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Abstract.

Filarial nematodes have a complex developmental life cycle involving 

mammalian and mosquito hosts. The microfilariae (mf) which circulate in the blood 

stream are developmentally blocked prior to transfer to the mosquito. The switch 

between the different environments must be accompanied by changes in gene 

expression to allow development within the new host. The aim of this study was to 

isolate mf genes from the mf of B. pahangi that are differentially expressed within 

the two hosts.

To this end a mammalian-derived mf cDNA library was constructed and 

differentially screened using mammalian and mosquito-derived mf cDNA probes. 

Due to the difficulty of obtaining in vivo parasites from the mosquito, the cDNA 

probes were produced by RT-PCR from mf culture in vitro under either mammalian 

or mosquito like conditions.

Nine independent cDNA clones were isolated, of which five hybridised more 

strongly to the mammalian-derived mf probe and four to the vector-derived mf probe. 

Analysis of the cDNAs nucleotide sequence revealed that five of the clones were 

homologous to ribosomal protein mRNAs previously characterised from other 

species, one cDNA corresponded to the B. pahangi heat shock protein 90 mRNA and 

three cDNAs represented novel genes of unknown function.

A more detailed molecular analysis was conducted on two of the cDNAs of 

unknown function, Bp-vrac-2 (B. pahangi-vpctor-derived mf cDNA-2) and Bp-mmc- 

1 (B. £fl/iaftg/-mammalian-derived mf cDNA-JJ. Analysis of the expression of the 

mRNAs by semi-quantitative RT-PCR showed that Bp-vmc-2 was expressed at 

varying levels throughout the life-cycle of B. pahangi. The mRNA abundance of Bp-



vmc-2 increased as the parasite matured in the mosquito host and reached peak 

expression in infective L3 parasites. In contrast Bp-rarac-1 was exclusive to the mf 

stage and was not expressed by mf developing in utero. An antiserum raised to the 

recombinant protein localised MMC-1 throughout the body of the mf, but it was not 

present on the surface of the sheath or cuticle of the parasite.

Western blotting using MMC-1 antiserum, reacted specifically with mf 

extracts, confirming the specificity of temporal expression. Analysis of immune 

responses to the recombinant protein showed that significant amounts of IL-5 were 

produced by T-cells in response to stimulation with MMC-1. Human serum from 

patients infected with B. malayi recognised MMC-1 and the predominant reactive 

immunoglobulin subclasses were IgGl and IgG3, which have been associated with 

disease pathology in other studies.
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1.1 The parasite.

1.1.1 Filarial nematodes.

The filarial nematodes are blood and tissue dwelling parasites transmitted by 

the bite of a haematophagous arthropod vector. The parasites are accountable for a 

variety of diseases of both man and animals. In the case of human disease the most 

important species are the lymphatic dwelling filariae Wuchereria bancrofti, Brugia 

malayi and Brugia timori and the tissue dwelling Onchocerca volvulus, the causative 

agent of onchocerciasis or river blindness and onchocercal dermatitis. It has been 

estimated that one fifth of the worlds' population is at risk of lymphatic filarial 

infection [1] and over 128 million people are currently infected world-wide [2, 3]. Of 

these cases W. bancrofti is the most prevalent of the parasites (115.12 million 

infected) whilst Brugian filariasis accounts for 12.91 million cases [3]. The World 

Health Report (WHO) in 1995 named lymphatic filariasis as the second leading cause 

of permanent and long term disability world wide. Approximately half of the 

individuals infected with lymphatic filariasis have detectable morbidity, whilst the 

remainder show no overt clinical signs of infection [1]. The clinical manifestations of 

infection will be discussed later. These parasites are distributed through the tropical 

and sub-tropical regions of Asia, Africa the Western Pacific and parts of the 

Americas. The geographical distribution of the parasites is principally determined by 

the vector host. Bancroftian filariasis is very promiscuous in regards to vector and 

can be transmitted by various species of mosquito host. The most important of the 

vectors are Culex pipiens in urban areas and species of Anopheles and Aedes 

mosquitoes [4]. It is this diversity of vectors that promotes the vast distribution of 

bancroftian filariasis. Brugian filariasis is transmitted by mosquitoes of the genus

1



Anopheles, Aedes and Mansonia. B. malayi is the primary Brugian parasite of man 

but is also zoonotic and infects monkeys, various wild cats and the pangolin. 

Onchocerciasis is only transmitted by blackflies of the genus Simulium, primarily S. 

damnosum [4]. As the larval stage of the vector has an absolute requirement for fast 

flowing water, the distribution of the disease is localised to areas of flowing water. 

Onchocerciasis is mainly located in tropical and sub-tropical Africa. Lymphatic 

filariasis can occur in one of two forms, periodic where the mf display a periodicity 

in the peripheral blood to coincide with the feeding habits of the local vector, or sub- 

periodic, which does not show the periodicity of infection in the peripheral blood. B. 

timori discovered on the islands of Timor is a periodic parasite that exists in small 

foci in Indonesia. B. pahangi is a natural parasite of cats and dogs in Asia and it is an 

important laboratory model of Brugian filariasis as infections will develop to patency 

in a number of laboratory animals, including the jird Meriones unguiculatus [5], as 

will the sub-periodic form of B. malayi [6].

1.1.2 Life cycle.

The life cycle of Brugian nematodes follows the standard nematode plan of 

five developmental stages. Figure 1.1 shows a stylised diagram of the life cycle of the 

lymphatic dwelling filariae. Infection of the definitive host is initiated by the bite of a 

mosquito harbouring infective third stage larvae (L3) which are present in the head 

and mouth parts of the mosquito. During feeding the L3 are deposited onto the skin 

of the host. The L3 migrate through the puncture wound left by the mosquito and 

penetrate the dermis to reach the lymphatics. Within a few hours the larvae of Brugia 

have penetrated the local lymphatics and then flow to the perinodal sinus of the

2



Figure 1.1 Life-cycle of the lymphatic dwelling filariae.
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flight muscles
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nearest lymph node. The L3-L4 moult of B. pahangi occurs between days nine and 

twelve post-infection (p.i) [7], however in the gerbil model this moult occurs 

between days 6 and 7 p.i. The L4-adult moult is not synchronous, the males moult at 

around day 19 p.i. and the females later at around day 24. The juveniles then grow 

until sexually mature, usually between fifty and sixty days p.i. B. pahangi adult 

parasites have a thread-like appearance and measure approximately 0.1 X 22.0 mm 

(males) and 0.15 X 48.0 mm (females). The dioecious adults mate and the females 

continuously produce microfilariae (mf), the unique LI larval stage characteristic of 

filarial nematodes. The mf of B. pahangi measure approximately 6 X2 1 0  J im  and are 

sheathed [7]. The mf migrate from the lymphatics to the circulatory system, from 

where they are ingested by a susceptible mosquito. In the vector the mf of B. pahangi 

migrate from the bloodmeal, penetrate the mosquito midgut and pass through the 

haemocoel before migrating to the site of development, primarily the thoracic 

muscles, where they initiate development [8]. Within 1 hour of feeding the mf can be 

detected in the flight muscles of a susceptible host [9]; the mf have lost their sheaths 

and lie in the muscle fibres and become sluggish. By 24 hours p.i. the mf have begun 

to shorten in length and increase in width (190 pm x 8 pm at 24 hours). By day three 

p.i. the mf is at its minimum length (172 pm x 16 pm) [9]. The mf are essentially 

motionless at this stage apart from infrequent twitching at the anterior end. During 

the late first stage, from the third to fourth day, numerous cell divisions can be 

observed as can a resulting increase in body length. The development of the parasite 

in the mosquito is temperature dependent; at 28 °C, 80 % humidity the parasites 

develop to the L2 stage between days 4 and 5, and by the eighth day the majority of 

the parasites are either L3 or in the process of moulting. The mature L3 then begin to
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migrate to the head and mouthparts of the mosquito in preparation for the infection 

event. The development of the filarial nematodes is of interest as two defined stages 

of developmental arrest occur, at the mf and at the L3 stages. Both of these periods of 

arrest occur prior to transfer between hosts.

1.2 The human disease.

1.2.1 Clinical spectrum of disease.

Infection with B. malayi or W. bancrofti causes a wide spectrum of clinical 

manifestations which are summarised below.

Endemic normals

Members of this group display no symptoms of disease and are free of 

circulating mf despite residing in an endemic area. The diagnosis of an individual as 

an endemic normal is reliant upon the sensitivity of testing procedures. The most 

common test is to count mf in a specific volume of peripheral blood (see 1.2.2). 

Many cases that are believed to be endemic normals will harbour cryptic infections 

below the detection levels of the parasitological test or have pre-patent or single sex 

adult infections. With the advent of circulating antigen tests (see 1.2.2) that can 

reveal low level infections the percentage of true endemic normals has decreased.

Asymptomatic microfilaraemics

In endemic areas the majority of the infected population will be classed as 

asymptomatic microfilaraemics. These individuals show no overt symptoms of 

disease despite the presence of high levels of circulating mf. Although the patients do
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not show clinical signs of infection many will have some form of subclinical disease. 

Approximately 40 % of cases have some renal damage that can be detected by urine 

examination [10], and many patients show a degree of lymphatic damage [11, 12]. 

The individuals in this group show a specific down-regulation of immune responses 

to filarial antigen and are often referred to as being hypo-responsive [13].

Filarial fevers

Filarial fevers are episodes of inflammation of lymph nodes accompanied by 

fever. The fevers occur periodically and may be associated with a loss of mf from the 

bloodstream. In immunological terms these patients are more responsive to filarial 

antigen and the clinical symptoms may be a result of immune reactions to parasites.

Lymphatic pathology

The term lymphatic pathology relates to damage in the lymphatic vessels 

which causes fibrosis and in severe cases results in blocking of the lymph vessels and 

disfiguring pathology. The symptoms are primarily caused by living and degenerating 

adult worms residing in the lymphatic vessels, although the conditions are often 

exacerbated by the presence of opportunistic bacterial or fungal infections [14]. 

Initially blocked or damaged lymphatic vessels result in lymphodema which is often 

treatable with chemotherapy. Following chronic lymphodema the lymphatics can 

become obstructed resulting in the debilitating chronic pathology conditions of 

elephantiasis and hydrocoele (in males infected with W. bancrofti). Patients with 

chronic pathology do not tend to have detectable mf in the bloodstream although a
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small proportion of sufferers do exhibit circulating mf. The immune responses of 

individuals in this group show a recovered capacity to respond to filarial antigen.

Tropical pulmonary eosinophilia (TPE)

TPE is a rare condition of filarial infection which is thought to reflect an 

allergic response to mf in the lung [15]. In this condition mf are very rarely seen in 

the blood although treatment with DEC results in relief of symptoms. The wheezing 

cough and chest pain associated with TPE is thought to result from damage to the 

lung from degranulation of eosinophils in response to dead and degenerating mf 

present in the lung.

1.2.2 Diagnosis and treatment of lymphatic filariasis.

Diagnosis of lymphatic filariasis is classically by detection of circulating mf. 

This is achieved by collection of blood (at peak times in periodic species) by finger 

stick and generation of a thick blood film which is stained with Giemsa to highlight 

the mf. Alternatively a more sensitive method is to filter a larger volume of venous 

blood [16]. Generally 1 ml of blood is passed through a Nucleopore membrane with a 

3 to 5 (im pore size. Retained mf can then be counted following staining with 

Giemsa. The disadvantage of this method is the need for venous puncture and also 

elevated cost. Adult worms can be visualised in the scrotal area of men suffering with 

W. bancrofti infections by utilising high frequency ultrasound which can detect 

motile adults within the dilated lymph vessels (termed the "filarial dance sign") [17]. 

As adult worms often remain in a constant location in so called "nests" this procedure
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can be beneficial for monitoring the efficacy of drug therapy. The technique has also 

been attempted to detect B. malayi infections but with limited success [18].

Detection of circulating antigen is a beneficial means of diagnosis as the need 

for collection of blood at peak microfilaraemic times (often 10 pm-2 am) is avoided. 

The presence of filarial antigen in the blood of infected persons led to the 

development of immunological tests for detection of bancroftian filariasis. The tests 

use capture ELISA techniques which utilise monoclonal antibodies developed to 

circulating antigens of W. bancrofti [19, 20]. Unfortunately there is currently no such 

test for the diagnosis of Brugian filariasis. As an alternative to the detection of 

parasite antigen, which may be present in very low quantities in amicrofilaraemic 

individuals, molecular diagnosis utilises the PCR to amplify filarial-specific 

repetitive DNA sequences present in the blood or saliva of both B. malayi [21] and 

W. bancrofti infected individuals [22],

Serodiagnosis has been widely used to diagnose filarial infection by detection 

of filarial-specific antibody in patient serum. The techniques are based on ELISA 

tests that use parasite antigen as a means of detecting specific antibodies. As the 

antigens are prepared from worm extract, problems with standardisation of the 

procedure are inevitable. A potential problem with this technique is the cross 

reactivity of antibodies with antigens of other related helminths, particularly since 

many individuals in endemic areas have gastrointestinal nematode infections [23, 

24], Also sero-diagnosis does not distinguish between past and current infections. 

Another serological technique is the detection of anti-filarial IgG4 in patient serum 

[25]. IgG4 is the predominant antibody subclass observed in filarial infections [26].
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This technique is useful as elevated IgG4 is only seen in current infections, although 

some degree of cross-reactivity between filarial species is observed.

1.2.3 Control of lymphatic filariasis.

Traditionally the treatment of filariasis was by a twelve day regime with the 

drug diethylcarbamazine (DEC). DEC primarily acts as a microfilaricide resulting in 

reduction of circulating mf for up to one year after chemotherapy. However the low 

compliance due to adverse side effects including headaches, vomiting and painful 

lymph nodes, has led to the more acceptable treatment of a single yearly dose of DEC 

(6 mg/kg) which has been shown to be as effective in reducing microfilaremia. DEC- 

medicated salt (0.2 % w/w) has also been used very successfully in areas where mass 

treatment is not feasible [27, 28]. The drugs Ivermectin (200 jug/kg) and Albendazole 

(400 mg) have also shown a potent effect against filarial worms. These drugs in 

combination with DEC or each other have been shown to yield 98 % and 99 % 

clearance of mf one year after treatment for B. malayi and W. bancrofti infections 

respectively [2, 29]. The advances in the effectiveness of these combination drugs 

and also the lack of a zoonotic reservoir for W. bancrofti and the fact that there is no 

multiplication of parasites in the vector host, has led an international task force on 

disease to name lymphatic filariasis as one of only six diseases that are potentially 

eradicable. The WHO initiative in collaboration with the healthcare companies 

SmithKline Beecham (donating albendazole) and Merck and Co (donating 

ivermectin) aims to eliminate lymphatic filariasis globally. Through the use of multi­

drug therapy it is hoped to reduce the levels of microfilaremia so that transmission is 

no longer sustainable. The multi-drug therapy program is of added value as both
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albendazole and ivermectin are effective against other helminth infections such as 

Ascaris, Tricuris, Necator and Stronglyoides which are often endemic in the same 

areas as lymphatic filariasis [30]. Also albendazole and ivermectin can safely be used 

in areas endemic for O. volvulus and Loa loa, where DEC cannot be administered 

due to the possible dangerous side effects such as occular damage in O. volvulus 

infections [31], and encephalitis in L. loa infections [32].

1.3 The microfilariae.

1.3.1 Periodicity of the mf.

The mf of Brugia is a highly specialised stage evolved for life in the blood of 

the definitive host and for the transmission of the parasite to the mosquito. To 

increase the chances of transmission the mf of certain species have evolved a daily 

periodic life-cycle that maximises the mf count in the peripheral blood to coincide 

with the feeding habits of the local vectors [33-36]. This periodicity is also seen in a 

seasonal cycle that again mirrors the biting habits of the vector although this may be a 

reflection of alteration of the rate of mf production [37].

Experimental evidence on both W. bancrofti and B. malayi infected humans 

has shown that oxygen concentration of the blood is a determining factor in the 

periodic behaviour of mf. Inhalation of oxygen (13 minutes inhalation) during the 

night, when mf numbers are usually high, results in a 40 % reduction in the numbers 

of circulating mf [35]. In contrast body temperature [35] and modulation of the 

nervous system, by stimulation with acetylcholine [34] had no direct effect on the 

periodicity of W. bancrofti or B. malayi. These results led to the proposal that the mf 

were responding to the differences in the relative tensions of oxygen in venous and
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arteriole blood. Generally during the day the mf accumulate in the arterioles of the 

lungs, where the oxygen tension is at its lowest before entering the pulmonary 

capillaries to become re-oxygenated [36]. It is thought that the mf leave the lung and 

circulate in the peripheral blood when the difference between O2 tensions is less than 

50 mm Hg and accumulate in the lungs when the difference is larger than 53 mm Hg, 

as would occur with activity during the day [35]. It has been postulated that the mf 

have evolved this process to avoid entering a zone of high O2 tension known as the 

"oxygen barrier" and that different species of nematode may respond in a graduated 

fashion to display different types of periodicity [36]. Thus the nocturnal forms of W. 

bancrofti and B. malayi are proposed to be highly sensitive to the barrier and 

therefore only pass into the peripheral blood at night when the difference in venous 

and arteriole O2 tension is low, whilst the mf of Loa loa, which are affected by 

temperature, are less sensitive to the barrier and will pass into the peripheral blood 

during the day [36].

How the mf respond to these physico-chemical cues is not understood, 

although it is known that the mf of Brugia parasites posses a differentiated nervous 

system and cilliated amphid sense organs [38]. It has also been shown that the mf of 

B. malayi express a novel gene for glia maturation factor (Bm-gmf-1) that promotes 

the differentiation of glia and neurons [39]. Bm-gmf-I is not expressed in adult 

female parasites but only in released mf suggesting that the neuronal system of the mf 

continues to develop when released from the adult worm. The mf of Brugia in the 

mammalian host were thought to be developmentally arrested and terminally 

differentiated meaning that no new structures were thought to be formed [38]. Due to 

the advances of molecular methods, which allow the detection of development not
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apparent by anatomical studies this hypothesis may need re-evaluation. The 

development of the nervous system of mf may enable the mf to react to stimuli of the 

mammalian host such as those involved in the control of periodicity, or may allow 

the mf to respond to changes in physicochemical environment when transferred 

between the mammalian and mosquito hosts.

1.3.2 Non-continuous development of filarial nematodes.

As stated in section 1.1 the development of Brugia parasites is a complex 

process involving both mammalian and vector hosts. The development of the filarial 

nematodes is of interest as two defined stages of developmental arrest occur, at the 

mf and also the infective L3. Both of these periods of arrest occur prior to transfer 

between definitive and intermediate hosts. The mf can survive in the mammalian 

host in a developmentally arrested state for periods of greater than 100 days [40] and 

only re-initiate development when transferred to the vector. The mf are therefore the 

major reservoir of infection in endemic areas. The developmentally arrested mf of 

Brugia are still metabolically active as can be demonstrated by labelling of newly 

synthesised proteins [41]. The mf are therefore not a modified stage evolved to 

survive in harsh conditions, as is seen in some parasitic nematodes with a free-living 

stage [42, 43] or the specialised dauer stage of C. elegans [44].

Although the developmental block in Brugia is not analogous to the dauer 

larvae, the mechanisms by which the parasite assesses the environment may be 

similar. The dauer larval stage is an enduring stage that allows survival through 

periods of unfavourable conditions. The dauer stage is morphologically distinct, it is 

relatively thin due to radial shrinkage of the cuticle, the buccal cavity is sealed and
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pharyngeal pumping is suppressed, resulting in resistance to desiccation and 

detergents [45]. The C. elegans dauer larvae also show decreased levels of 

transcription, (11-17 % RNA polymerase II transcription compared to other stages), 

and a reduced expression of a number of genes, collagen, actin, SL-1 and histone 

[46].

In C. elegans the developmental switch to the dauer pathway is made in 

response to environmental cues. Primarily the LI are susceptible to the ratio of a 

dauer-inducing pheromone to food supply. The fatty acid pheromone, expressed by 

all life cycle stages of the nematode, promotes dauer formation and also inhibits the 

recovery from the arrested state, while the food signal acts in an antagonistic fashion 

[45, 47, 48]. The ratio of these two stimuli can therefore be used as a measure of the 

ability of the environment to support a given density of nematodes. When large 

numbers of nematodes are present and the food signal is low then the production of 

the dauer larvae is promoted to endure the period of environmental stress, whereas if 

food is abundant and can be exploited, then the dauer stage is not initiated.

It has been proposed that the free-living L3 stage of certain parasitic 

nematodes are dauer constitutive i.e. they must pass through a period of arrest 

comparable to the dauer [49]. Hotez et al (1993) documented the morphological and 

behavioural similarities between the L3 of hookworms and the C. elegans dauer, 

such as possession of a sealed buccal capsule and exhibition of questing behaviour. 

This article also proposed that the arrest of infective larvae is a result of evolutionary 

change that has removed the choice of developmental pathway. Therefore such 

nematodes possess a “dauer constitutive L3” to aid survival.
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The control of dauer development is by the sensory organs (sensilla) that are 

present in concentric rings around the mouth [50, 51]. Two classes of chemosensory 

neurons termed ADF and ASI are involved in the process of dauer formation in C. 

elegans [47, 52]. The ADF and ASI neurons are pheromone sensors that repress 

dauer formation in response to absence of pheromone [47]. It has been found that 

homologous neurons control the developmental switching of the parasitic nematode 

Strongyloides stercoralis [52, 53]. The life cycle of S. stercoralis, like other parasitic 

nematodes of the genus Stronglyoides, can develop along one of two routes in 

response to environmental stimuli. The soil dwelling larval stages can develop 

directly to infective stages (homogonic development) or develop to free-living adults 

(heterogonic development). By laser ablation studies it was shown that the ASF 

(homologous to C. elegans ADF) and ASI neurons which control C. elegans dauer 

formation are also responsible for the control of the developmental switch of S. 

stercoralis [52, 53]. It is therefore possible that the developmental block in the 

parasitic nematodes may be controlled by environmental stimuli which is monitored 

by similar neuronal structures.

Various studies have aimed to isolate genes that are involved in the 

maintenance of the developmental block in parasitic nematodes. Characterisation of 

the genes expressed in the arrested infective larval stage of Toxocara canis isolated a 

number of genes of interest [54, 55]. Of the abundant cDNAs sequenced from the 

arrested L3 stage of T. canis four novel transcripts were isolated {ant-003, ant-005, 

ant-030 and ant-035) which together represent 16.4% of the total library [54], 

Although the function of these transcripts is unknown, their abundance suggest that 

they may be involved in the maintenance of the developmental block. Of the genes
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isolated from this study of 261 ESTs it was noted that the level of expression of 

housekeeping genes was much reduced and no ESTs representing cell replication 

genes were isolated [55]. From this arrested stage library a prohibitin gene that is 

thought to play a role in suppression of cell proliferation was also isolated [56]. It 

must be noted that the prohibitin gene was isolated by PCR of the library and not by 

random sequencing of ESTs as described by Tetteh et al (1999) [54], This suggests 

that the prohibitin gene is expressed at lower levels than the ant genes. However the 

finding of a gene involved in the control of the cell cycle is interesting as certain 

proteins may be involved in either the initiation or maintenance of arrested 

development. This phenomenon is also seen in the dauer larva of C. elegans where 

although the general levels of transcription are reduced, the level of the heat shock 

protein, hsp90 was shown to increase in the dauer larvae [46], The levels of hsp90 

mRNA were shown to be 10-15 times higher in the dauer than in other 

developmental stages, and reduced to approximately 5% of peak levels upon exit 

from dauer [46].

In C. elegans it is known that one of the dauer larva formation (<daf) genes, 

daf-1 encodes a member of the transforming growth factor-(3 (TGF-p) family [57]. 

Using fluorescent gene reporter studies (see section 1.4) it was shown that the daf-1 

gene was expressed in the ASI neurons in response to a food signal and that 

expression was regulated by the presence of dauer inducing pheromone. It was 

hypothesised that the daf-1 gene is a negative regulator of dauer formation by 

transducing chemosensory information from the ASI neurons [57]. In attempts to 

identify genes involved in the developmental biology of filarial nematodes Gomez- 

Escobar et al (1998) used degenerate PCR to amplify TGF-P homologues of B.
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malayi and B. pahangi [58]. The transcripts, Bm-tgh-1 and Bp-tgh-1 were isolated 

and showed higher homology to the Drosophila decapentaplegic protein (dpp) than 

to the C. elegans daf-1 gene. The dpp gene is involved in the developmental 

patterning of the Drosophila embryo [59]. Expression of the Bp-tgh-1 was low in L3 

and absent in the mf, when the parasites are arrested, but expression is elevated at 

times coincident with the larval molts in the mammalian host [58]. It was 

hypothesised that tgh-1 may play a role in the development of the parasite, and may 

influence the periods of developmental arrest [58]. Analysis of the expression of the 

B. pahangi TGF-p receptor (Bp-trk-1) showed that Bp-trk-1 was expressed at high 

levels in the mf, when Bp-tgh-1 is absent [58, 60]. It was therefore proposed that the 

expression of TGF-p following transfer of the mf to the mosquito may act as a trigger 

for the release of the developmental block [58].

A suggested hypothesis for the control of development was proposed by 

Petronijevic and Rogers (1983) [61]; in this model the different stages of 

development are controlled by sets of genes, some genes will be stage-specific whilst 

some will be present at various stages. The threshold for the switching of the genes is 

influenced by the environment, such that in a relatively constant environment the 

threshold for change is low and development will appear to be continuous. When 

development occurs in very different environments, as in B. pahangi, then the 

threshold is raised. Due to the higher threshold, development will only occur upon 

transfer to the new host, thus ensuring that development only proceeds in an 

appropriate environment [61]. In some parasites the stimulus for re-activation of 

development following arrest is known. For example in Dictyocaulus viviparus, a 

parasitic nematode of cattle, the presence of cattle bile stimulates the activation of
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arrested larvae from pasture, which is likely to be related to the oral ingestion route 

of this parasite [62]. For an obligate parasite such as Brugia, the factors influencing 

the resumption of development are likely to be many-fold and result in a cascade of 

events that stimulates the expression of an appropriate gene set. Hawdon and Hotez 

(1996) proposed that when a parasite invades a host a "host-specific signal complex" 

is encountered which triggers this cascade of events [63].

The requirement of complex signals to initiate development of the mf of 

Brugia is evident in the fact that in vitro culture is complicated by the need for insect 

cells in cultures of mf to allow normal development to L2 stage parasites [64, 65], 

but despite this it is not possible to culture the parasites to L3. This is also evident in 

the complex culture systems required for other filarial parasites [66-72].

As discussed above there are examples of environmental cues influencing 

gene expression in a variety of nematodes. How are these signals received and 

relayed? Evidence for the transduction of an environmental signal to the interior of 

nematodes comes from the changes in surface coat following transfer of parasites 

from one environment to another. This was demonstrated by the association of lipid 

probes into the surface of various parasites (B . pahangi, Acanthocheilonema viteae, 

Strongyloides ratti, Nippostrongylus brasiliensis, Trichinella spiralis and Ostertagia 

ostertagi) exposed to mammalian conditions, that were occluded in non-mammalian 

conditions [73]. It was postulated that this change in surface properties could be a 

means of masking the surface antigens and evading the host immune response, or 

may be involved in a pathway of developmental signalling specific to the mammalian 

stage of the life cycle [73]. Subsequent studies showed that alkaline pH and Ca++ may 

stimulate these changes perhaps via a cyclic GMP, (cGMP) pathway [74]. In T.
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spiralis incubation in culture medium containing the protease trypsin and/or bile 

causes the loss of the surface coat. This loss is believed to be activated through a 

Ca++ dependent messenger pathway acting via inositol triphosphate and cAMP [75]. 

The mechanisms of this pathway have been shown to be different in T. spiralis and 

Brugia spp. This may be due to taxonomic differences or the different routes of 

infection, via the gastrointestinal tract in T. spiralis and via the skin in Brugia. The 

role that the nervous system of the parasite plays in this cascade of events is unclear; 

the nervous system may be acted upon directly by these cascades although the use of 

nerve blockers did not interfere with the alteration of surface coat [74]. In Brugia the 

factors that may be involved in the triggering of a developmental switch are currently 

unresolved and are the subject of on-going research in this laboratory [41, 76-80].

1.3.3 The microfilarial sheath.

The mf of Brugia develop within the gravid female and are released as fully 

formed first stage larvae. The mf of the lymphatic dwelling filariae are enclosed in a 

bag-like structure known as the microfilarial sheath. The possession of the sheath is 

important as it represents the host-parasite interface of the blood-dwelling mf. The 

sheath is composed of two major components, a basal matrix layer which is a 

modified remnant of the egg shell, and an outer layer which is produced by the 

epithelium in the distal part of the uterus [81, 82].

Although the exact composition of the sheath is still unknown (due to the 

difficulty in obtaining sufficient amounts for standard analysis) it is known to contain 

a mix of proteins particularly rich in glutamine and proline [81] and has been 

proposed to contain chitin [82, 83], although this finding is not conclusive and it has
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been disputed that chitin may only be present in pre-cursors of the sheath [81, 84, 

85]. Components of the solubilised sheath can be separated to reveal 12-16 protein 

fractions from 14 to 200 kDa [81, 86]. A major sheath protein is a 22 kDa molecule, 

the mRNA for which has been shown to be transcribed in the oocytes and embryos of 

L  sigmodontis but not in the blood-dwelling mf [87-89]. The corresponding protein 

of Brugia is Mf22, which localised to the sheath of developing and mature mf by 

antibody staining [90]. However, northern blot analysis showed that expression of 

Mf22 was restricted to adult worms and not mf, suggesting that Mf22 is pre­

synthesised by the adult female and later incorporated into the sheath [90].

As stated the sheath represents the surface that is exposed to the host immune 

system and therefore the sheath proteins are likely to represent important 

immunogens in Brugian infections. Serum from microfilaraemic B. malayi infected 

individuals has been shown to contain IgG reactive to sheath epitopes [91]. Also the 

appearance of antibodies to the mf sheath is known to correlate with the clearance of 

mf from the bloodstream both in animal models [92] and in humans [93].

1.3.4 Modulation of the host immune response by the mf.

The persistence of filarial infections in the lymphatics and blood stream 

suggests that evasion of the host immune response is a major factor influencing the 

interaction of parasite and host. Essentially only the factors that are thought to be 

relevant to the mf stage will be discussed here, although it is likely that the overall 

immune response is due to the presence of different parasite stages. Much research 

has been conducted on other aspects of immunology to filarial infections, for 

example [93-100]. As shown in section 1.2.1 the spectrum of clinical manifestations
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resulting from filarial infections is very broad, ranging from the so-called endemic 

normals to gross pathology. It is generally considered that the interaction of the 

immune system and the parasite is correlated with disease. This is best exemplified in 

asymptomatic mf positive individuals where the immune system is hyporesponsive to 

filarial antigen, whereas chronic pathology sufferers show more aggressive immune 

responses and a lack of detectable parasites [13, 101-103], A similar correlation 

between circulating mf and hyporesponsiveness has also been shown in animal 

models [92, 104] and in studies of human endemic communities [37, 93, 105, 106]. 

A direct role of the mf in this process was suggested by the studies of Mahanty et al 

(1996) who showed that the lack of proliferative response in W. bancrofti mf positive 

individuals compared to mf negative chronic pathology sufferers, was dependent on 

the source of antigen used in re-stimulation. Mf and mixed sex adult antigen (which 

contains large amounts of uterine mf) produced poor proliferative responses, whilst 

adult male antigen produced a good proliferative response [105]. In a further study on 

seasonal variation in mf levels, it was observed that unresponsiveness correlated to 

the presence of circulating mf during the seasonal periodicity of infection (see section 

1.3.1) [37].

1.4 Cloning stage-specific genes from filarial nematodes.

Traditionally the isolation of genes from filarial nematodes has focused on the 

cloning of antigens by screening expression libraries with serum from infected 

individuals or animals. Although this approach has been successful in isolating genes 

of biological importance [107-109], the more direct approach of isolating genes that 

are temporally regulated or expressed at high levels has rapidly revolutionised
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molecular parasitology. The approach of cloning genes that are temporally abundant 

is particularly useful as the genes that are up-regulated at specific time points are 

likely to be of importance in the biology of the organism being studied. The cloning 

of filarial genes is facilitated by the presence of the nematode SL1 22 nucleotide 

sequence at the 5' end of many mRNA transcripts. The SL1 sequence has been 

predicted to be present on > 70 % of C. elegans mRNAs [110] and on 80-90% of 

Ascaris mRNAs [111] and this is likely to be reflected in Brugia spp. The presence of 

the SL1 sequence allows a means to directly amplify first strand cDNA reverse 

transcribed with oligo (dT). This RT-PCR approach has been very successful in 

isolating abundantly expressed genes. Electrophoresis of amplified material produces 

a smear of products of varying sizes when visualised by ethidium bromide staining. 

Often intense bands representing abundant transcripts can be seen in the smear. These 

bands can then be extracted, cloned and analysed with relative ease. This type of 

analysis isolated many genes of potential importance in the biology of filariasis. By 

RT-PCR of mRNA from vector-derived L3, and cloning of a dominant amplified 

band Yenbutr and Scott (1995), characterised a B. malayi serpin (Bm-serpin) which is 

a potential immunomodulatory molecule present in the L3, adult and mf stages [112], 

and also a cuticular collagen, Bm-col2 [113]. Gregory et al (1997) used this technique 

to isolate the abundant transcripts expressed by the vector-derived L3 (nine days p.i.) 

which included the abundant larval transcripts, Bm-alt-1 and Bm-alt-3, and also the 

cystatin-type cysteine proteinase inhibitor Bm-cpi-1 [114]. Analysis of the proteins 

encoded by these transcripts produced some interesting findings. Rm-ALT-1 is a 

dominant antigen of L3 parasites and can act as a protective antigen against B. malayi 

in the gerbil model [98]. From these primary transcripts further members of the gene
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family were identified by searching public databases. The Bm-cpi-1 and the sibling 

member Bm-cpi-2 are of interest as both proteins are thought to be located on the 

surface of the L3 once it has invaded the mammalian host. Bm-cpi-2 encodes a 

protein that can inhibit the endopeptidases needed for antigen processing by B cells. 

Also if cultures of B and T cells are exposed to Bm-cpi-2 protein then no antigen 

processing occurs in the B cells and a subsequent decrease in T cell stimulation is 

observed (Rick Maizels, University of Edinburgh personal communication). If the 

Bm-cpi-2 protein is secreted from the L3 in vivo then this could be one of the factors 

involved in the down-regulation of the host proliferative response seen in filarial 

infections. Techniques that rely on cloning by such methods have also been 

successful in other parasite species, notably the nematode Toxocara canis [54, 115, 

116], and Ostertagia ostertagi [117].

1.4.1 The filarial genome project.

Knowledge of the sequence of the complete genome of an organism, as has 

been achieved with various bacterial species and in the metazoan eukaryotes C. 

elegans [118], and more recently Drosophila melanogastor [119], provides a rich 

source of information regarding the biology of an organism. A catalogue of the genes 

present allows comparisons between organisms and identifies which genes are 

exclusive to any particular group. For a parasitic organism this information can reveal 

novel genes and metabolic pathways that are potential targets for chemotherapeutic 

intervention [120]. The filarial nematode B. malayi is one of several parasitic 

organisms being targeted in this way. The Filarial Genome Project (FGP) was 

initiated in 1994 through the World Health Organisation to conduct large scale
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genomic investigation of B. malayi. Genomic sequencing on a scale needed for a 

nematode such as B. malayi, which has a haploid genome size of approximately 100 

Mb [121], is beyond the scope of most research groups and so the initial aims of the 

FGP were to generate multiple cDNA libraries from parasites throughout the life 

cycle and to randomly sequence the 5’ end of cloned cDNAs to produce expressed 

sequence tags (ESTs) corresponding to expressed genes [122, 123]. Although the 

EST programme is not complete it has compiled a prolific amount of data (20,773 

ESTs in dbEST as of the 28th January 2000). The amount of information produced 

from sequencing projects can quickly become overwhelming. To make the 

information more accessible the FGP is part of the Parasite-Genome Resource Centre 

located at the European Bioinformatics Institute, Hinxton, UK, 

(www.ebi.ac.uk/parasites/parasite-genome.html). The website allows access to 

sequence information and home pages of different parasite projects and allows 

similarity searches by the BLAST algorithm [124] to genes of interest. To further aid 

researchers the ESTs isolated are grouped into "clusters" (correlating to predicted 

genes) and a consensus sequence of the predicted gene is stored (D. Guiliano and M. 

Blaxter, unpublished). By this method sequencing errors present in single ESTs are 

reduced and the frequency of isolation of the cDNAs from stage-specific libraries can 

be used to study the expression patterns of the genes throughout the life cycle. The 

advent of this type of information has allowed the practice of analysis "in silico" 

where the abundance and expression of genes of interest can be analysed by 

computer techniques [125, 126]. When the cluster database was searched to find 

clusters containing ESTs only found in the B. malayi mf stage library (SAW94LS- 

BmMF) 1165 clusters were isolated. To eliminate those genes that are simply
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expressed at a low level and may not be truly mf-specific, the clusters that contained 

less than 3 ESTs were eliminated. 22 clusters (containing a total of 98 ESTs) were 

found to have 3 or more ESTs and are shown in Table 1.1. The majority of the mf- 

specific clusters contain genes that are currently of unknown function, some of which 

are expressed at high levels and may therefore represent genes of potential interest, 

e.g. the amf (abundant mf) genes. Amongst the genes with significant homology to 

genes of known function are structural proteins, phosphatidylinositol biosynthetic 

protein (gpi-1), and the housekeeping enzyme, aspartate aminotransferase (aat-1). 

The cluster that shows the largest number of ESTs is predicted to be the B. malayi 

homologue of cathepsin S (Bm-cps). This is a gene of interest as cathepsin S is a 

protease involved in antigen processing and presentation by MHC class II molecules. 

It has been shown that inhibition of cathepsin-S in dendritic cells leads to arrest of 

cells in an immature state and interrupts antigenic presentation [127]. To determine if 

Bm-cps could act as a true protease or could mimic true cathepsin-S function and 

perhaps disrupt the process of antigenic presentation would require experimental 

analysis of the corresponding protein. Characterised mf-specific cDNAs include the 

small heat shock gene of B. pahangi [80] which was found to be restricted to the mf 

stage under non-stress conditions and only expressed in the adult worms when 

exposed to high temperature stress (41°C, 2 hours). Another mf-specific gene is the 

serine protease inhibitor (serpin) (Bm-spn-2) which is very highly expressed in the mf 

library (49 isolated ESTs representing 2.1% of the total mf EST dataset) [128], 

although this gene is not present in the current edition of the cluster database and is 

therefore not represented in Table 1.1.
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Table 1.1 Brugia malayi mf-library specific EST clusters.

Cluster Number 
of ESTs

Gene name Description

BMC00469 3 gpi-l phosphatidylinositol 
biosynthetic protein.

BMC00480 3 BpcDNA5
protein

BMC00630 3 not given
BMC00685 3 wrr-1 similar to Wucheria bancrofti 

repeat region.
BMC00711 3 not given
BMC00770 3 not given
BMC00815 3 igl-1 contains immunoglobulin 

domain.
BMC01035 3 not given
BMC01092 3 not given
BMC01304 3 not given
BMC01362 3 not given
BMC01545 3 not given
BMC06011 3 not given
BMC00381 4 amf-4
BMC00398 4 amf-3
BMC00625 4 amf-2
BMC01201 4 amf-1
BMC01537 4 novel
BMC06335 4 aat-1 aspartate aminotransferase.
BMC00312 8 amf-5
BMC00546 12 wrr-2 similar to Wucheria bancrofti 

repeat region.
BMC00991 15 cps cathepsin S

Table 1.1
The mf-library specific EST clusters that contain three or more individual ESTs.



The total number of ESTs contained in the mammalian-mf library is 2510 

(beta release of the cluster database July 1999). Therefore the 98 mf-specific ESTs 

represent 3.90 % of the mf library. A similar analysis was conducted to compare the 

number of stage-specific ESTs from other life-cycle stages (Table 1.2). From this 

analysis it can be seen that the mf stage does not have a marked increase in stage- 

specific ESTs. The highest percentages of stage-specific ESTs observed are in the 

adult male and L3 libraries. It is interesting to note that the high number of ESTs that 

are specific to the L3 are from only a small number of clusters, i.e. the L3 may have a 

smaller number of stage-specific genes (clusters) but they are very highly expressed, 

e.g. the L3 specific clusters BMC00213 and BMC04934 which represent novel genes 

contain 86 and 28 ESTs respectively. This can be represented numerically if the 

number of ESTs are divided by the number of clusters that they are grouped within to 

give a mean number of ESTs per cluster. For the L3 this equals 31.8 (159 + 5), much 

higher than for the other life cycle stages which are more comparable, mf = 4.45, L2 

= 5.00, L4 = 7.50 adult female = 4.49 and adult male = 4.52. The high expression of 

these genes in the L3 may reflect the specialisation of this life cycle stage for 

initiation of infection in the mammalian host. The small number of stage-specific 

ESTs isolated from the L2 and L4 libraries probably reflects the smaller number of 

ESTs sequenced; initially the more abundant ESTs may be housekeeping genes found 

in all life-cycle stages and only after additional sequencing are the more lowly 

expressed ESTs that may represent stage-specific genes isolated.

In silico analysis has the reward of being able to quickly determine genes of 

potential interest. One gene isolated by this approach is the B. malayi macrophage 

migration inhibitory factor (.Bm-mif, AS3ISB220) which was identified as a gene of
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Table 1.2 Percentage of life-cycle specific ESTs isolated from B. malayi staged 
libraries.

Library. Number of 
stage 

specific 
clusters in 
database. *

Total 
number 
of stage 
specific 
ESTs.

Total 
Number of 

ESTs in 
library.

'F

Percentage 
of stage- 
specific 
ESTs.

Mf
(SAW94LS-BmMF)

24 106 2510 4.22

L2
(JHU 96SL-B mL2)

2 10 602 1.64

infective L3 
(JHU93SL-BmL3 + 
SAW94WL-BmL3)

5 159 2622 6.06

L4
(JHU93SL-BmL4)

2 15 1060 1.42

Adult female 
(SAW94NL-BmAF)

21 103 3334 3.09

Adult male 
(SAW96MLW-BmAM)

42 190 2854 6.66

Table 1.2
Table of the percentage of stage-specific clusters of B. malayi.
* Number of clusters specific to a single life-cycle stage containing > 3 ESTs 
'F Number of ESTs sequenced and stored in (3-1 release of FGP database July 1999.



potential interest from those expressed by B. malayi infective L3 [129]. The Bm-mif 

was the first demonstration of helminth production of a cytokine homologue that had 

the potential to modify the host immune response [130]. Following further analysis it 

was determined that the gene was transcribed in all stages but was elevated in the 

adult and mf stages of the parasite, and that the Z?ra-MIF protein was detectable in 

somatic extracts and the E/S products of cultured parasites [130]. Classically the MIF 

proteins are chemotractants for immune cells and therefore it may seem counter­

intuitive for a parasite to attract effector cells, although it has been proposed that the 

stimulation of the host immune system in this way may promote parasite survival. It 

has also been shown that cytokines can be essential for the development and 

reproduction of helminth parasites [131].

The problems associated with relying on an in silico approach is that at 

present not all genes have been isolated. B. malayi has 20,000 predicted genes and 

the ESTs currently sequenced are thought to represent a total of 7,000 genes [121, 

132]. As the sequencing effort is still continuing, the stage-specificity of a gene can 

only be predicted at present. It must also be considered that the stage-specificity of a 

gene is only based on the fact that a corresponding EST has not been isolated from 

another library. Therefore the quality of the program depends on the quality of the 

libraries that are produced. Thus some genes that are lowly expressed and may not be 

present in any library will be excluded.

1.4.2 Determining gene function in parasitic nematodes.

A major problem with the practice of in silico analysis is that although genes 

of interest can be selected, filarial worms are refractory to many forms of analysis
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needed to determine gene function. One problem of filarial research is a long lived 

complex life-cycle, which in the case of Brugia requires both mammalian and vector 

hosts to allow normal development. In an attempt to overcome these problems many 

researchers have looked to model systems, especially the free-living nematode C. 

elegans. The comprehensive analysis of C. elegans which includes the full genome 

sequence, full cell lineage and extensive mapping of mutants provides a model 

organism in which the function of many genes can be predicted [133]. Where a C. 

elegans homologue of a gene of interest has been identified, extensive information is 

readily available and often a knock-out worm can be obtained for analysis. If this is 

not the case, a number of techniques are available using C. elegans as a heterologous 

transformation system. The conservation of regulatory elements between 

evolutionary divergent species can allow the analysis of spatial and temporal 

expression of a gene of interest. The promoter region of the gene of interest can be 

cloned in a reporter construct (lacL or green fluorescent protein, GFP) and used to 

transform C. elegans by microinjection of the gonad and analysis of expression in 

progeny [134]. This approach was first used to study the benzimidazole resistant 13- 

tubulin genes of H. contortus [135]. A similar technique has recently been used to 

analyse the expression patterns of the pepsinogen (pep-1) and cystiene protease (AC- 

2) genes from H. contortus and the cuticular collagen gene (colost-1) of O. 

circumcincta in C. elegans [136]. The results were shown to confirm the predicted 

spatial expression pattern (gut expression of AC-2 and pep-1 and hypodermal 

expression of colost-1), although the temporal expression was not that predicted by 

RT-PCR analysis of the parasitic species [136]. This suggests that although the 

transcriptional machinery of the species tested is significantly homologous to allow
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correct spatial expression, the elements controlling temporal expression are 

significantly variable. However, as yet there are too few examples to determine if this 

is a general effect. This type of transformation can also be achieved in C. elegans by 

ballistic delivery of particles coated with promoter elements of a gene of interest 

[137], and preliminary studies have shown that the transformation of parasitic species 

in this way may also be possible [138]. Ballistic transformation of Ligmosoides 

sigmodontis adult worms with the actin-1 promoter resulted in the expression of 

LacZ reporter constructs that could be detected after culture of the parasite in vitro or 

in worms re-implanted in previously infected hosts [138]. Advances in the study of 

control of gene expression by these methods may overcome problems of working in a 

heterologous system. Other techniques available to attempt to determine gene 

function in C. elegans are microinjection of DNA from a gene of interest and 

assessment of the ability to rescue a specific mutant. Alternatively by cloning the 

open reading frame of the gene of interest downstream of a heat shock promoter, 

transformation of C. elegans and subsequent exposure to heat shock leads to over­

expression equivalent to gain of function mutations [139].

Much of the analysis involved in determining the function of a cloned gene of 

interest relies on the availability of the correct model system. The advantages of 

working with a model organism such as C. elegans are considerable and for many 

genes this will provide valuable information about expression and function. However 

what degree of homology can be expected between parasitic nematodes and C. 

elegansl Blaxter et al (1998), showed by phylogenetic analysis of small subunit 

rRNA sequences that although the orders Rhabditida (C. elegans) and Strongylida 

(Ostertagia ostertagi, Haemonchus contortus) are closely grouped, the orders
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Rhabditida and Spirurida (Brugia spp) are more distantly related [140]. However 

even though these nematodes are relatively close in evolutionary terms, the temporal 

pattern of expression of C. elegans genes under the control of promoters from H. 

contortus and O. circumcincta did not mirror what was predicted from RT-PCR 

analysis of the parasite species itself [136]. This may predict that more distantly 

related Brugia genes will prove to be more problematic to analyse in C. elegans.

Comparison of the ESTs isolated from B. malayi showed that 25 % of the 

ESTs are homologues of known genes from C. elegans, 17 % have homology to C. 

elegans genes of unknown function, 20 % have homology to known non-nematode 

genes and 38 % are unique to the filarial dataset. [132, 139]. From the B. malayi L3 

stage, where the most complete analysis has been conducted 233 of 364 distinct 

genes (55 %) are predicted as Z?r«g/a-specific, and 10.4 % show homology only 

within the parasitic nematodes [129]. The large percentage of non-homologous genes 

is a challenge for parasite biologists as the parasite-specific genes are likely to encode 

proteins that are of most interest as potential targets of therapeutic intervention.

1.4.3 Cloning of differentially expressed genes.

Although utilising the Filarial Genome database would allow the prediction of 

mf-specific genes it would be very difficult to use this approach to isolate genes that 

are expressed differentially by a single stage in response to different host 

environments. Many techniques have been developed to allow the isolation of 

differentially expressed genes such as, differential display [141-143], differential 

library screening [79, 144-148], serial analysis of gene expression (SAGE) [149] and 

selective amplification via biotin- and restriction-mediated enrichment (SABRE)
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[150]. For a general review of these techniques see [151]. Both SAGE and SABRE 

require a large commitment to the long term use of the techniques and are not 

practical for the small scale study planned here. Problems that have been encountered 

for the differential display technique are the levels of false positives that are produced 

[142] and the bias of the technique towards isolation of highly expressed mRNAs 

[152]. Therefore the method used to isolate genes in this study was a differential 

screen of a cDNA library. The differential screening technique is a method that 

allows the isolation of genes that are expressed at varying levels when exposed to 

different conditions [153]. The method used followed that described by Martin et al 

(1995) [154]. This method of screening an un-subtracted library with different 

populations of cDNA probe has a number of advantages. Primarily the technique is a 

very direct means of isolating products of interest, as a cDNA library is being 

screened the isolated product can be identified without further manipulation, as 

would need to be conducted with a genomic DNA library screen. Secondly the choice 

of material used for the production of the library influences the pattern of expression 

of genes isolated. In this case the screening of a mammalian-derived mf library 

enriches the library for transcripts that are expressed by the mf when in the 

mammalian host. In this study the gene expression of two distinct populations of 

parasite, microfilariae derived from mammalian and mosquito hosts, was compared.

This approach has been used previously in the laboratory to isolate genes that 

are up-regulated in mammalian-derived L3 [79], and also in vector-derived L3 [77]. 

