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Thesis abstract

Abstract

The ways in which birds allocate resources during the incubation phase of reproduction 

were investigated using empirical data gathered from populations of starlings (Sturnus 

vulgaris) breeding in Shetland and Spain, and modeling. The consequences of the 

allocations made to incubation for the resources allocated to other phases of life are 

discussed.

Experimentally reducing the energetic demand of incubation by reducing the rate 

of heat loss from within a nest increased the proportion of offspring that fledged during 

the same breeding attempt, and the proportion of clutches that hatched completely during 

the subsequent attempt. Thus the energetic demand of incubation was shown to be 

sufficient to limit parental fitness, and was suggested to influence the way in which 

parents allocated resources to other reproductive phases, both within and between 

breeding attempts.

Starlings nesting in poorly insulated cavities built larger nests and reduced the rate 

of heat loss from within the cavity to a greater extent than starlings nesting in well- 

insulated cavities. However, the rate of heat loss from within a completed nest was still 

related to the insulative quality of the original cavity. As experimentally reducing heat 

loss rate increased breeding success, the acquisition of a well insulated nest site was 

suggested to be an important phase of a starling's breeding attempt.

Experimentally reducing the rate of heat loss from a nest also increased mean 

incubation-bout duration and thus the proportion of the day that female starlings spent 

incubating. This change is consistent with the hypothesis that parents terminate 

incubation bouts in response to their own condition rather than to egg temperature. The 

contradictory results of previous studies may be explained if, given energetic limitation 

during incubation, parents leave the nest when the costs of doing so are minimised.

As a consequence of the time that incubating females allocated to activities away 

from the nest, eggs experienced mean temperatures that were below the predicted 

optimum for embryonic development. However, female nest attentiveness and mean egg 

temperature increased as the incubation period progressed, a change that may have been



Thesis abstract

due to increased allocation to incubation rather than to changes in the demands of 

incubation or to improved foraging conditions.

Experimentally enlarging a clutch for the duration of the incubation period 

reduced the proportion of the original clutch that hatched, and the proportion of offspring 

that fledged successfully. This is likely to have been because the addition of extra eggs 

directly affected the physical conditions experienced by the embryos, and affected a 

parent's ability to incubate the entire clutch equally. Clutch enlargement may also 

energetically constrain a parent's incubation ability. However, modeling suggested that 

the energetic debt accrued by an incubating parent does not necessarily increase with 

increasing clutch size, with the exact relationship depending on mean incubation 

temperature and the thermal properties of the clutch. Thus the consequences of 

incubation demands for optimal clutch size in birds are not necessarily clear.

Male assistance with incubation was suggested to increase the proportion of 

offspring that hatched and fledged successfully and reduce the time that females spent 

incubating, and therefore to increase female fitness. However, male assistance was 

associated with monogamy. As male fitness may generally be maximised by polygyny, 

sexual conflict over male incubation was predicted. Males were suggested to incubate 

when they were unlikely to attract multiple females. However, primary females may 

have increased the chance that a male would incubate by destroying secondary females' 

clutches.

In conclusion, incubating a clutch of eggs can require substantial allocations of 

parental time and energy, affecting the resources available for and required by other life 

phases. Thus incubation can be costly, although costs may be state-dependent, and act 

through parents and/or their current offspring. Incubation demands may therefore be 

sufficient to influence overall resource allocation patterns and life-history strategies in 

birds.
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Chapter one General introduction

Chapter one 

General Introduction

A huge variety of life-history strategies is observed within the natural world. Traits such 

as an organism’s lifespan, its age at first breeding, the number of reproductive attempts 

made and the number of offspring produced during each attempt can all vary greatly, 

both within and between species.

An observed life-history strategy arises from the way in which an organism 

allocates available resources between the different phases of its lifetime. During any 

phase an individual must 'decide' how much to invest in growth and the maintenance of 

its own body, and in reproduction (Roff 1992; Steams 1992). Over evolutionary time the 

ways in which resources are allocated have consequences for, and are further influenced 

by, major biological phenomena, such as the organism's morphology and physiology, and 

the social structures of communities (Horn & Rubenstein 1978; Clutton-Brock 1991). 

The factors that shape resource allocation patterns and consequent life-history strategies 

are therefore of considerable academic interest. Further, in the context of our increasing 

need to manage wild communities, the ability to predict the likely responses of life- 

history traits to environmental change is increasingly becoming of applied value (Crick et 

al. 1997; Aviles et al. 2000; Dahlgren & Sobel 2000; Reindorf et aL 2000; Saether & 

Bakke 2000; Siriwardena et al. 2000). Thus, gaining an understanding of the ways in 

which organisms allocate resources between different activities has become a major goal 

of behavioural ecology, attracting considerable theoretical and empirical study (Newton 

1989; Roff 1992; Steams 1992; McNamara & Houston 1996; Daan & Tinbergen 1997).

As discussed in more detail in chapter two of this thesis, life-history theory has 

been developed as a framework within which observed life-history traits can be 

interpreted in terms of patterns of resource allocation. Such interpretation requires an 

understanding of the ways in which the resources allocated to any individual life phase 

can affect the resources available for others, and hence the fitness costs and benefits 

associated with the resource allocation made to any particular phase. An important

10



Chapter one General introduction

means of gaining an understanding of such costs and allocation patterns is the 

experimental manipulation of natural allocations and the observation of the animal's 

consequent responses, both within and between reproductive events (Partridge 1992; Roff 

1992; see Box 2.1 on page 26 for further explanation and discussion).

For several reasons, birds are good model species on which to carry out such 

experiments. Basic aspects of bird biology and physiology are relatively well 

understood, and the natural histories of many species have been recorded in detail, 

providing a solid base of knowledge on which to build. Many birds are iteroparous 

breeders, allowing investigation of the ways in which resources are allocated between 

different reproductive attempts. Further, individual breeding attempts can generally be 

divided into the relatively discrete periods of courtship and nest building, egg production, 

incubation and chick rearing, and the resource requirements of different phases can be 

manipulated independently of each other. Thus birds provide useful systems in which the 

consequences and determinants of within-attempt allocation patterns can be investigated 

(Lessells 1991; Monaghan & Nager 1997).

However historically, equal importance has not been attached to the demands and 

fitness costs of each phase of avian reproduction. Instead, the demand of chick-rearing 

has long been assumed to impose the greatest constraint upon parents' reproductive rates, 

and thus to be the major influence on avian resource allocation patterns and life history 

traits. For example, David Lack (1947) proposed that the optimal number of eggs for a 

bird to lay should be determined by the maximum number of offspring that parents are 

able to raise successfully. The majority of the experimental tests of this hypothesis have 

manipulated the number of chicks that a parent must provision (Roff 1992), making the 

assumption that chick-rearing demands limit breeding productivity. Further, 

experimental studies investigating issues such as the consequences of mate removal for 

breeding success, the existence of reproductive costs, and patterns of division of parental 

care have been carried out predominantly during the chick-rearing period (eg, Wright & 

Cuthill 1989; Johnson et al. 1992; Riedstra et al. 1998; Moreno et al. 1999; Murphy et al. 

2000). In comparison, the possible evolutionary importance of the resources allocated to 

earlier reproductive stages has been largely disregarded (Monaghan & Nager 1997). 

However, there has been an increasing realisation that such tight focussing on the chick-

11



Chapter one General introduction

rearing phase may limit our understanding of overall resource allocation patterns. In 

particular, experiments have repeatedly shown that contrary to the prediction of Lack's 

brood size hypothesis, parents are often able to successfully rear experimentally enlarged 

broods (Linden & Moller 1989; Ydenberg & Bertram 1989; Dijkstra et al. 1990). A 

number of possible explanations for this discrepancy have been suggested whilst still 

focussing on chick-rearing demands (Lessells 1991). Optimal brood size may be lower 

than expected if caring for a large brood reduces a parent's residual reproductive value 

(Charnov & Krebs 1974; Nur 1984), if brood parasitism is likely (Rothstein 1990), or if 

environmental variation precludes individual optimisation of traits (Dhondt et al. 1990). 

However, optimal clutch size may equally be limited by constraints imposed during 

earlier reproductive phases, such as the demands of building a large enough nest to hold 

the clutch, or of producing or incubating a large number of eggs (Slagsvold 1989; 

Monaghan & Nager 1997; Thomson et al. 1998).

The realisation that the demands of early reproductive stages may play an 

important role in the evolution of avian life history strategies has lead to a series of recent 

studies on the demands and costs of egg production. Such experiments have shown that 

producing extra eggs can affect egg and offspring quality (Monaghan et al. 1995; Nager 

et al. 2000), and also the provisioning ability and subsequent fitness of the parents 

(Heaney & Monaghan 1995; Monaghan et al. 1998; Nager et al. in press). Hence egg 

production can be sufficiently demanding to influence major life history traits. However, 

the extent and nature of the fitness costs associated with incubation, the process by which 

birds modify the physical environment of their eggs (Beer 1964), have still received 

relatively little attention. This is despite the fact that the temperature, gaseous 

environment and degree of physical disturbance that embryos experience whilst within 

the eggs greatly influences their development and survival (Lundy 1969; Drent 1975; 

Carey 1980; Webb 1987), and that the provision of optimal conditions for offspring 

during the incubation period can impose substantial time and energy demands on 

incubating parents (Yom-Tov & Hilborn 1981; Drent et al. 1985; Williams 1996; see 

chapter two for further discussion).

12



Chapter one General introduction

Using field studies on starlings (Sturnus vulgaris) breeding in Shetland and Spain 

and theoretical modeling, this thesis investigates the demands, fitness costs and patterns 

of resource allocation associated with the incubation phase of avian reproduction. The 

ways in which parents allocate resources in order to meet demands, the consequences of 

these allocations, and the means by which parents may be able to minimise incubation 

demands are discussed.

Chapter two is a review chapter written for the forthcoming Oxford University 

Press book Avian Incubation. It discusses in more detail the need for an understanding of 

the fitness costs associated with incubation, and presents a review of the existing 

evidence that such costs exist. Chapter two also discusses the ways in which fitness costs 

of incubation arise, the circumstances under which they occur, and the ways in which 

costs may be distributed between parents and offspring. Chapter three reports an 

experimental demonstration of a fitness cost of incubation in starlings breeding in a cool 

climate. Chapters four and five  consider the consequences of the idea, introduced in 

chapter two, that a trade-off exists between the time that an incubating parent spends 

foraging, and the time spent incubating the clutch. These chapters discuss the ways in 

which parents allocate time to incubation both from moment to moment when deciding 

when to terminate the current incubation bout (chapter four), and in terms of the total 

time allocated to incubation per day (chapter five). Chapter five  also considers the 

consequences for the offspring of the parent's time allocation to incubation. Chapter six 

presents a model of the relationship between a parent's own energy level and the 

temperature at which it maintains its clutch. The model clarifies the consequences of the 

time allocated to incubation for the condition of the parent and the temperatures 

experienced by the developing offspring, and discusses the reasons for the occurrence of 

energetic limitation during the incubation period. Further, chapter six assesses the 

possible energetic consequences for a parent of incubating clutches of different sizes. 

Chapter seven describes the consequences of experimentally enlarging the clutch size of 

starlings, investigating the physical and energetic consequences for incubating parents 

and for the embryos themselves. Thus chapters six and seven investigate the role that 

incubation demands may play in influencing optimal clutch size in birds.

13



Chapter one General introduction

Given the existence of fitness costs of incubation, birds would be expected to 

evolve strategies to minimise those costs. Chapter eight investigates the consequences of 

biparental rather than uniparental incubation for the developmental conditions 

experienced by the embryos and the success of the breeding attempt. The circumstances 

under which males assist females with incubation in a facultatively polygynous starling 

population are discussed. Chapter nine discusses the role of nest construction and nest 

site selection in reducing the rate of heat loss from the clutch and thus in reducing the 

energetic demand of incubation.

The final discussion (<chapter ten) briefly reviews the knowledge of the resource 

requirements and fitness consequences of incubation that has been gained from studying 

the egg-laying reptiles and mammals, and highlights some of the key areas towards which 

future studies of incubation might profitably be directed.
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Abstract
Life-history theory invokes the concepts of resource limitation and consequent fitness 

costs of resource allocations to provide explanations for the ways in which animals 

allocate resources between different life phases. We investigate the correlative, 
theoretical and experimental evidence that the resource requirements of incubation can be 

sufficient to limit parents' ability to invest resources elsewhere, and that fitness costs of 
incubation consequently arise.

We present the idea that despite adaptations to minimise incubation demands, 

incubating a clutch is likely to require considerable parental investment of time and 

energy. We discuss the possibility that an incubating parent's allocation of time to 

activities other than incubation affects the quality of the developmental conditions 

provided for the offspring, and is therefore costly in terms of offspring fitness. Further, 
we investigate whether parental allocation of time to incubation rather than other 

activities can also result in fitness costs. Specifically, we investigate the limitations that 
incubating a clutch imposes on the time available for parents to forage, and to sire or care 

for other offspring. Hence we consider the evidence that fitness costs of incubation arise 
due to energetic constraints upon the parents, and to lost parenting opportunities. Given 
resource limitation during incubation, we consider the ways in which incubating parents 
resolve trade-offs between the resources allocated to different activities, and thus the 
ways in which fitness costs are manifested in parents and in their current offspring. 
Finally we discuss the conditions under which incubation costs are manifested, and their 
state-dependent action in individuals.
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Introduction: resource allocation trade-offs during reproduction

Life-history theory is concerned with explaining the diversity of life cycles observed in 

nature. It provides a framework within which we can interpret variability in how 

organisms allocate resources between growth, self-maintenance and reproduction, both 

within and between species.

A central tenet of life-history theory is that resources are finite, and thus that 

allocations made to one aspect of life will reduce the resources available for investment 

in others (Roff 1992; Steams 1992). The consequent competition for resources between 

different life-history traits will constrain their evolution, with the allocation made to any 

particular trait reflecting a compromise between conflicting optima. In terms of 

allocation of resources to reproduction, such constraints and compromises translate into 

costs of reproduction, defined as the extent to which investment in one reproductive 

phase reduces a parent's capacity to invest in subsequent phases of the same breeding 

attempt, or in other attempts. Over evolutionary time, trade-offs between the resources 

allocated to different phases will be resolved by natural selection so as to minimise 

overall reproductive costs, maximising an individual's lifetime fitness. Thus, in order for 

overall resource allocation patterns and consequent life-history strategies to be 

interpreted, an understanding of the resource limitations and fitness costs associated with 

each component of reproduction is required.

A high proportion of studies on resource allocation trade-offs and reproductive 

costs has been carried out on birds. Birds are generally iteroparous breeders, and each 

breeding event is divided into the relatively discrete stages of courtship and mating, egg 

production, incubation and chick rearing. Coupled with the relative ease with which avian 

breeding behaviour can be studied, this means that birds are suitable organisms for 

investigating resource trade-offs, both between different reproductive attempts and 

between different phases of the same attempt (Lessells 1991; Heaney & Monaghan 1995, 

1996; Monaghan & Nager 1997). However, until recently, such studies have focussed 

almost exclusively on trade-offs involving the demands of rearing chicks (Linden & 

Moller 1989; Dijkstra et al. 1990), the assumption being that the resource requirements of 

early reproductive stages are relatively trivial (Monaghan & Nager 1997). In this 

chapter, we evaluate the evidence that the time and energy demands of the incubation
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phase of avian reproduction can be substantial, and can represent an important 

component of reproductive costs in birds.

Why might incubation be costly?

The way in which avian embryos develop and hence the success of a breeding event is 

greatly influenced by the physical environment that embryos experience whilst inside the 

egg. Specific temperatures, humidities and degrees of mechanical disturbance are 

required to ensure that embryos hatch successfully and in good condition (Lundy 1969; 

Carey 1980; Webb 1987). However, given fluctuating external conditions and the 

relative inability of embryos to modify their own environment, parents must generally 

regulate the developmental environment experienced by their offspring. Brood parasites 

such as cuckoos achieve this regulation by exploiting environments created by other 

parents (Davies 2000). White-rumped swiflet (Aerodramus spodiopygius) eggs are 

warmed by the body heat of older chicks still present in the nest (Tarburton & Minot 

1987), and megapodes exploit natural heat sources or enclose their eggs within purpose- 

built mounds of decomposing vegetation (Jones & Birks 1992). However in the majority 

of species, parents regulate developmental conditions by directly incubating their eggs.

Early models of incubation dynamics suggested that, due to deployment of basal 

metabolic heat to warm the clutch and the relative lack of physical activity involved in 

sitting on a nest, incubation may be a relatively undemanding phase of avian reproduction 

in terms of energy expenditure (Walsberg & King 1978). However, recent studies have 

shown that maintaining a gradient between the physical conditions within a nest and the 

surrounding environment can impose considerable energetic demands upon parents 

(reviewed in Williams 1996). The demand of rewarming cold eggs may be particularly 

high (Vleck 1981; Biebach 1986), and overall demands may approach those experienced 

whilst rearing chicks (Moreno et al. 1991; Williams 1996; Ward 1996). Further, 

regulating the embryos' developmental environment requires parents to spend 

considerable time sitting on the nest, restricting the time available for other activities such 

as foraging or attracting further mates.

21



Chapter two Fitness costs o f  incubation

Parents may be able to minimise the resource requirement of incubation to some 

extent. Nests may be constructed to minimise the rate of heat loss from the clutch 

(Schaefer 1980; Moller 1984, 1987; Nager & von Noordwijk 1992; chapter 9), and nests 

and nest sites may be selected for their thermal quality (Inouye et al. 1981; Walsberg 

1981; Hoi et al. 1994). Brood patches may have evolved to facilitate efficient transfer of 

heat to eggs (Bailey 1952), and eggs could be shaped to facilitate efficient packing under 

the brood patch (Barta & Szekely 1997). Division of incubation duties between partners 

or other helpers at the nest may reduce the time and energy demands imposed upon any 

one individual {chapter 8). Variation in the effectiveness of these measures, and in the 

discrepancy between external conditions and the optimal developmental conditions for 

the embryos, means that the resource requirements of incubation will vary within and 

between species. However in general, the provision of a high quality developmental 

environment for offspring may require deployment of parental resources, in terms of time 

and energy, to incubation.

We investigate the correlative, theoretical and experimental evidence that the time 

and energy requirements of incubation can limit the resources available for investment 

elsewhere, and thus that resource allocation trade-offs and fitness costs of incubation can 

arise. We discuss the circumstances under which costs are observed, and investigate the 

ways in which they are manifested in terms of effects on parents and on their current 

offspring.

Costs of spending time away from the nest

Particularly for parents nesting in hot, cold or arid environments, allocating time to 

activities away from the nest and leaving clutches of eggs unattended may allow the 

conditions experienced by embryos to diverge rapidly from the developmental optimum. 

Allowing divergence may adversely affect offspring and hence parental fitness in 

multiple ways. There will be a direct and immediate fitness cost to spending time off the 

nest if the conditions to which eggs are consequently exposed are severe enough to kill 

the embryos outright, an occurrence that is most likely in extreme climates. However, as 

embryos are relatively resistant to short periods of exposure to suboptimal conditions
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(Drent 1975; Webb 1987; Sockman & Schwabl 1998), sublethal consequences of 

divergence may be more common than embryo mortality. Relatively little is known 

about how the conditions experienced during development influence future phenotype 

and fecundity in birds. However, poor incubation conditions may impair an individual's 

future performance, reducing the reproductive value of the offspring (Lindstrom 1999; 

Metcalfe & Monaghan 2001). The commonest consequence of leaving a clutch 

unattended is the slowing of embryonic development and hence the elongation of the 

incubation period (Webb 1987). Indeed, intraspecific variation in the duration of 

incubation has frequently been related to variation in parental attentiveness (Lifjeld & 

Slagsvold 1986; Liljeld et al. 1987; Nilsson & Smith 1988; Aldrich & Raveling 1990), 

and the conditions experienced within the nest can have a greater effect on development 

rates than intrinsic egg quality (Ricklefs & Smeraski 1983; Chapter 7). A prolonged 

incubation period can adversely affect offspring in several ways. Embryos may expend 

more energy prior to hatching (Vleck & Hoyt 1980) resulting in greater depletion of 

resources and poorer hatchling condition, and the time for which a clutch is vulnerable to 

predation is increased (Perrins 1977; Bosque & Bosque 1995; Tombre & Erikstad 1996). 

Delayed hatching may itself have a fitness cost if late-fledging offspring are 

disadvantaged when competing for food or territories, or suffer a reduced chance of 

accumulating sufficient resources for over-wintering, moult or migration (Arcese & 

Smith 1985; Pettifor et al. 1988; Verboven & Visser 1998; Visser & Verboven 1999). 

Hence, via detrimental effects on their offspring, incubating parents may accrue 

considerable fitness costs by allocating too much time to activities away from the nest.

Costs of spending time incubating

Whilst spending time away from a nest may affect parental fitness via their current 

offspring, failing to allocate time to activities other than incubation may affect parental 

fitness directly, by affecting their ability to complete the current breeding event, or to 

breed again either simultaneously or subsequently.
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Evidence fo r fitness costs o f incubation arising front energetic limitation

Incubating parents must meet the energetic demand of regulating the nest environment 

either by foraging or by depleting stored resources. As a parent's body condition can 

influence both that parent's ability to provision dependent offspring and its chance of 

surviving to breed again (Bolton 1991; Jones 1992; Go let et al. 1998; Wendeln & Becker 

1999), allowing body condition to deteriorate during incubation may be costly for a 

parent, reducing the fitness benefits accrued from both current and future broods. 

However, foraging and incubation are generally mutually exclusive activities and, unless 

provisioned on the nest by partners or helpers, incubating parents must leave the clutch 

unattended in order to find food. A fitness cost due to energetic limitation during 

incubation would arise if the time and energy demands imposed were substantial enough 

to prevent parents from maintaining both the nest environment and their own body 

condition at optimal levels, reducing the survival or fecundity of either themselves or 

their offspring.

Analysis of time-energy models suggests that incubation may indeed be a marked 

period of energetic limitation during reproduction (Yom-Tov & Hilbom 1981; Moreno & 

Hillstrom 1992). This may be because incubation restricts foraging time rather than 

because the absolute energetic requirement of regulating clutch temperature is 

prohibitively high (Moreno & Hillstrom 1992; Chapter 6). Although these models have 

been analysed using species-specific parameter values, their conclusions may apply more 

generally, at least to passerines in which only one parent incubates (Yom-Tov & Hilborn 

1981). Thus, especially because incubation periods may often fall before seasonal peaks 

in food availability, incubation may commonly be a period of time and energy limitation 

in birds.

Given time and energy limitation, a trade-off between the time that parents spend 

incubating and the time spent foraging is predicted. Indeed, there is considerable 

correlative evidence that the way in which incubating birds allocate time between 

incubation and other activities depends on the balance between endogenous and 

exogenous resources and hence on energetic state (sensu McNamara & Houston 1996). 

The time spent incubating can increase with food availability (Drent et al. 1985; Rauter 

& Reyer 1997) and with the occurrence of incubation feeding by a male (LiQeld et al.
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1987; Nilsson & Smith 1988; Halupka 1994; Hatchwell et al. 1999). In their cross

species analysis, Martin & Ghalambor (1999) found a positive relationship between the 

level of incubation feeding and nest attentiveness, although Conway & Martin (2000) 

attach less importance to this trend. Further, individuals that commence breeding in 

better body condition spend more time on the nest (Lifjeld & Slagsvold 1986; Afton & 

Paulus 1990; Aldrich & Raveling 1990; Hegyi & Sasvari 1998), suggesting that parents' 

incubation strategies may often be energy-limited. As changes in attentiveness can affect 

the duration of the incubation period (see earlier), such energy limitation during 

incubation may have fitness consequences for offspring and parents. However, 

conclusive evidence for the existence of a trade-off between incubation and foraging and 

a consequent fitness cost of incubation must be provided experimentally, by manipulating 

either the energetic demand of incubation or the ability o f a parent to meet that demand, 

and observing resultant phenotypic changes. Box 2.1 summarises the rationale for such 

experiments, and outlines the manipulations and fitness measures that could be used to 

demonstrate costs of incubation. The results of the experiments that have been 

undertaken are discussed in the main chapter text.
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Box 2.1. Demonstration of costs of reproduction.
A fitness cost o f  any reproductive phase arises when the resource requirement o f that 

phase is sufficient to significantly constrain the resources available fo r  investment in 

other phases (R o ff1992; Stearns 1992). Such resource limitation will result in trade-offs 

between the allocations made to different stages, within or between reproductive events 

(Stearns 1992). Individuals, however, differ in their capacity to allocate resources. Thus 

the individuals investing most in one activity may also invest most in another, resulting in 

positive rather than the expected negative correlations between observed allocations. To 

eliminate such correlations, conclusive evidence fo r  the existence o f  resource trade-offs 

and consequent fitness costs can only be provided by experiment. Quantitative genetic 

experiments can be used to demonstrate genetic correlations between life-history 

components, and phenotypic consequences o f  experimentally manipulated resource 

allocation patterns can demonstrate changes in individual fitness (Reznick et al. 1986; 

Partridge 1992). Such experiments must be confined to the reproductive phase during 

which evidence o f  a trade-off is sought. Although both genetic methods and phenotypic 

manipulations have limitations (Reznick 1992), only phenotypic methods have as yet been 

used to estimate fitness costs o f  avian incubation.

Phenotypic consequences o f  manipulating resource allocation patterns may be 

manifested in parents or offspring during current or subsequent reproductive phases. 

Whilst the inclusive fitness cost o f  a resource allocation is the quantity that selection will 

act to minimise, this cost is determined by the sum o f all individual phenotypic 

consequences, and measurement is empirically difficult. Thus in practice, fitness costs o f  

reproduction are usually estimated by examining a small number o f  phenotypic 

parameters.

In the context o f demonstrating incubation costs, the possible means o f  manipulating 

resource trade-offs and measures o f  subsequent reproductive performance are listed 

below, together with single examples o f  studies that have been undertaken. Details and 

outcomes o f  all studies are discussed in the main chapter text. Whilst the consequences o f  

manipulating incubation demands fo r  incubation parameters are reasonably well 

documented (reviewed in Thomson et al. 1998), their impact on the subsequent 

reproductive phases that may more accurately reflect overall fitness consequences 

remain relatively unexplored.
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Box 2.1 continued.

