat chromosome 5 due to the discrepancies between our 

genetic map and other genetic maps of rat chromosome 5. We successfully 

constructed a radiation hybrid map of rat chromosome 5 using 35
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microsatellite markers covering a genetic distance of 78 cM, corresponding 

to a physical distance of approximately 1,304 cR (17 cR/cM) and 

comparable to reports from other laboratories. The A nf microsatellite marker 

was mapped between D5Rat48 and D5Rat47 located at the telomeric end of 

rat chromosome 5. Fluorescence in situ hybridisation confirmed that the A n f 

gene is localised to the 5q36.3, which corresponds to the telomeric end of 

the chromosome 5. Two different physical mapping methods have therefore 

given identical results and are in agreement with genetic maps published by 

other groups. We also produced a high resolution radiation hybrid map of 

the telomeric end of rat chromosome 2 between markers D2Mit6 and 

D2Mghl2. The physical to genetic distance conversion gave us an estimate 

of 20.8 cM to 31.2 cM for this region and facilitated fine mapping of the 

two BP QTLs on rat chromosome 2. We constructed congenic substrain 

SP.WKY.Gla2c* where a small segment of approximately 20 cM was 

transferred from the normotensive WKYcia strain into the hypertensive 

SHRSPda. Phenotyping of the congenic substrain is currently ongoing and 

will determine if the BP QTL was successfully trapped. Additionally, we 

produced a high resolution radiation hybrid map of this segment, which will 

help in the identification of the gene(s) involved in this BP QTL.

It follows that we clearly demonstrated the applicability of a reciprocal 

speed congenic strategy in the rat. We began further dissection of the BP 

QTL by constructing congenic sub-lines and performing physical mapping 

of the region of interest. Careful phenotyping of these substrains will narrow 

down and refine the location of the BP QTL to a size where substitution
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mapping, microarrays, positional cloning, and comparative mapping to 

human chromosomes will permit the identification of the causal genes. A 

better understanding of the gene(s) and their pathophysiologic pathways will 

pave the way for more specific treatments and more importantly, for earlier 

prevention of hypertensive cardiovascular disease.
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CHAPTER 1 

INTRODUCTION.
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1.1 HYPERTENSIVE CARDIOVASCULAR DISEASE AS A 

GENETIC COMPLEX TRAIT.

A single gene can be contributing to a preventable or treatable disease. If the 

gene can be identified, then the structure, function, and ultimate role of that 

gene in influencing the disease can be revealed, thus leading to better ways 

of future detection, prevention, and treatment of the pathology (Shimkets 

and Lifton, 1996). However, for hypertensive cardiovascular disease this 

process has not yet been achieved for the most common of its 

representatives, essential hypertension. Hypertensive cardiovascular disease 

is an entity where, unfortunately, the individual susceptibilities to it and its 

sequelae are known to be mediated by a large number of genetic and non- 

genetic factors (Lander and Schork, 1994).

The key feature of genetically complex traits such as essential hypertension 

is that the disease “per se” can be attributed to intricate inter-relationships 

between genes and environmental factors (Figure 1.1). It follows that 

complex traits do not show classical Mendelian inheritance attributable to a 

single gene, and therefore their inheritance can be described as polygenic 

and multifactorial (Schork, 1997).
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Gene 1 Gene 4
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Figure 1.1. Multifactorial model of hypertensive cardiovascular disease, 

demonstrating the potential influence of genes, environmental factors, and 

demographic factors. The interactions between these determining factors is 

represented by arrows linking them. Modified from Lifton (Litton, 1995).



1.1.1 HUMAN ESSENTIAL HYPERTENSION.

In mechanical and haemodynamic terms, the level of blood pressure is 

determined by the amount of blood that is pumped out by the heart and by 

resistance to flow in the peripheral arterial tree. The resistance to flow is 

found mainly in the small arterioles that are highly contractile and are at all 

times constricted to some degree; therefore the amount of constriction 

determines the level of blood pressure. Maintaining a blood pressure level 

guarantees adequate tissue perfusion, however for its regulation several 

systems have to work in conjunction, with complicated and intricate inter­

relationships (Schork et al. 1996).

A number of factors can influence blood pressure level within an individual. 

This level is influenced by interactions of a host of systems and sub-systems 

(neural, hormonal, and circulatory). Additional phenomena, such as 

development, growth, and ageing, can further complicate blood pressure 

regulation. Each system and sub-system may have a more or less 

pronounced effect on an individual’s blood pressure level at different times 

in life. This complexity, multitude of systems and age dependencies create 

enormous potential for a variety of mutant genes to produce deleterious 

effects on the blood pressure level (Schork, 1997). Essential hypertension is 

the term used for those patients found to have arterial hypertension but with 

no evident cause for the disorder. It is also referred to as primary
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hypertension or idiopathic hypertension (Hamet et a l 1998). Essential 

hypertension is a very common disease, characterised by devastating 

consequences such as stroke, myocardial infarction and end-stage renal 

disease (Hamet et al. 1998). Since there is no dividing line between normal 

and high blood pressure, an arbitrary level has been established to define 

those who have an increased risk of developing a morbid cardiovascular 

event and will clearly benefit from medical therapy. This level according to 

the WHO (Gordon, 1994)criteria is defined as systolic blood pressure of 140 

mmHg or greater and/or diastolic blood pressure of 90 mmH or greater.

1.1.2 BLOOD PRESSURE AS A HERITABLE TRAIT.

During the 1960s there was a dispute regarding the distribution of blood 

pressure levels in the general population. Sir Robert Platt claimed the 

existence of bimodality in the distribution of blood pressure, and it was 

attributed to the segregation and effect of a single major gene (Platt, 1967). 

In contrast, Sir George Pickering supported the existence of a unimodal 

distribution in detailed, large surveys of the London population (Pickering, 

1967). This type of distribution would suggest the existence of many genetic 

factors segregating independently. At present, we could say that both Sir 

George and Sir Robert were right: although several monogenetic forms of 

hypertension have been clearly identified, essential hypertension is now 

understood as being a polygenic disease with complexities such as “gene- 

gene” and “environment-gene” interactions (Shimkets and Lifton, 1996) 

(Figure 1.1).
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All evidence suggests the existence of a genetic component in the aetiology 

of human essential hypertension, with 30-50% of variation in blood pressure 

between individuals being attributed to genetics factors. Different studies 

have calculated the percentage of the phenotypic variability in blood 

pressure attributable to genetic factors (Table 1.1) (Ward, 1990). Even 

though these studies used different designs, the results are remarkably 

similar. In general, the percentage of blood pressure variability is lower and 

more variable for diastolic blood pressure than for systolic blood pressure. 

This can be explained either because the definition of diastolic blood 

pressure values varies from one study to another or because diastolic blood 

pressure is more influenced by environmental factors than systolic 

(Mongeau, 1989).

The clustering of blood pressure observed within families revealed a highly 

significant aggregation according to several epidemiological studies. When 

the blood pressure measurements are compared in relatives, correlations 

increase with the degree of genetic relationship between the relatives. 

Identical twins who share all their genes demonstrate higher concordance 

for blood pressure than non identical twins who share 50% of their genes 

(Mcllhany et a l 1975; Feinleib et a l 1977; Havlik et a l 1979; Rose et al. 

1979; Heiberg et al. 1981; Levine et al. 1982). Similarly, correlations are 

higher for first-degree relatives such as sib-sib and child-parent pairs than
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for more distant relatives (Zinner et a l 1971; Annest et a l 1979; 

Weinberger et a l 1981). As an important control, studies of families with 

adopted and biological children have shown a significant correlation in the 

blood pressure of parents and their biological children that is not seen when 

blood pressures are compared between parents and their adopted children 

(Biron et a l 1976). Individuals with essential hypertension are about twice 

as likely as normotensive individuals to have a parent who is hypertensive 

(Perera etal. 1972).

Blood pressure is recognised today as a quantitative trait, and the general 

consensus is that blood pressure distributions stratified by age and sex, are 

unimodal (Rapp, 1983). This mode of distribution suggests that the genetic 

contributions to blood pressure are polygenic in nature. There are many 

genetic loci influencing blood pressure and the effect of each gene at these 

loci is not readily discernible from the others. Since the aetiology of 

hypertension is being multifactorial, multiple combinations of genetic and 

environmental factors may lead to the same blood pressure level (Mongeau,

1989). The effects of individual genes can be independent, or can 

demonstrate greater complexity, characterised by phenomena such as 

epistasis and pleiotropy (Schork et al. 1996). Moreover, genes that mediate 

the response of blood pressure to environmental factors, such as stress and 

diet, are significant determinants of the hypertensive phenotype (Hamet,

1996). For example, hypertension-related phenotypes such as left 

ventricular hypertrophy, insulin resistance, obesity, dyslipidaemia and
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sensitivity of blood pressure to stress are not consistently present in all 

hypertensive individuals (Williams et al. 1996).

1.2 GENETIC DISSECTION OF HUMAN ESSENTIAL 

HYPERTENSION.

Human essential hypertension has an important genetic component, 

however genes accountable for this variation, and their specific interaction 

with environmental and demographic factors, remain unknown. Human 

studies have been conducted in two main areas for gene recognition; firstly 

the in-depth analysis of rare Mendelian forms of hypertension, and secondly 

the equivalently intense interrogation of diverse candidate genes involved in 

blood pressure regulation.

1.2.1 MENDELIAN DISORDERS ASSOCIATED WITH ABNORMAL 

BLOOD PRESSURE.

Different monogenic disorders associated with altered blood pressure have 

been clearly identified (Table 1.2). These are characterised by Mendelian 

modes of inheritance attributable to a single-gene locus (Karet and Lifton,

1997). Although Mendelian forms of hypertension are rare, the 

understanding of their pathogenesis could bring a better knowledge of blood 

pressure regulation, which in turn will be useful in the study of the most 

common form of hypertension, essential hypertension. Moreover, the genes 

and pathways involved in these rare forms of hypertension are logical
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candidates for harbouring more common variants that contribute to less 

severe alterations in blood pressure. These disorders result in severe or 

resistant hypertension, making phenotypic selection easier and the effects of 

segregation of single alleles in families can be discerned by simplifying 

molecular genetic analysis.

The discovery of these rare hypertensive syndromes was due to not only a 

close collaboration between pathophysiological and genetic approaches but 

also to extremely good clinical observation of the cases (Shimkets and 

Lifton, 1996).

There are several Mendelian forms of human hypertension that have 

mutations (or at least its chromosomal localisation have been detected) 

imparting a large elevating effect on blood pressure levels.

1.2.1.1 GLUCOCORTICOID-REMEDIABLE ALDOSTERONISM (GRA).

GRA was first described by Sutherland and colleagues in the 1960s 

(Sutherland et al. 1966). GRA is characterised by autosomal dominant 

transmission of hypertension, variable elevated aldosterone levels with 

suppressed plasma renin activity and high levels of abnormal adrenal 

steroids, 18-hydroxy cortisol and 18-oxo cortisol. The aberrant steroids and 

aldosterone (which is normally under control of angiotensin II) are all under 

the control of the adrenocorticotrophic hormone (ACTH), and are 

consequently suppressible by exogenous glucocorticoids (Ulick et a l
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1990). Elevation of 18-oxo cortisol is the most consistent and reliable 

biochemical marker of the disease. This steroid is an agonist for the 

mineralocorticoid receptor and has been shown to raise blood pressure in 

animal models (Hall and Gomez-Sanchez, 1986). Laboratory and clinical 

abnormalities are suppressed by treatment with glucocorticoids, whereas 

infusion of ACTH exacerbates these problems (Oberfield et a l 1981; 

Ganguly et al. 1984).

Hypertension in GRA patients is caused by constitutive secretion of 

aldosterone (and perhaps other adrenal mineralocorticoid hormones) but, 

critically this secretion is regulated by ACTH and not by angiotensin II 

(Figure 1.2). Cortisol is produced in the zona fasciculata and its secretion is 

regulated by ACTH (Lifton et a l 1992). The genes encoding 11 p- 

hydroxylase (CYP11B1) and aldosterone synthase (CYP11B2) are 95% 

identical in nucleotide sequence and are both located on chromosome 8 

(Momet et a l 1989). Lifton et al (Lifton et a l 1992) performed a genetic 

analysis of GRA kindreds finding that the chromosome 8 carries normal 

copies of CYP11B1 and CYP11B2 but, in addition, have a novel, chimaeric 

gene absent in normal subjects (Figure 1.2). This gene arises by unequal 

crossing over between the CYP11B1 and CYP11B2 genes, fusing 5’ 

regulatory sequences from 11 P-hydroxylase gene into coding sequences of 

the aldosterone synthase gene. Therefore, aldosterone synthase gene 

expression and enzymatic activity is brought under control of ACTH by the 

abnormal 5’ regulatory region of the 11 p-hydroxylase gene, and aldosterone 

becomes ectopically secreted by the zona fasciculata (Lifton et a l  1992).
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CYP11B1

■1 "M
CYP11B2 ^  “

■ — i
CYP11B2 CYP11B1 CYP11B2 CYP11B1

■ -------- ■ - m - D

1
CHIMERIC GENE

Normal Adrenal GRA Adrenal

Figure 1.2.a. GRA mutation. Unequal crossing over producing the chimera 
between 11 P-hydroxylase (CYP11B1) and aldosterone synthase (CYP11B2) 
genes.

Glomerulosa Glomerulosa

CYP11B2 CYP11B2
AldosteroneAldosterone

Cortisol
ACTH ACTH Chimeric

CYP11B1/2
CYP11B1 Cortisol Aldosterone

18-OH Cortisol

Fasciculata Fasciculata

Normal Adrenal GRA Adrenal

Figure 1.2.b. Pathophysiology of the adrenal cortex in GRA. In the normal 
adrenal gland aldosterone is secreted from the glomerulosa in response to 
angiotensin II (All). In GRA adrenal gland, unequal crossing over generates 
a chimeric CYP11B1/2 gene that has the aldosterone activity but is 
expressed in the zona fasciculata under control of ACTH. Modified from 
Lifton et al (Lifton et a l 1992).
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Even though GRA is a monogenic disease following Mendelian inheritance, 

there is evidence that particular conditions can modify its phenotypic 

expression. Genetic analysis of large kindreds reveal that the presence of the 

chimaeric gene does not always result in severe hypertension, and that 

kallikrein levels may affect the development of hypertension in this disorder 

(Dluhy and Lifton, 1995). One study found that blood pressure in patients 

with GRA is higher when the disease is inherited from the mother than 

when it is paternally inherited raising the possibility that the gene is 

imprinted (Jamieson et al. 1995).

1.2.1.2 LIDDLE ’S SYNDROME.

Liddle’s syndrome is characterised by an early onset of moderate to severe 

hypertension, suppressed plasma aldosterone and renin activity. 

Interestingly the biochemical values in these patients appear like if they 

were hyperaldosteronaemic (Liddle et al. 1974). In the original description 

of Grant Liddle, hypokalemia was included, however this is not a universal 

finding. Also, renal transplantation in Liddle’s original proband corrected 

the defect (Botero-Velez et al. 1994) suggesting that the abnormality was 

intrinsic to the kidney. These patients respond to the administration of 

triamterene and amiloride which inhibit the amiloride-sensitive epithelial 

sodium channel. It is thought that in normal subjects the regulated 

absorption of sodium through this channel by aldosterone appears to be the 

major determinant of net renal sodium reabsortion (Figure 1.3). Canessa et 

al (Canessa et al. 1994), described the structure of the epithelial sodium
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channel receptor. Being a heteromultimer of three subunits, each having two 

transmembrane domains and intracytoplasmatic amino and carboxyl 

terminal segments. The a-, p-, and y-subunits are all necessary for normal 

channel function and are encoded by separate genes, with the a  subunit on 

chromosome 12 and P- and y- subunits close together on chromosome 16.

Genetic analysis demonstrated that Liddle’s Syndrome is attributed to a 

mutation in the p-subunit gene.: specifically, the introduction of a premature 

stop codon (R564X) that truncates the cytoplasmatic carboxyl terminal 

segment of the encoded protein (Shimkets et a l 1994). Similar mutations 

have been reported in the P- and y- subunit genes, all removing the carboxyl 

terminal amino acids of the protein (Hansson et a l 1995).

Heterologous expression of the epithelial sodium channel with mutant 

subunits in Xenopus oocytes demonstrated that these mutations result in 

constitutive activation of the channel (Schild et a l 1995). The over-activity 

is not explained just by alteration of single channel conductance and/or open 

probability, but rather by an increased number of channels inserted into the 

plasmic membrane. The mutations indicate that the cytoplasmatic carboxyl 

terminus of the p- and y- subunits have elements required for the normal 

negative regulation of channel activity. The two channel subunits share a
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Amiloride

Tight
Junction

k Steroids 
Cyclic AMP 

CAP-1 
SGK /

NEDD-4
ten
[Na+]
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Figure 1.3. Mechanism of active sodium reabsorption across tight epithelia 

showing the amiloride-sensitive epithelial sodium channel. Passive 

electrodiffusion of sodium through the apically expressed epithelial sodium 

channel is coupled to an active extrusion of sodium through the basolateral 

sodium/potassium ATPase. Positive and negative effectors of sodium 

absorption are indicated with arrows. Adapted from Barbry (Barbry, 1999).
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short proline-rich domains that are altered by the mutation and are often 

mediators of protein-protein interaction. It is proposed that the alteration of 

this segment may lead to defective endocytosis and results in the 

accumulation of the channels at the apical membrane. Such a mechanism 

has also been described for the LDL receptor, the lisosomal acid 

phosphatase and the p-adrenergic receptor (Snyder et al. 1995).

Another explanation has been proposed recently. Staub et al (Staub et a l

1996) have identified the rat NEDD-4 protein (a binding partner for the 

proline rich regions of the P- and y- subunits) which initiates the removal of 

the channel from the apical membrane (Figure 1.3). Abriel et al (Abriel et 

a l 1999) discovered that NEDD-4 acts as a negative regulator of the wild- 

type epithelial sodium channel, but is inactive on the Liddle form.

No Liddle’s syndrome mutations have been recognised so far in the human 

a-subunit of the channel, and the effects of a-subunit in vitro mutations on 

sodium channel function are still unclear (Snyder et a l 1995; Schild et a l

1996).

1.2.1.3 SYNDROME OF APPARENT MINERALOCORTICOID EXCESS 

(AME).

AME is an autosomal recessive disorder characterised by early onset of 

moderate to severe hypertension, hypokalaemia, low renin activity, and low 

levels of aldosterone in contrast to GRA. A low salt diet or blockade of
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mineralocorticoid receptors with spironolactone ameliorates the 

hypertension, whereas ACTH and glucocorticoids exacerbate it. These 

findings suggest that cortisol acts as a stronger mineralocorticoid than is 

normally the case. In AME patients cortisol half-life is prolonged from 

approximately 80 to 120-190 minutes, and very low levels of cortisone 

metabolites are excreted in the urine as compared with cortisol metabolites 

(Ulick et a l 1979).

Cortisol has been shown to bind to and activate the mineralocorticoid 

receptor. This interaction in vivo is normally prevented by conversion of 

cortisol to cortisone by the enzyme llp-hydroxysteroid dehydrogenase in 

the kidney (Arriza et al. 1987). Patients with AME are deficient in this 

enzymatic activity and normal circulatory levels of cortisol lead to profound 

mineralocorticoid excess. Cloning of the renal isoenzyme of l lp-  

hydroxysteroid dehydrogenase permitted a search for mutations in this gene 

(HSD11B2), and 18 different mutations in the HSD11B2 gene have been 

published (Mune et a l 1995; Wilson et a l 1995; Stewart et a l 1996; 

Kitanaka et a l 1997; Li et a l 1997; Dave-Sharma et a l 1998; Wilson et 

a l 1998). All of these mutations affect the enzymatic activity of pre-mRNA 

splicing. Similar but milder abnormalities occur with liquorice intoxication, 

where the active component of the liquorice, glycyrrhetinic acid, inhibits the 

activity of the 11 P-hydroxysteroid dehydrogenase (Stewart et a l 1987; 

Monder et a l 1989).
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Most patients with AME are homozygous for single mutations, with only 

three published cases being compound heterozygotes for two different 

mutations. This could suggest that the prevalence of AME mutations in the 

general population is low and the disease is found in limited populations 

with high inbreeding (Shimkets and Lifton, 1996). In patients with essential 

hypertension a prolonged half-life of cortisol in plasma has been found 

suggesting that mild 11 P-hydroxysteroid dehydrogenase deficiency might 

contribute to essential hypertension (Walker et al. 1993). However, 

heterozygotes for mutation in the HSD11B2 gene have shown neither 

abnormalities in conversion of cortisol to cortisone nor an increased 

prevalence of hypertension (Shimkets and Lifton, 1996).

1.2.1.4 PSEUDOHYPOALDOSTERONISM TYPE II  OR GORDON’S  

SYNDROME.

Type II pseudohypoaldosteronism was the designation used by Schambelan 

et al (Schambelan et al. 1981) for a syndrome in which chronic 

mineralocorticoid-resistant hyperkalemia with hypertension was noted. This 

syndrome shows autosomal dominant inheritance with variable expression. 

Mansfield et al (Mansfield et al. 1997) performed linkage analysis in 8 

families with Gordon’s Syndrome, indicating locus heterogeneity for the 

trait, with a multilocus lod score of 8.1. Linking the Gordon’s Syndrome 

gene to Iq31-q42 and 17pll-p21, possible candidate genes are 

angiotensinogen at Iq42-q43 and the CL HCO3' anion exchanger at 17p21-

37



p22. However, careful analysis of all the exons of both genes in 15 patients 

with the disease revealed no novel mutations altering the encoding products.

1.2.1.5 HYPERTENSION AND BRACHYDACTYLY.

This syndrome follows an autosomal-dominant mode of inheritance and co- 

segregates 100% with short stature and type E brachydactyly (Toka et al. 

1998). Schuster et al (Schuster et al. 1996) undertook a linkage analysis 

study in a Turkish kindred localising the responsible gene to chromosome 

12p in a region defined by markers D12S364 and D12S87. Bahring et al 

(Bahring et al. 1997) studied a Japanese child with type E brachydactyly 

and hypertension finding a “de novo” chromosomal deletion at 12p l 1.2- 

p l2.2 that overlapped the segment to which the hypertension and 

brachydactyly gene had been mapped. This allowed the region of interest to 

be narrowed down to a 4 million base-pair segment, which is, however, still 

too large for positional cloning of the gene.

A putative mechanism explaining hypertension in these families has been 

proposed by Bahring et al (Bahring et al. 1997), involving the posterior 

inferior cerebellar artery at the ventrolateral medulla. Magnetic resonance 

imaging of the posterior fosa showed a tortuous, looping vessel, and this 

structure might cause neurovascular compression responsible for the 

hypertension.
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1.2.1.6 CONGENITAL ADRENAL HYPERPLASIA DUE TO 11-BETA- 

HYDROXYLASE DEFICIENCY OR ADRENAL HYPERPLASIA IV.

Eberlein and Bongiovanni (Bongiovanni et al. 1967) first described this 

disease. The enzyme 11-P-hydroxylase (encoded by the CYP11B1 gene) 

catalyses the hydroxylation of 11-deoxycortisol to cortisol in the 

glucocorticoid pathway. The block of the 11 carbon results in the 

accumulation of 11-deoxycortisol and deoxycorticosterone, the latter being 

a potent salt-retaining hormone that causes hypertension rather than salt loss 

(Momet et al. 1989). The CYP11B1 gene has been mapped to 8q 21 (Chua 

et al. 1987) and a number of different mutations have been found. The 

more characteristic is a missense mutation (ARG448HIS) found in Jewish 

subjects of Moroccan origin (White et al. 1991).

1.2.1.7 CONGENITAL ADRENAL HYPERPLASIA DUE TO 17-ALPHA- 

HYDROXYLASE DEFICIENCY OR ADRENAL HYPERPLASIA V.

The pathology is produced by mutations in the 17-alpha-hydroxylase gene 

or CYP17. The 17-alpha-hydroxylase enzyme catalyses both 17-alpha- 

hydroxylation of pregnenolone and progesterone and 17, 20-lysis of 17- 

alpha-hydroxypregnenolone and 17-alpha-hydroxyprogesterone. The 

accumulation of corticosterone and deoxycorticosterone results in both 

hypertension and alkalosis.
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A 4-base duplication in exon 8 of the CYP17 was discovered by Kagimoto 

et al (Kagimoto et a l 1988) which produces a protein with an altered C- 

terminal amino acid sequence which resulted in loss of both enzymatic 

activities. However, many other mutant allelic variants have been found to 

yield a significant reduction in the activity of the enzyme (Yanase et a l 

1989; Lin et a l 1991; Miura et a l  1996).

1.2.1.8 MENDELIAN FORMS OF HYPOTENSION.

The identification of mutations causing recessive forms of severe 

hypotension could have implications in the wider population; heterozygous 

carriers of these mutations could be protected from development of 

hypertension. Hypotension in these rare syndromes is due to the alteration 

of the renal sodium-handling mechanisms. This is a powerful argument for 

the further dissection of these pathways, both to investigate how far 

protective alleles mitigate against the development of hypertension in the 

wider population and to consider the possibilities of therapeutic intervention 

at this end of the spectrum of human blood pressure variation.

1.2.1.8.1 Autosomal dominant pseudohypoaldosteronism type I (ADPHA1).

ADPHA1 syndrome is characterised by neonatal renal salt wasting with 

hyperkalaemic acidosis, high levels of aldosterone in plasma, and clinical 

improvement with age (Chang et a l 1996). Patients with the disease do not 

have mutations in the epithelial sodium channel. Geller et al (Geller et a l
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1998) found 4 different mutations in the mineralocorticoid receptor gene 

(MLR) in these patients with sequence analysis revealing two variants 

introducing ffameshift mutations resulting in a gene product lacking the 

entire DNA binding and hormone binding domains, as well as the 

dimerisation motif.

1.2.1.8.2 Autosomal recessive pseudoaldosteronism type I (ARPHA1).

This pathology is distinguished by life-threatening dehydration and 

hyperkalaemia in the neonatal period, marked hypotension, salt wasting, 

metabolic acidosis, and high aldosterone levels and plasma renin activity. 

Chang et al (Chang et al. 1996) performed a genetic analysis of affected 

sibs demonstrating linkage of the disease to segments of chromosomes 12 or 

16, with each segment containing genes encoding different subunits of the 

epithelial sodium channel. The same channel is mutated in Liddle’s 

syndrome, however in ARPHA1 the mutations result in loss of function of 

the epithelial sodium channel. The mutations found in ARPHA1 have been 

located in the a- and p- subunit introducing ffameshift, premature 

termination or missense mutations (Chang et a l 1996).

1.2.1.8.3 Gitelman’s syndrome.

Gitelman’s syndrome is an autosomal recessive disorder characterised by 

hypokalemic alkalosis, salt wasting, hypotension, hypomagnesemia and 

hypocalciuria (Gitelman et a l 1966). There is a marked similarity between
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the clinical manifestations of this disease and the electrolyte abnormalities 

induced by thiazides diuretics, which motivated a candidate gene approach 

to detect the causal gene (Figure 1.4). Simon et al (Simon et a l 1996) 

cloned the gene for the thiazide-sensitive Na+/Cl' co-transporter (NCCT) in 

humans. They subsequently carried out a linkage analysis and found a very 

high co-segregation of marker alleles within the NCCT gene with the 

Gitelman’s syndrome phenotype. Seventeen different mutations were 

recognised and mutant alleles have been shown to result in loss of normal 

NCCT function, leading to defective sodium and chloride reabsorption in 

the distal convoluted tubule. This defect is expected to result in NaCl 

wasting, hypovolaemia, low blood pressure and metabolic acidosis, with a 

subsequent elevation of renin and aldosterone levels. The elevated 

aldosterone levels produce increased electrogenic sodium reabsorption via 

the epithelial sodium channel in the cortical collecting tubule. The voltage 

strongly favours potassium and hydrogen excretion down the 

electrochemical gradient at this site, thereby inducing hypokalemia and 

metabolic alkalosis (Simon and Lifton, 1998).

1.2.1.8.4 Bartter’s syndrome.

Bartter’s syndrome is an autosomal recessive disorder that has the same 

features as Gitelman’s apart from hypercalciuria, and normomagnesemia 

(Bettinelli et a l 1992). Three different channels have been found to be 

altered and produce identical Bartter’s phenotype.
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Figure 1.4. Schematic representation of representative cells from 2 different 

nephron segments and the channels involved in the development of 

Gitelman’s and Bartter’s syndrome. DCT, distal convoluted tubule; TAL, 

thick ascending limb. Modified from Simon and Lifton (Simon and Lifton, 

1998).
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Bartter’s syndrome type I is produced when mutations in the NKCC2 

(encoding for the Na+/K+/2Cf co-transporter of the thick ascending limb) 

occur and result in loss of function of the channel. This markedly reduces 

NaCl reabsorption in the thick ascending limb, thereby producing salt 

wasting, hypovolaemia, low blood pressure, and activation of the renin- 

angiotensin-aldosterone system. Normal function of the Na+/K+/2C1" co­

transporter is required to generate the lumen positive transepithelial voltage 

in the thick ascending limb which drives calcium reabsorption into the 

bloodstream. Therefore, loss of the channel function will produce severe 

hypercalciuria (Simon et a l 1996).

Simon et al (Simon et al. 1996) provided evidence of genetic heterogenity 

in Bartter’s syndrome patients, finding that mutations in the apical ATP- 

sensitive K+ channel (ROMK) can produce identical Bartter’s phenotype 

(Bartter’s syndrome type II). The ROMK channel is a channel which 

recycles potassium back into the lumen of the thick ascending limb and is 

critical for continued co-transporter activity.

The same group (Simon et a l 1997) found that mutations in the CLCNKB 

gene can cause Bartter’s syndrome type III. CLCNKB has been proposed to 

mediate chloride reabsorption across the basolateral membrane of renal 

tubular cell into the bloodstream (Figure 1.4). Patients with mutations in the 

CLCNKB do not have nephrocalcinosis. This clearly distinguishing this 

group from those with type I and type II syndrome. The loss in function of 

the CLCNKB channel results in increased intracellular Cl* that inhibits
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further Cl' entry via the apical Na+/K+/2C1' co-transporter, reproducing the 

Bartter’s syndrome.

1.2.2 GENETIC STUDIES IN HUMAN ESSENTIAL HYPERTENSION.

Genetic studies of human essential hypertension were initially performed 

using the candidate gene strategy. However, enough genomic resources 

have now become available to progress to total genome-wide scanning 

methods (Koike and Jacob, 1998).

The candidate gene approach focuses on a single gene of interest, and the 

main assumption is that the hypertensive disease is caused by altered 

expression or structure of a gene product which in turn is reflected by 

changes in the gene sequence. These studies are used when the 

pathophysiology of a trait is at least partly understood and a number of 

genes are suggested as mutations within them that could result in the trait of 

interest (Khoury and Wagener, 1995). The extensive study of the 

physiology of blood pressure regulation has identified many systems that 

affect its regulation suggesting a number of candidate genes. For example, 

genes encoding enzymes and peptides of the renin-angiotensin system, the 

adrenergic nervous system, genes involved in sodium homeostasis, 

intracellular calcium regulation, and those involved in lipid metabolism. An 

additional source of candidate genes comes from genetic studies of animal 

hypertension identifying novel genes or chromosomal regions (Lifton and 

Jeunemaitre, 1993).
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The candidate gene strategy works well for Mendelian diseases. However, 

the genetic background of essential hypertension is both polygenic and 

heterogeneous and is likely to involve epistatic (gene-gene) and ecogenetic 

(gene-environment) interactions with incomplete penetrance as well as the 

confounding phenomenon of a pronounced sexual dimorphism. It follows 

that, with current technology, the candidate gene strategy is not an efficient 

way to study hypertension owing to the hundreds or thousands of 

combinations of candidate genes within the population (Karet and Lifton,

1997). An additional limitation of the candidate gene approach is that the 

candidates are selected from a pool of previously identified genes, which 

represent a small portion of the estimated total. This number in the human 

genome has been estimated to be between 30,000 to 120,000 (Ewing and 

Green, 2000; Roest et a l 2000; Liang et al. 2000), and if the essential 

hypertension causative genes are, as is likely, among the unknown majority, 

it will be nearly impossible to find them using this strategy (Dominiczak 

and Lindpaintner 1994). Moreover, the reproducibility is poor between 

different populations, and different outcomes have been obtained depending 

on whether a linkage study or an association study was used for the analysis 

(Table 1.3.) (Kunz et a l 1997; Brand et a l 1998).

A genome-wide scanning strategy was first proposed by Lander and 

Botstein (Lander and Botstein, 1986). It has since become a strategy of 

choice as the numbers of genetic markers have increased, and quantitative 

trait loci in animal models have been studied successfully. In this strategy, a 

complete genetic linkage map has to be available, and the total genome can
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then be scanned simultaneously to find genetic markers that cosegregate 

with the blood pressure phenotype (Falconer, 1989). The advantage of this 

approach is that the region containing the gene responsible for hypertension 

could be mapped without any "a priori ” knowledge and with the potential to 

identify novel genes. However, identification of the chromosomal location 

is only the first step towards the discovery of the causal gene, and so far this 

strategy has only been applied successfully in three studies designed to find 

QTLs for blood pressure regulation (Krushkal et a l 1999; Xu et a l 1999; 

Hsueh et a l 2000).

There are three widely used genetic epidemiological approaches for 

localising hypertension susceptibility genes in the population: linkage 

analysis (pedigree analysis), allele-sharing analysis (affected sib-pairs 

study), and association analysis (case control study) (Lander and Schork, 

1994). Classical linkage analysis involves proposing a model to explain the 

inheritance pattern or phenotypes and genotypes observed in a pedigree 

(Risch, 1990). This parametric analysis is ideal for Mendelian disorders, but 

in essential hypertension heterogeneity, incomplete penetrance (individuals 

with the susceptibility gene but without hypertension), and phenocopy 

(individuals with hypertension but not the susceptibility gene), make this 

model more complicated and less powerful (Lander and Schork, 1994).

To address the limitations of classical linkage analysis, non-parametric 

allele-sharing methods have been developed (O'Connor et a l 1996). 

Information regarding the mode of inheritance and penetrance of the disease
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is not required and the analysis is based on detecting a significant increase 

in sharing of alleles between affected relatives at the loci apparently 

involved with the disease. This method is less powerful than a correctly 

specified linkage model, as the relatively late onset of hypertension leads to 

a shortage of sib and parent-offspring pairs (Risch and Merikangas, 1996).

Association studies are the most commonly used strategy for genetic 

analysis. These are based on a comparison of unrelated affected and 

unaffected individuals from a given population, and test whether a particular 

allele is observed at a higher frequency in affected individuals (Lander and 

Schork, 1994). Association studies give a positive result if alleles chosen for 

genotyping are the cause of the disease, or if these alleles lie very close to 

the susceptibility gene (are in linkage disequilibrium with it). However, 

positive associations can be observed even in the absence of linkage 

disequilibrium because of undetected heterogeneity in the population, when 

population subgroups differ systematically both in alleles frequencies and in 

disease incidence. For example, the presence of an association can arise as 

an artefact when any trait is present at a higher frequency in a subgroup and 

the allele studied also happens to be more common in this group (Mitchell et 

al 1997).

Multiple candidate genes have been studied thus far (Table 1.3) and a few 

judged to be most relevant will be described in more detail (Section 1.2.2.1). 

It is important to consider the phenotype used in studies of candidates genes 

in essential hypertension. Most of the patients studied could be receiving
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treatment and their pre-treatment blood pressure might be unknown. In 

addition, many variables that may affect blood pressure should be taken into 

account. These include the age and sex of the patient, age at the time of 

diagnosis, presence or absence of a documented family history of 

hypertension, and environmental factors (smoking, obesity, alcohol 

consumption, oestrogen treatment, etc.). Better clinical and biochemical 

description of hypertensive populations would allow studies to be performed 

on more homogeneous populations and thereby increase their statistical 

power (Corvol et al. 1999).

1.2.2.1 ANGIOTENSINOGEN (AGT).

Human angiotensinogen (AGT) is a glycoprotein which is cleaved in its N- 

terminal part by renin to generate the inactive decapeptide angiotensin I, 

angiotensin I is then cleaved by the angiotensin-converting enzyme (ACE) 

producing the active hormone angiotensin II which has vasoconstrictor 

properties among others. Plasma-AGT concentration is approximately 1,000 

fold higher than renin, and in addition AGT limits the amount of angiotensin 

I generated because its plasma concentration is not far from the Km of 

renin. AGT is mainly synthesised and present in the liver but also in other 

tissues such as the brain, large arteries, kidneys, and adipocytes. Therefore, 

modest changes in AGT could play a major role in controlling blood 

pressure through the generation of angiotensin I and angiotensin II (Corvol 

and Jeunemaitre, 1997).
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The role of AGT in human hypertension was first suspected from an 

epidemiological study, in which a strong correlation was found between 

plasma AGT concentration and blood pressure (Walker et a l 1979), and 

from another study where the offspring of hypertensive patients had 

elevated plasma AGT levels (Fasola et a l 1966). Positive linkage has been 

found between the AGT locus and human hypertension in different studies 

(Jeunemaitre et a l 1992; Caulfield et a l 1994; Caulfield et a l 1995) when 

a highly polymorphic AGT microsatellite marker located in the 3’ region of 

the gene was used for the screening. Mutations were found, and the most 

commonly occurring one, the M235T (or 235T variant) was linked to 

hypertension (Jeunemaitre et a l 1992; Jeunemaitre et a l 1993; Schmidt et 

a l 1995). Subjects carrying the 235T variant of the AGT gene have a 20% 

increase in plasma levels of AGT (Jeunemaitre et a l 1993). Moreover, 

Kimura et al (Kimura et a l 1992) generated transgenic mice over 

expressing the rat AGT gene and this resulted in hypertension. Kim et al 

(Smithies and Kim, 1994; Kim et a l 1995) used targeted gene disruption 

and duplication to generate mice having one, two or four copies of the 

mouse agt gene. Blood pressure and plasma AGT concentrations increased 

progressively, according to the agt copy number.

Despite all this evidence, no linkage has been found between the AGT locus 

and hypertension in others studies (Atwood et a l 1997; Brand et a l 1998; 

Niu et a l 1998). A recently published meta-analysis (Staessen et a l 1999) 

found, pooling all the available data, a weak but significant association 

between the 235T variant and hypertension. The association found in this
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meta-analysis increased modestly when positive family history of 

hypertension and severity of hypertension were considered together. Finally, 

a guanine for adenosine substitution at position -6  upstream of the initial 

transcription of the AGT gene was found to be in linkage disequilibrium 

with the 235T variant. Moreover, this substitution caused an increased basal 

rate of AGT transcription when the promoter activity was evaluated in vitro 

(Jeunemaitre et a l 1997; Inoue et a l 1997).

1.2.2.2 ANGIOTENSIN I  CONVERTING ENZYME (ACE).

The ACE gene is an interesting candidate for the regulation of blood 

pressure because it plays a key role in the generation of angiotensin II and 

inactivation of bradykinin. It has been shown that the insertion/deletion 

(I/D) polymorphism within the ACE gene can modulate plasma ACE levels 

(Jeunemaitre et al. 1992). This I/D polymorphism has been used in several 

association studies in humans with conflicting results as illustrated in Table

1.3 (Schmidt et al. 1993; Summers et a l 1993; Morris et a l 1994; 

Maguchi etal. 1996; Frossard et al 1997).

It is interesting that in 5 different rat crosses BP QTLs on rat chromosome 

10 have been identified containing the angiotensin I converting enzyme 

locus (Table 1.6). Moreover, this region has been transferred in congenic 

strains displaying important changes in blood pressure (Dukhanina et a l

1997). This region on rat chromosome 10 has been found to be homologous 

to human chromosome 17 using homology mapping between species. Two
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studies looked at areas in the human genome homologous to BP QTLs 

detected on rat chromosome 10. These studies, performed with a number of 

highly informative microsatellite markers on chromosome 17, found 

evidence of linkage with a region 18 cM from the ACE locus (Julier et a l 

1997; Baima et a l 1999). This region on 17q has also been linked to 

Gordon’s syndrome. Therefore, it is possible that the human chromosome 

17 carries more than one blood pressure locus.

1.2.2.3 a-ADDUCIN.

Adducin is an a/p  heterodimer protein thought to regulate cell-signal 

transduction through changes in the actin cytoskeleton regulating the tubular 

absorption of ions (Hughes and Bennett, 1995). By cross-immunisation 

Salardi et al (Salardi et a l 1989) found differences in the adducin proteins 

between Milan hypertensive and normotensive strains, and point mutations 

in the a  and p adducin subunits account for up to 50% of the difference in 

blood pressure between these two strains (Bianchi et a l 1994).

Cusi et al (Cusi et a l 1997) found significant linkage between mutated a- 

adducin and essential hypertension in two different populations. Moreover, 

a Gly460Trp mutation was found to be more frequent in hypertensive 

patients with increased sensitivity to changes in sodium balance, suggesting 

that this polymorphism may identify hypertensive patients who will benefit 

from diuretic treatment. In a recent paper Manunta et al (Manunta et a l

1999) tested the proximal renal tubular function by the fractional excretion
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of lithium in patients carrying the 460Trp variant and found increased 

sodium reabsorption as compared to those with the wild type a-adducin. 

More recently, lack of association between the a-adducin mutation and 

hypertension has been reported in the Japanese and Australian populations 

(Kato et a l 1998; Ishikawa et a l 1998; Alam et a l  2000; Ranade et al

2000). However, Barlassina et al (Barlassina et a l 2000) found positive 

association of the a-adducin gene in black South Africans, reminding us of 

the important role of ethnic variation in the nature of genetic susceptibility 

loci (Cusi et a l 1997).

1.3 EXPERIMENTAL MODELS FOR THE STUDY OF 

HYPERTENSIVE CARDIOVASCULAR DISEASE.

Historically, one of the first attempts to develop an animal model for 

hypertension research was that of Tigerstedt and Bergman (Tigerstedt and 

Bergman, 1898) when the injection of a kidney extract into the blood of 

dogs produced an increase in blood pressure. This experiment led to 

generation of several models of experimental hypertension in which some 

kind of lesion was induced in the vasculature, kidney, or other organs of 

otherwise healthy animals. This resulted in a hypertensive state that could 

resemble the hypertensive disease in humans. Harry Goldblatt developed the 

most classical model, which is based on clipping the renal artery of a dog to 

produce secondary hypertension (Goldblatt et a l 1934). Although these 

experimentally induced models of hypertension provided insight into the 

regulation of blood pressure, they were not always consistent with respect to
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producing equivalent levels of hypertension. However, animal models, and 

in particular the rat, offer several advantages for genetic research. Their low 

cost, easy handling and breeding, access to sophisticated physiological 

measurements, short generation time, and large litters all help to remove 

some of the complexity inherent in studying human subjects and families 

(Lovenberg, 1987). Many aetiologies of human hypertension (primary or 

secondary) can be mimicked in rat models and these have been developed to 

investigate further different aetiologies known or suspected to occur in 

human hypertension (Figure 1.5).

Genetic hypertensive animal models were developed to provide reliable and 

reproducible forms of high blood pressure. The creation of inbred, 

genetically homogeneous hypertensive stains from outbred colonies by 

selective breeding of animals showing elevated blood pressure avoids the 

confusing heterogeneity of the human disease (Dominiczak and 

Lindpaintner, 1994). To establish a hypertensive inbred rat colony, the 

strategy most commonly used has been to measure blood pressure in a large 

number of outbred animals and then selectively breed those animals having 

the highest blood pressure. In each successive generation the offspring with 

the highest blood pressure are then brother-sister mated to fix the strain. 