These studies isolated genes that are potentially important in the initiation of 

infection of B. pahangi in the mammalian host. One such gene isolated from the 3 

day post-infective L3 library was a cDNA (GenBank X91065) with homology to the
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cytidine deaminase (CDD) gene family [79]. The CDDs are zinc-dependent enzymes 

which catalyse the deamination of cytidine nucleotides, a process known as RNA 

editing which can lead to the production of different protein products from a single 

mRNA transcript [155]. The B. pahangi CDD exhibits RNA binding but does not 

appear to edit the substrates tested [156]. This approach has also been used to isolate 

genes expressed in response to temperature changes encountered when transferring 

between hosts [80].

1.5 Aims of the project.

The aim of this project was to isolate genes that are differentially expressed in 

the microfilariae of B. pahangi when in the mammalian and mosquito hosts. As has 

been shown the mf are a highly evolved stage, modified for longevity in the 

mammalian host and with the ability to specifically down-regulate immune 

responses. It was anticipated that through the analysis of differentially expressed 

transcripts, genes that were involved in these phenomena may be isolated and their 

role in the biology of B. pahangi studied, in attempts to elucidate gene function.
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CHAPTER TWO



2.1 Maintenance of parasite life cycle.

B. pahangi parasites were maintained by passage through a susceptible 

mosquito vector Aedes aegypti, strain (Ref01) and mammalian host, the Mongolian 

jird, Meriones unguiculatus.

2.1.1 Maintaining susceptible mosquitoes.

Mosquitoes were housed in an insectary maintained at 28°C, with 70-80% 

relative humidity. Adults were confined in net cages, fed on 10 % sucrose and water 

from moist cotton wool pads. Larvae and pupae were held in plastic trays filled with 

tepid water and fed on yeast tablets. Pupae were isolated daily and placed in net cages 

in preparation for emergence as adults. Stock mosquitoes were starved for 24 hours 

and then fed on rabbit blood via a membrane feeding system (Haemotek) which 

maintains the blood at 37°C. Eggs were laid on moist filter paper and collected. The 

filter papers were dried and stored until required. To hatch the eggs, a filter paper was 

submerged in tepid water containing a yeast tablet.

2.1.2 Maintaining B. pahangi parasites.

Jirds were infected with 250 L3 in Hanks balanced salt solution (HBSS, 

GibcoBRL) by injection into the peritoneal cavity. After 3 months jirds were 

sacrificed by CO2 anaesthesia and exsanguinated by cardiac puncture. Adults and mf 

were isolated from peritoneal washings with HBSS at 37°C. Adults were collected 

with a glass hook and transferred to a cryotube and stored in liquid nitrogen until 

further use. The mf were washed again with HBSS and then resuspended in rabbit 

blood at a density of 350-450 mf per 20 pi blood. Adult mosquitoes were fed for one
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hour via the membrane feeding system following which the blood was replaced and 

the mosquitoes fed for a further hour.

2.1.3 Recovery of infective L3 stage B. pahangi.

Infective L3 were isolated from mosquitoes 9 days after infection, by the 

mass harvesting technique, [5]. The mosquitoes were collected from the net cages 

and placed in net bags. The mosquitoes were then crushed on a glass plate and 

washed with HBSS into a Baermann funnel lined with layers of gauze filled with 

HBSS and incubated at room temperature for 45 minutes. During the incubation the 

L3 emerge and collect at the bottom of the funnel. The L3 were washed at least twice 

in fresh HBSS. The L3 were then either used to infect jirds to continue the life cycle 

or frozen in liquid nitrogen until further use.

2.1.4 Recovery of mammalian-derived larvae.

750 vector-derived L3 in HBSS were used to infect jirds by intra-peritoneal 

infection. After the required period of development the jird was sacrificed and the 

parasites collected by peritoneal washing with HBSS. To collect the mf stage jirds 

infected with L3 at least 3 months previously were sacrificed and the mf collected 

from the peritoneal cavity by washing with HBSS. Contaminating red blood cells 

were lysed by the addition of 1 ml ddH2 0  and the worms were then collected by 

centrifugation at lOOOg for 5 minutes, and resuspended in 2 ml HBSS. The mf were 

then purified from any contaminating jird cells by centrifugation over a 5ml 

lymphoprep (Histopaque-1077 Sigma) gradient at 1200g for 15 minutes. Parasites
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collected from the pellet were either used immediately or stored in liquid nitrogen 

until needed.

2.2 Molecular biology techniques.

Unless otherwise stated the chemicals used were AnalaR quality and were 

obtained from BDH chemicals U.K.

2.2.1 Standard PCR protocol.

PCR [157] was used to amplify DNA by a standard protocol.

Denaturation 94°C 1 minute. 1

Annealing Primer Tm -5°C 1 minute. } x n cycles

Extension 72°C 1 minute/kilobase. J

Final extension 72°C 10 minutes

2.2.2 "Hot Start" PCR.

The hot start protocol denatures the DNA template and primers prior to the 

addition of polymerase and dNTPs. This helps to reduce the chance of non-specific 

annealing and extension of non-specific sequences as the reaction heats from room 

temperature.
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Reaction conditions for 100 pi reaction:

Denaturation: 94°C 3 minutes.

80°C

Denaturation: 94°C

Annealing: Primer Tm -5°C

Extension: 72°C

soak whilst PCR master mix of 1 X 

polymerase buffer, 200 pM each dNTP, 

2.5 units Taq polymerase 

and 0.5 pM of each primer added.

1 minute. ]

1 minute. } x n  cycles

1 minute/kilobase. J

Extension 72°C 10 minutes

2.2.3 PCR mix for 100 pi reaction (Taq polymerase).

per reaction final concentration

10 X polymerase buffer 10 pi

(Perkin Elmer 100 mM Tris-HCl 

pH8.3, 500 mM KC1, 15 mM MgCl2,

0.01% w/v gelatin)

dNTPs (lOmM each, Perkin Elmer) 2 pi each

Taq DNA polymerase (Perkin Elmer) 0.5 pi

Primer 1 (50 pM) 1 pi

Primer 2 (50 pM) 1 pi

Template DNA n pi

ddH20  to 100 pi

lOmM Tris-HCl, 

pH8.3, 50 mM KC1, 

1.5mM MgCl2.

200pM each 

2.5 units 

0.5pM 

0.5pM

34



2.2.4 Agarose gel electrophoresis

Typically agarose gels of 0.8%-2% (w/v) were used to separate DNA. The 

required concentration of agarose was mixed with 1 X TAE buffer and dissolved by 

boiling. The solution was allowed to cool for 10 minutes before adding 0.5 mg/ml 

ethidium bromide, except for gels used for genomic Southern blots. Gels were cast in 

GibcoBRL horizontal tanks using an appropriately sized comb to form wells. When 

set, sufficient 1 X TAE buffer was added to the tank to cover the gel. Aliquots of 

samples and DNA markers (usually Hind IQ or Pst I digested X DNA) containing 1 % 

DNA loading dye were carefully loaded into the wells and allowed to settle.

For the electrophoresis of genomic DNA, gels were run at 25V and as the 

DNA migrated into the gel the voltage was then increased to 35V. For other DNA 

samples, the voltage was set at 50V and the DNA was run until an appropriate 

separation was achieved.

Reagents :

TAE buffer (50 X stock)

2 M Tris base

5.71 % (v/v) glacial acetic acid 

50 mM EDTA pH 8.0 

adjust to 1L with ddH20 

store at room temperature 

Ethidium bromide stock (lOmg/ml)

One lOOmg ethidium bromide tablet (Sigma) dissolved in 10 ml ddH20 

store at room temperature in the dark.

DNA loading dye (10 X)

25 % Ficoll (Sigma)

0.4 % bromophenol blue 

0.4 % xylene cyanole FF 

store at room temperature
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2.2.5 Preparation of restriction fragments for use as size markers in gel 

electrophoresis.

20 pg of X DNA (GibcoBRL)

50 units of restriction enzyme 

1 X React buffer 

ddH20 to 86 pi

DNA digested for 4 hours at 37 °C

add 4 pi 0.5 M EDTA and 10 pi 10 X DNA loading buffer = 0.2 pg/pl

2.2.6 Purification of DNA from agarose gels.

2.2.6.1 Purification by Spin-X columns.

0.8 % agarose gels were used for the purification of DNA, as the yield of 

DNA can decrease as the agarose concentration increases. The DNA was 

electrophoresed to separate the band of interest, visualised briefly on a UV trans­

illuminator and the band carefully excised using a sterile scalpel. The agarose slice 

was transferred to a microcentrifuge tube and subjected to two rounds of 

freeze/thawing at -70°C for 15 minutes and at 60°C for 15 minutes. The contents of 

the tube were then transferred to a 0.22 pm cellulose acetate (Spin-X) column 

(CoStar) and TE buffer was added. The column was centrifuged at 13000g for 10 

minutes, a further 200 pi TE buffer was added and the column centrifuged again. The 

collected DNA solution was precipitated by adding 40 pi of 3M sodium acetate and 

880 pi of ethanol followed by incubation at -70°C for 30 minutes. The DNA was 

collected by centrifugation at 13000g for 15 minutes, salts were removed by washing 

with 1 ml 70% ethanol and the purified DNA was resuspended in an appropriate
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volume of ddH20. The quantity of DNA recovered was assessed by running an

aliquot alongside a known quantity of X Hind III markers on a 0.8% agarose gel.

Reagents:

TE buffer (1 X)

10 mM Tris-HCl (pH8.0)

1 mM EDTA (pH8.0)

2.2.6.2 Purification of DNA from agarose gels by QIAquick gel extraction kit 

(Qiagen).

DNA was purified from 0.8 % agarose gels as per manufacturers’ protocol 

and eluted into 30-50 |il EB buffer (lOmM Tris-HCl pH 8.5).

2.2.7 Ligation and transformation.

Fragments of DNA for cloning were either obtained by PCR with Taq 

polymerase and therefore the fragments had overhanging adenine nucleotides or from 

restriction digestion. DNA was ligated into either a TA vector (pCR2.1 Invitrogen) or 

pBluescript (Stratagene). The typical ligation reaction consisted of:

25-50 ng plasmid 

10-50 ng DNA fragment

2  jliI of 5 X ligase buffer (GibcoBRL, final concentration 50 mM Tris-HCl (pH 7 .6 ) ,  

10 mM MgCl2, 1 mM ATP, 1 mM DTT, 5 % (w/v) glycerol).

0.5 |il (2 units) of T4 high concentration DNA ligase (GibcoBRL) 

ddH20 to 10 \L\

The reactions were incubated overnight at 16°C
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Competent cells DH5a (GibcoBRL), Topp cells (Stratagene), or One-shot 

INVaF' cells (Invitrogen) (for genotypes see 2.2.21) were transformed with an 

aliquot of the ligation reaction. The typical protocol used 20 |il of DH5a cells and 1 

j l i I  of ligation reaction. The cells were defrosted on ice and the ligated plasmid added. 

The tube was incubated on ice for 30 minutes, followed by a heat shock at 42°C for 

45 seconds. The cells were then placed back on ice for 2 minutes. Next, 200 p.1 of 

SOC medium was added and the tube was incubated for 1 hour at 37°C, 225 rpm on 

horizontal shaker. The sample was spread over LB plates which contained 100 |Lig/ml 

of ampicillin and the plates were incubated overnight at 37°C. For inserts cloned into 

plasmids where a-complementation allowed the determination of positive clones, the 

LB-amp plates were first coated with 50 j l l I  of 20mg/ml 5-bromo-4-chloro-3-indolyl- 

2-galactopyranoside (X-gal).

Reagents:

L-agar

7.5 g Bacto agar (Difco) 

adjust to 500 ml with L-broth 

dissolve and sterilise by autoclaving 

cool to 45°C before pouring plates 

(add antibiotics if required) 

store agar plates at 4°C before use

L Broth

10 g Bactotryptone (Difco)

5 g yeast extract (Difco) 

lOgNaCl

dissolve in 1L ddH^O

aliquot into 100 ml bottle and autoclave

store at room temperature
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Ampicillin stock (100 mg/ml)

1 g ampicillin (Sigma) 

add sterile ddH2 0  to 10 ml 

store at -20°C

(use at 100 |ig/ml in agar plates)

SOC Medium

20 g bacto tryptone 

5 g yeast extract 

0.5 g NaCl 

25 mM KC1 pH 7.0 

add sterile ddH20 to 1 L 

sterilise by autoclaving 

add 10 mM MgCb 

and 20 mM glucose

X-gal 20mg/ml

Dissolve X-gal in dimethylformamide, wrap in aluminium foil and store at -

20°C

2.2.8 In-gel Ligation.

To directly ligate DNA fragments separated, by electrophoresis, into a 

plasmid vector the fragment was first separated in a low melting point (LMP NuSieve 

agarose, FMC) agarose gel using low EDTA TAE buffer. The fragment was 

visualised and excised as for standard DNA fragment purification then melted by 

incubation at 65°C for 10 minutes. The DNA fragment was then diluted 1:10 with 

ddH20 and ligated with 50 ng of appropriate vector using T4 DNA ligase as 

described in 2.2.7. The reactions were then incubated at room temperature overnight. 

Prior to transformation of the plasmid into a competent cell line the reactions were 

diluted 1:1 in ddH20 after which the transformation protocol (as described in 2.2.7) 

was followed.
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Reagents:

Low EDTA TAE (50 X stock)

2 M Tris Base

5.71 % (v/v) glacial acetic acid 

5 mM EDTA pH 8.0 

adjust to 1 L with ddH20 

store at room temperature

2.2.9 Plasmid miniprep.

This protocol is based on the alkaline lysis method for DNA purification 

[158]. Transformed bacteria were grown overnight in 3 ml of L broth (2.2.7) 

containing appropriate antibiotic, typically ampicillin (100 pg/ml). 1.5 ml of the 

culture was transferred to a 1.5 ml microfuge tube and the cells spun at 13000g for 1 

minute and the supernatant discarded. The cells were resuspended in 200 pi of 

resuspension solution and mixed well. 200 pi of cell lysis solution was added, and 

the tube mixed to ensure total lysis, 200 pi of neutralisation solution was added and 

the sample was mixed again. The lysed cells were centrifuged at 13000g for 5 

minutes to pellet the insoluble cellular debris, the supernatant was transferred to a 

clean microfuge tube and centrifuged for a further 15 minutes to ensure no debris 

remained. 500 pi of the supernatant was transferred to a fresh microfuge tube and 1 

ml of ethanol was added the sample was mixed and incubated at room temperature 

for 10 minutes to precipitate the DNA. The sample was thoroughly mixed and then 

spun at 13000g to pellet the DNA. The supernatant was removed and the excess salt 

was removed by washing with 1 ml of 70 % ethanol. Following a further spin at 

13000g, for 5 minutes, the DNA pellet was air dried and then resuspended in 30 pi of 

ddH20. The concentration of the plasmid solution was calculated by comparison of 1
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pi of the preparation on a 1 % agarose gel alongside a known concentration of XHind 

m  markers.

Reagents:

Cell resuspension solution

50 mM Tris-HCl pH 7.5, 10 mM EDTA, 100 pg/ml RNase A 

Cell lysis solution 

0.2 M NaOH, 1 % SDS 

Neutralisation solution

1.32 M potassium acetate pH 4.8

2.2.10 Glycerol stocks of bacterial cultures.

0.5 ml of 50 % sterile glycerol added to 0.5 ml of bacterial culture and stored 

at -70°C.

2.2.11 Restriction digestion of DNA.

Plasmid and genomic DNA was digested at 37°C for between one and 

eighteen hours in an appropriate incubation buffer (React buffer GibcoBRL) with 1- 

10 units of enzyme (GibcoBRL).

2.2.12 Genomic DNA isolation

The procedure followed was modified from "A Protocol for Isolating High- 

Molecular-weight DNA from Mouse Tails" [159]. Approximately 300 mixed sex 

adult worms were transferred from liquid nitrogen to a 1.5 ml microcentrifuge tube 

containing 700 pi of genomic DNA extraction buffer and the worms were cut up 

using sterile stainless steel scissors. Next, 35 pi of lOmg/ml Proteinase K was added 

and the tube was incubated at 55°C overnight. 20 pi of 13 pg/ml RNase A (Sigma)
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was added and incubated at 37°C for 2 hours. The tube was then filled with buffer- 

saturated phenol at pH 8 (GibcoBRL) and placed on a rotator for 1 hour. The two 

phases were separated by centrifugation at 13000g for 10 minutes. The aqueous 

phase (including the interface) was transferred to a fresh 1.5 ml tube. The tube was 

then filled with 1:1 phenol/chloroform (v/v), the contents were mixed by inversion 

and the phases were separated as above. The aqueous phase (including the interface) 

was transferred to a fresh tube, and the tube was filled with 24:1 chloroform/isoamyl 

alcohol. The contents of the tube were mixed by inversion and the phases were 

separated by centrifugation. The aqueous phase was transferred to a fresh tube 

(avoiding the interphase) and this tube was filled with isopropanol. The end of a thin 

glass capillary tube was sealed in a Bunsen flame and allowed to cool. The capillary 

tube was dipped into the isopropanol solution and the precipitated DNA was coiled 

around the glass by gently stirring the solution. The DNA (attached to the glass tube) 

was dipped into 70 % ethanol, then into 100% ethanol and allowed to air dry. A 

diamond-tipped cutter was used to score the capillary tube and the end (plus DNA) 

was dropped into a 1.5 ml microcentrifuge tube containing 500 fil of TE buffer pH 

7.4. The tube was then placed on a rotator at 30-60rpm overnight and the glass tip 

was removed using sterile forceps. An aliquot of DNA was diluted 1/100 and used to 

assess the purity of the DNA by calculating the ratio of absorbance of DNA (260 nm) 

to protein (280 nm), which should be between 1.8 and 2.0. The concentration of the 

genomic DNA was calculated by the formula: (absorbance at 260nm) x 50 x (dilution 

factor) = mg/ml of DNA.
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Reagents :

Genomic extraction buffer.

50 mM Tris-HCl pH 8, 100 mM EDTA, 100 mM NaCl, 1 % SDS 

TE buffer.

10 mM Tris-HCl pH 7.4, 1 mM EDTA

2.2.13 Preparation of genomic DNA for Southern blotting.

For a genomic Southern blot, 20pg of high molecular weight genomic DNA 

was digested with 10 units of an appropriate restriction endonuclease. The restriction 

digests were incubated in a volume of 400 pi at 37°C overnight and were precipitated 

at -20°C with 3 M sodium acetate pH 5.2 (40 pi) and ethanol (880 pi). The DNA was 

collected by centrifugation at 13000g for 20 minutes, the salts were removed with a 

70 % ethanol wash (1 ml) and the DNA was resuspended at 37°C, in 30 pi ddH20 

for several hours. 10 % (v/v) DNA loading buffer was added to each sample and the 

fragments were separated on a 0.8 % agarose gel (TAE). DNA markers, were also 

added to allow size determination. After the bromophenol dye front had migrated 2/3 

the length of the gel, the gel was stained for 30 minutes in d d ^ O  containing 1.5 

mg/ml ethidium bromide, viewed on a UV trans-illuminator and photographed along 

side a ruler. Gels were depurinated in 0.25 M HC1 for 30 minutes to improve transfer 

of high molecular weight fragments. They were then soaked in denaturing solution 

for 30 minutes and in neutralising solution for 30 minutes. The gels were rinsed in 

ddH20 between each solution. For PCR blots, the PCR products and DNA markers 

were separated on 1% TAE agarose gels containing 0.5mg/ml ethidium bromide and 

photographed on a trans-illuminator. The gel was then treated as for a genomic DNA 

gel.
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Reagents:

Denaturing solution Neutralising solution

1 M Tris base

1.5 M NaCl

adjust to pH 7.4 with conc. HC1 

adjust to 11 with ddH20 

store at room temperature

1.5 M NaCl

0.5 M NaOH

adjust to 11 with ddH20

store at room temperature

2.2.14 DEPC treatment of solutions used for RNA work.

ddH20 used for the preparation of solutions for RNA work was treated with 

0.1 % (v/v) diethyl pyrocarbonate (DEPC) to inactivate contaminating RNases. 

DEPC was added and allowed to stand for 30 minutes prior to sterilisation by 

autoclaving. All plasticware used in the isolation or subsequent work with RNA was 

also RNase free.

2.2.15 RNA extraction.

TRIzol Reagent (GibcoBRL) was used to isolate total RNA. Worms frozen in 

liquid nitrogen were transferred to RNase free 1.5ml centrifuge tubes and 1 ml of 

TRIzol preheated to 68°C was added. The samples were incubated for 8 minutes at 

68°C. The samples were removed from the waterbath and allowed to cool at room 

temperature for 2 minutes. To separate the aqueous and organic phases, 0.2 ml 

chloroform was added, the tubes were vigorously shaken for 15 seconds, and spun at 

12000g for 15 minutes (4°C). The aqueous phase was then transferred to a fresh 

RNase-free tube and 0.5 ml isopropyl alcohol (2-propanol, BDH) was added to 

precipitate the RNA. The samples were incubated for 15 minutes at room 

temperature, centrifuged at 12000g for 10 minutes (4°C) and the supernatant
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removed. To remove salts from the sample, 1ml of 70 % ice-cold ethanol was added, 

the tube was spun at 12000g for 15 minutes (4°C) and the supernatant was removed. 

The RNA pellet was briefly air-dried, and an appropriate volume of DEPC treated 

ddH20  was added to resuspend the RNA. To quantify the RNA, an aliquot was run 

on an agarose-formaldehyde gel alongside a known quantity of RNA markers. For 

storage, RNase-free sodium acetate to a final concentration of 0.3 M and double the 

resultant volume of 100 % ethanol were added and the samples were stored at -70°C.

2.2.16 Preparation of RNA for northern blotting.

Total B. pahangi RNA (2-5 |Xg) was used for the production of northern blots. 

RNA was diluted to the required concentration with DEPC treated ddH20, 

formamide was added to 50% (v/v) and ethidium bromide to 50 ng/ml. RNase-free 

10 X DNA loading dye was added to the samples (final concentration IX) which 

were then denatured at 65°C for 10 minutes and loaded onto 1.2 % agarose gels (1 X 

MOPS) containing 17% formaldehyde. RNA markers (GibcoBRL, 0.24-9.5 kb 

ladder) were also loaded with the samples and the gel was photographed along side a 

ruler before blotting to allow size orientation.

Reagents:

10 X MOPS: 0.2 M 3-morpholinopropanesulfonic acid, 50 mM sodium acetate, 10 

mM EDTA pH 5.6
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2.2.17 Southern and northern blotting.

A gel containing separated DNA was immersed in denaturing solution for 30

minutes, rinsed and immersed in neutralising solution for 30 minutes. The transfer of

DNA and RNA to a solid support was by the standard method of Southern (1975)

using 20 X SSC [160]. DNA and RNA was immobilised and cross-linked onto nylon

membrane by exposure to 150 mjoules of UV radiation.

Reagents:

20 X SSC

3 M NaCl (175.3g)

0.3 M Sodium citrate (88.2g)

800 ml ddH20

adjust to pH 7.0 with conc. NaOH 

adjust to 1L with ddH20 

store at room temperature

2.2.18 First strand cDNA synthesis

Unless otherwise stated all reagents used were produced by GibcoBRL. A 

sample was prepared containing 1-2 pg B. pahangi RNA, lpl of 10 X DNase buffer 

and 1 jllI of DNase in a volume of 9  p i .  (DEPC d d ^ O  was used to adjust the sample 

volume). The sample was incubated at room temperature for 15 minutes to digest 

contaminating genomic DNA. Next, 1 pi of 20mM EDTA was added and the sample 

was incubated at 65°C for 10 minutes, to inhibit enzyme activity. 200 ng of adapted 

oligo (dT) primer (Table 2.1) and DEPC treated ddH20 was added to adjust the 

volume to 12 pi. The sample was then denatured at 70°C for 10 minutes and quick 

chilled on ice. After a brief centrifugation, 4 pi of 5 X first strand buffer, 2 pi 0.1 M 

DTT and 1 pi 10 mM dNTP mix (10 mM each dNTP at neutral pH) were added. The
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contents were mixed gently and incubated at 42°C for 2 minutes. 1 pi (200 units) of 

Superscript II reverse transcriptase was added and mixed by gently pipetting. The 

reaction was incubated at 42°C for a further 50 minutes. The reaction was inactivated 

by incubation at 70 °C for 15 minutes. To remove any RNA complimentary to the 

cDNA, 1 jul (2 units) of E. coli RNase H was added and the solution incubated at 

37°C for 20 minutes. The first strand cDNA was then stored at -20°C until required.

2.2.19 Random (High Prime) labelling and purification of DNA probes.

The method was essentially that outlined in the Boehringer Mannheim 

protocol [161, 162]. 25 ng of purified double stranded DNA was denatured in boiling 

water for 10 minutes and then kept on ice for 5 minutes. High Prime mix (4 jjlI), 

(containing random oligonucleotides, 1 unit/jil Klenow polymerase, 0.125 mM 

dATP, 0.125 mM dGTP, 0.125 mM dTTP) and 50 |iCi of 32Pa-dCTP (5 jxl of 

3000mCi/ml) were added to the DNA and the sample was incubated at 37°C for 35 

minutes. The reaction was terminated with the addition of 2 pi 0.2 M EDTA. A Nick 

column (Sephadex G-50, Pharmacia) was used to separate free nucleotides from the 

radiolabelled probe. The column was equilibrated with TE buffer and the probe 

solution was added to the pre-wet column. The column was flushed with 400 pi of 

TE and the radiolabelled probe was eluted by the addition of a further 400 pi of TE. 1 

pi of the probe was tested to ensure an activity >6 x 103cpm/pl. Before addition to 

the pre-hybridisation solution (2.5.2) the probe was denatured in boiling water for 10 

minutes.
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2.2.20 Automated sequencing

Double-stranded sequencing reactions were carried out by a method modified 

from that of Sanger et al (1979) [163]. Automated sequencing was performed on a 

LI-COR model 400 DNA sequencer, which uses fluorescent labelled oligonucleotide 

primers. Primers were produced by MWG Biotech and corresponded to bacterial 

vector poly linker sequences.

4 % acrylamide gels were poured as described in the LI-COR sequencing 

bulletins for the Model 4000 Automated DNA Sequencer. The reagents and protocol 

were as described in the SequiTherm EXCEL II Long-Read DNA Sequencing Kit-LC 

product information (Epicentre Technologies). For each sample, four 0.5ml 

microcentrifuge tubes were prepared, each containing 2 pi of either SequiTherm 

EXCEL II Termination Mix A, T, C or G. The reaction mix was then equally divided 

between the four tubes (4 pi to each), the samples were overlaid with mineral oil and 

placed in a Hybaid touchdown thermocycler for cycle sequencing.

Reaction mix

0.5-1.0 pg DNA (plasmid) template.

2 pmoles of IRD800 labelled primer.

7.2 pi of 3.5 X SequiTherm EXCEL II Sequencing buffer, 

lpl of SequiTherm EXCEL II DNA Polymerase. 

ddH20  to 17pl
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Cycle sequencing

95°C for 5 minutes 1 cycle

95°C for 30 seconds

50°C for 30 seconds  ̂ 30 cycles

70°C for 1 minute J

On completion, 4 jll1  of SequiTherm Stop Solution was added. Immediately 

prior to loading, the DNA samples were denatured at 95°C for 5 minutes and placed 

on ice. Typically 0.8 pi of each sample was loaded for sequencing. The sequence data 

was captured automatically and was downloaded and transferred to the local UNIX 

system for analysis using the Wisconsin Sequencing Analysis Package (GCG).

ddH20 to 50 ml 

stir until dissolved

The gel was polymerised with the addition of 25|Ltl of N,N,N',N'- 

tetramethylenediamine (TEMED) and 250 pi of 10 % ammonium persulphate (APS)

Reagents:

TBE buffer (10X)

(890 mM Tris-borate, 20mM EDTA)

107.8 g Tris base

55.0 g boric acid

7.4 g EDTA

adjust to 1 L with ddPUO

Sequencing gel solution (6%) 

21 g urea

6 ml of 10 X TBE buffer 

6 ml of Long Ranger 50 % gel 

concentrate

(FMC Bioproducts, Rockland USA)
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2.2.21 Genotypes of bacterial strains used.

SOLR strain3 el4'(McrA') A(mcrCB-/i5JSMR-mrr)171 sbcC recE recj uvrC 

wmwC::Tn (Kanr) lac gyrA96 rel A1 thi-1 endA\ XR [F’ proAB 

laclq ZAM15] su' (nonsuppressing)

XLl-Blue MRF’

A(mcrA) 183 A(mcrCB-hsdSMR-mrr) 173 endAX supEA4 thi-\ 

recAX gyrA96 relAX lac [F’ proAB laclq ZAM15 TnlO (Tetr)]

INYoF* endAX recAX hsdRXl (rk\ mk+) supE44 thi-1 gyrA96 relAX

(J)80/acZAM15 AilacTXA-argF)U 169 X  

DH5a F' ())80d/flcZAM 15 AilacTX A-argF)U 169 deoR recA X end A 1

/zsdR17(rk’,mk+)phoA supE44 X' thi-X gyrA96 relAX 

XLl-Blue MRA

D(mcrA) 183 A(mcrCB-hsdSMR-mrr) 173 endAX supE44 thi-X 

gyrA96 relAX lacc 

TOPP R if [VproAE la c f  ZAM15 TnlO (Tef)]

2.2.22 Analysis of mmc-1 5' upstream region.

2.2.22.1 Screening of a B. pahangi genomic library.

A B. pahangi genomic DNA library in ^-DASH II (Fiona Thompson, 

University of Glasgow) was screened using a mmc-lFl-mmc-lRl gene specific 

genomic DNA probe. 1 x 106 pfu of the lambda library was plated on NZY plates 

using XLl-Blue MRA cells (2.2.21) as described for screening a cDNA library (2.5). 

The plaques were transferred to Hybond-C nitrocellulose membranes and then 

hybridised at 55°C and washed to 1 x SSC, 0.1 % SDS as described in section 2.5.
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2.2.22.2 Cloning of mmc-1 upstream region by PCR.

Long range PCR was conducted using AGSGold DNA polymerase (Hybaid- 

AGS). PCR was conducted on a B. pahangi genomic DNA library in A.-DASH II 

(Fiona Thompson, University of Glasgow) using nested gene specific primers, mmc- 

lgspl, mmc- lgsp2 and mmc- lgsp3 with vector primers T3 and T7 (see Table 2.1 for 

primer sequences). It has been shown that high A+T composition of a target DNA 

sequence may impair the amplification of long PCR fragments under standard 

conditions [164]. In an attempt to optimise the PCR conditions the extension 

temperature was lowered from 72°C to 60°C which resulted in amplified bands. The 

conditions used for the long-range PCR amplification are shown below.

PCR mix for 50 j l l I  reaction (AGSGold polymerase).

per reaction final concentration

10 X polymerase buffer 5 pi 75 mM Tris-HCl,

CAGSGold 750 mM Tris-HCl pH9, 20 mM (NH4)2S04,

pH9, 200 mM (NH4)2S04, 15 mM MgCl2, 1.5 mM MgCl2

0.1% Tween 20) 0.01 % Tween 20

dNTPs (lOmM each, Perkin Elmer) 2 pi each 400 pM each

AGS Gold DNA polymerase 0.25 pi 1.25 units

Primer 1 (50 pM) 0.5 pi 0.5pM

Primer 2 (50 pM) 0.5 pi 0.5pM

Template DNA n pi 200 ng

ddH20 to 50 pi
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Denaturation 94°C 

Annealing 50°C

Extension 60°C

1 minute. ]

1 minute. S' x 30 cycles

10 minutes J

100 pi of the B. pahangi ^-DASH II library was boiled for 5 minutes then 

placed on ice. 5 pi of the boiled library was used in each 50 pi PCR reaction with 

mmc- lgspl and either T7 or T3 vector specific primers using the conditions 

described above. After 30 cycles of amplification no amplified products could be 

detected by EtBr staining. 1 pi of the PCR was then used as template for a nested 

PCR using mmc- lgsp2 and the same vector primer as used before. Following this 

round of nested PCR a number of bands were observed by EtBr staining. To increase 

the specificity of amplified products a further round of nested PCR was conducted 

with 1 pi of PCR products using mmc-lgsp3 and the corresponding vector primer. 

The specific bands produced after this round of nested PCR were then gel-purified, 

cloned into pCR 2.1 TA vector (Invitrogen) (2.2.7) and sequenced (2.2.20).

2.3 Production of mammalian-derived mf cDNA library.

2.3.1 Generation of mammalian-derived mf cDNA

Three groups of approximately 1 x 106 mf collected from the peritoneal cavity 

of jirds were purified from contaminating host cells using standard methods (2.1.4). 

Following lymphoprep purification the mf were collected by centrifugation (lOOOg, 5 

minutes) and washed twice in 10 ml of mammalian medium (37°C MEM + 10% 

FCS). The groups of mf were then cultured separately for four hours prior to snap 

freezing in liquid nitrogen. All manipulations were optimised to avoid prolonged
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exposure to ambient conditions. RNA was isolated from each group by standard 

protocols (2.2.15) and stored at -70°C until use. First strand cDNA synthesis was 

conducted (2.2.18) from each batch of RNA using 200 ng of adapted oligo (dT) 

(Table 2.1) per reaction. Two separate hot start PCRs (2.2.2) were conducted 

utilising each first strand cDNA as a template, using adapter primer, (AP) and SL1 

primer (Table 2.1) as shown below.

Denaturation: 94°C 1 minute ]

Annealing: 55°C 1 minute S' x 10 cycles

Extension: 72°C 3 minutes J

Extension 72°C 10 minutes

Products from the six resultant PCRs were mixed and then size separated 

using a Sepharose 400 column, following manufactures protocol (Pharmacia). 

cDNAs of greater than 400 bp were collected into 1 X PCR buffer (Perkin Elmer). 2 

pi of this fraction was then used in four 20 cycle PCRs using the same conditions as 

shown above. The resulting cDNA was pooled, quantified by an EtBr plate assay 

(2.6.1) and stored at -20°C until use.

2.3.2 Ligation of cDNA to predigested Uni-ZAP XR vector and packaging of 

library

10 pg of mammalian-derived mf cDNA (2.3.1) was digested using EcoR I 

and Xho I (Pharmacia) in 2 X One-Phor-All buffer (Pharmacia final concentrations,
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20 mM Tris-Acetate (pH 7.5) 20 mM magnesium acetate and 100 mM potassium 

acetate) for 2 hours at 37°C, the reaction was then heat inactivated by incubation at 

65°C for 20 minutes. The digested cDNA was again size separated with a Sepharose 

400 column (Pharmacia) and quantified by an EtBr plate assay (2.6.1).

150 ng of digested cDNA was ligated into the Uni-ZAP XR vector 

predigested with EcoR I and Xho I (Stratagene) at 4°C for 48 hours under the 

following conditions.

1 [Lg Uni-ZAP XR vector predigested with EcoR I and Xho I 

150 ng Insert cDNA 

1 X Ligase buffer (GibcoBRL)

1 mM ATP (pH 7)

2 Weiss units T4 DNA ligase (GibcoBRL)
/

ddH20  t o  5  jllI

1 jil of the ligation reaction was packaged using Gigapack ID gold packaging extract 

(Stratagene) following the manufactures protocol.

2.3.3 Calculation of titre and percentage recombinants of the primary library

The percentage of recombinant phage in the primary library was calculated by 

plating the library at 1/10 and 1/100 dilutions on NZY agar plates and conducting 

blue-white colour selection. 1 \i\ of the primary library diluted 1/10 and 1/100 in SM 

Buffer was added to 200 \i\ of XLl-Blue MRF cells (2.2.21) grown until OD60 0  = 0.5 

and incubated at 37°C for 15 minutes. To this was added 3 ml of molten NZY "top" 

agar with 15 |il of 0.5 M IPTG and 50 jllI of 250 mg/ml X-gal and the cells were 

plated on NZY agar plates. When the agar had solidified the plates were inverted and
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incubated at 37°C overnight. The number of plaques were counted and the titre of the 

library was calculated in pfu/ml. The percentage of recombinant phage was 

determined by the percentage of blue (non-recombinant) to white (recombinant) 

plaques.

The titre of the library was calculated by plating the library as described

above in serial dilutions of 1/100 to 1/100000 and counting the number of plaques on

non-confluent plates.

Reagents:

SM buffer

5.8 g NaCl

2.0 g M gS04 H20  

50 ml of 1M Tris-HCl pH 7.5 

5 ml of 2% (w/v) gelatin 

adjust to 11 with ddH20  

autoclave and store at room temperature 

NZY agar 

21 g NZY (Difco)

15 g BACTO-Agar (Difco)

10 mM M gS04 

ddH20 to 1 L

autoclave, cool and pour plates 

X-gal 250mg/ml

Dissolve X-gal in dimethylformamide, 

wrap in aluminium foil and store at-20°C 

IPTG stock

500 mM isopropyl p-D-thiogalactopyranoside (Sigma) in sterile ddH20 , store

at 4°C.

NZY "Top" agarose

21 g NZY 

7.5 g Agarose 

10 mM M gS04 

ddH20 to 1 L 

autoclave, cool to 50°C
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2.3.4 Amplification of primary library

A high titre stable stock of the library was made following the manufacturers 

protocol (Stratagene). 1.4 x 106 pfu of the primary library was plated on 25 x 130mm 

NZY agar plates using MRF plating cells. The plaques were grown at 37°C for 6  

hours then overlaid with 10 ml of SM buffer (2.3.3) per plate and incubated at 4°C 

for 20 hours with gentle agitation. The SM buffer was recovered and the agar washed 

with a further 5 ml SM buffer per plate. The collected bacteriophage suspension was 

pooled in polypropylene centrifuge tubes and chloroform added to a final 

concentration of 5 % (v/v). Following a 15 minute incubation at room temperature 

the cell debris was removed by centrifugation at 500g for 10 minutes. The 

supernatant was collected and chloroform added to a final concentration of 0.3% 

(v/v). The titre of the amplified library was calculated as described above. 7 % 

DMSO (v/v) was added to aliquots of the library and these were stored at -70°C.

2.4 Production of mammalian-derived and vector-derived mf cDNAs.

2.4.1 Mf exsheathment and purification.

As part of the vector-derived culture system mf were artificially exsheathed 

and purified. Mf were washed from the peritoneal cavity of an infected jird and 

purified (2.1.4). Approximately 1 x 106 mf were resuspended in 2 ml of HBSS and 

added to a sterile solution of 2 mg/ml Pronase (Protease type XIV from Streptomyces 

griseus, Sigma) solution in HBSS to give a final concentration of 1 mg/ml. The mf 

were exsheathed for 1 0  minutes at room temperature with gentle agitation to reduce 

clumping. The exsheathed mf were collected by centrifugation at lOOOg for 5 minutes 

and washed twice in 10 ml HBSS + 10 % FCS followed by a final wash in HBSS
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alone and resuspended in 2 ml Grace's medium (GibcoBRL). The recovered mf were 

examined by phase contrast light microscopy and approximately 99 % were 

exsheathed. To isolate the viable mf an agarose pad purification technique was 

employed [165]. The mf were added to a 35 mm petri dish containing 2 ml of 2 % 

molten low melting point (LMP) agarose (GibcoBRL) to make a final concentration 

of 1 % and allowed to solidify. The agarose pad containing mf was overlayed with 1 

ml of Grace's medium and incubated at 28°C for 1 hour, after which the Grace's 

medium containing mf, was removed and replaced with fresh medium ( 1 ml) and 

incubated for a further hour.

2.4.2 Preparation of cDNA probes.

Mf collected from infected jirds were purified (2.1.4). The mf were then split 

into two groups and cultured for 16 hours under either mammalian or vector-like 

conditions. Unless otherwise stated all culture media was obtained from GibcoBRL. 

For in vitro mammalian-derived mf the parasites were cultured at 37°C (5% CO2) in 

minimal essential medium (MEM) plus 10% FCS. The in vitro vector-derived mf 

were first exsheathed and purified through agarose pads as described above then 

cultured at 28°C (5% CO2) in Grace’s insect medium (unsupplemented). To maintain 

sterility, all manipulations were conducted using standard sterile techniques in a 

laminar flow hood. The mf were cultured in 2ml of appropriate culture media at a 

concentration of approximately 5 x 103 mf m l1, in Nunclon flat-sided tissue culture 

tubes. Following incubation RNA was isolated and reverse transcribed using an oligo 

(dT) adapter primer (2.2.18) and stored at -20°C.
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2.5 Screening of mammalian-derived mf cDNA library.

2.5.1 Plating the mammalian-derived mf cDNA library.

XLl-Blue MRA (Stratagene 2.2.21) plating cells were grown in L broth 

(supplemented with 10 mM MgSC>4 and 0.2% maltose) until the O D 5 5 0  equalled 0.8. 

The cells were centrifuged at 1200 rpm for 15 minutes at 4°C, then resuspended in 10 

mM MgSCLto achieve a final O D 5 5 0  of 1. 600 |il of the MRA cells were added to 2 x 

103 pfu of the primary library and incubated at 37°C for 15 minutes. 8  ml of "top" 

agarose (2.3.3) at 50°C was added to the cells and then plated on 130mm NZY agar 

plates (2.3.3). The "top" agarose was allowed to solidify then the plates were inverted 

and incubated at 37°C overnight.

2.5.2 Differential screening of the mammalian-derived mf cDNA library

In the primary screen, ten 130mm plates, each with 2 x 103 pfu of the primary 

library were plated using MRA on NZY agar plates and grown overnight at 37°C. 

The NZY agar plates were chilled at 4°C for 2 hours and then overlaid with Hybond- 

C filters (Amersham). The filters were orientated using needle pricks through the 

filter and into the agar and then lifted off. The first filter lift was left for 2 minutes 

and the duplicate lift for 4 minutes. The filters were submerged for 2 minutes in 

denaturing solution, then for 5 minutes in neutralising solution and finally rinsed 

briefly in a 2 X SSC solution. The DNA was fixed onto the filters by exposing them 

to 150 mjoules of UV radiation in a UV cross-linker (Bio-Rad).

DNA probes generated from either mammalian-derived or vector-derived mf 

cDNA radiolabelled with 3 2Pa-dCTP by random primed DNA labelling (2.2.19), 

were used to hybridise filters at 65°C. The filters were washed to 0.1 X SSC, 0.1%
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SDS, and then rinsed with 2 X SSC and exposed to X-ray film. Each positive plaque 

was cored from the NZY agar and allowed to dissociate into SM buffer by gentle 

agitation. The secondary screen was conducted at 5 x 102 pfu per 130 mm NZY plate. 

The differential hybridisation of the positive plaques was tested following PCR 

amplification of the cloned insert using two vector specific probes and subsequent 

southern blotting.

Reagents:

SM buffer

5.8 g NaCl

2.0 g MgS04 H20

50 ml of 1M TRis-HCl pH 7.5

5 ml of 2% (w/v) gelatin

adjust to 1 L with ddH20

autoclave and store at room temperature

Denaturing solution

1.5 M NaCl

0.5 M NaOH

adjust to 1 L with ddH20

store at room temperature

Hybridisation solution

6.25 ml 20 x SSC 

2.5 ml Denhardt’s solution

1.25 ml 10% SDS 

15 ml ddH20

heat to hybridisation temperature 

add 50 |il heat denatured salmon sperm DNA (lOmg/ml) 

use immediately

20 X SSC

3 M NaCl (175.3g)

0.3 M Sodium citrate (8 8 .2g)

800 ml ddH20

adjust to pH7.0 with conc. NaOH 

adjust to 1 L with ddH20  

store at room temperature 

Neutralising solution 

1 M Tris base

1.5 M NaCl

adjust to pH 7.4 with conc. HC1 

adjust to 1 L with ddH20  

store at room temperature 

Wash solutions 

5-100 ml 20 X SSC 

10 ml 10% SDS 

adjust to 1 L with ddH20  

store at room temperature 

pre-heat before use
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Denhardt’s solution (50 X)

1 % (v/v) Ficoll (type 400)

1 % (v/v) polyvinyl pyrollidone 

1 % (w/v) bovine serum albumin fraction V 

adjust to 1 0 0  ml with ddF^O 

aliquot and store at -20°C

2.5.3 In vivo excision of the pBluescript phagemid from the Uni-Zap vector.

The Uni-Zap XR vector used for the construction of the cDNA library (2.3) 

allows the excision of the cloned insert to form a circular phagemid that can be used 

for further manipulations. The protocol given is that from the Uni-Zap XR vector kit 

manual (Stratagene). Phage in SM buffer (2.5.2), were used to inoculate 200 pi of a 

culture of XLl-Blue MRF’ cells (Stratagene 2.2.21) at an OD6oo- To this >1 x 106 pfu 

ExAssist helper phage were added and grown in L broth (2.2.7) supplemented with 

0.2 % (w/v) maltose and lOmM MgSC>4 for 3 hours at 37°C. The culture was heated 

at 70°C for 20 minutes and then centrifuged at lOOOg for 15 minutes. The supernatant 

contained the excised phagemid. The phagemid could then be plated on L-amp plates 

(2.2.7) using freshly grown SOLR plating cells (Stratagene 2.2.21).

2.6 Analysis of gene expression by semi-quantitative RT-PCR.

Semi-quantitative RT-PCR determines the level of expression of a gene of 

interest compared to that of a constitutively expressed endogenous control gene 

[166]. For these studies the gene encoding fi-tubulin was used as the constitutive 

control gene.
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2.6.1 Ethidium Bromide plate assay for quantitation of cDNA.

To determine the concentration of samples of first strand cDNA prior to 

analysis of expression by RT-PCR samples were compared to a series of standards by 

UV visualisation. The protocol used is taken from Appendix VI from the UNI-Zap 

library construction protocol (Stratagene).

100 ml of 0.8 % (w/v) molten agarose was prepared using TAE buffer and 

cooled to 50°C before the addition of 10 jxl EtBr (10 mg/ml). Approximately 10 ml 

of the mixed agarose was then poured into 90 mm petri dishes and allowed to dry. 

Dilutions of a known DNA standard were made in the range 100 ng/pl to 2 ng/pl. 

The underside of the petri dish was labelled with the positions where the unknown 

cDNA and the standards were to be spotted. 0.5 pi of each of the standards and the 

sample cDNA were carefully spotted onto the surface of the agarose. After the 

samples had been absorbed into the agarose (10-15 minutes room temperature) the 

plate was inverted and photographed over UV light. The concentration of the 

unknown sample can be directly compared to that of the standards. The plates can be 

stored in the dark at 4°C for 1 month, but should not be reused.

2.6.2 Preparation of cDNA panel from different life-cycle stages for RT-PCR 

analysis.

Different life-cycle stages of B. pahangi from the mammalian host were 

isolated from infected jirds on the appropriate days post-infection and purified as 

described in 2.1.4. Total RNA isolation (2.2.15) and first strand synthesis (2.2.18) 

was conducted as described earlier.
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To extract RNA from parasite stages in the mosquito (LI-infective L3) fed 

females at the appropriate day post-feed were picked and the thorax dissected and 

stored in liquid nitrogen. The RNA extraction was conducted essentially as described 

for standard RNA extraction (2.2.15) with the following modifications.

The frozen thoraces were lysed at 6 8 °C for 10 minutes in 250 pi lysis buffer 

containing proteinase K (500 pg pi"1 final concentration), 25 pi (3-mercaptoethanol 

and homogenised using a disposable micropestle (Eppendorf), prior to the addition of 

the pre-warmed TRIzol reagent. This was found to increase the quantity of RNA 

extracted [77].

Reagents:

Lysis buffer (10 ml)

(0.1 M Tris-HCl, 0.2 M NaCl, 2 % SDS, 0.2 M EDTA)

1 ml of 1 M Tris-HCl pH 8.0

1 ml of 2 M NaCl

2 ml of 10 % SDS

4 ml of 0.5 M EDTA pH 8.0

2 ml of DEPC ddH20

prepared fresh for each RNA extraction

2.6.3 Titration of RT-PCR amplified products.

In order to compare the differences in amplification of the gene of interest and 

control gene products, the PCR reaction must be stopped while it is still in the 

exponential stage of amplification. To determine the optimal number of cycles for 

each of the primers sets 100 pi PCR reactions were prepared in the standard manner 

for each of the genes of interest and the constitutively expressed control gene (3-

tubulin. 10, 15, 20, 25, 30, and 35 cycles of PCR were conducted, lOpl of the
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reaction was removed, soaked at 72°C for 10 minutes to allow complete 

amplification, and these products were then separated on 2 % agarose gels and blotted 

onto nylon membrane and probed with the appropriate 32P labelled cDNA. The 

degree of hybridisation was calculated by overlaying the developed autoradiograph 

with the corresponding Southern blot and excising a 0.5 cm square of the filter 

corresponding to the specific band. Each piece of nylon membrane was placed in 3 

ml of scintillation fluid (Optiscint) and the p-emissions counted. The results were 

graphed to determine the optimal number of PCR cycles.

2.6.4 Semi-quantitative RT-PCR analysis.

RNA was isolated from different parasite life-cycle stages or from infected 

mosquito thoraces and reverse transcribed with oligo (dT) by standard methods 

(2.2.18). The first strand cDNA was then PCR amplified with gene specific primers. 

10 jxl of the resulting PCR products were separated on 2 % agarose gels and 

transferred to nylon membrane by standard methods. The blots were then probed at 

high stringency with the corresponding gene-specific cDNA and exposed to 

autoradiographic film. The degree of hybridisation was calculated as described above 

(2.6.2). Relative expression at each stage was determined by calculating the ratio of 

the gene of interest (minus background counts) compared to the constitutively 

expressed P-tubulin gene (minus background counts).
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2.7 5’ RACE

To obtain additional sequence information 5’ to the cloned fragment of mmc-

1 and to confirm the presence of the SL1 spliced leader sequence 5’ RACE was 

carried out. The procedure was conducted following the manufacturers protocol (5’ 

RACE system for Rapid Amplification of cDNA Ends, Version 2.0, GibcoBRL). 

