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ABSTRACT

The extent to which the indirect pathway of T cell recognition contributes to graft 

rejection remains to be clarified, and this thesis examines its role in the antibody- 

mediated rejection of allografts in the MHC class I disparate rat strain combination, 

PVG-R8 (RTl.AaB/CuDu) to PVG-RT1U (RT1.AUB/CUDU). A series of overlapping 

15-mer allopeptides (PI-PI8) derived from the donor Aa antigen, were used to map 

the immunogenic, dominant and sub-dominant epitopes of the Aa molecule.

Analysis of the alloantibody response mounted to individual allopeptides following 

their subcutaneous administration suggested that the 15-mer peptides P7 and P I6, 

derived from the hypervariable regions of the a l  and oc2 domains respectively, and 

the 24 amino acid a l  peptide were immunogenic. The dominant T cell epitope was 

characterised by examination of the in vitro T cell proliferative responses to 

individual allopeptides by LNC from RT1U animals immunised with Aa-bearing R8 

allografts. Proliferation focused upon those peptides derived from the hypervariable 

region of the a l  domain, an area corresponding to P7 and P8.

Analysis of the alloantibody response to the intact Aa molecule following peptide 

priming demonstrated the presence of two additional sub-dominant T cell epitopes 

located within PI and P9. These peptides derive from areas of the Aa molecule that 

are identical in amino acid sequence to the corresponding areas of the RT1U 

molecule, and are therefore, in effect, self-RTlu peptides. Priming with both 

dominant and sub-dominant epitopes accelerated the rejection of subsequent R8 

cardiac allografts, suggesting that peptide priming is able to indirectly activate 

recipient T cells.

It was examined whether the dominant and sub-dominant T cell epitopes could be 

used to favourably modulate the immune response to the intact Aa molecule by 

intravenous administration of high doses of P7 and PI to RT1U animals before 

challenge with an R8 blood transfusion. Downregulation of the cytotoxic and IgM 

alloantibody responses were observed and in addition, P7 was able to downregulate



the IgG2b response. Slight downregulation of the cytotoxic alloantibody response to 

an R8 cardiac allograft was seen following immunisation with P7, but the IgM and 

IgG2b responses were unaltered. Prolonged allograft survival was not observed.

These results suggest that the indirect response to an allogeneic MHC molecule may 

involve additional unexpected epitopes and consequently, that the success of 

peptide-based tolerogenic protocols requires a fuller understanding of this process.
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CHAPTER ONE:

INTRODUCTION

u  THE MAJOR HISTOCOMPATIBILITY COMPLEX:

1 . 1 . 1  Genetics

The major histocompatibility locus was originally defined by the work of Gorer 

(Gorer 1937, Gorer 1938), through his studies on the rejection of tumours by inbred 

strains of laboratory mice. The region was later called H-2 (Gorer et al 1948). Since 

the discovery of H-2, a similar gene complex has been observed in all vertebrate 

species examined. It has been termed the Human Leukocyte Antigen (HLA) in 

humans (Dausset 1958), and RT1 in rats (Palm 1964). See Table 1.

The MHC consists of three main regions, class I, class II and class III. All three 

regions encode products involved in the immune response to protein antigen. Class I 

and class II MHC molecules are generally expressed as cell surface glycoproteins. 

Class III genes however encode soluble products such as C2, C4 and factor B, which 

are members of the complement cascade, (Porter 1985), TNF-a and -(3 (Spies et al 

1986, Carroll et al 1987), and some of the heat shock protein 70 (hsp70) family 

(Sargent et al 1989)

The MHC is situated on different chromosomes in different species. In humans, it is 

found on chromosome 6, in mice, chromosome 17, and in rats, on chromosome 20 

(Locker et al 1990, Helou et al 1998). The HLA and H-2 complexes are amongst the 

most definitively mapped regions of the human and mouse genomes respectively 

(Trowsdale 1995), and although the RT1 complex has not been as extensively 

mapped, much information about its genomic arrangement has been recently 

gathered (Gill et al 1997).

The genomic organisation of the HLA complex is similar to that seen in the majority 

of species studied, with the notable exception of mice and rats. The class II genes are 

found at the centromeric end of the complex on the short arm of chromosome 6,



SPECIES MHC CLASS I GENES CLASS H GENES

HUMAN HLA A B C DP DQ DR

MOUSE H-2 K D L I-A I-E

RAT RT1 A C/E B D

Table 1.1: The nomenclature of the MHC class I and class II 
genes in the human, mouse and rat.

followed by the class III genes, and the class I genes are located towards the 

telomeric end of the complex.

There are three major class II loci, HLA-DP, -DQ and -DR (Trowsdale et al 1991) 

Each of these loci code for at least one a  and one p chain. The class II region also 

encompasses a cluster of genes associated with peptide processing and transport, 

including TAP (Spies et al 1990), tapasin (Herberg et al 1998) and LMP (Driscoll 

1994). In addition, a non-classical class II gene, HLA-DM (Kelly et al 1991), 

involved in the loading of peptides onto class II molecules (Fling et al 1994) is 

present in this region.

The classical (la) class I loci in the HLA complex are known as HLA-A, -B and -C 

(Trowsdale et al 1991). HLA-A and -B are highly polymorphic, with over 20 HLA- 

A and 40 HLA-B alleles having been identified to date. HLA-C is far less 

polymorphic, with just over 10 alleles thus far identified, and is thought to be 

involved in NK cell specificity (Ciccone et al 1990). In addition to the classical class 

I genes, several non-classical (lb) class I genes have also been identified; HLA-F, -G 

and -H. These have not been well defined, although it is known that HLA-G is 

expressed on the trophoblast at the maternal-foetal interface, and may be involved in 

immunity to the developing foetus (Ellis et al 1990).

The organisation of the murine histocompatibility complex is fundamentally 

different to that seen in humans, in that it appears to have undergone a major 

translocation event which has re-positioned the class II and class III loci between the



d p d m  t a p  d q d r B C E A H F G

Human

(Classical) (Non-classical)

P M TAP A E 
,MP

Qa Tla

Mouse

III

A K F H DM TAP B D E C grc G M

Rat

(Classical) (Non-classical)

Figure 1.1: Genomic organisation o f  the human, mouse and rat MHC regions 
(maps are not to scale). The relative locations o f  the class I, class 
II and class III loci are illustrated, as well as other relevant genes, 
including those involved in antigen processing. Based upon 
Trowsdale, Immunogenetics, 41 (1): 1-17; 1995.

two major class 1 loci (see Figure 1.1). As the rat displays a similar MHC 

organisation to the mouse, this translocation event probably happened shortly before 

the evolutionary separation o f  the two species. Thus, in the mouse, the class II loci, 

l-A and I-E, and the class 111 loci separate the two classical class I loci, H-2K and H- 

2D/L. The murine class II region bears striking similarity to the human class II 

region, with l-A and I-E comparable to HLA-DQ and HLA-DR. Again, a cluster o f  

transporter genes are found within the class II region, including H2-M, which is 

equivalent to the human HLA-DM  (Cho et al 1991).

The two major rat class I loci, RT1 A and RT1 E, occupy two separate regions o f  the 

MHC, but only the RT1.A locus expresses antigens with classical functions. 

Between the two class I loci are the functional class II genes which encode RT1.B 

and RT1.D, while a third class II locus, RT1.H is not expressed. A similar



arrangement of RT1.DM (analogous to HLA-DM and H2-M), TAP (Carter et al 

1994), tapasin (Herberg et al 1998) and LMP exists. The second class I region is 

situated to the right of the histocompatibility complex, and encodes the RT1.E, .C, 

.G and .M antigens. These antigens, although numerous (Jameson et al 1992), are 

classed as non-classical, in that they do not exhibit polymorphism, are not 

serologically detectable, do not bind peptide and do not elicit a cytotoxic T cell 

response. This view has however been recently challenged by the observation that 

certain rat non-classical antigens are, in fact, functional (Leong et al 1999). The 

RT1.A locus displays a more limited polymorphism than its equivalent antigens in 

mouse and human (Gill et al 1987), and it has been suggested that in the rat, the use 

of non-classical antigens may compensate for this.

1.1.2 Structure and Function

MHC class I and class II molecules are both heterodimeric transmembrane 

glycoproteins, whose primary function is the presentation of protein fragments to T 

cells. The products encoded by the MHC are members of the Ig-superfamily 

(Bjorkman et al 1987b, Williams et al 1988). However, fundamental differences in 

the structure and function of the two MHC sub-classes exist.

MHC class I (see Figure 1.2a) consists of two sub-units, a polymorphic a  chain of 

45kDa tethered to the cell membrane, and a non-covalently linked 12kDa molecule, 

P2 -microglobulin (P2M), which is not attached to the membrane. The gene encoding 

P2M displays limited polymorphism, and is on a different chromosome from the 

MHC (chromosome 15 in humans). The heavy chain consists of five domains; three 

globular extracellular domains, a l ,  a2, and a3, each of which are approximately 90 

amino acids long, a transmembrane domain, and an intracellular domain. The 

proximal a3 domain and P2M display the typical folding structure of Ig family 

members, whereas the distal a l  and a2 domains display a structure uniquely 

tailored to their function. Each comprises an extended a-helix, above a platform of 

four antiparallel P strands. The distal part of the class I molecule therefore forms a



a l

a2

COOH COOH

a2a l

a3

COOH

Figure 1.2: Schematic representation of A) MHC class I, and B) MHC 
class II. Adapted from Lechler et al, 1995.

groove, with the (3-pleated sheets constituting the base of the groove, and the two a- 

helices forming the walls.

MHC class II molecules (Figure 1.2b) consists of two separate chains, an a  chain 

(32kDa) and a p chain (28kDa), both encoded within the MHC class II region. Each 

chain has two extracellular domains (a l and a2, and pi and P2), a transmembrane 

domain, and an intracellular domain. Again, the two sub-units closest to the cell 

membrane (a2 and P2) display a typical Ig-like structure, and the two distal domains 

(a l and p i)  consist of an a-helix above a floor of P-pleated strands.

Prior to the elucidation of the fine structure of the class I MHC molecule, it was 

appreciated that MHC formed a complex with antigenic peptide (Babbitt et al 1985, 

Buus et al 1987), but the nature of this complex was unclear. Bjorkman’s seminal 

work in elucidating the crystal structure of the HLA-A2 molecule (Bjorkman et al 

1987b, Bjorkman et al 1987a) (see Figure 1.3) clearly demonstrated the presence of 

an antigen-binding cleft. Furthermore, an area of electron dense material was

-7 -



identified within this cleft, and it is now known that this represents bound peptide. 

The crystal structures of human HLA-Aw68 (Garrett et al 1989) and HLA-B27 

(Madden et al 1991), and mouse H-2Kb (Fremont et al 1992) and H-2Db (Young et 

al 1994) class I molecules have been subsequently characterised, and a similar 

structure has been found in all cases. The comparison of MHC class I sequences has 

shown that the area which exhibits the greatest degree of polymorphism is that 

comprising the T cell receptor contact region/antigen-binding site (i.e. the a l  and a2 

domains). This supports the hypothesis that MHC polymorphism exists to permit 

binding to as wide an array of peptides as possible.

The crystal structure of HLA-DR1 was published in 1993 (Brown et al 1993), and it 

was seen that the basic structures of class I and class II molecules are similar. They 

do, however, exhibit fundamental differences in their ability to bind and present 

peptide. MHC class I optimally binds peptides of 8-10 amino acids in length (Falk et 

al 1991). The groove itself is enclosed at either end, and peptide is seen to bind 

tightly to either end of the groove by means of both hydrogen bonds at conserved 

residues, and allele-specific pockets, created by amino acid variations, into which 

peptide side chains can slot. Peptides of slightly longer length have also been 

observed binding to MHC class I (Guo et al 1992). These peptides bind conserved 

residues at position number 2 and at the carboxy terminus and bulge outwards from 

the middle of the groove.

The antigen-binding cleft of MHC class II in contrast appears to be open-ended. 

This allows for greater flexibility in the length of class II-associated peptide, as the 

peptide can extend out of either end of the groove. The optimal length of peptides 

eluted from MHC class II is between 13 and 17 amino acids (Rudensky et al 1991, 

Chicz et al 1992). To compensate for the lack of binding sites at its ends, the class II 

groove contains binding points for peptide along its length. These binding points are 

conserved, resulting in a more stringent orientation of peptide within the groove.

For example, Stem and colleagues (Stem et al 1994) observed that a peptide from 

the influenza vims bound to HLA-DR1 was held in an extended conformation with a 

pronounced twist. Whilst five of the thirteen peptide side chains were embedded into



Figure 1.

C

3: The crystal structure o f  the M HC class I molecule A) without bound 
peptide, B) with bound peptide and C) in association with the TCR. 
Pictures are taken from Bjorkman et al, 1987.
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allele-specific pockets (thus accounting for the peptide specificity of HLA-DR1), 

twelve hydrogen bonds between conserved HLA-DR1 residues and the peptide main 

chain also contributed to the binding of the peptide.

L2 ANTIGEN PROCESSING AND PRESENTATION:

1.2.1 MHC Class I

1.2.1.1 Antigens are Processed Before Presentation by MHC Class I

MHC class I molecules generally present protein antigen derived from endogenous 

sources (e.g. viral antigens) to CD8 T lymphocytes. It was originally thought that 

virus-specific CTL recognised intact viral glycoproteins expressed on the surface of 

infected cells. It was not until the mid 1980’s that Townsend (Townsend et al 1985) 

suggested that CD8 T cells may in fact recognise degraded antigen in a manner 

similar to that previously described for CD4 T cells (Unanue 1984). Initial studies 

examined the response to viral nucleoprotein (NP); a non-glycosylated protein that 

accumulates in the nuclei of infected cells. Transfection of murine cells with a series 

of truncated viral NP genes showed that three distinct NP epitopes could be 

recognised by CTL. These results suggested the existence of a mechanism allowing 

for transport to and the presentation of proteins at the cell surface (Townsend et al 

1985). Furthermore, the NP epitopes recognised by CTL could be defined by small 

synthetic peptides, implying that CTL recognise short stretches of protein 

(Townsend et al 1986b). A further study from the same group (Townsend et al 

1986a) reported that CTL raised against the intact glycosylated transmembrane viral 

protein, haemagglutinin (HA) could respond to cells expressing HA devoid of its 

signal sequence, and vice versa.

Maryanski et al performed further studies to determine whether this method of viral 

protein recognition was also applicable to other antigens. Using murine cells 

transfected with the genes for HLA-A24 and HLA-CW3, the group generated CTL 

that were specific for human class I antigens. In addition to lysing HLA-transfected 

cells, these CTL were also able to lyse syngeneic HLA-negative cells in the presence

-10-



of synthetic HLA peptide (Maryanski et al 1986). This was the first demonstration 

that peptide could associate with intact MHC class I molecules in order to provoke a 

cytotoxic T cell response. Further proof that peptide does in fact associate with 

MHC class I was provided by Guillet et al (Guillet et al 1986). They demonstrated 

that the addition of non-related peptides could block the response of T cells to 

peptides derived from the bacteriophage X cl protein, and concluded that the non­

related peptides were competitively inhibiting the binding of the bacteriophage 

peptides to self-MHC.

The above studies all suggest that small stretches of modified protein antigen 

associate with MHC class I molecules within the cell before being transported to the 

cell surface for survey by CD8  T cells. As mentioned in section 1.1.2, Bjorkman’s 

elucidation of the crystallographic structure of MHC, and in particular, the nature of 

the peptide binding cleft (Bjorkman et al 1987b, Bjorkman et al 1987a) confirmed 

the necessity of antigen processing prior to presentation.

Stable cell surface expression of MHC class I requires that all the subunits of the 

molecule are correctly assembled, which takes place in the ER under the care of 

chaperone molecules. Following assembly, class I-(32M dimers associate with 

peptide. Peptide generation occurs in the cytosol, where endogenous proteins are 

degraded by the main cytosolic protease, the proteasome (Goldberg et al 1992). 

Following their generation, peptides are translocated into the ER by means of the 

ATP-dependent TAP transporter complex, where they associate with nascent MHC 

class I molecules.

Targeting of endogenous antigen to the proteasome is thought to be largely due to 

conjugation of multiple ubiquitin molecules to internal lysine residues of the protein. 

As well as providing a signal for proteasomal uptake, ubiquitination is thought to 

destabilise protein molecules, thereby rendering them more susceptible to 

degradation. It is unclear exactly how such destabilisation is achieved, although 

unfolding of the tertiary structure has been suggested (Hochstrasser 1996).
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1.2.1.2 The Proteasome

The proteasome is a 20S multicatalytic proteinase complex consisting of four 7- 

membered rings stacked above one another to form a hollow cylindrical structure. 

Each ring is composed of either 7 a  or 7 p subunits, and there are two rings of each 

type. They are arranged ot7 P7 p7(X7 , with the inner p subunits containing the 

proteolytic sites, therefore suggesting that intact protein must pass down the centre 

of the cylinder for degradation to occur.

In the mammalian proteasome, three of the 7 P subunits are catalytically active, pi 

(Y/5), P2 (Z) and P5 (X/MB1) (Reviewed in (Uebel et al 1999). Upon IFN-y 

stimulation, these subunits are replaced by LMP (low molecular weight protein) 2, 

multicatalytic endopeptidase complex-like 2 (MECL-1, LMP 10) and LMP7 

respectively (Gaczynska et al 1993, Hisamatsu et al 1996). The LMP2 and LMP7 

subunits are encoded within the MHC itself (Driscoll 1994) and the role that they 

play in antigen processing has generated much interest. Although it was initially 

demonstrated that these two subunits were not critical for antigen processing 

(Momburg et al 1992), it has more recently been shown that a deficiency of these 

two genes, particularly LMP7, can result in the attenuated presentation of some 

protein antigens (Cerundolo et al 1995). Furthermore, it has been demonstrated that 

both subunits alter the specificity with which protein antigen is cleaved (Driscoll et 

al 1993, Gaczynska et al 1993): with the LMP7 gene increasing the capacity of the 

proteasome to cleave after basic or hydrophobic residues, and the LMP2 gene 

decreasing the capacity of the proteasome to cleave after acidic residues (Gaczynska 

et al 1994). As MHC class I molecules typically bind peptides with C-terminal 

hydrophobic residues, it may be that LMP2 and LMP7 induction confers physical 

advantages to processed peptide for MHC binding.

The proteasome in higher eukaryotes is associated with further regulatory accessory 

complexes, which appear to enhance its action. One such complex implicated in the 

generation of peptide for presentation to CTL is the IFN-y-inducible molecule PA28 

(Groettrup et al 1995). An 11S hexamer composed of a  and P subunits, PA28
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attaches to both ends of the proteasome and enhances peptide generation regardless 

of the presence of LMP2 and LMP7 (Groettrup et al 1995). Its mode of action firstly 

appears to increase the rate of protein cleavage after hydrophobic residues (Ustrell et 

al 1995) and secondly, exposes protein to two sites of protease activity concurrently 

(Dick et al 1996).

It has been generally assumed that peptides of an appropriate length for MHC class I 

association (i.e. ~9 amino acids) are generated by the proteasome. However, it has 

been recently demonstrated that only a small minority of processed peptides are in 

fact of the correct length for MHC binding (Kisselev et al 1998, Kisselev et al 1999). 

This suggests that further trimming may take place within the endoplasmic reticulum 

(ER), once peptide has been loaded onto class I.

It has been recently shown by Benham and colleagues (Benham et al 1998), that the 

inhibition of proteasomal action by lactocystin does not inhibit the assembly of three 

human class I alleles, HLA-A3, HLA-A11 and HLA-B35. In addition, in vitro loss 

of the proteasome complex is seen to be compensated for by the over-expression of 

another large proteolytic complex in some cells (Glas et al 1998). Therefore, the 

above studies suggest that under certain circumstances, peptide-loading of MHC 

class I molecules is free from the limitations imposed by proteasomal processing.

The proteasome may also process exogenous as well as endogenous antigens, 

therefore providing a mechanism by which MHC class I may present antigen from 

extracellular sources (Reviewed by (Rock 1996). This phenomenon is particularly 

prevalent in macrophages and dendritic cells (Bevan 1987), which appear to have a 

predisposition to transfer antigen from the class II-processing compartment (the 

endosome), into the cytosol for proteasomal lysis (Reviewed by (Watts 1997).

1.2.1.3 The TAP Transporter

Following antigen processing in the proteasome, peptides must be transported into 

the ER for association with nascent MHC class I-p2M dimers. It has been 

demonstrated that an ATP-dependent heterodimeric transporter complex, known as 

the transporter associated with antigen processing (TAP), is responsible for peptide
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translocation, and also for the final assembly of class I-peptide complexes (Neefjes 

et al 1993). The TAP transporter consists of two subunits, TAPI and TAP2, both of 

which are encoded within the MHC class II region (Powis et al 1991). Both TAPI 

and TAP2 span the ER membrane, and consist of a hydrophobic N-terminal region 

that bridges the membrane and a C-terminal hydrophilic region contained within the 

cytosol. The peptide-binding area has been mapped to the C-terminal end of the 

hydrophilic region, adjacent to the hydrophobic domain (Nijenhuis et al 1996a, 

Nijenhuis et al 1996b).

TAP displays a degree of specificity for the peptides it binds, both in amino acid 

sequence (Momburg et al 1994b) and length (Momburg et al 1994a). It has been 

demonstrated that in the mouse, TAP has a high affinity for peptides with a 

hydrophobic C-terminal amino acid residue, whereas the human TAP complex 

appears to be more permissive, binding peptides regardless of their C-terminal 

residue. The rat TAP transporter complex is unusual however, in that two functional 

TAP2 alleles have been identified, TAP2-A and TAP2-B (referred to as TAP-A and 

TAP-B) (Deverson et al 1990). These two alleles display profound differences in the 

peptides that they are able to transport. For example, in RTl.Aa-bearing hosts, which 

normally express TAP-A, the Aa antigen becomes immunogenic if it is instead 

linked to TAP-B (Livingstone et al 1989, Livingstone et al 1991, Powis et al 1992). 

Subsequent studies have demonstrated that the RTl.Aa molecule has a strong 

preference for binding peptides with hydrophilic C-terminal cysteine residues. These 

are only provided by the permissive TAP-A allele, with linkage to TAP-B resulting 

in a completely different spectrum of available peptides, which explains the 

resulting immunogenicity. No such functional TAP polymorphism has been seen in 

either the mouse or human (Schumacher et al 1994, Daniel et al 1997, Marusina et al

1997).

Genetic sequencing of the TAP-A and TAP-B alleles has found that they differ by 

just 25 amino acids, with the majority of the polymorphic residues located within the 

N-terminal two thirds of the TAP2 chain (Momburg et al 1996, Deverson et al

1998).
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The TAP and RT1.A loci are physically very close, only 250kb apart. Consequently, 

they display linkage disequilibrium, which helps to ensure that the RTl.Aa allele is 

inherited with the TAP-A antigen. However, the stimulus for evolutionary 

persistence of TAP-B is unclear, as its substitution with TAP-A does not result in 

faulty class I peptide-loading (Joly et al 1998).

1 .2 . 1 .4 Assembly o f the MHC Class I-Peptide Complex

Stable cell surface expression of MHC class I requires firstly that the heavy chain is 

associated with a p2M subunit and secondly, that this complex is bound with high 

affinity to peptide. If attempts to form a stable complex are unsuccessful, then the 

class I molecule itself will undergo degradation (Hammond et al 1995). The 

formation of a functional class I-peptide complex requires the assistance of a series 

of ER-retained chaperone molecules. Their function is to retain the class I molecule 

in the ER and also to mediate the association of the individual components of the 

class I complex.

Nascent class I heavy chains are found in the ER in association with a 

transmembrane chaperone molecule known as calnexin, which is thought to play a 

role in the correct folding of the heavy chain (Jackson et al 1994). In humans, the 

subsequent binding of p2M results in the exchange of calnexin for another 

homologous ER chaperone protein called calreticulin (Sadasivan et al 1996). In the 

mouse, the situation is slightly different, in that following p2M-binding, calnexin is 

not replaced by calreticulin. ERp57, a thiol oxidoreductase, has recently been shown 

to bind the MHC molecule at around about the same time as calnexin or calreticulin. 

It is thought that this molecule might aid MHC class I folding (Hughes et al 1998, 

Lindquist et al 1998, Morrice et al 1998). The calreticulin-associated class I-p2M 

dimer then binds to the TAP transporter, a process mediated by another chaperone 

molecule, tapasin. Tapasin is a 48kDa molecule (Ortmann et al 1997), encoded for 

within the MHC class II region (Herberg et al 1998). The precise role of tapasin in 

class I assembly is unclear, although it appears to stabilise empty class I molecules, 

bridge the binding of the calreticulin-associated class I-p2M dimer to the TAP 

complex and increase the rate of peptide translocation of TAP. Up to four tapasin
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molecules have been seen to bind to a single TAP complex (Ortmann et al 1997), a 

phenomenon that is believed to enhance the association of peptides and MHC 

molecules. Each MHC class I molecule samples several peptides, before selecting 

one to which it binds with sufficiently high affinity. Peptide binding signals the 

release of all auxiliary molecules from the class I complex, and the complex leaves 

the ER via the Golgi apparatus, for transport to the cell surface.

1 .2 . 2  MHC Class II

The primary function of MHC class II molecules is presentation of exogenous 

antigens to CD4 T lymphocytes. Unlike MHC class I, which is expressed on all cell 

types, MHC class II is constitutively expressed on only a limited population of cells. 

It is ordinarily found on B cells, dendritic cells and macrophages, but is readily 

induced on a wide range of cells upon stimulation with IFN-y and in particular, on 

vascular endothelial cells (Pober et al 1983). MHC class II gene transcription has 

recently been found to be regulated by the MHC class II transactivator protein 

(CUTA) (e.g. (Zhou et al 1995). This protein is also largely responsible for 

regulating expression of the invariant chain (Ii) and HLA-DM (Chang et al 1995, 

Kern et al 1995). Class II peptide complexes are largely formed de novo by the 

association of nascent class II dimers with peptide in endocytic compartments 

(Neefjes et al 1990). However, a separate pathway also exists, by which class II 

molecules can recycle from the cell surface and exchange bound peptide (Pinet et al

1995).

Following translation and dimerisation of the a  and P MHC class II subunits in the 

ER, association with a third protein chain, known as the invariant chain (Ii), occurs. 

Binding of Ii to aP complexes is mediated by a small 25-residue section of the Ii 

chain, which is referred to as the class II-associated invariant chain peptide (CLIP). 

CLIP can be readily eluted from purified class II molecules, and crystallographic 

studies confirm that it binds in a manner similar to that of antigenic peptide (Ghosh 

et al 1995). The association of Ii with class II is thought to have a dual function. 

Firstly, the invariant chain provides the signal that targets class II molecules to the 

endocytic pathway and secondly, the occupation of the peptide-binding groove by
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CLIP protects af3 complexes from binding endogenously derived peptide in the ER 

(Cresswell 1996).

Heterodimeric ap  complexes and Ii are retained in the ER by chaperone molecules 

until they are properly folded (e.g. (Hurtley et al 1989). Ii chains subsequently 

trimerize via their C-termini (residues 163-183) (Bijlmakers et al 1994, Bertolino et 

al 1995), resulting in the formation of nonomeric structures (Roche et al 1991), with 

the three aP class II dimers arranged around the core of the Ii trimer. The nonomeric 

complexes enter the secretory pathway and are transported to the trans Golgi 

Network. The class Il-Ii nonomers are then diverted to the endocytic pathway by 

means of di-leucine signals situated within the cytoplasmic N-termini of the Ii 

molecules (Bakke et al 1990, Lotteau et al 1990, Pieters et al 1993). The exact 

mechanism of endocytic targeting is unclear, but the trimeric Ii chain structure is 

known to be important (Ameson et al 1995).

1 .2.2. 1  Antigen Processing

Exogenous protein antigens are internalised by pinocytosis or receptor-mediated 

endocytosis and enter the endocytic system. There, they undergo degradation in the 

increasingly acidic environment of the early endosomes to form peptides of a 

suitable length for MHC class II-association. Antigen fragments are further degraded 

in late endosomes through the action of proteolytic enzymes including cathepsin D 

(van Noort et al 1994) and cathepsin B (Takahashi et al 1989).