After 20 generations of brother-sister mating the offspring should be 

homogeneous at more than 99% of loci and therefore all animals within the 

strain are nearly isogenic. In the inbred hypertensive rat strains the variance 

of blood pressure of the selected lines is lower than in the starting
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Rat m odels o f  hypertension

Aetiology of hypertension

PrimarySecondary

EnvironmentalRenal Endocrine GeneticI I  I I
2K1C Doca-salt Inbred strains Stress model

Transgenic models

Figure 1.5. Simplified version of rat models of hypertension grouped 

according to their aetiology. 2K1C, 2-kidneys 1-clip or Goldblatt- 

hypertension model where one of the renal arteries is clipped to produce an 

increase in blood pressure; DOCA-salt, deoxycorticosterone in combination 

with a high salt diet is given to these animals to raise blood pressure. 

Modified from Pinto et al (Pinto et a l 1998).
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population, since repeated selective breeding concentrates the hypertensive 

alleles in one strain in the homozygous state (Rapp, 1983).

Each of the rat strains selectively bred for blood pressure (Table 1.4) has 

unique pathophysiological features linked to the development of the disease. 

These features are similar to the hypertension-related phenotypes such as 

left ventricular hypertrophy, stroke, renal failure, salt sensitivity, and stress- 

induced hypertension (Williams et a l 1996) found in subgroups of 

hypertensive patients but not consistently present in all individuals.

For many years these rats have been used for comparative studies 

contrasting them with their control strain constructed from the same outbred 

stock but selecting against hypertension (Lovenberg, 1987). In these studies, 

differences at any level (biochemical, anatomical, physiological, etc.) 

between the two strains were wrongly considered to be a causal factor for 

hypertension (Dominiczak and Lindpaintner, 1994). Moreover, most of this 

work is difficult to analyse given the confounding presence of many 

differences unrelated to blood pressure between the two strains compared 

(genetic drift) and the innate inability of association studies that use 

intermediate phenotypes (rather than direct genetic information) to 

determine casuality (Rapp, 1983).

There is little genetic diversity in the different hypertensive strains. Some of 

them have been derived from Sprague-Dawley stocks and some from
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Wistar-related stocks, but both Sprague-Dawley and Wistar rats have a 

common origin (Lindsey, 1979). This low genetic diversity is important in 

terms of genetic tools that can be applied for a more refined dissection of 

high blood pressure in the rat (Dietrich et a l 1996).

1.3.1 THE STROKE-PRONE SPONTANEOUSLY HYPERTENSIVE RAT 

(SHRSP).

Forty years ago, Okamoto and Aoki (Okamoto and Aoki, 1963) examined 

the blood pressure of several hundreds of rats from the Wistar colony of the 

animal centre at Kyoto University. The blood pressure in these Wistar rats 

averaged 120 to 140 mmHg measured with tail plethysmography, but one of 

the male rats examined exhibited blood pressures of 145 to 175 mmHg. This 

male was mated with a female rat with blood pressures of 130 to 140 mmHg 

four times, and the offspring of this mating exhibiting hypertension for over 

1 month were used for further brother-sister matings. Successive 

generations of hypertensive animals were obtained by brother-sister matings 

of animals selected for higher blood pressure. The mean blood pressure of 

the succeeding generations increased rapidly, with a plateau being 

approached at the sixth generation (F6). This procedure was continued until 

a colony of rats was produced with blood pressure uniformly higher than 

180 mmHg by 20 weeks of age. These animals were called spontaneously 

hypertensive rats (SHR) and the inbred strain was obtained in 1969 after 

successive brother-sister matings (Okamoto and Aoki, 1963). The typical 

hypertensive lesions often associated with human essential hypertension
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such as cardiac hypertrophy, cardiac failure, renal dysfunction, and 

depressed endothelium dependent relaxations were frequently observed in 

these rats suggesting that they might be good models for the human disease 

(Pinto et al. 1998).

Before full inbreeding was reached, a substrain of SHR with exceptionally 

high blood pressure was found to be more susceptible to stroke than other 

SHR substrains when the SHR strain was separated into three groups in 

1971. The incidence of spontaneous stroke was different in the three groups, 

being high in substrain A (80%) and low in B and C (50%) despite almost 

identical blood pressure. Speculations regarding the existence of 

independent genetic factors in the pathogenesis of stroke led to the animals 

from substrain A being selected and bred. Okamoto et al (Okamoto et a l 

1974) selected and maintained the offspring only from the SHR which died 

of stroke, resulting in the production of the stroke-prone spontaneously 

hypertensive rats or SHRSP. The SHRSP is characterised by an early onset 

of hypertension and by 20 weeks of age adult males have systolic blood 

pressures of 230 mmHg or higher. Moreover, 80% of the animals have a 

stroke by 9 to 13 months of age (Okamoto et a l 1974), with 

cerebrovascular lesions localised in the anteromedial and occipital cortex 

and the basal ganglia (Shibota et a l 1976). The SHRSP strain is also 

characterised by salt sensitivity (Yamori et a l 1981).

The SHRSP develops many features of the hypertensive cardiovascular 

disease seen in humans, such as cardiac hypertrophy, cardiac failure, renal
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dysfunction, sexual dimorphism in blood pressure and fibrinoid necrosis of 

intracerebral arteries (Yamori et a l 1979; Conrad et a l 1991), although 

macroscopic atherosclerosis or vascular thrombosis is not developed 

(Frohlich, 1986). Interestingly, the most common location for 

cerebrovascular lesions in the SHRSP is the cortical region (69.8%), the 

next highest being the basal ganglia (24.5%); these percentages are very 

similar in human stroke (Yamori et a l 1976).

The SHR and SHRSP were of significant interest to cardiovascular research 

and in 1960s they and their control reference strain WKY were sent to the 

National Institutes of Health in the United States, before some of the strains 

were fully inbred. This brought the major problem of genetic heterogeneity 

between colonies of SHRSP, SHR and WKY from commercial suppliers in 

the United States and the colonies originating directly from Japan (Kurtz 

and Morris, 1987; Kurtz et a l 1989; Samani et a l 1989; Matsumoto et a l

1991). This problem does not affect the utility of these animal models, but it 

is difficult to compare experimental results obtained in different laboratories 

due to the lack of standardisation (St.Lezin et a l 1993).

To conclude, the SHRSP exemplified a good animal model of human 

hypertensive and cerebrovascular disease with which to commence the 

exploration of the specific genetic determinants of hypertension and stroke, 

their interaction, and the impact of environmental factors.
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1.3.1.1 BLOOD PRESSURE PHENOTYPE IN  THE SHRSP.

There are a variety of methods to measure blood pressure in the rat that 

differ in the degree of restraint that is applied. Great effort has been made to 

provide error free, high fidelity and continuous blood pressure recordings. 

Stressful methods that induce increases in blood pressure (additional to the 

genetic hypertensive background) could lead to different results because not 

only would genes involved in the spontaneous hypertension be detected, but 

also those stress-induced hypertensive genes (Kurtz et al. 1994). It follows 

that an ideal phenotypic method to show small genetic components altering 

blood pressure should be able to give coverage of the blood pressure 

continuously (be able to show diurnal variations in blood pressure), should 

provide total freedom for the animal, and eliminate human contact.

1.3.1.1.1 Animal restraint.

There are two main types of animal restraint: chemical and physical. 

Chemical restraint refers to the use of anaesthesia for acute studies of blood 

pressure lasting no more than a few hours. However, anaesthesia itself 

produces physiological changes that can affect blood pressure recording 

such as increased cardiac output, reduced arterial pressure, modifications to 

total peripheral resistance, and modifications to blood flow to the brain, 

gastrointestinal tract, myocardial muscle, and liver (Smith and Hutchins, 

1980; Seyde et al. 1985).

63



Physical restraint is used in both acute studies lasting only a few hours and 

in long-term studies that require intermittent monitoring over the course of 

years. Restraint itself affects the physiological behaviour of the animals, and 

as a consequence measurement error and variability are introduced to the 

data. Diumal variation can be studied using this procedure, however it is 

very labour intensive and expensive. Immobilisation stress is one of the 

best-documented problems associated with physical restraint producing an 

increase in circulating adrenaline and noradrenaline (Kvetnansky et a l 

1978). Immobilisation also causes elevation of blood pressure to a new level 

for a long period of time, frequently resulting in its inability to return to the 

pre-immobilisation level (Lamprecht et a l 1973).

1.3.1.1.2 Indirect techniques for measuring blood pressure.

All indirect systems are based on the original work described by Byrom and 

Wilson (Byrom and Wilson, 1938) and Williams et al (Williams et a l 

1939). An inflatable cuff is applied to the proximal portion of the rat tail 

while the distal portion of the tail is enclosed in the plethysmographic 

chamber. The pressure in the pneumatic cuff, connected to a mercury 

manometer, is raised above the systolic pressure and then released slowly. 

The increase in volume of the tail due to the inflow of blood when the 

pressure of the occluding cuff reaches the systolic blood pressure can be 

observed in the plethysmographic manometer. These methods require the 

animal to be restrained and the tail artery must be dilated sufficiently to 

allow sensors to detect pulsations o f blood as the cuff is deflated. Rats are
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warmed up to assure adequate dilation of the tail artery, as rats 

thermoregulate by modifying caudal artery blood flow (Bunag, 1983). The 

advantage of this technique is that it is non-invasive and permits repeated 

measurements on large numbers of animals. However, the measurement can 

be unreliable if the animal moves, is subjected to loud noises or others 

stressors, or the tail artery is vasoconstricted (Borg and Viberg, 1980; 

Bunag, 1983).

For the detailed genetic analysis of blood pressure, this method has several 

limitations as it is unable to provide long-term continuous monitoring and 

only systolic blood pressure and heart rate can be obtained. It will miss any 

genetic component producing alteration in the diurnal variation or in 

diastolic or pulse pressure.

1.3.1.1.3 Direct techniques for measuring blood pressure.

Tethering systems allow continuous monitoring of several different 

parameters from chronically instrumented conscious animals, but they 

require surgical cannulation of a major artery. The cannula is connected to a 

pressure transducer that has been calibrated with a recording device. Trauma 

and anaesthesia during implantation in acute experiments can profoundly 

modify blood pressure data, and in chronic experiments maintenance of 

infection-free postoperative animals and patent cannulas create major 

problems (Stanton, 1971). Stagnation of blood flow after arterial 

cannulation encourages the formation of blood clots and fibrous outgrowths
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which can obstruct the catheter. Furthermore, emboli from carotid catheters 

can result in stroke and those from femoral or iliac catheters can result in 

hind-leg paralysis (Bunag, 1983). Despite the above limitations this 

approach provides a more accurate measure of both systolic and diastolic 

pressures than tail plethysmography. One study which analysed an F2 

intercross between the genetically hypertensive rat (GH) and the Brown 

Norway rat measured blood pressure by two different methods, direct intra- 

arterial catheters and the tail-cuff method. The hypothesis was that 

measurements of blood pressure by different methods but under the same 

conditions would result in the detection of the same quantitative trait loci 

(QTLs). However, they detected regions affecting blood pressure on 

chromosomes 2, 6, and 18 by the tail-cuff method, and only one QTL on 

chromosome 6 by the direct catheter method, suggesting that these two 

methods represented different blood pressure phenotypes with the stress- 

inducing tail-cuff method probably detecting additional stress-related 

genetic components (Koike and Jacob, 1998).

Radio-telemetry systems provide an alternative means of obtaining 

measurements from freely moving, conscious animals. The scientific 

literature documents the use of non-implantable (backpacks attached to the 

animal and percutaneous catheters inserted in blood vessels) telemetry back 

in 1960 (Franklin et a l 1964) and implantable telemetry in 1965 (Deboo 

and Fryer, 1965). Implantable telemetry, where there are no percutaneous 

catheters, has a number of potential benefits such as eliminating a potential 

source of infection, providing total freedom for the animal to move about its
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cage, and providing the ability to collect data around the clock without the 

stress from human contact (Brockway and Hassler, 1993). The recent 

evolution of electronics, packaging sensors, and battery technology has 

made it feasible to produce reliable, miniaturised implantable devices for 

rats. This system is capable of simultaneously monitoring several 

cardiovascular variables such as systolic, diastolic, pulse, and mean arterial 

pressures, heart rate and motor activity (Rubenson et al. 1984). The 

Dataquest IV system (Data Science International, St Paul, MN) consists of 5 

basic elements:

i) an implantable miniature transmitter, which continuously senses, 

processes, and transmits information from within the animal;

ii) a receiver located near the cage which detects the signal from the 

implantable transmitter and converts it to a form readable by the 

computer;

iii) a consolidation matrix or multiplexer that combines the signals from 

a number of receivers together;

iv) an ambient pressure monitor which measures atmospheric pressure 

to be converted to a gauge pressure; and

v) a computer-based data acquisition system which collects, displays, 

and stores the telemetered pressure data and corrects it according to 

changes in atmospheric pressure (Figure 1.6).
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Figure 1.6. Diagram illustrating the components of the telemetry system and 
the blood pressure transmitter. The ambient pressure monitor is an 
electronic barometer required to compensate telemetered pressures for 
changes in barometric pressure. The blood pressure transmitter employs 
fluid-filled catheters that refer pressure from a specially designed tip to a 
sensor located in the body of the implant. The gel at the tip prevents blood 
from entering the lumen of the catheter. Modified from Brockway and 
Hassler (1993).
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The implantable pressure transmitter for rats consists of four key 

components:

i) a sensor;

ii) a micro-power electronic module to process and digitise the

information from the sensor;

iii) a battery; and

iv) a radio frequency transmitter.

It has a built-in magnetic switch that allows the device to be turned on and 

off either in vivo or ex vivo to maximise battery life. The pressure 

transmitter has a fluid-filled catheter attached to the sensor located in the 

body of the transmitter composed of two sections. The distal 1 cm consists 

of a thin-wall thermoplastic membrane, while the reminder of the catheter is 

composed of a thick-wall, low-compliance urethane. The distal 2 mm of the 

thin-wall tip is filled with a blood compatible gel that prevents blood from 

entering the catheter lumen and retains the low-viscosity fluid that fills the 

non-compliant section of the catheter (Brockway et a l 1991) (Figure 1.6).

Whilst implantation of the transmitter requires invasive surgery, the 

capacity for long-term monitoring allows time for blood pressure and heart 

rate to stabilise post-operatively. Several studies have indicated that radio­

telemetry is an accurate and reliable method of determining cardiovascular 

parameters in long-term studies, yielding chronic measurements that are 

repeatable and free of stress-induced artefacts (Brockway et a l 1991; Guiol 

et a l 1992; Bazil et a l 1993; Davidson et a l 1995; Clark et a l 1996; 

St.Lezin et a l 1997)
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1.3.2 GENETIC APPROACHES TO THE STUDY OF EXPERIMENTAL 

HYPERTENSION.

Hypertensive inbred rats are animal models that provide a useful resource to 

dissect human hypertensive disease. Tanase et al (Tanase et a l 1970) used 

estimates of heritability to perform a genetic analysis of hypertension. This 

was completed by crossing the SHR hypertensive strain with three different 

normotensive strains and calculating that between 2 and 6 loci are 

responsible for high blood pressure. The number of loci originally involved 

in this biometric analysis, the ability to control environmental factors, and 

the availability of high fidelity phenotyping methods (as described in 

Section 1.3.1.1.3) indicate the practicability of the genetic identification of 

these loci (Samani and Lodwick, 1993). Inbred rat models overcome the 

limitations inherent to the search for genes in humans because we can 

produce genetic crosses with a large number of progeny, thus increasing the 

statistical power for linkage analysis (Broeckel et a l 1998).

Although the genomic resources available for the rat have been limited until 

recently, collaborative efforts from several laboratories around the world 

have now achieved an appropriate level of genomics for the dissection of 

complex traits. For example, there is a major difference when comparing the 

number of genetic markers available between the mouse and the rat, where 

the former has been more extensively studied in the genetic field. While 

scientific work in the mouse has traditionally maintained a strong focus on 

genetics, inherited-disease models in the rat were used primarily in
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physiological research, and the genetic aspect received little attention. 

However, the focus on physiological research with the rat has generated a 

wealth of experience and methodological sophistication for the accurate 

determination of blood pressure measurements. Furthermore, much of our 

current understanding of integrative physiology is based on rat studies 

(James and Lindpaintner, 1997).

It follows that genetic studies in the rat have gone through different phases. 

In the first phase (Section 1.3.2.1), the inbred hypertensive rats were used 

solely for comparative studies contrasting them with the control strain. 

These studies found a wide variety of biochemical, anatomic, and 

histological differences as putative causal factors for the difference in blood 

pressure (Dominiczak and Lindpaintner, 1994). Not surprisingly, most of 

these differences have subsequently proved unrelated to the pathogenesis of 

hypertension or its sequelae. These contrasting phenotypes have arisen as a 

consequence of genetic drift during the fixation of the different inbred 

strains (Rapp, 1983). After this first attempt, genetic studies progressed 

using candidate gene strategies, genome-wide scanning and finally, fine 

mapping of the QTLs with the use of congenic strains described in detail in 

Section I.3.2.2.4.

1.3.2.1 CO-SEGREGATION ANALYSIS.

Early cosegregation studies in the rat consisted of experiments in which the 

co-inheritance of elevated blood pressure and another phenotypic trait
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distinguishing hypertensive from normotensive strains was investigated. 

The weakness of this strategy is that it infers “a priori ” a causal relationship 

between blood pressure and the intermediate phenotype, thus pre-supposing 

that the latter is genetically controlled (the intermediate phenotype 

represents an “indirect” genotype of blood pressure in this approach) (Rapp,

1991). Cosegregation studies emerged because before them, any phenotypic 

or genotypic differences between the contrasting strains were considered to 

be a causal factor of hypertension. Rapp (Rapp, 1983), who was very critical 

of this genetically faulty approach, formulated a set of 4 criteria to be 

fulfilled before any differences between contrasting strains could be 

considered as pathogenetically important:

i) a difference in a biochemical or physiological trait between the two 

strains must be demonstrated;

ii) the trait under study must be shown to follow Mendelian inheritance;

iii) the genes identified in criterion 2 must cosegregate with an 

increment in blood pressure significantly different from zero in an 

F2 or backcross population of rats derived from a cross of the 

hypertensive and control strains; and

iv) there must be some logical biochemical and/or physiological link 

between the trait and blood pressure.

The most important criterion is the requirement for cosegregation as it 

allows one to distinguish between random association or causal relationship 

of the intermediate phenotype measured and blood pressure (Dominiczak 

and Lindpaintner, 1994). In a wide variety of studies blood pressure has 

been shown to cosegregate with different physiological characteristics such
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as increased vascular smooth muscle cell responses to cations (Rapp, 1982) 

and ouabain (Bruner et a l 1986), enhanced oscillatory activity of 

mesenteric resistance arteries (Mulvany, 1986) and sympathetic nerve 

activity (Judy and Farrell, 1979; Judy et a l 1979), decreased renal blood 

flow and glomerular filtration rate (Harrap and Doyle, 1988), increased 

heart rate response to stress (Casto and Printz, 1988), augmented 

noradrenalin-induced oscillatory activity in tail arteries (Bruner et a l 

1986), increased lymphocyte potassium efflux (Furspan et a l 1987), and 

red blood cell Na+/K+ co-transport (Ferrari et a l 1987). Cosegregation of 

blood pressure has been found with some biochemical markers such as 

increased adrenal production of 18-hydroxy-11-deoxycorticosterone (Rapp 

and Dahl, 1976), renin isoforms pattern (Sessler et a l 1986) and esterase-4 

isoforms pattern (Yamori et a l 1972).

However, without the genetic tools that could provide an insight at the gene 

level it was not possible to prove that a cosegregating “intermediate” 

phenotype trait was inherited and causally related to hypertension.

1.3.2.2 MOLECULAR GENETIC STUDIES.

The development of various molecular genetic tools and their application 

for the study of hypertension in inbred rats has shed light on the generation 

of different but complementary genetic approaches. In contrast to studies 

described in Section 1.3.2.1, these powerful tools permit the dissection of
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intermediate phenotypes up to genomic level and assess if there is a 

relationship between blood pressure and the genotype.

1.3.2.2.1 Genetic tools.

The first genetic monitoring in inbred rat strains was limited to different 

biochemical measurements, immunological markers, and different coat 

colour (Bender et a l 1984; Hedrich et a l 1990). This problem has been 

resolved with the generation of a variety of DNA-based markers 

characterised by polymorphism between strains (Serikawa et a l 1992). 

Being polymorphic means that the marker is genetically different between 

the hypertensive and normotensive strains in the sequence of DNA. This 

allows the measurement of the genotype in a cosegregation experiment and 

its correlation with the phenotype. The first DNA-based markers developed 

resulted from the recognition of restriction fragment length polymorphisms 

(RFLPs). Digestion of DNA with restriction enzymes results in cleavage at 

specific sites (a candidate gene sequence) different between two strains 

resulting in DNA fragments of different size. These fragments can be 

visualised using hybridisation with radio-labelled molecular probes after 

electrophoretic separation (Jeffreys et a l 1979; Jeffreys, 1979). Rapp et al 

(Rapp et a l 1989) were the first to show cosegregation of blood pressure 

with a polymorphism of the renin gene. This was done in a cross between 

salt-sensitive (SS/Jr) and salt-resistant Dahl rats (SR/Jr) using the RFLP 

within the first intron of the renin gene. They concluded that a structural 

alteration in the renin gene, or a closely linked gene, may be a pathogenetic
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determinant of the increased blood pressure observed in this experimental 

model.

RFLP analysis is limited to sequenced and well-characterised genes. 

However, the identification of variable DNA sequences composed of 

randomly organised stretches of the same sequence repeated over and over 

throughout the genome made possible genetic analysis without any 

knowledge about the gene of interest. These repeated sequences are 

numerous, scattered throughout the noncoding DNA of eukaryotes, and 

highly polymorphic with regard to length. The first generation of this kind 

of DNA-based marker was the minisatellite, a repetitive element of 10-100 

base pairs in length. These markers can be visualised as a specific banding 

pattern by autoradiography if restriction enzyme digested-DNA is 

electrophoretically separated and hybridised against a radiolabelled probe 

complementary to the minisatellite sequence. The distance of the 

minisatellite to the neighbouring enzymatic cleavage sites will vary between 

different strains, thus producing a highly specific and characteristic banding 

pattern which can be used as a genetic finger-print to differentiate between 

strains (Jeffreys et al. 1985).

The second generation of genetic marker is a short tandem repeat sequence 

of DNA consisting of mono-, di-, tri-, or tetranucleotide repeated sequences 

called microsatellites. These are also referred to as short tandem repeats 

(STR), simple sequence length polymorphism markers (SSLP), or simple 

sequence repeats (SSR). Microsatellites are easily genotyped using
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polymerase chain reactions (PCR) (Beckman and Weber, 1992). They are 

the most useful genetic marker at present due to their large number and 

random distribution throughout the genome (O'Brien et a l 1999). The use 

of microsatellite markers creates a powerful tool to screen the genome for 

loci which cosegregate with the blood pressure phenotype without ((a 

priori” knowledge of the candidate gene involved in the pathogenesis. 

However, limitations of this approach were visible back in 1992 when the 

number of polymorphic markers was limited and coverage was found to be 

poor on the chromosomal linkage map in certain regions (Lindpaintner,

1992). Nevertheless, in recent years, the number of DNA-based markers has 

increased very substantially making feasible high resolution linkage maps 

for fine localisation of blood pressure QTLs 

(http://www.genome.wi.mit.edu; http://www.well.ox.ac.uk/pub/genetic/ 

ratmap) (Jacob et a l 1995; Bihoreau et a l 1997; Cai et a l 1997; Steen et 

a l 1999).

A supplementary technique for preparing genetic maps utilises radiation 

hybrid-cell panels (RH) (Walter and Goodfellow, 1993). Any DNA- 

sequence amplified by PCR can be localised and mapped using this 

technique, and the markers do not need to be polymorphic. Data on the 

presence or absence of a rat marker detected by PCR in the RH panel can be 

used to construct more dense genetic maps. An extensive radiation hybrid 

map of the rat genome containing 5,255 markers has recently been 

published (Watanabe et a l 1999) (http://www.well.ox.ac.uk/rat-mapping- 

resources) and a complementary set of radiation hybrid and linkage maps
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for the rat are also available (See Section 5) (Steen et a l 1999) 

(http://goliath.ifrc.mcw.edu/lgr/research/rhp /index.html).

1.3.2.2.2 Candidate gene strategy.

The candidate gene strategy in the rat is identical to the strategy in humans 

(Section 1.2.2), where the choice of a candidate gene is based on “a priori ” 

knowledge of the pathogenesis of high blood pressure (Khoury and 

Wagener, 1995). Among the candidate genes for which cosegregation 

studies have been reported are the genes coding for: renin (Rapp et a l 

1989; Kurtz et a l 1990; Dubay et a l 1993), atrial natriuretic peptide, 

angiotensin converting enzyme (Deng and Rapp, 1992), 11 P-hydroxylase 

(Cicila et a l 1993), kallikrein (Pravenec et a l 1991), the heat shock 

protein Hsp70 (Hamet et a l 1992), phospholipase C-delta 1 (Katsuya et al

1992), the Sa gene (Iwai et a l 1992; Iwai and Inagami, 1992; Lindpaintner 

et a l 1993; Samani et a l 1993), tumor necrosis factor alpha (Tnf a) 

(Harris et a l 1998), and neuropeptide Y (Katsuya et a l 1993).

The only study which identified a mutation within the candidate gene under 

investigation was by Cicila et al (Cicila et a l 1993) that investigated a 

cross between the DS/Jr and the DR/Jr rats. They cloned and sequenced full- 

length cDNAs for P450clip from the adrenals of these inbred rats. The 

C yp llb l gene encodes the P450cllp enzyme which has 11 p-hydroxylase 

activity, that converts 11-deoxycorticosterone (DOC) into 18-hydroxy-11- 

deoxycorticosterone (18-OH-DOC). It has been proposed that 18-OH-DOC,
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in rats fed large amounts of NaCl, may act as the principal steroid that 

promotes sodium retention even though its mineralocorticoid effects are 

much weaker than those of aldosterone. In this study, the predicted protein 

sequence of C ypllb  in the DS/Jr rat was found to be identical to the 

sequence reported in the outbred Sprague-Dawley rat, and five amino acid 

substitutions were found in the sequence of the DR/Jr rat with two of them 

located near the putative steroid binding site of the enzyme. They also 

demonstrated that an intragenic RFLP for the C ypllb l gene cosegregated 

with significant decrease in the adrenal synthesis of 18-OH-DOC and BP. 

Matsukawa and colleagues (Matsukawa et al. 1993) found significantly 

lower conversion of DOC to 18-OH-DOC in heterologous COS-7 cells 

expressing P450clip from the DS/Jr rat, suggesting that the amino acid 

substitutions are responsible for the altered P450cllp activity of the DR/Jr 

rat.

As explained in Section 1.2.2., candidate gene approaches lack precision. 

This strategy can provide misleading results as the significant correlation for 

a candidate gene marker and the blood pressure phenotype might actually 

reflect an effect of another gene located in close proximity to the candidate. 

Moreover, the limited power of candidate gene strategies in polygenic 

experimental crosses is in contrast to the considerable power of similar 

studies in humans. The meiotic recombination is limited to one generation 

in cosegregation experiments in animals, and linkage disequilibrium 

remains robust across relatively large stretches of chromosomal segments. It 

follows that the power of these studies to discriminate between
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neighbouring genes within a chromosomal segment is comparatively poor to 

that achieved in an outbred population, for example in human populations 

where linkage disequilibrium is much more limited yielding higher 

localisation power (Hamet et al. 1998).

Two candidate genes, renin and the Sa gene, deserve special mention 

because they have been extensively studied and information from several 

independent experimental crosses is available.

1.3.2.2.2.1 Renin.

As described in Section 1.3.2.2.1 the renin gene RFLP was the first DNA- 

based polymorphic marker ever used in the rat. Rapp et al (Rapp et al. 

1989) reported linkage of the Bglll-KFLP in the first intron of the renin gene 

with blood pressure in an F2 cross between the DS/Jr and the DR/Jr rats. 

Interestingly, Kurtz et al (Kurtz et al. 1990) performed an F2 cross between 

the SHR and inbred normotensive Lewis rats and used the same RFLP. 

Elevated blood pressure was shown in those animals heterozygous for the 

renin allele, but similar and not significant difference in blood pressure was 

observed for those homozygous for either the SHR or the Lewis allele. 

Positive linkage was found in a cross between the Lyon hypertensive and 

normotensive strains (Dubay et al. 1993), but no linkage in an F2 cross of 

SHRSP and WKY rats (Lindpaintner et al. 1990).
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These findings indicate that depending on the particular inbred strains 

chosen, linkage to a gene may or may not be detectable. Moreover, no 

sequence differences within the coding region and the 5’ untranslated region 

were found between DS/Jr and DR/Jr rats (Alam et al. 1993). This suggests 

that another locus close to the renin gene may play a role in the 

pathogenesis of hypertension in some of these strains.

1.3.2.2.2.2 The Sa gene.

Sa is a gene of unknown function identified during screening for genes with 

increased expression in the kidney of the SHR as compared with the 

normotensive reference strain WKY (Iwai and Inagami, 1991). The Sa gene 

exhibited a 10-fold difference in expression in kidneys isolated from SHR 

and WKY. Its potential contribution to rat hypertension has been suggested 

based on the demonstration of cosegregation of the Sa gene RFLP 

polymorphism with blood pressure in F2 crosses derived from SHR x WKY 

(Iwai et al. 1992; Iwai and Inagami, 1992; Samani et al. 1993), SHRSP x 

WKY (Lindpaintner et al. 1993), and DS/Jr x Lewis normotensive rats 

(Harris et al. 1993). However, in DS/Jr x WKY, and MHS x MNS rat 

crosses no linkage could be found (Harris et al. 1993; Lodwick et al.

1998), inferring that the Sa gene or a closely linked gene contributes to the 

high blood pressure but this is dependent on the genetic background used. 

These discrepancies reflect the genetic differences between strains and the 

necessity for precise definition of the strains by laboratory or breeder for 

genetic and phenotypic comparisons between different studies (Kurtz and
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Morris, 1987; Kurtz et a l 1989; Samani et a l 1989; Matsumoto et a l

1991). Recently, the Sa gene has been ruled out as a candidate for high 

blood pressure by performing a congenic experiment between the WKY and 

SHR rat strains (for further details see Section 1.3.2.2.4) (Hubner et a l

1999).

1.3.2.2.3 Genome-wide scanning.

In this strategy a genome is scanned to find QTLs that cosegregate with the 

blood pressure phenotype without any previous assumptions regarding 

genes responsible for the disease (Section 1.2.2). A QTL is defined as a 

broad chromosomal region containing a gene, or set of genes, having an 

effect on a quantitative trait such as blood pressure (Hamet et a l  1998). 

The genome-wide scanning approach is based on the principle of linkage 

analysis, using a large number of genetic markers that are polymorphic 

between the strains used to create the cross and distributed as evenly as 

possible across all chromosomes. These markers are genotyped on a large 

segregating F2 population constructed from two inbred strains (one 

hypertensive and one normotensive or hypotensive). The statistical power of 

such linkage analysis depends on the number of microsatellite markers 

available and the number of progeny in the F2 cross examined 

(Lindpaintner, 1992).

The F2 cross is produced by mating a hypertensive with a normotensive rat 

to produce a first filial (FI) progeny. FI rats are genetically identical, since
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they inherit one chromosome from each parent. The FI progeny is then 

brother and sister mated to produce a second filial generation (F2). The F2 

cohort is a very powerful medium through which to detect QTLs statistically 

by linkage analysis, as many meiotic events are available for study (Lander 

and Schork, 1994).

Genetic linkage occurs when the BP QTL and a DNA-based marker are 

physically close together on the same chromosome. During prophase I of 

meiosis, pairs of homologous chromosomes exchange segments. Each 

chromosome consists of two sister chromatids and chiasma forms between 

homologous chromatids. Crossing over or recombination and exchange of 

genetic material takes place generating recombinant chromosomes. Due to 

the meiotic recombination events, the association between the marker and 

the BP QTL will not be a perfect one. As the frequency of recombination 

events occurring between two genetic loci is a function of their physical 

distance on the chromosome, the degree of genetic linkage between the 

marker and the BP QTL represents a measure of distance between the two 

loci. The closer the marker and the gene of interest are on a given 

chromosome, the less chance that a recombination event will occur between 

them and the higher the linkage. If the marker and the gene of interest are 

far away from each other or on different chromosomes, they will recombine 

frequently and segregate independently (Lindpaintner, 1992).

The genetic linkage between the marker and the BP QTL is a measure of 

distance between the two loci, this recombination distance is measured by
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the recombination fraction or 0 (the number of recombinants observed 

divided by the total number of meiotic events). If loci are unlinked, whether 

on the same or different chromosomes, approximately half of the progeny 

will be recombinant and 0 = 0.5. If the loci are linked 0 < 0.5 and parental 

haplotypes will predominate. If the loci are very close and no recombination 

event ever takes place between them 0 = 0. As the frequency of 

recombination events occurring between two genetic loci is a function of 

their physical distance on a chromosome, the recombination fraction can be 

converted into distance expressed in centiMorgan units (cM). One cM 

represents a 0.01 probability of recombination, which, incidentally 

corresponds to a distance of approximately 1 x 106 base pairs in the human 

genome and 2 x 106 in the rat (Jacob, 1999).

For BP QTL detection, unambiguous genotyping at the genetic marker is 

required to place the locus on genetic maps and to perform the linkage 

analysis. If an F2 segregating population is produced between the 

hypertensive SHRSP strain (carrying ss homozygote alleles at every single 

locus due to its inbred status) and the normotensive WKY strain (ww 

homozygote alleles), any DNA-based polymorphic marker has three 

potential genotypes and frequencies as follows: 25% ss homozygous 

(carrying both alleles from the SHRSP strain), 25% ww homozygous 

(having both alleles from the WKY), and 50% ws heterozygous (having one 

allele from each strain), with the genotypes being in Hardy-Weinberg 

equilibrium. Each animal is scored for the genotype at specific markers 

spread throughout the genome and also phenotyped for its blood pressure.
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Alleles at loci not genetically linked to the blood pressure causative gene 

will segregate independently and these will have no statistical association 

with the phenotype. However, if there is a significant difference in the blood 

pressure levels between the genotype groups at the marker, one can infer the 

presence of a QTL.

Traditionally, marker loci across the genome have been analysed using one 

way analysis of variance (ANOVA) to calculate the contribution of the 

alleles to the phenotypic changes observed in the F2 population and a 

significance level of p < 0.05 was indicative of linkage (Soller and Brody, 

1976). Once blood pressure linkage to a single marker is found, however, 

this type of analysis fails to localise the BP QTL. Significant linkage of a 

single marker and blood pressure can mean either that the marker is very 

closely linked, or identical, to the BP QTL or that there is a BP QTL with a 

larger effect located at a greater distance from the marker (Rapp and Deng, 

1995). It is possible to study all the available markers along a chromosome 

using one way ANOVA to correlate them with the phenotype, but without 

precise information on the location of the markers it is impossible to 

identify the BP QTL.

To solve the problem of proving the existence of a QTL and localising its 

map position sophisticated computer packages such as MAPMAKER 

(Lander et a l 1987), have been developed to undertake maximum- 

likelihood linkage analysis using an interval mapping approach (Lander and 

Botstein, 1989).
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13.2.2.3.1 MAPMAKER.

MAPMAKER is a computer program which was developed by Lander et al 

(1987) to facilitate the construction of linkage maps using any number of 

DNA-based polymorphic markers and, at the same time, interrogate all 

those markers for the phenotype measured in the F2 segregating population. 

The first function of MAPMAKER is the construction of a genetic linkage 

map with the aid of a mapping function. This function uses the equivalence 

between the recombination fraction and the genetic distance, converting 0 

into cM distances (the mapping function is needed in multilocus mapping to 

convert the raw data of the recombination fraction into a genetic map), 

Haldane’s mapping function is widely used and is given as 0 = 0.5 (l-e '2co), 

where oo is equal to the map distance in Morgans (Haldane, 1919). 

Haldane’s mapping function does not take into account interference, and 

assumes crossovers occur at random along the chromosome with no 

influence on one another. However, the presence of one chiasma inhibits the 

formation of another, thereby the assumption that crossovers occur at 

random is not true. Alematively, Kosambi’s mapping function can be used 

as a more realistic formula, which takes into account the interference, 0 = 

0.5 p*4”*-1] / [e(4<0)+1] (Kosambi, 1943).

After the genetic linkage map has been constructed, the second operation 

that MAPMAKER carries out is the QTL analysis using maximum- 

likelihood techniques, where each marker is examined for linkage to the 

measured phenotype and is compared with adjacent markers. The
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significance of linkage between given markers and the measured phenotype 

is determined by the LOD score (which is the Log of the ratio of likelihood 

of there being a QTL present versus the likelihood of no QTL being present 

at a particular map position). The LOD scores are calculated at many 

selected points in an interval between markers and then are plotted versus 

map position. The LOD score is described as Z = Logio [L(0) / L(0.5)] and 

is calculated at various levels of 0 to identify the value at which Z is greatest 

(Zmax) and Zmax is considered to be the best estimate (Lander et a l 1987).

Genetic analysis of Mendelian traits assumes that a LOD score of 3.0 is 

significant to declare linkage for a putative QTL, i.e. when Z is equal to or 

greater than 3.0, which corresponds to 1000:1 odds in favour of linkage. In 

contrast, a LOD score of -2  or less indicates evidence of exclusion of 

linkage (McKusick, 1975). The peak of the LOD plot gives the most likely 

location of the QTL, and the height of the peak is a measure of statistical 

significance (Figure 1.7). However, more stringent levels of statistical 

significance are required for non-Mendelian polygenic or oligogenic traits 

where factors such as the size of the genome, the assumed genetic model of 

inheritance for the QTL (additive, dominant, recessive, codominant, or 

free), and the breeding paradigm (backcross or F2 population) influence the 

interpretation of the LOD plot (Paterson et al. 1988). For example, for an 

additive mode of inheritance, an F2 intercross is preferred, but in some 

cases the phenotypes from the FI progeny are closer to one of the parental 

inbred strains; in this case a backcross (in which FI animals are mated with 

one of the parental strains) would be preferred.
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LOD Score
0 2 4 6 8 10 12 14 16 18

D5Mgh6

Suggestive 1-LOD Decrease

Significant 2-LOD DecreaseR182

D5Mit2
D5Woxl6

D5Mit9

■^r-L O D " r2-LOD 
_JL Interval ^Interval

D5wox4

D5Woxl5

L26461

D5Woxl4

20cM

D5Mghl5 —  
D5Mghl6

Figure 1.7. Logarithm of the odds favouring linkage of the phenotype to 

genetic markers (LOD plot) and construction of the 1-LOD and 2-LOD 

support intervals for localisation of the QTL. Suggestive and significant 

statistical linkage for the trait are represented with solid lines. Modified 

from Jeffs (1997).
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Lander and Kruglyak (Lander and Kruglyak, 1995) have made calculations 

accounting for such factors and proposed stringent LOD thresholds to 

distinguish between suggestive linkage (statistical evidence for the existence 

of a QTL would be expected to occur once at random in a genome scan) and 

significant linkage (statistical evidence for a QTL would be expected to 

occur 0.05 times at random in a genome scan) (Table 1.5). Whilst 

suggestive linkage results may be incorrect, they are worth reporting if 

accompanied by the appropriate level of significance; it also follows that as 

a LOD score of 3.0 occurs by chance 5% of the time, the greater the LOD 

value the greater the confidence in the linkage result.

The localisation of the QTL is supported by an interval defined by the range 

needed to contain a drop of one LOD unit around the peak, giving an 

approximate confidence interval for the QTL localisation (Figure 1.7). It has 

been calculated that one-LOD unit around the peak gives an interval with a 

60-95% probability of containing the QTL (Mangin et al. 1994). However, 

simulation studies suggested that support intervals based on two-LOD units 

should be used to increase the probability of finding the QTL (Van Ooijen,

1992). An important factor that can influence the success of QTL-fmding 

using the MAPMAKER program is the variance of the phenotype 

measurements which correlates inversely with the likelihood of linkage due 

to the introduction of excessive noise (Dominiczak and Lindpaintner, 1994). 

It follows that high quality phenotyping is required for fine mapping of 

blood pressure QTLs (Section 1.3.1.1.3).



Mapping method 

(QTL mapping in rat.)

Suggestive 

Linkage 

P value (LOD)

Significant 

linkage 

P value (LOD)

Backcross (1 d.f.) 3.4 x 10"J(1.9) 1.0 x 10"*(3.3)

Intercross (1 d.f.., additive) 3.4 x 10'3(1.9) 1.0 x 10^(3.3)

Intercross (1 d.f., recessive) 2.4 x 10'3(2.0) 7.2 x lO-4̂ )

Intercross (l.d.f., dominant) 2.4 x 10‘3(2.0) 7.2 x lO'4̂ )

Intercross (2 d.f.) 1.6 x 10‘3(2.8) 5.2 x 10'5(4.3)

Table 1.5. Thresholds for mapping loci underlying complex traits, d.f., 

degrees of freedom. From Lander and Kruglyak (Lander and Kruglyak, 

1995).
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1.3.2.2.3.2 Blood pressure QTLs.

The first genome-wide scan for the dissection of BP QTLs was applied to an 

F2 cosegregating population derived from the SHRSPHeideiberg and WKY 

strains (Hilbert et al. 1991; Jacob et al. 1991). These studies demonstrated 

the presence of three chromosomal loci which showed LOD scores in excess 

of 3.0 and thus fulfilled the accepted criteria for significant linkage 

according to the particular conditions of the experiment (Lander and 

Kruglyak, 1995). These pioneering experiments were carried out screening a 

panel of 240 mini- and microsatellites and both mapped a locus on rat 

chromosome 10 which contributed significantly to the difference in blood 

pressure between the two strains. This locus was called BP1 by Jacob et al 

(1991) and BP/SP-1 by Hilbert et al (1991) and contained a putative 

candidate gene encoding for the angiotensin I converting enzyme (ACE 

gene). Jacob et al (1991) identified another BP QTL (BP2) on chromosome 

18 linked to diastolic blood pressure whilst Hilbert et al (1991) mapped an 

X-linked locus contributing to the difference in blood pressure between the 

two strains. The discrepancies between the two set of results were entirely 

due to the different statistical analysis used as the genetic cross and its 

phenotyping were one and the same in both studies.

As can be seen in Table 1.6, despite great variability between the 

hypertensive strains and the segregating populations used in QTL 

localisation, several QTLs have been present reproducibly in many 

independent experiments (Figure 1.8). These common or reproducible QTLs
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have become important candidate loci for human essential hypertension. 

This new strategy which aims to achieve a direct transfer of rat QTLs to 

homologous human chromosomal regions has been successful for the QTL 

on rat chromosome 10 (Julier et a l 1997; Baima et a l 1999). The BP QTL 

on rat chromosome 10 has been reported several times in the literature using 

different F2 segregating populations (Hilbert et a l 1991; Jacob et a l 1991; 

Rapp and Deng, 1995; Harris et a l 1995; Garrett et a l 1998). Based on 

comparative mapping data, Julier et al (Julier et a l 1997) used this BP QTL 

to investigate the homologous region of conserved synteny on human 

chromosome 17. Analysis of affected sib-pairs with essential hypertension 

gave significant linkage to two closely linked microsatellite (D175183 and 

D 175934) on human chromosome 17q. Another study conducted by Baima 

et al (Baima et a l 1999) confirmed the linkage of this region on human 

chromosome 17q using a different population and refined the localisation of 

the human blood pressure QTL to markers D17S1814 and D17S800, which 

are 0.7 cM apart. These two studies (Julier et a l 1997; Baima et a l 1999) 

provide an elegant proof of the concept that it is feasible to directly translate 

the QTLs discovered in the rat to human essential hypertension and pave the 

way for similar studies of different rat BP QTLs (Dominiczak et a l 2000).