Total RNA was isolated by standard methods (2.2.15), from approximately 1 x 106 

mf of B. pahangi from the peritoneal cavity of an infected jird. First strand cDNA 

was synthesised by standard methods (2.2.18) using mmc-lgspl primer (Table 2.1). 

The first strand cDNA was purified by the GlassMAX DNA isolation spin cartridge 

system (GibcoBRL), and then tailed with dCTP by terminal deoxynucleotidyl 

transferase (TdT) as outlined below.

TdT Tailing reaction mix 

DEPC treated ddH20 6.5 pi

5 X tailing buffer 5.0 pi

2 mM dCTP 2.5 pi

GlassMAX purified cDNA 10 pi

Final composition of reaction, 10 mM Tris-HCl (pH 8.4), 25 mM KC1, 1.5 mM 

MgCl2) 200 pM dCTP

The TdT tailing reaction mix was incubated for 2 minutes at 94°C, then 

chilled for 1 minute on ice. To this 1 pi of TdT was added and then incubated at 

37°C for 10 minutes. TdT was inactivated by incubation at 65°C for 10 minutes.
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The first round of nested amplification used the abridged anchor primer 

(AAP) and mmolgsp2. The PCR was conducted with Taq DNA polymerase as 

described previously (2.2.1). The protocol for the amplification was as shown below. 

Denaturation 94°C 2 minutes 1

Annealing 55°C 1 minute i* x 35 cycles

Extension 72°C 2  minutes J

Final extension 72°C 10 minutes

The resulting cDNA was diluted 1/100 and a further nested PCR was 

conducted using the abridged universal anchor primer (AUAP) and mmc- lgsp3 

exactly as described above. The resulting amplified 5’ fragment was ligated into 

pCR2.1 TA vector (Invitrogen) then transformed into Oneshot INVocF’ cells (2.2.7) 

and sequenced (2 .2 .2 0 ).

2.8 Culture of B. pahangi parasites in vitro.

Mf collected from the peritoneal cavity of infected jirds represent a 

heterogeneous population of various ages. In order to determine the expression of 

mmol of mf released within a defined time span, B. pahangi adults were cultured in 

vitro and the released mf were collected at set time points. Adults were cultured in 

RPMI + supplements (RPMI+) or in no glucose RPMI medium (RPMI-g) at 37°C in 

5 % CO2 . Modifications to the medium in individual experiments are given in the 

text. Unless otherwise stated the cultures were conducted in 25 cm culture flasks 

(CoStar). Following culture the adults were removed with a sterile glass hook. The 

mf were collected by centrifugation at lOOOg for 5 minutes then frozen in liquid 

nitrogen until required.
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RPMI +

RPMI 1640 (Dutch modification) 

10 % FCS

1 % Glucose

2 mM L-glutamine

2.5 mM Hepes 

100 U/ml penicillin

RPMI-g

RPMI 1640 (Without L-glucose) 

10 % FCS

2 mM L-glutamine

2.5 mM Hepes 

100 U/ml penicillin 

1 0 0  |Hg/ml streptomycin

1 0 0  (ig/ml streptomycin

2.9 Production and purification of MBP-MMC-1 fusion protein.

The pMal protein fusion and purification system (New England Biolabs) was 

used to produce the fusion protein as described in the manufacturers protocol. By 

cloning the mmc-1 ORF downstream of the malE gene which encodes the maltose 

binding protein (MBP), expression leads to the production of an MBP-MMC-1 

fusion protein. The possession of the MBP moiety allows the purification of the 

fusion protein by affinity chromatography on an amylose column, following which 

the protein is then eluted by the addition of a buffer containing maltose.

2.9.1 Cloning of MMC-1 downstream of the MalE gene.

Two PCR primers were designed (MMC-lExFl and MMC-lExRl). MMC- 

lExFl begins at the ATG initiation codon and contained 7 nucleotides of the ORF 

while MMC-lExRl incorporated the last 7 nucleotides of the ORF and the stop 

codon. Each primer possessed a GCCG clamp to increase the specificity of annealing 

in further rounds of PCR. A specific restriction site was also included that allowed 

subsequent directional cloning of the PCR fragment into the MBP vector. PCR 

amplification of mammalian-derived mf first strand cDNA was conducted at low
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stringency (50°C, annealing temperature). Following 30 cycles of PCR no 

amplification could be observed, so a 1 pi aliquot was removed and re-amplified as 

before. A band of predicted size (266 bp) was observed which was gel-purified and 

ligated into a TA vector (pCR2.1 Invitrogen TA::MMC-1ExF1R1).

2.9.2 Subcloning of MMC-1 into pMal-p2.

The pMal-p2 plasmid provided in the kit was transformed into competent E. 

coli cells (DH5a GibcoBRL) and grown overnight at 37°C in LB-broth 

supplemented with ampicillin (LB-amp 100 pg/ml). The TA::mmclExFl-Rl clone 

was also grown overnight in LB-amp. Both plasmid DNAs were isolated by standard 

procedures and digested for three hours with both Bam HI and Pst I restriction 

enzymes. The resulting gel purified DNAs were ethanol precipitated and ligated 

together. The ligated plasmid (MBP-MMC-1) was then transformed into DH5a cells 

and plated on LB-amp agar plates containing X-gal.

2.9.3 Transformation of Topp competent cells.

To allow the expression of high titre fusion protein the MBP-MMC-1 plasmid 

was transformed into highly competent Topp cells (Stratagene). To render the Topp 

cells competent a 10 ml aliquot of L broth (with no antibiotics) was inoculated with 

10 pi of Topp cell glycerol stock and grown overnight at 37°C. 1 ml of this culture 

was added to 40 ml of fresh L broth and grown for a further 2.5 hours. The cells were 

collected by centrifugation at 3000 rpm for 10 minutes at 4°C, then resuspended in 

20 ml of ice cold 50 mM CaC^ and incubated on ice for 30 minutes. The cells were 

then re-centrifuged (3000 rpm for 10 minutes at 4°C) and resuspended in 2 ml ice
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cold 50 mM CaC^. The cells were then either used immediately or were stored at 

4°C overnight.

1 |il of a 10-fold dilution of the MBP-MMC-1 plasmid miniprep (2.2.9) was 

added to 200 pi of competent Topp cells and incubated for 30 minutes on ice, 2 

minutes at 42°C and 10 minutes at room temperature. 1 ml of L broth was added and 

the cells were incubated at 37°C for 1 hour (225 rpm horizontal shaker). The cells 

were collected by centrifugation at 2000 rpm for 3 minutes and the media removed to 

approximately 200 pi. The cells were gently resuspended without pipetting and then 

plated on LB agar plates containing ampicillin (100 |Lig/ml).

2.9.4 Large scale expression of MBP-MMC-1

Two 10 ml aliquots of LB broth containing 100 pg/ml final concentration of 

ampicillin (LB-amp) were inoculated with 50 pi each of a MBP-MMC-1 plasmid 

glycerol stock (2.2.10) and grown at 37°C in a horizontal shaker at 225rpm 

overnight. Both were then added to 1 litre of LB-amp and grown for a further 3 hours 

as before. A 1 ml aliquot was removed at this stage and labelled "uninduced". 3 ml of 

freshly made 100 mM IPTG was then added and the culture grown for 4 hours at 

37°C as before, following which a further 1 ml aliquot was removed and labelled 

"induced". The remaining induced cells were centrifuged in a Beckman J2-21 

centrifuge at 8000 rpm for 15 minutes at 4°C, the supernatant removed and the cells 

resuspended in a total of 50 ml of column buffer. The cell suspension was sonicated 

on ice, at 10 cycles of 20 seconds on, 30 seconds off (Soniprep 150, MSE) until the 

suspension cleared. The lysed cells were centrifuged at 10000 rpm for 15 minutes the 

supernatant was carefully removed and frozen at -20°C.
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Reagents:

IPTG stock

100 mM isopropyl (3-D-thiogalactopyranoside (Sigma) in sterile ddH20, store at 4°C.

2.9.5 Affinity purification of the MBP -MMC-1 fusion protein.

An amylose column was prepared in the barrel of a 50 ml syringe stoppered 

with glass wool to a depth of approximately 1 cm. 20 ml of amylose resin (New 

England Biolabs) was layered onto the glass wool and washed with eight times the 

column volume with column buffer (approximately 160 ml). The lysate was diluted 

1:1 with column buffer and run through the column. The binding proteins were 

washed with column buffer until the OD280 read zero. The MBP-MMC-1 protein was 

then eluted from the column by the addition of 30 ml column buffer + 20 mM 

maltose. The eluted protein was collected in 3 ml fractions and the concentration 

calculated by spectrophotometry (280 nm).

Reagents: 

Column Buffer Column Buffer + 20 mM maltose

20 mM Tris-Cl pH 7.4 

200 mM NaCl

20 mM Tris-Cl pH 7.4 

200 mM NaCl 

1 mM EDTA 1 mM EDTA

Make to 1 L with d d ^ O  

Store at 4°C Make to 1 L with ddH20 

Store at 4°C

20 mM maltose
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2.9.6 Digestion of MBP-MMC-1 fusion protein and purification of recombinant 

MMC-1.

The fusion protein eluted from the amylose column (2.9.5) was digested by 

Factor Xa (New England Biolabs) that specifically cleaves a recognition site in the 

MBP vector therefore releasing the MMC-1 recombinant protein.

The reaction was conducted at 23°C for 6 hours with occasional mixing.

1 mg MBP-MMC-1 

10 |ig Factor Xa

1 X Factor X buffer (20 mM Tris-HCl pH 8.0, 100 mM NaCl, 2 mM CaCl2) 

to 500 j l l I  in ddH20

To further purify the digested MMC-1 recombinant protein the MMC-1 

protein was separated by SDS-PAGE on a 15 % gel (2.11.1) and the MMC-1 band 

excised. The protein was then eluted from the acrylamide using a BioRad model 422 

electro-eluter as described in the manufacturer’s protocol. The concentrated MMC-1 

protein was dialysed overnight at 4°C against ddH20  using 3.5 kDa cut off 

membrane tubing (Spectrum Medical Industries Inc). The purified MMC-1 protein 

was quantified by the Bradford method (2.15.2), supplemented with 0.02 % sodium 

azide and stored at -20°C.

2.10 Raising anti-MMC-1 immune sera.

Cut MMC-1 recombinant protein was purified from the MBP moiety by SDS- 

PAGE. The specific band was excised and washed 3 times in 20 ml ddH20  then 

frozen at -20°C. The frozen antigen was pulverised in liquid nitrogen with a pestle
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and mortar and then used to raise anti-sera in both BALB/c mice and rabbits. Ten full 

size SDS gels were used to produce the antigen for the immunisations, where used 

the adjuvant was Freund’s incomplete (Sigma). The rabbit anti-sera was produced by 

the Scottish Antibody Production Unit (SAPU, Law Hospital Lanarkshire). Two 

rabbits were immunised on four occasions (day 0, 28, 56 and 84). Terminal 

exsanguinations were performed on day 91.

A group of 10 BALB/c mice were immunised on four separate occasions (day 

0, 21, 39) with 1.5 ml pulverised MMC-1 antigen mixed with 500 j l l I  d d ^ O  and 2 ml 

Freund’s incomplete adjuvant. 200 jllI of antigen was administered per mouse by sub­

cutaneous injection. The final boost (day 56) was administered into the peritoneum 

and did not contain any adjuvant. The mice were killed by CO2 inhalation and bled 

by cardiac puncture on day 60 into 1ml syringes. The blood was left to clot overnight 

at 4°C following which serum was collected into Eppendorf tubes and centrifuged at

10,000 rpm for 10 minutes at 4°C. The serum was pooled and then aliquoted and 

stored at -20°C.

2.11 Immunochemical techniques.

2.11.1 SDS polyacrylamide gel electrophoresis (PAGE)

The Hoefer vertical electrophoresis system was used with either longer-length 

mini gels (10.1 x 10.6cm) or slab gels (17.9 x 16cm) according to the quantity of 

protein analysed and the degree of separation required. Electrophoresis was carried 

out at 20 mA per gel for mini gels, or at 12 mA overnight for larger gels.

For large gels the separating gel solution was mixed and degased for 15 

minutes prior to the addition of 300 jllI SDS, 100 |il of freshly prepared 10%
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ammonium persulphate (APS) and 20 fil of N^N'.N'-tetramethylenediamine 

(TEMED). The gel solution was pipetted to within 3 cm of the top of the gel 

apparatus, to allow room for the stacking gel and then carefully overlayed with water- 

saturated butanol. The gel was left to polymerise for 30-60 minutes. The butanol was 

rinsed from the gel with ddH20  and then the gel surface was dried using strips of 

3MM filter paper. The stacking gel solution was mixed and degased prior to the 

addition of 100 |il SDS, 50 p.1 APS and 10p.l of TEMED. The gel was then poured 

onto the separating gel and an appropriate comb was inserted (as the gel sets more 

solution may need to be added). When the stacking gel had set, the wells were rinsed 

with ddH20  and then with 1 X running buffer. Protein samples were mixed with an 

equal volume of SDS sample cocktail, boiled for 3 minutes and loaded into the wells 

of the gel. The gel was run until the dye front had reached the bottom of the 

apparatus. The gel was removed and the proteins visualised by staining for 20 

minutes in Coomasie Blue, the excess stain was removed by immersion in destain 

solution. The stained gel was dried by immersion for 30 minutes in drying reagent 

then placed between acetate sheets and dried in an "Easy-Breeze" gel dryer (Hoeffer). 

Reagents:

1.5M Tris-HCl pH 8.8 0.5M Tris-HCI pH 6.8

0.5 M Tris base1.5 M Tris base

ddH20  to 50ml 

stir until dissolved

ddH20  to 30ml 

stir until dissolved

adjust to pH 8.8 with conc. HC1 

adjust to 100ml with ddH20  

store at 4°C

adjust to pH 6.8 with conc. HC1 

adjust to 50ml with ddH20  

store at 4°C
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Running buffer pH 8.3 (10X)

0.25 M Tris base

1.92 M glycine 

0.1 % SDS 

ddH20  to 1 L 

SDS Sample cocktail 

Solution (a)

2.5 ml 0.5M Tris-HCl pH 6.8 

4 ml 10% SDS 

2 ml glycerol 

ddH20  to 10 ml

for use: mix 650|xl of (a) and lOOjxl of (b) 

(0.108M Tris, 3.5%SDS, 17.3% glycerol, 0.013% 

Coomassie Blue stain 

1 g Coomassie brilliant blue 

450 ml methanol

450 ml ddH20

100 ml glacial acetic acid

filter through Whatman No. 1

drying reagent

100 ml glacial acetic acid

10 ml glycerol

ddH20  to 1 L

12.5 % separating gel.

12.5 ml 30% acrylamide solution (protogel)

11.2 ml 1.5M Tris-HCl pH 8.8

6.2 ml ddH20

Solution (b)

0.0 lg bromophenol blue (BPB) 

2.3g dithiothreitol (DTT) 

ddH20  to 10ml 

aliquot and store at -20°C

BPB, 0.2M DTT)

Gel destain (5 L)

350 ml glacial acetic acid 

1 L methanol 

3650 ml of ddH2Q

15 % separating gel.

15 ml 30% acrylamide solution

11.2 ml 1.5M Tris-HCl pH 8.8 

0.7 ml ddH20  

3 ml glycerol
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5 % stacking gel.

1.67ml 30% acrylamide solution 

1.25 ml 0.5M Tris-HCl pH 6.8

7.0 ml ddH20

(30% acrylamide solution contains 2.7% N,N'-methylene-bis-acrylamide)

2.11.2 SDS-sample cocktail extracts.

Protein extracts of life-cycle stages for western blot analysis were produced 

from 1 x 105 mf, 100 mixed sex adults or 1 x 104 L3. The parasites were removed 

from liquid nitrogen, 100 |il SDS-sample cocktail (2.8.1) was added and then boiled 

for 3 minutes. The extract was centrifuged for 5 minutes at 13,000 rpm then the 

supernatant removed.

2.11.3 Molecular weight markers.

Low molecular weight markers (Bio-Rad) 14.4-97.4kD

lysozyme (14.4kD), trypsin inhibitor (21.5kD), carbonic anhydrase (31.0kD), 

ovalbumin (45.0kD), serum albumin (66.2kD), phosphorylase B (97.4kD).

Protein standards were diluted 1:20 in SDS sample cocktail prior to use.

Ultra low molecular weight markers (Sigma) 1.06-26.6 kDa

Bradykinin (1.060 kDa), Bovine Insulin chain B, oxidised (3.496 kDa), 

Apoprotein from bovine lung (6.5 kDa), a-Lactalbumin from bovine milk (14.2 

kDa), Myoglobin from horse heart (17 kDa), Triophosphate Isomerase (26.6 kDa). 

Protein standards were diluted 1:20 in SDS sample cocktail prior to use.
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2.11.4 Staining SDS-Polyacrylamide gels with Silver nitrate.

The technique used is a modification of that described by Sambrook et al

[159]. The protein samples were separated by standard SDS-PAGE procedures then

the proteins fixed by sequential submersion in 5 gel volumes of: 50 % methanol, 10

% Acetic acid; 5 % methanol, 7 % acetic acid; distilled water; 5 jig DTT/ml ddH20,

each for 20 minutes at room temperature with gentle agitation. The proteins were

then stained with 0.1 % silver nitrate in ddf^O for 20 minutes at room temperature.

To develop the gel it was placed in developer solution until sufficient contrast was

observed (5-10 minutes). To stop the reaction the gel was immersed in 1 % acetic

acid then rinsed in ddH2 0 .

Reagents:

Developer solution

3 g Na2C03 (3 %)

50 jllI 37 % formaldehyde (0.02%) 

make to 100 ml with ddH2 0

2.11.5 Western blotting.

The western blot procedure was a modification of that described by Towbin et 

al [167]. Protein samples and markers (Bio-Rad, Sigma) were run on a SDS- 

polyacrylamide gel. The proteins were then transferred onto nitrocellulose membrane 

(BioTrace NT, Gelman Sciences) using the Hoefer mini-blotting system at a constant 

current of 200mA for 1 hour. The blot was stained for 5 minutes with Ponceau S, the 

positions of the markers were labelled and the protein lanes numbered with a soft 

pencil then cut into strips. To block non-specific binding, the sample strips were 

soaked in TBS/Tween 20 + 5% BSA for 1 hour. The strips were then rinsed three
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times for 5 minutes in TBS/Tween 20 and were incubated for 1 hour at room 

temperature with test serum or control serum at concentrations ranging from 1/100 to 

1/800 in PBS + 0.1 % BSA. The strips were rinsed with TBS/Tween 20 and then 

incubated for 1 hour at room temperature with the secondary antibody, goat anti­

rabbit or anti-mouse alkaline phosphatase conjugate (Sigma) diluted 1/6000 in PBS + 

0.1 % BSA. The strips were rinsed again and the blot was developed by incubating 

the strips in BCIP/NPT substrate (Sigma) until adequate staining occurred. To stop 

the reaction the strips were rinsed with ddH20 . The blot was dried by blotting 

between Whatman filter paper and then reformed by re-aligning the strips using the 

pencil markings.

TBS/Tween 20

0.05 % Tween 20 (polyoxyethylenesorbitan monolaurate, Sigma) in TBS. 

TBS/Tween 20 5 % BSA

Make 100 ml TBS/Tween 20 as above, add 5 g Bovine serum Albumin (Boehringer). 

TBS/Tween 20 1 % BSA

Make 100 ml TBS/Tween 20 as above, add 1 g Bovine serum Albumin (Boehringer). 

Ponceau S Stain

Dissolve 0.2 g Ponceau S (Sigma) in 100 ml of 3 % trichloroacetic acid solution.

Reagents:

Transfer buffer

6.05 g Tris base (0.025 M)

28.2 g glycine (0.19 M)

Tris buffered saline (TBS)

12.1 g of Tris base (0.05 M) 

43.75 g of NaCl (0.15 M) 

adjust to pH 7.4 with conc. HC1 

ddH20  to 5 L

400 ml methanol 

ddH20  to 2 L
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2.11.6 Metabolic labelling of mf and immunoprecipitation of MMC-1.

The protocol for metabolically labelling is essentially that of Devaney et al 

[41]. Mf were recovered from the host by peritoneal lavage and purified from 

contaminating cells as described in 2.1.4. For labelling, mf were washed with HBSS 

before being transferred to sterile 1.5ml screwtop microcentrifuge tubes and 

resuspended in 0.5ml of culture medium. The parasites were incubated at 37°C for 10 

minutes prior to the addition of 50 |iCi of 35S-methionine (15mCi/ml >1000Ci/mmol, 

Amersham). Metabolic labelling was carried out for 4 hours and then the 

radiolabelled methionine was rinsed from the worms. The mf were collected in the 

bottom of the tube by centrifugation at lOOOg for 5 minutes and then resuspended in 

fresh culture medium. This procedure was repeated twice. Following homogenisation 

with a micropestle (Eppendorf), protein was extracted from the samples using 200 jllI 

IEF lysis buffer for two hours at room temperature. The samples were centrifuged at 

13000g, to pellet insoluble components then the supernatant was transferred to a 

fresh tube and stored at -20°C. To determine the amount of 35S-methionine 

incorporation in a parasite extract, a trichloroacetic acid precipitation (TCA) was 

utilised. Duplicate 2.5 pi aliquots of the 35S-labelled extract were mixed with 10 pi of 

rabbit serum, 1 ml of ice cold 10 % TCA (Sigma) was added and the solution was 

incubated on ice for 10 minutes. A conical vacuum flask was used to filter the TCA- 

precipitated proteins onto Whatman glass fibre filter paper disks. The TCA solution 

was filtered though the disk and the vial was rinsed out with 1ml of TCA. The 

precipitant was washed with 1ml of ethanol followed by 1ml of acetone. The protein- 

coated disks were then transferred to scintillation vials, 3ml of OptiScint scintillation 

fluid (Wallac) was added and the 35S activity was measured for 60 seconds (cpm) in a
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Beckman scintillation counter. 1 x 106 cpm of precipitable protein was separated by

SDS-PAGE on a 15 % slab gel and stained with Coomasie Blue. The gel was then

placed in drying reagent (2.8.1) for 30 minutes, then in fluorographic reagent

(Amplify, Amersham) for 30 minutes before drying under vacuum. The dried gel was

then exposed to pre-flashed high-sensitivity X-ray film (Kodak) and stored at -70°C

for 4-8 weeks.

Reagents : 

Culture medium

Methione free MEM (GibcoBRL) 

containing:

1 % glucose (Sigma)

25 mM HEPES

4 mM glutamine 

1 % non-essential amino acids 

100 mg/ml gentamycin (Sigma) 

make up in MEM (minus methionine)

Filter (CoStar) into sterile container

5 % foetal calf serum 

store at 4°C

2.12 Culture of mf for collection of E/S products.

Approximately 2 x 106 mf isolated from the peritoneal cavity of an infected 

jird were cultured aseptically for 24 hours in 10 ml of RPMI+ medium (2.8). Mf were 

removed by centrifugation at lOOOg for 5 minutes and the medium concentrated 40 

fold to approximately 500 pi, using a 5 kDa molecular weight cut-off concentration 

column (Vivaspin). The E/S products were resuspended in SDS sample cocktail and 

analysed by SDS-PAGE.

IEF lysis buffer

9.5 M Urea 

2 % NP-40

2 % Ampholines pH 3.5-10(Pharmacia) 

50 mM DTT

adjust to 10ml with d d ^ O  

store as 0.5ml aliquots at -70°C
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2.13 Effect of MMC-1 IgG on parasite development in mosquitoes.

2.13.1 Isolation of IgG from immunised rabbit serum.

Immunoglobulin G (IgG) was purified from MMC-1 rabbit antiserum (R718, 

2.8) or from serum from rabbits immunised with an unrelated protein, cytidine 

deaminase (CDD) by standard ammonium sulfate precipitation [168]. Briefly the 

serum was stirred as 0.5 times the volume of saturated ammonium sulphate (pH 7) 

was added. The serum was incubated at 4°C overnight then centrifuged at 3000g for 

30 minutes. The supernatant was removed and discarded and the pellet resuspended 

in PBS. The IgG was then dialysed against PBS at 4°C overnight in visking tubing 

(BDH approximate pore size 12.0 kDa). The resulting IgG was quantified (2.15.2) 

and stored at -20°C.

2.13.2 Feeding mosquitoes.

Aedes aegypti, strain (Ref111) mosquitoes were fed with rabbit blood 

containing approximately 350 mf/20 |xl supplemented with either 100 jig/ml CDD 

IgG or 100 |ig/ml MMC-1 IgG for one hour using a membrane feeder (2.1.2). The 

blood containing IgG and mf was then replaced with fresh blood and the mosquitoes 

fed for a further hour. Fed females were isolated in a netted cage and maintained 

under standard conditions (2.1.1) for 9 days.

2.13.3 Assessing the development of parasites.

At day 9 post-infection mosquitoes were collected, the wings removed and 

the body dissected into head, thorax and abdomen on a microscope slide. The three
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body sections were then carefully teased apart in a drop of HBSS and the numbers 

and developmental stage of the parasites were recorded.

2.14 Fluorescent localisation of MMC-1.

The methods used for fluorescent localisation are based on techniques 

developed for studying C. elegans as described by Miller and Shakes (1995) [169] 

and adapted as described below. All manipulations were conducted using low 

retention Eppendorf tubes and pipette tips (Axygen Inc).

2.14.1 Staining whole parasites.

To localise the MMC-1 protein in whole intact mf or exsheathed mf 

(exsheathed by exposure to Pronase, 2.4.1), approximately 1 x 105 mf were added to 

15 ml fix solution for 12 hours at 4°C, then the mf were washed three times at room 

temperature in PBS (5 minutes on rotator, lOOOg centrifugation for 5 minutes to 

collect worms) and stored in storage buffer overnight. The worms were washed in 

PBS as before then placed in 200 pi of primary antibody diluted in antibody dilution 

buffer (1/50 or 1/100) and incubated overnight at 4°C. Once again the mf were 

washed in PBS as before and then transferred to a clean Eppendorf tube. 200 pi of 

secondary antibody (Fluorescein isothiocyanate (FITC) conjugated goat anti-rabbit 

IgG, Sigma) at a 1/200 dilution in antibody dilution buffer was added and incubated 

at 4°C for 4 hours. The mf were washed in wash solution ( 3 x 1 5  minute washes), 

collected by centrifugation (lOOOg x 5 minutes) and the wash solution removed. The 

mf were resuspended in 100 pi Evans Blue counterstain. The mf were collected again 

and excess Evans Blue removed, the mf were then mounted on microscope slides in
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Dabco mounting buffer. The mounted worms were examined under an Olympus 

BX60 UV fluorescence microscope using a BP460-490 excitation filter. Images were 

recorded using a SPOT photocapture system (Diagnostic Instruments Inc.) Control 

reactions; no primary antibody, no fluorochrome or with pre-immune serum were 

conducted to determine background fluorescence.

2.14.2 Staining of permeabilised parasites.

To localise MMC-1 antibodies to internal epitopes, exsheathed mf were 

permeabilised prior to staining. Mf were exsheathed (2.4.1) then fixed and stored as 

described above. The mf were then incubated overnight at 37°C in 10 ml of BME 

solution then collected and washed 3 x 5  minutes in PBS (collected by centrifugation 

lOOOg x 5 minutes). The mf were transferred to a fresh Falcon tube containing 10 ml 

of collagenase buffer and incubated for 4 hours at 37°C in a rotary shaker at 110 rpm.

Reagents:

Fix solution

4% (v/v) Paraformaldehyde (PFA) 

in PBS (2.15.6)

Antibody dilution buffer

0.1% (w/v) BSA 

0.5% (v/v)Triton X-100 

in PBS

Evans Blue counter stain

0.1% Evans Blue in PBS

Storage buffer

0.1% PFA in PBS

Wash solution 1

0.1% (v/v) Triton X-100 in PBS

Dabco mounting buffer

Dabco/Glycerol

50 % Glycerol in ddH20

2.5 % Dabco pH 8.0

(1,4-diazobicyclo-[2.2.2]-octane)
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The mf were washed as before and fluorescent localisation was then conducted as 

described for whole parasites (2.14.1).

Reagents:

2.15 Analysis of immune response to MMC-1 antigen.

2.15.1 Preparation of soluble extracts.

Adult B. pahangi soluble extract for use in the cell culture experiments was 

prepared by homogenisation on ice in RPMI+ (1640 Dutch modification). The 

homogenate was incubated on ice for 60 minutes with occasional mixing and then 

centrifuged at 10,000g for 30 minutes at 4°C. The supernatant was sterilised by 

filtration through a 0.45 pm Spin-X filter (CoStar), and assayed for protein 

concentration by the Bradford method (2.15.2) and stored at -70°C until use.

Soluble extracts of mf were produced from approximately 5 x 106 mf in 500 

pi RPMI+ (1640 Dutch modification). The mf were sonicated on ice ( 9 x 1 0  seconds 

on 1 minute off, Soniprep 150, MSE). The extract was then incubated on ice for a 

further 30 minutes with occasional mixing. The homogenate was then centrifuged at 

10,000g for 30 minutes at 4°C. The supernatant was sterilised by filtration through a 

0.45 pm Spin-X filter (CoStar), and assayed for protein concentration by the 

Bradford method and^tored^t -70°C until use.

BME solution

5% (v/v) p-mercaptoethanol 

1% (v/v) Triton X-100 

125 mM Tris-HCl pH 6.9

Collagenase buffer

1 mM CaC12

100 mM Tris-HCl pH 7.5

115 digestion units/ml collagenase

(Sigma)
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Reagents:

RPMI+

RPMI medium (1640 Dutch modification)

5 mM L-glutamine 

5 mM Hepes 

100 U/ml penicillin 

1 0 0  pg/ml streptomycin

2.15.2 Protein assay the Bradford method.

The protein concentration of the samples was determined using a BioRad dye 

reagent based on the Bradford method [170]. A protein sample of unknown 

concentration was diluted with ddH20  (typically 1/15), 10-50 pi of sample was added 

in duplicate to the wells of a flat-bottomed 96-well plate and made to 160 pi with 

ddH20 . Standards were prepared using dilutions of BSA (0.5 pg to 5pg) and made to 

160pl with ddH20 . 40 pi of Bradford reagent (BioRad) was added to each well, the 

samples were mixed and read on a micotiter plate reader at 595nm wavelength after 

eight minutes. The protein concentrations of the samples were determined from a 

standard curve produced from the absorbance of the protein standard concentrations.

2.15.3 Animals and infection protocols.

6  week-old male BALB/c mice purchased from Harlan-Olac (Bicester, U.K.) 

were maintained in filter top cages. Groups of 5 mice were injected twice (day 0, day 

14) s.c. with either soluble mf extract (100 pg/mouse in Freund’s incomplete 

adjuvant), MMC-1 antigen (200pl pulverised antigen (2.10) in Freund’s incomplete 

adjuvant) or adjuvant alone. Animals were killed by C 0 2 inhalation and the spleens 

removed.
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2.15.4 Preparation of spleen cells.

Spleens were washed in RPMI and teased to a single cell suspension by 

pushing through Nytex membrane. The cells were collected by centrifugation (1000 

rpm 5 minutes) and erythrocytes lysed by addition of 2.5 ml 0.83 % N H 4 C I  (pH 7.2). 

The splenocytes were washed twice with RPMI and the number of viable cells 

determined by trypan blue exclusion. The cells were then resuspended at 1 x 107/ml 

(for proliferation studies) or at 2 x 107/ml (for production of cytokines) in RPMI 

supplemented with 20 % heat inactivated FCS (GibcoBRL) to give a final 

concentration of 1 0  %.

Reagents: 

Ammonium chloride solution.

0.14 M NH4 CI

0.02 M Tris-HCl pH 7.65

make to 1 L with ddH2 0

sterilise by autoclaving and store at 4°C.

2.15.5 Proliferation assay.

Splenocyte proliferation in response to antigen or ConA was measured by 3H 

thymidine incorporation. Triplicate 100 pi cultures were set up in 96-well half area 

flat bottomed plates (CoStar) at a concentration of 5 x 105 cells/well. Cells were 

stimulated with either adult or mf soluble extract at 1 0  pg/ml (2.15.1), electro-eluted 

MMC-1 antigen at 1 pg/ml (2.9.6) or ConA at 1 pg/ml. The concentrations of antigen 

and ConA were determined to be optimal in preliminary experiments. After 48 hours 

(ConA) or 48 and 72 hours (adult/mf/MMC-1 antigen) culture at 37°C, 5 % CO2 the 

cells were pulsed for 16 hours with 0.5 pCi of 3H thymidine/well (1 mCi/mmol,
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Amersham). The cells were harvested and the radioactivity measured in a 

“Topcount” microplate scintillation counter (Canberra Packard Instrument 

Company).

2.15.6 Analysis of cytokine production by ELISA.

Spleen cells were cultured at 1 x 107/ml in duplicate 1 ml cultures in 24 well 

flat bottom plates (CoStar) in the presence of ConA (5 |ig/ml), mf/adult antigen (10 

(ig/ml) or electro-elution purified MMC-1 antigen (1 (Xg/ml). After 48 hours at 37°C, 

5 %C02 the supernatants were collected and stored at -70°C. Levels of IL-2, IL-4, IL- 

5, IL-10 and IFN-y were measured by two site ELISA using antibody pairs 

(PharMingen) as described in [96]. Quantities of cytokines in pg/ml were determined 

by reference to standards of recombinant cytokines. The limit of detection of each 

assay was defined as the mean plus three standard deviations of 16 wells containing 

medium (RPMI/10% FCS) only.

The protocol for the cytokine ELISA is as follows. ELISA plates (Coming 

Easy-wash) were coated with the appropriate capture antibody in PBS (50 pl/well) at 

4°C overnight, then blocked with 10% FCS in PBS/0.05% Tween 20 (150 pl/well) 

for 45 minutes at 37°C. Doubling dilutions of the cytokine standards were prepared 

in RPMI/10%FCS. The plate was washed with PBS/0.05% Tween 20 (3 x rinse 

followed by 2 x 3 minute washes) then the standards and samples were added (50 

(ll/well) and the plate incubated at room temperature for 2 hours. The plates were 

washed as before and the biotinylated detecting antibody diluted in 1 % BSA in 

PBS/0.05 % Tween 20 was added (50 (ll/well) and the plates incubated at room 

temperature for 1 hour. The plates were washed as before. Strepavidin peroxidase
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(Serotec) diluted 1/1000 in PBS/0.05% Tween 20 containing 1 % BSA was added 

(75 |iil/well) and the plate incubated at room temperature for 1 hour. The plate was 

washed as before then TMB peroxidase substrate (KPL Biotechnology) was added 

(100 (ll/well). After 15 minutes at room temperature the plates were read at 620nm in 

a Dynatech MR5000 automated ELISA reader.

2.7 mM KC1

1.47 mM KH2P 0 4

in ddPbO, sterilise by autoclaving, store at room temperature.

2.15.7 IgG responses to MMC-1

To test for the presence of MMC-1 reactive IgG molecules in antisera the 

following ELISA test was used. ELISA plates (Corning Easy-wash) were coated with 

100 |il of either MBP-MMC-1 fusion protein or with MBP2* protein (wild type 

MBP, New England Biolabs) both at 250 ng/well (in carbonate buffer) at 4°C 

overnight. The samples were then blocked with 5 % BSA in PBS Tween 20, 200 

pl/well for 30 minutes at 37°C. The plate was washed with PBS/0.05% Tween 20 (3 

x rinse followed by 3 x 3 minute washes). Serum samples were then diluted 1/100 in 

PBS/Tween 20 and added to the plates (100 pl/well) for 90 minutes at room 

temperature. The plates were washed as before and then a goat anti-mouse IgG 

horseradish peroxidase conjugate (Bio-Rad) diluted 1/1500 in PBS/Tween 20 was 

added and the plate incubated for 60 minutes at room temperature. The plate was 

washed as before then a TMB peroxidase substrate (KPL Biotechnology) was added

Reagents:

PBS

137 mM NaCl 

8 . 1  mMNa 2HP0 4

PBS/0.05 % Tween 20

500 \i\ of Tween 20 was added 

per litre of sterile PBS.
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(100pl/well). After 2 and 4 minutes the plates were read at 620 nm in a Dynatech 

MR5000 automated ELISA reader. The results were recorded for individual mice and 

the reactivity of MMC-1 calculated by subtracting the MBP background from the 

corresponding results.

2.15.8 Human IgG responses to MMC-1

To determine if a humoral response to MMC-1 could be detected in human 

sera from individuals infected with B. malayi ELISA experiments were conducted in 

collaboration with Dr Xingxing Zang (University of Edinburgh). Serum from 

subjects characterised as either, asymptomatic mf-, mf + or European normal controls 

were tested for the presence of MMC-1 specific IgG subclasses. The MBP-MMC-1 

fusion protein was used to coat ELISA plates (200 ng/well diluted in 0.06 M 

carbonate buffer) each serum was reacted in duplicate at a 1/100 dilution (diluted in 

PBS/0.05% Tween 20). Each serum was also reacted against MBP alone (200 

ng/well). Bound antibody was detected using isotype-specific mouse monoclonal 

antibody (anti-IgGl 1/4000, anti-IgG2 1/2000, anti-IgG3 1/1000 and anti-IgG4 

1/4000 diluted in PBS/0.05 % Tween 20, SkyBio). Bound IgG was recognised by 

peroxidase-conjugated rabbit anti-mouse Ig (1/1500) and developed using ABTS 

substrate (KPL Biotechnology). The plates were read after 2 minutes at 405nm.
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Table 2.1 Oligonucleotide primers.

SL1 5’ GCCGG A ATTCGGTTT A ATT ACCC A AGTTTG AG 3*

oligo (dT) 5’ GCCGCTCGAGTTTTTTTTTTTTTTTTT 3'

adapted oligo (dT) 5 GTCAGATCTACGCGTCGACCTCGAGl 1 1 1 1 1 1  lT T l IT 1 1 IT  3

adapter 5' GTCAGATCTACGCGTCGACCTCGAG 3'

T3 5' AATTAACCCTCACTAAAGGG 3'

T7 5' TA AT ACG ACTC ACT AT AGGG 3’

mmc- 1F1 5’ GCATTTAGTGCAACCATCGCTGATG 3'

mmc- 1R1 5’ ACGTCGAAAGAGTAAACCAGCATCG 3'

mmc-lR3 5' CGTTCTTTGCGATCCTGGG 3'

mmc- lg sp l 5' CAACAACAGCAACATCCTTC 3’

mmc- lgsp2 5’ TTTGCGATCCTGGGTCTCAG 3’

mmc- lgsp3 5’ TCATCAGCGATGGTTGCAC 3’

5 ’ RACE AAP 5 ’ GGCCACGCGTCGACTAGTACGGGIIGGGIIGGGIIG 3 ’

5 ’ RACE AUAP 5 ‘ GGCC ACGCGTCG AC AGT AC 3 ’

M M C-lExFl 5’ GCCGGG ATCC ATG A A AT ATT 3'

M M C-lExRl 5’ GCCGCTGCAGTCAACAACAG 3'

vmc-2Fl 5’ GCACTTACTGCCCAAATGTCAGTTG 3'

vmc-2Rl 5' ACCACTGTGCAAATAGTATCCAATG 3'

vmc-2gspl 5' GGAAGTTGAAGCAGTACGACCGTGGG 3'

(3-tubA 5' AATATGTGCCACGAGCAGTC 3'

|3-tubB 5’ CGGATACTCCTCACGAATTT 3'

*

T3 5' AATTAACCCTCACTAAAG 3'

*
T7 5’ TAATACGACTCACTATAGGG 3’

M13rev 5' CAGGAAACAGCTATGAC 3'

M l3 (-40) 5' GTTTTCCCAGTCACGAC 3'

* Fluorescent (IRD800 labelled) primers corresponding to these sequences were used 
for LI-COR automated sequencing. Primers were synthesized by MWG.



CHAPTER THREE



3.1 Introduction.

The aim of this project was to isolate and characterise genes that are 

differentially expressed by the mf of Brugia pahangi when in the mosquito and 

mammalian hosts. The approach adopted was a differential screening of a 

mammalian-derived cDNA library using cDNA probes prepared from two 

populations of mf, i.e. mosquito and mammalian derived. A similar method has 

previously been used in this laboratory for the isolation of cDNA clones differentially 

expressed in the mammalian-derived L3 compared to the vector-derived L3 [76, 79]. 

The experiments reported in this chapter involved the preparation and screening of a 

mammalian-derived mf cDNA library. For the purpose of carrying out differential 

hybridisation, two populations of cDNA are required. In this case, one from 

mammalian-derived mf and the second from vector-derived mf. Ideally to obtain 

vector-derived mf for the production of cDNA probes a mass dissection of infected 

mosquitoes would be undertaken. However this is impractical due to the small size of 

the mf, approximately 280 pm X 5-6 pm (24 hours post infection) [9], and the 

intramuscular nature of infection within the mosquito flight muscles. This constraint 

on the availability of in vivo mosquito-derived mf material for RNA extraction and 

consequent cDNA production, necessitates an alternative approach. The approach 

described in this chapter was to culture mf in vitro, using a system that might mimic 

in vivo events, and which might stimulate gene expression comparable to that of mf 

in the insect vector. As the vector-derived mf were produced by in vitro culture, the 

mammalian-derived mf were treated in a comparable way. This was considered 

important so that extraneous variables introduced by additional purification and 

culture steps would be equivalent in each of the two culture systems. Any differences
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observed in gene expression between the two populations could therefore be more 

confidently attributed to differences in the culture systems.

As discussed in Chapter One, B. pahangi mf in the bloodstream of the 

definitive mammalian host are enveloped in the microfilarial sheath. Following 

ingestion with the bloodmeal the mf undergo a migration through the mosquito. The 

mf penetrate the mosquito midgut and pass through the haemocoel before migrating 

to the site of development, primarily the thoracic muscles, where they initiate 

development [8]. At some point during this migration the microfilarial sheath is lost 

[171]. As the loss of the sheath is a pre-requisite for development of the mf, attempts 

to mimic the in vivo development of the mf require that the sheath be artificially 

removed for the culture experiments. To this end the mf were artificially exsheathed 

and then allowed to migrate through a pad of solidified low melting temperature 

agarose; this had the dual purpose of retaining any mf damaged during exsheathment 

and mimicking the migration through the mosquito midgut. Exsheathed mf were then 

cultured in a number of different media to ascertain the optimal conditions for 

survival in vitro. From these worms RNA was isolated and used in subsequent cDNA 

preparation to produce the probes that were used for the differential screening of the 

mammalian mf cDNA library.

Initially a B. malayi mf cDNA library obtained from the Filarial Genome 

Consortium was utilised. The library was differentially screened with complex cDNA 

probes produced by RT-PCR of either mammalian or vector-derived B. pahangi 

RNA (as described in section 2.5). However as no differentially expressed cDNAs 

were isolated in the differential screen, it was deemed necessary to screen a new mf 

library produced under controlled conditions.
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3.2 Results.

3.2.1 Artificial exsheathment of mf.

It has been shown previously that the exposure of the mf of B. pahangi to 

proteases or concentrations of calcium greater than 10 mM, stimulates exsheathment 

in vitro [172]. In an attempt to repeat these experiments, two proteolytic enzymes, 

Pronase, (Sigma type XIV) from Streptomyces griseus and Subtilisin (Sigma type 

VII), were compared for their capacity to exsheath B. pahangi mf in vitro.

Using a 24 well tissue culture plate, a series of doubling dilutions ranging 

from 500 |ag/ml to 1.95 |ig/ml of each enzyme was prepared by serial dilution of a 

stock solution with HBSS. To each well approximately 2.5 X 104 mf, purified from 

an infected jird, and suspended in HBSS were added. The process of exsheathment 

was monitored at set time points using phase-contrast microscopy. In the preliminary 

experiments the ability of Pronase to promote exsheathment was observed to be 

greater than that of Subtilisin. Mf that are destined to exsheath adhere to the plastic 

substrate and exhibit a thrashing movement until the sheath ruptures and the 

exsheathed mf are released. After five minutes in all concentrations of Pronase 

solution, mf showed the characteristic adherence to the substrate. After a ten minute 

incubation in Pronase (500 |ig/ml) a large number of the worms were exsheathed and 

were free-swimming; in comparison, even after one hour of incubation in the highest 

concentration of Subtilisin (500 |ig/ml), no exsheathment was observed, although the 

mf were still motile. Following this initial experiment, Pronase was selected for 

further experimentation to determine the optimal conditions of concentration and 

incubation time for exsheathment.
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The percentage exsheathment of mf was compared after 5, 10, 15 and 40 

minutes using three concentrations of Pronase, 2, 1 and 0.5 mg/ml diluted in HBSS. 

At the set time points 25 jllI of the mf suspension was spotted onto a microscope slide 

and the mf killed by passing over a flame. After observation by phase-contrast 

microscopy the percentage of exsheathed mf was calculated. The results are shown 

graphically in Figure 3.1. From these experiments a protocol of exposure to 1 mg/ml 

Pronase for 10 minutes was considered optimal. The exsheathment step was followed 

by two washes in HBSS + 10% FCS, and a final wash in HBSS with no added FCS. 

The addition of FCS to the wash solutions was intended to "mop-up" any residual 

enzyme. The full details of the exsheathment protocol are described in section 2.4.1.

3.2.2 Agarose pad purification of exsheathed mf.

In an attempt to mimic the migration of the mf from the bloodmeal to the site 

of development the mf were purified through an agarose pad. This technique is a 

modification of the process of purification first described by Greene and Schiller 

(1979) [165]. The technique is described in detail in section 2.4.1. Mf migrate 

through an agarose pad and can be collected from the surface medium (Figures 3.2 

and 3.3). As well as mimicking the migration of the mf, this technique requires an 

active effort from the mf and therefore has the advantage of selecting a homogeneous 

population of mf, leaving the weaker and less fit mf in the agarose pad. A 

disadvantage of the technique is that a proportion of the mf are lost. In order to 

quantify the numbers of mf that were being retained in the agarose pad, counts of mf 

were taken at sequential points during the process of purification. Mf counts were 

taken, prior to, and following exsheathment (points A and B of Figure 3.3,
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Figure 3.1. Percentage exsheathment of B. pahangi mf induced by incubation 
with Pronase enzyme.
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Figure 3.1
Approximately 2.5 x 104 mf were incubated at room temperature in either 2, 1 or 0.5 
mg/ml Pronase in HBSS. The percentage exsheathment after 5, 10 15 and 40 minutes 
was determined by phase-contrast microscopy.



Figure 3.2. Agarose pad purification of microfilariae.

- v

Figure 3.2
Following the exsheathment the mf were purified by migration through a low melting 
point agarose pad. A) 1 ml of molten 2% low melting point agarose is placed in a 35 
mm petri dish. B) 1 ml of mf in Grace’s insect tissue culture medium is added and 
mixed. C) The 1 % agarose mixture is overlayed with fresh Grace’s medium and 
incubated at 28°C for 1 hour. The mf migrate through the agarose pad into the 
Grace’s medium. D) The medium containing the mf is removed. For best returns of 
mf steps C and D were repeated.



Figure 3.3 Flow diagram of protocol for production of vector-derived mf.

Mf in peritoneal cavity of the jird.

Purification from contaminating host cells.
Lymphoprep centrifugation at room temperature.

(A)
▼

EXSHEATHMENT 
Incubation in 1 mg/ml pronase, 10 minutes at room temperature.

(B)

Wash x 2 xlO ml HBSS + 10% FCS.

Wash 10 ml HBSS.

(C)
▼

Agarose pad purification 2 x 1 hour at 28°C.

▼

Collect mf from surface of agarose pad.

(D)

Culture 16 hours, Grace’s insect medium, 28°C.



respectively) and prior to, and following agarose pad purification (points C and D of 

Figure 3.3, respectively). Mean numbers of mf were calculated from duplicate 25 |il 

samples taken at each of the time points. The results of the total number of mf at each 

time point are shown in Table 3.1. The total percentage recovery of mf through the 

agarose pad in this experiment ((Di + Dii) C) x 100 is 98.2%. In contrast the 

percentage recovery after exsheathment (B A) x 100 is 50.9%, and after the 

washing procedures (C -s- B) x 100 is 34.5%. The loss at these stages is likely to be 

due to mf adhering to the plastic tubes during the exsheathment and washing stages 

of the protocol. The accumulative effect of these losses means that only 17.2% of the 

mf purified from the jird are available for the production of vector-derived mf cDNA. 

Although this places a large demand on the number of mf need to produce cDNA, it 

was considered important to culture the mf in conditions that were thought to mimic 

in vivo conditions.

3.2.3 Comparison of different media for the culture of B. pahangi mf.

The aim of these experiments was to determine optimal conditions for the 

culture of exsheathed mf. Initially the survival of exsheathed mf was compared in a 

mammalian medium, minimal essential medium (MEM) plus 10% FCS at 37°C or in 

the vector medium, Grace’s insect tissue culture medium at 28°C. The mf were 

cultured in 2ml of appropriate culture media at a concentration of approximately 7 x 

103 mf ml'1, in Nunclon flat-sided tissue culture tubes. The survival and behavior of 

the mf after 16 and 24 hours was compared between the two media, using phase 

contrast microscopy. After 24 hours the mf in both the vector and mammalian culture
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Table 3.1 Recovery of mf after exsheathment and agarose pad purification.

Time Point. Mean number of 

mf.

Percentage of pre- 

exsheathment. 

(Recovery)

A. Pre-exsheathment. 139000 100

B. Post-exsheathment. 70750 50.9

C. Pre-purification. 24400 17.6

Di Post purification 

(1 hour)

14500 10.4

DII. Post-purification. 

(2 hours)

9450 6.8

Table 3.1
Duplicate counts of mf were taken at stages during the exsheathment and purification 
of in vitro vector-derived mf. Percentage recovery at each of the time points was 
calculated by comparison to the initial number of worms at time point A.



systems were motile suggesting that the process of exsheathment did not affect the 

viability of the mf.

