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Abstract

Myotonic dystrophy type 1 is caused by an unstable CTG repeat expansion in the 3’ UTR 
of the DM1 protein kinase gene on chromosome 19. A neuromuscular disease with a 
broad spectrum of symptoms, DM1 also exhibits anticipation whereby disease severity 
increases through successive generations. Increasing measured allele size between 
patients correlates with an increased severity of symptoms and an earlier age of onset. 
However, this correlation is not precise and therefore measured allele length cannot be 
used as an accurate indicator of age of onset. This suggests that repeat length may not be 
the major determinant of disease severity. There is a high level of somatic mosaicism 
shown by the mutation and failure to take into account age-dependent somatic mosaicism 
in patients may have compromised the accuracy of clinical correlations. The aim of this 
project was to investigate simple approaches for correcting for age-dependent somatic 
mosaicism and also to develop computer software to allow us to simulate the progression 
of age-dependent somatic mosaicism. We have demonstrated that employing alternative 
approaches in both molecular diagnoses and statistical comparison can yield significantly 
improved repeat length / age of onset correlations. This conclusively shows that repeat 
length is by far the major determinant in DM1 disease onset. Simulation software was 
also successfully developed and preliminary results suggest that DM1 repeat instability is > 
amenable to mathematical modelling in the future.
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Chapter 1

Introduction 

1.1 Myotonic dystrophy type 1

Myotonic dystrophy type 1 (DM1) is a common hereditary disorder that was first 
recognised in 1909. It is an autosomal dominant disorder but difficult to diagnose as it 
shows remarkable phenotypic variability and progression of symptoms (Harper, 1989). 
DM1 shows a range of clinical symptoms, but is named after and most often identified by 
its effects on muscle. The disease causes weakening and wasting of a characteristic pattern 
of muscles. The most prominently affected muscles include facial and jaw muscles, 
stemomastoids and distal limb muscles. Other muscles are affected depending on the 
severity of the disease, while some muscles are almost always unaffected e.g. weight 
bearing muscles (Harper, 1989). The symptom of myotonia can be used to diagnose DM1 
and is defined as the inability to relax a muscle after voluntary contraction. Myotonia has 
been studied at the molecular level in Thompson’s disease and has been shown to be due to 
defects in chloride ion conductance across the muscle membrane (George et al., 1992) 
although a different mechanism may be responsible in DM1. Myotonia tends to be more 
prominent in patients with less pronounced muscle weakening than those with severe 
muscular damage (Samat and Silbert, 1975). Other non-muscular symptoms include 
cataracts, which show progressive opacity characteristic of DM1, excessive daytime 
sleepiness, testicular atrophy and tumours in the gastro-intestinal tract (Brewster et al., 
1998) (Harper, 1989). Early deaths of DM1 patients are often due to cardiac conduction 
defects (Harper, 1989). The variability in the progression and age of presentation of these 
symptoms allow DM1 to be classified into 4 broad clinical forms: mild (late onset), classic 
adult onset, juvenile onset and finally congenital DM1 (CDM1), which is the severest form 
(IMDC, 2000). CDM1 shows many different symptoms e.g. facial dysmorphia, but these 
features can be explained by effects on foetal muscle -  in other forms of the disease foetal 
muscles are normal and the adult muscles waste progressively in later life (Samat and 
Silbert, 1975).

1.2 DM1 Genetics

When DM1 presents itself, it can have a devastating effect on a family as frequently all 
clinical forms can be seen. This occurs in a pattern of increasing severity of symptoms and
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an earlier age of onset between generations- a phenomenon known as anticipation which 
has been associated with the disease since it was first described. A typical DM1 family will 
show a child with CDM1 whose mother exhibits the classic adult onset phenotype and 
whose grandparent has the mild form typified by cataracts. Clinicians had described 
anticipation in DM1 and other hereditary diseases such as Huntington disease but, at the 
time, the genetic mutation was thought to be stably inherited and could not explain this 
observation. A human geneticist named Lionel Penrose was able to dismiss anticipation as 
a series of errors in ascertainment for most diseases it had been observed in (Penrose, 
1948). He had to concede that the pronounced anticipation observed in DM1 was a special 
case, suggesting that other genetic factors might have been involved. Ascertainment bias 
was taken to be the explanation for anticipation almost up to the date in which the mutation 
that caused DM1 was identified. In 1992, just as people were beginning to question 
Penrose’s findings after some 40 years (Howeler et al., 1989), three groups of scientists 
independently identified the mutation responsible for DM1 (Fu et al., 1992) (Brook et al.,
1992) (Mahadevan et al., 1992). It was found to be caused by an unstable tandem triplet 
repeat mutation, in this case a CTG repeat, in the 3’ untranslated region of a gene called 
DMPK. Previously an unstable CGG repeat had been found to be responsible for FRAXA 
(Fu et al., 1991) (Verkerk et al., 1991) and an unstable CAG repeat was responsible for 
SBMA (La Spada et al., 1991). With this a new area of research had opened up- the study 
of dynamic mutations. DM1 became one of an ever-growing list of genetic diseases caused 
by a triplet repeat mutation which is now numbered at 14 (Cummings and Zoghbi, 2000). 
The discovery of an unstable mutation being responsible for DM1 reconciled the clinical 
observations of anticipation by providing a plausible molecular explanation. Normal 
individuals have between 5 and 37 repeats at this locus whilst Southern blot analysis of 
those with the disease show repeat lengths from 50+ to several thousand (Harley et al.,
1993). There is a statistical correlation between the number of repeats an individual has and 
the clinical form of the disease. Those who show mild symptoms typically have 
approximately 100 repeats; those with classic adult onset have between 100 and 1000 
repeats whilst those with CDM have 1000+ (IMDC, 2000). Although there is something 
of an overlap, a statistical technique known as Baye’s theorem can be used to estimate the 
probability of an individual having any of the clinical forms. Only individuals with 200 or 
800 repeats have equal probabilities of developing 2 different clinical forms (for example, 
an individual with 200 repeats has a 50:50 chance of developing mild or classic adult onset 
DM) (Gennarelli et al., 1996).

The explanation of anticipation is that the offspring of affected individuals inherit a 
larger mutation than their parents inherited giving a more severe form of the disease, hence
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the term dynamic mutation. This intergenerational instability of the repeat poses an 
important question. DM1 has a prevalence of 1 in 8000 yet alleles are continually lost 
owing to the low reproductive fitness of those affected. Therefore, how is the mutation 
maintained in the population? Analysis of normal alleles world-wide reveals a tri-modal 
distribution with allele sizes of (CTG)5, (CTG)n_17, and (CTG)19> , representing the peaks 
of the distribution (Zerylnick et al., 1995). There is evidence that the mutation rate 
increases with the size of the repeat and it is thought the pool of normal alleles consisting of 
(CTG)19+ mutate into disease ranges (Imbert et al., 1993). This occurs at a rate between 10‘ 
3 and 1CT4 maintaining the disease in the population. Allele repeat lengths between 50 and 
80 CTG’s only show mild symptoms at a later age and are termed proto-mutations. This 
proto-mutation range frequently shows intergenerational expansions to larger repeat sizes 
and severer disease (Barcelo et al., 1993). The progression of .the disease from mild to 
congenital through different generations is also influenced by the sex of the transmitting 
parent. There is an approximately equal sex ratio among those affected, but it was noted 
that the mutation was more likely to be inherited from an affected male than female (Bell, 
1947). It was also noted that those individuals with CDM1 had almost always inherited the 
mutation from their mother. Repeats lengths <100 are more unstable in males than females 
therefore there is an excess of males transmitting the first clinically recognisable form of the 
disease (Barcelo et al., 1993). It could be postulated that this is one of the many side 
effects of male fertility. Males might be mostly responsible for inherited mutations as the 
need for continual production of sperm and the extra cell divisions required to produce 
spermatoa (50 -1 0 0  compared to 30 during oogenesis) increase the chances of mistakes 
during replication. The maternal bias towards CDM1 was suggested to be due to an intra­
uterine maternal factor. Such a factor has never been identified, although it would seem 
plausible that CDM1 is a direct consequence of the effects on development of a DM1 foetus 
in a mother who also has DM1. The size of the repeat must be the most important factor as 
a handful of paternally inherited CDM cases have been identified (Bergoffen et al., 1994) 
(Die Smulders et al., 1997).

1.3 Somatic Mosaicism

Intergenerational instability of the CTG repeat could be postulated to be due to some 
mutational mechanism occurring in the germ cells. However, repeat instability is not solely 
restricted to sperm and ova. Southern blot analysis of genomic DNA containing an 
expanded CTG repeat allele often does not produce a single band, rather a diffuse 
hybridisation signal or ‘smear’. This is due to a phenomenon called somatic mosaicism
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whereby individual cells have different repeat lengths (Ashizawa et al., 1993). The mid­
point of the smear in such cases is taken to be the average repeat length for that individual 
and is the value used in clinical studies. To better characterise somatic mosaicism a 
technique known as small-pool PCR can be utilised (Monckton et al., 1995). This involves 
using template DNA at amounts equivalent to only a few cells worth of DNA (6pg is 
equivalent to one diploid cell). Analysis of patients of different ages (6 months to 62 years) 
but with the same average repeat length clearly showed that somatic mosaicism increased 
with the age of an individual (Martorell et al., 1998). The explanation for age-dependent 
somatic mosaicism was provided by the fact that the repeat is unstable with time in the same 
individual. A study by (Martorell et al., 1998) analysed the repeat length of 111 DM1 
patients at two different time points separated by at least 2 years. A detectable increase in 
repeat length could be found in all patients with average repeat length >200 repeats.
Hence, the DM1 mutation is a dynamic mutation in every sense- it is unstable through the 
generations and is also continuously unstable throughout the lifetime of an individual. It 
has also been shown that the longer the repeat tract the more unstable it is (Wong et al., 
1995), although this is not a straightforward correlation. In patients with CDM1 there is no 
correlation between repeat size and repeat heterogeneity as the repeat has been shown to be 
relatively stable in early development (instability has only been observed around 16 weeks 
and is still minimal around birth). However, when patients are separated into age groups it 
was found there was a significant positive correlation between size and heterogeneity in 
patients aged 21 years and over (Wong et al., 1995). These are important observations as 
they provide an explanation for the progressive nature of the disease. That is, an individual 
who inherits a repeat length of 100 repeats will show a milder form of the disease with a 
slower progression than the severe disease and rapid progression of an individual with a 
1000 repeats. While providing an explanation for the progression of the disease, failure to 
take into account age-dependent somatic mosaicism has probably hampered inter­
generational transmission studies and clinical correlations (Monckton et al., 1995). One 
study looking at repeat length transmissions found that 6.4% of all transmissions produced 
repeat contractions as opposed to expansions (Ashizawa et al., 1994). Curiously, half 
these cases still showed clinical anticipation, which seemed to contradict the correlation 
between repeat length and severity of disease. This study involved different generations of 
the same family being sampled on the same day without any provision for the repeat 
instability that has occurred in the older patients. This will have affected the accuracy of 
their findings. It would be useful to eliminate these age dependent differences by 
estimating the progenitor allele received at birth by an individual. This could be used for
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more accurate pedigree studies and would allow a clearer index between repeat length and 
disease severity to be produced.

The size of the repeat tract and the age of the patient are not the only factors that 
influence somatic mosacism- analysis of different tissues show different average repeat 
lengths within the same individual (Jansen et al., 1994). Of the few tissues studied, 
expansions are largest within muscle. This would appear to correlate with the symptoms of 
the disease, however unaffected muscles also have large expansions. A  hypothesis to 
explain this would be that since repeat instability is tissue-specific perhaps the threshold 
whereby the repeat causes malfunction is also tissue-specific. It would be envisaged that as 
cataracts are usually the first symptom, these affected tissues would have either the lowest 
threshold or the most unstable DNA. Tissue specific effects again raise the question of the 
accuracy of using average repeat length for clinical and genetic studies. Genomic DNA is 
taken from blood, but there are many different populations of cells in blood, which can 
vary according to the immune status of an individual. If these populations were to vary in 
their repeat dynamics then this would be yet another variable that would have to be 
accounted for. Using progenitor allele of an individual would eliminate this variable.

1.4 Mechanisms of repeat instability

There are many factors governing repeat instability, what are the molecular mechanisms 
that could account for these observations? Using SP-PCR, multiple reactions using 
template DNA equivalent to single cells can be used to generate an allele distribution 
reflecting the mosaicism present. Allele distributions derived from leukocytes over 
different time periods can be used to build a picture of the type of mutations occurring 
during somatic mosaicism whilst distributions from sperm would indicate whether germline 
mutations are occurring. A typical distribution from leukocyte DNA shows a skewed 
shape with a sharp lower boundary below which no alleles are detected and a tail of larger 
rarer alleles (Monckton et al., 1995). The progression of somatic instability appears to 
follow a defined pathway of small expansion biased mutations, starting from a progenitor 
allele to the characteristic skewed shape to a more normal shape in older patients. 
Distributions in sperm characterised show a normal distribution compared to the skewed 
somatic distribution in the same individual. This may be due to some additional meiotic 
effect. There are a number of proposed mechanisms for repeat expansion which could 
explain these observations but it is still not known whether any of these are correct. Most 
of these mechanisms concentrate on the involvement of the repeat itself in expansion, such 
as the tract forming secondary structure interfering with replication. Indeed, there is a

5



correlation between repeat length and instability. However, if we look broadly at triplet 
diseases, there is a huge variety in the likelihood of the repeat tracts expanding (long tracts 
are very unstable in DM1, while in Fragile X syndrome long tracts that are methylated are 
stable)- yet we would expect there to be a shared mechanism to some extent. If we look at 
DM1 instability in more detail we see tissue-specific differences with muscle showing high 
instability and regions of the brain such as the cerebellar cortex showing low instability 
(Jansen et al., 1994) (Ishii et al., 1996). This can only be explained by the fact that repeat 
expansion is influenced by cis/trans acting factors as well as repeat length. Recently a 
possible rratts-acting factor in yeast has been identified- FEN-1, a 5’ endo/exonuclease 
(Freudenreich et al., 1998). GC content has been suggested as a possible cis-acting factor 
(Brock et al., 1999).

Research using cultured DM1 cells, yeast, bacteria and structural biology has 
provided theoretical mechanisms of repeat instability. It was originally thought that 
instability occurred in meiosis, possibly by unequal sister chromatid exchange (Smith, 
1976), however the presence of somatic instability must mean there is the presence of a 
non-meiotic mechanism as well. Polymerase or DNA slippage is a model for repeat 
instability., which is widely recognised (Schlotterer and Tautz, 1992). Crystal studies 
provide evidence that unpairing of template and nascent strands occurs within the 
polymerase during replication, which could allow slippage of the polymerase back along 
the template (Hochtrasser et al., 1994). It is proposed that hairpin or other secondary 
structure formation would facilitate slippage events, in order to minimise unfavourable 
energies. This is termed hairpin-mediated slippage (Pearson and Sinden, 1996). It has 
been shown that pure repeat tracts can form slipped strand DNA structures (S-DNA) on re­
annealing in vitro (Pearson and Sinden, 1996). These secondary structures are stable and 
the propensity of S-DNA formation is dependent on the length of the repeat tract with 
lengths 50> repeats showing a high degree of structure formation (Pearson et al., 1997; 
Pearson and Sinden, 1996). This model of hairpin-mediated slippage can result in 
expansions or deletions being produced in the next round of replication. A  refinement on 
this model is the “lagging -strand” model of hairpin mediated DNA slippage (McMurray, 
1995). This proposes that replication is blocked by hairpin formation. During this pause, 
additional DNA synthesis is initiated at single strand regions within the hairpin ultimately 
leading to expansion. Mismatch repair could play a role in instability as hMSH2 (a protein 
involved in repair) has been shown to bind to S-DNA structures (Pearson et al., 1997). 
Other models of repeat expansion include re-iterative DNA synthesis (reviewed in Sinden 
and Wells, 1992), gene conversion events (which are likely responsible for infrequent 
reversions of disease alleles back into normal range) (McMurray, 1995) and the
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recombination gap repair model (Jansen et al., 1994). However, data from yeast does not 
favour a role for recombination (Wierdl et al., 1997). Another model that has support is 
the incomplete processing of Okazaki fragments during replication- a model which utilises 
FEN-1 and has the support of mathematical modelling (Leeflang et al., 1999). The 
identification of further cis/trans acting factors will hopefully provide support from one 
particular model over the others. The creation of a mammalian model that appears to reflect 
the tissue-specific somatic instability observed in human patients by (Monckton et al.,
1997) (Fortune et al., 2000) may go some way to identifying these factors.

1.5 Mechanism of disease

We have seen that the DM1 mutation is a dynamic mutation whose detrimental effect is 
influenced by many factors. The instability shown by the repeat provides an explanation to 
many phenomena- the disease’s continued presence in the human population, anticipation 
and the progressive nature of the disease. We now turn our attention to how the repeat 
causes malfunction. DM1 is a progressive multi-systemic disorder and the role played by 
the repeat is being studied in many different fields of molecular biology yet the molecular 
etiology has largely remained elusive. Only recently, the convergence of results from a 
variety of different research angles is hinting at a plausible mechanism for the disease, 
which will be briefly touched upon here.

As the repeat is found in the 3’ UTR of DMPK, studies have concentrated on 
assessing the function of DMPK, a serine-threonine protein kinase. DMPK has multiple 
transcription initiation sites which ultimately produce different protein isoforms, although 
only a small proportion have been shown to have functional significance (Jansen et al.,
1992). DMPK expression is limited to the tissues that are clinically affected by DM1 e.g. 
cardiac, skeletal muscle, nervous system and retina. DMPK has been shown to 
phosphorylate a variety of targets such as histones, RNA binding proteins and peptide 
substrates of cAMP-dependent kinases in vitro but does not modify their function 
(Brewster et al., 1998). It has been suggested that DMPK acts as a Rho kinase in cell 
signalling cascades (Hall, 1998). This cascade is involved in a diversity of muscular 
processes, such as cytoskeletal organisation and calcium sensitisation of contractility (Hall,
1998). These findings suggest DMPK could be responsible for many of the clinical 
features of DM1. To investigate whether DM1 is due to loss of function of DMPK, 
knockout mouse were produced and analysed for symptoms of DM. Heterozygotes for 
DMPK appeared normal and unaffected. Closer scrutiny of these revealed minor muscle 
abnormalities (Jansen et al., 1996) (Reddy et al., 1996). This suggested that loss of

7



function of DMPK could be contributing to the phenotype but is not fully responsible for 
all the symptoms seen in the disease. The fact that no classical mutations within DMPK 
have been identified that cause DM1 also suggest this.

The chromosomal segment, 19ql3.3, which DMPK maps to is a gene rich area and 
2 other candidate genes have been identified in this region which may be affected by the 
CTG repeat.

DMWD maps l.lkb  upstream of the start of DMPK and contains a conserved 
amino acid sequence (WD repeats) found in signal transduction proteins (Shaw et al.,
1993). It is also expressed readily in tissues clinically affected in DM1 such as brain and 
testes (Jansen et al., 1995).

The other candidate gene identified is SIX5, located 1.2kb downstream of the final 
exon of DMPK (Boucher et al., 1995). The CpG island for SIX5 that contains regulatory 
sequences overlaps the CTG repeat region. SIX5 is a member of the SIX  family of 
proteins, involved in mammalian muscle, neural plate and eye development. For example 
SIX4 is a transcription factor required for the maintenance of retina, muscle and kidney 
during development (Kawakami et al., 1996) (Kawakami et al., 1996). Hence, a role in 
the manifestation of symptoms such as cataracts could easily be played by SIX5 
(Winchester et al., 1999). To explore this, the expression levels of SIX5 in a variety of 
eye tissues has been studied by in-situ hybridisation, RT-PCR, western blot and 
immunocytochemistry. The expression of SIX5 in normal eye matches the site of ocular 
pathology and is also predominantly expressed in adults and is not detected in foetal tissue 
(Winchester et al., 1999). This corroborates with the fact that cataracts are only found in 
adults. DMPK expression was not detected in adult lens hence may not play a role in 
cataracts. It must be acknowledged there is difficulty dissecting fresh eyes without 
contaminating tissues with other tissues.

Studies have provided evidence for a number of pathogenic models, which are not 
mutually exclusive. The DM1 repeat expansion may affect chromatin structure, which in 
turn could detrimentally affect replication and transcription. As DM1 is a dominant 
disorder, the cell would have to be sensitive to changing dosage levels of those genes 
affected thus, disease may be caused by haploinsufficiency (50% of gene product not 
enough). The fact that DMPK is likely to be involved in signal transduction cascades mean 
that fluctuations in its production could have far reaching consequences. DNA-binding 
proteins which target CTG sequences have been identified and could be titrated from the 
cell by long expansions causing anomalies in chromatin topology (Groenen and Wieringa,
1998).

8



Studies on DMPK expression suggest DM1 could be classified as a fraws-dominant 
RNA disorder, with mutant DMPK transcripts affecting the processing of normal DMPK 
and other RNA transcripts. An RNA-binding protein, hNab-50 has been identified which 
binds to CUG repeats (Timchenko et al., 1996). This protein is normally cytosolic, but in 
DM1 cells is sequestered into the nuclei (Roberts et al., 1997). A homolog of hNab-50 in 
Xenopus called EBEN-Bp is involved in mRNA deadenylation (Paillard et al., 1998). 
Abnormal localisation of such a protein may severely affect RNA processing. Other ways 
the expansion could cause pathogenesis include irregular accumulation of mutant DMPK 
transcripts (Taneja et al., 1995). This could cause mRNA transport congestion, which may 
indirectly inhibit other nuclear functions.

Although the mystery of DM1 is far from being unravelled, these models provide 
further avenues to be explored. The production of mouse models replicating the full 
phenotype of the disease, which are currently ongoing, would facilitate the illumination of 
the possible role of these pathways in DM1.