Localising BP QTLs to chromosomal regions of approximately 30 cM is 

only the first step towards the identification of the causal gene or genes. 

Further strategies include construction of congenic strains and sub-strains 

and finally cloning by position. There strategies are described below.
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C hr Rat Strains Central Lod Reference
Gene/Markers Score

1 WKY x SHRSP(izm) Lsn, My 12 4.5 (Nara et a l 1993)
Lewis x S D IM col, Cytp450 3.4 (Gu et al. 1996)
Lewis x S Sa 2.5 (Gu etal. 1996)
ACI x FHH M tlpa 4.2 (B row ned/. 1996)
Sabra N x Sabra H D1MU2, Sa 4.9 (Yagil etal. 1998)
Sabra N x Sabra H D lM itl, Cytp450 4.7 (Yagil etal. 1998)
Donryu x SHR Dlmit3 4.3 (Innes etal. 1998)

2 LN x LH Cpb 7.0 (Dubay e ta l  1993)

WKY x S ATPlal 3.4 (Deng etal. 1994)
M N SxS Camk 2.6 (Deng e ta l  1994)
RI (BN x SHR) D2N35 n/a (Pravenec et al.

1995)
BN x SHR M tlpb 3.0 (Schork e ta l  1995)
BN x SHR Gca 6.3 (Schork e ta l  1995)
BN x SHR R598 3.0 (Schork et al. 1995)
BN xG H Gca n/a (Harris et al. 1995)
WKY x SHRSP(Gia) D2Mit6 3.4 (Clark etal. 1996)
WKY x SHRSP(G]a) D2MU14 3.1 (Clark etal. 1996)

WKY x SHR D2Wox7 5.6 (Samani etal. 1996)

Lewis x S D2Mcol9 2.9 (Garrett et al. 1998)

3 WKY x SHRSP(iZm) D3Mghl6 n/a (Matsumoto et al.
1995)

WKY x SHRSP(Gia) D3Mghl6 5.6 (Clark etal. 1996)
WKY x SHRSP(izm) D3Mghl2 6.2 (Matsumoto et al.

1996)
Lewis x S D3Mgh6 3.0 (Garrett et al. 1998)
BN x S D3Mgh2 3.92 (Kato etal. 1999)

4 RI (BN x SHR) 11-6 n/a (Pravenec et al.
1995)

BN x SHR Npy2 4.6 (Schork et al. 1995)

5 WKY x SHR Mitrl678, Anp, Bnp 4.2 (Zhang etal. 1996)
Lewis x S Edn2 4.5 (Garrett etal. 1998)

Table 1.6. QTLs for blood pressure. Continued on next page.
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Chr Rat Strains Central Lod Reference
Gene/Markers Score

8 BN x SHR R850 5.1 (Schork etal. 1995)

9 R x S Inha 5.0 (Rapp et al. 1998a)

10 WKY x SHRSP(Hd) Ace n/a (Hilbert et al. 1991)
WKY x SHRSP(Hd) Ace 5.1 (Jacob etal. 1991)
WKY x S Nos2 2.3 (Denge/fl/. 1995)
MNS x S Nos2 6.3 (Deng etal. 1995)
MNS x S Ace 4.8 (Deng et al. 1995)
BN x GH Ace n/a (Harrises al. 1995)
Lewis x S D10Wox6 5.5 (Garrett etal. 1998)
MNS x S DIOWoxB 6.69 (Kato et al. 1999)

12 WKY x S D12Woxl6 n/a (K aioetal. 1999)

13 LN x LH Renin 5.6 (Dubay etal. 1993)
WKY x SHR D13Mit2 5.7 Samani et al, 1996

16 BN x SHR R220 4.3 (Schork et al. 1995)

17 Sabra N x Sabra H D17Mgh5 3.4 (Yagil etal. 1998)

18 WKY x SHRSPfHd) Rrl094 3.2 (Jacob etal. 1991)

19 RI (BN x SHR) D19MU7 n/a (Pravenec et al.
1995)

X WKY x SHRSP(Hd) Per-Ha-2/Per-Ha- 7 n/a (Hilbert et al. 1991)
Sabra N x Sabra H DxMgh9/DxMgh 12/ 4.3 (Yagil etal. 1999)

DxRat2
Table 1.6. QTLs for blood pressure. The normotensive strain is cited first on all occasions. 
WKY, Wistar-Kyoto; SHRSPjzm, SHRSP from Izumo colonies; SHRSPnd, SHRSP from 
Heidelberg colonies; SHRSPg]a, SHRSP from Glasgow colonies; S, Dahl salt-sensitive; R, 
Dahl salt-resistant; ACI, AxC9935 Irish; FHH, Fawn-hooded hypertensive; Sabra H, Sabra 
hypertensive; Sabra N, Sabra normotensive; LN, Lyon normotensive; LH, Lyon hypertensive; 
MNS, Milan normotensive; RI (BN x SHR), recombinant inbred strains HXB and BXH 
derived from the normotensive Brown-Norway and SHR; GH, genetically hypertensive rat. 
The following represent markers within known genes; Lsn, leukosianin; Myl2, myosin short 
chain; Cytp450, cytochrome P450 cluster; M tlpa , metallothionein 1, pseudogene a; Cpb, 
carboxypeptidase; ATPlal, Na+K+ATPase al-isoform; Camk, calmodulin-dependent protein 
kinase Il-delta; M tlpb , metallothionein 1, pseudogene b; Gca, guanylylcyclase A; IL-6, 
interleukin-6; Npy2, neuropeptide Y2; Anf, atrial natriuretic factor; B nf brain natriuretic 
factor; Ace, angiotensin-converting enzyme; Nos2, inducible nitric oxide synthase; Inha, 
inhibin alpha subunit gene; Per-Ha-2 and Per-Ha-7 are minisatellite bands. The remaining 
symbols represent anonymous microsatellite markers, n/a, LOD score not given in reference. 
Modified and updated from Dominiczak et al (Dominiczak et al. 1998)
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SHRSP

Sabra H | SHR

MHS

Dahl S

Figure 1.8. Common or reproducible blood pressure QTLs identified in 

several independent experiments. Only the hypertensive strain is indicated. 

SHRSP, Stroke- prone spontaneously hypertensive rat; SHR, spontaneously 

hypertensive rat; MHS, Milan hypertensive rat; Dahl S, Dahl salt-sensitive 

strain; Sabra H, Sabra hypertensive strain. Adapted from Dominiczak et al 

(2000).
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1.3.2.2.3.2 QTLs influencing other cardiovascular phenotypes.

Genome-wide scanning experiments have also been applied to the 

elucidation of cardiovascular phenotypes other than blood pressure. Four 

cardiovascular phenotypes have received special attention: left ventricular 

hypertrophy (Pravenec et al. 1995; Clark et al. 1996; Hamet et al. 1996; 

Vincent et al. 1996; Innes et al. 1998; Sebkhi et al. 1999), ischemic stroke 

(Rubattu et al. 1996; Jeffs et al. 1997), renal failure (Brown et al. 1996), 

and insulin resistance (Aitman et al. 1997). In this section I shall discuss in 

detail mapping studies for LVH and stroke phenotypes, with the remaining 

studies being listed in Table 1.7.

BP QTLs are essentially always associated with effects on heart weight as 

the heart hypertrophies in response to chronically increased blood pressure. 

However, genome-wide scanning strategies in four different crosses 

between hypertensive and normotensive inbred rat strains demonstrated 

three different QTLs responsible for a proportion of left ventricular 

hypertrophy in a blood pressure independent manner (Clark et al. 1996; 

Hamet et al. 1996; Vincent et al. 1996; Innes et al. 1998). Moreover, 

Sebkhi et al (Sebkhi et al. 1999) found significant linkage for a left 

ventricular weight QTL on chromosome 3, centred around marker D3Rat29 

with a LOD score of 4.4 in a cross between two normotensive strains 

(Fisher 344 and Wystar-Kyoto rats), thus minimising the confounding effect 

of blood pressure. Innes et al (1998) reported a QTL for LVH in an F2 cross 

between SHR and Donryu rats. This QTL had a LOD score of 4.3,
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accounted for 29.5% of genetic variance and was BP independent. It is of 

interest that this QTL is localised in an area of a well established BP QTL 

(Rapp, 2000). It follows that there are several potential loci that might 

account for left ventricular hypertrophy, however further fine mapping 

techniques are required to further dissect this cardiovascular phenotype.

Three BP independent QTLs for susceptibility to spontaneous stroke were 

mapped to chromosome 1 (STR-1), 4 (STR-3), and 5 (STR-2) in a SHRnd x 

SHRSPnd cross by Rubattu et al (Rubattu et a l 1996). Together they 

accounted for 28% of the overall phenotypic variance. The selection of two 

hypertensive strains was done to avoid any confounding effects of blood 

pressure on the stroke phenotype. The phenotype measured was the stroke 

latency phenotype which was estimated by the number of days until clinical 

evidence of stroke on a diet high in sodium and low in potassium and 

protein. Both STR-2 (LOD of 4.7, this QTL mapped closed to the A n f gene 

on rat chromosome 5) and STR-3 (LOD of 3.0) appeared to protect from 

stroke in the SHRSP strain, as F2 rats inheriting both alleles from the 

SHRSP strain had significantly greater latency to spontaneous stroke 

compared to SHR homozygotes for the same alleles. In contrast, STR-1 

(LOD score of 7.4) strongly affected latency to stroke in a recessive mode 

with SHR alleles being protective.

Our group in Glasgow demonstrated the existence of a stroke severity locus 

in a cross between SHRSPoia and WKYcia- This QTL was localised on 

chromosome 5 with a highly significant linkage (LOD of 16.6), accounted
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for 67% of the phenotypic variance and was blood pressure independent 

(Jeffs et a l 1997). Jeffs et al carried out high fidelity phenotyping which 

included a surgical occlusion of the middle cerebral artery to measure 

infarct size. It is of interest that this stroke severity locus mapped in close 

proximity to the BP QTL observed in studies on Dahl salt-sensitive rats. It 

follows that there seem to be two different stroke QTLs on rat chromosome 

5, explained perhaps by the different stroke phenotypes used in these studies 

(stroke latency versus infarct size after middle cerebral artery occlusion). 

Moreover, the SHRSP alleles at the locus reported by Jeffs et al confer 

increased susceptibility to stroke, whilst for the locus reported by Rubattu et 

al (1996) the same alleles confer protection (increasing the latency to 

stroke).

1.3.2.2.4 Congenic strains.

Several BP QTLs have been identified in experimental crosses (Section 

1.3.2.2.3.2). However, the identification of large chromosomal regions of 

approximately 20-30 cM in size is only the first step in the ultimate goal of 

gene identification (Dominiczak et a l 1998). Indeed, simulation studies 

have shown that the best confidence intervals achievable by QTL mapping 

are 10 cM wide. Darvasi et al (Darvasi et a l 1993) demonstrated that for 

cloning by position it is necessary to localise the locus to 1-2 cM.The next 

step is the production of congenic strains and substrains containing 

progressively smaller chromosomal regions, with the final task being 

positional cloning of the causal gene(s) (Rapp and Deng, 1995).
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The use of congenic breeding strategies is a standard procedure in mouse 

genetics that was pioneered by George D. Snell as a component of his Nobel 

prize-winning strategy for the dissection of mouse histocompatibility genes 

and tumour resistance (Snell, 1948). A congenic strain represents a genetic 

composite of the disease and the reference strains such that the congenic 

strain is identical to the reference strain except for a single chromosomal 

region of interest that is derived from the disease strain and has been 

introgressed into the reference strain background or vice versa.

The classic protocol for the production of congenic strains is to backcross 

serially the donor to the recipient strain, accompanied by selection for 

progeny carrying the desired disease-locus in each backcross generation 

(Figure 1.9). This essentially leads to a serial “dilution” of the donor 

genome into the recipient genome with continuous maintenance of the 

specified disease-locus (Markel et al. 1997). Following Mendelian laws, 

each backcross results in a reduction by a factor of 2 of the genetic material 

derived from the donor strain in favour of the recipient strain, so that after 

eight backcrosses > 99%
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Figure 1.9. Congenic strain production using the traditional and speed 

congenic methods. Donor strain is represented with black colour and 

recipient strain with white colour. Decreasing shades of grey from black to 

white represent the increase in percentage genetic background that occurs 

with each backcross. D, donor strain alleles; R, recipient strain alleles; B, 

backcross; FI, first filial generation.
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of the congenic strain will be from the recipient strain. After eight to twelve 

backcross generations have been bred, the protocol is completed by an 

intercross to produce homozygous congenic animals for the derived disease- 

QTL.

Several laboratories began the production of congenic lines between 

different hypertensive and normotensive inbred rat strain approximately 7-8 

years ago. The lack of DNA-based markers specifically designed for the rat 

limited the congenic selection to a single marker (RFLP for example). It is 

known that regions linked to a selected marker that is examined to choose 

animals for the next backcross generation will be fixed by chance for the 

donor strain alleles (Rapp, 2000). In the single marker selection experiment 

for the congenic breeding paradigm, the number of backcrosses reduces 

proportionally the size of the region fixed by chance along with the marker. 

A congenic strain that results from selecting only one marker will have 

flanking donor chromosomal regions on average equal to 100/N cM on each 

side, where N is the number of backcrosses (Silver, 1995).

Congenic strains can be constructed in two ways with a given pair of 

parental strains, i.e. the normotensive strain can be the donor and the 

hypertensive strain can be the recipient, or vice-versa; the difference 

between the two types of congenic strain is the genetic background. This 

strategy is called reciprocal congenic breeding and allows investigation of 

how a single QTL may influence blood pressure on a permissive and a 

resistant genetic background, and thus providing a control for genome
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background effects (Jacob, 1999). The generation of reciprocal congenic 

strains also provides a classic 2 x 2 study design, whereby physiological 

experiment and phenotypic measurement have appropriate controls for the 

QTL region and genetic background (Figure 1.10). One of the best examples 

of the use of reciprocal congenic lines has been published by Frantz et al 

(Frantz et a l 1998). A region of chromosome 1 (of 2.4 cM in size) around 

the Sa gene from the WKY strain was transferred to the SHR genetic 

background and vice versa using twelve backcrosses. The blood pressure 

was recorded at 25 weeks of age using tail-cuff and interestingly the 

magnitude of change in systolic blood pressure was similar between the two 

congenic strains (approximately 10 mmHg). Although Frantz et al (1998) 

concluded that the same QTL was introgressed and produced similar effects 

on contrasting backgrounds, high fidelity phenotyping of blood pressure 

(Section 1.3.1.1.3) is required to determine pleiotropic or epistatic effects 

due to the genetic background that can be easily missed with the tail-cuff 

method.

Several congenic lines that have been produced for the dissection of BP 

QTLs are summarised in Table 1.8; however, causal genes have not yet 

been identified. It is of interest to describe in some detail congenic strains 

constructed around the renin gene on rat chromosome 13. St. Lezin et al 

(St.Lezin et a l 1996) reported that in congenic Dahl R rats carrying the 

Dahl S renin gene and fed a high salt diet, the systolic blood pressure was 

significantly lower than in the progenitor Dahl R rats. These results were the 

opposite of what was predicted from the original linkage data
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WKY.SHRSP. BP  
BP QTL 1 +/+ 
M arker 1: -/- 
M arker 2: -/- 
M arker 3: -/-

WKY
BP QTL 1 -/- 
M arker 1: -/• 
M arker 2: -/■ 
M arker 3: -/■

0 7 X 7

SHRSP 
BP QTL 1 +/+ 
M arker 1: +/+ 
M arker 2: +/+ 
M arker 3: +/+

SHRSP.W KY.XP QTL1 
BP QTL 1 -/- 
Marker 1: +/+
Marker 2: +/+
Marker 3: +/+

Figure 1.10. Diagram showing generation of congenic strains in a classic 

2x2 study design. The QTL of interest can be studied in both normotensive 

and hypertensive backgrounds. Modified from Jacob (1999).
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(Rapp et al. 1989). Jiang et al (Jiang et a l 1997) confirmed these results in 

a reciprocal congenic line for the same region in which the systolic blood 

pressure was increased compared to the Dahl S parental strain. Zhang et al 

(Zhang et a l 1997) found the predicted effect with the renin gene transfer 

from the Dahl R rat into the Dahl S background resulting in a significantly 

lower blood pressure. Moreover, St. Lezin et al (St.Lezin et a l 1998) 

constructed a congenic strain introgressing the renin gene from the 

normotensive Brown-Norway rat into the SHR rat and demonstrated no 

changes in blood pressure. The discrepancies in these studies may be due to 

different intervals flanking the renin gene being transferred resulting in 

different interacting loci being fixed in each congenic strain. Moreover, 

phenotyping protocols were not identical to the phenotyping protocol used 

to determine the initial linkage of renin to high blood pressure.

1.3.2.2.4.1 Speed congenic strategy.

Most of the congenic strains produced (Table 1.8) used the traditional or 

classical strategy that requires 8-12 backcross generations to achieve 

suffiecient dilution of the donor background. However, with the availability 

of a large number of molecular genetic markers and the complete genetic 

linkage and radiation hybrid maps for the rat (Jacob et al. 1995; Jacob et al. 

1995; Bihoreau et al. 1997; Watanabe et al. 1999; Steen et al. 1999; Steen 

et al. 1999; Jacob et a l 1995), it is possible to reduce the time necessary to 

generate congenic animals by 50-60% using a speed congenic approach 

(Figure 1.9). This strategy uses marker-assisted selection to increase the rate
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of introgression of target loci into the background by successive backcrosses 

(Lande and Thompson, 1990). Genetic markers spanning the genome are 

used to identify animals which have the greatest proportion of the desired 

background (Wakeland et a l 1997). The acceleration of congenic strain 

production is based on a genome-wide analysis of genetic polymorphism 

distinguishing the donor and the recipient strains. Selection at each 

generation is based not only on the presence of the desired loci, but also on 

the absence of contaminating donor genes from other parts of the genome. 

This is assessed through analysis of polymorphic marker loci distributed 

throughout the genome (Markel et a l 1997). This strategy has been applied 

successfully in mice (Yui et a l 1996; Morel et a l 1996; Markel et a l 

1997). However, at the time of initiation of my Ph.D. project it had yet to be 

tested in rat genetics.

Superovulation has been also suggested for reducing the breeding cycle 

(Behringer, 1998). This technique, followed by embryo transfer, might 

shorten the time taken to produce a congenic line to 1 year, but it requires a 

very high level of technical expertise and has not yet been used in practise 

(Rapp, 2000).

1.3.2.2.5 Fine genetic mapping.

Once a congenic line is produced, the next stage is the refining and 

narrowing down of the location of the BP QTL using congenic strains with 

smaller and smaller donor fragments to localise the QTL for fine genetic
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A B C D E F G H

Congenic strain 
1

q tl !
mmHg

O ) (A

O CO

SHRSP
Strain

RECIPIENT (SHRSP) Strain Chromosome 

DONOR (WKY) Strain Chromosome

Figure 1.11. Substitution mapping of a QTL with the use of congenic 

strains. A relatively large QTL from the normotensive WKY strain defined 

by markers A through H is substituted into the genetic background of the 

hypertensive SHRSP strain resulting in the congenic strain 1. Strain 1 is 

then backcrossed to the SHRSP strain and the progeny genotyped at markers 

A through H to select rats with crossovers in various places throughout the 

region. Congenic substrains 2 to 7 are then produced and fixed in the 

homozygous state. The narrowed down QTL is between markers D and E as 

shown by a step change in blood pressure among the strains. Modified from 

Rapp & Deng (1995) and Dominiczak et al (1998).
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substitution mapping (Figure 1.11). Fine genetic mapping has been applied 

to agricultural research (Paterson et al. 1990), however the size of the 

region to be narrowed down will depend on the density of polymorphic 

microsatellite markers within the segment of interest. Once the position of a 

QTL has been refined to a small candidate region, a physical map of the 

segment is needed. Such maps are constructed by using genetic markers 

from the candidate segment to screen recombinant DNA-libraries (typically 

yeast, bacterial, or PI-derived artificial chromosomes, known as YACs, 

BACs, and PACs, respectively) for a set of clones that cover the entire 

region forming a contig. The clones can then be used to discover what genes 

are in the region by exon trapping (Duyk et al. 1990), cDNA selection 

(Lovett, 1994), or direct DNA sequencing.

An alternative strategy is the use of cDNA microarrays that can help to 

provide a faster gene localisation without the need to shorten the 

introgressed regions (Aitman et al. 1999). Recently Aitman et al (1999) 

combined several new strategies inducing cDNA microarrays, congenic 

mapping, and radiation hybrid mapping to identify a defective SHR gene, 

the Cd36 on rat chromosome 4, providing evidence for the role of this gene 

in insulin resistance, defective fatty acid metabolism, and 

hypertrigliceridemia in the SHR. However, Cd36 genotyping performed in 

the SHRSP did not reveal the deletion variant carried by the SHR (Gotoda et 

al. 1999; Collison et a l 2000).

109



1.4 AIMS OF THE STUDY.

The aim of this investigation was to dissect two BP QTLs on rat 

chromosome 2, previously identified by Professor Dominiczak's group 

(Clark et a l 1996; Jeffs et al. 2000). This was accomplished by using a 

“speed” congenic strategy with the aid of high resolution physical mapping 

tools. This strategy will ultimately lead to the localisation of the gene(s) 

involved in the high blood pressure observed in the SHRSPda and their 

identification by positional cloning. The principal aims of this investigation 

were:

1. To develop a congenic strategy for the analysis of the BP QTLs 

identified on rat chromosome 2. This has been achieved by the 

development of an improved genetic linkage map for rat chromosome 2, 

the application of a speed congenic approach in the rat, and the 

development of reciprocal congenic strains.

2. To sequence one of the putative candidate genes, Na+K+ATPase 

contained in the chromosomal segment defined by the speed congenic 

strategy. This will be done to detect any possible mutations that might 

explain the contrasting blood pressure phenotype between the WKYcia 

and SHRSPoia strain. However, for the candidate gene to be considered 

as a susceptibility gene for high blood pressure, it has to be shown to 

play a functional role in the pathogenesis of hypertension.
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3. To construct a high resolution radiation hybrid map of the relevant 

segments of rat chromosome 2 and 5. Rat chromosome 5 radiation 

hybrid mapping has been performed in order to address discrepancies 

between our genetic map and other genetic maps available in the 

literature and in the databases deposited on the world wide web. This 

has been further refined by physical mapping using fluorescence in situ 

hybridisation (FISH).
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CHAPTER 2 

METHODS.
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2.1 GENERAL LABORATORY PRACTICE.

Reagents, solutions, electrical, and computerised equipment used met the 

highest standard available. Routinely, laboratory white coat and gloves 

(light-powdered or powder-free depending on particular experiments) were 

used during all procedures, gloves were changed frequently to avoid cross­

contamination. Laboratory spectacles, face mask, and fume hood (Holliday, 

Fielding & Hocking Ltd) used to meet the safety requirements when hazard 

labelling of the reagents indicated.

All items of glassware were washed in solutions of the detergent Decon 75, 

rinsed in distilled water and dried in a oven at 37°C. Measurements of pH 

were obtained using a CO720 digital pH meter (WPA Cambridge) which 

was regularly calibrated with a solution of pH 7.0 and pH 4.0 prepared from 

buffer tablets (Sigma). When centrifugation was needed for small samples 

(up to 2,000 pL) a centrifuge 5402 (Eppendorf) was used giving a maximum 

of 14,000 rpm, for larger samples a IEC centra-GP8R refrigerated centrifuge 

(Life Science International Ltd) was employed.

Volumes between 0.1-5,000 pL were transferred using the appropriate 

Gilson pipettes (Gilson Medical Instruments) and the appropriate tips 

(Alpha Laboratories Ltd). For aqueous solutions autoclaved glass-distilled 

water was used. For dissolving powder or solid reagents in the appropriate 

solution a HB502 stirrer/hot plate (Bibby Sterilin Ltd) was utilised. Two 

balances were used a Mettler AT250 (European Instrument Sales) balance
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accurate up to five decimal places or a Mettler P2000 (European Instrument 

Sales) balance accurate to three decimal places.

2.2 EXPERIMENTAL ANIMALS AND GENETIC CROSSES.

Thirteen SHRSP and thirteen WKY (6 males and 7 females of each) were 

obtained from the colonies maintained in the University of Michigan, they 

were a gift made by Dr. D.F. Bohr of the Department of Physiology at the 

University of Michigan, USA. These colonies have been maintained as 

inbred for more than 15 years in Michigan and were originally obtained 

from the National Institutes of Health (Bethesda, MD) (Davidson et a l 

1995). These rats have been brother and sister mated in Glasgow to provide 

an SHRSP colony and a WKY colony since 1991.

We performed two reciprocal genetic crosses (Figure 2.1) to obtain an F2 

cohort. This ensured that the Y chromosome from both hypertensive and 

normotensive strains was fully represented in the F2 segregating population. 

One male SHRSP was mated with two WKY females (cross 1) and one 

male WKY with two SHRSP females (cross 2). From the FI rats of each 

cross, 3 males and 6 females were brother and sister mated to generate F2 

rats (60 in cross 1 and 80 in cross 2). All rats were housed under controlled 

conditions of temperature (21°C) and light (12 hours light/dark cycle; 7am 

to 7pm) and were maintained on normal rat chow (rat and mouse N° 1 

maintenance diet, special diet service) and water ad libitum. Litters were
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Cross 1

—  .ft -

*tx̂d o
XSYS

SHRSP

(I

xwxw
WKY

Cross 2

4 * S k

d'x 9
X  Yw w
SHRSP

F I

XjjXj
WKY

d x Q d 9
XWYS Xsxw xwxs

6  d 9 9

XSYS XWYS XSXW XWXW

d d g g
XWYW XSYW XWXS XSXS

Figure 2.1. Diagram illustrating cross 1 and cross 2 with the origin of each 

sex chromosome in subscript; Xs denotes X chromosome of SHRSP origin, 

Ys denotes Y chromosome originating from the SHRSP, Xw denotes X 

chromosome of WKY origin, and Yw denotes Y chromosome originating 

from the WKY. Shades of grey in the rats from black to light grey represent 

the genotype status of the sex chromosomes, where light grey, WKY origin, 

dark grey, heterozygosity, and black, SHRSP origin.
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weaned and sexed after 3 weeks and maintained by sibling group and sex 

thereafter. A maximum of three rats were kept in each cage.

2.2.1 CONGENIC CROSSES.

We used a speed or marker-assisted strategy for the development of 

congenic strains. This strategy is explained in detail in Section I.3.2.2.4. 

The traditional strategy involves 8-12 backcrosses whereas a speed strategy 

reduces by half the number of backcrosses required (Figure 1.9). Reciprocal 

congenic strains were produced using the speed congenic strategy involving 

the transfer of different segments of rat chromosome 2 from WKYcia to the 

genetic background of the SHRSPcia strain, and in the reciprocal direction 

from the SHRSPcia to the genetic background of the WKYcia strain (Figure 

2 .2).

Two reciprocal FI generations were produced by mating 1 SHRSP with two 

WKY females (cross 1) and 1 male WKY with two SHRSP females (cross 

2) to allow the production of reciprocal congenic lines having not only all 

the autosomes of the recipient strain but also the sex chromosomes from the 

same origin (Figure 2.2). For the first backcross, males from the 

corresponding FI generation were crossed with females from the recipient 

strain. Twelve to thirty seven microsatellite markers were genotyped 

throughout the desired QTL on chromosome 2. In addition we genotyped 

the first backcross at 83 genetic markers spanning the genome.
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This procedure allowed selection of “best males” for the next backcrosses. 

These “best males” were defined as those animals with heterozygosity at the 

QTL of interest but with less heterozygosity at markers in the genetic 

background or with less contamination of the background with donor 

alleles. This procedure was repeated in all offspring after every backcross 

until the donor’s alleles were eradicated in the 83 background markers.

Background microsatellite markers for genotyping the backcross offspring 

were selected based on the need for as thorough as possible coverage of the 

entire rat genome, with special emphasis on the region harbouring BP QTLs 

previously identified by our group (Clark et a l 1996; Jeffs et al. 2000). 

Several rat genomic databases available on-line were used to fulfil this 

selection including: Rat Map, the Rat Genome Database (Goteberg 

University, Sweden; http://ratmap.gen.gu.se/); The Whitehead Institute 

Center for Genome Research Rat Mapping Project 

(http://www.genome.wi.mit.edu/rat/public/); and the Wellcome Trust Centre 

for Human Genetic Linkage Maps of the Rat Genome

(http://www.well.ox.ac.uk/~bihoreau/).

When the contaminating donor’s genome had been removed, one male and 

one female with heterozygosity at the QTL of interest were intercrossed to 

achieve homozygosity for the alleles of the donor strain at the QTL on 

chromosome 2. These fixed congenic strains were then maintained through 

successive brothers-sister matings.
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A major criticism of the speed congenic approach is that there is increased 

risk of “passenger” loci being carried (regions of the donor genome different 

from that of the QTL being fixed). It follows that any phenotypic change 

might be due to these “passenger” loci and not due to the QTL introgressed. 

The transfer and carry over of “passenger” loci can be possible regardless of 

how complete the coverage of the genetic background achieved. A control 

congenic strain was constructed through introgression of a region of rat 

chromosome 2 abutting, but not overlapping, the chromosomal segment that 

include the BP QTL. These animals have been through the same selection 

processes as the true congenics, and although they do not contain the donor 

QTL, they will contain in their genetic background the same, if any, residual 

heterozygosity. Whether these animals go on to display a change in 

phenotype similar to that observed in the true congenic strain will determine 

not only the validity of the QTL but also the rationale for the speed 

congenic strategy.

2.3 PHENOTYPE.

The studies were approved by the Home Office according to regulations 

regarding experiments with animals in the United Kingdom. All 

experiments were undertaken following the safety guidelines set down by 

the Radiation Protection Service at the University of Glasgow.
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2.3.1 RADIOTELEMETRY.

The Dataquest IV Telemetry System (Data Science International) was used 

for measurements of systolic pressure, diastolic pressure, mean arterial 

pressure, activity, and heart rate. The monitoring system consisted of a 

transmitter (radio frequency transducer model TA11PA-C40), receiver 

panel, consolidation matrix, and personal computer with accompanying 

software. Before the device was implanted, calibrations were verified to be 

accurate within 3 mmHg. Each implant was obtained in a sterile condition 

and used a maximum of three times following re-sterilisation in Cidex 

(activated glutaraldehyde solution).

Surgical implantation of each telemetry transmitter took place under 

standard sterile conditions in animals at 12 weeks of age within the 

peritoneal cavity. Rats were anaesthetised with halothane, and the 

abdominal cavity exposed by the temporary extemalisation of the intestines. 

Silk sloops were placed around the aorta below renal arteries, and around 

both iliac arteries. While these sloops were tightened to reduce blood flow a 

small incision of approximately 1 mm of diameter was made with a 21 G 

needle in the abdominal aorta just above the point at which it begins to 

branch into the iliac arteries. The flexible catheter was then inserted 

pointing upstream (against the blood flow) and was secured with an 

sterilised cellulose patch using biological glue (VetBond, Scotch 3M). After 

this procedure all sloops were removed from the arteries, intestines returned
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to the abdominal cavity, and the transmitter sutured to the abdominal wall 

with non-reabsorbable suture (Ethilon 4-0).

Rats were housed in individuals cages after the operation and each cage was 

placed over a receiver panel (RPC-1, Data Science) that was connected to 

the computer (Deskpro 333 PII, Compaq) for data acquisition with the 

dataquest acquisition and analysis system ART software (DQ ART Gold 

CM, Data Science). The rats were unrestrained and free to move within their 

cages. Haemodynamic data were sampled every 5 minutes for 10 seconds. 

To allow complete stabilisation of blood pressure after surgery, 

measurements used for further analysis were recorded from day 7 after 

surgery to day 42 and called “baseline haemodynamic measurements”.

On day 43 after surgery rats on telemetry received 1% NaCl in their 

drinking water and this was continued for 3 weeks, until the rats were 

euthanised. Data collected from this period were considered “salt-loaded 

haemodynamic measurements”.

2.3.2 EVALUATION OF BODY WEIGHT AND CARDIAC WEIGHT.

The body weight of each rat was obtained to within two decimal places 

using a CT200V portable top balance (Ohaus Corporation). Where 

necessary, a deduction of 9 grams was made to take account of the telemetry 

probe.
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Immediately after euthanasia the thorax was opened and the heart was 

removed, blotted with tissue paper, and weighed using a Mettler AT250 

balance accurate to within three decimal places. Both atria and the right 

ventricle were then removed surgically, and the left ventricle and septum 

weighed. The ratios of heart weight to body weight and left ventricle plus 

septum weight to body weight were then determined in order to correct for 

differences in body size.

2.4 GENETIC ANALYSIS.

2.4.1 TISSUE HARVEST FOR DNA.

To obtain DNA from the congenic backcrosses, the offspring were briefly 

anaesthetised at 4 weeks of age with halothane, and a 4 mm tip from the tail 

was removed and placed into a 1.5 mL microfuge tube. The wound was 

immediately sealed with an electrical cauteriser (Engel-Loter 1005) and 

tissue stored at -20°C. For genotyping F2 hybrids, livers and spleens were 

collected immediately after sacrifice and stored frozen at -70°C.

2.4.2 DNA EXTRACTION.

DNA extraction method was according to Laird et al (Laird et a l 1991) 

where the standard mammalian DNA isolation procedure was simplified. 

The aim of this simplification was to minimise the number of manipulations
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required for each sample to yield enough high quality DNA for several 

polymerase chain reactions and/or Southern blot analysis.

Rat tails were defrosted in 1.5 mL microfuge tubes to which was added 700 

pL of solution for extraction of DNA from rat tails (50 mM tris base, pH 

8.0; 0,5% SDS; 100 mM EDTA, pH 8.0) and 35 pL of 10 mg/mL solution 

of proteinase K. The tubes were incubated and rotated in a hybridisation 

oven (Stuart Scientific) at 55°C overnight to ensure complete digestion. 700 

pL of water-saturated phenol was added to the tube and the resulting 

solutions vortexed on a Fisons whirlmixer (Fisons Scientific Equipment). 

Then centrifuged for 3 minutes at 14,000 rpm, the aqueous phase was 

removed to a fresh tube and 700 pL of an equal volume (1:1; V/V) of water- 

saturated phenol and chloroform isoamyl alcohol (24:1; V/V) added and 

centrifuged at 14,000 rpm for two minutes. The aqueous layer was again 

removed to a fresh tube and 700 pL of chloroform isoamylalcohol added, 

vortexed and centrifuged for 2 minutes at 14,000 rpm. The aqueous layer 

was again removed to a fresh tube and 70 pL 3M sodium acetate, pH 6.0 

and 700 pL 100% analar ethanol added to precipitate the DNA. To pellet the 

DNA the tubes were centrifuged at 14,000 rpm for 10 minutes, the 

supernatant was carefully removed and 1000 pL of 70% ethanol was added. 

This was done to wash the DNA and remove any traces of phenol and SDS. 

The tube was centrifuged to re-pellet the DNA and the supernatant 

discarded. The DNA pellet was allowed to dry in the inverted tube over 

tissue paper for 20 minutes. Finally, 100 pL of TE (10 mM tris base, pH
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8.0; 1 mM EDTA, pH 8.0) was added to dissolve the pellet. The DNA 

solution was stored at 4°C.

The protocol for DNA extraction from livers and spleens is slightly 

different. Here 500 mg of defrosted tissue is placed in a sterile glass 

homogeniser and 4 mL of suspension buffer (100 mM EDTA, pH 8.0; 50 

mM tris base, pH 8.0) is added and passed through 3 to 4 times. The 

homogenate was then transferred to a 50 mL Falcon polypropylene tube 

(Becton Dickinson & Co) and 224 pL 4 M NaCl, 60 pL of a 20 mg/mL 

solution of proteinase K, and 1.2 mL 10% SDS added, followed by 

incubation at 37°C overnight. The DNA was extracted using the water- 

saturated phenol, and chloroform isoamyl alcohol mixture described for rat 

tails (6 mL of each solution was added) and centrifuged for 20 minutes at

2,000 rpm at each step. The DNA was precipitated by addition of 12 mL 

100% analar ethanol poured from a reasonable height. The DNA was 

removed from the Falcon tube with a heat-steriled sealed glass Pasteur 

pipette (Bilbate Ltd) and transferred to a small tube for subsequent washing 

with 5 mL 70% ethanol, drying, and resuspension and storage in 1 mL TE at 

4°C as for the rat tails.

Due the large number of DNA extractions that were required for the 

congenic isolation, we used the Wizard Genomic DNA Purification Kit 

(Promega). This reduced the number of steps and tubes needed for the 

procedure, resulting in faster extractions and less possibility of cross­

contamination. The protocol is similar for different tissues with the volumes
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of the reagents adjusted for larger samples. 600 pL of a EDTA/nuclei lysis 

solution (100 pL 0.5 M EDTA, pH 8.0; 500 pL of nuclei lysis solution 

(Promega)) and 17.5 pL of 20 mg/mL solution of proteinase K were added 

to a 1.5 mL microfuge tube with gentle shaking. Alternatively, a 3-hour 

55°C incubation (with shaking) and vortexing samples once per hour was 

done. When the tails were completely digested, 3 pL of RNase solution 

(Promega) was added and the tubes mixed by inverting them 2-5 times, 

followed by an incubation for 15-30 minutes at 37°C. When the samples 

were at room temperature, 200 pL of protein precipitation solution 

(Promega) was added and the mix vortexed vigorously for 20 seconds and 

centrifuged for 4 minutes at 13,000 rpm allowing the proteins to precipitate. 

The supernatant was carefully removed and transferred to a sterile 1.5 mL 

microfuge tube containing 600 pL of isopropanol, the solution was mixed 

by inversion until white thread-like strands of DNA form a visible mass. To 

pellet the DNA the tubes were centrifugated at 13,000 rpm for 1 minute and 

supernatant carefully decanted. 600 pL of 70% ethanol was added to wash 

the DNA as in the previous protocol, the tubes were centrifuged again to 

pellet the DNA and the ethanol aspirated using a Pasteur pipette (Alpha 

Laboratories Ltd). DNA was allowed to air-dry for 10-15 minutes and 100 

pL of TE was added to store the DNA at 4°C.

All DNA extracted was quantified using a Ultrospec 2000 UV/Visible 

spectrophotometer (Pharmaco-Biotech). 5pL of the extracted DNA was 

added to 995 pL of sterile water (1 in 200 dilution) in a quartz cuvette and 

10 pL of the extracted DNA was added to 990 pL sterile water (1 in 100
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dilution) in another quartz cuvette. After mixing, the optical density of the 

sample was determined in triplicate at 260 nm and 280 nm against a blank 

and averages calculated for each dilution. From the mean absorbance value 

at 260 nm the amount of DNA in the sample was calculated as follows: 

[DNA]ng/pL = 200 x OD260 (for the 1 in 200 dilution) and [DNA]ng/pL = 

100 x OD260 (for the 1 in 100 dilution). The ratio of the absorbance at 

260:280 nm was a measure of the purity of the sample. A ratio of 1.8 was 

considered ideal and all such samples were diluted to a working 

concentration of 20 ng/pL and stored at 4°C. Ratios higher than 2.0 and 

below 1.0 indicated contamination (phenol and/or proteins) and such 

samples were discarded and re-extracted.

2.4.3 POLYMERASE CHAIN REACTION (PCR).

The technique was first described in 1985 by Saiki (Saiki et a l 1985). 

However its potential was not fully realised until 1988 (Saiki et a l 1988) 

coinciding with two key developments: a DNA polymerase that could be 

heated to a higher temperature without losing its activity; and robust 

machines that would quickly heat and cool samples repeatedly in a cyclic 

fashion. PCR is an in vitro method of nucleic acid synthesis by which a 

particular segment of DNA can be specifically replicated. It involves two 

oligonucleotide primers that flank the DNA fragment to be amplified and 

repeated cycles of heat denaturation of the DNA, annealing of the primers to 

their complementary sequences, and extension of the annealed primers with 

DNA polymerase enzyme. These primers hybridise to opposite strands of
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the target sequence and are orientated so that DNA synthesis by the 

polymerase proceeds across the region between the primers. Since the 

extension products themselves are also complementary to and capable of 

binding primers, successives cycles of amplification essentially double the 

amount of the target DNA synthesised in a previous cycle. The result is an 

exponential accumulation of the specific target fragment, approximately 2n, 

where n is the number of cycles of amplification performed.

The molecular markers used in both the genome scan and congenic 

experiments consisted of polymorphic microsatellite markers typed by PCR. 

The PCR primers were either synthesised in-house from previously 

published sequences, some were custom synthesised in MWG-Biotech 

(Europe) or purchased from Genosys Biotechnology (Europe) or Research 

Genetics (Huntsville, Al). Some markers were obtained from Drs. Gauguier 

and Bihoreau of the Wellcome Trust Centre for Human Genetics in Oxford 

as part of the EURHYPGEN collaboration funded by the EU Grant.

The PCR reactions were carried out using 5 pL of the DNA template (100 

ng of DNA) aliquoted in a Costar Thermowell 6511 96 well plate (Coming 

Incorporated) using a multichannel pipette to avoid cross-contamination. 

Amplification was carried out using a MJR thermal cycler (PTC 200, MJ 

Research) where the genomic DNA was amplified in a total volume of 20 

pL containing (mM unless noted otherwise) 45 tris, pH 8.0; 11 (NH4)S02, 

pH 8.0; 1.5 MgCb; 6.7 P-mercaptoethanol; 4.5 pM EDTA; 25 pM each 

dATP, dCTP, dGTP, and dTTP; 0.4U polymerase (Promega); and 0.25 pM
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of each primer. The PCR program was as follows: 4 minutes at 94°C and 35 

cycles of 1 minute at 94°C, 1 minute at 55°C or 60°C, and 30 seconds at 

72°C. For some primers a modified “touch down” protocol was used, which 

involved a 0.5°C reduction in annealing temperature during the initial cycles 

(0.5°C drop). The final annealing temperature was then used for the last 30 

cycles.

Using the PCR method described above, polymorphism of microsatellite

'X')markers can be read using a radioactive element such as P followed by 

autoradiography (see Section 2.4.5). Due to the large number of 

microsatellites scanned within the region of interest and the large number of 

animals to be genotyped, a non-radioactive PCR protocol was developed. 

The 5’-end of the forward primer was labelled with a fluorescent dye (FAM, 

TET, and HEX dyes) and subsequently analysed with an automated ABI 

377 DNA sequencer (Applied Biosystems/Perkin Elmer) (Section 2.4.5). 

The PCR reaction was carried out in a total volume of 20 pL as before but 

with the following reagents: 5 pL of DNA template (100 ng); 2 pL of 10X 

buffer (Qiagen) containing, tris-HCL, KCL, (NFL^SC^, and 15 mM MgCL2 

pH 8.7; 1 pL of polyoxyethylene (Life Technologies); 200 pM of each 

dATP, dCTP, dGTP, and dTTP; 0.5 pL of each primer; and 0.2 U HotStart 

Taq polymerase (Qiagen). PCR programs were identical except for a first 

94°C for 15 minutes step to activate the HotStart Taq polymerase.

Further optimisation was required for some primers where annealing 

temperatures were varied from 50°C to 68°C in increments on 1°C and
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concentration of MgCh from 1.0 to 3.0 mM in increments of 0.25 mM to 

find best conditions for amplification.

