
Limited Copies

and Leased References

for Distributed Persistent Objects

Susan Spence

Submitted for the Degree of Doctor of Philosophy
Department of Computing Science

University of Glasgow
March 2000

©Susan Spence, March 2000

ProQuest Number: 13818969

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 13818969

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

GLASGOW
UNIVERSITY
LIBRARY

Cow

Contents

Abstract ix

Acknowledgements xi

1 Introduction 1
1.1 Overview of Problems

Combining Persistence and D istribution... 2

1.1.1 Implications of Dependencies Between Stores.................................... 2

1.1.2 Problems with Copying Object Graphs Between S tores.................... 3

1.2 Realistic Solutions for Persistence and D istribution 4

1.2.1 Limiting Dependencies Between S to re s ... 4

1.2.2 Policies for Flexible Object Graph Copying between Stores 5

1.3 Thesis S ta tem en t... 5

1.4 The Guided T o u r ... 6

2 Orthogonal Persistence 7
2.1 Orthogonal Persistence for Java .. 8

2.2 PJama: an Open Persistent S ystem ... 8

2.3 Managing Externalities.. 9

3 Persistent Remote Method Invocation (PJRMI) 11
3.1 J a v a R M I.................................V \ V ... 12

r

3.2 Using Java RMI with P J a m a .. 13

3.3 PJRMI: Remote Method Invocation Tailored for P Ja m a 15

3.3.1 Persistent, Remotely-invokable O b je c ts ... 15

3.3.2 Persistent Clients of Remotely-invokable O bjects 16

3.3.3 Interoperability of PJRMI with Standard R M I................................... 17

CONTENTS ii

3.3.4 PJRMI Sum m ary... 17

3.4 PJRMI Implementation D etails .. 18

3.4.1 Using PJActionHandlers.. 18

3.4.2 Supporting Persistent, Remotely-invokable O bjects.......................... 19

3.4.3 PJRMI Re-initialisation on Store Restart... 20

3.4.4 Supporting Persistent References to Remotely-invokable Objects . . 22

3.4.5 Interoperability of RMI and P J R M I ... 24

3.4.6 Implementation R ev isions... 28

3.5 Using P JR M I... 30

3.5.1 Model of Usage.. 30

3.5.2 User F eed b ack .. 31

3.5.3 The Effects of F eedback .. 38

3.6 PJRMI: Could Do B e t te r ... 39

4 Approaches of Related Work 40
4.1 Introduction.. 40

4.1.1 C on tex t.. 40

4.1.2 Problem One: Maintaining Object References Between Stores . . . 41

4.1.3 Problem Two: Copying Large Object Graphs Between Stores . . . 41

4.2 Existing W ork... 42

4.2.1 Java Distribution Technologies.. 42

4.2.2 DPS-algol... 46

4.2.3 rx for N ap ie r ... 48

4.2.4 Persistent, Type-safe RPC for N ap ier88 ... 48

4.2.5 T hor.. 50

4.2.6 CORBA.. 52

4.2.7 GemStone... 56

4.2.8 D C O M .. 59

4.2.9 Aijuna .. 60

4.2.10 P e rD iS .. 61

4.2.11 FlexiNet.. 63

4.3 Related Work on Alterative A pproaches... 64

4.3.1 Approaches of Database Systems .. 64

4.3.2 Object Substitution... 64

CONTENTS iii

4.3.3 Object Movement... 65

4.3.4 Obliq and Network Objects .. 65

4.3.5 Other References to Related W o rk .. 66

4.4 S u m m ary .. 66

4.4.1 With Regard to References... 66

4.4.2 Coping with Copying.. 67

4.5 Influences of Related Work on Solutions... 68

4.5.1 Spring Subcontracts .. 68

4.5.2 CORBA.. 69

4.5.3 G A R F.. 69

4.5.4 A Framework for Policy B ind ings.. 70

4.5.5 Mobile C om puting... 70

5 Research Issues to be Addressed 72
5.1 Problem One: With Regard to R eferences.. 72

5.2 Problem Two: Coping with C opying .. 73

6 Persistence by Reachability across a Distributed System 75
6.1 Introduction... 75

6.2 Determining Persistence Across a Distributed S ystem 77

6.2.1 Orthogonal Persistence in a Distributed Context................................ 77

6.2.2 Persistence with Direct and Indirect Reachability............................. 78

6.2.3 The Object Should Persist - But W here?... 81

6.2.4 PJRMI’s Solution.. 82

6.3 Application Leases on Remote Use of Persistent O b je c ts 84

6.3.1 Application Leases for Limiting Store O b liga tions.......................... 85

6.3.2 Lease Management for Limiting Store Dependencies....................... 88

6.3.3 Implications of Using Application L eases .. 91

6.3.4 Comparison with Use of Leases in Related W o rk 95

6.3.5 Future Work ... 96

7 Object Copying Policies: Introduction 99

7.1 Motivation.. 99

7.2 Assumptions ... 101

CONTENTS iv

8 Object Copying Policies: Design 103

8.1 Object Passing in Java R M I..103

8.2 Object Copying Policies Added to P JR M I.. 105

8.2.1 Definition of a Policy .. 106

8.2.2 How a Policy is Set for an Application..106

8.2.3 Setting a Policy Using a DistributedContext...107

8.2.4 Creation and Use of a DistributedContext..107

8.2.5 Platform Support Common to all Object Copying P o lic ie s 109

8.2.6 PJRMI Object Copying P o lic ies ... 110

8.2.7 Defining New P o lic ie s ... 113

9 Object Copying Policies: Implementation 114
9.1 Class DistributedContext.. 114

9.2 Supporting Policy Upcalls During an Application’s L ife tim e 116

9.2.1 Adaption of Serialisation for Policy H o o k s .. 116

9.2.2 Adaption of Deserialisation for Policy H o o k s 121

9.3 Policy Use of Stub O b jec ts ... 122

9.3.1 Triggering Access to a Remote O b ject..123

9.3.2 Accessing a Remote Object ..125

9.3.3 PCopyStubs and Garbage Collection...125

9.3.4 Persistence of PCopyStubs...125

9.4 Hooks for New Policies..126

9.4.1 How to Implement the Policy Interface ...126

9.4.2 Leaving the Rest to the Policy Support..128

9.5 Implementation of Individual Object Copying Policies 128

9.5.1 Behaviour Common to the Policies ...128

9.5.2 Policy CopyToRefs... 129

9.5.3 Policy CopyToSize... 130

9.5.4 Policy CopyToDepth.. 131

9.5.5 Policy CopyByUsage.. 132

10 Object Copying Policies: Evaluation 137

10.1 Introduction.. 137

10.2 Separation of Architectural I s s u e s ...138

CONTENTS v

10.3 Measurements S e tu p ... 138

10.4 How Large is a Large Object G raph?...141

10.5 Same Object Graph, Different A pplications.. 143

10.6 Same Object Graph, Different Distributed Environm ents................................145

10.7 The Pros and Cons of Object Copying Policies...148

10.8 Future W ork..149

10.8.1 New P o lic ie s ... 149

10.8.2 Shared Subgraphs...150

10.8.3 Setting A Policy across Multiple S ite s ..151

10.8.4 Measurements ..151

10.8.5 P o r t in g ...151

11 Future Work 152
11.1 PJR M I............................ 153

11.1.1 Reconnection R etries.. 153

11.1.2 Store M ov em en t...153

11.1.3 Persistence of RMI R eg istry ..154

11.1.4 Removing Remote Access to Persistent O bjects.................................. 154

11.1.5 Evolution of Services.. 155

11.1.6 New, Improved PJama P la tfo rm ... 155

11.2 Synthesis of Solutions in a DistributedContext..156

11.3 Additional Support for Persistence and Distribution.. 156

11.3.1 Consistency..156

11.3.2 Transactions ...157

11.3.3 Group Communication...157

11.3.4 Aspect-Oriented Programming.. 158

11.4 The Big P ic tu re ..158

12 Conclusion 159

12.1 Limiting Dependencies Between S to r e s ... 160

12.2 Policies for Flexible Object Graph Copying Between Stores............................161

12.3 And Finally..162

A PJRMI Tutorial 164
A.l Introduction..164

CONTENTS vi

A. 2 A non-persistent RMI program ... 165

A.2.1 An RMI-based M essageService.. 165

A.2.2 A non-persistent client for the M essageService...................................169

A.3 A persistent RMI p ro g ra m ... 172

A.3.1 Creating and using persistent, remotely-invokable objects................... 172

A.3.2 Creating and using persistent references
to remote, remotely-invokable o b je c ts ...179

A.4 Using the SuspendService to close down a persistent store183

A.5 RMI Exceptions.. 185

A.5.1 java.lang.ClassNotFoundException ... 185

A.5.2 java.rmi.server.ExportException..185

A.5.3 java.lang.IllegalAccessException ...185

A.5.4 java.lang.NullPointerException ..185

A.6 Comments..187

B PJActionHandler Usage 188

C Object Copying Policy Support 192
C.l The Lifetime of a PCopyStub.. 192

C.1.1 Deserialisation of P C opyS tub ... 192

C .l.2 Residency check on PCopyStub in GC Heap193

C. 1.3 Promotion of a PCopyStub from the GC H eap.......................................193

C .l.4 Residency check on persistent, non-resident P C o p y S tu b193

C .l.5 Promotion of a remote-faulted object ... 194

C.1.6 Residency check on persistent, remote-faulted o b je c t.......................... 194

Trademarks 197

Glossary 198

Bibliography 200

List of Figures

3.1 Objects in an RMI c a l l ... 12

3.2 Permutations for communicating VMs in an open persistent system....... 17

3.3 PJamaPJExported tables track export information by name and identity . . 20

3.4 Renewing stub inform ation.. 23

6.1 Direct and indirect reachability from a remote, persistent object.................... 79

6.2 Movement of stores between h o s ts .. 84

6.3 Setting a local lease limit in a client’s s tu b ... 92

8.1 Server-side tree of objects, plus initial client-side CopyToRefs tree copy . . 110

8.2 The tree copy after CopyToRefs access is made to bI l l

8.3 The initial depth-first CopyToSize... I l l

8.4 The initial width-first CopyToSize... I l l

9.1 Classes involved in object serialisation and deserialisation. (Method names
not in bold type indicate a method overridden in a subtype.)......................117

9.2 Object fault from store to VM m em ory...124

9.3 Object fault from remote VM to local V M ...124

9.4 class TrackUsage tables of the CopyByUsage policy134

10.1 Comparison of platform costs... 140

10.2 Key to platform labels..140

10.3 Effect of policies on communicating projects .. 144

10.4 Size of binary trees at range of d e p th s ..146

10.5 Policy-controlled copying over local area netw ork.. 146

10.6 Policy-controlled copying over wide area netw ork.. 147

A. 1 Objects used for RMI 165

LIST OF FIGURES viii

A. 2 Interface MessageService... 166

A.3 Class MessageServicelmpl.. 167

A.4 class RunService creates M essageService...168

A.5 MessageClient uses MessageService.. 170

A.6 RunClient creates and uses MessageClient... 171

A.7 CreateSupportServices creates persistent support services................................174

A.8 CreateService creates persistent MessageService .. 176

A.9 UseService makes persistent, remotely-invokable objects available 178

A. 10 CreateClient creates a persistent M essageClient... 181

A. 11 UseClient uses M essageClient.. 182

A. 12 SuspendService... 183

A. 13 SuspendServicelmpl implements SuspendService.. 184

A. 14 SuspendClient uses SuspendService.. 186

C.l Formats of PCopyStub/corresponding object copy handles during use . . . 196

Abstract

As businesses become global organisations and as e-commerce opens up markets to cus
tomers across the Internet, demand grows for increasingly ambitious distributed software
applications and platforms. Where these applications run over potentially huge collections
of data, sophisticated management of data storage and communication is required. There is a
need for well-integrated persistence and distribution support that considers the implications
for long-term maintenance of valuable persistent data.