Following these preliminary experiments a number of different culture media, 

developed for the culture of insect cells, were compared to determine the best 

medium for vector-derived mf culture. The following media were compared: Grace’s 

insect medium, Grace’s insect medium supplemented (contains 3300 mg/L 

lactalbumin hydrolysate), IPL-41 insect medium, SF-900 II serum free insect 

medium, Schneider’s Drosophila medium (revised) and TC-100 insect medium (all 

Gibco Life Technologies). Using 24 well culture plates each medium was tested 

under the following conditions: medium alone; medium + 10% FCS; medium + 

0.25% HEPES; medium + 10% FCS + 0.25% HEPES. FCS was added to assess 

differences in mf survival and behaviour in simple versus more complex medium. 

HEPES was added to buffer the pH of the medium to approximately pH 7. A total of 

1 x 103 mf were added to each of the media and the plates were observed at 16, 20 

and 24 hours. After 24 hours the majority of mf in all conditions were motile and 

there was no visible signs of contamination. The addition of either 0.25% HEPES or 

10% FCS to the cultures did not significantly affect the survival of the mf and as it 

was considered desirable to keep the culture system as simple as possible these were 

excluded from the final culture system. Two of the insect media gave particularly 

interesting results, Grace’s insect medium (unsupplemented) and IPL-41 insect 

medium. The viability of the mf (as determined by motility) was optimal in both of 

these media. However, observation showed that the mf behaved quite differently in 

each media. The mf in Grace’s medium showed relatively little motility but remained 

elongate with movement confined to the anterior and posterior ends, whilst the mf in
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IPL-41 exhibited a thrashing movement along the whole length of the body. These 

findings are interesting as the behaviour of mf freshly harvested from infected jirds or 

cultured in mammalian medium (MEM + 10% FCS, 37°C) resembles that of those in 

IPL-41. In contrast, the behaviour of mf in Grace’s insect medium resembles that of 

mf developing in infected mosquitoes [9].

Following these experiments, the final culture conditions selected for vector- 

derived mf were as follows: exsheathment, agarose pad purification and incubation at 

28°C + 5%CC>2 for 16 hours in Grace’s insect medium (unsupplemented). An 

overview of the procedure for the production of vector-derived mf is shown in Figure 

3.3.

3.2.4 Comparison of cDNA produced from mammalian-derived and vector- 

derived mf.

Total RNA was isolated using a TRIzol (Gibco, Life Technologies) based 

method (section 2.2.15) from mf cultured in either mammalian or vector-like 

conditions. First strand cDNA was synthesised using superscript reverse 

transcriptase, (Gibco, Life Technologies) and an adapted oligo (dT) primer (section 

2.2.18). cDNAs were amplified using one primer that anneals to the adapter region of 

the adapted oligo (dT), and a SL1 primer that binds to the conserved nematode SL1 

trans-spliced sequence. It was anticipated that PCR amplification would result in a 

complex mix of cDNAs that would represent the mRNAs present in the cells of mf 

when cultured under mammalian and vector-like conditions.
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Figure 3.4. Electrophoresis of PCR-amplified cDNA produced from mf cultured 
under vector-like and mammalian-like conditions.

Kbp

4.361

2.322
2.207

0.892

0.603

0.310
0.281

m  m v ex

Figure 3.4
Approximately 2 pg of total RNA was isolated by TRIzol treatment, from 
approximately 1 x 106 mf mass cultured under either mammalian or vector-like 
conditions. First strand cDNA was generated with adapted oligo (dT) and the 
resulting first strand cDNA was PCR amplified for 35 cycles as follows: 94°C/lmin, 
55°C/lmin 72°C/lmin, followed by a final extension of 10 minutes at 72°C.
5 pi of resulting PCR products were run on a 1 % agarose gel.

A,H = Hind III digested X DNA molecular weight markers.
0X = Hae III digested 0X174 DNA molecular weight markers.
M = cDNA of mf cultured in mammalian like conditions (MEM + 10% FCS, 37°C). 
V = cDNA of mf cultured in vector-like conditions (mf artificially exsheathed, 
Graces insect tissue medium, 28°C).



By visual comparison of the two cDNA populations electrophoresed on an 

ethidium bromide stained agarose gel, no clear differences could be observed (see 

Figure 3.4) The lack of gross differences between the two cDNA populations, which 

would be seen as more prominent bands in one sample compared to the other, 

excluded the possibility of cloning cDNAs by direct excision from an agarose gel. As 

the differences between the two cDNAs populations was below this level of detection 

a more sensitive method would need to be employed. To this end the two cDNA 

populations were used as the probes to hybridise to a mammalian-derived mf cDNA 

library, as discussed below.

3.3 Screening of a B. malayi mf cDNA library.

A conventional mf cDNA library (SAW94LS-BmMf) was supplied by the 

filarial genome project resource centre at Smith College, Northampton, MA 01063, 

USA. A total of 1 x 104 pfu was plated on five 130mm petri dishes and grown 

overnight at 37°C. Phage were transferred to duplicate nylon filters and the filters 

probed using 32P radiolabeled cDNAs produced from vector-derived or mammalian- 

derived B. pahangi mf, as described in section 2.5.2. The specific activity of the 

probes was similar as determined by calculating the incorporated cpm. The filters 

were washed at high stringency (65°C washed to 0.1 X SSC). and exposed to 

autoradiographic film overnight at -70°C. From this primary screen 37 plaques 

hybridised more strongly to the mammalian probe. Initially the ten most strongly 

hybridising phage were picked, titrated and a secondary screen at low density (2 x 102 

pfu) was performed. When the resulting autoradiographs were examined no
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differential hybridisation was observed. This secondary screen was repeated but again 

no differential hybridisation was seen. As the secondary screen did not produce any 

differentially hybridising cDNAs (for possible reasons discussed in section 3.5), a 

new B. pahangi mf cDNA library was prepared.

3.4 Construction of a B. pahangi cDNA library.

A B. pahangi cDNA library was constructed using mf collected from the 

peritoneal cavity of jirds, Meriones unguiculatus, infected at least three months 

previously with 250 infective L3. The mf were purified from contaminating host 

cells, washed and cultured in mammalian-like conditions (37°C MEM + 10% FCS) 

for four hours prior to snap freezing in liquid nitrogen, as described in detail in 

section 2.3.1. All manipulations were optimised to avoid prolonged exposure to 

ambient conditions. Due to the small amounts of starting material available the 

library was constructed by reverse transcriptase PCR (RT-PCR) [154], using the 

nematode spliced leader (SL1) and an adapted (dT) primer. An adapter primer rather 

than oligo (dT) was utilised in order to try and reduce internal priming at adenine rich 

regions and therefore increase the chance of amplifying full-length cDNAs. The use 

of the adapter primer also allows the annealing temperature of the PCR to be raised, 

further increasing the specificity of priming. In order to optimise the quality of the 

library, total RNA was extracted from three different cultures of mammalian-derived 

mf and this was used in separate RT reactions with adapted oligo (dT) primer. Six 

separate 10 cycle PCRs were conducted utilising the first strand cDNA as a template. 

Products from more than one PCR were mixed in order to minimise any preferential 

amplification that may have occurred in one of the reactions, and also to reduce the
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frequency of PCR errors. The PCR products were then size separated using a 

Sepharose 400 column (Pharmacia), and cDNAs of a size greater than 400bp were 

collected into 1 X PCR buffer (Perkin Elmer). An aliquot of this fraction was then 

used in a 20 cycle PCR using the same conditions as before. The resulting cDNA 

pooled from the various PCRs was again size separated, digested with Eco RI and 

Xho I and ligated into A.-ZapII (section 2.3.2) The resulting primary library was 

amplified (section 2.3.4) and stored at -70°C. For an overview of the two-step PCR 

protocol see Figure 3.5.

3.4.1 Characterisation of the B. pahangi mf cDNA library.

The primary library had a titre of 3.3 x 105 pfu and contained 94% 

recombinants, as determined by oc-complementation (section 2.3.3). The range of 

insert sizes was determined by PCR on fifty randomly picked well-separated plaques. 

PCR was performed using the primers corresponding to the T7 and T3 vector 

sequences that flank the multiple cloning site of the Bluescript plasmid. After 

amplification, the products were electrophoresed through an agarose gel containing 

ethidium bromide. By subtracting the size of T3-T7 in a non-recombinant phagemid 

(167 bp) from that of the individual recombinants, the insert size could be calculated. 

The sizes ranged from 200-950bp with an average of approximately 500 bp (Figure 

3.6).

In an attempt to estimate the percentage of clones that might be differentially 

expressed and thus to estimate how many clones should be screened, 940 plaques 

were picked and plated in an ordered array and replica filters were produced using a
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figure 3.5 Two-step PCR protocol for construction of mammalian-mf cDNA library.

n-^AAAA*
500000 T T T T [adapter region]

Total RNA isolated from collected 
microfilariae.

First strand cDNA synthesis of 
polyadenylated mRNA template using 

an adapted oligo(dT) primer.

Ten cycles of PCR using SL1 and 
adapter primer.

Small size fragments removed by 
Sepharose column purification.

Larger size fragments amplified for a 
further twenty cycles of PCR. 

Resulting cDNA cloned into vector.



Figure 3.6 Determination of library insert size by PCR.

Kbp
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Figure 3.6
10 pi of each phage suspended in SM buffer were amplified using T3 and T7 primers 
which flank the cloning site of the Bluescript plasmid. Amplification for 30 cycles as 
follows: 94°C/lmin, 60°C/lmin 72°C/lmin.

XHR = Eco RI and Hind III digested X DNA molecular size markers.
1-24 = 10 pi of PCR products of individual well separated plaques from B. pahangi 
mammalian mf cDNA library.
B = 10 pi of non-recombinant Bluescript phagemid PCR product.
C = no template PCR control.
XPst = Pst I digested X DNA molecular size markers.



mechanical replicator [173]. Duplicate filters were probed with vector-derived and 

mammalian-derived mf cDNAs as described previously. The filters were washed to 

high stringency (65°C washed to 0.1 X SSC 0.1 % SDS) and exposed to 

autoradiographic film overnight at -70°C. In this test experiment all plaques 

hybridised with equal intensity to both of the probes. This experiment indicated that 

an excess of 940 plaques would need to be screened to isolate any differentially 

expressed genes.

3.4.2 Differential screening of the B. pahangi cDNA library.

The primary library was used in this differential screen as an amplified library 

may not be truly representative of the starting RNA sample, due to the possibility of 

greater amplification of some plaques during this procedure. 2 x 104 pfu of the 

primary library was plated on ten NZY agar plates with E. coli XLl-Blue MRF. The 

bacteriophage were grown overnight at 37°C then transferred to duplicate 

nitrocellulose filters, prior to fixation and probing [153]. The filters were probed, at 

high stringency (65°C, washed to O.lx SSC, 0.1 SDS) with either mammalian- 

derived or vector-derived mf cDNAs, produced as described previously, then exposed 

to autoradiographic film. Plaques containing DNA that hybridised differentially to 

either probe were selected for further rounds of screening to confirm initial 

hybridisation results, Figure 3.7 shows an example of a differential screen in which 

duplicate filters were probed with either mammalian or vector derived mf probes.

Although the initial aim was to isolate genes up-regulated in the mammalian- 

derived mf, a number of cDNAs which hybridised more strongly to the vector-mf 

probe were observed. These were also selected for further analysis. From the initial
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Figure 3.7 An example of a differentially hybridising cDNA screen.

A. B.

Figure 3.7'y
5 x 10“ pfu from the primary screen were plated on 130 mm petri dishes and 
duplicate phage filter lifts were prepared. Filters were hybridised with “Pa-dCTP 
labelled cDNA probes at 65°C and washed to 0.1 X SSC, 0.1 % SDS.

A = Filter probed with the mammalian-derived mf cDNA.
B = Duplicate filter probed with vector derived mf cDNA.
X = marks for orientation of duplicate filters.
Closed arrows show examples of corresponding plaques that are differentially 
hybridising. Open arrows show an example of a plaque hybridising equally to each 
probe.



primary screen of 2 x 104 pfu, eighty one plaques which hybridised differentially 

were selected for secondary analysis, of which 67 hybridised more strongly to the 

mammalian-derived mf cDNA probe. The putative positive plaques were cored from 

the agar and resuspended in SM buffer, as described in section 2.5.2. These were

<y
titrated and subjected to secondary screening at a density of 5 x 10 pfu on a 130 mm 

petri dish, under the same stringency conditions as stated for the primary screen. The 

secondary screen resulted in 28 plaques which strongly hybridised to the mammalian- 

derived mf probe and seven which hybridised more strongly to the vector-derived mf 

probe. As the secondary screen was conducted at low density, well separated 

positively hybridising plaques could be picked for confirmation of hybridisation 

pattern by tertiary analysis using a reverse northern technique.

The eighty-one differentially hybridising plaques were also plated in an 

ordered array using the mechanical replicator, and a test hybridisation using a probe 

specific for B. pahangi heat shock protein 90 cDNA (hsp90) was conducted. hsp90 

was chosen as this gene has previously been shown to be up-regulated in 

mammalian-derived mf (A. Cockroft, University of Glasgow, personal 

communication). One of the duplicate ordered array filters was hybridised under high 

stringency conditions to a gel purified fragment of the hsp90 gene produced by PCR 

using SL1 and an internal gene specific primer. After washing to high stringency (0.1 

x SSC 0.1% SDS at 65°C) the filter was exposed to autoradiographic film. Figure 3.8 

shows the developed autoradiograph in which the probe can be seen clearly 

hybridising to a single plaque. The low level of hybridisation to all other plaques may 

be due to the use of SL1 in the production of the probe, as all cDNAs isolated should
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Figure 3.8 Hybridisation of primary screen positives with hsp90.

Figure 3.8
Eighty-one positives from the primary screen were plated in an ordered array using a 
mechanical replicator. One duplicate filter was hybridised with radiolabelled hsp90 
gene-specific probe. The filter was washed at 65°C to 0.1 X SSC, 0.1% SDS, and 
exposed to X-ray film for 7 days.

X = orientation marks 
A = Positively hybridising hsp90 cDNA.



contain the SL1 sequence due to the technique employed in producing the cDNAs for 

the library.

3.4.3 Confirmation of differential expression by reverse northern.

In order to confirm the differential expression of the putative positives 

remaining after the secondary screen a reverse northern method was utilised. 

Northern analysis [159] involves the separation of RNA through a gel matrix and 

subsequent transfer to a nylon membrane for probing with a DNA probe. In the 

reverse northern technique DNA is separated, transferred and then hybridised with 

cDNA which is representative of the RNA of interest.

The method used here was a modification of the technique described by 

Fryxell and Meyerowitz (1987) [174], as the cDNA of interest is amplified by PCR 

rather than digested from a plasmid vector. Full details of the technique are given in 

section 2.5.2. Briefly, differentially hybridising phage were "tooth-picked" from agar 

plates, liberated into SM buffer and allowed to dissociate. An aliquot of this was then 

used as the template in a PCR reaction using T3 and T7 primer sequences that flank 

the cloning site of the phagemid vector. Equal quantities of PCR products were 

diluted (1:100) and analysed in duplicate in two halves of an agarose gel, following 

which the DNA was transferred to a nylon membrane using standard methods. By 

subsequently bisecting the membrane, two identical blots were produced which were 

differentially screened using the same probes as before. One of the major 

disadvantages of screening phage DNA immobilised on nitrocellulose is the 

assumption that equal amounts of template DNA adhere to each of the duplicate 

plaque lifts. By normalising the template DNA on the membranes by the reverse 

northern method the pattern of hybridisation observed is accepted with greater
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Figure 3.9 Reverse northern confirmation of differentially expressing cDNAs.

m  ♦  •
■

v/'ic

Figure 3.9
10 pi of phage suspended in SM buffer were amplified by PCR using T3 and T7 
primers. Amplified products were run in duplicate on a 2 % agarose gel and DNA 
transferred to nylon membrane. Resulting reverse northern divided into two identical 
filters and hybridised to either mammalian-derived or vector-derived cDNAs.

Panel I = Mammalian-derived mf cDNA probe.
Panel II = Vector-derived mf cDNA probe.
A/C = represent constitutively expressed mRNAs.
B/F = mRNAs up-regulated in mammalian-derived mf.
D = cDNA weakly hybridised, would be exposed for longer.
E = mRNA up-regulated in the vector-derived mf.



confidence. Figure 3.9 shows an example of results from a reverse northern 

experiment. After this tertiary screen twenty-one cDNAs were confirmed to be 

differentially hybridising, of which seventeen hybridised more strongly to the 

mammalian-derived mf cDNA, and four to the vector-derived mf cDNA.

3.4.4 Analysis of differentially expressed cDNAs.

The twenty-one cDNAs were in vivo excised to liberate the recombinant 

Bluescript phagemid, (section 2.5.3) and initially sequenced on one strand using the 

M13 reverse sequencing primer (section 2.2.20). The resulting sequence data was 

compared by a BLAST search [124] to Genbank and EMBL nucleotide sequence 

databases. A summary of the results of sequence homologies are shown in Table 3.2. 

Table 3.2 also shows the abundance of homologous B. malayi ESTs throughout the 

life-cycle. The isolation of 21 differentially hybridising cDNAs from a screen of 2 x 

104 pfu, corresponds to approximately 1 in 1000 cDNAs from the library representing 

genes differentially expressed in the mf stage of B. pahangi. The 21 differentially 

hybridising cDNAs represented nine differentially expressed genes. Five of the genes 

isolated were ribosomal protein genes, one was B. pahangi hsp90 and three were 

novel genes.

3.4.5 Selection of genes for further study.

From the twenty-one differentially expressed cDNAs isolated in this study 

two were initially selected for further analysis recDNAl and recDNA76. The cDNAs 

were renamed in accordance with the suggested nomenclature for Brugia genes 

[175], recDNAl was renamed Bp-mmc-1 (JB. pahangi-mammalian-derived mf
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cDNA-I) and recDNA76 was renamed Bp-vmc-2 (B. pahangi-ypctor-derived mf 

cDNA-2). mmc-1 represented the most abundant differentially expressed cDNA 

within the library; it was found nine times during the differential screen of 2 x 104 

plaques, mmc-1 was first isolated in this laboratory by Dr Fiona Thompson whilst 

studying the small heat shock proteins of B. pahangi, (bpcDNA5, accession number 

X95664). Then, as now, the clone showed no significant homology to any published 

sequences, other than to itself. The fact that mmc-1 does not show significant 

homology to sequences in the C. elegans genomic database, which is now completed, 

or the EST database, that would more readily produce data on abundant sequences, 

suggests that this may be a Brugia-specific gene. Whether it is specific to filarial 

nematodes or is present in more divergent species is an interesting question, mmc-1 

was potentially very interesting as it may represent an important gene in the 

maintenance of the developmental block exhibited by the mf in the mammalian blood 

stream, or in the mf-specific modulation of the host immune system.

Although the initial aim of this study was to identify genes up-regulated in the 

mammalian mf, vmc-2, was also chosen for further study as relatively little is known 

of the biology of the parasite when developing in the mosquito. As this gene is up- 

regulated upon transfer to the vector it may play an interesting role in the process of 

adaptation to the new host. Upon entering the mosquito host the mf find themselves 

in a different physico-chemical environment, and must rapidly adapt to these 

conditions whilst resuming development. Development within the mosquito involves 

profound morphological and presumably physiological changes, and it is possible 

that this gene may play a role in this process of adaptation.
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3.5 Discussion.

The initial aim of this project was to screen by differential hybridisation a B. 

malayi mf library. The availability of cDNA libraries from the filarial genome 

consortium offers a tremendous advantage to laboratory researchers as time and 

materials are more effectively utilised. Unfortunately no differentially hybridising 

cDNAs were isolated from this library. The fact that hybridisation of the B. pahangi 

probes was observed, but not in a differential manner, suggests that the lack of results 

is not due to inter-specific differences of probe (B. pahangi) and library (B. malayi) 

cDNAs. Studies in this, and other laboratories, have shown a high level of homology 

between the two species. The lack of isolated cDNAs may relate to the numbers 

screened. 10,000 pfu were screened and from the initial studies it was likely that only 

0.1 % of the pfu represented differentially expressed genes, this would predict that 

only 10 differentially hybridising plaques would be observed at most. Alternatively 

the lack of positive results could relate to the conditions of library construction. After 

discussion with the Filarial Genome Project resource centre it became apparent that 

infected jirds were purchased from an external source but no information was 

available as to the conditions under which the mf were handled. In order to exclude 

these potential variables from this study it was considered essential to produce a 

cDNA library using mf that were collected and purified under known conditions.

Harvesting and purification of the mf from the jird necessitates some 

unavoidable exposure to ambient temperature, e.g. during centrifugation steps. 

Furthermore, the only way that a sufficient number of vector-derived mf could be 

collected was by exposing them to insect-like conditions in vitro. Therefore the 

mammalian mf used for the construction of the library, were similarly exposed to a
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mammalian in vitro culture system, in the hope that any differences induced solely by 

handling mf during culture would be equivalent in the two populations of mf. The 

need to produce vector and mammalian cDNAs from in vitro cultured material, 

imposed restrictions on their production. The mf had to be cultured in a medium 

resembling the natural environment of the vector and definitive hosts; therefore 

standard mammalian and insect tissue culture media were used, and the mf for 

vector-derived mf culture had to be exsheathed. The method by which exsheathment 

occurs in vivo is still unknown. Exsheathment has been reported to occur in different 

sites during the migration of the parasite through the mosquito, for example 

exsheathment of B. pahangi mf in Anopheles quadrimaculatus occurs in the midgut 

almost immediately after ingestion [171]. In contrast some reports suggest that 

penetration of the midgut by the mf ruptures or weakens the sheath to allow 

exsheathment in the haemocoel, for review see [171] [176]. Because of the lack of 

evidence as to where the mf exsheath it is difficult to speculate on the factors which 

may be involved in the process of exsheathment. Regardless of the method, the actual 

process of exsheathment or subsequent stimulation of the cuticle minus the sheath 

may provide an important cue for development, and as such it was considered 

important to exsheath the mf prior to culture. Devaney and Howells (1979) showed 

that the exposure of B. pahangi, B. malayi, W. bancrofti and L. carinii mf to a 

concentration greater than 10 mM Ca2+, endopeptidase (5.8 units/ml), or papaya 

extract protease (3.0 units/ml) induced 90-100 % exsheathment [172]. In the 

experiments described here, mf were exposed to 1 mg/ml Pronase, which stimulated 

98% exsheathment after 10 minutes incubation (Figure 3.1). The exsheathment of the 

mf by exposure to protease is presumably caused by the partial digestion of the

104



sheath. It is important to note mf exsheathed by exposure to Ca2+ or endopeptidase 

inoculated into susceptible female mosquitoes are viable and continue to develop 

normally [65].

The results of the in vitro culture experiments showed behavioural differences 

between the two groups of mf following culture. This observation suggested that the 

mf may respond to the different culture conditions and that perhaps the behavioural 

differences would be reflected with differences in gene expression between the two 

populations. Proudfoot et al (1993) [74], showed that changes in the surface 

properties of B. pahangi L3 occurred after less than ten minutes culture in 

mammalian medium (RPMI), versus insect medium (Grace’s) [73]. These changes 

were too rapid to be the initiation of an impending moult, and were thought to be 

associated with an induced change in the parasite caused by external stimuli. 

Interestingly the behavioural changes between mf cultured in mammalian and vector 

conditions reported here, were similar to those reported by Proudfoot et al.

The RT-PCR strategy used to produce a cDNA library has advantages if the 

amount of starting material is limiting. This is particularly relevant when working 

with parasites such as Brugia spp where no culture system is available that allows the 

development of the worm and where a relatively small amount of parasite material is 

available from infected animals. The "stockpiling" of parasites from a life cycle stage 

of interest for subsequent analysis is one way of overcoming this problem, but, in 

situations where time is a factor to be considered, the construction of a cDNA library 

as described can be a relatively quick and simple method for the isolation of genes of 

interest.

105



The problems associated with the use of an SL1 RT-PCR library are: on 

average inserts ligated into the vector are of smaller size compared to a 

conventionally made library, and the relative abundance of mRNA transcripts in vivo 

and the corresponding cDNAs in the library may not be truly comparable. The 

average insert size of the B. pahangi mammalian mf library constructed in this 

project was approximately 500 bp. The insert size was smaller than anticipated, 

presumably because some of the cDNAs are truncated and not full-length transcripts, 

a limitation inherent in the PCR technique. Blaxter et al (1996), by comparison of 

two B. malayi L3 libraries constructed using either conventional, or SLl-oligo (dT) 

RT-PCR methods, showed that the PCR library contained inserts which were an 

average of 30% smaller than the conventional library, 700 bp compared to 1Kb in 

PCR and conventional libraries, respectively [129]. Another obvious limitation of the 

technique is that the SL1 PCR selects for those genes that are SL1 trans-spliced 

during mRNA maturation. In this project the advantages of ease of construction from 

small amounts of material was considered to outweigh the disadvantages. The 

presence of a spliced leader (SL) sequence at the 5’ end of mRNAs was first 

described in the kinetoplastid protozoan Trypanasoma brucei [177]. In 

Trypanosomes all mRNAs posses a 39 nucleotide SL known as the mini-exon 

sequence. This absolute requirement for the SL sequence in the Trypanosomes is due 

to the polycistronic organisation of transcripts that are processed to monocistronic 

units by rra«s-splicing with SL and polyadenylation. The only metazoans to exhibit 

trans-splicing of SL sequences are the platyhelminths and nematodes. Traw^-splicing 

has been found to be universal throughout all nematodes studied to date [178]. SL 

sequences were first discovered in the nematodes on actin mRNAs of C. elegans
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[179]. The abundance of this SL sequence termed SL1 on C. elegans mRNAs has 

recently been predicted to be >70%. [110] while 80-90% of Ascaris mRNAs are 

predicted to contain SL1 [111]. The SL1 sequence of Brugia was initially shown to 

be present on the mRNA for a 63 kDa antigen and was found to be identical to the 22 

nucleotide SL1 sequence as described in C. elegans [180].

The two-step PCR protocol was designed to overcome some of the problems 

mentioned above. By amplifying through 10 cycles, size fractionating, and then using 

additional rounds of PCR it was hypothesised that early preferential amplification of 

some transcripts at the expense of others, leading to a swamping of the reaction 

mixture with a few highly amplified cDNAs, would be avoided. In this way it was 

hoped that the relative abundance of cDNA species in vitro to mRNA species in vivo 

would remain at comparable levels and that this method would isolate truly 

differentially expressed genes. Although this was the aim it appears that, as the insert 

size ranged from 200-900bp and the size separation columns should have removed 

cDNAs of < 400bp, the size separation step was less than optimal.

Prior to carrying out the differential screen the library was subjected to 

various characterisation procedures. Using the mechanical replicator, 940 plaques 

were plated but no differentially hybridising clones were isolated. This demonstrated 

that in excess of 940 plaques would need to be screened in order to isolate 

differentially expressed genes. The total number of differentially hybridising cDNAs 

isolated in this study was 21 from a screen of 2 x 104 pfu, ( < 0.1%). This number 

agrees with the prediction of the initial experiment that the number of differentially 

hybridising cDNAs in the library is approximately 1:1000.
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One of the major differences in the culture systems used to mimic the 

mammalian and vector hosts, was temperature, 37°C versus 28°C respectively. As 

such it was a concern that heat shock proteins might be over-represented in the 

library. However a plaque lift of the 81 primary screen positives gridded by the 

mechanical replicator was hybridised with an hsp90 cDNA and only one positive was 

observed (Figure 3.8). As the hsp90 mRNA has previously been shown to be up- 

regulated in the mammalian-derived mf, this increased confidence in the culture 

systems. Furthermore when the 81 positives were screened against a small heat shock 

protein cDNA, no hybridisation was observed (data not shown), suggesting that heat 

shock proteins were not over-represented in the library.

The use of the reverse northern method had advantages over a tertiary plaque 

screen as it was possible to use equal amounts of cDNA, thus the screen was more 

quantitative. These factors together gave confidence that the culture system did 

influence gene expression in a manner that mimicked in vivo events, and that the 

initial aim of isolating cDNAs, representing mf genes which are differentially 

expressed in mammalian and mosquito hosts was possible by this technique.

From the screen the majority (9/21) of differentially expressed genes are those 

encoding ribosomal proteins. The presence of high numbers of ribosomal protein 

genes in the library may be due to the method of library construction. Blaxter et al 

(1996) compared the percentage of ribosomal protein cDNAs in conventional and 

SL1 RT-PCR libraries of B. malayi L3 [129]. In the RT-PCR library 24 % of the total 

cDNAs represented ribosomal protein genes compared to 10 % in the conventional 

library. This trend has also been seen in other EST projects; for example in 

Trypanosoma brucei, an SL1 PCR library contained 19% ribosomal protein cDNAs
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[129]. The prevalence of these cDNAs in the PCR libraries is likely to be due to a 

combination of two factors. Firstly the high concentration of ribosomal protein 

mRNAs in the original population; 10% of all cDNAs from B. malayi libraries 

prepared from non-L3 life-cycle stages represent ribosomal proteins. Blaxter 

speculated that the high abundance of ribosomal proteins seen in certain life-cycle 

stages may represent a store for future high levels of protein synthesis [129]. This 

explanation may also apply to the mf. A second consideration is the relatively small 

size of ribosomal protein mRNAs. The largest ribosomal protein mRNA (ribosomal 

protein S10) from the B. malayi L3 library is 580 bp, and the average size of the 43 

described to date is 381bp. It has been shown that the size of the target sequence can 

dramatically effect the yield of product by PCR. By studying gain versus allele length 

curves the molar yield of a 1Kb allele will be 18 times higher than that of a 6kb allele 

after 10 cycles, increasing to a 1300 fold excess after 25 cycles [181]. These figures 

could explain why the PCR libraries have a higher percentage of small size fragments 

including the ribosomal proteins.

It is generally assumed that ribosomal proteins would be constitutively 

expressed, however a number of reports do show that specific ribosomal proteins are 

differentially expressed during development [182-184]. This raises the interesting 

possibility that different species of ribosomal protein may be utilised at different 

stages of development, although this will not be investigated further in the present 

study. The fact that abundant cDNAs were being isolated may mean that less 

abundant differentially expressed transcripts are being missed. This was a concern in 

the present investigation, but as a number of potentially interesting cDNAs, were
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isolated it was decided to proceed with these. The following chapters aim to further 

characterise the cDNAs, mmc-1 and vmc-2.
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CHAPTER FOUR



4.1 Introduction.

In the previous chapter the cloning of a number of differentially expressed 

genes was described. This chapter describes further studies of the gene vmc-2, one of 

the cDNAs that appeared to be up-regulated in the mf exposed to mosquito-like 

conditions in vitro.

Although the morphological changes undergone by the mf in the mosquito 

host have been described in detail almost nothing is known of the molecular 

mechanisms which underpin these changes. During the first 48 hours in the mosquito 

the mf undergo an extraordinary metamorphosis. Within 1 hour of feeding the mf are 

present in the flight muscles of a susceptible host, the mf have lost their sheath and 

lie in the muscle fibres and become sluggish. By 48 hours p.i the mf have begun to 

shorten in length and increase in width (190 pm X 8 pm at 24 hours) and by day 

three p.i. the mf is at its minimum length (172 pm X 16 pm) [9], as described in 

1.1.2. The analysis of genes such as vmc-2 may lead to greater understanding of the 

development of the parasite from mf to infective L3. Likewise due to the nature of 

the intracellular infection very little information is available about the biochemistry 

and physiology of the parasite in the mosquito vector [185, 186]. The characterisation 

of genes such as vmc-2 might therefore provide some insight into the biology of B. 

pahangi mf in the mosquito host.

4.2 Results

4.2.1 Nucleotide sequence information.

Three independent vmc-2 excised clones (see section 2.5.3) were sequenced 

to determine an accurate consensus sequence for the vmc-2 gene (section 2.2.20). The
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sequence of vmc-2 is shown in Figure 4.1a. The vmc-2 library clone contains the 

conserved nematode SL-1 sequence shown in bold. The string of adenosine residues 

at the 3' end of the gene is unlikely to be the true Poly-A tail as the poly-adenylation 

signal sequence (AATAAA) is not present upstream. Translation of the mmc-l 

sequence using the GCG genomics program (Genetics Computer Group Madison, 

Wisconsin) revealed a single extended reading frame, but this does not possess a stop 

signal (Figure 4.1b). Therefore vmc-2 is likely to be a truncated sequence caused by 

the internal priming of oligo (dT) in the PCR reactions. Northern blot analysis 

described in section 4.2.4 confirms this assumption, while attempts to isolate the full 

length transcript of vmc-2 are described in 4.2.5

The nucleotide sequence of vmc-2 was compared to the non-redundant 

databases (Genbank, EMBL, DDBJ and PDB) at the NCBI website 

(http://www.ncbi.nlm.nih.gov/blast/) using the BLAST algorithm [124]. The only 

significant matches were restricted to the SL-1 splice leader sequence and when this 

portion was removed no significant matches were returned. The predicted amino acid 

sequence (Figure 4.1b) was used to search the GenBank and SwissProt data bases for 

homologous peptide sequences. The most significant match was to a C. elegans 

hypothetical 90.8 kDa protein TO5H10.7 localised to chromosome E (GenBank 

Q10003), which showed 44.8 % identity over the 79 amino acid peptide. The region 

of similarity was restricted to a glycerophosphoryl diester phosphodiesterase (GLP) 

domain. The GLP gene products are involved in glycerol metabolism in bacteria 

[187], have been reported to be important antigens for diagnosing Borrelia hermsii 

relapsing fever [188] and are protective antigens in infectious syphilis [189]. The 

TO5H10.7 sequence was retrieved from the C. elegans genome database at the
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Figure 4.1a Nucleotide sequence of vmc-2.

1 G G T T T AA T TA CC C A A G TT TG A G G T C AA G C A C TTA C TG CC C A A A T G TCAG T

5 1  TG CACCACG CACAG TG CTTCATTTTTTG G TG G AAG TTG AAG CAG TACG AC  

1 0 1  CG TG G G A G TA TG TA TTTG TTA C AG G TTC ATTG C C A G TTTTA G G TG G TTG G  

1 5 1  T T A C C A T C T A A TG C G TTC G T TTT A TTT C C G G A TC C G G A C TC TG C TA G G C A  

2 0 1  ACG TTG G G AAG G TG AAG TAG AAATTG G ATTG G ATCCAG TAA AATTCCG TT  

2 5 1  A TTTC A T TG G A T A C T A TTT G C A C A G T G G T A A A A A A A A A A A A A A A A A

Figure 4.1a
The consensus sequence was derived from multiple clones from the mammalian mf 
library. These were isolated and sequenced in both directions using T7 and M13 
reverse sequencing primers. The conserved SL-1 sequence is shown in bold at the 5' 
end of the gene. The putative translational start codon at position 45 is double 
underlined, there is no stop codon within the sequence of the proposed ORF.

Figure 4.1b Predicted amino acid sequence of vmc-2 ORF.

1 M SV A P R T V L H F L V E V E A V R P W E Y V F V T G SL P V L G G W L P S N A F V L F P D P D S

5 1  A R Q R W E G E V E IG L D P V K F R Y F IG Y Y L H SG

Figure 4.1b
The proposed amino acid sequence, generated by translation of the nucleotide 
sequence, from ATG at position 45. The predicted protein consists of 79 amino acids, 
from the start codon to the end of the isolated sequence.



Sanger centre and analysed for domain profiles using the Pfam algorithm [190] 

(http://www.sanger.ac.uk/Software/Pfam/search.shtml). The Pfam-B domain 35977 

was found to be homologous. The genes of known function that contain this domain 

were bacterial GLP genes. Figure 4.2 shows a ClustalW alignment of the known GLP 

gene products from various bacterial species. As can be seen the sequences show a 

high degree of similarity along the length of the peptides. When the vmc-2 peptide 

sequence was added to the alignment it did not align well with the other GLPs 

(Figure 4.3). The vmc-2 ORF needs especially large extended gaps to allow any 

homology and therefore this sequence is not believed to be a true GLP.

The T05H10.7 sequence is a hypothetical predicted protein although a 

number of cDNAs have been sequenced that correspond to it. One named yk24e8.5 

corresponds to the region of T05H10.7 showing 48 % identity to vmc-2 at the amino 

acid level and may therefore represent the C. elegans homologue of vmc-2. No 

homology is seen at the nucleotide level which may represent the divergence of the 

sequences or be due to differences in codon bias between the two species. 

Comparison of vmc-2 by the Wu-Blastn algoithm to the parasite genome server at the 

EBI (http://www2.ebi.ac.uk/cgi-bin/parasiteblast2) produced no significant matches 

to other nematodes or to B. malayi sequences. As the predominant source of data in 

the filarial database are ESTs, which, at least initially, represent abundant cDNAs, 

this may suggest that vmc-2 is not an abundant mRNA or is poorly represented in the 

libraries sequenced.
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Figure 4.2 Multiple sequence alignment of bacterial GLPs.
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Figure 4.2
ClustalW alignment (MacVector, Oxford Molecular) of five bacterial GLPs. Matched 
residues are boxed, identical matches are shown in bold.



Figure 4.3 Multiple sequence alignment of vmc-2 ORF and bacterial GLPs.
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Figure 4.3
ClustalW alignment (MacVector, Oxford Molecular) of vmc-2 ORF and 
bacterial GLP peptide sequences. Matched residues are boxed, identical 
matches are shown in bold.



4.2.2 Generation of gene specific probes.

A vmc-2 cDNA fragment (vmc-2Fl-Rl) was generated by PCR using two 

gene specific primers, vrac-2Fl and vmc-2Rl designed from the sequence shown in 

Figure 4.1 (for primer sequences see Table 2.1). cDNA was amplified by a standard 

PCR protocol using mammalian-derived mf first strand cDNA as a template. A single 

cDNA product of 252bp named vmc-2Fl-Rl was obtained, see Figure 4.4. The 

purified DNA was radiolabelled with 32Pa-dCTP and was confirmed to be vmc-2 by 

Southern hybridisation to a vmc-2 containing plasmid. A PCR using the same primers 

was conducted using 200 ng of B. pahangi genomic DNA as a template for 

amplification. A band of approximately 1 kbp (Figure 4.5) was produced that 

hybridised to the vmc-2 cDNA probe. This band named vmc-2Fl-Rlgen was cloned 

into a TA vector (Invitrogen) and stored at -20°C until later use.

4.2.3 Comparison of vmc-2 cDNA and genomic PCR fragments.

Three independent PCR clones of the vmc-2 genomic PCR fragment, isolated 

as described above, were sequenced on three occasions on both strands using a Li- 

COR sequencer. The consensus sequence compiled from the sequence information is 

shown as Figure 4.6. By comparison of the sequences produced by cDNA and 

genomic DNA PCR a map of the predicted intron and exons of the vmc-2 genomic 

fragment was produced. A single intron of 716 bp is present in the PCR fragment 

from positions 167-883 and is shown in bold.
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Figure 4.4a Positions of vmc-2F1 and vmc-2R\ primers.
vmc-2Fl

1 G C G G T T T A A T TA CC C A A G TT TG A G G T C AA G C A C TTA C TG CC C A A A T G TC A

5 1  GTTGCACCACGCACAGTGCTTCATTTTTTGGTGGAAGTTGAAGCAGTACG

1 0 1  ACCGTGGGAGTATGTATTTGTTACAGGTTCATTGCCAGTTTTAGGTGGTT

1 5 1  GGTTACCATCTAATGCGTTCGTTTTATTTCCGGATCCGGACTCTGCTAGG

2 0 1  CAACGTTGGGAAGGTGAAGTAGAAATTGGATTGGATCCAGTAAAATTCCG

2 5 1  T T A T T T C A T TG G A T A C T A T TT G C A C A G TG G TA A A A A A A A A A A A A A A A A
vmc-2 R 1

Figure 4.4b Generation of vmc-2Fl-Rl gene specific cDNA probe.

kbp

4.361 —
2.027 —

0.564 —

XH3 A

Figure 4.4b
lpl of mammalian-derived mf first strand cDNA was PCR amplified using vmc-2Fl 
and vmc-2Rl primers as follows: thirty cycles of: 94°C 1 minute, 60°C 1 minute, 
72°C 1 minute. Amplified products were size separated on a 1% agarose gel. A single 
band of predicted size, 252bp was observed, this was excised and purified using 
Qiagen gel purification kit. When tested it specifically hybridised to a plasmid 
containing vmc-2.

^H3 = Hind III digested X DNA molecular size markers.
A= vmc-2Fl-Rl PCR.



Figure 4.5 vme-2F 1-vme-2R1 genomic PCR.

Kbp

_ y \ W l
—  0.805

—  0.339
—  0.268

Figure 4.5
200 ng of B. pahangi genomic DNA was amplified by PCR using the vmc-2Fl and 
vwc-2Rl primers as follows: Thirty cycles of: 94°C 1 minute, 60°C 1 minute, 72°C 3 
minutes.
The amplified products were size separated in a 2 % agarose gel. A band of 
approximately 1 kb, marked I was isolated and purified.

A = Positive control vmc-2 plasmid PCR vrac-2Fl and vrac-2Rl primers.
B = 200 ng Genomic DNA PCR vmc-2F1 and vwc-2Rl primers.
C = No template negative control.
XPst = Pst I digested X DNA molecular size markers.



Figure 4.6. Sequence of vmc-2Fl-Rl genomic PCR fragment.

v m c -2 F l-^
1 GCACTTACTG CCCAAATGTC AGTTGCACCA CGCACAGTGC TTCATTTTTT

51 GGTGGAAGTT GAAGCAGTAC GACCGTGGGA GTATGTATTT GTTACAGGTT

101 CATTGCCAGT TTTAGGTGGT TGGTTACCAT CTAATGCGTT CGTTTTATTT

151 CCGGATCCGG ACTCTGCGTA AGTTATTTTC CTCCATTTAT TATTACTGTT

201 TCCATTACTA TTATTGTTTG ATTTTATTAT AAACGTTCAG AAATTTCTAA

2 5 1 TGAGAAAAAA TCATTTGAAC AATCGAGGAA TTTTTAGTTT GTTCTCCACA

301 CCTTTAAGTT TTTTTCTTCT TAAGATAGAA TCTGCTAATC TGGTGGAACT

351 GAAGCATAAT TTTTACTTTT TTTTTCTCTC TTTTTTGAGG TTAAAACATT

4 0 1 GCATTAAAGA TCTATGAGTT ATCTTGAAAT CATAACAGTT AAATGGTACT

45 1 CATTTATGTT CAAAATTATG CTTTTTTTTG AAGGCAAGAT GTTTTTGAAA

501 CAGTAATATC TAAAAGAAGT AAAAGATAAA AGCTTCTAAT TGCATCAGAG

551 TCAAATTTTT GGATGATTTC TATCATGTCA AGCCAATTCC TTTCATCATG

601 GAAGTTATAA ATTTAGAAGT TTTAATTTCA AAAACAATTA AGTAAAAGAT

651 AGAAAAGATG GCTTATTCTG ATTTTAATAA TTGCGAAAAA TATTCATATG

70 1 ATACAACTTT ACTGCGCACG AAACGTGATA ACTAAAAATG CTTATATTAT

75 1 GATGGCTACT GCATTGGACC GGTTTCAGTG TGAGTATTGT TCGATTTAAA

801 GTATGGTATA GAAAAAATAG TAATAAATAT TGTTTTGAAT AAAAAAAAAA

851 ATCAATATTC TGATATATAA ATATATTTTT CAGTAGGCAA CGTTGGGAAG

901 GTGAAGTAGA AATTGGATTG GATCCAGTAA AATTCCGTTA TTTCATTGGA

95 1 TACTATTTGC ACAGTGGT
v m c -2 R l

Figure 4.6
The genomic vmc-2Fl-Rl PCR product (Figure 4.5) was ligated into a TA vector 
(Invitrogen) and sequenced on both strands on three occasions. The consensus 
sequence is given above. The positions of the two primers are shown in bold and are 
underlined. By comparison of the cDNA and genomic sequences a single intron was 
detected, shown in bold.



4.2.4 Northern blot analysis of vmc-2.

2 x 106 mature mf collected from the peritoneal cavity of an infected jird were 

purified from contaminating host cells as described in section 2.1.4. The mf were 

then cultured in one of two ways, 2 hours at 37°C in MEM, (mammalian-derived mf) 

or 2 hours at 28°C in Grace’s insect culture medium (vector-derived mf). Three jig of 

RNA extracted from the mf using standard methods (2.2.15) was separated on a 1.5 

% agarose gel. Comparable quantities of RNA were used from each sample, as 

determined by ethidium bromide staining of the RNA and visualisation under UV 

light (Figure 4.7a). The RNA was transferred to nylon membrane and then probed 

with the vmc-2Fl-Rl cDNA gene-specific probe, and washed to high stringency at 

65°C. The radiolabelled blot was then exposed to autoradiographic film for 14 days 

after which time it was possible to see a faint signal.

The ethidium bromide stained gel (Figure 4.7a) shows approximately equal 

loading of RNA in each lane, whilst Figure 4.7b shows the autoradiograph. The 

pattern of expression follows that seen in the differential screen from which the vmc- 

2 fragment was isolated, i.e. a greater abundance in vector-derived mf mRNA 

compared to that of mammalian-derived mRNA, although the degree of upregulation 

is very slight. The relatively weak signal obtained presumably reflects the low 

abundance of vmc-2 mRNA in the total RNA population of the mf. The approximate 

size of the transcript is 600 bp (marked I), confirming that the cDNA obtained from 

the mf library is a truncated fragment and that approximately 350 bp of sequence is 

missing. The very weak band in the mammalian-derived RNA appears slightly 

smaller than the band in the vector-derived mf. This may be due to a difference in the 

size of transcript under the different conditions or may be due to membrane slippage
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Figure 4.7a.
RNA was extracted using standard techniques from 2 x 106 mf cultured for 2 hours in 
either Grace's culture medium at 28 °C (vector-derived mf) or MEM at 37°C 
(mammalian-derived mf). 3jng of each sample was separated in a 1.5% agarose gel 
and stained with ethidium bromide.

M = RNA markers (Gibco)
A = in vitro cultured mammalian-derived mf RNA.
B= in vitro cultured vector-derived mf RNA.

Figure 4.7b.
RNA samples shown in Figure 4.7a were transferred to a nylon membrane and 
hybridised with the vmc-2Fl-Rl cDNA probe. The blot was washed to high 
stringency at 65°C as follows: 2 x 10 minutes 2 x SSC 0.1 SDS, 2 x 10 minutes 1 x 
SSC 0.1 SDS, 2 x 10 minutes 0.1 x SSC 0.1 SDS. The blot was then exposed to 
autoradiographic film for 14 days at -70°C. The approximate size of the vmc-2 
transcript is 600bp, marked I.



Figure 4.7a Ethidium bromide stained RNA.
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Figure 4.7b vmc-2 northern blot.
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4.2.5 Attempts to obtain a full length transcript of vmc-2.

The first attempts to clone the full length transcript of vmc-2 used a PCR of 

higher stringency on first stand cDNA which had been produced using a lower 

concentration of adapted oligo (dT) primer. It was hoped that by decreasing the 

concentration of the primer from 0.5 pM to 0.2 jiM, the proportion of primer that 

annealed non-specifically would decrease. In order to further increase the specificity 

of the PCR step a higher annealing temperature of 62°C was also used.

A hot start PCR amplification protocol using vmc-2Fl and APA primers was 

conducted under standard conditions (section 2.2.2). Unfortunately this did not 

produce a longer length product and so an alternative approach was adopted. PCR 

was conducted on a variety of different cDNA libraries available in the laboratory; 

these included two PCR libraries constructed from post-infective L3 stage parasites 

[79, 80], and a conventionally constructed adult stage library [191]. PCR was 

conducted using the vmc-2Fl gene specific primer and a vector specific primer, T7. 

In each of these experiments a positive control plasmid containing the vmc-2 

fragment was also amplified to allow the detection of any additional sequence 

produced. Unfortunately this approach was also unsuccessful producing products of 

the same size as the control reaction (Figure 4.8). The faint lower band (marked I) is 

thought to be due to the formation of “primer-dimers” between the primer pairs.

A similar approach was then taken using a B. pahangi genomic library in 

EMBL3 (provided by J. Hirzmann, University Giessen, Giessen, Germany) as the 

template for PCR. vmc-2Fl and vmc-2Rl primers were used in combination with 

EMBL forward and reverse vector primers. It was hoped that the 3' end of the 

genomic clone could be isolated and subsequently sequenced. The PCR products
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Figure 4.8a
This experiment represents an attempt at cloning the 3’ end of the vmc-2 transcript by 
PCR on two post infective L3 stage libraries using a combination of gene specific 
and vector primers. 5 jxl of each library was amplified as follows: thirty cycles of: 
94°C 1 minute, 58°C 1 minute, 72°C 3 minutes. The amplified products were size 
separated in a 1 % agarose gel. The very slight increase in the size of band in lanes A 
and B is due to one primer being situated on the vector outwith the cloned insert.

XPst = Pst I digested X DNA molecular size markers.
A = 24 hour p.i L3 library. vmc-2Fl, T7 vector primers.
B = 3 day p.i L3 library. vrac-2Fl, T7 vector primers.
C = vmc-2 plasmid 1:100 dilution positive control. vmc-2Fl, vrac-2Rl primers.
D = No DNA template negative control. vrac-2Fl, vmc-2Rl primers.

Figure 4.8b
PCR under the same conditions described above using an adult library.

A.H3 = Hind HI digested X DNA molecular size markers.
A & B = 5 fil Adult library template vwc-2Fl, T7 vector primers.
C = vmc-2 plasmid 1:100 dilution positive control. vrac-2Fl, vrac-2Rl primers. 
D = No DNA template negative control. vmc-2Fl, vmc-2Rl primers.



Figure 4.8a PCR of B. pahangi post-infective L3 cDNA PCR libraries to isolate
3' end of vmc-2.

XPst A B C D

Figure 4.8b PCR of B. pahangi adult stage library to isolate the 3' end of vmc-2.