The PCR-amplified products were tested on a 1% agarose gel. 1 g of 

agarose (Gibco) was mixed in 100 mL of IX TBE (89 mM tris borate, pH 

8.3; 20 mM EDTA, pH 8.0), heated, dissolved in a microwave oven for 1 

minute 30 seconds, and stained with 1 pL of a 10 mg/mL solution of 

ethidium bromide. The gel was placed in a horizontal gel electrophoresis 

unit (Kodak International Biotechnologies, Inc) and 5 pL of several random 

samples of each marker amplified were mixed with 2X formamide loading 

buffer (90% formamide, 2.5% bromophenol blue (Xylene cyanol dye)). The 

samples were placed in the wells and ran against a 100 bp DNA ladder 

(Promega) for 40 minutes at 100 volts with the help of an electrophoresis 

power supply (Kodak International Biotechnologies, Ltd). Products were 

visualised either on a chromato-VUE TM-20 Transilluminator (VVP Inc) or 

a Fluor S-Multimager (Bio-Rad) and the actual size compared to that 

expected (Figure 2.3).

2.4.4 RESOLUTION OF POLYMORPHISM ON AGAROSE GELS.

When the differences between the WKY and SHRSP alleles where in the 

order of 10-15 bp for a given marker, high resolution Metaphor (FMC 

Bioproducts) agarose gels were prepared to resolve the products and 

genotype the animals at the same time.
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100 mL of IX TBE buffer was added to a 500 mL beaker and stirred rapidly 

with a teflon stir bar. Slowly 3 g of Metaphor agarose powder were 

sprinkled into the solution. The agarose was allowed to soak for 15 minutes 

in the buffer to reduce the tendency of the agarose solution to foam during 

heating and the weight of the beaker was calculated. The beaker was 

covered with cling film and a small hole pierced to allow the escape of 

steam. The agarose solution was heated in a microwave oven on medium 

power for 2 minutes. The beaker was swirled gently to resuspend any settled 

powder and gel pieces and then reheated on high power until the solution 

was boiling for at least 1 minute. The beaker was then removed from the 

microwave and sufficient hot distilled water added to obtain the initial 

weight. While the agarose solution was cooling, ethidium bromide was 

added to a final concentration of 0.2 pg/mL. When the solution was 

sufficiently cool (50-60°C) it was poured into a gel casting tray.

After the gel was set, the agarose was allowed to reach room temperature 

(between 45-60 minutes) and then was placed at 4°C for 20 minutes for 

maximum resolution and handling characteristics. 20 pL of the PCR 

amplification products were mixed with 2X formamide loading buffer and 

were loaded onto the gel. The samples were run against a DNA size ladder 

marker at 120 V for 2-4 hours according to the size difference
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Figure 2.3. Image of a 1% agarose gel from the Fluor S-Multimager 
containing 12 different PCR amplified microsatellite markers. All markers 
are located on rat chromosome 2. Arrows indicate ladder marker loaded into 
the gel, sizes of the standard bands showed in bp on the left. Amplification 
of markers is tested with 4 controls, WKY genomic DNA, SHRSP genomic 
DNA, heterozygote DNA (obtained from FI animals), and a water control.
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Figure 2.4. Image of a 3% Metaphor gel from the Fluor S-Multimager for 
resolution of polymorphism of marker D2Rat231. Arrows indicate the 
ladder marker loaded into the gel, sizes of the standard bands showed in bp 
on the left. Four different controls were loaded as described above. 44 
samples corresponding to congenic genomic DNAs were loaded and the 
genotypes of them can be easily seen on the gel.
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between the alleles to allow sufficient separation and resolution. The gels 

were scored by two independent observers (Figure 2.4).

2.4.5 POLYACRYLAMIDE GEL ELECTROPHORESIS, AUTO­

RADIOGRAPHY AND ABI 377 DNA SEQUENCER GENOTYPES.

Samples from non-fluorescent PCR were prepared for resolution of 

polymorphisms on polyacrylamide denaturing sequencing gels 

electrophoresis, followed by southern blot and visualisation by 

autoradiography.

5 pL of each sample were transferred from the Costar Thermowell thin- 

walled polycarbonate 96 well plate (Coming incorporated) to a 96 well 

Falcon 3911 Microtest III titer-assay plates (Fred Baker Scientific) using a 

multichannel pipette. Once completed, 5 pL of 2X formamide loading 

buffer was added to each sample using an electronic multi-dispense pipette 

(Jencons). A Falcon 3913 Microtest III flexible lid (Fred Baker Scientific) 

was placed on the plate and samples were stored at 4°C until required. 

Different PCR products were pooled on the same plate providing they were 

of similar size because of the large number of markers utilised.

An 8% polyacrylamide gel was prepared using the SequaGel sequencing 

system solutions (National Diagnostic). Polymerisation was initiated with 

60 pL of TEMED (Sigma) and 700 pL of 10% ammonium persulfate 

(APS). The gel was poured immediately. A small aliquot of the gel mixture
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was left on the beaker to test for setting (approximately 1 hour). Once set, 

the gel was placed into a vertical STS-45 standard thermoplate sequencer 

gel electrophoresis unit (Kodak International Biotechnologies Inc) with both 

buffer reservoirs filled with IX TBE. A 60 well comb (Kodak International 

Biotechnologies Inc) was inserted into the top of the gel and the gel pre-run 

at 2000 V (40 mA, 70 W) for approximately an hour to heat it to around the 

optimum temperature for loading of 55°C. Alternatively, a temperature 

probe was used and fixed into the glass plate to allow the gel reaching 

automatically the optimum temperature when a Power Pac 3000 power 

supply (Bio-Rad) was used.

The prepared PCR samples were denatured at 94°C for 4 minutes prior to 

loading and 7 pL of each sample was loaded in the gel with the aid of a 0.4 

mm duck-billed pipette tip (Sorensen Bioscience Inc). The orientation was 

carefully annotated to enable genotyping. The time for the optimum 

separation between the different PCR products was calculated as follows: 

products of approximately 100 bp were run until the slowest component of 

the loading dye had ran down the gel 30 cm, products of approximately 150 

bp 40 cm, and those of approximately 200 bp 50 cm. This allowed us to get 

the optimum use of a gel.

After electrophoretic separation was completed, the gel was allowed to cool 

by running cold water over the surface and then the glass plates split. A 28 x 

28 cm Hybond-N+ nylon membrane was placed on the gel, followed by two 

pieces of absorbing paper, the next glass plate without the gel, and weights
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to allow southern blotting overnight. Once blotting was completed, the 

membrane was carefully removed and placed in a tray with 500 mL of 0.4 

M sodium hydroxide for 20 minutes, followed by 2 x 10 minute washes in 

2X SSC (300 mM sodium chloride; 30 mM sodium citrate, pH 7.0), during 

which the membrane was shaken. The membrane was placed in a 

hybridisation tube (Stuart Scientific). The forward primer was radiolabelled 

with [a-32P]dCTP, and the reaction completed as follows: 12.5 pL of 

distilled water, 4 pL of terminal transferase buffer (Promega), lpL of 

forward primer, 1 pL of [a32P]dCTP, and 0.5 pL of terminal 

deoxynucleotidyl transferase (TDT) followed by incubation at 37°C for 30 

minutes and 10 minutes at 68°C to stop the reaction. Once the reaction was 

completed, a pre-hybridisation solution was prepared (24 mL sterile water; 

12 mL 20X SSC; 4 mL 10X SDS; 0.1 g powdered milk to prevent non­

specific binding) and the radiolabelled primer added. This mixture was 

decanted into to the hybridisation tube containing the membrane for 

hybridisation at 55°C for 2 hours or at 42°C overnight. After hybridisation 

was completed, the membrane was washed 2 times with 1000 mL of post­

hybridisation solution (0.2% SDS; 2X SSC), dried between two pieces of 

absorbent paper, wrapped in cling film, and directly exposed to 

autoradiography hyperfilm (Amersham) in a hypercassette (Amersham) for 

2-14 hours at -80°C according to the strenght of the signal. The films were 

developed in a film processor (Kodak International Biotechnologies Inc). 

Alternatively probed-membrane was wrapped with Saran wrap (Dow 

Chemical Company) and placed in a special cassette (Bio-Rad) against an 

imaging screen K (Bio-Rad). This screen reduced ten times the exposure
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Figure 2.5 Composite figure showing a simplified linkage map of 

chromosome 2 and genotype of 21 congenic animals for different markers 

along the chromosome using a Molecular Imager FX System (Bio-Rad). W, 

represents WKY homozygote alleles and S, SHRSP homozygote alleles. 

Distances to the left of the map are in centiMorgans (cM).
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required with normal film due to its increased sensitivity to P. An image 

was then acquired with the aid of a Molecular Imager FX System (Bio-Rad) 

which scanned the screen with a dual wave-length laser (Figure 2.5). To 

reprobe the membrane with different primers it was washed two times in 

boiling 0.4% SDS followed by two washes in 2X SSC.

When fluorescent PCR were used products were pooled according to the 

size and fluorescent labels used, this led to 5 different pools (Appendix 3). 

Having three different fluorescent labels, three different markers with alleles 

of similar size were labelled with different fluorescent molecules and pooled 

because they could be differentiated according to their fluorescent tag by the 

DNA sequencer. The gels for the ABI 377 were prepared in a filter unit with 

a cellulose filter (Whatman). 18 g of urea, 5 mL of long ranger 50% stock 

gel solution (FMC Bioproducts), a small spatula of AG 501-X8 resin (Bio- 

Rad), and 45 mL of deionised water were mixed and stirred in a 100 mL 

beaker. Once the filtration was completed, 250 pL of 10% APS and 25 pL 

of TEMED (Amresco) were added to allow polymerisation of the 

acrylamide. A special cassette holding the glass-plates was prepared to pour 

the gel solution. After the gel was set it was placed on the ABI 377 DNA 

sequencer and the corresponding buffer tanks were filled with IX TBE. A 

96 well comb was placed on the top of the gel for loading the samples. 

Plates were checked in the sequencer verifying a baseline scan flat line 

indicating well cleaned plates. The instruments was pre-run for 10 minutes 

at 1000 V, 35 mA, and 50 W to warm it up and reach the optimum 

temperature for sample separation (51°C). 1.5 pL of the PCR products were
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taken and mixed with 2 pL of loading cocktail consisting on ultra-pure- 

grade formamide (Amresco), GENESCAN-350 TAMRA, and loading 

buffer (50 mg/mL blue dextram, 25 mM EDTA) (1:2:2; v/v/v), the samples 

were denatured at 94°C for 3 minutes and placed on ice immediately after. 

A volume of 1.5 pL of each sample was loaded on each well using a 

GL/2000 channel gel loader (Kloehn) that allowed to load 8 samples 

simultaneously avoiding cross contamination.

The samples were run at 3000 V, 60 mA, 200 W, for 2 hours giving 

sufficient time for separation of alleles of different sizes. Gel image was 

then obtained with the Genescan 3.1 software (Perkin Elmer), this software 

allowed to track all the lanes in the gel with the corresponding fluorescent 

PCR product and, at the same time, analysed the sizes of the standard used.

If the standard sizes were correctly called, we used Genotyper 2.1 software 

(Perkin Elmer). This software allows determination of the genotype of 

different microsatellite markers loaded on the gel. If the standard sizes were 

incorrectly called or contamination was observed in the water blank the 

whole procedure was repeated (Figure 2.6).

2.4.6 SEQUENCING.

DNA was sequenced using an enzymatic method developed by Sanger 

(Sanger et a l 1977; Sanger et al. 1992) where single strand DNA is used 

as a template for synthesis of new DNA strands by a DNA polymerase in
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Figure 2.6 Schematic representation of the genotyping carried out using the 

ABI Prism 377XL DNA sequencer. Fluorescent PCR were done using a 

forward primer labelled, and then electrophoresed on the sequencer. To the 

right is the actual image of the gel with the colours yellow (HEX), blue 

(FAM), and green (TET) representing genotypes for three different 

microsatellites. The red bands on the gel represent the size standard 

(TAMRA 350) with the corresponding size in base pairs (bp) to the left. At 

the left of the gel image there is an screenshot of the genotype obtained 

using the Genotyper 2.1 software for the marker labelled with TET.



the presence of normal nucleotide precursors and base-specific 

dideoxynucleotides (ddNTPs). These ddNTPs can be incorporated by a 

DNA polymerase into a growing DNA strand through their 5’-triphosphate 

groups but, because these analogues lack a hydroxyl group at the 3’-carbon 

position, they cannot form phosphodiester bands with the next incoming 

dNTP and the chain extension terminates, whenever an analogue is 

incorporated. When a specific ddNTP is included along with the four 

different dNTPs normally required for DNA synthesis, the resulting 

extension products are a series of different length DNA chains that are 

specifically terminated at that dideoxy residue. To obtain sequence data, a 

separate reaction must be run for each of the four ddNTPs, all being run 

together on a simple polyacrylamide gel to provide a complete sequence 

information.

The AmpliCycle™ Sequencing Kit (Perkin Elmer), which is a modified 

version of Sanger’s sequencing method, was used. Specific primers for the 

coding regions of genes of interest were synthesised in-house yielding 

products of 150-200 bp. Once PCR was completed, products were run on 

1% agarose gel and the bands cut-out with a sharp scalpel. The DNA 

products were extracted from the agarose gel using a gel nebulizer inserted 

into a Microcon microconcentrator (Amicon) and centrifuged at 14,000rpm 

for 20 minutes at 4°C. After the gel was broken up, the filtrate was washed 

through the Microcon by adding 20 pL of sterile distilled water followed by 

centrifugation at 3,000 rpm for 24 minutes at 4°C. DNA concentration was 

determined using a DynaQuant fluorimeter (Hoefer). Before the sequencing
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reaction was run each primer was radiolabelled with [y-32P]dATP to allow 

visualisation by autoradiography. The labelling reaction consisted of 1.1 pL 

of sterile distilled water, 0.6 pL of 10X kinase buffer, 0.5 pL of the 

sequencing primer (20 pM), 1 pL of [y-32P]dATP, and 3.0 pL T4 

polynucleotyde kinase all incubated at 37°C for 2 hours. Sequencing 

reactions were done using 2 pL of each ddNTPs added to separated wells in 

a Costar plate followed by addition of 6 pL of a sequencing Master Mix 

containing 20 pL of sterile water, 4.0 pL cycling mix (Amplitaq DNA 

polymerase; 2.0 pL PCR template (100 fM); 1.0 pL dimethyl sulfoxide 

(DMSO)), and 1.0 pL of the radiolabelled primer mix. The plate was placed 

in the MJR thermocycler and ran at 94°C for 4 minutes followed by 35 

cycles of 94°C for 1 minute, the annealing temperature of the determined 

primer for 1 minute, and 72°C for 1 minute (elongation step). The reactions 

were stopped by the addition of 4 pL stop solution and resolved on a 

standard 6% polyacrylamide gel running for 2 hours as described in Section 

2.4.5. The gel was dried directly onto a 3 mm Whatman filter paper 

(Whatman International Ltd) using a slab Gel-Vac dryer (Hybaid) and then, 

directly exposed to film. Sequences were read by two independent 

observers.

Alternatively, automated fluorescent DNA sequencing was used (Wilson et 

al. 1990) where the ddNTPs were attached to fluorophores or chemical 

groups capable of fluorescing. The ABI 377XL sequencer was used, to 

detect the fluorescence from four different dyes that are used to identify the 

A, G, C, and T extension reactions. Each dye emits light at a different
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wavelength when it is excited by laser light; thus, all four colours (and 

therefore all four reactions) can be detected and distinguished in a single gel 

lane improving sequencing accuracy and eliminating problems caused by 

variations in electrophoretic mobility from lane to lane. Moreover, the 

sequencer can increase the number of templates that can be analysed on a 

single gel. The sequencer’s software stores automatically the information 

precluding transcription errors when an interpreted sequence is typed by 

hand into a computer file. PCR products were extracted from agarose gels as 

described above. As an alternative, a PCR product Pre-Sequencing kit 

(USB) was used for preparing the products for sequencing.

DNA was extracted and purified from agarose gels because the excess of 

dNTPs from the PCR reaction could affect the balance of the sequencing 

reaction which would result in decreased termination. Moreover, carryover 

of PCR primers or primer-dimmers could generate multiple sequence 

ladders interfering with the sequencing of the specific fragments. The PCR 

pre-sequencing kit consisted of two hydrolytic enzymes, shrimp alkaline 

phosphatase and exonuclease I, that removed dNTPs and primers. 

Exonuclease I removed residual single-stranded primers and any extraneous 

single-stranded DNA produced by the PCR. The shrimp alkaline 

phosphatase removed the remaining dNTPs from the PCR mixture that 

would interfere with the sequencing reaction. For the reaction 5 pL of the 

PCR product were mixed with 1 pL of exonuclease I (10 U/pL), and 1 pL 

of alkaline phosphatase (2 U/pL), and incubated at 37°C for 1 minute, the 

enzymes were inactivated by a final step at 80°C for 15 minutes.
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For the sequencing reaction 3 pL of the enzymatic-treated-DNA was added 

to a well of a 96-well Costar thermowell 6511 plate (Coming Incorporated) 

with 3.2 pmol of the primer, 4 pL of Ready Reaction Mix (containing 

Amplitaq DNA polymerase; RTth pyrophosphatase; fluorescently labelled 

2’, 3’-ddNTPs; 2 mM MgCL2; 80 mM tris-HCL, pH 9.0) (Perkin Elmer), 2 

pL of 5X sequencing buffer (containing tris-HCL, pH 9.0; and MgCL2) 

(Perkin Elmer), and the final volume made up to 20 pL with sterile distilled 

water. The reaction was overlaid with a drop of mineral oil (Sigma) and 

placed on the MJR thermal cycler for 25 cycles of 96°C for 30 seconds, 

50°C for 25 seconds, 60°C for 4 minutes. To a 0.5 mL microfuge tube 50 pL 

of 95% ethanol and 2 pL of 3 M sodium acetate (pH 4.6) was added 

followed by 20 pL of the sequencing reaction and centrifugation at 14,000 

rpm for 20 minutes for precipitation of the sequencing products. The 

supernatant was carefully removed and 250 pL of 75% of ethanol was 

added, the pellet was vortexed and centrifugated at 14,000 rpm for 6 

minutes to re-pellet the products. The supernatant was removed and the 

tubes were placed on a PCR block at 90°C for 4 minutes and dried down. To 

each tube 6 pL of loading buffer containing formamide and blue dextran 

dye (V/V; 5:2) were added and vortexed to resuspend the DNA.

A 5.0% polyacrylamide gel was prepared as described in Section 2.4.5, the 

samples were denatured at 90°C for 2 minutes and 1.5 pL of each loaded 

onto a gel. Samples were electrophoresed in a field of 1680 V at a constant 

temperature of 51°C using IX TBE as buffer on the ABI 377XL DNA 

sequencer. The labelled DNA fragments migrated down the gel entering the
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“read region” 36-cm below the wells where an argon-ion laser scanned 

horizontally back and forth. The laser operated at 40 mW emitting two 

wavelengths and exciting the fluorescent dye on each DNA fragment which 

fluoresced, emitting light at different wavelengths. The 2 \  3’-ddNTPs in the 

ready reaction mix were labelled with dichloro-rodamine fluorescent dyes as 

follows; ddGTP, dichloro R110; emitting light at 532 nm; ddATP, dichloro 

R6G, emitting light at 560 nm; ddTTP, dichloro TAMRA, with a 

wavelength of 594 nm; and ddCTP, dichloro ROX, with a wavelength of 260 

nm. These different wavelengths were detected by the instrument, and the 

data was sent to a Power Macintosh G3 computer and analysed using the 

ABI Prism Sequencing Analysis Software v3.0 (Perkin Elmer).

2.5 STATISTICAL ANALYSIS.

Phenotypes, which were not normally distributed, were logarithmically 

transformed before inclusion in any statistical procedure as dependent 

variables. Phenotypes which were strongly bimodal due to sex differences, 

but the distribution for each sex separately were acceptably normal, were 

analysed separately by sex. Confirmatory analysis of QTLs was performed 

by one-way ANOVA with a conservative significance level of p<0.01. 

Additionally, a stepwise regression analysis was used to determine the QTL 

effects while controlling for possible confounding and covariate effects 

(Schork et al. 1995).
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2.5.1 GENETIC LINKAGE MAPPING (MAPMAKER/EXP 3.0).

Multipoint linkage analysis was carried out using MAPMAKER/EXP 3.0 

(Lander et a l 1987) which allowed markers to be mapped relative to each 

other using all the raw genotyping data. This was done to determine a 

multitude of possible maps consisting of a specific marker order and map 

distances. The software was specifically designed for the construction of 

primary genetic linkage maps from marker genotype data from F2 

segregating populations. Distances were calculated from estimates of 

recombination fractions with the Haldane mapping function. Different maps 

were suggested by MAPMAKER/EXP 3.0 and for each map the level of 

probability that would explain the observed data was then computed. This 

probability is called the likelihood of the map. The best map was then 

selected as the one with the highest likelihood.

2.5.2 LINKAGE ANALYSIS (MAPMAKER/QTL 1.1).

QTLs affecting phenotypes were mapped relative to the microsatellite 

markers with MAPMAKER/QTL 1.1 (Lander et a l 1987). This software 

infers the genotype of each animal in the F2 cross at any chromosomal 

position from the available genetic map, and then models the phenotype in 

terms of the inferred genotype, additivity and heterozygosity, as well as any 

covariate information. The strength of evidence for the existence of a QTL 

at any location is provided by the maximum Logio likelihood (LOD Score) 

of the model at that point. Moreover, the proportion of phenotypic variance
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explained by the model is also calculated. A purely phenotypic model 

(genetic parameters set to zero) was used initially to assess the likelihood 

contribution of sex as the only explanatory variable, and the corresponding 

percentage of variance explained. The full genetic model, representing free 

inheritance of the trait after correction for sex, was then fitted, as were 

models for dominant, recessive, and co-dominant inheritance. The software 

calculated the most likely phenotypic effect of having the ss (SHRSP 

homozygote) or ww (WKY homozygote) genotype at a putative QTL and 

then calculated a LOD score. To correct for the effect of multiple- 

hypothesis testing, stringent thresholds were required for mapping loci 

underlying complex traits, with LOD scores between 3.3 and 4.3 to establish 

significant linkage (Lander and Kruglyak, 1995) (Section 1.3.2.2.3.1).

2.5.3 RADIO-TELEMETRY HAEMODYNAMIC DATA.

A total of 10,080 measurements of each blood pressure phenotype were 

made in each animal during the 5-week baseline period, and 6,048 

measurements during the 3-week salt-loaded phase. Within each phase, 

haemodynamic measurements were separated into daytime (7 AM to 7 PM) 

and night-time (7 PM to 7 AM) periods. Summary statistics were provided 

for each combination of experimental phase and time of day through the 

calculation of overall mean and SEM values separately by sex and congenic 

strain. Repeated measures ANOVA was used for comparisons between each 

congenic strain and the corresponding background parental strain.

145



2.6 RADIATION HYBRIDS.

Rat whole genome radiation hybrid was obtained from Research Genetics 

(Huntsville, Ala). To create the panel, a rat donor cell line (Rat FR, a diploid 

fibroblast cell line derived from skin biopsy of a foetal Sprague-Dawley rat) 

was exposed to 3,000 rad of X-rays and then fused with non-irradiated 

thymidine kinase-deficient hamster recipient cells (A23). The panel consists 

of 106 clones and has an average locus retention of 28% to 30%. The 

presence or absence of each microsatellite marker was determined by PCR. 

Additionally, 4 other control samples underwent PCR: FR DNA, A23 DNA, 

WKY rat DNA, and a water blank. PCR reactions were done as previously 

described (Section 2.4.3). The PCR products were separated by 

electrophoresis on a 3% agarose gel containing ethidium bromide and 

visualised with a Fluor-S Multimager (Bio-Rad). PCR was done in duplicate 

for each microsatellite marker and scored by two independent observers.

2.6.1 RADIATION HYBRID MAPPING.

The radiation hybrid mapping programmes of the RHMAP package, version

3.0 (http://www.sph.umich.edu/group/statgen/software) were used to 

analyse the data. These programs assume that breakage is at random along 

the chromosome, with constant intensity and no interference (Boehnke et al 

1991; Lange et a l 1995). The RH2PT program was used to perform a 2- 

point analysis. A set of best orders with the fewest obligate chromosome 

breaks was defined with the use of stepwise locus ordering strategy with the
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RHMINBRK program. The order of each marker on the map was 

determined with the RHMAXLIK program and a branch and bound 

strategy. Map distance estimates; D, were calculated with the mapping 

function, D= -Ln (1-0), where 0 is the breakage probability estimate 

between two markers. D was expressed in centiRays (cR), where a distance 

of 1 cR3000 corresponds to a 1% probability of breakage between 2 

markers after exposure to 3,000 rad of X-rays.

Appendix 1 lists the suppliers of all chemicals and reagents used. Appendix 

2 is a detailed list of all the protocols for the preparation of solutions.
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CHAPTER 3

CONSTRUCTION OF SPEED CONGENIC STRAINS TO DISSECT 

TWO BLOOD PRESSURE QUANTITATIVE TRAIT LOCI ON RAT

CHROMOSOME 2.
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3.1 INTRODUCTION.

Human essential hypertension is a complex, multifactorial and polygenic 

disease (Lander and Schork, 1994), with estimates of heritability of 30-50% 

(Ward, 1990). Despite a very significant recent progress in genomic and 

statistical tools, the genetic dissection of human essential hypertension still 

provides a major challenge. As discussed in Section 1.2 the two major 

strategies developed for gene identification in human essential hypertension 

(search for single-causative genes in Mendelian forms of hypertension and 

the candidate gene approach), have significant limitations due to the 

complex nature of human essential hypertension (Dominiczak et al. 2000). 

It should be noted that the prevalence of these Mendelian syndromes 

represents a very small percentage of all the aetiologies of human 

hypertension.

Some of the complexity inherent to the study of human subjects and 

families can be overcome by the use of inbred rat models of genetic 

hypertension. The creation of inbred, genetically homogeneous hypertensive 

strains from outbred colonies has been completed by selective breeding of 

animals showing elevated blood pressure. This avoids the confusing 

heterogeneity of the human disease and hundreds of homogeneous progeny 

can be studied under controlled environmental conditions using high fidelity 

phenotyping.
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The stroke-prone spontaneously hypertensive rat (SHRSP) is one of the best 

existing animal models of human essential hypertension and is characterised 

by a number of vascular complications. These include cardiac hypertrophy, 

cardiac failure, and stroke not dissimilar to those found in the human disease 

(Yamori et al. 1979; Conrad et al. 1991).

The SHRSP has been used in several studies aiming at identification of BP 

QTLs performing total genome scans (Hilbert et al. 1991; Jacob et al. 

1991; Nara et al. 1993; Matsumoto et al. 1995; Clark et al. 1996; 

Matsumoto et al. 1996). Previous published data from Professor 

Dominiczak's laboratory identified 2 separate BP QTLs on rat chromosome 

2 (Clark et al. 1996) (Figure 3.1). The most significant of these had its peak 

close to the microsatellite marker D2Mit6 with a LOD score of 3.6. It was 

significant for baseline and salt-loaded systolic and diastolic blood pressures 

in both male and female F2 cohorts. The second QTL with a LOD of 3.1 

was localised 73 cM from D2Mit6 and contributed to salt-loaded blood 

pressure in the male F2 cohort only.

The identification of such BP QTLs is only the first step towards the 

ultimate goal of gene identification, which can be done through the genetic 

and physiological analysis of congenic lines (Rapp and Deng, 1995). 

Congenic strains provide a genetic test to confirm the existence of a BP
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QTL and simultaneously, provide a genetic tool to narrow down the 

chromosomal region of interest. A congenic strain is one in which the 

chromosomal region of interest in one strain (the recipient) has been 

selectively replaced by the homologous region from another strain (the 

donor). If the blood pressure of the congenic strain is significantly different 

from that of the recipient strain, it can be concluded that this particular 

chromosomal fragment does indeed capture a QTL that contributes to a 

difference in blood pressure between the donor and the recipient strain.

Congenic strains have been traditionally developed by serially backcrossing 

the donor strain that harbours the genomic region with the BP QTL with the 

recipient inbred strain, accompanied by selection for progeny heterozygous 

for the desired region in each backcross generation (Wakeland et al. 1997). 

According to Mendelian principles half of the donor genomic material will 

be transmitted to a subsequent backcross generation. It follows that after 8- 

12 backcrosses the genetic make-up of a congenic strain will consist of 

more than 99% of the genome unlinked to the BP QTL of the recipient 

strain. Once the backcrosses have been completed, the introgressed region is 

then made homozygous by brother-sister mating. The resulting congenic 

strain theoretically has a genetic background identical to that of the recipient 

strain with the exception of the introgressed region.

This strategy has resulted in the production of several congenic rat lines 

during the past 2 years that confirm the existence of QTLs involved in blood 

pressure on rat chromosomes 1, 2, 3, 4, 5, 7, 8, 9, 10, 13, and 19 (Table 1.8).
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All the strains have been produced using the protocol outlined above, which 

requires 3-4 years to complete. The percentage of contamination or donor 

genome (different from the introgressed region) in these strains is based on 

theoretical considerations, without any experimental assessment of the 

background. With the availability of a large number of microsatellite 

markers and the complete genetic linkage and radiation hybrid map for the 

rat (Jacob et al. 1995; Bihoreau et al. 1997; Cai et al. 1997; Watanabe et 

al 1999; Steen et al. 1999), it is possible to reduce the time necessary to 

generate congenic animals by 50-60% by testing the genetic background at 

each backcross generation.

The speed congenic strategy involves repeated screening of the polymorphic 

markers scattered throughout the entire genetic background, thereby 

allowing the specific selection of a male from each backcross with the least 

amount of donor alleles remaining in the genetic background. These 

“selected males” or “best males” would allow the rate of background donor 

elimination to be accelerated, thereby reducing the number of generations 

necessary to construct a congenic strain. Computer simulations have 

indicated that a relatively modest selection effort (60 background markers, 

25 cM markers spacing, 16 males per generation) would typically reduce 

unlinked donor genome contamination to less than 1% by the 4th backcross 

generation making the reduction of donor genome equivalent to that 

achieved by 8 backcrosses with the traditional strategy (Markel et al. 1997). 

Additionally, different mice speed congenic lines have been developed
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recently using the strategy outlined above (Yui et a l 1996), providing 

results that closely parallel these predicted outcomes.

The BP QTLs reported by us have been confirmed in different genome-wide 

scans using diverse strains (Dubay et a l 1993; Deng et a l 1994; Schork et 

al 1995; Harris et a l 1995; Pravenec et a l 1995; Samani et a l 1996; 

Garrett et a l 1998). Moreover, the QTL present between markers D2Mitl4 

and D2Mghl2 has been confirmed constructing two different congenic 

strains introgressing the relevant region from the WKY rat or the Milan 

normotensive rat into Dahl salt-sensitive background. The regions 

transferred were 38 cM and 78 cM, and the resulting congenic strains had 

blood pressure of 44 mmHg, and 29 mmHg lower, respectively, than Dahl 

salt-sensitive rats on a high salt diet (Deng et a l 1997). However, no 

reciprocal congenic strains have been produced for chromosome 2, and the 

studies carried out by Deng et al (1997) only allowed to investigate the 

effect of normotensive alleles introgressed to a permissive genetic 

background. Reciprocal congenic strains provide a control for genome 

background effect and a classic 2 x 2 study design, whereby physiological 

experiments and phenotypic measurements have appropriate controls. It 

follows that the purpose of the current study was to undertake a more 

comprehensive congenic analysis of rat chromosome 2 and the QTLs 

identified. This has been achieved by the development of dense genetic 

linkage map for rat chromosome 2 and the first application of a speed 

congenic approach in the rat.
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3.2 METHODS.

3.2.1 RAT STRAINS.

Inbred colonies of SHRSPoia and WKYoia rats have been established at the 

University of Glasgow since December 1991 as described in Section 2.2.

3.2.2 CONGENIC CROSSES.

The development of the speed congenic strains utilised in this study 

involved the transfer of various segments of rat chromosome 2 from 

WKYoia to the genetic background of SHRSPoia, and in the reciprocal 

direction from SHRSPoia to the genetic background of WKYoia- This 

required the production of a FI generation by crossing WKYoia and 

SHRSPoia. Male FI hybrids were then mated to the desired recipient strain 

(WKYoia or SHRSPoia). Microsatellite markers throughout the desired QTL, 

and an additional 83 markers spanning the remaining genome (Table 3.1), 

were genotyped in the offspring from this first backcross. Selection of these 

markers was based on the need for a thorough coverage of the entire rat 

genome and location around the QTLs previously identified by our group 

(Clark et a l 1996). Databases utilised to fulfil this selection are detailed in 

Section 2.2.1. Markers polymorphic on rat chromosome 2 were used to
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select the congenic strains, in the first selection only 12 markers were used 

(Figure 3.1), then 23 additional markers were added to chromosome 2 to 

improve the QTL dissection. Those rats identified as heterozygous for the 

marker alleles within the various segments of rat chromosome 2, but mostly 

homozygous for the recipient alleles throughout the remaining genome were 

selected as the “best” males for breeding. They were then backcrossed again 

to the recipient strain to produce a second backcross. This procedure was 

repeated in all offspring after every backcross until the donor’s genetic 

background was reduced as indicated by the 83 background markers. Once a 

male and female were identified in which all detectable background 

heterozygosity had been removed, they were mated to obtain rats 

homozygous for the donor alleles throughout the chromosome 2 regions of 

interest. These congenic strains were maintained by brother-sister mating 

(for further details see Section 2.2.1).

3.2.3 GENOTYPING.

Genomic DNA was isolated as described in Section 2.4.2. Genotyping was 

performed by PCR amplification of DNA around the polymorphic 

microsatellite markers from the total genomic DNA using the appropriate 

PCR primer pairs custom made by either Research Genetics (Huntsville, 

AL) or Genosys Biotechnologies (Cambridge,UK) as previously described 

in Section 2.4.3. All samples were stored in 100 juL of TE solution (10 mM 

tris, pH 8.0; 0.1 mM EDTA, pH 8.0). Primer sequences and PCR conditions
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for the microsatellites used to genotype the genetic background are given in 

Appendix 4.

3.2.4 BLOOD PRESSURE MEASUREMENT.

The Dataquest IV telemetry system (Data Sciences International, St. Paul, 

MN, U.S.A.) was used for the direct measurement of systolic, diastolic and 

mean arterial pressure as previously described in Section 2.3.1 (Davidson et 

al 1995). Surgical implantation of each telemetry transmitter took place 

under standard sterile conditions at 12 weeks of age. Haemodynamic data 

were sampled every 5 minutes for 10 seconds. To allow for a full 

stabilisation of blood pressure post-operatively, experimental observations 

were collected from day 7 to day 42 after surgery as “baseline 

haemodynamic measurements”. On day 43, rats on telemetry received 1% 

sodium chloride (NaCl) in their drinking water, and this was continued for 

two weeks until they were euthanased. Measurements collected during this 

period were considered “salt-loaded haemodynamic measurements”.

3.2.5 STATISTICAL ANALYSIS.

Analysis of radio-telemetry data has been performed as described in Section 

2.5.3. Comparisons of congenic strains to their corresponding background 

parental strains were made by repeated measures analysis of variance of 

daytime or night-time means for each individual week of the two phases,
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reporting the F-statistics and p-values corresponding to the main effects for 

sex and strain.

3.2.6 IMPROVEMENT OF THE GENETIC LINKAGE MAP OF RAT 

CHROMOSOME 2.

To improve the chromosome 2 genetic map obtained by Clark et al (1996), 

DNA from the same F2 reciprocal crosses as described in Section 2.2 was 

used (57 animals in cross 1 with a male-to-female ratio of 28:29 and 83 in 

cross 2 with a male-to-female ratio 37:46). In a first attempt, 33 new 

microsatellite markers for rat chromosome 2 were screened and of these 

27% were found to be polymorphic between SHRSPda and WKYcia- 

Genotyping was performed by PCR amplification of DNA around the 

microsatellites as previously described in Section 2.4.3. The genotypic 

results obtained were added to those previously collected by Clark et al 

(1996) and mapped relative to each other using the MAPMAKER/EXP 3.0 

computer package with an error detection procedure (Lander et a l 1987) as 

described in Section 2.5. Genetic distances were calculated with the 

Haldane mapping function. On completion of the new map, the QTLs on rat 

chromosome 2 found to influence blood pressure phenotypes by Clark et al 

(1996) were re-mapped relative to the new genetic map by using the 

MAPMAKER/QTL 1.1 computer program (Figure 3.2). An additional 75 

markers on chromosome 2 were tested and 22% of them were polymorphic 

between the parental strains. These markers were obtained from the 

Whitehead Institute Center for Genome Research Rat Mapping Project
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(http://www.genome.wi.mit.edu/rat/public/). A genetic linkage map of rat 

chromosome 2 consisting of 37 markers polymorphic between the WKYoia 

and SHRSPoia strain was constructed using the MAPMAKER/EXP 3.0 

computer package (Figure 3.3). The resolution of the genetic linkage map of 

rat chromosome 2 was improved but the mapping effort focussed around the 

BP QTLs previously reported by our group (Clark et a l 1996), to allow for 

a better dissection of both genetic regions in the congenic strains.

3.3 RESULTS.

The raw genotypic data collected to construct the new genetic map are given 

in the Appendices 5 and 6 along with the optimum PCR conditions of each 

microsatellite marker utilised. The phenotypic and genotypic data used to 

re-analyse BP QTLs are given in the Appendices 7 and 8.

A total of 108 markers were tested, of there 25 were informative. These 

markers were genotyped using the DNA of the entire F2 cohort and added to 

the original map obtained by Clark et al (1996) (Figure 3.3). As a result the 

genetic map of chromosome 2 expanded from 12 markers spanning 136.6 

cM (Clark et a l 1996), to 21 markers covering 179.5 cM, and then to 37 

markers extending over 236 cM (Figure 3.3). An additional 21 markers were 

polymorphic between the strains but were excluded from the map by the 

MAPMAKER programme. Some of these markers were not in the strongest
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linkage group according to the Whitehead linkage map of rat chromosome 

2, perhaps explaining the multiple placements obtained in our map and the 

inability to map them relative to other markers.

Using the new map and MAPMAKER/QTL 1.1 computer package, we re­

analysed the significant QTL on rat chromosome 2 localised close to 

D2MU6 marker and the suggestive QTL between markers D2Mitl4 and 

D2Mghl2. The LOD score for the D2Mit6 QTL did not differ from those 

recorded by Clark et al (1996). However, the LOD score for the suggestive 

QTL has now reached significance with a LOD score of 4.1 for salt-loaded 

diastolic blood pressure (Figure 3.2).

Two congenic strains (SP.WKYGla2a and 2b) were produced by 

introgressing regions of rat chromosome 2 from WKYcia into the recipient 

SHRSPoia strain (Figure 3.4). Two congenic strains (WKY.SPGla2c, and 

2d) were produced by introgressing regions of chromosome 2 from 

SHRSPoia rats into the recipient WKYoia strain (Figure 3.5). In the 

nomenclature of the congenic strains, the first abbreviation refers to the 

recipient, the second to the donor. The number 2 refers to chromosome 2, 

and a, b, c, and d are arbitrarily assigned to each strain. The number of 

generations of backcrossing required for each strain to achieve complete 

homozygosity of the background genetic markers in a “best” male, which 

could then be utilised to fix the line is highlighted in Table 3.2. This varied 

between BC3 and BC4 for all strains examined. In total 300 progeny were 

necessary for screening in order to produce the congenic strains, an average
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of 69 animals per strain, 19 animals per backcross. Two years and 6 months 

were required on average to produce the congenic lines (for SP.WKYGla2a, 

2 years and 2 months; for SP.WKYGla2b, 2 years and 7 months; 

WKY.SPGla2c, 2 years and 9 months; WKY.SPGla2d, 2 years and 6 

months).

The region of rat chromosome 2 transferred into the congenic strain 

SP.WKYGla2a incorporates both blood pressure QTL identified (Figure 

3.4). Baseline and salt-loaded systolic blood pressure in the SP.WKYGla2a 

congenic strains are shown in Fig 3.6 and mean and diastolic blood 

pressures are given in tables 3.3, 3.4, and 3.5. All blood pressures sub­

phenotypes either at baseline or salt-loaded are significantly lower in this 

congenic line as compared to the SHRSP parental strain. There are also 

highly significant sex differences within the strains (Figure 3.6 and tables

3.3 and 3.4). In comparison, the “control” congenic strain SP.WKYGla2b 

which contains no QTL, displayed no significant differences in any blood 

pressure phenotypes from those of the SHRSP (Figure 3.7).

The reciprocal congenic strains with the SHRSP strain as the donor and the 

WKY strain as the recipient were WKY.SPGla2c (containing both 

chromosome 2 BP QTLs), and WKY.SPGla2d (containing the QTL with a 

peak LOD score close to marker D2Mit6). Congenic strain WKY.SPGla2c 

displayed baseline but not salt-loaded systolic blood pressures which were 

significantly higher as compared to the WKY control (Figure 3.8). The 

magnitude of the difference for systolic blood pressure during baseline was
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Figure 3.4 Rat chromosome 2 congenic strains SP.WKYGla2a and 

SP.WKYGla2b where SHRSP is the recipient strain and WKY the donor 

strain. The white bars represent the region transferred from the WKY into 

the SHRSP chromosome 2. Genetic linkage map of rat chromosome 2 is 

shown to the left. Solid bars to the left of the linkage map represent the 

position of the QTLs previously reported by Clark et al (1996). Distances 

between markers are in centiMorgans (cM).
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Figure 3.5 Rat chromosome 2 congenic strains WKY.SPGla2c and 

WKY.SPGla2d where WKY is the recipient strain and SHRSP the donor 

strain. The black bars represent the region transferred from the SHRSP into 

the WKY chromosome 2. Genetic linkage map of rat chromosome 2 is 

shown to the left. Solid bars to the left of the linkage map represent the 

position of the QTLs previously reported by Clark et al (1996). Distances 

between markers are in centiMorgans (cM).
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Strain Generation Progeny
Screened

% Background Marker 
Heterozygosity of “Best” Male

SP.WKYgla2a BC1 56 28.3
BC2 16 13.2
BC3 23 1.9
BC4 34 "zero"

SP.WKYgla2b BC1 56 43.4
BC2 15 24.5
BC3 28 9.4
BC4 27 "zero"

WKY.SPgla2c BC1 28 17.0
BC2 17 7.5
BC3 14 "zero"

WKY.SPgla2d BC1 28 17.0
BC2 18 1.9
BC3 5 1.9
BC4 28 "zero"

Table 3.2 Rat chromosome 2 congenic strains. The actual number of

progeny screened represents those genotyped for heterozygosity on

chromosome 2 and/or residual heterozygosity. “Zero” heterozygosity

denotes that all of 83 background markers tested were free of heterozygosity 

but it is not informative regarding other chromosomal regions which were 

not tested.
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almost the same as for congenic strain SP.WKYGla2a. The congenic strain 

WKY.SPGla2d showed no blood pressure differences at baseline or 

following salt loading for any of the blood pressure sub-phenotypes studied 

(Figure 3.9). Weekly averages of systolic and diastolic blood pressure 

obtained for each animal are given in Appendices 9 and 10.

Overall the body weight values did not differ between the congenic lines 

and the parental controls (Table 3.6). An exception here was the strain 

WKY.SPGla2c where males had lower body weight as compared to the 

parental strain. Heart weight-to-body weight ratios (HW/BW) and left 

ventricle plus septum-to-body weight ratios (LV+S/BW) showed a trend to 

follow the blood pressure differences. Strain SP.WKYGla2b showed an 

increased HW/BW and LV+S/BW ratio compared to the parental strain. 

This finding was unexpected and we are currently verifying the heart weight 

data in the same strain using echocardiography. In the reciprocal lines, strain 

WKY.SPGla2c and strain WKY.SPGla2d did not differ from the parental 

strain. Raw data for body weight, heart weight, LV+S, HW/BW, and 

LV+S/BW ratios are given in Appendix 11.