Orthogonal persistence is intended to ease the programmer’s job by providing support for
data management that is integrated with a programming language. The simplicity of the
orthogonal persistence model argues for its use in distributed systems, in order to make
life simpler for the application programmer. PJRMI is an implementation of Java RMI for
the orthogonally-persistent PJama platform. This dissertation addresses two problem areas
raised by combining orthogonal persistence with support for distributed applications. These
problem areas are illustrated by PJRMI.

The first problem is raised as a consequence of attempting to provide the illusion of a per
sistent connection between stores. Distribution-related errors easily break this illusion. In
an open system, it can be difficult to determine when an object should become persistent by
remote reachability. In the long term, persistent references to remote objects threaten the
maintainability of the persistent stores involved.

A solution has been implemented to address the problems raised by maintaining persistent
references between distributed stores. Greater autonomy of individual stores is achieved
by limiting remote access to objects to a duration of time associated with a specific dis
tributed application’s lifetime. Within the application’s lifetime, the benefits are retained of
persistence of inter-store references for resilience.

The second problem is encountered when copying object graphs between stores. Large ob
ject graphs tend to build up in persistent stores over time. Copying such large object graphs
can be prohibitively expensive in terms of resources and performance. A programmer may
assume that the size of graph they are copying is acceptable, based on their knowledge of

Abstract x

a system in its infancy. However, the problem is that, in a long-lived system, their assump
tions may be challenged, since the size of an object graph and the context in which it is
used are more likely to change during a persistent object graph’s lifetime. The combination
of a typically statically-defined policy for passing objects to remote sites and programmer
assumptions that fail to take into account the lifetime of an object can also result in other
problems. These problems include failure to support different requirements on remote use
of the same object graph by different applications during that object graph’s lifetime.

A solution has been implemented to address the problems raised by remote copying of large
object graphs. Flexibility of control over such copying is achieved. Separation of policy
from object definition ensures flexibility. Choice of object-copying policy for a specific
distributed application’s lifetime provides control, while ensuring it is adaptable to changes
in size of persistent object graphs over their lifetime and to changes in the context in which
these graphs are used.

Acknowledgements

This dissertation has been accomplished with much support from my supervisor, partner,
family, friends and colleagues. I am very grateful to them all. Special thanks are due to
those named below.

Malcolm Atkinson: for his energy, enthusiasm, encouragement as my super
visor and for his ability to keep his researchers in contracts and interesting,
challenging jobs.

Satnam Singh: for waiting so patiently on another continent for me to finish
this PhD and for agreeing to be my husband.

My parents Graham and Irene Spence: for their love and support; they are
always there for me.

My sister Alison Campbell: for her love and encouragement and especially for
the PhD monster decoy. It worked - I’ve escaped!

Carol Emslie: for our enduring friendship, particularly through the university
years of relaxed flat-sharing in Dowanhill Street.

Mick Jordan: for supporting my internships at Sun Microsystems Laboratories.

Quintin Cutts: for his role as second supervisor. I enjoyed comparing notes on
time management.

Peter Dickman: for taking on the unofficial role of third supervisor.

All my friends and colleagues in the Department of Computing Science at the
University of Glasgow: through my four years as an undergraduate and seven
and a half years as a research assistant. It’s the people of this excellant depart
ment that have made me stay around as long as I have.

Huw Evans: for his friendship, thorough proof-reading, leading me astray with
whisky and good memories of trips, especially to Paris and Pisa, to appreciate
their fine food and wine, purely in the line of duty. I appreciated even his most
in-seine jokes.

Acknowledgements xii

Tony Printezis: I have greatly enjoyed the fruits of his enthusiasm for cook
ing; even though it has never quite matched his enthusiasm for C hacking and
garbage collection.

Craig Hamilton: who always has an entertainingly sharp word to say on some
of our favourite PJama project conversational subjects.

Others I have worked with on the PJama project, including Laurent Daynes.

Users of PJRMI: who kindly provided me with feedback on using PJRMI in
their work and cooperated, sometimes very patiently over weeks at a time, in
helping me to fix bugs with PJRMI and PJama in general.

This work has been supported by the PJama project, funded by Sun Microsystems Labora
tories and the EPSRC.

Apologies to those readers who, like Huw, do not always appreciate the verbose nature off
my writing; it could admittedly be considered, as Stephen Fry would say, rather pleonastic
or sesquipedalian o r ...

Chapter 1

Introduction

According to a recent article in the Financial Times [FT98], “the Internet will inevitably
become the dominant medium for the global economy”. This is backed up by USA Today,
which reports that “The Internet economy generated $301 billion in revenue last year” and
that “The Internet economy is doubling every nine months” [Bel99]. A quarterly report on
Internet Economy Indicators, by the University of Texas Center for Research in Electronic
Commerce [1100], provides many more fascinating statistics on this subject.

As more businesses become global organisations and as e-commerce opens up markets to
customers across the Internet, demand grows for increasingly ambitious distributed soft
ware applications and platforms. Where these applications run over potentially huge col
lections of data, sophisticated management of its storage and communication is needed, to
handle data access across wide area networks between, for example, the departments of
an organisation around the world, as well as across local area networks within one site of
an organisation. Sun Microsystems, with offices in 150 countries, is a good example of a
global business that increasingly runs product and employee information and administration
systems over wide area networks [Sun99].

Consequently, programmers need flexible, reliable platforms that will ease both develop
ment and long-term maintenance of these distributed applications and their associated data
management.

Orthogonal persistence is intended to ease the programmer’s job by providing support for
data management that is integrated with a programming language. By automating the stor
age of data and propagation of its updates to disk, the application programmer’s job is sim
plified, leaving them to focus on the coding of the application itself. The PJama project
has designed and implemented orthogonal persistence for the object-oriented programming
language Java [ADJ+96, JA98]. The type-safety of Java makes it an appropriate language

Chapter 1. Introduction 2

for integration with orthogonal persistence. Strong typing is crucial for maintaining con
sistent graphs of objects in stable storage. The commercial viability of Java, its purported
platform neutrality and the current popularity of object-oriented programming enables the
PJama project to make its research available and attractive to a wide audience.

Providing orthogonal persistence of objects within a single address space is well-understood.
The challenge, partly addressed by the work in this dissertation, is how to address the issues
raised by combining orthogonal persistence with support for distributed applications.

1.1 Overview of Problems
Combining Persistence and Distribution

The use of orthogonal persistence in a distributed system has a number of implications. This
dissertation focusses on dealing with these implications in two subject areas.

1.1.1 Implications of Dependencies Between Stores

Orthogonal persistence, as implemented for the PJama platform and summarised in chap
ter 2, maintains a consistent and stable state of the objects that become reachable, via ref
erences, from objects identified as roots of persistence. Within one process running over a
persistent store, it is possible to guarantee the consistent, stable state of persistent objects.

The simplicity of the orthogonal persistence model argues for its use in distributed systems,
in order to make life simpler for the application programmer. Despite the inherently transient
nature of connections between distributed objects, the illusion of a persistent connection can
be provided, as demonstrated by the support for persistent remote method invocation for Java
(PJRMI) described in chapter 3.

However, such attempts to extend orthogonal persistence, from a single process to the less
reliable and less controllable world of a distributed system, sacrifice the guarantees on con
sistency (and the integrity of object references, in particular) in the persistent stores involved.
It is unrealistic to assume that, just because a reference to a remote object has been made
persistent, it will always be possible to access the remote object successfully. Distribution-
related errors caused by process crashes and network delays or failures easily break the
illusion of a persistent connection.

Another challenge, for support of persistent references to remote objects, is that it can also
be difficult to ensure that the remotely-referenced object exists as long as it is required.
Extending persistence by reachability across a distributed system implies that if an object
becomes persistent and it holds a reference to a remote object then the remote object must

Chapter 1. Introduction 3

become persistent too. It can be difficult to determine when and how an object should
become persistent by remote reachability though, as described in chapter 6.

There is also a long-term problem with persistent connections between distributed objects:
they threaten the maintainability of the persistent stores involved, by decreasing autonomy
of an individual store’s data management. A store does not have the control to maintain
a consistent state over its objects and to garbage-collect those that it no longer wishes to
contain if it is obliged to provide remote access to objects for as long as references are held
to them from other stores. By the same token, a store does not have control over the integrity
of its references when it holds a reference to an object in a remote store, making it dependent
on the remote store for its own referential integrity.

1.1.2 Problems with Copying Object Graphs Between Stores

The trend for remote object access in distributed programming is currently moving away
from the model of passing objects solely by reference (as espoused by DCOM and, until
recently, CORBA) to one where objects can also be copied between processes. Thus, having
considered some of the implications of managing references between persistent, distributed
objects, focus is now placed on how to manage the copying of persistent object graphs
across a distributed system, when such object-copying is required by an application. (For
clarification: the issue of object migration is not one of the topics of this dissertation.)

The introduction of persistence into a distributed application changes assumptions about
how objects are used in a distributed system. For a distributed application with no per
sistence support, the programmer is likely to make the assumptions that the object graphs
passed by copy between processes will be small and always used in the same way, in the
same context.

However, like traditional databases, a persistent object store is often populated incremen
tally, with the intention of maintaining it over months or years. Large object graphs can
build up in persistent stores over time. Thus, for example, an application that remotely ac
cesses a persistent object graph by making a deep copy of it may be able to do so efficiently
during executions early in the lifetime of the store, but it may find that such copying has
prohibitive costs or that it even becomes error-prone, as the object graph grows. The long
lifetime of the store increases the likelihood that the same persistent object graphs may be
used by different applications. It also increases the likelihood that the same persistent object
graphs may be used in different distributed environments.

Given that current practice is for the policies for passing objects between processes to be
defined statically, tied to the object’s class definition, there is a lack of flexibility for adapting
the copying of persistent object graphs between processes to cope with their size and the

Chapter 1. Introduction 4

context in which they are used, when in fact both may change during the lifetime of a store.

1.2 Realistic Solutions for Persistence and Distribution

The emphasis on the solutions proposed in this dissertation, for dealing with the problems
above, is that they be realistic, rather than idealistic. Having examined the approaches of
related work to these problems, presented in chapter 4, and found them wanting, the author’s
solutions address the two problem areas as summarised below.

1.2.1 Limiting Dependencies Between Stores

The application programmer must choose which of two issues is most important for their
persistent, distributed application: a simple model of programming with automated storage
of objects, even when those objects represent objects in a remote store, or a reliable, con
sistent, local persistent store. Realistically, because of the intrinsic lack of reliability in a
distributed system, they cannot rely on having both.