1 .2 .2 . 2  MHC Class II Peptide-Loading

It is thought that nascent MHC class II molecules encounter degraded protein 

antigen in class II-enriched lysosome-like vesicles termed MHC class II 

compartments (MIIC), or class II-containing vesicles (CIIV) (Amigorena et al 

1994). Before antigenic peptide is able to associate with MHC class II, the Ii must be 

removed from the peptide-binding groove.

Sequential processing of Ii begins at its luminal C-terminal end. As it is this region 

that is important for Ii oligomerisation (Bijlmakers et al 1994, Bertolino et al 1995),
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cleavage presumably results in the dissociation of nonomeric complexes to trimeric 

ap-Ii structures. Early proteolysis, by as yet unidentified proteases, leads to the 

formation of an Ii fragment of ~24kDa which remains associated with ap  dimers. 

Subsequent processing of this 24kDa fragment forms a smaller Ii fragment of 

~10kDa, comprising the N-terminal region through to the C-terminus of CLIP. 

Cathepsin S has been implicated in the processing of this smaller lOkDa fragment to 

CLIP. Inhibition of cathepsin S in human B cells blocks further processing, thereby 

preventing CLIP generation and delaying cell surface expression of MHC class II- 

peptide complexes (Riese et al 1996).

Following proteolysis with cathepsin S, CLIP is exchanged for antigenic peptide. 

This process normally requires the help of the non-classical class II molecule, HLA- 

DM (DM), which acts as a chaperone (Cho et al 1991, Kelly et al 1991). It has been 

shown that mutant human cell lines unable to express DM, still express class II on 

their surface, but mainly in conjunction with CLIP. Similar results have recently 

been demonstrated in vivo, using mice deleted of H2-M, the murine DM homologue 

(Fung-Leung et al 1996, Martin et al 1996, Miyazaki et al 1996).

The exact means by which DM influences peptide exchange is unknown, although 

several overlapping mechanisms have been suggested. Firstly, isolated DM can 

accelerate the CLIP off-rate from the class II complex (Denzin et al 1995, Sherman 

et al 1995, Sloan et al 1995) and kinetic data have recently been provided for this 

enzyme-like function (Vogt et al 1996). Secondly, DM may perform a chaperone­

like function, by binding to (Sanderson et al 1996) and stabilising (Sadegh-Nasseri 

et al 1992, Denzin et al 1996) empty class II dimers, that would otherwise be rapidly 

degraded in the acid environment of the endosome. Finally, DM may actively select 

peptide epitopes for class II-binding, by increasing the dissociation rates of putative 

peptides that bind to the class II dimer with insufficient affinity (Kropshofer et al 

1996, Weber et al 1996). Under ordinary circumstances however, some class II- 

CLEP/low affinity peptide complexes do reach the cell surface. The physiological 

significance of this expression is uncertain, although such complexes may reflect a

-18-



low concentration of high affinity peptides within the endosomal pool, or may 

possibly act as a class II reservoir for the recycling pathway (Pinet et al 1995).

DM interacts efficiently with class II-CLIP complexes, but only weakly with stable 

class II peptide complexes (Vogt et al 1996) and therefore dissociates upon 

successful class II loading. This permits transport of the MHC class II-peptide 

complex to the cell surface, where it is inserted, as a dimer of dimers, into the cell 

membrane.

In conclusion, several concurrent mechanisms are involved in class II-restricted 

processing and presentation. These are dynamic processes and their relative activity 

may influence both the nature and sequence of presented peptides.

13  THE T CELL RESPONSE:

1.3.1 The T Cell Receptor

T cells recognise peptide, presented by MHC molecules, through the T cell receptor 

(TCR) (Figure 1.4) which is a heterodimeric transmembrane structure, consisting of 

a  and (3 (ap), or y and 6 (y6 ) polypeptide chains. The a  and P chains each have two 

Ig-like extracellular domains, a transmembrane domain and a short, cytoplasmic, C- 

terminal domain. The membrane-distal regions of the a  and p chains display 

hypervariability in loops 2, 3 and 6 , resulting from gene rearrangement during T cell 

development, and these loops form the complementarity determining regions (CDR) 

1, CDR2 and CDR3. Upon engagement of an MHC-peptide complex, the CDR1 and 

CDR2 loops of the TCR a  chain bind to the a  helix of the a l  domain of MHC class 

I or class II (Hong et al 1992). Similarly, the corresponding loops of the P chain 

engage either the a2  domain of MHC class I, or the P1 domain of MHC class II. 

This leaves the two CDR3 regions to interact with the MHC-bound peptide 

(Garboczi et al 1996, Garcia et al 1996). TCR-peptide-MHC complexes have been 

defined to a high resolution (Garboczi et al 1996, Garcia et al 1998), and it is 

apparent that during binding, the TCR is orientated diagonally over the MHC
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Figure 1.4: Schematic representation of the TCR complex.
Rectangles denote ARAM motifs. Based upon 
Garcia and Teyton, 1998.

molecule (see Figure 1.3). The TCR a  chain sits over the amino terminus of the 

peptide, and the P chain over the carboxy-terminus. It appears that there is a 

dominance of TCR-MHC contacts over TCR-peptide contacts, at a ratio of -3:1. 

Although the y5 TCR complex is likely to have a structure analogous to that of the 

ap  complex, this has yet to be confirmed.

The ap  TCR itself does not possess intrinsic signalling functions, and instead relies 

upon the associated CD3, CD4/8 and CD45 cell surface complexes for signal 

transduction following TCR ligation. CD3 consists of two heterodimeric chains, ye 

and e8 , associated with a C, chain, which exists either as a heterodimer (^rj or £y), or 

more commonly, a homodimer (CQ (Baniyash et al 1988). All the members of the 

CD3 complex, unlike the aP TCR, have large cytoplasmic segments containing 

highly conserved 17 amino acid sequence repeats, known as antigen recognition 

motifs (ARAMs), or immunoreceptor tyrosine-based activation motifs (ITAMs) 

(Weiss 1993). Following TCR stimulation, ARAMs associate with cytosolic protein 

tyrosine kinases to enable intracellular signal transduction.
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1.3.2 Cell Adhesion Molecules

Allograft rejection is often associated with a dense cellular infiltrate into the graft 

bed and it is apparent that lymphocytes and other cell types involved in the rejection 

response must migrate from the circulation into the site of inflammation and graft 

rejection. The process of lymphocyte migration is dependent upon an interaction 

between the migrating lymphocytes and the cells of the vascular endothelium. This 

interaction is mediated by the adhesion molecules, which are grouped into three 

families: selectins, integrins and those that are members of the Ig superfamily.

Selectins are transmembrane glycoproteins that are involved in the recognition of 

carbohydrates. Their extracellular region consists of three distinct domains; an N- 

terminal lectin (sugar-binding) domain, an epidermal growth factor-like domain and 

a variable number of short consensus repeats that are homologous to those found in 

complement regulatory proteins. One such molecule, which is readily induced on 

endothelium (Bevilacqua et al 1987) is E-selectin (ELAM-1), which is thought to be 

important in the initial binding of neutrophils to the vascular endothelium 

(Bevilacqua et al 1989).

Integrins are heterodimeric glycoproteins that are classified according to their (3 sub­

unit into Pi, 0 2  or 03 integrins, with 0 2  integrins often expressed by leukocytes. 

Lymphocyte function-associated antigen-1 (LFA-1) (Marlin et al 1987) and very late 

antigen-4 (VLA-4) (Elices et al 1990) are two 02 integrins found on the surface of T 

cells. They mediate T cell-binding to the vascular endothelium via two Ig 

superfamily members, intercellular adhesion molecule-1 (ICAM-1) (Rothlein et al 

1986) and vascular cell adhesion molecule-1 (VCAM-1) (Osborn et al 1989) 

respectively. Both ICAM-1 and VCAM-1, along with other Ig superfamily 

members, have Ig-like extracellular domains.

Upregulation of adhesion molecule expression during allograft rejection has been 

noted (Pober et al 1990, Gibbs et al 1993, Solez et al 1997), with several strategies 

using monoclonal antibodies directed against adhesion molecules demonstrating 

prolonged allograft survival. For example, in a fully mismatched mouse model of
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cardiac transplantation, treatment of recipients with monoclonal antibodies against 

both ICAM-1 and LFA-1 simultaneously resulted in long-term graft survival (Isobe 

et al 1992). In a non-human primate model of renal transplantation, administration 

of an anti-ICAM-1 monoclonal antibody significantly prolonged graft survival 

(Cosimi et al 1990). Moreover, it was subsequently demonstrated in a phase I 

clinical trial, that administration of the same anti-ICAM-1 monoclonal antibody, 

BIRR1, to human renal allograft recipients resulted in improved graft function and 

delayed rejection (Haug et al 1993).

1.3.3 Co-Stimulation

Optimal T cell activation requires two distinct signals, the first of which is provided 

by ligation of the TCR and the associated CD4 or CD8  molecule with the peptide- 

MHC complex (Owens et al 1987, Boyce et al 1988, Jonsson et al 1989). CD4 and 

CD8  are transmembrane molecules that define the MHC class specificity of the T 

cell response to peptide. CD4 is a single glycoprotein chain with four extracellular 

Ig-like domains, while CD8  is a normally heterodimeric molecule with two 

extracellular Ig-like domains. Interaction of the TCR with an MHC-peptide complex 

results in the simultaneous association of either the CD4 molecule with the 

polymorphic 02 chain of MHC class II (Cammarota et al 1992, Konig et al 1992), or 

the CD8  molecule with the conserved a3 region of MHC class I (Salter et al 1990). 

In addition, the cytoplasmic domains of CD4 and CD8  associate with the T cell- 

specific intracellular protein tyrosine kinase, p56lck, in a cysteine-dependent manner 

(Rudd et al 1988, Veillette et al 1988). p56,ck activity is essential for the induction of 

the tyrosine kinase cascade following TCR engagement (Straus et al 1992). 

Interaction of the TCR and CD4 or CD8  with a peptide-MHC complex on an APC 

brings p56lck into close association with signalling motifs on CD3, thereby 

enhancing tyrosine phosphatase-dependent intracellular signalling events.

The two-signal hypothesis of T cell activation was originally proposed by Bretscher 

and Cohn (Bretscher et al 1970). It is now established that signal one alone is 

insufficient for generating a T cell response and may instead result in T cell anergy 

or unresponsiveness. The CD28/B7 pathway is generally considered the main co­
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stimulatory or second signal. CD28 is a member of the Ig supergene family, and is 

expressed either as a monomeric or homodimeric glycoprotein on -80% of all 

human T cells, and nearly all murine T cells (June et al 1990). It appears to be 

distributed evenly over the surface of the T cell, although following TCR ligation, 

its’ density increases locally. In the absence of TCR ligation, CD28 ligation by itself 

has little effect on T cell activation. Experimentally, the use of anti-CD28 mAbs 

blocks T cell proliferation in response to antigen (Harding et al 1992), but studies 

using CD28 -/- mice have shown that in some cases CD28 is not needed for T cell 

activation (Shahinian et al 1993).

Two CD28 ligands, B7-1 (CD80) and B7-2 (CD8 6 ) have been characterised (Azuma 

et al 1993, Freeman et al 1993), which bind to CD28 with similar affinity, but differ 

in their cellular distribution. B7-1 is primarily found on dendritic cells (Linsley et al 

1993), whilst B7-2 is expressed at moderate levels on resting T cells. Both 

molecules are found at low levels on resting APCs (Hathcock et al 1994).

A second member of the CD28 family, CTLA-4 (CD 152), also binds B7 as its 

ligand, but with a much higher affinity than CD28. CTLA-4 and CD28 appear to 

have opposing effects on T cell activation, with CD28 promoting T cell growth and 

proliferation, and CTLA-4 acting as a negative regulator of T cell activation. 

Experimental blockade of CTLA-4 with anti-CTLA-4 mAbs may augment the 

progression of EAE (Karandikar et al 1996, Perrin et al 1996) and autoimmune 

diabetes (Luhder et al 1998), and also enhance anti-tumour responses (Leach et al 

1996).

A synthetic fusion protein, CTLA-4Ig, binds B-7 (Linsley et al 1992) and inhibits 

co-stimulation, resulting in T cell anergy and enhancing allograft survival 

(Lenschow et al 1992, Turka et al 1992). Generally however, inhibition of the 

CD28/B7 pathway is insufficient to achieve long-term allograft survival. Other co­

stimulatory pathways exist, for example the CD40-CD40L (e.g. (Grewal et al 1996) 

pathway, but similarly, inhibition of this pathway alone does not result in permanent 

graft survival (e.g. (Niimi et al 1998). These results therefore suggest that a certain 

degree of redundancy exists amongst the co-stimulatory pathways, and that blocking
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one pathway will not necessarily inhibit T cell activation because the remaining 

pathways can successfully compensate. More success may be achieved by targeting 

more than one pathway simultaneously, and further study of the mechanisms of T 

cell stimulation may enable us to develop effective strategies for manipulating the T 

cell response.

1.3.4 T Cell Signalling

Following TCR ligation, the T cell is driven to proliferate and differentiate by the 

upregulation of EL-2 and its high affinity receptor (IL-2R). The pathways regulating 

IL-2 transcription are controlled by a network of kinases and phosphatases (e.g. 

(Weiss 1993), and are activated when the CD4 or CD8  molecule and the 

intracellular protein tyrosine phosphatase region of CD45, a heterogenous 

transmembrane molecule with a large, conserved, cytoplasmic tail, are brought into 

close association following ligation of the TCR with peptide-MHC complexes. This 

enables CD45 to activate p56,ck and p59fyn, both members of the src family of 

protein tyrosine kinases (PTK) (e.g. (Rudd et al 1994). p56lck associates with the 

CD4 and CD8  molecules (Shaw et al 1990), and p59fyn with the TCR £ chain 

(Samelson et al 1990). CD45 activation of p56lck and p59fyn is achieved by 

dephosphorylation of their C-terminal negative regulatory tyrosine residues 

(Reviewed by (Neel 1997), and results in tyrosine phosphorylation of CD3£ (Hall et 

al 1993, Chu et al 1994). In turn, this allows phosphorylation of the zeta-chain- 

associated protein (ZAP-70), a syk kinase, which binds to the C, chain, by virtue of 

two src homology 2 (SH2) domains that interact with a doubly phosphorylated Q 

chain ARAM (Iwashima et al 1994). Phosphorylation of ZAP70 initiates calcium- 

dependent, calcineurin-mediated phosphorylation of serine and threonine residues on 

signalling proteins, thereby regulating IL-2 gene transcription.

Activation of p56lck and p59fyn also results in the tyrosine phosphorylation of 

phospholipase C-y (Park et al 1991, Secrist et al 1991, Weiss et al 1991), which 

catalyses hydrolysis of phosphatidyl inositol 4,5-biphosphate (PIP2 ) into 1 ,2 -sn- 

diacylglycerol (DAG), and 1,4,5 inositol triphosphate (IP3) (Nishibe et al 1990, Kim 

et al 1991). DAG activates the protein serine/threonine kinase, protein kinase C
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Figure 1.5: Schematic representation o f  the initiating events in T cell activation.
Adapted from Chan et al, Annu. Rev. Immunol., 12: 555-592; 1994.

(PKC) (Berridge et al 1984), and IP3 mediates release o f  Ca2 ions from intracellular 

stores (Berridge et al 1984, Imboden et a! 1985), thus regulating T cell activation 

through cytokine gene transcription One important consequence o f  elevated 

intracellular Ca2 levels, is activation o f  the Ca2 /calmodulin-dependent 

serine/threonine phosphatase, calcineurin. Calcineurin targets the preformed subunit 

o f  NF-AT (nuclear factor o f  activated T cells), NF-AT1 (Loh et al 1996a, Loh et al 

1996b), which, like NF-kB, is a transcription factor regulating cytokine genes. 

Association o f  NF-AT 1 with calcineurin is thought to result in its 

dephosphorylation, allowing its translocation into the nucleus (M cCaffrey et al 

1993, Loh et al 1996a), where it binds to the AP-1 site in the IL-2 gene and 

upregulates IL-2 transcription. The immunosuppressive drugs, CsA and FK506 

(Tacrolimus), when complexed to their corresponding immunophilins, cyclophilin 

and FKBP12, are able to bind and sequester calcineurin, thereby suppressing IL-2 

gene transcription (Griffith et al 1995, Park et al 1995).
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1.4 T CELL DEVELOPMENT:

The development of the mature peripheral T cell pool occurs in the thymus, with T 

cells arising from precursor haematopoietic stem cells (HSC) that originate from the 

liver in the developing foetus and the bone marrow in adults. Precursor cells enter 

the thymus bearing low levels of CD4 (Wu et al 1991), and from this state develop 

into CD4CD8* double negative lymphocytes. Cells then begin to express CD8 and 

eventually develop into CD4+CD8+ double positive (DP) cells. Maturation from the 

DP state involves the positive selection of T cells that possess the ability to interact 

with self-MHC expressing foreign antigen. It is at this stage that cells also undergo 

lineage commitment to either the CD4 or CD8 subclass, at which time they are 

classed as single positive (SP). Finally, cells that display a high affinity for self- 

MHC plus self-antigen are negatively selected, and undergo programmed cell death 

(apoptosis).

1.4.1 Positive T Cell Selection

As mentioned above, developing thymocytes are positively selected for their ability 

to interact with self-MHC bearing foreign antigen. The phenomenon of self-MHC 

restriction has been established for many years, and was first described as the 

driving force behind T cell development in the late 1970’s (Fink et al 1978, 

Zinkemagel et al 1979). However, positive selection was not unequivocally 

demonstrated until the advent of transgenic mice. Kisielow and colleagues (Kisielow 

et al 1988a) used mice with a transgenic TCR specific for the H-2Db MHC class I 

allele. Mice expressing H-2Db, but not other MHC alleles, developed fully mature 

SP CD8 cells that expressed the transgenic TCR, therefore suggesting that cells were 

positively selected for their ability to interact with the H-2Db allele. Similar 

observations were also noted by Sha et al (Sha et al 1988). Further evidence 

demonstrating the need for a direct TCR-MHC interaction during positive selection 

has been provided by experiments using transgenic mice expressing a TCR specific 

for I-Ek and a pigeon cytochrome c peptide (Berg et al 1989). In comparison to
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control H-2b mice, transgenic H-2k mice displayed a greater number of mature T 

cells, both overall and specific for the pigeon cytochrome c peptide. It was noted 

that in H-2b animals T cell development was arrested at the DP stage.

It has been demonstrated that positive selection only occurs when the restricting 

MHC element is expressed on thymic epithelial cells (Kisielow et al 1988a, Kisielow 

et al 1988b). Moreover, it appears that cortical, rather than medullary, epithelial cells 

drive positive selection (e.g. (Hugo et al 1992). Under certain circumstances, 

haematopoietic cells may also be involved in positive T cell selection (Bix et al

1992), although selection invoked in this manner is relatively inefficient when 

compared to that mediated by thymic cells.

1.4.2 T Cell Lineage Commitment

The cellular and molecular mechanisms governing T cell lineage commitment in DP 

thymocytes remain unclear, although there does appear to be a distinct correlation 

between TCR MHC preference and the outcome of lineage selection. Interaction of 

the TCR with MHC class I results predominantly in CD8 T cell maturation (Teh et al 

1988), and interaction with MHC class II results in CD4 T cell maturation (Kaye et 

al 1989). Moreover, it has been demonstrated that mice deficient in MHC class I 

have very few circulating CD8 T cells, and that class II mutant mice have very few 

peripheral CD4 T lymphocytes (Reviewed by (Robey et al 1994). It therefore 

appears that positive selection of self-MHC restricted thymocytes coincides with T 

cell lineage commitment.

Two hypothetical models have been forwarded to explain T cell commitment to a 

specific lineage. The first of these, the “instructive” model, proposes that TCR 

recognition of an MHC molecule is intrinsic to its lineage commitment. CD4 and 

CD8 molecules are the most likely candidates for MHC “class-sensing”. The 

engagement of one or other co-receptor is thought to result in the generation of 

intracellular signals that downregulate the transcription of its counter-receptor. In 

this model, positive selection and lineage commitment are driven by the same 

recognition event, and occur simultaneously.
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The second of the two models is referred to as the “stochastic” (or “selection”) 

model. It suggests that contrary to the instructive model, there is no direct sensing of 

MHC by the TCR. It is proposed that following the binding of the TCR and the 

MHC molecule, cell lineage is randomly selected independently of the TCR-MHC 

interaction. Lineage selection triggers thymocytes to differentiate into intermediate 

cells (CD4loCD8+TCRin,/hi or CD4+CD8loTCRi”'/hi), with further differentiation only 

possible if they possess the appropriate co-receptor for MHC interaction. Thus, in 

this model, the CD4 and CD8 co-receptors play a critical role in cell survival, rather 

than in the choice of MHC molecule with which the TCR interacts. Evidence for the 

stochastic model has been provided by several groups (Chan et al 1993, Davis et al

1993). Using p2M mutant mice (which have defective MHC class I expression) van 

Meerwijk and Germain (van Meerwijk et al 1993) found that despite the presence of 

CD4mtCD8+TCRmt cells in the thymus, animals did not develop mature SP CD8 T 

cells. This study suggests that although recognition of class I molecules is not 

required for lineage commitment, it is intrinsic for the development of fully mature 

SP CD8 T cells. Thus, in the stochastic model, lineage commitment must occur 

before MHC recognition and positive selection. Indeed, it appears that a large 

intermediate T cell population develops following lineage commitment, and that 

these cells are subject to death if they do not express the appropriate combination of 

TCR and co-receptor for MHC recognition.

More recently, a third, “asymmetric” commitment model has been proposed (Suzuki 

et al 1995, Suzuki et al 1997), in which non-identical rules govern CD4 and CD8 T 

cell commitment. The authors suggest that CD8 commitment resembles the 

instructive model of lineage commitment, with TCR and CD8-specific signals being 

required for thymocyte differentiation. In contrast, CD4 commitment is thought to 

occur by default, resulting from the absence of CD8-specific signals.

1.4.3 Negative T Cell Selection

As mentioned, negative selection is the process by which developing T cells that 

display too high an affinity for self-MHC plus self-antigen complexes are deleted 

from the emerging T cell pool. The fact that tolerance to self-antigens occurs during
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the development of the immune system, and persists throughout an individual’s 

lifetime, has been established for many years (Owen 1945, Billingham et al 1953). It 

was by the use of allogeneic thymic chimeras that Singer et al (Singer et al 1982) 

initially demonstrated that the thymus was the organ responsible for the induction of 

self T cell tolerance.

The mechanism responsible for self-tolerance induction in the thymus was not 

formally proven until the development of a mAb against the Vpl7a-expressing TCR 

(Kappler et al 1987). The Vpl7a TCR element is highly reactive with the mouse 

MHC class II molecule, I-E, and its use allowed the fate of developing T cells to be 

studied. It was observed that despite the immature T cell population containing 

Vpi7a+ cells, I-E+ mice did not posses mature Vpi7a-expressing T cells, thus 

indicating that deletion, rather than suppression, is the end-point of negative 

selection.

In contrast to positive T cell selection, which is driven by cortical epithelial cells, 

negative selection is predominantly mediated by haematopoietic cells derived from 

the bone marrow (Lo et al 1986, Marrack et al 1988b). It has however been 

demonstrated that medullary epithelial cells may also invoke negative selection (e.g. 

(Salaun et al 1990, Hoffmann et al 1992). Under these circumstances though, anergy 

rather than deletion may account for tolerance (Houssaint et al 1990). Negative 

selection mediated by thymic cells appears less efficient than that mediated by cells 

derived from the bone marrow (e.g. (Robey et al 1994).

1.4.4 The Role o f Peptides in T Cell Selection

As self-MHC molecules are expressed on both thymic epithelial cells and 

haematopoietic cells, the regulation of positive versus negative selection has been 

open to debate. Different theories have been proposed to explain differential 

selection, including the suggestion that selection is dependent upon differing 

affinities of the TCR for the same ligand (e.g. (Sebzda et al 1994). However, it is 

now apparent that different thymic APCs present different populations of self­

peptides. Cortical and medullary thymic epithelial cells (cTEC and mTEC) have
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been shown to present peptides of different origin, with cTEC unable to present 

peptides from exogenous sources (Lorenz et al 1989, Kasai et al 1996, Oukka et al 

1996). It has recently been shown that this is due to cTEC containing different 

cathepsins to mTEC and haematopoietic cells (Oukka et al 1997). Moreover, it has 

been shown that deletion of cathepsin L from cTEC results in the loss of positive 

selection (Nakagawa et al 1998). Thus, the above studies suggest that positive and 

negative selection are mediated by different sets of self-peptides.

1.4.5 Programmed T Cell Death

During development in the thymus, approximately 95% of thymocytes undergo 

programmed cell death (apoptosis) (Rothenberg 1992, Hueber et al 1994). The need 

for tightly regulated cell death is essential in the generation of a functional lymphoid 

system. It acts not only to remove potentially autoreactive T cells, but also those 

cells that express non-functional TCRs.

Bcl-2 is a mitochondrial membrane protein, involved in rescuing cells from death at 

several points in lymphocyte development (Reviewed by (Chao et al 1998), and is 

able to inhibit apoptosis in some cell lines. It is found expressed in mature SP T cells 

found in the medulla, but in only a few DP cells of the cortex (Hockenbery et al 

1991). Thy-1, an 18kDa protein found on peripheral and thymic lymphocytes in 

mice however, appears to have an opposing effect upon cell survival, and is able to 

trigger apoptosis through a bcl-2-resistant mechanism (Hueber et al 1994). Likewise, 

the 35kDa Fas (CD95) antigen (Hanabuchi et al 1994), is also able to mediate 

apoptosis of self-reactive thymocytes (Watanabe-Fukunaga et al 1992) following 

ligation with its receptor, Fas ligand (FasL, CD95L).

L5 B CELL DEVELOPMENT:

B lymphocytes derive from the same progenitor HSC as T lymphocytes, natural 

killer cells and dendritic cells (Galy et al 1995). Their generation is a lifelong 

process in both mice and humans (e.g. (Nunez et al 1996) occurring in the foetal 

liver and the adult bone marrow. The initial phase of B cell development, whereby
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antigen specificity develops, occurs independently of antigen, which is in 

comparison to the highly antigen-dependent process of T cell development (see 

section 1.4).

The primary function of B cells is the generation of a humoral antibody response 

following antigenic stimulus. The mechanism by which B cells recognise antigen is 

fundamentally different to that of T cell recognition, as they respond to antigen in its 

native form, whereas T cells respond to cell-bound antigen in the form of processed 

peptide fragments, presented by MHC molecules.

Antibody or immunoglobulin (Ig) molecules are expressed either as cell surface 

molecules that comprise part of the B cell receptor (BCR) complex, or as soluble 

molecules that are secreted. Both forms of Ig are composed of two identical heavy 

(H) chains and two identical light (L) chains (see Figure 1.6) that are linked by 

disulphide bonds. There are five H chain isotypes: p, 5, y, a  and e, the use of which 

specifies the class of Ig produced by a B cell (IgM, IgD, IgG, IgA or IgE 

respectively) and two L chain isotypes, k  and X. Each B cell makes antibodies of 

unique antigen specificity and this specificity is retained throughout the lifetime of 

the cell, even following H chain isotype class switching.

An individual’s B cell repertoire is exceptionally diverse, even more so than the T 

cell repertoire, and there are two key mechanisms by which this diversity may be 

generated. Firstly, the variable region of an Ig chain, which is responsible for 

antigen specificity, is, at the genetic level, composed of three gene segments, known 

as the variable (V), diversity (D) and joining (J) gene segments, with each 

containing a very large number of genes. One gene from each of the three H chain 

gene segments is used to generate the variable region of an Ig H chain, whereas one 

gene from each of the V and J L chain gene segments are used to generate an Ig L 

chain. The process of gene rearrangement is under the control of two recombinant 

activator genes, RAG-1 and RAG-2 (Oettinger et al 1990). The ability to combine 

genes from each of these segments therefore results in a greater number of 

functional antigen binding sites than the total number of genes in the V, D and J
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Figure 1.6: A) The pre-B cell receptor and B) The B cell receptor.
Rectangles denote ARAM motifs in the cytoplasmic 
tails of Iga and Ig0. Adapted from Rajewsky, Nature,
381: 751-758; 1996.

pools. Gene rearrangement is also an imprecise process, with additional nucleotides 

potentially being incorporated or deleted at the site of gene cleavage. This

“junctional diversity” therefore further increases the potential B cell repertoire, and 

indeed, it is estimated that when all the possible combinations arising from gene- 

rearrangement are considered in combination with junctional diversity, the pre- 

immune Ig repertoire in humans is approximately 1011 (e.g. (Duchosal 1997).