Factor manipulated

• Incubated clutch size 
{Chapter 7)

• Duration of incubation 
period
{Tombre & Erikstad 1996)

• Nest microclimate 
{Chapter 3)

• Availability of food to 
incubating parent
{Nilsson & Smith 1988)

• Initial condition of 
incubating parent

Consequences observed 
during incubation

• Duration of incubation 
period
{Nilsson & Smith 1988)

• Degree of hatching 
asynchrony
{Chapter 7)

• Proportion of eggs 
hatching
{Chapter 7)

• Chick condition at 
hatching
{Chapter 7)

• Adult condition during 
incubation

{Tombre & Erikstad 1996)

Future consequences

• Proportion of current 
brood fledging 
{Chapter 3)

• Fledging condition of 
chicks

{Heaney & Monaghan 1996)

• Post-fledging condition 
of offspring

• Recruitment of current 
offspring

• Future fecundity and 
survival of current 
offspring

• Chick-rearing ability of 
adults

{Heaney & Monaghan 1996)

• Post-breeding condition 
of adults

• Future adult survival

• Time until the next 
breeding attempt

{Brugger & Tabor sky 1994)

• Future reproductive 
success
{Chapter 3)
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Parents' incubation effort has frequently been manipulated by adding or removing 

eggs from their clutch, the underlying assumption being that incubation demands increase 

with increasing clutch size. Whilst this has been experimentally confirmed in terms of 

both the energy required for steady-state incubation (Biebach 1981, 1984; Haftom & 

Reinertsen 1985) and the total daily energy expenditure of an incubating bird (Coleman 

& Whittall 1988; Moreno et al. 1991), energetic demands do not change with all clutch 

size changes, and the extra energy required to incubate a single additional egg may be 

relatively small (Moreno et al. 1991; Moreno & Sanz 1994). Further, the number of eggs 

in a clutch influences the clutch's intrinsic thermal properties, with large clutches cooling 

down more slowly than small clutches when left unattended (Frost & Siegfried 1977; 

Chapter 7). This reduction in cooling rate may be sufficient to enable parents to forage 

for the extra time required to meet a higher energetic demand of incubation without mean 

clutch temperature falling (Chapter 6). Thus, as experimentally altering clutch size may 

alter both the energetic demand of incubation and the ability of parents to meet that 

demand whilst maintaining clutch temperature, clutch size manipulations may not be the 

most rigorous way to investigate resource trade-offs and costs of incubation. Whilst 

positive evidence would still be convincing, an apparent absence of costs can not 

necessarily be accepted as evidence that such costs do not exist.

Nevertheless, several studies have examined the consequences of enlarging a 

clutch for incubation performance (reviewed in Thomson et al. 1998). Clutch 

enlargement frequently prolongs the incubation period (Coleman & Whittall 1988; 

Moreno & Carlson 1989; Smith 1989; Szekely et al. 1994; Siikamaki 1995; Sandercock 

1997; Wiebe & Martin 2000; Chapter 7), increases hatching asynchrony (Moreno & 

Carlson 1989; Chapter 7) and reduces hatching success (Andersson 1976; Moreno et al. 

1991; Siikamaki 1995; Chapter 7). Such changes may reduce offspring and hence 

parental fitness, and have been interpreted as evidence of fitness costs arising from 

increased incubation demands (Moreno & Carlson 1989; Thomson et al. 1998). 

However, parents may be physically unable to incubate all eggs within enlarged clutches 

equally, and thus clutch enlargement may affect incubation performance by constraining 

a parent's incubation ability physically rather than energetically. Peripheral eggs within 

enlarged clutches may be incubated inefficiently, leading to within-clutch temperature
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differences that could prolong incubation, increase hatching asynchrony and reduce 

hatching success in the absence of increased incubation demands (Sandercock 1997; 

Chapter 7). Indeed, many clutch enlargements have failed to demonstrate the changes in 

either adult time budget or adult mass that would be expected had adult energy balance 

been affected (Jones 1987; Moreno et al. 1991; Szekely et al. 1994; Siikamaki 1995; 

Sandercock 1997; Cichon 2000). Further, observed increases in adult mass loss may be 

due to elongated incubation periods arising from physical constraints on efficient 

incubation rather than to increases in the energetic demand imposed per unit time (eg, 

Moreno & Carlson 1989). Hence in the majority of clutch enlargement experiments, it is 

difficult to entirely exclude the possibility that physical rather than energetic constraints 

were responsible for observed changes in incubation performance.

Few studies have assessed the consequences of clutch enlargement during 

incubation for measures of post-hatching breeding performance. Experimental clutch 

enlargements have frequently not been reversed at hatching, and fitness costs of 

incubating enlarged clutches have thus been confounded with costs of rearing the 

resultant enlarged broods (Monaghan & Nager 1997). However, three studies that have 

examined consequences of increased clutch size during incubation only have suggested 

energetic consequences of clutch enlargement for parents rather than solely incubation 

effects on offspring. Common tern (Sterna hirundo) chicks belonging to parents that had 

incubated experimentally enlarged clutches but reared their original brood size showed 

reduced growth rates compared to chicks belonging to control parents (Heaney & 

Monaghan 1996, Fig. 2.1). This effect was attributed to the energetic consequences of 

incubating an enlarged clutch for parents' provisioning ability. Similarly in starlings 

(Sturnus vulgaris) and collared flycatchers (Ficedula albicollis), chicks reared by parents 

that had incubated enlarged clutches were in poorer condition at fledging than chicks 

reared by parents that had incubated their natural clutch size (Cichon 2000; Chapter 7). 

Poor nestling growth may negatively affect post-fledging survival (Nur 1984; Tinbergen 

& Boerlijst 1990; Hochachka & Smith 1991; Magrath 1991). Thus clutch size 

manipulations have provided some evidence that costs of incubation may arise due to 

energetic limitation. However, these experiments do not completely exclude the 

possibility that poor fledgling condition resulted from poor incubation conditions rather
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than reduced parental provisioning ability. Clearer demonstration of energetic costs of 

incubation may be achieved by directly manipulating either the energy obtained or the 

energy expended by incubating parents.

Figure 2.1. Common tern {Sterna hirundo) chick growth rates were significantly higher 

in control nests where parents laid, incubated and reared a clutch of two eggs than in 

experimental nests where parents had incubated an extra egg (t24 = 2.53, P = 0.02, after 

Heaney & Monaghan 1996). In this study, experimental pairs laid two eggs compared to 

the more typical clutch size of three, and may therefore have been of relatively poor 

quality. Clutches were experimentally enlarged from two to three eggs, constituting an 
increase of 50% whilst remaining within the natural range of variation. The combination 

of low quality birds and a relatively large clutch size manipulation may have increased 
the chance of detecting a cost of incubation.
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Several studies have manipulated rates of parental energy expenditure or energy 

intake during incubation, and observed consequent changes in the division of time 

between foraging and incubation. Reducing the demand of incubation by providing heat 

to nests affected parental nest attentiveness in pied flycatchers (Ficedula hypoleuca), 

great tits (Parus major) and starlings (von Haartman 1956; Bryan & Bryant 1999; 

Chapter 4), as did manipulating the rate of heat loss from storm petrel (Hydrobates 

pelagicus) nest cavities (Bolton, unpublished). Attentiveness was increased by providing 

supplementary food to incubating female wheatears (Oenanthe oenanthe, Moreno 1989a) 

and decreased by removing male snow buntings (Plectrophenax nivalis) and thus 

depriving incubating females of being fed on the nest (Lyon & Montgomerie 1985). 

Hence there is experimental evidence that an energetic trade-off between incubation and 

foraging exists across a range of species, and thus that incubation can be a period of 

resource limitation.

Fewer studies have provided clear evidence that manipulating adult energy 

balance actually has fitness consequences. However, providing heat to starling nests 

during incubation increased fledging success in the same brood and hatching success in 

subsequent unmanipulated second clutches (Chapter 3, Fig. 2.2). Increasing overall 

incubation demands by experimentally prolonging incubation periods affected hatching 

success and female condition in barnacle geese (Branta leucopsis, Tombre & Erikstad

1996), hatching success and laying date in the subsequent season in storm petrels 

(Minguez 1998) and the time until the next breeding attempt in black swans (Cygnus 

atratus, Brugger & Taborsky 1994). Removing provisioning males reduced hatching 

success in snow buntings (Lyon & Montgomerie 1985) whereas provision of 

supplementary food increased hatching success in blue tits {Parus caeruleus, Nilsson & 

Smith 1988), although neither of these two studies found a change in fledging success, 

and supplementary feeding did not affect wheatear breeding performance (Moreno 

1989a). Thus there is experimental evidence that fitness costs due to energetic limitation 

can arise during incubation, but may not always do so (see page 38).
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Figure 2.2. A greater proportion of offspring fledged successfully in starling (Sturnus 
vulgaris) nests where the rate of heat loss from within a nest (and thus parental energy 
expenditure) was experimentally reduced for the duration of the incubation period, than 

in unmanipulated control nests ( ( / 33 = 72.0, P = 0.02, after Chapter 3).

Evidence for fitness costs o f  incubation arising from limitations on mating 

opportunities.

If the time allocated to incubating one clutch of offspring significantly reduces a parent's 

chance of obtaining further mating opportunities and thus the number of progeny sired, 

there will be non-energetic fitness costs of incubation. As male reproductive rate may 

often be limited by the number of mates acquired (Clutton-Brock 1991; Andersson 1994), 

such costs may apply particularly to males.

Incubation may preclude activities such as song and display that function in mate 

attraction (Whitfield & Brade 1991; Albrecht & Oring 1995; Catchpole & Leisler 1996), 

and thus reduce a male's ability to attract additional mates. Hormone implants have not 

as yet been used to manipulate male investment in mate attraction and conclusively
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demonstrate a trade-off with paternal care during incubation as has been done during 

chick-rearing (Hunt et al. 1999; Moreno et al. 1999). However, experimentally 

increasing male starlings’ chances of attracting secondary females by providing some 

males with additional nest boxes caused those males to incubate less and display more 

(Smith 1995, Fig. 2.3), suggesting a trade-off between mate attraction and incubation.

Figure 2.3. Male starlings (Sturnus vulgaris) contributed significantly more time to 

incubation when a single nesting opportunity was available than when experimentally 

provided with a second nest-box and thus a second opportunity to attract a mate {Fxl& = 

7.01, P = 0.01, after Smith 1995).
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Incubating one clutch may reduce a polygamous parent's ability to care for other 

simultaneous broods. Correlative evidence from facultatively polygynous species 

suggests that parents with multiple clutches contribute less time to incubating each one, 

decreasing the total time for which each clutch is attended (Pinxten et al. 1993; Smith et 

al. 1995; Fitzpatrick 1996; Chapter 8). Reduced care for one brood due to the allocation 

of resources to incubating another will be costly if the reduction significantly reduces a 

brood's survival or reproductive value. This has been suggested to be the case. Lack of 

male help can prolong incubation periods (Smith et al. 1995; Chapter 8) and reduce 

hatching and fledging success {Chapter 8). Further, in their review of male removal 

experiments, Bart & Tomes (1989) concluded that the loss of male help may have 

particularly severe fitness consequences if it occurs during the incubation period. 

However, other studies have not shown such effects. A lack of male incubation did not 

affect breeding success in starlings (Pinxten et al. 1993) or reed warblers (Acrocephalus 

scirpaceus, Duckworth 1992). However, these studies did not examine the consequences 

of reduced male help for female condition. As male assistance with incubation increases 

the foraging time available to females (Kleindorfer et al. 1995; Chapter 8), fitness costs 

of reduced male incubation effort may be met by females rather than offspring. Further 

studies on the role of male assistance during incubation and the ability of females to 

compensate for its absence are required.

Finally, time spent incubating may reduce a male's opportunity to obtain extra

pair copulations. Cross-species analysis suggests that extra-pair paternity rates are 

generally low in species where males contribute extensively to incubation (Schwagmeyer 

et al. 1999). Further, male fairy martins {Hirundo ariel) adjust the time allocated to 

incubation in response to the availability of fertile females, suggesting the existence of a 

trade-off between incubation and attempting extra-pair copulations. The consequent low 

levels of male attendance prolonged incubation periods, although no reduction in 

hatching success was found (Magrath & Elgar 1997). Equally, incubating the first-laid 

eggs in a clutch may reduce a male's mate-guarding ability, involving a potential cost in 

terms of lost paternity. Whilst this hypothesis has not been rigorously tested, it may 

explain why, in species where males assist females with incubation, males often do not
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incubate until after the clutch has been completed whilst females commence incubation 

on the penultimate egg (Power et al. 1981).

In summary, there may be substantial fitness costs of incubation in terms of lost 

reproductive opportunities arising from the time spent on the nest. Whilst in general 

these may apply predominantly to males, females may be similarly affected in species 

where incubation roles are reversed.

Ecological fitness costs o f incubation

Parents may experience costs to remaining on nests for long periods during incubation, 

such as increased vulnerability to predation or infection by nest parasites. Indeed, the 

risk of predation on the nest may be a major evolutionary influence on incubation 

behaviour (Conway & Martin 2000). Further the requirement to return to a nest may 

constrain a parent's ability to track mobile and unpredictable food supplies. However, 

such costs are largely unquanitified.

Discussion: occurrence and distribution of incubation costs

Experimentally manipulating the resource requirements of incubation can alter the ways 

in which parents allocate resources between activities, both within and between 

reproductive phases. This evidence, and that from correlative studies, suggests the 

existence of resource trade-offs and hence resource limitation during incubation. Further, 

experimentally induced changes in allocation patterns have affected measures of both 

current and future reproductive success. Thus there is evidence that the resources 

required for incubation can be sufficient to limit parental fitness, and hence that 

incubation can be a costly stage of avian reproduction.

Who pays the costs o f  incubation?

The way in which costs are distributed between parents and current offspring depends on 

how incubating parents resolve trade-offs between investment in current and future 

reproduction, and hence on their allocation of time between incubation and alternative 

activities. Largely due to links with mating and social systems, the determinants of
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breeding parents' time allocations to mating activities have attracted considerable 

attention. Investment patterns are likely to depend on multiple ecological factors that 

vary between individuals and species (reviewed in Clutton-Brock 1991). Patterns of time 

allocation between foraging and incubation also vary greatly between species. In 

relatively large and long-lived species with precocial young, parents often remain on the 

nest for long periods during incubation, meeting energetic requirements predominantly 

from stored endogenous resources (Aldrich & Raveling 1983; Afton & Paulus 1990; 

Hepp et al. 1990; Erikstad & Tveraa 1995). As it is likely to minimise the incubation 

period and the frequency of energetically demanding clutch rewarming, continuous 

incubation may be the most efficient incubation strategy. In such species, time is 

predominantly allocated to incubation rather than to foraging, and costs of incubation 

may therefore operate via parents to a large degree. Indeed, whilst experimentally 

manipulating incubation demands in such species can affect measures of offspring fitness 

(ieg, hatching success: Tombre & Erikstad 1996; Minguez 1998), increased costs are often 

borne substantially by incubating adults (Heaney & Monaghan 1996; Tombre & Erikstad 

1996; Minguez 1998).

In contrast, continuous incubation is unlikely to be physiologically possible for 

small-bodied passerines, as the resources required to sustain long incubation bouts equate 

to large proportions of normal body mass (Moreno 1989b). In small-bodied species, 

parents generally incubate intermittently, resolving the trade-off between foraging and 

incubation so as to spend considerable time away from the nest. When only one parent 

incubates, this resolution frequently results in clutches being left unattended, and costs of 

incubation may often affect current offspring directly. Indeed, mean passerine egg 

temperatures are typically well below the optimum for embryonic development (Haftom 

1983, 1988; Webb 1987; Williams 1996; Chapter 5). In such species, experimental 

manipulations have provided little clear evidence that increased energetic costs of 

incubation are borne by parents. This is partly because few studies have rigorously 

investigated the consequences of manipulated incubation demands for estimators of adult 

fitness other than body mass. In particular, there is a lack of studies that have measured 

adult survival or future reproductive performance, or more rigorous indicators of 

physiological condition (although see Cichon 2000; Chapter 3). However, there is

36



Chapter two Fitness costs o f incubation

experimental evidence that parents may preferentially preserve their own condition at the 

expense of their current offspring. Patterns of parental mass loss are difficult to interpret 

directly as indicators of resource limitation during incubation, as mass loss may reflect 

the post-laying atrophy of reproductive organs (Ricklefs & Hussell 1984) or be an 

adaptation to reduce flight costs during chick-rearing (Moreno 1989b; Merila & Wiggins

1997) rather than reflecting physiological stress. However, in experiments designed to 

test these alternatives, the provision of supplementary food to incubating parents did not 

alter mass trajectories (Hillstrom 1995; Merkle & Barclay 1996; Slagsvold & Johansen

1998). This suggests that parents allocate resources during incubation so as to optimise 

their own condition, passing supplementary resources on to offspring when they become 

available. Indeed, the only study that has assessed the consequences of supplementary 

feeding for both adult mass and incubation strategy found increases in nest attentiveness 

but not in adult mass (Slagsvold & Johansen 1998).

Hence energetic trade-offs during incubation can be resolved so that costs are 

manifested in both parents and current offspring to some degree. However, although 

more experiments are clearly needed across a wider range of species, incubation costs 

may be manifested extensively in current offspring in small intermittently incubating 

species, and by parents to a greater degree in larger species that incubate continuously. 

The suggestion that intermittently incubating passerines invest preferentially in their own 

condition during incubation whereas larger species invest more in current offspring is 

perhaps contrary to expectation (Steams 1992), and to the conclusions of studies carried 

out during the chick-rearing period (Ssether et al. 1993; Mauck & Grubb 1995; 

Weimerskirch et al. 1995). However, such allocation patterns make more sense in the 

context of within-brood and within-season trade-offs involving incubation effort, as 

passerines with altricial offspring may have to invest in their own condition during 

incubation in order to successfully rear the current brood and breed again within the same 

season (Moreno 1989b).
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Condition-dependence o f costs

The majority of the studies that have demonstrated clear energetic fitness costs to 

incubation have been carried out in relatively cold environments (Lyon & Montgomerie 

1985; Nilsson & Smith 1988; Heaney & Monaghan 1996; Tombre & Erikstad 1996; 

Bolton, unpublished, Chapter 3). However, as egg temperature regulation may be less 

demanding in warm climates, more studies are required to assess whether similar costs 

apply in other environments. Further, even in cold climates, costs of incubation may only 

become apparent during particularly hard conditions. Supplementary feeding of female 

wheatears reduced incubation period only in the coldest of three springs (Moreno 1989a), 

incubating goldeneyes (Bucephala clangula) lost more mass in cold weather (Mallory & 

Weatherhead 1993), and male assistance with incubation increased hatching success in 

moustached warblers (Acrocephalus melanopogon) during April but not during May 

(Kleindorfer et al. 1995).

Even when costs of incubation are evident on average, their impact may vary with 

parent and offspring condition, not affecting all parents, or all offspring within a brood. 

Costs of incubation due to energetic limitation may only affect parents in poor condition 

(Moreno & Sanz 1994; Heaney & Monaghan 1996; Minguez 1998; Fig. 2.1). Investing 

in incubation rather than in attracting mates or seeking extra-pair copulations may entail 

little cost for poor quality individuals that would anyway have achieved little additional 

mating success (discussed in Chapter 8). Embryos within well-provisioned eggs may be 

able to withstand chilling or prolonged incubation periods with no adverse consequences 

for their subsequent development or reproductive value. Hence egg quality may 

influence incubation costs, and the possibility that the resources that parents are able to 

invest in egg-production may influence those required for incubation as yet remains 

unexplored. Further, little is known about how embryo sex may affect incubation 

demands, and sensitivity to varying conditions. Thus, whilst there is now clear evidence 

that incubation can be a costly activity, there is a clear need for further research into 

state-dependent action and interactions with other reproductive stages before the role of 

incubation in the evolution of avian life history strategies can be fully understood.
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Abstract

Changes in the resources allocated to particular stages of reproduction are expected to 

influence allocation to, and performance in, subsequent reproductive stages. Experimental 

manipulation of individual investment patterns provides important evidence that such 

physiological trade-offs occur, and can highlight the key environmental variables that 

influence reproductive costs. By temporarily altering the thermal properties of starling 

nests, we reduced the energetic demand of first-clutch incubation, and examined the effect 

of this manipulation on performance during the same and the subsequent reproductive 

attempts. Compared with controls, starlings investing less in incubation were more 

successful in fledging young, and were more likely to hatch all their eggs if a subsequent 

reproductive attempt was made. Our results show that incubation demands can limit 

reproductive success, and that resources saved during incubation can be reallocated to 

later stages of the same reproductive attempt and to future reproductive attempts. This 

study also shows that small changes in thermal environment can affect breeding success by 

altering the energetic demands imposed on incubating parents, independently of the effect 

of temperature on other environmental variables such as food supply.
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Introduction

Life history theory posits that resource allocation in reproducing individuals is shaped by 

physiological trade-offs; increased investment of limiting resources in one activity must be 

offset by decreased investment in competing activities during the same or subsequent 

reproductive attempts (Steams 1992). However, the expected negative relationships 

between investment in competing activities can be difficult to demonstrate in practice. 

Confounding variables such as individual quality, and hence the amount of resources 

available for investment, can even result in positive rather than negative associations being 

observed (Reznick et al. 1986; Partridge 1992). Experimental manipulation of investment 

is therefore an important tool in the study of physiological trade-offs, as it allows resource 

investment to be considered independently of resource availability (Roff 1992; Steams 

1992). Hence, manipulation of the demands of specific reproductive phases is central to 

our understanding of resource allocation during reproduction. Furthermore, such studies 

can provide useful insights into which reproductive phases are sufficiently demanding to 

limit reproductive performance.

Birds are iteroparous breeders, with each reproductive attempt being divided into 

the distinct stages of egg-laying, incubation and chick-rearing. The demand of each 

reproductive stage can be manipulated independently, and the consequences for other 

stages within both current and future reproductive attempts can be measured (Partridge 

1989; Lessells 1991; Monaghan & Nager 1997). Birds are therefore good model species 

in which to investigate the influence of physiological trade-offs on resource allocation. 

However, most previous experimental studies of trade-offs in birds have manipulated the 

demands of chick-rearing, the implicit assumption being that the earlier stages of 

reproduction are much less demanding and are unlikely to limit later investment (Steams 

1992; Monaghan & Nager 1997). There is increasing evidence that this is not correct with 

respect to egg formation (eg, Bolton et al. 1992; Nager & van Noordwijk 1992; 

Monaghan et al. 1998), but few studies have examined the fitness consequences of 

altering incubation demands in isolation from the other reproductive stages (Monaghan & 

Nager 1997). These few studies have generally increased rather than decreased 

incubation demands, either by prolonging the incubation period (Tombre & Erikstad 1996) 

or by increasing clutch size during incubation only (Moreno et al. 1991; Heaney &
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Monaghan 1996). Although potentially demonstrating the existence of physiological 

trade-offs, increasing the demand of incubation cannot clarify the extent to which 

resources saved during incubation can be re-allocated to other stages of reproduction. 

This can only be investigated by experimentally reducing incubation demands.

The energy required to maintain clutch temperature depends on the rate at which 

heat is lost from the clutch and nest, and is therefore influenced by environmental 

temperature. Variation in environmental temperature has previously been linked to 

variation in breeding success (Jarvinen 1993; Sheaffer & Malecki 1996; Skinner et al.

1998). However, the extent to which relatively small changes in thermal conditions can be 

sufficient to alter reproductive performance as a consequence of direct effects on the 

energy expenditure of incubating birds, independently of more general effects on food 

availability and foraging costs, has rarely been investigated. By experimentally 

manipulating the rate of heat loss from nests, the potentially crucial role of the thermal 

environment in determining the outcome of a breeding attempt can be examined.

In this study we experimentally altered the thermal environment of incubating 

birds, thereby reducing the energetic demand of incubation, and studied the consequences 

of this manipulation for the success of their current and subsequent reproductive attempts. 

In doing so we tested the hypothesis that reduced investment during one reproductive 

stage can translate into improved performance in future stages, and investigated the extent 

to which the thermal conditions experienced during incubation can directly affect 

reproductive performance.

Methods

A substantial proportion of the energetic demand of incubation is thought to occur whilst 

rewarming a clutch that has been allowed to cool down (Williams 1996). Cooling occurs 

most frequently in species where only one parent incubates, as the clutch is left unattended 

whilst that parent forages. Hence incubation is likely to be most demanding for 

uniparental incubators nesting in cold environments. Accordingly, we studied an 

individually marked population of cavity nesting starlings (Sturnus vulgaris) on Fair Isle, 

Shetland (59°N, 2°W), between mid-April and mid-July 1998. Air temperatures on Fair
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Isle for these months were well below the optimal incubation temperature of 

approximately 36-39°C (Lundy 1969; Webb 1987); the maximum air temperature 

recorded during the incubation period was only 12.7°C. Observation showed that female 

starlings were almost solely responsible for incubation and hence clutches were regularly 

left unattended and cooled down rapidly whilst females foraged.

Fifty-seven first brood nests were discovered, of which a randomly selected thirty- 

four were studied intensively. Seventeen of these were experimentally manipulated to 

reduce the energetic demand of incubation, and 17 served as unmanipulated control nests. 

Laying date, egg biometrics, and hatching and fledging success and dates were recorded in 

these 34 intensively studied nests. Chicks were weighed at three days old and again at ten 

days, when maximum wing and maximum tarsus measurements were also taken. There 

were no significant differences between the control and experimental nests in terms of 

clutch size (control mean 4.7 ±0 .1 , experimental mean 4.5 ± 0.2, Mann-Whitney U34 = 

112.5, P = 0.21), mean egg mass (control mean 8.0 ± O.lg, experimental mean 8.3 ± 0.2g, 

t3 ] = -1.79, P = 0.09), overall clutch mass (control mean 38.3 ± 0.9g, experimental mean 

37.5 ± l.Og, /31 = 0.60, P = 0.55) or laying date (control mean 5.1 ± 0.6 days into May, 

experimental mean 5.2 ± 0.7 days into May, t32 = -0.20, P = 0.84). Hence no correction 

for these factors was needed when comparing parameters of breeding success between the 

control and experimental groups. The remaining 23 nests were visited during the chick 

rearing period to ascertain whether any chicks fledged successfully. Although full details 

of clutch size, egg mass and laying date could not be collected for all of these nests due to 

time constraints, there was no evidence to suggest that they differed from either control or 

experimental groups in any of these parameters.

A heating mat 5cm in diameter (Radio Spares 12V silicone-polymide mat) was 

inserted under each of the 17 experimental nest cups. Mats were camouflaged with moss, 

and starlings did not appear to react to their presence. The mats were powered by a 

constant 4.2V battery supply and produced heat continuously from clutch completion until 

the first egg hatched, when they were switched off. The impact of the heating mat on the 

rate of heat loss from each experimental nest was measured by placing a plaster disc 

warmed to 32°C into a nest and measuring the rate at which it cooled down with and 

without the heating mat switched on. The measurement was repeated in control nests.
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The amount of heat produced by the mats was too small to prevent the disc from cooling, 

but was sufficient to reduce the rate at which it cooled by 0.22 degrees/minute or 20% 

(Chapter 4). When the mat was switched off there was no difference in the rate of heat 

loss between control and experimental nests. Thermistors attached to TinyTalk 

dataloggers (Gemini Dataloggers Ltd, Chichester, U.K) were placed among eggs, and nest 

temperature was recorded every 72 seconds throughout incubation. Over the whole 

incubation period, there was no significant difference in mean nest temperature between 

control and experimental nests (control median 25.3°C, experimental median 24.4°C, 

Mann Whitney C/32 = 112, P  = 0.56), and thus the manipulation did not affect the actual 

temperature at which the clutch was incubated, but reduced the investment that females 

made in incubation.

The occurrence and progress of the second clutches laid in the 57 first brood nests 

was monitored. The heating mats were removed from the 17 experimental nests before the 

start of the second laying period, so that neither the 17 previously heated nor the 40 

previously unmanipulated nests were heated during the second broods.

Two-tailed statistical tests were used throughout, and non-parametric tests were 

used when the assumptions of parametric tests were violated by the data distributions. 

One of the experimental nests was omitted from the analysis as it was accidentally 

destroyed by humans.