To run a distributed application with reliable, consistent persistent stores, it is necessary to
ensure that no references to remote objects ever become reachable from a persistent object
and to ensure that no process that uses an object remotely is long-running, in order to limit
the obligation of the store providing remote access to the object.

On the other hand, to take advantage of the orthogonal persistence model for applications
running over distributed persistent stores, the application programmer must make a trade
off between the simplicity of using distributed objects that can become persistent and the
consequent lack of reliability and consistency in their persistent stores.

Support has been developed for a compromise, described in chapter 6, that provides the
benefit of persistent, distributed objects within the lifetime of a distributed application. (The
lifetime of a distributed application is the time for which a group of distributed applica
tion programs run until the application is completed; this run may span multiple process
executions, across store shutdowns and restarts.) A conservative position is taken on the
persistence of remotely-accessible objects for the duration of an application’s lifetime. The
compromise involves introducing time limits, appropriate to the duration of a given appli
cation’s lifetime, on the remote accessibility of objects and on the usability of references to
remote objects. The long-term usability of references to remote objects is traded off against
the increased autonomy of persistent stores, with the intention of increasing the stores’ long
term maintainability.

Chapter 1. Introduction 5

1.2.2 Policies for Flexible Object Graph Copying between Stores

In order to avoid making fixed assumptions about the copying of object graphs between
distributed processes, it is necessary to avoid statically defining the copying policy within
the class of an application object. Chapter 8 describes how a separation of architectural
issues is achieved by instead specifying an object-copying policy in its own class, separately
from the classes of a particular application and those of the objects it uses. A wrapper class
is then used to apply a particular object-copying policy for the lifetime of an application.
The details of the implementation can be found in chapter 9.

For evaluation, a number of object-copying policies have been developed and tested with
applications, as described in chapter 10. Policies for limiting the copying of large object
graphs between processes are demonstrated; different policies are successfully applied to
the same persistent object graphs used by different applications; and different policies show
adaptability to the changing scale of network for different executions of the same applica
tion.

1.3 Thesis Statement

Existing platform support for orthogonal persistence of objects and distribution of those
objects over wide area networks is not sufficiently integrated or flexible. This dissertation
addresses two important issues raised by providing such integrated support in an open, per
sistent system.

Supporting referential integrity for the lifetime of persistent references to remote objects
places unrealistic obligations on the stores containing the referenced objects. A tradeoff is
made between resilience of inter-store references and maintainability through autonomy of
individual persistent stores. This is done by combining support for persistent references to
remote objects in the short-term, with appropriately-set timeouts on access to the remotely-
referenced objects in the long-term.

Where the passing of objects by copy between persistent stores is required, support is needed
to avoid unnecessary or prohibitively-large serialisations of persistent object graphs. A num
ber of object-copying policies have been developed. For evaluation, and to illustrate how
the separation of class definition from object-copying policy can be achieved, experiments
have been performed with a variety of applications. These applications can use the same ob
ject graphs in different ways and in diverse distributed environments, given an appropriate
object-copying policy.

Chapter 1. Introduction 6

1.4 The Guided Tour

Chapter 2: Orthogonal Persistence
Defines orthogonal persistence and introduces the PJama project’s implemen
tation of it for the object-oriented programming language Java.

Chapter 3: Persistent Remote Method Invocation (PJRMI)
Describes support for maintaining the illusion of persistent connections be
tween distributed objects; developed for the PJama platform by the author.
PJRMI forms the basis for exploration of the problems raised in the author’s
thesis and experimentation with the proposed solutions.

Chapter 4: Approaches of Related Work
Examines the approaches of related work to the specified problems raised by
combining persistence and distribution support.

Chapter 5: Research Issues to be Addressed
Summarises the problems that have been raised and existing approaches taken
to deal with them. The scene is set for addressing each of the two problems.
The rest of the dissertation is presented in two parts: the first part, in chapter 6,
presents the author’s solution to the problem raised in section 1.1.1; the second
part then presents the author’s solution to the problem raised in section 1.1.2.

Chapter 6: Persistence by Reachability across a Distributed System
Explores the issues associated with extending persistence by reachability across
a distributed system. Presents leases, set on remote use of persistent objects for
the duration of a distributed application’s lifetime, as a solution that compro
mises on reliability in favour of greater store autonomy.

Chapter 7,8,9,10: Object Copying Policies:
Introduction, Design, Implementation and Evaluation
States the motivations and assumptions behind the use of object-copying poli
cies for persistent applications. Presents the design and implementation of these
policies. The policies ensure adaptability, over time, for the copying of objects
between persistent stores to deal, in particular, with the problem of how to han
dle large graphs of persistent objects in a distributed system. The policy support
is shown to be adaptable in use with several applications.

Chapter 11: Future Work
Describes challenges for future work in the area of persistence and distribution.

Chapter 12: Conclusion
Summarises achievements of the author’s work and presents the conclusions.

Chapter 2

Orthogonal Persistence

Orthogonal persistence [AM95] integrates data management into the support for a program
ming language, so that it no longer pervades application code. In traditional database ap
plications, data management commands, in SQL for example, are embedded throughout
the application code, explicitly managing the movement of data between memory and the
database on disk. In comparison, applications using orthogonal persistence usually need
only a few lines at the beginning of an application to indicate which objects will persist.
Thereafter, the application programmer can focus solely on the application task, while the
persistent system automatically manages application data storage and updates transparently.

Support for orthogonal persistence in an object-oriented language, is required, as described
in [AM95], to meet the following criteria:

• Persistence is orthogonal to type: The lifetime of an object does not depend on its
type. Thus, there is no restriction on which types can be made persistent.

• Persistence independence: The application code for creating and using objects is al
ways the same; i.e. it’s independent of the lifetime of the objects themselves. The
point here is that there is no specialised code for creating persistent objects, that is
different from that for creating objects that will not persist beyond the current pro
gram execution.

• Simple persistence identification: A simple mechanism is used to identify those ob
jects which are to persist beyond the program execution in which they are created.
Conforming to the criteria above, this mechanism must be independent of the type
system.

Chapter 2. Orthogonal Persistence 8

2.1 Orthogonal Persistence for Java

The PJama project has produced a specification for Orthogonal Persistence for Java
(OPJ) [JA99] and a number of releases of the PJama implementation of orthogonal per
sistence for Java [ADJ+96, JA98] have been made for research and evaluation purposes. A
PJama release includes a Java Virtual Machine modified for support of persistence and the
Java classes that provide the PJama API.

Applying the orthogonal persistence criteria, in OPJ an object of any Java class may persist;
including the C lass objects themselves, threads, windows, etc. Persistence by reachability
is used to identify persistent objects. An object registered by name using the PJama API is
treated as a root of persistence; there are usually only a small number of these root objects
per store - typically one per application. Other objects that become reachable, directly or
indirectly, from a persistent root will themselves become persistent. These are referred to as
“persistence reachable” objects. Ensuring that all objects that are persistence reachable do
become persistent guarantees referential integrity: a persistent object should never be left
holding a dangling reference.

The type-safety of Java makes it an appropriate language for integration with orthogonal
persistence. Strong typing helps to ensure the referential integrity of object graphs within
a persistent store, which is crucial for maintaining persistence by reachability reliably. As
long as an object is reachable from a persistent root, PJama automatically maintains both its
data and code on stable storage. The commercial viability of Java also enables the PJama
project to make its research available and attractive to a wide audience.

The work for this dissertation has been done with successive releases of PJama integrated
with 1.1.x and 1.2.x Classic versions of the Java Development Kit (JDK), the latest of
which is PJama version 0.5.7.13 [PJR98]. A second generation implementation of OPJ
has subsequently been released with a simpler API and more scalable store implementa
tion [PAD+98b, PAD98a]. Integrated with JDK 1.2 for Solaris production release1, it is
available from Sun Microsystems Laboratories as PJama version 1.5.1 and upwards [ForOO].

2.2 PJama: an Open Persistent System

If PJama was a closed, persistent system, where everything in a program was under the
control of the persistent system, as in Napier88 [MCC+99], the state of all supported data
types would be known and could be made persistent but no other state external to the system

Renamed “SunLabs Virtual Machine for Research (ResearchVM)” when re-targeted to purely research

purposes in autumn 1999.

Chapter 2. Orthogonal Persistence 9

would be handled. Napier88 supports interaction with some system-level entities: files, win
dows and sockets; but this support is built into Napier’s implementation. Napier88 cannot
interact with any technology that is not specifically managed in its implementation.

Being an open, persistent system enables PJama programs to make use of many other tech
nologies, rather than making it necessary to implement these technologies entirely in the
PJama platform. To enable such openness, PJama provides a way for programmers to spec
ify the extra, specialised support for dealing with external technologies.

This is where the effects of running in an open, persistent system are felt. Java classes
can use facilities such as windowing toolkits and socket connections, which are inherently
transient and outside the control of an open persistent system. Since referential integrity
cannot be maintained between persistent objects and the external resources that they refer
ence, PJama’s hooks for specifying extra, specialised support must be exploited to deal with
them.

One issue, of relevance to distribution support for PJama, which currently challenges
PJama’s claim to orthogonal persistence, is the handling of threads. The aim is that sup
port will be provided for persistent threads in the future, but technical difficulties currently
prevent its implementation. Thus, PJama’s hooks for managing external technologies must
currently also be used to deal with threads.

2.3 Managing Externalities

Java objects can be created which represent entities that are intrinsically transient in, or
external to, the PJama platform. Such objects may represent, for example, sockets, files,
windows or threads. Although the objects may become persistent by reachability, the things
that they represent will not actually be usable across multiple program invocations, because
they are not under the control of PJama. Thus, extra support is needed for PJama to try to
re-establish the state of these objects as required, after they have become reachable from
persistent roots.

Two mechanisms are used by PJama to manage, at key points in the execution of a persistent
application, the state of these objects, which may be viewed as persistent by a persistent
application, but which are actually objects external to the persistent system.

Firstly, fields of a class can be marked as being transient2 using a static method of the PJama

2See [PAJ99] on the differing interpretations of the definition and handling of tr a n s ie n t fields in Java and

PJama.

Chapter 2. Orthogonal Persistence 10

API class org.opj .u tilities.P JS ystem .

public fin a l s ta t ic void markTransient(Class clazz, String fieldName)

PJama interprets any field marked transient in this way as a field which should not persist,
even when the object which contains it is made persistent. Instead, this field is set to a
default value (null or zero) on store restart.

Secondly, an instance of the PJama API class org.opj . store.PJActionHandler can be
used to, for example, open and close sockets and files, open and close GUI windows and start
and stop threads associated with objects in the store. PJActionHandlers are registered with
a org.opj . store.PJActionManager, which ensures that they are executed at significant
points in a persistent program’s execution: on startup: just before program execution begins
when re-opening a persistent store; on stabilisation: just before a user-initiated stabilisation
(checkpoint) of reachable object state to persistent storage during program execution or
on shutdown: just before the implicit stabilisation at the end of a program’s successful
execution.

The use of these mechanisms, for handling socket connections and threads associated with
remote method invocations, is described in detail in chapter 3. For more on the usage
of PJActionHandlers in general, see [JA99]. Documentation on the use of PJAction
Handlers, with examples, can be found on the javadoc-generated HTML page for the
PJActionManager interface. The documentation for the PJActionManager and its asso
ciated classes is part of the PJama API documentation distributed with the PJama software
releases, up to and including PJama version 0.5.20.2. The support for PJActionHandlers
has been redesigned and reimplemented for the second generation of PJama.