3.4 DISCUSSION.

The presentation in this study of four congenic strains derived for rat 

chromosome 2 clearly demonstrates applicability of the speed congenic
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Figure 3.6 Daytime and night-time average systolic blood pressure (SBP) 
recorded by radio-telemetry over a 9-week period in SHRSP(oia) and 
SP.WKYGla2a congenic strains. A, males, and B, females (n=3 for each 
group). Each data point represents weekly average daytime (open symbols) 
and night-time (closed symbols) SBP. Data points were calculated using 12- 
hour average daytime (7:00 a.m.-7:00 p.m.) and 12-hour average night-time 
(7:00 p.m.-7:00 a.m.). Arrows from left to right indicate the timing of the 
implantation of telemetry probe, the beginning of baseline blood pressure 
measurements, and the beginning of salt-loaded measurements. Values are 
mean ± SEM.
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Figure 3.7 Daytime and night-time average SBP recorded by radio­
telemetry over a 9-week period in SHRSP(oia) and SP.WKYGla2b congenic 
strains. A, males, and B, females (n=3 for each group). Each data point 
represents weekly average daytime (open symbols) and night-time (closed 
symbols) SBP. Data points were calculated using 12-hour average daytime 
(7:00 a.m.-7:00 p.m.) and 12-hour average night-time (7:00 p.m.-7:00 a.m.). 
Arrows indicate the same time points as in Figure 3.6. Values are mean ± 
SEM.
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Figure 3.8 Daytime and night-time average SBP recorded by radio­
telemetry over a 9-week period in WKY(oia) and WKY.SPGla2c congenic 
strains. A, males, and B, females (n=3 for each group). Each data point 
represents weekly average daytime (open symbols) and night-time (closed 
symbols) SBP. Data points were calculated using 12-hour average daytime 
(7:00 a.m.-7:00 p.m.) and 12-hour average night-time (7:00 p.m.-7:00 a.m.). 
Arrows indicate the same time points as in Figure 2. Values are mean ± 
SEM.
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Figure 3.9 Daytime and night-time average SBP recorded by radio­
telemetry over a 9-week period in WKY(oia) and WKY.SPGla2d congenic 
strains. A, males, and B, females (n=3 for each group). Each data point 
represents weekly average daytime (open symbols) and night-time (closed 
symbols) SBP. Data points were calculated using 12-hour average daytime 
(7:00 a.m.-7:00 p.m.) and 12-hour average night-time (7:00 p.m.-7:00 a.m.). 
Arrows indicate the same time points as in Figure 2. Values are mean ± 
SEM.
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Baseline measurements

SHRSP 
Males Females Males

WKY
Females

Mean SE Mean SE Mean SE Mean SE

SBP Day 178.4 2.1 161.8 3.0 127.8 7.9 123.8 3.4

Night 185.1 1.1 166.5 3.8 132.1 7.9 128.0 3.3

DBP Day 124.0 2.5 113.6 2.2 91.2 6.0 87.5 3.0

Night 130.0 1.2 120.3 2.7 95.5 6.4 92.0 3.4

MAP Day 142.1 2.3 129.6 2.5 103.4 6.7 99.6 3.1

Night 148.4 1.0 135.7 3.1 107.7 6.9 104.0 3.4

Salt phase measurements

SHRSP 
Males Females Males

WKY
Females

Mean SE Mean SE Mean SE Mean SE

SBP Day 207.9 5.5 173.4 3.9 136.6 8.2 131.7 3.2

Night 229.8 7.3 185.5 4.5 144.2 8.8 138.9 2.6

DBP Day 152.9 5.2 121.7 3.1 96.8 6.4 92.0 2.9

Night 167.2 5.2 134.6 3.5 104.4 6.9 98.8 2.8

MAP Day 171.2 5.3 139.0 3.4 110.0 7.0 105.2 2.9

Night 188.1 5.9 151.6 3.9 117.7 7.5 112.2 2.7

Table 3.3. Blood pressures for parental strains at baseline and in the salt phase. Data are 

means and standard errors of daytime (7am -  7pm) or night-time (7pm -  7am) periods for 

each blood pressure over 5 weeks for baseline and 3 weeks for the salt phase in mm Hg. 

SHRSP parental strain group consisted of 3 males and 3 females, and WKY parental strain 

group of 4 males and 3 females.
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Pressure Time

Males

Mean SE

Females 

Mean SE

Sex Comparison 

F P

Comparison to 
Control Strain 

F P

SP.WKYGla2a
SBP Day 164.3 1.9 144.7 2.9 57.9 <0.0005 43.5 <0.0005

Night 166.9 1.0 146.4 3.7 53.1 <0.0005 51.2 <0.0005
DBP Day 117.4 2.8 100.2 2.4 26.9 0.001 13.7 0.005

Night 118.9 2.6 103.5 3.0 22.2 0.001 26.4 0.001
MAP Day 132.9 1.9 115.0 2.6 40.6 <0.0005 24.6 0.001

Night 134.8 1.3 117.8 3.3 35.6 <0.0005 39.1 <0.0005

SP.WKYGIa2b
SBP Day 178.0 5.0 156.3 4.9 25.4 0.001 0.6 0.457

Night 182.0 6.9 159.4 5.0 21.0 0.001 1.3 0.290
DBP Day 122.8 4.5 110.5 3.1 13.8 0.005 0.5 0.501

Night 127.5 5.7 115.5 4.2 9.0 0.015 1.0 0.336
MAP Day 141.2 4.7 125.8 3.3 19.3 0.002 0.6 0.467

Night 145.7 6.1 130.2 4.1 13.6 0.005 1.2 0.308

WKY.SPGla2c
SBP Day 148.9 3.5 134.4 4.4 1.8 0.211 7.6 0.020

Night 151.3 3.5 138.1 4.8 1.6 0.237 6.3 0.031
DBP Day 106.3 3.6 94.1 3.8 2.2 0.173 5.4 0.042

Night 108.9 3.7 98.3 4.2 1.6 0.239 3.9 0.076
MAP Day 120.5 3.5 107.5 4.0 2.0 0.185 6.3 0.031

Night 123.0 3.5 111.6 4.4 1.6 0.236 4.8 0.053

WKY.SPGla2d
SBP Day 137.9 2.6 116.3 6.4 3.6 0.089 0.1 0.793

Night 141.5 2.0 120.4 8.1 3.2 0.104 0.1 0.844
DBP Day 95.1 1.6 83.1 2.6 3.1 0.107 0.1 0.986

Night 99.5 1.0 87.4 4.5 2.5 0.144 0.1 0.978
MAP Day 109.3 1.9 94.1 3.8 3.4 0.095 0.1 0.917

Night 113.5 1.3 98.4 5.7 2.8 0.123 0.1 0.948

Table 3.4. Blood pressures for congenic strains at baseline. Data are means and standard 

errors of daytime (7am -  7pm) or night-time (7pm -  7am) periods for each blood pressure 

over 5 weeks in mm Hg. Each congenic group consisted of 3 male and 3 female animals. F- 

statistics and p-values are for relevant main effects from repeated measures analysis of 

variance, with former being compared to F (1, total number of animals-3) in each analysis. 

First two congenic strains were compared to the SHRSP parental strain (3 males and 3 

females); last two to the WKY parental strain (4 males and 3 females).
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Males Females Sex Comparison Comparison to
Control Strain

Pressure Time Mean SE Mean SE F P F P

SP.WKYGla2a
SBP Day 180.7 2.5 154.9 3.7 53.9 <0.0005 31.4 <0.0005

Night 191.2 3.4 161.6 5.4 42.0 <0.0005 30.7 <0.0005
DBP Day 131.2 5.5 108.5 3.6 36.3 <0.0005 15.4 0.003

Night 139.0 8.1 115.4 4.4 26.3 0.001 19.1 0.002
MAP Day 147.8 4.3 123.9 3.6 44.1 <0.0005 21.0 0.001

Night 156.4 6.5 130.8 4.8 33.1 <0.0005 24.1 0.001

SP.WKYGla2b
SBP Day 202.1 12.4 167.6 5.5 23.7 0.001 0.7 0.418

Night 221.3 15.4 176.8 6.3 25.5 0.001 1.0 0.347
DBP Day 144.2 12.1 117.4 3.9 19.0 0.002 1.0 0.342

Night 156.8 11.8 127.9 4.0 21.9 0.001 1.8 0.216
MAP Day 163.5 12.2 134.1 4.2 20.9 0.001 0.9 0.364

Night 178.3 13.0 144.2 4.5 23.7 0.001 1.4 0.260

WKY.SPGIa2c
SBP Day 155.8 3.7 140.7 8.0 2.6 0.136 3.5 0.090

Night 163.0 3.8 149.3 7.0 2.6 0.140 2.6 0.136
DBP Day 112.0 5.6 97.8 6.8 3.0 0.114 2.8 0.127

Night 118.2 5.6 105.4 6.3 3.1 0.111 1.9 0.203
MAP Day 126.6 4.8 112.1 7.2 2.9 0.117 3.1 0.108

Night 133.1 4.8 120.0 6.6 3.0 0.117 2.2 0.170

WKY.SPGIa2d
SBP Day 146.1 2.2 120.6 8.5 4.1 0.071 0.1 0.982

Night 156.0 2.5 130.6 8.2 3.9 0.076 0.1 0.762
DBP Day 99.5 1.2 83.1 6.6 3.8 0.080 0.2 0.625

Night 108.4 1.4 91.9 7.4 3.6 0.089 0.1 0.846
MAP Day 115.0 1.5 95.6 7.1 4.0 0.074 0.1 0.760

Night 124.3 1.6 104.8 7.5 3.8 0.080 0.1 0.999

Table 3.5 Blood pressures for congenic strains on salt diet. Data are means and standard 

errors of daytime (7am -  7pm) or night-time (7pm -  7am) periods for each blood pressure 

over 3 weeks in mm Hg. Each congenic group consisted of 3 male and 3 female animals. 

F-statistics and p-values are for relevant main effects from repeated measures analysis of 

variance, with former being compared to F (1, total number of animals-3) in each 

analysis. First two congenic strains were compared to the SHRSP parental strain (3 males 

and 3 females); last two to the WKY parental strain (4 males and 3 females)
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Parental WKY Parental SHRSP
Males Females Males Females

Mean SD Mean SD Mean SD Mean SD
BW (g) 408 47.19 233.75 9.18 275.33 40.02 212 12.17
HW (mg) 1.34 0.17 0.83 0.05 1.2 0.1 0.94 0.05
LV+S (mg) 0.92 0.12 0.59 0.04 0.92 0.11 0.74 0.03
HW/BW (mg/g) 3.35 0.07 3.69 0.17 4.46 0.25 4.69 0.22
LV+S/BW (mg/g) 2.3 0.05 2.61 0.16 3.43 0.04 3.69 0.13

Sex comparison Comparison to
control strain

P 95% C.I. P 95% C.I.
SP.WKYGla2a
BW (g) 336.67 18.58 204 11.14 <0.001 93,172 0.14 -48,171
HW (mg) 1.34 0.09 0.87 0.09
LV+S (mg) 1.04 0.12 0.66 0.09
HW/BW (mg/g) 4.1 0.12 4.46 0.32 0.21 -1.20,0.48 0.15 -0.33,1.01
LV+S/BW (mg/g) 3.22 0.15 3.39 0.48 0.62 -1.42,1.08 0.14 -0.17,0.57

SP.WKYGla2b
BW (g) 258 57.86 189.33 14.19 0.18 -79,216 0.70 -147,112
HW (mg) 1.29 0.24 0.8 0.05
LV+S (mg) 1.06 0.24 0.61 0.04
HW/BW (mg/g) 5.21 0.24 4.44 0.1 0.035 0.13,1.40 0.03 -1.38,-0.12
LV+S/BW (mg/g) 4.25 0.13 3.38 0.15 0.005 0.50,1.23 0.009 -1.16,-0.47

WKY.SPGIa2c
BW (g) 319.33 13.32 211.33 3.65 0.001 -215,203 0.037 10,167
HW (mg) 1.06 0.04 0.8 0.04
LV+S (mg) 0.77 0.03 0.59 0.05
HW/BW (mg/g) 3.43 0.19 3.95 0.14 0.034 -0.90,-0.07 0.55 -0.58,0.41
LV+S/BW (mg/g) 2.48 0.14 2.91 0.22 0.045 -0.76,-0.01 0.16 -0.54,0.18

WKY.SPGla2d
BW (g) 347.33 23 244 8.72 0.001 74,143.4 0.1 -128,17
HW (mg) 1.21 0.06 0.9 0.02
LV+S (mg) 0.93 0.09 0.66 0.06
HW/BW (mg/g) 3.59 0.39 3.85 0.12 0.23 -0.98,0.35 0.42 -0.45,0.82
LV+S/BW (mg/g) 2.79 0.44 2.82 0.24 0.7 -0.83,0.62 0.16 -0.29,1.12

Table 3.6. Body weight, heart weight-body weight ratio, and left ventricular septum- 

body weight ratio for congenic and parental strains. Data are means±SD, p values are 

obatined using an unpaired two-tailed t test. BW, body weight; HW, heart weight; 

LV+S, left ventricle plus septum weight; HW/BW, heart weight-body weight ratio; 

LV+S/BW, left ventricle plus septum weight-body weight ratio. 3 animals in each 

group.
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strategy in the rat. The “best” male selection at each generation resulted in 

on average 19 rats per backcross. These were necessary to reduce all 

unlinked donor genome contamination to below 1% within 3 to 4 

backcrosses. Transfer of the entire region of rat chromosome 2 containing 

both QTLs from WKY into an SHRSP genetic background significantly 

lowered all blood pressure phenotypes. Congenic lines designed as 

“controls” for potential “passenger” loci showed no deviation from the 

blood pressure values of the SHRSP or WKY, indicating that if such 

heterozygosity exists, its effect on blood pressure is negligible.

Some level of contaminating donor genome in the genetic background is 

unavoidable, even when utilising the traditional protocol for construction of 

a congenic strain. A potential problem with this is that during the process of 

fixing the chromosome region of interest for the donor strain into the 

homozygous state, an unlinked “passenger” QTL may become trapped in 

the residual donor strain. The presence or absence of the unknown QTL 

could therefore confound the interpretation that the blood pressure effect in 

the congenic strain. The present speed congenic strategy has provided the 

opportunity to monitor the presence of any passenger loci. Two control 

strains SP.WKYGla2b and WKY.SPGla2d were analysed and we found that 

the effect of any passenger loci is negligible. We were also able to observe 

several chromosomal “hot spots” at which donor alleles appeared to be 

preferentially conserved, including several loci implicated in blood pressure 

QTLs present in other rat strains. The utilisation of a speed congenic 

strategy enabled these loci to be monitored and “best” males without
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heterozygosity in these regions to be selected. It follows that it may prove 

necessary in all congenic strategies, regardless of the breeding protocol 

utilised, to include at least some rudimentary assessment of the genetic 

background.

This study is the first to use congenic “control” strains to positively 

establish that the blood pressure change detected in the congenic strain is 

due to the target genomic region rather than the effect of any residual loci. 

Additionally, all the congenic strains were derived independently making it 

very unlikely that they will all by chance contain the same genomic regions 

of residual donor-strain genetic backgrounds that could potentially affect 

blood pressure.

Transfer of the entire region of rat chromosome 2, containing both QTLs 

from WKYcia into a SHRSPcia genetic background significantly lowered 

both baseline and salt-loaded systolic blood pressure by approximately 20 

and 40 mmHg, respectively as determined by continuous and direct 

recording by radio-telemetry. A previous study by Deng et al (Deng et a l 

1997) also confirmed the existence of a blood pressure QTL on rat 

chromosome 2 in the region corresponding to that of the current study. They 

constructed two congenic strains introgressing the relevant region from the 

WKY rat or the Milan normotensive (MNS) rat into the Dahl salt-sensitive 

(S) background. These strains had blood pressure 44 mmHg and 29 mmHg 

lower, respectively, than Dahl S rats on a 2% NaCl diet (Deng et a l 1997), 

although the region introgressed from MNS was larger than the region from

178



WKY. Deng et al (Deng et a l 1997) hypothesised that this difference could 

have arisen: (i) if the QTL allele of the WKY rat was different from that of 

the MNS rat; (ii) if the WKY and MNS rats have the same QTL allele in the 

D2Mghl2 region but the larger substitution in the MNS congenic strain also 

contained the D2Mit6 locus which modified blood pressure effects of the 

former QTL; (iii) and/or if there is one or more additional blood pressure 

QTL located in this region of chromosome 2. These suggestions are 

partially supported by our data in the reciprocal congenic strains 

WKY.SPGla2c, and 2d. Small but significant blood pressure increase has 

been observed in strain WKY.SPGla2c, which contains both QTL on rat 

chromosome 2, as compared to the WKY control strain. However, the 

congenic strain WKY.SPGla2d, which contains only the QTL localised 

around D2Mit6, showed no blood pressure differences at baseline or after 

salt loading. These results confirm previous suggestions that the genetic 

background chosen for a given congenic strain might have profound effect 

on the phenotype (Rapp, 2000).

Additional and perhaps an important difference between the work of Deng 

et al (1997) and our data is the phenotyping methodology. Deng et al used 

traditional tail-cuff plethysmography whilst all our data have been generated 

by radio-telemetry. Radio-telemetry is capable of measuring all the 

components of the blood pressure phenotype, detecting small changes in 

blood pressure, and observing the diurnal variations of blood pressure. This 

can be seen in the difference between strains WKY.SPGla2c and 

SP.WKYGla2a which are reciprocal to each other. The former showed a
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significant increase in blood pressure during the baseline period, but not 

during salt-loading. In contrast, the reciprocal strain (SP.WKYGla2a) 

displayed a significant reduction in blood pressure during both periods. 

Again subtle changes were detected with the use of radio-telemetry, with the 

genetic background of the reciprocal congenic strains having a profound 

effect on how the phenotype is expressed.

The chromosome 2 region introgressed in the present study and that of Deng 

et al (1997) harbours several genes that could be considered as candidates 

for the blood pressure QTL. These presently include the angiotensin type IB 

receptor (Agtrlb) gene, both soluble and membrane-bound guanylate 

cyclases (Gca), the a l  isoform of the Na+K+ATPase gene (A tp la l), and the 

calmodulin-dependent protein kinase II A (Camk2d) gene. Speculations as 

to the identity of the causal gene or genes are premature as the substituted 

region is still large and thus requires further investigation with the use of 

congenic substrains.

A recent study by Rapp et al (Rapp et a l 1998b) described the construction 

of a double congenic strain containing the low-blood pressure QTL alleles 

from chromosomes 2 (WKY) and 10 (MNS) on the Dahl S genetic 

background. The analysis of the blood pressure of this double congenic 

strain and comparisons with the relevant single congenic strains and the 

Dahl S strain provided evidence for a strong epistatic interaction on blood 

pressure of the QTLs on chromosome 2 and 10. It should be noted that this 

was the first epistatic interaction described on a quantitative trait in
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mammalian genetics. The speed congenic strategy can be applied to address 

unknown aspects of blood pressure regulation by constructing congenic 

strains, sub-strains, and double congenic strains over fewer generations.

In conclusion, this study demonstrated, that the speed congenic strategy is 

applicable to the genetic dissection of experimental hypertension in the rat. 

Moreover, we confirmed the existence of a blood pressure QTL on rat 

chromosome 2, and we have begun its dissection. Our results suggest that 

the region between markers D2Rat43 and D2Mghl2 is the most important 

blood pressure QTL on rat chromosome 2. This region will undergo further 

analysis in order to proceed to cloning by position of the causative genes.
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CHAPTER 4

SEQUENCE ANALYSIS OF GENES ENCODING SODIUM- 

POTASSIUM ATPASE a l  ISOFORM IN THE SHRSP AND WKY

RAT STRAINS.
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4.1 INTRODUCTION.

The sodium-potassium (Na+-K+) pump plays a key role in the regulation of 

intracellular concentration of monovalent cations (Geering, 1997). It 

provides hydrolysis of ATP coupled to the inward movement of K+ and 

outward movement of Na+. Due to its electrogenecity (3Na+/2K+), the pump 

also contributes to the regulation of membrane potential. The minimal 

functional unit of the Na+-K+ pump is composed of a - and p-subunits 

assembled in a 1:1 ratio (Blanco and Mercer, 1998).

Three isoforms of a- and P-subunits have been cloned in the rat (Peng et a l 

1997). The a-subunit has 10 transmembrane domains with both NH2 and 

COOH terminals in an endoplasmic position. All a  subunits contain ATP, 

Na+, K+, and oubain-binding sites, exhibit Mg2+-dependent ATP hydrolysis, 

and are able to provide movement of Na+ and K+ against their 

electrochemical gradients. The p-subunit consist of a short cytoplasmatic 

NH2 terminus, one transmembrane domain, and a highly glycosylated 

extended ectodomain. This ectodomain is involved in regulation of the 

affinity of the enzyme for extracellular K+ and for re-assembly of the Na+- 

K+ pump within the plasma membrane. The a l  isoforms are ubiquitous and 

a house keeping function is assumed in all cells. The a2 isoforms are 

expressed predominantly in the brain, skeletal muscle, and heart, whereas 

a3 isoforms are primarily expressed in the brain. Similar to the a l  isoform, 

the pi isoform is also expressed ubiquitously. The p2 isoform is mainly 

expressed in muscle and brain, whereas the p3 isoform is found in a variety
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of rat tissues (Adams et a l 1982; Maixent et a l 1987; Crambert et a l 

2000).

The a l  Na+-K+-ATPase pump is the sole active Na+ transporter in the renal 

basolateral epithelia throughout the nephron. Thus it can be considered as a 

logical candidate gene for the high blood pressure seen during salt-loaded 

diets in hypertensive rat strains (Herrera et a l 1998).

The gene encoding for the a l  isoform of the Na+-K+-ATPase is located on 

rat chromosome 2 (Watanabe et a l 1999) and different studies have shown 

QTLs for blood pressure around the locus defined by the A tp la l gene 

(encoding the a l-N a+-K+-ATPase isoform) on chromosome 2 in distinct rat 

crosses (Deng et a l 1994; Clark et a l 1996; Herrera et a l 1998). 

Recently, congenic strains produced by introgressing the region containing 

the Atplal locus from the MNS or the WKY into the genome of the Dahl 

salt-sensitive rat showed a significant reduction in blood pressure compared 

to Dahl salt-sensitive parental strain (Deng et a l 1997). Additionally, Rapp 

et al (1998) showed epistatic interaction on blood pressure between the 

region on chromosome 2 containing the A tp la l locus and a region on rat 

chromosome 10. Moreover, transgenic rats carrying the Dahl R rat wild- 

type A tpla l allele inserted into the S rat genome showed a significant 

reduction in blood pressure compared to Dahl S rats (Herrera et a l 1998).

The above evidence suggests that A tp la l is a strong candidate gene for 

blood pressure regulation. If A tpla l is the gene causing the difference in
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blood pressure between the SHRSP and WKY at this particular QTL on rat 

chromosome 2, there would have to be a nucleotide difference between the 

two strains. This mutation would then lead to a different function of the 

gene between the two strains. It was the aim of this study to ascertain 

whether the gene encoding the Na+-K+-ATPase a l  isoform was a likely 

candidate for the QTL on rat chromosome 2 by performing sequence 

analysis of its coding regions.

4.2 METHODS.

4.2.1 RNA EXTRACTION.

RNA was extracted from kidneys of 2 males WKY and 2 males SHRSP rats 

following the RNAzol™B protocol (Biogenesis Ltd.). For this, 90 mg of 

tissue was placed on a Biopulverizer tube (Hybaid) and 1,000 pL of 

RNAzol™ solution added. Tubes were placed on the RiboLyser™ Cell 

Disrupter (Hybaid) which utilised simultaneous shaking and twisting motion 

at very high speeds to provide efficient disruption of cell membranes. 

Following tissue homogenisation 200 pL of chloroform were added and 

samples centrifuged at 12,000 g (4°C) for 15 minutes. The aqueous phase 

was placed in a 1.5 mL tube and an equal volume of isopropanol added to 

precipitate the RNA. RNA precipitated as a white-yellow pellet at the 

bottom of the tube and it was washed with 800 pL of 75% v/v ethanol. The 

pellet was dried briefly and resuspended in 100 pL of diethylpyrocarbonate 

(DEPC)-treated water. A 5 pL aliquot was separated for quantification and
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the remainder was stored in liquid nitrogen. The RNA was quantified using 

an Ultrospec 2,000 UV/Visible spectrophotometer (Pharmaco-Biotech) 

where 5 pL of extracted RNA was added to 995 pL of sterile water (1 in 

200 dilution) in a quartz cuvette. The optical density of the sample was 

determined in triplicate at 260 nm and 280 nm against a blank and averages 

calculated. The ratio of absorbance at 260:280 nm was a measure of the 

purity of the sample. A ratio of 1.9 or higher was considered ideal. The 

amount of RNA was calculated from the mean absorbance value at 260 nm 

as follows: [RNA]ng/pL=200 x OD260-

4.2.2 REVERSE TRAN SCRIPT ASE-PCR (RT-PCR).

Q X  T W

Synthesis of cDNA from RNA was done using the 1 -strand cDNA 

synthesis kit (Clontech). 1 pg of RNA was added to a 0.5 mL 

microcentrifuge tube and made up to a volume of 12.5 pL with DEPC- 

treated water. 1 pL of oligo (dT) i g primer provided with the kit was added to 

the tube and the solution with the RNA was heated at 70°C for 12 min. 

Additionally, 4 pL of 5X reaction buffer, 1 pL of dNTP mix (10 mM), 0.5 

pL recombinant RNase inhibitor, and 1.0 pL of Moloney-murine leukaemia 

virus reverse transcriptase (MMLV) were added to the tube and the content 

mixed by pipeting up and down. The reaction was then incubated at 42°C 

for 1 hour and heated at 94°C for 5 minutes to stop the cDNA synthesis and 

to destroy any DNase activity. The final volume was made up to 100 pL 

with 80 pL of DEPC-treated water and stored at -70°C.
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4.2.3 PCR.

The sequence of the Rattus norvegicus A tp la l gene was obtained from 

GeneBank, with accession numbers M28647, X53234, and X51461 

(http://www.ncbi.nlm.nih.gov). The length of the coding sequence was 

calculated to be 3072 base pairs according to the published data. Primers 

were designed (Table 4.1) to amplify and clone the coding regions dividing 

them into two segments of approximately 1.8 kb in size with an overlap of 

80 bp. The Clontech Advantage-HF 2 PCR kit was used to amplify the 

Atplal gene. The PCR reaction was completed in a total volume of 25 pL 

of mastermix consisting of 5 pL cDNA template (approximately 0.2 ng/pL),

13.5 pL PCR grade water, 1 pL of primer mix (10 pM of each), 2.5 pL of 

10X HF 2 PCR buffer, 2.5 pL of 10X HF 2 dNTP Mix, 0.5 pL of 50X 

Advantage-HF 2 polymerase mix. The mix was transferred carefully to a 

well in a polycarbonate 96 well plate (Costar) and an oil drop added. The 

PCR amplification was performed in the MJ-Research PTC 225 

thermocycler. The PCR cycle parameters were as follows: 94°C for 1 

minute, 94°C for 30 seconds, 60°C and 68°C for 4 minutes.

The PCR reaction was cycled back to the 94°C at 30 seconds step for 25 

cycles. The final extension temperature was held for 3 minutes. The product 

of PCR reaction was used immediately in the cloning reaction.
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Prim Sequence Base pairs

F I T A G  T C T  C C A  G C C  A C A  G G A  C C C  G 2 2

F 1 A C T G  T C G  T C A  T C A  T A A  C T G  G C 2 0

F I B C A A  C G T  G C C  G G A  A G T  T T T  G C 2 0

R 1 A G G  A G G  A T A  G A A  C T G  C A T  C G 2 0

R 1 A A G G  A T T  C C A  T G A  T C T  T G G  A G 2 0

R I B A G T  G A G  C G T  C A G  A C A  T A C  C G 2 0

F 2 A C T  G G A  G C C  T A A  G C A  C C T  G C 2 0

F 2 A A C A  G A A  G C T  C A T  C A T  T G T  G G 2 0

F 2 B T G C  C C T  T T C  A C C  T G T  T G G  G C 2 0

R 2 C T G  G A T  C C C  C A C  A T C  C T T  T G 2 0

R 2 A T C A  A A G  C T G  G A G  A G T  C A T  T G 2 0

R 2 B T C C  A C A  T C A  T T G  A T C  C A G  C G 2 0

Table 4.1. Primer sequences uses for PCR and internal sequencing of the 

A tp la l gene. All primers were designed in house from sequences obtained 

in GeneBank (M28647, X53234, X51461). F, stands for forward primer and 

R, for reverse primer.
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4.2.4 CLONING.

The tube containing the cloning vector pT-Adv was briefly centrifuged to 

collect all the liquid at the bottom. The following formula was used to 

calculate the amount of PCR product needed to ligate with 50 ng of pT-Adv,

x ng PCR product = (y bp PCR product)(50 ng pT-Adv)/3900 (size of pT- 

Adv)

The necessary volume was added to the following ligation reaction. PCR 

product X, 10X ligation buffer, pT-Adv Vector (25 ng/pL), T4 DNA ligase 

1 pL and Sterile H2O to make the volume 10 pL. this reaction was 

incubated overnight at 14°C on an MJ-PTC-225 thermocycler. This was 

then ready for transformation.

4.2.5 TRANSFORMATION.

The tubes containing the ligation reaction were placed on ice and a tube of 

0.5 M p-mercaptoethanol ((3-ME) was thawed along with one 50 pL frozen 

tube of TOP10F’ E.coli competent cells for each ligation/transformation. 2 

pL of 0.5 M P-ME was pipetted into each tube of competent cells and mixed 

by gently stirring with the pipette tip. The tubes were incubated on ice for 

30 minutes. After this the tubes were then heat shocked for exactly 30 

seconds in a 42°C water bath and placed on ice for 2 minutes. 250 pL of 

SOC medium (2% triptone, 0.5% yeast extract, 10 mM NaCl, 25 mM KC1,
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10 mM MgCh, 20 mM glucose) were added to each tube at room 

temperature. The tubes were then shaken horizontally at 37°C for 1 hour at 

225 rpm in a rotary shaking incubator. The tubes were then placed on ice, 

50 pL and 200 pL of each tube were removed and spread on separate, 

labelled LB/X-gal plates containing 50 pL/ml of ampicilin. When the liquid 

was absorbed the plates were inverted and placed in a 37°C incubator for 18 

hours. To allow blue/white colour development the plates were moved to 

4°C for at least 2-4 hours.

4.2.6 ANALYSIS OF TRANSFORMATION.

To each plate a grid pattern was attached to ease identification of colonies. 

20 white colonies supposedly containing insert and 5 blue colonies were 

picked and re-streaked on fresh LB/X-gal/IPTG plates. The plates were 

treated exactly as before, each toothpick after use was then dipped into 5 pL 

of distilled water to allow the remaining bacteria to enter suspension and 

lyse. This was then used as a DNA template to test for the presence of 

insert. The PCR was carried out as described earlier (Section 2.4.3) and the 

primers that were used had the forward primer annealing to the plasmid 

sequence and the reverse primer to the internal portion of the A tp la l insert. 

Products were then visualised on a Fluor S-Multimager (Bio-Rad) (Figure 

4.1). The blue colonies were used as a negative control. Five positive 

colonies were then grown up in 3 mL cultures and of these two were chosen 

to be used for 250 mL cultures. The culture media was L-Broth (LB) with 

ampicilin at a concentration of 50 pg/mL.
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SHRSP, PI SHRSP, P2
LM LM LM

^  <  Clones ------> i  <------  Clones  >  ^

1.6kb

WKY, PI WKY, P2

Clones Clones >

Figure 4.1. Agarose gels illustrating the analysis of transformation. Top 

panel, SHRSP; bottom panel, WKY. Product 1 and 2 were amplified using 

PCR with the specific primers represented in figure 4.2. Products of about 

1.8 kb were expected after cloning. LM, ladder marker.
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4.2.7 PLASMID PURIFICATION.

Qiagen-Tip 500 (QIAGEN), which uses an anion exchange resin for the 

purification of nucleic acids, was used for plasmid purification. Colonies 

were inoculated with 2 mL of LB medium and incubation was carried out 

for 8 hours at 37°C with vigorous shaking (300 rpm). 100 mL of LB 

medium were inoculated to the starter culture letting it grow at 37°C for 12 

hours with shaking (300 rpm), bacterial cells were harvested by 

centrifugation at 6,000 g for 15 minutes at 4°C. After resuspension of the 

bacterial pellet in 4 mL of buffer PI (50 mM tris-Cl, pH 8.0; 10 mM EDTA; 

100 pg/mL Rnase A) 4 mL of buffer P2 (200 mM NaOH, 1% SDS) were 

added and mixed gently by inverting 4 to 6 times and incubated at room 

temperature for 5 minutes. 4 mL of P3 buffer (0.3 M potassium acetate, pH 

5.5) were added to the tubes and the mixture inverted 4 to 6 times with 

incubation on ice for 15 minutes, centrifugation of the tubes was carried out 

at 20,000 g for 30 minutes at 4°C. The supernatant containing the plasmid 

DNA was removed promptly and re-centrifuged at 20,000 g for 15 minutes 

at 4°C. The Qiagen-tip (QIAGEN) was equilibrated by applying 4 mL of 

buffer QBT (750 mM NaCl; 50 mM MOPS, pH 7.0; 15% isopropanol; and 

0.15% triton X-100) and the column was allowed to empty by gravity flow. 

The resulting supernatant was applied to the Qiagen-tip (QIAGEN) and it 

was allowed to enter the resin by gravity flow. The Qiagen-tip was washed 

2 times with 10 mL of QC buffer (1.0 M NaCl; 50 m MOPS, pH 7.0; 15% 

isopropanol) and the DNA eluted with 5 mL of buffer QF (1.25 M NaCl; 50 

mM tris-Cl, pH 8.5; 15% isopropanol).
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The DNA was then precipitated by adding 3.5 mL of isopropanol at room 

temperature and the tube was centrifuged at 15,000 g for 30 minutes at 4°C. 

After decanting the supernatant the DNA pellet was washed with 2 mL of 

70% ethanol and centrifuged at 15,000 g for 10 minutes. The supernatant 

was decanted, the pellet carefully air-dried for 5-10 minutes and the DNA 

was dissolved in 100 pL of TE (10 mM tris-Cl, pH 8.0; 1 mM EDTA) 

buffer. The yield was determined with an ULTROSPEC 2000 UV/visible 

spectrophotometer (Pharmaco-Biotech) as described in Section 2.4.2.

4.2.8 SEQUENCING.

Purified plasmid-DNA was sent to MWG Biotech (Germany) for double­

strand sequencing. The plasmid-DNA was purified and concentrated by 

ethanol and ammonium acetate precipitation and an air-dried pellet in a 1.5 

mL microcentrifuge tube was sent to the company for sequencing. Internal 

primers (Table 4.1, Figure 4.2) were sent for sequencing of the coding 

regions of the A tp la l gene contained within the plasmid DNA. 

Additionally, we sequenced in-house 750 bp using the protocol described in 

section 2.4.6 in order to re-check any positive findings.

4.3 RESULTS.

Sequencing analysis revealed no difference in the coding region of the 

Atplal gene between the WKY strain and the published sequence for Rattus 

norvegicus (GeneBank accession number M28647, X53234, and X51461).
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Two transitions were found, the first at position 2121 (cytosine for thymine) 

and the second at position 2453 (adenine for guanine). Both transitions were 

silent as reflected in Table 4.2. Table 4.3 shows a comparison between the 

Rattus norvegicus sequence of the A tplal gene and the sequence of the two 

Glasgow rat strains in some specific areas.

4.4 DISCUSSION.

It has been suggested, both in animals and humans, that a decreased activity 

of the membrane sodium pump could be a pathogenetic determinant of 

increased blood pressure (Blaustein and Hamlyn, 1984). In the inbred strain 

of Dahl S rats, Herrera and Ruiz-Opazo (Herrera and Ruiz-Opazo, 1990) 

found a single nucleotide substitution in the gene encoding the a l  subunit 

isoform of the Na+-K+-ATPase. They proposed that this could impair ion 

transport and contribute to the pathogenesis of hypertension. In cloned 

Atpla l cDNA from a single Dahl S rat they found a T for an A transversion 

at position 1079 that was predicted to cause an amino acid substitution at 

position 276 in a domain-important for the Na+-K+ transport. This group 

also found that in Xenopus oocytes injected with RNA that had been 

transcribed in vitro from the Atplal cDNA of Dahl S rat, the oubain- 

sensitive Rb+ influx was significantly less than in oocytes injected with 

Atplal transcribed RNA from a Dahl R rat.

Simonet et al (1991) devised a PCR technique to screen the genomic DNA 

of multiple Dahl S rats for the T for A transversion reported in the cDNA of
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the A tp la l and could not find the mutation in eight Dahl S rats. They also 

carried out direct sequencing analysis of the gene in three Dahl S rats with 

negative results. Sequencing of the coding region of the A tp la l gene in the 

current study revealed no significant nucleotide difference between the 

WKY strain and the one available at GeneBank. Two transversions were 

found between WKY and SHRSP sequences, both yielding silent mutations 

(Table 4.2). Therefore, sequencing of the A tp la l gene in the SHRSP and 

WKY revealed no nucleotide differences that are potentially important to its 

function. Moreover, the A to T transversion found by Herrera and Ruiz- 

Opazo (1990) at nucleotide 1079 could not be identified in the current study.

To determine the role of the Dahl S Q276L a l  Na+-K+-ATPase gene 

variant, Herrera et al (1998) developed transgenic Dahl S rats bearing the 

Dahl R wild type of the Atplal gene. These trangenic rats exhibited less 

salt-sensitive hypertension, less hypertensive renal disease and a longer life 

span when compared with wild-type Dahl S controls.

Discrepancy between published sequences of the A tp la l gene in Dahl S rats 

is very difficult to explain. Possible explanations are;

i) there is genetic diversity between the different inbred Dahl S rats 

and therefore the strain used by Simonet et al (1991) does not carry 

the T for A transversion, or
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Trans versions

Nucleotide Amino acid

WKY SHRSP WKY SHRSP

GCT2121 GCC2121 Alanine (GCT) Alanine (GCC)

TCG2453 TCA2453 Serine (TCG) Serine (TCA)

Table 4.2. The two transversions identified within the coding region of the 

Atplal gene in the SHRSPda strain compared to the WKYoia sequence. The 

transversion at position 2121 and 2453 are silent.
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Rattus Norvegicus 2 0 4 1 g c t g t g g g c a a a t g c c g c a g c g c t g g g a t t a a g g t c a t c a t g g t c a c a g g a g a c c a t c c a
WKYGla 2 0 4 1 g c t g t g g g c a a a t g c c g c a g c g c t g g g a t t a a g g t c a t c a t g g t c a c a g g a g a c c a t c c a

S H R S P Gia 2 0 4 1 g c t g t g g g c a a a t g c c g c a g c g c t g g g a t t a a g g t c a t c a t g g t c a c a g g a g a c c a t c c a

Rattus Norvegicus 2 1 0 1 a t c a c a g c c a a a g c c a t t g c t 2l21a a g g g g g t g  g g c a t t a t c t  c a g a a g g t a a  c g a g a c c g t g
WKYsu 2 1 0 1 a t c a c a g c c a a a g c c a t t g c t 2121a a g g g g g t g  g g c a t t a t c t  c a g a a g g t a a  c g a g a c c g t g

S H R S P Gla 2 1 0 1 a t c a c a g c c a a a g c c a t t g c £ 2121a a g g g g g t g  g g c a t t a t c t  c a g a a g g t a a  c g a g a c c g t g

Rattus Norvegicus 2 1 6 1 g a a g a c a t t g c t g c c c g c c t c a a c a t t c c a g t g a a c c a g g t g a a c c c c a g a g a t g c c a a g

WKYGla 2 1 6 1 g a a g a c a t t g c t g c c c g c c t c a a c a t t c c a g t g a a c c a g g t g a a c c c c a g a g a t g c c a a g

S H R S P Gia 2 1 6 1 g a a g a c a t t g c t g c c c g c c t c a a c a t t c c a g t g a a c c a g g t g a a c c c c a g a g a t g c c a a g

Rattus Norvegicus 2 2 2 1 g c c t g t g t a g t a c a t g g c a g t g a c t t g a a g g a c a t g a c c t c t g a g g a g c t g g a t g a c a t t
WKYGla 2 2 2 1 g c c t g t g t a g t a c a t g g c a g t g a c t t g a a g g a c a t g a c c t c t g a g g a g c t g g a t g a c a t t
S H R S P e ia 2 2 2 1 g c c t g t g t a g t a c a t g g c a g t g a c t t g a a g g a c a t g a c c t c t g a g g a g c t g g a t g a c a t t

Rattus Norvegicus 2 2 8 1 t t g c g g t a c c a c a c g g a g a t t g t c t t t g c t a g g a c c t c t c c t c a a c a g a a g c t c a t c a t t
WKYGla 2 2 8 1 t t g c g g t a c c a c a c g g a g a t t g t c t t t g c t a g g a c c t c t c c t c a a c a g a a g c t c a t c a t t
S H R S P Gla 2 2 8 1 t t g c g g t a c c a c a c g g a g a t t g t c t t t g c t a g g a c c t c t c c t c a a c a g a a g c t c a t c a t t

Rattus Norvegicus 2 3 4 1 g t g g a g g g c t g c c a g c g g c a g g g t g c c a t c g t g g c t g t c a c a g g g g a t g g t g t c a a t g a c
WKYGla 2 3 4 1 g t g g a g g g c t g c c a g c g g c a g g g t g c c a t c g t g g c t g t c a c a g g g g a t g g t g t c a a t g a c
S H R S P Gia 2 3 4 1 g t g g a g g g c t g c c a g c g g c a g g g t g c c a t c g t g g c t g t c a c a g g g g a t g g t g t c a a t g a c

Rattus Norvegicus 2 4 0 1 t c t c c a g c t t t g a a a a a g g c a g a t a t t g g g g t t g c c a t g g g g a t t g t t g g c t c g 2453g a t g t g
WKYGia 2 4 0 1 t c t c c a g c t t t g a a a a a g g c a g a t a t t g g g g t t g c c a t g g g g a t t g t t g g c t c g 2453g a t g t g

S H R S P Gia 2 4 0 1 t c t c c a g c t t t g a a a a a g g c a g a t a t t g g g g t t g c c a t g g g g a t t g t t g g c t c j l 24S3g a t g t g

Rattus Norvegicus 2 4 6 1 t c c a a g c a a g c t g c t g a c a t g a t t c t t c t g g a t g a c a a c t t t g c c t c c a t c g t g a c t g g a
WKYGi a 2 4 6 1 t c c a a g c a a g c t g c t g a c a t g a t t c t t c t g g a t g a c a a c t t t g c c t c c a t c g t g a c t g g a
S H R S P Gia 2 4 6 1 t c c a a g c a a g c t g c t g a c a t g a t t c t t c t g g a t g a c a a c t t t g c c t c c a t c g t g a c t g g a

Rattus Norvegicus 2 5 2 1 g t a g a a g a a g g t c g t c t g a t a t t t g a t a a c t t g a a g a a a t c c a t t g c t t a c a c c c t a a c a
WKYoia 2 5 2 1 g t a g a a g a a g g t c g t c t g a t a t t t g a t a a c t t g a a g a a a t c c a t t g c t t a c a c c c t a a c a

S H R S P Gia 2 5 2 1 g t a g a a g a a g g t c g t c t g a t a t t t g a t a a c t t g a a g a a a t c c a t t g c t t a c a c c c t a a c a

Rattus Norvegicus 2 5 8 1 a g t a a c a t t c c g g a a a t c a c c c c c t t c t t g a t a t t t a t t a t t g c a a a c a t t c c a c t g c c c
WKYGla 2 5 8 1 a g t a a c a t t c c g g a a a t c a c c c c c t t c t t g a t a t t t a t t a t t g c a a a c a t t c c a c t g c c c
S H R S P e ia 2 5 8 1 a g t a a c a t t c c g g a a a t c a c c c c c t t c t t g a t a t t t a t t a t t g c a a a c a t t c c a c t g c c c

Table 4.3. Comparison of the sequences of the coding regions of the A tp la l gene between 

the Glasgow SHRSP, WKY, and the sequence for the Rattus norvegicus available at 

GeneBank (NM 012504). The transversions found in the SHRSP are highlighted in bold.
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ii) the mutation found by Herrera and Ruiz-Opazo et al (1990) is due to 

a reverse transcriptase error during cDNA synthesis.