1.6 Mouse models of unstable DNA

Mouse models would facilitate more detailed analysis of repeat dynamics, answering 
questions such as whether expansion is age-dependent or time-dependent. Mouse models 
of DM1 have been developed with varying success. A mouse model containing a 45Kb 
human fragment consisting of DMWD, SIX5 and DMPK with a 55 repeat CTG expansion 
has been created (Gourdon et al., 1997). Instability and somatic mosaicism have been 
detected in most tissues but as the CTG is of proto-mutation length, rather than disease 
length, this is not an accurate model of DM1. The conclusions drawn from this mouse 
model suggest that flanking DNA is required for instability as other repeat models that have 
not shown instability have had little in the way of flanking DNA incorporated. The 
transgene expressed all 3 genes readily in most tissues allowing comparison between 
instability and expression. It was found that kidney showed the highest degree of somatic 
mosaicism but the lowest expression. Another question that was addressed was whether 
the most proliferative tissues show highest instability. This was not the case suggesting 
that instability is not solely caused by a mitotic mechanism such as replication slippage. In 
order to produce a model that more accurately reflected repeat instability in DM1 disease 
and to further explore whether the context of the repeat’s location was important, 
(Monckton et al., 1997) produced integrants containing 162 repeats and minimal flanking 
DNA from the human locus. Gross, tissue-specific, expansion-biased instability was 
observed in mice 20 months old- the pattern of which was reproducible in other mice
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(Fortune et al., 2000). By looking at other mice at different ages (2, 6 and 13 months), the 
study confirmed somatic mosaicism is age-dependent and that new mutations occur 
continually. Deletion mutations are also observed meaning that although expansion-biased, 
instability is a bi-directional pathway. Interestingly, of the 5 integrant lines generated, this 
instability is only observed in 1 of these lines, suggesting position effects are crucial. A 
third model derived from human cell lines, this time containing ~300 repeats has been 
produced (Seznec et al., 2000). In contrast to the integrants produced by Monkton et al 
which had minimal flanking DNA surrounding the repeat, this includes 45kb of human 
flanking DNA including SIX5 and DMWD and is the largest repeat expansion integrated. 3 
different lines have been generated and 215 transgenic descendants analysed for inter­
generational instability. It was observed that inter-generational expansions occurred in 
86.5%, 88% and 95.5% of the offspring of each of the three lines, respectively. This ties 
in with the expansion rates observed in humans (Brunner et al., 1993; Ashizawa et al.,
1994). The sizes of expansion vary from +1 repeat per generation to +60 with larger 
additions more likely on paternal transmission. As inter-generational contractions were 
more common in the model generated by Monckton et al, they suggest flanking DNA may 
influence the direction of mutations. This supports findings in a study comparing flanking 
DNA and expandibilty of triplet repeat loci (Brock et al., 1999). Somatic mosaicism was 
observed in the 300 repeat lines and like humans was found to be age and size dependent. 
Somatic mosaicism was not detectable at birth but increased with age and somatic 
mosaicism was more dramatic in these lines than in the 55 repeat model which has the same 
flanking DNA. These models by Seznec et al and Monckton et al appear to capture almost 
all the characteristics of the human DM1 repeat with the exception of very large inter­
generational expansions. Already they have provided insight into the importance of 
flanking DNA on the behaviour of the repeat and will allow experiments to be performed 
that will provide further answers on the nature of somatic mosaicism.

1.7 Other triplet repeat diseases

DM1 is one of an ever-growing list of genetic diseases that are caused by a triplet 
repeat expansion. Currently there are 14 triplet repeat diseases identified including 
Huntington disease(HD), Friedreich’s ataxia and the spinocerebellar ataxias (Cummings 
and Zoghbi, 2000) (Table 1.1). These diseases are generally neurological diseases and are 
caused by a variety of different repeats. They vary in the position of the repeat with respect 
to the affected gene which can be in the 5’UTR (FRAXA), 3 ’UTR (DM1), coding (HD) or 
intronic regions (Freidriech’s ataxia) (Figure 1.1). The also vary by methylation status, the
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purity of the tract and their relative instabilty. All these diseases show a characteristic
repeat length associated with a normal phenotype and a threshold of repeat length which, if \
exceeded, is associated with the disease phenotype. Triplet repeat diseases can be
separated into 2 groups according to whether the repeat tract is translated or not. Type 1
triplet repeat diseases in which the repeat is translated include HD, Machado-Joseph disease
(MJD) and Spino-bulbar muscular atrophy (SBMA) and 5 others. These are caused by
CAG repeats to give polyglutamine tracts when translated. It is thought that this causes
aggregation of the affected protein leading to disease. The largest expansions found tend to
be around 80 repeats in the spino-cerebellar ataxias and 120 repeats in HD. SCA7 shows
the largest mutations with repeat tract lengths up to 306 having been observed (David et al.,
1997) (Benton et al., 1998). Type 2 triplet repeat diseases are not translated and show 
large and variable repeat expansions- far larger than type 1 diseases. Expanded alleles have 
been detected which are greater than 1000 repeats (DM1, FRAXA). The repeat behaviour 
shown by the CTG repeat associated with DM1 is the most dramatic- it has the largest 
expansions and shows pronounced somatic instability. Other diseases also show somatic 
mosaicism but to a lesser extent. Tissue specific differences have been detected in HD 
(Telenius et al., 1994), DRPLA, SBMA and MJD/SCA3 (Ito et al., 1998). Contractions 
have been observed in FRAXA (Momet et al., 1996) and differing allele lengths have been 
observed in SCA7 (Gouw et al., 1998). Anticipation is observed in triplet repeat diseases 
suggesting that they all are subject to germline instability. Single sperm analysis can be 
used to build a picture of germline repeat behaviour. Germline instability is pronounced in 
DM1 and has also been detected in HD (Leeflang et al., 1995), DRPLA (Zhang et al.,
1994), FRAXA (Kunst and Warren, 1994), MJD/SCA3 (Takiyama et a l , 1997), SBMA 
(Zhang et al., 1994) and SCA1 (Koefoed et al., 1998). By taking measured allele length 
from blood to represent progenitor allele length, a mutation rate can be produced by 
comparing allele length from sperm with progenitor allele length. Mutation rate increases 
with measured allele length with allele lengths in HD of 38-40 repeats showing a mutation 
rate of 90% (Leeflang et al., 1999). FRAXA repeats of length 100 show a mutation rate of 
55% whilst DRPLA repeats of length 60-62 repeats show a mutation rate of 96-98%.
Although there are differences between the various triplet repeat diseases there are many 
common phenomena particularly the fact that anticipation is always present. This suggests 
that any disease that exhibits anticipation would be a candidate triplet repeat disease.

Bipolar affective disorder (BPAD) and schizophrenia are 2 psychiatric disorders in 
which anticipation has been observed in some pedigrees (Mclnnis et al., 1993) (Gotteman,
1991). BPAD affects 1% of the population and is characterised by symptoms including 
depression, low mood, sleep, appetite disturbance, psychomotor abnormalities, fatigue,
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diminished self attitude and cognitive slowing. The symptoms of schizophrenia include 
hallucinations, delusions, amotivation and paucity of thought. Both of these disorders are I
polygenic as the symptoms are highly variable and both have been linked to many regions 
of the genome. Samples from patients of these disorders have been investigated using the 
Repeat Expansion Detection (RED) method (Schalling et al., 1993). This is a simple 
technique that involves annealing multimers of the triplet repeat of interest to target DNA 
then using ligase to anneal any adjacent oligonucleotides together. The products are then 
run on a gel and provide information about the size of the triplet repeat loci present (by the 
sizes of the products on the gel). It was found that in BPAD, the sex of the transmitting 
patient, symptoms and age of onset was linked with the size of the product size produced 
by RED (Verheyen et al., 1999). In schizophrenia, larger RED products were found in 
comparison to controls in one study (Morris et al., 1995) but not in any other. In follow 
up to these experiments a polymorphic CAG repeat was found in a gene linked to 
schizophrenia (Morris et al., 1995) and alleles greater than 19 repeats were more common 
in patients than in controls (Chandy et al., 1998).

Triplet repeat sequences have been identified that have not been attributed to any 
disease. Two of these sequences are CAG/CTG repeated sequences named CTG18.1 
(Breschel et al., 1997) and expanded repeat domain CAG/CTG 1(ERDA1) (Nakamoto et 
al., 1997). Studies have shown that these sequences show the same behaviour as repeats 
associated with disease. CTG18.1 was mapped to the chromosomal region 18q21.1. Like 
the DM1 CTG repeat, it is highly polymorphic showing a range of observed allele lengths 
from 11 repeats up to 2000. Also, allele lengths less than 37 have been shown to be 
transmitted stably, whilst expansions had been noted in transmissions involving moderately 
enlarged alleles (53 to 250 repeats) (Breschel et al., 1997). The CAG/CTG repeat named 
ERDA1 was mapped to 17q21.3 (Nakamoto et al., 1997). It shows a range of alleles from 
7 repeats to 92 thus far detected which ties in with the polymorphisms observed in disease 
associated CAG repeats such as HD. Large alleles at this locus have been shown to be 
unstable showing a maternal expansion bias and a parental contraction bias (Ikeuchi et al.,
1998). Individuals with large CTG18.1 or ERDA1 expansions are apparently healthy 
meaning they are not directly associated with a disease. They are however candidates for 
being involved in multigenic disorders which show anticipation, indeed CTG18.1 was 
identified during a search for candidate genes for BPAD which shows linkage to that 
chromosomal region. A study by (Verheyen et al., 1999) analysed Belgian BPAD blood 
samples and a significant difference was found in the ERDA1 distributions of affected 
compared to controls and a negative correlation with ERDA1 allele size and age of onset 
was observed. CTG18.1 showed no significant differences between patients and controls.
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These results have not been replicated- a further study by (Guy et al., 1999) found no 
differences between affected and controls. Schizophrenia and BPAD are thought to be 
multigenic disorders- disease occurs when the contribution of many genes and the 
contribution of environmental factors exceeds a certain threshold. Therefore, although the 
presence of anticipation in these disorder suggests a role for triplet repeat mutations, a 
correlation will always be difficult to produce as the contribution a mutation makes towards 
the phenotype may not be very great.

1.8 Micro-satellite instability and hereditary cancer

Micro-satellite instability and disease is not solely restricted to triplet repeats, other 
types of repeats such as mono-nucleotide and di-nucleotide repeats are also disease related. 
Hereditary Non-Polyposis Colon Cancer (HNPCC) is one such condition. HNPCC can 
affect as many as 1 in 200 individuals and is distinguished from its sporadic counterpart by 
strict criteria. This requires 3 or more related family members in more than one generation 
to have been diagnosed with colorectal cancer before it is pronounced as a hereditary 
condition (Vasen et al., 1999). HNPCC is caused by inherited mutations in any of 5 DNA 
mismatch repair enzymes so far identified (Bronner et al., 1994) (Leach et al., 1993) 
(Nicolaides et al., 1994) (Akiyama et al., 1997). These enzymes are involved in repair of 
mismatches during replication and have been well characterised in Ecoli but less 
successfully in humans. HNPCC is associated with differing (CA) dinucleotide lengths at 
many loci in tumours (Liu et al., 1996) (Wijnen et al., 1997) (Aaltonen et al., 1993). A 
significant age effect was found with microsatellite instability in tumours of individuals 46 
years old or younger (Chan et al., 1999). HNPCC is a type of cancer that does not show 
mutations in the common cancer causing genes such as p53 or KRAS, nor does it show 
chromosomal rearrangements. This means that the tumour development is facilitated by the 
breakdown of the mis-match repair system. It could be postulated that as increasing micro­
satellite instability is a direct consequence of this breakdown of the mismatch repair system 
then increased dinucleotide repeat length is playing a contributory role in bringing about 
tumourigenesis. Micro-satellite instability can also bee seen in other types of cancer such 
as hereditary ovarian cancer (Wiper et al., 1998).

1.9 Research goals

Like all genetic diseases, when the mutation causing the disease is identified it gives great 
hope to those affected that a cure or effective treatment may suggest itself. When DM1 was
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found to be caused by an unstable triplet repeat it was expected that not only would an 
effective treatment be forthcoming but also information regarding the repeat would allow an 
accurate prognosis to be given to patients. An accurate prognosis would remove the 
spectre hanging over a patient that is caused by late-onset disease. Unfortunately, despite 
the enthusiasm of clinicians and scientists to provide these answers it must be 
acknowledged that elucidating the molecular etiology of DM1 is a complicated problem.
The study of dynamic mutations is a new field and as only half of these mutations identified 
directly affect the protein product, the repeats must cause malfunction in some wider 
genomic context. The information from the Human Genome Project already suggests that 
the vast array of repetitive DNA found in the human genome must play some role in its 
functioning but we do not yet know how important its role is. We have already seen that 
triplet repeat sequences are being linked with other severe polygenic disorders such as 
schizophrenia. The recent completion of the draft Human Genome Sequencing Project will 
reveal how widespread sequences of triplet repeat are, each of which may have the 
possibility to expand. Thus, the research being performed on DM1 may not just provide 
answers for the mechanism of the disease itself but for numerous other diseases and even 
shed light on how the genome functions as a whole. Despite the complexity of DM1 it still 
remains the long term goal of those involved to identify a cure, treatment or prevention.
The first stage in achieving this long term goal is to gain understanding of the mechanisms 
that govern repeat dynamics, such as how the repeat expands and the individual and 
environmental factors that affect this. This understanding would hopefully give rise to 
more accurate prognoses, which could then be used to help sufferers. Once the process of 
somatic instability is more clearly understood then therapies to control repeat length would 
have to be developed. A likely technique would be a variation on gene therapy but at the 
moment there is no clear mechanism that could be implemented in DM1. It is also 
important to realise that gene therapy has yet to be successfully implemented as a treatment 
for any genetic disease let alone a complex one such as DM1. Also, the success of any 
treatment will have to be monitored at the DNA level, a simple and rapid means to do this 
will also have to be developed. Understanding the mechanisms that govern repeat 
dynamics are the focus of the experiments that are presented in this thesis.
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Chapter 2

Materials and methods 

2.1 DNA samples
42 DM1 DNA samples that had been previously purified from leukocytes were provided by 
Dr. Tetsuo Ashizawa from the Baylor College of Medicine, Houston. Clinical information 
regarding each of the donor patients were also provided including age sampled, age of 
onset of DM1, CTG repeat length as determined by Southern blot hybridisation of genomic 
DNA, family pedigrees and brief descriptions of symptoms. DNA samples from 8 DM1 
patients taken at 2 different time points were provided by Dr. Montserrat Baiget, Hospital 
de Sant Pau, Barcelona. These also had been previously purified from leukocytes and 
CTG repeat length determined by Southern blot. The samples were taken at time intervals 
ranging from 2 to 5 years.

2.2 Small-pool PCR

Previously purified DNA samples of 500ng/pl were prepared for SP-PCR by digestion 
with Hindis, and dilution in lOmM Tris-HCl pH7.5, ImM EDTA and 0.1 pM carrier 
forward primer DM-A (Table 2.1). 40pg - lOng of H indis  digested DNA was amplified in 
7pi reactions using 1 x PCR Buffer, 0.2pM forward primer DM-A, 0.2pM reverse primer 
DM-BR (Table 2.1) and 0.05U/pl of Amplitaq. Reactions were cycled through 28 rounds 
of 96°C (45 seconds), annealing temperature 68°C (45 seconds), extension temperature 
70°C (3 minutes) and a chase of 68°C (1 minute) and 70°C (10 minutes) in a Biometra 
UNO I I 96 thermocycler. 3 pi of the reaction products were electrophoresed through a 1% 
40cm agarose gel in 0.5 x TBE buffer at 160 volts for 18 hours at 4°C. 250ng each of 
lambda HindSl digested marker and ^X llA H aeJS  digested marker were electrophoresed 
down the side and middle of each gel. Gels were placed in depurinating solution (10 
minutes), denaturing solution (30 minutes) and neutralising solution (30 minutes) and then 
were Southern blotted overnight using Hybond-N membrane. Blots were hybridised with 
20ng of a (CTG)56 probe and 4ng each of X HindSl and (J)X174 HaeTS markers. Alleles 
were detected by autoradiography (16 hours - 4 days) with exposure to an intensifying 
screen at room temperature.

2.3 Determination of expanded allele length
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Expanded allele length was determined by one of 2 techniques. Densitometry was used via 
Kodak 1-D Digital Science to determine the average expanded allele of 6 SP-PCR 
reactions. The alternative approach was to again utilise Kodak 1-D Digital Science to 
determine the size of every individual expanded allele from multiple SP-PCR reactions 
equivalent to single cell dilutions.

2.4 Statistical Analysis

Linear regression analysis and data transformations were performed using Microsoft Excel 
software. Multiple linear regression was performed according to previously described 
procedure (Armitage and Berry, 1971).

2.5 Reagents

IX TBE buffer
Tris
Boric Acid

0.09M
0.09M
0.002MEDTApH 8.0

IX PCR buffer
Tris HC1 pH 8.8 
(NH4)2S 0 4

45mM
llm M
4.5mM
6.7 mM
4.4pM
ImM

ImM
ImM
ImM

MgCl2
(3-Mercaptoethanol
EDTA
dATP
dCTP
dGTP
dTTP
BSA 113fig/ml

IX Te
Tris Hcl pH 7.5 
EDTApH 8.0

lOmM
O.lmM

Blue Loading Dye

17



SDS
Ficoll
Bromophenol Blue 
Xylene Cyanol 
TBE

Denaturing solution
NaCl
NaOH

Depurinating solution
HC1

Neutralising Solution
Tris (pH 7.5)
NaCl

0.5% (w/v) 
15% (w/v) 
0.25% (w/v) 
0.25% (w/v) 
3x

0.5M
0.4M

0.25M

0.5M
3.0M
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Primer Name Sequence (5’-3’)

DM-A CAGTTCACAACCGCTCCGAGC
DM-BR CGTGGAGGATGGAACACGGAC

Table 2.1 Sequences of PCR primers. Depicted are the primer sequences used 
perform SP-PCR.



Chapter 3

Utilising Small-pool PCR to improve clinical correlation in DM1 

3.1 Introduction

3.1.1 DM1 clinical correlation

On discovery that the underlying mutation of DM1 was an expanded CTG tract, it was 
noted there was an association with disease severity and the length of the CTG repeat in the 
patients used to confirm the mutation (Brook et al., 1992). Analysis of further patients 
confirmed this- expansion of the CTG repeat shows a positive correlation with disease 
severity and a negative correlation with age of disease onset (Harley et al., 1993). These 
analyses were performed by Southern blot of restriction digested genomic DNA obtained 
from leukocytes and hybridised to a probe from the 3’ region of DMPK. This is the 
standard technique for molecular diagnosis used today (IMDC, 2000). Southern blot 
analysis has detected expansions in the region of many thousands of repeats. Due to the 
large size of the restriction digested genomic fragment used in Southern blotting, it is not 
possible to accurately size smaller expansions and lengths of normal alleles. For this, a 
single PCR reaction can be utilised, using template DNA in the magnitude of lOOng 
(IMDC, 2000). Frequently, a diffuse smear rather than discrete band is produced by both 
techniques. This is explained by somatic mosaicism of the repeat and the mid-point of the 
smear is taken to represent the average repeat length. Despite the presence of somatic 
mosaicism, using average repeat length has provided an indicator of disease severity. In 
most cases patients with late onset disease have between 50 and 150 repeats, classic adult 
onset patients have between 100 and 500 repeats, patients who show a juvenile onset of 
disease have between 300 and 1500 repeats and congenital patients have between 700 and 
4000 repeats (Redman et al., 1993) (IMDC, 2000). Due to these broad overlaps no 
prognosis is offered to asymptomatic individuals based on their measured repeat size. 
Correlation coefficients of repeat length against disease severity and age of onset reflect 
these broad overlaps giving only a weak correlation. This is puzzling as the behaviour of 
the repeat mutation can adequately explain most of the phenomena associated with DM1, 
namely anticipation and the progressive nature of the disease. Yet, statistical analysis 
suggests that repeat length may not be the major contributor to disease severity and that 
other genetic/environmental factors must play a greater role in tandem. As we gain further
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insight into the disease mechanism and repeat instability it is possible this disparity may be 
due to factors involving the special nature of the repeat which must be accounted for.

3.1.2 Age-dependent somatic mosaicism

The extent and nature of somatic mosaicism has been investigated with the smear of 
expanded alleles produced by Southern blot analysis used to detail somatic variability 
(Wong et al., 1995). This was performed by measuring the intensity of the hybridisation 
signal. Signal intensity differences between normal and expanded alleles were accounted 
for by subtracting the background signal and taking the mid-peak width ratio to the normal 
allele. As the normal allele and the expanded allele have the same molar quantity this took 
into account discrepancies in signal intensity. A correction factor was then used to take into 
account the inverse logarithmic relationship between molecular weight and distance 
migrated on the gel. The corrected mid-peak width ratio value was produced for 173 
patients with DM1. This data-set was correlated with age sampled and gave a correlation 
coefficient r=0.81. This strong correlation between age of the individual and the extent of 
somatic variation suggested somatic mosaicism is age-dependent. This study also 
demonstrated that there is a size effect on repeat heterogeneity shown in age groups 20 -50 
years with heterogeneity increasing with age. Thus from looking at the smear on Southern 
blot this study has provided evidence for the extent of somatic mosaicism being dependent 
on the age of the individual and on the size of the progenitor repeat. They propose that this 
could be explained by continuous expansion or by a small window of expansion followed 
by preferential proliferation of larger alleles. In order to quantify somatic variation in DM1 
patients using a more accurate technique, SP-PCR was used to quantify repeat length 
variability in leukocyte, sperm and muscle DNA in DM1 patients (Monckton et al., 1995). 
This involved amplifying multiple aliquots of a DNA concentration from a patient that 
would give a low number of amplifiable expanded molecules per lane on a gel such that 
each allele can be individually quantified. The allele distributions in leukocytes showed a 
skewed shape with a lower boundary below which no alleles were found. The level and 
variation increased with allele size. DNA from muscle showed increased variation but with 
the same lower boundary, whilst sperm distributions were notably different to those 
witnessed in leukocytes of the same patient in particular there is the presence of rare smaller 
expanded alleles which may account for germ-line reversions. The differences in sperm 
and blood distributions have implications for genetic counselling. There were a number of 
observations that provide evidence that these distributions accurately reflect in-vivo 
populations and that they are not PCR artifacts such as heteroduplexes. They noted that no
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variation was ever present around the normal allele. It was also observed that variation 
increased with the number of template molecules used and the variations seen corresponded 
with the Southern blot analysis. The findings of this study allowed the authors to speculate 
that if as suggested somatic expansion is continuous through life (Wong et al., 1995) then 
the process must occur in a step-wise addition of small mutations. A study confirmed that 
somatic mosaicism was age-dependent by utilising the same sensitive SP-PCR approach to 
111 DM patients at two different time points separated by 1-7 years (Martorell et al., 1998). 
Every patient with an average repeat length greater than 200 showed a detectable change in 
repeat length after 1 year. This phenomenon is likely to be the main confounding factor in 
age of onset/repeat correlation. Different generations of the same family are measured 
around the same time with no account taken for an extra 20-30 years of instability occurring 
between the generations. A more accurate index of correlation may be the inherited allele 
length which may be measured on young patients as it appears that somatic mosaicism is 
minimal around birth (Martorell et al., 1998). As somatic mosaicism is age and size 
dependent (Wong et al., 1995) inherited allele length must be predicted in older patients. 
The distribution of somatic mosaicism often shows a lower boundary. Somatic mosaicism 
is tissue-specific (e.g. muscle shows higher instability than blood (Anvret et al., 1993)) 
which may play a role in the disease manifestation. This lower boundary is present in most 
tissues with the notable exception of sperm (Monckton et al., 1995). It is therefore 
conceivable that this lower boundary may correspond to an approximation of the progenitor 
allele. The creation of a mouse model which mirrors the features of somatic mosaicism 
observed in humans has indicated that lower boundary does present a reliable estimation of 
progenitor allele (Fortune et al., 2000).