During B cell development, one of the earliest markers that B cells express enabling 

them to be distinguished from precursor HSC and other lymphoid cells is the 95kDa 

Ig superfamily member, CD 19, which is found on all B cells, except for antibody- 

secreting plasma cells, and is involved in signal transduction following ligation of 

the BCR (e.g. (Krop et al 1996). When they begin to express CD 19, B cells are 

referred to as pro-B cells. Towards the end of this stage, cells start to express CD40, 

which is a transmembrane glycoprotein of approximately 45kDa with homology to
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the nerve growth factor receptor (Stamenkovic et al 1989). The ligand for CD40, 

gp39, is found on activated T cells. Cross-linkage of CD40 is responsible for B cell 

activation, proliferation and differentiation into IgM-secreting plasma cells 

(Banchereau et al 1991).

Pro-B cells mature into pre-B cells, which express low levels of a pre-BCR 

comprising functional p. H chains in association with “surrogate” L chains (v|/LC) 

(Brouns et al 1996) (see Figure 1.6a). The requirement for such an association is not 

entirely clear, but may be necessary for further B cell maturation (Brouns et al

1996). The pre-BCR complex also contains a heterodimeric 

Iga(CD79a)/Igp(CD79p) complex (Reth 1992), similar in structure to the CD3 

complex found in association with the TCR and likewise involved in BCR signal 

transduction (Sanchez et al 1993). Pre-B cells undergo further differentiation to 

immature B cells, at which point a functional BCR, with p, H chains associated with 

k or X L chains, is expressed on the cell surface (see Figure 1.6b). Transition to a 

mature B cell phenotype is accompanied by the co-expression of surface IgD.

Mature naive B cells leave the bone marrow and migrate to the outer T cell zones in 

the white pulp of the spleen (Lortan et al 1987). Ligand-mediated negative selection 

in this area prevents cells that express autoreactive Ig molecules from entering the B 

cell follicles (e.g. (Cyster et al 1995). Negative selection may take the form of 

apoptosis (Benhamou et al 1990, Murakami et al 1992). Alternatively, cells may be 

induced to alter the specificity of their antigen receptor by further Ig rearrangement, 

termed receptor editing, and thus escape deletion, providing that the new receptor 

itself is not autoreactive (e.g. (Tiegs et al 1993). Cells that do not express 

autoreactive antibodies are able to enter the B cell follicles, and from here re­

circulate through the lymphatic system and the bloodstream.

Upon antigenic stimulation, re-circulating B cells are activated in the T cell area of 

lymph nodes. Following ligation of the BCR by antigen, a signal is conveyed into 

the cytoplasm by virtue of ARAM motifs found within the intracellular domain of 

the Iga/IgP complex (Reth et al 1991). B cells can respond to antigen in one of two 

different ways, either in a T cell-independent manner, or in a T cell-dependent
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manner. If antigen is present in a multimeric form, particularly on the surface of a 

cell, it may be able to effectively cross-link the BCR by itself, thereby directly 

stimulating B cells and resulting in their proliferation and differentiation into 

antibody-secreting plasma cells (Mond et al 1995). i.e. cells respond to antigen in a 

T cell-independent fashion. If, however, an antigen is unable by itself to stimulate an 

antibody response, it may be internalised and processed into peptide fragments by 

the B cell and presented on the cell surface in the context of MHC class II molecules 

for recognition by CD4 Th cells. B cells are then able to elicit “help” from these T 

cells, enabling their proliferation and differentiation. Such a cognate interaction is 

therefore T cell-dependent (Clark et al 1994).

Antigenic stimulation often results in further rearrangement of H chain DNA, with 

the previously rearranged VhDhJh gene segments switching between constant H 

chain ( C h)  genes. This H chain isotype class switching alters the class of antibody 

produced by a B cell. However, the B cell does retain its antigen specificity, which 

is important, as different classes of antibody stimulate different effector 

mechanisms, thereby rendering the same antigen susceptible to different forms of 

attack.

L6 TRANSPLANTATION IMMUNOLOGY:

The ability of the immune system to distinguish self from non-self is critical for 

protecting the body against invading pathogens, but works against the therapeutic 

aim of transplantation where graft rejection is the inevitable outcome. The immune 

response to an allograft is initiated by T cell recognition of allogeneic-MHC 

molecules. Indeed, it was such recognition that led to the discovery of the MHC 

antigens, which were initially described as "transplantation antigens” (Gorer 1936, 

Gorer 1937). The immune response to a mismatched allograft is characterised by its 

uniquely powerful primary response in vitro, as demonstrated by the mixed 

leukocyte reaction (MLR). An explanation for the strength of this response comes 

from the unusually high precursor frequency of CTLs displaying specificity for

-34-



alloantigen; this is at least 100-fold higher than the number of T cells specific for 

nominal protein antigen in the periphery (Lindahl et al 1977, Liu et al 1993).

Two hypotheses have been forwarded to account for the strength of the primary 

alloresponse. Matzinger and Bevan (Matzinger et al 1977) initially proposed that a 

single MHC antigen may represent multiple conformational T cell epitopes, due to 

the large number of exogenous proteins with which it can associate. This “multiple 

binary complex” theory acquired further credence upon elucidation of the finer 

details of peptide processing and presentation. However, even discounting the 

variance provided by bound peptides, an allogeneic MHC molecule is present upon 

the surface of a donor APC at a much higher frequency than would normally occur 

in the presentation of a nominal antigen in the context of self-MHC class II upon 

processing by self-APC. Therefore, such "high determinant density" (Bevan 1984) 

may by itself explain the greater precursor frequency of alloreactive T cells.

The two above theories of allorecognition differ fundamentally with regards to their 

requirement for bound peptide and consequently, numerous studies have been 

performed to establish its relative importance. One indication that peptide may be 

important in allorecognition stems from the amino acid residues found within the 

groove, or cleft of MHC molecules (Lechler et al 1990, Reinsmoen et al 1990). This 

area is inaccessible to the TCR, but MHC alleles differing only in this region have 

been shown to stimulate separate T cell clone populations. This indicates that 

different peptides bound into the groove are likely to play a key role in T cell 

stimulation.

Furthermore, species and cell type-specific allorecognition have been reported. 

Heath et al (Heath et al 1989), described experiments whereby CTLs specific for Kb 

expressed on the surface of the EL4 murine cell line, were unable to lyse human 

cells transfected with the K gene, unless cells were additionally pulsed with a 

source of murine protein. Marrack and Kappler (Marrack et al 1988a) found that 

such peptide specificity might even be limited to different types of antigen 

presenting cell. It was reported that murine Vpi7a-expressing T cell receptors 

displaying specificity for I-E were only able to detect the ligand when expressed on
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B cells, and not when expressed on either I-E+ macrophages or I-E transfected 

fibroblasts.

Nonetheless, lysis of cells bearing MHC independent of bound-peptide has been 

documented (Aosai et al 1991), but the physiological significance of such an 

interaction remains unclear.

Lechler and colleagues (Barber et al 1991, Lombardi et al 1991) have attempted to 

combine the multiple binary complex and high determinant density hypotheses, by 

suggesting that allo-MHC molecules may be viewed as having two functional 

regions. The first region, the outward-facing surfaces of the a-helices, forms the 

TCR-contact site, and the second area, the MHC cleft or groove, forms the antigen- 

binding region. They proposed that T cell alloresponses are dependent upon the 

nature of the MHC disparity between the donor and recipient. If the TCR-binding 

region between the two individuals display sufficient similarity, then allorecognition 

will be akin to self-restricted T cell recognition of nominal antigen in the periphery, 

with T cells responding to novel MHC-bound peptides. However, if the TCR- 

contact regions show great dissimilarity, bound peptide may become unimportant, 

and the allo-MHC molecule itself will act as the T cell ligand. In this case, 

allorecognition may take the form of "molecular mimicry", with the T cell 

recognising allo-MHC at the level of its three-dimensional structure.

Taken together, the above studies suggest that whilst peptide-independent T cell 

recognition of MHC molecules may occur, the physiological significance of this is 

uncertain, and the majority of data suggest that MHC-bound peptide is instrumental 

in initiating the alloimmune response.

L7 ALLORECOGNITION:

1.7.1 Direct and Indirect Allorecognition in Graft Rejection

It is widely appreciated that two pathways of allorecognition may contribute to graft 

rejection. The first of these, direct recognition (Figure 1.7a), is unique to
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transplantation, and involves T cell recognition of intact donor MHC molecules 

upon the surface of donor cells, with CD8 T cells apparently recognising MHC class 

I, and CD4 T cells recognising MHC class II.

Evidence for this pathway of allorecognition was first provided in 1982 by Lechler 

and Batchelor (Lechler et al 1982). They found that depleting donor passenger 

leukocytes from (AS x AUG)Fi kidney allografts, by temporarily "parking" them in 

immunosuppressed AS hosts, resulted in prolonged allograft survival upon re­

transplantation into secondary AS hosts. Injecting small numbers of donor-strain 

dendritic cells at the time of re-transplant was seen to restore graft immunogenicity. 

It was therefore postulated that effective allograft rejection required the direct 

stimulation of recipient T cells by the intact MHC molecules expressed on donor 

dendritic cells.

It was observed however, that passenger cell-depleted grafts were still rejected by 

their secondary hosts, albeit in a delayed fashion. This finding led to the proposal of 

a second route by which alloantigen may be recognised. It was suggested that via 

this alternative route, alloantigen may be dealt with in a manner analogous to that of 

nominal protein antigen in the periphery. Thus, antigen would be internalised by the 

recipient’s own APCs, and presented upon the cell surface in the context of self 

MHC class II as peptide to recipient CD4 T cells, thereby complying with the dogma 

of MHC restriction (Zinkernagel et al 1979). This second route of allorecognition is 

now termed the indirect pathway (Figure 1.7b).

1.7.2 Indirect Allorecognition Plays a Major Role in Graft Rejection

The first in vivo demonstration of indirect recognition was presented in 1986 

(Sherwood et al 1986). Adoptive transfer of T cell-depleted splenocytes or 

peritoneal cells from alloimmunised mice to naive syngeneic recipients was seen to 

provoke the accelerated rejection of subsequent donor-strain skin grafts. Although 

the presence of some donor class II MHC was noted in the transferred cell 

population, the authors argued that this was not in sufficient quantity to stimulate a 

direct alloresponse. They therefore concluded that the observed rejection kinetics
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Figure 1.7: Schematic Representations of A) Direct Allorecognition, 
and B) Indirect Allorecognition.

were due to the indirect activation of naive recipient CD4 T cells by the transferred 

APCs.

Confirmation that indirect recognition occurs following transplantation has been 

provided by two different experimental approaches. The first of these examines the 

incidence of indirect T cell priming in vivo following immunisation with allogeneic 

material. Using this approach, Benichou et al (Benichou et al 1992) demonstrated 

that T cells from Balb/c and SJL mice immunised with allogeneic (Ak) splenocytes 

or a skin graft, were able to proliferate in vitro to synthetic Ak allopeptides, thereby 

indicating processing of donor MHC and presentation of the resulting allopeptides 

by recipient MHC class II. Likewise, it was observed that CD4 T cells obtained from 

Lewis (RT11) rats doubly immunised with DA (RTla) skin and kidney grafts, 

proliferated in vitro to a synthetic MHC class I Aa-derived peptide (Fangmann et al 

1992b). Additionally, in a fully vascularised model of graft rejection (Watschinger et 

al 1994), the transplantation of WF (RT1U) cardiac allografts into Lewis recipients 

was also shown to stimulate T cell alloreactivity, this time towards donor MHC class 

II peptides. Proliferation could be blocked by the addition of an mAb against the 

recipient MHC class II, and was therefore attributed to CD4 T cells.
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The above studies, whilst demonstrating that indirect allorecognition may be 

stimulated by transplantation, do not necessarily confirm a role for the indirect 

pathway in effecting allograft rejection. Therefore, the second approach adopted to 

examine the incidence of indirect recognition in graft rejection has been to prime 

recipients to donor alloantigen via the indirect pathway prior to challenge with an 

allograft.

Two key studies to address this issue have examined Aa skin graft survival in Lewis 

strain rats primed with either Aa allopeptide (Fangmann et al 1992a), or isolated, 

denatured RTl.Aa and RTl.Ba protein chains (Dalchau et al 1992). Such forms of 

antigen, which lack the conformational structure of the intact MHC molecule, negate 

the possibility of directly priming recipient T cells. Both studies observed 

accelerated rejection of subsequent DA (RTla) skin grafts, associated with a 

concomitant acceleration in alloantibody response. The work of Fangmann et al 

(Fangmann et al 1992a), observed that pre-treatment with two allopeptides derived 

from the hypervariable a-helical regions of the RTl .Aa class I molecule, resulted in 

accelerated rejection of subsequent DA skin grafts. Interestingly, a third peptide 

arising from the (3-pleat of the a l  domain (which comprises part of the floor of the 

peptide-binding cleft), did not appear immunogenic. This finding was in contrast to 

a later study performed by Shirwan et al (Shirwan et al 1995), who demonstrated the 

immunogenicity of a shorter variant of this peptide in the PVG. 1U (RT1.AU) rat 

strain. This discrepancy is likely to be due to strain-dependant differences in antigen 

processing (Benham et al 1994).

Studies from our own laboratory (Pettigrew et al 1998) have recently demonstrated 

that indirect T cell activation may also be important in priming for accelerated organ 

allograft rejection. A DNA-based strategy was adopted to prime RT1U animals with 

a soluble version of the RTl.Aa molecule. Despite incorporating appropriate 

conformational epitopes, the absence of cell surface presentation, and therefore co­

stimulation, prevented direct T cell activation. Nevertheless, such pre-treatment 

markedly accelerated the rejection of subsequent R8 (RTl.Aa) cardiac allografts.
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Furthermore, this response could be abrogated by treatment with an anti-CD4 

monoclonal antibody.

1.7.3 Indirect Allorecognition in Human Transplantation

Relatively little data has been published with reference to indirect recognition in 

human transplantation. Two studies of note however (Muluk et al 1991, Liu et al 

1996b) have shown the presence of IL-2 responsive self-restricted T cells specific 

for mismatched HLA antigens in the circulation of human renal (Muluk et al 1991), 

and cardiac (Liu et al 1996b) transplant patients. In the latter study, the presence of 

T cells specific for DRpi*0101 peptide in the circulation of DRpl*1101 patients 

bearing a DRP 1*0101 cardiac allograft, was observed both before and during acute 

and chronic rejection episodes, but no such cells were observed during quiescence.

Taken together, all the above data undoubtedly confirm the incidence of indirect 

allorecognition in graft rejection, although its relative role in effecting rejection will 

be discussed later.

1.7 .4 Immunodominance and Epitope Spreading

Elution studies have demonstrated that from a theoretically large pool of potential 

peptide epitopes, a relatively small number are generated and presented. A concept 

of immunodominance has been established concerning both immunity to complex 

antigens, and autoimmune responses (Sercarz et al 1993), in which the immune 

response appears to be initially restricted to a single, or few, dominant epitope(s) 

within the immunogenic protein. There is evidence that the intial indirect 

alloresponse is similarly directed at a limited number of immunodominant epitopes 

(Dalchau et al 1992, Fangmann et al 1992a, Fangmann et al 1992b). Benichou et al 

(Benichou et al 1994a) explored this concept more fully. In the mouse he 

demonstrated that, following either the injection of donor strain cells or a donor 

strain skin graft, the alloimmune response in three donor-recipient combinations was 

limited to a single dominant epitope. If all alloresponses were restricted to isolated 

epitopes, the possibility of targeting such epitopes to modify the immune response to 

an allograft would appear to be eminently feasible. However, in clinical practice the

-40-



indirect response is unlikely to be so defined, and is likely to depend on both the 

discrepancy between the recipient and donor MHC, and upon the recipient's antigen 

processing mechanisms (Parker et al 1992, Gallon et al 1995). This is supported by a 

recent study examining the fine specificity of the T cell response to a 24-mer peptide 

by three different rat strains. Using a nested set of 15-mer peptides, it was observed 

that the T cell response was localised to a different area of the parent peptide for 

each of the three rat strains (Benham et al 1994).

Although the initial immune response to an allograft appears to be of relatively 

limited repertoire, it is evident that the response to nominal protein antigen is a 

dynamic process (Mamula 1998). As the response progresses, T cell reactivity 

spreads from the initial immunodominant determinant to additional sub-dominant 

and cryptic epitopes (Sercarz et al 1993). This so-called epitope spreading is a 

fundamental mechanism of the immune system that has evolved for the elimination 

of invading pathogens; clearly, targeting multiple epitopes on a foreign antigen will 

increase the chances of effective clearance. Whilst important in the fight against 

infection and malignancy, this phenomenon has proved highly detrimental in the 

progression of autoimmune disease (Lehmann et al 1992).

Liu et al (Liu et al 1996a) have demonstrated that diversification of the immune 

response may also take place following transplantation. In patients bearing a cardiac 

allograft differing at two HLA-DR alleles, alloreactivity during early rejection 

episodes was restricted to a single determinant on one of the DR alleles. However, 

following multiple rejection episodes, intermolecular spreading of the immune 

response to encompass the second allele was observed.

Further studies from the same group have explored the relationship between T cell 

alloreactivity, epitope spreading and chronic allograft rejection (Ciubotariu et al 

1998, Suciu-Foca et al 1999). Patients who displayed late, persistent alloreactivity 

were at a greater risk of developing coronary artery vasculopathy (CAV) (a hallmark 

of chronic cardiac rejection), than those subjects who showed no reactivity after the 

first 6 months. In addition, a greater proportion of patients who developed CAV 

showed inter- and intramolecular spreading of the immune response than those
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patients who did not develop CAV. It therefore appears that a correlation between 

the diversification of T cell alloreactivity, to include cryptic epitopes and chronic 

rejection exists.

In summary, although the indirect pathway contributes to allorecognition, the exact 

mechanics of antigen processing remain unclear. In particular, there appears to be a 

balance between focusing upon a single dominant epitope and spreading to multiple 

epitopes. The regulation of the balance requires further clarification as this has 

important implications upon the design of therapeutic strategies that target the 

indirect pathway. The data available to date suggests that the design of such 

strategies may not be as straightforward as once thought (Sayegh et al 1992, 

Shirwan et al 1997b).

L8 THE ROLE OF INDIRECTLY ACTIVATED T CELLS IN EFFECTING 

ALLOGRAFT REJECTION:

Several mechanisms are traditionally thought to play a role in allograft rejection. 

Firstly, a delayed type hypersensitivity (DTH) response could occur upon recipient 

T cell infiltration into the graft, with recognition of donor antigenic determinants 

resulting in T cell activation. The subsequent release of chemokines may damage the 

graft directly, or lead to the recruitment of non-specific effector cells, such as 

macrophages, to the graft bed. Secondly, as first demonstrated by the MLR, 

alloreactive T cells may directly damage the graft, by developing cytotoxic 

properties, which enables them to lyse donor cells. Cytotoxic T cells are generally of 

the CD8 T cell subset and therefore recognise allogeneic MHC class I. Finally, the 

development of alloantibody and its subsequent binding to allogeneic MHC on the 

surface of donor cells can also result in graft damage through the activation of 

complement. Although it is well recognised that pre-formed antibody plays a critical 

role in hyperacute rejection (Kissmeyer-Nielsen et al 1966), as a mechanism for 

acute and chronic rejection, alloantibody has been largely neglected. It has, however 

been demonstrated that alloantibody may play a significant role in the rejection of
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human renal allografts (Halloran et al 1992). In addition, alloantibody has been 

implicated in the rejection of skin (Fangmann et al 1992a, Steele et al 1996), kidney 

(Benham et al 1995) and cardiac (Gracie et al 1990) allografts in several rodent 

models. It is likely however, that specific rejection responses are dependent upon 

several factors, including the nature of MHC disparity between donor and recipient, 

the type of graft transplanted, and the state of sensitisation of the host.

Although the relative importance of the indirect pathway of allorecognition in 

initiating graft rejection remains unclear, it is of note that indirectly primed T cells 

can theoretically contribute to each of the above mentioned pathways. The 

stimulation of recipient CD4 T cells by processed alloantigen in the context of self- 

MHC class II may result in nonspecific DTH-like responses, as discussed by Parker 

et al (Parker et al 1992). Indirectly primed T cells may also provide help to CD8 T 

cells for the development of an antigen-specific CTL response (Mitchison et al 1987, 

Lee et al 1994). Finally, cognate (antigen-specific) help may be provided to B cells 

for the generation of an antibody response (Noelle et al 1990) (Figure 1.8b), and it is 

with this particular aspect of the indirect alloresponse that this thesis is principally 

concerned.

T cell help for an antibody response directed at a nominal antigen generally requires 

a cognate interaction between the TCR and the class II-peptide complex of the B cell 

(Noelle et al 1990). In other words, only T cells specific for the peptide fragment 

presented by the B cell upon processing of the complete antigen are able to provide 

the necessary co-stimulatory signals required for an antibody response. Regarding 

the alloantibody response to MHC mismatched allografts, such cognate help could 

only be provided by indirectly activated T cells. Directly activated T cells would not 

be able to provide help in this manner, as their target MHC class II molecule will 

differ to the class II molecule expressed by the recipient B cell.

Evidence supporting the theory that indirect T cell priming is intrinsic in the 

development of the alloantibody response was provided by Bradley and colleagues, 

using a vascularised class I disparate allograft model. Using a series of T cell- 

depletion and passive transfer studies, it was demonstrated that the ability of
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of Allorecognition.

PVG.RT1U (RT1.AU) to reject PVG-R8 (RTl.Aa) allografts was CD4, not CD8 T 

cell-dependent (Gracie et al 1990, Morton et al 1993). Thus, it is likely that CD4 

cells recognised the disparate class I molecule, not as an intact antigenic determinant 

on the surface of graft cells, but as processed peptide fragments presented by 

recipient APCs. Furthermore, rejection in this strain combination appears to be 

mediated by alloantibody, as passive transfer of immune serum to naive RT1U
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recipients resulted in accelerated rejection of subsequent donor-strain, but not third- 

party, skin and cardiac allografts (Morton et al 1993). More recent studies using this 

model (MacDonald et al 1997) have suggested that indirect T cell activation, by 

providing cognate B cell help, is central to the development of an alloantibody 

response. By specifically targeting synthetic Aa-derived allopeptides to small resting 

B cells presumed devoid of co-stimulatory signals, a marked reduction in the anti-Aa 

alloantibody response to a subsequent R8 cardiac allograft was achieved.

However, it has also been proposed that directly activated T cells may provide help 

to B cells for alloantibody production (Kelly et al 1996) (See Figure 1.8a), 

particularly during the early stages of graft rejection. This hypothesis was based on 

the observation that donor interstitial dendritic cells expressing intact donor MHC 

class II were integral to the development of the alloantibody response. Moreover, the 

early alloantibody response to an accompanying allogeneic MHC class I molecule 

was also dependent on the donor class II molecule, as its development was impeded 

by the presence of pre-formed anti-class II antibodies. It was therefore suggested 

that recipient CD4 T cells recognising donor class II alloantigen directly could 

provide help for the alloantibody response against other antigenic determinants on 

the graft. However, it is not possible for such help to involve a standard T-B cell 

cognate interaction, as the T and B cell determinants are obviously different. 

Analogous to the three cell cluster model proposed for the generation of a cytotoxic 

response (Mitchison et al 1987), Kelly and colleagues suggested that linkage of T 

and B cells in this model could occur via the donor APC, through its presentation of 

both determinants simultaneously (see Figure 1.8a).

Recent studies by Steele and co-workers (Steele et al 1996) may help to reconcile 

the discrepancy between our results and those of Fabre and colleagues. Employing 

transgenic class II-deficient mice as either donors or recipients of skin grafts, it was 

demonstrated that class II-deficient grafts were rejected with normal kinetics, and 

that the IgM and IgG responses to the residual graft antigens were similar to that of 

control animals receiving normal grafts. For similar reasons to those described for 

the class I disparate PVG-R8 to PVG-RT1U model, this experiment confirms that the
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restriction of T cell help to the indirect pathway is sufficient for a normal 

alloantibody response. Class II-deficient recipients (but with a normal CD4 

repertoire) however, produced only moderate levels of alloantibody, which was 

exclusively of the IgM subclass. In this situation, indirect T cell recognition cannot 

occur. Thus, it appears that directly activated T cells are capable of initiating the 

primary IgM response, but are incapable of providing the help required to induce 

heavy chain switching to the IgG subclasses, which is a characteristic of the 

secondary antibody response.

Agarwal et al have also suggested that the various stages of the antibody response 

require varying levels of T cell help (Agarwal et al 1997). As the alloantibody 

response switches to IgG, they noted that the specificity of T cell help focuses upon 

a limited number of epitopes. Such restriction appears to be a result of competition 

amongst the putative T cell epitopes that B cells present, for the limited available T 

cell help. There is, of course, no reason why a limited allo-IgM response may not be 

equally as damaging to the graft as a more differentiated IgG response. Certainly, 

antibody of an IgM isotype generally exhibits powerful cytotoxic properties.

In conclusion, the indirect alloresponse can undoubtedly contribute to alloantibody 

production. However, it still remains unclear whether the initial rapid antibody 

response can be accounted for by indirect recognition alone, or whether a unique 

form of non-cognate help, as provided by directly activated T cells is largely 

responsible.

L9 TOLERANCE INDUCTION:

Tolerance generally exists to self-antigens, and the realisation by Billingham et al 

that tolerance could be extended to alloantigens by the injection of foetal mice with 

donor strain cells (Billingham et al 1953), suggests that antigen-specific tolerance in 

the absence of long-term immunosuppression is possible. There are two possible 

mechanisms by which tolerance may occur, either through intrathymic deletion of 

developing T cells, or through peripheral tolerogenic mechanisms. Recent animal
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studies have suggested that peripheral tolerance can occur by several different 

means, namely T cell ignorance, T cell anergy and T cell suppression (Reviewed by 

(Charlton et al 1994).

T cell ignorance, as its name suggests, implies that the antigen in question escapes 

immune surveillance either through sequestration, or through presentation by non­

professional APC, such that recipient T cells that recognise the antigen are neither 

activated nor anergised, and remain capable of responding to the antigen if it is later 

presented by a professional APC (Heath et al 1992). T cell anergy however occurs 

when the TCR complex receives a sub-optimal activation signal, usually due to the 

absence of a suitable secondary co-stimulatory signal (Lafferty et al 1977, Schwartz 

1992). Suppressor T cell mechanisms are more difficult to define, largely because a 

distinct effector T cell population has not been identified, but broadly imply that 

potentially auto- or alloreactive T cells are suppressed from activation by a further T 

cell population. Suppressor T cells are also thought to be involved in the prolonged 

survival of both rat cardiac allografts following CsA treatment (Hall et al 1990), and 

mouse skin grafts following monoclonal antibody therapy (Qin et al 1993). In 

several animal models of transplantation tolerance, more than one mechanism 

appears to be responsible for allograft non-responsiveness (Oluwole et al 1995, 

Zhang et al 1996, Chen et al 1998). This will also likely prove to be the case in the 

more complicated setting of graft acceptance in humans.

As this thesis explores the use of donor-derived allopeptides to tolerise the indirect 

pathway of allorecognition, it is simpler to consider tolerance using a functional, 

rather than a mechanistic, approach and to examine specifically those protocols that 

result in donor specific tolerance (DST). DST is achieved by using tolerogenic 

protocols that incorporate donor antigen, initially in the form of intact donor cells, 

but more recently as allopeptide fragments.