Results

There was no significant difference between the proportion of first clutch eggs that 

hatched in control and experimental nests (control mean 82.4 ± 8.0%, experimental mean 

95.9 ± 2.9%, Mann Whitney C/33 = 105.5, P = 0.14). However, the proportion of first 

clutch eggs from which young fledged was significantly higher in experimental nests than 

control nests (control mean 51.0 ± 8.3%, experimental mean 74.9 ± 4.5%, Mann Whitney 

C /3 3= 72.0, P = 0.02). Hence breeding performance was enhanced in the nests that were 

experimentally heated during incubation.

The duration of the incubation period did not differ significantly between 

experimental and control nests (control mean 12.5 ± 0.2 days, experimental mean 12.1 ±
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0.2 days, /29 = 1.61 P = 0.12. Nor was there a significant difference in the duration of the 

fledging period (control mean 23.2 ± 2.2 days, experimental mean 23.6 ± 1.3 days, /26 = - 

0.67, P = 0.51), or in the mass of chicks at three days old (control mean 22.5 ± 1.7g, 

experimental mean 22.9 ± 1.9g, / 27 = -0.14, P = 0.92) between the two groups. As a 

measure of condition, the ratio of mass to tarsus3 was calculated for the chicks at 10 days 

old (Freeman & Jackson 1990). There was no significant difference in mean ratio for 

chicks in control and experimental nests (control mean 3.23 ± 0.08 g/m3, experimental 

mean 3.46 ± 0.08g/m3, f27 = -1.93, P = 0.06), although there was an obvious trend towards 

better condition in the experimental chicks.

Six of the 16 experimental pairs that successfully fledged any first brood young laid 

second clutches. The corresponding figure for the unmanipulated nests was 14 out of 32. 

These proportions did not differ significantly (Chi2 Test x2 1 = 0.01, P > 0.5). There were 

also no significant differences in terms of second brood laying date (control mean 19.0 ± 

3.0 days into June, experimental mean 21.1 ± 0.8 days into June, /is  = -0.95, P =  0.36), 

clutch size (control mean 3.3 ± 0.4, experimental mean 3.6 ± 0.3, t\% = -0.62, P =  0.54), 

mean egg mass (control mean 8.06 ± 0.20g, experimental mean 8.17 ± 0.17g, t\% = -0.39, 

P = 0.70) or clutch mass (control mean 27.02 ± 3.56g, experimental mean 29.63 ± 2.17g, 

Os = -0.65, P ~  0.53).

Either none or all of the second clutch eggs hatched in 16 out of the 20 second 

brood nests, the majority of failing nests being deserted during harsh weather. Thus the 

second clutch hatching success data was heavily skewed to extreme values, precluding 

valid comparison of mean second clutch hatching success in control and experimental 

nests. The complete second clutch hatched successfully in significantly more of the nests 

that had been experimentally heated during the first broods (four out of six nests) than in 

nests that had not been manipulated (two out of fourteen nests, Fisher Exact Probability 

Test P = 0.037). Hence performance in hatching the second brood was improved in pairs 

whose first brood incubation demand had been experimentally reduced. Unfortunately 

77% of second brood chicks died before fledging during a period of storm force gales, 

making an analysis of fledging success impossible.
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Discussion

The experimental treatment reduced the rate at which a clutch of eggs cooled during a 

parental absence {Chapter 4), decreasing the amount of energetically expensive reheating 

(Biebach 1986) required when parents returned from foraging bouts. The amount of 

energy required to maintain clutch temperature and adult body temperature during a spell 

of incubation may also have been reduced to a small extent on the experimental nests, 

contributing further to the reduction in incubation demands compared with control nests. 

Since nests were only heated during the first clutch incubation period and the manipulation 

did not affect first clutch hatching success, experimentally manipulated parents 

experienced a reduced energetic demand only during the first clutch incubation period.

The experimental reduction in the energetic demand of incubation was associated 

with increased fledging success during the same breeding attempt. The manipulation could 

have improved breeding success by directly improving the conditions for embryonic 

development in the experimental nests. Low incubation temperatures can lead to 

developmental abnormalities and a prolonged developmental period (Webb 1987). 

Alternatively, the reduced adult energy expenditure during incubation may have increased 

success by allowing parents to invest more in their offspring later in the breeding attempt. 

The possibility that the manipulation improved the thermal environment of the nest for the 

embryos is difficult to test directly, as the thermal conditions that are optimal for 

embryonic development in starlings are not known precisely. However, if the 

manipulation had improved nest conditions then a higher mean nest temperature, greater 

hatching success, a reduced duration of incubation and a better chick condition at hatching 

might have been expected in the experimental nests (Webb 1987). We found no evidence 

of any of these effects. This suggests that the increased first brood fledging success in 

experimental nests was due, at least in part, to the reduced energetic demand of incubation 

allowing increased adult investment during chick-rearing. Although not quite statistically 

significant, the strong trend towards a greater condition ratio in ten day old experimental 

chicks may be a reflection of this effect.

Of the nests that successfully fledged any first brood young, second clutches were 

no more likely to be laid in nests that had been experimentally heated during the first 

clutches than in control nests that had not. Nor did the two groups of nests differ
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significantly in mean second brood laying date, egg mass, clutch mass or clutch size. 

Despite the fact that no nests were heated during second clutch incubation, a significantly 

greater proportion of experimental nests than of control nests hatched their complete 

second clutch. This difference could not have been due to a physical impact of the 

previous manipulation on the nest, as starlings rebuilt their nests between their first and 

second broods, and must have been due to the impact of the first brood manipulation on 

the adults themselves. The reduced adult energy expenditure during first clutch incubation 

allowed adults to invest more in their subsequent breeding attempt, again pointing to an 

effect on adult resource allocation patterns. Although the main effect was on hatching 

success, our data suggested that clutch size decreased less between first and second 

broods in experimental nests than in control nests, a trend that would warrant further 

investigation using larger sample sizes.

Incubation has previously been considered a time of reduced adult energy 

expenditure compared to other stages of reproduction (Kendeigh 1963; King 1973; 

Walsberg & King 1978). More recently however, it has been shown to impose significant 

energetic demands on parents (Haftom & Reinertsen 1985; Biebach 1986; Toien et al. 

1986; Thomson et al. 1998; Turner 1991); a significant energy expenditure is required to 

maintain clutch temperature whilst foraging time is severely restricted by the need to 

remain on the nest (Carey 1980; Williams 1996). Changing the thermal properties of the 

nest by providing heat has been shown to alter parental time budgets during incubation, 

apparently due to the reduction in energy required to maintain egg temperature (Bryan & 

Bryant 1999; Chapter 4). However, few previous studies have unambiguously shown that 

the energetic demand of incubation translates into a fitness cost for parents (Monaghan & 

Nager 1997). Our results demonstrate this cost, and further suggest that resources saved 

during reduced-demand incubation can be re-allocated to future stages of reproduction, 

both within and between breeding attempts. Furthermore, our results demonstrate the 

critical role of the thermal environment within the nest in determining breeding success. 

Previous studies have suggested a positive relationship between environmental 

temperature and breeding performance, including in starlings on Fair Isle (P.G.H.Evans, 

unpublished data). However, non-experimental studies do not tell us whether greater 

breeding success in warmer weather is due to a reduced rate of heat loss from nests
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reducing an incubating adult's energy expenditure, or to other environmental effects such 

as an increase in availability of insect food (Drent 1973). This study demonstrates an 

enhanced breeding performance that must result from a change in the incubating parent's 

thermal environment rather than in its food supply. We show that for birds breeding in 

relatively cold conditions, a very slight difference in the rate of heat loss from the nest 

during incubation can significantly affect breeding success, as can heat loss during other 

reproductive stages (Nager & von Noordwijk 1992; Yom-Tov & Wright 1993). The rate 

of heat loss is influenced by climate, and also by the parent itself, by means of the nest site 

selected and the way in which the nest is constructed (White & Kinney 1974; O'Connor 

1978; Skowron & Kern 1980; Franklin 1995; Chapter 9). Hence there should be selection 

for an optimal allocation of resources to site selection and nest construction, and the 

outcome of a breeding attempt may be influenced by the availability of good nest sites and 

insulating materials. In starlings, males are responsible for the majority of nest-building, 

with females choosing mates largely on the basis of the completed nest (Cramp & Perrins 

1994). In so doing, females may be using nest quality as a sexually selected indicator of 

male quality (Andersson 1991; Soler et al. 1998), but our results suggest that they are also 

behaving to maximize their direct fitness gains (Moreno et al. 1995; Moreno et al. 1999).

Physiological trade-offs resulting from the cost of incubation that we demonstrate 

may have an important bearing on the evolution of a bird’s life history strategy, including 

the determination of parameters such as optimal clutch size (Steams 1992). Lack (1947) 

hypothesized that optimal clutch size is determined by the number of chicks that parents 

can afford to provision, but it has repeatedly been shown that birds can successfully rear 

experimentally enlarged broods (Linden & Moller 1989; Dijkstra 1990). The fitness cost 

of incubation demonstrated here, together with that of egg-laying, may provide an 

explanation for the discrepancy between the empirically optimal clutch size and that 

predicted by Lack. That laying larger clutches imposes greater fitness costs on parents has 

been demonstrated (Monaghan et al. 1995; Monaghan et al. 1998), and there is an 

increasing body of evidence to suggest that the cost of incubation increases with clutch 

size (Thomson et al. 1998). Optimal clutch size may therefore be determined by the 

number of eggs that parents can afford to lay and incubate as well as the number of young 

they can afford to rear.
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Abstract
In avian species where only one parent incubates, that parent must divide its time 

between the mutually exclusive activities o f incubation and foraging in such a way as to 

maintain both body condition and clutch temperature within certain limits.

In a uniparental incubator, the starling, we experimentally reduced the rate at 

which unattended clutches of eggs cooled down, and monitored the resulting changes in 

the parent’s incubation strategy. Opposite to the predictions o f standard models o f time 

allocation during incubation, parents spent a much greater percentage of each 24 hours 

incubating when the rate of clutch cooling was reduced. Incubation-bouts lasted 

significantly longer on experimental nests than on control nests, both during the daytime 

and overnight. Mean foraging-bout duration did not differ between the two groups of 

nests. These results are consistent with the hypotheses that parental foraging success 

cues the end of a foraging-bout, and that parental energy level cues the end of an 

incubation-bout.

However, most previous studies suggest that parents spend less time incubating 

when the rate of clutch cooling is slow. If parental energy level cues departure, these 

results can only be explained if the amount of time available for incubation is constrained 

in these cases by the time a parent must spend foraging in order to maintain body 

condition. Such parents should take more time away from incubation when the 

unattended clutch cools slowly, as this is when the cost of being absent is minimised.
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Introduction

Parents have finite resources, and therefore must make decisions about how best to divide 

resources between mutually exclusive activities. The way in which this dilemma is 

resolved is particularly interesting when the allocation of time and energy to one activity 

results in a debt building up in the time or energy demands of the excluded activities. A 

good example of this is avian incubation.

To hatch successfully, avian eggs must be maintained at a temperature that allows 

embryonic development. The optimal temperature range for development is thought to 

be between approximately 36°C and 39°C (Lundy 1969; Drent 1975; Webb 1987) and as 

there are few environments in which ambient temperature remains constantly within this 

range, incubation by parents is required to prevent embryos from chilling or overheating. 

In species where only one parent incubates, that parent must divide its time between the 

mutually exclusive activities of incubating to control clutch temperature, and foraging to 

meet its own energy requirements (Drent et al. 1985; Jones 1989). Hence daytime 

incubation is frequently intermittent, with each incubation-bout being followed by a 

foraging-bout during which the clutch is left unattended and begins to equilibrate with 

ambient temperature. The parent must balance the time spent foraging against the cost of 

allowing the clutch to depart from the optimal incubation temperature (Webb 1987; 

Williams 1996), and against the energetic demands of rewarming or cooling the clutch 

upon its return to the nest (Williams 1996).

An intermittent incubation strategy results from two sets of behavioural decisions 

made by the parent. Firstly, an incubating parent must decide when to terminate an 

incubation-bout and depart from the nest, influencing incubation-bout duration. 

Secondly, a foraging parent must decide when to terminate a foraging-bout and return to 

the nest, thereby influencing foraging-bout duration. An optimally incubating parent 

must be able to select the appropriate moments at which to terminate incubation- and 

foraging-bouts. The optimal division of time is likely to vary with environmental 

conditions and indeed, incubation- and foraging-bout durations have previously been 

shown to vary consistently with weather (Yom-Tov et al. 1978; Davis et al. 1984; Cartar 

& Montgomerie 1987), stage of incubation (Drent 1975; Weathers & Sullivan 1989) and 

time of day (Davis et al. 1984; Morton & Pereya 1985; Haftom & Ytreberg 1988). Thus
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it is likely that when deciding to terminate a bout, the parent is responding to 

environmentally determined proximate cues.

The cue to terminate a foraging-bout is likely to be linked to adult foraging 

efficiency. For example, an adult may decide to stop foraging and return to the nest after 

achieving a certain energetic gain or level o f food intake (Drent et al. 1985; Jones 1989; 

Weimerskirch 1994). The nature of the proximate cue to terminate an incubation-bout 

has been much discussed (White & Kinney 1974; Yom-Tov et al. 1978; Carey 1980, 

Davis et al. 1984; Drent et al. 1985; Haftom & Ytreberg 1988; Haftom & Reinertsen 

1990; Chaurand & Weimerskirch 1994), and two main hypotheses have been proposed. 

Firstly, White & Kinney (1974) proposed that egg temperature cues a parent to depart 

from the nest (the ‘egg-temperature’ model). A parent is hypothesised to sense egg 

temperature via its brood patch, and to terminate its incubation-bout when the clutch 

reaches a certain threshold temperature. Secondly, Chaurand & Weimerskirch (1994) 

proposed that a parent’s own mass determines when an incubation-bout will end. They 

found that Blue Petrels terminate incubation-bouts when their body mass falls to a certain 

threshold. This idea can be developed into a model in which a parent’s energy level cues 

the end of an incubation-bout (the ‘parental-energy’ model). A parent continues to 

incubate until its energy level dwindles to a threshold, at which point it leaves to forage.

In this paper, we are concerned with the factors that determine when a parent 

decides to terminate an incubation-bout. The egg-temperature and parental-energy 

models make conflicting predictions concerning the change in the duration of incubation 

bouts expected when clutch cooling rate is reduced. The egg-temperature model predicts 

that incubation-bout duration will decrease with a slow clutch cooling rate. Eggs will cool 

down less during a parental absence and hence when the parent returns, it will take less 

time to reheat the clutch to the threshold level for departure. Conversely, the parental- 

energy model predicts that incubation-bout duration will increase as the rate of clutch 

cooling decreases. The rate of adult energy expenditure required to restore and maintain 

clutch temperature will be reduced when the rate of heat loss from the clutch is slow, and 

hence a parent can continue to incubate for longer before its energy decreases to the 

threshold level at which it must forage. Hence by experimentally altering the rate of heat 

loss from a clutch, it is possible to test the opposing predictions of the egg-temperature
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and parental-energy models of the termination of the incubation bout. In this study we 

experimentally reduced the rate at which unattended starling clutches cooled down, and 

monitored the resulting changes in the duration of the parent’s incubation bouts.

Methods

A population of cavity nesting starlings was studied on Fair Isle, Shetland between mid- 

April and mid-July 1998. The mean air temperature during the first clutch incubation 

period was 10.5°C, much colder than the temperature required for embryonic 

development. In starlings, the female is almost exclusively responsible for incubation, 

and when the female departs to forage the eggs are left unattended and lose heat rapidly. 

Hence on Fair Isle, there is likely to be strong selection for an optimal division of time 

between incubating and foraging.

A small amount of heat (0.25 Watts) was supplied to 17 first clutch nests 

continuously during the incubation period, by inserting a 5cm diameter heating mat 

(Radio Spares 12V silicone-polymide mat) under each nest cup. The heat produced was 

just sufficient to reduce the rate at which the unattended clutch cooled down, but was not 

enough to maintain nest temperature in the absence of the adult. Seventeen control nests 

were left unmanipulated. To quantify the effect of the heating mats on clutch cooling 

rate, a plaster disc warmed to 32°C was placed in each control and experimental nest, and 

in the absence of the parent, the rate at which the disc cooled down relative to ambient 

temperature was measured. The mean cooling rates for the control and experimental 

nests did not differ significantly with the heating mats switched off (means of 1.22 ± 0.04 

degrees/minute and 1.18 ± 0.06 degrees/minute respectively, /32 = -0.68, P = 0.50). 

Cooling rates slowed significantly in the experimental nests when the heating mats were 

switched on (new mean 0.96 ± 0.05 degrees/minute, Paired t test 116 = 2.37, P = 0.03), 

such that the cooling rate of the heated experimental nests was significantly slower than 

that of the control nests (fa  = -3.32, P = 0.003). Hence the manipulation successfully 

reduced the rate at which an object placed in an experimental nest cooled down, a 

difference of 0.22 degrees/minute or 20%. Given that the rate at which the unattended 

clutch cooled down was reduced in the experimental nests in this way, after a given
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parental absence the eggs in the experimental nests will have been at a higher temperature 

when the parent returned. Thus the energy required to restore clutch temperature was 

reduced in the experimental nests. As the heating mats remained on continually, the 

energy expended in maintaining clutch temperature during an incubation-bout will also 

have been reduced to some extent.

Pairs of experimental and control nests were matched for laying date and, as 

closely as possible, location. This design helped to ensure that there was no significant 

difference between the control and experimental groups in terms of clutch size (control 

mean = 4.76 ± 0.13, experimental mean = 4.53 ± 0.15, Mann-Whitney U-Test U= 112.5, 

N\ = N2 = 17, P = 0.213), mean egg mass (based on nest means, control mean = 7.99 ± 

0.1 lg, experimental mean = 8.32 ± 0.15g, ^31 = -1.79, P = 0.09), overall clutch mass 

(control mean = 38.3 ± 0.9g, experimental mean = 37.5 ± l.Og, /31 = 0.60, P = 0.55) or 

laying date (control nest mean = 5.1 ± 0.6 days into May, experimental mean = 5.2 ± 0.7 

days into May, fa  = -0.20, P = 0.84).

Thermistors attached to TinyTalk data loggers (Gemini Dataloggers Ltd, 

Chichester, U.K.) were placed in a pair of control and experimental nests simultaneously 

for two day periods during incubation. The thermistor was positioned level with the top 

surface of the eggs, such that it was in contact with the parent’s brood patch when the 

parent was present and the nest air when the parent was absent. The loggers recorded 

nest temperature every 72 seconds during this time. A 72 second sampling interval 

(hereafter 72SSI) was the shortest possible interval that could be maintained for 24 hours 

without overloading the logger’s memory capacity. The times when a parent was 

incubating and was absent from the nest generally showed as clear peaks and troughs on 

the resulting temperature traces, allowing times of arrival and departure to be deduced 

(Fig. 4.1). Direct observation by JMR and video tapes of birds at nests showed that these 

points could generally be accurately identified on the temperature traces. The traces 

show a clear demarcation between the quiescent ‘overnight’ incubation period when then 

parent remained continually on the nest, and the active ‘daytime’ incubation period when 

the parent was alternately incubating and foraging (Fig. 4.1).

During the daytime period, identification of the points of arrival and departure 

allowed the durations of the incubation-bouts and foraging-bouts, and hence the
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percentage of the daytime spent incubating to be calculated. The duration of the parent’s 

overnight incubation session was also calculated. In addition, loggers in pairs of 

experimental and control nests were set to a 1 0  second sampling interval (hereafter 

10SSI) for shorter periods of two to four hours during active daytime incubation. These 

traces allowed more accurate estimation of incubation-bout and foraging-bout duration. 

To minimize disturbance to the birds, nest visits were kept to a minimum and 

measurements were made as quickly as possible. Heating mats and thermistors were 

camouflaged with moss, and dataloggers were positioned at least 3m from the nest so that 

temperature data could be downloaded without disturbing the incubating parent. The 

birds showed no visible behavioural reaction to the presence of the heating mats and 

thermistors, and none of the manipulated nests were deserted during the study. The 

manipulation did not affect the mean number of chicks hatching in control and 

experimental nests (4.0 and 4.4 chicks respectively, ^o = -0.79, P = 0.43).

Data were analyzed by considering simultaneously recorded traces from the 

paired experimental and control nests. As paired tests could then be used, no correction 

was necessary for the date or time to which the trace corresponded. Two-tailed statistical 

tests were used throughout, and non-parametric tests were used when the assumptions of 

parametric tests were violated by the data distributions. Means are quoted in the form 

‘mean ± one standard error’.
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Figure 4.1. Temperature recorded on a single starling nest over (a) a 24 hour period, and 

(b) an expanded 3 hour section of this trace. The nest temperature is high when the 

parent is incubating and falls sharply during the daytime foraging bouts when the nest is 

left unattended. Arrivals and departures of the incubating parent result in sudden clear 

changes in nest temperature. The overnight incubation session runs from 20:20 until 

05:30, and nest temperature is consistently high during this period (a). Parents typically 

continue to incubate after the nest has reached a constant temperature (b).
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Results

We obtained 82 good quality pairs of 72SSI traces, spread over 16 of the 17 pairs of 

control and experimental nests (the 17th pairing included a nest that failed for unknown 

reasons at the start of the incubation period). Mean incubation-bout and foraging-bout 

durations were calculated from these traces. Forty-one pairs of 72SSI traces allowed 

unambiguous estimation of the duration of the overnight incubation session.

The mean duration of the continuous overnight incubation session was 

significantly longer on experimental nests than on control nests (means of 500.4 ± 

11.2mins and 464.6 ± 19.3 mins respectively, Paired t test /15 = -2.19, P  = 0.04). This 

was due to overnight incubation finishing significantly later in the morning on 

experimental nests (mean finish times of 4:37am ± 5.7mins and 5:18am ± 7.3mins on 

control and experimental nests respectively, Paired t test t\$ = -2.99, P  = 0.009) rather 

than starting significantly earlier in the evening (mean start times of 9:15pm ± 9.2mins 

and 8:49pm ± 6.5mins on control and experimental nests respectively, Paired t test ^ 5  = 

1.51, P = 0.16).

During the daytime, incubation was intermittent with relatively short bouts of 

incubation being interspersed with bouts of foraging. Mean incubation-bout duration was 

significantly longer on experimental nests than on control nests (means of 30.5 ± 

1.7minutes and 24.5 ± 1 .6  minutes respectively, Paired t test /15 = -3.10, P  = 0.007). 

Further, across all 33 nests, mean daytime incubation-bout duration was significantly 

negatively correlated with nest cooling rate as measured using the plaster disc (Fig. 4.2). 

In contrast, the duration of foraging-bouts did not differ significantly between 

experimental and control nests (means of 4.3 ± 0.4minutes and 5.0 ± 0.3 minutes 

respectively, Paired t test t]5 = 1.37, P  = 0.19).
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Figure 4.2. Across the 33 nests studied, mean daytime incubation bout duration was 

significantly negatively correlated with nest cooling rate. Pearson correlation r32 = - 

0.455, P < 0.02.
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By analyzing one simultaneously recorded pair of 10SSI traces available for 12 of 

the 17 pairs of nests, we calculated a second estimate of mean daytime incubation-bout 

and foraging-bout duration. The shorter sampling interval allowed us to estimate the 

durations of short bouts with greater accuracy. As with the 72SSI data, mean incubation- 

bout duration was significantly longer on experimental nests than on control nests 

(medians of 23.1 minutes and 17.5 minutes respectively, Wilcoxon matched pairs test T = 

12, N = 12, P < 0.05). Mean foraging-bout duration did not differ significantly between 

the two groups (experimental median 4.1 minutes, control median 6 .1 minutes, Wilcoxon 

matched pairs test: T= \6, N =  12, P>  0.05), although there was a trend towards shorter 

foraging-bouts on experimental nests. The mean incubation-bout and foraging-bout 

durations estimated from the 10SSI traces did not differ significantly from those 

estimated from the 72SSI traces for either experimental or control nests (Incubation-bout 

duration; control nests, t22 = -1.34, P = 0.19; experimental nests, t2i = -1.09, P = 0.29.
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Foraging-bout duration; control nests, tj2 = 1.55, P = 0.14; experimental nests, tii = -0.19, 

P = 0.85). Hence the 10SSI estimates of mean incubation-bout and foraging-bout 

duration reinforce the 72SSI estimates, and there is no evidence that the relatively long 

72 second interval introduced any important error into our estimates.

There was no evidence of a relationship between daytime incubation-bout 

duration and time of day. Out of the 59 temperature traces from which the durations of 

15 or more consecutive incubation-bouts could be deduced, only five showed a 

significant correlation between bout length and time of day. Visual inspection and 

quadratic regression showed no evidence of non-linearity.

As a consequence of their longer daytime incubation-bouts, females on 

experimental nests spent a significantly greater proportion of the daytime period 

incubating than did females on control nests (means of 87.8% and 82.1% respectively, 

Paired t test on arcsin transformed proportional data, ti5 = -2.91, P = 0.01). Using the 

mean overnight incubation session duration and the mean proportion of the daytime 

incubation period spent on the nest, the mean time spent incubating on experimental and 

control nests during each 24 hour period was estimated (Total time in minutes T = 

overnight bout length X + ((24 x 60) - X) x (proportion of active time spent incubating)). 

A significantly greater percentage of each 24 hours was spent incubating by parents on 

experimental nests than on control nests (means of 1325.6 minutes or 92.1% of the day 

and 1263.5 minutes or 87.7% of the day respectively, Paired t test, t\s = -3.02, P = 0.009).

Discussion

On average within each 24 hours, parents spent significantly more time incubating on the 

experimental nests in which the rate of clutch cooling was reduced, than on control nests. 

This increase was due to significant increases in mean daytime incubation-bout duration 

and in the duration of the overnight incubation session. On average, the experimental 

parents showed a 7.7% (35.8 minute) increase in overnight incubation duration over the 

control parents, and between a 24.5% (6.0 minute, 72SSI data) and 32.0% (5.6 minute, 

10SSI data) increase in average daytime incubation-bout duration. The overnight 

incubation session started no earlier on experimental nests than on control nests, but
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continued significantly later into the next morning. As there was no relationship between 

incubation-bout length and time of day, the extension of the overnight incubation session 

later into the morning cannot have affected the estimate of the mean daytime incubation- 

bout length of the experimental birds. Such prolonged incubation-bouts in response to a 

decreased clutch cooling rate are predicted by the parental-energy model of incubation. 

If a reduced rate of energy expenditure is required to keep a clutch warm, an adult can 

remain on the nest for longer during each incubation-bout before its energy reaches the 

threshold level for departure, extending each daytime bout and prolonging the overnight 

bout later into the morning. The prediction of the egg-temperature model, that 

incubation-bout duration should decrease with decreased clutch cooling rate, is not 

upheld, and there is further evidence that this model is not correct. If egg temperature 

cues an incubating parent to depart from the nest, then the parent should leave as soon as 

the clutch reaches the threshold temperature rather than continuing to incubate beyond 

this point. The nest temperature traces recorded on Fair Isle show that parents frequently 

continue to incubate after the nest has reached a constant temperature (Fig. 4.1).

Mean foraging-bout duration did not differ significantly between control and 

experimental nests and, as our manipulation should not have affected the parent’s 

foraging ability and parents were randomly allocated to experimental and control groups, 

this result is consistent with the hypothesis that foraging-bout duration depends on 

foraging efficiency (Drent et al. 1985; Jones 1989; Weimerskirch 1994). However, 

while the duration of the foraging bouts themselves did not change, the overall time 

devoted to foraging was less in experimental birds as they took fewer foraging breaks. 