Chapter 3

Persistent Remote Method Invocation
(PJRMI)

Remote method invocation (RMI) is the object-oriented equivalent of RPC, the well-known
procedural model of inter-process communication [BN84]. Java RMI is an example of an
RMI implementation [RMI98]. It supports the calling of a method of an object instantiated
in one Java Virtual Machine (JVM), from the code of another object, instantiated in a dif
ferent JVM. The two JVMs involved in the call may be on the same or on different host
machines.

The use of standard Java RMI in the context of PJama becomes problematic when remotely-
invokable objects and objects holding references to them from other VMs become persistent
by reachability. This is because, without additional support, they will be unusable after store
restart.

As the context in which to investigate distribution issues for a persistent system, an imple
mentation of RMI enhanced for PJama (PJRMI) has been developed 1; providing additional
support to ensure a working and understandable usage of persistent RMI objects. It ad
dresses the need for maintenance of the same object identity for a persistent RMI object
across multiple program executions and handles externalities, such as socket connections in
the persistent context.

PJRMI is described in detail in this chapter, since it forms the base for the research presented
in the rest of this dissertation. Relevant details of Java RMI are introduced in section 3.1.
The problems of using Java RMI in the context of an orthogonally-persistent system are
described in section 3.2. The solutions supported by PJRMI are presented in section 3.3.
This is followed by the details of the PJRMI implementation in section 3.4. The chapter is

1 PJRMI was developed with versions of PJama using JDK 1.1.x; then ported later to PJama using JDK1.2.X.

Chapter 3. Persistent Remote Method Invocation (PJRMI) 12

CLIENT JVM SERVER JVM
/ --- \

client stub

O—{...........
V___________________________J

Figure 3.1: Objects

concluded with section 3.5 on how users have employed PJRMI for their applications and
feedback from their experiences. The tutorial used to introduce users to PJRMI is included
as appendix A.

3.1 Java RMI

The basics of Java RMI are described in this section, including details of the implementation
which are relevant to discussions later in this chapter.

A number of objects are usually involved in an RMI call, as illustrated in figure 3.1.

• A remotely-invokable object provides a service: it implements a specified interface
to those of its methods that can be called remotely. RMI mechanisms are used to
“export” it in order to make it available for remote use.

• A client object obtains a reference to the remotely-invokable object.

• A stub (proxy) object represents the remotely-invokable object in the client’s JVM.
The stub holds information on the location and identity of the object it represents.

• A skeleton object forwards calls, received at the server-side from the stub, to the
remotely-invokable object, and returns the results of these calls back through the stub
to the caller.

In a standard RMI program, a remotely-invokable object is created and usually made avail
able until the program is terminated. From the point at which it is exported for remote use,
a thread listens for incoming connections on its behalf; this daemon thread runs indefinitely,
or at least until its host JVM is shut down.

Objects in another JVM wishing to use the remotely-invokable object can obtain references
to it in one of two ways. Usually, clients obtain the references from other application ob
jects. For bootstrapping purposes, Java RMI also includes support for a name service called

skel service

in an RMI call

Chapter 3. Persistent Remote Method Invocation (PJRMI) 13

the RMI Registry. This is run on the same host, usually as a separate process. A remotely-
invokable object can be registered by name with the Registry. Subsequently, clients any
where on the network can look up the remotely-invokable object by name to obtain a refer
ence to it.

Client objects treat the obtained reference as a direct reference to the remotely-invokable
object. However, they are actually given a reference to a local stub for that object, created
automatically in the client’s JVM. Calls made by the client to the remote object’s interface
are actually invoked on its local stub. The RMI implementation then uses a socket connec
tion to send these calls to the JVM hosting the remotely-invokable object, where dispatcher
code in the corresponding skeleton object invokes the appropriate method and returns the
result, again via the stub, to the client. The client thread making the RMI call is blocked
until the method has been invoked remotely and the call returns.

The object to be invoked from a client is identified in the stub object by: the host and port
number where a thread is listening for incoming connections on behalf of the remotely-
invokable object, plus an object identity composed from the identity of the JVM and a count
incremented for each object identity generated in that JVM. Thus, the identity in the stub
identifies an object in a specific JVM on a specific host.

Java RMI also includes support for Distributed Garbage Collection (DGC). This is based on
DGC for Network Objects [BEN+93]. This DGC system uses reference listing: each JVM
supporting remotely-invbkable objects maintains a list of client JVMs that hold references to
them. For each client JVM in that list, another list is kept of the specific remotely-invokable
objects which are referenced by that client. As far as DGC is concerned, a reference from a
client JVM is only valid until: it is no longer reachable and is garbage-collected; the client
has failed to contact the server within a server-specified lease period of time; or the client
has terminated.

3.2 Using Java RMI with PJama

This section examines the problems with using standard Java RMI unchanged in a persistent
system. If standard RMI is used in a persistent context, remotely-invokable objects and the
objects that hold references to them can become persistent by reachability from persistent
roots. However, if these persistent objects are accessed in subsequent programs, they prove
unusable because the data they contain describing the connection between them is as tran
sient as the socket connection to which it refers. This problem is examined in more detail
below.

If a client object, holding a reference to a remotely-invokable object in another VM, is

Chapter 3. Persistent Remote Method Invocation (PJRMI) 14

made persistent in one program, the client’s reference will continue to work, in subsequent
program runs over the same store. This will be the case as long as the server program that
created the remotely-invokable object has continued to run in the meantime. The server-side
thread continues to listen for socket connections and, at the RMI implementation level, the
restarted client can use its existing information on connecting to the server to recreate the
socket connection, the first time an RMI call is made to the server after restart.

Once the server program terminates, the next time the client object tries to use its reference,
it will get a ja v a . rmi. ConnectException, whether or not a program over the server store
has been restarted before the client’s latest call. The reason for this is that the socket connec
tion to the remotely-invokable object is transient; it is associated with the specific execution
of the VM that created it. Connection information is held in the stub at the client’s VM.
Except in the case of well-known services, the socket connection for a remotely-invokable
object is likely to use different port numbers in different VM executions, but there is no
facility for keeping the port number in a persistent client stub up-to-date.

Even if a remotely-invokable object is made persistent, PJama does not currently support
persistent threads, so the thread that listens for incoming connections on behalf of the
remotely-invokable object will be terminated when the program that created the remotely-
invokable object is terminated. Attempting to re-activate the thread to listen for incoming
calls after the server is restarted also does not work. If a server program attempts to do so by
re-exporting the persistent, remotely-invokable object then, as a result of its call to the static
method UnicastRemoteObj e c t . exportObj ect, a j ava. rmi. server. ExportException
will be raised with the message “object already exported”. This is because exportation is
necessary to create the listening thread but RMI does not support the re-entry of an object
into the RMI implementation tables if it is already found to be there. Although the now-
persistent object identity of the remotely-invokable object, as held in the client stubs and
in the RMI implementation tables, could be used in a persistent context, there is however
no existing support for making a remotely-invokable object with the same identity available
across multiple program runs.

Applying the principle of orthogonal persistence to remotely-invokable objects and to the
objects that use them remotely means that, ideally, their behaviour should be unaffected,
whether or not they become persistent. To benefit from the resilience of a persistent client
and/or server, PJama must incorporate additional support to ensure that remotely-invokable
objects can be used remotely throughout their lifetime, and that objects holding references
to them can use those references throughout their lifetime too. Supporting the illusion of
continuous operation for such objects, throughout their lifetime, across multiple client and
server program restarts, requires specialised support for maintaining the illusion of a per
sistent connection between the remotely-invokable object and its client. This is the support

Chapter 3. Persistent Remote Method Invocation (PJRMI) 15

provided by persistent RMI.

3.3 PJRMI: Remote Method Invocation Tailored for PJama

Having demonstrated that standard Java RMI will not work in a persistent context across
multiple client and server program restarts, this section presents PJRMI: an enhanced im
plementation of RMI for PJama that is intended to solve the problems raised by combining
persistence with distribution. This section focuses on the support provided by the release
version of PJRMI for PJama running on JDK1.2 [PJR99], unless otherwise stated.

3.3.1 Persistent, Remotely-invokable Objects

Currently, PJRMI takes a conservative approach to the persistence of remotely-invokable
objects; all such objects created in a PJama Virtual Machine (PJVM) running over a persis
tent store are automatically made persistent. This is intended to be a short term decision,
on the basis that it is better to keep unused remotely-invokable objects in a persistent store,
rather than to garbage-collect a remotely-invokable object mistakenly. Although this con
servative solution is not scalable and uses up system resources unnecessarily, it is safe and
it does support experimentation with persistent RMI. In the long-term, if we extend the no
tion of persistence by reachability across a distributed system then, given a reliable way
of determining persistence by reachability from existing objects in other VMs, automatic
persistence of all remotely-invokable objects would no longer be necessary. The difficul
ties of determining persistence by reachability across a distributed system are explored in
section 6.

To address the problem of being able to use a persistent, remotely-invokable object, that re
lies on state external to the persistent system, beyond the duration of the program execution
that created it, PJRMI uses the PJama mechanism called a PJActionHandler, as introduced
in section 2.3.

The support enabled by PJActionHandlers is intended to recreate the transient state asso
ciated with remotely-invokable objects whenever necessary to ensure these objects continue
to be usable as long as they are persistent.

In the first implementation of PJRMI2, PJActionHandlers were used to re-export all per
sistent, remotely-invokable objects on every store restart. This ensured that every persistent,
remotely-invokable object was available whenever the store was active. However, if a store
was opened to support the use of one of these objects, all the others in that store were also

2Available in releases of PJama made during 1998: from version 0.4.6.12 to version 0.5.7.13.

Chapter 3. Persistent Remote Method Invocation (PJRMI) 16

re-exported, even though they were never used during that store run.

PJRMI now only re-exports each remotely-invokable, persistent object on its first use af
ter store restart. This avoids unnecessary transfer of objects between persistent storage
and main memory (object-faulting) and unnecessary use of system resources for objects
not used in the current program execution; while still ensuring that the objects are avail
able when they are required. Instead of a PJActionHandler instance being registered with
the PJActionManager for each and every remotely-invokable object in the store, there is
one PJActionHandler instance registered for all of them. This PJActionHandler re
exports one PJRMI-implementation-level, remotely-invokable object on every store restart,
which acts as a well-known service, called PJExported. This service handles PJRMI-
implementation-level requests from other PJVMs, to trigger the re-exportation of the speci
fied object if it is not already available for use. Use of the PJExported service is described
in more detail below.

3.3.2 Persistent Clients of Remotely-invokable Objects

PJRMI tries to maintain the illusion of a persistent connection between client and server
by automatically re-establishing their connection on first use after store restart. Whereas
the usage of transient sockets and threads makes it impossible to maintain this illusion for
standard Java RMI, the PJRMI implementation ensures that if a PJVM is running over the
store containing the required remotely-invokable object, the client will be able to use that
object, even if the server PJVM has been stopped and restarted. If the server PJVM is not
running, an exception is raised at the client to let it know that the referenced, remotely-
invokable object is not currently accessible.