Pre-treatment of potential organ recipients with a blood transfusion, a once common 

clinical practice, provides an early example of antigen-specific tolerance. However, 

because grouping of the pre-administered blood was chosen randomly, only indirect 

evidence exists to suggest that the tolerance achieved was an antigen-specific effect
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and due to the subsequent donor organ sharing one or more HLA antigen with the 

pre-immunising blood (Lagaaij et al 1989, van Twuyver et al 1991).

The beneficial effect of blood transfusions on allograft survival can be reproduced 

with preparations of purified erythrocytes, which express only minimal levels of 

MHC class II (Wood et al 1985). In addition, pre-treatment of mice with syngeneic 

fibroblasts transfected with donor MHC molecules was shown to prolong 

subsequent cardiac allograft survival, sometimes indefinitely, in a fully mismatched 

mouse strain combination (Madsen et al 1988).

In the latter experiment, DST was achieved without incorporating all of the 

mismatched donor MHC antigens into the tolerogenic protocol, although the 

mechanism by which such “linked epitope suppression” occurs has yet to be 

established. It appears however, that this phenomenon is restricted to only those 

additional antigenic epitopes that are physically linked with the donor antigen (i.e. 

on the same allograft) to which tolerance has already been established, since the 

effect cannot be reproduced if the additional antigens are instead expressed on a 

second, concurrently administered graft (Davies et al 1996, Wong et al 1997). 

Presumably therefore, both the tolerising, or “suppressor”, epitope and the additional 

antigenic donor epitope are presented on the surface of a single APC (either 

recipient or donor), resulting in down-regulation of the T cell response to the 

additional determinant. It is likely that the interaction of recipient T cells with the 

suppressor epitope either downregulates the co-stimulatory activity of the APC or 

results in the release of locally-acting, inhibitory cytokines (Lombardi et al 1994).

Linked epitope suppression is also apparent in models of intrathymic (IT) injection 

of donor antigen and intravenous administration of donor bone marrow cells (BMC). 

For example, it has been demonstrated that intravenous administration of BMC from 

transgenic CBK (H-2k + Kb) mice into CBA.Ca (H2k) recipients not only results in 

the survival of subsequent CBK cardiac allografts, but also of all heart grafts 

expressing the K antigen, irrespective of the presence of additional mismatched 

MHC antigens (Wong et al 1997).
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Similarly, it has been shown that IT injection of purified soluble donor class I 

antigen is able to prolong cardiac allograft survival indefinitely in the completely 

mismatched Wistar Furth (WF, RT1U) to Lewis (RT11) rat strain combination, but 

only in the presence of transient immunosuppression (Oluwole et al 1993). The same 

protocol, instead using Lewis rats as pancreatic islet donors, and low responder WF 

rats as recipients, resulted in permanent graft survival, but this time without 

immunosuppression (Oluwole et al 1994). A slightly different approach also 

demonstrating linked epitope suppression was used by Knechtle et al, who 

administered donor RTl.Aa antigen IT either as a ‘naked’ DNA injection (Knechtle 

et al 1997), or expressed on the surface of genetically modified, syngeneic Lewis 

hepatocytes (Knechtle et al 1994). Both models resulted in long term survival of 

ACI (RTla) livers in mismatched Lewis recipients, although transient 

immunosuppression was again required.

Attempting to interpret the mechanisms that are responsible for IT tolerance in the 

above experiments is complicated by the use of soluble class I alloMHC as the 

thymic inoculum in certain experiments (Oluwole et al 1993, Oluwole et al 1994), 

since soluble MHC may itself exhibit intrinsic tolerogenic properties (Caine et al 

1967). For example, Sumimoto et al observed prolonged DA (RTl.Aa) cardiac 

allograft survival in PVG (RT1C) recipients following the continuous infusion of 

purified donor class I antigen (Sumimoto et al 1990). However, neither Spencer and 

Fabre (Spencer et al 1987) nor Priestley et al (Priestley et al 1989) were able to 

reproduce this effect in the DA to PVG, or DA to Lewis rat strain combinations. An 

explanation for this discrepancy has however been offered by Foster et al. They 

demonstrated that, although the administration of soluble, donor RTl.Aa antigen as 

purified membrane-bound molecules resulted in the indefinite survival of DA kidney 

allografts in Lewis recipients, its’ administration as a water-soluble preparation 

required simultaneous immunosuppression for prolonged graft survival (Foster et al 

1992). This suggests that different physical conformations of soluble class I 

molecules have different tolerogenic effects. For example, Spencer and Priestley 

both used water-soluble MHC class I preparations (Spencer et al 1987, Priestley et al 

1989), and in this state soluble class I molecules cannot form complexes with each
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other. In comparison, it is likely that in Sumimoto’s study, the administered serum 

contained soluble donor class I protein that was able to form multivalent complexes 

(Sumimoto et al 1990). That aggregation of soluble donor class I antigen into 

multivalent complexes is required to down-regulate the CD8 T cell alloresponse has 

been verified in several subsequent in vitro studies (Dal Porto et al 1993, Abastado 

et al 1995, Zavazava et al 1996). The mechanism through which multivalent soluble 

class I complexes are able to downregulate T cell activation appears to be through 

the process of apotosis (Zavazava et al 1996), presumably resulting from the absence 

of an additional second signal from the co-stimulatory molecules that are normally 

co-presented on encounter with cell-bound antigen (Schwartz 1990).

It is possible that the KCl-extracted soluble antigens used by Oluwole et al in their 

IT injection experiments as discussed above (Oluwole et al 1993, Oluwole et al 

1994) retained their hydrophobic transmembrane and cytoplasmic tails, and thus, 

their ability to aggregate into multivalent complexes, which may explain their 

tolerogenic effect. A similar mechanism has been proposed to be responsible for the 

beneficial effects of pre-transplant blood transfusion (Buelow et al 1995). However, 

it has subsequently been demonstrated by Oluwole and colleagues that recipient 

APC are intrinsically involved in their model of IT injection (Chowdhury et al 1995, 

Oluwole et al 1995), therefore suggesting that indirect T cell allorecognition of 

donor antigen may be involved in the induction of tolerance. Since fragmented 

donor antigen (for example in the form of peptides) will be recognised exclusively 

through the indirect pathway, examining whether the same tolerogenic effect can be 

achieved following the administration of allopeptide fragments, rather than intact 

donor antigen, could test this hypothesis.

Several groups have now explored this possibility, and have confirmed that the 

indirect recognition of donor antigen is involved in some tolerisation protocols. For 

example, in the completely MHC mismatched rat strain combination, WF (RT1U) to 

Lewis (RT11), indefinite renal allograft survival was achieved by the IT injection of 

a mixture of four 25-mer donor-strain MHC class II allopeptides (Sayegh et al 1993, 

Sayegh et al 1994). Oral administration of the same peptides also downregulated the
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response to allogeneic cells as judged by in vivo DTH responses, however, the 

effectiveness of this route of peptide administration on graft survival was not 

examined (Sayegh et al 1992, Hancock et al 1994). Using a similar protocol, but 

with a single class I peptide derived from the a  helix of the a l  domain of the donor 

RTl.Aa molecule, Shirwan et al were able to achieve permanent cardiac allograft 

survival in the PVG.R8 (RTl.Aa) to PVG.1U (RT1.AU) rat strain combination 

(Shirwan et al 1997b). Notably, the dose of allopeptide required could be reduced if 

a second donor peptide, derived from the a2 domain, was co-administered (Shirwan 

et al 1997a).

These latter experiments illustrate two important concepts. Firstly, they provide the 

strongest evidence to date that the indirect pathway of allorecognition may be at 

least as important as the direct pathway in mediating acute allograft rejection, and 

secondly, they suggest that linked epitope suppression can exert a powerful effect in 

preventing additional graft epitopes from stimulating the alloimmune response. For 

example, Chowdhury et al were able to achieve permanent WF (RT1U) cardiac 

allograft survival in completely mismatched ACI (RTla) rats by IT injection of a 

single 17 amino acid immunodominant peptide derived from the a2 domain of the 

Au class I MHC antigen (Chowdhury et al 1998). Wang et al have provided an even 

more profound example of this effect (Wang et al 1997). A genetically engineered 

chimeric MHC class I molecule was constructed using the ACI RTl.Aa antigen as a 

backbone, but which was altered at the last four, of nine, disparate residues in the a  

helical region of the a l  domain to resemble the donor WF RT1.A1* antigen. The 

other five residues in the a l  domain that differed between the two rat strains were 

left unaltered. Despite these residual differences, as well as those within the a2 and 

a3 domains, a single injection of the chimeric protein into the portal vein of ACI 

recipients resulted in the indefinite survival of WF cardiac allografts without the 

need for additional immunosuppression. Notably, this result could not be reproduced 

with a second chimeric protein, which had been changed to incorporate all nine 

amino-acid differences in the hypervariable region of the a l  domain between the 

two strains.

-51 -



The ability to minimise the amount of donor antigen that is required to achieve 

tolerance would be undoubtedly beneficial in the clinical setting, as a single protocol 

could be used to tolerise to several mismatched donor organs that share the specific 

tolerising antigen. This principal may also be applied to the prevention of the 

development of chronic rejection, as this is associated with alloreactivity spreading 

to additional donor epitopes (e.g. (Ciubotariu et al 1998, Suciu-Foca et al 1998), and 

moreover, is currently the major cause of graft rejection.

1.10 AIMS:

The primary aim of this thesis was to study in greater depth the nature of the indirect 

T cell response to alloantigen. As discussed, it has been suggested that the indirect 

response to alloantigen is, at least initially, directed towards a single dominant 

epitope (Benichou et al 1994a). However, it is likely that as the alloresponse 

progresses, or upon manipulation of the host’s immune system, T cell reactivity may 

diversify to include further sub-dominant epitopes (Benichou et al 1998, Mamula 

1998). This may have important implications in the design of peptide-based 

tolerogenic strategies, and experiments were therefore designed to identify all the 

dominant and sub-dominant T cell epitopes that may potentially contribute to 

allograft rejection in the MHC class I disparate rat strain combination, PVG-R8 

(RTl.AaB/CuDu) to PVG-RT1U (RT1.AUB/CUDU). Although these two strains differ 

only at the classical MHC class I locus A, it has been established that CD4 T cells 

mediate graft rejection (Gracie et al 1990, Morton et al 1993), and therefore 

proposed that their activation occurs through indirect recognition of RTl.Aa peptide 

fragments. Since graft rejection in this strain combination is mediated by 

alloantibody (Gracie et al 1990, Morton et al 1993), the principal mode by which 

CD4 T cells effect graft rejection is likely to be through the provision of cognate 

help for B cells which present similar peptide fragments upon processing and 

presentation of the intact donor Aa antigen.
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I chose to map the immunogenic epitopes of the Aa molecule by using a series of Aa- 

derived allopeptides. Previous work has suggested that Aa-derived allopeptides do 

not contain the appropriate 3-dimensional conformational epitopes necessary for 

direct T cell recognition and activation (MacDonald et al 1997, Pettigrew et al 

1998). Therefore, the influence of peptide priming on the response to the intact Aa 

antigen is a result of exclusive priming of the indirect pathway of allorecognition. 

Previous studies adopting a similar peptide-based approach in this strain 

combination have focused upon the immunogenic and tolerogenic properties of 

peptides derived from only the hypervariable regions of the Aa molecule (Shirwan et 

al 1995, MacDonald et al 1997, Mhoyan et al 1997, Shirwan et al 1997b). However, 

since other regions of the molecule may contain additional RT1U T cell determinants, 

I decided to extend the above work by using a series of 18 overlapping 15-mer 

allopeptides spanning the length of the a l  and a2 domains of the Aa molecule. The 

15 amino acid length of these peptides was chosen somewhat empirically, based on 

the published data for the optimal length of peptides binding to MHC class II 

molecules (Rudensky et al 1991, Chicz et al 1992). This approach can however be 

validated by comparing the results obtained with the 15-mer peptides, to those 

obtained with a longer 24 amino acid peptide derived from the hypervariable region 

of the a l  domain. This peptide in effect acts as a positive control as it has been 

shown not only to evoke an accelerated anti-Aa immune response in RT1U animals, 

but has also been used successfully to downregulate their immune response to the 

intact Aa molecule when administered in a tolerogenic fashion (MacDonald et al 

1997).

Three different methods were chosen to examine whether individual allopeptides 

had the potential to be involved in the generation of the anti-Aa immune response. 

Firstly, I wished to examine the immunogenicity of the peptides in the RT1U rat 

strain, by immunising animals with individual allopeptides in CFA, then observing 

both the in vitro T cell proliferative responses and the anti-peptide antibody 

responses that they evoked. I predicted that within the Aa molecule there would be 

several immunogenic epitopes, but that the primary indirect response to the donor Aa 

antigen would focus upon a limited number of dominant epitopes from this set. To
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determine the location of these dominant epitope(s) in the Aa molecule, I decided to 

prime RT1U animals with the intact Aa molecule, in the form of an R8 allograft, and 

examine the in vitro proliferative recall responses stimulated by individual 

allopeptides. Finally, I sought to examine the in vivo T cell response to those Aa- 

derived allopeptides that are specifically involved in the indirect response against the 

intact Aa antigen by monitoring their ability to influence the antibody response to, 

and the rejection kinetics of, a subsequent Aa-bearing allograft. This may provide a 

more accurate assessment of those T cell epitopes that can potentially contribute to 

the CD4 T cell response to the Aa molecule than by using T cell proliferation studies 

alone, since standard proliferation assays are only a relatively crude reflection of the 

in vivo T cell response (Nevala et al 1997).

This latter approach may be particularly relevant for those Aa peptides that share the 

same amino acid sequence as the corresponding region of the Au molecule, although 

logically, one would not expect such consensual sequences to stimulate an indirect T 

cell response. However, Fedoseyeva et al (Fedoseyeva et al 1996) have recently 

demonstrated that whilst priming Balb/c (H-2d:KdAdEdDdLd) mice with the self- 

MHC peptide H-2Dd 61-80 did not stimulate a proliferative response, a response 

could be invoked upon challenge with a BIO.A (H2a:KkAkEkLdDd) allograft bearing 

the Dd antigen. This study confirms that during thymic selection of the T cell 

repertoire, not all self-reactive T cells are deleted, but that some persist in a state of 

anergy. Furthermore, this highlights that one cannot necessarily predict those 

epitopes that will be involved in the indirect response to an alloantigen.

The aim of these experiments therefore was to provide a functional in vivo map of 

the dominant and sub-dominant epitopes of the RTl.Aa MHC class I molecule that 

could be used to favourably modulate the alloimmune response to the Aa molecule. 

It was hoped that a tolerogenic protocol incorporating both dominant and sub­

dominant epitopes, as revealed by this more accurate mapping, would result in a 

more effective downregulation of the alloimmune response than has to date been 

accomplished by other peptide-based strategies (MacDonald et al 1997). In order to
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achieve this, I chose a protocol of intravenous injection of relatively high doses of 

allopeptide.
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CHAPTER 2:

MATERIALS AND METHODS

22  ANIMALS

Congenic PVG-RT1U (AUB/DUCU) and recombinant PVG-R8 (AavlB/DuCu) rats were 

purchased from Harlan UK Ltd. (Bicester, Oxon, UK). The derivation of PVG-RT1U 

and PVG-R8 rat strains (subsequently referred to as RT1U and R8) is referenced 

elsewhere (Gracie et al 1990). All animals were housed and maintained under 

standard conditions, initially at the University of Glasgow Central Research Facility, 

and subsequently at the University of Cambridge Central Biomedical Services at 

Laundry Farm. Animals were used when 8-12 weeks old.

2 2  TISSUE CULTURE MEDIA

2.2.1 Washing Medium

Hanks Buffered Salt Solution (HBSS) (Gibco BRL Life Technologies, Paisley, UK) 

supplemented with 2% heat-inactivated (HI) Foetal Calf Serum (FCS) (Sigma 

Biosciences, Poole, Dorset, UK), lOOU/ml Penicillin, 100p,g/ml Streptomycin and 

lOmM Hepes solution (all Gibco BRL), was used in all preparative procedures for 

cells, unless otherwise stated.

2.2.2 Culture Medium

RPMI 1640 (Gibco BRL) supplemented with 2mM L-glutamine (Gibco BRL), 

lOOU/ml Penicillin, 100pg/ml Streptomycin, and 5pM 2-Mercaptoethanol (Fischer 

Scientific, Loughborough, Leicestershire, UK) was used as culture medium for cells, 

supplemented with HI normal syngeneic rat serum or FCS as stated.
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2.3 CELL PREPARATIONS

2.3.1 Lymph Node Cells

Cervical, mesenteric and popliteal lymph nodes were removed from sacrificed rats 

under sterile conditions. Pooled lymph nodes were finely chopped with a scalpel 

blade, and gently pushed through a fine stainless steel mesh, using a sterile 5ml 

syringe plunger, to yield a single-cell suspension in lOmls of washing medium.

The cell suspension was transferred into a conical based test-tube (Sterilin, Stone, 

Staffs, UK), and left to stand on ice for a few minutes to allow the debris to settle. 

Cells were transferred to a clean test-tube, centrifuged at 1200 rpm for 7 minutes, re­

suspended, and washed a further 3 times. Cells were counted using a 

haemocytometer, and viability was determined by trypan blue exclusion.

2.3.2 Splenocytes

Spleens were removed under sterile conditions, and gently teased apart in washing 

medium using plastic forceps. The resulting cell suspension was transferred to a 

10ml conical based test-tube, and left on ice for a few minutes, to allow cell debris to 

settle out. Cells were transferred to a fresh test-tube and centrifuged at 1200 rpm for 

7 minutes. The cell pellet was re-suspended and erythrocytes removed by hypotonic 

lysis, by the addition of 5mis distilled water followed immediately by the addition of 

5mls 1.8% NaCl. Splenocytes were washed twice more, and counted by trypan blue 

exclusion.

2.3.3 Concanavalin A - Transformed Lymphoblasts

5Chromium (51Cr)-labelled Concanavalin A (ConA)-stimulated lymphoblasts were 

used as target cells in antibody-mediated cytotoxicity assays.

Splenocytes from donor-strain rats were prepared as described (section 2.3.2), but 

were not depleted of erythrocytes. Cells were adjusted to a concentration of 2-2.5 x 

106 cells/ml in 50mls of culture medium enriched with 10% HI FCS, and incubated
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with 5jj,g/ml of ConA (Sigma) in a 75cm3 tissue culture flask (Nunclon, Denmark) 

for 48 hours at 37°C in 5% CO2 .

2A  SYNTHETIC ALLOPEPTIDES

A series of 18 synthetic 15-mer peptides, overlapping by 5 amino acids, and 

spanning the a l  and a2 domains of the rat classical class IM HC molecule RTl.Aavl 

(residue 25 (glycine) to residue 209 (phenylalanine) inclusive), were purchased from 

Immune Systems Ltd. (Paignton, UK). All peptides were synthesised by Fmoc and 

HBTU chemistry, purified by HPLC, and assessed by Mass Spectrometry for purity. 

All peptide preparations were shown to be greater than 80% pure.

In addition, one peptide of 24 amino acids (designated a l) ,  and a control peptide 

(designated irrelevant) were used. The a l  peptide corresponds to the hypervariable 

region of the a l  domain (amino acid residues 81-104). The irrelevant peptide 

contains the same amino acids as peptide number 7, but in a random order.

All 15-mer peptide amino acid sequences are shown in Table 2.1.

2J> INJECTIONS

2.5.1 Subcutaneous Injection with Peptide

RT1U rats were injected subcutaneously with a 19G needle (Microblane, Becton 

Dickinson, Oxford, UK) into each hind footpad with 50pg of peptide dissolved in 

50pl of distilled water, and emulsified with a comparable volume of Freund’s 

Complete Adjuvant (CFA) (Sigma). Control animals received injections of distilled 

water emulsified with CFA alone. Animals were anaesthetised by halothane (Zeneca 

Ltd. Macclesfield, Cheshire, UK) inhalation.
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Table 2.1: The amino acid sequences of synthetic peptides.

PEPTIDE SEQUENCE POSITION
PI G S H S L R Y F Y T A V S R P 25-39
P2 A V S R P G L G E P R F I A V 35-49
P3 R F I A V G Y V D D T E F V R 45-59
P4 T E F V R F D S D A E N P R M 55-69
P5 E N P R M E P R A R W M E R E 65-79
P6 W M E R E G P E Y W E Q Q T R 75-89
P7 E Q Q T R I A K E W E Q I Y R 85-99
P8 E Q I Y R V D L R T L R G Y Y 95-109
P9 L R G Y Y N Q S E G G S H T I 105-119
P10 G S H T I Q E M Y G C D V G S 115-129
Pll C D V G S D G S L L R G Y R Q 125-139
P12 R G Y R Q D A Y D G R D Y I A 135-149
P13 R D Y I A L N E D L K T W T A 145-159
P14 K T W T A A D F A A Q I T R N 155-169
P15 Q I T R N K W E R A R Y A E R 165-179
PI 6 R Y A E R L R A Y L E G T C V 175-189
P17 E G T C V E W L S R Y L E L G 185-199
PI 8 Y L E L G K E T L L R S D P P 195-209

Irrelevant Y A Q W E I Q K E R E R Q T I N/A
The a l  peptide spans amino acid residues 81-104, and its sequence is as follows: 

P E Y W E Q Q T R I A K E W E Q I T R V D L R T

N.B. Residues 1-24 represent the signal sequence, which is cleaved during final 

transit of the nascent MHC molecule through the endoplasmic reticulum.

2.5.2 Intravenous Injection with Peptide

Male RT1U rats were injected intravenously into the penile dorsal vein using a 23G 

needle, whilst anaesthetised. Animals received one dose of 300pg of peptide 

dissolved in 300pl of normal saline (Fresenius Ltd., Basingstoke, UK). Control 

animals received injections of saline.

2.5.3 Intravenous Injection with Blood

Male RT1U rats were injected intravenously with 1.5mls of heparinised blood, into 

the penile dorsal vein using a 23G needle, whilst anaesthetised.
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Z6  SKIN TRANSPLANTATION

Anaethestised recipient RT1U animals were grafted on the flank with 1cm2 full 

thickness R8 abdominal skin, secured by four 4/0 sutures (Ethicon Ltd. Edinburgh, 

UK) applied at the comers of the graft. Wounds were dressed with a saline-soaked 

swab held in place with sleek tape. Dressings were removed after 4 days, and the 

grafts assessed daily. Rejection was defined as 50% necrosis of the graft.

2/7 CARDIAC TRANSPLANTATION

2.7.1 Donor Heart Retrieval

The donor rat was anaesthetised by continuous halothane inhalation. A midline 

incision was used to expose the inferior vena cava (JVC), into which 400 units of 

heparin (CP Pharmaceuticals Ltd. Wrexham, UK) was injected using an insulin 

syringe (Becton Dickinson). The aorta was transected in order to exsanguinate the 

animal. A thoracotomy was immediately performed, and cardioplegia achieved by 

packing the thoracic cavity with ice. The operating field was visualised using an 

operating microscope (Wild Heerbrug, Switzerland) at xlO magnification, and the 

heart and great vessels were dissected free from the surrounding connective tissue, 

so that the aorta, pulmonary artery and great veins were identified. The right 

superior vena cava (SVC) and IVC were ligated with 5/0 silk sutures (Ethicon Ltd., 

UK) and divided flush at their junction with the right atrium. Similarly, the left SVC 

and the azygous vein were ligated and divided at their common insertion into the left 

atrium. The ascending aorta was divided proximal to its bifurcation. Finally, the 

pulmonary veins draining into the back of the heart were ligated as a pedicle, and the 

heart removed by dividing between this tie and the posterior mediastinal structures.

2.7.2 Recipient Transplantation

Heterotopic cardiac transplantation was performed using the modified technique of 

Ono and Lindsey (Ono et al 1969). Recipient rats were anaesthetised by continuous 

halothane inhalation. A midline abdominal incision was made, and the intestines
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displaced and wrapped in a saline-soaked swab. The aorta and IVC were exposed, 

cleared of surrounding connective tissue, and a length of approximately 5mm of 

each vessel cleared of any tributaries or branches, to allow haemostatic control by 

the application of a proximal and distal occlusion clamp. The operating field was 

visualised through an operating microscope at xl6 magnification, and a 3mm 

arteriotomy and venotomy were fashioned in the recipient’s aorta and IVC 

respectively. Thereafter, continuous end to side anastomosis of the donor aorta to the 

recipient aorta was performed using a 9/0 nylon suture (Ethicon Ltd.). A similar 

technique was used to anastomose the donor pulmonary aorta to the recipient IVC. 

During anastomosis, the donor heart was kept cool by the application of a gauze 

swab to which cold saline was intermittently applied. Upon completion, the clamps 

were slowly removed and any haemorrhage from the suture line controlled by a 

combination of pressure and the application of haemostatic alginate (Surgicel, ?). 

Cold ischaemic times for the heart ranged from 30 to 40 minutes. On confirmation 

that the heart had begun to beat, the intestinal contents were replaced, and the wound 

closed in two layers with continuous 3/0 vicryl sutures (Ethicon Ltd.). Grafts were 

assessed daily by palpation, and rejection was defined as the complete cessation of 

myocardial contraction.

2 J  T CELL PROLIFERATION ASSAYS

Purified splenocyte and lymph node cell populations were prepared as described in 

section 2.3. Cells were re-suspended in culture medium enriched with 2% HI normal 

syngeneic rat serum, at a concentration of 4 x 106 cells/ml. lOOpl of cells were 

placed into each experimental well of 96-well U-bottomed plates (Nunclon) (4 x 105 

cells/well). Stimulator RTl.Aavl peptides were added to a final concentration of 

40pg/ml in each well, and the volume in each well was adjusted to 200pl. In 

addition, lOp.1 of ConA, at a final concentration of 5 jig/ml was added to wells as a 

positive control. Cells in culture medium alone were used to indicate base-line 

proliferation. Plates were incubated at 37°C in 5% CO2
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After 48 hours in culture, cells were pulsed with lfiCi/well of 3H-Thymidine 

(TRK418, Amersham International pic, Little Chalfont, Bucks, UK), and incubated 

for a further 24 hours. Plates were harvested using either a semi-automatic 12-well 

cell harvester (Skatron Instruments, Sweden), or a semi-automatic 196 Filtermate 

plate harvester (Canberra-Packard, Pangboume, Berks, UK). Cellular 3H-Thymidine 

incorporation was assessed using a liquid scintillation beta counter (Wallac, Milton 

Keynes, UK), or a Topcount.NXT microplate scintillation and luminescence counter 

(Canberra-Packard). Results were expressed as counts per minute (cpm), or as a 

stimulation index, calculated by the formula:

Experimental counts per minute 
Control counts per minute

2,9 DETECTION OF CYTOTOXIC ALLOANTIBODY

Donor alloantigen-specific cytotoxic alloantibody levels were determined in serum 

samples from modified RT1U rats using a 51Cr-release assay.

Specific cytotoxicity was assessed using 51Cr-labelled donor strain R8 ConA- 

transformed splenoblasts (as described in section 2.3.3) as target cells. Target cells 

in 1ml of serum-free culture medium were incubated with 5.0MBq 51Na-Chromate 

(CJS11, Amersham International pic.) for 90 minutes in a water-bath at 37°C with 

regular agitation. Cells were washed once with washing medium, re-suspended, and 

erythrocytes removed by hypotonic lysis. Cells were washed a further 3 times to 

remove excess sodium chromate, counted by trypan blue exclusion, and re­

suspended at a concentration of 1 x 106 cells/ml in RPMI 1640 + 5% HI FCS.

Serum samples were triple diluted in RPMI 1640 + 5% HI FCS to produce dilutions 

of 1:3, 1:9, 1:27, 1:81, 1:243, 1:729, 1:2187 and 1:6561. Triplicate 50pl aliquots of 

diluted serum samples were incubated in 96-well V-bottomed plates (Serowell, 

Bibby Sterilin Ltd., Stone, Staffs, UK) with 50pl of target cells at 37°C in 5% CO2  

for 45 minutes. lOOpl of guinea pig complement (Harlan Sera Labs, Bicester, Oxon, 

UK) was added to each well, and the plates incubated for a further 60 minutes.
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Spontaneous cellular release of chromium was determined using target cells 

incubated without complement or serum, and maximum release was determined 

using cells incubated with Triton X 100 (Sigma).