Information from studies on the mechanism of the disease suggest that there may 
also be other factors which may hinder clinical correlation. A variety of mechanisms have 
been suggested which may work together to cause disease. The expanded CTG repeat may 
cause disease by affecting the expression levels of DMPK and neighbouring genes leading 
to haploinsufficiency. Abnormal mRNA localisation has also been reported with DMPK 
transcripts showing focal accumulation which may in turn inhibit other nuclear functions 
(Davis et al., 1997) (Taneja et al., 1995). Timchenko and co-workers have identified 
proteins that bind specifically DMPK mRNA CUG repeats (Timchenko et al., 1996) 
(Roberts et al., 1997). One protein, CUG-BP/hNab-50 which is normally cytosolic is 
found to be sequestered into the nuclei of cells with largely expanded repeats. These 
mechanisms suggest that it is feasible that a repeat expansion could be the sole cause of the 
broad symptoms exhibited by DM1. Furthermore, the models of nuclear clogging and 
CUG binding protein sequesteration suggest a direct relationship between repeat length and
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extent of malfunction. The model of haploinsufficiency, if correct, may require that a 
different approach is taken toward producing clinical correlations. The haploinsufficiency 
model has support from studies on both DMPK and 57X5. DMPK knockout mouse show 
some of the symptoms of DM1 (Reddy et al., 1996) (Jansen et al., 1996) (Berul et al., 
1999) and there is evidence for nuclear clogging of expanded transcripts which affects 
transcript levels in the cytoplasm by 50% (Krahe et al., 1995) (Davis et al., 1997) (Taneja 
et al., 1995). Expression of SIX5 is reduced in individuals with expanded repeats and 
mouse knockouts of S1X5 develop cataracts in a similar fashion to human patients. The 
model of haploinsufficiency poses the question of how much of a reduction of expression 
will cause disease and what is the threshold of repeat length that will cause this necessary 
reduction? There is also the subsidiary question that given DM1 shows somatic 
mosaicism, what is the proportion of cells that need to cross this threshold to give disease? 
It is suggested that the repeat size for reduction in 57X5 expression is between 200 and 400 
repeats (Klesert et al., 1997). Whilst it has been noted that the threshold for DMPK 
transcript nuclear accumulation is between 50 and 400 repeats (Hamshere et al., 1997). It 
has bee subsequently shown that in clinical correlation between repeat length and age of 
onset there is no apparent correlation between repeat lengths >400 and age of onset. This 
suggests that once this threshold is crossed the repeat length plays no further contribution 
to disease severity (Hamshere et al., 1999).

Thus there are a number of considerations that may explain the disparate 
relationship between repeat length and disease severity. The simplest explanation which 
does not take into account any of the observations discussed is that the statistical analysis is 
correct and that there is only a loose relationship between repeat length and disease 
severity, with other factors being the major determinant. Alternatively, repeat length could 
be the major determinant in one of two ways: there could be a relationship between small 
repeat lengths and disease severity but no relationship between repeat lengths that exceed a 
certain threshold. The other possibility is there is a direct relationship between repeat 
length and disease severity but the accuracy of measured allele length has been 
compromised by age-dependent somatic mosaicism and other factors. If the latter were the 
case then we could expect that progenitor allele (the allele size received at conception) 
would be the major indicator of disease severity.

Although genetic background will be a factor in repeat instability, we believe repeat 
length should be the major determinant in age of onset and the reason that this has not been 
demonstrated in clinical correlations is failure to take into account age-dependent somatic 
mosaicism. We believe that age-dependent expansion provides the explanation for the 
progressive nature of the disease. Our hypothesis that age-dependent somatic mosaicism
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occurs in a step-wise expansion biased mutational pathway that is largely genetically 
determined would mean that progenitor allele length is the major determinant of the rate and 
degree of age-dependent somatic mosaicism and therefore age of onset and disease 
severity. It is interesting to note that a study in which repeat length in patients with minimal 
somatic mosaicism was correlated with age of onset provided a strong LOG10 association 
(Gennarelli et al., 1996). Patients with minimal somatic mosaicism will either be older 
patients with small repeat lengths or younger patients with larger repeat lengths that have 
not had time to undergo significant age-dependent somatic mosaicism. This means that 
these repeat values used would be not that far off the value representing the progenitor 
allele.

To address whether using progenitor allele as an index of age of onset will improve 
clinical correlation we have characterised somatic mosaicism in blood DNA in 42 DM1 
patients with a variety of severity, age of onset and repeat number. We have investigated 
several approaches to determining progenitor allele and it is our aim to apply a simple 
correction for age dependent somatic mosaicism to improve clinical correlations such that 
the technique could be applied in any laboratory.

3.2 Results

Repeat length at the DM1 locus was assessed in 49 patients with DM1. The patients came 
from 8 apparently unrelated families. From these patients 42 were used as the basis of the 
study who presented symptoms from all DM1 severity classes. Information regarding age, 
clinical symptoms and family pedigrees were also provided (Table 3.1, Figure 3.1).
Repeat expansion was previously determined by Southern blot of restriction digested DNA 
using the standard technique (Wong et al., 1995) (Table 3.1) as confirmation of clinical 
diagnosis or as pre-symptomatic test. In order to evaluate the relationship between this data 
set’s Southern blot derived repeat length and age of onset, linear regression analysis was 
performed between the two variables. This statistical analysis gave a significant negative 
correlation, r -  0.60, P<0.0001 (Figure 3.2A). The value r2 is taken to mean the amount of 
variation in age of onset attributable to Southern blot repeat length, which in this case is 
36%. This analysis confirmed previous correlations that suggested that repeat length was 
not the major determinant of the main symptoms of DM1 (Melacini et al., 1995) (Jaspert et 
a l, 1995).

To investigate whether repeat length/age of onset correlation could be improved by 
attempting to correct for age-dependent somatic mosaicism we performed more detailed 
analyses of the repeat heterogeneity of the 42 DM1 patients’ leukocyte DNA using small-
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pool PCR (Table 1). The genomic DNA was previously prepared from peripheral blood 
leukocytes using standard procedures. SP-PCR was performed on dilutions equivalent to 
-50 molecules and for each individual at least 6 reactions were performed. Multiple zero 
DNA control reactions were performed for each set of PCR amplifications to detect 
contamination. The 42 samples showed a wide variety of somatic mosaicism spread 
consistent with somatic mosaicism being age and size dependent (Figure 3.3). To 
investigate whether Southern blot analysis of restriction digested DNA gave an accurate 
indicator of average repeat length we determined average repeat size by densitometry of the 
SP-PCR reactions using Kodak 1-D scientific imaging software (Figure 3.3A). We found 
there were clear differences between Southern blot analysis and small-pool PCR analysis. 
In particular there was a trend that alleles in the high range (1000+) were distinctly smaller 
when measured by SP-PCR (see discussion), the most dramatic example being an 
individual (Sample 137-3666) who had -1400 repeats when measured by Southern blot but 
only 739 when densitometry of SP-PCR was used. Using linear regression, the magnitude 
of correlation between age of onset and average as determined by SP-PCR increased 
(r=0.64, p<0.0001) (Figure 3.2B). An r2 value of 0.41 still suggested average repeat 
length is not the major determinant of age of onset. In order to investigate whether 
correcting for age-dependent somatic mosaicism could improve these values we then 
investigated simple ways of determining lower boundary of the allele distribution of a 
sample. The approaches we favoured would allow an approximation of lower boundary to 
be determined from any sample regardless of the repeat size or extent of somatic 
mosaicism. The first approach was to assume that the lowest band observed represented 
the lower boundary (Figure 3.3B). This was measured for all the patients and regressed 
against age of onset. The magnitude of correlation was lower than average repeat length.
It is likely that this approach does not offer a true representation of the lower boundary as 
both the presence of deletions which have been shown to occur (Fortune et al., 2000) and 
spurious bands will severely confound the measured allele length. To account for this the 
average of the lowest band for the SP-PCR reactions of each sample was taken to represent 
lower boundary as this would iron out discrepancies caused by spurious bands (Figure 
3.3B). This gave a magnitude of correlation of r=0.68 (p<0.0001) -  an improvement from 
0.60 to 0.68. This simple regression analysis assumes the relationship between age of 
onset and repeat length is linear. It has been noted that larger repeats (1000+) have a 
tendency to show greater instability than smaller repeats in some cases (Martorell et al., 
1998) suggesting that the relationship between repeat length and repeat instability is a non­
linear relationship. To account for this, a simple transformation of Log10(lower 
boundary+1) was used which gave a correlation coefficient of r=0.79 against age of onset
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(Figure 3.2D). This suggests that 62% of the variation in the age of onset is attributable to 
Log10(lower boundary +1). Regression analysis between Log10(average repeat length) 
gave a correlation coefficient of r =0.77 (p<0.0001). These higher r values using the Log10 
transformation suggest the non-linear relationship between repeat length and age of onset is 
the most important variable with the role of progenitor allele, although providing a stronger 
correlation in conjunction with the transformation, less important. Other reasons for this 
may be that the method of determining lower boundary does not represent a good 
approximation of the progenitor allele. A size effect on the repeat tract's expandibility has 
been observed and it is possible that this is a non-linear relationship but it could also be 
postulated that this could be due to the presence of a threshold effect. If there is a threshold 
then larger alleles would have no bearing on the correlation. The log10 transformation 
means that larger alleles do not have as great a bearing on the correlation as they would in a 
linear relationship hence the improvement in correlation.

It is clear that both the average repeat length and the age of the individual when 
sampled affect predicted age of onset. Therefore, the next logical step was to perform 
multivariate analysis which would determine the “weight” that average repeat length and the 
age of the individual sampled conferred upon age of onset. This analysis was performed 
according to the procedure in (Armitage and Berry, 1971). This gives an equation in the 
form of y = a + bjXj + b2x2 where xx and x2 are the two variables: age sampled and repeat -.x 
length. We would expect that the most weight would come from repeat length with the age 
sampled variable providing an indication of the amount of age-dependent somatic 
mosaicism which will have occurred. However, it was found that repeat length had no 
significant effect on the correlation with age of onset and that the main component was age 
sampled. It is clear that the age an individual was sampled on should not have the main 
bearing on age of onset of the disease and that this represents an ascertainment bias. This 
is explained by the fact that most patients are sampled as diagnostic confirmation of the 
disease meaning that the age sampled tends to be on or around the age disease symptoms 
present.

3.3 Discussion
At present, no prognosis is offered to DM1 patients due to the imprecise nature of 

the clinical correlations. A factor in this observation is likely to be the failure to take into 
account expansion-biased age-dependent somatic mosaicism. Using the traditional 
molecular diagnosis of Southern blot of restriction digested genomic DNA correlated with 
age of onset gives a correlation coefficient of 0.60. This suggests that only 36% of the
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variation in age of onset is attributable to repeat length and that the length of repeat only 
plays a minor role with other genetic/environmental factors being responsible. This led us 
to question the accuracy of clinical correlations. Using lower boundary of somatic 
mosaicism to account for this phenomenon and a simple mathematical transformation has 
improved the repeat length/ age of onset correlation from 0.60 to 0.79. An r2 value of 0.62 
suggests that repeat length accounts for 62% of the variation in age of onset. This 
demonstrates that repeat length is the major determinant in DM1 disease severity. 
Consequently elucidation of how the repeat causes malfunction will likely explain how the 
disease arises. Our explanation of poor clinical correlations is due to problems in 
ascertainment of data. Our revised technique is also subject to problems in ascertainment 
that must be acknowledged. We have observed that no alleles of greater length than 1300 
repeats have been amplified by small pool PCR despite these being detected by Southern 
blot analysis. This could be due to a variety of factors; perhaps the Southern blot analysis 
may be inaccurate and the PCR analysis offers a tme reflection of the alleles present in 
vivo, however smaller alleles may have a selective advantage in PCR reactions due to 
competition. We had previously performed experiments to determine the accuracy of PCR 
amplification on a difficult template such as a CTG repeat which can form secondary 
structure in vitro (Pearson and Sinden, 1996) and could find no evidence of spurious bands 
(unpublished data). An experimental strategy devised by Zhang et al also suggests PCR --. 
artifacts are minimal (Zhang et al., 1994). There are also problems in ascertainment 
concerning the measurement of age of onset. As DM1 is highly pleiotropic, age of onset 
will be determined according to different criteria depending on what clinical form of the 
disease is manifest. There is also likely to be a tendency to diagnose patients earlier if there 
is a family history of the disease. It would be hoped that a standardised diagnosis of age of 
onset would further improve the correlations accounting for yet more variation. This may 
be too impractical to use in every clinical laboratory, indeed our primary consideration of 
the study is that findings should be able to be utilised by clinicians hence the use of 
leukocyte DNA and standard laboratory techniques. We have noted differences between 
Southern blot and PCR based detection of expanded allele length. Southern blot of 
genomic DNA continues to be the technique of choice for molecular diagnosis despite 
possible inaccuracies and the requirement for a relatively large amount of DNA. This is 
because of reported problems amplifying CTG repeats, possibly because of their high G-C 
content. We have experienced little difficulty in amplification of CTG repeats using our 
protocol (our laboratory has performed several hundred thousand successful 
amplifications). A protocol has been described which allows successful amplification of 
expanded alleles from as few as 10 cells (Hsiao et al., 1999). They propose that this
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protocol could be used for pre-natal diagnosis and population screening studies. We 
recognise the usefulness of this technique, which only requires limited quantities of DNA, 
as it increases the avenues of source material for screening. Patients with several hundred 
repeats will show age-dependent somatic mosaicism and we have observed that allele 
lengths can show an approximate normal distribution. This means that determining the 
average allele length is subject to the same rules that govern determining the mean in a 
population. A sample size of 10 cells would have a large standard error value 
compromising the confidence of the measured mean representing the true mean. This is not 
the case for pre-natal diagnosis as somatic mosaicism is minimal at birth.

It has been noted that there is no correlation with repeat length and age of onset with 
repeats greater than 400 and mRNA localisation experiments suggest an apparent threshold 
size which may correspond to 400 repeats (Hamshere et al., 1999). DMPK mRNA with 
repeats above this threshold show different cellular localisation. This may provide an 
explanation for the lack of correlation -  the size of the repeat effects the localisation of 
mRNA and this effect reaches a maximum at 400 repeats. We would suggest that age- 
dependent somatic mosaicism could also offer an explanation for this observation. Patients 
with repeat lengths >400 will show significant somatic mosaicism in adult life and if this is 
not accounted for would confound clinical correlations. Both of these effects could operate 
in tandem. Also, CDM1 may have to be treated as a special case as it may be reliant on 
how severe the form of disease shown by the mother. We have demonstrated than an 
adaptation of clinical diagnosis can significantly improve disease correlations in DM1. We 
are confident that the repeat itself is the major determinant of the clinical severity and it is 
the characteristic features of both the genetics of the disease and the wide symptomology 
are the main confounding factors. Our simple findings provide the foundation for a logical 
mathematical approach to correct for these factors which would in turn yield even superior 
correlations. If this is the case then there may be hope of prognostic information being 
made available to patients in the forseeable future.
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id en tif ier Age of 
o n se t

A ge
co llec ted

A verage
repeat

(Southern
b lo t)

A verage  
repeat (SP- 

PCR)

101-3001 65 70 100 70.4
101-3008 41 60 78 81.3
101-3071 15 46 770 410.5
101-3080 21 42 470 487.7
101-3082 19 43 830 717.8
101-3057 25 63 1100 840.3
101-3059 51 51 470 421.9
101-3061 25 44 530 484.0
101-3065 29 45 1230 1141.5
101-4010 17 31 1170 999.9
101-5025 11 27 800 649.4
101-4033 20 34 670 525.6
101-4035 20 34 670 457.8
101-4205 17 26 1070 903.7
101-4222 15 18 260 261.9
101-4223 0 17 860 904.3
101-4177 1 34 1360 1035.2
101-4180 18 27 330 271.4
101-3056 39 50 430 280.1
101-4174 18 25 900 1048.3
114-2005 30 38 530 626.4
114-3673 7 8 560 552.6
114-3008 12 14 530 442.4
114-1001 68 68 75 78.3
119-2004 68 68 81 85.3
119-2005 67 68 170 118.0
119-3011 17 40 560 620.6
119-3017 18 36 960 818.5
125-4014 0 12 430 303.0
137-1558 62 72 360 318.5
137-2004 18 32 1460 812.6
137-2664 25 34 530 441.3
137-3666 10 10 1360 739.1
152-2007 13 47 100 636.7
152-3021 19 20 470 530.1
152-3633 12 21 500 518.9
164-3015 21 31 660 701.9
164-2009 60 62 78 90.0
175-1001 63 62 56 60.2
175-2007 31 36 300 225.3
175-2009 16 40 700 343.1
175-2012 26 31 400 557.9

Table 3.1. Details of the 42 DM1 patients analysed in this study. Patients are grouped 
according to which of the 8 families they come from.
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Figure 3.1. Family pedigrees. Pedigrees show relationships between the 8 different 
families who form the basis of the study.
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Figure 32. Correlation of (CTG)n repeat length with age of onset. Shown are scatter plots for correlation: 
(A) average repeat length determined by genomic Southern blot versus age of onset (r =0.60, P<0.0001, 
n=42), (B) average repeat length determined by SP-PCR versus age of onset (r =0.64, P<0.0001, n-42), (Q  
lower boundary versus age of onset (r =0.68, P<0.0001, n-42), (D) Logio of lower boundary +1 versus age 
of onset (r =0.79, P<0.0001, n =42). For each scatter plot the derived linear regression line is shown.
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Figure 3.3. Characterisation of DM1 patients by small pool PCR. Samples show a 
range of repeat length and heterogeneity. 1A shows an asymptomatic individual with 150 
repeats. IB shows an individual with an average of 271 repeats and onset of symptoms 
aged 18 years. 1C shows an individual with an average of 1141 repeats and onset of 
symptoms aged 29. Average was determined by densitometry of 6 reactions as depicted in 
IB. Lower boundary was determined as the average of the lowest bands per reaction as 
depicted in 1C.
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Chapter 4 

Progression of somatic mosaicism in 8 DM1 patients

4.1 Introduction

The expanded repeat in DM1 has been shown to be unstable over time in the same 
individual. This expandibility is detectable in all patients who have an average repeat length 
>200 over a time period >2 years. This continuous expansion may play some role in the 
progression of DM1 symptoms. We have seen that SP-PCR provides a sensitive approach 
to characterising and quantifying the extent of somatic mosaicism (Chapter 1, Chapter 3) 
but this technique has not been widely utilised to investigate repeat expansion progression 
in the same individual. A previous study (Leeflang et al., 1999) used multiple single sperm 
analyses of CAG repeat length at the HD locus to build a picture of germ-line mosaicism. 
They compared samples of a patient taken two years apart and could not detect any 
differences in allele length over this period. This individual had a progenitor allele length 
of 39 repeats which is close to the disease threshold range in HD. It would be expected 
that this allele length would not show the same expandibility as larger repeat lengths. By 
looking at different individuals using SP-PCR a model for the progression of somatic 
expansion has been proposed (Figure 4.1) (Monckton et al., 1995). It is thought that 
somatic mosaicism progresses through an expansion-biased bi-directional pathway of small 
mutations. In distributions that show a skewed shape the lower boundary may correspond 
to the progenitor allele. In markedly progressed distributions that show a normal 
distribution it may be impossible to determine progenitor allele as even the smallest alleles 
present have expanded beyond the initial progenitor length. Using SP-PCR to produce an 
allele distribution reflecting the somatic mosaicism in an individual at different time points 
would both confirm whether this explanation for expansion is accurate and whether the 
lower boundary gives an accurate approximation of the progenitor allele. Being able to 
accurately quantify individual alleles will allow us to treat the different repeat lengths as a 
population thus allowing us to determine using statistics whether observed increments 
reflect a genuine increment or differences due to sampling. If enough individuals were 
studied it may be possible to detect familial effects upon expandibility. The simplest case 
would be that all individuals expand at a rate concurring with their repeat length and age. 
The alternative would be that there were individual specific differences affecting mutation 
rate. There are mechanisms to explain repeat instability such as replication based slippage 
and mismatch repair (see Chapter 5). These are complicated pathways involving many
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stages and many proteins and would widen the opportunity for individual specific effects. 
To observe whether any simple patterns of mutation rate emerge we analysed 8 patients at 2 
different time points in detail using SP-PCR.