The client-side stub object is put into a state on store restart that indicates to PJRMI that,
on first use, the service PJVM should be contacted to obtain up-to-date connection infor
mation for the stub. Using the org.opj .u tilities .P J S y stem method markTransient
introduced in section 2.3, the connection information field of the stub class is marked tran
sient; thus, PJama sets the field to null on store restart. Then, when the client object tries
to make an RMI call via this stub, after client store restart, the PJRMI implementation de
tects the n u ll connection field of the stub. It contacts the PJExported service in the PJVM
running over the referenced, remotely-invokable object’s store. Up-to-date connection in
formation is obtained from PJExported and renewed in the client’s stub object, allowing
RMI calls to be resumed.

Chapter 3. Persistent Remote Method Invocation (PJRMI) 17

No Persistent Server \ Persistent Server

No Persistent Client

Persistent Client

RMI RMI RMI PJRMI

PJRMI RMI PJRMI PJRMI

Figure 3.2: Permutations for communicating VMs in an open persistent system

3.3.3 Interoperability of PJRMI with Standard RMI

Given the open nature of the PJama persistent system, RMI communication between persis
tent and non-persistent VMs can potentially take on any of the four permutations illustrated
by the matrix in figure 3.2. Some users of PJama use RMI for communication between
a persistent server and transient clients: the server program runs on a PJVM and the client
programs or applets run on standard JVMs. This raises the issue of compatibility between
the versions of the RMI classes used by the JVM and those modified for PJRMI. Without
support for class evolution, a standard JDK client would be prevented from communicating
successfully with a PJama server using RMI, because of the mismatch between versions of
the same class in the different VM implementations involved. PJRMI uses the class ver
sioning support provided with Java Object Serialisation (JOS) [JOS98]. Changes made to
RMI classes for PJRMI are compatible with standard RMI versions of those classes, accord
ing to the guidelines described in chapter five on the “Versioning of Serializable Objects”
in the Object Serialisation documentation [JOS98]. The compatibility of the evolved class
with the original is indicated by the inclusion in the evolved class of a field known as a
serialVersionUID; the field contains a fingerprint of the original class, generated using a
standard JDK tool. With such support, it is possible for two VMs holding different versions
of the same class to communicate objects of that class between them successfully.

The class versioning support in JOS is minimal, when considered for use in a persistent
system, and it is tailored to object serialisation. The class versioning support required for
PJama is somewhat different. Given that the lifetime of a persistent store may be counted
in years, the potential for changes to classes over time is high. Thus, more sophisticated
support for class evolution is being investigated as part of the PJama project [Dmi98].

3.3.4 PJRMI Summary

The current implementation of persistent RMI for PJama (PJRMI) supports:

Chapter 3. Persistent Remote Method Invocation (PJRMI) 18

• the execution of standard RMI programs by a PJVM that is not running over a persis
tent store;

• the running of persistent RMI programs by a PJVM over a persistent store; where the
latter includes support for:

- persistence of all remotely-invokable objects,

- persistence by reachability of objects holding references to remotely-invokable
objects from remote VMs,

- automatic re-exportation of persistent, remotely-invokable objects on first re
mote use after store restart and

- automatic re-establishment of the connection between a remotely-invokable ob
ject and the object in another VM holding a reference to it, on first use of the
reference after store restart;

• the compatibility of PJRMI with standard RMI to support RMI communication be
tween a standard JDK VM and a PJVM.

PJRMI has been distributed with releases of PJama since April 1998. It has had a number
of users outside of the PJama project whose feedback seems to indicate that this technol
ogy is usable and reliable. For more information on PJRMI users and their feedback, see
section 3.5.

3.4 PJRMI Implementation Details

3.4.1 Using PJActionHandlers

As described in section 2.3, support is provided in PJama for associating callbacks, known
as action handlers, with classes or class instances, to be run principally before stabilisation
or on store restart. This allows the application programmer to set, re-constitute or tidy up
the state of objects which may be viewed as persistent by a persistent application but which
are actually objects external to the persistent system. These action handlers can be used to,
for example, open and close sockets and files, open and close windows and, as long as there
is no support in PJama for persistent threads, re-create and stop threads associated with a
store.

A significant proportion of PJActionHandlers in the PJama platform are used for doing
PJRMI-related actions. PJRMI associates PJActionHandlers with certain RMI classes for
two purposes:

Chapter 3. Persistent Remote Method Invocation (PJRMI) 19

1. to re-initialise static fields of persistent objects and

2. to recreate intrinsically transient objects which cannot be made persistent.

Classes typically use static code blocks to initialise their static fields; this code is run when
a class is first loaded into a JVM. However, once classes have become persistent, it is nec
essary to implement PJActionHandlers to rerun such initialisation code where required,
before the class is used for the first time after a store restart. PJActionHandlers used to
re-initialise the static variables of classes on store restart should ideally only be run on the
loading of the appropriate classes from the persistent store. Running this reinitialisation
code on each store restart brings every one of the classes registered for this reinitialisation
into memory, even though the classes themselves may never actually be used during the
current program execution over the store. There is a tradeoff between:

• paying the cost of running PJActionHandler code for a class during store restart that
may prove unnecessary because the class is unused during the subsequent program
execution and

• paying the cost of a check every time a class is loaded into the VM to see whether
PJActionHandler code should be run before using it.

The former ultimately seems much less of a penalty, given that in PJama 0.5.20.2 for ex
ample, PJActionHandlers are associated with only twenty classes, which is likely to be a
small proportion of the number of classes used in most persistent program executions.

The PJRMI implementation describes, in more detail, the use of PJActionHandlers where
they are directly relevant to the implementation of PJRMI functionality.

3.4.2 Supporting Persistent, Remotely-invokable Objects

An object is made available for remote use (exported) either on creation, because it extends
the class ja v a . m i . server .UnicastRemoteObject, or by making an explicit call to that
class’s method:

public s ta t ic RemoteStub exportObject(Remote obj)

An addition to the code of class sun. m i . se rv e r . UnicastServerRef for PJRMI ensures

that every object exported in one of these two ways will be persistently-usable if the current
VM is running over a persistent store. It does this with a call to the sa v e lfP e r s is te n t

method of the class o rg . opj . d is tr ib u t io n . PJamaPJExported:

public s ta t ic void savelfPersistent(O bjID id , Object o, RemoteStub s)

This enables the PJamaPJExported class to maintain a mapping between a stub’s object

Chapter 3. Persistent Remote Method Invocation (PJRMI) 20

Hashtable idExportMap

Key Value

Hashtable nameExportMap

Key

Exportlnfo ^ •{Name)

(N am e)

Object
J

Stub

J J

Figure 3.3: PJamaPJExported tables track export information by name and identity

identity and its corresponding remotely-invokable object.

A mapping is also created in the PJamaPJExported class for every object registered by
name with the RMI Registry. Thus, given either a name or an object identity, the class
PJamaPJExported has sufficient information to, if necessary, update and then return the
connection information for the corresponding remotely-invokable object. The two tracking
tables are illustrated in figure 3.3.

3.4.3 PJRMI Re-initialisation on Store Restart

The PJActionHandlers associated with PJRMI classes are principally used
for re-initialisation of state on store restart. In summary, PJActionHandlers are run on
all of the following RMI implementation level classes on every store restart:

org. op j.d is tr ib u tio n . PJamaPJExported
sun. rmi. transport. DGCImpl
sun. rmi. transport. DGCAckHandler
sun. rmi. transport. DGCClient
java.dgc.VMID
sun. rmi. transport. Obj ectTable
sun. rmi. transport. tc p .TCPEndpoint
sun. rmi. transport. tc p .TCPTransport

Their use is described in more detail below.

The code of PJamaPJExported, called during the exportation of the first remotely-invokable
object over a store, ensures the persistence of an instance of the class PJamaPJExported too.

Chapter 3. Persistent Remote Method Invocation (PJRMI) 21

A PJActionHandler is registered when this object is created, to ensure that it is re-exported
on every store restart. This makes the services of its org. op j . d is tr ib u tio n . PJExported
interface available whenever the store hosting the service is active. The uses of this service
will become apparent during the explanation of automatic re-exportation for application
objects below.

Distributed Garbage Collection (DGC) objects are used in the Java RMI implementation
for tracking references between JVMs. They were designed to work for the lifetime of
one VM execution. It is unlikely this implementation would be sufficiently maintainable or
scalable for use over the lifetime of a store. Thus, although the state of DGC implemen
tation objects can become persistent once RMI objects are in use over a persistent store,
DGC tracking information is only valid within one program execution over a store. Thus,
a persistent sun. rmi. transport. DGCImpl instance will also be re-exported on every store
restart, to track any remote references created or recreated during the current program exe
cution. On store restart, PJActionHandlers also re-initialise the static fields of the classes
sun. rmi. transport. DGCAckHandler and sun.rmi.transport.DGCClient, to recreate
their transient values.

On each store restart, the local IP address held in a static field of the java.dgc .VMID class,
is reinitialised with a PJActionHandler. This demonstrates the need to reinitialise location-
specific information associated with a particular VM execution since, for example, one pro
gram may be executed over a store on one host, while the next program may be executed
over the same store but on a different host with a different IP address.

The class sun.rm i.transport.ObjectTable is used for maintaining the mapping from
Obj ID to remotely-invokable implementation object for servicing method invocations from
remote sites. A PJActionHandler has been added to this class to ensure the state of its static
tables is reinitialised on every store restart. Clean tables on store restart ensure successful
re-exportation of persistent, remotely-invokable objects.

Other static connection-related tables are reinitialised on store restart. The localEndpoints
table of the class sun. rmi. transport. tc p . TCPEndpoint and the table mapping threads to
socket connections in the class sun. rmi. transport. tc p . TCPTransport are both recre
ated, since the information held in them from previous executions will be invalid for the
current program execution.

Once the initialisation of store restart is complete, the application code for this run is in
voked. At this stage, although a couple of implementation-level PJRMI objects are now ac
tively available for remote use, the default support for application-level remotely-invokable
objects is to leave them quiescent in the store until they are required. This ensures system
resources are not taken up unnecessarily.

Chapter 3. Persistent Remote Method Invocation (PJRMI) 22

3.4.4 Supporting Persistent References to Remotely-invokable Objects

Extra support has been added to PJRMI to detect a client’s first use after store restart of a
reference to a remotely-invokable object. This section describes how this first use of the
reference is caught and used, if necessary, to trigger re-exportation of the corresponding
remotely-invokable object.

3.4.4.1 Obtaining a reference to a remote object

A client obtains a reference to a remotely-invokable object, either by looking it up by
name in the RMI Registry or as the result of an RMI call on another remotely-invokable
object. What the client actually gets is a reference to an instance of the stub class, de
rived from the interface supported by the remotely-iinvokable object and extending the class
j ava. rmi. server.RemoteStub.

3.4.4.2 Preparing a Stub to Trigger Re-exportation

Every instance of RemoteStub that is passed to a client contains a ref field inherited from
its superclass j ava. rmi. server. Remo teObject. This ref field contains the information
necessary to create a connection from the stub back to the remotely-invokable object it rep
resents, whenever the client uses it to make an RMI call. Since such connection information
is only valid as long as the server process that generated it continues to run, static code has
been added to the j ava. rmi. server. Remo teO bject class to mark its ref field as tran
sient, using the markTransient method of org.opj .u tilities.P JS ystem . This ensures
that the ref field of a persistent stub is n ull after a store restart, when the connection infor
mation will probably no longer be valid.