A,H3 A B C D



were blotted onto nylon membrane and probed at 60°C with the vmc-2Fl-Rlgen gene 

specific probe. Figure 4.9 shows the results of this experiment. Lanes A to D show 

various combinations of primers, none of which yielded any product. Lane E is a 

control PCR using vmc-2Fl and vmc-2Rl primers which produced a band of 

predicted size, 968 bp (marked i). Lanes F and G are control reactions using genomic 

DNA as the template. The additional bands seen in lanes E and G are possibly due 

incomplete extension of amplified products leading to a series of truncated fragments 

to which part of the probe can hybridise to, leading to the results seen. This seems to 

be related to the concentration of template DNA used, compare lane F (20 ng DNA) 

and lane G (100 ng DNA). The bands marked ii are thought to be “primer-dimer” 

artefacts formed during the PCR caused by complimentarity between the primers.

In a final attempt to isolate the 3’ end of vmc-2 a Marathon cDNA 

amplification kit (Clontech Palo Alto CA USA) was utilised. The Marathon kit, as in 

previous attempts, relies on the use of an adapter primer that will amplify from the 

true Poly-A tail at the 3’ end of the mRNA. An overview of the protocol is given in 

Figure 4.10. Total RNA was isolated from two batches of approximately 100 adult 

female worms. Approximately 4 jig of total RNA was used to synthesise the first 

strand cDNA using the modified oligo (dT) primer provided. This was followed 

immediately by the second strand cDNA synthesis using T4 DNA polymerase. The 

blunt ended double stranded cDNA products were then ligated to the Marathon 

cDNA adapter provided in the kit for 3.5 hours at 21 °C. A control PCR was 

conducted on the cDNA template provided with the kit using combinations of an 

adapter primer, API, that corresponds to the ligated cDNA adapter and two control 

primers. Figure 4.11 shows the results of this experiment. Neither of the control
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Figure 4.9 PCR of B. pahangi lambda EMBL3 genomic DNA library to obtain
additional 3’ sequence information.

5pl of amplified library was amplified by PCR under the following conditions: thirty- 
five cycles of: 94°C 1 minute, 55°C 1 minute, 72°C 3 minutes. Amplified products 
were size separated in a 2 % agarose gel, and then transferred to nylon membrane and
probed with vmc-2 gene specific cDNA probe. Washed at 60°C as follows: 2 x 10
minutes 2 x SSC 0.1% SDS, 1x10 minutes 1 x SSC 0.1% SDS, 1 x 1 0  minutes 0.1 x 
SSC 0.1%SDS. The autoradiograph was exposed for 24 hours.

i = Predicted 968 bp fragment produced by vmc-2Fl-Rl PCR.
ii = “Primer-dimers” formed by the annealing of the primer pairs.
A = 5 pi amplified genomic library PCR vrac-2Fl, EMBL forward primers.
B = 5 pi amplified genomic library PCR vrac-2Rl, EMBL forward primers.
C = 5 pi amplified genomic library PCR vmc-2Fl, EMBL reverse primers.
D = 5 pi amplified genomic library PCR vmc-2Rl, EMBL reverse primers.
E = 5 pi amplified genomic library PCR vrac-2Fl, vrac-2Rl primers.
F = 20 ng genomic DNA PCR vmc-2Fl, vmc-2Rl primers.
G = 100 ng genomic DNA PCR vmc-2Fl, vrac-2Rl primers.
H = 5 pi amplified genomic library PCR EMBL forward, EMBL reverse primers.
I = vmc-2Fl, vmc-2Rl No template DNA negative control.

A B C D  E F G H I

Figure 4.9



Figure 4.10a Flow diagram of M arathon RACE protocol.

Total RNA

1st and 2nd Strand 
cDNA synthesis.

ds cDNA

Tailed ds
cD NA

T4 DNA polymerase 
blunt ending & adapter 
tail ligation.

RACE PCR 
using vrac-2gspl 
and A P I .

Amplified RACE 
products

Figure 4.10a
A simplified flow diagram of the Marathon RACE protocol.

Figure 4.10b Schematic of primer positions used in M arathon RACE.

vmc-2FI I  \7//c-2gspl
IAAAAAAAA

Modified Oligo (dT)

Figure 4.10b
A schematic diagram showing the positions of primers used in the RACE techniques. 
Sizes of cDNAs produced by PCR using primer pairs. 
vmc-2Fl - vrac-2Rl = 252 nt. 
vmc-2gspl - vmc-2Rl = 199 nt.



Figure 4.11 M arathon RACE kit control PCR.

kbp
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2.027 —

0.564 — 2 3 1  ' ' 1; l i g j j  |  1  1 ■ H p

A.H3 A B C

Figure 4.11
A control PCR was conducted as described in the Clontech Marathon PCR manual. 
Touch-down PCR conducted as follows: Five cycles of: 94°C 30 seconds, 72°C 4 
minutes; five cycles of: 94°C 30 seconds, 70°C 4 minutes; twenty five cycles of: 
94°C 20 seconds, 68°C 4 minutes. lOpl of the 50|il reaction was separated on a 1 % 
agarose gel.

XH3 = Hind III digested X DNA molecular size markers.
A = 5' TFR primer, API primer 5pl control cDNA template. Predicted size 2.6kb.
B = 3' TFR primer, API primer 5pl control cDNA template. Predicted size 2.9kb.
C = 5' TFR primer, 3' TFR primer 5pl control cDNA template. Predicted size 0.3kb.



reactions (lanes A and B) using API produced products of the predicted size (2.6 and 

2.9kb), but the two internally placed primers did produce a band of correct size 

(0.3kb, lane C) that could be seen on an ethidium bromide stained gel. Therefore it 

was assumed that the ligation of the adapters or the PCR was not optimal. As 

amounts of the Marathon kit were limiting the test reactions were conducted. The 

cDNA products were amplified using the adapter primer, and two vmc-2 gene 

specific primers, vmc-2Fl and vmc-2gspl, each at 0.2 jiM final concentration. The 

results of this experiment are shown in Figure 4.12a No clear bands were seen in the 

experimental lanes, but the control lanes using vmc-2Fl/Rl primers produced bands 

of predicted size. The amplified products were transferred to nylon membrane and 

probed with the vrac-2Fl-Rl cDNA probe. The results are shown in Figure 4.12b. In 

each of the experimental lanes a band of slightly greater size than vmc-2Fl-Rl can be 

seen. An aliquot of each of these was re-amplified using vmc-2gspl and API primer 

pairs. A control using vmc-2Fl and oligo (dT) primer primers was also used. The 

results of the PCR are shown in Figure 4.13. Both PCRs show a predominant band of 

approximately 250 bp (Marked I) and also a faint band above the 564 bp marker 

(Marked II). It was assumed that the band of 250 bp was due to the modified oligo 

(dT) primer used in first strand synthesis hybridising to an adenosine rich region in 

the gene, as had happened in the original vmc-2 cDNA fragment. The larger size band 

was therefore assumed to be amplification from the true Poly A tail that a smaller 

proportion of the modified oligo (dT) had annealed to in both first strand synthesis 

procedures. The smaller size of the band produced by vmc-2gspl-APl, (lane B) 

compared to vmc-2Fl-oligo (dT), (lane A) is due to the internal position of vmc- 

2gspl relative to vmc-2Fl (Figure 4.10). The two larger bands (marked II) were

118



Figure 4.12a M arathon RACE PCR.

A. H3 A B C  D E  F G H  XPst

Figure 4.12bMarathon RACE test PCR Southern.

Figure 4.12a
Ethidium bromide stained agarose gel showing cDNA products amplified by 
Marathon PCR. "Touch-down" PCR conducted as follows: Five cycles of 94°C 30 
seconds, 68°C 4 minutes; five cycles of 94°C 30 seconds, 66°C 4 minutes; twenty 
five cycles of 94°C 20 seconds, 64°C 4 minutes. 5pl of the 50jnl reaction was run on
a 1.2 % agarose gel.

A.H3 = Hind III digested X DNA molecular size markers. 
ikPst = Pst I digested X DNA molecular size markers.
A = vrac-2gspl, API 1:50 cDNA dilution.
B = vmc-2gspl, API 1:250 cDNA dilution.
C =  vmc-2gspl, API 1:1 cDNA dilution.
D = vme-2Fl, vrac-2Rl 1:50 cDNA dilution.
E = vmc-2Fl, vrac-2Rl 1:250 cDNA dilution.
F = vmc-2Fl, vmc-2Rl 1:1 cDNA dilution.
G = vmc-2Fl, API 1:50 cDNA dilution.
H = vmc-2gspl, API No template DNA control.

Figure 4.12b
The gel shown in Figure 4.12a was transferred to nylon membrane and probed with 
the vrac-2Fl-Rl gene specific cDNA probe. The resulting blot was washed to high 
stringency at 65°C. Lanes A-H as labeled above.



Figure 4.13 Oligo (dT) 3' Race PCR.

m 3  A B

Figure 4.13
PCR of first strand cDNA using vmc-2gspl, oligo (dT) and vrac-2Fl, oligo (dT). 
PCR under the following conditions: Thirty five cycles of: 94°C 1 minute, 62°C 1 
minute, 72°C 3 minutes. 10 (il of the 50 jj.1 reaction was run on a 2 % agarose gel. 
The major bands produced by the PCR are marked I and II.

/UI3 = Hind III digested X DNA molecular size markers.
A= vmc-2Fl, oligo d(T) PCR.
B = vmc-2gspl, oligo d(T) PCR.



excised from the gel ligated into TA vector, and sequenced using M l3 reverse 

sequencing primer. Unfortunately the bands cloned were unrelated sequences and not 

3' extensions of the previously cloned vmc-2.

4.2.6 Southern blot analysis of high molecular weight DNA.

To determine whether vmc-2 is a single copy gene, or if it is part of a larger 

gene family, Southern blot analysis of high molecular weight DNA was conducted. 

Genomic DNA was isolated from approximately 300 mixed sex adult B. pahangi. 20 

jLLg of DNA was digested at 37°C overnight in a 1 X concentration of the appropriate 

React buffer using 10 units of restriction enzyme (Gibco Life Technologies). Three 

enzymes were selected for analysis of vmc-2, EcoR I, Hind ID and BamH I. There is 

no EcoR I restriction site in the vrac-2Fl-Rl genomic probe, one Hind ID site at 

position 434 and two BamH I sites at positions 44 and 811 bp (Figure 4.14). If vmc-2 

is a single copy gene then a single band of hybridisation should be seen in the Eco RI 

digested lane, two bands in the Hind HI lane and three bands in the Bam HI lane. The 

Southern blot was hybridised at 50°C with 25 ng of vmc-2Fl-Rl genomic fragment 

radiolabelled with 32P. Following hybridisation the blot was washed for 4 x 10 

minutes in 2 x SSC, 0.1% SDS, and exposed to X-ray film at -70°C. Figure 4.15 

shows the ethidium bromide stained DNA smear and the resulting autoradiograph. A 

single band of approximately 6.5 kbp was seen in the EcoR I lane, and two bands 

were seen in the BamH I (approximately 0.8 and 10 kbp) and Hind ID 

(approximately 1 and 4 kbp) digested lanes. The fact that only two bands were seen in 

the BamH I digested lane and not the predicted three may be due to the small size of 

the homologous fragment produced by digestion at the first site, position 44 nt. The
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Figure 4.14
Map of BamH I and Hind El restriction sites present in vmc-2Fl-Rl genomic PCR 
fragment used as a probe in the vmc-2 Southern analysis. As can be seen there are 
two sites for BamH I (positions 44 and 811), one site for Hind IE (position 434) and 
no sites for EcoR I in the above PCR fragment.



Figure 4.14 Restriction map of vmc-2Fl-Rl genomic fragment.
BamH I
I

ACCACTGTGCAAATAGTATCCAATGAAATAACGGAATTTTACTGGATCCAATCCAATTTC

TGGTGACACGTTTATCATAGGTTACTTTATTGCCTTAAAATGACCTAGGTTAGGTTAAAG

TACTTCACCTTCCCAACGTTGCCTACTGAAAAATATATTTATATATCAGAATATTGATTT
6 1  1 1 1 1 1 1-120
ATGAAGTGGAAGGGTTGCAACGGATGACTTTTTATATAAATATATAGTCTTATAACTAAA

TTTTTTTTATTCAAAACAATATTTATTACTATTTTTTCTATACCATACTTTAAATCGAAC
1 2 1 -------------------1------------------------ 1----------------------------1--------------------------1--------------------------1---------------------- (-180
AAAAAAAATAAGTTTTGTTATAAATAATGATAAAAAAGATATGGTATGAAATTTAGCTTG

AATACTCACACTGAAACCGGTCCAATGCAGTAGCCATCATAATATAAGCATTTTTAGTTA
1 8 1 ----------------+ ----------------------- + ------------------------ + ----------------------- + ----------------------- + ---------------------- +2 4 0
TTATGAGTGTGACTTTGGCCAGGTTACGTCATCGGTAGTATTATATTCGTAAAAATCAAT

TCACGTTTCGTGCGCAGTAAAGTTGTATCATATGAATATTTTTCGCAATTATTAAAATCA
2 4 1 ---------------- + ----------------------- + ------------------------ + ----------------------- + ----------------------- + ---------------------- +  3 0 0
AGTGCAAAGCACGCGTCATTTCAACATAGTATACTTATAAAAAGCGTTAATAATTTTAGT

GAATAAGCCATCTTTTCTATCTTTTACTTAATTGTTTTTGAAATTAAAACTTCTAAATTT
3 0 1 ----------------+ ----------------------- + ------------------------ + ----------------------- + ------------------------+ ---------------------- +  3 6 0
CTTATTCGGTAGAAAAGATAGAAAATGAATTAACAAAAACTTTAATTTTGAAGATTTAAA

ATAACTTCCATGATGAAAGGAATTGGCTTGACATGATAGAAATCATCCAAAAATTTGACT
3 6 1 ----------------+ ----------------------- + ------------------------ + ----------------------- + ----------------------- + ---------------------- + 42 0
TATTGAAGGTACTACTTTCCTTAACCGAACTGTACTATCTTTAGTAGGTTTTTAAACTGA

H in d  I I I
I

CTGATGCAATTAGAAGCTTTTATCTTTTACTTCTTTTAGATATTACTGTTTCAAAAACAT
4 2 1 ----------------+ ----------------------- + ------------------------ + ----------------------- + ----------------------- + ----------------------- +480
GACTACGTTAATCTTCGAAAATAGAAAATGAAGAAAATCTATAATGACAAAGTTTTTGTA

CTTGCCTTCAAAAAAAAGCATAATTTTGAACATAAATGAGTACCATTTAACTGTTATGAT
4 8 1 ----------------+ ----------------------- + ------------------------ + ----------------------- + ------------------------+ ----------------------- +  540
GAACGGAAGTTTTTTTTCGTATTAAAACTTGTATTTACTCATGGTAAATTGACAATACTA

TTCAAGATAACTCATAGATCTTTAATGCAATGTTTTAACCTCAAAAAAGAGAGAAAAAAA
5 4 1 ----------------+ ----------------------- + ------------------------ + ----------------------- + ------------------------+ ----------------------- +  6 00
AAGTTCTATTGAGTATCTAGAAATTACGTTACAAAATTGGAGTTTTTTCTCTCTTTTTTT

AAGTAAAAATTATGCTTCAGTTCCACCAGATTAGCAGATTCTATCTTAAGAAGAAAAAAA
6 0 1 ----------------+ ----------------------- + ------------------------ + ----------------------- + ------------------------+ ----------------------- +  6 6 0
TTCATTTTTAATACGAAGTCAAGGTGGTCTAATCGTCTAAGATAGAATTCTTCTTTTTTT

CTTAAAGGTGTGGAGAACAAACTAAAAATTCCTCGATTGTTCAAATGATTTTTTCTCATT
6 6 ------------------ + ----------------------- + ------------------------ + ------------------------+ ----------------------- + ----------------------- +7 2 0
GAATTTCCACACCTCTTGTTTGATTTTTAAGGAGCTAACAAGTTTACTAAAAAAGAGTAA

AGAAATTTCTGAACGTTTATAATAAAATCAAACAATAATAGTAATGGAAACAGTAATAAT
7 2 1 ------------------- 1----------------------- 1---------------------------- 1--------------------------1--------------------------1---------------------h7 8 0
TCTTTAAAGACTTGCAAATATTATTTTAGTTTGTTATTATCATTACCTTTGTCATTATTA

BamH I
I

AAATGGAGGAAAATAACTTACGCAGAGTCCGGATCCGGAAATAAAACGAACGCATTAGAT
7 8 1 -----------------+ ---------------------- + -------------------------+ ----------------------- + ------------------------+ ---------------------+  8 40
TTTACCTCCTTTTATTGAATGCGTCTCAGGCCTAGGCCTTTATTTTGCTTGCGTAATCTA

GGTAACCAACCACCTAAAACTGGCAATGAACCTGTAACAAATACATACTCCCACGGTCGT
8 4 1 ---------------- + ---------------------- + -------------------------+ ----------------------- + ----------------------- + ---------------------+  9 0 0
CCATTGGTTGGTGGATTTTGACCGTTACTTGGACATTGTTTATGTATGAGGGTGCCAGCA

ACTGCTTCAACTTCCACCAAAAAATGAAGCACTGTGCGTGGTGCAACTGACATTTGGGCA
9 0 1 ---------------- + ---------------------- + -------------------------+ ------------------------+ ------------------------+ ---------------------+  9 6 0
TGACGAAGTTGAAGGTGGTTTTTTACTTCGTGACACGCACCACGTTGACTGTAAACCCGT

GTAAGTGC
9 6 1 ---------- 968
CATTCACG



Figure 4.15a
20 |Lig of HMW DNA digested (16 hours, 37°C) with each restriction enzyme. 
Digested DNA separated on a 0.8% agarose gel.

A = DNA digested with EcoR I.
B = DNA digested with BamH I.
C = DNA digested with Hind El.
XH3 = Hind HI digested lambda DNA size markers.

Figure 4.15b
Figure 4.15a blot probed with vmc-2Fl-Rl genomic DNA probe. Washed at 50°C as 
follows: 4 x 1 0  minute 2x SSC, 0.1% SDS. The resulting autograph was exposed for 
72 hours.



Figure 4.15a Ethidium bromide stained vmc-2 Southern blot.
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Figure 4.15b vmc-2 Southern blot low stringency wash.
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overall low hybridisation of the probe to the BamH I digested DNA compared to the 

otlher lanes and the small portion of the probe that would hybridise may account for 

the lack of the third band. The results suggest that vmc-2 is a single copy gene, and 

not a member of a larger gene family.

4.2.7 The temporal expression pattern of vmc-2 in vivo.

For reasons outlined previously it was necessary to use in vitro derived 

material for screening the cDNA library. Following the library screen vmc-2 appeared 

to be up-regulated in mf cultured under mosquito-like conditions. In order to 

determine if a similar expression pattern would be seen in vivo a series of 

experiments were conducted to investigate the expression of the vmc-2 mRNA 

throughout the life-cycle of B. pahangi (see section 2.6).

4.2.7.1 Semi-quantitative RT-PCR.

Semi-quantitative RT-PCR determines the level of expression of a gene of 

interest compared to that of a constitutively expressed endogenous control gene 

[166]. For these studies the gene encoding P-tubulin was used as the constitutive 

control gene. P-tubulin was selected as it had previously been used in studies of gene 

expression in Brugia species [58, 114]. Two primers, $-tubA and fi-tubB (see Table 

2.1) were designed using the B. pahangi complete cDNA sequence, (GenBank 

accession M36380, [192]. The primers were designed to span an intron to allow 

cDNA to be distinguished from any contaminating genomic DNA. The predicted 

sizes of the amplified products were 318 bp for cDNA and 400 bp for genomic DNA. 

Figure 4.16 shows an ethidium bromide stained gel of amplified products of both first
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Figure 4.16 Amplification of [5-tubulin to show difference in size of cDNA and 
genomic DNA.

— 0.56

— 4361

2057

Kbp

1 2  3 4 5 6 7 8 9 >iH3

Figure 4.16
First strand cDNA from both mammalian-derived mf, vector-derived mf and B. 
pahangi genomic DNA was PCR amplified in duplicate to determine if [5-tubulin 
could be specifically amplified using ptubA  and ptubB primers as follows: Thirty 
cycles of: 94°C 1 minute, 55°C 1 minute, 72°C 2 minutes. Amplified products were 
size separated on a 1% agarose gel. A specific band of predicted size, cDNA 318bp, 
genomic DNA 400bp could be seen in each of the appropriate lanes.

1/2 = Genomic DNA (100 ng) fitubA-fitubB primers.
3/4 = Mammalian-derived mf cDNA (50 ng) fitubA-fitubB primers.
5/6 = Vector-derived mf cDNA (50 ng) fitubA-fitubB primers.
7 = No template DNA negative control.
8 = Mammalian-derived mf cDNA (50 ng) m m c-lF l-m m c-lR l positive control.
9 = Vector-derived mf cDNA (50 ng) m m c-lF l-m m c-lR l positive control.
/U43 = Hind III digested X DNA molecular size markers.



strand cDNA and genomic DNA. As can be seen single bands of the predicted size 

were amplified. A similar analysis was conducted using vmc-2Fl/vmc-2Rl primers. 

The results of this PCR are shown in Figure 4.17. The vmc-2 primer pairs produced 

bands of predicted size, 252 bp and 968 bp for cDNA and genomic DNA 

amplifications respectively. Again this allows amplified cDNA to be distinguished 

from that of any contaminating genomic DNA.

4.2.7.2 Titration of gene products produced by RT-PCR.

Following a lag phase of PCR amplification cDNA products enter an 

exponential phase where amplicons accumulate in an exponential manner, whereas 

during later rounds the rate of amplification slows resulting in a plateau effect [193]. 

In order to compare the differences in amplification of the gene of interest and 

control gene products, the PCR reaction must be stopped while it is still in the 

exponential stage of amplification. To determine the optimal number of cycles for 

each of the primers sets used, 100 (il PCR reactions were produced in the standard 

manner for vmc-2 and p-tubulin. 10, 15, 20, 25, 30, and 35 cycles of PCR were 

conducted under standard conditions in a Perkin Elmer 480 thermal cycler, IOjllI of 

the reaction was removed, soaked at 72°C for 10 minutes to allow complete 

amplification, and these products were then separated by gel electrophoresis and 

blotted onto nylon membrane. The resulting blots were probed with gene-specific 

probes and the amount of amplification was determined by scintillation counting of 

the specific band (section 2.6.3). The resulting autoradiographs are shown in Figure 

4.18. From the graphical representation of this data (Figure 4.19), 23 cycles of PCR
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Figure 4.17 Genomic DNA and cDNA PCR of and vmc-2.

kbp

  1.090
 0.805

 0.340
 0.260

A B XPst

Figure 4.17
Comparison of product sizes obtained by PCR of first strand cDNA and genomic DNA, 
using vmc-2 F l-R l primers. 50ng of mammalian-derived mf first strand cDNA was PCR 
amplified using the appropriate primers as follows: thirty cycles of: 94°C 1 minute, 60°C 
1 minute, 72°C 3 minutes. Amplified products size separated on a 1 % agarose gel. The 
cDNA reaction produced a band of predicted size, 250 bp (marked II) the band marked 
III is thought to be due to “primer-dimer” formations due to annealing of primers, the 
genomic reaction produced a band of approximately lkb (marked I). The primers FI and 
R1 could therefore be used in the RT-PCR reactions as the amplified cDNA products 
could be distinguished from any contaminating genomic DNA.

A = Mammalian-derived mf cDNA (50 ng) vmc-2Fl-vmc-2Rl primers.
B = Genomic DNA (100 ng) vwc-2Fl-vrac-2Rl primers.
XPst = Pst I digested X DNA molecular size markers.



Figure 4.18 Titration of RT-PCR reactions.

15 20 25 30 35 Control

Figure 4.18
Autoradiographs showing titration of PCR amplification vmc-2Fl-Rl and $-tubulinA- 
B primer pairs on mammalian-derived mf first strand cDNA. A lOOpl PCR was 
conducted under the following conditions: n cycles of: 94°C 1 minute, 55°C 1 minute, 
72°C 1 minute. After each time point indicated 1 2 j l i 1 of each reaction was removed 
and soaked at 72°C for 10 minutes to allow complete extension of products. lOpl 
from each time point was then electrophoresed on a 1 % agarose gel. The amplified 
products were transferred to nylon membrane and probed with a corresponding gene 
specific probe The resulting Southern blots were washed at 65°C as follows: 2 x 1 0  
minutes 2x SSC 0.1% SDS, 2 x 10 minutes lx SSC 0.1% SDS, 2 x 1 0  minutes O.lx 
SSC 0.1% SDS. The amount of amplified product at each time point was determined 
by scintillation counting of radiolabelled products. The control lane shows no DNA 
template control after 35 cycles of amplification.

A = vrac-2Fl-Rl amplified products.
B = $-tubulinA-B amplified products.



Figure 4.19 Titration of RT-PCR reaction.
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Figure 4.19
Graphical representation of data shown in Figure 4.18 Amplification of PCR products 
is shown as the incorporated cpm versus the number of cycles. From the graphs 23 
cycles was chosen as it is in the initial phase of exponential amplification for both of 
the primer pairs.

A = vmc-2 PCR 
B = (3-tubulin PCR



was chosen as this was in the early exponential stage of amplification for both vmc-2 

and the control gene p-tubulin.

4.2.7.3 Test of life-cycle stage cDNAs

First strand cDNA synthesis was conducted using 2 |ig of total RNA from 

each life-cycle stage. As a test of the first strand cDNAs each was amplified by a 

standard hot start PCR technique for 23 cycles using fi-tubA and fi-tubB primers. The 

resulting amplified cDNAs were separated on a 1 % agarose gel. Figure 4.20 shows 

an example of a test PCR. A specific band of predicted size 318 bp could be seen in 

each of the test lanes A-L with the exception of lane B, the uninfected mosquito 

control. Lane B shows a smear of products after 35 cycles of PCR presumably due to 

non-specific priming of related cDNAs in the mosquito. This smear does not 

specifically hybridise to the B. pahangi p-tubulin probe (Figure 4.21 panel B). This 

experiment shows that it is possible to amplify B. pahangi cDNA from a pool of 

mixed first strand cDNA isolated from infected mosquito thoraces.

4.2.7.4 Semi-Quantitative RT-PCR of vmc-2.

Three separate experiments were conducted to investigate expression of vmc- 

2 as described above. In each case the amounts of hybridising radiolabelled vmc-2Fl- 

R1 probe was calculated as described in section 2.6.3. Figure 4.21 shows an example 

of a vmc-2 RT-PCR autoradiograph. The amplification of two bands in the in vitro 

vector-derived mf, lane M Figure 4.21 was unexpected, and may be due to an 

alternate transcript in the vector-derived mf although there is no evidence of this in 

the other lanes. To determine the amount of expression only the filter that
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Figure 4.20 Test of p-tubulin RT-PCR on life-cycle cDNA panel.

Figure 4.20
A panel of cDNAs produced from various time points throughout the parasite life 
cycle was tested by PCR using primers PtubA and ptubB which are specific for the 
constitutive control gene p -tubulin. PCR conditions as follows: Thirty cycles of: 
94°C 1 minute, 62°C 1 minute, 72°C 1 minute. Amplified products were size 
separated on a 1 % agarose gel. A specific band of predicted size, cDNA 318bp. 
Could be seen in each of test lanes A-L with the exception of lane B, the uninfected 
mosquito control.

A = Mature mf.
B = Uninfected mosquito thorax.
C = Mosquito thorax 24 hour post infection (mf).
D = Mosquito thorax 3 days post infection ( sausage stage larvae)
E = Mosquito thorax 5 days post infection (L2).
F = Mosquito thorax 8 days post infection (L3).
G =Infective L3 isolated from mosquito into Grace's medium.
H = 24 post infection, mammal (L3).
1 = 3 day post infection, mammal (L3).
J = 5 day post infection, mammal (L3).
K = 10 day post infection, mammal (L4).
L = Adults worms.
M = No template control.



Figure 4.21 vmc-2 life-cycie panel semi-quantitative RT-PCR.

I.

II.

Figure 4.21
First strand cDNA amplified using either ptubA and ptubB primers (panel I) or vmc- 
2F1 and vmc-2Rl primers (panel II) under the following conditions: Twenty three 
cycles of: 94°C 1 minute, 62°C 1 minute, 72°C 1 minute. Amplified products were 
size separated on a 1 % agarose gel and transferred to nylon membrane. The resulting 
blots were probed with the corresponding gene specific probe under high stringency 
(65°C, washed to 0.1 x SSC 0.1 % SDS) and exposed to autoradiographic film. The 
relative expression of vmc-2 compared to that of p-tubulin at each life-cycle stage 
was then compared by scintillation counting.

Panel I = p -tubulin RT- PCR.
Panel II = vmc-2 RT-PCR.
A = Mature mf.
B = Uninfected mosquito thorax.
C = Mosquito thorax 24 hour post infection (mf).
D = Mosquito thorax 3 days post infection ( sausage stage larvae)
E = Mosquito thorax 5 days post infection (L2).
F = Mosquito thorax 8 days post infection (L3).
G = pre-infective L3 isolated from mosquito into Grace's medium.
H = 24 post infection, mammal (L3).
I = 5 day post infection, mammal (L3).
J = 10 day post infection, mammal (L4).
K = Adults worms.
L = In vitro mammalian-derived mf cDNA.
M = In vitro vector-derived mf cDNA.
N = No template control.

■  j
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corresponded to the band of 250 bp was removed and counted. The results of the 

expression analysis are given in Table 4.1, Figure 4.22 shows the average of the three 

RT-PCR experiments in a graphical form. As can be seen vmc-2 expression is very 

low in the mf and then increases during development of the parasite in the mosquito 

vector. The level of expression increases by day 5 and peaks at day 8 p.i. The 

expression decreases slightly in the vector-derived L3 and drops very rapidly by 24 

hours p.i of the mammal. The level of expression increases again at day 5 p.i (p.i. L3) 

and day 10 (L4), but drops dramatically in the adult parasite. Also included in the 

RT-PCR experiments were the first strand cDNAs produced by the in vitro culture 

methods described in Chapter 3. If the results from the mf stage in vitro and in vivo 

are compared it is clear that the in vitro material shows a difference between the 

mammalian and vector-derived mf that is not observed with in vivo derived material. 

The level of expression is approximately doubled in the vector compared to the 

mammalian-derived mf in vitro (5.38 and 2.83 mean cpm respectively, Table 4.1), 

whereas in vivo the mRNA abundance of mf and 24 hour mosquito samples are 

essentially equal (0.52 and 0.47 mean cpm respectively, Table 4.1).

As the expression level appears to drop radically from day 10 (L4) to the adult 

stage, the level of expression in the days prior to the L4-adult moult was also 

investigated. In B. pahangi the fourth moult (L4-Adult) is not synchronous between 

sexes, males moult at approximately day 23 p.i whereas the females moult between 

days 27 and 33 p.i. [7]. To study the expression of vmc-2 during the late L4 stage a 

panel of cDNAs produced from worms at days 18, 19, 20, 21 and 22 p.i. was 

obtained (provided by Sarah Hunter, University of Glasgow). Semi-quantitative RT- 

PCR was conducted on two separate occasions under the same conditions described
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above. Figure 4.23 and Table 4.2 shows the data obtained from these experiments. 

The levels of expression rise from day 18 to day 19 p.i. then remain relatively stable 

until day 22 p.i. where a reduction in the level of expression can be seen.

4.3 Discussion.

As shown in this chapter the gene vmc-2 has a potential homologue in the C. 

elegans genome. Comparison of the peptide sequences of vmc-2 and T05H10.7 

showed 44 % identity over the 79 amino acids of the vmc-2 ORF. It is encouraging 

that the homology extended over the entire length of the ORF and was not restricted 

to a small portion of the peptide. As vmc-2 is known to be a truncated fragment of a 

gene perhaps if the full length sequence were available then a greater degree of 

homology would be seen. The lack of homology at the nucleotide level is likely to be 

due to the differing codon bias between the two nematode species and to third 

position degeneracy; because of these factors it is more appropriate to rely on 

comparison of the amino acid sequences when comparing genes that are not closely 

homologous, and more distant relations are sought. It is unfortunate that T05H10.7 is 

a predicted protein and no annotation exists that may hint at a possible function for 

the protein. Without this kind of evidence the amino acid sequences were used to 

scan the Pfam database to try to detect a domain or structural property that may allow 

the inference of function. The program found a similarity between vmc-2 and 

T05H10.7 to the PfamB 35977 domain family. Members of the family that had a 

determined function were the GLP genes.

If the vmc-2 peptide sequence is compared to that of the E. coli GLP-Q gene 

(accession number P09394) it shows 28.6 % identity but only over a small region of

124



Table 4.2 vmc-2 late panel RT-PCR scintillation counts.

exp #1 day 18 day 19 day 20 day 21 day 22 No template control

B-tubulin 42112 65503 76418 64089 65065 637

vmc-2 9370 13503 16266 14893 5947 256

B-tubulin -control 41475 64866 75781 63452 64428

vmc-2-control 9114 13247 16010 14637 5691

vmc-2/B-tubulin 0.22 0.204 0.211 0.231 0.088 .....

exp #2 day 18 day 19 day 20 day 21 day 22 No template control

B-tubulin 92309 54523 69003 57220 44557 558

vmc-2 16967 29683 29895 25565 8847 242

B-tubulin -control 91751 54523 69003 57220 44557 '
vmc-2-control 16725 29683 29895 25565 8847 •

vmc-2/B-tubulin 0.182 0.544 0.433 0.447 0.199 -

day 18 day 19 day 20 day 21 day 22

Mean vmc-2/B-tubulin 0.201 0.374 0.322 0.339 0.143

standard deviation 0.026 0.241 0.157 0.153 0.078

Table 4.2
Raw data obtained from duplicate vmc-2 RT-PCR experiments using cDNAs from 
days 18-22 post infection, (late L4). All data is expressed in CPM as determined by 
scintillation counting of vmc-2 and (3-tubulin hybridising cDNA.



Figure 4.23 Relative levels of vmc-2 expression during days 18-22 p.i. (late L4).

0.3 -

Figure 4.23
The graph shows the relative levels of vmc-2 expression during the late L4 stage of 
the parasite as compared to that of (3-tubulin. The data represents the mean values 
obtained from two semi-quantitative RT-PCR experiments as shown in Table 4.3. 
The error bars represent the standard deviations from, the mean of the data from the 
duplicate experiments. The levels of expression of vmc-2/$-tubulin are in arbitrary 
units. As can be seen vmc-2 expression increases slightly from day 18 to day 19 p.i. 
remains relatively constant during days 19-21 and drops after day 21.



35 amino acids. This result is unlikely to be due to the comparison of prokaryotic and 

eukaryotic sequences because if the vmc-2 sequence is compared to the C. elegans 

GLP like sequence (accession number Q20816) then the similarity is reduced to 33.3 

% over a small region of 12 amino acids, whereas the comparison of E. coli and C. 

elegans GLP sequences shows 22.4 % identity over a much larger fragment of 246 

amino acids. The Pfam program identifies regions of similarity from gene families 

and then tries to match a query to any of these domains. Pfam can highlight two types 

of homology, that to a Pfam-A domain and a Pfam-B domain. The Pfam-A domains 

are designed from experimental data and are therefore more robust, while the Pfam-B 

domains are produced by the computer program "Domainer" and are therefore 

theoretical domains, and contain no annotation regarding the construction of the 

domain sequence signature. The fact that the T05H10.7 sequence was homologous to 

a Pfam-B domain (Pfam-B 35977) may explain the lack of homology of T05H10.7 

and vmc-2 to the true GLP genes. Therefore vmc-2 and the gene T05H10 are likely to 

share homology to each other, although it is unlikely that these two genes are true 

GLPs based only on the sequence alignments. A C. elegans cDNA clone yk24e8.5, 

was identified that aligned to the 5' end of the T05H10.7 clone. The cDNA clone 

yk24e8.5 showed 48% identity to vmc-2 at the amino acid level and therefore may 

represent a homologous gene to vmc-2.

The length of the vmc-2 transcript was estimated by northern blot to be 

approximately 600bp, which if translated, would encode a maximum of 200 amino 

acids. An approximation of the molecular weight of a protein can be calculated by 

multiplying the number of amino acids by 110, using this technique the full length 

transcript of vmc-2 could only encode a protein of approximately 22 kDa. vmc-2 is
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therefore unlikely to be a strict homologue of a TO5H10.7 which encodes a predicted

90.8 kDa protein, but may share some homologous domain. Alternatively if the Gene 

Finder programme used to determine the coding regions of the C elegans genome, 

did not identify the end of the gene producing the yk24e8.5 EST or the start of 

another gene, then as T05H10.7 is a hypothetical protein it may not encode a single 

protein of 90.8kDa, but several genes, one of which (yk24e8.5) is homologous to 

vmc-2. This is based on the fact that the Gene Finder program is not infallible and 

may miss the 5’ start site of genes especially at the overlapping ends of two cosmids, 

which is where yk24e8.5 lies. Unfortunately there are no ESTs corresponding to vmc- 

2 in the B. malayi dataset.

Analysis of the genomic organisation of the vmc-2 fragment produced a 

number of interesting findings. A single intron of length 716 bp is relatively rare in 

Brugia species. Hammond (1994) analysed 7 genomic clones from Brugia species 

and found introns ranging in size from 64 to 1115 nucleotides, with the majority in 

the size range 100-149 nucleotides [194]. Similarly Zang et al (1999) analysed the 86 

introns of all 13 B. malayi genomic clones currently characterised and found that only

5.8 % were in the size class 500-1000 nucleotides [128]. The possible importance of 

such a large intron is not known. There are instances in plants and animals where 

intronic sequences can influence the levels of expression of certain genes [195, 196], 

including the unc-54 gene of C. elegans [197]. However this is not thought to be 

related to size of the intron but to a small enhancer region within the non-coding 

region. The intron/exon boundaries conformed to the general rule of 

exon/GT..AG/exon [198]. Also the 3' splice site showed the extended conserved
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consensus sequence TTTCAG in which the -5 position (underlined) is T in 93 % of 

the B. malayi cases as described by Zang et al (1999) [128].

Truncation of the vmc-2 gene fragment isolated from the mammalian-derived 

mf library seems to be a problem inherent in the techniques involved in this kind of 

study and has been reported previously [77, 114, 154]. As stated earlier the truncation 

at the 3' end of the cDNAs used to produce the library was likely to be caused by the 

annealing of the oligo (dT) primer to adenine rich regions in the mRNA. This may be 

due to the particularly high AT composition of the Brugia genome. The bias towards 

AT richness in lower eukaryotes is particularly evident in intron compared to exon 

sequences, 85 % and 59 % respectively in Tetrahymena thermophilia [199] but this 

should not effect the isolation of cDNAs amplified from mature mRNAs where only 

exonic sequences are amplified. However when Zang et al (1999) analysed the 

percentage A+T composition of all the B. malayi genes to date where the full length 

genomic sequence was known, the A+T composition was found to be 62 % and 69 % 

for exons and introns respectively [128]. The high A+T percentage found in the 

exons of B. malayi is likely to be mirrored in B. pahangi and may therefore be one of 

the factors impeding the isolation of full length transcripts by RT-PCR from Brugia 

species. The calculated percentage A+T of the intron of vmc-2 is 74 % whereas the 

percentage A+T in the exon sequences is 57%. The mean percentage A+T for the 

exonic regions of vmc-2 is therefore 57 %. This is lower than that calculated from the 

B. malayi sequences but is slightly higher than that calculated from C. elegans 

sequences where the mean percentage A+T was found to be 54 % and 70 % in exons 

and introns respectively [200].
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In retrospect a number of factors may have hindered the various attempts to 

isolate the 3' end of the vmc-2 gene, namely the low concentration of transcript and 

the selection of starting material used. If the results of the northern blot analysis of 

mmc-1 and vmc-2 are compared it can be seen that in the mf the abundance of vmc-2 

is relatively low compared to mmc-1. Northern blots using the same amount of total 

mf RNA (3 jig) and radioactive probes of comparable specific activity which were 

hybridised and washed under the same conditions, needed very different exposure 

times, 4 hours (mmc-1) and 14 days (vmc-2) to see a specifically hybridising band 

(compare Figures 4.7 and 5.14). This presumably reflects the relative abundance of 

each of the transcripts in the total RNA population. The second factor that was likely 

to have affected the success of the vmc-2 3' RACE techniques was the selection of 

material used, primarily L3 or adult parasites. This was due to the larger size of these 

parasite stages and the relative ease of obtaining and purifying these parasites. 

However both stages show a reduction in the relative abundance of vmc-2 (Figure 

4.22), which would mean that the amount of vmc-2 mRNA was very limiting. This 

would also be the case for the Marathon RACE technique which was conducted on 

adult stage total RNA. In retrospect cDNA prepared from pre-infective L3 parasites 

(day 8 mosquito) would have contained a larger proportion of vmc-2 transcript and 

may have optimised the chance of success.

The expression profile of vmc-2 is interesting in that it peaks in L3 parasites 

prior to transmission to the mammalian host. The levels of expression in the LI stage 

(mf) are relatively equal in both the mammalian and mosquito hosts (in vivo derived 

material). The expression begins to rise significantly at day 5. The L1-L2 moult 

occurs between days four and five [9] and so this probably represents an increase in
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expression following the first moult. A further increase is seen by day 8 at which time 

the majority of the worms are L3 [9]. The infective L3 collected at day 9 p.i. into 

Grace’s tissue culture medium show a slight reduction in the expression of vmc-2, but 

this drops very rapidly to almost zero in the 24 hour p.i. L3 sample. Therefore the up- 

regulation of vmc-2 expression begins in the L2 and continues through the L3 until 

transfer to the mammalian host. This pattern of expression is reminiscent of a 23 kDa 

antigen of Onchocerca volvulus infective larvae described by Bianco et al, (1990) 

[201]. Synthesis of this protein is initiated at or following the second moult and 

levels of expression increase rapidly during the L3 stage, but cease between 24 and 

72 hours in mammalian culture. Conversely the secretion of the protein is seen in the 

mammalian derived L3 in response to the temperature shift from poikilothermic to 

homeothermic hosts. It was proposed that such proteins may be synthesised in earlier 

stages (L2) in readiness for secretion following the infection event (L3). This pattern 

of expression is also seen in some B. malayi proteins where the synthesis of L3 

surface molecules are initiated in the L2 stage [202]. Based on the expression pattern 

of vmc-2, the resulting protein may be involved in the infection event, or in the 

maintenance of the L3 developmental block prior to infection of the mammalian host, 

and as such is potentially very interesting. The levels of vmc-2 expression increase in 

the mammalian host during the late L3 and L4 stages and drop rapidly by the adult 

stage. RT-PCR on late L4 stage cDNA suggests that the levels of expression remain 

relatively constant throughout the L4 stage and that the drop in expression follows or 

is concurrent with the L4-adult moult.

Due to the problems encountered in obtaining the 3' end of the vmc-2 

transcript and, without such, the difficulty of analysing this gene in any depth,

129



coupled with the added interest in mmc-1, it was considered more profitable to 

co ncentrate on the analysis of mmc-1.

130



CHAPTER FIVE



5.1 Introduction.

The results presented in Chapter 3 suggested that mmc-1 would be up- 

regulated in mammalian-derived mf. The experiments undertaken in this chapter 

analysed the basic features of the mmc-1 gene and its predicted protein with the aim 

of determining the function of the gene in the parasite life-cycle. As described in the 

introduction, the mf of Brugia are highly adapted to life in the mammalian host. W. 

bancrofti and B. malayi mf show a periodicity so that the numbers of mf in the 

peripheral bloodstream are maximised when mosquito biting is at a peak [33]. This 

has led to the hypothesis that the peripheral blood may be a hostile environment for 

the mf, therefore they only remain in the peripheral blood long enough to allow 

transmission.

The presence of mf in the bloodstream of an infected host is associated with a 

profound defect in parasite-specific proliferative responses. While the role of the mf 

in down-regulation of the host immune response is controversial, proliferative 

responses are most impaired, and most difficult to restore after chemotherapy in 

microfilariae positive individuals. Another interesting feature of the mf in the 

mammalian blood stream relates to the developmental block at this stage of the life­

cycle. The mf can survive for over 100 days but can undergo no further development 

until transmitted to the mosquito vector.

With the long term aim of determining the role of mmc-l in the mf a variety 

of different experiments were carried out to further characterise the mmc-1 gene. The 

nucleotide and predicted amino acid sequence were analysed. The genomic 

organisation was investigated by Southern blot techniques. The mRNA abundance 

was analysed by northern blot. A search for homologous genes in related parasitic
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nematodes was conducted by a nematode species zooblot, and the pattern of 

expression through the life-cycle was examined by semi-quantitative RT-PCR.

5.2 Results.

5.2.1 The mmc-1 clone.

Three independent clones from the B. pahangi mammalian mf cDNA library 

were sequenced on both strands to determine an accurate consensus sequence for the 

mmc-1 gene. Figure 5.1 shows the consensus sequence of mmc-1; the length of the 

clone isolated, from SL1 to the start of the string of adenosine residues is 278 bp. The 

sequence possesses a number of potential translational start sites, but only one ATG 

(double underlined) leads into an extended open reading frame. The conserved 

nematode SL1 sequence is shown in bold, and the stop site for the predicted open 

reading frame is shown in bold and is also double underlined. The string of adenosine 

residues at the 3' end of the gene is unlikely to be the true Poly-A tail as the poly- 

adenylation signal sequence (A AT AAA) is not present upstream. Therefore this 

clone is likely to be a truncated sequence, caused by the internal priming of oligo 

(dT) in the PCR reactions used to generate the cDNA for construction of the library. 

Analysis of the size of the mRNA transcript by northern blot agreed with this 

hypothesis (section 5.2.5).

To clone the full length transcript of mmc-1 a PCR of higher stringency was 

employed using first stand cDNA produced with a lower concentration of adapter 

primer. As with the attempts to isolate the 3' sequence of vmc-2 by decreasing the 

concentration of the adapted oligo (dT) primer to 2 pM in the first strand synthesis, it 

was predicted that the proportion of primer that would anneal non-specifically would
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Figure 5.1 Nucleotide sequence of mmc-1 clone from mammalian mf library.

1 GGTTTAATTACCCAAGTTTGAGCAAAATCATGAAATATTTTATTCTTATG 

5 1  C T A A T A G T T T T T A T T G C A T T T A G T G C A A C C A T C G C T G A T G A T G A A A C A G A  

1 0 1  TG AAAC AG AAAAAG AGC C GG AAG AAAAAG ATG  A AAAAAC TG AG AC C C AGG  

1 5 1  ATCG CAAA G A A C G A A G TG TG C TA A CA A A TTATG A TC C AG CG ATA ATG G C A

2 0 1  CC AG AA A TG A A C G C C G A TG C TG G TTTA C TC TTTC G A CG TA AA A TA C G A TC  

2 5 1  G G AAG AAG G ATG TTG CTG TTG TTG AATG AAAAAAAAAAAAAAAAA

Figure 5.1.
The consensus sequence was derived from multiple clones from the mammalian mf 
library. These were isolated and sequenced in both directions using T7 and M13 
reverse sequencing primers. The conserved SL1 sequence is shown in bold at the 5' 
end of the gene. A total of twelve putative start codons are present, the codon at 
position 30 (double underlined) is proposed as the true translational start site as this 
is the start of the only extended open reading frame. The stop codon TGA at position 
273, (double underlined) is the proposed stop signal sequence for this open reading 
frame.



decrease (section 4.2.5). This was attempted in conjunction with a high stringency 

PCR of the first strand cDNA where the annealing temperature was raised to 62°C. A 

PCR amplification protocol, using the internal mmc-Fl and adapter (APA) primers 

(Table 2.1) was conducted (30 cycles of 94°C, 1 minute; 62°C, 1 minute 72°C, 2 

minutes). The PCR produced a band of approximately 300 bp (Marked I, Figure 5.2). 

This band was excised from the gel and directly ligated into TA cloning vector 

(Invitrogen). Eight transformation positive colonies were used to produce plasmid 

DNA and were sequenced. Figure 5.3 shows the consensus sequence of the cloned 3' 

end of mmc-1 and the full length composite sequence of mmc-l from SL1 to Poly-A 

tail. The full length of the mmc-1 transcript from SL1 to the start of the Poly-A tail is 

434 bp. The sequence contains the potential polyadenylation signal (AATAAA, 

shown in bold and double underlined) which is located 106 nucleotides 3’ of the stop 

codon (bold and underlined). The location of the signal follows the general consensus 

seen in Brugia species [194]. The additional information obtained from the cloned 3' 

end does not affect the sequence of the ORF as it encodes the non-translated region 3' 

to the proposed termination codon of the ORF. The 81 amino acid sequence of the 

predicted open reading frame is shown in Figure 5.4. Analysis of the sequence by the 

ProtParam algorithm at the ExPASy website (www.expasy.ch/tools/protparam) 

showed that it encodes a peptide of 9.345 kDa with a theoretical isoelectric point (pi) 

of 4.46.

5.2.2 Identifying homologues of mmc-1.

In an attempt to identify homologues of mmc-1, BLAST searches were 

conducted using both the nucleotide sequence and the translated amino acid
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Figure 5.2 PCR products produced by mmc-1 3’ RACE.

XUR A B

Figure 5.2
The 3' region of mmc- 1 produced by high stringency PCR using mammalian-derived 
mf first strand cDNA as template as follows: thirty cycles of: 94°C 1 minute, 62°C 1 
minute, 72°C 2 minutes. 100 pi reaction was ethanol precipitated with 0.3 M sodium 
acetate. The cDNA was resuspended in 10 pi dFFO and separated on a 0.8 % agarose 
gel. The band marked I was gel purified and ligated into TA vector (Invitrogen).

?iHR = Hind III, Eco RI digested X DNA molecular size markers.
A = m m c-lFl-A PA .
B = No template control mmc- 1 FI-APA.



Figure 5.3a
Sequence of 3’ end of mmc-1 transcript obtained by PCR as shown in Figure 5.2. The 
PCR product was cloned into a TA vector (Invitrogen). Eight clones were sequenced 
in both directions by Li-cor fluorescence sequencing to produce the above consensus 
sequence.