Plates were centrifuged for 7 minutes at 120 0  rpm, and IOOjlxI of supernatant was 

harvested from each well. Released 51Cr was determined using either a 

Compugamma Counter (LKB Pharmacia, Milton Keynes, UK), or a Cobra 

autogamma counter (Packard).

Percent specific 51Cr-release was calculated by the formula:

Experimental Release -  Spontaneous Release x 100 
Maximum Release -  Spontaneous Release

2.10 DETECTION OF ANTI-PEPTIDE ANTIBODY

Serum samples were tested for the presence of antibodies to peptide using an 

indirect radioactive binding assay, modified from the method previously described 

by Fangmann et al (Fangmann et al 1992a). All incubations, except for the blocking 

of non-specific binding sites were carried out at 4°C.

96-well optiplates (Canberra-Packard) were coated with 50pl/well of peptide at 

100(ig/ml in 0.15M NaCl. Plates were incubated for 18 hours, then washed x 3 with 

PBS/0.1% Bovine Serum Albumin (BSA) (Sigma). Non-specific binding sites were 

blocked with 200p,l of Meggablock III (Bionostics, Wyboston, Beds, UK) for 2 

hours at 37°C. Plates were washed as before. Tripling dilutions of test serum were 

added in triplicate to the plates, diluted in PBS/0.5% BSA (50pl/well). Plates were 

incubated for a further 2 hours, and then washed again. Anti-peptide antibody was 

determined by the addition of 50fil/well of 125I-labelled sheep F(ab')2 anti-rat Ig 

(Amersham International pic.) diluted 100-fold in PBS/0.5% BSA. Following a 60 

minute incubation, plates were washed x 3 with PBS/0.1% BSA, and lOOpl/well of 

Microscint 40 (Canberra-Packard) added. Bound radioactivity was measured using a 

Topcount.NXT. Results are expressed as cpm.
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2.11 DETERMINATION OF CLASS AND SUBCLASS OF ANTI-Aa

ALLO ANTIBODY

IgM and IgG2b anti-Aa alloantibodies were detected by flow cytometry in serum 

samples from experimental RT1U rats using R8 lymph node target cells at a 

concentration of 1 x 107 cells/ml in PBS/0.2% BSA/0.1% sodium azide (Sigma).

Serum samples were triple diluted in PBS/0.2% BSA/0.1% sodium azide (PBA) to 

produce dilutions of 1:3, 1:9, 1:27, 1:81, 1:243, 1:729, 1:2187 and 1:6561. 50|l i 1 

aliquots of diluted serum samples were incubated in 96-well U-bottomed plates with 

50pl of target cells for 30 minutes at 4°C. Cells were then washed by adding lOOpl 

of PBA, and plates centrifuged for 7 minutes at 1800 rpm. The supernatant was 

discarded, and the plates washed again with 200fil of PBA.

FITC-conjugated mouse anti-rat IgM (Harlan Sera Labs) and IgG2b (Sigma) 

monoclonal antibodies were used to detect IgM and IgG2b alloantibodies 

respectively. Each antibody was diluted 400-fold in PBA, and lOOpl added to 

experimental wells. Cells were re-suspended using a pipette, and plates incubated for 

30 minutes at 4°C in the dark. Plates were washed x 2 as before, and cells re­

suspended in lOOpl of PBA.

IgM and IgG2b alloantibodies were detected using a FACSCaliber (Becton 

Dickinson) flow cytometer with CellQuest software.
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CHAPTER 3:

THE IMMUNE RESPONSE TO RTl.Aa-DERIVED ALLOPEPTIDES IN

THE RT1U RAT STRAIN

3.1 Introduction

The work described in this thesis examines the role of the indirect pathway of 

recognition in allograft rejection using a class I disparate rat strain combination, 

PVG-R8 (RTl.AaB/DuCu) to PVG-RT1U (RT1.AUB/DUCU). Previous work in our 

laboratory has demonstrated that graft rejection in this strain combination is due to 

CD4 T cell-dependent alloantibody-mediated effector mechanisms (Gracie et al 

1990, Morton et al 1993). MacDonald et al have also shown that priming RT1U 

recipients to the indirect pathway, with allopeptides derived from the hypervariable 

regions of the RTl.Aa molecule, results in the accelerated rejection of R8 cardiac 

allografts (MacDonald et al 1997). The R8 and RT1U rat strains are genotypically 

identical except at the MHC region, where they differ at a single class I locus, 

RT1.A (Figure 3.1a). Since these two strains share the same MHC class II 

molecules, it is likely that recipient CD4 T cells recognise the allogeneic donor class 

I molecule as processed antigen presented by MHC class II on either donor or 

recipient APC.

The indirect presentation of an antigenic molecule, such as the RTl.Aa MHC class I 

molecule, is a controlled process, such that only certain peptide sequences from the 

antigen are presented as T cell epitopes. Furthermore, a pattern of hierarchical 

dominance exists amongst presented epitopes, wherein a limited number of 

dominant epitopes are involved in the initial response, and the remaining sub­

dominant, or cryptic epitopes may, under certain circumstances, become more 

relevant (Sercarz et al 1993). To analyse more fully the functional T cell
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A
a l  domain, P-pleat

RT1 .Aa G SH SL R Y FY T A V SR PG LG EPR FIA V G Y V D D T E FV R FD SD A E N PR M EPR A R  

RT1 .Au G SH SL R Y FY T A V SR PG LG EPR FIA V G Y V D D T E FV R Y D SD A E N PR M E PR A R

a l  domain, a-helix a 2  domain, P-pleat

RT1 .Aa W M EREGPEYW EQQTRIAKEW EQIYRVDLRTLRGYYNQSEGGSHTIQEMYG

RT1 .Au WMEREGPEYWERE'TQGAKGHEQVNRVNLRTLRGYYNQSEGGSHTIQVMFG

a2  domain, a-helix

RT1 .Aa CDVGSDGSLLRGYRQDAYDGRDYIALNEDLKTW TAADFAAQITRNKW ERA  

RT1 .Au CDVGTDW SLLRGYRQDAYDGRDYIALNEDLKTW TAADFAAQITRNKLERD

a3 domain

RT1. Aa RYA ERLRAYLEGTCVEW LSRYLELGK ETLLRSDPP  

RT1 .Au GDADYYK AYLEG TCLESVRRYLELGK ERPVRSDPP

B
a l  domain, P-pleat

R T l.A a G SH SL R Y FY T A V SR PG LG EPR FIA V G Y V D D T E FV R FD SD A E N PR M EPR A R

PI------------------:-----------------  P3------------------------------------  P5-------------------------

P2----------------------------------  P4------------------------------------

a l  domain, a-helix a2  domain, P-pleat

RT1 .Aa W M EREGPEYW EQQTRIAKEW EQIYRVDLRTLRGYYNQSEGGSHTIQEMYG  
----------------  P7----------------------------—  P9------------------------------------

P6-----------    P8------------------------------------  P10-

a2  domain, a-helix

RT1 .Aa CDVGSDGSLLRGYRQDAYDGRDYIALNEDLK-rWTAADFAAQTTRNKWERA

P l l -------------   P13------------------------------------  PI-5-------------------------

---------  PI 2---------------------------    P14------------------------------------

a3 domain

RT1 .Aa R YAERLRAYLEGTCVEW LSRYLELGK ETLLRSDPP
------------  PI-7------------------------------------

P16  PI 8-

Figure 3.1: A) The nature o f the amino acid disparity between the RT1.A3 and 
RT1.AU MHC class I molecules. B) The positions o f the a l  and 15- 
mer peptides in the R Tl.Aa molecule. Disparate amino acids are in 
bold type.



determinants that are contained within the Aa molecule, and their relative importance 

in the indirect response to alloantigen, I chose to examine the in vitro and in vivo 

responses of RT1U rats to a series of 18 synthetic peptides spanning the a l  and a2 

domains of Aa

The 18 peptides (P I-PI8) were synthesised by Immune Systems (UK). Each peptide 

is 15 amino acids long, and overlaps with each of its adjacent peptides by five amino 

acids. 15-mer peptides were chosen for this study, as it has been shown that this is 

the optimal length for peptide binding to MHC class II (Rudensky et al 1991, Chicz 

et al 1992). The positions of the peptides in the Aa molecule are illustrated in Figure 

3.1b. Two additional peptides were used, one of 24 amino acids, derived from the 

hypervariable region of the a l  domain (designated a l) , and a control peptide 

(designated irrelevant). The irrelevant peptide contains the same amino acids as 

peptide 7 (P7), but in a random order.

I initially examined which of these peptides were able to elicit an immune response 

in RT1U rats, by priming animals subcutaneously with individual peptides emulsified 

in CFA. These results were compared with the recall responses to peptides following 

immunisation with the intact Aa molecule in the form of R8 skin and cardiac 

allografts. It was anticipated that only a limited number of peptides would be 

involved in the indirect response to the intact molecule, and that these would be 

contained within a wider subset of immunogenic peptides, as revealed following 

peptide priming experiments. A comparison of the spectrum of responses resulting 

from different immunisation protocols not only enables mapping of dominant 

epitopes, but can also identify potentially sub-dominant or cryptic epitopes.
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3.2 The Immune Response Following Immunisation with Allopeptide

To examine the immunogenicity of allopeptides, naive RT1U animals were 

subcutaneously immunised with lOOpg of individual peptides emulsified in CFA. 

After 12 days, LNCs and sera from the immunised animals were used in in vitro T 

cell proliferation assays and analysed for alloantibody content respectively. 

Optimum conditions for these assays, with regards to peptide concentration, 

numbers of responder cells and the constituents of the media, had been previously 

established in our laboratory (Catherine MacDonald -  personal communication), and 

were consequently re-employed in the present study. However, preliminary 

experiments were performed to establish the optimum time-point at which to harvest 

the in vitro T cell proliferation assays. Figure 3.2 is a representative graph of these 

experiments. No significant difference in the level of T cell proliferation was noted 

in samples that were harvested 96 or 120 hours after culture initiation. However, 

those cells harvested at 96 hours did appear to exhibit slightly higher levels of 3H- 

Thymidine incorporation, and I consequently employed this time-point for the 

remainder of my study.

3.2.1 The T Cell Proliferative Response

To examine the in vitro T cell proliferative response to the allopeptides, LNCs were 

prepared from RT1U rats 12 days after peptide priming, cultured in vitro with the 

immunising peptide for 72hrs, and pulsed with 3H-Thymidine for an additional 

24hrs before harvesting. Assays were performed 12 days after peptide immunisation, 

as work from other laboratories would suggest that 10-12 days is the minimum time 

at which in vitro proliferation can be detected (Benichou et al 1992, Benichou et al 

1994a). Specific in vitro T cell proliferative responses to immunising peptides are 

illustrated in Figure 3.3. Only PI, P7 and the a l  peptide stimulated recall responses 

greater than the proliferative response to the same peptides by LNCs from naive 

RT1U rats. Of these three peptides, a l  stimulated the greatest response, with 

proliferation five times greater than that of naive cells. P7 stimulated a response
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Figure 3.2: Comparison of In Vitro T Cell Proliferation of LNCs Harvested 96 
and 120 Hours after Initiation of Culture.
An RT1U animal was immunised with a heterotopic R8 cardiac allograft, 
and LNCs used in T cell proliferation studies 11 days later. Cells were 
cultured with individual allopeptides at 40pg/ml for 96 or 120hrs. Cells 
were pulsed with 3H-Thymidine for the last 24hrs of culture. Results are 
expressed as cpm. Standard deviations derive from original triplicate 
values.

approximately three times that of background and PI approximately twice that of 

background. In vitro culture with any of the other 15-mers, including the irrelevant 

peptide, failed to generate a proliferative response greater than that of naive cells. It 

is unsurprising that the a l  peptide stimulated a strong proliferative response, as its 

sequence encompasses the ten disparate Aa/Au amino acid residues found in the a- 

helical region of the a l  domain. In comparison, P7 encompasses nine of these 

disparate amino acid residues (see Figure 3.1b). Interestingly however, neither P I5 

nor P16 generated a proliferative response, despite their sequences deriving from the 

hypervariable a-helical region of the a2 domain. There are 15 amino acid residue 

differences in this second hypervariable region between the two rat strains, with P15 

and P16 encompassing nine of the disparate residues in total (see Figure 3. lb).
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Figure 3.3: Specific In Vitro T Cell Proliferative Responses of RT1U Animals 
Immunised with Aa Allopeptides.
RT1U animals were immunised subcutaneously with lOOpg of 
peptide emulsified in CFA and LNCs used in T cell proliferation 
studies 12 days later. Cells were cultured for 72hrs with individual 
allopeptides at 40pg/ml, and pulsed with 3H-Thymidine for an 
additional 24hrs before harvesting. LNCs from naive RT1U rats were 
cultured in the same manner to obtain background levels of 
proliferation. Standard deviations derive from original triplicate 
values.

Notably, immunisation with P7 stimulated a recall response to the a l  peptide that 

was slightly stronger, although not significantly so, than the response observed to P7 

itself (Figure 3.4a). In addition, immunisation with P8 also stimulated a response to 

the a l  peptide, but interestingly, the recall response to P8 itself was not greater than 

that observed in naive LNCs (Figure 3.4b). Given that P7 and P8 both share 

common sequences with the a l  peptide, and that no proliferation to a l  was 

observed following immunisation with any of the other peptides (for example, see 

Figure 3.4c), the proliferative response to a l  upon immunisation with P8 is probably 

not an artifact. This would suggest that priming with P8 does in fact stimulate an in 

vivo T cell response, but that the in vitro proliferation assay does not reveal this.
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Figure 3.4: In Vitro T Cell Proliferation of LNCs from RT1U Animals 
Immunised with Peptides P7, P8 or PI6.
RT1U animals were immunised subcutaneously with lOOpg of A) P7, 
B) P8 or C) P16 emulsified in CFA and LNCs used in T cell 
proliferation studies 12 days later. Cells were cultured for 72hrs with 
individual allopeptides at 40pg/ml, and pulsed with 3H-Thymidine for 
an additional 24hrs before harvesting. LNCs from naive RT1U rats were 
cultured in the same manner to obtain background levels of 
proliferation. Standard deviations derive from original triplicate values.

This discrepancy between the in vivo T cell response and the in vitro proliferative 

response will be discussed later.

3.2.2 Anti-Peptide Alloantibody Analyses

Because of the possibility that T cell proliferation assays do not reveal all potentially 

immunogenic epitopes, peptide immunogenicity was alternatively examined by
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Figure 3.5: Cognate T and B Cell Collaboration for the Production 
of Anti-peptide Antibodies.
1) Peptide is internalised by the B cell through recognition 
of its B cell determinant.
2) T cells specific for the peptide epitope presented by the 
B cell provide help for the production of anti-peptide 
antibodies (3).

measuring the antibody responses that peptides engendered following their 

subcutaneous immunisation. Analysis of the anti-peptide antibody response in serum 

samples obtained at different time points following immunisation permits the 

kinetics of the T cell response to be observed indirectly through its influence on the 

B cell response. As can be seen from Figure 3.5, the development of the anti-peptide 

antibody response is dependent not only upon T cell help, but also on the presence 

of B cells that have receptors for the appropriate peptide epitopes. Consequently, 

although this approach may detect additional immunogenic epitopes compared with 

the proliferation assay, it may not be all encompassing, as other peptides that contain 

potential T cell epitopes may not be revealed due to the absence of a B cell epitope.

Anti-peptide antibody in serum samples taken from RT1U rats 12 days after 

subcutaneous immunisation with peptide was assessed using an indirect radioactive 

binding assay in which sera were incubated in microtitre plates coated with the 

immunising peptide, and antibody detected using an 125I-labelled sheep F(ab')2 anti­

rat Ig. Figure 3.6a demonstrates the levels of peptide-specific antibody detected in

-74-



CPM
 

CP
M

■Peptide 1

■ Peptide 2

■ Peptide 3

■ Peptide 4

■ Peptide 5
1 0 0 0 0 -1 — ■ Peptide 6 

—□—  Peptide 7 

—° —  Peptide 8 

—"■— Peptide 97500-

5000-

2500-

6 7 81 2 3 4 5

Log3 Reciprocal Serum Dilution

10000-1

7500-

5000-

2500-

Peptide 10 

Peptide 11 

Peptide 12 

Peptide 13 

Peptide 14 
Peptide 15 

Peptide 16 
Peptide 17 

Peptide 18 

Irrelevant Peptide

Log3 Reciprocal Serum Dilution

Figure 3.6: Anti-peptide Antibody Production Following Immunisation of RT1U 
Rats with Allopeptide.
Specific anti-peptide antibody levels in serum samples from RT1U rats 
immunised with peptides derived from A) the a l  domain, and B) the a2 
domain of the RTl.A3 molecule. Samples were taken 12 days after 
subcutaneous administration of 100pg of peptide emulsified in CFA. 
Alloantibody levels were assessed using an indirect radioactive binding 
assay in microtitre plates coated with immunising peptides. Results are 
the mean of two animals per group.
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serum samples from animals immunised with peptides derived from the a l  domain 

(i.e. peptides P1-P9 and the a l  peptide). Similarly, Figure 3.6b illustrates levels of 

peptide-specific antibody found in serum samples from RT1U rats immunised with 

allopeptides derived from the a2 domain (i.e. peptides P10-P18) and also the 

irrelevant peptide. The two graphs demonstrate that only the a l  peptide and P7 from 

the a l  domain, and P16 from the a2 domain provoked an anti-peptide antibody 

response. All other samples tested displayed negligible levels of anti-peptide 

antibody.

Although this assay demonstrates that RT1U rats mount an antibody response to 

certain peptides (P7, P16 and a l) , the naturally high background levels associated 

with the indirect radioactive binding assay prevents accurate titration and 

consequently prohibits precise quantitative comparisons between the peptides that 

stimulated an anti- antibody response. I therefore attempted to measure the antibody 

response quantitatively using an ELISA (as described by Shirwan et al 1995). 

However, repeatedly high background levels in these assays prevented a distinction 

between control and sample wells.

3.2.3 Cytotoxic A lloantibody A nalyses

Sera were also tested for their ability to lyse R8 lymphoblast target cells in a 

standard 51Cr-release assay, in which target cells were labelled with 51Cr before 

incubation with experimental serum samples, and donor-specific alloantibody 

activated by the addition of guinea pig complement. No cell lysis was observed in 

response to any of the samples, thus indicating that anti-peptide antibodies were 

unable to cross-react with the intact Aa molecule (data not shown, but the average 

maximum and spontaneous 51Cr-release values were 1040 and 104 cpm 

respectively).

3.3 T Cell Proliferation Studies Following Immunisation with the Intact RTl.Aa 

Class I  Molecule.

The indirect response to the intact Aa molecule, as would occur upon challenge with 

an R8 graft, presumably centres upon the subset of peptides established as
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immunogenic in the preceding experiments. It is possible however, that the indirect 

response is further focused upon a single dominant epitope (Benichou et al 1994a). 

To explore this possibility, the in vitro T cell proliferative responses to individual 

peptides were assessed following in vivo challenge with the intact Aa molecule in the 

form of an R8 skin graft followed by an R8 cardiac allograft. Naive RT1U animals 

were immunised with a full thickness R8 skin graft 7 days before receiving a fully 

vascularised heterotopic R8 cardiac allograft. 7 days after heart grafting, LNCs were
• • 3cultured in vitro with individual allopeptides for 72hrs, and pulsed with H- 

Thymidine for a further 24hrs before harvesting.

A typical pattern of in vitro T cell proliferation to individual allopeptides following 

such immunisation is shown in Figure 3.7. The a l  peptide, P7 and P8 stimulated a 

greater T cell proliferative response in LNCs that had been previously exposed to the 

Aa molecule than in naive cells, with the response to the a l  peptide stronger than 

that to P7 or P8. Proliferative responses to the other 15-mer peptides were 

comparable in primed and naive LNCs.

Proliferation to the a l  peptide, but not to any of the 15-mer peptides, was generally 

observed following immunisation of RT1U animals with a single heart graft, 

although results were more variable as can be seen in Figure 3.8. Skin grafting alone 

did not evoke any constant pattern of in vitro T cell proliferation as is demonstrated 

in Figure 3.9.
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Figure 3.7: In Vitro T Cell Proliferation to Allopeptide Following 
Immunisation with an R8 Skin Graft and an R8 Cardiac 
Allograft.
RT1U animals were immunised with a full thickness R8 skin graft 10 
days before challenge with a fully vascularised R8 cardiac allograft. 
LNCs from experimental rats were used in T cell proliferation 
studies 7 days after cardiac transplantation. Cells were cultured for 
72hrs with individual allopeptides at 40pg/ml, and pulsed with 3H- 
Thymidine for an additional 24hrs before harvesting. LNCs from 
naive RT1U rats were cultured in the same manner to obtain 
background levels of proliferation. Results shown are the mean and 
standard deviation of three animals.
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Figure 3.8: In Vitro T Cell Proliferation of LNCs from RT1U Rats Immunised 
with an R8 Cardiac Allograft.
RT1U animals were immunised with a heterotopic R8 cardiac allograft, 
and LNCs used in T cell proliferation studies 7 days later. Cells were 
cultured for 72hrs with individual allopeptides at 40|ug/ml, and pulsed 
with 3H-Thymidine for an additional 24hrs before harvesting. LNCs from 
naive animals were treated in the same manner to obtain background 
levels of proliferation. Each graph represents the proliferative response of 
a single animal. Standard deviations derive from original triplicate values.
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Figure 3.9: In Vitro T Cell Proliferation of LNCs from RT1U Rats Immunised 
with an R8 Skin Graft.
RT1U animals were immunised with a full thickness R8 skin graft, and 
LNCs used in T cell proliferation studies 7 days later. Cells were 
cultured for 72hrs with individual allopeptides at 40p,g/ml, and pulsed 
with 3H-Thymidine for an additional 24hrs before harvesting. LNCs 
from naive animals were treated in the same manner to obtain 
background levels of proliferation. Each graph represents the 
proliferative response of a single animal. Standard deviations derive 
from original triplicate values.



3.4 Discussion

Following immunisation with individual peptides, proliferative recall responses to 

only P7, the a l  peptide and to a lesser extent PI, were observed (see Figure 3.3). Of 

these, the response to the a l  peptide, which encompasses all of the ten amino acid 

differences found between the Aa and Au sequences in the a-helical region of the a l  

domain, appeared stronger than that to P7, which encompasses nine of the same 

amino acid differences. Since the 24 amino acid a l  peptide encompasses all of P7 

and part of P8 (see Figure 3.1b), it is possible that the epitope most frequently 

generated upon processing of the a l  peptide, or indeed the intact Aa molecule, 

bridges both P7 and P8 (see Figures 3.4a, 3.4b and 3.7).

It was notable however, that following immunisation with P7, the proliferative recall 

response to the a l  peptide was stronger than that to P7 itself (Figure 3.4a). The 

explanation for this is not readily obvious, but possibly reflects deficiencies in the in 

vitro presentation of P7. In other words, although P7 can efficiently stimulate T cells 

in vivo, it may be that under the conditions of an in vitro T cell proliferation assay, 

processing of the a l  peptide generates the same epitope contained within P7, only 

more efficiently. The same reasoning could equally be used to explain why, upon in 

vivo priming with P8, an in vitro proliferative response can be demonstrated to the 

a l  peptide but not to P8 itself (Figure 3.4b).

The generation of an anti-peptide antibody response requires a peptide to contain 

both T and B cell determinants, and it is likely that certain peptides contain a T cell 

epitope but lack a suitable determinant for triggering the B cell receptor. It was 

interesting therefore, that whereas the T cell proliferation assays suggested in vivo 

responses only to PI, P7 and a l  (Figure 3.3), the anti-peptide antibody assay 

additionally revealed a humoral response to P16 (Figure 3.6). There are two possible 

explanations for this unexpected finding. Firstly, the indirect radioactive binding 

assay used for detecting anti-peptide antibodies may be more sensitive than the 

proliferation assay for examining T cell responses to peptide. Secondly, the ability 

of peptides to provoke a response in vivo might not necessarily correspond to in
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vitro T cell proliferation. Evidence for this has been provided by Nevala et al 

(Nevala et al 1997), who showed that certain peptides that were able to influence 

allograft rejection, did not stimulate an in vitro CTL response. This emphasises the 

complexities of the in vivo alloimmune response, and demonstrates that in vitro 

assays may not always represent accurately in vivo T cell specificities.

Epitopes involved in the indirect response to the Aa molecule appear to exhibit a 

hierarchical pattern of dominance. Following immunisation of RT1U animals with 

the intact Aa molecule, in the form of a skin graft followed by a heart graft, it was 

observed that proliferative T cell responses were directed towards only P7 and the 

a l  peptide, which are derived from the hypervariable region of the a l  domain (see 

Figure 3.7). In a similar fashion, Fangmann et al demonstrated that proliferation 

could be detected to a peptide derived from the a l  a-helical region of the donor 

RTl.Aa molecule following immunisation of Lewis (RT11) recipients with a DA 

(RTla) skin graft followed by a DA kidney graft 4-6 weeks later (Fangmann et al 

1992b). No proliferative response was observed to peptides derived from either the 

a-helical or (3-pleated sheet regions of the a2 domain. Benichou et al subsequently 

reported that following skin grafting in mice, the T cell response to the (31 domain of 

the donor class II H2-Ak p chain similarly focused upon a single dominant epitope. 

In this study, a series of 15-mer peptides progressing along the length of the donor 

MHC molecule in single amino acid residue steps were used. This approach results 

in a more thorough examination of the epitopes involved in the indirect pathway 

since the T cell response to all possible epitopes from the donor MHC molecule is 

examined. Furthermore, in this study, second-set grafting was not required, with 

proliferation to the dominant epitope detected 10 days after skin grafting alone 

(Benichou et al 1994a). In my experiments, focusing of the T cell proliferative 

response onto a dominant epitope was more clearly demonstrated following second- 

set grafting, concurring with the results of Fangmann (Fangmann et al 1992b). This 

possibly represents a species-specific variation in T cell proliferative responses.

Proliferation to the a l  peptide following challenge with the intact Aa molecule was 

again greater than that observed to P7 (Figure 3.7), and once again, it is possible that
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the a l  peptide contains, in terms of antigen processing, a more optimal T cell 

epitope than its shorter variant P7. However, as mentioned above, we cannot exclude 

the possibility that an artifact exists surrounding the in vitro presentation of P7. For 

example, it has been suggested by Viner et al that APCs may internalise and process 

peptides through different compartments in in vitro T cell proliferation assays than 

in an in vivo situation. Therefore, the same peptide epitope may be presented in 

sufficiently different configurations as to alter its T cell epitope depending on the 

nature of its surrounding environment, thus resulting in the activation of different 

subsets of peptide-reactive T cell clones in vitro and in vivo (Viner et al 1996).

In conclusion, these experiments reveal that several immunogenic epitopes exist 

within the RTl.Aa molecule, and that during the indirect response to the intact Aa 

molecule, as provided by R8 allografts, the alloimmune response is further focused 

onto a dominant epitope. This dominant epitope is located within the hypervariable 

region of the a l  domain, which concurs with previous results both in this strain 

combination (Shirwan et al 1995), and in the DA (RTl.Aa) to Lewis (RT1.A1) rat 

strain combination (Fangmann et al 1992b). The a l  peptide generates a stronger in 

vitro T cell proliferative response than P7, and this would suggest that additional 

amino acid sequences of the hypervariable region are involved in the generation of 

the optimal dominant epitope. These amino acids would be contained within P8, and 

it is perhaps surprising that a stronger response to this peptide was not observed.

There are several possible reasons to explain why the hypervariable regions of an 

allo-MHC molecule contain the epitopes principally involved in the indirect 

alloresponse. Most obviously, it is this area that contains the greatest number of 

amino acid differences as compared to the recipient’s own MHC molecule. One 

would therefore expect that processing of an alloMHC molecule would generate a 

greater number of non-self epitopes derived from this region than from other less 

variable areas of the molecule. However, it is also possible that the recipient T cell 

response is intrinsically biased towards epitopes from this region, either because 

similar areas of self-MHC molecules are involved in positive selection of the T cell 

repertoire, or perhaps because processing of the donor MHC molecule by recipient
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APCs favours the presentation of epitopes from the hypervariable region. Given this, 

it is surprising that the response to peptides derived from the second hypervariable 

region in the a2  domain were weaker and inconsistent. In fact, PI, in effect a self- 

RT1U peptide (see Figure 3.1b) appeared to stimulate a stronger T cell proliferative 

recall response than peptides derived from this second hypervariable region (Figure 

3 .3). As mentioned above, Fangmann et al also reported a lack of response to the 

second hypervariable region of the RTl.Aa molecule upon challenge of Lewis, 

rather than RT1U animals, with an Aa-bearing graft (Fangmann et al 1992b).