The connection information in a standard RMI stub directs remote method invocations to
the correct JVM location, while the object identity; an instance of the class Obj ID, indi
cates which object at that location should service them. The RemoteStub class has its
own code for serialisation and deserialisation of its instances, defined as writeObject and
readObject methods with the signatures expectedl by Java Object Serialisation. On re
ception of a RemoteStub instance at its destination, its readObject method takes care
of deserialisation of its connection information. Fo>r PJRMI, code has been added to this
method to extract the host and Obj ID from the ref and store it in fields of the RemoteStub
itself. This ensures the information is available in at persistent stub after the ref itself has
been set to n ull. Another extra field added to the RiemoteStub class for PJRMI stores the
reexportPort which, along with the existing host lfield, comprises the information neces
sary to make a connection to the PJExported service in order to update the stub’s ref field

Chapter 3. Persistent Remote Method Invocation (PJRMI) 23

CLIENT SERVER

Stub

RemoteRef

2. lookupO 3. lookupO
Naming Registry Impl

PJExported PJExported

RemoteStub
5. lookupStubQ

PJExported
RemoteStub

6. reexportObject() RemoteStub

UnicastServerRef

PJamaPJExported

Registry

Figure 3.4: Renewing stub information

when it is found to be n u ll.

3.4.4.3 Re-exportation on First Access

Once a stub has become persistent by reachability, the PJRMI implementation will detect
first use of that stub after restart because of its null ref field and renew the stub’s connection
information. The method calls invoked to achieve this are illustrated in figure 3.4; they are
numbered for ease of reference in the description below. The class sun. rmi. Generator
is used by the Java RMI Stub Compiler rmic to generate the code for a stub from its cor
responding remotely-invokable object class. The Generator class has been extended for
PJRMI. Extra code is generated at the beginning of each stub method. It ensures that, when
the stub’s ref field is found to be null, the getRef method of the class ja v a . m i .Naming
is invoked to renew the stub’s connection information (method one in figure 3.4).

The Naming.getRef method first looks up the PJExported service at the host and
reexportPort given by the stub (method two calls method three in figure 3.4):

PJExported pjexported = (PJExported) Naming.lookup(
" m i://" + host + ":" + reexportPort + "/PJExported") ;

It then uses the returned PJExported remote reference to make an RMI call to retrieve up-
to-date stub information for the given id (method four in figure 3.4):

RemoteStub stub = pjexported.lookupStub(id);

The PJamaPJExported implementation of this call looks up the object with the given iden
tity and re-exports it if it is not currently available for remote use (method five in figure 3.4).

Chapter 3. Persistent Remote Method Invocation (PJRMI) 24

The following method of UnicastServerRef is called to return an updated stub after re
exportation of the remotely-invokable impl (method six in figure 3.4):

public RemoteStub reexportObject(Remote impl, Object portData)

Note that during re-exportation the object retains its association with the object identity al
located to it during its initial exportation. This object identity is thus maintained across
multiple program invocations. The client-side stub is refreshed with up-to-date connection
information. The RMI call made on the stub, that triggered this re-exportation in the first
place, can then go ahead as normal.

3.4.5 Interoperability of RMI and PJRMI

The original development of PJRMI focussed on client-server programs communicating
using RMI where both client and server used PJama. This meant that both client and server
picked up the same version of PJRMI classes, so that versioning was not an issue.

However, the first users of the release version of PJRMI were interested in using RMI for
client-server communication where, although the server used PJama, the clients used a stan
dard JVM. These clients, whether Java programs or Java applets, used the standard JDK
RMI classes to communicate with a PJRMI service supported by the server. Failures dur
ing serialisation and deserialisation for RMI calls occurred, because the RMI classes at the
clients were not the same version as the RMI classes modified to include PJRMI function
ality at the server.

Responding to the users’ feedback, a new version of PJRMI was released that exploits the
versioning support that exists for Java Object Serialisation3. The issues raised and changes
made to PJRMI to ensure support for all the permutations for communicating PJama and
standard Java VMs, as illustrated by the matrix in figure 3.2, are described in the rest of this
section.

3.4.5.1 Evolving Interfaces: the Effects on Stubs and Skeletons

When two VMs are participating in an RMI call, the class of the stub in the client VM
must support exactly the same interface as the class of the corresponding skeleton in the
server VM. To ensure this, a check is made in the code of every method of the skeleton (as
described below), before it will forward a call from a stub to its remotely-invokable object.

The implication of this is that if an interface to a remotely-invokable object is evolved then

3For a description of the more sophisticated class evolution support now being provided with PJama,
see [Dmi98].

Chapter 3. Persistent Remote Method Invocation (PJRMI) 25

a client, that obtained a reference to the object before evolution took place, will no longer be
able to use it. This applies even to theoretically-acceptable forms of evolution, such as only
adding new methods to an existing interface, while continuing to support the old ones. The
client would need to be able to replace the old version of the stub class with a newly-loaded
one and obtain an instance of the new stub class before being able to resume use of services
provided by the evolved RMI service interface. This would be a challenging task in standard
Java. Since the type equivalence of classes in Java is based on their name and classloader,
replacement of one version of a class with another version of the same class is non-trivial
using Java alone. Given the potential for long-lived classes in a persistent system, there is
a need to address this issue though. Thus, an off-line tool is provided with PJama, called
opjcs, which does support the substitution of one version of a class with another version of
the same class in a persistent store, as described in [Dmi98].

The check for a matching interface at client and server is implemented in standard RMI as
follows. At compile time, the rmic compiler sets a private static field to the same value in
both the skeleton and stub class; this field contains a hashcode generated from the signatures
of each method of the corresponding remotely-invokable interface. Thus, for the standard
JDK Registry interface, calling rmic sun.rmi .registry .R egistrylm pl generates the
sun. rmi. r e g is tr y .RegistryImpl.Stub and sun. m i . r e g is tr y .RegistryImpl_Skel
classes, both of which contain the field:

private s ta t ic f in a l long interfaceHash = 4905912898345647071L;

At run-time, when a remote method invocation is made from the client, the stub forwards
this call to the server, including the interfaceH ash field of the stub class as a parame
ter. At the server, the skeleton checks whether the given interfaceH ash from the client
matches the interfaceH ash field of its own class, before making the method invocation
on its intended target. If the interfaceH ash fields of stub and skeleton do not match, a
ja v a . m i . s e r v e r . SkeletonM ismatchException is raised.

The PJRMI implementation originally included the addition of an extra method to the in
terface ja v a . m i . r e g is tr y . Registry, but this caused a mismatch of the PJRMI Registry
interface with the standard JDK Registry interface. It was possible to revise PJRMI so
that this additional method could be removed, leaving both PJRMI and RMI with the same
R egistry interface once more.

The implication of this restriction on the evolution of interfaces is that when client references
to remotely-invokable objects are made persistent, long term maintenance in the face of an
evolving system is difficult without sophisticated evolution support [Dmi98].

Chapter 3. Persistent Remote Method Invocation (PJRMI) 26

3.4.5.2 Evolving Classes to Handle Multiple Versions

Unlike interfaces, there is support for having Java classes at different versions in the two
VMs involved in an RMI call. The Java support for serialising instances of classes does take
compatibility of the different class versions at source and destination into account.

This support comes in two parts. Firstly, object serialisation code must be written for the
evolved class to handle serialisation and deserialisation of objects created with the original
version of the class, as well as the evolved one. Secondly, a field must be added to the
evolved class to indicate that it is now compatible with the original.

Adaptable Serialisation

Standard Java Object Serialisation includes support for serialising and deserialising different
versions of the same class which works quite well; as long as the programmer respects the
recommendations of the JOS documentation [JOS98] meticulously.

Where evolution of a class involves the addition of new fields which are to be serialised, the
programmer must create or extend writeObject and readObject methods for the evolved
class, to handle serialisation and deserialisation correctly. They must also ensure that they
do not perturb the writing and reading of the original class when extending the code for the
evolved class.

When the default serialisation provided by java.io.ObjectOutputStream applies to the
original class, it can handle the automatic serialisation of the additional fields of the evolved
class too. However, if a wri teObject method exists in the original class, which writes out
fields explicitly, it may be necessary to extend it to ensure the additional fields are serialised.

Where the default deserialisation provided by java.io.ObjectlnputStream applies to
the original class, this is not sufficient for an evolved class with additional fields. If an
original class version is expected but an evolved class instance is supplied, the extra fields
of the evolved class will automatically be skipped. However, if an evolved class version is
expected but an original class instance is supplied, the default serialisation code will expect
to deserialise more fields than the stream contains. Thus, a readObject method for the
evolved class must be created or extended to handle deserialisation of instances of both the
original and the evolved class. For the readOb j ect method of the evolved class to determine
whether it is currently deserialising an original or evolved instance of the class, it must use
the j ava. i o . Obj ectlnputStream method:

public in t a v a ila b le ()

to determine whether any more bytes are available, before trying to read the extra fields of
the evolved class.

Chapter 3. Persistent Remote Method Invocation (PJRMI) 27

Adapting Serialisation for PJRMI Classes

In order to make certain PJRMI classes compatible with their standard JDK originals, it was
necessary to make some modifications to their serialisation code. The standard JDK version
of the stub class ja v a . rm i. s e rv e r . RemoteStub contains no wri teO bject or readObject
methods at all. Because of the addition of extra fields to the PJRMI version of the class
java.rm i.server.R em oteS tub, w riteO bject and readO bject methods were added to
the evolved class. These new methods contain calls to the original default serialisation code,
before the code for serialisation and deserialisation of the extra fields, to ensure the original
serialisation is still maintained correctly.

The code of the evolved class’s readObject method uses a call to the method available of
class j ava. i o . Obj ec tlnput St ream to determine whether the extra field of the RemoteStub
is in the stream before trying to read it. Where a standard JDK version of a RemoteStub is
being read, this call would return zero.

Indicating Compatability

Java Object Serialisation relies on the use of fingerprints generated from a class to indicate
compatibility of class versions. A serialVersionUID is generated from the original class
and incorporated as a static, final field of the evolved class, whenever it is appropriate to
indicate the compatibility of the evolved class with the original. Successful use of this
across sites requires programmers to be diligent about incorporating serialVersionUIDs
where appropriate into evolved classes.

The serialVersionUID is a fingerprint of the class, similar to the interfaceHash used
for interfaces. It is generated from the method signatures of the class and the field names
and types of every non-transient, non-static field of the class. This is done by running the
Java executable ser ia lver with the original of a class as its parameter, as illustrated by the
example below:

susan@kona31: ser ia lv er j ava. rmi. server.RemoteStub
j ava. rmi. server.RemoteStub:
s ta t ic fin a l long serialVersionUID = -1585587260594494182L;

Adding the resulting field

s ta t ic f in a l long serialVersionUID = -1585587260594494182L;

to the evolved class indicates its compatibility with the original.