4.2 Results

Leukocyte DNA was previously purified in 8 patients with a variety of DM1 clinical forms. 
They were sampled at different time points with a time interval ranging from 1.75-5 years. 
These samples were taken from patients referred to the Hospital de Sant Pau, Barcelona. 
Southern blot analysis had previously been performed on the samples and the findings had 
formed the basis of a study on progression of repeat expansion (Martorell et al., 1998). A 
preliminary SP-PCR analysis of all the samples was performed in order to determine the 
concentrations of DNA that would allow optimum quantification of expanded alleles. Our 
typical procedure when quantifying somatic mosaicism is to use a template concentration of 
DNA that will allow us to detect 4 expanded alleles per reaction. If it is not possible to size 
all expanded alleles in a lane then that reaction is disregarded. Individual expanded alleles 
were sized using Kodak 1-D Digital Imaging software (Figure 4.2) and quantified as allele 
frequency distributions. The number of molecules quantified per sample ranged from 100 
-  558 (Table 4.1). Descriptive statistics of the 8 patients’ distributions at both time points s 
were also produced (Table 4.1). All patients showed a detectable increase in the average 
repeat length in the time interval, although for SDM-B2, SDM-B3 and SDM-B4, the large 
95% confidence limits mean that we cannot say that this is a statistically significant 
increment. All the distributions show a skewed shape apart from SDM-B2, which shows a 
more normal shape at both time points. These observations are consistent with the 
proposed model of progression of repeat expansion. The medians also show an increment 
suggesting that expansion is a result of a general shift as opposed to just alleles in the 
higher range expanding. These samples had been measured before using Southern blot and 
showed an increment of between 100 and 267 repeats. The measured increment was 
markedly smaller using SP-PCR in all cases except SDM-B5. The mutation rate (given in 
repeats per year) shows a general trend of increasing rate with repeat length except for 
SDM-B5 (Figure 4.4). SDM-B5 has shown dramatic expansion over a period of 3 years. 
The mutation rate produced cannot be a constant figure, as in all cases would give a higher 
than detected average repeat length (using the equation mutation rate * age + lower 
boundary). Thus there must be some kind of fluctuation in mutation rate possibly by age 
or size.
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A value for the lower boundary has also been produced. In order to minimise the 
influence of spurious bands the 5th percentile value was taken to correspond to the lower 
boundary. In the case of SDM-B4, SDM-B6 and SDM-B10 the lower boundary values 
correspond reasonably well at both time points (they both lie within 10 repeats) suggesting 
that it could approximately represent the progenitor allele. For the other patients the lower 
boundary figures at both time points do not correspond as well (For SDM-B9 the lower 
boundary figure is 208 repeats at time point 1 and 237 repeats at time point 2). The shapes 
of the distributions show a skewed shape with SDM-B2 having the most normal shape 
distribution suggesting the progression of somatic mosaicism is most advanced in this 
individual. This corresponds with the large average allele size observed and hence greater 
effect on repeat expansion. Due to the limited number of patients and information it is not 
possible to discern any specific patterns of repeat expansion from this data although SDM- 
B5 appears to be a special case compared to the other patients. The individual has shown 
marked expansion over a 3-year period. It is interesting to note that this patient had 
unusually severe symptoms for his measured allele length, and perhaps this represents 
differences in rates of expansion between repeat length in leukocytes and affected tissues. 
Some of the distributions produced appear to show more than one peak suggesting a multi­
modal distribution. This is particularly evident in SDM-B4, which shows 2 clear peaks 
(Figure 4.3F). A multi-modal distribution suggests that the measured alleles are from more, 
than one population of cells.

4.3 Discussion

The somatic mosaicism in leukocyte DNA of 8 patients has been characterised at 2 different 
time points using SP-PCR. This has allowed the quantification of individual alleles to 
produce allele distributions and statistical analyses to be performed. These samples had 
been previously characterised by Southern blot and their average allele length determined 
(Martorell et al., 1998). It had been found that all patients showed an increment of between 
100 and 267 repeats over the course of the time interval. We characterised samples by 
building a distribution of expanded alleles using SP-PCR. This allowed us to take an 
accurate average allele length and also statistically examine each population of expanded 
alleles. Making the assumption that the distribution follows a normal distribution we can 
state that the mean has shown a statistically significant increment in patients SDM-B5, 
SDM-B6, SDM-B8, SDM-B9 and SDM-B10. The other patients have shown a measured 
allele increase but we cannot rule out the null hypothesis that no change has taken place.
The change in length detected using SP-PCR is markedly smaller than that detected using
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Southern blot analysis in all cases except SDM-B5. This may reflect inaccuracies in either 
method of detection. As the fragments measured in the Southern blot analysis are of larger 
size, inaccurate measurement of migration distance could result in a greater or lower 
increment being recorded. It is interesting to note the non-continuous nature of the 
Southern blot data with SDM-B5, SDM-B6, SDM-B8 and SDM-B9 all showing 
increments of 167 repeats. A possible inaccuracy of SP-PCR is a bias towards 
amplification of smaller alleles which would account for a smaller increment being detected. 
However, we noted that alleles > 1000 repeats were detected in 7 of the 16 samples 
characterised. Given this observation and the fact that quantification of individual alleles 
allows statistical comparison to be performed, we would suggest that SP-PCR represents 
the more accurate measure of average allele length and hence change over time.

We also investigated whether the lower boundary corresponded to the progenitor 
allele by determining its value at both time points. All the distributions characterised had 
sharp lower boundaries and the 5th percentile of the repeat data was used to correspond to 
the lower boundary. In only 3 patients did the lower boundary value remain fairly constant 
over the time interval - in the other patients the lower boundary figure increased over time. 
An explanation for this would be that the lower boundary does in fact correspond to the 
progenitor allele but that taking the 5th percentile is not an accurate index of the lower 
boundary and that some other statistical technique must be used. From our data, however 
it would seem that all alleles appear to undergo a general shift of expansion meaning that 
progenitor allele may be a figure that is less than the lower boundary. This would lend 
support to one of the mutation mechanisms involving a high mutation rate of very small 
repeat length changes. We have calculated a simple mutation rate as rate o f change per year 
in units of repeats. In all cases this mutation rate could not be a constant figure as it would 
mean the patients received a progenitor allele of less than zero. This confirms the age and 
size effect noted on repeat expansion. It may not be possible to produce any useful 
conclusions from this value as a patient has cells of differing repeat lengths, each of which 
may be governed by its own specific size-dependent mutation rate. The individual SDM- 
B5 has shown a dramatic expansion of 158 repeats in 3 years showing a far higher 
mutation rate than the other individuals. Given that we propose that this individual 
received a progenitor allele of 130 repeats this change must represent a recent increase in 
mutation rate possible due to age, repeat length or an environmental effect. It would be 
interesting to know whether this individual has developed cancer or is a high risk for 
hereditary cancer.

There is a possibility that some of the distributions show multi-modality as there are 
several distinctive peaks (e.g. Figure 4.3F, 4.3H, 4.3J). Although, these peaks are not
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present in the distributions produced at the earlier time point (Figure 4.3E, 4.3G, 4.31). 
Large pool PCR could be used to determine whether these are real differences or due to 
sampling. Multi-modality would be caused by several different cell populations with 
different repeat distributions being amplified. These samples in this study were taken from 
DNA purified from blood. There are many different populations of cells found in blood 
including granulocytes, monocytes and lymphocytes -  each of which may have specific 
differences in their repeat profile. The immune status of an individual varies from day to 
day and therefore the repeat distribution of an affected individual might as well. Whether 
these fluctuations are significant enough to affect the average repeat length has not been 
deduced as patients have not been characterised over the course of several days. Even if 
this were to be a problem there may be little we can do about it. Although it is possible to 
separate cells by flow cytometry and use a single cell type as the basis of measured repeat 
length, this would be too complicated a procedure for most diagnostic laboratories to 
implement. The alternatives to leukocyte DNA would be muscle biopsy or using sperm 
DNA. To date, correlation between muscle repeat length and disease has been worse than 
that found in blood. This fact coupled with the difficulty of obtaining muscle DNA means 
that the focus of study has primarily remained on blood. Multi-modal distributions have 
been observed in tissues other than blood such as kidney (Fortune et al., 2000), thus cell 
populations that perform related functions can have widely differing repeat profiles.

It is difficult to make any specific conclusions regarding this study of the change in 
repeat distributions over time in the same individual due to the small number patients used 
for observation (n=8). It appears that even this small data-set demonstrates the wide 
variety of individual specific differences in repeat profile which can be detected. 
Environmental factors are being studied by applying chemicals which may mimic the day to 
day stresses that are conferred upon cells and measuring effects on repeat length by using 
cell culture models (Gomes-Pereira, Personal communication). Other environmental 
factors such as diet may represent other variables that could be used to improve clinical 
correlation although there is no evidence to suggest this will affect instability.
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Identifier Age . Sex Time Mean Mean Median No. of Increment Time Mutation Rate Lower

Point S.B. SP-PCR Molecules (Years) (rpts per year) boundary^

SDM-B2 29 M 1 400 447±13 452.87 457 26 1.75 14.86 203.4

2 667 473±21 461.35 228 224.8

SDM-B3 31 M 1 333 311±16 285.76 229 24 2.17 11.06 165.1

2 433 335±12 317.45 344 180.5

SDM-B4 7 M 1 400 341±14 323.05 424 32 2.75 11.64 158.4

2 500 373±38 351.56 115 150.4

SDM-B5 38 M 1 167 173±12 154.8 142 154 3.00 51.3 130.6

2 333 327±22 306.1 128 174.5

SDM-B6 35 F i 333 285±12 274.87 177 28 4.00 7 158.8

2 500 313±14 298.34 191 167.9

SDM-B8 34 F 1 333 311±12 295.1 254 52 4.60 11.3 186.6

2 500 363±24 362.9 100 202.2

SDM-B9 ? F 1 333 335±14 313.25 234 55 5.00 11 208

2 500 390±10 368.4 558 236.8

SDM-B10 7 F 1 267 286±12 245.7 465 33 5.00 6.6 151.7

2 400 319±210 264.7 275 ' ' 149.7

Table 4.1. Patient data at two different time points. Table shows information about 

each of the 8 patients studied. Information shown is identifier, age of patient, sex, mean 

for both time points determined by Southern blot, mean for both time points and 95% 

confidence limits for SP-PCR, median for both time points, the number of molecules 

quantified by SP-PCR, detected increment in repeat length, time period over which this 

change was detected, mutation rate in repeats gained per year and lower boundary value 

for both time points (given as the 5th percentile of the data).
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Figure 4.3. Allele length distributions. Shown are histograms of allele 
lengths (CTG repeats) for the 8 patients taken at two different time points.

41



Fr
eq

ue
nc

y

M
3 0 n

a 1 5 -

SDM-B9-1
N 6 0 - i

5 0 -

4 0 -

SDM-B9-2

ST 3 0 -

250 500 750 1000 1250

Allele length Time interval (years): 5.00

2 0 -

1 0 -

250 500 750 1000 1250

Allele length

6 0 - i
SDM-B10-1

50 -

40 -

3 0 -

2 0 -

1 0 -

0 250 1000 1250500 750

40

SDM-B10-2 -

■ ■■■. ■ ■

750 1000 12500 250 500

Allele length Time interval (years): 5.00 Allele length

Figure 4.3. Allele length distributions continued.

43



M
ut

at
io

n 
ra

te

\

Regression analysis

* . M

. : ! ■ • •• 1
~ t'r ' • ' 5

0 100 200 300 400 500

A lle le  length

Figure 4.4. Regression analysis of allele length against mutation rate. This shows a 
positive correlation of mutation rate with allele length (r=0.88, r?=0.78, p<0.008). 
The analysis was performed on 7 data points, the other data point corresponding to 
SDM-B5 (indicated by an asterisk) was not included in the analysis owing to its 
curiously high mutation rate.
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Chapter 5
I

Computer simulations to model DM1 repeat instability

5.1 Introduction

Analysis of somatic mosaicism at different time points using SP-PCR has led to a broad 
explanation of the dynamics of repeat instability, namely that it is expansion-biased and 
involving small repeat length changes. As the role of DNA is to provide the information of 
heredity, the DNA message is always presumed to be fixed and inherited stably. It is quite 
alarming then to see the dramatic changes at the DM1 locus occurring within the lifetime of 
an individual. There are a number of mechanisms that have evolved over the years to 
maintain DNA fidelity, such as the many DNA repair systems and also the recombination 
systems that promote variation. It is therefore not difficult to imagine that when these 
systems go awry, it would have drastic consequences for the genome. However, in the 
case of DM1, no further mutations have been identified (the transmission of the disease is 
single gene autosomal dominant) therefore the expansions observed must be due to the 
inability of healthy DNA replication and repair systems to deal with the CTG repeat itself. 
There are 2 metres of DNA in a cell, 109 nucleotides and only 4 bases to choose from. A 
single genome will have every combination of trinucleotide sequences by chance so why 
does a CTG repeat cause problems? Studies from structural biology, computational studies 
and bacterial/yeast models are providing answers and it appears CAG/CTG repeats have 
special properties.

Pure CAG/CTG repeat tracts have been shown to form secondary structure in vitro 
(Pearson and Sinden, 1996). When linear polynucleotides consisting of pure uninterrupted 
CAG/CTG repeats of the same length are run on a polyacrylamide gel they produce a single 
band. If these polynucleotides are denatured, re-annealed and electrophoresed as before 
then many bands are seen. If the same DNA is subsequently run under denaturing 
conditions only the single original band is seen again. The explanation for this was that the 
CAG/CTG tracts were forming secondary structure termed slipped strand DNA (S-DNA) 
which was eradicated when the DNA was denatured (Pearson and Sinden, 1996). 
Interestingly, the threshold of length for observed S-DNA formation is -50 repeats, the 
threshold observed for disease. Thus, the CTG tract has a propensity to form secondary 
structure and this can be brought about by separating and re-annealing strands- a process 
that occurs in replication and transcription.
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Computational studies suggest the presence of an expanded CTG repeat will affect 
chromatin structure. The sequence of DNA influences its 3-D structure as some sequences 
will favour certain conformations over others. A study comparing the possible 
conformation of the different classes of triplet repeats found that CAG/CTG repeats were 
the most flexible class of repeat (Baldi et al., 1999). This was measured by the extent of 
DNase 1 cutting and a value corresponding to bendability was computed. CAG/CTG 
repeats have the highest affinity for histones (Wang et al., 1994), the proteins required for 
chromatin packing. Altered chromatin structure could affect the processes of DNA 
replication and repair and this has led to a number of possible mechanisms of repeat 
expansion being proposed. The most favoured theories will be touched upon here.

Replication slippage:
Replication slippage has been proposed as a mechanism for repeat instability (Wells,
1996). This mechanism involves the polymerase dissociating from the replication complex 
whilst it is synthesising the repeat tract. As the repeat tract can form secondary structure, 
hairpins or loop-outs can be formed. When the polymerase re-associates it does so 
upstream of the dissociation point and an extra number of repeat units are eventually 
synthesised (Figure 5.1). This is a simple model but there is a lack of evidence suggesting 
the polymerase will dissociate from the replication complex on the leading strand. A more 
plausible variation on the model (McMurray, 1995) is that hairpin formation occurs on the 
lagging strand as this strand exists as a single stranded molecule for periods during 
replication. This would lead to replication stalling when the polymerase is blocked by the 
base of the hairpin. Replication could initiate from these hairpins leading to expansion or 
the hairpins could persist until repaired by DNA mismatch repair system.

Re-iterative DNA synthesis:
Secondary structure formation ahead of the replication complex could lead to reiterative 
DNA synthesis -  another mechanism that could explain expansion (Sinden and Wells, 
1992). The polymerase could stall and synthesise many repeat units presumably with no 
limit to the extra repeats added which could lead to very large expansions at the next round 
of replication. The formation of hairpin structures within the repeat tract could invoke post- 
replicative DNA repair systems. The hairpins themselves may be recognised and repaired 
leading to expansion or the mismatches within the hairpin (a hairpin produced from CTG 
repeats will contain T-T mismatches) may be recognised and repaired causing expansion 
(Figure 5.2). This model would suggest an equal chance of a deletion or expansion 
occurring.
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Mismatch repair:
If, as suggested, hairpins can form by re-annealing DNA strands (a process that occurs in 
transcription as well as replication) then mismatch repair could represent a non-replication 
based method of repeat expansion (figure 5.2). In order for expansion to occur, hairpins 
of equal size would form on both strands. The hairpin formed on the 3'-5' strand would 
have to form in a different region of the CTG tract in respect to the hairpin on the 5'-3' 
strand. This would allow part of the CTG tract to exist as a heteroduplex and depending on 
which strand is used as the parent strand during repair, expansion or deletion could take 
place.

Okazaki fragment processing model:
Another model of expansion is the Okazaki fragment processing model (Gordenin et al.,
1997) (figure 5.3). A consequence of lagging strand synthesis during replication is that 
synthesis of the current Okazaki fragment may displace the 5' end of the previously 
synthesised Okazaki fragment. In order to combat this there are 5’ to 3' exo/endonucleases 
such as FEN-1 that remove any displaced flaps of DNA. As we have seen, CAG/CTG 
repeats have the ability to form secondary structure therefore the flaps produced whilst 
replicating a repeat tract could form hairpins which would be resistant from processing by 
FEN-1. This would lead to expansion mutations at the next round of replication or after 
DNA repair.

5.1.2 Mathematical modelling

The mechanisms described in this chapter are only a few of the many proposed. The next 
stage is to try to find evidence that favours one model over another or mles one out of the 
picture altogether. For example, studies on yeast that have mutations that dramatically 
reduce recombination result in little change in trinucleotide instability (Miret et al., 1997). 
This experimental observation lessens the support for repeat instability involving a 
recombination system. An alternative to experimental observation is to use mathematical 
modelling to test the viability of mutation mechanisms. This involves generating data 
detailing the mutations occurring in vivo and then determining the probability that any 
particular model of a mutation mechanism could explain the findings. It is not possible to 
account for all the factors controlling the mechanism to be tested and there will always be 
unknown parameters. Thus, a number of biological assumptions must be made which can 
compromise the accuracy of a model. It is common practise to use the most parsimonious
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model to explain observed data and the fewer parameters there are in a model the easier it is 
to perform the statistics. If a particular model does not provide a good fit of observed data 
then it would suggest other mechanisms are involved. It can also mean that a certain 
feature of the model such as a particular biological assumption is inadequate. The use of 
computer simulations of synthetic data can often shed light on where the particular model is 
going wrong and it can be adjusted accordingly. The final confirmation that a model is 
accurate is to successfully use it for prediction. Mathematical modelling has been used to 
give credence to the Okazaki processing model of repeat instability as being responsible for 
germ-line variation at the HD locus (Leeflang et al., 1999). Among the biological 
assumptions that are made in this study are the number of cell divisions that have occurred 
in an individual according to their age (as according to this model mutations can only occur 
during replication). Examples of the parameters that could be altered are the probability of 
displacement of an Okazaki fragment and the probability of ligation of a displaced flap to 
the nascent strand. A mathematical technique called maximum likelihood was used to find 
the “best-fit” for the observed data. This model has not yet been used to predict future 
mutation spectra.

The generation of detailed descriptions of somatic mosaicism present in leukocytes 
at two different time points would allow the possibility of a mathematical model of DM1 
repeat instability to be generated. Having touched upon the possible mechanisms that could, 
lead to expansion, a mathematical model of DM1 instability may shed light on which of 
these is actually involved. Our approach to this would be to use computer simulations to 
produce a computer-generated distribution of expanded allele based on mutation parameters 
and compare this distribution to the in vivo data. Having data at two different time points 
in the same individual would allow a more accurate model to be produced as a model could 
only be deemed correct if it explained both sets of data. In order to simulate the possible 
mutation mechanisms computer software had to be developed which could incorporate the 
possible parameters that each mechanism would require. If we look at the 4 mechanisms of 
repeat instability that we have discussed we can propose the types of mutations that may be 
occurring.

Replication Slippage:
When slippage occurs, unfavourable energies must be minimised by the formation of 
secondary structure. Depending on which strand is then subsequently repaired between 1 
and n repeats are either lost or added (n is the maximum number of repeats that can form 
hairpin structures on the repeat tract and is probably constrained in some way by the length 
of the repeat tract). The number or repeats added/lost could be a random number between 1
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and n. Altemiatively, there could be a relationship between a particular mutation size 
occurring and its probability with a mutation size of 1 repeat showing the highest 
probability and larger mutations showing a lower probability. Slippage could occur more 
than once depending on the length of the repeat tract with the probability increasing in 
longer tracts. This may explain the size effect seen on repeat instability.

Re-iterative DNA synthesis:
Mutation size changes observed could be of 3 types: A fixed repeat could be added, some 
function of the length of repeat tract could be added or between 1 repeat and an assumed 
maximum could be added. Re-iterative DNA synthesis would allow for many repeat units 
to be added but there would have to be a theoretical maximum. Again, the length of the 
repeat tract would increase the probability of this happening at all and the chance of it 
happening more than once. Whether the expansion persists would depend on hairpin 
excision and repair or the extra repeats remaining intact to the next round of replication.

Incomplete processing of Okazaki fragments:
Length of mutation added or lost would be between 1 and the number of repeats in an 
Okazaki fragment (thought to be 150bp therefore 50 repeats). This could be a random 
number between this range or a probability curve with smaller length changes more likely - „ 
to occur than larger lengths. A mutation would be more likely to occur on a tract which 
spans the length of more than one Okazaki fragment. The physical change in repeat length 
on both strands would again be due to excision of hairpins that had formed to minimise 
unfavourable energies or persistence to the next round of replication.

Mismatch repair model:
Pure tracts of CAG/CTG repeats have show a propensity to form hairpin structures (S- 
DNA) in vitro. The formation of S-DNA can be facilitated by denaturing and re-annealing 
(termed re-duplexing) DNA in vitro. It is possible the formation of S-DNA could occur 
spontaneously or during transcription which would allow a non-replication based method 
of expansion. Hairpins would be formed on both DNA strands and if mismatches were 
recognised in only one of the strands then this could to lead to additions or deletions 
occurring after excision repair. This observation has been found in vitro with mismatch 
repair proteins only binding to hairpins on one of the strands (Pearson et al., 1997). The 
types of mutation that would occur would be additions or deletions of between 1 repeat and 
the length of the repeat tract. There may be particular sizes of hairpin which are more stable 
which would lead to specific size mutations being more common. Again the greater the
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length of the repeat tract the greater the propensity of S-DNA formation so the greater the 
probability of mutation.

In all 4 of these mechanisms, some kind of excision repair is required for the change in 
repeat length to be permanent on both strands and all mechanisms suggest a possible size 
effect on mutation rate. These are simplified versions of the actual mechanisms with few 
parameters to alter. We have made the assumption that as the mechanisms allow for a 
mutation to occur more than once on the repeat tract there should be no constraints 
according to the number of cell divisions that have taken place.

5.2 Development of Computer Software

Software to model repeat instability in DM1 was developed as a type of application which 
is nested within a web-site called an applet. Applets are developed using a programming 
language called Java and have the advantage that they can run on any type of computer that 
can run a web-browser allowing PC and Mac users to access exactly the same software.
The applet was developed on an Apple Mac using the Codewarrior programme 
development environment. Java code consists of small re-usable pieces of code called 
classes and methods. The classes and methods were developed using step-wise refinement-. 
and how they are linked together (their inheritance) is depicted schematically (Figure 5.4). 
Each class was developed and tested independently using extreme values. The source code 
can be found in the appendix.

5.2.1 Description of Computer Software

As the development of the software took up a significant portion of research time a 
description of the program is presented here. The software produced allows a user to input 
values corresponding to in vivo expanded allele lengths which will then be converted to an 
allele frequency distribution and displayed. The user can then adjust a variety of mutational 
parameters which can be used to simulate the progression of repeat instability of a group of 
cells of a given progenitor allele. This simulated distribution is then statistically compared 
with the input in vivo data and a value representing the similarity between the two 
distributions is output. The modelling software was developed as an applet to be 
embedded in a web browser. It utilises a standard graphical user interface of menus and 
buttons to allow future use by anyone regardless of their computing knowledge (Figure 
5.5). The layout of the applet is divided into 3 panels. The left panel shows a graphical

50



display of 2 allele distributions, the derived distribution of in vivo data and the model 
distribution produced by simulation. The graphs are displayed as a histogram of the repeat 
values with a bin value of 20. The right panel is the control panel. It contains the 
mutational parameters that can be adjusted by the user. These parameters are:
• Mutation size: This is the number of whole repeats added or lost per mutation event 

during the simulation. There are 3 options available. A whole negative or positive 
number can be added per mutation event. A random number of repeats can be added or 
lost between 2 boundaries given by the user or a mutation spectrum can be used. The 
mutation spectrum allows certain types of mutations to occur at differing rates and can 
be selected by the user (Figure 5.6).