This was presumably as a consequence of the reduced energy requirement for warming 

the eggs.

Heat is lost from a clutch of eggs by radiation and convection to the atmosphere, 

and by conduction through the nest material (Khaskin 1961; Turner 1991). Hence the 

rate of clutch cooling experienced in a nest depends on the temperature gradients between 

the eggs, the nest and the surroundings, and on the insulative properties of the nest. Eggs 

will cool more slowly when nest and ambient temperatures are high, and when the nest 

provides better insulation. Several previous studies have compared incubation-bout 

duration with ambient temperature, nest temperature and nest insulation (Table 4.1), and
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our result that incubation-bout duration increases as clutch cooling rate decreases differs 

from the results of the majority of these studies. Twenty-one studies (six experimental) 

on 16 species of intermittent incubators found mean incubation-bout duration to decrease 

as ambient temperature, nest temperature or nest insulation increased (and hence the 

presumed rate of clutch cooling decreased), including in starlings in the Waddensea 

(Drent et al. 1985). Seven studies (one experimental) on seven species found no 

relationship between mean incubation-bout duration and clutch cooling rate whilst only 

one previous study found that, as in this study, incubation-bout duration increased as 

clutch cooling rate decreased. Dusky Flycatchers spent more time incubating at higher 

ambient temperatures (Morton & Pereya 1985). Hence if the parental-energy model of 

incubation is indeed correct, we must explain why the majority of studies apparently 

conflict with its prediction that incubation-bout duration should increase with decreased 

clutch cooling rate.
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Table 4.1. Reported relationships between mean incubation bout duration and ambient 

temperature, nest/egg temperature and nest cooling coefficient.

* signifies an experimental study.

Species Source Bout duration 
correlated with:

Correlation

Magellanic penguin
(Spheniscus magellanicus)

Stokes & Boersma 1998 Ambient temperature Negative

Goldeneye
(Bucephala clangula)

Mallory & Weatherhead 1993 Ambient temperature Negative

African jacana
(Actophilornis africana)

Tarboton 1993 Ambient temperature Negative

White-rumped sandpiper
(Calidris fuscicollis)

Cartar & Montgomerie 1987 Ambient temperature Negative

Tree swallow
(Tachycineta bicolor)

Lombardo et al. 1995 Ambient temperature Negative

Bank swallow
(Riparia riparia)

Ellis 1982 Ambient temperature None

Pied wagtail
(Motacilla alba)

Fitzpatrick 1996 Ambient temperature None

Water pipit
(Anthus spinoletta)

Rauter & Reyer 1996 Ambient temperature None

Meadow pipit
(Anthus pratensis)

Halupka 1994 Ambient temperature None

Skylark
(Alauda arvensis)

In Drent 1970 Ambient temperature Negative

Wren
(Troglodytes troglodytes)

In Drent 1970 Ambient temperature Negative

Pied flycatcher
(Ficedula hypoleuca)

Haftom & Ytreberg 1988 Ambient temperature Negative

Dusky flycatcher
(Empidonax oberholseri)

Morton & Pereyra 1985 Ambient temperature Positive

Great tit
(Parus major)

Haftorn 1981 Ambient temperature Negative

Willow tit
(Parus montanus)

Haftorn 1979 Ambient temperature Negative

Starling
(Sturnus vulgaris)

Drent et al. 1985 Ambient temperature None

Savannah sparrow
(Passerculus sandwichensis)

Davis et al. 1984 Ambient temperature Negative

Harris’s sparrow
(Zonotrichia querula)

Norment 1995 Ambient temperature Negative

White-crowned sparrow
(Zonotrichia leucophrys)

Norment 1995 Ambient temperature Negative

Village weaver
(Ploceus cucullatus)

White & Kinney 1974 Ambient temperature Negative

Red bishop
(Euplectes orix)

Slotow et al. 1995 Ambient temperature None
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Table 4.1 continued.

Ringed turtle dove
(iStreptopelia risoria)

In Davis et al. 1984 Nest/egg temperature Negative*

Barn swallow
(Hirundo rustica)

Smith & Montgomerie 1992 Nest/egg temperature Negative

Pied flycatcher
{Ficedula hypoleuca)

In Drent 1970 Nest/egg temperature Negative*

Pied flycatcher
(Ficedula hypoleuca)

Haftorn & Reinertsen 1990 Nest/egg temperature Negative*

Starling
{Sturnus vulgaris)

Drent et al. 1985 Nest/egg temperature Negative*

Savannah sparrow
{Passerculus sandwichensis)

Davis et al. 1984 Nest/egg temperature Negative*

Barn swallow
(.Hirundo rustica)

Moller 1991 Nest cooling coefficient Negative*

Tree swallow
{Tachycineta bicolor)

Lombardo et al. 1995 Nest cooling coefficient None*

The fact that starling incubation-bout duration has been shown both to decrease 

and increase with decreased clutch cooling rate in different studies (Drent et al. 1985, this 

study) suggests that the factors determining incubation strategy are in fact more complex 

than described by the basic parental-energy model. The model assumes that the parent 

can forage with a high enough efficiency to maintain both clutch temperature and adult 

body condition at optimal levels. Where food is scarce or can only be gathered slowly 

this may not be the case, and resolution of the conflicting demands of incubation and 

foraging must involve either the time spent incubating falling below that required to 

maintain clutch temperature, or the time spent foraging falling below that required to 

maintain adult body condition. Where such constraints operate, a parent that is 

responding to its own energy level should maintain its body condition at the expense of 

time spent incubating, therefore risking clutch cooling. These parents should spend the 

extra time away from the nest when the costs of doing so are minimized, and this is likely 

to be when the rate of clutch cooling is slow. At these times, the eggs will cool less 

during the parent’s enforced absence and the risk of chilling will be reduced. Thus when
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the parent’s foraging requirement limits its incubation behaviour, an optimally incubating 

parent might be predicted to spend less time incubating when the clutch cools slowly, as 

observed in the majority of studies. Hence both the observed increase and decrease in 

starling incubation-bout duration with decreasing clutch cooling rate can be explained by 

the parental-energy model of incubation, if starling incubation strategy is sometimes 

constrained by foraging efficiency. This hypothesis suggests that Fair Isle is an area of 

food superabundance for starlings but that starling incubation is constrained by foraging 

in the Waddensea. There is some evidence that this may be the case. Drent et al. (1985) 

concluded that the incubation strategy of the Waddensea starlings was driven by foraging 

requirements. They also suggested that foraging-bout duration was determined by the 

time taken to fill the stomach. Mean starling foraging-bout durations were twenty 

minutes on the Waddensea but only four to five minutes (see results) on Fair Isle. Fair 

Isle starlings could often feed successfully immediately outside their nest cavities, 

reducing the time and energy needed to travel to foraging areas. The ground on Fair Isle 

remains permanently damp enough to allow easy probing for invertebrates, and as there is 

little diurnal variation in ambient temperature, there is unlikely to be a period of the day 

when their invertebrate prey is difficult to obtain. Due to its relatively high latitude, 

during the spring there are more daylight hours available for foraging on Fair Isle than in 

the Waddensea. Further, despite the fact that Fair Isle is cold, starlings here can 

anomalously rear two broods within a single season, something that is achieved nowhere 

else north of southern Scotland (Feare 1984; Cramp & Perrins 1994; P.G.H.Evans pers. 

comm.).

We conclude that the energy level of an optimally incubating parent may act as 

the proximate cue that prompts it to terminate an incubation-bout and depart from the 

nest. Hence the parent behaves in response to its own body condition rather than directly 

to the condition of the embryo. This is analogous to the strategy that parents follow whilst 

feeding chicks (Weimerskirch 1998). However, we suggest that incubation strategy is 

commonly constrained by the parent’s foraging requirements, forcing parents to reduce 

their nest attendance when the costs of doing so are low. It would be interesting to 

investigate how the condition of the parent at the start of incubation influences its 

incubation strategy, and how condition and strategy vary over the incubation period.
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Abstract

Incubating birds must maintain their eggs within a narrow range of temperatures if the 

embryos are to develop successfully. However, to maintain their own body condition, 

parents must also spend time foraging. Since incubation and foraging are often mutually 

exclusive activities, the way in which parents divide time between the two has important 

consequences for the thermal environment experienced by the offspring.

In a wild population of starlings, mean egg temperature was several degrees cooler 

than the predicted optimum for embryonic development. This was because parents 

frequently left clutches unattended rather than because they were physically unable to 

heat eggs to optimal temperatures. However, parents divided up the time allocated to 

foraging such that eggs rarely cooled below the temperature at which embryonic 

development ceases. Thus parents apparently optimised the conditions provided for 

offspring given the constraint that their own foraging requirements imposed upon their 

incubation behaviour.

Mean starling egg temperatures increased significantly during incubation periods. 

This was suggested to be due to continued brood patch development and to an increase in 

the time that parents allocated to incubation, rather than to increasing ambient 

temperatures, improved nest insulation or the physiological development of embryos. As 

egg temperatures increased as an incubation period progressed independent of date, our 

data suggest that an increased time allocation to incubating older embryos may reflect a 

change in the parent's optimal pattern of resource allocation rather than a temporal 

improvement in foraging conditions.
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Introduction

Animals must often divide limited time and resources between competing activities (Roff 

1992; Steams 1992). Thus, the ability of an individual to invest optimally in any single 

activity may be constrained by its own requirement to invest simultaneously elsewhere. 

Such constraints on optimal behaviour may be particularly pronounced during 

reproduction, when parents must trade-off investment in activities that maximise their 

own lifetime fitness against investment in activities that maximise the fitness of the 

current brood of offspring. Although animals have often been suggested to time breeding 

attempts so that periods of peak demand coincide with periods of maximum resource 

availability (Poulin et al. 1992; Bancroft et al. 2000), the extent to which parents are able 

to simultaneously meet the demands of competing activities may still be limited. In such 

cases, parents must decide how best to allocate limited resources, a decision that is likely 

to affect the quality of the care that is provided for offspring.

The thermal conditions that avian embryos experience during the incubation 

period greatly influence their development and thus their survival chances (Lundy 1969; 

White & Kinney 1974; Drent 1975; Webb 1987). The egg temperatures that are optimal 

in terms of maximizing hatching success and minimizing the time until hatching have 

been well characterised in laboratory studies across several species (eg, Lundy 1969; 

Stubblefield & Toll 1993; Strausberger 1998). Maximum success is generally achieved if 

eggs are incubated between 36°C and 39°C (Webb 1987), although the exact optimum 

varies between species. Although embryonic development can continue at temperatures 

between approximately 26°C and 41°C (Lundy 1969; White & Kinney 1974; Drent 

1975), departure from the optimal range can result in slow or abnormal development 

(Zhang & Whittow 1992), reducing hatching success (Webb 1987; Evans 1989; Ancel et 

al. 1994; Strausberger 1998) and prolonging the incubation period (Haftorn 1981, 1983; 

Strausberger 1998). The magnitude of these effects depends on the extremes of 

temperature to which embryos are exposed, the duration of exposure and the embryo's 

stage of development at exposure (Drent 1975; Webb 1987). Thus the temperatures that 

embryos experience during the incubation period must be closely controlled in order for 

breeding success to be maximised.

In the face of fluctuating environmental temperatures and the inability of embryos 

to regulate their own temperature (Sotherland et al. 1987), avian egg temperatures are
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generally controlled by incubating parents (Drent 1975; Carey 1980). However, 

incubation can be energetically demanding (reviewed in Williams 1996). Some species 

meet incubation demands almost entirely from stored reserves (eg, Hepp et al. 1990; 

Erikstad & Tveraa 1995), and others are provisioned on the nest by mates (eg, Nilsson & 

Smith 1988; Hatchwell et al. 1999). However, parents of other species must meet 

incubation demands by spending time foraging. Foraging and incubation are often 

mutually exclusive activities (White & Kinney 1974; Drent et al. 1985), and thus 

incubating parents have to depart from the nest in order to find food. Leaving eggs 

unattended and allowing embryos to depart from the optimal temperature range can 

reduce offspring fitness. However, as poor body condition can reduce chick-rearing 

ability (Bolton 1991; Wendeln & Becker 1999) and also a parent's chance of surviving to 

breed again (Jones 1992; Go let et al. 1998), allowing their own body condition to 

deteriorate may also be costly for parents. Thus during the incubation period, parents are 

likely to have to resolve an important trade-off between the time spent foraging and the 

time spent incubating (Drent 1975; Vleck 1981; Jones 1989; Hainsworth et al. 1998). 

The existence of a trade-off between energy intake and the time spent on the nest has 

been experimentally demonstrated (Lyon & Montgomerie 1985; Moreno 1989), and 

inferred from correlative studies across a range of species, including starlings (Drent et 

al. 1985; Chaurand & Weimerskirch 1994; Halupka 1994; Rauter & Reyer 1997; see 

Chapter 2 for further discussion).

Using a population of starlings (Sturnus vulgaris), we investigated patterns of 

parental time allocation to incubation, and the ways in which allocations changed over 

the course of the incubation period. We discuss the consequences of these allocations for 

egg temperatures, and thus for the developmental conditions that are likely to have been 

experienced by offspring.
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Methods

A population of roof nesting starlings was studied in the Ebro Delta, Spain (2°E, 41°N), 

between March and June 1999. In this population, the majority of females incubated 

alone with no assistance from males, and hence clutches were left unattended and cooled 

down during females’ breaks from incubation.

In order to measure the temperatures at which eggs were incubated, single model 

eggs containing thermistors were added to clutches the day after laying was completed. 

At this time, a single real egg was fostered from each study nest to a neighbouring host 

nest, so that all study nests retained their natural clutch size throughout the incubation 

period. Eggs were returned to their natural nests and model eggs were removed the day 

before clutches were due to hatch. Eighteen such nests were studied, with laying dates 

spread over a six-week period between 30th March and 15th May.

Model eggs were made from Fimo modeling clay (EberhardFaber, Neumarkt, 

Germany), and closely matched real starling eggs in shape and colour, being immediately 

accepted by adult starlings in all cases. A thermistor mounted in silicone-based heat 

transfer compound (Electrolube, Berkshire, UK) was positioned in the centre of each 

model egg, with a lead running out of the blunt pole and through the side of the nest to a 

TinyTalk data logger (Gemini dataloggers Ltd, Chichester, UK). The logger recorded the 

temperature of the model egg every 72 seconds, and was positioned outside the nest 

cavity so that data could be downloaded without disturbing incubating birds. Model eggs 

were initially positioned randomly within clutches but as leads were slack and very 

flexible they were free to move around within a nest, usually changing position between 

nest visits. In each nest, the temperature of the model egg was recorded over a minimum 

of six days during the course of the 1 2  day starling incubation period, and mean, 

maximum and minimum egg temperatures were calculated for each nest on each day. 

Ambient temperature was simultaneously recorded using further thermistors and loggers 

that were positioned adjacent to nest cavities.

In the laboratory, the thermal properties of the model eggs were compared with 

those of freshly laid starling eggs taken from unstudied nests. When subjected to 

identical thermal conditions, model eggs lost and gained heat slightly faster than real 

eggs, although these differences equated to less than 1 0 % of the real egg warming and 

cooling rates (n = 10 for each group, mean exponential cooling coefficients: 0.72 ± 0.05
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and 0.65 ± 0.05 for model and real eggs respectively; mean exponential warming 

coefficients: 0.53 ± 0.03 and 0.48 ± 0.06 respectively). However, after multiple 

consecutive cycles of 25 minutes of artificial incubation at 40°C followed by 8 minutes 

of cooling towards an ambient temperature of 18°C, approximately mimicking the pattern 

of incubation observed in the field, the mean temperature recorded at the centres of real 

and model eggs did not differ (Paired t  test, tg = 0.77, P  = 0.46). Hence the mean 

temperature recorded in model eggs can be taken as a realistic estimate of the mean 

temperature that real eggs experienced. Further, as the heat capacity of model eggs was 

slightly lower than that of real eggs, model eggs in nests are likely to have equilibrated 

rapidly with the real clutch, reducing the difference in warming and cooling rates and 

accurately reflecting real clutch temperature.

In nests, the maximum temperatures reached by model eggs were generally 

achieved after long periods of continuous incubation. Despite their slightly reduced 

warming rates, the real eggs are also likely to have reached their maximum temperatures 

during this time, and thus maximum model egg temperature is likely to be a reasonable 

estimate of maximum real egg temperature. The minimum temperatures to which model 

eggs fell may have been slightly lower than those reached by real eggs, but due to the 

short cooling periods involved in the field, the error is likely to have been less than 0.5°C.

The mass of the model eggs and the rate at which they cooled when moved from a 

40°C incubator to an 18°C incubator did not change between the beginning and end of 

the field season (n = 10, mean initial mass 8.2 ± O.lg, mean final mass 8.2 ± O.lg, paired t 

test, tg = -0.60, P  = 0.74; initial exponential cooling coefficient 0.72 ± 0.05, final 

exponential cooling coefficient 0.75 ± 0.09, paired t  test, tg = -0.39, P  = 0.83). Thus there 

was no evidence that the physical properties of the model eggs changed during the course 

of the fieldwork, for example due to water loss or gain. Hence any changes in model egg 

temperature over the course of any incubation period must have arisen from changes in 

nest temperature rather than changes in the thermal properties of the model eggs 

themselves.

To investigate whether egg temperatures changed as incubation periods 

progressed, within each nest, a general linear model was used to relate the mean, 

maximum and minimum egg temperatures recorded on each day to the number of days
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since the start of incubation and the mean ambient temperature for that day, with non

significant factors being eliminated stepwise. To investigate whether temperature 

changes occurred independently of any concurrent seasonal changes in environmental 

conditions, a cross-nest analysis was also carried out. The mean egg temperatures 

recorded in all the nests that contained clutches on a specific calendar day were examined 

in relation to the number of days since the start of incubation in each nest. This analysis 

was completed for each of the 17 days (spread between 4th April and 6th May) on which 

data from five or more nests were available.

In each study nest, a ’free' thermistor that was not enclosed in a model egg was 

used to record whether an adult was present on the nest, a technique that we have used 

successfully in other studies and validated using video recordings of nests (Chapter 4). 

Thermistors were positioned level with the top surface of the clutch, touching the parent's 

brood patch when the parent was present and the nest air when the parent was absent. In 

each nest, temperature was logged every 72 seconds for single 24 hour periods during 

both the first half and the second half of the incubation period. The early and late 

sampling periods for each nest were separated by at least 4 days, and by 5.9 days on 

average. Points of parental arrival and departure showed as clear peaks and troughs on 

the temperature traces, allowing the durations of incubation bouts and foraging bouts and 

hence the percentage of each daytime that parents spent incubating to be calculated. 

Manual watches from hides confirmed that times of arrival and departure could be 

correctly identified on the temperature traces, and data were discarded on the rare 

occasions when thermistors were observed to have been dislodged from position.

The temperature regime experienced by embryos is likely to be influenced by the 

insulative quality of the nest. As a measure of insulative quality, the rate of heat loss 

from each nest was measured by placing a plaster disc warmed to 35°C in the nest, and 

measuring the rate at which it cooled down (Chapter 4). This measurement was made 

after the first egg was laid in each nest and again when the first chick hatched, with 

clutches being placed in insulated containers whilst readings were taken. Newton's 

cooling equation (Disc Temperature = Ambient Temperature +(Bexp('c x time)), where B 

and C are fitted positive constants) was fitted to each cooling curve recorded. The value 

of the exponential coefficient C reflects the rate of heat loss, and the values of C 

calculated for each nest at laying and at hatching were compared.
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Parametric statistical tests were used unless the data distributions violated the 

appropriate assumptions, when equivalent non-parametric tests were used. All tests were 

two-tailed, and means are presented ± one standard error.

Results

Overall, the mean model egg temperature recorded over the whole study period was 32.6 

± 0.4°C (n = 18), but egg temperatures ranged between 10.4°C and 40.2°C.

Ambient temperature averaged 17.5°C over the study period, but increased as the 

season progressed, from 14.5°C during the first fieldwork week to 19.8°C during the last 

week. However, the weather was sufficiently variable such that ambient temperature did 

not increase significantly with the number of days since the start of incubation over any 

of the individual incubation periods studied (Spearman correlation, P > 0.05 for all 18 

nests). Both mean egg temperature and minimum egg temperature increased significantly 

as incubation progressed in 15 out of 18 nests, significantly more often than expected by 

chance (Binomial probability, P < 0.001). There were non-significant increases in 

temperature in two of the remaining three cases. Mean and minimum temperatures also 

increased significantly during incubation when averaged across all nests (Fig. 5.1), 

increasing from 31.4 + 0.5°C to 34.9 ± 0.4°C and from 22.5 ± 0.9°C to 29.2 ± 0.5°C 

respectively. Ambient temperature was a significant predictor of mean and minimum egg 

temperatures in only four and three of the 18 study nests respectively.

There was no significant linear relationship between maximum egg temperature 

and either the number of days into incubation or ambient temperature in 16 out of the 18 

nests. However, the daily maximum egg temperatures recorded in each nest increased 

significantly between the first day and the third day of the incubation period (first day, 

35.0 ± 0.5°C; third day, 36.4 ± 0.5°C, paired t test, t ]7 = 3.60, P = 0.002), but did not 

increase further between the third and final days of incubation (rs = 0 .3 8 ,A = 8 ,P  = 0.35, 

Fig. 5.1). In consequence, as the incubation period progressed, eggs spent more time 

within the optimal temperature range (>36°C) and less time at temperatures below which 

embryonic development could not continue (<26°C) or would have been greatly slowed 

(<30°C, Fig. 5.2).
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Figure 5.1. Mean (± 1 SE) mean (a), minimum (b) and maximum (c) egg temperatures 

on each day during the incubation period (n = 18 nests). Average mean and minimum 

temperatures increased significantly with stage of incubation (rs = 0.99, N  = 11, P < 

0.001 and rs = 0.96, N  = 11, P < 0.001 respectively). Mean maximum temperature did 

not increase significantly across all days (rs = 0.56, N =  11, P = 0.1). The dotted line 

signifies the 36°C threshold for optimal embryonic development.
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Figure 5.2. Average proportion of time that eggs spent at different temperatures on each 

day during the incubation period (n = 18 nests).
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Across all the nests from which data were collected on any one calendar day, 

mean egg temperature was significantly correlated with the number of days since the start 

of incubation in each nest on 12 out of 17 occasions, significantly more often than 

expected by chance (Binomial probability, P< 0.001). Thus mean egg temperature 

tended to increase as incubation periods progressed independent of any temporal changes 

in prevailing environmental conditions.

Daytime incubation bouts lasted significantly longer during the second half of the 

incubation period than during the first half (first half mean 20.8 ± 1.9 minutes, second 

half mean 27.0 ± 1.4 minutes, paired t test, tn = -3.05, P = 0.01), and foraging bouts were 

significantly shorter (first half mean 8.8 ± 1.2 minutes, second half mean 6.9 ± 0.7 

minutes, paired t test, tn = 2.21, P  = 0.04). Hence overall, parents spent a greater 

proportion of the daytime on the nest during the second half of the incubation period
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(first half mean 70.2 ± 2.7%, second half mean 78.7 ± 2.0%, paired t test on arcsin 

transformed data, tn = -4.27, P = 0.001). Thus, given that parents spent a constant 

average of approximately 9 hours on the nests overnight throughout the incubation 

period, clutches were incubated for an average of 76.5 minutes extra per daytime during 

the second half of the incubation period.

The rate at which heat was lost from nests did not change significantly between 

laying and hatching (mean C values of 0.89 ± 0.05 and 0.84 ± 0.05 respectively, paired t 

test, t\e= -1.75, P = 0.15).

Discussion

Data from model eggs suggest that naturally incubated starling eggs experienced a mean 

temperature of approximately 32.6°C during the incubation period. This is similar to the 

mean egg temperature of 32.2°C recorded across a range of wild-nesting passerines 

(Webb 1987), and is well within the ranges reported in other studies (eg, Weathers & 

Sullivan 1989; Williams 1996).

Mean egg temperatures were several degrees lower than the 36°C to 39°C 

temperature range at which the hatching success of artificially incubated eggs is 

maximised. Thus wild starlings apparently failed to maintain their eggs at the 

temperatures that laboratory studies suggest are optimal for embryonic development. 

However, on the majority of days during the incubation period, starling eggs approached 

or were within the optimal temperature range whilst clutches were actually being 

incubated by parents. Thus mean egg temperatures were not lower than expected because 

parents were physiologically unable to heat eggs to 36°C or above. Instead, mean 

temperatures were low because parents were regularly absent from their nests, leaving 

their clutches unattended and allowing them to cool towards ambient temperature. Hence 

incubating parents' allocations of time to activities away from the nest resulted in eggs 

spending substantial amounts of time below the optimal temperature range. As eggs 

frequently fell to temperatures at which embryonic development is likely to have slowed, 

and sometimes reached temperatures at which it may have ceased altogether, this pattern 

of time allocation may have had developmental and fitness consequences for embryos.
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Starlings are iteroparous breeders, and selection may favour parents that invest in 

their own condition, increasing their chance of reproducing again in the future, as well as 

investing in current offspring. Thus, parental allocation of time to activities such as 

foraging away from the nest is perhaps expected. However, as this allocation affected 

egg temperatures, parents and offspring may conflict over the extent of the parent's 

allocation to foraging. There may be evolutionary pressure for the embryo's optimal 

thermal regime to converge with that provided by their parents and indeed, embryos are 

generally resistant to short periods of cooling such as those experienced during parents' 

foraging breaks (Drent 1975; Zerba & Morton 1983; Morton & Pereyra 1985; Webb 

1987; Sockman & Schwabl 1998). However, parents may be able to minimise the extent 

to which conflict arises by optimising their pattern of nest attentiveness within the 

constraint imposed by the time allocated to foraging. The total time that a parent opts to 

spend away from a nest could be divided between many short or a few long foraging 

breaks, with different strategies resulting in the creation of different thermal 

environments within a nest. In this study, as eggs rarely fell below the 26°C threshold at 

which embryonic development ceases, the majority of trips made by adult starlings were 

shorter than the time taken for eggs to cool to this temperature. Indeed, egg temperatures 

below 26°C were never recorded during the last three days of the incubation period. 

Hence, as reported previously (Haftorn 1988; Weathers & Sullivan 1989), parents 

organised their nest attentiveness pattern such that, given their allocation of time to 

foraging, the time that offspring spent at temperatures at which development could 

continue was maximised.

Mean starling egg temperatures increased significantly as incubation periods 

progressed; older embryos spent more time within the optimal temperature range and less 

time at temperatures at which development would have been greatly slowed. As ambient 

temperature did not increase significantly during any of the individual incubation periods 

studied and the mean rate of heat loss from nests did not decrease significantly over the 

course of incubation, the observed increases in egg temperature cannot have been due to 

changes in either of these two factors. Further, laboratory experiments have shown that 

despite the higher metabolic rates of older embryos, older eggs tend to lose heat more 

rapidly than younger eggs. This may be because increasing embryonic circulation 

increases the rate at which heat is dissipated, or because of changing egg composition
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(Turner 1987; Hilton et al. in prep.). Hence observed increases in egg temperature are 

unlikely to have been due to the physiological development of the embryos.