The runtime check for class compatibility occurs during deserialisation. Every object, mar
shalled using Java Object Serialisation for RMI communication between two sites, is pre
ceded by a class descriptor indicating the class name and fields of that object. Every class
descriptor includes the serialVersionUID for that class. The site unmarshalling a se-

Chapter 3. Persistent Remote Method Invocation (PJRMI) 28

rialised object will only do so if the class descriptor’s serialVersionU ID matches the
serialVersionUID of the class with the same name in the unmarshalling site’s VM. The
following message is an illustration of the exceptions raised when the serialVersionUIDs

do not match.

java.rmi.UnmarshalException: Error unmarshaling return;
j ava. i o . InvalidClassException: j ava. rmi. server.RemoteStub;

Local c la ss not compatible:
stream classdesc serialVersionUID=-5354926258777194346
loca l c la ss serialVersionUID=-1585587260594494182

Where the serialVersionUIDs do match, this means that an object serialised at source
with one version of the class can safely been deserialised using the other version of the class
at its destination.

Indicating Compatability for PJRMI Classes

For PJRMI, it was necessary to generate and add serialVersionUID fields to the PJRMI
version of the java.rmi.server.RemoteStub and java.rmi.server.RemoteObject
classes, after ensuring their compatibility with their standard JDK originals.

3.4.6 Implementation Revisions

3.4.6.1 Automatic Stub Class Generation

In standard RMI, after compilation of a remotely-invokable object class, it is necessary to
invoke a separate rmic compiler on this class to generate corresponding stub and skeleton
classes. This must be done before the application code for creating a remotely-invokable
object of that class can be run.

In the early releases of PJRMI, dynamic, automatic generation of the stub and skeleton
classes was introduced. A call to the rmic compiler was added to the code for exporting
an object. This was done because, from the programmer’s point of view, it removes an
extra and easily forgotten step for compiling code for remotely-invokable objects; thus also
removing a common source of errors in running RMI programs without stub and skeleton
classes being available. (The drawback with this approach is that, if the class definition
causes an error during stub generation, this only becomes apparent at runtime.)

However, although the cost of calling the compiler at run-time is incurred only once per
remotely-invokable object exportation, this cost can be noticeable to the user. Another prob
lem is the question of where to put the automatically-generated classes. They cannot just be

Chapter 3. Persistent Remote Method Invocation (PJRMI) 29

created in-memory in the VM doing the exportation, since they must be available as class
files to remote client VMs that need to pick up the stub class in order to be able to use its
corresponding remotely-invokable object. Creating them in the current directory for the ex
ecuting application proved confusing and too restrictive for PJRMI users; particularly when
these classes had to be made available from a codebase for downloading by applets. It was
not obvious that the user would have less problems explicitly stating where the class files
should be written than they had with using rmic themselves.

Avoidance of the extra compilation step for remotely-invokable objects did not prove to be
sufficiently warranted to cope with the problem of where these class files should be created,
so the runtime generation of stub and skeleton class files was dropped when PJRMI was
ported to PJama running on JDK 1.2.

3.4.6.2 Use of the RMI Registry for PJRMI

The RMI Registry is provided as part of standard RMI. It is a well-known service, supporting
look-up by name of remotely-invokable objects on the Registry’s host machine. Clients can
use the Registry to obtain a reference to an object in a remote JVM. This sort of service is
often used for bootstrapping the interaction between two VMs.

It seemed reasonable, since the Registry is such a useful service presented as part of standard
RMI, to recommend that a Registry be installed in every store that is to contain remotely-
invokable objects. A PJActionHandler was written for the Registrylmpl class that sup
ports the R egistry interface, so that after a Registry is made persistent, it is then re-exported
on every store restart.

Given the persistence of the Registry, it then seemed appropriate to add to it the PJRMI
functionality for supporting persistent, remotely-invokable objects. It is necessary to track
all persistent, remotely-invokable objects in order to support their re-exportation after store
restarts. The first design for PJRMI identified the Registry as a suitable object to host the
data for such tracking.

Thus, in the first pre-release version of PJRMI, the class Registrylmpl contains a hashtable
supporting the lookup, by object identity, of information on an exported object. However,
feedback from pre-release users indicated that they required more flexible use of the Registry
than was recommended for PJRMI. The recommendation of a Registry per store was not
popular with one user who wanted several stores on one host machine to share a single
Registry. The mere existence of the Registry in the store was not popular with another user
who wanted to implement their own lookup service as a replacement for the Registry in their
application.

Chapter 3. Persistent Remote Method Invocation (PJRMI) 30

The user feedback prompted a review of the design. A more modular design was produced,
separating the functionality of the Registry name service from that of the service tracking
persistent, remotely-invokable objects. A new class PJamaPJExported was introduced to
hold the information on the persistent, remotely-invokable objects. PJRMI now requires
that an instance of this class exists in every store containing remotely-invokable objects
instead. Since PJamaPJExported is purely used at the PJRMI implementation level, unlike
the Registry, this avoids the clash with user requirements.

3.4.6.3 Re-exportation of all RMI objects on Store Restart

As described in section 3.3.1, in the first releases of PJRMI, all persistent remotelyinvokable
objects were re-exported for remote use on every store restart. PJRMI now only re-exports
each remotely-invokable, persistent object on its first use after store restart.

3.5 Using PJRMI

This section is intended to give the reader information on the impact of using PJRMI. Some
recommendations on taking advantage of persistence are made for PJRMI in section 3.5.1.
The section also references the PJRMI tutorial that is included in the dissertation as ap
pendix A. Section 3.5.2 presents the experiences of real users, whose feedback has been
beneficial in improving PJRMI, as described in section 3.5.3.

3.5.1 Model of Usage

Using PJRMI support, it is possible to take the code of remotely-invokable services and
their clients, as written for standard RMI, and use them in a persistent context unchanged.
Alternatively, when developing code from scratch, a recommended model of usage can be
followed for PJRMI, that takes advantage of persistence.

In a standard RMI program, a service supported by a remotely-invokable object is created
and exported for remote use and then, as the program continues execution, it waits to service
incoming method calls from other JVMs. If the program execution is killed, then the next
time that service is required, the program must be run again, creating and exporting the
remotely-invokable object anew, so it can continue servicing RMI calls.

In the persistent RMI model, the remotely-invokable object can be created once, made per
sistent and is then available in the persistent store to service incoming method calls during
future sessions that use that store. This works on the basis that typical persistent application
usage involves populating a store once and then using the store contents repeatedly. Having

Chapter 3. Persistent Remote Method Invocation (PJRMI) 31

populated a store with persistent, remotely-invokable objects, subsequent programs running
over that store will find that these objects are still available for remote use.

A tutorial, developed to introduce PJama users to PJRMI, illustrates the differences between
writing a standard RMI program and taking advantage of persistence in a PJRMI program.
A recent version of the tutorial, provided as part of the documentation for the PJama release
version 0.5.20.2, is included in appendix A. The tutorial is fully illustrated with working
code examples taken from the PJRMI demo programs, which are also included in each
PJama release. Having introduced a standard Java RMI program in section A.2, section A.3
then builds on this example to show what changes are necessary to take advantage of persis
tence with PJRMI. Section A.4 presents an example of a program that can be used to cleanly
shut down a persistent store containing remotely-invokable objects. Section A.5 concludes
the tutorial with a list of common exceptions and their probable causes, to aid in diagnosis
of problems that may occur during the execution of the example programs.

3.5.2 User Feedback

Extracting feedback from users and applying it to further iterations of the design process is
an important part of the software development cycle. A number of different methods have
been used to obtain feedback from users of PJRMI. A user is usually identified initially by
the complaints they send to the author, about PJRMI not working or not being what the user
wants or expects. Follow-up emails have been used to extract details of what the users are
using PJRMI for and what they think of it. PJRMI has been used by a number of users since
its inclusion in releases of PJama from April 1998 onwards. Some specimens of PJRMI
users and their applications are presented below.

3.5.2.1 The DRASTIC Project, University of Glasgow, Scotland

A distributed system has been developed by the DRASTIC project at the University of Glas
gow, for supporting the run-time evolution of classes and objects at run-time [ED97, ED99].
Originally developed in Modula-3, it was ported to Java and used object serialisation for
persistence, before ultimately being ported to PJama to make use of orthogonal persistence.
A distributed application supported by DRASTIC is divided between a number of zones,
where each zone is a logical collection of processes. Zones are the unit of evolution within
DRASTIC. A zone contract is defined between a pair of zones. The contract specifies the
types that may be exchanged between the two zones and the transformations that need to
be applied to any remote invocations or object migrations that take place across the zone
boundary. Zones and contracts provide support to allow the software engineers to contain

Chapter 3. Persistent Remote Method Invocation (PJRMI) 32

and cope with the evolution of their classes and the whole system. Communication across
the distributed system is done using RMI.

A paper written on “Porting a Distributed System to Persistent Java: An Experience Re
port” [ES98] identified a number of problems and made some comments on PJRMI.

Flexible use of the RMI R egistry was identified as important for DRASTIC. Rather than
being required to have one running on every machine hosting a remotely-invokable object,
as required by standard RMI, the preference was for a single R egistry for the whole system,
for use by all hosts. This type of requirement did not result in a relaxation of the one-per-host
requirement of the Registry for PJRMI, since that would be contrary to the standard RMI
design, but it did imply both that the R egistry was an unsuitable place to focus the PJRMI
functionality on a per-VM basis and that there should be flexibility over the persistence of
the R egistry itself.

It was rightly pointed out that, given the orthogonal persistence of PJama, remotely invokable
objects, like any others, should only become persistent if they become reachable, directly
or indirectly, from an application object which has been registered as a root of persistence.
Despite the documentation on this current feature, there was some initial confusion of ex
pectations over what becomes persistent; however, the persistence of all remotely-invokable
objects did not prove problematic for DRASTIC in practice.

PJRMI tries to retain referential integrity between a remotely-invokable object and the
clients that reference it. This involves automatically updating connection information on
persistent references at the clients in order to ensure a persistent connection to the remotely-
invokable object. It is noted in [ES98] that referential integrity can never be guaranteed in
a distributed system, due to the potential for network and host failure. A criticism of the
automation was that application programmers have no control over how it happens or the
ability to run application code immediately before or after the connection is re-established.
It was commented that it would be useful for the application programmer to be able to switch
off automated reconnection. However, PJRMI chooses to try, as far as possible, to maintain
referential integrity and at least the illusion of persistence across the distributed system. It
does this in order to try to provide orthogonal persistence across distributed VMs, as well as
within one VM.

3.5.2.2 TuaMotu: The ECOO Project, LORIA, France

The ECOO (Environnements pour la Cooperation) project [ECOOO] is based at the French
research institute LORIA (Laboratoire Lorrain de Recherche en Informatique et ses Ap
plications) in Nancy, France. The researchers on this project have been working for some
years on developing distributed support environments for cooperative work, with empha

Chapter 3. Persistent Remote Method Invocation (PJRMI) 33

sis on the use of objects over wide-area networks. Their recent work on a system called
“TuaMotu” [CBGM98, CMG98] has included an evaluation of PJama and other persistence
technologies for provision of support for persistent object management services. The re
searchers Jean-Marc Humbert and Pascal Molli have provided feedback on their experiences
working with PJama.

PJama feedback
The alternatives considered for persistence support include PJama, POET [POE98], Java
Object Serialisation [JOS97], JOP (Java Object Persistence) [JOP96] and Enterprise Java
Beans (EJB) [EJB99c]. The application was first implemented using Java Object Seriali
sation. However, PJama proved in comparison to be “the best one solution I’ve tested” so
far. It was described as “a very flexible solution”, because the memory management for per
sistent objects is integrated with the existing managed heap and garbage collection of Java,
the writing of Java objects to persistent storage is done automatically and the persistence is
orthogonal to type, removing any requirement to specify which types can persist.