Ruiz-Opazo et al (Ruiz-Opazo et al. 1994) confirmed the mutation using a 

Taq DNA polymerase-independent approach based on polymerase allele- 

specific amplification and ligase chain reaction analysis of kidney mRNA 

subjected to RT-PCR. They claimed that the negative result obtained by 

Simonet et al (1991) was probably caused by a consistent Taq polymerase 

chain reaction error that selectively substituted adenine-1079 for thymidine. 

However, there are established differences between the Dahl S and the 

SHRSP rats as models of genetic hypertension. SHRSP rats are hypertensive 

without salt-loading whereas Dahl S rats need a high percentage of salt (4- 

8%) in the diet to become hypertensive (Dahl et al. 1962). The current data 

allow us to conclude that there is no difference in the sequence of the 

A tp la l gene between the SHRSP and WKY. It seems, therefore, that the 

A tp la l gene can be excluded as a candidate for BP QTL on the rat 

chromosome 2. Several other putative candidate genes are located in 

proximity to the A tp la l locus and might be of interest for future studies. 

Polymorphic markers located within the locus for atrial natriuretic peptide 

receptor/guanylyl cyclase A (Gca) and for calmodulin-dependent protein 

kinase II-delta (Camk2d) have been found to cosegregate with blood 

pressure in different F2 populations (Deng et al. 1994).(Dubay et al. 1993; 

Schork et al. 1995; Harris et al. 1995) However, no sequence data are 

available for these candidate genes. Our study highlights the difficulties of 

the candidate gene approach and demonstrates that several candidate genes
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would require detailed sequence analysis before any causal mutations might 

be identified.

To conclude, it is still probable that unidentified regions located either in the 

5’ end or the 3’ end, or in the intronic regions of the A tp la l gene could be 

potentially important in the regulation of its expression. However, the 

sequencing data obtained in the present study suggest that there is no 

difference in the coding region of the gene between the WKY and the 

SHRSP strains. Thus the current study suggests that the correct strategy 

towards the ultimate positional cloning of the gene(s) involved in the high 

blood pressure in the SHRSP is the construction of congenic sub-lines to 

narrow down the chromosomal region of interest (for details see Section 3).
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CHAPTER 5

RADIATION HYBRID MAPPING OF RAT CHROMOSOME 2 AND 

5 FOR THE LOCALISATION OF GENES AND DETERMINATION 

OF DISTANCES BETWEEN POLYMORPHIC MARKERS.
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5.1 INTRODUCTION.

“If human cells are subjected to large doses of ionising radiation and then 

fused with rodent cells, hybrid clones are obtained in which linked human 

genes may be segregated. By determining the frequency with which pairs of 

linked genes are cotransferred after irradiation, it is possible to determine 

the linear order of groups of genes and to estimate the distances between 

them”. This paragraph begins the article published in Nature by Stephen 

Goss and Henry Harris who originally pioneered the technique called 

radiation hybrid mapping (Goss and Harris, 1975). The original research 

was based on a former observation by Pontecorvo (Pontecorvo, 1975) who 

proposed that y-irradiation of somatic cells would induce chromosome 

breakage, which might result in segregation of chromosomal fragments 

(Walter and Goodfellow, 1993). The only problem with this elegant 

approach is that irradiation causes not only chromosome breakage and 

segregation of genetic material but also cell death. The solution to this 

problem comes from the “irradiation and fusion gene transfer” experiments 

of Goss and Harris. They used as donor cells diploid male lymphocytes and 

as recipient Wg3-h hamster cells that had a deficient activity of the enzyme 

hypoxanthine phosphoribosyl transferase (HPRT). The HPRT enzyme acted 

like a gene marker for the X chromosome. It also allowed to recover the real 

hybrids after fusion because fused hamster cells that did not have the 

lymphocyte component, remained deficient in HPRT and were killed in 

hypoxanthine (HAT) medium; whilst man-hamster hybrid cells were able to 

proliferate (Goss and Harris, 1975). They were able to establish the order of
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four markers (HPRT, glucose-6-phosphate dehydrogenase, a-galactosidase, 

and phosphoglycerate kinase) on the long arm of the X chromosome, to 

determine that the segregation of markers is a function of the dose of 

radiation used and to demonstrate retention of nonselected chromosome 

fragments (Goss and Harris, 1977).

In 1990, fifteen years after the original experiment, Cox and colleagues 

modified the original approach by using as the donor cell, not a diploid 

human cell, but a rodent-human somatic cell hybrid called CHG-3 that 

contained a single copy of human chromosome 21. They also quantified the 

X-rays irradiation to 8000 rads. Following the previous protocol they 

rescued the irradiated donor cells by fusing them with non-irradiated 

hamster recipient cells (GM459) deficient in HPRT. This resulted in the 

isolation of 103 independent somatic cell hybrid clones, each representing a 

fusion event between an irradiated donor cell and a recipient hamster cell. 

These clones were assayed for the retention of 14 DNA markers on human 

chromosome 21 by Southern blotting hybridisation analysis (Cox et a l

1990). This resulted in a map of the proximal area of the long arm of human 

chromosome 21.

Subsequently the radiation hybrid mapping technique has been used to map 

markers around disease loci in localised areas of the genome. For example: 

44 loci ordered on human 5q related to acute lymphocytic leukaemia 

(Warrington et a l 1991; Warrington et a l 1992), 16 loci in 11 q l2 -l3 

containing the multiple endocrine neoplasia type I locus (Richard et a l
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1991), 16 loci on human chromosome 22 associated with the ataxia- 

telangiectasia locus (Frazer et a l 1992; Richard et al. 1993), and 17 

markers around human 17q containing the BRCA1 locus (Abel et al. 1993).

Radiation hybrid mapping is a somatic cell hybrid technique that was 

developed to construct high-resolution, contiguous maps of mammalian 

chromosomes. The technique provides a method for ordering DNA markers 

spanning millions of base pairs of DNA at a resolution not easily obtained 

by other mapping methods (Cox et a l 1990; Burmeister et a l 1991). 

Another advantage of using radiation hybrid mapping is the ability to map 

non-polymorphic DNA markers that cannot be used for genetic linkage 

mapping. In this technique X-irradiation breaks the chromosomes of the 

donor cell line into numerous fragments. Chromosome fragments from the 

donor cell line are subsequently retained non-selectively after cell fusion 

with a recipient cell line. The resulting hybrid clones are then tested for the 

retention or loss of specific donor chromosome markers. Markers that are 

further apart on a chromosome are more likely to be broken apart by 

radiation and to segregate independently in the radiation hybrid cells than 

markers that are close together. By analysing the cosegregation of various 

loci in hybrid clones statistically, a map can be constructed giving 

information about the relative order and distance of markers (Cox et a l 

1990; Burmeister et a l 1991; Warrington et a l 1991).

Cloning the gene underlying the BP QTL first requires refining the position 

of the QTL at much higher resolution than is possible with the mere
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detection of the BP QTL (Darvasi, 1998). For positional cloning to be 

feasible, the size of the candidate region has to be typically reduced to about 

1 million bases (Mb). Assuming an average frequency of recombination, 

1Mb is only about 0.5 cM (Silver, 1995). Assuming an average gene density 

and 80,000 protein-encoding genes per genome, the potential number of 

candidate genes in 1Mb is approximately 27. The production of smaller 

congenic sub-lines as described in Section 1.3.2.2.4 and 1.3.2.2.4.1 is the 

logical way to follow to capture these 1 cM regions with the BP QTL, where 

cloning the gene by position becomes feasible. It should be noted that above 

calculations have been performed for mouse genome. Similar detailed 

calculations for rat genome are not as well developed (Rapp, 2000).

Comparison of the genetic maps of the mouse with the corresponding maps 

in the rat reveals large differences. Dense genetic maps of the mouse are 

available for a variety of genetic studies including:

i) Comparative mapping,

ii) Cloning of monogenic mutations,

iii) Complex trait analysis,

iv) Deletion mapping,

v) Physical map construction and,

vi) Marker-assisted congenic production (Markel et a l 1997).

In contrast, the genetic maps of the rat are so far not as dense as the mouse 

(Yamada et a l 1994; Jacob et a l 1995; Bihoreau et a l 1997; Brown et a l 

1998; Steen et a l 1999; Gauguier et a l 1999). This situation has greatly 

limited the potential of the rat as a genetic model organism for human
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disease. Construction of a genetic map in the rat is not as efficient as that of 

the mouse because of the low polymorphism rate in rat crosses. Some 

mouse crosses have a high polymorphism rate, more than 90% (Dietrich et 

al. 1996) allowing the mapping of thousands of markers without the need to 

derive a combined map from mapping data of different crosses from 

different laboratories. In contrast, most rat crosses have a polymorphism 

rate of about 50% or less (Jacob et a l 1995). As a consequence, a map of 

equal density as the mouse would require much greater effort to construct.

Radiation hybrid mapping can provide a much higher resolution of the BP 

QTLs than genetic maps, and this high resolution mapping is a requirement 

for the positional cloning of the gene or genes underlying the QTLs. With 

the current status of the microsatellite-based genetic maps available in the 

rat (Brown et al. 1998; Steen et al. 1999; Gauguier et al. 1999) it is 

possible to narrow down the BP QTLs. Radiation hybrid mapping provides 

a tool to place markers inside these regions and therefore enhance the 

resolution and information about the loci of interest for positional cloning.

Due to the discrepancies between our genetic map and other genetic maps of 

the rat chromosome 5 (Rubattu et al. 1996; Jeffs et al. 1997), it was the 

aim of this study to carry out radiation hybrid mapping and fluorescence in 

situ hybridisation (FISH) of rat chromosome 5. We also created a radiation 

hybrid map of the region between markers D2Rat43 and D2Rat58 on rat 

chromosome 2. This region was suggested by our speed congenic results as 

the chromosomal segment containing the BP QTL.
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5.2 METHODS.

5.2.1 PCR.

PCR was performed using the rat whole genome radiation hybrid panel 

obtained from Research Genetics (Huntsville, Ala) as described in Section 

2.6. The presence or absence of 41 microsatellite markers on rat 

chromosome 5 were determined by PCR reactions with rat primers 

purchased from either Research Genetics (Huntsville, AL) or Genosys 

Biotechnology (Cambridge, UK). PCR reactions were done in duplicate and 

scored by two independent observers to provide accurate consensus 

scorings. Table 5.1 list 36 markers out of 41 that we were able to amplify 

and map relatively to each other using radiation hybrid mapping along with 

the specific conditions used in the PCR reactions. Additionally, 10 markers 

were used to construct the radiation hybrid map of the telomeric region of 

rat chromosome 2, PCR conditions are listed in Table 5.2. The PCR 

products were separated by electrophoresis on a 3% agarose gel containing 

ethidium bromide and visualised with a FluorS-Multimager (Biorad, UK) 

(Figure 5.1).

5.2.2 STATISTICAL ANALYSIS.

The radiation hybrid mapping programs of the RHMAP package, version
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Clones

 >
2 3 4 5 6 7 8 ......

Figure 5.1. Agarose gel showing the PCR amplification of marker 

D2Mghl2 in the radiation hybrid clones. Amplification is observed in 

clones number 4, 5, 9, etc. Control 1, Sprague-Dawley FR DNA; control 2, 

hamster A23 DNA; control 3, W KYcia DNA; and control 4, water blank.

Controls

1 2  3 4
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M arker Tm(°C) Magnesium
concentration

(mM/L)
D5Rat49 55 1.5
D 5Rat 50 55 1.5
D5Mghl6 60-55 1.5
D5Mghl5 60-55 1.5
D5Rat48 55 1.5

A nf 55 1.5
D5Rat47 55 1.5

Ela2 55 1.5
D5Rat41 55 1.5
D5Woxl4 55-50 1.5
D5Mgh8 50 1.5
D5Rat38 55 1.5
D5Woxl5 60-55 1.0
D5Rat29 55 1.5
D 5Rat 3 2 55 1.5
D 5Rat 3 5 55 1.5
D5Mghl3 50 1.5
D5Wox4 60-55 1.0
D5Rat22 55 1.5
D5Mit3 55 1.5
D 5 Rat 19 55 1.5
D5Woxl6 55 1.0
D 5Rat 13 55 1.5
D5Wox5 55 1.0

D5Mghll 50 1.5
D 5Rat 14 63-58 1.5
D5Ratl6 55-50 1.5
D 5Rat 15 55 1.5
D5Rat84 55 1.5
D5MU2 55 1.5
D5Mit9 55 1.5
D5Mgh6 55 1.5
D 5Rat 10 55 1.5
D5MghlO 60-55 1.5
D5Rat8 55 1.5
D 5Rat 7 55 1.5

Table 5.1. Microsatellites and genes selected for radiation hybrid mapping 

on rat chromosome 5, annealing temperatures, and magnesium 

concentration used in the PCR reaction.
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M arker Tm(°C) Magnesium

concentration

(mM/L)

D2Mit6 60-55 1.0

Pklr 50 1.5

Gca 55 2.0

D2MU14 55-50 1.5

A tplal 60 1.0

D2Rat49 55 1.5

D2Rat287 55 1.5

D2Rat52 55 1.5

D2 Rat 157 55 1.5

D2Mghl2 55-50 1.5

Table 5.2. Microsatellites and genes selected for radiation hybrid mapping 

on rat chromosome 2, annealing temperatures, and magnesium 

concentration used in the PCR reaction.
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3.0 were used to analyse the data as described in Section 2.6.1 (Boehnke et 

al 1991; Lange et al. 1995). A more detailed explanation of the 

mathematical assumption taken by this programs is given in Appendix 12.

For the analysis of data on chromosome 5 we constructed 5 linkage groups 

using the two-point analysis and RHMINBRK best orders. Markers on 

chromosome 2 were analysed in a single linkage group. The orientation of 

the linkage groups was determined by reference to the genetic map. The 

order within each linkage group was calculated with the multipoint 

maximum likelihood method using the RHMAXLIK program and branch 

and bound strategy and then checked with a simulated annealing strategy 

using a random initial order. If the branch and bound algorithm could not be 

applied (too many loci under consideration), a set of best orders was 

established with the RHMINBRK program. The result was the checked with 

a stepwise ordering strategy and 10 simulated annealing runs starting with 

random orders. Map distances were expressed in centiRays (cR) as 

explained in Section 2.6.1., the maximum likelihood method was then used 

to calculate map distances of individual markers within linkage groups, and 

the 2-point analysis to calculate map distances between the linkage groups.

5.2.3 FLUORESCENCE IN SITU HYBRIDISATION (FISH).

FISH enables the visualisation of a marker of interest within a cytological 

preparation of chromosomal DNA on a microscope slide. Four polymorphic 

microsatellite markers and two genes on rat chromosome 5 were selected for
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FISH and the experiments were completed by Dr. Claude Szpirer and 

colleagues at the Department of Molecular Biology, University Libre de 

Bruxelles (Belgium).

FISH was done as described previously, (Pinkel et a l 1988; Stephanova et 

al. 1996), with cultured vascular smooth muscle cells harvested from the 

S H R S P c i a  and W K Y c i a  (Dominiczak et al. 1991). The chromosome images 

were captured and treated with the ISIS imaging system (MetaSystem, D- 

68804 Althussheim, Germany). Only double spots (2 labeled sister 

chromatids) formed by the probes were taken into account, and 2 methods 

were used to determine the regional position of the signals. First, the 

fractional length distance of the fluorescent signal to the centromere relative 

to the total chromosome arm length was used to map the genes, with banded 

rat chromosomes as references (Levan, 1974). Second, the position of the 

fluorescent spots was superimposed on the image of 4,6-diamidino-2- 

phenylindole (DAPI)-banded chromosomes, with the use of ISIS system. 

The A nf probe was a 5.2 kb Kpnl fragment from the rat gene (JA200) 

(Argentin et a l 1985). The Dsi 1 probe (Genbank accession number 

L26461) was the 1.8 kb Smal-EcoRl fragment named dsI-SR (Vijaya). The 

primer sequences of the markers D5Mghl6, D5Mit2, D5Mit9, and 

D5Woxl5 were obtained from http://ratmap.gen.gu.se/and used to identify 

the PI clones from the chromosome 5 fraction of a rat genomic library 

(Genomic Systems, St Louis, Mo). These 4 PI clones were then used to 

localise the chromosomal position of these markers with the use of FISH.
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5.3 RESULTS.

The presence or absence of each of the 35 rat microsatellite markers on rat 

chromosome 5 and 10 rat microsatellites on rat chromosome 2 in 106 

radiation hybrid clones was determined by PCR screening with the primers 

shown in Tables 5.1 and 5.2. The mean retention frequency was 0.281 

(range from 0.160 to 0.356) for the markers on rat chromosome 5 and 0.227 

(range from 0.200 to 0.282) for markers on rat chromosome 2 (Table 5.3 

and Table 5.4). For the analysis of the 35 microsatellites markers on rat 

chromosome 5, five linkages groups were constructed based on the 2-point 

analysis with the RH2PT program, with a LOD score of 8.0, followed by a 

stepwise locus ordering strategy with the RHMINBRK program. The 

orientation of these linkage groups was determined from the most 

comprehensive rat genetic linkage map available (Brown et al. 1998; Steen 

et a l 1999; Gauguier et al. 1999). The order within each linkage group 

was then determined with a branch and bound strategy (Boehnke et al. 

1991) within the multipoint maximum likelihood method (RHMAXLIK 

program). The best order together with map distances calculated as 

described in Section 2.6.1 are show in Table 5.3 and a comparison with an 

integrated genetic map of the same region of rat chromosome 5 is shown in 

Figure 5.2. The 5 linkage groups covered a total distance of 1304 cR, 

corresponding to a genetic distance of 78 cM. The maximum likelihood 

analysis allows for the determination of the likelihood ratios, which are 

defined as the ratios of the overall maximum likelihood of the 

comprehensive map to the maximum likelihood of a given local order,
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M arker Retention
Frequency

0 CR3000

D5Rat49 0.229
D 5 Rat 50 0.248 0.094 9.9
D5Mghl6 0.330 0.417 54.0
D5Mghl5 0.356 0.236 26.9
D5Rat48 0.340 0.192 21.3

A nf 0.297 0.240 27.4
D5Rat47 0.217 0.425 55.3

Ela2 0.267 0.309 37.0
D5Rat41 0.189 0.482 65.7
D5Woxl4 0.176 0.190 21.1
D5Mgh8 0.292 0.458 61.3
D 5 Rat 3 8 0.286 0.056 5.9

2 D5Woxl5 0.238 0.293 34.7
D5Rat29 0.252 0.673 111.9
D5Rat32 0.221 0.264 30.7
D5Rat35 0.240 0.229 26.1
D5Mghl3 0.274 0.356 44.0
D5Wox4 0.245 0.647 104.1
D5Rat22 0.231 0.258 29.8
D5MU3 0.160 0.512 71.7

3 D 5Rat 19 0.229 0.251 29.0
D5Woxl6 0.314 0.518 73.0
D 5 Rat 13 0.284 0.294 34.8
D5Wox5 0.346 0.337 41.1

D5Mghll 0.333 0.102 10.7
D 5Rat 14 0.346 0.252 29.1
D 5Rat 16 0.330 0.205 23.0

4 D 5Rat 15 0.276 0.107 11.3
D5Rat84 0.327 0.412 53.2
D5Mit2 0.327 0.078 8.1
D5Mit9 0.327 0.063 6.5
D5Mgh6 0.283 0.078 8.2
D5RatlO 0.305 0.357 44.1
D5MghlO 0.289 0.211 23.7
D5Rat8 0.340 0.199 22.2

5 D 5 Rat 7 0.337 0.398 50.7
Average: 0.281 Total: 1304.1

Table 5.3. Markers within linkage groups, retention frequencies, 
probabilities of breakage (0), and calculated distances between the markers 
on rat chromosome 5. Distances were calculated using RHMAXLIK 
program, except for distances between linkage groups: 7s7fl2-D5Rat41, 
D5Woxl5-D5Rat29, D5Ratl9-D5Woxl6, D5Ratl5-D5Mit2, which were 
calculated using the two-point analysis. The 0 and cR3000 values are placed 
in line with the second marker of each pair.
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M arker Retention
Frequency

0 CR3000

D2Mit6 0.282

Pklr 0.217 0.520 73.5

Gca 0.214 0.116 12.3

D2MU14 0.231 0.436 57.2

A tpla l 0.235 0.072 7.5

D2Rat49 0.282 0.134 14.3

D2 Rat 2 87 0.226 0.304 36.2

D2Rat52 0.200 0.162 17.6

D2Ratl57 0.219 0.355 43.9

D2Mghl2 0.214 0.392 49.8

Average: 0.227 Total:312.4

Table 5.4. Markers within linkage groups, retention frequencies,

probabilities of breakage (0), and calculated distances between the markers 

on rat chromosome 2. Distances were calculated using RHMAXLIK 

program. The 0 and cR3000 values are placed in line with the second 

marker of each pair.
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Figure 5.2. Radiation hybrid map of rat chromosome 5 from D5Rat7 to 
D5Rat49 to the right compared with an integrated genetic map of the same 
region to the left. Marker location on genetic map were based on a 
combination map between the Oxford map (http://www.well.ox.ac.uk/ 
-bihoreau/key.html) and the Whitehead Institute map (http://www.genome. 
wi.mit.edu/).
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the different orders and likelihood ratios are given in Table 5.5.

The 11 markers on rat chromosome 2 were analysed in the same linkage 

group because all markers were linked based on the 2-point analysis 

performed with the RH2PT computer program, with a LOD score threshold 

of 6.0. The RHMIMBRK program was used to determine a set of best 

orders using a branch and bound strategy, these orders were then confirmed 

with the RHMAXLIK program. The best order along with the distances 

between markers calculated with the RHMAXLIK program are shown in 

Table 5.4, the different orders and their likelihood ratios are given in Table 

5.6. Figure 5.3 shows a comparison between our genetic linkage map of rat 

chromosome 2 (Section 3) and the radiation hybrid map of the region 

obtained. The 11 markers mapped on rat chromosome 2 covered 100 cM 

according to our genetic linkage map and comprised 312.4 cR according to 

the physical map performed on the region.

Four chromosome 5 microsatellite markers D5Mit9, D5Mit2, D5Woxl5, and 

D5Mghl6, as well as the A nf gene and the Dsi 1 locus, were unambiguously 

localised by FISH with either SHRSPcia or WKYcia cells (identical results 

were obtained with the 2 cell types). D5Mit9 maps at 5q24, D5MU2 maps 

somewhat more distally, namely in the 5q24-q31 interval, D5Woxl5, and 

Dsi\ colocalise at 5q36.2, whereas D5Mghl6 and A nf colocalise at the end 

of the chromosome, at 5q36.3 (Figure 5.4). These localisations thus 

establish several anchor points between the cytogenetic map and the genetic 

linkage map.
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Linkage Local Order * Likelihood
Group________________________________________________________________________________ Ratio

1 D5Rat49-D5Rat50-D5Mghl6-D5Mghl5-D5Rat48-Anf-D5Rat47-Ela2 1.0

D5Rat50-D5Rat49-D5Mghl6-D5Mghl5-D5Rat48-Anf-D5Rat4 7-Ela2 8.1

Ela2-D5Rat47-D5Rat49-D5Rat50-D5Mghl6-D5Mghl5-D5Rat48-Anf 44.5

D5Rat49-D5Rat50-D5Mghl5-D5Mghl6-D5Rat48-Anf-D5Rat47-Ela2 87.8

D5Rat49-D5Rat50-D5Mghl5-D5Mghl6-D5Rat48-Anf- Ela2-D5Rat47 705.5

2 D5Rat41-D5 Woxl4-D5Mgh8-D5Rat38-D5 Woxl5 1.0

D5Rat41-D5 Woxl4-D5Rat38-D5Mgh8-D5 Woxl5 2.1

D5 Woxl4-D5Rat41-D5 Woxl 5-D5Rat38-D5Mgh8 13.0

D5Rat41-D5 Woxl4-D5 Woxl 5-D5Rat38-D5Mgh8 33.0

D5 Woxl4-D5Rat41-D5Mgh8-D5Rat38-D5 Woxl 5 54.5

3 D5Ratl9-D5Mit3-D5Rat22-D5Wox4-D5Mghl3-D5Rat35-D5Rat32-D5Rat29 1.0

D5Ratl9-D5Mit3-D5Rat22-D5Wox4-D5Rat29-D5Rat32-D5Rat35-D5Mghl3 1.5

D5Ratl9-D5Mit3-D5Rat22-D5Wox4-D5Rat29-D5Rat35-D5Rat32-D5Mghl3 2.6

D5Rat29-D5Rat35-D5Rat32-D5Mghl3-D5Wox4-D5Rat22-D5Mit3-D5Ratl9 2.6

D5Rat29-D5Rat32-D5Mghl3-D5Rat35-D5Wox4-D5Rat22-D5Mit3-D5Ratl9 7.6

4 D5 Woxl 6-D5Ratl3-D5 Wox5-D5Mghl l-D5Ratl4-D5Ratl 6-D5Ratl5 1.0

D5 Woxl 6-D5Ratl3-D5Mghl 1-D5 Wox5-D5Ratl4-D5Ratl 6-D5Ratl5 1.3

D5Woxl6-D5Ratl3-D5Wox5-D5Mghl l-D5Ratl4-D5Ratl5-D5Ratl6 5.4

D5 Woxl 6-D5Ratl3-D5Mghl 1-D5 Wox5-D5Ratl4-D5Ratl5-D5Ratl 6 8.1

D5Ratl3-D5 Woxl 6-D5Mghll-D5 Wox5-D5Ratl4-D5Ratl 6-D5Ratl5 30.8

5 D5Mit2-D5Mit9-D5Mgh 6-D5Ratl 0-D5Mgh 10-D5Rat8-D5Rat 7 1.0

D5Mgh 6-D5Mit9-D5Mit2-D5Ratl 0-D5Mgh 10-D5Rat8-D5Rat 7 85.7

D5Mit2-D5Mit9-D5Mgh 6-D5Rat8-D5Mgh 10-D5Ratl 0-D5Rat 7 150.0

D5Mit9-D5Mit2-D5Mgh 6-D5Ratl 0-D5Mgh 10-D5Rat8-D5Rat 7 364.0

Table 5.5. Maximum-Likelihood marker orders within linkage groups for markers on 

rat chromosome 5. *The likelihood ratio represents the ratio of the overall maximum 

likelihood of the comprehensive map to the maximum likelihood of a given local 

order.
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Local Order *
Likelihood

Ratio
D2Mgh 12-D2Rat 15 7-D2Rat52-D2Rat287-D2Rat49-Atp 1 a 1 -D2Mit 14-Gca-Pklr-D2Mit6 1.0

D2Mghl2-D2Ratl57-D2Rat52-D2Rat287-D2Rat49-Atp 1 al -D2Mitl 4-Pklr-Gca-D2Mit6 15

D2Mgh 12-D2Rat 157-D2Rat52-D2Rat287-D2Rat49-D2Mit 14-Atp 1 al -Gca-Pklr-D2Mit6 15.7

D2Mghl2-D2Ratl57-D2Rat52-D2Rat287-D2Rat49- D2M itl4-Atplal- Pklr-Gca-D2Mit6 377.5

D2Ratl57- D2Mghl2-D2Rat52-D2Rat287-D2Rat49-Atplal-D2Mitl4-Gca-Pklr-D2Mit6 581.7

Table 5.6. Maximum-Likelihood marker orders within linkage groups for markers on 

rat chromosome 2. *The likelihood ratio represents the ratio of the overall maximum 

likelihood of the comprehensive map to the maximum likelihood of a given local 

order.
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Figure 5.3. Radiation hybrid map of the telomeric region of rat chromosome 
2 (between markers D2Mit6 and D2Mghl2) and comparison to our genetic 
map of the same region. Distances between markers in the RH map are in 
cR. The shadowed rectangle to the right represents the region transferred in 
the congenic strain SP.WKYGla2c*.
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5.4 DISCUSSION.

We have successfully constructed a radiation hybrid map of rat chromosome 

5, using a combination of microsatellite markers and genes to confirm the 

orientation and localisation of the markers present in our genetic linkage 

map. We performed a physical map of rat chromosome 5 in view of the 

significant disagreement between the genetic map constructed in our F2 

experiment (Jeffs et a l 1997) and other genetic maps of the region (Rubattu 

et a l 1996; Bihoreau et a l 1997). This map will facilitate the identification 

of genes underlying cardiovascular and cerebrovascular QTLs that map to 

these regions on rat chromosome 5. Radiation hybrids mapping was used, 

and we were able to map successfully 35 microsatellite markers covering 78 

cM of the chromosome, corresponding to a physical distance of 

approximately 1,304 cR. We estimated that 17 cR on our radiation hybrid 

map correspond to approximately 1 cM on the genetic map. This is in 

agreement with published data (Watanabe et a l 1999; Steen et a l 1999). 

The resolution of the radiation hybrid map is considerably higher than that 

of existing genetic maps and is similar to that obtained by Steen et al (Steen 

et a l 1999) and Watanabe et al (Watanabe et a l 1999) where 10-15 cR 

equals approximately 1 cM, and lower than that obtained by Al-Majali et al 

(Al-Majali et a l 1999) were 49 cR equals approximately 1 cM. The A nf 

microsatellite marker was mapped between D5Rat48 and D5Rat47 (Figure 

5.2 and Table 5.3), which corresponds to the telomeric end of rat 

chromosome 5 and therefore, it was misplaced in our previous genetic
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Figure 5.4. Regional localisation of D5Mit9, D5Mit2, D 5W oxl5 , £>5/7, 

D5Mghl6, and A nf on rat chromosome 5. In each case, representative 

chromosome is shown, labelled by 2 fluorescent signals, and position of 

these signals is indicated below the corresponding loci. D5W oxl5  and D sil 

probes yielded identical results (fluorescent signals at 5q36.2); similarly, 

results with D5M ghl6 and A n f probes were indistinguishable (signals at 

5q36.3). Therefore, a single chromosome is shown in each of these 2 

cytogenetic positions. Chromosomes were of 4,6-diamidino-2-phenylindole 

(DAPI)-counterstained; banding and probe signals were captured and 

treated with ISIS imaging system.
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linkage map (Jeffs et a l 1997). Furthermore, we performed FISH on cells 

isolated from the SHRSPcia and WKYcia and mapped the A n f marker at 

5q36.3, which again corresponds to the telomeric end of the chromosome. 

Therefore, two different physical mapping methods have given identical 

results and are in agreement with the genetic maps published by other 

groups (Brown et a l 1998; Steen et a l 1999; Gauguier et a l 1999). The 

difference between our genetic map (Jeffs et a l 1997) and the physical 

maps described in this study remains unexplained but stresses the 

importance and the superior resolution of the physical mapping methods, 

which provide a firm base for the future positional cloning strategies.

The data presented in Chapter 3 suggest that the region between markers 

D2Rat43 and D2Mghl2 carries the BP QTL in our experimental model. We 

constructed a congenic strain called SP.WKY.Gla2c* (Figure 5.3) where a 

smaller region from the SHRSPcia was transferred into the WKYcia 

background following the breeding protocol illustrated in Section 2.2.1. 

This congenic segment spans from markers D2Wox9 to D2Mghl2. 

According to our improved genetic linkage map of rat chromosome 2, the 

genetic distance between markers D2MU6 and D2Mghl2 corresponds to 

approximately 100 cM. However, according to the other genetic linkage 

maps published (Brown et a l 1998; Steen et a l 1999; Gauguier et al 

1999) and those available on-line at: http://goliath.ifrc.mcw.

edu/LGR/research/rhp/index.html, and http://curatools.curagen.com/ratmap, 

the distance between these two markers (or other closely located to them) is 

approximately 45-57.2 cM. The physical to genetic distance conversion
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obtained by Watanabe et al (1999) and Steen et al (1999), where whole 

genome radiation hybrid mapping was performed with thousands of 

markers, gives an estimate of 31.24 cM to 20.83 cM for the region between 

D2Mit6 and D2Mghl2. This distance is therefore comparable to that 

achieved in different genetic linkage and radiation hybrid maps of the region 

(Brown et al 1998; Watanabe et a l 1999; Steen et a l 1999).

Phenotyping of the congenic strain SP.WKY.Gla2c* is currently in progress 

and will determine whether the BP QTL was trapped in this region. The 

physical map of the transferred segment provides a region smaller than that 

obtained with the recombination map. The radiation hybrid mapping 

technique provides a way to place all markers regardless whether they are 

polymorphic or not, as well as genes, and expressed sequence tags (ESTs) 

quickly and accurately. This will in turn facilitate the identification of the 

gene(s) within this BP QTL.

In summary, we have constructed a radiation hybrid map of rat chromosome 

5, which will facilitate identification of the candidate genes for the several 

QTLs that map to this chromosome. We have also developed a high- 

resolution map of the telomeric region of rat chromosome 2 which will lead 

to cloning by position the gene(s) within the BP QTL mapped to this area.
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CHAPTER 6 

GENERAL DISCUSSION.



Human essential hypertension is a classic example of a complex, 

multifactorial, quantitative trait under the regulation of multiple genes that 

interact with environmental factors. It is estimated that between 30-50% of 

the variation in blood pressure among individuals is due to genetic 

determinants (Ward, 1990). Several strategies have been developed over the 

last decade to dissect these genetic determinants and despite the very 

significant recent progress in genomic and statistical tools, the genetic 

dissection of human essential hypertension still provides a major challenge 

(Colhoun, 1999). Of these strategies, the most successful have been studies 

that identified rare Mendelian syndromes in which a single gene mutation 

causes high blood pressure. However, the attempts to identify multiple 

genes, each with a small contribution to the common polygenic form of 

hypertension, have been less successful. The heterogeneity of the human 

disease might be responsible for the limited progress that has been made 

towards the identification of the causal genes.

Experimental models of genetic hypertension are used to remove some of 

the complexity inherent in the study of human subjects. Studies of inbred 

rodent models of genetic hypertension have resulted in the identification of 

several BP QTLs using genome-wide scanning. This strategy involves the 

determination of blood pressure of a large segregating F2 population 

derived by crossing 2 contrasting rat strains, and the genotyping of a large 

panel of polymorphic microsatellite markers, with a thorough coverage of 

the entire rat genome. Using a genome-wide scan combined with high 

fidelity phenotyping of blood pressure, our group reported two BP QTLs on
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rat chromosome 2 in an F2 cross between the WKYoia and SHRSPoia strains 

(Clark et al. 1996).

The main difference from other genome scan studies was the use of high 

fidelity phenotyping to facilitate accurate characterisation of the BP QTLs. 

This investigation tested the applicability of a speed reciprocal congenic 

strategy to dissect BP QTLs in the rat (Jeffs et al. 2000). As a result of this 

strategy, the chromosomal region between markers D2Woxl9 and D2Mghl2 

was implicated as the important segment containing the BP QTL. We 

performed high resolution radiation hybrid mapping of this region to assist 

with the cloning by position of the causative gene located in this area. We 

also produced a congenic strain, SP.WKY.Gla2c*, which contains this 

segment introgressed from the WKYcia normotensive strain into the 

hypertensive SHRSPcia strain. Further work will focus on genotyping and 

phenotyping this new congenic strain and then will proceed with production 

of relevant substrains for fine mapping of the region.

Several positional candidate genes are located on the BP QTLs identified by 

Clark et al (1996) and confirmed with the appropriate congenic lines by 

Jeffs et al (2000). These candidate genes include: ATPlal, Na+K+ATPase 

a l  isoform; Gca, atrial natriuretic peptide receptor/guanylyl cyclase A; 

Camk2d, calmodulin-dependent protein kinase II-delta. We performed 

sequencing analysis of the coding regions of the ATPlal gene located in the 

relevant area. Herrera and Opazo (Herrera and Ruiz-Opazo, 1990) found 

that a single nucleotide substitution in this gene could impair ion transport
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and contribute to the pathogenesis of hypertension in Dahl S rats. The same 

group constructed transgenic Dahl S rats bearing the Dahl R wild type of the 

ATPlal gene finding less salt sensitive hypertension (Herrera et al. 1998). 

However, Simonet et al (1991) could not find the same mutation in Dahl S 

rats. We found two transversions between the SHRSPoia and WKYoia 

sequences, both yielding silent mutations revealing no nucleotide 

differences that are potentially important to its function. Moreover, the 

transversion originally found by Herrera and Opazo (1990) could not be 

detected. The evidence suggests that the ATP lal gene can be excluded as a 

candidate gene for the telomeric BP QTL on rat chromosome 2, although 

mutations in regulatory regions or in intronic segments that were not 

screened in this study could be important in the regulation of its expression. 

The candidate gene approach demonstrates that concentrating on single 

candidate genes within large chromosomal regions is not the correct strategy 

towards the ultimate positional cloning of the gene(s) involved in high BP. 

Development of the appropriate congenic sub-lines will narrow down the 

chromosomal region of interest to a size at which cloning by position will be 

feasible.

We derived a RH map of the telomeric end of rat chromosome 2 according 

to the results provided by the reciprocal congenic, which suggested that the 

region between markers D2Rat43 and D2Mghl2 carries the BP QTL. The 

genetic distance between these two markers obtained by us was larger than 

that obtained by Brown et al (1998), and Gauguier et al (1999). The 

distance obtained by RH mapping yielded an estimate of 20.83 cM to 31.24
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cM (equivalent to 312 cR) comparable to that achieved by others (Brown et 

al 1998; Watanabe et a l 1999; Steen et al. 1999; Gauguier et al. 1999). 

RH mapping also provides a tool to place a variety of genetic markers 

regardless of whether they are polymorphic or not, which represents an 

indispensable step for homology mapping.

Based on the assumption that like many other genes, BP susceptibility genes 

are likely to be conserved between species during the course of evolution, 

common or reproducible QTLs have become important candidate loci for 

human essential hypertension. The best example is the BP QTL identified 

on rat chromosome 10, which is a classic reproducible QTL reported in the 

SHRSPnd x WKYHd cross (Hilbert et al. 1991; Jacob et al. 1991), the Dahl 

S x MNS cross (Deng and Rapp, 1992; Deng and Rapp, 1995), and the Dahl 

S x LEW cross (Zhang et al. 1996). Julier et al (1997) used this BP QTL to 

investigate the homologous region of conserved synteny on human 

chromosome 17. In their study of 518 sib-pairs concordant for essential 

hypertension, there was evidence of significant linkage to human 

chromosome 17q between microsatellite markers, D17S183 and D17S934. 

This region has also been linked to pseudohypoaldosteronism type II or 

Gordon’s Syndrome in a subset of families (Mansfield et a l 1997). Baima 

et al (1999) confirmed these data in another population of patients with 

essential hypertension and refined the localisation of this BP QTL between 

markers D17S1814 and D17S800 which are only 0.7 cM apart. These 2 

different studies provide a proof of the concept that it is feasible to directly 

translate BP QTLs discovered in the rat to human essential hypertension and
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pave the way for the investigation of other reproducible BP QTLs in 

humans.

The newly identified region on rat chromosome 2 fulfils the criteria of a 

reproducible QTL, having been identified in different rat crosses originating 

from different genetic backgrounds (Dubay et al. 1993; Deng et al. 1994; 

Schork et al. 1995; Harris et al. 1995; Pravenec et al. 1995; Samani et al. 

1996; Garrett et al. 1998). Moreover, Deng et al (1997) constructed two 

different congenic strains introgressing the relevant region from the WKY 

rat or the MNS rat into the Dahl S background. They observed lower blood 

pressure in both strains as compared to the parental strain. Homology 

mapping between rat, mouse, and human at this region identified conserved 

synteny segments on mouse chromosome 3 and human chromosome 1 

(Gauguier et al. 1999). This area is an excellent candidate region for the 

genetic analysis of human hypertension.

Pharmacogenetic approaches can provide other links between human and 

experimental hypertension. For example, several studies have demonstrated 

that compared to white subjects, black hypertensives show a much poorer 

response to treatment with angiotensin converting enzyme (ACE) inhibitors 

or beta-blockers (Saunders et al. 1990; Materson et al. 1993). Therefore, 

heterogeneity in human hypertension extends to the blood pressure response 

to antihypertensive medications where differential responses are seen in 

some racial sub-groups to particular classes of drugs. Vincent et al (1997) 

studied whether genetic factors influence the acute cardiovascular responses
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to pharmacological modulations of the renin-angiotensin system, the 

sympathetic nervous system, and the voltage-sensitive L-type calcium 

channels in Lyon hypertensive and normotensive rats. A backcross 

population was utilised and a QTL discovered on rat chromosome 2 for the 

hypotensive response of a dihydropyridine calcium antagonist, PY108-068. 

This locus had no effect on blood pressure responses to ganglionic blocking 

agents or angiotensin II receptor antagonists. These findings provide strong 

direct support for the paradigm that genetic factors may influence the 

response to antihypertensive drugs and suggest that the heterogeneity seen 

in the responses to different antihypertensive agents in human hypertension 

may have a significant genetic determination. Moreover, the congenic lines 

produced contained the region implicated by the cosegregation study 

outlined above and therefore provide a unique model to study 

pharmacogenetic interactions.

Finally, a further step for the goal of gene identification has been taken in 

the form of microarray technology. Aitman et al (1997, 1999) identified a 

QTL on rat chromosome 4 responsible of the defects in glucose and fatty 

acid metabolism in the SHR. Using a combination of new strategies 

including cDNA microarrays, congenic mapping, and radiation hybrid 

mapping they identified a defective SHR gene, Cd36, at the peak of the 

QTL on rat chromosome 4. Further work revealed multiple coding sequence 

variants in Cd36 cDNA, with its protein product undetectable in SHR 

adipocyte plasma membrane. These data produced compelling evidence for 

the role of Cd36 deficiency in insulin resistance, defective fatty acid
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metabolism, and hypertriglyceridemia in the SHR. The congenic animal 

used by Aitman et al (1999) in the micro array experiment had a 38 cM 

region transferred from the BN into the SHR background. Congenic sub-line 

SP.WKY.Gla2c* has a transferred region of approximately 25 cM, making 

it ideal for cDNA microarray gene expression experiments which may lead 

directly to gene identification.

The outlined genome-wide study of hypertension in the SHRSP (Clark et al. 

1996) has provided an initial glimpse into the complex interactions and the 

multiple loci that contribute to this disease. The congenic strains presented 

will permit detailed investigations of the means by which these loci exert 

their deleterious effects. This information, coupled with the forthcoming 

knowledge of the complete human and mouse genomes, will certainly allow 

the identification of the specific susceptibility genes, thereby leading to a 

better diagnosis, prognosis, and management of hypertension.

To conclude, we successfully used a speed congenic strategy to dissect two 

BP QTLs identified on rat chromosome 2. The construction of congenic 

sub-lines, radiation hybrid mapping of the region where the QTL has been 

trapped, and cDNA microarray technology will allow cloning by position of 

the causal gene. The use of comparative mapping between rat, mouse, and 

human will permit the translation of this information from the experimental 

model to human cardiovascular disease.
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APPENDIX 1.

Suppliers of all the chemicals and reagents used.