• Mutation rate: This is the rate at which the chosen mutations occur during the simulation 
and can be selected in one of 2 ways. A fixed mutation rate whereby the user enters a 
whole number corresponding to the percentage mutation rate. The other option is to 
select a size effect on the mutation rate whereby increasing repeat length causes the 
mutation rate to increase in a linear relationship. The user is presented with a line graph 
and is asked to alter the gradient to the one that suits (Figure 5.7).

• Number of Cycles: As the software would be required to test non-replication based 
mutation mechanisms, this parameter does not represent cell divisions, rather it is the 
number of times a cell is subjected to the mutational parameters. If the mechanism were- 
to involve transcription we could imagine that in certain cells this value could be far 
higher than the number of cell divisions (which would be around 50 depending on the 
tissue and age of an individual). During each cycle a random number will be generated 
which will determine whether a mutation event will occur according to the selected 
mutation rate.

• Progenitor allele: This is the starting allele length for the model distribution before any 
mutation events occur.

• Size of Pool: This is the number of cells in the model. The larger the number the lower 
the sampling error.

Also found on the right panel is a textbox that allows the user to input the in vivo repeat 
data and the “continue” button that executes the simulation. The lower panel contains the 
output from the statistical comparison.

5.2.2 Program structure and logic

The simulation utilises random numbers in attempt to mirror the events that are occurring in 
vivo. A cell pool of user-determined length is created with all cells containing the estimated
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progenitor allele length. The progenitor allele for the in vivo distribution to be modelled is 
estimated using the lower boundary of the allele distribution (See Chapter 3) -  this is the 
main biological assumption we make. Then this pool is subject to the mutational criteria 
selected for the number of cycles chosen. A random number generator is used and this 
number is converted to a percentage by dividing by 100 and using the remainder. If a 
simple fixed mutation rate is selected and if the random number is smaller than the selected 
mutation rate then the allele length is changed by the mutation size, otherwise it is left 
unchanged. This occurs for every cell. Using this simple model with a mutation rate of 
10% (probability, p=0.1) and assuming each mutation is independent there will be A: *p  * 
n mutations where k  is the number of cycles and n is the number of cells. For a model 
population containing 1000 cells we would therefore expect 1000 mutations to occur but as 
the random number means there will be a stochastic element there is no guarantee of this. 
As there are many possible values for each parameter, the simulation software has been 
developed to allow a range of values for each parameter to be tested by iteration and the 
values are recorded that produce the best fit (see below).

5.2.3 Statistics

The question the simulation software wishes to address is when a population of cells of a 
progenitor allele length are subjected to simple mutational parameters whether this reflects 
in vivo data. This is achieved by comparing the model population to the in vivo population 
after each cycle of the simulation using the Kolmogorov-Smimov (K-S) two-sample test. 
The K-S test provides a value over which we can say 2 distributions are significantly 
different. The maximum absolute difference of the 2 cumulative frequency distributions of 
our samples is the value compared to a significance threshold. The K-S test provides a 
more accurate comparison than comparison of mean and median values.

5.3 Results

The mechanisms of repeat instability we have introduced suggest possible models to test. 
Our approach was to start with a simple model and further refine it according to results of 
the simulation until an adequate and parsimonious model was found. We had previously 
characterised 8 DM1 patients at two different time points (Chapter 4). These individuals 
show a range of different repeat lengths but are all patients who have shown an adult age of 
onset. We attempted to model the data generated at the first time point and if a successful 
model was produced then use it to predict the data we observe at the second time point. If a
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model could accurately describe the data at both time points then this would give it more 
credibility. We began testing the simplest model of repeat instability. This model states 
that changes in repeat length are due to mutations occurring at a fixed mutation rate. When 
a mutation occurs x  repeat units are added (no deletions are taking place)- the simplest case 
being when x  =1. The parameters therefore which could be altered were the mutation rate 
and the estimated progenitor allele. This model was used to simulate the data generated for 
patient SDM-B6 at time point 1. The simulation quickly revealed that the range of 
expanded alleles from minimum to maximum produced using the model would never be 
large enough to adequately describe any of the in vivo distributions.

The model was refined to test whether other values of the mutation size x  could 
explain the in-vivo distributions. All possible mutation sizes were tested along with all 
possible mutation rates and progenitor allele lengths. It was found that a fixed mutation 
size of 39 repeats at different mutation rates and progenitor alleles could provide a statistical 
explanation to the in-vivo data sets for SDM-B6 at both time points (Table 5.1, Figure 
5.8). Although these values provide an explanation to the data, when the simulations were 
repeated only a few gave a statistical similarity to the in-vivo data (~1 in 20). This suggests 
there is a high stochastic component to this particular model. When this model was used to 
simulate patient SDM-B5 an adequate fit to the data could not be produced using any 
combination of parameters. No other patients have yet been tested with this model.

The model was then refined to incorporate a size effect on mutation rate. The 
simplest scenario is that size effect is a linear relationship with mutation rate increasing as 
the length of repeat tract according to the straight line equation y -  mx + c. The possible 
values for this parameter would range from 0.01 to infinity (a straight vertical line has a 
gradient equal to infinity). Due to time constraints only a small range of values were tested. 
Simulations were performed on in vivo data from SDM-B5, SDM-B6 and SDM-B9. For 
SDM-B5 an addition mutation size of 10 repeats, at a range of values for the progenitor 
allele and the gradient m gave statistical fits at both time points (Table 5.2). This was also 
the case for SDM-B6 (Table 5.3) and SDM-B9 (Table 5.4) with statistical fits also being 
produced. It must be stressed that owing to time constraints the full range of parameters 
were not tested and also the simulations were not repeated to gauge the stochastic variation 
provided by the model. The main conclusion that can be drawn from these limited results 
is that the instability observed in DM1 is amenable to mathematical modelling. Neither of 
the models tested are models of biological mechanisms of repeat instability. The software 
has been developed that will allow this analysis to take place in the near future.
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5.4 Discussion

Computer simulations have therefore ruled out the simplest hypothesis of repeat instability 
(1 repeat additions at a fixed mutation rate) as being the sole explanation of DM1 repeat 
instability (we cannot rule out more than one mechanism being involved). Preliminary data 
suggest a model of a fixed 10 repeat addition with a size effect on mutation rate can explain 
3 patients looked at so far at both time points although not every single parameter 
permutation has been tested yet. Time constraints have meant only 2 of the many models 
that the software would allow us to test have been investigated. The problem of producing 
a model of repeat instability can be stated in simple mathematical terms- an equation needs 
to be produced that explains the values found in an array after time t has passed. Because it 
is a simple mathematical problem, it is possible that there will be more than one possible 
explanation of the in vivo data. Although, having data at several time points for the same 
individual will limit the possible models, nevertheless it is important to reconcile possible 
mutation models with experimental observations. For example the 4 possible theoretical 
mutation mechanisms touched upon in this chapter each suggest there is a likelihood of 
deletion mechanisms occurring, indeed deletion mutations have been shown to occur in cell 
culture (Gomes-Pereira, personal communication) and in mouse models (Fortune et al., 
2000). A mathematical model is a model of the real world, so these possible models which , 
have no facility for deletion mutations may have to be discounted. It is interesting that in 
our model accounting for a positive size effect on mutation rate makes a dramatic 
improvement suggesting this may be a key component. Software has been developed 
and placed on a web-site, which will allow further models to be tested in the future. There 
are a number of adjustments that could be made to the software that would improve both 
the speed of generating results and the robustness of the results. Every possible parameter 
within realistic ranges has been tested for each model using iteration, which is time 
consuming but produces water-tight results. The software could be refined to utilise an 
algorithm that tested values within a range using a step (e.g. testing all the values within the 
range 1 -10 with a step of 5 would see the values 1,5 and 10 being tested). The next stage 
would be to home in on values that gave a better statistical fit by using smaller step values. 
The time saved adjusting the software would be minimal compared to the time saved 
running simulations. Currently the software utilises the KS paired test, a statistical test that 
gives a comparison between the model distribution and the in-vivo distribution. A better 
technique would be to utilise likelihood, a mathematical procedure that answers the same 
question but also allows different models to be compared with each other so even if several 
models give a good statistical fit we can determine the best model. As it is clear from the
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few models tested that there may be a number of models that describe the data, it is 
imperative that likelihood calculations are used so different models can be compared. 
Therefore the computer software will have to be modified to incorporate this test before 
further simulations can continue.
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Progenitor Size Rate Poolsize Sig. Sig D(time 1) Z)(time 2)
allele. (rpts) % Thresh. thresh.

(time 1) (time 2)
131 39 2 1000 0.11 0.11 0.0748 0.0893
138 39 12 1000 0.0644 0.1

Table 5.1. Fixed mutation rate/ fixed mutation size modelling results of SDM-B6. 
Shown are the parameter values of a simple model that provided a good fit to observed 
DM1 allele distributions from individual SDM-B6. The D values produced for both time 
points are below the calculated significance threshold therefore the model allele 
distributions and the observed in-vivo allele distributions are not statistically different. The 
values of the progenitor allele correspond to the measured value of the lower boundary.
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Progenitor allele Size m Poolsize Sig. 
thresh, 
(time 1)

Sig. 
thresh, 
(time 2)

D(time 1) D(time 2)

60 10 0.01 1000 0.12 0.13 0.0812 0.0816
70 10 0.01 1000 0.082 0.072
80 10 0.01 1000 0.062 0.0801
90 10 0.01 1000 0.059 0.091
100 10 0.01 1000 0.06 0.108

80 10 0.02 1000 0.071 0.101
90 10 0.02 1000 0.062 0.1216

70 10 0.05 1000 0.112 0.0746

Table 5.2. Size effect on mutation rate (linear relationship)/ fixed mutation size 
modelling results of SDM-B5. Shown are the parameter values of a model that gave a 
good fit to observed DM1 allele distributions from individual SDM-B5. The m value 
represents the gradient of the size effect. The D values produced for both time points are 
below the calculated significance threshold therefore the model allele distributions and the 
observed in-vivo allele distributions are similar. However, the values of the progenitor 
allele do not correspond to the measured value of the lower boundary.
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Progenitor Size M Pool Size Sig.
thresh.

Sig.
thresh.

D(time 1) D(time 2)

(time 1) (time 2)

50 5 0.01 1000 0.110 0.107 0.0315 0.099

50 5 0.02 1000 0.041 0.05

50-60 5 0.05 1000 0.0264 0.0834

50-110 10 0.01 1000 0.0504 0.047

50-110 10 0.02 1000 0.038 0.056

50-90 10 0.05 1000 0.0486
(progenitor = 80) 

0.0516

50-90 10 0.1 1000 0.0514
(progenitor = 70) 

0.0514

60-70 10 0.16 1000 0.069
(progenitor = 70) 

0.0271

70-90 10 0.2 1000 0.0363 0.0726

Table 5.3. Size effect on mutation rate (linear relationship)/ fixed mutation size 
modelling results of SDM-B6. Shown are the parameter values of a model that gave good 
fit to observed DM1 allele distributions from individual SDM-B6. The m value represents 
the gradient of the size effect. The D  values produced for both time points are below the 
calculated significance threshold therefore the model allele distributions and the observed 
in-vivo allele distributions are similar. However, only in a few cases do the values of the 
progenitor allele correspond to the measured value of the lower boundary.
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Progenitor allele Size M Poolsize Sig. Sig. 
thresh, thresh, 
(time 1) (time 2)

D(time 1) D(time2)

50 10 0.01 1000 0.0987 0.0718 0.07 0.059
100 10 0.01 1000 0.031 0.031
120 10 0.01 1000 0.0538 0.071

Table 5.4. Size effect on mutation rate (linear relationship)/ fixed mutation size 
modelling results of SDM-B9. Shown are the parameter values of a model that gave good 
fit to observed DM1 allele distributions from individual SDM-B9. The m value represents 
the gradient of the size effect. The D values produced for both time points are below the 
calculated significance threshold therefore the model allele distributions and the observed 
in-vivo allele distributions are similar. However, only in a few cases do the values of the 
progenitor allele correspond to the measured value of the lower boundary.
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Figure 5.1. Replication slippage. Shown schematically is the mechanism of replication 

slippage. As replication proceeds the polymerase stalls in the repeat tract (A) allowing the 
free strand to loop out and form a hairpin (B). Extension continues (C) and the loop-out is 
repaired, in this case resulting in an expansion (D).
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Figure 5.2. DNA repair mutation mechanism. DNA strands re-anneal out of register 

producing loop-outs (A), which are subsequently recognised as aberrant by the DNA 
mismatch repair system (B). Loop-outs are repaired which can either lead to deletions or, 
in this case, an expansion (C).
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Figure 5.3. Mechanism of incomplete processing of okazaki fragments leading to 
expansion. During replication the polymerase synthesises DNA on both strands in the 5’-3’ 
direction (A). This allows the possibility of displacement of the previous okazaki fragment 
during synthesis of the lagging strand (B). Displaced flaps are usually excised but CTG 
repeats can form hairpins which are resisistant to excision (C). The hairpin persists to thenext 
round of replication resulting in an expansion (D).
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Figure 5.4. Shows inheritance of the classes and methods of the modelling 
software. Direction of arrow denotes data transfer.
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Figure 5.5. The layout of the modelling software is shown here. The left panel displays 

graphical output, right panel is the user control section and the lower panel displays the 

results of the statistical analysis.



Total = 100%

Mutation Size

Figure 5.6. Mutation spectrum. A spectrum of different mutation sizes can be selected 
by the user by means of this adjustable bar chart. In this particular example the user has 
selected (by means of point and click) a 1 repeat mutation to occur 80% of the time, 5 
repeat additions to occur 12% of the time and 10 repeat additions to occur 8% of the time.
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Linear Relationship

Rate = 0 .2 (  Repeat Length -  0)

Rate

125.0 2 5 0 . 0  3 7 5 . 0  500 .0  6 2 5 .0  7 5 0 . 0  8 7 5 . 0  1 0 00 .0
Repeat length

Figure 5.7. Linear relationship between repeat length and mutation rate. A gradient 
corresponding to the size effect can be selected by the user by bringing up this window. In 
this particular case the user has selected a gradient of 0.2 with an intercept of 0.
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Time point 1 Time point 2

model data

SDM-B6 in vivo data
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Figure 5.8. Example of attempts to model in vivo data at two different time points. (A) shows computer 

simulation of SDM-B6-1 using a fixed mutation size of 39 repeats and a mutation rate of 12%. After 32 

cycles of these parameters the model distribution of 1000 alleles and the in vivo distribution were not 

statistically different (threshold = 0.11, D  = 0.064). Using the same parameters the simulation was 

compared with the in vivo data at the second time point (B). The best comparison occurs after 38 cycles 

but for this particular simulation the 2 distributions are significantly different (threshold = 0.11, D  =0.12). 

When the simulation is repeated a small proportion of model distributions are not significantly different 

at both time points.
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Chapter 6

D iscussion

This investigation into the dynamics of triplet repeat instability in DM1 has allowed us to 
make a number of observations. We have investigated correlation between measured repeat 
length and age of onset in 42 individuals diagnosed with DM1. Using the traditional 
technique of Southern blot derived average repeat length against age of onset gave a poor 
correlation. However, using SP-PCR to measure average repeat length and to predict 
progenitor allele length each gave successfully better correlations with age of onset 
(Chapter 3). Using a simple log10 transformation of the data improved the correlation 
further still. We also investigated change in repeat length over time in 8 different patients. 
Using the sensitive SP-PCR technique to quantify repeat number has not only allowed us 
to measure change in average repeat length but also allowed us to observe how time 
affected the progression of somatic mosaicism as a whole (Chapter 4). These observations 
suggested that small repeat length changes are responsible for the progression of somatic 
expansion. Finally, a web-based software application was developed to provide facilities 
to mathematically model DM1 repeat instability using computer simulations. The current 
version of the software allows parameters to be altered that could be used to test mutation 
models of replication slippage, re-iterative DNA synthesis, mismatch repair and incomplete 
processing of Okazaki fragments. We have used the software to rule out a model of 1 
repeat additions at a fixed mutation rate as being responsible for observed in vivo somatic 
mosaicism (Chapter 5).

These observations suggest a number of considerations that have to be addressed. DM1 is 
a late onset disease whose underlying mutation can provide an explanation for the 
progression of the symptoms yet no prognosis is offered to patients, due to poor 
correlation between repeat length and age of onset. We have shown that this correlation 
can be improved, but the next question is whether the correlation can be improved enough 
to give us an accurate prediction of age of onset. The first stage would be to determine 
whether using SP-PCR to predict progenitor allele would improve correlation in a second 
data set of DM1 patients. We have the possibility of studying west of Scotland DM1 
patients referred to the Medical Genetics Department at Yorkhill Hospital but owing to strict 
ethical practise in the U.K., it is a slow process gaining permission from patients. We 
have obtained some samples from our counterparts in Costa Rica (16 samples in total)
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which may allow us to replicate our first set of results. The next stage would be to 
ascertain how accurate our prediction of progenitor allele is. Data from mouse models 
suggest that the lower boundary of the distribution of somatic mosaicism does represent a 
reasonable approximation of the progenitor allele (Fortune et al., 2000). To confirm this in 
humans, allele length could be measured at birth when somatic mosaicism is minimal and 
an individual followed and measured throughout their lifetime. A more realistic approach 
would be to obtain Guthrie cards for current adult patients. Guthrie cards are blood spots 
taken at birth which are used to test for phenylketonuria and then stored. There are a 
number of protocols available that can successfully amplify DNA from cells embedded in 
Guthrie cards e.g. (Hsiao et al., 1999). Thus it should be possible to obtain a measure of 
repeat length an individual had at birth which would give an indication of progenitor allele. 
A drawback is that Guthrie cards are much sought after for genetic studies and may be 
difficult to obtain for patients. A further drawback is that although protocols are available 
for the amplification of triplet repeats, our attempts to amplify patient repeat lengths from 
Guthrie cards were not successful. We were able to successfully amplify repeat length 
from normal individuals’ blood dried onto Guthrie cards, although not very efficiently.
Due to the low numbers of Guthrie cards we had obtained from patients, we postponed this 
approach until we could efficiently amplify and reproduce repeat lengths from normal 
individuals. It may be that large repeat lengths may not be amenable to amplification 
perhaps due to alternative structure formation. It would be hoped that if this problem were 
to be overcome there would be a relationship between progenitor allele length deduced from 
Guthrie cards and somatic mosaicism and that this would allow us to predict progenitor 
allele length in other patients. We have already seen that the lower boundary value may 
also increase with time (Chapter 4), therefore a better indicator of progenitor allele may be 
required which would in turn provide a better clinical correlation. We have also noted that 
a log10 transformation of the data has markedly improved the correlation. This suggests 
that there is a non-linear relationship between repeat length and age of onset. A log10 
transformation is a simple transformation and there may be other mathematical approaches 
to deducing the exact relationship between repeat length and age of onset, which would 
allow us to perform a transformation to account for this relationship. A final improvement 
would be to standardise the measurements of both the repeat length and age of onset 
values. We attempted to provide constant conditions for each of the 42 patients amplified 
and repeated several measurements in order to assess reproducibility. The repeated 
measurements of average repeat length varied slightly (within 10 repeats) but the protocol 
we were using did not allow for all alleles to be measured individually, therefore the 
measurements could not be compared statistically. Standardising measurements of age of
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onset is a task for clinicians, but it is not made easy by the wide and progressive 
symptomology shown by DM1. Questions such as when does a weak muscle become a 
diseased muscle are difficult to answer.

There are obstacles to these improvements but they are achievable. It would have to 
be decided how accurate the correlation would have to be in order for it to be used by 
clinicians as a poor prognosis could severely affect the quality of life of an individual.
Also, if the correlation was to be used for prenatal diagnosis then the requirement for 
accuracy is even greater as a decision to terminate a pregnancy may be based on the 
findings. A particular problem would be where the boundary of repeat length lies between 
the congenital form and the other clinical forms. CDM1 is associated with its own subset 
of serious symptoms including developmental defects. It is likely that the desire to bring a 
CDM1 infant into the world would be less than infants who will develop other forms of the 
disease but may have many years of normal life. It is suggested that repeat lengths >700 
are associated with CDM1, yet there are many patients when measured have lengths >700 
but do not have CDM1. Again, this is likely due to age-dependent expansion with the 
progenitor allele actually being lower than the measured repeat length. The best indicator 
for the likelihood of CDM1 is maternal transmission. A probable explanation for the lack 
of paternal CDM1 may be an effect on reproductive fitness. A symptom of DM1 is 
testicular atrophy, which suggests there may be reproductive problems. Determining the _
boundary repeat length for CDM1 may be the most likely avenue of success when you 
consider the obvious symptomatic differences between CDM1 and the other clinical forms.

If the suggested improvements did not yield an appropriate increase in the 
correlation coefficient then this would suggest some other factor is playing an important 
role. This may be environmental factors or possibly due to the proposed threshold between 
repeat length and age of onset. There are many possible genetic and environmental factors 
that could affect age of onset. We have mentioned genetic factors that could affect the 
stability of the repeat that act either in cis (G-C content) or rrans(mismatch repair genes) 
whilst specific chemicals have been shown to affect repeat stability of cultured cells 
(Pereira, personal communicaton). It is also important to remember there are factors that 
could influence the pathophysiology of the disease. DM1 is primarily a disease of muscles 
and if we take a look at ourselves, it is clear that individuals vary in their natural muscle 
bulk and muscle strength. This is due to genetics and also due to their environment such as 
the amount of protein in their diet and the physical exercise that they perform. All these 
observations are likely to play a role in the rate of progressive weakening of the muscles 
seen in DM1.
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Our data cannot rule out the presence of a threshold repeat length above which 
repeat length makes no further contribution to age of onset. This threshold is thought to be 
400 repeats which does not explain how the CDM, the severest form of the disease, is only 
associated with repeat lengths >700. The presence or absence of a threshold must be 
reconciled in order for the correlation to reach usable values. The suggestions put forward 
here could all be currently implemented and an accurate prognosis could improve the 
quality of life of patients.