Figure 5.3b
Sequence of full length transcript of mmc-l including the cloned 3’end of the 
transcript shown in Figure 5.3a. The sequence shows the SL1 spliced leader in bold 
the start and stop codons are shown bold, and underlined. The polyadenylation signal 
sequence is shown in bold and is double underlined.



Figure 5.3a Sequence of mmc-1 3’ RACE.

m m c-l FI ->
1 G C A TT TA G TG CAACCATCG CTG ATG A TG AAACAG ATG AAACAG AAAAAG A

5 1  GCCGGAAGAAAAAGATGAAAAAACTGAGACCCAG GATCGCAAAGAACGAA

1 0 1  GTGTGC TA A C A A A T T A T G A T C  CAGCGATAATGGCAC CAGAAATG AACGC C 

1 5 1  G ATG CTG G TTTA C TC TTTC G A C G TA A A ATA CG ATC G G A A G A AG G A TG TTG

2 0 1  C T G T TG T TG A A TG A A A A A A G A A G A A A T A TA A A T A A A TG TA TT A G A T A A C A  

2 5 1  T T A A A A A A G A T T T T G A A T G C T G A A T G A A T T T T G A G T A T T T C T A C A T T C A T

3 0 1  C A C T G T A T C A A T A A T G A A T A A A T T A A A T T C A C T T T G A A A A A A A A A A A A A A  

3 5 1  AAACTCGAGGTCGACGCGTAGATCTGAC
Adapter primer (APA)

Figure 5.3b Full length sequence of mmc-1.

1  G G T TT A A T TA C C C A A G TT TG A G C A A A A TC ATGAA A T A T T T T A T T C T T A T G

5 1  C T A A T A G T T T T T A T T G C A T T T A G T G C A A C C A T C G C T G A T G A T G A A A C A G A  

1 0 1  TG AAACAG AAAAAGAGCCG GAAG AAAAAG ATGAAAAAACTGAGACCCAGG  

1 5 1  ATCG C A AA G A A C G A A G TG TG C TA A CA A A TTATG A TC C AG CG ATA ATG G C A  

2 0 1  CCAG AA A TG A A C G C C G A TG C TG G TTTA CTC TTTC G A CG TA A A A TA C G A TC  

2 5 1  G G AAG AAG G ATG TTG CTG TTG TTG AA TG A A A A AA G A A G A A A TA TA A AT A A  

3 0 1  A TG T A TTA G A T A A C A T T A A A A A A G A T T T T G A A T G C T G A A T G A A T T T T G A G  

3 5 1  T A T T T C T A C A T T C A T C A C T G T A T C A A T A A T G A A T A A A T T A A A T T C A C T T T  

4 0 1  GAAAAAAAAAAAAAAAAA



Figure 5.4 Predicted amino acid sequence of mmc-1 ORF.

1 M K Y F IL M L IV F IA F S A T IA D D E T D E T E K E P E E K D E K T E T Q D R K E R S V L T N

5 1  Y D P A IM A P E M N A D A G L L F R R K IR SE E G C C C C *

Figure 5.4.
The proposed amino acid sequence, generated by translating the nucleotide sequence 
from the ATG at position 30, to stop codon at position 273 shown in Figure 5.3. The 
predicted protein consists of eighty one amino acids.



sequence. The sequence showed significant homology at the nucleotide or amino acid 

levels to the B. pahangi mRNA sequence Z?pcDNA5 (accession number X95664, 99 

% identity at the nucleotide level) which was previously cloned in this laboratory as 

part of a study to identify genes up-regulated in heat-shocked mf. mmc-1 and 

BpcDNA5 differ by a single amino acid change at the 3’ end of the sequence. In the 

FpcDNA5 sequence this leads to a stop codon which may be due to a sequencing 

error. When the mmc-1 sequence was used to search the C. elegans database no 

significant matches were found to cosmid or EST sequences. However three 

homologous sequences were found in the B. malayi EST database (accession 

numbers AA228202, AA280479 and N41076). Figure 5.5 shows a ClustalW 

alignment of two ESTs AA228202, AA280479 and mmc-1. Comparison of mmc-1 

with the longest length EST, AA228202, shows 97.1 % identity at the nucleotide 

level and 95.1 % identity at the amino acid level. Comparisons of the two predicted 

peptides were conducted and are shown in Table 5.1. Both ORFs are 81 amino acids 

long, mmc-l has a slightly greater mass and contains more acidic residues, both 

contain a predicted cleavable signal sequence of 17 amino acids and are particularly 

rich in glutamic acid residues.

In an attempt to identify homologous genes of known function, with low 

similarity to mmc-1 a FASTA search of GenBank using the predicted amino acid 

sequence of mmc-1 was conducted. The FASTA program has been found to be more 

robust at finding low homology matches when compared to the BLAST algorithm 

[203, 204]. The FASTA search produced a low significance match to Hsp90 from 

chicken (51 % identity over a 27 amino acid fragment, accession number A32298). 

However when a B. pahangi hsp90 probe was used to hybridise an array of positives
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Figure 5.5 ClustalW alignment of mmc-1 and B. malayi ESTs.

mmc-1cDNA
aa228202.est
aa280479.est

G C G G T T T  A A T T  A C C C A A G T T T G A G C A A A A T C A T G A A A T
A A A T C A T G A A A T

A  T 
A  T

mmc-1cDNA
aa228202.est
aa280479.est

T T T A  T T 
T T  T  A  T T

C T T A T G C T
C T T A T G C T

A A T A G 
A A T A G

T T T T T 
T  T T T  T

T G C A T T T  A G  
T G C A T T T  A G

G C A A 
G C A A

120

mmc-1cDNA I C C A T C G C T G  A[_7jG A T G A A A C A G A T G A  A [ A j C  A G A A A A A G A G C C  
aa228202.es/ [ c  C A T C G C T G A C G A T G A A A C A G A T G A A G C A G A A A A A G A G C C  
aa280479.est A T C G C T G A C G A T G A A A C A G A T G A A G C A G A A A A A G A G C C

160

mmc-1cDNA 
aa228202. est 
aa280479.est

G G A A G A A A A  A[Gj A T G A A A A A A C T G A G A C  c [ c [ a [g JG A T C G C A A A  
G G A A G A A A A A A A T G A A A A A A C T G A G A C C G A A G A T C G C A A A  
G G A A G A A A A A A A T G A A A A A A C T G A G A C C G A A G A T C G C A A A

200

mmc-1cDNA G A A C G A A G T G T G C T A A C A A A T T A T G A T C c A G C G A T A A T G G
aa228202.es/ G A A C G A A G T G T G C T A A C A A A T T A T G A T C c A G C G A T A A T G G
aa280479.est G A A C G A A  G T G T G C T A A C A A A T T A T G A T c c A G C G A T A A T G G

240

mmc-1cDNA C A C C A G A A A T G A A C G C C G A T G C T G G T T T A C T C T T T C G A C G
aa228202.est c A C C A G A A A T G A A C G C C G A T G C T G G T T T A C T C T T T C G A C G
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Figure 5.5
The mmc-l nucleotide sequence and two homologous ESTs from B. malayi 
were aligned using the ClustalW program. Matched nucleotides are shown 
boxed, identical nucleotides are shown in bold.



Table 5.1 Comparison of mmc-1 ORF and the homologous B. malayi EST 
AA228202.

B. malayi AA228202
Number of amino acids 81 81
Predicted molecular 
weight

9.345 kDa 9.303 kDa

Predicted pi 4.46 4.48
Percentage glutamic Acid 16% 14.8 %
Signal Peptide 1-17 (cleavable) 1-17 (cleavable)

Table 5.1.
Parameters of the two proteins mmc-1 and AA228202 predicted using the protparam 
program at the expasy website (http://www.expasy.ch/cgi-bin/protparam).

http://www.expasy.ch/cgi-bin/protparam


from the primary screen of the library, no specific hybridisation to the mmc-1 clones 

was seen (Figure 3.8). The other FASTA matches were short regions of similarity to 

the helix-loop-helix ITF-2 transcription factors of the dog (accession number 

S34416) and human (accession number A41311) and a helix-loop-helix transcription 

factor ME2 of the mouse (accession number 152648). Each of these sequences show 

30.4 % identity to mmc-l over a 46 amino acid fragment. Figure 5.6 shows a 

ClustalW line up of these three peptide sequences and the predicted mmc-l ORF. The 

line up shows a high degree of homology between the three transcription factors, 

whereas the mmc-1 peptide is only homologous to the carboxyl end of the proteins 

and requires a number of gaps to retain this homology. A scan of the prosite database 

at the ExPasy website (http://expasy.ch/prosite) revealed a signature (PDOC00038) 

that is present in the three transcription factors. This signature sequence is designated 

the "helix-loop-helix dimerization domain" and is a requisite for the binding of the 

transcription factor to a DNA molecule. The boxed area of Figure 5.6 highlights this 

signature, it can be seen that the sequence is not present in the mmc-l peptide, and 

therefore it is unlikely that mmc-1 is truly homologous to the helix-loop-helix 

transcription factor family of proteins and that the low homology is due to a forced 

alignment by the search program.

5.2.3 Is mmc-1 SL1 Irans-spliced ?

As mmc-l was isolated from SLl/oligo (dT) amplified cDNA it was 

presumed to be trans-spliced and therefore possess the SL1 22 nucleotide sequence at 

the 5' end of the transcript. In contrast the corresponding B. malayi ESTs AA228202, 

AA280479 and N41076 which were isolated from a conventional cDNA library
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Figure 5.6 Alignment of mmc-1 ORF and H-L-H Transcription Factors.
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Figure 5.6
ClustalW alignment of three Helix-Loop-Helix family transcription factors that 
showed low homology to the mmc- 1 ORF. Similar residues are boxed, identical 
matches are shown in bold. The shaded box shows the H-L-H dimerisation 
signature.



(SAW94LS-BmMF) are reported as SL1 negative. It is likely that the two genes from 

such closely related parasites would both be SL1 frans-spliced. The difference could 

reflect mispriming of SL1 in the generation of the mammalian-derived mf library 

resulting in mmc-l containing a false SL1. Alternatively the sequencing protocol 

used to generate the B. malayi ESTs simply did not record the presence of the SL1.

To determine the presence or absence of the SL1 sequence 5' RACE was 

attempted following the manufacturers protocol as outlined in section 2.7.5. Figure 

5.7 shows a schematic representation of the RACE protocol. Following first strand 

synthesis with a mmc-l gene specific primer (gsp, mmc-lgspl) and dCTP tailing, 

PCR was conducted using a nested gsp (mmc- lgsp2) and an anchor primer specific to 

the dC tail. Thirty five cycles of PCR did not produce a clear band but did result in a 

smear of amplified products in the test lane (Figure 5.8, lane E). Non-specific smears 

of amplified products could also be seen in the control RNA lane, and dC tailed RNA 

control lanes (Figure 5.8 lane A and D respectively). A further round of nested PCR 

with mmc- lgsp3 and an abridged anchor primer was conducted using 5p.l of a 1/100 

dilution of the first round PCR products. Following thirty five rounds of PCR a faint 

band could be seen in the positive test lane (Figure 5.9 lane E). Again smears of 

products could be seen in the control lanes (Figure 5.9 lanes A-D) but not in the no 

template DNA control lane (Figure 5.9 lane F). An aliquot of the positive control 

PCR products was ligated into pCR 2.1 TA vector and transformed into "One-shot" 

competent cells. Transformation positive clones were digested with Eco RI to liberate 

the insert and blotted onto nylon membrane. The resulting Southern blot was probed 

with a mmc-l gene specific probe. A number of the inserts hybridised to the mmc-l 

probe (Figure 5.10) these were sequenced on both strands and a consensus sequence
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Figure 5.7 Schematic diagram of RACE protocol.

RNA

5 ’

gspl

3 ’
First strand synthesis 
using gspl

gspl

dCTP tailing first strand 
cDNA with TdT

anchor primer

c c c c c c c -  
M-----

gsp2

First round of RACE 
PCR using an anchor 
primer and gsp2

V ////////A
RACE products

anchor primer

gsp3

Second round of RACE 
PCR using an anchor 
primer and gsp3

RACE products

Figure 5.7
Schematic diagram showing the protocol of 5’ RACE.



Figure 5.8 mmc-lgsp2 amplified RACE products.

kbp

6.557
2.322
2.027

0.564

Figure 5.8
RACE amplified cDNA, all samples amplified using mmc-lgsp2 and universal 
anchor primer. For thirty five cycles as follows: 94°C 1 minute, 50°C 1 minute, 72°C
2 minutes and a final extension incubation of 72°C for 10 minutes. The amplified
products were size separated on a 1 % agarose gel.

A = Mammalian-derived mf RNA
B = First strand cDNA
C = Glass max purified first strand cDNA
D = dCTP tailed mammalian-derived mf RNA
E = dCTP tailed Glass max purified first strand cDNA
F = No template cDNA control
G = No primer control
M43 = Hind III digested lambda DNA size markers.

A B C D E F GJiH3



Figure 5.9 /«wc-lgsp3 amplified 5’ RACE products.

kbp
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Figure 5.9
RACE amplified cDNA, all samples amplified using mmc- lgsp3 and unabridged 
universal anchor primer. 5pl of a 1/100 dilution of each rarac-lgsp2 PCR (Figure 5.8) 
re-amplified using a nested primer mmc-lgsp3. PCR conditions as follows: thirty five 
cycles of: 94°C 1 minute, 50°C 1 minute, 72°C 2 minutes and a final extension of 
72°C for 10 minutes. The amplified products were size separated on a 1 % agarose 
gel.

7.H3 = Hind III digested lambda DNA size markers 
A = Mammalian-derived mf RNA 
B = First strand cDNA 
C = Glass max purified first strand cDNA 
D = dCTP tailed mammalian-derived mf RNA 
E = dCTP tailed Glass max purified first strand cDNA 
F = No template cDNA control 
G = No primer control



Figure 5.10 mmc-1 5’ RACE transformation positives Southern blot.
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Figure 5.10
mmc-lgsp3/anchor primed 5’ RACE cDNAs (5.9 lane E) were cloned into pCR2.1 
TA vector (Invitrogen) and transformed into Oneshot competent cells. The plasmids 
were digested with Eco RI to liberate the cloned insert and analysed by Southern blot 
with a mmc-1 gene specific probe. Lanes 1-12 = transformation clones.



Figure 5.11 mmc-1 5’ RACE consensus sequence.

1 GGGGGGGGGGGGGGG G T T T A A T T A C C C A A G T T T G A G C A A A A TC A TG A A A T

5 1  A T T T T A T T C T T A T G C T A A T A G T T T T T A T T G C A T T T A G T G C A A C C A T C G C T

1 0 1  GATG A
<- mmc- lgsp3

Figure 5.11
Sequence of 5’ end of mmc-1 transcript obtained by PCR as shown in Figure 5.9. The 
amplified PCR product was cloned into TA vector (Invitrogen). Four clones were 
sequenced on both strands to produce the consensus sequence shown above. The SL1 
sequence is shown in bold and is underlined, the mmc-lgsp3 primer used in the 
RACE protocol is also shown in bold.



of the 5' RACE was constructed. The results showed that B. pahangi mmc-l does 

possess the SL1 sequence (Figure 5.11).

5.2.4 Comparison of cDNA and genomic sequence of mmc-l.

In order to compare the mmc-l cDNA and genomic sequences, a PCR using 

the mmc-IF 1 and mmc- 1R1 primers was conducted using 200 ng of B. pahangi 

genomic DNA as a template. A band of approximately 1 kb (Figure 5.12) was 

produced that hybridised to the mmc-l cDNA probe. This band, named mmc-l FI - 

R1 genomic was purified and cloned into a TA vector (Invitrogen). Three independent 

PCR clones of the mmc-1 FI-R1 genomic PCR fragment isolated as described above 

were sequenced on both strands. The consensus sequence is shown in Figure 5.13. A 

comparison of the genomic and cDNA sequences revealed the presence of two 

introns, shown in bold, mmc-l intron 1 starts at position 43, ends at position 381, and 

is 338 nt in length, mmc-l intron 2 starts at position 444, ends at position 927, and is 

483 nt in length, both introns are particularly A+T rich (90 % intron 1, 79 % intron 

2).

5.2.5 Northern blot analysis of mmc-1.

Northern blots were carried out using RNA derived from mf cultured under 

either mammalian or vector-derived conditions (section 4.2.4) or using mixed sex 

adult RNA. Blots were produced and hybridised under high stringency conditions, 

and exposed for 24 hours. Figure 5.14a shows an EtBr stained gel to demonstrate 

approximately equal loading of RNA in each lane, while Figure 5.14b shows the 

resulting autoradiograph. The mmc-l probe hybridised to a band of approximately
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Figure 5.12 mmc- 1F1 m m c-lR l genomic DNA and cDNA PCR.

kbp

 1.090

 0.805

 0.340
 0.260

A B XPst

Figure 5.12
200 ng of B. pahangi genomic DNA was amplified by PCR using the mmc-l FI and 
mmc- 1R1 primers as follows: thirty cycles of 94°C 1 minute, 60°C 1 minute, 72°C 3 
minutes. The amplified products were size separated on a 2 % agarose gel. A band of 
approximately 1 kb, marked I was isolated and purified. The band marked II 
corresponds to the cDNA control mmc-l F I, mmc-1R1 control.

A = Positive control mmc-l plasmid PCR, mmc-l FI and mmc-1R1 primers.
B = 200 ng Genomic DNA PCR m m c - IF  1- m m c - l R1 primers.
XPst = Pst I digested X DNA molecular size markers.



Figure 5.13 Sequence of mmc- 1F1-R1 genomic DNA PCR fragment and position 
of introns.

m m c-F l ->

1 GCATTTAGTG CAACATCGCT GATGATGAAA CAGATGAAAC AGGTAGGCTG

51 TAATTATTGT TATTATTATT ATTATTATTA TTATTTATTA ACTTCAGCCT

1 0 1 TTTCCTTTCT ATTTAATATG CTGAATTATA TTTAGTTTAA TTTTTTTGTG

1 5 1 GTCAAAAAAT TATTTCAAAG AATTAACGAC TTTTATTTCC ACAAGAAAAA ' Intron 1

2 0 1 ATAATGTTGT AGTAAGTAAA TTGTAGTACA TAAATGGATT TGTTTTTCTC

2 5 1 TCTTTTTTCC CCTCTCTCTA TTTGTCTAAT TAATTAATGG ATCGTTTAAA

3 0 1 ATGCTTAATT AGCAATAAAA TGTAAATCAC TTAAGTAAGC AGTCTTTTTT

3 5 1 CTTTGAGAAT TTGATTTCTG AATAATTGTA GAAAAAGAGC CGGAAGAAAA J

4 0 1 AGATGAAAAA ACTGAGACCC AGGATCGCAA AGAACGAAGT GTGTACGTTT

4 5 1 TCCACTTCTT TTTTTTTTCT TTTAAAACCT ATCAAAATGT AGACAAACGA

5 0 1 AGATGAAATG CTAAGTAAGC TAAGAAAAGT GCGTCACTAT AATCGAAAAT

5 5 1 AAGAGAAAAT TAAAGGTTAA GAAATAATTG AAAATTCATG CAAAAATGAA

6 0 1 TTGATCAGAC GAATAGTCAA CTTAAATGCA TTAAATGCAA TAAAGAAAAA

651 ATATTTCTGT AAAGCAACTA ACGCTTATAA ATATTTATAA TTATTATTGT y Intron 2

7 0 1 GTTTGAGCAA AATTAATTAT TTAAAAAAAA AAACGTTTTA AATAATTTTG

7 5 1 TAAAAAGAAT AAAAAATGAT TGATAAAAGG TTCGATAAAT TTTAGAAAAT

801 TTCAAACAAA AATTTTAAAG AACGACAAAT TTTAAAGGAT GATTAAAGCA

851 TATAATTGAT TAATTGCTAC ATGATTACTA ATTATAATAT ATCTGAATTA

90 1 ATAATAAATT AACAATTTAA TTTCAGGCTA ACAAATTATG ATCCAGCGAT J

9 5 1 AATGGCAC CA GAAATGAACG CCGATGCTGG TTTACTCTTT CGACGT
f  m m c -lR l

Figure 5.13
The genomic mmc- 1F1-R1 PCR product (Figure 5.12) was ligated into a TA cloning 
vector (Invitrogen) and sequenced on both strands on three occasions. The consensus 
sequence is shown above. The positions of the two primers are underlined. By 
comparison of the cDNA and genomic sequences two introns were detected, 
designated intron 1 and intron 2 (shown in bold).



Figure 5.14a
RNA was extracted using standard techniques from 2 x 106 mf cultured for 2 hours in 
either Grace's culture medium at 28°C (vector-derived mf) or in MEM at 37°C, 
(mammalian-derived mf) or from 200 mixed sex adults. Normalised samples of RNA 
were used for the production of the mmc-l northern blot. 3|ig of each sample was 
separated on a 1.5% agarose gel containing formamide and transferred to nylon 
membrane for hybridisation with a mmc-l gene specific probe.

M = RNA markers (Gibco)
A = in vitro cultured vector-derived mf RNA.
B= in vitro cultured mammalian-derived mf RNA.
C = Mixed sex adult RNA.

Figure 5.14b
RNA samples shown in Figure 5.9a were transferred to a nylon membrane and 
hybridised with mmc-lFl-Rl cDNA probe. The blot was washed to high stringency 
at 65°C as follows: 2 x 10 minutes 2 x SSC 0.1 % SDS, 2 x 10 minutes 1 x SSC 0.1 
% SDS, 2 x 10 minutes 0.1 x SSC 0.1 % SDS. The blot was then exposed to 
autoradiographic film for 24 hours at -70°C. The approximate size of the mmc-l 
transcript is 400bp (marked I).



Figure 5.14a. Ethidium bromide stained RNA.
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Figure 5.14b mmc-l northern blot.
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400 bp confirming that the clone isolated from the mammalian-mf library (278 bp) 

was missing approximately 120 bp and the high stringency PCR protocol described 

above did isolate the full length clone. The intensity of the hybridisation to the three 

samples varied greatly. The transcript is more abundant in the mammalian, compared 

to the vector-derived mf (compare lanes B and A respectively), confirming the results 

of the differential screen. No hybridisation was observed to the adult RNA, even after 

extended exposure times of seven days (results not shown). As a mixed sex adult 

population was analysed and the adult females will contain large numbers of 

immature mf, this suggests that mmc-1 is a mature mf-specific gene that is not 

expressed at high levels in utero.

5.2.6 Southern blot analysis of m m c-l.

To determine whether mmc-1 is a single copy gene, or if it is a member of a 

larger gene family, Southern blot analysis of high molecular weight DNA was 

conducted. As with the Southern blot analysis of vmc-2 (section 4.2.5), genomic 

DNA was isolated from approximately 300 mixed sex adult B. pahangi and 20 jig of 

DNA was digested with either EcoR I, Hind HI or Dde I. The resulting digested DNA 

was electrophoresed and blotted under standard conditions. Both EcoR I and Hind DI 

were selected as there is no restriction site for these enzymes in the mmc-lFl-Rl 

PCR fragment used as a specific probe. Dde I has one restriction site in the mmc- 1F1- 

R1 fragment at position 69 bp. A map of mmc- 1F1-R1 and the position of the Dde I 

site is shown in Figure 5.15. The Southern blot was initially hybridised at low 

stringency with the mmc- 1F1-R1 cDNA probe. Figure 5.16 shows the EtBr stained 

DNA smear and the resulting autoradiograph. A number of bands can be seen in each
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Figure 5.15 Restriction map of mmc- 1F1-R1 cDNA fragment.

GCATTTAGTGCAACCATCGCTGATGATGAAACAGATGAAACAGAAAAAGAGCCGGAAGAAAA

CGTAAATCACGTTGGTAGCGACTACTACTTTGTCTACTTTGTCTTTTTCTCGGCCTTCTTTT 
Dde I
I

AGATGAAAAAACTGAGACCCAGGATCGCAAAGAACGAAGTGTGCTAACAAATTATGATCCAG
6 1  ------------------------ 1 1 1 1 1 +  1 2 0
TCTACTTTTTTGACTCTGGGTCCTAGCGTTTCTTGCTTCACACGATTGTTTAATACTAGGTC

CGATAATGGCACCAGAAATGAACGCCGATGCTGGTTTACTCTTTCGACGT
1 2 1 -----------------------+ ------------------------+ ----------------------- + ------------------------+ --------------1 67
GCTATTACCGTGGTCTTTACTTGCGGCTACGACCAAATGAGAAAGCTGCA

Figure 5.15
Map of restriction sites present in mmc- 1F1-R1 cDNA PCR fragment used as a probe 
in the mmc-1 Southern analysis. There is one site for Dde I and no sites for Hind IE 
or Eco RI in the PCR fragment.



Figure 5.16a
20 pg of HMW DNA digested (16 hours, 37°C) with each restriction enzyme. 
Digested DNA was separated on a 0.8% agarose gel.

A = DNA digested with Hind IQ.
B = DNA digested with Dde I.
C = DNA digested with Eco RI.
7*H3 = Hind QI digested lambda DNA size markers.
XPst = Pst I digested lambda DNA size markers.

Figure 5.16b.
The above Southern blot was probed with mmc-1 FI-Rl cDNA probe. Washed at 
50°C as follows: 4 x 10 minute 2x SSC, 0.1% SDS. The resulting autograph was 
exposed for 24 hours. Lanes as described above.



Figure 5.16a Ethidium bromide stained mmc-l Southern blot.
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Figure 5.16b mmc-l Southern low stringency wash.
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of the lanes. A single band of higher intensity can be seen in both the EcoR I and 

Hind HI digested DNA lanes, and two high intensity bands in the Dde I lane. The low 

stringency of the washing and the low temperature of hybridisation may have caused 

cross-hybridisation to other regions of the genome. To test if this assumption was 

correct the same blot was washed to slightly higher stringency (50 °C, 2x 10 minutes 

1 x SSC, 0.1% SDS). The autoradiograph produced after exposure for 72 hours is 

shown in Figure 5.17. Washing at higher stringency resulted in a single band in the 

EcoR I lane of approximately 5 kbp, a single band in the Hind III lane of 

approximately 4 kbp and two bands in the Dde I lane, one of approximately 4 kbp 

and one of approximately 1 kbp. This experiment suggests that mmc-l is a single 

copy gene, and not a member of a larger gene family.

5.2.7 Zooblot analysis of mmc-l.

As mmc-l is expressed in both B. pahangi and B. malayi species but does not 

show homology to genes of the free living nematode C. elegans, it is a potential 

parasite-specific gene. In order to determine if homologous sequences are present in 

other filarial nematodes, genomic DNA from various nematode species was analysed 

by low stringency Southern blot. The parasite species tested were; 

Acanthocheilonema viteae, Onchocerca gibsoni, Diofilaria immitis, Litomosoides 

sigmodontis and Loa loa. By comparison of filarial species that have sheathed mf (B. 

pahangi, L. sigmodontis and L. loa) and non-sheathed mf (D. immitis, A. viteae, O. 

gibsoni), it was possible to determine if the expression of mmc-l is correlated with 

the possession of the microfilarial sheath.
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Figure 5.17 mmc-l Southern higher stringency wash.
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Figure 5.17.
m m c-1 Southern blot shown on figure 5.16b washed to higher stringency at 50°C as 
follows: 3 x 10 minutes 1 x SSC , 0.1 % SDS. The resulting autograph was exposed 
for 72 hours. Legend as described in Figure 5 .16a.



15 p,g of genomic DNA was digested using Dde I, electrophoresed and blotted 

by standard procedures. Hybridisations were conducted at 50°C and washed to low 

stringency. As described in 5.2.6 digestion of B. pahangi genomic DNA with Dde I 

produced two bands of approximately 1 and 4 kbp. The results of the Southern blot 

with B. pahangi, A. viteae, D. immitis and O. gibsoni DNA are shown in Figure 5.18. 

Hybridisation was observed only to the B. pahangi DNA, producing bands of 

predicted size (Figure 5.18b lane A), whilst the DNA from the other nematodes did 

not show any hybridisation.

Comparison of L. sigmondontis and B. pahangi DNA is shown in Figure 

5.19. In this experiment three bands of hybridisation to the B. pahangi DNA were 

observed (Figure 5.19b lane A). This is most likely to be due to incomplete digestion 

of the DNA, as the larger band (approximately 5 kb) is the correct size for an 

undigested form of the two smaller bands. More interesting is the presence of a single 

band of approximately 2.3 kb (Figure 5.19b lane B, marked I) in the L. sigmondontis 

DNA. However when the Southern blot was washed to higher stringency (50°C, 2x 

10 minutes lx SSC, 0.1 % SDS) the band was no longer visible (Figure 5.19b (ii)). 

Similarly at low stringency a degree of cross hybridisation was seen to L. loa DNA 

(Figure 5.20). In addition to the two predicted bands in B. pahangi DNA, a number 

of weakly hybridising bands were observed. Two of the weakly hybridising bands are 

mirrored in the L. loa sample (marked I), whilst the strongly hybridising bands, 

characteristic of mmc-l of 4kb and 1 kb are not. When the Southern blot was washed 

to slightly higher stringency as with the L. sigmondontis sample, the hybridising 

bands were no longer visible (Figure 5.20b (ii)).
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Figure 5.18a
High molecular weight DNA isolated from various filarial worms was digested wih 
Dde I, electrophoresed on a 0.8 % agarose gel and visualised under UV light to shov 
approximately equal loading of samples.

^H3 = Hind HI digested X DNA molecular size markers.
A = 15 fig of Dde I digested B. pahangi genomic DNA.
B = 15 pg of Dde I digested A. viteae genomic DNA.
C = 15 pg of Dde I digested O. gibsoni genomic DNA.
D = 15 pg of Dde I digested D. immitis genomic DNA.

Figure 5.18b
The Southern blot produced from the electrophoresed material shown above wis 
hybridised at low stringency with a mmc-1 FI-R1 cDNA probe (50°C, washed 2x 
SSC 0.1% SDS 2 x 10 minutes). The autoradiograph was exposed for 72 hours at- 
70°C. Lanes as shown for 5.18a.



Figure 5.18a Ethidium bromide stained filarial nematode DNA.
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Figure 5.19a.
High molecular weight DNA isolated from B. pahangi and L. sigmodontis filarial 
worms was digested with Dde I, electrophoresed on a 0.8 % agarose gel and 
visualised under UV light to show approximately equal loading of samples.

AH3 = Hind HI digested X DNA molecular size markers.
A = 15 pg of Dde I digested B. pahangi genomic DNA.
B = 15 pg of Dde I digested L. sigmodontis genomic DNA.

Figure 5.19b(i).
The Southern blot produced from the electrophoresed material shown in Figure 5.13a 
was hybridised at low stringency with a mmc- 1F1-R1 cDNA probe (50°C, washed 2 
X SSC 0.1% SDS 2 x 10 minutes). The autoradiograph was exposed for 72 hours at - 
70°C. Lanes as shown for Figure 5.19a.The cross reaction of mmc-l to the L. 
sigmodontis DNA in lane B after the low stringency wash is marked I.

Figure 5.19b(ii).
Higher stringency wash, the L. sigmodontis zooblot was washed to slightly higher 
stringency (50°C, washed 1 X SSC 0.1% SDS 2 x 10 minutes). The autoradiograph 
was exposed for 72 hours at -70°C. Lanes as shown for Figure 5.19a.



Figure 5.19a Ethidium bromide stained B. pahangi and L. sigmodontis genomic
DNA.
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Figure 5.20a.
High molecular weight DNA isolated from B. pahangi and L. loa filarial worms was 
digested with Dde I, electrophoresed on a 0.8 % agarose gel and visualised under UV 
light to show approximately equal loading of samples.

XH3 = Hind El digested X DNA molecular size markers.
A = 15 pg of Dde I digested B. pahangi genomic DNA.
B = 15 pg of Dde I digested L. loa genomic DNA.

Figure 5.20b(i).
The Southern blot produced from the electrophoresed material shown in Figure 5.14a 
was hybridised at low stringency with a mmc-lFl-Rl cDNA probe (50°C, washed 2 
X SSC 0.1% SDS 2 x 10 minutes). The autoradiograph was exposed for 72 hours at - 
70°C. Lanes as shown for Figure 5.20a. The cross reaction seen between the mmc-l 
probe and both B. pahangi and L. loa DNA at the low stringency wash is marked I.

Figure 5.20b(ii).
Higher stringency wash, the L. loa zooblot was washed to slightly higher stringency 
(50°C, washed 1 X SSC 0.1% SDS 2 x 10 minutes). The autoradiograph was exposed 
for 72 hours at -70°C. Lanes as shown for Figure 5.20a.



Figure 5.20a Ethidium bromide stained B. pahangi and Loa loa genomic DNA.
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The final species compared was W. bancrofti. This analysis was conducted by 

PCR on a mf library (SAW95SjL-WbMf Microfilaria conventional cDNA library) 

provided by the Filarial Genome Project Resource Centre (Smith College 

Northampton, MA 01063, USA), as genomic DNA from W. bancrofti was not 

available. PCR was conducted at low stringency (50°C annealing temperature) using 

mmc-l FI and mmc- 1R1 primers under standard conditions, an aliquot of the B. 

pahangi mammalian-derived mf library was also amplified as a control. The W. 

bancrofti PCR produced no specific bands that could be visualised by EtBr staining 

(Figure 5.21a). The amplified DNA was transferred to nylon membrane and probed 

at low stringency with the mmc-l cDNA probe. The resulting autoradiograph is 

shown in Figure 5.21b. As can be seen the mmc-l probe does not hybridise to the W. 

bancrofti samples (A and B) or the negative control lane (lane C), but hybridises to a 

single band of 174 bp from the B. pahangi library (marked I). The results show that 

of the species tested the mmc-l probe hybridised only to the B. pahangi DNA. Thus 

mmc-l appears to be a Brugia specific gene.

5.2.8 Temporal expression of mmc-l in vivo.

To determine the expression pattern of mmc-l mRNA in vivo a set of semi- 

quantitative RT-PCR experiments were conducted as described for vmc-2 (section 

4.2.6). At the outset of the analysis the amplification of mmc-l and (3-tubulin was 

titrated. 10 jxl of the amplified products after 10, 15, 20, 25, 30 and 35 cycles of PCR 

were electrophoresed, transferred to nylon membrane and probed with the 

corresponding gene-specific probe. The degree of amplification was determined by 

scintillation counting of the specific band (section 2.6). The resulting
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Figure 5.21a
Low stringency PCR amplification of B. pahangi mammalian-derived mf and W. 
bancrofti mf cDNA libraries with mmc-lFl and mmc- 1R1 primers. An aliquot of 
each library was PCR amplified as follows: thirty cycles of: 94°C 1 minute, 50°C 1 
minute, 72°C 1 minute. Amplified products were size separated in a 2 % agarose gel. 
No amplified products could be seen in the W. bancrofti cDNA lanes (A and B), or in 
the negative control lane (C). A single band of predicted size (174bp, marked I) was 
observed in the control B. pahangi cDNA lane, (D).

AJH3 = Hind El digested X DNA molecular size markers.
A = 2 jllI W. bancrofti cDNA library, mmc- 1F1/R1 primers.
B = 5 Jill W. bancrofti cDNA library, mmc- 1F1/R1 primers.
C = No template DNA control PCR, mmc- 1F1/R1 primers.
D = 2 |il B. pahangi cDNA library, mmc- 1F1/R1 primers.

Figure 5.21b.
The PCR products shown in Figure 5.21a were transferred to a nylon membrane and 
hybridised with the B. pahangi mmc- 1F1R1 cDNA probe. The hybridisation and 
washing was conducted at low stringency (50°C washed 2 x 10 minutes, 2 x SSC 0.1 
% SDS). The resulting autoradiograph was exposed to X-ray film for 48 hours at - 
70°C. Lanes as described above.



Figure 5.21a. PCR amplification of W. bancrofti and B. pahangi mf libraries
with m m c-IFl/ mmc-1K1 primers.
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autoradiographs are shown in Figure 5.22. From the graphical representation of this 

data as shown in Figure 5.23, 23 cycles of PCR was chosen as this was in the early 

exponential stage of amplification for both mmc-1 and the control gene fi-tubulin.

The relative abundance of mmc-1 was determined (as described for vmc-2 in 

the previous chapter), by comparison of products amplified by mmc-IF 1/mmc-lRl 

primers and those amplified by fi-tubA/ft-tubB primers. Three separate experiments 

were conducted to investigate the expression of mmc-l; Figure 5.24 shows an 

example of a typical RT-PCR experiment and Table 5.2 shows the counts obtained 

from the three RT-PCR experiments. Figure 5.25 shows the average of the three 

experiments in a graphical form. As can be seen from Figure 5.24 mmc-l is a gene 

that is essentially expressed only in the mature mammalian mf stage of B. pahangi. 

No signal was detectable in the infected mosquito stages or from other mammalian 

derived life-cycle stages. Although no signal was obtained from the mosquito 

thoraces at 24 hours p.i., mf which were cultured in vitro in the vector-like conditions 

can be seen to express mmc-l (Figure 5.24 lane M).

5.2.9 Expression of mmc-l in mf in utero.

In an attempt to detect low level mmc-l expression in mf at different stages of 

development, adult female worms were dissected and assayed for expression by RT- 

PCR. Ten gravid females were cut into four approximately equal portions; head, mid 

I, mid II and tail. The intrauterine development of Brugia is synchronous along the 

length of the uterus. Therefore the head section contained the most mature mf prior to 

release, which were elongate and free swimming, sections mid I and mid II contained 

progressively less mature mf and the tail section contained fertilised oocytes and
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Figure 5.22 Titration of RT-PCR reactions.

A.

B.

15 20 25 30 35 Control

Figure 5.22
Autoradiographs showing titration of PCR amplification using mmc- 1F1-R1 and (3- 
tubulinA-B primer pairs on mammalian-derived mf first strand cDNA. A lOOpl PCR 
was conducted under the following conditions, n cycles of: 94°C 1 minute, 55°C 1 
minute, 72°C 1 minute. After the number of cycles indicated 12|il of each reaction 
was removed. 1 Opil from each time point was then electrophoresed in a 1% agarose 
gel. The amplified products were transferred to nylon membrane and probed with the 
corresponding gene specific probe. The resulting Southern blots were washed at 65°C 
as follows: 2 x 1 0  minutes 2x SSC 0.1 % SDS, 2 x 1 0  minutes 1 x SSC 0.1 % SDS, 2 x 
10 minutes 0.1 x SSC 0.1 % SDS.

A. = m m c-lF l-R l amplified products.
B. = f>-tubulinA-B amplified products.



Figure 5.23 Titration of RT-PCR reaction.
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Figure 5.23
Graphical representation of data shown in Figure 5.22 Amplification of PCR 
products is shown as the incorporated cpm versus the number of cycles. From the 
graphs 23 cycles was chosen as it is in the initial phase of exponential amplification 
for both of the primer pairs.

A. = mmc-1 PCR.
B. = p-tubulin PCR



Figure 5.24 mmc-l life-cycle panel semi-quantitative RT-PCR.

I

II

Figure 5.24
First strand cDNA amplified using either ptubA and ptubB primers panel I, or mmc- 
1F1 and mmc- 1R1 primers panel II, under the following conditions: thirty cycles of: 
94°C 1 minute, 62°C 1 minute, 72°C 1 minute. Amplified products were size 
separated in a 1 % agarose gel and transferred to nylon membrane. The resulting 
blots were probed with the corresponding gene specific probe under high stringency 
(65°C, washed to 0.1 x SSC 0.1 % SDS) and exposed to autoradiographic film.

Panel I = p -tubulin RT- PCR.
Panel II = mmc-1 RT-PCR.
A = Mature mf.
B = Uninfected mosquito thorax.
C = Mosquito thorax 24 hour post infection (mf).
D = Mosquito thorax 3 days post infection (sausage stage larvae)
E = Mosquito thorax 5 days post infection (L2).
F = Mosquito thorax 8 days post infection (L3).
G = Pre-infective L3 isolated from mosquito into Grace's medium.
H = 24 post infection, mammal (L3).
1 = 5 day post infection, mammal (L3).
J = 10 day post infection, mammal (L4).
K = Adults worms.
L = In vitro mammalian-derived mf cDNA.
M = In vitro vector-derived mf cDNA.
N = No template control.
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oogonia. From each section RNA was isolated and first strand cDNA was 

synthesised (sections 2.2.15 and 2.2.18 respectively). The expression of mmc-1 was 

determined by semi-quantitative RT-PCR by comparison to ^-tubulin expression as 

described previously. The mmc-1 expression from each section was compared to that 

of first strand cDNA from the following samples: mature mf (>3 months infection of 

a jird), whole adult males and whole adult females. Figure 5.26 shows an example of 

one such RT-PCR experiment. The raw data obtained from duplicate experiments is 

shown in Table 5.3, whilst Figure 5.27 shows a graphical representation of the 

relative levels of mmc-1 expression in each of the samples. The graph shows that 

whilst very low levels of expression are seen in the head and mid I sections the high 

levels of expression of mmc-1 are only seen in the mature mf.

5.2.10 Expression of mmc-1 in mf in vitro.

In an attempt to determine at what time point mmc-1 expression could be 

detected in the mf of B. pahangi mixed sex adult parasites were isolated and 

incubated in RPMI medium (Gibco) plus supplements (10% FCS, 1% glucose, 2 mM 

L-glutamine, 2.5 mM Hepes, 100 U/ml penicillin and 100 |ig/ml streptomycin). After 

6, 18, 24 and 72 hours of culture the medium was removed and the mf collected by 

centrifugation (1000 rpm, 5 minutes). The mf were used to produce first strand 

cDNA and the expression of mmc-1 tested by RT-PCR. Due to the limiting amounts 

of material the number of PCR cycles was increased to 28 cycles, which was still in 

the log phase of amplification (see Figure 5.23). The data show that mmc-1 

expression can be detected in mf released from the adult female during six hours in
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Figure 5.26 Example of RT-PCR analysis of mmc-1 expression of mf developing
in litero.

I

II

Figure 5.26
An example autoradiograph resulting from RT-PCR expression of mf developing in 
utero. Adult female B. pahangi were dissected into four approximately equal 
sections, head, mid I, mid II and tail. First strand cDNA from each of the sections and 
from mature mf (> 3 months infection of jird) was amplified using mmc-1 and (3- 
tubulin gene specific primer pairs as follows, twenty eight cycles of: 94°C 1 minute, 
62°C 1 minute, 72°C 1 minute. Amplified products were size separated in a 1 % 
agarose gel and transferred to nylon membrane. The resulting blots were probed with 
the corresponding gene specific probe under high stringency (65°C, washed to 0.1 x 
SSC 0.1 % SDS) and exposed to autoradiographic film.

Panel I = (3-tubulin amplified cDNA 
Panel II = mmc-1 amplified cDNA 
A = Adult female section head 
B = Adult female section mid I 
C = Adult female section mid II 
D = Adult female section tail 
E = Mature mf 
F = Adult female 
G = Adult male 
H = No template DNA control



Table 5.3 Relative expression of mmc-1 in sectioned adult females.

Experiment 1 head mid I mid II tail mature
mf

adult
male

adult
female

control

B-tubulin 484 579 351 415 502 702 619 273
mmc-1 306 325 274 257 802 282 362 328
B-tubulin minus 
control

211 306 78 142 229 429 346

mmc-1 minus 
control

-22 -3 -54 -71 474 -46 34

mmc-1 /B-tubulin -0.104 -0.010 -0.692 -0.5 2.070 -0.107 0.098

Experiment 2 head mid I mid II tail mature
mf

adult
male

adult
female

control

B-tubulin 302 358 280 262 580 423 591 380
mmc-1 372 388 396 432 663 380 428 393
B-tubulin minus 
control

-78 -22 -100 -118 200 43 211 '

mmc-1 minus 
control

-21 -5 3 39 270 -13 35

mmc-l/B-tubulin 0.269 0.227 -0.03 -0.331 1.35 -0.302 0.166

mean mmc-l/B- 
tubulin

0.082 0.109 -0.361 -0.415 1.71 -0.205 0.132

standard deviation 0.264 0.168 0.468 0.12 0.509 0.138 0.048

Table 5.3
Raw data obtained from duplicate m m ol RT-PCR experiments using cDNAs from 
sectioned gravid adult females, mature mf, whole adult females and adult males. All 
data is expressed in CPM as determined by scintillation counting of m m ol and p- 
tubulin hybridising cDNA.



Figure 5.27 Relative levels of mmc-1 expression in mf stages in utero.
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Figure 5.27
The graph shows the relative levels of mmc-1 expression of mf developing in utero as 
compared to that of p-tubulin. Gravid adult female worms were dissected into four 
approximately equal sections, head, mid I, mid II and tail. The level of expression in 
the sectioned females is compared to that of mature mf (> 3 months) and whole adult 
male and female worms. The data represents the mean values obtained from 
duplicate semi-quantitative RT-PCR experiments as shown in Table 5.3. The error 
bars represent the standard deviations from, the mean of the data from the 
experiments. The levels of expression of mmc-\/$-tubulin are in arbitrary units.



culture (Figure 5.28). Due to the limitations imposed by the low numbers of mf 

released it was not possible to conduct this type of experiment on earlier time points.

As mmc- 1 expression is detectable within hours of release of the mf from the 

adult female in vitro, attempts were made to manipulate the culture medium to 

determine the factors that influence expression. The temperature of culture and the 

presence of serum and glucose concentrations were tested. For this set of experiments 

the input first strand cDNA was normalised by comparison to standards of known 

concentration on EtBr plates (section 2.6.1). RT-PCR was then conducted using the 

mmc-1 primer pair as before. The level of expression was then directly compared by 

EtBr staining. In this way the data obtained was not quantifiable but was comparable 

between groups. RT-PCR of the cDNAs using the (3-tubulin primer pairs was also 

conducted but only as an internal control of cDNA quality, as no comparisons to the 

levels of mmc-1 expression were carried out. Using this procedure any variation of p- 

tubulin gene expression as a result of the culture conditions would not affect the 

interpretation of mmc-1 expression.

5.2.10.1 Does temperature influence mmc-1 expression?

Approximately 1 xlO6 mf isolated from the peritoneal cavity of an infected 

jird were purified from contaminating mammalian cells (section 2.1.4) and incubated 

for 2 hours at either 28°C, 37°C or 41°C in RPMI + 10 % FCS. RNA was extracted 

from the worms and first strand cDNA synthesis conducted under standard 

conditions. The cDNA was quantified using EtBr staining and then normalised to 

approximately 5 ng/|il (see Figure 5.29 panel III). cDNA produced from ex vivo mf 

directly purified from the peritoneal cavity of the jird was also analysed. The cDNA
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Figure 5.28 Early expression of mmc-1 in vitro.
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Figure 5.28
Mf released from cultured adult females were collected after 6, 18, 24 and 72 hours. 
First strand cDNA was amplified using mmc- 1 and p -tubulin gene specific primer 
pairs as follows, twenty eight cycles of: 94°C 1 minute, 62°C 1 minute, 72°C 1 
minute. Amplified products were size separated in a 1 % agarose gel and transferred 
to nylon membrane. The resulting blots were probed with the corresponding gene 
specific probe under high stringency (65°C, washed to 0.1 x SSC 0.1 % SDS) and 
exposed to autoradiographic film.

/iH3 = Hind III digested lambda DNA size markers.
A = 6 hour culture 
B = 18 hour culture 
C = 24 hour culture 
D = 72 hour culture 
E = Mature ex vivo mf 
F = No template DNA control



Figure 5.29 Expression of mmc-1 in mf cultured at 28°C, 37°C and 41°C.

F i g u r e  5.29
Levels of mmc- 1 in RT-PCR amplified cDNA from mf cultured for 2 hours at 28°C, 
37°C 41°C and mature ex vivo mature mf (> 3 months). Normalised first strand 
cDNA was amplified using mmc- 1 and (3-tubulin gene specific primer pairs as 
follows, twenty eight cycles of: 94°C 1 minute, 62°C 1 minute, 72°C 1 minute. 
Amplified products were size separated in a 1 % agarose gel and transferred to nylon 
membrane. The resulting blots were probed with the corresponding gene specific 
probe under high stringency (65°C, washed to 0.1 x SSC 0.1 % SDS) and exposed to 
autoradiographic film.

Panel I  = mmc- 1 amplified cDNA 
Panel II = (3-tubulin amplified cDNA
Panel I I I  = 0.5pl normalised cDNA samples compared by EtBr staining
A = Mature mf
B = 28°C cultured mf
C = 37°C cultured mf
D = 41 °C cultured mf
E = No template DNA control



from each group was then amplified for 28 cycles using the mmc-1 FI and mmc-1R1 

primer pair and the $-tubulinA and (3-tubulin B primer. The amplified products were 

separated on a 2% agarose gel, stained with EtBr and visualised by UV illumination. 

No differences in the levels of expression could be detected between the groups in 

this or in replicate experiments (Figure 5.29).

5.2.10.2 Does the presence of FCS or glucose affect the expression of mmc-1?

In an attempt to further dissect factors that may be influencing the expression 

of mmc-1 in vitro, a number of culture experiments were conducted in which 

constituents of the medium were altered. Mixed sex adult parasites were incubated 

for 24 hours in 25 cm2 culture flasks (as described in section 2.8) and expression of 

mmc-1 by released mf was determined by RT-PCR analysis on normalised cDNA 

samples. Two of the major factors that were possible candidates for manipulation 

were presence of FCS and glucose. Initially adult parasites were incubated for 24 

hours in RPMI medium ± 10 % FCS, ± 1 % glucose and the released mf collected as 

described in section 5.2.10. RNA was isolated and first strand synthesis was 

conducted by standard means, the levels of expression were compared by RT-PCR to 

that of ex vivo derived mf. The results of duplicate culture experiments showed that 

the absence of either FCS or glucose had no effect on the mmc-1 expression as 

determined by EtBr staining (Figure 5.30).