The extent to which a parent's brood patch has developed may affect the 

maximum temperature reached by a clutch after a period of continuous incubation, and 

maximum egg temperature increased during the first three days of incubation but not 

subsequently. Zerba & Morton (1983) recorded a similar temporal increase in the 

maximum temperatures reached by the eggs o f white-crowned sparrows {Zonotrichia 

leucophrys). This suggests that parents' brood patches may have been incompletely 

developed when incubation started, and that development was completed during the early 

stages of the incubation period. Similar patterns of brood patch development have been 

suggested in multiple previous studies (Jones 1971; Drent 1975; Afton 1979; Haftorn 

1983; Zerba & Morton 1983; Morton & Pereyra 1985). Hence continued physiological 

development of parents' incubation ability may have contributed to the increase in mean 

egg temperature during the first few days of incubation. However, further brood patch 

development is unlikely to account for the continued increase in egg temperature over the 

whole incubation period. Instead, this increase most probably occurred because parents 

spent more time on nests as incubation periods progressed. Clutches were left unattended 

less often and for shorter periods during the second half of the incubation period, 

reducing the time for which eggs were allowed to cool, thus raising the minimum and 

mean temperatures experienced. Hence the developmental conditions experienced by 

embryos apparently improved as incubation periods progressed, probably as a result of an 

increase in the amount of time that parents allocated to incubation.

Adult nest attentiveness and hence the temperatures experienced by offspring 

have frequently been reported to increase markedly over the course of egg-laying 

(Caldwell & Cornwall 1975; Drent 1975; Haftorn 1979; Morton & Pereyra 1985; Wilson 

& Verbeek 1995). However, after clutch completion and the onset of full incubation, 

attentiveness and egg temperatures have been suggested to remain rather constant (Lundy 

1969). Indeed, many studies have found no evidence that mean egg temperatures change 

over the course of incubation (Haftorn 1979, 1983, 1988; Morton & Pereyra 1985; Zerba 

& Morton 1983; Weathers & Sullivan 1989). Studies that have reported increases have 

often failed to control for the position of the temperature probe with respect to the 

developing embryo (eg, Caldwell & Cornwall 1975; Afton 1979), or for the possible
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influence of increasing ambient temperature (eg, Wilson & Verbeek 1995). Similarly, 

parental nest attentiveness often remains constant throughout the period of full incubation 

(eg, Caldwell & Cornwall 1975; Haftorn 1979), or may even decrease as hatching is 

approached (Thompson & Raveling 1987; Mallory & Weatherhead 1993). However, 

Drent (1970,1975) reports a clear increase in both nest attentiveness and egg temperature 

in herring gulls (Larus argentatus), and female yellow-eyed juncos (Junco phaeonotus) 

made shorter foraging trips as incubation periods progressed, increasing the minimum 

temperatures that eggs reached. However, as the frequency of foraging trips also 

increased with time in this species, mean egg temperatures remained unchanged 

(Weathers & Sullivan 1989). Hence overall, remarkably few studies have rigorously 

investigated how egg temperatures change over the course of incubation (Webb 1987). 

This study reports such an increase in a passerine for the first time, and further studies are 

required to clarify how common this phenomenon might be.

As exposing embryos to poor developmental conditions may reduce their chance 

of survival, our results raise the question of why parents did not provide warmer 

conditions for embryos earlier during the incubation period, either by completing brood 

patch development earlier, or by spending more time on the nest. Forming a brood patch 

is likely to be costly for parents, as energy must be expended to compensate for the 

increased rate of heat loss from the defeathered area (Buchholz 1996; Wilson et al. 1998), 

and to grow replacement feathers (Schieltz & Murphy 1995). Hence there may be 

selection for parents not to form a full brood patch until a clutch has successfully been 

laid. As brood patches take several days to develop (Drent 1975), completion may not be 

possible until after incubation has started.

Nest attentiveness may have increased as incubation periods progressed as a result 

of a simultaneous seasonal improvement in foraging conditions (Moreno 1989). 

However, the study nests were widely scattered throughout a 15km2 area of paddyfields, 

with fields adjacent to different nests being flooded and drained independently on 

different days. Thus adult starlings are likely to have experienced large changes in local 

foraging conditions that were unrelated to season. As the incubation periods that were 

studied were spread over seven weeks, it is unlikely that food availability can have 

increased consistently within each of the individual 12-day incubation periods. Further, 

as mean egg temperatures increased significantly with embryo age across all the nests
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that contained clutches on any individual calendar day, the evidence suggests that parents 

increased the time that they allocated to incubation as incubation periods progressed 

independent of environmental conditions. Thus we suggest that as incubation periods 

progressed parents allocated more time to incubation, increasing their attentiveness at a 

cost of reduced energy intake, and thus at a potential cost in terms of their own condition.

As increasing current investment in reproduction reduces the resources available 

for future investment (Steams 1992), at any moment parents should increase their 

investment if the fitness benefit of doing so exceeds the consequent reduction in the 

fitness benefits received in the future. This might apply if the fitness benefit gained per 

unit of current investment increases, or if the relative contribution of the current breeding 

attempt to the parent's lifetime fitness increases. As chilling has been suggested to have 

more severe fitness consequences for older embryos than for younger embryos 

(Romanoff & Romanoff 1972; Drent 1975; Webb 1987), the fitness benefit of investing 

in incubation and preventing chilling might increase as embryos age. Further, the 

contribution of the current brood to the parent's lifetime fitness may increase as an 

incubation period progresses, as the opportunity to breed again before the next season 

decreases (Montgomerie & Weatherhead 1988; Rytkonen et al. 1995). Thus an 

increasing level of investment in incubation and hence increasing egg temperatures over 

an incubation period may reflect an adaptive pattern of allocation of parental resources, 

despite the potential developmental consequences for young offspring.
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Abstract

In uniparental intermittent incubators, incubating parents must simultaneously regulate 

both the temperature of the clutch and their own energy level. To examine the energetic 

consequences for parents of providing different thermal environments for clutches of 

different sizes, a dynamic model of incubation was constructed, in which the energy level 

of an incubating adult and the temperature of its clutch were simultaneously described.

Adult energy balance after a day of incubation decreased as mean clutch temperature 

increased, such that the debt accrued whilst maintaining a clutch within the optimal 

temperature range o f 36 to 39°C was predicted to be prohibitively high. This was despite 

the fact that the mean metabolic rate required to maintain such temperatures did not 

exceed 2BMR. Thus the model can explain the observation that eggs of uniparental 

intermittent incubators nesting in the wild are incubated at temperatures below the 

developmental optimum.

Consistent with empirical studies, the metabolic demand of incubation was predicted 

to increase with clutch size. This increase was predicted to affect adult energy balance 

and hence the cost of incubation when clutches were incubated at optimal temperatures, 

but not at the lower temperatures actually observed in the wild. Hence the energetic 

demand of incubation may be unlikely to influence optimal clutch size in starlings. 

However, the exact relationship between clutch size and adult energy debt depended 

greatly on the nature of the relationship between clutch size and clutch thermal 

properties. Thus the consequences of clutch size for the cost of incubation are not clearly 

predictable, and caution may be required when using experimental clutch enlargements 

during incubation to manipulate costs of reproduction.
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Introduction

As successful hatching of avian embryos is dependent upon eggs being exposed to the 

correct temperatures during development, tight regulation of clutch temperature by 

incubating parents is essential (Lundy 1969; Webb 1987). Recent empirical studies have 

suggested that, at least when environmental temperatures are below the thermoneutral 

range, incubation is energetically demanding for the parent, requiring an increase in 

metabolic rate to a level approaching that experienced during chick rearing (reviewed in 

Gloutney et al. 1996; Williams 1996; Thomson et al. 1998). This energetic demand will 

have fitness consequences if parents cannot compensate for it, resulting in an energy debt 

being accrued, or if in compensating, parents fail to provide the optimal developmental 

conditions for their offspring. A number of studies have suggested that such fitness 

effects occur (see chapter 2). Experimentally altering the demand of incubation (Chapter 

3) or the ability of parents to meet this demand (Lyon & Montgomerie 1985; Nilsson & 

Smith 1988) can affect breeding performance. Such effects are likely to be most acute in 

uniparental intermittent incubators in which only one parent incubates and that parent’s 

incubation bouts are interspersed with foraging bouts (White & Kinney 1974; Williams 

1996). Allowing eggs to cool can reduce offspring fitness (Webb 1987), and hence the 

energetic demand of incubation must be met whilst the time available for the parent to 

forage is limited by its need to remain on the nest (Drent et al. 1985; Moreno & Hillstrom 

1992). However, little is known about exactly how a parents' energy balance varies with 

the temperature at which it maintains its clutch, and hence whether uniparental 

intermittent incubators nesting in the wild are likely to be energetically capable of 

providing the optimal developmental conditions for their offspring.

Further, there has been debate about whether the demand of incubation varies 

significantly with clutch size (Thomson et al. 1998). If larger clutches are more 

demanding and more costly to incubate, then incubation may play a role in limiting 

optimal clutch size in birds (Monaghan & Nager 1997). Several studies have shown that, 

below the thermoneutral temperature range, the metabolic demand of maintaining a 

clutch at a constant temperature increases with clutch size (Biebach 1981, 1984; Haftorn
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& Reinertsen 1985). Consequently, the overall energetic demand of incubation can also 

increase with clutch size (Coleman & Whittall 1988; Moreno et al. 1991) although this 

has not always been found to be the case (Moreno & Carlson 1989; Gloutney et al. 1996), 

and increases are not always linear (Moreno & Sanz 1994). However, larger clutches 

cool more slowly than smaller clutches when left unattended (Frost & Siegfried 1976; 

Chapter 7) and hence may retain higher mean temperatures given the same pattern of 

parental attendance {Chapter 7). Hence it is not clear how the ability of parents to meet 

the energetic demand of incubation whilst maintaining a specific incubation temperature 

might vary with clutch size. Indeed, experimental clutch enlargement has not always 

affected measures such as adult mass, hatching success or the duration of incubation as 

might have been predicted assuming that enlargement caused a costly increase in 

incubation demands (reviewed in Thomson et al. 1998; Cichon 2000). There is a clear 

need for further study (Haftorn & Reinertsen 1985; Moreno & Sanz 1994; Thomson et al. 

1998), and the consequences of clutch size for the relationship between mean clutch 

temperature and adult energy balance have not previously been explicitly investigated.

We simulated the energy balance of a uniparental intermittent incubator and the 

corresponding temperature of its clutch over a daytime during incubation. Hence we 

investigated the relationship between adult energy balance and mean clutch temperature, 

and examined how this is influenced by the number of eggs in the clutch. Based on this 

modeling, we discuss the mean temperature at which parents should maintain their eggs, 

and consider whether the energetic consequences of incubation might influence optimal 

clutch size in uniparental intermittent incubators.
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Methods

During each simulation, a parent was assumed to incubate for a set period and then forage 

for a set period, with the same pattern of incubation and foraging bouts being repeated for 

a set number of hours equating to one daytime. During incubation bouts parents expended 

energy and warmed up their clutches, and during foraging bouts they gained energy 

whilst their clutches cooled down.

Unattended clutches cooled according to Newton's Law of Cooling,

dT/dt = - a c(T-A) (1),

where T(t) describes clutch temperature at time t, A is ambient temperature and a c is the 

exponential cooling coefficient of the clutch. Similarly, when a parent was present on the 

nest, the clutch warmed up according to the equation

dT/dt = -otH(T-B) (2),

where an is the exponential heating coefficient of the clutch and B is the effective 

temperature of the parent's brood patch.

Foraging parents were assumed to expend energy (E(t)) at a constant rate during

a fixed flight time to and from their foraging grounds (dE/dt = -Pi), and to accrue 

energy at a constant rate whilst at their foraging grounds (dE/dt = P2). Although these 

relationships are likely to give simplistic estimates of the patterns of energy expenditure 

and intake during foraging breaks (Hilton et al. 2000), overall predictions are likely to be 

sufficiently accurate for the purposes of this model.

Incubating parents expended energy at a rate that was described by the equation 

dE/dt = -(y + 5(B-T)/(B-Tmin)) (3),

where T mjn is the temperature of the clutch at the end of the preceding unattended period, 

y is the energy required to maintain a constant clutch temperature per unit time and 5 is a 

constant. The quantity 8(B-T)/(B-Tm]n) describes the increment of energy required to 

rewarm a cool clutch. The magnitude of this increment depends on current and initial 

egg temperature and thus on the duration of the previous inattentive period and the time
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since the current incubation bout began (Vleck 1981; Biebach 1984, 1986; Drent et al. 

1985), decreasing to zero as clutch temperature approaches brood patch temperature.

Forward difference approximations (Smith 1978) to these equations were used to 

simulate the changes in energy and temperature after small time intervals using Delphi 

Pascal (Borland version 4.0), and the mean temperature experienced by the clutch was 

recorded at the end of each simulated day. Parents were assumed to remain continuously

on the nest overnight, and to expend energy at a constant rate dE/dt = -y whilst they did 

so. The final energy balance of the adult after each 24 hours was recorded, and the mean 

energy expended per minute over the whole period was calculated as a measure of mean

metabolic rate. The values of the exponential clutch cooling and heating coefficients a c

and a n  and the constants y and 8 were all allowed to vary with clutch size, and hence the 

consequences of clutch size for adult energy expenditure, metabolic rate and clutch 

temperature were investigated.

In order to parameterize the model, a wild population of starlings (Sturnus 

vulgaris) was studied in the Ebro Delta, Spain (2°E, 41°N). Female starlings are often 

solely responsible for incubation and as this species has previously been well studied, 

many of the relevant energetic parameters have been measured and are available in the 

literature. Model temperature-sensing eggs were temporarily inserted into wild clutches 

of between two and seven eggs, replacing one of the real eggs (see Chapters 5 & 7 for 

details), and temperature was recorded every 72 seconds throughout the incubation

period. Estimates for a c and a n  were obtained by fitting equations (1) and (2) to the 

cooling and warming curves recorded as clutches were alternately incubated and left 

unattended (Chapter 7, Table 6.1). Model egg temperature traces were also used to 

estimate the duration of the active daytime (mean of 750 minutes) and effective brood 

patch temperature (B). This was taken to be the maximum temperature that eggs reached 

after long periods of continuous incubation, and was found to be 36.8°C. This is lower 

than reported brood patch skin temperatures (Drent 1975), presumably reflecting 

inefficiencies in heat transfer between brood patch and clutch. Values of y were
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estim ated from  Biebach (1984) and 8  was calculated from  em pirical m easurem ents made 

in our laboratory (G. H ilton unpublished data, Table 6.1). To examine the robustness o f  

the m odel to  variation in these param eter values, sim ulations were repeated using values 

that described large clutches to be m axim ally and m inim ally dem anding com pared to 

small clutches (Table 6.1). The extrem e values chosen approxim ate to the extrem e values 

in the em pirical data.

Table 6.1. Values o f the parameters a c, an, y and 6 used during three simulations: (1) 

mean values of empirical data, giving the best estimate of parameter values, (2) 

parameter values set to make large clutches maximally demanding to incubate, (3) 

parameter values set to make large clutches minimally demanding to incubate.

Clutch
Size

2 3 4 5 6 7

<*C (1) 0.060 0.058 0.050 0.040 0.035 0.033

(2) 0.060 0.058 0.055 0.052 0.048 0.045

(3) 0.060 0.053 0.046 0.039 0.032 0.025

a H (1) 0.130 0.120 0.100 0.095 0.090 0.085

(2) 0.130 0.120 0.100 0.090 0.080 0.070

(3) 0.130 0.125 0.120 0.115 0.100 0.095

Y (1) 63 66 69 72 75 78

(2) 63 67 71 75 79 83

(3) 63 65 67 69 71 73

5 (1) 30 32 32 32 32 32

(2) 30 31 32 32 33 33

(3) 31 32 32 32 32 32
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Values for starling basal metabolic rate (BMR = 50J/minute), flight costs (8.5BMR) and 

rate of energy intake whilst foraging (530J/minute) were estimated from Williams (1996), 

Biebach (1986) and Drent et al. (1985) respectively. The metabolic demand of foraging 

was assumed to be 4BMR (Bautista et al. 1998). Ambient temperature (A) was set at 

17°C; this is approximately the mean air temperature recorded at the Spanish field site 

and is below the estimated thermoneutral temperature range at which incubation is likely 

to become demanding (White & Kinney 1974; Williams 1996). Observations of the times 

of parental arrivals at and departures from nests showed that 95% of foraging bouts lasted 

between 2 and 20 minutes, and 95% of incubation bouts lasted between 5 and 50 minutes. 

Typical flights to foraging grounds lasted approximately 20 seconds.

For each clutch size between two and seven, simulations were repeated for 100 

combinations of incubation and foraging bout durations, with foraging bouts lasting 

between 2 and 20 minutes in steps of two, and incubation bouts lasting between 5 and 50 

minutes in steps of five. Outcomes were ranked with respect to the mean clutch 

temperature achieved, and the strategy by which parents could achieve each mean 

temperature whilst finishing with the most positive energy balance was defined as the 

optimal strategy to obtain that clutch temperature. Regression lines were fitted through 

the set of optimal strategies to ascertain the optimal relationship between adult energy 

balance, metabolic rate, and mean incubation temperature for each clutch size.

Results and Discussion

The model predicts that a parent's final energy balance after a day of incubation will 

decrease as the mean temperature at which that parent incubates its clutch increases (Fig.

6.1), a relationship that arises because parents cannot simultaneously forage and incubate 

their clutch. Spending more time incubating raises mean clutch temperature to the 

detriment of energy balance, whereas spending more time foraging improves energy 

balance whilst reducing mean clutch temperature.
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Figure 6.1. The energy debt that a parent accrues after a single day of incubation 

increases as the mean temperature at which it maintains its clutch increases. Parents are 

predicted to be able to maintain a clutch at a maximum temperature of approximately 

32.5°C without going into energy debt, and maintenance at 36°C is predicted to result in 

a debt of approximately 80kJ per day.
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Any mean clutch temperature above approximately 32.5°C is predicted to result 

in the parent making a net energy loss (Fig. 6.1), a temperature that is well below the 

range of 36 to 39°C that is thought to be optimal in terms of maximising the rate of 

embryonic development and hatching success (White & Kinney 1974; Webb 1987). 

Indeed, the model predicts that maintaining a clutch at a mean temperature of 36°C will 

be prohibitively demanding for a single parent. A starling maintaining this temperature 

will make a net energy loss of approximately 80kJ per day (Fig. 6.1) or 960 kJ over the 

12 day starling incubation period (Cramp & Perrins 1994). As lg of body fat provides
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approximately 39kJ of energy (Pennycuick 1989), an adult would have to bum almost 

25g of fat in order to meet this demand, representing up to a third of a female starling's 

body mass (Cramp & Perrins 1994). Such drastic mass losses during the incubation 

period are unlikely to be possible, and are not observed in the field (Ricklefs & Hussell

1984).

Increasing the rate at which foraging parents gain energy alters the position of the 

clutch temperature versus adult energy balance relationship relative to the energy axis, 

reducing the energy debt that a parent accrues whilst maintaining its clutch at a certain 

temperature. Thus by increasing their foraging efficiency, parents could increase the 

temperature at which they are able to maintain their clutch without building an energy 

debt. However, the model predicts that in order to maintain a clutch at 36°C without 

going into debt, a foraging parent would have to increase its energy intake rate by 80% 

above a rate that is already set as high as that observed during chick-rearing (Drent et al.

1985), a rate that is unlikely to be possible. Thus the model predicts that female starlings 

incubating alone should be energetically unable to maintain their clutch within the 

optimal incubation temperature range.

Mean egg temperatures of wild passerines have indeed been found to be well 

below the optimal range. We recorded a mean daytime starling egg temperature of 

32.2°C, and similar figures have been recorded for other passerines (reviewed in Webb 

1987; Williams 1996). Further, given Drent et alls (1985) estimate of starling energy 

intake rate, the mean egg temperature observed in the field closely matches the maximum 

temperature that the model predicts adult starlings to be able to maintain whilst also 

maintaining a constant energy balance (Fig. 6.1). Thus the model suggests that parents 

allocate time and energy to incubation such as to maintain their own body condition 

rather than to provide the optimal temperature regime for the embryos. Indeed, incubating 

passerines have been recorded to lose little or no mass during the incubation period 

(Moreno & Carlson 1989; Moreno 1989; Moreno et al. 1991), and observed mass losses 

have sometimes been attributed to post-laying atrophy of the sexual organs rather than 

loss of somatic tissue (Ricklefs & Hussell 1984). Thus the model provides a quantitative
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explanation for the mean incubation temperature at which wild starlings maintain their 

clutches, an explanation that seems likely to be broadly transferable to other uniparental 

intermittent incubators.

The conclusion that parents cannot maintain clutches at 36°C arises despite the 

model’s prediction that maintaining this temperature requires a mean metabolic rate of 

less than 2BMR (Fig. 6.2), a rate that is well within the range that is physiologically 

possible (Drent & Daan 1980; Ricklefs & Williams 1984). Thus the model supports the 

view that incubation represents an energetic bottleneck during reproduction (Yom-Tov & 

Hilborn 1981) not because the energetic demand of maintaining clutch temperature is in 

itself too high, but because the ability of parents to meet this demand is limited by their 

limited opportunity for foraging (Drent et al. 1985; Moreno & Hillstrom 1992).

In agreement with the majority of empirical studies, the model predicts that the 

metabolic demand experienced by an incubating parent increases with clutch size (Fig.

6.2). An increase in metabolic rate of approximately 4% per extra egg is predicted, a 

result that agrees closely with Biebach's (1984) empirical data, and that holds true 

independently of the mean temperature at which a clutch is held. Further, the model 

suggests that at mean clutch temperatures within the optimal range of 36°C or above, the 

increased metabolic demand of incubating a larger clutch will translate into an increased 

energy debt for parents (Fig. 6.3). At 36°C, the debt is approximately 20% greater for a 

clutch of seven eggs than for a clutch of two eggs, requiring an adult starling to bum an 

extra 4.5g of fat over the incubation period. Thus, at or above 36°C, incubating a larger 

clutch is predicted to affect adult energy balance and hence fitness, suggesting that at 

these temperatures, the energetic consequences of incubating clutches of different sizes 

may influence the optimal number of eggs that a female should lay.

However, the same is not true at the 32 to 33°C temperature range within which 

wild passerines usually maintain their clutches (Webb 1987). At these temperatures, 

parents are predicted to be able to meet the increased metabolic demand of incubating a 

larger clutch without accruing a larger energy debt (Fig. 6.3). As large clutches cool 

down more slowly than small clutches, parents with large clutches can increase their
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foraging time enough to compensate for the increased energetic demand of incubation 

without affecting the mean temperature of their clutch. Thus the model suggests that 

although incubation is an energetically demanding stage of reproduction, a small increase 

in demand due to the presence of an extra egg does not necessarily translate into a 

corresponding increase in cost in terms of adult energy balance. This result sheds new 

light on the results of some empirical studies, as the observation that experimental clutch 

enlargement does not always affect hatching success, the duration of incubation or adult 

body condition has previously been unexplained (Jones 1987; Moreno et al. 1991; 

Thomson et al. 1998). Indeed, given the mean temperature at which wild starlings 

maintain their clutches, these results suggest that the energetic demand of incubation is 

unlikely to influence optimal clutch size in starlings.

Figure 6.2. The mean metabolic rate of an incubating parent over a day during the 

incubation period increases with clutch size. Maintenance of any clutch at 36°C is 

predicted to require a metabolic rate of less than 2BMR.
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Figure 6.3. The energy debt that an incubating parent accrues after a single day of 

incubation increases significantly with clutch size if the clutch is maintained at 36°C 

(solid line and filled circles, y = 2.87x + 70.79, P = 0.03), but does not vary significantly 

with clutch size if the clutch is maintained at 32°C (dashed line and open circles, y = - 

1.18x+ 8.16, .P = 0.31).

100 -

Clutch Size

However, the quantitative predictions of the model are dependent on exactly how 

the values of the parameters a c, an , J and 5 vary with clutch size. Altering the values of 

these parameters such as to make large clutches either maximally or minimally 

demanding to incubate compared to small clutches affects the relative final energy 

balances of adults incubating clutches of different sizes. Maintaining a large clutch 

above 36°C resulted in a greater energy debt than maintaining a small clutch at the same 

temperature under all conditions (Fig. 6.4). However, at the lower mean temperatures 

that wild clutches usually experience, the greatest parental energy debt can arise when 

incubating either a large or a small clutch depending on the parameter values used (Fig. 

6.4).
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Figure 6.4. For a parent maintaining its clutch at a mean temperature of 36-39°C, the 

energy debt accrued increases with clutch size for all three sets of values o f a c, a H, y and 

5 reported in table 6.1 (best estimate parameter values ((1) in table 6.1), solid line; large 

clutches maximally demanding ((2) in table 6.1), dashed line; large clutches minimally 

demanding ((3) in table 6.1), dotted line). However, for parents maintaining clutches at 

32-33°C the consequences of clutch size for energy debt vary greatly with parameter 

values, with either large or small clutches resulting in the greatest debt.

40

-160 J

Clutch Size

Thus the relationship between clutch size and the energy debt accrued by the incubating 

adult is likely to vary, depending on variation in the thermodynamic properties of 

clutches of different sizes. Hence the importance of the energetic demand of incubation 

in determining optimal clutch size and the clutch size that is predicted to be optimal is 

unlikely to be constant. This finding can explain the observation that different studies 

have yielded conflicting results as to whether hatching success and adult condition are 

affected as a result of clutch enlargement (eg, Moreno & Carlson 1989; Siikamaki 1995). 

Although experimental clutch enlargement has previously been successfully used to 

manipulate the cost of incubation (eg, Heaney & Monaghan 1996), this study suggests
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that caution is needed when planning such experiments in passerines, as incubation costs

may not be simply linearly related to clutch size.
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Abstract
We manipulated starling (Sturnus vulgaris) clutches so that sibling eggs were incubated 

within either natural-sized clutches, or clutches that had been experimentally enlarged but 

were still within the natural range of variation. Thus we investigated the consequences of 

incubated clutch size for hatching and fledging success.

Eggs incubated within enlarged clutches hatched less successfully than eggs 

incubated within natural-sized clutches, suggesting that clutch size affects the conditions 

experienced by embryos during incubation. Eggs in enlarged clutches may have hatched 

poorly because clutch enlargement altered nest microclimate, increasing mean egg 

temperature and causing eggs to lose more water during the incubation period. There 

was no evidence that clutch enlargement altered nest microclimate by energetically 

constraining parents from incubating effectively. Instead, intrinsic physical properties of 

enlarged clutches may have affected clutch temperature directly.

Parents that had incubated experimentally enlarged clutches subsequently fledged 

fewer chicks than control parents, suggesting that constraints imposed during incubation 

may influence the optimal number of eggs that parents should lay. However, future 

studies should investigate whether parents laying naturally large clutches can minimize 

the costs of incubating many eggs by adaptively tailoring the shape and composition of 

their eggs to their expected clutch size.
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Introduction

In order to develop and hatch successfully, avian embryos must be exposed to the correct 

physical conditions during incubation (Drent 1975; Deeming et al. 1987; Webb 1987). 