These results suggest that epitopes derived from areas of the Aa molecule other than 

the hypervariable regions may potentially be immunogenic, and further experiments 

were therefore designed to examine the influence of peptide priming on the immune 

response to the intact Aa molecule as confirmation of this.
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CHAPTER 4:

THE INFLUENCE OF Aa ALLOPEPTIDE IMMUNISATION ON THE 

IMMUNE RESPONSE TO THE INTACT Aa CLASS I MOLECULE

4.1 Introduction

The findings from Chapter 3 suggest that the indirect RT1U alloimmune response to 

the RTl .Aa MHC class I molecule is restricted to a limited number of dominant T 

cell determinants, contained within the hypervariable region of the a l  domain. That 

the initial immune response to a protein antigen focuses on a limited number of 

dominant epitopes is well established (reviewed in Sercarz et al 1993). For example, 

the response to hen egg lysozyme (HEL) is limited to determinants from a small area 

of the molecule, despite the ability of epitopes from other regions to induce T cell 

responses when used as immunogens (Maizels et al 1980). Equally, this 

phenomenon has been shown to apply during the indirect response to an allo-MHC 

molecule following transplantation (Fangmann et al 1992b, Benichou et al 1994a, 

Liu et al 1996a). There is no direct evidence to explain the exact mechanisms 

responsible for immunodominance, but factors such as antigen processing, MHC 

affinity for processed antigenic peptide and the existing T cell repertoire are all 

likely to be involved. Moreover, the response to other potentially immunogenic 

epitopes must be downregulated, either through competitive inhibition, for example 

during antigen processing, or through active suppression perhaps as a result of 

inhibitory factors released by T cells specific for the dominant epitope.

Despite initial immune focusing, there is strong evidence to suggest that with time, 

the immune response to nominal antigen diversifies to include further T cell 

epitopes. This has been clearly demonstrated by Lehmann et al, who noted that 

during the inductive phase of EAE in mice, the immune response focused onto a 

single dominant determinant of the pathogenic myelin basic protein. However, in
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mice with chronic EAE, proliferative recall responses could be detected towards 

several additional determinants of the same protein (Lehmann et al 1992). This 

phenomenon of “epitope spreading” has also recently been demonstrated as occuring 

following transplantation in both rodents (Benichou et al 1998), and humans 

(Ciubotariu et al 1998, Suciu-Foca et al 1998).

Epitope spreading appears to happen in a coordinated fashion, but the reasons as to 

why certain epitopes are preferentially involved in the secondary response are 

unclear. Those epitopes that are not involved in the initial dominant response to an 

antigen are generally termed as being cryptic, but Sercarz et al have classified an 

additional subset of epitopes referred to as sub-dominant. Sub-dominant epitopes 

can be differentiated from cryptic epitopes by their ability, when injected as peptides 

in an immunogenic fashion, to induce strong recall responses not only to themselves, 

but more importantly, to the parent protein from which they are derived (Sercarz et 

al 1993). It therefore seems likely that the immune response to a complex protein, 

such as an allo-MHC molecule, will spread to sub-dominant, rather than cryptic, 

epitopes. Such sub-dominant epitopes may therefore be of critical importance in the 

development of peptide-based tolerogenic strategies to counter the indirect 

alloimmune response.

Using Sercarz’s definition of sub-dominance, it is likely that sub-dominant epitopes 

involved in the indirect alloimmune response may be identified by monitoring the 

effect that allopeptide immunisation has upon the immune response to an allograft 

bearing the donor MHC antigen from which the peptide was derived. This has been 

demonstrated by Fangmann et al (Fangmann et al 1992a), who showed that priming 

Lewis (RT11) rats with peptides derived from the two hypervariable regions of the 

RTl.Aa class I MHC molecule moderately accelerated the rate of rejection of 

subsequent Aa-bearing DA skin grafts. In comparison, a third peptide, derived from 

the p-sheet of the a l  domain was unable to influence the rejection kinetics of DA 

skin grafts. All three peptides were however, independently capable of enhancing 

alloantibody production to the intact Aa molecule, even though this heightened 

response did not appear to correlate with accelerated rejection. These experiments
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nevertheless suggest that all three peptides can be classed as either dominant or sub­

dominant in that they are able to influence the immune response to the intact Aa 

molecule. As the indirect T cell response was assayed against only a limited 

sequence of the donor MHC molecule, specifically the highly variable regions, it is 

unsurprising that no cryptic epitopes were identified.

Vella et al have performed similar experiments in the WF (RT1U) to Lewis (RT11) rat 

strain combination (Vella et al 1999). These studies were more extensive however, 

as animals were pre-immunised with one of eight peptides that together spanned the 

full-length of the RTl.Bup and RTl.Dup chains. In comparison to the results 

obtained by Fangmann and colleagues (Fangmann et al 1992a), although four of the 

peptides were immunogenic, only one was able to influence the rate of rejection of a 

subsequent WF cardiac allograft. The inability of the remaining seven peptides to 

influence the recall response to the intact protein suggests that they contain cryptic 

epitopes.

In the PVG-R8 (RTl.Aa) to PVG-1U (RT1.AU) rat strain combination, a similar 

model upon which the experimental work of this thesis is based, Shirwan et al have 

demonstrated that immunisation with each of three donor Aa-derived allopeptides 

was able to enhance the immune response to a subsequent Aa-bearing R8 cardiac 

allograft. However, as with the work of Fangmann (Fangmann et al 1992a), all three 

peptide sequences corresponded to the hypervariable regions of the Aa molecule, 

with the less variable regions of the molecule, which are more likely to contain 

cryptic epitopes, not being tested. Experiments from our own laboratory have 

previously demonstrated that priming RT1U rats with peptides derived from the 

hypervariable regions of the Aa molecule marginally accelerates the rate of rejection 

of subsequent Aa-bearing R8 cardiac allografts (MacDonald et al 1997). In these 

studies, allograft rejection was associated with an enhanced anti-Aa alloantibody 

response, which passive transfer experiments, also performed in this laboratory, 

have shown to be the main effector mechanism associated with graft rejection in this 

strain combination (Grade et al 1990, Morton et al 1993). The means by which 

augmentation of the indirect pathway through peptide priming are able to influence
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the antibody response to the intact Aa molecule do, however, require further 

consideration.

Peptide-specific alloantibodies generated following priming with peptide alone are 

unable to cross-react with the intact Aa molecule (see Section 3.2.3). Therefore, the 

influence of peptide priming on the alloantibody response to the intact Aa molecule 

must instead relate to the ability of peptide-specific T cells to provide help to B cells 

that are themselves specific for the intact Aa antigen (see Figure 4.1). Thus, for a 

peptide to enhance the rate at which an allograft is rejected by accelerating the anti­

donor alloantibody response, it must fulfil two criteria. Firstly, it must stimulate a 

peptide-specific T cell response and secondly, upon processing of the intact Aa 

molecule, B cells must present an epitope corresponding to the immunising peptide.

I therefore hypothesised that monitoring the effect of peptide priming on the kinetics 

of rejection of a subsequent Aa-bearing graft and on the development of the anti-Aa 

alloantibody response, would permit clarification of other sub-dominant epitopes 

that may contribute to allograft rejection.
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Figure 4.1: The Mechanism by which Aa Allopeptide Priming 
Accelerates the Alloantibody Response to the Intact 
Aa Molecule.
1) CD4 T cell recognises a peptide-derived epitope 
processed and presented by recipient APC.
2) B cells present the same epitope upon processing of 
the intact donor Aa molecule, thereby eliciting cognate T 
cell help for accelerated alloantibody production (3). 
Adapted from Fabre, 1996.
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4.2 The Immune Response to an R8 Blood Transfusion

In the following experiments, RT1U animals were immunised with individual 

allopeptides to assess their ability to activate T cells capable of providing more rapid 

help to B cells for an accelerated anti-Aa alloantibody response upon challenge with 

an R8 blood transfusion. As well as examining the development of the cytotoxic 

alloantibody response, the IgM and IgG2b responses were also examined. IgM is the 

first Ig isotype to be produced during an immune response, but as the response 

progresses, heavy chain class switching to IgG occurs. It has been demonstrated that 

IgG2b is the most effective IgG subclass for mediating complement-dependent lysis 

in the rat (Hughes-Jones et al 1983) and has been demonstrated to effect allograft 

rejection in the R8 to RT1U strain combination (Grade et al 1996, Pettigrew et al 

1998). Consequently, I decided to examine the development of both the IgM and 

IgG2b responses, to examine whether allopeptide priming was associated with an 

accelerated IgM and/or an accelerated IgG2b response.

4.2.1 A lloantibody Analyses

RT1U animals were immunised subcutaneously with lOOpg of peptide emulsified in 

CFA 7 days before challenge with an R8 blood transfusion. Serum samples taken on 

days 4, 7, 10 and 12 after blood transfusion were assessed for donor specific 

cytotoxic, IgM and IgG2b alloantibody content.

Figure 4.2 illustrates that priming with the dominant Aa peptide, P7, significantly 

heightens the cytotoxic alloantibody response to a subsequent Aa-bearing R8 blood 

transfusion in comparison to the response mounted by control animals immunised 

with an R8 blood transfusion alone. Figure 4.3 illustrates the development of the Aa- 

specific cytotoxic alloantibody response in animals immunised with P7, PI or the 

irrelevant peptide. The two latter peptides were chosen to examine whether 

immunisation with the dominant peptide could enhance the RT1U cytotoxic 

alloantibody response to an R8 blood transfusion in comparison to the response 

generated by animals immunised with the possible sub-dominant peptide, PI (see 

Figure 3.3), or the control irrelevant peptide. Interestingly, the kinetics of the
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Figure 4.2: Cytotoxic Alloantibody Production to an R8 Blood 
Transfusion.
RT1U rats were immunised subcutaneously with lOOpg of P7 
emulsified in CFA and challenged 7 days later with an R8 
blood transfusion. Control animals received an R8 blood 
transfusion alone. Serum samples taken on day 4 after blood 
transfusion were assessed for cytotoxic alloantibody content 
using a standard 51Cr-release assay against R8 lymphoblast 
target cells. Results are the mean and standard deviation of 3 
animals per group. Statistical analysis was performed using 
the Mann Whitney U test. Only significant results are 
indicated.

response were markedly accelerated in those animals immunised with both PI and 

P7. Four days after blood transfusion it can be seen that priming with P7 induced a 

significantly greater cytotoxic alloantibody response than pre-immunisation with 

either PI or the irrelevant peptide (*p = <0.05). Similarly, PI-immunised animals 

mounted a significantly greater antibody response than animals primed with the 

irrelevant peptide (**p = 0.048). Experiments were repeated for each of the 

individual 15-mer peptides, and results expressed as the final dilution of serum at 

which donor cell lysis was greater than or equal to 20%. The results for all peptides 

were charted on composite graphs (Figures 4.4a and 4.4b). Figure 4.4a confirms that 

pre-immunisation with P7 results in significantly higher levels of circulating
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Figure 4.3: Development of the Cytotoxic Alloantibody Response to an R8 
Blood Transfusion Following Subcutaneous Immunisation with 
Peptide.
RT1U rats were immunised subcutaneously with lOOmg of peptide 
emulsified in CFA and challenged 7 days later with an R8 blood 
transfusion. Serum samples taken at days 4, 7, 10 and 12 after 
blood transfusion were assessed for cytotoxic alloantibody content 
using a standard 51Cr-release assay against R8 lymphoblast target 
cells. Results are expressed as the final dilution of serum at which 
target cell lysis was greater than or equal to 20%. Results are the 
mean and standard deviation of 3 animals per group. Statistical 
analysis was performed using the Mann Whitney U test. Only 
significant results are indicated.
* Indicates that the alloantibody response generated following 
immunisation with P7 is significantly greater than that induced by 
priming with either PI or the irrelevant peptide.
** Indicates that the alloantibody response mounted following P l- 
immunisation is significantly greater than that mounted following 
immunisation with the irrelevant peptide.
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Figure 4.4: Cytotoxic Anti-Aa Alloantibody Production Following 
Immunisation with Allopeptide and Challenge with an 
R8 Blood Transfusion.
RT1U rats were immunised with 100|ug of peptide emulsified 
in CFA and challenged 7 days later with an R8 blood 
transfusion. Control animals received an R8 blood 
transfusion alone. Serum samples taken on A) day 4 and B) 
day 7 after blood transfusion were assessed for cytotoxic 
alloantibody content using a standard 51Cr-release assay 
against R8 lymphoblast target cells. Results are expressed as 
the final dilution of serum at which target cell lysis was 
greater than or equal to 20%, and are the mean and standard 
deviation of 2-3 animals per group. Statistical analysis was 
performed using the Mann Whitney U test. Only significant 
results are indicated.
* Indicates that alloantibody levels are significantly higher 
than those produced in response to an R8 blood transfusion 
alone (p = <0.05).
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lymphocytotoxic alloantibody 4 days after a blood transfusion in comparison to 

animals that received an R8 blood transfusion alone (p = 0.026). However, pre­

immunisation with other peptides, in particular P8 (p = 0.028), and to a lesser extent 

PI (p = 0.049), P9 (p = 0.028) and P16 (not significant), was also associated with the 

development of a more rapid anti-Aa alloantibody response than was seen in control 

animals. It is noteworthy that the sequences of PI and P9 correspond to regions of 

the Aa molecule that are identical in sequence to the corresponding region of the Au 

molecule, and are therefore self peptides in the R T lurat strain (see Figure 3.1b).

Figure 4.4b demonstrates that by day 7 after blood transfusion, the increased day 4 

cytotoxic alloantibody responses to the Aa molecule that were seen following 

immunisation with PI, P7, P8, P9 and P16 were no longer apparent. This suggests 

that following priming with immunogenic peptides, the overall strength of the anti- 

Aa response does not necessarily change, but rather that the kinetics of its 

development are accelerated, i.e. the cytotoxic antibody response at day 7 following 

pre-immunisation with P7 is lower than that in animals primed with the other 

peptides (Figure 4.4b), but this is due to the earlier surge in alloantibody not being 

sustained. That it is mainly the kinetics of the antibody response that are accelerated, 

rather than the magnitude is also suggested by the results shown in Figure 4.3.

To determine the chronological aspects of the anti-Aa alloantibody response more 

fully, the isotype subclasses of antibody were also examined at days 10 and 12 

following blood transfusion, as previous work in this laboratory examining the 

alloantibody response to a soluble Aa class I MHC product has suggested that heavy 

chain class switching from IgM to IgG occurs by day 12 (G. Pettigrew -  personal 

communication). Thus, by examining individual antibody isotypes, I hoped to 

ascertain whether heavy chain class switching, in addition to the cytotoxic 

alloantibody response, also occurred more rapidly following peptide priming.

Figure 4.5a depicts the IgM response to the intact Aa antigen upon priming with the 

dominant peptide (P7), the presumed sub-dominant peptide (PI) or the control 

irrelevant peptide. This graph confirms that priming with P7 significantly 

accelerated the kinetics of the IgM response in comparison to that seen in control
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Figure 4.5: The Aa-Specific IgM and IgG2b Alloantibody Responses 
Following Subcutaneous Immunisation with Allopeptide and 
an R8 Blood Transfusion.
RT1U rats were immunised subcutaneously with lOOptg o f PI, P7 
or the irrelevant peptide emulsified in CFA and challenged 7 
days later with an R8 blood transfusion. Serum samples taken 
on days 4, 7, 10 and 12 after blood transfusion were assessed for
A) IgM and B) IgG2b alloantibody content by Flow Cytometry, 
using R8 LNCs as target cells and FITC-conjugated anti-Ig 
mAbs. Results are expressed as the final dilution o f serum at 
which antibody levels were greater than or equal to twice 
background values, with background representing the level of 
fluorescence observed with cells and antibody alone. Results are 
the mean and standard deviation o f three animals per group. 
Statistical analysis was performed using the Mann Whitney U  
test. Only significant results at day 4 are indicated.
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animals (*p = 0.043). Priming with PI resulted in an equally rapid antibody 

response at day four (**p = 0.034) to that observed upon priming with P7. Figure 

4.5b demonstrates the kinetics of the IgG2b response: IgG2b was first detected at 

day 7, but there was little difference in the levels of alloantibody observed in the 

three groups of animals. These experiments illustrate that the characteristics, and in 

particular the strength of the overall IgM and IgG2b alloantibody responses in these 

different experimental groups is broadly similar, and that the principal difference 

upon priming with immunogenic peptides is in the day 4 IgM levels.

4.3 The Immune Response to an R8 Cardiac Allograft

I next wished to examine whether the pattern of sub-dominant epitopes, as revealed 

by the above blood transfusion experiments, was equally relevant in the immune 

response to a fully vascularised cardiac allograft, and to confirm that peptides were 

able to sensitise for accelerated graft rejection. The above experiments were 

therefore repeated, but after priming with individual peptides, RT1U animals were 

challenged with an R8 heart graft rather than a blood transfusion. In this series of 

experiments, P7 and P8 were chosen as representing the dominant epitopes from the 

Aa molecule, P4 and P12 as negative controls and PI as a potential sub-dominant 

epitope (see Figure 4.4a).

4.3.1 Cytotoxic Alloantibody Production

The levels of circulating anti-Aa alloantibody in day 4 serum samples from RT1U rats 

immunised with peptide and challenged with an R8 cardiac allograft, are shown in 

Figure 4.6. At day 4 after grafting, animals that were pre-immunised with either P4 

or P12 produced lower levels of lymphocytotoxic antibody than control animals. 

Priming with PI before heart grafting however resulted in slightly increased levels 

of alloantibody. Pre-treatment with P8 and, in particular, P7, stimulated a 

significantly elevated alloantibody response in comparison to control animals (p = 

<0.05). These results reflect a similar pattern to that observed towards a blood 

transfusion following peptide immunisation (see Figure 4.4a).
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Figure 4.6: Cytotoxic Anti-Aa Alloantibody Production Following Immunisation 
with Allopeptide and Challenge with an R8 Cardiac Allograft.
RT1U rats were immunised subcutaneously with lOOpg of peptide 
emulsified in CFA and challenged 7 days later with an R8 cardiac 
allograft. Control animals received an R8 cardiac allograft alone. Serum 
samples taken on day 4 after heart grafting were assessed for cytotoxic 
alloantibody content using a standard 51Cr-release assay against R8 
lymphoblast target cells. Results are expressed as the final dilution of 
serum at which target cell lysis was greater than or equal to 20%. 
Results are the mean and standard deviation of 2-3 animals per group. 
Statistical analysis was performed using the Mann Whitney U test. 
Significantly enhanced antibody responses, in comparison with control 
responses, are indicated.

4.3.2 Allograft Rejection

Table 4.1 demonstrates the rejection times of R8 cardiac allografts by modified and 

unmodified RT1U recipients. Transplanted hearts were rejected by unmodified 

recipients with an MST of 7 days (Group 1). Groups 2-7 illustrate the fate of grafts 

transplanted into recipients pre-immunised with different allopeptides 7 days before 

grafting. Pre-treatment with P4, P12 or the irrelevant peptide (Groups 3, 6 and 7 

respectively) had little or no effect upon the outcome of graft survival. Priming with 

PI (Group 2) or P8 (Group 5) resulted in significantly accelerated rates of rejection 

in comparison to that seen in control animals (p = 0.006, p = 0.014 respectively),
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Table 4.1: The Rejection of MHC Class 1-Disparate PVG-R8 Cardiac Allografts by 
PVG-RT1U Recipients.

Group Pre-treatment8 n Graft Survival6 
(days)

MST

1 None 6 6,6,7,7,7,7 7
2 PI 4 5,5,5,5 5
3 P4 3 6,7,7 7
4 P7 5 4,4,4,4,4 4
5 P8 3 4,5,5 5
6 P12 3 7,7,7 7
7 Irrelevant Peptide 3 6,7,7 7
8 All 18 Peptidesb 4 4,4,4,4 4
9 CFA Alone 3 5,6,6 6
10 R8 Blood Transfusion0 3 1,1,1 1
11 R8 Skin Graftd 4 1,1,1,1 1

a Recipient RT1U animals were immunised subcutaneously with lOOpg of peptide 
emulsified in CFA 7 days before receiving an Aa-disparate cardiac allograft. 

b Recipient animals were immunised with a cocktail of all 18 peptides (lOOpg of each 
peptide) emulsified in CFA 7 days before allografting.
Recipient animals were immunised with 1.5mls of R8 blood 7 days before heart 
grafting.

d Recipient rats were immunised by the application of a full thickness R8 skin allograft 7 
days before heart grafting.
Animals were assessed daily, and allograft rejection was defined as the complete 
cessation of myocardial contraction.

with grafts rejected 5 days after transplantation. Pre-treatment with P7 (Group 4) 

however, resulted in the most rapid rate of rejection, with grafts surviving for just 4 

days (p = 0.003).

Another group of animals (Group 8) were primed with a cocktail of all 18 

allopeptides, to examine the effect that administration of all potential T cell epitopes 

afforded by the peptides had upon graft survival. As a further comparison, groups of 

RT1U animals were pre-immunised with the intact Aa molecule, either in the form of 

an R8 blood transfusion or skin graft (Groups 10 and 11 respectively). It was 

expected that the administration of all 18 peptides would result in maximal 

stimulation of the indirect pathway. Rejection kinetics in this group however, were 

the same as seen following priming with P7 alone, which suggests that sole 

administration of the dominant peptide achieves the same level of enhancement of 

the indirect pathway. In comparison, those animals primed with an R8 blood
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Figure 4.7: Cytotoxic Anti-Aa Alloantibody Production Following
Immunisation with an R8 Skin Graft or R8 Allopeptides.
RT1U rats were immunised with a full thickness R8 skin graft or 
a mixture of all 18 allopeptides emulsified in CFA 
subcutaneously (lOOpg of each peptide). Serum samples taken 
on day 7 after treatment were assessed for cytotoxic 
alloantibody content using a standard 51Cr-release assay against 
R8 lymphoblast target cells. Results are the mean and standard 
deviation of 4 animals per group. Statistical analysis was 
performed using the Mann Whitney U test. Only significant 
results are indicated.

transfusion or skin graft rejected their cardiac allografts significantly more rapidly, 

within 24hrs of grafting (p = 0.014, p = 0.008 respectively). This finding may 

suggest that mechanisms other than the indirect T cell alloresponse are primed. 

Analysis of the cytotoxic alloantibody 7 days after peptide priming or skin grafting, 

i.e. the day of cardiac transplantation, revealed that only skin grafting resulted in the 

generation of an anti-Aa cytotoxic alloantibody response that was able to cross-react 

with the antigens of the heart graft (Figure 4.7). Therefore, it is likely that the 

presence of pre-formed antibody, through its ability to provoke hyperacute rejection, 

rather than any intrinsic difference in the mode of T cell activation, is accountable 

for the differences observed in graft rejection times by recipients primed with 

allopeptide and an R8 skin graft or blood transfusion.
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Figure 4.8: Specific In Vitro T Cell Proliferative Responses of RT1U Animals 
Immunised with Allopeptide and Challenged with an R8 Cardiac 
Allograft.
RT1U rats were immunised subcutaneously with lOOpg of peptide 
emulsified in CFA and challenged 7 days later with an R8 cardiac 
allograft. LNCs were used in T cell proliferation studies 7 days after 
transplantation. Cells were cultured for 72hrs with individual 
allopeptides at 40pg/ml, and pulsed with 3H-Thymidine for an 
additional 24hrs before harvesting. LNCs from naive RT1U rats were 
treated in the same manner to obtain background levels of proliferation. 
Results are expressed as the mean and standard deviation of 3-6 animals 
per group.

4.3.3 T Cell Proliferation

The initial T cell response to the intact Aa molecule focuses to a single dominant 

determinant located within the hypervariable region of the a l  domain (see Figure 

3.7). However, pre-immunisation with sub-dominant peptides results in a T cell 

response that can influence both the antibody response to and the rejection kinetics 

of R8 cardiac allografts. One can postulate that the response to the dominant epitope 

following priming with sub-dominant epitopes will either be unaffected, or may 

alternatively be downregulated. The latter would be expected to occur if the same 

mechanisms that are responsible for limiting the initial T cell alloresponse to the 

dominant determinant in naive animals are instead focused onto the immunising sub­

dominant epitope. Such alteration in the hierarchy of dominance by peptide priming
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Figure 4.9: In Vitro T Cell Proliferation of LNCs from RT1U Animals 
Primed with PI or P8 and Challenged with an R8 Cardiac 
Allograft.
RT1U rats were immunised with lOOpg of A) Peptide 1 or B) 
Peptide 8 emulsified in CFA 7 days before challenge with an R8 
cardiac allograft. LNCs were used in T cell proliferation studies 7 
days after transplantation. Cells were cultured for 72 hrs with 
individual allopeptides at 40]ug/ml, and pulsed with 3H-Thymidine 
for an additional 24hrs before harvesting. LNCs from naive RT1U 
rats were cultured in a similar manner to obtain background levels 
of proliferation. Results are the mean and standard deviation of 3-6 
animals per group.
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has been reported for autoimmune responses (Benichou et al 1994b). The 

proliferative responses to both the immunising peptide and to P7 were therefore 

examined to see which of these hypotheses were correct. Figure 4.8 demonstrates 

that generally, T cell proliferation can be detected to those peptides that stimulate an 

accelerated alloantibody response and accelerated graft rejection (see also Figure 4.6 

and Table 4.1). However, the proliferative response does not completely switch from 

P7. Often, as illustrated in Figure 4.9, responses to both the immunising peptide and 

P7 are detected. These proliferative responses therefore reflect more accurately the 

in vivo effects of the peptides than earlier T cell proliferation experiments (see 

Figures 3.3 and 3.7). This could be a result of double priming (i.e. allopeptide 

followed by a heart), or is perhaps due to the slightly longer time interval between 

initial priming and cell harvest for proliferation.
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4.4 Discussion

Priming with four of the 15-mer allopeptides other than the dominant peptide, P7 

accelerated the antibody response upon challenge with an R8 blood transfusion 

(Figure 4.4a). The first of these peptides, P8 stimulated a very strong response. It is 

unclear however, as to whether the epitope contained within P8 is totally different to 

that within P7, or whether the optimal dominant epitope of the Aa molecule spans 

these two peptides. Three other peptides stimulated an anti-Aa response, PI, P9 and 

P16 and these can therefore be classed as sub-dominant (Sercarz et al 1993) and it is 

likely that the epitopes that they contain are presented by B cells upon processing of 

the intact Aa antigen. It is not surprising that P I6, which is derived from the 

hypervariable region of the a2 domain, can influence the response to the intact Aa 

molecule. However, that PI and P9, which are in effect self RT1U peptides, can also 

contribute to the immune response was unexpected. This suggests that not all 

potentially autoreactive T cells are deleted during the development of the RT1U T 

cell repertoire, with some escaping from the thymus and maintained in an anergic 

state by peripheral suppressor mechanisms. It is likely that the stimulus provided by 

priming with peptide in CFA results in presentation of epitopes by professional 

APCs that provide co-stimulatory signals of a level able to reverse the anergic state 

of the autoreactive T cells. This phenomenon is not unprecedented, with Fedoseyeva 

et al (Fedoseyeva et al 1996) recently documenting the activation of autoreactive T 

cells following allografting.

These results offer an insight into the nature of antigen processing and presentation 

by B cells, and in particular, how this affects the indirect response to the Aa antigen. 

That priming with sub-dominant epitopes enhances the antibody response to the 

intact Aa molecule suggests firstly, that B cell processing of the intact Aa antigen 

results in the presentation of peptide fragments that correspond to the sub-dominant 

epitopes, and secondly, that T cells specific for the sub-dominant epitopes exist. In 

the current study however, it appears that only a single dominant epitope is normally 

involved in the T cell response to the Aa molecule in naive animals (see Figure 3.7). 