A continued observation in these experiments was the differences in measurements 
obtained by Southern blot and those obtained by SP-PCR. In order to back up the results 
provided by SP-PCR an investigation exploring the differences between the two techniques 
on the same patient should be performed. In particular how the measure of somatic 
mosaicism by Southern blot, given as the mid-peak width ratio, compares to the measure of 
somatic mosaicism of individually quantified alleles by SP-PCR. The maximum allele 
length that can be detected by SP-PCR is also a very important figure that needs to be 
deduced. Due to the very nature of SP-PCR with a period of extension time there will be a 
maximum, but it needs to be determined whether any of the differences in Southern blot 
measurement reflect the bias towards smaller alleles or are an artefact of inaccurate 
measurement by Southern blot.

It would be hoped that in the future the disease could be prevented or treated. As there is 
the absence of an obvious supplementation as there is for diabetes, any treatment for DM1 
would require a novel mechanism. If the disease is shown to be the result of 
haploinsufficiency, gene therapy could be used in order to hopefully introduce another 
functional copy of the region of DNA affected by the triplet repeat. As more than one gene 
is affected, the size of the region that would have to be replaced in order for the loss of 
function to be overcome would have to be deduced. It is also important to realise that gene 
therapy has not been successfully implemented in any genetic disease as a treatment let 
alone a complex one such as DM1. This system of “DNA supplementation” also has the 
drawback that if treated patients were healthy they would also be genetically fit and able to 
pass on large repeat lengths to their offspring resulting in more cases of CDM1 with 
developmental symptoms that would not respond to treatment.

This may be hypothetical as current research suggests DM1 may operate as a trans- 
dominant RNA disorder and supplementing a healthy copy of DNA may not produce the 
desired effects. A novel mechanism would have to be developed in order to combat this 
type of malfunction. The most obvious treatment would be to attempt to control repeat 
expansion as a prevention and to cause repeat contraction as a possible treatment. Attempts
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to mathematically model DM1 repeat instability along with other fields of study may shed 
light onto the mechanisms of repeat instability. Once the underlying mechanisms are 
established, a treatment may become apparent that would prevent the repeat from 
expanding. For example, it has been noted that contraction mutations do take place but at a 
lower level than addition mutations. If there were a simple technique to tip the bias in 
favour of contraction mutations then a potential treatment or prevention could be yielded. 
Preliminary results on cell culture suggest that specific chemicals can increase the rate of 
expansion, therefore it is plausible that chemicals may exist that reduce expansion, although 
the overall effect on the genome would also have to be determined. As DM1 would require 
a new approach for treatment, these are very much long term goals.

The features of somatic instability seen in DM1 are also seen in Huntington’s disease (HD). 
Expansion-biased age-dependent somatic mosaicism has been observed in an accurate 
mouse model of HD instability (Kennedy and Shelboume, 2000). The somatic mosaicism 
observed follows a different pattern to the progression seen in DM1 with only certain 
tissues showing increased expansion such as the striatum. The authors suggest that 
increased severity of symptoms is caused by increased CAG repeat number. Expansion 
may arise due to the consequence of cells carrying an expansion being vulnerable to further 
expansion due to age-related or disease-related DNA damage. If this were the case, then it_ 
may be possible to predict the degree of somatic mosaicism an individual will have over the 
time course of their life based upon their progenitor allele length as we are trying to do with 
DM1 and subsequently predict symptoms. An interesting feature of the observations in this 
HD mouse model is that striatal tissue primarily consists of post-mitotic neurons, thus 
increasing the support for a non-replication based method of expansion in HD. In other 
HD mice, absence of a specific component of the mis-match repair pathway reduces length 
variability in the striata (Manley et al., 1999). This provides compelling evidence that the 
mechanism of repeat expansion, at least in HD, involves the mis-match repair system. A 
possible way of reconciling these observations in humans would be to investigate incidence 
of HNPCC in patients with triplet repeat diseases. HNPCC is associated with mutations in 
the mis-match repair system -  the lack of DNA repair is eventually thought to lead to 
cancer. Observations that showed a decreased incidence of HNPCC in triplet repeat 
disease patients and vice versa would lend support to a mis-match repair mechanism of 
triplet expansion.

Thus, we have seen how that the preliminary experiments presented in this thesis 
are the first steps in the long-term approach to producing a prognosis and cure for DM1 in 
the future and may also increase our understanding of other triplet repeat diseases.
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Appendix

Presented here is the source code for the simulation software. The source code consists 
of small pieces of code called classes, each of which perform a specific task. Classes are 
arranged in a hierarchy which is the overall program. The function that each class 
performs is depicted here:

Visual display of allele distributions 
controlled by class GraphCanvas

Instability Modelling

M utationR ate:

No o f  C ycles:

v,v:
Progenitor Allele:

j
l 400 . 
i  of Repeats

1000si i. '
Sice of Pool:

□  iteration
200 . 400

No. of Repeats

j [Threshold le 0.11090228313746042 thei

. ■  ■'
i distributions ere significantly different.

Layout of results controlled by class 
ModelResultsPanel.

Layout of mutation 
parameters and input data 
functions controlled by 
class ModelControlPanel.

Class
RandomFrame

“Class
SpectrumFrame

Class
FixedRateFrame

Class
RateFrame

Class
MutationFrame

All calculations of statistics and generation of 
model data controlled by class Model.
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Class Model:
/**

* Q a s s : Model
*

* @author Grant Hogg (ghogg@molgen.gla.ac.uk)
* David Jack (davidj@dcs.gla.ac.uk)
* @version 0.3 
7

import java.applet Applet;

import java.awt.BorderLayout;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.GridLayout;
import java.awt.Label;
import java.awt.Panel;
import java.awt.datatransfer.Clipboard;
import java.awt.datatransfer.Transferable;
import java.awt.datatransfer.DataFlavor;
import java.awt.Choice;
import java.awt.event ActionEvent;
import java.awt.event.ItemEvent;
import java.awt.event ActionListener;
import java.awt.event.ItemListener;
import java.io.InputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;

import java.net.URL; 
import java.net.URLConnection;

import java.util.Date; 
import java.util.Enumeration; 
import java.util.Random; 
import java.util.Vector; 
import java.util.StringTokenizer;

/ * *
* Applet sub-class. Performs a CTG repeat instability simulation, taking
* patient data and parameter settings and returning results o f statistical
* analysis.
7

public class Model2 extends Applet implements ActionListener,ItemListener, ModelConstants {

/* *
* Applet control panel and results panel. 
7

private ModelControlPanel controlPanel; 
private ModelResultsPanel resultsPanel; 
Clipboard clipboard = null;

mailto:ghogg@molgen.gla.ac.uk
mailto:davidj@dcs.gla.ac.uk


* Represents the model and derived data. 
V

private Mod model = new Mod(); 
private Der derived = new DerQ;

/ * •
* Distribution histograms for the model and derived data.
V

private GraphCanvas modelGraph = new GraphCanvas("model"); 
private GraphCanvas derivedGraph = new GraphCanvas("derived");

/•*
* Initialised parameters.
V

private Color myColor = new Color(200,150,250); 
private boolean isDerived = false; 
private int cycleCounter = 0;

/* *
* Variables required for statistical analysis. 
*1

private double threshold; 
private double D; 
private double bestD; 
private int bestCycles; 
private double[] derivedFreq; 
private doublef] modelFreq; 
private doublef] absoluteDiff;

/* *
* Variables required for iteration 
*/

private int overallBestCycles; 
private double overallBestD; 
private int bestSize; 
private int bestRate; 
private int bestProgenitor; 
private int iterationCounter;

/**
* URL of the servlet which returns the data.
*1

private final String servletString = "http://mars.dcs.gla.ac.uk:8001/servlet/geneprobe/RepeatInstabilityServletV0_3";

/* *
* Applet's init() method. Constructs the Applet interface. 
*/

public void initQ {
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// Sets up a BorderLayout with no gaps between components.
/ / -----------------------------------------------------

setLayout(new BorderLayoutQ);

// Constructs the side control panel.
/ / -----------------------------------------------

controlPanel = new ModelControlPanelO; 
controlPanel.setBackground(myColor); 
controlPaneLaddActionListener(this); 
controlPanel.addItemListener(this); 
add(controlPanel, "East");

// Construct the bottom results panel.
/ / ---------------------------------------------

resultsPanel = new ModelResultsPanelO; 
resultsPanel.setBackground(myColor); 
add(resultsPanel, "South");

// Construct the center graph panel.
/ / -------------------------------------------------------

Panel graphPanel = new Panel 0;

graphPanel.setBackground(myColor); 
graphPanel.setLayout(new GridLayout(2,1));

// Set the size of the two GraphCanvas components, and add them.
/ / -----------------------------------------------------

modelGraph.setSize(410,260); 
graphPanel.add(modelGraph);

derivedGraph.setSize(410,260);. 
graphPanel.add(derivedGraph);

I I Construct the top panel, for displaying the Applet title.
/ / ---------------------------------------------
Panel titlePanel = new Panel();

titlePanel.setBackground(myColor); 
titIePanel.setFont(new Font("Serif", Font.PLAIN, 24)); 
titlePanel.add(new Label("Instability Modelling"));

// Add the four panels to the Applet.
//----------------------------

add(graphPanel,"Center"); 
add(titlePanel,"North");



/**
* ActionListener callback method.
* Called when any of the buttons on the Applet are selected.
*

* @param e the ActionEvent generated.

public void actionPerformed(ActionEvent e) {

// Get the action command from the ActionEvent.
/ / ---------------------------------------
String command = e.getActionCommandO;

// If the 'Load Data' button was selected: load the appropriate data.
// If the 'Run Model' button was selected: run the model.
/ /  ------------------------------
if (clipboard == null)

clipboard = getToolkitQ.getSystemClipboardO;

if (command.equals("Load Data")) { 
resultsPanel.clearResultsO;

loadData();

} else if (command.equals("Run Model")) { 
resultsPanel.clearResultsO;

if ((controlPanel.getCheckboxStateO == true) &&
(controlPanel.selectedItem.equals("Single Mutation"))) {

iterateModelO;
} else 
{
runModelO;
}

} else if (command.equals("Clear")) {
controlPanelxlearAreaO;

} else if (command.equals("Paste")) {
Transferable clipData = clipboard.getContents(this); 
String s;
try{

s = (String) (clipData.getTransferData( 
DataFlavor.stringFlavor));

} catch (Exception ee) {
s = ee.toStringO;

}// end try catch

controlPanel.setArea(s);

}
} // end method

public void itemStateChanged( ItemEvent e)
{

// only one menu so all itemEvents will come from this 
Choice choice = (Choice) e.getltemSelectableO; 
if (choice == controlPanel.rateOptions)
{
controlPanel.selectedRate = e.getltemQ.toStringO;



if (controlPanel.selectedRate.equals("Fixed Rate")){
I I set spectrum frame to be visible 
controlPanel.fixedRateFrame.setVisible(true);

} else if (controlPanel.seIectedRate.equals("Linear")){ 
// set spectrum frame to be visible 
controlPanel.rateFrame.setVisible(true);

if (choice == controlPanel.mutationOptions)
{
controlPanel.selectedltem = e.getltemO-toStringO;

if (controlFanel.selectedItem.equals("Select Spectrum")){ 
// set spectrum frame to be visible 
controlPanel.specFrame.setVisible(true);

} else if (controlPanel.selectedItem.equals("Smgle Mutation")){ 
// set spectrum frame to be visible 
controlPanel.mutFrame.setVisible(true);

}
else if (controlPanel.selectedItem.equals("Random Mutation")) { 

// set spectrum frame to be visible 
controlPanel.ranFrame.setVisible(true);

}
}

} // end method

* Sets up the connection to the servlet. Sends a dummy Vector to the
* servlet (sendData) in order to work-around a possible bug(?) to do
* with the ObjectlnputStream. Then posts a request to the servlet
* which returns the data, read in from the file, as a Vector. This
* derived data is then displayed on the lower histogram on the applet. 
7

protected void loadDataO {

/ / 1 have removed David's stuff here for the time being 

/* Vector data = null;

// Try ... getting the derived data from the servlet and displaying it. 
/ / ----------------------------------------------
try {

// Open the connection to the servlet URL.
/ / ---------------------------------

URL servletURL = new URL(servletString);
URLConnection servletConnection = servletURL.openConnectionO;



/ /  Set the servlet connection parameters.

servletConnection.setDoInput(true); 
servletConnection.se tDoOutput(true); 
servletConnection.setUseCaches(fialse); 
servletConnection.setRequestProperty("Content-Type", 

"application/octet-stream");

/ /  Send data to the servlet: «  presently sends dummy data »  
/ /  Get the derived data returned from the servlet.
/ / -------------------------------------------

sendData(servletConnection); 
data = getData(servletConnection);

//  Display the derived data in the distribution histogram.
/ / -------------------------------------------
displayDerivedData(data);

} catch(IOException e) {
S ystem .err.p rin tln (" «««"+ e.getM essage()+" »»»" );

}
*/

II this is my simple alternative 
isDerived = true;

String s = controlPanel.getlnfoO;
StringTokenizer t = new StringTokenizer(s); 
derived.alleles = new int[t.countTokens()]; 
derived.size = t.countTokensO;

int i = 0; 
int value;
Double tempValue;
// get numbers from our derived string 
while(t.hasMoreTokens()){ 

try{
tempValue = (Double.valueOf(t.nextToken())); 
value = (int)tempValue.doubleValueO;
} catch (Exception ee){ 
isDerived = false; 
value = 0;
// need to notify user 
} // end try catch 

derived.allelesfi] = value; 
i++;

} // end while

// draw graph for user
Graphics g = derivedGraph.getGraphicsO;
g.setColor(myColor);
g.fillRect(31,1,357,209);
g.setColor(Color.darkGray);
derived.drawl(g);

}

/**
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objectlnputStream = new ObjectlnputStream(inputStream); 
vect = (Vector)objectInputStream.readObject(); 
objectlnputStream.closeO;

} else {
throw new IOException("Null InputStream from URLConnection: < 

conn.toStringO+">");
}

// Catches exception if the incoming data is not a serialized Vector.
/ / ----------------------------------------------
} catch(ClassNotFoundException e) { 

System.err.println("ClassNotFoundException: "+e.getMessage()); 
e.printStackTraceO;

}

// Check the incoming vector before returning it.
// NB: Not sure whether this is really necessary, since a null Vector 
// may be caught by the ClassNotFoundException.
/ / ----------------------------------------------

if (vect != null) 
return vect; 

else
return new VectorO;

}

/•*
* Displays the derived data in the lower applet histogram.
*

* @param Vector the derived data Vector.
7 .

private void displayDerivedData(Vector data) {

// Set isDerived flag, and initialise other parameters.
/ /  :------------------

isDerived = true; 
int index = 0;
Double tmp; 
int value;

// Construct a array of integers from the Vector of Strings.
/ / ----------------------------------------------

derived.alleles = new int[data.size()]; 
derived.size = data.sizeQ;

// For each String in the data Vector....
// Extract the value as an integer and add it to the array.
/ / ---------------------------------------------
Enumeration derivedElements = data.elementsO; 
while(derivedElements.hasMoreElements()) {



String str = (String)derivedElements.nextElement(); 

try {
ta p  = Double.valueOf(str); 
value = tmp.intValue();

} catch(Exception ex) { 
isDerived = false; 
value = 0;
System.err.println(ex.getMessageO);

}
derived.alleles[index++] = value;

}

// Draw the derived data set as a graph, using the derived 
// GraphCanvas's Graphics object. (First clear the graph area). 
/ / -------------------------------------------
Graphics g = derivedGraph.getGraphics();

g.setColor(myColor); 
g.fillRect(31,1,357,209); 
g.setColor(Color.darkGray);

derived.drawl(g);
}

/**
* Run the model using the parameters entered into the applet.
* Calculates the model array and displays it in the upper histogram.
* Calculates the statistical results from the model and derived data
* and displays them in the lower results panel.
*/

protected void runModelQ {

// Reset the cycle counter.
/ / -------------------

cycleCounter = 0;

// Read the int values from the control panel textfields.
/ / ----------------------------------------------

int mutationRate = 10;
int cycles = controlPanel.getCycles();
int progenitor = controlPanel.getProgenitor();
int poolSize = controlPanel.getPoolSize();

int mutationSize = 1;
int[] randomRange = new int[2];
// get mutationSize value

if (controlPanel.selectedItem.equals("Single Mutation")){
mutationSize = controlPanel.mutFrame.getMutationSizeQ;

}
else if (controlPanel.selectedItem.equals("Random Mutation")) {

randomRange = controlPanel.ranFrame.getMutationSizeRange(); 
}



// get mutationRate value
if (controlPanel.selectedRate.equals("Fixed Rate")){

mutationRate = controlPanel.fixedRateFrame.getMutationRate();

}
else {
// will be using linear relationship information contained in rateFrame 

}

// Use the size of the pool to set up an empty integer array for 
// the model data.
/ / ----------------------------------------------
model.alleles = new int[poolSize]; 
model.size = poolSize;

// Calculate the threshold<?> using the sizes o f the two data sets.
/ / ----------------------------------------------
if (isDerived == true) {

int N1 = model.size; 
int N2 = derived.size;

threshold = (Math.sqrt((double)(Nl +N2)/(N1*N2)))*1.36;
}

// For each element in the model data array, fill with the value 
// given for the progenitor allele<?>.
/ /   ------

for(inti=0; i<model.size; i++) { 
model.allelesfi] = progenitor;

}

// Get the model GraphCanvas's Graphics object.
// --------------------------------------
Graphics g = modelGraph.getGraphicsQ;

// Process the model array for the set number of cycles .... 
/ / ---------------------------------------------
for(in ti= l; i<=cycles; i++) {

// Increment the cycle counter. 

cycleCounter++;

// mutate the model array adding the correct mutation size
/ /-------------------------------------------

if (controlPanel.selectedItem.equals("Select Spectrum")){
// mutate accordingly
model.alleles = spectrumMutate(model.aUeles,model.size, mutationRate 

,controlPanel.specFrame.spectrumArray,controlPanel.specFrame.intervalno);
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} else if  (controlPanel.selectedItem.equals("Single Mutation")){
// need to check whether linear relationship selected

if  (controlPanel.selectedRate.equals("Fixed Rate"))
{

model.alleles = mutate(model.alleles, model.size, mutationRate, 
mutationSize);

}
if (controlPanel.selectedRate.equals("Linear"))

{
model.alleles = linearMutate(model.alleles, model.size,

controlPanel.rateFrame.m

,controlPanel.rateFrame.diseaseThreshold,mutationSize);
}

} else if  (controlPanel.selectedItem.equals("Random Mutation")) { 
if  (controlPanel.selectedRate.equals("Fixed Rate"))
{

model.alleles = randomMutate(model.alleles, model.size,
mutationRate,

randomRange [0], randomRange [ 1 ]);
}

if  (controlPanel.selectedRate.equals("Linear"))
{
model.alleles = randomLinearMutate(model.alleles, model.size,

controlPanel.rateFrame.m

,controlFanel.rateFrame.diseaseThreshold,randomRange[0] ,randomRange[ 1 ]);
}
// probably a more efficient way of doing this

}

// Clear graph area, and draw the model array as a graph.
/ / -------------------------------------------
g.setColor(myColor); 
g.fillRect(31,1, 357, 209); 
g.setColor(Color.darkGray);

model.drawl(g);

// Calculate the statistical results.
//------------------------------
if (isDerived == true) {

modelFreq = new double[maxDist]; 
derivedFreq = new double[maxDist]; 
absoluteDiff = new double[maxDist];

// Calculate arrays of model and derived frequencies.
//-----------------------------------------
modelFreq = frequency(model.graphArray, model.size, 

modelFreq);
derivedFreq = frequency(derived.derivedArray, derived.size, 

derivedFreq);

// Calculate array of absolute differences. Get first 
// absolute difference and set that as the maximum.
//----------------------------------------
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int j = 0;
absoluteDiff[j] = Math.abs(modelFreq[j]-derivedFreq[j]);
D = absoluteDiff[j];

I I Check rest of the absolute differences to find the max.
/ / ---------------------------------------------------------------

for (j=l; j<maxDist; j++) {

absoluteDiffjj] = Math.abs(modelFreq[j]-derivedFreq[j]);

if  (absoluteDiff[j] > D)
D = absoluteDiff[j];

}

// Now, we have a D<?> for this particular cycle. In order 
// to find the best cycle, set the first D to be the best 
// and then compare against subsequent values.
/ / -----------------------------------------------

if (cycleCounter == 1) { 
bestD = D;
bestCycles = cycleCounter;

} else { 
i f  (D <  bestD) { 

bestD = D;
bestCycles = cycleCounter;

}
}

}
}

// Finished mutating, now want to output statistic results.
/ / ---------------------------------------------

if (isDerived == true) {

resultsPanel.setBestD(String.valueOf(bestD));
resultsPanel.setBestCycle(String.valueOf(bestCycles));

// Output results o f comparison between the best value of D 
// and the threshold<?>.

if  (bestD < threshold) 
resultsPanel.setSignificance("Threshold i s "+ 

String.valueOf(threshold)+" therefore distributions"+ 
"are not significantly different.");

else
resultsPanel.setSignificance("Threshold i s "+

String. valueOf(threshold)+" therefore distributions "+ 
"are significantly different.");

}
}

protected void iterateModelO {

// method that will read in a range of parameters and try every combination 
// noting the best one.
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// need to define array iterateGraphArray. This array contains the same 
I I information as graphArray but is defined separately here to complicate things.
//----------------------------------------------
int[] iterateGraphArray = new int[maxDist];

I I can only do this method if  we have derived information

if (isDerived =  true) {

// reset iteration counter
//----------------------------------------------

iterationCounter =0;

I I read the values from the control panel textfields
//----------------------------------------------
int[] mutationRateRange = new int[2]; 
int[] mutadonSizeRange = new int[2]; 
int[] progenitorRange = new int[2];

mutationRateRange = controlPanel.getMutadonRateRangeO; 
mutadonSizeRange = controlPanel.mutFrame.getMutadonSizeRange(); 
progenitorRange = controlPanel.getProgenitorRangeO; 

int cycles = controlPanel.getCycles(); 
int poolSize = controlPanel.getPoolSize();

// initialise the best parameters to the ones we have.
//----------------------------------------------
bestRate = mutadonRateRange[0]; 
bestSize = mutationSizeRange[0]; 
bestProgenitor = progenitorRange[0]; 

overallBestCycles = 0;

// use the size of the pool to set up an empty integer array
//----------------------------------------------
model.alleles = new int[poolSize]; 
model.size = poolSize;

// initialise stuff for statistical comparison
//----------------------------------------------
int N1 = modeLsize; 
int N2 = derived.size;
threshold = (Math.sqrt((double)(Nl + N2)/(N1*N2))) * 1.36;

// Get the model GraphCanvas Graphics object
//----------------------------------------------
Graphics g = modelGraph.getGraphicsQ;

// lets begin iterations
//----------------------------------------------
for (int paraml = progenitorRange[0]; paraml <= progenitorRange[l]; paraml++) {

// paraml = current progenitor allele

for (int param2 = mutationSizeRange[0]; param2 <= mutationSizeRange[l]; param2++) { 
// param2 = current mutation size

for (int param3 = mutationRateRange[0]; param3 <= mutationRateRange[l]; param3++) { 
// param3 = current mutation rate

// now have all the parameters I need. Lets go.
// increment iteration Counter
//---------------------------------------------
iterationCounter ++;
g.setColor(myColor);



g.filIRect(31,1,357,209); 
g.setColor(Calor.darkGray);
g.drawString("calculations:" + iterationCounter,100,150);

I I initialise model.alleles with progenitor
//--------------------------------

for (int i = 0; i< model.size; i++) {
model.alleles[i] = paraml;

}

// reset cycleCounter
//----------------------------------------------
cycleCounter = 0;

// go through array for each of the cycles 
//----------------------------------------------
for (int i= l; i<=cycles;i++) {

cycleCounter ++;
model.alleles = mutate(model.alleles, model.size,param3, param2); 
iterateGraphArray = model.convert(model.alleles,model.size,iterateGraphArray); 
// now have a mutated array. Lets do the stats. 
modelFreq = new double[maxDist]; 

derivedFreq = new doubie[maxDist]; 
absoluteDiff = new double[maxDist];

// Calculate arrays of model and derived frequencies.

modelFreq = ffequency(iterateGraphArray, model.size, 
modelFreq);

derivedFreq = frequency(derived.derivedArray, derived.size, 
derivedFreq);

//  Calculate array of absolute differences. Get first 
// absolute difference and set that as the maximum.