Chemical Reagents Suppliers

1 st-strandTM cDNA synthesis kit Clontech

Advantage-HF 2 PCR kit Clontech

Agarose Gibco BRL

Ammonium persulphate BDH

AmpliCycleTM Sequencing kit Perkin-Elmer

Blue dextran Perkin-Elmer

Bromophenol blue Sigma

Buffer tablets BDH

Cellulose patchs Data Sciences Int.

Chloroform Fisher Scientific

Cidex Johnson & Johnson

Concentrated hydrochloric acid BDH

Cresol Red Sigma

Decon 75 Decon Laboratories Ltd.

dNTPs/deoxynucleoside triphosphates Promega

ddNTP s/dideoxynucl eoside triphosphates Perkin-Elmer

Dimethyl sulfoxide Sigma

EDTA Bio-Rad

Ethanol Sigma

Ethidium bromide Sigma

Exonuclease I USB

Form amide BDH

GENESCAN-350 Tamra Perkin-Elmer

Glacial acetic acid Fisher Scientific

Halothane Zeneca Ltd.

HotStartTaq DNA polymerase Qiagen

Hybond-N+ membrane Amersham

Isoamylalcohol BDH
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Isopentane 

1 OX kinase buffer

Long Ranger 50% stock gel solution

Magnesium chloride/MgC12

Metaphor agarose

Mineral Oil

Nuclei Lysis Solution

[a-32P]dCTP

[P-32P]dATP

10X PCR buffer

Phenol, water-saturated in Tris buffer

Powered milk

Polyoxyethylene

Protein Precipitation solution

Proteinase K

Ready Reaction mix

Resin AG 501-X8

RNase solution

RNAzolTM B

0.9% Saline

2OX SSC

SDS (sodium dodecyl sulphate) powder

SequaGel Sequencing System

Shrimp alkaline phosphatase

Sigmacote

Sodium acetate

Sodium chloride

Sodium hydroxide pellets

Sucrose

Taq DNA polymerase 

Tartrazine 

10X TBE 

TEMED

Fisher Scientific

Promega

FMC

Promega

FMC

Sigma

Promega

Amersham

Amersham

Qiagen

Life Sciences

Premier Beverages

Life Technologies

Promega

Sigma

Perkin-Elmer 

Bio-Rad 

Promega 

Biogenesis Ltd. 

Baxter Scientific 

National Diagnostics 

Bio-Rad

National Diagnostics

USB

Sigma

Sigma

Fisher Scientific 

Fisher Scientific 

Fisher Scientific 

Promega 

Sigma

National Diagnostics 

Sigma



TEMED

Terminal deoxynucleotidyl

transferase/TdT

TdT buffer

1 OX Thermophilic buffer 

Tris base

Ultra-pure formamide

Urea

VetBond

Xylene cyanol

Amresco

Promega

Promega

Promega

Bio-Rad

Amresco

Sigma

3M Animal Care Products 

Sigma
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APPENDIX 2.

List of all the recipes for the preparation of solutions.

10% Ammonium Persulphate (10 mL).

1 g APS dissolved in 10 mL sterile distilled water. Store at 4°C.

Buffer PI.

Dissolve 6.06 g Tris base, 3.72 g EDTA in 800 mL of sterile distilled water. 

Adjust the pH to 8.0 with HCL. Adjust the volume to 1 L with sterile 

distilled water. Add 100 mg RNase A per litre of P 1. Store at 4°C.

Buffer P2.

Dissolve 8.0 g NaOH pellets in 950 mL of sterile distilled water, 50 mL 

20% SDS solution. The final volume should be 1 litre. Store at room 

temperature.

Buffer P3.

Dissolve 294.5 g of potassium acetate in 500 mL of sterile distilled water. 

Adjust the pH to 5.5 with glacial acetic acid (-110 mL). Adjust the volume 

to 1 litre with sterile distilled water. Store at room temperature.

Buffer QBT.

Dissolve 43.83 g of NaCl, 10.46 g MOPS (free acid) in 800 mL of sterile 

distilled water. Adjust the pH to 7.0 with NaOH. Add 150 mL pure
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isopropanol and 15 mL 10% Triton X-100 solution. Adjust the volume to 1 

litre with sterile distilled water. Store at room temperature.

Buffer QC.

Dissolve 58.44 g NaCl and 10.46 g MOPS (acid free) in 800 mL of sterile 

distilled water. Adjust the pH to 7.0 with NaOH. Add 150 mL pure 

isopropanol. Adjust the volume to 1 litre with sterile distilled water. Store at 

room temperature.

Buffer QF.

Dissolve 73.05 g NaCl and 6.06 Tris base in 800 mL sterile distilled water 

and adjust the pH to 8.5 with HC1. Add 150 mL pure isopropanol. Adjust 

the volume to 1 litre with sterile distilled water. Store at room temperature.

Chloroform Isoamylalcohol mixture (250 mL).

240 mL chloroform added to 10 mL isoamylalcohol. Store at 4°C wrapped 

in light resistant bottle.

dNTPs (200 pL, 25 mM).

5 pL of each dGTP, dATP, dTTP, and dCTP (provided in 100 mM stock 

solutions) added to 180 pL sterile distilled water. Store frozen.

dNTPs (l,000pL, 1 mM).

10 pL of each dGTP, dATP, dTTP, and dCTP (provided in 100 mM stock 

solutions) added to 960 pL of sterile distilled water. Store frozen.
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0.5M EDTA, pH 8.0 (1 L).

186.1 g EDTA dissolved in 1 L sterile distilled water, pH adjusted with 

sodium hydroxide pellets. Sterilised by autoclave. Store at room 

temperature.

70% Ethanol (100 mL).

70 mL of 100% ethanol mixed with 30 mL sterile distilled water.

90% Ethanol (100 mL).

90 mL of 100% ethanol added to 10 mL of water.

2X Formamide Loading Buffer (10 mL).

9 mL formamide, 160 pL bromophenol blue, 160 pL xylene cyanol, 680 pL 

sterile distilled water. Store at 4°C.

LB medium.

Dissolve 10 g tryptone, 5 g yeast extract, and 10 g NaCl in 800 mL of sterile 

distilled water. Adjust the pH to 7.0 with 1 NaOH. Adjust the volume to 1 

litre with sterile distilled water. Sterilise by autoclaving.

PCR Master Mix (15 pL, n=l) fluorescent.

Contains 2 pL of 10X buffer (Quiagen), 1 pL of polioxyethylene, 4 pL of 

dNTPs (1 mM), 6.96 pL of sterile distelled water, 0.04 pL of HotStartTaq 

polymerase (Qiagen), and 0.5 pL of each primer (20 pM). the preparation is 

ready for PCR in a thermal cycler.
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PCR Master Mix (10 pL, n=l) non-fluorescent.

Contains 4 pL 5X Red, 2 jlxL 1 OX Promega thermophilic buffer, 1.2 pL 25  

mM MgCb, 1.1 pL 2.5 mM dNTPs, 1.6 pL sterile distilled water and 0.08 

pL Taq polymerase. The Taq was added immediately prior to the PCR 

reaction to avoid denaturation. Can be stored frozen until required without 

the polymerase enzyme.

Phenol choroform isoamylalcohol (200 mL).

100 mL water saturated phenol mixed with 100 mL chloroform 

isoamylalcohol mixture. Store at 4°C in light resistant bottle.

8% Polyacrylamide Gel Mix (100 mL).

32 mL SequaGel concentrate, 58 mL SequaGel diluent, and 10 mL 

SequaGel buffer mixed together.

Post-Hybridisation Wash Solution (1 L).

10 mL 20% SDS, 20 X SSC and 890 mL sterile distilled water mixed 

together.

Primer Solution (500 pL, 20 pM) for fluorescent PCR.

100 pL of each primer (forward and reverse) mixed with 300 pL of sterile 

distilled water. Store frozen.
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Primer Solution (5 pL, n=l) for non-fluorescent PCR.

0.8 pL of each 6 pM primer (forward and reverse) mixed with 3.4 pL sterile 

distilled water. Final addition of a few particles of tartrazine to aid 

identification. Can be stored frozen until required.

5X Red (10 mL).

6.5 g sucrose dissolved in 10 mL sterile distilled water. Addition of 1 pL 

cresol red for colour. Store at 4°C.

0.4% SDS (500 mL).

2 g SDS powder dissolved in 500 mL sterile distilled water by heating to 

68°C in microwave.

10% SDS (1 L).

500 mL 20% SDS mixed with 500 mL sterile distilled water.

3M Sodium Acetate, pH 6.0 (1 L).

408.1 g sodium acetate dissolved in 1 L of sterile distilled water. pH 

adjusted with glacial acetic acid. Sterilised by autoclave.

1% Sodium Chloride (1 L).

10 g sodium chloride dissolved in 1 L sterile distilled water.

241



4M Sodium Chloride.

117 g sodium chloride dissolved in 500 mL sterile distilled water. Sterilised 

by autoclave.

0.4M Sodium Hydroxide (1 L).

16 g sodium hydroxide pellets dissolved with stirring in 1 L sterile distilled 

water.

2 X SSC (1 L).

100 mL 20 X SSC mixed with 900 mL sterile distilled water.

Suspension Buffer (500 mL).

25 mL 1M Tris (pH 8.0), 100 mL 0.5M EDTA (pH 8.0), and 375 mL sterile 

distilled water mixed together.

IX TBE (1 L).

100 mL 10X TBE mixed with 900 mL sterile distilled water.

TE (20 mL).

200 pL 1M Tris (pH 8.0), 40 pL 0.5M EDTA (pH 8.0), and 19.76 mL 

sterile distilled water mixed together.

1M Tris, pH 8.0 (1 L).

121.1 g Tris base dissolved in 1 L sterile distilled water. pH adjusted with 

concentrated hydrochloric acid. Sterilised by autoclave.
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Solution for extraction of DNA from rat tails (20 mL).

1 mL 1M Tris (pH 8.0), 100 mL 0.5M EDTA (pH 8.0), 1 mL 10% SDS and 

14 mL sterile distilled water mixed together.
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APPENDIX 3.

Chromosome 2 fluorescent microsatellite markers, the different pools 

constructed to genotype them and the size of each product. 1, forward; 2, 

reverse primer; F, Fam fluorescent label; H, HEX label; and T, TET label.

Pool 2.1
Marker Name 

Number

1 D2Woxl3-¥L

Sequence

1-CCT CCT CCA GAG CCT TCA

2-GAG GAA CAT CCA CTT CAG TCC 

D2M U3-7  1 -ACA GAC AGA CAA GCA AGG AC

2-CCA AAA TGA GGC TTC TGC AA  

D2 Woxl 9-H 1 -CCT TTC TAT GAG GAT GTT CCC 

2-CAC CCC CAG TAC AGA GGA AG 

D2 Wox3-F 1 -GCC AGC AGG GTT AGA GAG A

2-CTA AGA AAG AAT ATG TGA AGG TTG 

D2 Wox9-F 1 -CTG AGG ACC AAT CAT GTT CAC

2-CCA GGT TAC AGT GAG TTC C 

D2MU14 -7  1 - ATG AGA GGT CAA AGC TTC TCA

2-AGA CCT GGG ACA GGG TCC T 

D2MU6-F 1 -TGT CAA AGG CAG GAA TCA AC 

2-ACC CCT TTT GAG ATA GCG CT 

D 2M ghJ2-7  1 -AAT AAC CAA TAA AGG ACA TGC TCC 

2-AGG AGG AAA AGA GTT GAG TCC C

Volume

( p L )

3

1.1

2.3

1.1

2.1

1.4

1.4

1.1

10

11

12

Pool 2.2
D2MU5-H

D2M it21-H

D 2W ox5-7

D2WoxJ 5-F

1 -CAG CAG GTG GAA ACA AGT CA 2.7

2-GGG AGG GAT TTG ATG GAG AT 

1 -GTT GAG TTG ATC CTC TGG CTG 0.6

2-GGG AGG GAG TGT CTG TCC CA 

1 -CAC TGC TTT TCT CAC CAA ACC 1.5

2-CTC TTC TGT TCT CTG TGA GCG

1-GGT GCT AGT AGA CAA TAG GAT AGA 4.8

2-TTC ATG AGT TTT CAC TGT TTG C

Size

(bp)
182

200

133

92

146

102

190

156

184

156

160

145
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13 D2Rat280-T 1 -CTG TCC AGC CTC TCA TCC TC

2-GTC CCA TTA TGG CTT CCA TG

0.6

Pool 2.3
14 D 2A rbl8-U

15 D 2R atl4-H

16 D 2R atl8-F

17 D 2Ratl67-F

18 D2Rat28-F

19 D2Rat49-F

21 D 2M itl8-T

1 -ATA TGC CTT TAG CGG TGG TGG C 1.8

2-TCT CGT CCA ACC TAC AGA TGG G 

1 - AAA CCA AAG TCT GTG GCT CC 3

2-GCT AAA TGG GAG ACC TGG AA  

1 -CTT CTC TTC CTC ACC CTC CC 1.2

2-GGA GTG ATC TGT TTC GTA TAA ATG C 

1 -GGT AAC CTG ACA GAT CAC CTC C 1.2

2-TCC AAA TTT TCC TTT TCG TTT T 

1 -CCA CAT GCC TTT CAG TTT CC 1.2

2-GAG TGC AAA GCC CAG TCT TC 

1 -ATC CCT GGT GAG GGA AAA GT 1.2

2-CTT ATT GTA TTT ACA TGT GCA CGC 

1 -TGA AGA CCT TTC GGT GTG TG 1.2

2-ACT GTA TTC CAC CAC CAC CC 

1 -GGG-GAT-GTT CTG CTG GTA GA 1.2

2-TTC CAA TTC TGG AGG ACC TG

Pool 2.4
22 D2Rcit215-T 1-CTT GGC AAC CCT GTG TTC TT 0.5

2-GTC TGA ATA TCA CTG CTT CTT TTG

23 D2Rat29-H 1-GCA CAT CTG TTA CAT ATA AGC ATG C 2

2-GGG GAT ATC AGA GAA TGA AAC A

24 D2Rat216-H  1-TTT TTA GGT CTG GAT ATG TTT GGA 1

2-AGA GAT GGC TCC AGC AGG TA

25 D2Rat43-T 1 -CTAACACATGTAACAGATGTTCCAC 0.5

2-CCAACCATTTCTTCTGGTCA

26 D2Rat231-F  1-TTG GTC TTA TTG GGT CTT TCG 1

2-CCC ACC TAC TCA ACT CCA TGA

27 D2Rat241-7  1-CTT ACA GAG GCA CAT GCA CC 0.5

2-CCA GAC TGG TCT CAG ACT TCA A

28 D2Rat287-11 1-TCA TCA GTC CCA GCA ATC CT 2

2-GGG AAG TAC ATC CTT GAC CTT TT

29 D 2Ratl57-F  1-AGC AGG AAC ATG GAG GAA TG 0.5

2-GTC CCA CCA TTG AGG CAT AG

30 D2Ratl2-F  1-GCA ACC ACA TTT TCA GAA TTG A 0.5

2-CCA GTC CCT CAG AAG GAA CA

145

250

147

172

215

294

127

124

190

330

137

154

200

142

174

200

213

154
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D 2R atl3 -T  

D2W ox37-T  

D2Rat32-H  

D2Rat52-F  

D2Rat23 7-H

1-TGG ACT AGC CCA ACC ATA GC

2-AAG GGC ATC ATG TTT CCA TC

1-TGA AAG GGC TAA CTG GGA A

2-AGG CCA CTG GGA TAC ATA GAC

1 - AACCTACTGACTAAAAAC AAC AGC A  

2-GTCTCCACAGTGCACAGCAT

1-CAC ACA CAA ACC TCC TGA AAA

2-TAG GAC TCT ATG CCC ATC CG

1-CCC TTG TTT GGT TGT ATG TTC A

2-CAA ATA ATA GTG CTC CAT GGC TT



APPENDIX 4.

Background microsatellite markers. 1, forward; 2, reverse primer; Tm, annealing 

temperature in centigrade degrees.

Marker Primer Sequences Tm
(°C)

Size
(b p )

Mgz+
(mM)

D1MH14 1- TCT GCC TTC TCA CAT GAA CA
2- TTC CAT CTA CTG CTG TTT AGG G

55-50 112 1.5

DlCebr6 1- TCT TCC TTT TCT AGC ACT CCA
2- TGT AGG TTG TAT TCG TGT ATG C

60-55 141 1.5

DlWox32 1- GCT ACT GCC TTG CCC TCA
2- TCA CAT TTA CCT GTA GTT GGA A

55-50 188 1.5

D IM itll 1- ATA AGC CAGCCCCCATTC
2- CCT ACT GAA AGT GAA ATG TCT GG

58-53 275 1.5

D lM itl 1- GGG GAA GTTTTAGGAAGTCCC
2- AGG GAA TGA AAA TAC AAC ACG C

55-50 146 1.5

DlWox37 1- TAG TGG GGA CAA TGC TAT CTC
2- ACT CAG ATG TAT AAT TGA CTG ACT G

55-50 146 1.5

DlMgh5 1- CCT TTG CTC TGA GCC TGG
2- AGA GAA AAA GAA AAG GGA AAA CG

55-50 155 1.5

D lM ghl8 1- ATT TAC AAA CAG GGA AGA AAG TGT
2- CCA ATT CTT CCC AAG AAT AGT CC

55-50 111 1.5

D3MU4 1- AAA AAA CCA ACC CCC TTC C
2- GCA AAG AGA TGC AAC ATC TGG

63-58 191 1.5

D3Woxl4 1- GCA TTG CCT GAG TAG GAT GT
2- GTT TGG CTG TAA TTG GCG

55-50 262 1.5

D3Mgh8 1- GCT GAA CGG ATG CTG AGA G
2- GGG ATT CCT AAG ACA GTT GCC

55-50 156 1.5

D3Mghl6 1- AGT CAG GGC TAT GTA TTG AGA ACC
2- CCT CTG ACC CCT ACA TGG G

55 120 1.5

D3Woxl9 1- TTC TAC TTG GGG ATT TCT TGA T
2- ACT TTG ACG TTG AAT GGT TGA

55-50 172 1.5

D3Mgh6 1- CCT TTA CTT CAT CTC CAT TCA AA
2- GCA GAC AAA TGT TCA ATC AAG G

55-50 110 1.5

D4Cebr3 1- GGA GCA TGT GCT TTT AAT ACT T
2- CAG GGG CTG TGG CTG TAA

60-55 100 1.5

D4Mghl6 1- CAG GAG CTG TCT GGG ACT TC
2- GAA CAC TAG AGA AAC TAG GCA GGC

60-55 259 1.5

D4Mgh 7 1- GAT CCA GCT CAC ATC TAA TCC C
2- CCA AAT GCT CTT GCA GTC AA

60-55 145 1.5

D4MH14 1- AGG ACA GGT TTT TGG GCT TT
2- TCT GCC GCC ACC TTA GAG

55-50 150 1.5

D4MH2 1- TTCTGTATTAACCACAGAAAGAAGC
2 - AAGCCAGCCCAAAGTAAATG

55-50 215 1.5

D5Woxl4 1- TGG GTA GGT CGT GTC TTC TC
2- CCT GGT TAG AGG AGG GAG TC

55-50 227 1.5

D5Woxl5 1- GGT AGA GGT GAG TGG AAT GAA
2- CCT CCT CAG CTC TGC TAG TC

60-55 118 1.5

D5Mghl5 1- CAC CTC GAC CAA CAC CAA C
2- TTA ATC CCA ACT GTG ACA TTC G

60-55 159 1.5
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D5M ghl6 1- GCA TAC AGC TTT ACA GTG CTG C
2- AGA CAA GGG ACA TGC TCG AG

60-55 133 1.5

D5Mit8 1- TGA CAG ACA GAC AGG TGC G
2- ATT ACA AAG TTT CCA GGA TGC C

55-50 128 1.5

D5Mgh6 1- GCA TAC AGC TTT ACA GTG CTG C
2- AGA CAA GGG ACA TGC TCG AG

60-55 133 1.5

D5W oxl6 1- CAG CCT TCA TTC TCA CAC
2- TGA CTT CTG TGA GCT CCT AC

55-50 160 1.5

D5MU9 1- CTA CTG GCC GTA GTG TTT GC
2- CCA CTG TGG TTG CTG TTC AG

63-58 127 1.5

D5Wox7 1- TTG GTG GTG CTG CAT CTA TTG
2-CTT AAG GCA ATA TAG GAA ACT AC

55 169 1.0

D5Wox4 1- CCT GCT GTT TCT GAC IC C  C
2- AGC ATC CAA GAC TGG GTG C

60-55 157 1.5

D6Wox21 1- TTG AGA AGC GTT AAA ATA TGT G
2- TTG GTT TAC AGG GTG AGA A

55-50 120 1.5

D6Mgh5 1- CAG TTA GCA TAG AAA GCA AAG GG
2- ATA GGA ATA AAG AGT GCA CGT TTG

55-50 104 1.5

D7MH10 1- TGC CCC AAA AAG GAA A A A  C
2- TCA GCT TCA TAC GGA AGC AA

60-55 171 1.5

D7MH7 1- ACA GCT GGA ATC CTC TGG G
2- GAG CTA GCC ATG CAG GAA AC

60-55 260 1.5

D7Wox27 1- TGT AGG TAT ACA TGC TAT ACA CCG
2- CAT ACT CCT CAT CAC CTA AGA TAG

55-50 189 1.5

D7Mgh5 1- TCC CAA CTC TCC CTT ACC G
2- TGT CTT GGA AGA AAG AAA GAA GG

55-50 229 1.5

D7Mghl 1. CCC AAT TTG GAA TTT TTT AAA GG
2. CGT AGG CAT CTT TGC ATG AA

55-50 135 1.5

D8Wox22 1- GCA GTG TGA GAG GAA AGT GTC
2- GAA GTC CTC ACC TGT GTT CAG

60-55 181 1.5

D8Mgh 7 1- TGA AGA GTT TTA CTG GGT AGC TCC
2- TGG ACC AGG CAA GTT CTC TT

60-55 191 1.5

D8Woxl3 1 - CAT CTG GGT CTG TGG TAA GG 
2- TCT GGG AAG GAC TCT TGG A

60-55 174 1.5

D8MghlO 1- CTT TGA TAC TGT ACC AAC AGC ACC
2- AAT GTC AGG ATG GCA GAG AC

55 144 1.5

D8Woxl6 1- GAA GGG TAC AGT CTG GGA AAG
2- AAG GCT CCT ACT CCA GGT CTA

55-50 208 1.5

D8Mghl 1- TTG TCT GTA AGT ATG CAC ATG TGG
2- GAT GAG CAG GGG CAT GTC

55-50 153 1.5

D9Mitl 1- GCT TTC AAA CAC CAC AGG GT
2- ACA ACT CCC ATC TCT TGA GAG G

55-50 130 1.5

D9Woxl3 1- CCT TTG CGG GGT GTT GTA
2- ACC AAC AAT GCG ACA GAG AAT

55-50 278 1.5

D9MH4 1- GCA TAA TGG AAG AAG ACA ACT ACC
2- TCC ATG CAT GTG TAT CTG CA

55 200 1.5

D9MU3 1- TGA GAC TTG TAT TCA CTC CTC CC
2- CTA TCC CTG TCT CTG TGT CTA CCA

55-50 156 1.5

D9Woxl8 1- GCC AGA TAT AAG ATG ATT AGT CTG
2- CCACAGTCATTGAGTTATTGGT

55-50 178 1.5

D10Wox3 1 - GAA GTC TTC ACT TTT ACT TGT GG 
2- GAC CCT TTT GAG AGA ACT TTT G

60 176 1.5

DIOM ghll 1- GGT GTA GGT TCG TCT GTC AGG
2- CGG TGC TCA TAA AAG GGA AA

55-50 140 1.5

D10Wox3 1- GAA GTC TTC ACT TTT ACT TGT GG
2- GAC CCT TTT GAG AGA ACT TTT G

60 176 1.5

D llM gh6 1- AAC AGT CAA AAG AGA TAT CCA GGG
2- AAA CAA ATG ATG TAC ATG CAT ACA

60-55 100 1.5

D12Wox2 1- TAA CCT CCA AAG GAC CTC TC
2- CTA GAT AAG GTG TAT GTG GCT C

60 194 1.0
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D12Mgh3 1- TTC AAC AAC CAC CTC ACT TCC
2- GGA TTG AGG GTG GGG TAA GT

60-55 124 1.5

D12 Woxl 1- GAC ATT AAG GGG TCT TCC TAA G
2- TAT CTT TGC AAC GCT GAG G

63-58 401 1.5

D13Mghl 1- AGA GAA AAT ATG TGG ACA GAA GCC
2- CAC TTC CCA AAT GCT AGC GT

60-55 149 1.5

D13 Wox4 1- CCT GGA CAC TAA TCC TAT CTT G
2- GGG TAG GTC TGA GGG AAG G

55 180 1.0

D13Mgh4 1- CAT ATT TCC CCC AAT CCT GT
2- CGG ATC TCC ATA TGT ACT TGT ACA

55-50 143 1.5

D13Mghl6 1- TCA CAG AGA CCA TGG AGC AG
2- GAC CCT TAT TCT CTC CCT CCC

55 220 1.5

D14Wox24 1- AAG CCT GCT CCA CTC CAC
2- GCA GAG GGG AGA GGT AAT AA

60-55 257 1.5

D14Wox5 1- CAG GAA GAG AAA GGG AGT TGG
2- GTC TGA AGT GGT TGT GAG TTC C

63-58 154 1.5

D14Wox8 1- AAG AAT AGC AGT GAA TTG GTG
2- TTC ATC ATC CTT TCA TAA AGG C

60 151 1.0

D14Mghl3 1- CAAGCACACCGTAGTAGAGGG
2- AATGGCTAGCTATCTATTGTGCG

55-50 120 1.5

D15MU2 1- TAC ATG GAA GCC AAA TGC AA
2- TAC TGA GAA AAT GGG TCT GC

55-50 140 1.5

D15Mgh3 1- AGA CCC AGG GTA GGC ATT TT
2- GAT TAC AAT TCT GTC CAA GTC ACG

55-50 146 1.5

D15Mgh6 1- AGC AGC GGT ATC TCC AGT GT
2- GGG TGA CGG AGC AGA GAA A

55-50 216 1.0

D16Woxl2 1- TAG CAG GAT GTT GTA GGT GC
2- CCA GGG TAT TAA GGT CGG AC

60 230 1.0

D16Mitl 1- GGC TTG TGT GGA CAC CTG TA
2- AAA GAG CAG GGA AGA GAC AGG

55-50 164 1.5

D16WoxlO 1- AGG CTT TGA TTG CAG GAA G
2- AAA GAG CTG TCG TCC ACA AC

60 118 1.5

D16Woxl 1- CCT GGG AAT TTC ATT CTT GG
2- AGC TGT CCT CTG ACC TTC ACA

60-55 122 1.5

D16Mghl 1- GAC CTC CAG GAT TGG TGA GA
2- ACA ACC CAT GAG GCA GAC AG

55-50 237 1.5

D17Wox21 1- TAA GGA CCC CTG ATA CTC TGG
2- AGA TCT TTG TCA AAT TCA TGG C

60-55 153 1.5

D17 Woxl 3 1- AGT AGA CAG GAG TGG GAA GGA
2- CTC TTT GGG CAG CTT ACA TT

60 134 1.0

D17WoxlO 1- ATC TGT GTG CGA GTG CGT
2- CTG GCG AAG TGA CGT GAG

60 147 1.0

D17MU3 1- TAA GGT CCC TCC AGA CTC CA
2- TGG GCA GAG AAC AGC AGT C

55-50 186 1.5

D18 Woxl 2 1- CAC ATG TTT ACT TTC TAA GCA TTT G
2- CCC CTC TTC TGG ACT TCA TAG

60 148 1.5

D18Woxl6 1- TCA CAA TAA AAA ACT CCT CCA AC
2- AGT CTG TGC CCT GTT CCC A

60-55 152 1.5

D18Woxl 1- CAA ACA ATT CTA AAA CAA AAA GTG
2- CAC CTA CTA CTG ACG GCA GGG A

55-50 101 1.5

D19Wox2 1- GGT ATG GGA GTA ACA TGA CCT C
2- GGA CAC ATA CGG TAA GCA CAT GC

63-58 129 1.5

D19Wox8 1- TGC CCG TCT CTG TTA CTC AT
2- CAA GAA CCC TGA GGC AAT AA

60 111 1.0

D19Mit2 1- AAG GTT GGC AGT TTC CCA G
2- ACC ATT TAT GTG CCC AGA TG

55-50 200 1.5

D20Wox5 1- GAA AAA TAC TTC CAC ACA CTA ATG
2- AAA GTC AAG CCC TGG AGT G

60-55 259 1.0

D20Wox3 1- AGG AAA TGG GTT TCA GTT CC
2- CAG GAT TCT GTG GCA ATC TG

55 125 1.0



DXMit4

DXWox3

1 -ACT CCA ACA CCC AGT CAA CC 55-50 188 1.5
2- GCC A A A  GCA TCT CCC TAT CA
1 -G A T  CGT CCA GCA TCG TGG 60 130 1.5
2- GTT GGT GCT ACT CAA GAT CGG
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APPENDIX 5.

PCR conditions of microsatellite markers used to construct the genetic map 

of rat chromosome 2 and to genotype the congenic lines.

Polymorphic marker . Magnesium concentrationAnnealing temperature ( C) ( .

D 2 Woxl 3 50 1.0
D2Mit3 50 1.5

D 2 Woxl 9 55-50 1.75
D2Wox3 60 2.0
D2Wox9 55-50 1.0
D2MU14 55 1.5
D2MU6 55 1.5

D2Mghl2 55 1.5
D2Mit5 55 1.5
D2MU21 55 1.5
D2Wox5 55-50 1.0

D 2 Woxl 5 55 1.5
D2Rat280 55 1.5
D2Arbl8 60 2.0
D 2Rat 14 55 1.5
D 2Rat 18 55 1.5

D2Rat167 55 1.5
D2Rat28 55 1.5
D2Rat49 55 1.5
D2Rat58 55 1.5
D2Mitl8 60 1.25
D2Rat215 55 1.5
D2Rat29 55 1.5
D2Rat216 55 1.5
D2Rat43 55 1.5
D2Rat231 55 1.5
D2Rat241 55 1.5
D2Rat287 55 1.5
D2Ratl57 55 1.5
D 2Rat 12 55 1.5
D2Ratl3 55 1.5
D2 Wox3 7 55-50 1.0
D2Rat32 55 1.5
D2Rat52 55 1.5
D 2Rat 15 55 1.5
D2Wox38 55-50 1.0
D2Rat237 55 1.5
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APPENDIX 6.

Raw genotypic data of polymorphic markers on rat chromosome 2. 140 F2 

animals were studied. Codes are as follows: cross G refers to those F2 

hybrids with an SHRSP grandfather; cross H refers to those with a WKY 

grandfather; H is heterozygote, B SS homosygote; A a WW homozygote; 

indicates no genotype recorded for that animal.
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F H H H H A H H A H - H H - H H H H H

G2 F B B B B B B B B B B B B B B B B B B
G3 F A A B B H B H H A B H H A A A A B B
G4 F H A A A - A A A A A A A A A A A A A
G5 F B B H H H H H H B H H H B B B B H H
G6 M H H H H - H H H H H H H H H H H H H
G" F A A A A A A A A A B A A A A A A A A
G8 F H H A H - A H H H H H H H H H H H H
G9 F A A H H A - H A A H A H A A A A H H

G10 M B B H H B H B B H B B H B B B B B B
G il M B B - H B B B B B H B H B B B B H H
G12 M H H A A A A A A H - A H H H H H A A
G13 M B B B B B B B B B - B B B B B B B B
G14 M A A A A H A H H A - A H H A A A A A
G15 M B B B B H B B H B - B B B - B B B B
G16 M H H B B B B B B H - B B H H H H B B
G17 F A A A A A A A A A - A A A A A A A A
G18 F B B H H H H H H H - B H H H H H H H
G21 M H A A A A A A A A - A H A - A A B A
G22 M A A H H A A H A A - A A A A A A H H
G43 F B B H B H A H H H - B H H H H H B B
G44 F - H B B - - H H B - B H B B B B B B
G26 F H B A A A B A A H - B A H H H H A A
G27 F B B B B H A H H B - A H B B B B B B
G28 F B A H H H B H H A H A H A A A A A A
G30 F H A H H H H H - A H H H A A A A H H
G32 F A B H H A H A A B H B H B B B B H H
G33 F B B H - H H H H B B H H B B B B B B
G j 4 M B H H H H H H H H H H H H H H H H H
G35 M H H B H B H B B H H B B A A H H H H
G36 M H B B B H B H H B B H H B B B B B B
G37 M B H A H A B H A H H H A H H H H H H
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G39 M H H H B H A H H H B A H H H H H B B

G 4 0 M H H A A A H A A - A B A H H H H A A
G 4 1 M H B B B H A B H B B H B B B B B B B

G 4 5 F B H H H H B H H H - H H H
|G 4 6 F H H H H H H H H A H B H A A A A H H
G 4 8 M B B B B H H - - B B H H B B B B B B

G 4 9 M B B B - B H B B B H A B B B B B H H
G 5 0 M H A A - H B H H A A H H A A A A A A
G 5 1 F B H H - H H H H - - H H H - - - - -

C 7 2 F B B A - H H H H 3 - H H B B B B H H
G 5 3 F B H A - A A A A B A H A H H - H H A
G 5 4 M H H H - H A H H H H H H H H H H H H
G 5 5 M H A B - B H B B A - H B A - A A H H
G 5 7 F B B B - B B B B H - B B B - B B B B

G 5 8 F H H H H H H H H H H H H H H H H H H
H I M H H B B A H A A H B B - H H H H B B

H 2 M H H A A A A A A A A H H H H H H A A
H 3 F H H H H H H H H H H H H H H H H H H
H 4 M H H A H A A A A H H H H H H H H H H
H 5 M H H H H B B B B B H H H H H H H H H
H 6 M A A A A A A A A H A A H A A A A A A
H 7 M H H A A B H B B A A H B H H H H A A
H 8 M H H H H H H H H - A H H H H H H H H
H 9 F - H H H H H H H H H H H H H H H H H

H 1 0 M H H H H A - A A H H H A H H H H H H
H l l M H H B B B B B B H B B B H H H H B B

H 1 2 M H H H H H H H H A H H H H H H H H -

H 1 3 F H H H H H H H H H H H B H H H H H H
H 1 4 F B B H B H H H H B B B H B B H B B B

H 4 1 M H H H H H - H - H H H H H H B H H H
H 4 2 M B B B B H B H H B B B H - B H B A B

H 1 7 F H B H H H H A H H H H H B B B B H H
H 1 8 F H H H A H - H H H A A H H H B H A A
H 1 9 F H H H H H H H H H H H H H H H H H H
H 2 0 M H H H H H H H H H H H H H H H H H H
H 2 1 M A A H - A A B A A H H A A A H A H H
H 2 2 F H H H H H H A H H H - H H H A H H H
H 2 3 F H H A A H A H H B A A H B B H B A A
H 2 4 F A A A A H A B H - A A H - A B A A A
H 2 5 F H H H H H H B H H H H H H H A H H H
H 2 8 M H H H H B - B B - - H B H - H H H H
H 2 9 M H H H H H - H H H H H H H - H H H H
H 3 0 M B B B B B B - B A B B B A A H A B B

H 3 1 M A A A A H A H H A A A A A A A A A A
H 3 2 F B B H B A H H A B B B H B B A B B B

H 3 3 F A A H H H - A H A H H A A A B A H H
H 3 4 M A A H H H H H H A H H H A A A B B B

H 3 5 F B B H H H H H H B H H - B B B B H H
H 3 6 F B B B B B B A B - B B B B B B B B -

H 3 7 F B - B B B B B B - B B B B B - - - -

H 3 8 F - H A H A - A A - H H A H H H H H -

H 3 9 F H H H H H H H H H H H H H H H H H H
InO F H H H H H H H H H H H H H H H H H -

H 4 3 M H H H B B B B B H B H B H H H H B B

H 4 4 F - H H H B B H H H H H B B
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345 F - H - - H H - H H H H H - H - - - -

H46 F H H - H H H H H H H H H H H H H H H
H47 F H H H H H H H H B H H H H B B B H H
[148 M - - A - A - - A H H H A H H H H H H
p 4 9 M - H A - H H A H H A H H H H H H A A
H 50 F H H - A A A A A H A H A A H H H H A
H51 F H H - A H A H H H A A H H H H H A A
G 59 F A A H H H H H H H - A H A - A A H H
G 60 F A A A A A A A A B - A A A - A A A A
G61 F A A A A A A A A H A A A A
C '2 F H H B H H B H H H H H H A
G64 M B B H B - B B - H B B B B
G65 M H H B B H B - B H - - B H
G66 M H H H H H H H H H H H H B
G67 M H H - H H H H H B A H H B
G68 M B B H H H H H H - H H H B
G71 M B B B B B B B B A B B B A
H52 M A A A A - - - A H A A H H
H53 M H H H H B B B B - H H B H
H55 F H H A H A - A A A B H A A
H56 F A A A H A A A A H H H A H
H57 F H H B B B B B B B B H B H
H58 F A A H A H H H H - A A H A
H59 F H A H FI A H A A H H A A A
H60 M A A A A - - H H B A A H A
H61 M A A H A H - H H H - A H A
H62 M - - H - - - B B - - H B A
H63 F H A A A A - A A B - A A H
H64 F H H H H A A A A H - H A H
H65 M H H H H A A A A H - H A H
H66 F H H H H - H H H
H67 F H H A A A A A H A - H A H
H 68 M H H B B B B B B - - B B H
H69 M H H H H H H A H - - H H B
H70 M B B B B B H B B - - B H H
H71 M H A A A H - H H A - H H H
H72 M H H H H H - A A A - H H B
H73 M B B H H H H H H A - H H H
H80 F H H H H B B A B H - H B H
H81 F H H H H H A H H H - H H H
H82 F H H A A A A A A H - A A H
H88 F H H B H B B - B H - H B H
H74 M H H H H H FI H H B - H H H
H75 F H H A A H A H H H - A H H
H76 F A A H A H H A H A - A H A
H77 F A A H - B FI H B H - A H A - - - - -

H78 F H H A A A A H A B - A A H
H79 F B B B B H B A H H - B H B
H84 F A A A A A A H A H - A A
H86 F - - B - - B A B B - B B H
H91 F H H H H A H B A A - H A H
H89 M H H B H B B A B A - H B H
H90 M H H - H H B B A A - H H H
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G1 - H - H H - H H -
v>2 B B B B B H B B B B B B B B A B B B B
G3 H H B H A A H A H A - B A A A B A B A
G4 A A A A A A A A A A - H A A A A A A A
G5 H H H H B B H B H B H H B B B H B H B
G6 H H H H H H H H H B H H H H H H H H H
G7 A H B A A A A A H A A A A A A A A A A
G8 H H H H H H H A H B A H H H A B H H H
G9 A A H A A A A A A A - H A A A H A H A

G10 H B B H B B B B B H H H B B H H B B B
G i l B B H B B B B B B B H H B B B H B H B
G12 - A H H H A H A -
G13 - B B B B B B B -
G14 A A A A A A A -
G15 - B B B B - B - -
G16 - - - - - - - - - - - B H H H B H B -
G17 A A A A A A A -
G18 H H B H H H H -
G21 - A A A A A A A -
G22 - H A A A H A H -
G43 B H B H B H B -
G44 B B H B B B B -
CA 6 - A H B H A H A -
G27 B B B B B B B -
G28 H H H H A A H A H A H H A A A H A H A
G30 H H H H A H H A H - H H A A A H A H A
G32 A A H A B B A B A H H H B B B H B H B
G33 H H B H B B H B H H H H B B B - B B B
G34 H H H H H H H H H H H H H H H H H H H
G35 B B H B H H B H B H B H H - H H H H H
G36 H H B H B B H B H B B B B B B B B B B
G37 A A H A H H A H A H A H H H H H H H H
G39 H H B H H B H H H H H B H H H B H B H
G40 A A A A H B A H A H A A B H H A H A H
G41 H A B H B - H B H H B B B B B B B B H
G45
G46 H H H B A - H A H A H H A A A - A H H
G48 H H B H B - H B H B B B B B B B B B B
G49 B B H B B - B B B B B B B B H B B H B
G50 B H A B A A H A B A A A A A A A A A A
G51
G52 H H H H B B H B H B A A B B B B B H B
G53 H A A H H B A H A B A A B H B A H A H
G54 H H H H H B H H H B H H H H H H H H H
u 5 5 H A A A H A H -
G 57 B B B H - B B -
G58 A H H A H A H H H B H H H H H H H H H
HI A A A A H H A H A H B B H H A B H B H
H2 A A B A H H A B A H A A H H H A H A H
H3 H H H H H H H H H H H H H H H H H H H
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H4 A A H A H H A H A B A H H H B H H H -

H5 H H H B H H B H B H H H H H H H H H H
H6 A H A A A A H A A A A - A A A B A - A
H7 B B B H A A B H B H A A H H H B H A H
H8 H H H B H H H H H A H H H H H H H H H
H9 H H H H H H H - H H H H H H H H H H H

H 10 A H - A H H H - A H H H H H H H H H H
m i B B B B H H B H B H B B H H H B H B B
H12 H H H H H H H H H B H H H H H H H H H
H13 H H H H H H H 11 H H H H A H H H H H H
H14 H H B H B - H B H B H - B B B B B B B
H41 H A H H H H H H II H H H H H H H H H H
H42 H H B H B B H B H B H B B B B B B B H
H17 H H H H B B H B II B H H B B B H B H H
H18 H H B H H H H H H H H A H H H A H A H
H19 A A H A H H - H A B H H H H H H H H -

H20 H H H H H H H H H H H H H H H H H H H
H21 A - H A A - H A A H H H A A B - A H B
H22 H H H H H - B H H H H H H H H H H H H
H23 H H B H B B - B H B A A B H A A B A H
H24 B H B B A A H A B H A A A A B A A A B
H25 - H H H H - H H 11 B H H H H H H H H B
H28 - H H H H H H H -

H29 H H H H H H H H H B H H H H H H H H H
1130 A B A B H A B A B A B B A B A B A B B
H31 H H A H A A H A H A A A A A A A A A -

H32 - A A A B B H B A B B B B B H B B B B
H33 H H H H A A A A H A - H A A A H A H H
H?4 B H H - A A A A B A H B B B B B B - H
rt35 - H H H B B A B H B H H B B B H B H B
H36 H H B B B - B B B H H B H B A B H B B
H37 H A B B B - B H B B H - B
H38 A H H A H A A H A B A H H H B H H H H
H39 B H H H H H H H H H B H H H H H H H H
H40 H H H B H - - H - H H H H H H H H H H
1143 H B B B H H B H H H B B H H H B H B H
H44 B B B H H - B H H H B B H H H B H B A
H45 B B H H H H B H 11 H H - H
H46 H H H H H H H H H H H H H H H H H H H
H47 - H H H H A H B H B H H B H B H B H H
H48 A A H A H H A H A H H H - H H H H H H
H49 H A A H H H H 11 H H H A H H H A H A H
H50 A H - A H H A H A H A A H H H A H A H
H51 H H A H H H H H H H A A H H H A H A H
G59 - H - A A H A H -

G60 - A - - B - - - - - - A A A A A A A -

G61 A - - A A - A A A A H - A
G62 H - - H A A H H A H
G64 H - - B B B B B B B B H
G65 - - - - H - - - - - - - - - - - - - -

r r >6 H H - H H - H - II 11 H B
G67 - - - - A - - - - - - - - - - - - -

G68 B H - B B B H B - B H H
G71 B B - B B B B - - B B - H
H52 H H - B A A H A H H A A
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H53 
H55 
H56 
H57 
H58 
H59 
H60 
H61 
I I 52 
H63 
H64 
H65 
H66 
H67 
H68 
H69 
H70 
H71 
H72 
H73 
H80 
H81 
H82 
1188 
H74 
H75 
H76 
H77 
H78 
F '9  
H84 
H86 
H91 
H89 
H90

H H  - H H H H H H B H ............................................................................
B -  - H B B B B B A H .......................................................................
A A  A A - A A  A A A ............................................
B B  - H H - B H B B H .............................................................................. H
H H  - H A - H A H A H .................................................................................... A
A A  - A A A A A A A H ........................................................................... - A
H H  - H A A H A H A A .................................................................................... A
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APPENDIX 7.