Nest microclimate is particularly important, with exposure of eggs to inappropriate 

temperatures or water vapour pressures leading to developmental abnormalities or 

mortality (Lundy 1969; Webb 1987). As natural environments rarely provide exactly the 

correct conditions for the embryos, parents must regulate nest microclimate if the 

offspring are to hatch and fledge successfully. This is usually done by incubating the 

clutch. However, experimentally enlarging the size of the clutch for the duration of the 

incubation period has been shown to reduce the success of the breeding attempt (Moreno 

et al. 1991; Heaney & Monaghan 1995; Monaghan & Nager 1997), imposing a fitness 

cost on parents. Thus optimal clutch size may be influenced by constraints imposed 

during incubation (Monaghan & Nager 1997).

An understanding of the mechanisms by which enlarging a clutch can reduce 

breeding success is an important step in enabling us to predict how parents laying 

naturally large clutches might minimize the costs involved, hence maximizing their 

lifetime fitness. Enlarging a clutch could influence breeding success by affecting the 

parents and their subsequent brood-rearing capacity, or by affecting embryos directly. 

However, previous studies have concentrated on investigating the consequences of clutch 

enlargement for parents, and comparatively little is known about the direct consequences 

for embryos. Incubation has been shown to impose an energetic demand on parents 

(Haftorn & Reinertsen 1985; Weathers 1985; Toien et al. 1986), a demand that can 

increase with clutch size (Biebach 1981; Biebach 1984; Haftorn & Reinertsen 1985), 

with females incubating enlarged clutches having a higher daily energy expenditure 

(Moreno et al. 1991), consuming more food (Coleman & Whittall 1988) and losing more 

mass (Moreno & Carlson 1989). Thus, clutch enlargement might reduce breeding 

success by energetically constraining the parent’s incubation ability, or by affecting the 

parent's allocation of energy reserves between incubation and the subsequent chick- 

rearing period (Heaney & Monaghan 1996; Cichon 2000). However, as eggs retain fixed 

shapes throughout the incubation period, clutches of different sizes have intrinsically 

different physical structures. Larger clutches take up more space, and the proportion of
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an egg’s surface that is in contact with other eggs, with air trapped between the eggs and 

with air circulating around the clutch will also vary with clutch size. The idea that these 

intrinsic structural properties of clutches of different sizes might directly influence the 

conditions that embryos experience during incubation and hence embryo survival, has 

been given little previous consideration.

In this study we manipulated clutches during incubation so that sibling eggs were 

incubated within clutches of different sizes, before being restored to their original brood. 

Hence, whilst controlling for inherited egg quality, we investigated whether clutch size 

has direct consequences for hatching success. By monitoring incubation temperature and 

chick condition we investigated the consequences of incubated clutch size for the 

physical conditions experienced by embryos and chicks and thus attempted to clarify the 

mechanisms by which the size of the incubated clutch might affect the success of the 

breeding attempt.

Methods

Fieldwork was carried out on a roof-nesting population of starlings {Sturnus vulgaris) in 

the Ebro Delta, Spain (2°E, 41°N), between March and June 1999. Pairs of first clutch 

nests on the same or adjacent roofs in which egg-laying began within 36 hours of each 

other were randomly allocated to control and experimental groups. The day after laying 

was completed, a randomly chosen egg was transferred from each control nest to its 

paired experimental nest and a model egg was added to each. Hence control nests 

retained their natural clutch size throughout incubation but experimental nests contained 

a clutch that had been enlarged by two, both including a model egg. All control clutches 

contained four or five eggs, and hence all enlarged clutches contained six or seven eggs. 

As 12% of natural nests contained six or seven eggs, the enlarged clutches were not 

outwith the natural range of variation, and in all cases the extra eggs were easily 

accommodated within the experimental nest cups. The transferred eggs were returned to 

their natal nests and the model eggs were removed the day before the clutches were due 

to hatch. Thus the transferred eggs were incubated within larger clutches than their 

siblings, but the resulting chicks were reared alongside their siblings by their natural
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parents. During the egg transfer process, the entire control clutch was carried between 

the control and experimental nests so that any reduction in viability of the transferred egg 

compared to its siblings could not have been due solely to the transfer procedure.

Nineteen pairs of control and experimental nests were studied. There were no 

significant differences between control and experimental nests in natural clutch size 

(means of 4.3 ± 0.1 and 4.2 ± 0.1 respectively, paired t-test /i8 = 0.90, P = 0.38), date of 

first laying (means of 42.1 ± 2.3 and 41.3 ± 2.8 days after the beginning of March 

respectively, paired t-test t\8 = 0.75, P = 0.46), mean egg mass (means of 7.4 ± O.lg and 

7.3 ± O.lg respectively, paired t-test t\% = 0.76, P = 0.46) or clutch mass (means of 32.2 ± 

1.3g and 30.4 ± 0.9g respectively, paired t-test /i8 = 1.14, P = 0.26). Two nests were 

predated and hence the transferred eggs were successfully returned to their natal nests in 

17 cases.

Model eggs were made from Fimo modelling clay (EberhartFaber, Neumarkt, 

Germany), and matched real starling eggs as closely as possible in shape and colour. 

They were immediately accepted by adult starlings in all cases. A thermistor mounted in 

silicone-based heat transfer compound (Electrolube, Berkshire, UK) was positioned in the 

centre of each model egg, with a lead running out of the blunt pole and through the side 

of the nest to a TinyTalk datalogger (Gemini dataloggers Ltd, Chichester, UK). The 

logger recorded the temperature at the centre of the model egg every 72 seconds 

throughout the incubation period. Loggers were positioned outside nest cavities, allowing 

data to be downloaded without disturbing incubating birds. Model eggs were initially 

positioned randomly within the clutch, and as the connecting leads were slack and very 

flexible the eggs were fairly free to be moved around, their position usually having 

changed between nest visits.

Clutches typically cooled down when incubating parents left the nest, and were 

rewarmed when parents returned. To compare the cooling and rewarming rates of eggs in 

natural-sized and enlarged clutches, single periods of cooling and heating were randomly 

selected from the egg temperature traces recorded in each nest, with periods from paired 

control and experimental nests being matched as closely as possible in time. Exponential 

equations were fitted to these temperature traces (Cooling curve equation: Egg 

Temperature = Ambient Temperature + (Bexp(_Cxtime)); heating curve equation: Egg
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Temperature = (B-Ambient Temperature)( 1 -exp('Cxtime)) + Ambient Temperature, where 

B and C are fitted positive constants). The value of C describes the rate of egg cooling 

or warming, and the values for eggs in natural-sized and enlarged clutches were 

compared.

Laboratory experiments showed that model eggs cooled down and rewarmed 

slightly faster than real starling eggs when subjected to identical thermal conditions. 

However, these rates differed by less than 10% and hence the rate of temperature change 

recorded in the model eggs provides a useful estimate of the rate at which real eggs lost 

and gained heat. Further, the mean temperature recorded in the centre of a model egg did 

not differ significantly from that recorded in the centre of a real egg after three hours of 

alternate warming and cooling simulating intermittent incubation (paired t-test, tg = 0.77, 

P = 0.46). Hence the mean temperature recorded in model eggs is a good measure of the 

mean temperature at which real eggs were incubated (see Chapter 5).

To investigate the magnitude of the temperature variation within a clutch, two 

model eggs containing thermistors were placed within clutches that were not otherwise 

being studied, allowing two temperature traces to be simultaneously recorded from the 

same nest. Two of the nest's real eggs were fostered out to neighbouring nests for 24 

hour periods during this time so that the difference between the two temperature traces 

could be compared when the model eggs were within a natural-sized clutch and when 

they were within a clutch that had been enlarged by two.

All eggs were weighed on the day of laying and again the day before hatching 

was due. In order to estimate the typical durations of parents' foraging and incubation 

bouts for use in simulations, a minimum of two hours was spent observing the times of 

parental arrival and departure from each pair of nests during the incubation period. These 

observations also allowed the percentage of the day that parents spent incubating on 

control and experimental nests to be estimated. As paired control and experimental nests 

were watched simultaneously, no correction for environmental conditions or the time of 

day at which observations were carried out was required when comparing the two groups.

The transferred eggs were returned to their natal nests before they hatched, thus 

restoring the original clutches. The number of chicks hatching and fledging from each 

nest and the date on which they did so was recorded. Chicks were weighed within 24
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hours of hatching and again at 16 days old, when tarsus length was measured. Mass and 

tarsus length had already peaked by this age. As a measure of pre-fledging condition, the 

mass:tarsus3 ratio was calculated for chicks at 16 days old (Freeman & Jackson 1990).

Parametric tests were used unless the data distributions violated the assumptions, 

when equivalent non-parametric tests were used. All tests were two-tailed, and means ± 

one standard error are presented in the results.

Results

The hatching success of the transferred eggs that were incubated within enlarged clutches 

was similar to that of the other eggs incubated within the enlarged clutches, but was 

significantly lower than that of their siblings that were incubated within natural sized 

clutches (Fig. 7.1). However, hatching success in enlarged clutches was no worse than 

that recorded in natural starling populations breeding at similar latitudes (Cramp & 

Perrins 1994). The fate of nine of the chicks hatching from transferred eggs could be 

determined with certainty. These chicks were no less likely to survive to fledge than 

their siblings or than the chicks from the eggs with which they were incubated (Fig. 7.1), 

suggesting that being incubated within an enlarged clutch had no effect on post-hatching 

chick mortality. Overall, parents that had incubated natural-sized clutches fledged 

significantly more of their offspring than parents that had incubated enlarged clutches 

(Fig. 7.2).

When left unattended, eggs in enlarged clutches cooled significantly more slowly 

than eggs in natural-sized clutches (mean C values of 4.3 ± 0.3 and 5.5 ± 0.4 respectively, 

fi8 = 2.61, P = 0.02), which would tend to increase their mean temperature. However 

when parents returned, enlarged clutches were rewarmed significantly more slowly than 

natural-sized clutches (mean C values of 9.7 + 0.6 and 13.8 ± 1.5 respectively, t\% = 2.61, 

P = 0.02), which would tend to decrease their mean temperature. To investigate whether 

these opposing effects might have a predictable overall impact on the mean temperature 

of eggs in enlarged clutches, we used the empirically determined warming and cooling 

coefficients to simulate egg temperature over a single period of cooling followed by a 

single period of warming in both natural-sized and enlarged clutches. Although the mean 

model egg temperature recorded in enlarged clutches was significantly higher than that
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recorded in natural-sized clutches (means of 33.6 ± 0.3 and 32.6 ± 0.3 respectively, t\8 = - 

2.41, P = 0.02) the direct consequences of clutch size for egg temperature could not be 

deduced as there was also a strong trend towards parents spending a greater proportion of 

each day incubating enlarged clutches than natural-sized clutches (means of 79.5 ± 1.8% 

and 75.1 ± 1.4% respectively, 9 = -2.0, P = 0.055).

Figure 7.1. Hatching success (percentage o f eggs that hatched) and fledging success 

(percentage of hatched chicks that fledged) from control clutches, transferred eggs and 

enlarged clutches. Transferred eggs hatched as successfully as the other eggs from 

enlarged clutches (means of 58.8% and 66.7 ± 10.0% respectively, %2i = 0.18, P > 0.2). 

Eggs incubated within natural sized control clutches hatched significantly more 

successfully than either group (mean of 90. 5 ± 6.0%, %2] = 16.3, P < 0.01; Wilcoxon 

signed ranks test Z19 = -2.1, P = 0.03). Fledging success from transferred eggs was no 

different from that from control clutches (means of 44.4% and 50.9 ± 8.5% respectively,

X2i < 0.01, P > 0.5) or from enlarged clutches (mean of 41.3 ± 10.0%, %2\ < 0.01, P >
0.5), nor was there a significant difference between these two groups of nests (Wilcoxon 

signed ranks test Z9 = -1.2, P = 0.2).

100 ;

U  hatching success 

□ Fledging success

Control Clutches Transferred Eggs Experimentally
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Figure 7.2. Breeding success in control and experimental nests. Control parents fledged 

significantly more of their original clutch of offspring than experimental parents that had 

incubated enlarged clutches (means of 46.8 ± 7.7% and 23.2 ± 6 .6 % respectively, 

Wilcoxon matched pairs test Zj8 = -2.86, P < 0.01).
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Overall, 99% of observed parental foraging bouts lasted between 1 and 26 minutes, and 

99% of incubation bouts lasted between 1 and 60 minutes. Simulated warming and 

cooling periods were allowed to last any whole number of minutes between these limits, 

and the simulation was repeated for all possible combinations of these two values, with 

mean egg temperature being calculated after each simulation. For each of the 1560 

combinations of cooling and warming periods simulated, the predicted mean egg 

temperature was warmer in enlarged clutches than in natural-sized clutches, by an 

average of 0.34°C across all combinations of periods.

The temperature difference between two eggs within the same nest was 

significantly greater (means of 1.4 ± 0.2°C and 1.1 ± 0.2°C respectively, t \ 4 = -2.62, P = 

0.01) and significantly more variable (mean standard deviations of 1.4 ± 0.3 and 0.9 ± 0.1
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respectively, tu  = -2.35, P = 0.02) when the two eggs were within enlarged clutches than 

when they were within natural-sized clutches.

The transferred eggs that were incubated within enlarged clutches lost a 

significantly greater proportion of their initial mass during incubation than their siblings 

(means of 16.8 ± 3.0% and 10.0 ± 0.6% respectively, /15 = -2.52, P = 0.02), but not 

significantly more than the mass lost by the eggs with which they were incubated (mean 

of 12.1 ± 0.9%, t\\ = -1.29, P = 0.23). The mean mass of chicks at hatching did not 

depend on whether they had been incubated within a natural-sized or an enlarged clutch 

(means of 7.4 ± 0.3g and 7.2 ± 0.3g respectively, general linear model, F \j\ = 0.50, P = 

0.48). However, allowing for the number of surviving chicks in the brood, chicks reared 

by parents that had incubated a natural-sized clutch were in a significantly better 

condition at 16 days old than chicks reared by parents that had incubated an enlarged 

clutch (means of 1.9 ± 0.05kg/m3 and 1.8 ± 0.05kg/m3 respectively, GLM, F\,19 = 5.04, P 

= 0.04).

Discussion

On average, the transferred eggs that were incubated within enlarged clutches hatched 

significantly less successfully than their siblings that were incubated within natural-sized 

clutches. As eggs to be transferred were randomly selected from their natal clutches, 

their poor hatching success compared to that of their siblings cannot have been due to 

differences in egg quality. Instead, they must have experienced poorer conditions during 

incubation. The mean hatching success of the transferred eggs was similar to that of the 

other eggs incubated within the enlarged clutches, further supporting the conclusions that 

hatching success was determined largely by incubation conditions rather than inherited 

egg quality, and that these conditions varied with clutch size. Hence the size of the clutch 

within which an egg was incubated had direct consequences for embryo fitness.

Transferred eggs lost a greater proportion of their initial mass during incubation 

than did their siblings, but a similar proportion to the eggs with which they were 

incubated. As egg mass loss reflects water loss to a large degree (Rahn & Ar 1974) and 

maintenance of the correct egg water balance is essential for embryos to develop and 

hatch successfully (Meir & Ar 1991; Packard & Packard 1993; Deeming 1995), we
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suggest that eggs incubated within enlarged clutches were less likely to hatch because 

they lost too much water during incubation. The rate at which eggs lose water depends 

on shell structure (Packard & Packard 1993) and nest microclimate (Walsberg & Schmidt 

1992; Vick et al. 1993; Ancel et al. 1994), with high egg temperatures and low nest water 

vapour pressures both increasing rates of water loss. The size of the clutch within which 

an egg is incubated is unlikely to affect shell structure, and thus the poorer hatching 

success of eggs in enlarged clutches is likely to have been because they experienced 

different nest microclimates during incubation. In agreement with this suggestion, mean 

egg temperature was higher in enlarged clutches than in natural-sized clutches.

Incubating parents must divide their time between the mutually exclusive 

activities of incubating to regulate nest microclimate and foraging to maintain their own 

energy balance (Carey 1980; Williams 1996; Chapters 2, 5 & 6). Parents that spend 

more time foraging leave the microclimate of their nest unregulated for longer, allowing 

eggs to equilibrate with ambient conditions. As the energetic demand of incubation can 

increase with clutch size, parents incubating enlarged clutches may have been forced to 

forage more in order to maintain their energy balance. Hence clutch enlargement might 

have altered nest microclimate by energetically constraining the parent’s incubation 

ability. However, as parents incubating enlarged clutches tended to spend more time on 

the nest than parents incubating natural-sized clutches, there is no evidence that this was 

the case. Instead, the intrinsic physical properties of enlarged clutches may have affected 

parents’ ability to successfully regulate clutch microclimate, irrespective of their 

energetic investment in incubation. As larger clutches occupy more space than smaller 

clutches, parents may have experienced more difficulty in incubating all the eggs within 

an enlarged clutch simultaneously, even though enlarged clutch sizes were within the 

range of natural clutch sizes. Consistent with this hypothesis, the temperature difference 

between eggs within the same clutch was on average greater and more variable within 

enlarged clutches than within natural-sized clutches. In the warm and arid Spanish 

environment, peripheral eggs may have lost water to the surroundings fairly rapidly. 

Further, clutches of different sizes had different thermal properties, directly affecting the 

temperatures experienced by eggs during incubation. Our simulation suggests that 

whatever the pattern of heating and cooling, mean incubation temperature will be higher
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in enlarged clutches. Thus intrinsic properties of clutch size can explain the higher mean 

incubation temperatures recorded in enlarged clutches. It has also been shown that nest 

water vapour pressure can be lower in nests containing larger clutches (Kern & Cowie

1995). Hence physical properties of enlarged clutches mean that their component eggs 

are inherently likely to lose water rapidly, a loss that might be particularly costly for 

starlings nesting in arid climates.

Chicks hatching from transferred eggs did not suffer greater mortality during the 

rearing period than their siblings, suggesting that post-hatching survival was influenced 

more strongly by the conditions experienced during rearing than by any effects carried 

forward from incubation. However, chicks reared by parents that had incubated enlarged 

clutches were in a significantly worse pre-fledging condition than chicks reared by 

parents that had incubated natural-sized clutches. As both groups of chicks had similar 

masses at hatching, this suggests that chicks from enlarged clutches experienced poorer 

rearing conditions. Parents that had incubated enlarged clutches thus may have been less 

able to care for their chicks. Instead of foraging more during incubation, parents 

incubating enlarged clutches may have compensated for the increased energetic demands 

of incubation by reducing their allocation of resources to chick-rearing. Such within- 

reproductive attempt trade-offs to compensate for the demands of incubation have 

previously been reported (Heaney & Monaghan 1996; Thomson et al. 1998; Cichon 

2000).

Although chick mortality was no higher in experimental nests than in control 

nests, the poor hatching success of eggs from enlarged clutches resulted in a reduced 

fledging success in experimental nests. Hence we provide further evidence that 

incubating an enlarged clutch imposes a fitness cost on parents. Further, as poor fledging 

condition has been correlated with poor offspring survival (Magrath 1991; Ringsby et al. 

1998) and future reproductive success (Both et al. 1999), clutch enlargement may have 

further reduced the lifetime fitness of offspring and parents. Thus in line with other 

studies we suggest that by reducing parents' chick-rearing ability, the energetic demand 

of incubating an enlarged clutch may limit optimal brood size in birds (Monaghan & 

Nager 1997). However, as shown here, the physical properties of enlarged clutches can 

also reduce hatching success irrespective of parental energy expenditure. Thus the
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intrinsic physical properties of clutches of different sizes may further influence the 

number of eggs that a parent should lay. Parents’ physical inability to incubate many 

eggs simultaneously might impose an upper limit on optimal clutch size but as large 

clutches maintain intrinsically warmer incubation temperatures, parents nesting in cold 

climates may even be selected to lay large clutches in order to minimise costly egg 

chilling.

However, parents laying naturally large clutches may be able to minimize the cost 

of incubation by adapting the design of their eggs to their expected clutch size. The egg 

shape that maximizes the efficiency with which a clutch can be packed under the brood 

patch may vary with clutch size (Barta & Szekely 1997). Hence parents could maximise 

their ability to incubate many eggs simultaneously by laying eggs of the optimal shape 

given their clutch size. Further, parents could alter the shell structure or composition of 

their eggs to compensate for the rates of water loss that eggs within clutches of different 

sizes are inherently likely to experience. Future studies should investigate such effects 

within wild bird populations. If eggs are tailor-made for a specific clutch size, then the 

cost of incubating an experimentally enlarged clutch may be greater than the cost of 

incubating a natural clutch of the same size, as experimental clutch enlargement places 

the eggs in a physical environment for which they are not designed.
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Abstract

The extent to which male parental care improves the success of a breeding attempt is 

recognised as an important factor in shaping avian breeding systems. However, the 

consequences of male assistance with incubation and the circumstances under which 

males incubate are poorly understood.

We studied a population of starlings in which male participation in incubation was 

variable. Incubation periods were shorter and hatching success, hatchling mass and 

fledging success were greater in nests where males assisted females with incubation. 

These effects did not appear to arise because males incubated only on high quality nests 

or when mated to high-quality females, or because of differences in male chick-rearing 

effort. Instead, male incubation may have improved breeding performance directly, by 

improving the developmental conditions experienced by embryos. Although females 

spent less time incubating when males assisted, the male's contribution meant that total 

nest attendance increased. Incubating males maintained clutches at marginally lower 

equilibrium temperatures than females but rewarmed cool clutches more rapidly. Hence 

overall, clutches spent more time at warmer temperatures when males assisted with 

incubation.

Male incubation was associated with effective monogamy. However, most males 

mated polygynously and did not incubate. Males that incubated had nests that insulated 

poorly and were initiated relatively late within a colony, and so may have been less likely 

to attract further females. The occurrence of male incubation may therefore be 

determined by a male's ability to attract multiple females. However, primary females 

may have increased the chance that a male would incubate by destroying secondary 

females' clutches.
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Introduction

The extent to which parents care for their offspring has evolutionary consequences for 

animal morphology and physiology, and for the social structures of animal communities 

(Ketterson & Nolan 1994; Reynolds & Szekely 1997; Kokko 1998; Webb et al. 1999). 

Identification of the selection pressures that shape patterns of parental care is therefore a 

major goal of behavioural ecology (eg, Clutton-Brock 1991). Individual parents are 

expected to allocate resources amongst reproductive activities so as to maximise their 

own lifetime fitness (Rofif 1992; Steams 1992). Thus, in order to interpret observed 

allocations to parental care, it is important to understand the fitness costs and benefits for 

each parent of caring for or deserting their offspring (Szekely & Cuthill 1999; Szekely et 

al. 1999; Gubemick & Teferi 2000).

In birds, parental care is generally required during both incubation and chick- 

rearing if the brood is to fledge successfully. Females are generally involved in both 

these activities (although see Clutton-Brock 1991; Andersson 1995; Eens & Pinxten 

2000), but the role of the male is more variable. Recent theoretical and empirical studies 

suggest that the ability of female birds to breed successfully in the absence of male help 

may influence breeding system evolution, affecting frequencies of extra-pair copulations 

and mate desertion (Szekely & Cuthill 1999, 2000; Moller 2000), and the stability of 

social monogamy (Lack 1968; Kokko 1999). Assessment of the value of male care is 

therefore important, and the consequences of male assistance with chick-rearing, and the 

circumstances under which males assist, have been relatively well studied in a range of 

passerine species. Paternal provisioning can increase fledging success (Johnson et al. 

1992; Smith et al. 1994; Moreno et al. 1999), chick growth rate (Bjomstad & Liijeld 

1996; Markman et al. 1996) and fledgling condition (Johnson et al. 1992), and thus 

increase female fitness. However, time spent provisioning one brood of offspring can 

constrain a male's ability to attract further mates or provision other broods (Sandell et al. 

1996; Hunt et al. 1999; Moreno et al. 1999) and hence be costly for males. Consequent 

intersexual conflict over the extent of male provisioning can drive the evolution of 

passerine mating systems and multiple related aspects of breeding behaviour (Davies 

1985, 1992; Davies & Hatchwell 1992; Houston et al. 1997; Smith & Sandell 1998; 

Alonzo & Warner 2000).
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Considerably less is known about the occurrence and consequences of male 

assistance with incubation. Males can improve incubation performance indirectly by 

provisioning incubating females on the nest (Lyon & Montgomerie 1985; Nilsson & 

Smith 1988). However, as male passerines often lack well developed brood patches 

(Bailey 1952), their ability to regulate clutch temperature and thus contribute directly to 

incubation remains relatively unclear. Although the extent to which a male incubates has 

been linked to his mating status (Pinxten et al. 1993; Smith et al. 1995; Smith & Sandell 

1998), the possibility that intersexual conflict over male incubation arises and influences 

mating systems has rarely been investigated.

We studied a facultatively polygynous population of European Starlings (Sturnus 

vulgaris) in which some males assisted females with incubation whilst others did not. We 

investigated the ability of males to incubate effectively, the circumstances under which 

they did so, and the consequences of their help for female time budgets and breeding 

success. Based on these findings, we discuss the possible role of male incubation in 

influencing mating systems in starlings.

Methods

A population of cavity nesting starlings was studied in the Ebro Delta, Spain (2°E, 41°N) 

between March and June 1999. Nests were situated in holes in roofs of widely scattered 

agricultural buildings. Each roof contained between two and ten nests.

To determine whether females were incubating alone or whether males were 

assisting, each nest was observed for a minimum of three two-hour spells during the 

incubation period. Two hours was sufficient to observe multiple change-overs, and the 

times of male and female arrivals and departures were recorded. Males either contributed 

substantially to incubation or were not observed to incubate at all. Non-incubating males 

were easily recognised as they frequently stood outside nest cavities. All males assisted 

with provisioning all their chicks.

To determine how many nests were attended by each male, colonies were 

observed on at least eight further occasions during the breeding attempt (as Smith et al. 

1994). Possibly as a result of occasional hybridisation with spotless starlings {Sturnus 

unicolor), the study population exhibited considerable plumage variation. A maximum of
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six males bred within a single colony (mode of three). Thus, within each colony, males 

could generally be distinguished using individual plumage characteristics. Four different 

observers independently attributed the same mating status to males during both 

simultaneous and consecutive observation periods, and hence male identifications were 

repeatable. As colonies were separated by up to 2km and males remained within sight of 

their known colony almost continuously during observation periods, it is very unlikely 

that the same male bred simultaneously in different colonies. Data from two colonies 

containing males whose mating status remained uncertain were excluded from the 

analyses. Nests belonging to polygynous males were defined as primary and secondary 

in the order in which laying began.

To investigate the incubation ability of males and females, model eggs containing 

thermistors were placed in 38 nests the day after full incubation commenced, and were 

removed the day before the clutch was due to hatch (see Chapters 5 & 7 for details). In 

19 nests the addition of the model egg enlarged the natural clutch size. In the remaining 

19 nests it replaced a real egg that was removed as part of another experiment (see 

Chapter 7). As the occurrence of male incubation had been determined before model 

eggs were deployed, we ensured that the enlarged clutches were evenly distributed 

between nests where males did and did not incubate. In no case did the addition of a 

model egg alter whether or not a male incubated. Model eggs had similar thermal 

properties to real eggs (Chapters 5 & 7). Thermistors were positioned in the centres of 

model eggs, and TinyTalk data loggers (Gemini Dataloggers Ltd, Chichester, UK) were 

used to record egg temperature every 72 seconds throughout the incubation period.