/ / ----------------------------------------
int j = 0;
absoluteDiff[j] = Math.abs(modelFreq[j]-derivedFreq[j]);
D = absoluteDiff[j];

// Check rest of the absolute differences to find the max.

for(j=l; jcmaxDist; j++) {

absoluteDiffjj] = Math.abs(modelFreq[j]-derivedFreq[j]);

if (absoluteDiffJj] > D)
D = absoluteDiff[j];

}

// Now, we have a D<?> for this particular cycle. In order 
// to find the best cycle, set the first D to be the best 
// and then compare against subsequent values.
/ / ----------------------------------------
if (cycleCounter == 1) { 

bestD = D;
bestCycles = cycleCounter;



}
if  (D < bestD) { 

bestD = D;
bestCycles = cycleCounter;

}
// end else

// once D is clearly not going to get any better then w e may as well break from the loop
//-----------------------------------------
if  (D> (bestD + 0.15)) break;

} //  end mutate cycles

// now have a BestD is it overall Best D?
//------------------------------------

if (iterationCounter =  1) {
overallBestD= bestD; 
overallBestCycles = bestCycles;
// set other parameters
//-------------------------------------
bestProgenitor = paraml; 
bestSize = param2; 
bestRate = param3;

} II end if 

else {
I I already have overall best D so lets compare best D to it.
//--------------------------------------

if (bestD < overallBestD) {
overallBestD= bestD; 
overallBestCycles = bestCycles;
I I set other parameters
//---------------------------
bestProgenitor = paraml; 
bestSize = pa ram?.; 
bestRate = param3;

} // end if 
} I I end else

} // end for 

} // end for 

} // end for

// output results, need to update class Mod such that results are updated when 
. //  iteration is selected
//--------------------------------------
// need to clear area for drawing 
g.setColor(myColor); 

g.fillRect(31,1,357,209); 
g.setColor(Color.darkGray);

model.drawl(g);

// output stats stuff
//--------------------------------------
resultsPanel.setBestD(String.valueOf(overallBestD));
resultsPanel.setBestCycle(String.valueOf(overallBestCycles));

// output results of comparison between the best value of D and the threshold

if (overallBestD < threshold)
resultsPanel.setSignificance("Threshold i s "+ 

String.valueOf(threshold)+" therefore distributions"+
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"are not significantly different.");
else

resultsPanel.setSignificance("Threshold is "+
String.valueOf(threshold)+" therefore distributions "+ 
"are significantly different.");

} / /  end if  at the beginning 

} // end method

/**
* Utility method for returning an integer array.
*

* @param mutateArray the array of integers to mutate.
* @param size the size of the mutation array.
* @param rate the percentage mutation rate.
* @param mutation the mutation factor<?>.
* (©returns the mutation array.
*/

private int[] mutate(int[] mutateArray, int size, int rate, int mutation) {
// need to take into account whether linear relationship being used

// Get intial random number generated using the current date and time./ / ----------------------------------------------

Date d = new Date();
Random r = new Random(d.getTimeO);

int ran = r.nextlntQ;

// For each cell ....
// Get a random number between 0 and 100, and compare it against
// the mutation rate. If mutation rate is higher, then add the
// mutation factor to the mutation array value for that cell.
//  --------------------------------------------
for (int i=0; i < size; i++) {

ran = Math.abs(ran); 
ran = ran%100;

if (ran < rate) 
mutateArray[i] = mutateArray[i] + mutation;

// Get next random number for the next cell, 

ran = r.nextlnt();
}

return mutateArray;
} // end mutate method

private int[] linearMutate(int[] mutateArray, int size, double m,int threshold, int mutation) {

// Get intial random number generated using the current date and time.
//----------------------------------------------
Date d = new DateQ;
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Random r = new Random(d.getTime()); 

int ran = r.nextlntQ;

// For each cell ....
// determine mutation rate based on equation rate = m(repeat length- threshold) 
// mutation rate must be a whole number 
// generate random number 
// perform mutation event

/ / -----------------------------------------------------
for (int i=0; i < size; i++) {

ran = Math.abs(ran); 
ran = ran%100;

if  (ran < ((int)(m*(mutateArray[i]-threshold)+0.5))) 
mutateArray[i] = mutateArrayfi] + mutation;

// Get next random number for the next cell.
/ / ---------------------------------------

ran = r.nextlntQ;
}

return mutateArray;
} // end mutate method

private int[] randomMutate(int[] mutateArray, int arraySize, int ratepnt randomLower, int randomUpper) { 

// method takes an array of arraySize and mutates
// it according to rate adding a mutation between randomLower and randomUpper 

// Get intial random number generated using the current date and time.

Date d = new DateQ;
Random r = new Random(d.getTimeQ);

int ran = r.nextlntQ;

// For each c e ll ....
//  Get a random number between 0 and 99, and compare it against
// the mutation rate. If mutation rate is higher, then add a
// random mutation size to the mutation array value for that cell.
/ /  :---------------------------------------------------

for (int i=0; i < arraySize; i++) {

ran = Math.abs(ran); 
ran = ran%100;

if (ran < rate){
// a mutation must take place
// get a second random number using the given range
ran= r.nextlntQ;
ran = Math.abs(ran);
int mutation = ran%((randomUpper-randomLower)+l);

// add random lower
mutation = mutation + randomLower;

mutateArray[i] = mutateArray[i] + mutation;
} // end if



II Get next random number for the next cell.

ran = r.nextlntQ;
}

return mutateArray;
}

private int[] randomLinearMutate(int[] mutateArray, int arraySize, double m,int Threshold,int randomLower, int randomUpper) { 

// method takes an array of arraySize and mutates
// it according to a rate equation adding a mutation between randomLower and randomUpper

// Get intial random number generated using the current date and time.
/ / -----------------------------------------------------

Date d = new DateO;
Random r = new Random(d.getTimeQ);

int ran = r.next!ntQ;

// For each cell ....
// determine mutation rate based on equation rate = m(repeat length- threshold) 
// mutation rate must be a whole number 
// generate random number
// perform mutation event by adding a random mutation between upper and lower

/ / -----------------------------------------------------
for (int i=0; i < arraySize; i++) {

ran = Math.abs(ran); 
ran = ran%100;

if (ran <((int)(m*(mutateArray[i]-threshold)+0.5))){
// a mutation must take place
// get a second random number using the given range
ran= rnextlntQ;
ran = Math.abs(ran);
int mutation = ran%((randomUpper-randomLower)+l);

// add random lower
mutation = mutation + randomLower;

mutateArray[i] = mutateArray[i] + mutation;
} // end if

// Get next random number for the next cell.
/ / --------------------------------------------------

ran = r.nextlntQ;
}

return mutateArray;
}

private int[] spectrumMutate(int[] mutateArray, int arraySize, int rate,
int[] mutationSizeArray, int

mutationSizeArrayLength) {

// method takes an array of arraySize and mutates 
// it according to rate, mutationSizeArray
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// Get intial random number generated using the current date and time.
//  :------------------------------------------

Date d = new DateQ;
Random r = new Random(d.getTimeQ);

int ran = rnextlntQ;

//  For each cell ....
// Get a random number between 0 and 99, and compare it against 
// the mutation rate.
/ / -----------------------------------------------------

for (int i=0; i < arraySize; i++) {

ran = Math.abs(ran); 
ran = ran%100;

if (ran < rate){
// a mutation must take place
// get a second random number between 0 and 99
ran= r.nextlntQ;
ran = Math.abs(ran);
ran = ran%100;

// the contents of mutationSizeArray are added up. When the contents 
// is greater than (not equal!) the random number the index for the array 
// denotes the size 
int sum = 0;
for (int j=0; j < mutationSizeArrayLength; j++)

{
sum = sum + mutationSize Array [j];

if (sum > ran) {
mutateArray[i] = mutateArray[i] + (j-10);
// should be self contained 
break; // fromfor loop

} // end if

} // end for 

} // end if

// Get next random number for the next cell.
/ / --------------------------------------------------

ran = r.nextlntQ;
}

return mutateArray;
} // end method

/ * *
* Utility method for returning an array of frequencies<?>
*

* @param startArray initial array of frequencies.
* @param n <?>
* @param freqArray array of frequency values.
* @retums the array of frequency values.
*/

private double[] frequency(int[] startArray, int n, double[] freqArray) {

// Initialise the frequency array.
H ---------------------------



int i = 0;
freqArray[i] = startArray[i];

for(i= l; icmaxDist; i++) {
freqArray[i] = staitArray[i] + freqAiray[i-l];

}

// Calculate the frequencies.
/ / --------------------------------------------

for(intj=0; j<maxDist; j++) { 
freqArray[j] = (double)(freqArray[j]/n);

}

return freqArray;
}

/**
* Class : Repeat
*

* Inner class used as a superclass for the Der and Mod classes. 
*/

public class Repeat implements McdelConstants {

protected int[] alleles; 
protected int size;

/* *
* Method to convert an array of integer values into an array
* of their graphical distribution, which can then be used to
* draw a histogram of the data.
*

* @param source initial array of integers.
* @param size initial size of array.
* @param target final array of integers.
* @retums the final array of integers.
*1

protected int[] convert(int[] source, int size, int[] target) {

// First make sure the target array is empty.
/ / ---------------------------------------

for (int j=0; j<maxDist; j++) { 
target[j] = 0;

}

// Convert the source array into an array of frequencies.
// ie. depending upon the value of source[i], increment the target 
// counter for that value.
/ / --------------------------------------------------------------------

for(inti=0; i<size; i++) {

if (sourcefi] > maxPoolSize) 
target[(maxDist-l)]++;
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else if (source[i] <= 0) 
target[0]++; 

else
target[source[i]/20]++;

}

return target;
}

}

/* *
* Class : Mod
*

* Subclass of Repeat class - Used for model data. 
7

class Mod extends Repeat {

// Initialise an integer array which represent the model graph data.
/ / ---------------------------------------------------------------

int[] graphArray = Dew int[maxDist];

/ * *
* Method used to draw the graph data as histogram bars.
*

* @param g the Graphics object to use.
7

void drawl(Graphics g) {
// method will draw results of iteration if  iteration check box has bee selected 
// else will draw graph 
/ / ---------------------------------------------------------------

if (controlPanel.getCheckboxStateQ == true) {

// Convert alleles to an array for statistical distribution
/ /  ----------------------------

graphArray = convert(this.alleles, this.size, graphArray);

// draw results of iteration 
/ /   -----------------------------------

g.drawStringC'Best parameters are:", 40,20); 
g.drawString("Progenitor:" + bestProgenitor,40,30); 
g.drawString("Mutation Rate:" + bestRate, 40,40); 
g.drawStringC'Mutation S ize:" + bestSize, 40,50);

} else {

// Draw the number of cycles selected.
/ / -------------------------------------
g.drawString("Cycles: "+cycleCounter, 40,10);

// Convert alleles to an array for graphical distribution.



graphArray = convert(this.alleles, this.size, graphArray);

// Draw the histogram of model data.
/ /-------------------------------------------
for(inti=0; icmaxDist; i++) {

double tempPercent = ((double)graphArray[i]/this.size) * 100; 
int percent = (int)(tempPercent + 0.5);

g.fillRect((30+(i*widthPix)), (heightPix-(percent*percentPix)), 
widthPix, (percent*percentPix));

}
} // end else

}

* Class : Der
♦

* Subclass of Repeat class - Used for derived data. 
7

class Der extends Repeat {

// Initialise an integer array which represent the derived graph data.
/ / ----------------------------------------------

int[] derivedArray = new int[maxDist];

/**
* Method used to draw the graph data as histogram bars.
*

* @param g the Graphics object to use.
7

void drawl(Graphics g) {

// If there is derived data
/ /   --------

if (isDerived == true) {

II Convert alleles to an array for graphical distribution.
/ /----------------------------------------

derivedArray = convert(this.alleles, this.size, derivedArray);

// Draw the histogram of model data.
//----------------------------------------

for(inti=0; icmaxDist; i++) {
double tempPercent = ((double)derivedArray[i]/this.size)*100; 
int percent = (int)(tempPercent + 0.5);



g.fillRect((30+(i*widthPix)),
(beightPix-(percent*percentPix)), widthPix, 
(percent * percentPix));

}
}

// Else .... no derived data.
/ / -------------------------------------------
if (isDerived == false) 

g.drawString("No Derived information.", 150,100);
}

}
}
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Class ModelControlPanel:
* C lass: ModelControlPanel
*

* @author Grant Hogg (ghogg@molgen.gla.ac.uk)
* David Jack (davidj@dcs.gla.ac.uk)
* @version 0.3 
*/

import java.awt.Button;
import java.awt.Color;
import java.awt.GridLayout;
import java.awt.Label;
import java.awt.Panel;
import java.awt.TextField;
import java.awt.TextArea;
import java.awt.Checkbox;
import java.awt.event ActionListener;
import java.awt.Choice;
import java.awt.event.ItemListener;

/**
* Panel sub-class which represents the CGT repeat instability simulation
* applet's parameter controls.
•/

public class ModelControlPanel extends Panel implements ModelConstants {

/**
* User interface components.
*/

public FixedRateFrame fixedRateFrame;
public MutationFrame mutFrame; 
public SpectrumFrame specFrame; 
public RandomFrame ranFrame; 
public RateFrame rateFrame;

private TextField mutationRateTextField; 
//private TextField mutationSizeTextField; 
private TextField cyclesTextField; 
private TextField progenitorTextField; 
private TextField poolSizeTextField;

public Choice rateOptions; 
public Choice mutationOptions; 

private Button runButton; 
private Button loadButton; 
private Button clearButton; 
private Button pasteButton;

private TextArea derivedlnfo; 
public String selectedltem; 
public String selectedRate; 
private Checkbox iterationCheckbox;

/**
* Initialised settings.
•/

private Color myColor = new Color(200,150,250);
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private boolean isDerived = false; 
private int cycleCounter = 0;

/**
* Simulation parameters.
*/

//prrvate int mutationRate = 10; 
//private int mutationSize = 10; 
private int cycles = 100; 
private int progenitor = 160; 
private int poolSize = 1000;

/**
* Constructs the controls panel for the model simulator. 
*/

public ModelControlPanelQ {

// Constructs the panel, with a grid layout manager.
/ / -----------------------------------------------

super();

setBackground(myColor); 
setLayout(new GridLayout(9,2));

specFrame = new SpectrumFrameO; 
mutFrame = new MutadonFrameO; 
ranFrame = new RandomFrame(); 
rateFrame = new RateFrameO; 
fixedRateFrame = new FixedRateFrameO;

selectedltem = ("Single Mutation"); 
selectedRate = ("Fixed Rate");

// Add the control settings as a series of label/textfield rows.
/ / ------------------------------------------------------

mutationOptions = new ChoiceO; 
mutationOptions.add("Single Mutation"); 
mutationOptions.add("Random Mutation"); 
mutationOptions.add("Select Spectrum");

// Add the control settings for the rate choice menu
/ /    --------------------------------------------
rateOptions = new ChoiceO; 
rateOptions.add("Fixed Rate"); 
rateOptions.add("Linear");

// add label
add(new Label("Mutation type:")); 
add(mutationOptions);

add(new Label("MutationRate:")); 
add(rateOptions);

add(new Label("No of Cycles:")); 
cyclesTextField = new TextField(""+cycles, 6); 
add(cyclesTextField);

add(new Label("Progenitor Allele:"));



progenitorTextField= new TextField(""+progenitor, 6); 
add(progenitorTextField);

add(new Label("Size of Pool:")); 
poolSizeTextField = new TextField(""+poolSize, 6); 
add(poolSizeTextField);

//  Add the user interface buttons: 'Load Data' and 'Run Model'.
/ / ----------------------------------------------

loadButton = new Button ("Load Data"); 
runButton = new Button ("Run Model");

add(loadButton);
add(runButton);

// add the buttons and text field for cutting and pasting data
//----------------------------------------------
derivedlnfo = new TextArea("info here", 3,20, derivedInfo.SCROLLBARS_VERTICAL_ONLY); 
clearButton= new Button("Clear");

pasteButton= new Button("Paste");

add(clearButton);
add(pasteButton);
add(derivedlnfo);

// add the checkbox for iteration here I think
//----------------------------------------------
iteradonCheckbox = new Checkbox("iteradon", false); 
add (iteradonCheckbox);

}

/**
* Delegates the control buttons to the given ActionListener.
*

* @param 1 the ActionListener.
*/

public void addActionListener(ActionListener 1) {

loadButton.addActionListener(l);
runButton.addActionListener(l);
clearButton.addAcdonListener(l);
pasteButton.addActionListener(l);

// not sure if I have to add an acdonlistener for the checkbox

}
public void addItemListener(IteinListener k) {

mutationOptions.addItemListener(k);
rateOptions.addltemListener(k);

}
/**

* Returns the mutation rate setting.
*

* @retums the mutation rate setting.
*/



public int getMutationRateO {

return intFroniTextField(mutationRateTextField);
}

/**
* Returns the mutation size setting.
*
* @retums the mutation size setting.
*/

/* public int getMutationSize() {

return intFromTextField(mutationSizeTextField);
}

V

r*
* Returns the cycles setting.
*
* ©returns the cycles setting.
*/

public int getCyclesO {

return intFromTextField(cyclesTextField);
}

/**
* Returns the progenitor setting.
*
* ©returns the progenitor setting.
*/

public int getProgenitorO { 

return intFromTextField(progenitorTextField);
}

/**
* Returns the pool size setting.
*

* @retums the pool size setting.
*/

public int getPoolSizeO { 

return intFromTextField(poolSizeTextField);
}
/**

* Returns array containing range of mutation rates
*

* @retums array containing range of mutation rates. 
*/

public int[] getMutationRateRangeQ {



return arrayFromTextField(mutationRateTextField);
}
/**

* Returns array containing range of mutation sizes
*

* @retums array containing range of mutation sizes.
*/

/* public int[] getMutationSizeRangeO {

return arrayFromTextField(mutationSizeTextField);
}

V

/**
* Returns array containing range of progenitors
*

* @returns array containing range of progenitor alleles.
V

public int[] getProgenitorRangeO {

return arrayFromTextField(progenitorTextField);
}
public boolean getCheckboxStateO {

return iterationCheckbox.getStateO;
}

public void clearAreaO {
derivedInfo.setText("");

}
public void setArea(String s) { 

derivedlnfo.setText(s);
}

public String getlnfoO {
String s;
s = derivedlnfo.getTextO; 

return s;
}

/**
* Utility method for obtaining the integer representation of a number
* entered into a TextField.
*

* @param tf the TextField.
* (©returns the integer representation of the TextField's String.
*/

private int intFromTextField(TextField tf) {

String s; 
int value;

// Get the text from the TextField.
//--------------------------
s = tf.getTextQ;



/ /  Try ... parsing it into an int.
/ / ----------------------

try{
value = Integer.parselnt(s);

} catch(Exception e) { 
value = 0;

}

return value;
}
/**

* Utility method for obtaining an array integer representing the range
* entered into a TextField.
*

* @param tf the TextField.
* @retums the integer array representation of the TextField's String. 
*/

private int[] arrayFromTextField(TextField tf) {
// this method reads in a string containing 2 numbers seperated by a
// and converts them to integers in an array
//.----------------------------------------------

// define variables
//----------------------------------------------
String s,min,max;
StringBuffer first = new StringBuffer("");
StringBuffer second = new StringBuffer(""); 
int[] values; 
values = new int[2];

// get string from test fields
//----------------------------------------------
s= tf.getText();

// now have a string 
// lets chum through it
//----------------------------------------------
int position = 0;

while (s.charAt(position) != {
first.append(s.charAt(position)); 
position ++;

} // end while

. // have read to a w h i c h  separates the two numbers

if (s.charAt(position) ==
while ((position+1) < s.lengthO) { 
second.append(s.charAt(position+l)); 
position ++;
} // end while

} // end if

// now have 2 string buffers 
// convert to strings

min = first.toStringO; 
max = second.toStringO;

// convert strings to integers
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try{
values[0] = Integer.parselnt(miii); 

}catcfa (Exception e) {
values[0] = 1;

}
try{

values[l] = Integer.parselnt(max); 
} catch (Exception e) { 

valuesfl] = 1;
}

// return array
//---------------------------------------------
return values;

} // end method

}
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Class ModelResultsPanel:/**
* C lass: ModelResultsPanel
*
* @author Grant Hogg (ghogg@molgen.gla.ac.uk)
* David Jack (davidj@dcs.gla.ac.uk)
* @version 0.3 
*/

import java.awt.Label; 
import java.awt.Panel; 
import java.awt.TextArea; 
import java.awt.TextField;

/**
* Panel sub-class which is used to display the statistical analysis results
* from the CGT repeat instability simulation.
*/

public class ModelResultsPanel extends Panel implements ModelConstants {

/**
* User interface components.
*/

private TextField bestDTextField; 
private TextField bestCycleTextField; 
private TextArea significanceTextArea;