Raw phenotypic data used to map the BP QTLs during the baseline 

telemetry period. Codes are as follows: Cross G refers to those F2 hybrids 

(n = 140) with a SHRSP grandfather; Cross H a WKY grandfather. LV/Bod 

is the left ventricular weight to body weight ratio; mean SBP, Mean baseline 

systolic blood pressure; Mean DBP, Mean baseline diastolic blood pressure; 

Mean PP, Mean baseline pulse pressure.

Cross Sex LV/Bod M ean SBP (mmHg) Mean DBP (m m Hg) M ean PI 
(mmHg;

G I F 4.8 140.529 91.24 49.289
G2 F 2.66 169.981 119.743 50.238
G3 F 2.79 164.097 113.548 50.549
G4 F 2.81 152.583 105.167 47.416
G5 F 2.71 165.155 113.537 51.618
G6 M 2.72 175.056 121.365 53.691
G7 F 3.12 203.779 142.876 60.903
G8 F 2.82 165.54 115.223 50.317
G9 F 2.73 150.992 103.305 47.687

G10 M 2.37 163.951 112.611 51.34
G il M 2.61 178.064 124.031 54.033
G12 M 3.33 188.875 129.279 59.596
G13 M 3.16 195.794 137.513 58.281
G14 M 3.3 189.094 127.583 61.511
G15 M 3.22 200.162 137.854 62.308
G I6 M 2.79 194.039 134.614 59.425
G17 F 3.3 161.892 110.885 51.007
G18 F 3.5 171.188 117.245 53.943
G21 M 3.22 167.955 116.322 51.633
G22 M 2.76 177.665 122.825 54.84
G43 F 3.68 148.515 97.573 50.942
G44 F 3.07 223.01 159.222 63.788
G26 F 3.69 177.619 130.556 47.063
G27 F 2.8 148.149 96.428 51.721
G28 F 4.05 193.332 136.594 56.738
G30 F 2.74 165.606 115.688 49.918
G32 F 2.92 164.57 113.713 50.857
G33 F 3.51 171.58 115.293 56.287
G34 M 2.7 183.223 127.571 55.652
G35 M 2.69 171.942 116.903 55.039
G36 M 3.22 220.776 154.033 66.743
G37 M 3 196.762 135.377 61.385
G39 M 2.77 176.501 120.947 55.554
G40 M 2.6 170.627 115.756 54.871
G4I M 2.65 200.02 140.754 59.266
G45 F 3.66 164.143 111.548 52.595
G46 F 3.33 178.954 122.833 56.121
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G48 M 3.14 182.102 122.334 59.768
G49 M 3.08 193.839 129.9 63.939
G50 M 2.58 172.842 120.126 52.716
G51 F 3.4 162.15 109.812 52.338
G52 F 3.43 176.358 117.459 58.899
G53 F 2.73 151.384 104.639 46.745
G54 M 3.27 196.231 134.634 61.597
G55 M 2.79 181.365 122.2 59.165
G57 F 3.06 156.847 108.152 48.695
G58 F 2.91 162.218 110.997 51.221
H I M 2.4 175.138 116.155 58.983
H2 M 2.66 163.485 109.363 54.122
H3 F 3.1 164.929 112.311 52.618
H4 M 2.42 166.223 116.655 49.568
H5 M 2.64 162.11 111.837 50.273
H6 M 2.99 169.667 115.429 54.238
H7 M 2.7 177.056 124.311 52.745
H8 M 2.52 168.499 117.469 51.03
H9 F 3 163.641 117.987 45.654

H10 M 2.62 170.924 119.264 51.66
H ll M 2.83 194.4 132.619 61.781
H12 M 3.28 174.857 114.641 60.216
H13 F 2.83 153.607 102.79 50.817
H14 F 2.82 162.77 110.228 52.542
H41 M 2.57 166.125 112.044 54.081
H42 M 2.57 175.795 119.43 56.365
H17 F 2.79 163.417 111.344 52.073
H18 F 2.77 161.924 112.928 48.996
H19 F 2.4 146.758 102.109 44.649
H20 M 2.31 161.779 112.84 48.939
H21 M 2.68 189.375 127.667 61.708
H22 F 2.58 152.44 106.008 46.432
H23 F 2.33 139.103 99.83 39.273
H24 F 2.46 153.123 107.029 46.094
H25 F 2.59 149.674 101.538 48.136
H28 M 2.68 172.812 116.788 56.024
H29 M 1.97 168.912 114.672 54.24
H30 M 2.7 179.686 118.398 61.288
H31 M 2.31 167.444 114.588 52.856
H32 F 2.29 165.352 110.368 54.984
H33 F 2.43 151.852 105.494 46.358
H34 M 2.34 165.26 114.598 50.662
H35 F 2.7 153.97 108.864 45.106
H36 F 2.83 172.308 120.128 52.18
H37 F 2.36 162.784 113.349 49.435
H38 F 2.57 154.069 104.574 49.495
H39 F 2.76 158.429 108.678 49.751
H40 F 2.81 175.422 118.955 56.467
H43 M 2.22 156.564 109.059 47.505
H44 F 3.04 165.143 114.003 51.14
H45 F 2.67 161.449 110.438 51.011
H46 F 2.32 160.098 112.843 47.255
H47 F 2.48 166.739 122.047 44.692
H48 M 2.79 142.924 101.536 41.388
H49 M 2.73 182.634 109.728 72.906



H50 F 2.36 143.913 95.709 48.204
H51 F 2.42 157.125 108.221 48.904
G59 F * 248.267 176.407 71.86
G60 F 3.1 153.734 105.29 48.444
G61 F 3.313 130.495 82.905 47.59
G62 F 2.866 168.27 113.923 54.347
G64 M 2.906 169.076 117.183 51.893
G65 M 3.208 232.824 169.005 63.819
G66 M 2.775 182.906 125.76 57.146
G67 M 2.938 191.575 131.605 59.97
G68 M 2.927 184.447 127.404 57.043
G71 M 3.448 195.156 132.841 62.315
H52 M 2.25 169.574 115.77 53.804
H53 M 2.48 178.854 122.496 56.358
H55 F 2.39 154.118 107.185 46.933
H56 F 2.95 162.815 111.437 51.378
H57 F 2.66 159.821 109.215 50.606
H58 F 2.74 150.137 102.08 48.057
H59 F 2.77 176.087 123.598 52.489
H60 M 2.42 167.897 116.801 51.096
H61 M 2.6 i 164.32 111.959 52.361
H62 M 2.48 182.776 129.292 53.484
H63 F 2.62 183.297 130.656 52.641
H64 F 2.93 184.825 130.322 54.503
H65 M 2.4 162.673 112.652 50.021
H66 F 2.33 149.872 104.099 45.773
H67 F 2.71 163.227 113.364 49.863
H68 M 2.73 178.693 124.238 54.455
H69 M 3.15 169.048 121.784 47.264
H70 M 2.52 161.442 114.849 46.593
H71 M 2.85 150.024 102.825 47.199
H72 M 2.43 142.993 101.079 41.914
H73 M 2.51 153.985 106.843 47.142
H80 F 2.69 181.118 128.443 52.675
H81 F 3.04 191.857 129.553 62.304
H82 F 2.82 179.667 119.43 60.237
H88 F 2.62 177.049 123.127 53.922
H74 M 2.79 185.923 126.973 58.95
H75 F 2.86 157.866 109.264 48.602
H76 F 2.52 144.867 102.647 42.22
H77 F 2.59 147.605 102.333 45.272
H78 F 2.9 165.105 113.988 51.117
H79 F 2.8 166.289 113.328 52.961
H84 F 2.66 137.874 96.994 40.88
H86 F 2.52 153.019 107.574 45.445
H91 F 1.94873 151.7 104.55 47.15
H89 M 2.60888 163.74 112.19 51.55
H90 M 2.59057 151.7 114.84 36.86
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APPENDIX 8.

Raw phenotypic data used to map the BP QTLs during the salt-loaded 

phase. Codes are as follows: Cross G refers to those F2 hybrids (n = 140) 

with a SHRSP grandfather; Cross H a WKY grandfather; salt MSBP, mean 

salt-loaded systolic blood pressure; salt MDBP, mean salt-loaded diastolic 

blood pressure; salt MPP, mean salt-loaded pulse pressure.

Cross Sex Salt MSBP (mmHg) Salt MDBP (mmHg) Salt MPP (mmHg)

G1 F 147.93 100.07 47.86
G2 F 173.3 120 53.3
G3 F 168.56 115.73 52.83
G4 F 163.95 112.8 51.15
G5 F 171.57 117.94 53.63
G6 M 181.96 126.13 55.83
G7 F 211.33 146.46 64.87
G8 F 173.61 119.66 53.95
G9 F 154.98 105.26 49.72

G10 M 168.69 116.4 52.29
G il M 182.11 125.52 56.59
G12 M 194.9 132.74 62.16
G13 M 209.57 146.95 62.62
G14 M 193.91 130.44 63.47
G15 M 196.82 132.08 64.74
G16 M 204.7 141.06 63.64
G17 F 181.66 126 55.66
G18 F 203 147.03 55.97
G21 M 182.6 128.11 54.49
G22 M 183.01 126.24 56.77
G43 F 159.54 104.61 54.93
G44 F 235.43 166.98 68.45
G26 F 178.47 134.1 44.37
G27 F 153.41 105.07 48.34
G28 F 229.25 162.76 66.49
G30 F 165.65 112.18 53.47
G32 F 167.62 112.33 55.29
G33 F 175.99 115.19 60.8
G34 M 193.36 134.83 58.53
G35 M 177.07 120.62 56.45
G36 M 223.34 155.43 67.91
G37 M 199.14 132.27 66.87
G39 M 177.33 119.71 57.62
G40 M 173.83 117.53 56.3
G41 M 206.23 143.5 62.73
G45 F 170.2 114.64 55.56
G46 F 181.56 122.72 58.84
G48 M 199.53 134.46 65.07
G49 M 218.61 147.9 70.71
G50 M 170.99 115.65 55.34
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G51 F 173.22 116.54 56.68
G52 F 194.44 131.1 63.34
G53 F 159.68 110.63 49.05
G54 M 244.01 170.6 73.41
G55 M 189.85 127.71 62.14
G57 F 166.2 114.01 52.19
G58 F 162.63 108.55 54.08
H I M 182.448 121.36 61.088
H2 M 173.9 116.38 57.52
H3 F 170.983 114.61 56.373
H4 M 167.894 116.83 51.064
H5 M 171.023 118.01 53.013
H6 M 174.969 118.2 56.769
H7 M 180.502 125.24 55.262
H8 M 177.21 123.59 *

H9 F 166.44 115 *

H10 M * * *

H l l M 197.24 131.1 66.14
H12 M 180.05 118.27 61.78
H13 F 154.6 99.64 54.96
H14 F 170.43 115.4 55.03
H41 M 171.41 115.38 56.03
H42 M 184.29 126.14 58.15
H17 F 171.58 116.29 55.29
H18 F 171.92 116.88 55.04
H19 F 151.35 105.22 46.13
H20 M 167 116.39 50.61
H21 M 199.74 135.84 63.9
H22 F 160.85 109.01 51.84
H23 F 142.83 99.82 43.01
H24 F 161.88 111.93 49.95
H25 F 158.58 106.15 52.43
H28 M 189.71 129.97 59.74
H29 M 183.31 124.1 59.21
H30 M 196.18 132.32 63.86
H31 M 181.19 125.53 55.66
H32 F 169.3 112.14 57.16
H33 F 163.61 112.33 51.28
H34 M 170.37 117.78 52.59
H35 F 164.09 114.46 49.63
H36 F 180.34 124.34 56
H37 F 168.41 117.22 51.19
H38 F 159.35 108.25 51.1
H39 F 163.24 109.41 53.83
H40 F 187.25 126.51 60.74
H43 M 171.48 116.49 54.99
H44 F 170.51 115.89 54.62
H45 F 169.07 115.24 53.83
H46 F 157.02 107.12 49.9
H47 F 168.8 120.5 48.3
H48 M 148.13 103.54 44.59
H49 M 189.18 113.11 76.07
H50 F 147.89 99.01 48.88
H51 F 157.84 107.68 50.16
G59 F 279.44 208.54 70.9

262



G6D F 165.24 113.75 51.49
G61 F 140.8 88.89 51.91
G62 F 169.88 113.32 56.56
G64 M 176.35 121.12 55.23
G65 M 234.68 169.95 64.73
G66 M 187.52 130.55 56.97
G67 M 205.54 143.4 62.14
G68 M 192.62 135.62 57
G71 M 209.08 143.05 66.03
H52 M 170.12 115.17 54.95
H53 M 183.13 123.7 59.43
H55 F 157.99 106.39 51.6
H56 F 160.72 105.85 54.87
H57 F 161.68 109.37 52.31
H58 F 149.04 98.2 50.84
H59 F 170.84 115.6 55.24
H60 M 172.21 118.8 53.41
H6X M 174.57 119.1 55.47
H62 M 185.04 130.09 54.95
H63 F 195.45 136.94 58.51
H64 F 180.21 123.68 56.53
H65 M 172.51 119.77 52.74
H66 F 154.33 106.87 47.46
H67 F 162.85 111.92 50.93
H68 M 187.56 130.49 57.07
H69 M 174.53 123.98 50.55
H70 M 163.64 113.47 50.17
H71 M 159.64 108.61 51.03
H72 M 160.68 114.12 46.56
H73 M 160.14 108.87 51.27
H80 F 188.28 131.87 56.41
H81 F 208.65 140.74 67.91
H82 F 185.9 120.91 64.99
H88 F 194.02 134.96 59.06
H74 M 197.82 136.73 61.09
H75 F 165.66 113.89 51.77
H76 F 148.57 99.68 48.89
H77 F 150.9 101.94 48.96
H78 F 166.16 111.04 55.12
H79 F 183.02 124.58 58.44
H84 F 141.48 96.49 44.99
H86 F 156.51 106.03 50.48
H91 F 156.05 106.43 49.62
H89 M 172.27 118.99 53.28
H90 M 172.92 118.58 54.34
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APPENDIX 9.

Weakly systolic blood pressure values (SBP) obtained by radio-telemetry 

for each animal in mmHg. First weekly value corresponds to the night-time 

period, second to the day-time.

W eeks W KY males W K Y  fem ales
Animal A1283
number

A1284 A1287 A1529 A1274 A1276 A1534

0.5 147.046 111.94 143.197 139.171 134.175 133.935 124.458
1 143.461 108.618 138.177 133.262 129.499 128.877 120.944

1.5 141.477 107.906 136.662 130.037 129.288 127.931 118.467
2 137.51 103.81 135.259 125.283 125.618 123.797 115.086

2.5 140.585 107.709 143.059 132.994 132.746 131.389 120.403
3 137.83 104.652 137.982 127.185 128.874 127.357 116.298

3.5 144.565 113.208 146.235 127.254 131.207 131.652 121.181
4 141.18 105.774 138.991 124.34 127.595 125.886 117.098

4.5 145.134 111.337 146.048 126.773 132.504 130.874 121.493
5 142.19 107.872 139.853 124.311 128.907 127.304 117.342

5.5 149.279 114.086 149.222 128.384 132.477 133.981 125.074
6 144.605 110.424 143.806 126.175 128.424 128.465 120.793

6.5 155.069 121.086 156.149 134.321 137.926 138.392 130.407
7 149.774 116.052 147.306 131.431 134.345 132.039 122.669

7.5 156.371 122.62 157.055 137.14 142.027 141.879 133.914
8 150.299 114.536 147.326 130.02 136.895 134.52 127.229

8.5 159.862 122.514 161.142 142.044 145.556 144.606 137.204
9 151.781 113.768 148.136 136.173 137.628 136.332 127.005

Veeks SHRSP males SH RSP fem ales
Animal C2138 
number

C2207 C2414 C2152 C2153 C2154

0.5 179.815 181.75 177.485 171.81 161.098 163.989
1 172.869 174.566 171.657 165.243 154.065 156.628

1.5 176.943 177.929 179.137 168.246 157.962 160.944
2 172.11 174.894 172.023 162.989 155.045 158.695

2.5 179.047 185.254 182.552 171.304 160.391 167.511
3 174.05 180.768 173.082 164.974 156.414 164.919

3.5 183.054 186.777 184.397 172.304 159.162 166.07
4 178.502 180.395 175.149 168.104 155.827 163.95

4.5 185.807 190.32 184.669 174.635 159.4 168.043
5 181.452 187.339 174.477 168.053 155.803 162.008

5.5 192.904 196.682 193.002 179.973 163.133 169.661
6 186.372 191.17 183.54 170.757 158.833 163.537

6.5 207.057 222.24 213.083 186.042 173.488 181.904
7 192.637 202.194 198.903 175.635 164.462 171.486

7.5 214.635 242.431 236.855 193.303 178.155 188.579
8 195.457 218.464 213.224 181.238 166.764 174.374

8.5 229.268 263.657 253.717 197.737 179.517 192.29
9 207.715 236.04 229.444 185.253 169.783 177.645
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W eeks W KY.SP.Gla2c males W KY.SP.Gla2c female
Animal T560  
number

T561 T562 T564 T566 T606

0.5 148.927 146.248 150.059 137.179 150.67 145.4723
1 147.415 142.47 147.754 134.64 147.076 139.5349

1.5 151.268 143.365 145.766 130.483 145.135 130.1527
2 149.213 141.095 142.486 129.308 141.527 126.8109

2.5 154.87 144.929 142.336 137.554 147.955 134.1203
3 153.969 145.218 141.646 135.784 143.334 130.8156

3.5 160.192 151.629 151.142 134.925 149.139 136.2796
4 156.788 146.698 147.388 128.397 145.413 131.9939

4.5 161.468 148.624 151.041 134.931 148.958 128.8065
5 160.244 148.305 147.549 131.003 144.339 126.7282

5.5 163.304 149.545 149.633 131.808 147.142
6 161.313 147.661 147.096 128.201 141.923

6.5 171.319 158.746 157.958 140.956 157.079
7 162.411 150.433 150.919 130.719 149.252

7.5 173.215 160.023 159.924 139.568 158.727
8 165.207 153.756 153.082 130.536 151.27

8.5 167.395 160.184 157.189 142.167 158.257
9 163.134 153.882 151.321 131.714 152.103

W eeks W KY.SP.Gla2d males W K Y .SP.G la2d fem ale

Animal T497
number

T499 T555 T556 T544 T545

0.5 149.881 143.4 149.42 133.031 111.448 127.882
1 143.345 136.749 144.025 127.449 110.01 123.808

1.5 140.583 139.567 140.436 125.357 124.928 122.984
2 138.706 134.443 136.82 121.061 120.991 118.769

2.5 145.234 141.68 140.305 129.967 121.794 119.439
3 143.689 136.296 136.558 124.044 115.94 117.49

3.5 145.353 137.084 136.97 131.289 92.268 131.045
4 141.513 133.645 133.391 124.626 96.524 123.396

4.5 147.296 139.643 138.618 132.311 86.528 128.05
5 145.902 134.771 135.454 126.879 85.776 121.818

5.5 149.252 140.814 139.351 133.459 97.3 124.632
6 146.316 135.857 136.648 127.011 96.198 119.282

6.5 159.168 151.656 152.456 142.824 115.613 133.226
7 151.74 142.623 144.839 133.761 102.325 125.154

7.5 161.905 152.524 155.464 144.364 114.797 135.731
8 149.786 143.799 145.235 132.879 105.217 124.513

8.5 160.698 152.239 158.488 141.505 114.219 132.072
9 150.935 143.645 146.583 131.802 103.392 122.659
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APPENDIX 10.

Weakly diastolic blood pressure values (DBP) obtained by radio-telemetry 

for each animal in mmHg. First weekly value corresponds to the night-time 

period, second to the day-time.

Weeks WKY males WKY females
Animal A1283 
number

A1284 A1287 A1529 A1274 A1276 A1534

0.5 108.6 81.9622 104.47 101.13 97.703 100.361 86.7993
1 105.15 78.1718 100.047 93.372 91.461 94.151 81.405

1.5 103.262 74.5851 98.611 95.54 93.067 94.437 84.4154
2 97.005 71.7017 95.983 89.926 88.238 89.614 78.4877

2.5 101.929 75.2942 103.231 97.223 94.409 96.334 85.752
3 97.663 72.5379 97.798 91.651 89.64 91.106 79.7141

3.5 104.286 77.2682 105.328 93.365 93.43 96.623 85.6406
4 100.792 72.6786 98.002 88.15 88.117 90.468 79.9379

4.5 104.354 77.8258 105.106 91.908 94.767 95.76 85.5741
5 100.859 73.7265 98.066 87.615 90.045 90.871 80.8817

5.5 108.422 79.8955 107.496 95.043 94.073 98.443 88.0033
6 102.637 76.117 101.148 91.149 90.039 92.054 82.7091

6.5 111.097 84.5416 112.772 99.55 98.358 100.757 93.0674
7 106.028 79.331 103.079 94.337 93.471 93.399 83.0957

7.5 112.41 84.2526 117.391 110.162 100.443 103.145 94.9137
8 106.113 78.2465 102.829 99.836 94.295 95.397 85.5916

8.5 115 84.5111 116.055 106.374 101.77 104.304 96.5599
9 107.307 76.1556 102.276 97.324 93.561 95.34 83.9907

Veeks SHRSP males SHRSP females
Animal C2138
number

C2207 C2414 C2152 C2153 C2154

0.5 130.527 130.933 119.127 126.409 118.413 120.158
1 124.935 126.1 111.476 117.724 110.087 111.743

1.5 124.471 123.899 121.434 121.223 114.714 116.923
2 120.064 121.153 111.387 112.882 108.893 113.611

2.5 125.485 128.839 125.387 122.878 115.523 122.287
3 122.009 125.408 114.126 113.782 108.785 117.972

3.5 129.25 128.995 127.83 123.306 114.386 120.956
4 126.262 124.961 117.514 115.836 107.387 114.997

4.5 131.134 134.176 131.626 124.675 113.38 120.486
5 129.478 129.292 119.251 116.786 107.912 110.61

5.5 137.542 138.618 138.681 129.27 116.212 121.815
6 133.18 133.612 125.847 117.236 110.247 110.947

6.5 150.313 161.786 158.861 133.832 125.488 131.31
7 136.838 143.755 144.296 120.308 112.836 116.241

7.5 157.56 177.718 174.854 140.973 128.066 138.476
8 137.566 157.773 157.811 125.859 114.458 119.697

8.5 167.59 196.246 189.867 144.782 128.574 140.473
9 148.239 178.454 168.286 128.335 117.276 121.42
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Weeks WKY.SP.Gla2c males WKY.SP.Gla2c female
Animal T560 T561 T562 T564 T566 T606
number

0.5 114.379 112.1 105.86 92.8543 107.423 101.13
1 108.892 104.709 102.093 86.682 102.463 93.372

1.5 112.425 108.092 102.309 89.7384 105.445 95.54
2 107.875 102.665 98.245 85.9484 98.59 89.926

2.5 115.194 108.431 101.53 96.708 107.146 97.223
3 113.018 105.204 98.103 90.4111 99.113 91.651

3.5 118.526 110.831 103.543 96.1869 107.763 93.365
4 112.787 105.137 99.429 88.6314 100.007 88.15

4.5 116.778 108.892 102.942 93.5169 107.933 91.908
5 113.526 103.883 98.694 86.7681 99.954 87.615

5.5 118.056 111.814 101.207 93.0533 110.322 95.043
6 114.997 106.081 98.383 84.9679 101.827 91.149

6.5 123.233 119.888 107.822 99.7063 115.58 99.55
7 118.556 108.392 99.872 87.5914 104.22 94.337

7.5 129.23 123.191 108.691 98.9097 114.53 110.162
8 118.98 111.004 99.795 87.563 102.993 99.836

8.5 128.202 123.722 107.229 98.9437 114.382 106.374
9 120.789 114.503 99.88 86.9147 103.31 97.324

Weeks WKY.SP.Gla2d males WKY.SP.Gla2d female
Animal T497 T499 T555 T556 T544 T545
number

0.5 108.151 102.835 110.216 91.947 86.7571 90.315
1 99.159 94.685 104.962 84.925 83.1253 84.608

1.5 97.628 97.249 100.538 87.48 91.0444 84.328
2 93.54 90.118 95.858 81.717 86.0274 80.066

2.5 100.772 98.673 99.076 90.396 93.873 87.477
3 97.921 93.23 94.573 83.506 89.8827 81.064

3.5 100.93 94.128 96.181 90.862 68.5974 101.892
4 95.316 90.242 92.315 82.305 74.4593 92.134

4.5 103.599 96.723 97.707 91.977 63.9839 97.854
5 98.175 90.955 94.165 84.718 64.873 88.751

5.5 104.5 97.876 98.211 93.437 67.7033 91.539
6 97.419 91.836 95.702 84.755 67.8129 85.965

6.5 112.432 104.374 107.996 99.905 78.951 100.856
7 98.748 96.034 99.845 87.382 68.8234 87.366

7.5 1 1 0 .8 6 104.773 109.323 100.791 77.577 102.174
8 98.41 95.91 98.615 85.776 69.5073 87.815

8.5 111.707 104.679 112.034 97.684 76.5854 102.285
9 97.936 95.674 98.925 84.1 68.0933 89.264

2 6 7



APPENDIX 11.

Body weight, heart weight, left ventricle plus septum weight, heart weight- 

body weight ratio, and left ventricle plus septum-body weight ratio for each 

congenic animal.

WKY MALES

A1283 A1284 A1287 A1529
BW  (g) 446 432 414 340
HW  (mg) 1.45 1.44 1.38 1.08
LV+S (mg) 1.01 0.97 0.96 0.74
HW /BW  (mg/g) 3.32 3.4 3.41 3.26
LV+S/BW  (mg/g) 2.31 2.29 2.37 2.24

W KY FEM ALES
A 1274 A1275 A1276 A1534

BW  (g) 231 222 242 240
HW  (mg) 0.87 0.76 0.83 0.86
LV+S (mg) 0.63 0.53 0.6 0.58
HW /BW  (mg/g) 3.92 3.57 3.56 3.72
LV+S/BW  (mg/g) 2.84 2.49 2.58 2.51

SHRSP MALES
C2138 C2207 C2414

BW  (g) 274 316 236
HW  (mg) 1.22 1.28 1.09
LV+S (mg) 0.91 1.04 0.82
HW /BW  (mg/g) 4.6 4.17 4.61
LV+S/BW  (mg/g) 3.43 3.39 3.47

SHRSP FEM ALES
C2152 C2153 C2154

BW  (g) 206 204 226
HW  (mg) 0.9 0.94 0.99
LV+S (mg) 0.72 0.73 0.78
HW /BW  (mg/g) 4.57 4.95 4.56
LV+S/BW  (mg/g) 3.65 3.84 3.59

SP.W KYGla2a MALES
N555 N765 N863

BW (g) 316 352 342
HW  (mg) 1.27 1.44 1.32
LV+S (mg) 0.93 1.16 1.03
HW /BW  (mg/g) 4.14 4.19 3.96
LV+S/BW  (mg/g) 3.19 3.38 3.09

SP.W KYGla2a FEM ALES
N 7 8 3  N 7 8 4  N 9 4 6
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B W  (g)
H W  (mg)
LV+S (mg)
H W /BW  (mg/g) 
LV+S/BW  (m g/g)

SP.W K YG la2b M ALES

214
0.97
0.74
4.73
3.61

192
0.83
0.68
4.54
3.72

206
0.81
0.56
4.11
2.84

N811 N812 N813
B W  (g) 324 234 216
H W  (mg) 1.57 1.17 1.13
LV+S (mg) 1.32 0.99 0.86
H W /BW  (mg/g) 4.98 5.2 5.45
LV +S/BW  (mg/g) 4.19 4.4 4.15

SP.W KYGIa2b FEM ALES
N816 N817 N818

B W  (g) 192 202 174
H W  (mg) 0.81 0.84 0.75
LV+S (mg) 0.64 0.62 0.57
H W /BW  (mg/g) 4.43 4.35 4.55
LV +S/BW  (mg/g) 3.49 3.21 3.45

W K Y .SPG la2c MALES
T560 T561 T562

BW  (g) 334 316 308
H W  (mg) 1.08 1.02 1.09
LV+S (mg) 0.78 0.74 0.79
H W /BW  (mg/g) 3.32 3.32 3.65
LV+S/BW  (mg/g) 2.4 2.41 2.64

W K Y.SPG la2c FEM ALES
T564 T565 T566 T606

B W  (g) 208 210 216 214
H W  (mg) 0.78 0.77 0.85 0.78
LV+S (mg) 0.55 0.56 0.66 0.56
HW /BW  (mg/g) 3.92 3.83 4.11 3.8
LV+S/BW  (mg/g) 2.76 2.79 3.19 2.73

W K Y.SPG la2d MALES
T487 T497 T499 T555

BW  (g) 324 344 374 368
HW  (mg) 1.25 1.25 1.12 1.21
LV+S (mg) 1.03 0.95 0.82 0.9
H W /BW  (mg/g) 3.96 3.73 3.07 3.37
LV+S/BW  (mg/g) 3.27 2.84 2.25 2.51

W KY.SPGla2d FEM ALES
T556 T544 T545

BW  (g) 234 250 248
HW  (mg) 0.89 0.93 0.89
LV+S (mg) 0.66 0.72 0.61
HW /BW  (mg/g) 3.96 3.86 3.72
LV+S/BW  (mg/g) 2.93 2.99 2.55
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APPENDIX 12.

For the analysis of radiation hybrid mapping data many different methods 

have been proposed, currently there are four main software packages that 

have been used to construct complete maps from the data: RHMAP 

(Boehnke et al. 1991; Lunetta et al. 1995b; Lunetta et al. 1996a), 

RHMAPPER (Stein, 1996) SAMAPPER (Stewart et al. 1997) and 

MultiMap (Matise et al. 1994).

RHMAP uses a combination of minimising the obligate number of breaks 

required to explain the observed retention patterns together with maximum- 

likelihood retention analysis. RHMAPPER uses a Markov model applied to 

genetic analysis to obtain optimal position for the loci on a linear map. 

SAMAPPER and MultiMap use a combination of these approaches. Each of 

these methods models the retention of different chromosomal fragments in 

the different clones comprising a radiation hybrid panel. The parameters in 

these models are the breakage frequencies between all pairs of markers, and 

the retention frequencies of different fragments (which may depend on 

chromosomal location), which are adjusted to maximise the likelihood of 

the data in the context of the current model. Also different models of 

fragment retention can be specified, such as equal retention, centromeric 

retention, and the left end-point model.

RHMAP was used to analyse our data, this package is easy accessible from 

the web site http://www.sph.umich.edu/group/statgen/software in both Unix
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and PC based implementations, and is accompanied with a complete manual 

available on line. We used the RHMAP package program v 3.0 to carry out 

the analysis. This is a statistical package for multipoint radiation hybrid 

mapping analysis developed by Michael Boehnke (Boehnke et al. 1991). It 

consists of a set of three programs in Fortran 77 that provides the means for 

a complete statistical analysis of radiation hybrid mapping data.

A.l MATHEMATICAL ASSUMPTIONS IN THE RHMAP 

SOFTWARE.

In the early papers on radiation hybrid methodology, the way to produce an 

estimated distance between two loci was the method of moments (Cox et al. 

1990). This method assumed independent retention of fragments and 

random breakage along the chromosome, thus allowing breakage to be 

modelled as a Poisson process. The breakage probability 0 for a given 

interval can be converted to an additive distance D by the formula D= -ln(l 

- 0), in analogy to Haldane’s no interference mapping function (Haldane, 

1919). The resulting units of distance for D are called Rays. Retention 

should be highest for markers close to the centromere, intermediate for 

markers close to the telomere, and least for mid arm markers, since retained 

markers must be incorporated into a hybrid rearrangement that includes a 

centromere and usually one telomere per arm.

To order loci along the chromosome, Cox et al (1990) chose the order that 

minimised the sum of the distance estimates between adjacent linked loci in
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the map. Having chosen an order, they estimated the local support for this 

order by comparing likelihood for the four-locus orders in which the internal 

two loci are interchanged. For this purpose, they calculated likelihood for 

four-locus orders at the parameter estimates obtained from the various two 

analyses.

For the analysis of radiation hybrids there are two sets of crucial parameters 

that need to be estimated to determine the efficiency of a radiation hybrid 

panel: the probability of retention P and the breakage probability 0.

A. 1.1 PROBABILITY OF RETENTION.

The probability of retention P is defined as the probability that a DNA 

fragment is present in a radiation hybrid clone (Cox et al. 1990). P is also 

the fraction of radiation hybrid clones that contains a specific DNA 

fragments as different radiation hybrid clones contain different pieces of the 

chromosomes. Finally, P is the average proportion of the target chromosome 

present in any radiation hybrid clones. P is not under experimental control 

but is a function of the radiation dose and the specific donor-recipient cell 

line used to prepare the panel. The value of P varies from 30% to 50% 

depending on the panel and the marker used and some studies show 

increased retention frequencies for markers close to the centromere 

(Lawrence et al 1991). For any collection of marker loci, the observed 

retention frequencies may vary from locus to locus. These fluctuations in P 

may be random and not statistically significant, may appear to be random
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and yet be statistically significant or may display a pattern such as higher 

retention values near the centromere (Cox et al. 1990). Although the 

reasons for such variation are currently unknown, it is suspected that 

retention of some specific DNA segments may lead to differential survival 

of radiation hybrid clones.

The analysis of radiation hybrid mapping data is performed under two major 

assumptions. Firstly, the different segments of DNA within a radiation 

hybrid clone obtained by X-ray irradiation are lost or retained independently 

of one another. However, non-random retention has been observed but the 

effects noted to date were small and did not appear to cause incorrect orders 

of loci to bias estimates of distances. Secondly, it is assumed that P is 

constant along the chromosome (Cox et al. 1990; Gorski et al. 1992).

A. 1.2 BREAKAGE PROBABILITY AND DISTANCE CALCULATIONS.

The breakage probability or 0 is defined as the probability that two marker 

loci are separated by one or more X-irradiation-induced breaks. The 0 value 

represents an estimate of distance between two marker loci because as the 

physical distance between two marker loci increases, the probability of 

breakage increases. For completely linked loci 0 = 0, whereas for unlinked 

loci 0 = 1 .  The term linkage in the context of radiation hybrid data analysis 

is an operational term referring to physical linkage and is unrelated to 

meiotic recombination (Cox et al. 1990).
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In contrast to P, 9 is partially under experimental control, as it depends on 

the donor-recipient cell line used and on how much X-irradiation is 

adsorbed. The distance estimates between loci are a function of the radiation 

dose used for generating the radiation hybrid panel, so 0 can be increased by 

increasing the radiation dose (Richard et al. 1991; Burmeister et al. 1991).

The breakage probability is a poor measure of distance for two reasons. 

Firstly, 0 is a measure of probability and not an additive measure of 

distance. Secondly, 0 distinguishes between no breaks and multiple breaks 

but it does not provide any information on the actual number of breaks 

between two marker loci because any radiation hybrid clone could have 

none, one, two or more breaks between two markers. The average number 

of breaks between two markers is a measure of distance and it is calculated 

assuming that the number of breaks is determined by a homogeneous 

Poisson process having the average w, so that:

1 - 0 = e'H and

w  = - ln( 1 - 0)

The sum of all w values over all adjacent mapped intervals is its length for 

an entire chromosome or a region studied, and this is interpreted as the 

average number of breaks for the entire segment studied.

A. 1.3 LOCI ORDERING METHODS.

One of the limitations of early radiation hybrid methods was that different 

panels had to be prepared for each chromosome, and the mathematical
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models applied were developed for single chromosome hybrid panels. The 

algorithms in RHMAP allow working with whole genome radiation hybrid 

panels. The advantage of using whole genome panels as originally proposed 

by Goss and Harris (Goss and Harris, 1975) is that a single panel of hybrids 

can be used to map all the chromosomes. In spite of the fact that multiple 

copies of a chromosome per clone obscures fragment retention patterns, 

diploid radiation hybrids provide other advantages over haploid hybrids 

besides ease of generation. For instances, the mapping of closely spaced loci 

requires fragments of small average size. Such fragments may have low 

retention rates in cells. Using diploid clones increases the effective retention 

rate per clone (Lange et al. 1995).

Any ordering strategy for radiation hybrid data is necessarily complex. A 

fundamental barrier is the shear number of orders that must be considered; 

for N loci, this number is either NH2 or N!, depending on the symmetry and 

the model employed (Lange et al. 1995). This rapidly becomes impractical 

as N gets large; if N = 14, the number of locus orders is more than 43 

billions.

It is well-established rule that two loci that are close on the same 

chromosome are less likely to have a break between them than the two loci 

that are far apart. Thus, close loci will tend to be retained or lost together, 

whereas distant loci will be independently retained or lost. The models used 

in RHMAP are based on six assumptions. First, the markers to be mapped 

are linearly arranged along a given chromosome. Second, each clone
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contains fragments derived from c copies of this chromosome. The values 

c—\ and c= 2 correspond to haploid and diploid hybrids, respectively. Third, 

it is assumed that the breaks caused by radiation along any chromosome 

occur according to a Poisson process. These Poisson processes are 

independent from chromosome to chromosome and identically distributed 

on homologous chromosomes. Fourth, fragments within a clone are retained 

and lost independently. Different fragments can be retained with different 

rates, but the retention processes are again independent and identically 

distributed from chromosome to chromosome. Fifth, breakage and retention 

operate independently of each other. Sixth, only the presence and not the 

number of markers in a clone can be detected at any locus or marker.

RHMAP has two alternative ordering methods for radiation hybrid mapping 

data that make use of the information on many loci simultaneously, 

including information on partially typed hybrids. The first of these 

multipoint methods is nonparametric.

Since the closer two loci are on a chromosome, the less likely it is that a 

break will occur between them, a reasonable ordering strategy is to 

minimise the number of obligate chromosomal breaks implied by the 

mapping data. If the number of obligate chromosome breaks per clone is 

summarised over all clones, then the resulting sum serves as a criterion for 

comparing the current order to other orders. This approach (minimum- 

breaks) is analogous to minimising the number of recombinants to infer 

order in genetic linkage mapping (Thompson, 1987). The advantage of the
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minimum breaks criterion is that it depends on almost no assumptions about 

how breaks occur and fragments are retained (Lange et a l 1995).

The minimum break method is attractive because of its intuitive logic, its 

lack of restrictive assumptions, and its straightforward computation. 

However, this method provides neither estimates of distances between loci 

nor a comparison of relative likelihood for comparing locus orders.

Use of the second method of loci ordering is therefore required to provide 

estimates of the distances between adjacent loci and the relative likelihoods 

of the different orders under various models. For this maximum-likelihood 

approach RHMAP considers a variety of models for fragment retention. 

These models range in complexity, from assuming that all retention 

probabilities are equal to assuming that all retention probabilities may differ. 

Each maximum-likelihood model depends on the assumption of 

independent fragment retention and random chromosome breakage along 

the chromosome (Boehnke et al. 1991).

The minimum-breaks and the maximum-likelihood methods may be used 

separately as distinct approaches to identify the best locus order. 

Alternatively, the minimum-breaks method can provide a preliminary list of 

candidate orders for evaluation by the computationally more intensive 

maximum-likelihood method.
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A. 1.4 STRATEGIES TO DETERMINE THE BEST CANDIDATE ORDER 

USING THE MINIMUM BREAKAGE APPROACH OR THE 

MAXIMUM LIKELIHOOD METHOD.

Considering all the possible orders in 14 different loci is impossible for 

mathematical calculations using the minimum breakage approach or the 

more intensive maximum likelihood method. Thus, alternatives or strategies 

are required, and in RHMAP three are proposed to analyse the radiation 

hybrid mapping data.

A.l.4.1 BRANCH AND BOUND STRATEGY.

This is an approach to systematically eliminate large numbers of non- 

optimal solutions to a problem, without considering each solution in detail 

(Nijenhuis and Wilf, 1978). This is achieved by identifying early in the 

process a candidate solution that is optimal or nearly so and then eliminating 

solutions that are inferior either to the candidate solution or to a better 

solution encountered subsequently.

In the specific case of radiation hybrid mapping data, an order is constructed 

using one locus at a time, and when a partial locus order needs more breaks 

than the current best complete order. Then all complete orders consistent 

with the partial order are eliminated. A list of orders that differs from the 

current best by K or fewer breaks is kept. The criterion used is the minimum 

number of obligate breaks and this never decreases as loci are added.
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To generate good initial candidate orders, branch and bound uses a “greedy” 

algorithm (Goodman and Hedetniemi, 1977). Begining with any of the N(N- 

l)/2 locus pairs, the next locus to add to the current partial locus order is 

determined by examining each unplaced locus and each possible position 

for it. The optimal position for an unplaced locus is the position that 

requires the smallest increase in the number of obligate chromosome breaks. 

The unplaced locus with the greatest difference between the mean number 

of breaks required by addition at non optimal positions and the number of 

breaks required by addition at its optimal position is then added at its 

optimal position; ties are broken randomly. Alternatively, the unplaced 

locus with the greatest difference between the number of breaks required by 

addition at its optimal position and the number of breaks required by 

addition at its next best position could be added at its optimal position. The 

purpose of this algorithm is to add at each stage that locus having strongest 

support for its optimal position.

A. 1.4.2 STEPWISE LOCUS ORDERING.

The branch and bound strategy allows elimination of several orders. If the 

number of loci is more than 14 this strategy is impractical because the 

number of orders evaluated may scale exponentially. The alternative is to 

build orders, one locus at a time but to keep under consideration only those 

partial orders that are within K breaks of the current best partial order. 

When a partial order of the same length as the current best partial order is 

eliminated from consideration, all complete orders descended from it are
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also eliminated. This approach considers many fewer partial orders 

(compared with branch and bound) at some risk of missing the overall best 

order. Taking larger values of the constant K increases the chance of finding 

the best order but also increases the computational work. The result of 

stepwise ordering will be a list of orders, which should include the best 

order or orders. Choosing at each step to add that locus whose position is 

most strongly supported by the data, and/or beginning with a framework 

map of well-placed loci, increases the probability of finding the best 

order(s).

A. 1.4.3 SIMULA TED ANNEALING.

This approach is motivated by the analogy of crystal formation in a cooling 

liquid. When cooled slowly, the molecules of a liquid settle into the 

minimum energy state for that system. If cooling is fast, the minimum 

energy state may not be reached; instead, the system ends up in a 

polycrystalline or amorphous state of somewhat greater energy (Kirkpatrick 

et al. 1983; Press et al. 1989). To make this simulation, the N!/2 locus 

orders are identified with the states of a non-stationary Markov Chain 

(Karlin and Taylor, 1975). The possible transitions for the Markov chain are 

block inversions of the current locus order. For example, in the state 

corresponding to locus order 1-2-3-4-5-6-7-8-9-10, the block 5-6-7-8 can be 

inverted to yield the new order 1-2-3-4-8-7-6-5-9-10.
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The essence of simulated annealing is that, early on in the analysis, steps 

leading to an increase in energy (number of obligate breaks) are often taken. 

This protects against prematurely being trapped in a local minimum. Later 

steps converge to the presumable global minimum.
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