The nest observation periods were used to link model egg temperatures to the 

presence of either the male or the female on the nest, and to estimate the proportion of 

each day for which each sex incubated. The equilibrium temperatures at which males 

and females maintained clutches and the frequencies with which they rewarmed cool 

clutches through at least 3°C were compared. To estimate the rate at which males and 

females rewarmed clutches, the equation (Egg Temperature = (B-Ambient

T emperature)( 1 -exp('K*time)) + Ambient Temperature, where B and K are fitted positive 

constants) was fitted to warming curves taken from egg temperature traces. The 

exponential coefficient K represents the rate of clutch rewarming. Temperature probes
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that were not enclosed within model eggs were used to continuously record whether any 

parent was present on the nest, a technique that we have used previously and validated 

using video playback {Chapter 4).

To investigate whether the occurrence of male incubation was related to nest 

quality, we measured the insulative quality of nests. The rate of heat loss from within 

each nest was measured by inserting a plaster disc warmed to 35°C, and measuring the 

rate at which it cooled down (see Chapter 4 for methodology). The equation (Disc 

Temperature = Ambient Temperature +(Bexp('c*time)), where B and C are fitted positive 

constants) was fitted to the cooling curve recorded. The exponential coefficient C 

reflects the rate of heat loss.

Egg laying dates were recorded in each nest, and eggs were weighed on the day of 

laying and again the day before hatching was due. The number of chicks hatching and 

fledging and the dates on which they did so were recorded in each nest. Chicks were 

weighed within 24 hours of hatching and again at 16 days old, when maximum tarsus 

length was also measured. The ratio of mass to tarsus3 was calculated as a measure of 

pre-fledging chick condition (Freeman & Jackson 1990).

Proportional data were arcsin transformed and parametric statistical tests were 

used unless data distributions violated the assumptions, when equivalent non-parametric 

tests were substituted. All tests were two-tailed, and means are presented ± one standard 

error.

Results

Twelve of the 35 males whose mating status was confidently ascertained were 

monogamous, attending only one nest. All twelve assisted with incubation on that nest, 

being responsible for 42.3 ± 1.8% of the time for which the clutch was incubated on 

average. The other 23 males were polygynous, each initially attending two active nests. 

However, eleven (47.8%) of the 23 secondary clutches were destroyed during egg-laying 

or early during the incubation period. Other starlings were thought to have been 

responsible, as eggs punctured by bill holes were found within nest cavities, and 

destruction by female starlings was twice observed. Destruction was distinct from nest

137



I
i
iI
| Chapter eizht____________________________________ Male incubation in starlings

!
predation, in which the whole clutch was typically consumed. Secondary clutches that 

were destroyed were more closely synchronised with the same male’s primary clutch than 

secondary clutches that were not destroyed (mean inter-clutch intervals of 2.8 ± 0.6 and 

10.0 ± 2.0 days respectively, U22 = 16.5, P = 0.002). No primary polygynous clutches or 

clutches belonging to monogamous males were destroyed, and thus secondary clutches 

were destroyed significantly more often than any other category (x 2 = 20.7, P < 0.001). 

The twelve polygynous males whose secondary clutches were not destroyed did not 

incubate on either of their two nests. Four of the eleven polygynous males that lost their 

secondary clutches assisted their primary female with incubation. None of these obtained 

replacement secondary clutches. The remaining seven males whose secondary clutches 

were destroyed did not incubate on their primary nests, and five obtained replacement 

secondary clutches. Thus 16 males had one active nest (including four failed 

polygynists) and participated in incubation, 17 males had more than one nest and did not 

incubate, and two males did not incubate on their one remaining nest. Thus the 

occurrence of male incubation was associated with the possession of a single active nest
■j

(and thus effective monogamy) more often than expected by chance (x 1 = 24.4, P < 

0 .001).

The 12 secondary clutches that were not destroyed did not differ significantly 

from the 19 primary clutches on which males did not incubate in any measured 

parameters other than (by definition) laying date (table 8.1). Hence data from these nests 

were pooled, and breeding performance was compared between the 16 nests on which 

males assisted females with incubation and the 31 primary polygynous and surviving 

secondary nests on which females incubated alone. As producing a replacement clutch 

can affect a female's subsequent reproductive performance (Monaghan et al. 1998), data 

from the five replacement secondary clutches were not included in these analyses.
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Table 8.1. Comparison of reproductive parameters of polygynous males' primary and 

secondary nests (* indicates a significant difference between primary and secondary nests 

at the 95% confidence level after Bonferroni correction).

Primary Secondary t-test / Mann-

polygynous nests polygynous nests Whitney Utest

Mean SE n Mean SE n t /U P

Lay date (in April) 8.3 2.5 19 20.2 2.2 12 -3.30 0.002*

Clutch size 4.3 0.1 19 4.0 0.3 12 0.91 0.37

Egg mass (g) 7.3 0.1 17 7.4 0.1 9 -0.52 0.61

Clutch mass (g) 31.9 1.6 17 29.6 3.3 9 0.71 0.49

Nest cooling coefficient 0.85 0.04 17 0.86 0.04 9 -0.10 0.92

Incubation period (days) 12.7 0.1 18 12.9 0.3 11 -0.92 0.37

Egg mass loss (%) 10.7 0.7 16 11.9 1.0 7 -0.96 0.35

Hatchling mass (g) 6.8 0.2 15 6.4 0.3 5 0.76 0.46

% of eggs hatching 73.9 5.7 19 75.7 9.4 12 102.5 0.63

% of hatchlings fledging 50.9 9.3 18 51.2 10.2 11 94.0 0.82

Fledgling condition 1.93 0.1 8 1.92 0.1 4 15.5 0.93

% of offspring fledging 36.6 6.7 19 34.4 7.4 12 106.0 0.74

Clutches laid by females that were and were not assisted by incubating males did not 

differ with respect to mean laying date, clutch size, egg mass or clutch mass (table 8 .2 ). 

However, nests where males incubated were of poorer insulative quality than nests where 

males did not incubate (Mean C values of 1.02 ± 0.06 and 0.86 ± 0.03 respectively, /40 = 

2.82, P = 0.007). Although laying dates were spread over a seven week period overall, 

laying was fairly synchronous within each colony. On average, nests where males 

incubated were initiated significantly later within a colony than nests where they did not 

(mean ranked positions from the end of laying in each colony of 1.8 ± 0.4 and 3.0 ± 0.3 

nests respectively, U66 = 197.0, P = 0.007).
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Hatching success was higher, newly hatched chicks were heavier, incubation 

periods were shorter and eggs lost less mass independent of the duration of incubation in 

nests where males assisted with incubation than in nests where they did not. However, 

the proportion of hatchlings that survived to fledge did not differ significantly between 

the two groups of nests, and chicks in nests where males incubated were no longer in 

better condition at 16 days old. Overall, more offspring fledged successfully in nests 

where males assisted with incubation than in nests where females incubated alone (see 

table 8.3 for all data).

Table 8.2. Comparison of clutch parameters in polygynous nests (where males did not 

incubate) and monogamous nests (where males assisted females with incubation).

All polygynous 

nests

Monogamous

nests

t-test / Mann 

Whitney Utest

Mean SE n M ean SE n t /U P

Lay date (in April) 12.9 2.0 31 10.1 2.2 16 -0.87 0.39

Clutch size 4.2 0.1 31 4.1 0.1 16 -0.16 0.87

Egg mass (g) 7.3 0.1 26 7.4 0.1 16 0.67 0.51

Clutch mass (g) 31.2 1.5 26 30.6 1.1 16 -0.25 0.80
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Table 8.3. Comparison of (a) incubation performance, (b) chick-rearing performance 

and (c) overall breeding success in polygynous nests (where males did not incubate) and 

monogamous nests (where males assisted females with incubation). * indicates a 

significant difference between polygynous and monogamous nests at the 95% confidence 

level after within-section Bonferroni correction.

All polygynous 

nests

Monogamous

nests

t-test / Mann 

Whitney Utest

Mean SE n Mean SE n t /U P

(a) Incubation period (days) 12.8 0 .1 29 11.9 0 . 2 16 -3.71 0.001*

Egg mass loss (%) 11.1 0.5 23 8.5 0.7 13 -2.85 0.007*

Hatchling mass (g) 6.7 0 .2 2 0 7.7 0.3 1 2 3.17 0.003*

% of eggs hatching 74.6 4.9 31 96.9 3.1 16 108.5 0.001*

(b) % of hatchlings fledging 51.0 6.9 29 59.7 7.5 16 184.5 0.41

Fledgling condition 1.9 0 .1 1 2 1.8 0 .1 7 26.5 0.19

(c) % of offspring fledging 35.8 4.9 31 56.3 6.9 16 141.5 0.025*

Females spent substantially less time incubating when assisted by males than 

when incubating alone (means of 46.3 + 1.1% and 74.0 ± 1.1% of the daytime 

respectively, /30 = 15.92, P < 0.001), a reduction of approximately 3.5 hours during an 

average daytime of 12.5 hours. Incubating males were responsible for a smaller 

proportion of the total incubation time than females (means of 42.3 ± 1.8% and 57.7 ± 

1.8% respectively, paired t-test /13 = 4.32, P = 0.001). However overall, clutches were 

attended for more time each day when males assisted than when females incubated alone 

(means and ranges of 81.9 ± 1.4% (75.2 - 94.1%) and 74.0 ± 1.1% (66.5 - 79.4%) of the 

daytime respectively, /30 = -4.28, P < 0.001), an increase of approximately one hour per 

day on average.
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Males maintained clutches at lower equilibrium temperatures than females 

incubating the same clutch (means of 35.8 ± 0.4°C and 36.3 ± 0.3°C respectively, paired 

t-test t \2 = 5.71, P < 0.001), although the mean difference was only 0.5°C. Males 

rewarmed cool clutches more rapidly than females (mean K values of 0.16 ± 0.03 and 

0.13 ± 0.02 respectively, paired t-test t\o = -2.53, P = 0.03), but did so less frequently 

(means of 0.28 ± 0.05 and 0.98 ±0.1 times per hour respectively, paired t-test tn  = 9.3, P 

< 0.001). Overall, eggs experienced higher minimum temperatures (means of 29.3 ± 

0.3°C and 25.1 ± 0.4°C respectively, t̂ e = -7.81, P < 0.001) and spent more time at 

temperatures at which embryonic development is likely to have been more rapid (Figure 

8.1) when males assisted females with incubation.

Figure 8.1. Proportion of the daytime that clutches spent at different temperatures when 

males assisted females with incubation (solid line) and when females incubated alone 

(dashed line). Male assistance with incubation altered the distribution of temperatures 

that eggs experienced (Two-sample Kolmogorov-Smirnov test, Z)67 = 29.4, P < 0.05), 

increasing the proportion of time that eggs spent at higher temperatures. This change is 

likely to have increased the overall rate of embryonic development (Webb 1987).
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Discussion

A greater proportion of eggs hatched successfully and newly hatched chicks were heavier 

when males assisted with incubation than when females incubated alone. Incubation 

periods were shorter when males assisted, reducing the time for which clutches were 

likely to have been vulnerable to predation (Erikstad & Tveraa 1995; Bjomstad & Lifjeld

1996). Thus male incubation was associated with improved overall incubation 

performance.

Incubation performance might improve as a direct result of male assistance. 

However, a non-causal relationship between male incubation and incubation performance 

might also arise, for example, if males were more likely to incubate on high quality nests, 

or when mated to high-quality females that could hatch chicks rapidly and in good 

condition independent of male help. A causal link can only be conclusively demonstrated 

by experimentally preventing males from incubating (eg, Bart & Tomes 1989). 

However, several lines of evidence suggest that here, incubation performance improved 

as a consequence of male help rather than of attributes of the nest or female. Clutch size, 

egg mass, clutch mass and laying date can reflect female quality (Tinbergen & Daan 

1990; Goodbum 1991; Verhulst et al. 1995; Rooneem & Robertsen 1997; Phillips & 

Furness 1998), and nests on which males did and did not incubate did not differ with 

respect to any of these parameters. Further, we have shown experimentally that a small 

reduction in the rate of heat loss from within a nest during incubation can increase 

breeding success independent of female quality (Chapter 3). As males incubated on 

nests that insulated poorly, other things being equal, breeding success in these nests 

would have been expected to be low. The high success actually observed suggests that 

the male's contribution was important. Finally, the mechanisms by which male help may 

have improved incubation performance are relatively clear. Although females spent 

considerably less time incubating per day when males assisted than when incubating 

alone, the male's contribution meant that overall, clutches were attended for an extra hour 

per day on average. As incubation may be costly for females largely because the time 

spent incubating constrains the time available for foraging (Drent et al. 1985; Moreno & 

Hillstrom 1992), it is unlikely that any female would have been able to compensate 

completely for this difference. Indeed, the mean time for which a nest was attended

143



Chapter eight Male incubation in starlings

when both parents incubated exceeded the maximum attentiveness recorded for a female 

incubating alone. As male starlings maintained clutches at only marginally lower 

equilibrium temperatures than females and rewarmed cool clutches more rapidly, the 

increased total nest attentiveness when males incubated meant that clutches spent more 

time at higher temperatures. Further, as reflected by the reduced rate of egg mass loss 

when males assisted (Rahn & Ar 1974), increased adult attendance may also have 

reduced the rate at which eggs lost water. Such temperature and water loss changes can 

improve hatching success and shorten incubation periods (Ricklefs & Smeraski 1983; 

Webb 1987; Walsberg & Schmidt 1992; Packard & Packard 1993; Vick et al. 1993). 

Hence male assistance with incubation may have significantly improved the 

developmental conditions experienced by embryos, increasing hatching success and 

shortening incubation periods independent of female or nest quality.

A greater proportion of offspring fledged successfully in nests where males 

assisted with incubation than in nests where females incubated alone. This was due to 

improved hatching success rather than to a subsequent improvement in hatchling 

survival. As secondary clutches laid soon after the same male's primary clutch were 

frequently destroyed, overlap between polygynous males' primary and secondary chick- 

rearing periods was minimal, and males were likely to have been able to contribute 

significantly to provisioning all offspring. Indeed, despite being lighter at hatching, 

polygynous males' chicks were no longer in poorer condition at 16 days old. Thus the 

increased breeding success in nests where males incubated was predominantly due to the 

male's contribution to incubation, not to subsequent differences in chick-rearing effort.

Even though male starlings have poorly developed brood patches (Cramp & 

Perrins 1994) they were effectively as capable as females at regulating clutch 

temperature. Similar incubation ability has been reported in male Swallows and Zebra 

Finches (Ball 1983; Zann & Rossetto 1991). Thus the functional role of the brood patch 

is unclear, especially as defeathering and vasodilation are likely to be energetically 

demanding, requiring considerable physiological changes (Bailey 1952) and increasing 

the rate of body heat loss (Buchholz 1996; Wilson et al. 1998). As male passerines are 

often slightly larger than females they may be more able to transfer heat to eggs in the 

absence of a specialised structure. However, the hypotheses that the female's bare skin
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area may play an important role in regulating nest humidity as well as temperature, or 

may significantly reduce the energetic demand of maintaining high clutch temperatures 

would be worthy of investigation.

Despite the apparent fitness benefit of incubation in terms of increased immediate 

reproductive success, less than half of males incubated. However, incubation may be 

costly for males in terms of lost mating opportunities. Trade-offs between incubation and 

seeking further matings have been demonstrated (Smith 1995; Magrath & Elgar 1997) 

and male incubation was effectively associated with monogamy in this study. As extra 

pair paternity rates in starlings may not vary significantly with mating status (Smith & 

von Schantz 1993) and apparent success reflects genetic success (Smith & Sandell 1998), 

overall, male fitness may generally be maximised by polygyny rather than by monogamy 

and incubation (Pinxten & Eens 1990). In contrast, female fitness is likely to be 

maximised by male incubation. As well as increasing the number of offspring fledged, 

male assistance may reduce the cost of incubation for females. Assisted females spent 

less time incubating and met the high energetic demand of rewarming a cool clutch 

(Vleck 1981) less often. Thus male assistance is likely to have reduced the energetic 

demand experienced by incubating females and simultaneously increased the foraging 

time available for females to meet that demand. Hence, intersexual conflict over the 

male's contribution to incubation, and thus mating system, might be predicted.

As 60% of females incubated alone, many males achieved their absolute optimal 

mating system. However, for males that cannot attract multiple females, or for whom 

failing to incubate is particularly costly, incubation may be the optimal strategy. As the 

nests where males assisted with incubation insulated poorly, offspring left unattended in 

these nests may have been particularly likely to experience detrimental developmental 

conditions. Further, as male starlings are largely responsible for nest construction and 

completed nests function in mate attraction (Cramp & Perrins 1994), the males that 

incubated may have been less able to attract females. Males also incubated more often 

when their primary female laid late within a colony, when further nest sites and females 

were likely to have been locally scarce. Thus patterns of monogamy and male incubation 

are consistent with the hypothesis that starling mating system and level of paternal care



Chapter eisht Male incubation in starlings

was determined by a male's ability to provide high quality nests and obtain multiple 

females.

These results raise interesting questions about how incubating females might 

increase their chance of receiving male help. If males are more likely to incubate later 

clutches, then females could delay breeding relative to the rest of their colony. However 

as delays reduce the time available for rearing second broods, delaying may be a costly 

strategy. Alternatively, primary females may increase the likelihood of male incubation 

by preventing secondary breeding attempts. Clutch destruction may take place for 

reasons other than sexual conflict, such as competition for nest sites. However, the high 

rate of secondary clutch destruction is consistent with the hypothesis that primary females 

destroy secondary clutches in order to gain male help. Primary females were responsible 

for destruction on both observed occasions, and female-female aggression and nest 

destruction have previously been observed in several facultatively polygynous 

populations (Davies 1985; Breiehagen & Slagsvold 1988; Pinxten & Eens 1990; Veiga 

1990; Smith & Sandell 1998). Secondary nest destruction resulted in males incubating 

primary clutches in only four (36%) of eleven cases. However, when males did not 

incubate and secondary clutches were replaced, destruction desynchronised the primary 

and secondary breeding attempts. As males may increase their relative level of 

investment in provisioning primary broods when primary and secondary attempts are 

well separated (Smith et al. 1994, 1995; Smith & Sandell 1998), destroying secondary 

clutches may benefit primary females irrespective of whether or not the male 

subsequently incubates.

References

Alonzo, S.H. & W arner, R.R. 2000. Female choice, conflict between the sexes and the 

evolution of male alternative reproductive behaviours. Evolutionary Ecology 

Research, 2, 149-170.

Andersson, M. 1995. Evolution of reversed sex-roles, sexual size dimorphism and 

mating system in coucals. Biological Journal o f the Linnean Society, 54, 173-181. 

Bailey, R.E. 1952. The incubation patch of passerine birds. Condor, 54, 121-136.

146



Chapter eisht Male incubation in starlin2s

Ball, G.F. 1983. Functional incubation in male Barn Swallows. Auk, 100, 998-1000.

Bart, J. & Tornes, A. 1989. Importance of monogamous male birds in determining 

reproductive success: evidence for house wrens and a review of male removal 

studies. Behavioural Ecology & Sociobiology, 24, 109-116.

Bjornstad, G. & Lifjeld, J.T. 1996. Male parental care promotes early fledging in an 

open-nester, the willow warbler. Ibis, 138, 229-235.

Breiehagen, T. & Slagsvold, T. 1988. Male polyterritoriality and female-female 

aggression in pied flycatchers. Animal Behaviour, 36, 603-606.

Buchholz, R. 1996. Thermoregulatory role of the unfeathered head and neck in male 

wild turkeys. Auk, 113, 310-318.

Clutton-Brock, T.H. 1991. The Evolution o f Parental Care. Princeton University Press, 

Princeton.

Cramp, S. & Perrins, C.M. 1994. The Birds o f the Western Palearctic. Volume VIII. 

Oxford University Press, Oxford.

Davies, N.B. 1985. Cooperation and conflict among Dunnocks in a variable mating 

system. Animal Behaviour, 33, 628-648.

Davies, N.B. 1992. Dunnock Behaviour and Social Evolution. Oxford University Press, 

Oxford.

Davies, N.B. & Hatch well, B.J. 1992. The value of male parental care and its influence 

on reproductive allocation by male and female dunnocks. Journal o f Animal 

Ecology, 61, 259-272.

Drent, R.H., Tinbergen, J.M. & Biebach, H. 1985. Incubation in the starling: resolution 

of the conflict between egg care and foraging. Netherlands Journal o f Zoology, 

35, 103-123.

Eens, M. & Pinxten, R. 2000. Sex role-reversal in vertebrates: behavioural and 

endocrinological accounts. Behavioural Processes, 51, 135-147.

Erikstad, K.E. & Tveraa, T. 1995. Does the cost of incubation set limits to clutch size 

in common eiders Somateria mollissimal Oecologia, 103, 270-274.

Freeman, S. & Jackson, W.M. 1990. Univariate metrics are not adequate to measure 

avian body size. Auk, 107, 69-74.

147



Chapter eisht Male incubation in starlinzs

Good burn, S.F. 1991. Territory quality or bird quality - factors determining breeding 

success in the Magpie. Ibis, 133, 85-90.

Gubernick, D.J. & Teferi, T. 2000. Adaptive significance of male parental care in a 

monogamous mammal. Proceedings o f the Royal Society Series B , 267, 147-150.

Houston, A.I., Gasson, C.E. & McNamara, J.M. 1997. Female choice of matings to 

maximise parental care. Proceedings o f the Royal Society Series B, 264, 173-179.

Hunt, K.E., Hahn, T.P. & Wingfield, J.C. 1999. Endocrine influences on parental care 

during a short breeding season: testosterone and male parental care in Lapland 

Longspurs (Calcarius lapponicus). Behvaioural Ecology & Sociobiology, 45, 

360-369.

Johnson, L.S., Merkle, M.S. & Kermott, L.H. 1992. Experimental evidence for 

importance of male parental care in monogamous House Wrens. Auk, 109, 662- 

664.

Ketterson, E.D. & Nolan, V. 1994. Male parental behaviour in birds. Annual Reviews o f 

Ecology & Systematics, 25, 601-628.

Kokko, H. 1998. Should advertising parental care be honest? Proceedings o f the Royal 

Society Series B, 265,1871 -1878.

Kokko, H. 1999. Cuckoldry and the stability of biparental care. Ecology Letters, 2, 247- 

255.

Lack, D. 1968. Ecological Adaptations for Breeding in Birds. Methuen & Co., London.

Lyon, B.E. & Montgomerie, R.D. 1985. Incubation feeding in snow buntings: female 

manipulation or indirect male parental care? Behavioural Ecology & 

Sociobiology, 17, 279-284.

Magrath, M.J.L. & Elgar, M.A. 1997. Paternal care declines with increased opportunity 

for extra-pair matings in fairy martins. Proceedings o f the Royal Society Series B, 

264, 1731-1736.

Markman, S., YomTov, Y. & Wright, J. 1996. The effect of male removal on female 

parental care in the orange-tufted sunbird. Animal Behaviour, 52, 437-444.

Moller, A.P. 2000. Male parental care, female reproductive success and extra-pair 

paternity. Behavioural Ecology, 11,161-168.

148



Chapter eight Male incubation in starlings

Monaghan, P., Nager, R.G. & Houston, D.C. 1998. The price of eggs: increased 

investment in egg production reduces the offspring rearing capacity of parents. 

Proceedings o f the Royal Society Series B, 265, 1731-1735.

Moreno, J. & Hillstrom, L. 1992. Variation in time and energy budgets of breeding 

Wheatears. Behaviour, 120, 11-39.

Moreno, J., Veiga, J.P., Cordero, P.J. & Minguez, E. 1999. Effects of paternal care on 

reproductive success in the polygynous spotless starling. Behavioural Ecology & 

Sociobiology, 47, 47-53.

Nilsson, J-A. & Smith, H.G. 1988. Incubation feeding as a male tactic for early 

hatching. Animal Behaviour, 36, 641-647.

Packard, M.J. & Packard, G.C. 1993. Water-loss from eggs of domestic fowl and 

calcium status of hatchlings. Journal o f Comparative Physiology B, 163, 327-331.

Phillips, R.A. & Furness, R.W. 1998. Repeatability of breeding parameters in Arctic 

Skuas. Journal o f Avian Biology, 29, 190-196.

Pinxten, R. & Eens, M. 1990. Polygyny in the European Starling: effect on female 

reproductive success. Animal Behaviour, 40, 1035-1047.

Pinxten, R., Eens, M. & Verheyen, R.F. 1993. Male and female nest attendance during 

incubation in the facultatively polygynous European Starling. Ardea, 81, 125-133.

Rahn, H. & Ar, A. 1974. The avian egg: incubation time and water loss. Condor, 76, 

147-152.

Reynolds, J.D. & Szekely, T. 1997. The evolution of parental care in shorebirds: life 

histories, ecology and sexual selection. Behavioural Ecology, 8, 126-134.

Ricklefs, R.E. & Smeraski, C.A. 1983. Variation in incubation period within a 

population of the European Starling. Auk, 100, 926-931.

Roff, D.A. 1992. The Evolution o f Life Histories. Chapman & Hall, London.

Rooneem, T.M. & Robertsen, R.J. 1997. The potential to lay replacement clutches by 

Tree Swallows. Condor, 99, 228-231.

Sandell, M.I., Smith, H.G. & Bruun, M. 1996. Paternal care in the European Starling, 

Sturnus vulgaris: nestling provisioning. Behavioural Ecology & Sociobiology, 39, 

301-309.

149



Chapter eight Male incubation in starlings

Smith, H.G. 1995 Experimental demonstration of a trade-off between mate attraction and 

paternal care. Proceedings o f the Royal Society Series B, 260, 45-51.

Smith, H.G., Ottosson, U. & Sandell, M. 1994. Intrasexual competition among 

polygynously mated female starlings. Behavioural Ecology, 5, 57-63.

Smith, H.G., Sandell, M.I. & Bruun, M. 1995. Paternal care in the European starling: 

incubation. Animal Behaviour, 50, 323-331.

Smith, H.G. & Sandell, M.I. 1998. Intersexual competition in a polygynous mating 

system. Oikos, 83, 484-495.

Smith, H.G. & von Schantz, T. 1993. Extra-pair paternity in the Eurpoean Starling: the 

effect of polygyny. Condor, 95, 1006-1015.

Stearns, S.C. 1992. The Evolution o f Life Histories. Oxford University Press, Oxford.

Szekely, T. & Cuthill, I.C. 1999. Brood desertion in Kentish Plover: the value of 

parental care. Behavioural Ecology, 10, 191-197.

Szekely, T., Cuthill, I.C. & Kis, J. 1999. Brood desertion in Kentish Plover: sex 

differences in remating opportunities. Behavioural Ecology, 10, 185-190.

Szekely, T. & Cuthill, I.C. 2000. Trade-off between mating opportunities and parental 

care: brood desertion by female Kentish Plovers. Proceedings o f  the Royal Society 

Series B, 267, 2087-2092.

Tinbergen, J.M. & Daan, S. 1990. Family planning in the Great Tit: optimal clutch size 

as integration of parent and offspring fitness. Behaviour, 114, 161-190.

Veiga, J.P. 1990. Sexual conflict in the house sparrow: interference between 

polygynously mated females versus asymmetric male investment. Behavioural 

Ecology & Sociobiology, 27, 345-350.

Verhulst, S., Vanbalen, J.H. & Tinbergen, J.M. 1995. Seasonal decline in reproductive 

success of the Great Tit - variation in time or quality? Ecology, 76, 2392-2403.