/**
* Constructs the model simulator's results panel. 
*/

public ModelResultsPanelQ {

// Construct the panel.
// ----------------

super();
setSize(800,150); 
setLayout(null);

// Add statistical analysis components as a series of label/textfields. 
// 1) 'BestD'
// ----------------------------------------------

Label bestDLabel = new Label("Best D:"); 
bestDLabel.setBounds(20,20, 90,30); 
add(bestDLabel);

bestDTextField = new TextField(12); 
bestDTextField.setEditable(false); 
bestDTextField.setBounds(150, 20, 200, 30); 
add(bestDTextField);
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// 2) 'After Cycles'
/ / -----------------------------------------

Label bestCycleLabel = new Label("After Cycles:"); 
bestCycleLabel.setBounds(400,20,90,30); 
add(bestCycieLabel);

bestCycleTextField = new TextField(12); 
bestCycleTextField.setEditable(false); 
bestCycleTextField.setBounds(530,20,200,30); 
add(bestCycleTextField);

// 3) 'Significance'
/ / ----------------------------------------------
Label significanceLabel = new Label("Significance:"); 
significanceLabel.setBounds(20,80,100,30); 
add(significanceLabel);

significanceTextArea = new TextArea("", 4 , 12,TextArea.SCROLLBARS_NONE); 
significanceTextArea.se tEditable(false); 
significanceTextArea.setBounds(150, 80 ,580,40); 
add(significanceTextArea);

}

/**
* Clears the text from the three result fields. 
*/

public void clearResultsO {

bestDTextField.setText(""); 
bestCycleTextField.setText(""); 
significanceT extArea.setText("");

}

r*
* Sets the Best D statistic text.
*

* @param str the value of the Best D statistic. 
*/

public void setBestD(String str) { 

bestDTextField.setText(str);
}

/**
* Sets the Best Cycle statistic text.
*
* @param str the value of the Best Cycle statistic. 
*/

public void setBestCycle(String str) { 

bestCycleTextField.setText(str);
}
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/* *
* Sets the significance statistic text.
*

* @param str the value of the significance statistic. 
7

public void setSignificance(String str) { 

significanceTextArea.setText(str);
}

}
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Class GraphCanvas:

/**
* C lass: GraphCanvas
*

* @author Grant Hogg (ghogg@molgen.gla.ac.uk)
* David Jack (davidj@dcs.gla.ac.uk)
* ©version 0.3 
7

import java.awt.Canvas; 
import java.awt.Color; 
import java.awt.Graphics;

import java.util.Vector;

/* *
* Canvas sub-class used to display a distribution histogram, given a Vector
* of Strings, representing floating point numbers.
V

public class GraphCanvas extends Canvas implements ModelConstants {

/**
* Private parameters: graph tide and data resepectively.
V

private String tide; 
private Vector data;

/**
* Constructs a GraphCanvas with the given dde and an empty data set.
*

* @param title the graph's tide.
7

public GraphCanvas(String tide) {

super(); 
this.tide = title; 
data = new VectorO;

}

/••
* Canvas paint method.
* Draws the graph title, axes, labels, and tick markers.
* Uses the 'Mod' and 'Der' classes to paint the actual data points.
*

* @param g the Canvas' Graphics object.
7

public void paint (Graphics g) {
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// Set graph color to black.
/ / ---------------------------

g.setColor(Color.black);

// Draw the graph axes, labels, indentations and tick markers.
/ / ----------------------------------------------

drawGraphOutline(g, "No. of Repeats",

II Draw the graph data./ / -----------------

drawGraphData(g);
}

r*
* Draws the graph axes, labels, indentations and tick markers.
*

* @param g the Graphics object.
* @param xLabel the x-axis label.
* @param yLabel the y-axis label.
*/

private void drawGraphOutline(Graphics g, String xLabel, String yLabel) {

// Draw the outline of the graph and the axes labels.
/ / ----------------------------------------
g.drawLine (397,10,397,210); 
g.drawLine (30,10, 30, 210); 
g.drawLine (30, 210, 397, 210);

g.drawString (title, 40, 240); 
g.drawString (xLabel, 150,240); 
g.drawString (yLabel, 5,105); .

// Draw indentations and numbers.
/ / ----------------------------------------------
for(in ti= l; i<maxDist+l; i++) { 

g.drawLine (30+(i*widthPix), 2 10 ,30+(i*widthPix), 213);

if ((i%10) == 0) { 
g.drawString(String.valueOf(i*20),30+(i*widthPix),225);

}
}

r*
* Draws the graph data as a series of histogram bars.
*

* @param g the Graphics object.
V

private void drawGraphData(Graphics g) {



// If there is no data.... draw 'no data' string.
/ / ----------------------------------

if  (data.isEmpty()) { 

g.drawString("No Data.", 150,100);

// Else, for each data point....
/ / ----------------------------

} else {

for(inti=0; i<data.sizeQ; i++) {

// Calculate the percentage distribution of the data point.
/ / -----------------------------------------

int top  = ((Integer)data.elementAt(i)).intValue(); 
double topPercent = (top/data.size()) * 100; 
int percent = (intXtopPercent + 0.5);

// Draw the histogram bar representing that distribution.
/ / -----------------------------------------

g.fillRect((30+(i*widthPix)), (heightPix-(percent*percentPix)), 
widthPix, (percent*percentPix));

}
}

}
}
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Class MutationFrame:
import java.awt.*; 
import java.awt.event.*;

public class MutationFrame extends Frame implements ItemListener { 
// define variables

private int mutationSize = 1;
private TextField mutationSizeTextField;

public MutationFrameO 
{

// call base class constructor 
super ("Mutations Size"); 
setSize(200,50);
addWindowListener(new Close WindowO);

setLayout( new FlowLayout(l,0,0));
// set up layout 
//  default is border layout

add(new Label("Mutation S iz e :"));
mutationSizeTextField = new TextField(""+mutationSize,6);
add(mutationSizeTextField);

} // end constructor

// utility methods 

public int getMutationSizeO { 

return intFromTextField(mutationSizeTextField);
}

public int[] getMutationSizeRangeO {

return arrayFromTextField(mutadonSizeTextField);
}

private int intFromTextField(TextField tf) {

String s; 
int value;

// Get the text from the TextField.
/ /--------------------------
s = tf.getText();

// Try ... parsing it into an int.
/ /--------------------------

try{
value = Integer.parselnt(s);

} catch(Exception e) { 
value = 0;

}

return value;
}



public void itemSlateChanged (ItemEvent e) 
{

repaintO;
}

private int[] anayFromTextField(TextField tf) {
I I this method reads in a string containing 2 numbers sepe rated by a 
// and converts them to integers in an array
//----------------------------------------------

I I define variables
//----------------------------------------------
String s,min,max;
StringBuffer first = new StringBuffer("");
StringBuffer second = new StringBuffer(""); 
int[] values; 
values = new int[2];

// get string from test fields
//----------------------------------------------
s= tf.getTextO;

// now have a string 
// lets chum through it

int position = 0;

while (s.charAt(position) ! = {
first.append(s.charAt(position)); 
position ++;

} // end while

// have read to a w h i c h  separates the two numbers
//----------------------------------------------
if (s.charAt(position) =

while ((position+1) < s.lengthO) { 
second.append(s.charAt(position+1)); 
position ++;
} // end while

} // end if

// now have 2.string buffers 
// convert to strings

min = first.toStringO; 
max = second.toStringO;

// convert strings to integers
//----------------------------------------------

try{
values[0] = Integer.parselnt(min);

}catch (Exception e) {
values[0] = 1;

}
try{

values[l] = Integer.parselnt(max);
} catch (Exception e) { 

values[l] = 1;
}

// return array
//----------------------------------------------
return values;

} // end method 
}// end class



Class RandomFrame:
import java.awt.*; 
import java.awt.event.*;

public class RandomFrame extends Frame implements ItemListener {
// define variables

private TextField mutationSizeTextField;

public RandomFrameO 
{

//  call base class constructor
super ("Random Mutation Size Range");
setSize(250,50);
addWindowListener(new CloseWindowO);

setLayout( new FlowLayout(l,0,0));
//  set up layout 
//  default is border layout

add(new Label("Random size range: ")); 
mutationSizeTextField = new TextField("-10:10",8); 
add(mutationSizeTextField);

} // end constructor

public void itemStateChanged (ItemEvent e)
{

repaintO;
}/**

* Returns array containing range of mutation sizes
*

* @retums array containing range of mutation sizes.
7

public int[] getMutadonSizeRangeO {

return arrayFromTextField(mutadonSizeTextField);
}
private int[] arrayFromTextField(TextField tf) {

I/  this method reads in a string containing 2 numbers seperated by a 
I I and converts them to integers in an array

// define variables
//-----------------------------------------------
String s,min,max;

. StringBuffer first = new StringBuffer("");
StringBuffer second = new StringBuffer(""); 
int[] values; 
values = new int[2];

//  get string from test fields

s= tf.getText();

// now have a string 
// lets chum through it
//-----------------------------------------------
int position = 0;

while (s.charAt(posidon) !=':') {
first.append(s.charAt(posidon)); 
position ++;

} // end while



' // have read to a w h i c h  separates the two numbers

if (s.charAt(position) ==
while ((position+1) < s.length()) { 
second.append(s.charAt(position+l)); 
position ++;
} // end while

} // end if

// now have 2 string buffers 
// convert to strings
//----------------------------------------------
min = first.toStringO; 
max = second.toStringO;

//  convert strings to integers
//----------------------------------------------

try{
values[0] = Integer.parselnt(min); 

}catch (Exception e) {
values[0] = 1;

}
try{

values[l] = Integer.parselnt(max); 
} catch (Exception e) { 

values[l] = 1;
}

// return array
//----------------------------------------------
return values;

} // end method

}// end class
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Class SpectrumFrame:
// next class
I I class produces a frame which will display a graph

import java.awt.*;
import java.awt.event.*;
import java.awt.event.ItemListener;

public class SpectrumFrame extends Frame implements ItemListener,MouseListener,MouseMotionListener {
// define variables
public int[] spectrumArray;
private int total;
private int xpos, ypos = -10;
private int currentX, currentY = -10;
// define constants
public static final int heightpix =200; //  no o f pixels in graph square 
public static final int widthpix = 10; // width of each histogram interval 
public static final int boundary = 50; // border size
public static final int intervalno = 21; // no o f intervals histogram will be split into 
public static final int ypix = 2; //  no o f pixels reprseting a single percentage 
public static final int repeatlnterval = -10; //  no o f repeats represented by

public SpectrumFrame 0  
{

// call base class constructor 
super( "Mutation Spectra");
setSize( boundary + (widthpix*intervalno) + boundary, boundary +heightpix + boundary); 
addWindowListener( new CloseWindowO);

// need to set up layout and event listeners here!
// add mouse listener
addMouseListener(this);
addMouseMotionlistener(this);

// define spectrumArray and total 
spectrumArray = new intfintervalno];

// initialise spectrumArray 
for ( int i=0; i<intervalno; i++) { 

spectrumArray[i] =0;
}
total = getTotal(spectrumArray);

} // end constructor

public void mouseClicked( MouseEvent e )
{

xpos = e.getXO; 
ypos = e.getYO;

// now have the coordinates
// is mouse position within graph boundary?
// something is wrong here
if ((xpos >= boundary && xpos < (boundary + (intervalno*widthpix))) &&

(ypos >= boundary && ypos < (boundary + heightpix)))
{

// update spectrumArray 
spectrumArray[((xpos-boundary)/widthpix)] =

(int)((heightpix-(ypos-
boundary))/ypix);

total = getTotal(spectrumArray);

// need to check mutation spectra is not greater than 100% 
if (total > 100)
{

// this mutation spectra can only ever add up to 100 
spectrumArray[((xpos-boundary)/widthpix)] =



(int)((heightpix-(ypos
- boundary ))/ypix) -(total-100);

//  make sure this has been cast properly
}
// have updated spectrumArray so draw graph 
//  get graphics object

Graphics g = this.getGraphicsO; 
draw(g);

} // end if 

} // end mouseClicked

// need to call other method in mouselistener interface 
public void mousePressed ( MouseEvent e) {}; 
public void mouseReleased ( MouseEvent e) {}; 
public void mouseEntered ( MouseEvent e) {}; 
public void mouseExited ( MouseEvent e) {};

public void mouseMoved( MouseEvent e)
{
currentX = e.getXO; 
currentY = e.getY();
Graphics g = this.getGraphicsO;

if ((currentX >= boundary && currentX < (boundary + (intervalno*widthpix))) &&
(currentY >= boundary && currentY < (boundary + heightpix)))

{
draw(g);
g.setColor(Color.magenta);
g.drawString(String.valueOf((int)((heightpix-(currentY-

boundary))/ypix))+"%",currentX,curTentY);
} // end if

else
{
//redraw graph so ther are no numbers hanging around!

draw(g);
} // end else 

} // end method

// call other event handler in MouseMotionListener interface

public void mouseDragged( MouseEvent e ) {};

public int getTotal(int[] source)
{

int sum = 0;

// method returns the sum of a source array's elements 
for (int i=0; i< intervalno; i++) { 

sum= sum + source[i];
}
return sum;

}
public void paint (Graphics g)
{

// paint method for spectrumframe 
// set color to black 
g.setColor(Color.black);

// draw graph outline
g.drawLine(boundary-1,boundary .boundary-1 .heightpix+boundary); 
g.drawLine(boundary,heightpix + boundary,

boundary + (widthpix*intervalno),
heightpix+boundary);
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// draw labels
g.drawString("Mutation Size",boundary + 80, boundary+heightpix + 30); 
g.drawString("%",boundary-20,boundary+(int)(heightpix/2)); I

// draw indentations and numbers
g.drawString(String.valueOf(repeatInterval), boundary-4, boundary+heightpix+15); 
for ( int i =1; i <(intervalno +1); i++)
{

g.drawLine(boundary+(i*widthpix),heightpix+boundary,

boundary+(i*widthpix),boundary+heightpix+3);
if ((i%2)==0) {
g.drawString(String.valueOf(i + repeatlnterval), boundary + (i*widthpix),

boundary+heightpix+15);

}
} // end for

// now draw graph 
draw(g);

} //  end paint

public void draw(Graphics g)
{

// draws the graph 
// get total
total = getTotal(spectrumArray);
// first clear the area 
g.setColor(Color. white);
g.fillRect(boundary, boundary-30, (widthpix*intervalno)+30,heightpix+30);

g.setColor(Color.black);
// draw the total % produced
g.drawString("Total = " + total + boundary,boundary-20);

// use spectrumArray to calculate positions of graphs 
for (int i=0; i<intervalno; i++){

// fill rect uses X,Y,width, Height
g.fillRect(boundary + (i*widthpix),boundary + (heightpix- (spectrumArray [i] *2)), widthpix,

(spectrumArray [i ] *2));
} // end for 

}// end method

public void itemStateChanged (ItemEvent e)
{

repaintO;
}

}// end class
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Class FixedRateFrame:
import java.awt.*; 
import java.awt.event.*;

public class FixedRateFrame extends Frame implements ItemListener { 
I I define variables

private int mutationRate = 10; 
private TextField mutationRateTextField;

public FixedRateFrameO 
{

// call base class constructor 
super ("Mutation Rate"); 
setSize(200,50);
addWindowListener(new CloseWindowO);

setLayout( new FlowLayout(l,0,0));
// set up layout 
// default is border layout

add(new Label("Mutation R ate:"));
mutationRateTextField = new TextField(""+mutationRate,6); 
add(mutationRateTextField);

} //' end constructor

// utility methods 

public int getMutationRateO { 

return intFromTextField(mutationRateTextField);
}

public int[] getMutationRateRangeO {

return arrayFromTextField(mutationRateTextField);
}

private int intFromTextField(TextField tf) {

String s; 
int value;

// Get the text from the TextField.
/ / --------------------------

s = tf.getText();

// Try ... parsing it into an int.
/ / --------------------------

try{
value = Integer.parselnt(s);

} catch(Exception e) { 
value = 0;

}

return value;
}



public void itemStateChanged (ItemEvent e)
{

repaintQ;
}

private int[] arrayFromTextField(TextField tf) {
// this method reads in a string containing 2 numbers seperated by a 
// and converts them to integers in an array
/ / ----------------------------------------------------------------

// define variables
/ / ----------------------------------------------------------------
String s,min,max;
StringBuffer first = new StringBuffer("");
StringBuffer second = new StringBuffer(""); 
int[] values; 
values = new int[2];

// get string from test fields
/ / -------------------------------------------------------------------------
s= tf.getText();

// now have a string 
// lets chum through it
//------------------------------------------------------
int position = 0;

while (s.charAt(position) != {
first.append(s.charAt(position)); 
position ++;

} // end while

// have read to a w h i c h  separates the two numbers
/ / ----------------------------------------------------------------

if (s.charAt(position) =
while ((position+1) < s.lengthO) { 
second.append(s.charAt(position+1)); 
position ++;
} // end while

} //  end if

// now have 2 string buffers 
// convert to strings

min = first.toStringO; 
max = second. toStringO;

// convert strings to integers
.//------------------------------------------------------------

try{
values[0] = Integer.parselnt(min);

}catch (Exception e) {
values[0] = 1;

}

try{
values[l] = Integer.parselnt(max);

} catch (Exception e) { 
values[l] = 1;

}

// return array
/ /   -------------------
return values;

} // end method 
}// end class
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Class RateFrame:
import java.awt.*;
import java.awt.event.*;
import java.awt.event.ItemListener;

public class RateFrame extends Frame implements ItemListener,MouseListener 

{
I I a frame that will aloow a user to alter linear rate relationship 

// variables

public int diseaseThreshold = 0; 
public double m =0.105263;

private int xpos,ypos = -10; 
private int x l,y l;  
private int x2,y2;

// define constants

public static final int heightpix=200; 
public static final int widthpix=400; 
public static final int boundary = 50;

public static final double pixPerRepeat = 0.4; 
public static final int pixPerRate = 2;

public RateFrameO 
{

// call base class constructor 
super( "Linear Relationship");
setSize( boundary + widthpix + boundary, boundary +heightpix + boundary); 
addWindowListener( new CloseWindowO);

// need to set up layout and event listeners here!
// add mouse listener 
addMouseListener(this);

// initialise x l, yl,x2,y2

x l = diseaseThreshold; 
y l = 0; 
x2 = 1000; 
y2 = 100;

}

public void mouseClicked ( MouseEvent e) 
{

xpos = e.getXO; 
ypos = e.getYQ;

// now have the coordinates

// is the mouse position within graph boundary?

if ((xpos >= (boundary + (int)(diseaseThreshold*pixPerRepeat)) && xpos < (boundary + widthpix)) 
&& (ypos >= boundary && ypos < (boundary + heightpix)))

{
// update graph and calculate m

Graphics g = this.getGraphicsO; 
y2 = convertY(ypos); 
x2 = convertX(xpos);



}
} // end method

m = (double)(y2-yl)/(x2-xl); 

draw(g);

// need to call other method in mouselistener interface 
public void mousePressed ( MouseEvent e) {}; 
public void mouseReleased ( MouseEvent e) {}; 
public void mouseEntered ( MouseEvent e) {}; 
public void mouseExited ( MouseEvent e) {};

public void paint (Graphics g)
{

// paint method for rateframe 
// set color to black 
g.setColor(Color.black);

// draw graph outline
g.drawIine(boundary-l, boundary ,boundary-l,heightpix+boundary); 
g.drawLine(boundary,heightpix + boundary,

boundary +widthpix, heightpix+boundary);

// draw labels
g.drawString("Repeat length",boundary + 80, boundary+heightpix + 30); 
g.drawString("% Rate",boundary-40,boundary+(int)(heightpix/2));

// draw indentations and numbers

for ( int i =boundary; i <(boundary+widthpix+l); i+= 50)
{

g.drawLine(i,heightpix+boundary,
i,boundary+heightpix+3); 

g.drawString(String.valueOf((int)(i-boundary)/pixPerRepeat),i, boundary+heightpix+15);

} // end for

// now draw graph 
draw(g);

} // end paint

public void draw(Graphics g)
{

// draws the line

// clear area
g.setColor(Color.white);
g.fillRect(boundary,boundary-30,widthpix+30,heightpix+30);

g.setColor(Color.black);

// calculate x and y coordinates using equation 
// rate =m(repeatLength- threshold)

// only want to draw graph to the edge of the graph area 
// if gradient small x will be maximum

y2 = (int)(m * (1000-diseaseThreshold));

if  ( y2 <= 100) {

// drawline using x2 = 1000 
x2=1000;
g.drawLine( convertRepeat(xl),convertRate(yl),convertRepeat(x2),convertRate(y2));
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. } 
else

{ I
// drawline using y2 = 100 1
y 2 =100;
// rearranged equation
x2 = (int)(y2/m) + diseaseThreshold;
g.drawLine( convertRepeat(xl),convertRate(yl),convertRepeat(x2),convertRate(y2));
}

// update equation
g.drawStringC'Rate = " + m +"(Repeat Length -" + diseaseThreshold + ")"

, boundary,boundary-20);

// end method 
}

public void itemStateChanged(ItemEvent e)
{

repaintO;
}

// methods

public int convertX(int x)
{
// convert X coordinate into repeat number 
int repeat;
repeat = (int)(((x-boundary)/pixPerRepeat) + 0.5); 
return repeat;
}

public int convertY(int y)
{
// convert Y coordinate into mutation Rate 
int rate;
rate = (int)(((boundary + heightpix - y)/pixPerRate) + 0.5); 
return rate;

)

public int convertRepeat(int repeat)
{
// convert Repeat into a usable x coordinate 
int x;
x = (int)((boundary + repeat*pixPerRepeat) + 0.5); 
return x;
}

public int convertRate(int rate)
{
// converts rate into a usable y coordinate 
int y;
y = (heightpix+boundary) - (rate*pixPerRate); 
return y;
}

}
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Class CloseWindow:
// next class
import java.awt.event.*;

public class CloseWindow extends WindowAdapter {
public void windowClosing ( WindowEvent e) 
{

e.getWindow().setVisible( false );
}

} // end class

Interface ModelConstants
/* *

* Interface : ModelConstants.
*

* @author Grant Hogg (ghogg@molgen.gla.ac.uk)
* David Jack (davidj@dcs.gla.ac.uk)
* @version 0.3 
*/

/* *
* Interface used to define all of the constants used in the Model classes. 
*/

public interface ModelConstants {

public static final int widthPix = 7; 
public static final int heightPix = 210; 
public static final int percentPix = 2;

public static final int maxDist = 51; 
public static final int maxPoolSize = 1000;

}
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