Therefore, the T cell response to the sub-dominant epitopes must, at least initially,
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be inhibited, with only those T cells specific for the dominant epitope undergoing 

activation and proliferation. Figure 4.9 would suggest however, that the hierarchical 

pattern of dominance can be altered by pre-immunisation with sub-dominant 

peptides, and that in addition to those T cells specific for the dominant region of the 

Aa molecule, T cells specific for the immunising peptide are also able to undergo 

activation and proliferation.

Antibody isotype analysis (Figures 4.5a and 4.5b) suggested that the accelerated 

alloantibody response to an R8 blood transfusion following peptide immunisation 

was, within the constraints of the assay, solely of the IgM subclass. It was 

additionally demonstrated that peptide priming could potentially result in the 

accelerated rejection of R8 cardiac allografts to just 4 or 5 days. Therefore, by 

extrapolation of the results obtained from the blood transfusion experiments, it is 

unlikely that an IgG2b response would be detected at this point. Moreover, the 

strength and kinetics of the IgG2b response, which has previously been 

demonstrated as the most effective IgG subclass for mediating complement- 

dependent red cell lysis (Hughes-Jones et al 1983), are unaltered by peptide 

immunisation. This is somewhat surprising, as one would naturally expect that the 

more rapid IgM response associated with peptide priming would also result in earlier 

heavy chain class switching. The reason for its failure to do so is not readily 

obvious, but may reflect the fact that different levels of T cell help are required 

during different phases of the antibody response. Agarwal et al (Agarwal et al 1996, 

Agarwal et al 1997) have suggested that the process of isotype switching requires a 

greater level of T cell help than the initial IgM response. Consequently, at this point 

the helper T cell response is more stringently focused towards those T cell clones 

with sufficiently high affinity for the epitopes that B cells present. Similar results 

have been observed in a mouse skin graft model (Steele et al 1996). MHC class II- 

deficient recipients, which are only able to provide limited CD4 T cell help for 

antibody production against an allogeneic skin graft, mounted an efficient IgM 

response, but isotype switching did not occur. These observations may offer an 

explanation for my findings if one assumes that peptide priming augments the
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amount of T cell help available for the IgM response, but not to an extent sufficient 

to induce isotype switching.

It is of interest that priming with peptide, regardless of whether it is dominant or 

sub-dominant, appears to have a similar effect on the IgM response to the Aa 

molecule (see Figure 4.5a), and more importantly, on the kinetics of allograft 

rejection (see Table 4.1). Furthermore, immunisation with a mixture of all 18 

peptides does not result in a rate of rejection that is any more rapid than that seen 

upon immunisation with P7 alone, suggesting that immunisation with a single 

peptide can achieve maximal stimulation of the indirect pathway. In the same strain 

combination as that used in this study, Wang et al have used an alternative approach 

to achieve maximal stimulation of the indirect pathway (Wang et al 1997). RT1U 

animals w7ere immunised with the complete a  heavy chain of the RTl.Aa antigen, a 

protocol that resulted in an acceleration in graft rejection times similar to that 

observed upon administration of all 18 peptides in my own experiments (i.e. grafts 

survived for just 4 days). It was reasoned that the full length heavy chain would be 

processed such that the optimal epitopes involved in the indirect response would be 

generated, but that a direct T cell response would not occur since the a  heavy chain 

was not associated with P2 -microglobulin (which is required for correct 

conformational folding of MHC class I). In comparison, priming with either an R8 

skin graft or blood transfusion resulted in much more rapid rejection of a subsequent 

R8 cardiac allograft. Work from our own laboratory has suggested that this is not 

necessarily due to more efficient activation of the indirect pathway, but rather to the 

presence of conformational B cell epitopes that result in the generation of an anti-Aa 

alloantibody response that effects hyperacute, humoral rejection of the subsequent 

cardiac allograft (Pettigrew et al 1998).
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CHAPTER 5:

THE IMMUNE RESPONSE TO THE INTACT Aa MOLECULE 

FOLLOWING INTRAVENOUS IMMUNISATION WITH ALLOPEPTIDE

5.1 Introduction

The general relevance of dominant and sub-dominant epitopes in the design of 

tolerogenic strategies remains unclear. There have, however, been several examples 

of tolerance induction where not every conceivable donor T cell determinant was 

incorporated into the tolerisation protocol. This has been clearly demonstrated in 

rodent models of allograft rejection where the donor and recipient are mismatched at 

more than one MHC locus. For example, Wong et al have demonstrated that the 

intravenous administration of bone marrow cells from transgenic CBK (H2k + H2b) 

mice into CBA.Ca (H2k) recipients not only results in the long term survival of 

subsequent CBK heart grafts, but also of all cardiac allografts bearing the Kb 

antigen, irrespective of the presence of additional mismatched MHC antigens (Wong 

et al 1997). Similar results have also been seen with minor histocompatibility 

antigens in a mouse model of skin graft rejection (Davies et al 1996). The above 

studies introduce the concept of “linked epitope suppression”, whereby tolerance 

induced to a single foreign epitope before allografting can spread to include 

additional mismatched antigens present on a subsequently transplanted organ. The 

mechanisms responsible for this effect have not been established, but it is notable 

that the additional antigens to which tolerance spreads must be present on the same 

graft as the initial suppressor epitope, rather than upon a second concurrently applied 

graft (Davies et al 1996, Wong et al 1997). It is therefore likely that linked epitope 

suppression involves the presentation of both the suppressor and the additional 

mismatched antigens by the same APC (either donor or recipient).

Whilst Wong’s studies were principally concerned with the spreading of tolerance to 

additional allo-MHC antigens, i.e. intermolecular linked epitope suppression,
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intramolecular suppression can also occur. For example, it has been shown that long 

term survival of fully mismatched allografts can be achieved using tolerogenic 

protocols that employ peptides from limited stretches of the donor MHC molecule. 

Sayegh et al demonstrated that the intrathymic injection of a mixture of 8 synthetic 

25-mer allopeptides, representing the full length Wistar Furth (WF, RT1U) RTl.Bup 

and RTl.Dup sequences, into Lewis (RT11) recipients, resulted in the permanent 

survival of subsequent WF renal allografts (Sayegh et al 1993). Moreover, although 

administration of either the four RTl.Bup or four RTl.Dup peptide mixtures alone 

had no effect upon graft survival (Sayegh et al 1993), injection of the four 

immunogenic peptides (2 RTl.Bup and 2 RTl.Dup peptides) was sufficient to 

achieve long-term graft survival (Sayegh et al 1994). In addition, Chowdhury et al 

have shown that long term survival of WF cardiac allografts in ACI (RTla) 

recipients can be achieved by intrathymic injection of a single immunogenic peptide 

(of 17 amino acids) derived from the a2 domain of the donor RT1.AU molecule 

(Chowdhury et al 1998). However, in this model, tolerance was only achieved when 

the peptide was administered in combination with a sub-therapeutic dose of ALS. 

These results have important implications as they demonstrate that targeting the 

indirect pathway of allorecognition with only small amounts of donor antigen can 

achieve long-term survival of completely mismatched allografts.

Shirwan et al (Mhoyan et al 1997, Shirwan et al 1997b) have shown similar results 

in the PVG-R8 to PVG-1U rat strain combination, but have additionally 

demonstrated that peptides encompassing dominant epitopes are more effective than 

other immunogenic peptides at inducing allograft tolerance. The rat strains used in 

these latter studies are similar to those employed in this thesis. It was hoped that the 

more complete mapping of the dominant and sub-dominant epitopes of the RTl.Aa 

molecule, as achieved in the previous two chapters, would permit a more thorough 

exploration of Shirwan's observations, thereby allowing further, more effective 

peptide-based tolerogenic protocols to be devised.

To test the capability of the dominant and sub-dominant Aa allopeptides to induce 

non-responsiveness to the intact Aa molecule, I chose to administer relatively high
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doses of the peptides intravenously to RT1U recipients and monitor the effect on the 

alloimmune response following subsequent challenge with an R8 blood transfusion 

or cardiac allograft. Intravenous administration of antigen is a recognised route for 

the induction of non-responsiveness, and has been used both in models of 

autoimmunity (e.g. Leadbetter et al 1998) and transplantation (e.g. Benichou et al 

1994b). Antigen is generally administered at a high dose, and the mechanism behind 

this “high zone” tolerance possibly results from swamping of the available 

professional APC repertoire, such that non-professional APCs present antigen in a 

tolerogenic fashion (Bishop et al 1997). Benichou et al have demonstrated that 

intravenous administration of dominant allopeptide sequences can result in T cell 

non-responsiveness in autoimmunity (Benichou et al 1994b, Tam et al 1996), and 

the work in this thesis was broadly based upon this experimental protocol.
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5.2 The Immune Response to an R8 Blood Transfusion

To examine the effect of intravenous administration of a “high dose” of allopeptide 

on the immune response to the intact Aa molecule, RT1U animals were immunised 

with 300pg of the dominant (P7) or sub-dominant (PI) allopeptides in 300pl of 

saline 12 days before challenge with an R8 blood transfusion. Control animals were 

immunised in a similar manner, replacing allopeptide with the irrelevant peptide. 

Animals were bled for serum 4, 7, 10 and 12 days after challenge with blood to 

investigate the development of the cytotoxic, IgM and IgG2b alloantibody 

responses. In addition, LNCs were used in in vitro T cell proliferation studies 12 

days after blood transfusion to examine the influence of peptide priming on the in 

vivo activation of T cells.

5.2.1 A lloantibody A nalyses

Figure 5.1 illustrates the allospecific cytotoxic antibody response to an R8 blood 

transfusion following pre-immunisation with peptide intravenously. The 

alloantibody response to the intact Aa molecule, as detected by using a standard 

51Cr-release assay against R8 lymphoblast target cells, was markedly diminished in 

animals pre-treated with PI or P7 in comparison to control rats pre-treated with the 

irrelevant peptide. The kinetics of the responses of control and P7-treated animals 

appeared to be similar however, with antibody levels peaking on day 7, and 

declining thereafter. It is notable that intravenous immunisation with either PI or P7 

did not result in a detectable cytotoxic alloantibody response at day 4 following 

blood transfusion. This is in comparison to the results observed in Chapter 4 (Figure 

4.3), wherein subcutaneous immunisation with the same peptides resulted in an 

accelerated cytotoxic anti-Aa alloantibody response detectable 4 days after blood 

transfusion, which appeared to correlate with accelerated allograft rejection.

Figure 5.2 illustrates the development of the IgM response in the same three groups 

of animals. Again, pre-treatment with both PI and P7 diminished levels of 

alloantibody production in comparison to controls, with PI marginally more 

effective, but this was statistically non-significant (Figure 5.2b). The IgM response
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Figure 5.1: Cytotoxic Alloantibody Production to an R8 Blood Transfusion 
Following Immunisation with a High Dose of Allopeptide.
RT1U rats were immunised intravenously with 300|ig of A) P7, or 
B) PI in 300pg of saline and challenged 12 days later with an R8 
blood transfusion. Control animals received 300pg of the irrelevant 
peptide in saline intravenously before challenge with blood. Serum 
samples taken on days 4, 7, 10 and 12 after blood transfusion were 
assessed for cytotoxic alloantibody content using a standard 51Cr- 
release assay against R8 lymphoblast target cells. Results are 
expressed as the final dilution of serum at which target cell lysis 
was greater than or equal to 20%, and are the mean and standard 
deviation of 2-6 animals per group. Statistical analysis was 
performed using the Mann Whitney U test. Only significant results 
are indicated.
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Figure 5.2: The Allospecific IgM Response to an R8 Blood Transfusion 
Following Immunisation with a High Dose of Allopeptide.
RT1U rats were immunised intravenously with 300pg of A) P7, 
or B) PI in 300jnl of saline and challenged 12 days later with an 
R8 blood transfusion. Control animals were immunised with 
300jng of the irrelevant peptide in saline before challenge with 
blood. Serum samples taken on days 4, 7, 10 and 12 after blood 
transfusion were assessed for IgM content by Flow Cytometry, 
using R8 LNCs as target cells and a FITC-conjugated anti-IgM 
mAb. Results are expressed as the final dilution of serum at 
which antibody levels were greater than or equal to twice 
background values, with background representing the level of 
fluorescence observed with cells and antibody alone. Results are 
the mean and standard deviation of 2-6 animals per group. 
Statistical analysis was performed using the Mann Whitney U 
test. Only significant results are indicated.
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kinetics were similar in all three groups, with antibody levels peaking on day 7. 

Levels declined slightly from this point onwards in animals immunised with PI or 

the irrelevant peptide, but remained constant in those animals immunised with P7 

(Figure 5.2a). As might be expected, an IgM response was detectable as early as day 

4, but notably, with little difference between groups. If anything, PI and P7-treated 

animals showed a slightly greater response, but this was non-significant. This is of 

interest, since it was also shown in the previous chapter that the early IgM response 

may account for the accelerated rate of graft rejection observed in RT1U animals 

subcutaneously immunised with PI or P7 in CFA. It is notable that the kinetics of 

the IgM response are broadly similar to those of the cytotoxic alloantibody response.

The development of the IgG2b response in the above groups of animals is shown in 

Figure 5.3. Pre-immunisation with a high dose of allopeptide was less effective at 

modifying the IgG2b response than either the cytotoxic or IgM responses. P7 was 

able to downregulate IgG2b levels to a certain extent (Figure 5.3a), but PI did not 

appear able to alter the response (Figure 5.3b). The greatest difference in the IgG2b 

levels observed in the serum samples of RT1U rats treated with P7 or the irrelevant 

peptide was seen at day 7. From this point onwards, alloantibody levels in samples 

from P7-treated animals increased, until at day 12, levels were comparable to those 

seen in control animals.

5.2.2 T Cell Proliferation Studies

Having established that intravenous administration of peptide was able to 

downregulate the antibody response to an R8 blood transfusion, I next examined 

whether the T cell response, as measured by a standard in vitro T cell proliferation 

assay, was similarly downregulated. Such assays would also enable me to examine 

how the responses to other epitopes within the Aa molecule, particularly those 

established as sub-dominant, were simultaneously affected. One could hypothesise 

that the response to the sub-dominant epitopes may be augmented if the hierarchical 

pattern of dominance was switched to these epitopes as a compensatory mechanism. 

Alternatively, these responses may be downregulated if the principals of linked 

epitope suppression as discussed above are applicable. To examine whether pre-
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Figure 5.3: The Allospecific IgG2b Response to an R8 Blood Transfusion 
Following Immunisation with a High Dose of Allopeptide.
RT1U rats were immunised intravenously with 300pg of A) P7, or
B) PI in 300pl of saline and challenged 12 days later with an R8 
blood transfusion. Control animals were immunised with 300|ig 
of the irrelevant peptide in saline intravenously before challenge 
with blood. Serum samples taken on days 4, 7, 10 and 12 after 
blood transfusion were assessed for IgG2b content by Flow 
Cytometry using R8 LNCs as target cells and a FITC-conjugated 
anti-IgG2b mAb. Results are expressed as the final dilution of 
serum at which antibody levels were greater than or equal to 
twice background values, with background representing the level 
of fluorescence observed with cells and antibody alone. Results 
are the mean and standard deviation of 2-6 animals per group. 
Statistical analysis was performed using the Mann Whitney U 
test. Only significant results are indicated.
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immunisation of RT1U rats with a high dose of an allopeptide intravenously was able 

to influence the in vivo T cell response, LNCs from the above animals were used in 

in vitro T cell proliferation studies 12 days after challenge with blood. Cells were 

incubated with individual allopeptides at a concentration of 40(j,g/ml for 72hrs, and 

pulsed for an additional 24hrs with 3H-Thymidine before harvesting. T cell 

proliferative responses are illustrated in Figure 5.4.

Following immunisation with the irrelevant peptide (Figure 5.4a), proliferation to 

the a l  peptide was observed. Likewise, all three animals in this group displayed 

moderately high levels of proliferation to P14. That these cells responded to P14 is 

difficult to explain, particularly as analysis of the amino acid sequences 

demonstrates that there is no obvious similarity between this peptide and the 

irrelevant peptide. No T cell proliferation was seen upon priming with PI (Figure 

5.4b). However, despite the apparent downregulation of alloantibody responses 

following pre-treatment with P7 (Figures 5.1a, 5.2a and 5.3a), the in vitro T cell 

proliferative response to P7 was slightly augmented (Figure 5.4c), as no proliferation 

was seen to P7 upon pre-treatment with saline alone (data not shown) or the 

irrelevant peptide (Figure 5.4a).

5.3 The Immune Response to an R8 Cardiac Allograft

I next examined whether the ability of intravenous peptide treatment to 

downregulate the alloantibody response to an R8 blood transfusion would equally 

influence the antibody responses to, and the rejection kinetics of, R8 cardiac 

allografts. I chose to study primarily the influence of P7 on the immune response to 

a subsequent heart graft, as it is the dominant Aa epitope, and therefore the most 

obvious candidate for peptide therapy. Groups of animals were intravenously pre­

treated with either 300fj,g of P7, a mixture of the identified dominant and sub­

dominant peptides, PI, P7, P8 and P9 (300|j.g of each peptide) or a cocktail of all 18 

peptides (again 300|jg of each peptide). Controls for animals immunised with P7 or 

the mixture of PI, P7, P8 and P9 were treated with saline alone, whereas controls for 

those rats primed with all 18 peptides were immunised with an equivalent amount of 

the irrelevant peptide (5.4mgs) in saline. Rats received an R8 cardiac allograft 12
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Figure 5.4: In Vitro Proliferation of LNCs from RT1U Rats Immunised with a 
High Dose of Allopeptide Intravenously and Challenged 12 Days Later 
with an R8 Blood Transfusion.
RT1U rats were immunised intravenously with 300pg of A) the irrelevant 
peptide, B) PI or C) P7 in 300pl of saline and challenged 12 days later 
with an R8 blood transfusion. LNCs were used in T cell proliferation 
studies 12 days after challenge with blood. Cells were cultured for 72hrs 
with individual allopeptides at 40pg/ml, and pulsed with 3H-Thymidine for 
an additional 24hrs before harvesting. LNCs from naive RT1U rats were 
cultured in the same manner to obtain background levels of proliferation. 
Results are the mean and standard deviation of 2-6 animals per group.
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days after peptide treatment, and were bled for serum on days 4, 7, 10 and 12 with 

respect to grafting. On day 12 after grafting, animals were sacrificed and their LNCs 

used in in vitro T cell proliferation studies.

5.3.1 A lloantibody Analyses

Figure 5.5 demonstrates the development of the Aa-specific cytotoxic alloantibody 

response to an R8 cardiac allograft by the above groups of animals. Pre­

immunisation with a high dose of P7 (Figure 5.5a) diminished the antibody response 

in comparison with saline-treated control animals, but did not influence the kinetics 

of the response. The difference in the two treatments appeared to be most marked at 

days 7 and 10 following transplantation. Figure 5.5b also shows that pre­

immunisation with allopeptide, in this case a combination of dominant and sub­

dominant peptides, reduced the cytotoxic alloantibody response. Immunisation with 

a cocktail of all 18 allopeptides failed to decrease the cytotoxic antibody response to 

an R8 cardiac allograft in comparison to control animals immunised with an 

equivalent amount of the irrelevant peptide (Figure 5.5c). However, the overall 

response in both of these groups appeared to be smaller than that observed upon pre­

treatment with either P7 (Figure 5.5a) or the mixture of dominant and sub-dominant 

peptides (Figure 5.5b), although after day 10, levels of antibody in allopeptide- 

treated animals begins to increase.

IgM and IgG2b donor-specific alloantibody levels were measured in day 4, 7, 10 and 

12 serum samples from the above groups of RT1U animals. Pre-treatment with P7 

(Figure 5.6a) did not influence the IgM response compared with saline-treated 

control animals. Pre-treatment with a mixture of PI, P7, P8 and P9 however, 

actually resulted in a statistically significant (p = 0.046) increase in IgM levels in 

day 4 serum samples in comparison to the response mounted by control animals 

(Figure 5.6b). Figure 5.6c shows a similar IgM response in animals immunised with 

either all 18 peptides or with the same quantity of control irrelevant peptide. In each 

experiment, the IgM response peaked at day 7 in allopeptide-treated animals and 

declined thereafter.
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Figure 5.5: Cytotoxic Alloantibody Production to an R8 Cardiac Graft 
Following Immunisation with a High Dose of Allopeptide.
RT1U rats were immunised intravenously with A) 300pg of P7, B) A 
mixture of PI, P7, P8 and P9 (300fig of each peptide) or C) A 
cocktail of all 18 peptides (300pg of each peptide) in 300pl of saline 
and challenged 12 days later with an R8 cardiac allograft. Control 
animals were immunised with saline alone (Graphs A and B), or 
5.4mg of the irrelevant peptide in saline (Graph C) 12 days before 
transplantation. Serum samples taken on days 4, 7, 10 and 12 after 
transplantation were assessed for cytotoxic alloantibody content 
using a standard 51Cr-release assay against R8 lymphoblast target 
cells. Results are expressed as the final dilution of serum at which 
target cell lysis was greater than or equal to 20%, and are the mean 
and standard deviation of 2-3 animals per group.
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Figure 5.6: The Allospecific IgM Response to an R8 Cardiac Graft Following 
Immunisation with a High Dose of Allopeptide.
RT1U rats were immunised with A) 300mg of P7, B) A mixture of PI, 
P7, P8 and P9 (300mg of each peptide) or C) A cocktail of all 18 
peptides (300mg of each peptide) in 300ml of saline and challenged 
12 days later with an R8 cardiac allograft. Control animals were 
immunised with saline alone (Graphs A and B), or 5.4mg of the 
irrelevant peptide in saline (Graph C) 12 days before transplantation. 
Serum samples taken on days 4, 7, 10 and 12 after transplantation 
were assessed for IgM alloantibody content by Flow Cytometry, using 
R8 LNCs as target cells and a FITC-conjugated anti-IgM mAb. 
Results are expressed as the final dilution of serum at which antibody 
levels were greater than or equal to twice background values, with 
background representing the level of fluorescence observed with cells 
and antibody alone. Results are the mean and standard deviation of 2- 
3 animals per group. Statistical analysis was performed using the 
Mann Whitney U test. Only significant results are indicated.
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Figure 5.7: The Allospecific IgG2b Response to an R8 Cardiac Graft 
Following Immunisation with a High Dose of Allopeptide.
RT1U rats were immunised with A) 300|ug of P7, B) A mixture of 
PI, P7, P8 and P9 (300pg of each peptide) or C) A cocktail of all 18 
peptides (300|ng of each peptide) in 300|lU of saline and challenged 
12 days later with an R8 cardiac allograft. Control animals were 
immunised with saline alone (Graphs A and B), or 5.4mg of the 
irrelevant peptide in saline (Graph C) 12 days before 
transplantation. Serum samples taken on days 4, 7, 10 and 12 after 
transplantation were assessed for IgG2b content by Flow 
Cytometry, using R8 LNCs as target cells and a FITC-conjugated 
anti-IgG2b mAb. Results are expressed as the final dilution of 
serum at which antibody levels were greater than or equal to twice 
background values, with background representing the level of 
fluorescence observed with cells and antibody alone. Results are the 
mean and standard deviation of 2-3 animals per group.
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The IgG2b response to an R8 cardiac allograft in the same groups of rats is 

illustrated in Figure 5.7. As observed with the IgM response, pre-treatment with P7 

(Figure 5.7a) or a mixture of PI, P7, P8 and P9 (Figure 5.7b) had little effect on the 

allospecific IgG2b response in comparison to controls. Levels of antibody did 

appear slightly diminished in allopeptide-treated rats, but this was statistically non­

significant. The response at day 10 in animals pre-treated with all 18 peptides was 

marginally less than in control animals, but again, this difference was non­

significant.

5.3.2 A llograft Rejection

The effect of Aa allopeptide-immunisation on the survival of subsequent R8 cardiac 

allografts is shown in Table 5.1. Unmodified RT1U recipients normally rejected R8 

hearts in 7 days (Group 1). Pre-treatment with a mixture of all 18 allopeptides or P7 

alone in CFA subcutaneously reduced graft survival to just 4 days (Groups 4 and 2 

respectively), whereas pre-treatment with the irrelevant peptide in CFA had no 

effect upon the rate of graft survival (Group 6).

Intravenous immunisation with either P7 alone (Group 3) or a mixture of PI, P7, P8 

and P9 (Group 8) in saline did not prolong graft survival, despite decreasing the rate 

of cytotoxic anti-Aa alloantibody production. In fact, such pre-treatments actually 

decreased graft survival times (to 5 and 5.5 days respectively) with respect to naive 

controls. Pre-immunisation with all 18 peptides in saline intravenously appeared to 

have no effect on graft survival, with hearts surviving for 7 days (Group 5). 

Interestingly however, treatment of rats with a very high dose of the irrelevant 

peptide resulted in an MST of just 5.5 days (Group 7). This was unexpected, as 

being a control, this peptide should be unable to contribute to allograft rejection. It 

may, however, cause non-specific enhancement of the alloimmune response, 

especially at the very high dose used in this particular experiment, and certainly, its 

intravenous administration appeared to slightly augment the proliferative response to 

allopeptide upon heart grafting (Figure 5.8a). Results in Groups 7 and 8 are from 

only two animals, as one animal in each group died from post-operative 

complications.
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Table 5.1: The Rejection of MHC Class I-Disparate Cardiac Allografts by 
RT1U Recipients.

*
r- t> ± * Graft SurvivalGroup Pre-treatment n , ,  v MST

_____________________________________ (days)__________
1 None 6 6,6,7,7,7,7 7
2 P7 +CFAa 5 4,4,4,4,4 4
3 P7 + Salineb 3 5,5,6 5
4 All 18 + CFAc 4 4,4,4,4 4
5 All 18 + Salined 3 6,7,7 7
6 Irr + CFAa 3 6,7,7 7
7 Irr + Salined 2 5,6 5.5
8 PI, P7, P8 + P9 + Saline6 2 5,6 5.5
9 Saline Alone 3 6,7,7 7

a RT1U recipients were immunised subcutaneously with lOOpg of peptide 
emulsified in CFA 7 days before receiving an R8 cardiac allograft. 

b RT1U animals were injected intravenously with 300pg of peptide in saline 12 
days before allografting. 

c Recipient rats were immunised subcutaneously with a cocktail of all 18 
peptides (lOOpg of each peptide) emulsified in CFA 7 days before cardiac 
transplantation.

d RT1U animals were primed intravenously with a mixture of all 18 peptides 
(300|ig of each peptide) or an equivalent amount of the irrelevant peptide in 
saline 12 days before heart grafting.
RT1U rats were immunised intravenously with a mixture of PI, P7, P8 and P9 
(300pg of each peptide) in saline 12 days before challenge with an R8 cardiac 
allograft.

f Animals were assessed daily, and allograft rejection was defined as the 
complete cessation of myocardial contraction.