The RPMI used in the above experiments has a glucose concentration of 

2g/L. It was therefore possible that this was sufficient to stimulate the expression of 

mmc-1 in vitro. In order to determine if the total absence of glucose would influence 

the expression of mmc-1, RPMI medium with no glucose (Gibco Life Technologies
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Figure 5.30 Expression of mmc-1 in mf cultured in RPMI medium ± 10 % FCS
and ± 1 % glucose

I

II

A B C D E

III

A B C D

Figure 5.30
Levels of mmc-1 in RT-PCR amplified cDNA from mf cultured for 24 hours in 
RPMI medium ± 10 % FCS and ± 1 glucose at 37°C. Normalised first strand cDNA 
was amplified using mmc-1 and p -tubulin gene specific primer pairs as follows, 
twenty eight cycles of: 94°C 1 minute, 62°C 1 minute, 72°C 1 minute. Amplified 
products were size separated in a 1 % agarose gel and transferred to nylon membrane. 
The resulting blots were probed with the corresponding gene specific probe under 
high stringency (65°C, washed to 0.1 x SSC 0.1 % SDS) and exposed to 
autoradiographic film.

Panel I = mmc-1 amplified cDNA 
Panel II = P-tubulin amplified cDNA
Panel III = 0.5|il normalised cDNA samples compared by EtBr staining 
A = Mature ex vivo mf 
B = RPMI + 10 % FCS + 1 % glucose 
C = RPMI + 10 % FCS - 1 % glucose 
D = RPMI - 10 % FCS + 1 % glucose 
E = No template DNA control



catalogue number 51872-018, RPMI-g) was used to culture adult parasites and the 

level of mmc-1 expression in the released mf determined as before. Prior to the 

culture experiments the concentration of glucose in each of the media was tested 

(Table 5.4). Adult parasites were incubated for 24 hours and the mf were collected, 

then the medium was replaced and a further 24 hour incubation was conducted. This 

was again repeated and the adults incubated for a further 72 hours. Again when RT- 

PCR of the resultant cDNA was conducted no visible differences were detected 

between any of the groups (Figure 5.31).

The numbers of mf released by the females in each of the experiments was 

also recorded. No significant differences in mf numbers were seen between the media 

tested after 24 hour incubation (data not shown). The slight discrepancies in mf 

numbers were likely to be due to the counting procedure where the number of mf in 

two 20 pi aliquots of media was counted and the total per ml calculated. However, 

differences were seen between the RPMI and RPMI-g media. After the first 24 hour 

period both the cultures produced approximately equal numbers of mf. After the 

second 24 hour incubation the release of the mf from the females in the RPMI media 

remained steady, whilst the numbers of mf were reduced in the no-glucose media. 

This trend was more evident during the 72 hour culture period (Figure 5.32).

5.3 Attempts to isolate the upstream region of mmc-1.

5.3.1 Screening of a Brugia pahangi genomic DNA library.

As the experiments described above were unsuccessful in identifying possible 

triggers for mmc-1 expression a different approach was adopted, in order to clone and 

sequence the upstream region of mmc-1. By these methods it may be possible to
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Table 5.4 Glucose concentrations of culture media.

Medium Glucose concentration 
(mM)

RPMI (Dutch modification) 10.2
RPMI (Dutch modification) + 10 % FCS 10.1
RPMI (Dutch modification) + 1 % 
glucose

69.3

RPMI (Dutch modification) + 10 % FCS 
+ 1 % glucose

68.0

RPMI (No glucose) 0.0
RPMI (No glucose) + 10 FCS 0.8

Table 5.4
Glucose concentrations of various culture media as determined by the Hexokinase 
method (Bayer Pic, Berkshire).



Figure 5.31 Expression of mmc-1 in mf cultured in RPMI medium (No glucose)
+ 10 % FCS after 24 and 72 hour cultures.

Figure 5.31
levels of mmc-1 in RT-PCR amplified cDNA from mf cultured for 24 or 72 hours in 
RPMI medium (no glucose RPMI-g) + 10 % FCS at 37°C. Normalised first strand 
cDNA was amplified using mmc-1 and (3-tubulin gene specific primer pairs as 
follows, twenty eight cycles of: 94°C 1 minute, 62°C 1 minute, 72°C 1 minute. 
Amplified products were size separated in a 1 % agarose gel and transferred to nylon 
membrane. The resulting blots were probed with the corresponding gene specific 
probe under high stringency (65°C, washed to 0.1 x SSC 0.1 % SDS) and exposed to 
autoradiographic film.

Panel I = mmc-1 amplified cDNA 
Panel II = ft-tubulin amplified cDNA
Panel III = 0.5pl normalised cDNA samples compared by EtBr staining 
A = Mature ex vivo mf
B = 24 hours RPMI + 10 % FCS + 1 % glucose 
C = 24 hours RPMI-g + 10 % FCS 
D = 72 hours RPMI 10 % FCS + 1 % glucose 
E = 72 hours RPMI-g 10 % FCS 
F = No template DNA control



Figure 5.32 Mf production of adult females cultured in RPMI versus RPMI-g
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Figure 5.32
Graph of the number of mf released by cultured adult females after consecutive 24 
and 72 hour cultures. Adults cultured at 37°C in either RPMI + 10 % FCS + 1 % 
glucose or RPMI-g + 10 % FCS.
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identify possible regulatory elements in the 5' region of the gene. After PCR using 

mmc-1 FI and mmc-1R1 primers to confirm the presence of mmc-1 in the library a 

screen of a B. pahangi genomic DNA library was attempted. 1 x 106 pfu of a B. 

pahangi genomic DNA library in X DASH II (provided by Dr Fiona Thompson, 

University of Glasgow) was screened by hybridisation with a mmc-1 genomic DNA 

probe (see section 2.2.22.1). The primary screen (55°C, washed to 1 x SSC, 0.1 % 

SDS) identified 7 positively hybridising plaques, which were subjected to a 

secondary screen as before and 24 positive clones were isolated. Five randomly 

picked secondary screen positive plaques were subjected to tertiary screening at 

higher stringency (60°C, washed to 0.1 x SSC, 0.1 % SDS). The tertiary screen did 

not produce any positive hybridisation. The primary and secondary screen positives 

were assessed for the presence of a mmc-1 insert by PCR with gene specific primers 

(mmc-lFl/mmc-lRl), but no positive amplification was seen (results not shown). 

This confirmed the suspicion that the hybridisation seen in the primary and secondary 

rounds were false positives.

5.3.2 Cloning mmc-1 upstream region by PCR.

To obtain the upstream region without the need for hybridisation to total 

genomic DNA, a PCR technique was employed. It was hoped that by long-range 

PCR amplification of the B. pahangi genomic library [205, 206], using gene specific 

primers in conjunction with the lambda primers T3 and T7 the up-stream region 

could be isolated without the need for extensive subcloning. A schematic of the 

positions of primers used in the long range PCR techniques is shown in Figure 5.33. 

It has been shown that A+T rich templates may be problematic to amplify using
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Figure 5.33 Positions of primers used in long-range PCR.

mmc-1 FI

T3/T7 . ............  ...  .... ............... :U ^ X ^ ^ - T 3 / T 7

mmc- lgsp3 mmc-lgsp2 mmc-1 R1

mmc-1R3

Figure 5.33
Schematic diagram showing the positions of primers used in the long-range PCR 
techniques to clone the upstream region of mmc-1. The shaded box represents the 
mmc-lFl/mmc-lRl genomic fragment within a typical X clone from the library.



standard PCR protocols, due to the melting of the polymerase and template at the 

standard extension temperature of 72°C [164], This was considered a potential 

problem when amplifying the mmc-1 genomic sequence which has particularly A+T 

rich introns (90 % A+T intron 1, 79 % A+T intron 2). The PCRs were therefore 

conducted using a more robust DNA polymerase (AGSGold, Hybaid), and modified 

conditions (50°C annealing, 60°C extension, see section 2.2.22.2) as suggested by Su 

et al (1996) [164]. The primers mmc- 1R1 and mmc- 1R3 were used in conjunction 

with either T3 or T7 vector primers. Following thirty cycles of PCR a number of 

bands were observed in the mmc-1R1,T7 and mmc- 1R3, T7 samples (Figure 5.34 

lanes A and C respectively). The origin of the smear of DNA seen in some lanes (E, 

G, I and K) is not known but reports of such artefacts are a feature of the long range 

PCR technique [164]. It is likely that the low temperature conditions used in the PCR 

has resulted in some spurious priming of unrelated sequences; this is evident in the 

positive control lane (lane M) where the amplification of a mmc-1 FI-mmc-1R3 

plasmid resulted in a large number of products, in addition to the predicted 426 bp 

product (Figure 5.34 marked I). The amplified products were transferred to nylon 

membrane and probed with a mmc-1 FI-mmc-1R3 genomic DNA probe (Figure 5.35). 

The Southern blot shows a number of weakly hybridising bands in the mmc-lRl/T7 

sample (lane A) and two bands of intense hybridisation in the mmc-1R3/T7 sample 

(lane C). The band marked i is of the correct predicted size (996 bp) for the mmc- 

lFl/mmc-lRl control PCR. The band marked ii is of the correct predicted size (436 

bp) for the mmc-lFl/mmc-lR3 control PCR. The two strongly hybridising bands 

from the mmc-1R3/T7 PCR were gel purified and cloned into a TA vector 

(Invitrogen). The resulting purified plasmid from these transformations were
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Figure 5.34 Long-range PCR of B. pahangi genomic DNA X DASH II library to
isolate the upstream region of mmc-1.
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Figure 5.34
An aliquot of a B. pahangi genomic DNA library in X DASH II was boiled for 5 
minutes then placed on ice. A 5 pi aliquot of this was amplified by PCR with 
AGSGold polymerase using mmc- 1R1 and mmc- 1R3 gene specific primers, and T3 
and T7 vector specific primers, under the following conditions: thirty cycles of 94°C 
1 minute, 55°C 1 minute, 60°C 10 minutes. 10 pi of the amplified products were run 
on a 1 % agarose gel and stained with Ethidium Bromide.

A = mm c-1R 1, T7 primers.
B = mmc-1R 1, T3 primers.
C = mmc- 1R3, T7 primers.
D = mmc- 1R3, T3 primers.
E = mmc-1F 1, mmc-1R 1 primers.
F = mmc-1F 1, mmc-1R3 primers.
G = mmc-1 FI, mmc- 1R1 primers no template DNA control.
H = mmc-1 FI, mmc-1R3 primers no template DNA control.
I = m m c-1R 1, T7 primers no template DNA control.
J = m m c-1R 1, T3 primers no template DNA control.
K = mmc-1R3, T7 primers no template DNA control.
L = m m c-1R3, T3 primers no template DNA control.
M = mmc-1 FI-R3 plasmid positive control.
XH3 = Hind III digested X DNA molecular size markers.



Figure 5.35 Long-range PCR southern blot.
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Figure 5.35
Southern blot produced from the electrophoresed material shown in Figure 6.8 was 
hybridised with a mmc-1 FI-R3 genomic DNA probe (50°C, washed 1 x SSC 0.1% 
SDS 2 x 1 0  minutes). The autoradiograph was exposed for 10 days -70°C. Lanes as 
shown for 5.34. The m m c-lF l/m m c-lR 3 plasmid positive control PCR (lane M 
Figure 5.34) was removed as the specific activity was very intense and would have 
led to quenching of the X-ray film. Lanes A-L as described in Figure 5.34. The band 
marked i is of predicted size (996 bp) for the m m c-lF l/m m c-lR l control PCR. The 
band marked ii is of the predicted size (436 bp) for the m m c-lF l/m m c-lR 3 control 
PCR.



sequenced on both strands by standard techniques (2.2.20). From the preliminary 

sequencing it was apparent that the amplified bands were due to false amplification 

as the mmc-1 specific primer was present at both ends of the amplified PCR fragment 

but neither end progressed through the known mmc-1 DNA into the upstream region. 

The low stringency of the PCR was likely to have led to the promiscuous annealing 

of the primer and the results seen.

To increase the chance of specifically amplifying the mmc-1 upstream region 

a nested approach was then adopted. PCR was conducted using the same B. pahangi 

genomic library and vector primers as before, but utilising the nested primers mmc- 

1R1, mmc- lgsp2 and mmc-lgsp3 ( mmc- lgsp2 and mmc-lgsp3 used previously for 5’ 

RACE, see section 5.2.3). 5 pi of a 1/10 dilution of the genomic library was 

amplified for thirty cycles using T3 or T7 primers and mmc-lRl (section 2.2.22.2). 1 

jil of the round 1 reaction was removed and amplified using mmc- lgsp2 and the 

corresponding vector primer. This was again repeated using mmc- lgsp3 and the 

vector primers. It was hoped that by the use of nested primers preferential 

amplification of the mmc-1 upstream region over any false product would result. The 

results of the nested PCR are shown in Figure 5.36. The first round PCR (mmc-1R1 

and vector primers) did not produce any visible amplified products, only the control 

lane of genomic DNA amplified with mmc-1F1 and mmc-1R3 produced a band of 

predicted size (436 bp, Figure 5.36 lane G). The second round of PCR only produced 

amplified products from the control mmc-1 FI and mmc-1R3 amplified lanes (Figure 

5.36 lanes I, K and L). The final round of PCR also failed to amplify products using 

the vector and gene specific primers. The fact that the control reactions I and K 

produced bands of predicted size shows that mmc-1 can be amplified and suggests
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Figure 5.36 Long-range nested PCR of B. pahangi genomic DNA X DASH II
library to isolate the upstream region of mmc-1.
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Figure 5.36
An aliquot of a B. pahangi genomic DNA library in X DASH II was boiled for 5 
minutes then placed on ice. 5 pi of a 1/10 dilution of this was amplified by PCR with 
AGSGold polymerase using nested mmc-1 gene specific primers, and T3 and T7 
vector specific primers, under the following conditions: thirty cycles of 94°C 1 
minute, 55°C 1 minute, 60°C 10 minutes. 10 pi of the amplified products were run 
on a 2 % agarose gel and stained with Ethidium Bromide.

Round one.
A = mmc-1R 1, T3 primers.
B = mmc-1R 1, T7 primers.
C = mmc-1 FI, mmc-1 R3 primers.
D = mmc-1R 1, T3 primers no template DNA control.
E = mmc-1R 1, T7 primers no template DNA control.
F = mmc-1 FI, mmc-1R3 primers no template DNA control.
G = mmc-1 FI, mmc-1R3 primers lOOng B. pahangi genomic DNA positive control. 

Round two.
H = 1 pi of reaction A, mmc-lgsp2, T3 primers.
I = 1 pi of reaction A, mmc-IF 1, mmc-1 R3 primers.
J = 1 pi of reaction B, mmc-lgsp2, T7 primers.
K = 1 pi of reaction B, mmc-1 F I,  mmc-1 R3 primers.
L = 1 pi of reaction G, mmc-1 FI, mmc-1R3 primers.

Round three
M = 1 pi of reaction H, mmc-lgsp3, T3 primers.
N = 1 pi of 1:10 dilution of reaction H, mmc-lgsp3, T3 primers.
O = 1 pi of reaction J, mmc-lgsp3, T7 primers.
P = 1 pi of 1:10 dilution of reaction H, mmc-lgsp3, T7 primers.
A,H3 = Hind III digested X DNA molecular size markers.



that mmc-1 is present in the library. However no products were seen after the first 

round PCR of 30 cycles, but only after re-amplification for a further 30 cycles 

suggesting that mmc-1 is under-represented in the library.

5.4 Discussion.

Analysis of the mmc-1 cDNA produced a number of interesting findings: the 

ORF encodes a small peptide consisting of 81 amino acids that has a predicted 

cleavable signal sequence (amino acids 1-17). The mmc-1 gene product is therefore 

potentially a secreted protein, and as such has the opportunity to interact with the host 

environment. As the homologues to mmc-1 were to cDNAs of unknown function, 

attempts were made to identify domains in the protein sequence that may be 

homologous to proteins of known function [207]. The analysis demonstrated a low 

degree of homology between mmc-1 and a family of transcription factors. 

Unfortunately the lack of the signature domain that allows the binding of these 

transcription factors to DNA meant that consideration of mmc- 1 as a homologous 

helix-loop-helix containing transcription factor had to be dismissed. The lack of other 

signatures in the mmc-1 sequence confirmed that at present mmc-1 must be regarded 

as a novel gene without predicted function.

Assigning functions to parasite-specific genes which have no homologues is 

an increasing problem as more sequences are deposited in parasite EST databases. An 

increasing amount of research will have to be carried out in silico to determine those 

genes that are of primary importance (for review see [126]). Recent comparison of 

the B. malayi ESTs by comparison with other public databases showed that 38 % are 

unique to Brugia with no known homologues and only 45 % of the ESTs are
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homologues of genes of known function [132, 139]. As discussed in the Introduction 

this may prove to be problematic to parasite biologists as the parasite specific genes 

are likely to be of most interest.

As the mmc-1 sequence obtained from the mammalian-derived mf library 

contained the SL-1 sequence, it was considered unlikely that the B. malayi 

homologue would not. The relevance of the SL1 sequence is unknown, certainly if 

SL1 sequences are experimentally frans-spliced onto mRNAs that do not normally 

posses SL1, subsequent expression is unaffected [110]. Analysis of the mRNAs 

known to posses the SL1 sequence shows that there is no common group that can be 

applied to mRNAs that are rra«s-spliced or those that are not [208]. In the actin 

group originally found to posses the SL1 sequence one of the four actin mRNAs did 

not show the sequence [179]. It has also been reported that the mRNAs that are SL 

trans-spliccd in one species may not be present in the homologous gene of another 

[208]. However these studies relate to the comparison of C. elegans and schistosome 

species and the distant relationship of these animals (one a nematode and one a 

platyhelminth) may explain these differences. It has been proposed that frans-splicing 

of a mRNA molecule removes any extended 5’ UTR that may be present thereby 

promoting accurate translation [110, 208]. In support of this proposal, the resulting 5’ 

UTR of nematodes are typically very short with < 20 bases between the SL1 

sequence and the methionine initiation codon [122, 209]. This is seen in mmc-1 

where there is only eight bases between the SL1 sequence and the initiation codon, 

ATG. While studies carried out in this chapter showed that Bp-mmc-1 was trans- 

spliced to SL1, the corresponding B. malayi ESTs isolated from a conventional 

cDNA library were not reported to be trans-spliced. It was thought unlikely that the
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mRNA would be differently trans-spliced in B. malayi and B. pahangi. In conclusion 

the differences in the B. malayi and B. pahangi transcripts is likely to be due to the 

cloning and sequencing procedure used to generate the B. malayi ESTs.

The analysis of the northern blot showed that the mmc-1 transcript is up- 

regulated in the mammalian-derived mf as was predicted by the differential library 

screen. The northern blot also demonstrates a low level of expression of mmc-1 in the 

vector-derived mf RNA. This suggests that the culture of the parasites in Grace's 

insect medium does not lead to the complete suppression of mmc-1 expression. It was 

necessary to use an in vitro system for this analysis as it is impossible to obtain 

sufficient parasite material from mosquitoes for equivalent analysis.

The RT-PCR analysis carried out confirmed the results of the northern blots 

and showed the same discrepancy between mmc-1 expression in mosquito-derived mf 

in vivo (24 hour p.i mosquito stage) and in the vector-derived in vitro system, see 

Table 5.2. The RT-PCR experiments suggested that mmc-1 was not expressed in the 

vector-derived mf stage in vivo but expression was seen in the parasites cultured in 

vitro (vector-derived = 2.08 ± 1.63). The reasons for this discrepancy are not clear. 

The most likely explanation is that the culture system used does not properly mimic 

the conditions to which mf are exposed in vivo in the mosquito host. Alternatively 

the results of the in vivo vector-derived RT-PCR may not be as accurate as at other 

time points. This may be due to the fact that in the mosquito the number of parasites 

that are present in any one mosquito thorax is limited (approximately 6-20 in the 

conditions used here) and that size of the LI parasites is approximately 190 x 8 pm 

after 24 hours in the mosquito [9]. Therefore parasite mRNA molecules will be
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vastly out-numbered by mosquito mRNAs and it may be difficult to detect parasite 

transcripts which are not abundant by this method.

Comparison of the cDNA and genomic DNA nucleotide sequences shows 

that mmc-1 contains two introns and three possible exons, although the possibility of 

further introns being present outwith the compared mmc- 1F1 -mmc- 1R1 genomic 

PCR fragment and the end of the transcript cannot be ruled out. In comparison to a 

survey of B. malayi introns [128] the introns of mmc-1 are relatively large (338 and 

483 bp) although neither is as large as the vmc-2 intron (716 bp) described in the last 

chapter, and have a higher percentage A+T than the B. malayi consensus. The only 

complete exon, i.e. flanked by introns is exon 2. This short exon (62 bp) follows the 

trend seen in B. malayi genes where the highest frequency of exon sizes analysed is 

in the size class 61-80bp [128]. Analysis of the splice site junctions of B. malayi 

revealed a consensus sequence of AG/GT and AG/G for the 5’ and 3’ splice sites 

respectively [198]. The mmc-1 intron boundaries fit this general consensus although 

the exon sequences are not as strict (CAG/GTA..TAG/AAA intron 1, 

TGT/GTA..CAG/GCT intron 2). However it is not possible to draw any conclusions 

re-intron structure in B. pahangi on the basis of the analysis carried out here.

As mmc-1 was clearly only expressed in the mf stage, its function may relate 

to some aspect of the biology of the parasite which is exclusive to the mf. One 

feature which is specific to some mf is the presence of a sheath. The fact that mmc-1 

is not expressed by adult females would suggest it is not a structural component of 

the sheath. Many of the characterised structural components of the sheath (the 

modified egg shell) are synthesised in the adult female by both the embryo and the 

uterine epithelium in the adult female [81]. For example the known sheath matrix
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proteins such as SHP2 are synthesised during development in the embryo [89]. 

However this does not preclude mmc-1 from being associated with the sheath once it 

is formed, or from having a role associated with the presence of the sheath. An 

example of such a gene is the microfilarial chitinase of B. malayi (MF1, accession 

number A38221, [210]) the expression of which correlates with the possession of the 

sheath as it is not expressed in non-sheathed species such as D. immitis [211, 212], 

The role of the chitinases in the development of Brugia mf is not fully understood. 

Their expression is very low in intrauterine and immature mf but increases as the mf 

mature [212]. As the fully-developed sheath does not contain detectable amounts of 

chitin [81, 84], it is unlikely that the chitinases are involved in the process of 

exsheathment but may instead be involved in the penetration of chitinous structures 

in the mosquito during the migration of the parasite in the vector [210, 212]. An 

alternative role relates to the observation that chitin is present in the eggshell of 

oocytes and zygotes of filarial parasites but not in the mature microfilarial sheath as 

determined by competitive lectin binding studies [85], Fuhrham and Piessens (1985) 

suggested that chitinase activity seen in the early development of the mf may modify 

the sheath to allow the morphogenesis of the sheath and the unrestricted growth of 

the mf [83]. Support for this hypothesis comes from experiments in which the 

inhibition of chitin synthesis was shown to produce folded mf within a truncated 

sheath [83]. However the analysis carried out here failed to detect mmc-1 in any of 

the other filarial parasites examined, either blood dwelling species (W. bancrofti, L. 

loa, A. viteae, D. immitis or L. sigmodontis) or in the skin dwelling mf of O. gibsoni. 

Likewise expression of mmc-1 was not correlated with the possession of a mf sheath 

as no signal was obtained in W. bancrofti, L. loa and L. sigmodontis DNA compared
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to those that are unsheathed (O. gibsoni, A. viteae and D. immitis). Thus it appears 

that mmc-1 is a Brugia specific gene.

Southern blot analysis of mmc-1 at very low stringency did show some cross­

hybridisation suggesting that mmc-1 has some sequence homology to another gene or 

genes in the B. pahangi genome. This may also explain the degree of cross­

hybridisation seen in the zooblot analysis of L. sigmodontis and L. loa DNA. The 

failure to detect a homologue in the W. bancrofti library may be a reflection of the 

experimental procedure. Screening the W. bancrofti cDNA library at low stringency 

may have isolated a more distantly related homologue than the PCR conditions 

allowed, although this was not possible due to time restrictions.

The uterus of the adult female of Brugia is composed of two parallel genital 

tubes in which development of the embryo progresses from distal to proximal ends 

[213]. At the distal end of the uterus, lies the ovary in which germ cell formation and 

maturation takes place [214]. The ovary is located in the hind body of B. pahangi but 

does not extend behind the level of the anus [7]. The oocytes mature in growth zones 

in the ovary at the proximal end the ovary narrows producing a seminal receptacle, 

where the oocytes are fertilised and pass into the uterus [214]. Development is 

synchronous throughout the uterus and as the embryo develops it can be seen to 

become compact then form a coiled and finally elongate mf [213-215]. The mf are 

expelled from the adult female at the vagina vera, a muscular pyriform ovejector, 

located 0.49-0.58 mm behind the head [7]. Due to this synchronous development of 

Brugia in utero the expression of mmc-1 at various stages of maturation could be 

assessed. RT-PCR analysis of sectioned adult females and the use of in vitro culture
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techniques allowed the determination of the temporal expression of mmc-1 at early 

time points.

The RT-PCR analysis of the sectioned adult females showed that mmc-1 

expression either follows or is concomitant with the release of the mf from the 

uterus, as it is not present at significant levels in developing mf (Figure 5.27), but is 

detectable in mf 6 hours after release (Figure 5.28). The culture of adult worms and 

the collection of mf allowed the manipulation of factors that may influence the 

expression of mmc-1. Variation of incubation temperature did not affect the 

expression of mmc-1 in mf (Figure 5.29). It was predicted that mmc-1 expression may 

have been affected by temperature as one of the major differences in the culture 

conditions used in this study was the manipulation of temperature, also mmc-1 was 

previously isolated from a heat shock cDNA library produced from mf incubated at 

41°C for two hours (section 3.4.5) [80]. The apparent high level of mmc-1 mRNA in 

the heat shock library may be due to steady state expression of this transcripts at 

elevated temperatures when many other genes are down regulated following 

temperature stress [216]. The presence of serum in culture medium has been shown 

to influence the expression of excreted proteins of B. malayi [217]. However in this 

study the culture of adult parasites in the serum-free medium did not effect the level 

of mRNA expression seen in the released mf (Figure 5.30). Also the expression of 

mmc-1 was not affected by absence of glucose from the medium or the absence of 

both serum and glucose (Figure 5.31).

It was hoped that the isolation of the up-stream region of mmc-1 may have 

given an insight into possible factors involved in the regulation of mmc-1, 

unfortunately the preliminary attempts conducted here were unsuccessful. It was
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assumed that in the initial screen the mmc-1 probe had hybridised to a region of 

similarity which did not hybridise at the higher stringency of the tertiary screen. In 

retrospect the conditions used to screen the library may have been less than optimal. 

When genomic DNA was analysed by Southern blot (section 5.2.6) a degree of cross­

reactivity was seen at low stringency (50°C, 2 X SSC, 0.1 % SDS washes, see Figure 

5.16) which was not seen after washing at higher stringency (50°C, 1 X SSC, 0.1 % 

SDS, see Figure 5.17). In light of this the screen may have been less stringent than 

was required to isolate the mmc-1 fragment by homologous screening. The lack of 

positively hybridising plaques may also relate to the length of probe used. As the 

probe is very short compared to the length of the lambda clone, the region of 

hybridisation would be limiting and would therefore require an increased 

hybridisation time.

Although the modification of the culture medium did not produce a visible 

difference in the expression of mmc-1 mRNA it did effect mf behaviour. Mf in 

standard culture conditions (RPMI + 10 % FCS + 1 % glucose) exhibit very vigorous 

motility that resembles mf isolated ex vivo from an infected jird. In the minus glucose 

medium the mf were very sluggish and showed little motility as is seen in mf in the 

flight muscles of the mosquito host [9]. The motility of B. pahangi mf has been 

shown to be dependent on the presence of glucose as the culture of mf in glucose-free 

medium leads to a cessation of motility that can be reversed by the addition of 

glucose [218]. The availability of glucose may reflect the lack of motility of the 

parasite when in the mosquito flight muscles [9]. It has been shown that B. patei mf 

developing in the flight muscles of Aedes togoi do not incorporate significant 

amounts of glucose, and that parasitised muscle cells incorporate less glucose than
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non-parasitised cells [219]. In vitro the incorporation of glucose is believed to be by a 

trans-cuticular route and uptake is only evident in viable worms and is therefore 

likely to be an active process [220], How the glucose in the medium is exhausted is 

not clear, the uptake of glucose by B. pahangi is approximately equal in adult 

females (6.11 |J.g/mg wet body weight/hour) compared to adult males (7.75 |J.g/mg 

wet body weight/hour) [220] however the mf of B. pahangi can metabolise glucose 

up to 14 times faster than adults [221].

The number of mf released during the culture period was observed to drop in 

the glucose-free medium (Figure 5.32). This is likely to be due to the exhaustion of 

the energy source from the medium. In culture it has been shown that 13-14 % of 

available glucose is metabolised to trehalose and is used as a source of stored energy 

[222]. If adult B. pahangi are cultured and fed glucose at less than 0.4 mg/hour no 

trehalose is detectable as it is metabolised to lactate and succinate [223]. At the 

outset of the experiment the RPMI + 10 % FCS + 1 % glucose medium contained 68 

mM glucose (see Table 5.5), therefore 10 ml of medium would contain 122.4 mg of 

glucose. Using the rates of glucose metabolism of Howells and Chen (1981) [220] 

(adult females 6.11 |Lig/mg wet body weight/hour, adult males 7.75 Jig/mg wet body 

weight/hour) a culture of 50 males and 50 females would metabolise a total of 0.1768 

mg glucose/hour (average wet weight of female = 0.495 mg, average wet weight of 

male = 0.066 mg [220]. Therefore even after 72 hours the amount of glucose would 

not be limiting (0.1768 X 72 = 12.73 mg glucose metabolised), although this does 

not take into account the amount of glucose that would be incorporated by the 

released mf. The glucose free medium contained no detectable glucose (Table 5.5) 

therefore the only available energy source would be stored carbohydrates such as
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trehalose which may become exhausted in the first 24 hours leading to the slowing of 

mf release seen in the later periods of culture (Figure 5.32).

In C. elegans egg laying is cyclical and related to environmental conditions 

[224]. C. elegans hermaphrodites have periods of inactivity of the uterus leading to 

reduced egg laying, whereas in periods of activity the uterus is stimulated to contract 

causing the expulsion of eggs. The contractions of the uterus are stimulated by 

neurons that respond to the presence of a food source. In wild type C. elegans the 

lack of a bacterial lawn reduces the release of eggs by reducing contraction of the 

muscles of the vulva, this behaviour is not seen in mutants lacking the flp -1 gene 

which encodes a neuropeptide [224]. This type of behaviour is likely to be an 

example of adaptation to maximise survival, such that large numbers of eggs are only 

released when the environment is capable of supporting them. It is possible that the 

lack of mf release seen in the glucose-free medium may be an evolutionary strategy 

to reduce the release of mf in an unsuitable environment. The glucose concentration 

in the lymph of the thoracic duct of man has been reported to be between 95 and 140 

mg/ml and follows that of the blood, which is tightly regulated by the pancreas [225]. 

Therefore adult parasites in the lymphatics of an animal host are in a relatively 

unchanging environment rich in glucose which may lead to the continuous release of 

the mf. The reduction in mf observed in glucose-free medium in vitro may be a 

limitation of the culture systems. Other factors may be involved in this process, e.g. 

mating behaviour and host factors. The release of the mf of O. volvulus shows a 

cyclical pattern of release, although this is thought to be related to fertilisation of 

females by "wandering males" [226]. The mating of Brugia spp has not been 

documented and so it is difficult to speculate if this type of behaviour occurs. The
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possibility that host factors may influence the release of progeny is based on studies 

of S. mansoni where the cytokine TNF-a produced by the host, was found to be 

required for egg production [131]. Infection of SCID mice was found to result in > 70 

% reduction in the amount of egg production compared to infected BALB/c mice. In 

vitro the numbers of eggs produced was increased by recombinant human TNF-a in a 

dose dependent manner [131]. Could a requirement for host signals to stimulate 

production of mf be present in B. pahangil Seasonal periodicity has been reported in 

B. malayi, where the numbers of mf in the peripheral blood appear to mirror the 

seasonal prevalence of the mosquito vector [37]. If this is due to a seasonal variation 

in the production mf, a possible mechanism for the control of mf release could be 

that host reactions to the bite of a mosquito or to infecting L3 parasites, results in 

immune stimulation and cytokine production that stimulates the adult worms to 

produce increased numbers of mf. Therefore during the wet season when mosquitoes 

are abundant and biting rates are increased the release of mf is also increased to 

maximise the chance of infection.

On the basis of the analysis conducted it appears that mmc-1 is expressed to 

coincide with the release of the mf from the adult female. Therefore some factor 

other than temperature, serum or glucose to which the mf are exposed to in the 

bloodstream may be responsible for triggering expression. Alternatively the release 

of the mf from the uterus may provide mechanical stimulation for initiation of mmc-1 

expression.

As mmc-1 appeared to be specific to the mf stage of the Brugia life-cycle it 

may function either in the mammalian host or in the infection event in the mosquito. 

The evidence that mmc-1 is expressed only in the mf stage of Brugia species raises a

160



number of questions, is mmc-1 involved in the immuno-modulation in the 

mammalian host?; is mmc-1 secreted from the worm as the nucleotide sequence 

would predict?; where is the protein located and does this give an insight to its 

possible function? and is the mmc-1 protein seen in any other life cycle stage or is it 

also specific to the mf stage? The following Chapter aims to address some of these 

questions.
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CHAPTER SIX



6.1 Introduction

In order to investigate the functions of the mmc-1 gene product a recombinant 

MMC-1 protein was produced by expression in E. coli. The recombinant protein was 

produced using the pMal protein fusion and purification system (New England 

Biolabs). The purified protein was used in immunoassays to determine if MMC-1 is a 

natural antigen in both human and animals infected with Brugia species. The protein 

was also used to raise MMC-1 anti-serum in both rabbits and mice. The anti-sera 

were then used to identify the native protein by western blotting and investigate the 

localization of the MMC-1 protein in whole worms by IF AT localisation.

6.2 Production and purification of recombinant MMC-1 protein.

6.2.1 Cloning of mmc-1 into MBP-p2 expression vector.

The ORE of mmc-1 was amplified by PCR and cloned into the MBP 

expression vector. PCR of mammalian mf cDNA using two gene specific primers 

mmc-lExFl and mmc-lExRl resulted in a band of predicted size (266 bp) marked I 

Figure 6.1. The 266bp band was digested with Bam HI and Pst I, gel purified and 

ligated into the MBP vector. Three transformation positive clones, as determined by 

a-complementation, were sequenced using the MalE primer (New England Biolabs). 

All three clones possessed the predicted sequence and were in the correct orientation 

and correct frame downstream of the MalE gene to allow accurate expression .

6.2.2 Expression and purification of MBP-MMC-1 fusion protein.

A pilot experiment was conducted to determine if the clone could be induced 

to express the recombinant protein. An isolated colony was inoculated into LB-amp,
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Figure 6.1 PCR of mmc-1 ORF with m m c-lExFl and m m c-lExRl primers.
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Figure 6.1
The open reading frame of the mmc- 1 gene was amplified by PCR using mmc-lExFl 
and mmc-lExRl primers. An aliquot of mammalian-derived mf cDNA was amplified 
under the following conditions: thirty cycles of 94°C 1 minute, 50°C 1 minute, 72°C 
1 minute. A specific band of predicted size (266 bp) marked I was produced. The 
band was purified and cloned into pCR2.1 TA vector (Invitrogen).

A = lpl of mammalian mf cDNA, m m c-lExFl and m m c-lExR l primers.
B = 0.5 pi of mammalian mf cDNA, m m c-lExFl and m m c-lExR l primers.
C = No template DNA control, m m c-lExFl and m m c-lExR l primers.
APst = Pst I digested X DNA molecular size markers.



grown overnight at 37°C and induced under standard conditions. Samples of induced 

and uninduced samples were separated on a 12.5 % acrylamide SDS gel. Figure 6.2 

shows the induction of the recombinant protein. The induced band had a predicted 

size of 51.8 kDa (42.5 kDa MBP + 9.3 kDa MMC-1), and a band of appropriate size 

marked I, can be seen in the induced lanes. The level of induction was relatively low 

and so expression was attempted in Topp cells (Stratagene) to optimise expression. 

Uninduced and induced samples were produced as described above for DH5a cells 

and separated as before (Figure 6.3). A slight increase in the level of induction of a 

band of the appropriate size can be seen in the induced lanes. A pilot experiment was 

carried out to purify the recombinant protein. The results of this experiment are 

shown in Figure 6.4. The MBP-MMC-1 protein is marked I. The gel shows that a 

small fraction of the fusion protein is contained in the insoluble fraction (lane C) 

whilst the majority is in the soluble fraction and can be purified from contaminating 

proteins by affinity purification on an amylose column (lane D). A large scale 

production of the fusion protein was conducted following the manufacturers protocol.

The crude extract obtained from the large scale expression was loaded onto 

an amylose column and washed to remove contaminating proteins. The MBP-MMC- 

1 fusion protein was eluted in 3 ml aliquots by washing with column buffer 

containing maltose, as detailed in methods. The results of the elution are shown in 

Figure 6.5. The MBP-MMC-1 protein is marked I. The MMC-1 protein was cut from 

MBP using Factor Xa (New England Biolabs) (2.9.6). Figure 6.6a shows an 

acrylamide gel with the cut MMC-1 protein of predicted size, 9.3 kDa, labelled I, the 

MBP moiety marked n, and a small proportion of the fusion protein remaining uncut, 

IE. To purify the MMC-1 protein from the remaining contaminating bacterial
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Figure 6.2 Induction of MBP-MMC-1 fusion protein expression in DH5a
competent E. coli cells.
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Figure 6.2
Three separate MBP-MMC-1 plasmids (exp 1-3) were transformed into DH5a 
competent E. coli cells and the fusion protein was induced to express by addition of 
IPTG. An SDS sample cocktail extract of uninduced and induced cells was analysed 
by SDS-PAGE on 12.5 % gels. An induced band of predicted size (51.8 kDa) 
corresponding to the MBP-MMC-1 fusion protein can be seen (marked I) in each of 
the three induced lanes.

a = Uninduced protein sample, 
b = Induced protein sample.
M = Low molecular weight protein standards.



Figure 6.3 Induction of MBP-MMC-1 fusion protein expression in Topp
competent E. coli cells.
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Figure 6.3
The three plasmids, exp 1-3, were transformed into Topp cells (Stratagene) and the 
fusion protein was induced to express by addition of IPTG. An SDS sample cocktail 
extract of uninduced and induced cells was analysed by SDS-PAGE on 12.5 % gels. 
An induced band of predicted size (51.8 kDa) corresponding to the MBP-MMC-1 
fusion protein can be seen (marked I) in each of the three induced lanes.

a = Uninduced protein sample, 
b = Induced protein sample.
M = Low molecular weight protein standards.



Figure 6.4 Pilot experiment of MBP-MMC-1 expression and purification.
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Figure 6.4
The MBP-MMC-1 fusion was induced to express in Topp cells and purified 
following the manufacturers protocol. The purification of the fusion protein, marked 
I, can be followed through the procedure. The proteins were analysed by SDS-PAGE 
on a 12.5 % gel .

A = Total induced protein (sonicated induced cells). 
B = SDS sample cocktail soluble.
C = Insoluble fraction.
D = Amylose purified protein.
M = Low molecular weight protein standards.



Figure 6.5 Affinity purification of MBP-MMC-1 fusion protein.
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Figure 6.5
Induced expression in DH5a cells, sonicated in column buffer (20 mM Tris-Cl, 200 
mM NaCl 1 mM EDTA) to lyse cells. Cells collected by centrifugation at lOOOOg 15 
minutes. The soluble protein supernatent was resupended in column buffer and 
passed over an amylose column. The fusion protein was eluted from the column with 
column buffer containing 20 mM maltose and collected in 3 ml aliquots. 10 pi 
aliquots were analysed on a 12.5 % acrylamide gel. A-F are sequential aliquots from 
the amylose cloumn showing an increase of protein eluted (marked I) with 
subsequent fractions.

M = Low molecular weight protein standards.



Figure 6.6a
The affinity purified MBP-MMC-1 fusion protein was digested for 6 hours at 23 °C 
with Factor Xa (New England Biolabs) to liberate the MMC-1 recombinant protein. 
The digested proteins were size separated on a 12.5% acrylamide gel. The MMC-1 
protein is marked I and the released MBP moiety is marked H A small proportion of 
the fusion protein remained uncut (marked III).

A = Affinity purified uncut MBP-MMC-1 fusion protein.
B = Purified MBP-MMC-1 cut by Factor Xa.
C = Purified MBP-MMC-1 cut by Factor Xa.
M = Low molecular weight protein standards.

Figure 6.6b
The liberated mmc-1 protein was excised from the gel and electro-eluted for further 
purification.

A = 10 pi of eluted MMC-1 recombinant protein.
B = 30 pi of eluted MMC-1 recombinant protein. 
uM = Ultra low molecular weight protein standards.
M = Low molecular weight protein standards.



Figure 6.6a Liberation of recombinant mmc-1 by digestion with Factor Xa.

kDa

66.2

45.0

31.0 

21.5

m
P nmm mm

III
II

14.4

M A B C

Figure 6.6b kDa

26.6 —

17.0 —
14.2 — 
6.5 —

kDa

mm

**Jte >4 -4
IHHBHP

uM A B M



proteins, the MMC-1 band was excised from the gel washed in H2O and stored at - 

20°C. For some experiments where purified MMC-1 was required, it was isolated 

from the acrylamide using an electro-eluter (Bio-Rad, section 2.9.6). The eluted band 

was re-analysed by SDS-PAGE (Figure 6.6b).

6.2.3 Raising MMC-1 anti-serum.

The recombinant MMC-1 protein in acrylamide gel was frozen in liquid 

nitrogen and pulverized. This was then used to produce polyclonal antiserum by 

immunisation of mice and rabbits, as described in section 2.10.

Two rabbits were immunised and boosted twice following which the 

antiserum was tested along with the appropriate pre-bleeds. Figure 6.7 shows a 

western blot highlighting the positive recognition of the recombinant MMC-1 protein 

by the immune serum from one of the rabbits (718) but not by the other (720). MMC- 

1 was not recognised by the pre-bleeds (lanes A and C). Also shown in Figure 6.7 

(lane F) is the reactivity of a pool of immunised mouse serum (BALB/c). No 

recognition of MMC-1 was observed with control mouse serum (Lane E).

6.2.4 Detection of MMC-1 in different life-cycle stages.

To determine if the MMC-1 protein is present in life-cycle stages other than 

the mf, protein extracts were separated by SDS-PAGE transferred to nitrocellulose 

and the presence of MMC-1 detected by western blotting with the MMC-1 rabbit 

antiserum. SDS sample cocktail extracts of adult, L3 and mf were produced under 

standard conditions (2.11.2) and separated by SDS-PAGE. Figure 6.8 shows a 

Coomasie Blue stained gel to illustrate approximately equal loading of the protein
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Figure 6.7 Testing the reactivity of MMC-1 antisera by Western blot.
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Figure 6.7
The recombinant MMC-1 protein separated on a 12.5 % acrylamide gel was 
immunoblotted and probed with either anti-MMC-1 or control serum from 
immunised rabbits or mice. The serum was used at a dilution of 1:500, goat anti­
rabbit or anti-mouse alkaline phosphatase conjugate was at 1:6000 and the blot was 
developed with BCIP/NBT substrate.

A = Rabbit R720 pre-immune sera.
B= Rabbit R720 anti-MMC-1 sera.
C = Rabbit R718 pre-immune sera.
D = Rabbit R718 anti-MMC-1 sera.
E = Pooled control BALB/c mouse sera.
F = Pooled BALB/c anti-MMC-1 sera.



Figure 6.8 SDS-PAGE of L3, mf and adult extracts.
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Figure 6.8
Approximately equal quantities of SDS-sample cocktail extracts of L3, mf or adult B. 
pahangi were separated on a 15 % acrylamide gel.

uM = Ultra low molecular weight protein standards.
A = SDS-sample cocktail extract from infective L3.
B = SDS-sample cocktail extract from mature mf.
C = SDS-sample cocktail extract from mixed sex adults.
M = Low molecular weight protein standards.



samples. A similar gel was then blotted and probed with the R718 MMC-1 antiserum 

or pre-immune R718 control serum. Two specific bands (approximately 12 kDa and 

8 kDa) could be seen in the mf protein extract (Figure 6.9 lane D). The immune sera 

did not recognise any proteins in the L3 or adult lanes (Figure 6.9 lanes B and F, 

respectively).

6.2.5 Detection of MMC-1 in B. pahangi mf excreted/secreted products.

The MMC-1 predicted protein sequence contains a secretory leader and may 

therefore be secreted from the parasite. Experiments were undertaken to determine if 

the MMC-1 protein could be detected in the excreted/secreted (E/S) products 

collected from parasites cultured in vitro. Approximately 2 x 106 mf isolated from the 

peritoneal cavity of an infected jird were cultured aseptically for 24 hours in 20 ml of 

RPMI+ medium (RPMI 1640 + 10 % FCS, 1 % Glucose, 2 mM L-glutamine, 2.5 

mM Hepes, lOOu/ml penicillin, lOOjig/ml streptomycin). Mf were removed by 

centrifugation and the medium concentrated 40 fold to approximately 500 jil, using a 

5 kDa molecular weight cut-off concentration column (Vivaspin). The E/S products 

were re-suspended in SDS sample cocktail and separated by SDS-PAGE and 

visualised by Coomasie Blue staining (Figure 6.10). A number of bands were 

obvious, although as the culture medium contained FCS, serum proteins are likely to 

account for the predominant bands. The proteins were transferred to nitrocellulose by 

standard methods and tested for the presence of MMC-1 by western blotting. The 

antiserum did not recognise any proteins from the E/S products, even at high 

concentrations (1/50 dilution of rabbit 718 antiserum). In order to determine if any 

proteins could be detected when mf were cultured in serum-free medium, the culture
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Figure 6.9 The recognition of MMC-1 in different life-cycle stages by Western 
blot.
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Figure 6.9
SDS-sample cocktail extracts of L3, mf and mixed sex adult B. pahangi were 
separated by SDS-PAGE on a 15 % acrylamide gel and immunoblotted. The resulting 
blot was probed with either anti-MMC-1 or pre-immune rabbit serum. The serum 
was used at a dilution of 1:500, goat anti-rabbit alkaline phosphatase conjugate was 
at 1:6000 and the blot was developed with BCIP/NBT substrate.

A = L3 SDS-sample cocktail extract, Rabbit R718 pre-immune sera.
B = L3 SDS-sample cocktail extract, Rabbit R718 anti-MMC-1 sera.
C = Mf SDS-sample cocktail extract Rabbit R718 pre-immune sera.
D = Mf SDS-sample cocktail extract Rabbit R718 anti-MMC-1 sera.
E = Mixed sex adult SDS-sample cocktail extract, R718 pre-immune sera.
F = Mixed sex adult SDS-sample cocktail extract, R718 anti-MMC-1 sera.



Figure 6.10 Coomasie Blue stained B. pahangi mf E/S products.

M i 1 1 iii i ii iii uM 

A B

Figure 6.10
Approximately 2 x 106 mf were cultured for 24 hours in RPMI+ medium. The mf 
were removed by centrifugation and the collected E/S products were concentrated by 
centrifugation through a 5 kDa protein concentration column. Three aliquots from 
duplicate experiments were separated by SDS-PAGE on a 12.5 % acrylamide gel and 
stained with Coomasie Blue.

M = Low molecular weight protein standards. 
uM = Ultra low molecular weight protein standards, 
i, ii and iii = 5, 10 and 20 pi of collected ES products.
A and B are duplicate experiments.



and collection of E/S was repeated without FCS in the medium. However, no 

proteins could be detected in the E/S products of mf cultured in serum-free medium 

despite the 40-fold concentration and silver staining. Figure 6.11 shows a silver 

stained acrylamide gel of the concentrated E/S products. The lack of stained bands 

may be due to low a concentration of E/S products or may reflect the fact that in the 

absence of serum, the culture conditions are sub-optimal and result in a reduction in 

metabolism and hence secreted proteins. To determine if MMC-1 protein could be 

detected at low levels the E/S products were tested by western blotting. Again no 

reaction was observed between the MMC-1 anti-serum and the E/S products.

6.2.6 Metabolic labelling of mf and MMC-1 immunoprecipitation.

To investigate the synthesis of MMC-1 by the mf of B. pahangi, 

immunoprecipitation of 35S methionine metabolically labelled mf proteins was 

attempted. Mf were labelled as described in Devaney et al, (1992) [41], except that 

the labelled proteins were extracted by homogenization in isoelectric focusing buffer 

(IEF) using a micropestle (Eppendorf). 1 x 106 precipitable counts were separated on 

a SDS-polyacrylamide gel which was subjected to fluorography and exposed to X-ray 

film for 8 weeks. The experiment was conducted on two separate occasions and both 

times no detectable protein could be precipitated (data not shown). However the 

extraction of total protein showed that the labelling of the proteins was successful. 

The inability to detect MMC-1 by immunoprecipitation may relate to the method 

used to extract the labelled proteins. Although the extract was diluted 20 fold in TBS 

prior to the addition of the antiserum, the presence of urea in the IEF lysis buffer (9.5 

M) may have disrupted the antigen/antibody complexes.
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Figure 6.11 Silver stained gel of B. pahangi mf E/S products.
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F'gure 6.11
E/S products collected from B. pahangi mf cultured in serum free medium were 
concentrated 40-fold and separated by SDS-PAGE on a 10-20 % gradient acrylamide 
gel. The gel was stained with silver nitrate.

M = Low molecular weight protein standards. 
uM = Ultra low molecular weight protein standards 
A = 10 pi of concentrated E/S products.
B = 20 pi of concentrated E/S products.
C = 30 pi of concentrated E/S products.