Vick, S.V., Brake, J. & Walsh, T.J. 1993. Relationship of incubation humidity and 

flock age to hatchability of broiler hatching eggs. Poultry Science, 72, 251-258.

Vleck, C. 1981. Energetic cost of incubation in the Zebra Finch. Condor, 83, 229-237.

Walsberg, G.E. & Schmidt, C.A. 1992. Effects of variable humidity on embryonic 

development and hatching success of mourning doves. Auk, 109, 309-314.

Webb, D.R. 1987. Thermal tolerance of avian embryos: a review. Condor, 89, 874-898.

150



Chapter eight Male incubation in starlings

Webb, J.N., Houston, A.I., McNamara, J.M. & Szekely, T. 1999. Multiple patterns of 

parental care. Animal Behaviour, 58, 983-993.

Wilson, R.P., Adelung, D. & Latorre, L. 1998. Radiative heat loss in gentoo penguin 

(Pygoscelis papua) adults and chicks and the importance of warm feet. 

Physiological Zoology, 71, 524-533.

Zann, R. & Rossetto, M. 1991. Zebra Finch incubation: brood patch, egg temperature 

and thermal properties of the nest. Emu, 91, 107-120.

151



Chapter nine Nest construction & heat loss

Chapter nine 

The thermal consequences of nest construction in starlings 

(Sturnus vulgaris)

J.M.Reid, P.Monaghan & G.D.Ruxton 

Submitted manuscript.

152



Chapter nine Nest construction & heat loss

Abstract
We investigated the relative influence of the insulative quality of the nest site and of the 

nest itself on the rate at which heat was lost from within a nest, and hence on the thermal 

environment that starlings (Sturnus vulgaris) provided for developing offspring.

Starlings breeding in poorly insulated nest cavities built larger nests that reduced the 

rate of heat loss from within the cavity to a greater extent than starlings breeding in well 

insulated cavities. However, starlings did not compensate completely for the rate of heat 

loss from the original nest site and overall, heat was lost more rapidly from within a 

completed nest when the insulative quality of the original site was poor. We suggest that 

a failure to compensate for a rapid rate of heat loss from a poorly insulated nest site may 

have fitness consequences, and thus that the acquisition o f a well insulated site may be an 

important component of a starling's reproductive strategy.

Nests also play a role in mate attraction in starlings. However, as nest size was a 

poor predictor of the rate of heat loss experienced from within a nest and did not signal 

the ability of a male to acquire a well insulated site, nest characteristics other than size 

may have been more likely to influence mate choice in this population.
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Introduction

In order for offspring to survive to independence and hence for a breeding attempt to be 

successful, parents must generally provide a regulated and secure environment in which 

young can develop safely. The use of a specialised nest structure to help provide such an 

environment is observed within many taxa and is especially common in birds, where the 

majority of species build a nest of some description (Collias & Collias 1984; Brooke & 

Birkhead 1991). Even in groups such as ground and cavity-nesting birds where nests are 

not essential for the structural support of the brood, the construction of a nest may still 

increase the chance of breeding successfully. Nests may protect eggs and chicks from 

climatic extremes (Moreno et al. 1995) and from predators (Collias & Collias 1984), and 

a high quality nest may also increase a male’s chance of attracting a mate (Johnson & 

Searcy 1993; Hoi et al. 1994; Grubbauer & Hoi 1996). More subtlely, recent 

experimental studies in birds have demonstrated that the insulative quality of the nest 

environment can affect the success of a breeding attempt (Lombardo et al. 1995; Chapter 

3). This relationship may arise because the rate of heat loss from a nest directly affects 

the quality of the developmental conditions experienced by offspring. Alternatively, by 

increasing the demand of thermoregulation, poor insulation may affect the ability of 

parents to incubate, or their subsequent ability to rear chicks. Hence nest-building 

parents must create a high quality thermal environment for their developing offspring. 

Indeed, consistent with the hypothesis that thermal considerations should influence nest 

design, birds have been suggested to tailor the insulative quality of their nests to local 

thermal conditions (Kern 1984; ,M0 ller 1987; Franklin 1995). However, the thermal 

environment experienced within a nest is likely to arise as a function of the insulative 

quality of the nest site as well as of the nest itself, and little is known about the relative 

importance of the two. If, by constructing a nest, parents are able to compensate for the 

thermal quality of the original site, then thermal considerations may not exert a major 

influence on nest site selection. If, however, the thermal conditions provided for 

developing offspring depend to a large extent on the intrinsic thermal properties of the 

nest site itself, then the acquisition of a well insulated site may be a crucial stage of a 

breeding event.
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Using a wild population of starlings (Sturnus vulgaris) nesting in natural cavities, 

we measured the rate at which heat was lost from nest cavities both prior to nest 

construction and after nests had been completed. Thus we compared the relative 

influence of the nest and of the nest site on the overall rate at which heat would have been 

lost from the brood, and hence assess the importance of obtaining a well insulated site for 

the developmental conditions provided for dependent offspring.

Methods

Fieldwork was carried out in the Ebro Delta, Spain (2°E, 41°N) between March and June 

1999, where starlings built their nests in cavities under loose tiles on the roofs of 

agricultural buildings. Nests were constructed from grass and straw and were rebuilt at 

the start of each breeding season, with little nest material remaining in cavities between 

years.

Starling colonies were visited regularly during the month before laying began, and 

cavities that were being actively defended by particular males were identified. By 

observing colonies from a distance, this was achieved without disturbing the birds. In 

this way, the cavities in which nests were likely to be built were located before nest- 

building began. Colonies were subsequently revisited so that the progress of nest- 

building and egg-laying within in each cavity could be followed.

As a measure of the insulative quality of a nest site, the rate at which heat was lost 

from a standard object placed within the site was measured. A plaster disc with a 

thermocouple embedded in the centre was warmed to 35°C and placed in a nest cavity. 

Using a TC-08 thermocouple data logger (Pico Technology Ltd, Cambridge, UK), the 

temperature of the disc was recorded every 10 seconds as it cooled towards an ambient 

temperature that was recorded simultaneously. Newton's cooling equation (Egg 

Temperature = Ambient Temperature + (i?exp('c*time)), where B and C are positive fitted 

constants) was fitted to the cooling curve recorded, a model that provided an excellent fit 

to the data (mean R2 of 0.995, range of 0.985 to 0.999). The best-fit value of the 

exponential cooling coefficient C reflects the rate at which the disc cooled down relative 

to ambient temperature and thus represents the rate at which heat was lost from within the
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nest site. This process was repeated and the value of the cooling coefficient was 

estimated for each nest cavity both before nest building began and again when the first 

egg was laid, 22.6 days later on average. The egg was removed from the nest and stored 

safely in an insulated box whilst the post-laying measurement was made.

In order to verify that cooling coefficient estimates were not influenced by any 

seasonal environmental effects, rates of heat loss from within ten roof cavities that were 

not being used by breeding starlings were also estimated. These cavities were situated 

adjacent to active nest cavities, and cooling coefficients were measured early during the 

season and again when laying commenced in the adjacent active cavities (24.3 days later 

on average). Estimated rates of heat loss from unused cavities did not change during this 

period (mean initial and final cooling coefficient values of 1.05 ± 0.05 and 1.03 ± 0.05 

respectively, paired t test, tg = -1.0, P = 0.34). Thus any change in the estimated rate at 

which heat was lost in an active starling nest cavity between the initial measurement and 

measurement at laying was due to the construction of the nest.

As the roofs in which nests were built were sloping, starlings initially blocked the 

lower end of the nest cavity with a 'bung' of nest material, providing a solid base above 

which a nest cup was constructed. The length of the bung and the diameter of the nest 

cup were measured when the first egg was laid. The quantity of material covering the 

cup floor was scored on a scale of 0 to 3, with 0 representing an absence of floor 

covering, 1 representing partial covering, 2 representing a complete covering less than 

lcm deep, and 3 representing a complete covering more than 1cm deep. The bung, 

diameter and floor covering measurements for each nest were correlated with each other 

and, using factor analysis (SPSS Version 8.0), they were combined into a single variable 

describing nest size that encompassed 59.9% of the original variation in the three 

individual measures.

In starlings, males are responsible for the majority of nest construction and in the 

partially polygynous population studied here, approximately a quarter of males defended 

more than one nest cavity and constructed more than one nest. In order to ensure 

independence of data, when two nests belonging to the same male were studied, the mean 

values of the nest dimensions and cooling coefficients measured in that male's nests were 

used in the analyses. Thus individual males rather than individual nests formed the unit of
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analysis. In practice, the dimensions and cooling coefficients of the nests belonging to 

the same male tended to be very similar, and the qualitative results of the analyses did not 

differ when data were pooled in this way, and when all nests were considered 

independently. Parametric statistical tests were used throughout the analysis, as in no 

case did the data distributions violate the appropriate assumptions. All tests were two- 

tailed, and means are presented ± one standard error.

Results

The initial rate of heat loss was measured in 43 cavities (belonging to 33 different males) 

in which nests were subsequently built and eggs laid. The initial cooling coefficient 

values recorded in empty cavities varied between 0.82 and 1.74 °C'1 with a mean of 1.10 

± 0.04 °C'1. Thus the insulative quality of empty cavities varied greatly, with heat being 

lost more than twice as rapidly in some cavities as in others. At laying, mean cooling 

coefficient value was 0.91 ± 0.03 °C'1 (range of 0.66 to 1.32), and thus the construction 

of a nest significantly reduced the rate at which heat was lost from the test object (Paired 

t test, ^ 2  = 8.4, P < 0.001), a mean reduction in cooling coefficient of 0.19 or 

approximately 17% of the original value.

The magnitude of the reduction in the rate of heat loss following the construction 

of the nest was positively correlated with the rate at which heat was lost in the empty nest 

cavity (Fig. 9.1). Hence during nest construction, starlings reduced the rate of heat loss 

from within a cavity to a greater extent when the insulative quality of the original site had 

been poor. However, the rate of heat loss in a nest at laying was still strongly correlated 

with the rate of heat loss in the empty site (Fig. 9.2). Thus despite reducing the rate of 

loss to a greater extent, the nests built by starlings with poorly insulated nest sites did not 

fully compensate for the relatively rapid rate at which heat was lost from the unmodified 

cavity.
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Figure 9.1. The relationship between the change in the rate of heat loss from within a 

starling nest cavity following construction of a nest, and the rate at which heat was lost 

from within the empty cavity. The change in heat loss rate was correlated with the 

original rate of heat loss (r31 = 0.56, N  = 33, P = 0.001).
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Figure 9.2. The relationship between the rate at which heat was lost from within a 

completed starling nest and the rate of heat loss from within the empty cavity. The rate 

of heat loss from within a nest was correlated with the insulative quality of the original 

cavity (r31 = 0.82, N=  33, P < 0.001).
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The magnitude of the reduction in the rate of heat loss from within a cavity 

following the construction of the nest was correlated with the overall size of the nest (Fig. 

9.3). Thus the larger the nest that was constructed, the greater the reduction in the rate of 

heat loss from within the site. As expected given the relationship between the insulative 

quality of the original cavity and the magnitude of the reduction in heat loss during nest 

construction, nest size was also correlated with the initial rate of heat loss from the cavity 

(r3 i = 0.40, N  = 33, P = 0.02). Thus starlings breeding in poorer nest sites built larger 

nests. However, there was no relationship between nest size and the rate at which heat 

was lost from within a nest at laying foi = 0.03, N=  33, P = 0.87), so actual nest size was 

a poor predictor of the quality of the thermal environment that would have been 

experienced by offspring.

Figure 9.3. The relationship between the change in the rate of heat loss from 

within a starling nest cavity following nest construction, and the size of the nest 

that was constructed. The change in the rate of heat loss was correlated with the 

size of the constructed nest {r̂ \ = 0.67, N  = 33, P < 0.001).
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Discussion

The construction of a nest within a cavity nest site significantly reduced the rate at which 

heat was lost from a standard object placed within the cavity. Such reductions in rates of 

conductive and convective heat loss are likely to affect other objects similarly. Hence 

constructing a nest is likely to reduce the rate at which heat is lost from unattended 

clutches of eggs during incubation, and from chicks during the subsequent rearing period. 

A reduction in the rate of heat loss from within a nest may also increase the proportion of 

time that a parent can spend incubating (Bryan & Bryant 1999; Chapter 4), further 

improving the developmental conditions provided for offspring. Although the average 

reduction in cooling coefficient was only 0.19 or 17%, this reduction in heat loss rate is 

similar in magnitude to that which, when experimentally induced during the incubation 

stage of a starling's breeding attempt, significantly increased the proportion of offspring 

that fledged successfully (Chapter 3). Thus the construction of a nest has thermodynamic 

consequences that may be sufficient to improve breeding success, and nest construction 

can be viewed at least partly as an adaptation to improve the thermal conditions 

experienced by parents and developing offspring.

Starlings that built nests in cavities within which the rate of heat loss was initially 

rapid reduced the rate of heat loss to a greater extent than starlings breeding in cavities 

that were initially well insulated. Since across the range of nest sizes constructed the 

thermal quality of the actual nest was correlated with nest size, a relationship that has 

been reported previously (Schaefer 1980; Skowron & Kern 1980; Hoi et al. 1994; 

Grubbauer & Hoi 1996), this is likely to have been because starlings nesting in poorer 

sites built larger nests. However, the overall rate of heat loss from completed nests was 

still greater in sites where the original rate of loss had been rapid. Thus nest-building 

starlings did not compensate completely for the original insulative quality of their cavity. 

This suggests that the thermal environment that parents provide for developing offspring 

depends on the insulative quality of the nest site that they acquire. These results are 

consistent with those of a study on Pouched Mice, in which the thermal quality of the 

nest site had a greater impact on the conditions experienced by young than the thermal 

quality of the nest itself (Ellison 1995). Nest-building starlings may have failed to 

compensate completely for a rapid rate of heat loss from a nest site because the cost of
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building a larger nest and reducing heat loss further was greater than the cost of 

continued heat loss. Alternatively, the addition of more nest material may have had little 

further impact on the rate at which heat was lost from the site. Experimental 

manipulation of the amount of material within an individual nest site would be required 

in order to examine the full relationship between nest size and insulative quality, and thus 

to test the latter hypothesis.

The consequence of the rate of heat loss experienced within a nest for the 

breeding success achieved in that nest could not be investigated directly in this study. 

The number of offspring reared during a breeding attempt depends greatly on the amount 

of care provided by the attending parents, and in the facultatively polygynous starling 

population studied here, the extent to which males contributed to parental care varied 

markedly between nests, greatly influencing breeding success (Chapter 8). Thus in this 

study, the consequences of nest quality for breeding success were confounded by the 

variable occurrence of paternal care. Further, as parents that provide poor nests may also 

perform poorly in other aspects of parental care, a correlative study cannot prove a 

deterministic link between nest quality and breeding success. However, although the 

range of heat loss rates from standard objects placed within completed nests was 

narrower than the range of rates in empty cavities, there was still a twofold variation 

between nests. The magnitude of this range is greater than the mean reduction in heat 

loss that was due to the construction of a nest, and also than the magnitude of the 

experimental reduction in heat loss that improved breeding success during a study on 

another population of starlings (Chapter 3). Thus failure to compensate for the rate of 

heat loss from a poor nest site is likely to have fitness consequences for parents. Further, 

as starlings nesting in poorly insulated cavities built larger nests and constructing a large 

nest may itself be costly, requiring considerable time and energy (Gauthier & Thomas 

1993; Lens et al. 1994; Nores & Nores 1994; Cavitt et al. 1999), the overall fitness cost 

associated with breeding in a poorly insulated cavity may be high.

Multiple factors are likely to influence where a parent decides to situate a nest. 

For example, nest location may be influenced by the presence of nests of the same 

(Ramsay et al. 1999) or other species (Bogliani et al. 1999), and may influence the 

chance that a nest will be predated (Hatchwell et al. 1996, 1999) or parasitised (Larison
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et al. 1998; Moskat & Honza 2000). However, as nest-building starlings did not 

compensate fully for selecting a poorly insulated nest site, a failure that may be costly, 

the acquisition of a well insulated nest site is likely to be an important stage of a breeding 

attempt. Previous studies have suggested that birds may indeed select nest sites at least 

partly on the basis of their thermal characteristics (Inouye et al. 1981; Walsberg 1981). 

In cavity nesting species, the availability of potential nest sites may limit breeding 

opportunities (Newton 1994) and competition over high quality sites may be intense. The 

outcome of such competition and hence an individual's ability to compete may have a 

substantial bearing on an individual's subsequent reproductive performance (Ingold 1998; 

Ramos et al. 1997). Studies of the allocation of resources during avian reproduction have 

traditionally commenced with egg-laying, but this study suggests that it may also be 

important to consider the investment that an individual is able to make during earlier 

stages of a breeding attempt.

In species such as starlings where males are responsible for the majority of nest 

construction, it has often been suggested that females choose mates at least partly on the 

basis of the constructed nest or nests (Collias & Victoria 1978; Collias & Collias 1984; 

Evans & Bum 1996). Nest size has frequently been considered to be a principal 

parameter on which selection might act (Hoi et al. 1994, 1996; Palomino et al. 1998; 

Soler et al. 1998). Females choosing large nests may gain direct benefits if larger nests 

are of better thermal quality (Hoi et al. 1994, 1996), or 'good genes' if nest size is a 

sexually selected indicator of male quality. However, in this study, although nest size 

was related to the insulative quality of the actual nest, size was a poor predictor of the 

overall thermal environment that offspring and parents would experience. Further, as the 

males that built large nests had generally acquired nest sites that were thermally poor, 

there was no clear evidence that nest size signaled male quality. Thus in starlings, nest 

characteristics other than size may function in mate attraction.
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Chapter ten 

General Discussion

The problem of protecting offspring and regulating developmental conditions is, in 

viviparous and ovoviviparous organisms, solved by retaining offspring internally until 

after considerable development has taken place. However, the evolution of oviparity, 

especially coupled with the late development of endothermy, requires the corresponding 

evolution of post-laying parental care for eggs (Clutton-Brock 1991). In many species, 

this takes the form of incubation. Whilst incubation is perhaps most widespread in birds, 

it is also observed in other vertebrate taxa. A wide range of reptiles and a small number 

of mammals also lay eggs that require environmental conditions to be regulated in order 

for the embryos to develop and hatch successfully (Matthews 1969; Bellairs 1970). In 

order to elucidate overall principles of the resource requirements and life-history 

consequences of incubation, it is likely to be valuable to draw together our knowledge of 

incubation in terrestrial vertebrates in general.

The processes of egg-production and incubation in oviparous mammals are 

relatively poorly known. Indeed, the egg-laying behaviour of the spiny anteater was 

observed for the first time within the last decade (Rismiller & Seymour 1991), and our 

knowledge of platypus embryology is based on a small number of museum specimens of 

Ornithorhynchus anatinus (Hughes & Hall 1998). Hence at present, our knowledge of 

mammalian biology adds little to the understanding of the resource allocation patterns 

associated with incubation.

In contrast, a considerable amount is known about reptile embryology and 

incubation. In many ways, the incubation conditions required by reptilian and avian 

embryos are similar. In particular, both require tightly regulated thermal environments 

(Lundy 1969; Ferguson 1985). The incubation temperatures that maximise hatching 

success are typically slightly lower in reptiles than in birds (eg, 28°C in broad-shelled 

turtles (Chelodina expansa, Booth 2000) and 30°C in the lizards Lampropholic 

guichenoti and Bassiana duperreyi, Booth et al. 2000). However, bird and reptile eggs 

incubated in natural situations may experience similar degrees of temperature fluctuation
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(Webb 1987; Booth 1998a; Elphick & Shine 1999; chapter 5), and hence the problems 

faced whilst incubating a clutch may to some extent be similar for avian and reptilian 

parents. However, as well as similarities, there are also marked differences in the optimal 

developmental conditions for birds and reptiles. In particular, the frequent egg-turning 

required to maximise hatching success in birds (Lundy 1969; Deeming et al. 1987; 

Wilson & Wilmering 1988) is not required and can even be harmful in reptiles (Ferguson 

1985; Chan 1989). Despite the acknowledgement that gaseous conditions may greatly 

affect embryonic development in both birds and reptiles, the extent to which gaseous 

environments vary in the field, and the role of parental incubation in regulating gaseous 

exchange, are poorly understood. These are gaps in our knowledge that could very 

valuably be addressed.

Deviations from optimal developmental conditions can affect reptilian embryos in 

similar ways to birds. As in birds, slight increases in mean incubation temperature can 

shorten the incubation period (Marco & Perez-Mellado 1989; Booth 1998b; Downes & 

Shine 1999; Angilletta et al. 2000; Booth et al. 2000). Embryos are able to survive short 

periods of exposure to suboptimal temperatures (Angilletta et al. 2000), but are unable to 

actively compensate for changes in thermal conditions (Booth 1998c). The consequences 

of deviations from optimal conditions depend on the magnitude and duration of the 

deviation, and the embryo's age at exposure (Downes & Shine 1999). However, 

considerably more is known about the physiological and fitness consequences of small 

fluctuations in developmental conditions in reptiles than in birds. Small temperature 

changes can influence rates of embryonic oxygen consumption (Booth 1998b; Booth 

2000) and metabolism (Steyermark & Spotila 2000), and the development of major body 

functions (eg heart rate, Birchard & Reiber 1996). Post-hatching phenotypic 

consequences of incubation conditions have also been demonstrated on a number of 

occasions. Most particularly, developmental temperature can affect sex determination in 

a range of reptiles, including turtles, crocodilians, lizards and sphenodons (Harlow & 

Shine 1999; Rhen & Lang 1999; Shine 1999a; Bragg et al. 2000; Broderick et al. 2000). 

Sex determination is likely to occur due to the temperature-dependent activity or 

expression of genes such as Dmrtl (Kettlewell et al. 2000). Despite reports in the 

popular press, temperature-dependent sex determination has not been conclusively
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demonstrated in birds, and may be less likely as, unlike reptiles, all birds show 

chromosomal sex determination (Tagaki et al. 1972; Ansari et al. 1988). However, as the 

gene Dmrtl is thought to play a role in avian (and mammalian) sexual development 

(Kettlewell et al. 2000), it would be interesting to investigate the possibility that 

temperature-dependent expression might also occur and affect developmental patterns in 

avian embryos.

Once sex has been determined, developmental conditions can further influence 

reptile hatchling morphology and physiology. For example, incubation temperature can 

affect snout and rail lengths and head widths in lizards and turtles (Booth 1998b; Madsen 

& Shine 1999; Booth 2000; Booth et al. 2000; Brana & Ji 2000), locomotor performance 

and chemosensory ability in lizards (Downes & Shine 1999), and post-hatching 

behaviour in Pine Snakes (.Pituophis melanoleucus, Burger 1998a, 1998b). Such changes 

may have considerable consequences for offspring fitness. Specifically, incubation 

regime has been shown to influence an individual's future ability to detect and escape 

from predators (Burger 1998a, 1998b; Downes & Shine 1999). Such clear links between 

developmental conditions and post-hatching phenotype and fitness have rarely been made 

in birds, although artificial curtailment of the incubation period can affect hatchling 

morphology and locomotory ability in mallards (Anas platyrhynchos) and pheasants 

(Phasianus colchicus, Persson 2000). The possibility that the conditions experienced 

during early development may have important and permanent consequences for an 

individual's future fitness and life history is attracting increasing attention (eg, Metcalfe 

& Monaghan 2001). Some studies have now considered the consequences of incubation 

conditions for chick survival in birds (eg, chapter 7). However, carefully controlled 

studies of the consequences of incubation conditions for an avian embryo's subsequent 

behaviour, growth and reproduction would prove extremely interesting, and would fill an 

important gap in our current knowledge.

Although more is known about the links between incubation conditions and 

embryo development and phenotype in reptiles than in birds, much less is known about 

parental incubation behaviour, or about the demands and costs that incubation may 

impose upon parents. This line of investigation could profitably be pursued by 

herpetologists. However, one major study on tropical pythons (Liasis fuscus) suggests
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that the thermal quality of the nest site and thus the energetic demand of incubation can 

greatly affect a female's future life-history. Females laying in cold sites incubated for 

longer, suffered higher mortality due to starvation and predation, and took longer to breed 

again than females laying in warm sites (Madsen & Shine 1999). Thus, as in starlings 

(ichapters 3 & 9), acquisition of a well insulated nest site may play an important role in 

determining a female's current and future reproductive success. Indeed, there is evidence 

that the skink Bassiana duperreyi may actively select warm nest sites, allowing it to 

breed successfully in relatively cold climates (Shine 1999b). However, other lizards (eg, 

Nannoscincus maccoyi) may have evolved to tolerate cold conditions rather than to avoid 

them. Embryos of this species actually developed faster when exposed to relatively low 

temperatures (Shine 1999b), although the consequences of low temperatures for embryo 

energy expenditure or hatchling morphology and physiology were not reported. Similar 

developmental tolerance to cold has been suggested in birds that inhabit particularly 

extreme environments (eg, penguins, Webb 1987), but has not yet been rigorously 

demonstrated.

Although environmental effects on the development of reptilian embryos have 

been clearly demonstrated, individual phenotypes can be further influenced by 

interactions with parental and genetic factors. Both maternal and paternal effects on 

incubation have been demonstrated. Embryo sex determination has been linked to the 

concentration of maternally-produced hormones present in the yolk as well as to 

temperature (Bowden et al. 2000), and paternal genotype can influence the duration of 

incubation, and offspring morphology (specifically snout size) and early growth rates 

(Olsson et al. 1996). Finally, once the sex of a reptile embryo has been determined, its 

future development may be influenced by gender-dependent environmental interactions. 

Elphick and Shine (1999) observed sex-specific phenotypic responses to exposure to 

fluctuating incubation conditions. Although the duration of the incubation period has 

been reported to differ between male and female embryos in black guillemots (Cepphus 

grylle, Cook et al. submitted), nothing is known about the specific responses of male and 

female embryos to different environmental conditions in birds. The intriguing 

possibilities that incubation requirements might differ between the sexes, and that parents 

might therefore adjust their incubation effort in response to the sex of their offspring
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remain to be investigated. Indeed, given the recent interest in investigating offspring sex- 

specific patterns of parental investment during chick-rearing (Leonard et al. 1994; 

Nishiumi et al. 1996; Lessells et al. 1998; Radford & Blakey 2000) and egg-production 

(Anderson et al. 1997; Cordero et al. 2000), it is surprising that patterns of parental effort 

during incubation have received such scant attention.

Traditionally, investigation of avian life-history strategies has focussed largely on 

the resource allocations made during chick-rearing (see chapter 1). Although there is still 

much work to be done, some headway has now been made in addressing this bias with 

respect to egg-production and incubation. However, there is evidence from both birds 

and reptiles that nest site quality can have substantial life history consequences for both 

parents and current offspring. Investment in nest-site acquisition and nest-building must 

therefore be viewed as a major life-history phase, the demands and consequences of 

which desperately require experimental investigation. In birds, the majority of 

experimental studies on passerine resource allocation have been carried out in nest-box 

populations. Such study systems obviously confer huge advantages in terms of nest 

accessibility, and thus in the ease of high-quality data collection. However, as nest-box 

provision may result in the availability of many nest sites of relatively similar thermal 

quality, the use of nest-boxes may remove a major determinant of patterns of 

reproductive investment. It would therefore be extremely valuable to pursue the 

investigation of resource allocation and life-history strategies to a greater extent in 

naturally-nesting populations.
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