5.3.3 T Cell Proliferation Studies

I wished to examine whether intravenous allopeptide pre-treatment was able to 

influence the in vivo T cell response to an R8 cardiac allograft. I therefore harvested 

LNCs from animals 12 days after grafting, and examined their in vitro T cell 

proliferation to individual allopeptides. Figure 5.8 demonstrates that animals 

immunised with a high dose of the irrelevant peptide display very strong T cell 

proliferation to the a l  peptide, but not to any of the other allopeptides (Figure 5.8 a),
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Figure 5.8: In Vitro Proliferation of LNCs from RT1U Rats Immunised with a 
High Dose of Allopeptide Intravenously and Challenged 12 Days 
Later with an R8 Cardiac Allograft.
RT1U rats were immunised intravenously with A) 5.4mgs of the irrelevant 
peptide, B) 300pg of P7, C) All 18 allopeptides (300pg of each peptide) 
or D) A mixture of PI, P7, P8 and P9 (300pg of each peptide) in 300jj1 of 
saline and challenged 12 days later with an R8 cardiac allograft. LNCs 
were used in T cell proliferation studies 12 days after transplantation. 
Cells were cultured for 72hrs with individual allopeptides at 40pg/ml, 
and pulsed with 3H-Thymidine for an additional 24hrs before harvesting. 
LNCs from naive RT1U animals were cultured in the same manner to 
obtain background levels of proliferation. Results are the mean and 
standard deviation of 2-3 animals per group.
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which is a similar pattern of proliferation to that observed upon immunisation of 

RT1U animals with the intact Aa molecule (Figure 3.7). In comparison, Figure 5.8b 

demonstrates that priming with P7 results in no T cell proliferation to any of the 

allopeptides, although slight proliferation to the a l  peptide is seen upon 

administration of a mixture of all 18 peptides, but the error bars overlap with others 

on the graph (Figure 5.8c). Interestingly, LNCs from animals immunised with the 

mixture of PI, P7, P8 and P9 do not display proliferation towards any of the 

immunising peptides or the a l  peptide, but do display a response to P10, although 

again, the error bars overlap with others on the graph (Figure 5.8d).
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5.4 Discussion

It was shown that the RT1U alloantibody response to an R8 blood transfusion was 

downregulated following intravenous immunisation with a high dose of allopeptide 

(Figures 5.1, 5.2 and 5.3). However, downregulation of the IgG2b response was less 

marked than that of the cytotoxic and IgM alloantibody responses, with PI-priming 

having no effect on the level of IgG2b production (Figure 5.3b). The reason as to 

why intravenous priming with P7 as compared to PI should have a different effect 

on the downregulation of the IgG2b response is not immediately apparent. The 

process of isotype switching does, however, appear to be more stringent in its 

requirement for T cell help (Steele et al 1996), which, as Agarwal et al have 

suggested (Agarwal et al 1996, Agarwal et al 1997) may be one of the mechanisms 

by which the dominant response to a single epitope is achieved. Therefore, with 

specific regards to the R8 to RT1U rat strain combination, those T cells that are 

specific for the epitope contained within P7 may contribute to a greater extent to the 

process of heavy chain class switching than T cells specific for other Aa-derived 

epitopes. Consequently, tolerising to the dominant epitope, by means of intravenous 

administration of P7, may be more effective at downregulating the IgG2b response 

than priming with a sub-dominant peptide, for example PI. In comparison, the IgM 

response is not as T cell dependent (Steele et al 1996), and this would explain why 

intravenous administration of either peptide was equally effective at downregulating 

the IgM response. The experiments performed in this study tend to concur with the 

findings of Steele et al, in that different levels of T cell help appear to be required 

for different phases of the antibody response. The same reasoning may also explain 

why priming with peptide subcutaneously augmented the IgM alloantibody response 

but had little effect on the IgG2b response (Figure 4.5).

It is interesting to note that the difference in the alloantibody response between 

control and experimental animals is not as marked when animals are challenged with 

an R8 cardiac allograft instead of a blood transfusion. This is most likely due to a 

heart graft representing a greater antigenic stimulus than a blood transfusion, either 

because it contains a greater number of donor cells, or because its persistence acts as
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a continual source of graft antigens for trafficking to regional lymph nodes and the 

spleen. This greater antigenic stimulus presumably results in more efficient 

activation of recipient T cells, which may overwhelm the inhibitory effect of 

intravenous peptide administration.

Examination of graft survival data demonstrates that intravenous administration of 

peptide does not, even upon immunisation with a mixture of all 18 peptides, prolong 

allograft survival in comparison to naive controls. As a possible explanation, at days 

4 and 7 after heart grafting, cytotoxic alloantibody, although downregulated, is still 

detectable in serum samples, and this level may represent a sufficient amount of 

circulating alloantibody to effect graft rejection.

Examination of the proliferation data obtained following challenge with either an R8 

blood transfusion or cardiac allograft, demonstrates that there is no clear pattern of 

downregulation in the T cell proliferative responses. This again correlates with graft 

survival data, and suggests that tolerance to P7 is not complete; immunisation with 

P7 before challenge with an R8 blood transfusion still results in proliferation to P7. 

Furthermore, in some circumstances, proliferation appears to switch to other areas of 

the Aa molecule. For example, in Figure 5.8d, the proliferative response after 

priming with a mixture of PI, P7, P8 and P9 was predominantly directed towards 

P10. This peptide is derived from the p-sheet of the a2  domain, and is not 

considered to be in one of the hypervariable regions, although it does differ from the 

corresponding region of the RT1U sequence by 3 amino acids (Figures 3.1a and 

3.1b). Shirwan’s work in the PVG-R8 to PVG-1U strain combination (Shirwan et al 

1995) has not explored the effect of peptides derived from this area upon graft 

rejection. However, Fangmann et al (Fangmann et al 1992a), using the DA (RTla) to 

Lewis (RT11) rat strain combination examined the effects of peptide immunisation 

on skin graft survival. One of the Aa peptides used in this study encompassed most, 

but not all, of the sequence of P10, and it is interesting that whilst priming with this 

peptide did not influence the rejection kinetics of a subsequent DA skin graft, an 

enhanced anti-Aa alloantibody response was observed. In comparison, it is of 

interest that earlier experiments in my own study suggested that P10 was not
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actually involved in the provision of help for the anti-Aa alloantibody response (see 

Figure 4.4) which may reflect biological differences in the strain combinations used. 

However, this does suggest that in the R8 to RT1U combination, switching of the T 

cell response to different epitopes may stimulate effector mechanisms other than 

alloantibody that ultimately result in allograft rejection.
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KEY POINTS

A) Evaluating the in vitro T cell proliferation responses to Aa-derived allopeptides 

after challenge with the intact Aa molecule established the presence of a 

dominant epitope located within the hypervariable region of the a l  domain (the 

outer surfaces of the a-helix). This epitope corresponds to the 15-mer Aa 

allopeptide, P7.

B) Priming with individual peptides before challenge with the intact Aa molecule 

revealed the existence of several additional sub-dominant peptides. These 

epitopes correspond to PI, P9 and P I6. PI and P9 derive from areas of the Aa 

molecule that are identical in sequence to the corresponding regions in the Aa 

molecule, and in essence represent self-RTlu peptides.

C) Intravenous administration of a high dose (300pg) of the dominant (P7) or sub­

dominant (PI) peptides in saline, markedly downregulated both the cytotoxic 

and IgM alloantibody responses to a subsequent R8 blood transfusion. In 

addition, P7 was able to downregulate the later IgG2b response. Following 

intravenous administration of P7, in vitro proliferation to this dominant peptide 

was still observed, suggesting that the alloresponse is not completely abrogated.

D) Following intravenous administration of a high dose of P7, the alloantibody 

responses were not as markedly downregulated to an R8 cardiac allograft as to 

an R8 blood transfusion. In addition, pre-treatment with either P7, a mixture of 

PI, P7, P8 and P9 or all 18 peptides was unable to prolong the survival of 

subsequent R8 cardiac allografts in comparison to naive controls. Proliferation 

data suggest that, despite pre-immunisation, a T cell response to the Aa molecule 

can still occur, although in some cases the response appears to shift from the 

dominant epitope to other areas of the Aa molecule.
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CHAPTER 6:

DISCUSSION

Organ transplantation in the PVG-R8 (RTl.AaB/DuCu) to PVG-RT1U 

(RT1.AUB/DUCU) rat strain combination provides a model in which to examine in 

detail the complexities of the indirect pathway of allorecognition. As the two strains 

differ only at an isolated MHC class I locus, allograft rejection can be attributed to 

the self-restricted recognition of allogeneic epitopes of the disparate class I 

molecule, Aa (Bradley 1996). The main aim of this thesis was to examine the 

specific regions of this molecule that are involved in the RT1U immune response to 

an Aa-bearing R8 blood transfusion or cardiac allograft. The experiments performed 

used a series of overlapping synthetic 15-mer peptides spanning the length of the a l  

and a2  domains of the Aa molecule. This experimental protocol differs from similar 

studies using this approach in the same strain combination (Shirwan et al 1995, 

MacDonald et al 1997, Mhoyan et al 1999), in that I have been able to study the 

influence of not only dominant epitopes, but also potential sub-dominant and cryptic 

epitopes on the alloimmune response.

To search for dominant Aa epitopes, RT1U animals were doubly immunised with the 

intact Aa molecule in the form of an R8 skin graft and an R8 cardiac allograft. LNCs 

were then stimulated in vitro with individual allopeptides, and T cell proliferation 

assessed. This approach highlighted a probable dominant epitope contained within 

the hypervariable region of the a l  domain, as proliferation was predominantly 

directed at P7 and the a l  peptide, which are derived from this area. It remains 

questionable however, whether the dominant Aa epitope is incorporated precisely 

within the sequence comprising P7, as the above proliferation studies consistently 

showed a stronger response to the a l  peptide than to P7. Furthermore, priming with 

either P7 or P8 accelerated the allospecific antibody response upon challenge with 

the intact Aa molecule. It may be therefore, that P7 and P8 each contain a distinct
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epitope, or alternatively that the optimal Aa epitope spans the two peptides, and in 

doing so, encompasses the five overlapping amino acids that they share. Benichou’s 

theory that the indirect alloresponse is generally limited to a single dominant epitope 

lends support to the latter theory (Benichou et al 1994a). However, Benham and 

Fabre, through analysis of the fine specificity of the T cell response, have 

demonstrated the presence of several overlapping epitopes within the hypervariable 

region of the Aa molecule, which were able to stimulate a polyclonal T cell response 

(Benham et al 1994). The experimental protocols used in this thesis were unable to 

distinguish between these two possibilities, and to examine which is the case, other 

protocols would have to be employed. For example, one could use a series of 

peptides overlapping by single amino acid residues spanning the region in question 

and perform studies similar to those in this thesis (e.g. (Benham et al 1994). 

Alternatively, it may be possible to elute and sequence peptides from MHC 

molecules of RT1U animals immunised with the intact Aa molecule.

These findings raise questions regarding the mechanisms by which epitope 

dominance occurs. In the R8 to RT1U rat strain combination, graft rejection is 

predominantly mediated by alloantibody, and is critically dependent upon recipient 

CD4 T cells for the generation of this response (Grade et al 1990, Morton et al 

1993). Therefore, limitation of the alloimmune response to a single Th cell 

determinant presumably occurs through regulation of either or both of the T and B 

cell responses. This regulation appears to be an active phenomenon, as peptide- 

priming experiments demonstrated that multiple epitopes could potentially 

accelerate the anti-Aa alloantibody response.

A possible mechanism by which epitope dominance may evolve, is through biasing 

of the T cell repertoire towards epitopes derived from the hypervariable regions of 

the parent molecule (Gould et al 1999). In this manner, allospecific B cells 

presenting a dominant epitope may receive earlier, more efficient T cell help, 

thereby resulting in their preferential activation and proliferation. Moreover, this 

process may actively downregulate the T cell response to other peptide epitopes, as 

it has been observed that cognate Th cell - B cell interactions rapidly (within l-2hrs)
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result in the downregulation of other MHC class II-peptide complexes on the surface 

of a B cell (Constant 1999). This effectively diminishes the frequency at which other 

Aa-derived epitopes are presented by B cells, making it less likely that T cells 

specific for these additional epitopes will become involved in the anti-Aa 

alloimmune response. This concept may also explain the ability of pre-immunisation 

with a sub-dominant peptide in an immunogenic fashion to stimulate an accelerated 

alloantibody response against the intact donor antigen, as it may augment the T cell 

response to that peptide to such an extent that it can compete successfully with the 

naturally stronger T cell response to the dominant epitope.

In addition to the dominant epitope, other “sub-dominant” epitopes may have the 

potential to influence the immune response to the Aa molecule. This was examined 

using two different experimental approaches. Firstly, animals were subcutaneously 

immunised with allopeptide in CFA and their subsequent alloantibody and in vitro T 

cell proliferative responses examined. Only PI, P7 and the a l  peptide were able to 

stimulate an in vitro T cell proliferative response, whereas P16 was additionally able 

to stimulate an anti-peptide antibody response. Secondly, RT1U animals were pre­

immunised with allopeptide before receiving an R8 blood transfusion, and the 

development of the cytotoxic alloantibody response examined. This experiment 

revealed that two further peptides, PI and P9 were able to evoke help for an 

accelerated anti-Aa cytotoxic alloantibody response upon challenge with the intact 

Aa molecule. These experiments suggest that the RT1U T cell repertoire can 

recognise epitopes derived from peptides PI, P9 and P I6, because, as previously 

discussed, the generation of an antibody response to either an Aa allopeptide or the 

intact Aa molecule requires cognate help from T cells specific for the Aa peptide 

epitope presented by a B cell. Achieving a positive antibody read-out is, however, 

dependent upon presentation of a specific epitope by a B cell, and consequently, 

these assays are only an indirect measure of the T cell response. It was surprising 

therefore that this approach revealed a greater number of potential Aa epitopes than 

standard T cell proliferation assays. Nevertheless, I believe that this technique of 

epitope mapping is the most accurate, since it reflects the main effector mechanism 

of graft rejection in this strain combination, that of alloantibody. Moreover, the
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validity of this approach was subsequently confirmed by pre-immunising RT1U 

animals with allopeptide, and examining their effect upon cardiac allograft survival.

Regarding the assays used to detect antibody, it is interesting that there was an 

apparent discrepancy in the response to PI and P9 depending on whether the anti­

peptide antibody response or the antibody response to the intact Aa molecule was 

examined. There are two possible explanations for the different results achieved 

using each assay. Firstly, the administration of a blood transfusion after pre­

immunisation with allopeptide represents a secondary challenge with Aa antigen. 

However, animals only received a single injection of allopeptide during the course 

of the anti-peptide antibody assay. It is therefore possible that the responses to the 

self-peptides PI and P9 were too weak during the primary response (i.e. following 

peptide immunisation), and only became evident following secondary challenge 

with the Aa molecule, in a manner analogous to the detection of the dominant 

epitope only after double immunisation of RT1U animals. To test this hypothesis, one 

could measure the anti-peptide antibody response following secondary challenge 

with peptide or the intact Aa molecule. This study was not performed in this thesis, 

but it is notable that Fangmann et al did not observe an antibody response to a 

peptide derived from the same area of the Aa molecule as P9 in Lewis rats following 

secondary in vivo stimulation with the peptide in question (Fangmann et al 1992a).

An alternative explanation for these findings may reside in the differential capacity 

of B cells to present antigenic epitopes, depending on whether antigen is 

encountered as an intact molecule or as peptide fragments. It has been suggested that 

B cells are the class of APC mainly responsible for the presentation of complex 

protein antigens, whereas dendritic cells favour the presentation of peptide 

fragments (Constant 1999). Therefore, that immunisation with both PI and P9 failed 

to stimulate an anti-peptide antibody response, but was able to affect the antibody 

response upon challenge with the intact Aa molecule may be the result of their 

preferential internalisation and presentation by dendritic cells rather than by B cells.

It may be therefore, that accurate sub-dominant epitope mapping will only be 

achieved if an optimum method of analysis is used, which may well differ with
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different strain combinations, depending upon the individual characteristics of a 

particular model’s alloimmune response. It is important however that accurate 

mapping of the sub-dominant epitopes involved in the indirect T cell response is 

achieved, particularly for the efficient design of peptide-based tolerogenic strategies. 

In the R8 to RT1U rat strain combination, monitoring the alloantibody response to 

the intact Aa molecule is, in effect, a functional in vivo read-out of the mechanisms 

responsible for allograft rejection. Although this approach may not apply to other 

strain combinations, especially those in which rejection is not alloantibody- 

mediated, it has been demonstrated in the current study that peptides derived from 

the non-hypervariable regions of an allo-MHC molecule may potentially be as 

important in the indirect alloresponse as those peptides derived from hypervariable 

regions. For example, the amino acid sequences in the Aa and Au molecules that 

correspond to PI and P9 are identical, yet priming RT1U animals with these peptides 

had as great an effect on the cytotoxic alloantibody response to and the rejection 

kinetics of Aa-bearing allografts as priming with peptides derived from the 

hypervariable region of the a2 domain, namely PI 5 and P I6. That self-peptides are 

able to stimulate an alloimmune response is not unprecedented and concur with the 

findings of Fedoseyeva et al (Fedoseyeva et al 1996) who observed the activation of 

autoreactive T cells following alloimmunisation.

Other experimental techniques may be used to directly measure the T cell response 

to individual allopeptides, for example, assays examining cell-mediated cytotoxicity 

and DTH responses. However, a cell-mediated cytotoxicity assay would reflect the 

recipient CD8 T cell response towards the allogeneic Aa MHC class I molecule, and 

it is unlikely that such an assay could be used to measure the CD4 T cell response to 

allogeneic Aa-derived allopeptides. Certainly, attempts within this laboratory have 

failed to detect an anti-Aa cytotoxic T cell response following challenge of RT1U rats 

with an Aa-bearing graft (e.g. (Bradley et al 1992). In support of this, CD8 T cell 

depletion of RT1U recipients does not prevent rejection of subsequent R8 allografts 

(Morton et al 1993, Pettigrew et al 1998). DTH assays may have provided a more 

accurate assessment of immunogenic peptides than simple T cell proliferation 

assays. However, this approach would still have been of limited value, as it fails to
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provide any indication as to the responsiveness of the main effector mechanism of 

graft rejection in this model, that of alloantibody.

My experiments appear to concur with the observations of Agarwal et al (Agarwal et 

al 1996, Agarwal et al 1997) and Steele et al (Steele et al 1996), which demonstrate 

that the requirement for T cell help alters as the alloantibody response progresses. 

Specifically, the process of heavy chain isotype class switching from IgM to IgG 

appears to require a greater level of T cell help than the initial IgM response. For 

example, subcutaneous administration of allopeptide was able to accelerate the 

kinetics of the initial IgM response, but the effect on the IgG2b response was only 

minimal. This restriction of the T cell response at the time of isotype class switching 

may be one of the mechanisms responsible for focusing of the alloimmune response 

onto a dominant epitope. If so, one would expect that the emergence of a dominant 

epitope would not occur immediately, but would be delayed until nearer the time of 

class switching. In vitro T cell proliferation assays were not performed this early in 

the current study, however, it has been recently documented by Benichou et al 

(Benichou et al 1999) that the initial indirect T cell response is polyspecific, with 

only 10-30% of activated T cells directed towards the dominant epitope. That the 

indirect recognition of alloantigen is a dynamic process, with different recipient T 

cell clones activated at different stages of the alloimmune response, may have 

important repercussions upon the design of peptide-based tolerogenic strategies. For 

example, if multiple donor epitopes are involved in the initial indirect T cell 

response, then this may decrease the effectiveness of using only a limited number of 

donor epitopes in the tolerogenic strategy. Conversely, as the T cell response 

focuses, this process may either break, or make redundant, the tolerance that has 

been achieved to any one particular epitope.

Nevertheless, it appears that targeting the indirect pathway of allorecognition with 

allopeptides to promote antigen-specific non-responsiveness is a promising strategy. 

It is unlikely however, that one could predict and incorporate into the initial 

tolerising inoculum all the conceivable donor epitopes that are involved in the acute 

alloimmune response, for, as demonstrated in this thesis, even sequences that are
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identical between donor and recipient are potentially stimulatory. Moreover, as the 

alloimmune response progresses, different antigen processing pathways may become 

more prevalent. For example, internalisation of complexes of donor antigen bound to 

secreted alloantibody, through the B cell Fc receptor, results in a different spectrum 

of B cell-presented epitopes than occurs following initial internalisation of unbound 

alloantigen through the B cell Ig receptor (Watts 1997). The stimulation of 

additional recipient T cell clones by the presentation of these further epitopes may 

result in the alloimmune response either spreading or becoming re-activated (in the 

case of self-peptide sequences) to previously non-stimulatory sequences of the donor 

antigen. Mechanisms such as these may explain the process of epitope spreading that 

occurs during chronic allograft rejection (Ciubotariu et al 1998, Suciu-Foca et al

1998) and highlight the difficulty in accurately predicting which of the donor 

epitopes are involved in the alloimmune response.

The key unresolved issue that will therefore determine the clinical applicability of 

such tolerisation protocols that incorporate limited stretches of donor antigen, is how 

a recipient’s immune system will respond, not to the sequences administered in a 

tolerogenic fashion, but to the additional donor epitopes that will be presented upon 

processing of the graft antigens. Two dichotomous outcomes can be envisaged. 

Firstly, tolerance may spread by the process of linked epitope suppression to 

encompass the additionally presented epitopes, or secondly, tolerance may be 

broken by the presentation of additional donor epitopes in an immunogenic fashion, 

thus initiating a compensatory alloimmune response that could effect rejection. 

Several factors may influence whether the residual graft antigens are recognised in a 

tolerogenic or stimulatory fashion, but the balance between epitope spreading and 

tolerance is likely to be mainly dependent upon the features of the donor sequence 

that is used in the initial inoculum. Specifically, different results may be achieved 

depending on the area of the donor MHC molecule from which the tolerising 

sequence is derived and upon the amount of the donor sequence, in terms of amino 

acid sequence, that is administered. For example, Mhoyan et al observed that 

peptides derived from the hypervariable regions of the RTl.Aa molecule were more 

effective at inducing intrathymic tolerance to a subsequent Aa-bearing allograft than
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peptides derived from less polymorphic areas of the molecule (Mhoyan et al 1997). 

Similarly, it was reported that the use of a combination of peptides was more 

effective that when used singly (Shirwan et al 1997a).

Why peptides derived from the hypervariable regions of an alloMHC molecule 

should be more effective at inducing linked epitope suppression has not been fully 

assessed. Peptides from the hypervariable region do, however, appear more likely to 

contain dominant epitopes, which are presumably presented by recipient APC at a 

higher frequency than other epitopes during the indirect response to an alloantigen. 

In addition, it has been suggested that for linked epitope suppression to occur, 

downregulation of the T cell response to additional donor epitopes requires their co­

presentation with the initial “suppressor epitope” on the same APC (Davies et al 

1996, Wong et al 1997). One can therefore postulate that achieving tolerance with 

peptides derived from the hypervariable region will be more effective at inducing 

linked epitope suppression than other epitopes because it is less likely that, upon 

processing of graft antigens, the residual donor epitopes will be presented by 

recipient APC without concurrent presentation of the suppressor epitope. For the 

same reason, I expected that the use of sub-dominant epitopes would be more 

effective at inducing linked epitope suppression than cryptic epitopes. Consequently, 

I hoped that thorough mapping of the dominant and sub-dominant epitopes, by using 

a functional in vivo read-out, would permit a more rational design of effective 

peptide-based tolerogenic strategies. My results suggest that this approach was 

successful in part, as judged by the ability of intravenous priming with donor peptide 

to downregulate the alloantibody responses to an R8 blood transfusion and, to a 

lesser extent, an R8 cardiac allograft. The results obtained following administration 

of PI were particularly interesting, as they suggest that priming with a sub-dominant 

epitope can result in linked epitope suppression that is extended to the naturally 

dominant epitope.

Intravenous administration of high doses of allopeptide to RT1U rats was not 

successful in prolonging allograft survival, despite partially downregulating 

alloantibody responses and, in some cases resulting in the shifting of the T cell
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proliferative response to epitopes other than those administered in the initial 

inoculum. This suggests that although the response to the dominant epitope could be 

partially inhibited, the alloimmune response compensated by reactivity, rather than 

tolerance, spreading to the residual graft antigens. For example, immunisation with a 

combination of the dominant and sub-dominant peptides, PI, P7, P8 and P9, was 

associated with proliferation to P10 following heart grafting. It is notable however, 

that subcutaneous administration of P10 was not associated with an accelerated 

alloantibody response upon challenge with the intact Aa molecule. One could 

hypothesise that this epitope may instead be involved in the development of either a 

cytotoxic T cell response or a DTH-like response to the graft.

Despite the failure of intravenous pre-immunisation with peptide to induce 

prolonged allograft survival, this does not necessarily imply that the principle of 

peptide-based tolerogenic strategies to achieve tolerance through linked epitope 

suppression is flawed. It is possible that prolonged graft survival would have 

resulted from the administration of P7 or a different combination of peptides, either 

at a higher dose, or at different time intervals with respect to allografting. For 

example, the amount of peptide administered was chosen on a somewhat arbitrary 

basis, using the work of Shirwan as a guide (Shirwan et al 1997b). Ideally however, 

the optimum amount of peptide to be administered would have been calculated by 

means of dosing experiments, but even then, discrepancies in the proliferation data 

and between blood transfused and heart grafted animals may have prevented 

conclusive findings.

In summary, this piece of work suggests that although the RT1U alloimmune 

response focuses upon the first hypervariable region of the donor RTl.Aa class I 

MHC molecule following immunisation of RT1U rats with an Aa-bearing blood 

transfusion or cardiac allograft, several other areas of this molecule contain epitopes 

that have the potential to be involved in the indirect alloimmune response. However, 

it may be difficult to accurately predict these additional donor epitopes, as they may 

derive from unexpected areas of the alloMHC molecule, even those regions that are 

identical in amino acid sequence to the corresponding regions of the recipient MHC
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molecule. Moreover, it appears that the ability to accurately map these sub-dominant 

epitopes will depend upon the use of an assay that most accurately reflects the in 

vivo alloimmune response in a particular strain combination. The attempts in this 

study to achieve allograft tolerance by pre-immunisation with either the dominant or 

sub-dominant epitopes in a tolerogenic fashion were unsuccessful. It is not clear 

however, whether this was due to an inability to completely downregulate the T cell 

response to the administered peptide, or whether the process of linked epitope 

suppression was not powerful enough prevent the development of a further immune 

response to the remaining graft antigens.

The resolution of this question has important clinical applications, because the 

relative propensity for tolerance, rather than reactivity to spread to the residual graft 

antigens will largely dictate the success of peptide-based tolerogenic strategies. For 

example, if tolerance does tend to spread to encompass other alloantigenic epitopes, 

then this would permit the use of relatively limited stretches of the donor antigen to 

induce non-responsiveness. Moreover, such a situation would also allow the 

recipient to receive a wider range of mismatched allografts by using key sequences 

of a single donor alloantigen to induce linked epitope suppression. My results 

however, are inconclusive, due in part to the relatively crude nature of the in vitro T 

cell proliferation assay used, which may not accurately represent the in vivo T cell 

response to a foreign antigen (Nevala et al 1997). To determine the true nature of T 

cell specificity, it may be possible to use a more sensitive read-out of the in vivo T 

cell response. One such approach may be to use limiting dilution analyses (LDA), 

whereby single cells are plated into individual wells, and their antigen specificity 

examined (Sharrock et al 1990). Alternatively, using the sensitive enzyme-linked 

immunospot (ELISPOT) assay, it may be possible to analyse the specificities of the 

indirect T cell response as early as the fifth day post-transplant as documented by 

Benichou et al (Benichou et al 1999). This assay measures the T cell response 

indirectly by using antibodies to detect cytokines secreted by T cells during in vitro 

culture. It appears to be more sensitive than standard LDA, and offers further 

advantages in that it is able to indicate the pattern of cytokine polarisation for the 

response to a given epitope, and moreover, is able to detect T cells that release

-139-



cytokines but that do not necessarily proliferate. The use of high affinity dimers of 

molecularly engineered MHC class II complexes may however be the most effective 

means of assessing the CD4 T cell response to a given epitope (Lebowitz et al

1999). These would be designed to incorporate a specific bound peptide, in this case 

an Aa-derived allopeptide, into a bivalent MHC class II (RT1.B7RT1.DU) structure. 

Such complexes would bind to the relevant RT1U CD4 T cell clones with sufficient 

stability to permit flow cytometrical analysis. This technique would therefore 

specifically examine the indirect CD4 T cell response, and could be used at any 

time-point during the alloimmune response. This approach is analogous to the use of 

tetrameric MHC class I complexes, which have been successfully used to analyse in 

more detail the in vivo CD8 T cell response than can be achieved using LDA 

(Altman et al 1996, Gutgemann et al 1998, Wilson et al 1998).

In conclusion, this thesis provides new information on the indirect T cell response to 

alloantigen and specifically how it is able to provide help for the development of an 

alloantibody response. Although the relative role of alloantibody has to date been 

generally overlooked as a mechanism for graft rejection, it’s importance in acute 

and, in particular, chronic allograft rejection is now becoming apparent, as judged by 

the recent modification of the Banff criteria for alloantibody-mediated rejection as is 

applicable to renal allografts (Racusen et al 1999). My results further suggest that 

using synthetic peptides derived from sequences of the donor MHC molecule to 

downregulate the alloantibody response may be a feasible approach in the attempt to 

prolong allograft survival.
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