6.2.7 Localisation of the MMC-1 protein in B. pahangi mf.

The MMC-1 antiserum was used to localise the MMC-1 protein in the mf of 

B. pahangi by immunofluorescent analysis (section 2.14.1). Initially intact sheathed 

and exsheathed mf were tested to determine if MMC-1 was expressed on the surface 

of the sheath or the cuticle. The MMC-1 antibody was negative at all dilutions of 

antiserum tested (1/50-1/200) on both sheathed and pronase-exsheathed mf. The 

control pre-bleed was also negative with both samples (Figure 6.12a and 6.12b). In 

these experiments the only fluorescence observed was to the cut ends of worms that 

had been damaged during the procedure (Figure 6.12c). As MMC-1 was not present 

on the surface of intact or exsheathed mf, but appeared to be localised internally, 

experiments were carried out to investigate the internal localisation. For these 

experiments a technique used for in situ antibody labelling of whole C. elegans was 

adapted for use with B. pahangi mf. In this method the mf were first exsheathed and 

then partially digested by incubation overnight in BME solution (2.14.2) then 4 hours 

in collagenase buffer (115 digestion units/ml 2.14.2). Permeabilised whole worms 

were incubated with MMC-1 or control antibody at 1/100 dilution overnight at 4°C, 

washed and incubated in goat anti-rabbit FTTC conjugate for 4 hours. In these 

experiments the florescence observed with the MMC-1 antiserum was distributed 

throughout the worm (Figure 6.13a). No reaction was seen with the control pre- 

immune rabbit sera (Figure 6.13b). The analysis did not localise MMC-1 to a 

particular tissue in the mf as the fluorescence was relatively equally distributed 

throughout the entire length of the worm and suggests that MMC-1 may be expressed 

in all cells of the worm.
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Figure 6.12 Immunofluorescence analysis of MMC-1 localisation in sheathed
and exsheathed mf of B. pahangi.

C.

Figure 6.12
Approximately 1 x 105 m f were fixed in 4% PFA in PBS for 12 hours at 4°C then 
washed in PBS and incubated with anti-M MC-1 rabbit antiserum at 1/100 dilution, 
followed by goat anti-rabbit IgG FITC conjugate at 1/200 dilution (panels a and c). In 
some experiments, the sheath was removed by exposure to pronase enzyme (1 mg/ml 
10 minutes at room temperature) then reacted with the MMC-1 antisera as described 
above (panel b). M f were viewed on a O lym pus BX60 UV fluorescence microscope 
and photographed with a SPOT photo capture system. Magnification x400.

a = Sheathed mf, anti-M MC-1 1/100
b = Exsheathed mf, anti M M C-1 1/100
c =  Fragment o f sheathed mf, anti-M MC-1 1/100



Figure 6.13 Immunoflourescent localisation of MMC-1 anti-sera in partially
digested mf.

Figure 6.13
Approximately 1 x 105 pronase exsheathed m f were fixed in 4% PFA in PBS for 12 
hours at 4°C. The m f were washed in PBS then subjected to a digestion protocol o f 
overnight exposure to 5% BME at 37°C then a four hour incubation at 37°C in 
collagenase (115 digestion units/ml). Permeabilised m f were then incubated with anti- 
MMC-1 rabbit antiserum at 1/100 dilution, followed by goat anti-rabbit IgG FITC 
conjugate at 1/200 dilution. M f were viewed on a O lym pus BX60 UV fluorescence 
microscope and photographed with a SPOT photo capture system. Magnification x 
400.

a =  anti-M MC-1 rabbit serum (1/200 dilution), 
b = control rabbit pre-immune serum (1/200 dilution).



6.2.8 Does MMC-1 have a role in the infection of mf in the mosquito vector?

As MMC-1 is expressed exclusively in the mf, one possibility is that the 

protein may be involved in the infection event of the mosquito. In order to investigate 

this hypothesis an IgG cut was prepared from the MMC-1 rabbit anti-serum (2.13.1). 

Mosquitoes were fed on blood containing 1.75 x 104 mf/ml supplemented with IgG 

of either MMC-1 anti-serum or an irrelevant rabbit antiserum (raised to cytidine 

deaminase, CDD) at 100 Jig/ml (2.13.2). The development of the parasites at day 9 

post-infection was assessed by dissection of individual mosquitoes into head, thorax 

and abdomen and counting the number of L3 parasites present in each part. The 

numbers of L3 were compared between mosquitoes fed on blood containing MMC-1 

IgG, CDD IgG or no antibody. At day 9 p.i. in normal mosquito infections the 

parasites are infective L3 and are present in the head and mouthparts in readiness for 

the mosquito to mammal infection event, or have migrated throughout the 

haemocoel.

The results of two duplicate experiments are shown in Table 6.1. In 

experiment one there was no significant difference in the total numbers of L3s 

between the three groups. However when the data were analysed with respect to the 

location of the L3, there was a difference between the mosquitoes fed MMC-1 IgG 

and the other two groups. In the MMC-1 group a significantly increased proportion 

of the L3s were in the abdomen (51.5 %) compared to the other two groups (22%, 

control and 18 % cdd-IgG) p<0.001 (Figure 6.14). Correspondingly in the two 

control groups, there were greater numbers of L3 in the head than in the abdomen. In 

the second experiment a significant difference was detected in the numbers of L3s in 

the three groups of mosquitoes. Those fed on MMC-1 IgG had the highest number of
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Table 6.1
Aedes aegypti, strain (Ref”1) mosquitoes were fed infected rabbit blood (1.75 x 104 
mf/ml) supplemented with either lOOpg/ml CDD IgG or lOOpg/ml MMC-1 IgG for 
one hour, the blood replaced and again fed for one hour. Fed females were isolated in 
a netted cage and maintained for 9 days. At day 9 p.i the mosquitoes were dissected 
into head, thorax and abdomen and the numbers of infective larvae were recorded. 
The data in the table shows the recovery of L3 parasites from ten dissected 
mosquitoes from each group.



Table 6.1 Effect of the inclusion of mmc-1 IgG in infected blood on the
development of L3 stage parasites in the mosquito host.

Experiment #1 Experiment #2

Control Head Thorax Abdomen Totals

1 8 1 1 10

2 1 2 1 4

3 0 2 1 3

4 2 4 11 17

5 1 1 2 4

6 1 4 2 7

7 4 5 1 10

8 1 2 2 5

9 3 7 2 12

10 3 2 1 6

Mean 2.4 3 2.4 78

Control Head Thorax Abdomen Totals

1 8 1 6 15

2 23 7 6 36

3 14 0 1 15

4 11 3 3 17

5 4 12 23 39

6 6 1 0 7

7 19 1 5 25

8 12 1 0 13

9 7 0 2 9

10 11 0 8 19

Mean 11.5 2.6 5.4 195

mmc-1 Head Thorax Abdomen Totals

1 15 1 4 20

2 0 6 28 34

3 12 6 2 20

4 9 2 4 15

5 1 2 35 38

6 0 4 11 15

7 4 12 29 45

8 0 3 19 22

9 7 1 0 8

10 1 12 19 32

Mean 4.9 4.9 15.1 249

mmc-1 Head Thorax Abdomen Totals

1 1 2 9 12

2 0 6 5 11

3 3 5 5 13

4 3 3 7 13

5 8 8 10 26

6 2 4 7 13

7 3 3 3 9

8 8 7 8 23

9 2 6 6 14

10 4 4 5 13

Mean 3.4 4.8 6.5 147

cdd-1 Head Thorax Abdomen Totals

1 6 2 4 12

2 2 2 3 7

3 2 3 4 9

4 2 2 7 11

5 1 2 0 3

6 4 5 9 18

7 7 4 1 12

8 1 2 3 6

9 3 2 3 8

10 2 3 4 9

Mean 3 2.7 3.8 95

ccfcM Head Thorax Abdomen Totals

1 14 4 6 24

2 19 1 3 23

3 19 2 6 27

4 20 0 1 21

5 7 5 2 14

6 17 8 4 29

7 9 1 2 12

8 22 4 2 28

9 9 1 6 16

10 16 6 6 28

Mean 15.2 3.2 3.8 222



Figure 6.14 Effect of the inclusion of MMC-1 IgG in infected blood on the
development of L3 stage parasites in the mosquito host.
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Figure 6.14
The data presented for experiment # 1 in Table 6.1 are shown above as percentage 
recoveries (mean ± standard deviation) of L3 from head, thorax and abdomen for the 
three groups of mosquitoes.



L3 (mean 14.7 L3 per mosquito p<0.01 compared to no IgG control, and p<0.1 

compared to CDD group). Mosquitoes fed on CDD IgG contained a mean of 9.5 L3 

per mosquito while the no IgG control group contained a mean of 6.8 L3 per 

mosquito). As in experiment one there was an increased proportion of L3 in the 

abdomen of the mosquitoes fed MMC-1 antibody, but on this occasion the difference 

did not reach statistical significance. It is noteworthy that in experiment two, the 

overall numbers of parasites developing in the mosquito were much reduced 

compared to experiment one.

6.2.9 Testing the antigenicity of MMC-1.

Using ELISA a number of experiments were conducted to investigate the 

antigenicity of the recombinant MMC-1 protein in immunised or mf infected mice. 

BALB/c mice infected with different life-cycle stages of B. pahangi or immunised 

with purified MMC-1 were tested for the presence of MMC-1 specific IgG. The 

presence of anti-MMC-1 IgG subclasses in human sera from individuals infected 

with B. malayi was also investigated in collaboration with Dr Xingxing Zang, 

University of Edinburgh.

6.2.9.1 The reactivity of MMC-1 with immunised or mf infected mouse serum.

A group of five BALB/c mice, immunised four times with gel purified MMC- 

1 protein were bled out and the serum was isolated using standard protocols (2.10). 

The serum from five immunised mice was compared with serum from mice injected 

with Freund's incomplete adjuvant alone. Serum from each individual animal was 

tested by ELISA against the MBP-MMC-1 fusion protein or against MBP alone. The
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results of a typical test are shown in Table 6.2 whilst Figure 6.15 shows a graphical 

representation of the data (OD value obtained with MMC-1 antisera minus the MBP 

background obtained with each sample). Immunisation with MMC-1 results in a 

specific IgG response compared to mice given Freund's incomplete adjuvant alone. 

The OD values obtained with individual sera were significantly greater to MMC-1 

than to MBP (p<0.01 by ANOVA).

The next set of experiments used the same assay to determine if animals 

infected with mf or L3 of B. pahangi would produce an IgG response specific to 

MMC-1. Serum from mice taken twelve days post-infection with either lx 105 mf, 50 

L3 or an equivalent volume of HBSS as a control (all intravenous infection, provided 

by Richard O’Connor, University of Glasgow), was assessed for reactivity to MMC-1 

as described above. Table 6.3 shows the OD readings for individual mice reacted 

with MBP-MMC-1 or MBP alone, while the data are shown graphically in Figure 

6.16. The group infected with mf do show a minimal reaction to MMC-1 which is 

significantly different to the other groups.

6.2.9.2 Reactivity of MMC-1 with human sera from B. malayi infected 

individuals.

To determine if a humoral response to MMC-1 could be detected in human 

sera from individuals infected with B. malayi a similar set of experiments was 

conducted in collaboration with Dr Xingxing Zang (University of Edinburgh). In 

these experiments the profile of reactivity to MMC-1 of 16 mf positive (mf +) 

subjects, 16 mf negative subjects (mf -, determined by the lack of circulating mf by 

Nucleopore filtration of venous blood) and 6 European normal subjects was
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Table 6.2 ELISA to detect MMC-1 IgG.

MBP-MMC-1 MBP
Adjuvant MMC-1 Adjuvant MMC-1
control immunised control immunised
0.116 0.418 0.151 0.106
0.124 0.563 0.143 0.124
0.118 0.343 0.115 0.140
0.125 0.666 0.081 0.137
0.137 0.778 0.145 0.080

Mean 0.124 0.554 0.127 0.117
Standard

deviations
0.008 0.177 0.029 0.025

Table 6.2
Serum from either MMC-1 immunised mice or adjuvant only immunised mice were 
tested for the presence of MMC-1 specific IgG. The MBP-MMC-1 fusion protein 
was used to coat the ELISA plate (250 ng/well) and each serum was reacted in 
duplicate at a 1/100 dilution. Each serum was also reacted against MBP alone (250 
ng/well). Bound antibody was detected using goat anti-mouse IgG horseradish 
peroxidase conjugate at 1/1500 dilution and developed using a TMB substrate. The 
plates were read after 2 minutes at 620nm. The results are presented as OD values for 
each individual animal, and a mean and standard deviation for each group.



Figure 6.15 Immunisation of mice with MMC-1 produces a specific IgG 
response.
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Figure 6.15
IgG responses of sera from groups of five mice immunised with recombinant MMC- 
1 or given Freund’s incomplete adjuvant alone. The data shown in Table 6.2 were 
plotted using OD readings for MBP-MMC-1 reactivity minus the MBP background 
reactivity of individual mice. The graphs shows the mean of each group and standard 
deviations within each group.



Table 6.3 ELISA to detect MMC-1 IgG in mf or L3 infected mice.

MBP-MMC-1
HBSS control mf infected L3 infected

0.091 0.147 0.075
0.103 0.127 0.112
0.091 0.168 0.098
0.088 0.199 0.131

0.152 0.103
Mean 0.093 0.159 0.104
Standard
deviations

0.007 0.014 0.024

MBP
HBSS control mf infected L3 infected

0.166 0.097 0.105
0.098 0.090 0.146
0.101 0.109 0.123
0.115 0.125 0.164

0.099 0.123
Mean 0.120 0.104 0.135
Standard
deviations

0.032 0.014 0.026

Table 6.3
Mice were infected with 1 x 105 mf, 50 L3 or an equivalent volume of HBSS by the 
i.v route. At day 12 p.i. mice were bled out and serum used in an ELISA . The MBP- 
MMC-1 fusion protein was used to coat the ELISA plate (250 ng/well) and each 
serum was reacted in duplicate at a 1/100 dilution. Each serum was also reacted 
against MBP alone (250 ng/well). Bound antibody was detected using goat anti­
mouse IgG horseradish peroxidase conjugate at 1/1500 dilution and developed using 
a TMB substrate. The plates were read after 2 minutes at 620nm. The results are 
presented as OD values for each individual animal, and a mean and standard 
deviation for each group.



Figure 6.16 Production of MMC-1 specific IgG in mf and L3 infections at 12 p.i.
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Figure 6.16
IgG responses of sera from groups of five mice infected with 1 xlO5 mf, 50 L3 or 
HBSS. The data shown in Table 6.3 were plotted using OD readings for MBP-MMC- 
1 reactivity minus the MBP background reactivity of individual mice. The graphs 
shows the mean of each group and standard deviations within each group.



determined. The serum samples were obtained from the Renegat district of Sumatra, 

Indonesia an area endemic for B. malayi. The same samples have been used in 

previous studies [227, 228], In the experiments reported here, subclass specific 

antibodies were used to investigate the recognition of MMC-1 by human sera 

(section 2.15.8). Table 6.4 shows the data obtained from this set of experiments 

presented as OD values against the fusion protein or to MBP alone. The reactivity to 

MMC-1 minus the MBP background is shown in Figure 6.17. The data show that 

both the mf positive and mf negative samples exhibit elevated levels of IgGl and 

IgG3 to MMC-1 compared to the European control subjects. When ANOVA tests 

were conducted both the mf + and mf - groups showed significantly more IgG3 than 

the European normal group whilst none of the groups showed significant variance in 

IgGl levels. No significant difference was seen in the amount of IgGl or IgG3 

between the mf + and mf - groups.

6.2.10 T cell responses to MMC-1.

Five BALB/c mice were immunised on two occasions with MMC-1 in 

Freund's incomplete adjuvant. For comparison, groups of five mice were immunised 

with either 100 jig mf antigen in Freund's incomplete adjuvant or with adjuvant 

alone. Spleens were removed and splenocytes re-stimulated in vitro with either 

electro-eluted MMC-1, mf antigen or adult antigen (section 2.15). The proliferation 

of T-cells following re-stimulation was measured by incorporation of 3H thymidine 

[96]. In addition secretion of cytokines IL-4, DL-5, IL-10 and IFN-y by the cells was 

also tested using a capture ELISA as detailed in Osborne et al (1996) [96].
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Table 6.4
Serum from subjects characterised as either, asymptomatic mf-, mf + or European 
normal controls were tested for the presence of MMC-1 specific IgG subclasses. The 
MBP-MMC-1 fusion protein was used to coat ELISA plates (200 ng/well diluted in 
0.06 M carbonate buffer) each serum was reacted in duplicate at a 1/100 dilution 
(diluted in PBS/0.05 % Tween 20). Each serum was also reacted against MBP alone 
(200 ng/well). Bound antibody was detected using isotype-specific mouse 
monoclonal antibody (anti-IgGl 1/4000, anti-IgG2 1/2000, anti-IgG3 1/1000 and 
anti-IgG4 1/4000 diluted in PBS/0.05 % Tween 20 obtained from SkyBio). Bound 
IgG was recognised by peroxidase-conjugated rabbit anti-mouse Ig (1/1500) and 
developed using ABTS substrate (KPL Biotechnology). The plates were read after 2 
minutes at 405nm. The results are presented as OD values for each individual, and a 
mean and standard deviation for each group.



Table 6.4 IgG subclass recognition of mmc-1 in human B. malayi infections.

mf positive IgGl lgG1 lgG2 lgG2 lg(G3 lgG3 lgG4 lgG4

Mf/ml blood mmc-1 MBP mmc-1 MBP mimc-1 MBP mmc-1 MBP

337 0.964 0.547 0.278 0.2866 1.366 0.829 0.240 0.145

194 0.820 0.706 0.147 0.26S3 2.071 1.485 0.358 0.267

1303 0.568 0.677 0.131 0.2822 0.653 0.191 0.274 0.190

293 0.752 0.420 0.165 0.27C0 1.273 0.371 0.211 0.124

241 0.529 0.263 0.279 0.2777 0.312 0.167 0.230 0.155

40 0.414 0.228 0.146 0.12C0 1.961 0.192 0.172 0.151

45 0.623 0.363 0.199 0.11*4 1.770 0.975 0.184 0.168

835 0.651 0.683 0.174 0.2666 0.944 0.512 0.212 0.176

175 1.470 0.711 0.323 0.3069 1.111 0.412 0.244 0.211

599 1.052 1.446 0.139 0.2677 1.530 1.213 0.258 0.278

681 0.352 0.380 0.276 0.2472 1.880 0.362 0.202 0.135

393 0.322 0.345 0.182 0.27E9 0.860 0.968 0.276 0.192

730 0.617 0.280 0.176 0.1377 1.222 0.525 0.213 0.194

mean 0.703 0.542 0.201 0.23(9 1.304 0.631 0.236 0.184

std deviation 0.318 0.325 0.065 0.0618 0.533 0.424 0.048 0.047

mf negative lgG1 IgGl lgG2 lgG2 lg<G3 lgG3 lgG4 lgG4

mmc-1 MBP mmc-1 MBP rmmc-1 MBP mmc-1 MBP

0.652 0.580 0.495 0.14*4 0.729 0.178 0.156 0.154

0.353 0.353 0.107 0.2918 0.352 0.171 0.131 0.143

0.209 0.345 0.190 0.3115 0.253 0.151 0.199 0.159

0.955 0.465 0.295 0.38(0 0.458 0.158 0.268 0.201

0.685 0.460 0.357 0.§2!6 0.692 0.186 0.194 0.137

0.429 0.346 0.124 0.27(0 0.813 0.633 0.299 0.427

0.709 0.389 0.150 0.29(8 1.696 0.414 0.193 0.137

1.496 0.472 0.143 0.1313 0.796 0.372 0.130 0.138

1.277 0.607 0.199 0.10(6 2.050 0.713 0.145 0.139

0.801 0.532 0.187 0.28(5 0.992 0.298 0.156 0.172

1.551 1.289 0.162 0.25(8 0.429 0.219 0.141 0.145

0.469 0.678 0.329 0.28:3 1.570 0.783 0.161 0.144

0.752 0.457 0.352 0.274 0.457 0.188 0.111 0.129

1.032 0.300 0.228 0.2718 0.723 0.147 0.112 0.120

0.558 0.317 0.149 0.14*6 0.987 0.257 0.270 0.253

mean 0.795 0.506 0.231 0.253 0.866 0.325 0.178 0.173

std deviation 0.401 0.244 0.111 0.081 0.525 0.216 0.059 0.078

Euro Normal IgGl lgG1 lgG2 lgG2 lgG3 lgG3 lgG4 lgG4

mmc-1 MBP mmc-1 MBP mmc-1 MBP mmo-1 MBP

0.303 0.390 0.169 0.126 0.130 0.115 0.127 0.131

0.231 0.477 0.158 0.133 0.198 0.125 0.580 0.862

0.556 0.485 0.174 0.121 0.191 0.131 0.913 0.563

0.276 0.269 0.244 0.129 0.227 0.114 0.120 0.137

0.844 0.579 0.188 0.145 0.256 0.119 0.122 0.130

0.414 0.174 0.205 0.150 0.294 0.110 0.126 0.125

mean 0.437 0.396 0.190 0.134 0.216 0.119 0.331 0.325

std deviation 0.231 0.151 0.031 0.011 0.057 0.008 0.338 0.315



Figure 6.17 IgG subclass recognition of mmc-1 in human B. malayi infections.
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Figure 6.17
The profile of reaction of IgG subclasses to MMC-1 was tested in sera from mf + or 
mf - subjects or European normal control subjects. The data shown in Table 6.4 were 
plotted using OD readings for MBP-MMC-1 reactivity minus the MBP background 
reactivity of individual subjects. The graphs shows the mean of each group and 
standard deviations within each group.



Figure 6.18a shows proliferative responses of splenocytes from three groups 

of mice re-stimulated in vitro with 1 (ig/ml of electro-eluted MMC-1 expressed as a 

stimulation index. No significant proliferation was observed in any group of animals. 

Figure 6.18b shows the proliferative response in the same groups of animals, when 

splenocytes were re-stimulated with mf antigen (10 pg/ml) or adult antigen (10 

(Xg/ml). Cells from MMC-1 immunised mice failed to proliferate in response to either 

mf or adult antigen, whilst cells from mice immunised with soluble mf antigen 

responded well to re-stimulation with mf or adult antigen.

When the levels of cytokines produced by the cultured cells were measured 

by ELISA no significant amounts of IL-2, IL-4 IL-10 or IFN-y were detected. The 

only cytokine that was produced in levels greater than the background was IL-5. Mice 

immunised with soluble mf antigen produced DL-5 in response to in vitro re­

stimulation with either mf or adult antigen but not to MMC-1. In contrast the MMC- 

1 immunised animals re-stimulated with MMC-1 did produce significant amounts of 

IL-5 (Figure 6.19).

6.3 Discussion.

The experiments reported in this chapter aimed to define the role of mmc-1 in 

the parasite life-cycle. As described previously, mmc-1 appears to be a reasonably 

abundant mRNA exclusively expressed in the mf stage of the life-cycle. 

Unfortunately no clues as to the possible function could be gleaned from the analysis 

of the derived amino acid sequence. Consequently, the experiments described in the 

first part of this chapter focused on the basic immunochemical analysis of the protein. 

By SDS-PAGE and immunoblotting, the stage specificity of MMC-1 in the mf was
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Figure 6.18a MMC-1 stimulated proliferative responses.
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Figure 6.18b B. pahangi extract stimulated splenocyte proliferative responses.
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Figure 6.18a
Splenocytes purified from animals immunised on two occasions (day 0, day 14) with 
soluble mf antigen (50|LLg/mouse), MMC-1 (20 jig/mouse) or adjuvant only controls 
were re-stimulated in vitro by exposure to MMC-1 (1 Jig/ml) or soluble mf antigen 
(10 |Xg/ml). Proliferation was measured by [H] thymidine incorporation. The results 
from 72 hour cultures and are plotted as stimulation indices, the mean proliferation of 
five animals per group are shown as are the standard deviations.

Figure 6.18b
Splenocytes purified from animals immunised as described above were stimulated 
with either soluble mf antigen or soluble adult antigen (both lOpg/ml). Proliferation 
was measured by 3[H] thymidine incorporation. The results from 72 hour cultures 
and are plotted as stimulation indices, the mean proliferation of five animals per 
group are shown as are the standard deviations.



Figure 6.19 Antigen specific production of IL-5.
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Figure 6.19
Splenocytes purified from five animals immunised on two occasions (day 0, day 14) 
with soluble mf antigen (50 |Lig/mouse), MMC-1 (20 pg/mouse) or adjuvant only 
(control) were tested for the production of IL-5 by capture ELISA after 72 hours in 
culture following re-stimulation with either soluble mf antigen (25 pg/ml), soluble 
adult antigen (10 pg/ml) or MMC-1 (0.5 pg/ml). The results are shown as mean IL-5 
production in pg/ml from individual mice, and the standard deviation within each 
group.



confirmed. Two bands were recognised in the mf of approximately equal intensity. 

By comparison of mobility of molecular weight standards, these bands were 

estimated to have molecular weights of 8 kDa and 12.5 kDa. The molecular weight of 

the MMC-1 protein minus the signal peptide, predicted from the amino acid sequence 

was 7.4 kDa, consistent with the size of one of the proteins recognised by the anti­

serum. The presence of the larger component may be due to modification of MMC-1 

by glycosylation or post-translational modifications. The amino acid sequence of 

MMC-1 contains numerous potential phosphorylation sites although no potential 

glycosylation sites could be detected by computational analysis. However the 

presence of post-translational modification was not further investigated in the mature 

protein. Alternatively the larger of the two bands may represent a unrelated protein 

which shares a cross-reactive epitope with MMC-1. Lastly the 12.5 kDa band could 

represent a complex of MMC-1 with another protein, although this seems unlikely 

given the preparation of the sample (boiling 3 minutes in SDS-sample cocktail).

Next attempts were made to determine if MMC-1 was secreted from the 

parasite, by culturing mf in vitro and collecting and concentrating E/S products. E/S 

products of Brugia adult worms have been characterised using similar methods [23, 

217, 229, 230], but there are few examples of detecting mf E/S products in vitro. Mf 

were cultured in medium containing serum or in serum-free medium. Although some 

components were apparent in medium containing serum, the chances are that these 

are serum proteins and not mf E/S products. In the serum-free medium, no E/S 

products could be detected. These results suggest that the MMC-1 protein is not 

excreted from the parasite. However this negative result may simply reflect the low 

level of excretion or the fact that the parasites were sub-optimally cultured. The silver
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staining technique used will detect as little as 0.1 ng of protein in a single band [159] 

suggesting that little or no E/S products were produced under the conditions used. 

Kwan-Lim et al (1989) found that B. malayi adult parasites cultured in vitro took 3-4 

days to adjust to the culture environment and that peak levels of excretion occurred 

on days 3 and 4 [217]. The adult parasites therefore seem to require a period of time 

to equilibrate with the conditions before maximal metabolism is restored. Parkhouse 

et al (1985)[231] reported that the labelling of mf with 35S methionine, resulted in no 

detectable secreted proteins, although newly synthesised proteins synthesis could be 

detected in homogenized mf [231]. Therefore the mf may not produce E/S products 

under the conditions used. Why it should be so difficult to detect mf E/S products 

remains unknown. Mf are presumed to be metabolizing normally in the bloodstream 

and when mf are labelled with 35S methionine in vitro, many proteins are labelled. It 

may be that very few proteins are secreted (this may correlate with the 

developmentally blocked state of the mf) or the proteins secreted may be of very low 

molecular weight and are may be lost during the concentration procedure 

(centrifugation with 5 kDa cut off concentration membrane). Alternatively, the 

secretion of MMC-1 may be dependent on a specific cue present at a later stage of 

development, such as when the parasite infects the mosquito host. Ibrahim et al 

(1992) showed that a number of antigens of B. malayi L3 parasites are synthesised in 

the late L2 stage but are only detectable at the parasite surface of the L3 [202]. 

Bianco et al (1990) [201] demonstrated that a 23 kDa antigen of Onchocerca lienalis 

was synthesised in the late L3 stage, but was released into culture only when the 

parasites were cultured at 37°C [201]. If the release/excretion of MMC-1 is 

controlled by environmental cues that were not present in the culture medium then
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MMC-1 protein would not be detected in the E/S. As no system exists that allows B. 

pahangi mf to develop in vitro the possible secretion of MMC-1 as the mf develops 

would be difficult to investigate. It may have been possible to manipulate the culture 

conditions by changing culture temperature or media used to ascertain if this resulted 

in the release of MMC-1 into the media, however this was not attempted here.

The immunofluorescent localisation studies showed that MMC-1 was present 

throughout the mf and could not be localised to a particular tissue. The protein did 

not appear to be present on the mf sheath or cuticle (negative results with exsheathed 

mf). The internal localisation of an antigen does not preclude it from being involved 

in eliciting host immune reactions to the parasite as other antigens that are not 

predicted to be secreted or exposed have been found to immunologicaly important. 

For example, the heat shock cognate protein 70 (hsp70) is a dominant antigen in 

Brugian infections [232]. The protein is known to be cytoplasmic and only exposed 

after parasite death [233] as may be occurring with MMC-1.

By feeding mosquitoes on mf-infected blood containing MMC-1 IgG it was 

hoped that any possible role of MMC-1 in the infection of the mosquito host may be 

disrupted. These experiments were based on those used to determine the role of a 

filarial chitinase (discussed in Chapter Five) in the mosquito infection event. In the 

chitinase experiments, mosquitoes fed on blood containing the specific IgG did not 

support development of the parasites (J. Fuhrman personal communication). 

However, in the present experiments the inclusion of MMC-1 IgG or the control 

CDD IgG, had no effect on the development of the parasite to the L3 stage. However, 

to be effective in blocking the action of MMC-1, the anti-MMC-1 IgG must have 

access to an MMC-1 epitope. Therefore intervention by this method would only be

175



observed if the MMC-1 protein product is either secreted from the worm or is present 

on an exposed worm surface in the mosquito host. In the first experiment conducted 

the mosquitoes fed MMC-1 IgG had a much higher percentage of L3 in the abdomen 

compared to the other groups. The reasons for this result are not clear, as it is not 

known what determines the migration of the L3 in the mosquito. Certainly, MMC-1 

did not appear to influence the migration of mf to the site of development or 

influence the development of the parasite in the thoracic muscles. The high 

percentage of L3 in the abdomen of mosquitoes fed MMC-1 IgG may be an artifact 

related to the heavy infection level in these mosquitoes. In the second experiment, the 

mosquitoes fed MMC-1 IgG contained significantly more L3 than the other two 

groups. As the infected blood for all three groups was prepared as a single sample 

before aliquoting into the groups it is difficult to explain the results. Further 

experiments in the mosquito vector are required to verify any conclusions.

The next experiments described in this chapter focused on the possible 

immunological role of MMC-1. The preliminary experiments showed that 

immunisation of BALB/c mice with MMC-1 antigen resulted in a specific IgG 

response (Figure 6.15). A very small reaction to MMC-1 was also seen when sera 

from BALB/c mice infected with mf was tested for MMC-1 specific IgG (Figure 

6.16). The reasons why this reaction was minimal may relate to the internal location 

of the antigen and the short time course of infection (12 days). Perhaps if the B ALB/c 

mice had been infected by a more immunogenic route of infection i.e. sub- 

cutaneously or the course of infection had been longer, the reaction to MMC-1 may 

have been greater.
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The following experiments investigated the immune response of human 

subjects infected with B. malayi. The rationale supporting these experiments was that 

active infection with mf is associated with a range of immunological responses. For 

example in human subjects active infection with filarial worms is associated with 

specific IgG subclass responses. The predominant subclass in actively infected 

subjects is IgG4 where as much as 90% of total antifilarial antibodies will be of this 

subclass [26]. As the titre of IgG4 correlates with the numbers of mf in the 

bloodstream [106] it has been proposed that the presence of IgG4 may be a means to 

diagnose cryptic filarial infections where the numbers of circulating mf are very low 

[25, 106]. This is of particular importance for the diagnosis of B. malayi infections 

where no circulating antigen test exists. This predominance of IgG4 antibodies is not 

directed towards L3 antigens where the majority of IgG is of the IgGl subclass [234]. 

Most experiments which measure IgG subclass responses to filarial antigens have 

used crude extracts of parasite antigens. It is therefore difficult to determine whether 

high levels of specific subclasses are directed against only a few or perhaps a single 

antigen. In order to determine if MMC-1 may be a target of filarial specific IgG4 

antibodies, ELIS As were conducted with infected human sera. Interestingly no 

significant IgG4 response was detected to MMC-1, while both IgGl and IgG3 were 

elevated in both mf positive and mf negative individuals. Previous studies have 

utilised this approach to study immune responses to individual antigens. Trenholme 

et al (1994)[109] showed that subclass specific immune responses to recombinant O. 

volvulus antigens (OvMBP/10, OvMBP/11 and OvMBP/29) could be analysed in this 

way [109]. Later work by Bradley et al (1995) [235]showed that the recombinant 

antigen (<9vMBP20/ll) was predominantly recognised by IgGl and IgG4 subclasses,
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and that significantly higher IgGl was observed in serum from actively infected 

patients compared to that of putative immune patients [235]. In contrast the O. 

volvulus collagen (Ov-col-1) has been shown to be preferentially recognised by IgG3 

of putatively immune individuals [236]. Similar studies have also been conducted 

using recombinant antigens of Brugia spp. Yazdanbakhsh et al (1995) [233]showed 

that the antibody responses to two recombinant antigens of Brugia spp were again 

correlated with clinical status [233]. Elephantiasis patients showed a greater 

reactivity to both BpL-4 (one repeat of the secreted polypeptide gp 15/400) and 5/?a- 

26 (C-terminal portion of hsp70, a cytoplasmic protein) than mf- or mf+ patients. 

Also significantly greater IgGl reactivity was seen to both antigens in serum of 

elephantiasis patients compared to mf + or mf - patients.

Infection with filarial parasites can result in a range of clinical manifestations 

from asymptomatic microfilaraemics to chronic pathology. Patients with circulating 

mf are often hyporesponsive to parasite antigens [13, 106], whilst individuals that 

show pathological symptoms tend to have a reduction in mf numbers or no mf 

present in the circulating blood stream and heightened immune responses. This has 

led to the proposal that the breakdown of tolerance may result in inflammatory 

responses and in the induction of pathology [106]. As IgG3 antibodies are 

responsible for type HI hyper-responsiveness due to the human Fc receptor on 

monocytes, macrophages and granulocytes having a higher affinity for IgG3 [237], 

reaction to IgG3 stimulating antigens may be a factor involved in this process.

High titres of IgGl and IgG3 and low titres of IgG4 have also been associated 

with chronic pathology in patients infected with B. malayi [26, 106, 238], O. volvulus 

[236] and W. bancrofti [94, 239]. It has also been reported that two major parasite
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antigens (72 kDa and 12 kDa) of O. volvulus are recognised solely by IgG3 in 

SOWDA (severe hyper-reactive dermatitis) patients [240].

The data obtained from the cytokine ELISAs showed that immunisation of 

mice and re-stimulation of splenocytes with MMC-1 resulted in the production of 

significant amounts of IL-5. IL-5 is a developmental regulator and survival factor for 

eosinophils and results in the increase of eosinophils in the circulation. IL-5 

stimulates the differentiation of bone marrow CD34+ precursors to develop into 

eosinophils then promotes the mobilization of the cells from the bone marrow. It has 

also been shown to act as a survival factor by inhibition of eosinophil apoptosis [241, 

242].

By eliciting IgG3 antibodies and elevating IL-5, could MMC-1 be involved in 

promoting a pathological state in Brugia infection by induction of eosinophilia? 

Helminth infections are known to stimulate increased numbers of mast cells and 

eosinophils and the role of eosinophils in in vitro killing of B. malayi infective larvae 

[243], S. mansoni schistosomula [244, 245] and H. contortus L3 [246] is well 

documented. It has also been shown that the cytotoxic effects of eosinophils is 

mediated by the IgG subclasses IgGl, 2 and 3. Khalife et al (1989)[244] showed that 

although IgGl ,2 ,3 and 4 all bind to the surface of schistosomula of S. mansoni only 

IgGl 2 and 3 antibodies could induce cytotoxicity of activated eosinophils [244].

One of the most severe pathologies to occur in filarial infections is TPE, 

which is thought to reflect an allergic response to mf in the lung [15]. In this 

condition mf are very rarely seen in blood but treatment with DEC results in relief of 

symptoms. The wheezing cough and chest pain associated with TPE is thought to 

result from damage to the lung from degranulation of eosinophils in response to dead
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and degenerating mf present in the lung. Hall et al (1998) [247] showed that 

following intravenous infection of C57BL/6 mice with mf, the parasites were 

detectable in the lung after 1 day and eosinophils were observed on the surface of the 

mf [247]. Resulting damage of the lung was associated with the mf after staining for 

major basic protein. A hallmark of TPE is the detection of eosinophils in the 

bronchoalveolar lavage (BAL). When mice are sensitised by immunisation with dead 

mf then challenged with live mf 3.8 % of the cells present in the BAL were 

eosinophils at day one post challenge. This figure rose steeply to 40 % at day 4 and 

84 % by day 10 post challenge [247]. The eosinophilia seen is under the control of 

IL-5 as IL-5-/- knockout mice do not exhibit eosinophilia in the airways [247]. Also 

in other studies blocking IL-5 by antibodies inhibits eosinophilia [248, 249].

Lobos et al (1992) showed that a B. malayi allergen Bm23-25 (composed of 

two antigens of 23 and 25 kDa) which is predominately expressed by the mf stage is 

detected solely by patients suffering TPE [250], Bm23-25 was shown to be the major 

component recognised by TPE patient sera and was found to be reactive to the BAL 

fluid of TPE sufferers. It is therefore possible that only a small number of antigens 

may be responsible for activating the immune responses leading to the pathology 

associated with TPE.

Although the possible role of MMC-1 in the induction of eosinophilia was 

not tested it is an intriguing hypothesis that antigens such as MMC-1 may induce IL- 

5 production and a resulting eosinophilic response. The predominance of IgG3 

antibodies detected in the human serum may also be involved in the degranulation of 

activated eosinophils. This hypothesis is speculative and further experiments to 

determine the role of MMC-1 in this process could include determining if mice
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exposed to MMC-1 would produce an eosinophilic response; determining if the 

cellular infiltrate seen following peritoneal infection with mf (personal observation) 

could be stimulated by injection of MMC-1 alone; or determining if MMC-1 could 

activate stimulated eosinophils to degranulate. If MMC-1 has such a role in Brugia 

infections then it might be predicted that the mf negative and mf positive groups 

from the IgG subclass ELISA experiments would show different levels of MMC-1 

reactive IgG3 antibodies, perhaps correlating to the amount of mf antigen that the 

immune system was exposed to. Although it has been shown that following the 

clearance of mf by DEC treatment, the levels of IgGl and IgG4 drop as would be 

expected, whilst the levels of IgG3 did not consistently alter 12 months after 

treatment [251].

In summary the experiments carried out in this chapter in an attempt to 

elucidate the function of MMC-1 were inconclusive. However several interesting 

lines of evidence suggest that MMC-1 may be an important molecule for further 

analysis, particularly with regard to the immune response elicited.
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CHAPTER SEVEN



7.1 Conclusions.

The screening approach described here isolated a number of genes that are 

differentially expressed in the mf of B. pahangi. Of the nine clones isolated, five 

were up-regulated in the mammalian-derived mf and four in the vector-derived mf. 

Six of the clones were homologous to cDNAs previously characterised from other 

species. The remaining three clones represented novel cDNAs without a proposed 

function. It was these novel genes that were of particular interest.

The two cDNAs, vmc-1 and vmc-2 which were up-regulated in the vector- 

derived mf, were of interest as little is known about the biology of Brugia when in 

the mosquito vector. The gene vmc-1 is completely novel and has no homology to 

any characterised gene or sequenced EST, although the small size of the transcript 

which may account for this, meant that no further analysis was conducted. A vmc-2 

homologue has not yet been isolated by the B. malayi EST project, suggesting that it 

may be expressed at low levels in the libraries studied to date. The sequence does 

show some homology to a potential glycerophosphoryl diester phosphodiesterase 

(glp) of C. elegans, although verification of vmc-2 as a glp was not conducted in this 

study. The expression level of vmc-2 mRNA increases throughout development in the 

mosquito vector, but is barely detectable after 24 hours in the mammal. Thus vmc-2 

is potentially important in the preparation of the parasite for infection of the 

mammalian host. It would be interesting to determine if the VMC-2 protein may have 

a role in the infection event as has been proposed for a 23 kDa antigen of 

Onchocerca spp [201]. Like vmc-2 the 23 kDa Onchocerca antigen was found to 

increase in abundance whilst the parasite matured from L2 to L3 in the vector host. 

Metabolic labelling of parasite proteins whilst in the blackfly vector and during

1 8 2



subsequent in vitro culture showed that the protein was first detectable in the L2 

stage and was highly abundant in the L3 stage. Interestingly the abundance of the 

protein was shown to reduce following 24 hours culture at 37°C. It would be 

interesting to determine the levels of VMC-2 protein in L3 of B. pahangi isolated 

from the mosquito compared to those cultured in the mammalian-like conditions.

The majority of the work focused on mmc-1 because this was the most 

abundant clone isolated and the mRNA was exclusive to the mf stage. The 

specialisation of the LI of Brugia is evident in its anatomy, physiology and 

behaviour, therefore the specific temporal expression of the gene suggested it may 

play a role in mf development or mf specific processes.

Preliminary analysis of the mmc-1 cDNA and translated protein sequences 

revealed that mmc-1 was a novel gene with no known homologues other than to 

ESTs of B. malayi. This was later confirmed by the lack of hybridisation to DNA of 

other filarial nematodes. It was unfortunate that sufficient genomic DNA was not 

available from W. bancrofti to conduct this experiment. W. bancrofti shows many 

similar traits to B. pahangi (blood dwelling, possession of microfilarial sheath, 

microfilarial periodicity) and may have been the most obvious candidate for a 

homologue outwith Brugia. The PCR method used on a W. bancrofti cDNA library 

did not result in the amplification of a homologous gene. This protocol was only 

attempted using gene-specific primers and perhaps a degenerate PCR approach may 

have provided a different conclusion. The predicted amino acid sequence was 

analysed to determine any potential protein family domains or signatures by various 

computational methods [124, 252, 253]. However these techniques did not provide 

any information that would allow the prediction and testing of MMC-1 function. In
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an attempt to resolve possible functions of mmc-1, experiments using MMC-1 

recombinant protein or MMC-1 anti-serum were conducted.

Using immunofluorescence MMC-1 appeared to be localised throughout the 

body of whole B. pahangi mf, but only after removal of the microfilarial sheath and 

permeabilisation with collagenase and p-mercaptoethanol. This demonstrated that the 

MMC-1 protein was not present at the surface of the sheath or in the cuticle but was 

likely to be cytoplasmic. Attempts to localise MMC-1 at the ultrastructural level are 

ongoing.

As the mf stage has been shown to be involved in the modulation of host 

immune responses it was possible that mf-specific antigens, such as MMC-1 may be 

involved in this phenomenon. ELISA experiments showed that the immunisation of 

mice with a MMC-1 fusion protein resulted in the production of significant amounts 

of MMC-1 specific antibodies. MMC-1 was therefore immunogenic in isolation, 

however when a similar experiment was conducted using animals infected with either 

mf or L3 of B. pahangi only low levels of anti-MMC-1 IgG was detected in mf 

infected mice. This may be intuitive as MMC-1 was not localised to the surface of 

the parasite and may therefore only be presented to the immune system upon death of 

the mf. Experiments utilising sera from B. malayi infected individuals showed that 

the predominant MMC-1 reactive IgG subclasses were IgGl and IgG3. In addition 

splenocytes from MMC-1 immunised animals, restimulated with MMC-1, were 

shown to produce significant amounts of IL-5. Together these findings are very 

interesting, as high titres of IgGl and IgG3 have been shown to correlate with 

pathology in filarial infections [106, 239]. Also IL-5 is a growth factor for 

eosinophils that are present in high numbers in the pathological state of TPE [241,
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247, 249]. As the pathology observed in TPE is thought to be associated with an 

allergic reaction to mf in the lung, [15, 247] it was hypothesised that MMC-1 may be 

an antigen of importance in these allergic reactions, perhaps by stimulating IL-5 

production. Alternatively eosinophils may be stimulated to degranulate in association 

with MMC-1 IgGl and IgG3 antibodies as has been described in the eosinophil- 

mediated killing of S. mansoni schistosomula which is dependent on human IgG 

subclasses 1, 2 and 3 [244].

7.2 Further experiments.

The experiments reported in this thesis did not provide evidence as to how 

mmc-1 expression is regulated. It was however possible to rule out temperature, and 

the presence of glucose or serum as stimulation factors. Little is known about the 

control of gene expression in helminth parasites. This is partly because upstream 

regions have not been cloned and partly because of the lack of an in vitro system 

constrains experimentation. Analysis of the activity of promoters of helminth genes is 

in its infancy and has mostly relied on the use of reporter gene constructs. For these 

experiments constructs are made in which a detectable reporter gene is placed under 

the control of the promoter of interest and the construct is transfected into a 

eukaryotic cell line. This has been successful in the analysis of S. mansoni hsplO 

[254] and O. volvulus superoxide dismutase [255]. This approach has also been used 

in this laboratory by transfection of mammalian COS-7 cells with a hsp90 

promoter::chloramphenicol acetyl transferase (CAT) reporter construct (A. Coxcroft, 

unpublished). It is also possible to determine if the promoter of a parasitic gene can 

direct expression of C. elegans genes although this has only been conducted with
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parasite genes with a C. elegans homologue [136]. It may be possible to attempt this 

type of experiment using a parasite specific gene, however the pattern of expression 

both temporal and spatial may not directly correlate to expression in the parasite 

species.

The hypothesis that MMC-1 is a potential allergen in conditions such as TPE 

is based on preliminary data that would need to be repeated in greater detail. It has 

been shown that immunisation of mice with heat killed mf of B. malayi and 

subsequent challenge with live mf produces both pulmonary and peripheral 

eosinophilia [247]. To determine if MMC-1 is involved in this process, similar 

experiments could be conducted with mice sensitised by MMC-1 immunisation and 

then challenge with mf. By comparing eosinophil recruitment into the peritoneal 

cavity of MMC-1 primed mice with that in mice immunised with an irrelevant 

antigen it would be possible to further dissect the role of MMC-1. Alternatively it has 

been shown that a B. malayi mf allergen (Bm2325) was recognised by serum from 

TPE patients [250]. This would be a relatively simple experiment to conduct by 

western blot of recombinant MMC-1. Interestingly the Bm2325 antigen has been 

described as a homologue of the precursor of gamma-glutamyl transpeptidase, an 

enzyme present in the host epithelial cells. It has been proposed that molecular 

mimicry between host and parasite proteins may lead to the pathology seen. However 

this is not likely to be the case with MMC-1 as it is does not show homology to any 

characterised proteins.
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7.3 Future prospects.

Genes which demonstrate a specific expression pattern during the life-cycle 

of a parasite are of interest as the resulting proteins may be involved in specific 

metabolic pathways or developmental processes that would otherwise remain 

undetected. As discussed in Chapter One the challenge for molecular parasitologists 

is to assign function to the many genes that are isolated by genomic approaches. The 

Filarial Genome Project has isolated over 27, 000 ESTs of which approximately 40 

% are currently assigned as novel genes [123]. As the Filarial Genome Project 

progresses and more data are generated, future work is likely to incorporate 

procedures for genome wide analysis of expression utilising methods such as DNA 

chip technologies. These methods utilise short nucleic acid sequences that are 

attached to a solid support in an ordered fashion to analyse the genes expressed under 

any testable condition [256, 257]. By the use of two colour labelling of different 

populations of cDNAs, the genome-wide expression of genes can be assessed [258]. 

These experiments provide not only information on which genes are expressed at any 

time point but can also provide information that can be used to infer a possible 

function. Unrelated genes that are expressed in the same manner following different 

treatments e.g. temperature shock or drug treatment may be controlled by the same 

process and be part of a pathway that allows putative functions to be assigned and 

tested.

In model organisms such as C. elegans the generation of animals with 

mutations in a gene of interest allows the placing of gene products in an ordered 

pathway [259, 260]. These techniques are not applicable to the study of B. pahangi 

genes due to the complexity of the life-cycle. The alternative approach of double

187



stranded RNA interference (dsRNAi), [261] involves the interference of an 

endogenous gene by the introduction of specific double stranded RNA. The 

technique has been widely used in C. elegans but has also been used in Trypanosoma 

brucei [262], Drosophila cell lines [263] and mice [264], It has recently been 

proposed that RNAi directs cleavage of the gene specific RNA, which results in the 

loss of expression [265], The use of this technique in C. elegans is a powerful tool to 

determine the function of specific genes, and how the loss of gene function affects 

the nematode. For genes such as mmc-1 that are novel with no homology to genes of 

model organisms, the lack of such tools to determine gene function can be a 

frustrating problem, mmc-1 is good candidate for attempts to conduct dsRNAi in a 

filarial nematode due to its abundance and stage specificity. As there is no in vitro 

system that allows the culture of B. pahangi through a complete life cycle the only 

stage that could realistically be studied following introduction of RNA into adult 

females would be the mf. Although traditionally micro-injection techniques have 

been used to introduce the dsRNA, the technique has been shown to be effective 

when C. elegans are fed on bacteria expressing the dsRNA [266] or by soaking the 

worms in a solution of dsRNA [267]. As adult B. pahangi in vitro have been shown 

to absorb substances across the cuticle [220] this may allow the incorporation of 

dsRNA into adult females. The major problem with this type of experiment would be 

determining the effect on the progeny. If the function or specific localisation of the 

protein were known then potential phenotypic changes may be deduced. If a 

behavioural mutation resulted then it would be more difficult to detect this in a 

filarial worm.
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In conclusion mmc-1 is a potentially significant gene that as yet has an 

uncharacterised function. Preliminary functional experimentation suggested that 

mmc-1 may have a role in the immune reactions seen in filarial infections. There are 

a number of possible hypothesis that could be readily tested to elucidate the function 

of this important gene.
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