The lack of changes to Java code to use persistence was seen as a major benefit of PJama. In
comparison, the POET database required the adaption of TuaMotu package structures and
did not support hashtables transparently, which was unfortunate since a lot of them are used
in TuaMotu. The alternative implementation of hashtables provided by Poet does not sup
port the same methods as ja v a .u til .Hashtable. Using POET with TuaMotu was stopped
because of the number of things that had to be modified to get them working together.

JOP, which does perform automatic mapping of Java objects to a relational database using
JDBC, has also been under trial, as has EJB.

PJRMI Feedback
For TuaMotu, PJRMI is used for client-server communication. The server hosts a single
remotely-invokable object, modelled on the Command pattern4, to represent the server ap
plication. Clients look up the server’s RMI object in the RMI Registry and then send com
mands to the server by passing command objects as parameters in RMI calls:

server. send(cmd)

A command sent from a client to the server may include a reference back to a remotely-
invokable object available at the client, to be used during execution of the command by the
server to make callbacks for event management. A series of commands forms a transac
tion, terminated by the command EndAct. The server is designed as a global transaction
with checkpointing; each time a client commits a short transaction to change the state of the
server, a call is made at the server to ensure the changes persist in the store.

The application is designed to make a clear separation between volatile (short-lived) and

4For information on the Command pattern and other design patterns, see [GHJV95]

Chapter 3. Persistent Remote Method Invocation (PJRMI) 34

persistent objects. However, when the ECOO group tried using a version of PJama, even
before the inclusion of PJRMI, it was found that the server’s remotely-invokable object was
made persistent by reachability, whereas this was not the case in the standard Java version
of the application using Object Serialisation. This did not prove problematic, after they
received a version of PJama incorporating support for PJRMI so that persistent, remotely-
invokable objects would still be usable, but they did observe that a tool for inspecting the
objects stored in a PJama store would be useful for users to confirm whether or not objects
have been made persistent.

Support for persistence was only required at the server, for storing application data. It
was important for the clients to run standard JDK code, not necessary at exactly the same
version of the JDK as the server. The application’s RMI communications between client
and server soon revealed the incompatibilities of the first version of PJRMI with standard
RMI. The problems with versioning, as described in section 3.4.5, were identified, fixed and
distributed in a subsequent PJama release.

3.5.2.3 A Hierarchical Archive: University of Hamburg, Germany

Two students, Norbert Schuler and Michael Otto, in the Software Engineering Group of
the Computing Science Department at the University of Hamburg, were set a project to
use PJama to make a hierarchical, multi-user archive persistent [OS98]. After some initial
confusion over the setting of environment variables (a common problem with Java), they
had no problems getting their application working with PJama and PJRMI. However, they
did have a few problems with how PJama and PJRMI fitted in with the design of their
application.

They built their application on top of an existing framework called JWAM, an implemen
tation derived from a theoretical model of software engineering called WAM, used at their
university. This framework provides a service for easy communication between processes;
internally it uses RMI. An application incorporates a capsule providing this communication
service into its implementation.

Since the implementation of the capsule providing the communication service is multi
threaded, and since persistent threads are not currently supported in PJama, it was not pos
sible to make this capsule persistent. However, since the RMI objects in the framework are
created in this application over a persistent store, they are automatically persistent anyway.
The students instead marked the service as transient and wrote code to recreate it after every
store restart.

The framework classes use the Singleton design pattern, which ensures that only one in
stance of a class exists: a static field of a class is set to reference the single instance of that

Chapter 3. Persistent Remote Method Invocation (PJRMI) 35

class. In order to make the framework services transient, the static singleton field of each of
these classes could either:

• be marked transient from the code that creates the store - which requires this store
creation program to have internal knowledge of the framework classes; or

• be marked transient from static code added to the classes themselves - which requires
modification of the framework classes for use with PJama.

Neither of these options demonstrate a clean separation between the framework for commu
nication between processes and the support for persistence used by the application. In the
end, the students went with the first solution, to avoid making any change to the code of the
framework classes themselves.

Their concern for a clean separation of the support for persistence from other parts of the sys
tem also extended to the RMI Registry. Although the students successfully built a solution
with PJRMI’s integrated, persistent Registry, they really wanted to run it only as a separate,
external and non-persistent process, as it is supported in the standard JDK. However, be
cause of the reliance of the PJRMI service PJExported on the existence of a Registry in its
store, it was not possible to have only a non-persistent Registry in the system.

Ultimately, the students observed that the combined support provided by PJama and PJRMI
is “not quite optimal” yet. While orthogonal persistence should be safe and easy to use, they
identified the following problems as the most important obstacles in the way of these goals:
lack of support for persistent threads, having to mark fields transient explicitly, occasional
crashes of PJama during stabilisation and a lack of integration of support for orthogonal
persistence with releases of the standard JDK.

3.5.2.4 007 Benchmark Server: Australian National University, Australia

Two researchers, Steve Blackburn and David Walsh, at the Australian National University
in Canberra, Australia, have been working in the Advanced Server Technologies program
on the UPSIDE project (Utilising Persistence and Scalable Information management in Dis
tributed Environments). This project involves designing scalable transactional object storage
systems for use with orthogonally persistent systems and languages.

One of the applications they have worked on is composed of a PJama server providing
support for querying a 007 database plus non-persistent clients. It was originally a port of
the 007 benchmark from its C++/PSI version to a version for PJama; done by Luke Kirby,
an honours student at ANU. Walsh then removed the timing code and added a control loop
to accept query requests from a client.

Chapter 3. Persistent Remote Method Invocation (PJRMI) 36

At the server a store is created, the standard PJRMI support services Registry and
SuspendService are added, the 007 service is created using 007. server. CreateService,
the store is populated with the 007 tiny database using 007. server. GenDB with parame
ter oo7. conf i g . tiny and the service providing access to this database is run by invoking
007.server.Server with parameter oo7 .con fig .tiny . Non-persistent clients can then
be run to trigger a range of queries over the 007 database at the server.

Walsh reported that he did find PJRMI easy and intuitive to use. He commented that “it
would have been difficult without your supporting documentation. This explained the RMI
differences quite well.” Since the application used the model of a persistent server with
standard JDK clients, like the researchers at LORIA, they initially came across the same
problems with incompatibility of class versions between standard RMI and PJRMI, that
existed in the early PJRMI releases. With the solutions to these problems provided in a
subsequent PJama release, they did get their software working successfully, using PJama
and PJRMI.

3.5.2.5 Distribution, Object-orientation and Persistence:
University of Adelaide, Australia

Kevin Lew Kew Lin, a PhD student supervised by Fred Brown at the University of Adelaide
in Australia, wrote his thesis on “orthogonal persistence, object-orientation and distribu
tion” [Lin99]. A description of the work is included below.

“This project is investigating techniques to extend the benefits of the persistence abstraction
to wide area networks where distribution must be explicit and network failures and delays
are a significant programmer concern. Contributions of this project will include a locality
mechanism, a network wide indirection mechanism and a model for distributed program
ming over confederated persistent object stores. Confederated stores exhibit the property of
autonomous control with limited interactions with other stores. An indirection mechanism
is to be provided to identify and address those services that stores wish to publish. Locali
ties are an essential modelling mechanism to control pointer leaks and allow programmers
to reason about store interactions that do not permit pointers between stores. ”

Lew Kew Lin built a structure of logically nested “localities” i.e. nested persistent stores,
implemented as a tree of directories containing PJama stores. PJRMI is used for commu
nication within an application distributed over these nested localities and over distributed
stores. He developed an “indirections” mechanism, which supports the dynamic registration
of arbitrary objects as network services, without the need for stubs or precompilation, and
light-weight calling of the services. Experiments with some simple applications compared
the performance of this indirection mechanism with that of RMI and PJRMI.

Chapter 3. Persistent Remote Method Invocation (PJRMI) 37

For this work, Lew Kew Lin was the first external user of PJRMI after it was ported from
PJama on JDKl.l.x to PJama on JDK 1.2 FCS (PJama version 0.5.20.0). Kevin was one of
the few users who saw the persistence of the RMI Registry for PJRMI as a good thing. He
also made a valid criticism of the tutorial example program for making a client persistent,
saying: “I found it a bit confusing to have to

1. first write a message client that holds onto a remote reference, then

2. put the message client in the store and then

3. write programs that access and use the message client.

After understanding what was happening, I found it simpler to directly put the remote ref
erence as a persistent root in the store and then write programs to access and use it.” This
demonstrates the importance of making example programs as direct and simple a demon
stration of the technology as possible.

Since the support.service.persistent.C reateSupportServices PJRMI example
program is only ever called once to prepare a store for remote interaction, he also sug
gested that it could in fact be an automatic step in store creation. This program creates two
support services and makes them persistent: the RMI Registry and a SuspendService. The
latter supports a remote call to shut down an otherwise indefinitely-running server cleanly.
However, the feedback from other users indicates that automatically making the Registry
persistent in every store is not a popular choice. Also, not all stores contain any remotely-
invokable objects at all, so adding services automatically for their support is not necessarily
helpful.

3.S.2.6 The Distributed Bibliography System: University of Glasgow, Scotland

Irene de las Heras, a Spanish ERASMUS student, worked on a project using PJama and
PJRMI. She successfully developed a Distributed Bibliography System. The bibliographic
server runs over a persistent store containing a collection of bibliographic entries. It services
queries and performs updates on the collection. The client can be run as either a persistent
application or as a non-persistent application or applet; it communicates with the server
using RMI. It is invoked by users to, for example, request one or more bibliographic entries
from the server based on given search criteria. Users can also add new bibliographic entries
to the existing collection and create their own views of the entries. The information on users
is maintained in the server’s persistent store, including each user’s views of bibliographic
entries and each user’s sets of entries.

Chapter 3. Persistent Remote Method Invocation (PJRMI) 38

Though Irene’s report was lacking in evaluation of the PJama and PJRMI technologies that
she used, she appeared to have very few problems with using the technology and developed
a reliable distributed application with a good interface.

3.5.2.7 Bioinformatics project: University of Glasgow, Scotland

Iain Darroch is a researcher working on a Bioinformatics project. For this project, a PJama
store has been populated with genetic map data. It is accessed by an applet that supports the
displaying of a genetic map. To support RMI calls between the applet and the store, the store
is hosted by the same machine as the WWW server from which the applet is downloaded.

Iain found it “reasonably straightforward” to follow the PJRMI tutorial. However, he did
comment that the design of the tutorial examples (like the JavaSoft standard RMI exam
ples) does not scale to a large application. He would have liked some guidance on design
techniques to use at the larger scale, such as the adaptive design pattern [Bec99, GHJV95].

He found it difficult to diagnose the cause of RMI errors in his program. The RMI mailing
list helped solve most of the problems he encountered. Like many others using RMI for
the first time, he initially had problems with looking up the correct service on the correct
host. He also had evolution problems: although he successfully used the PJama evolution
tool opjsubst to substitute the original version of a service in the store with a new version
containing an extra method, the tool couldn’t pick up the implicit dependency between the
service implementation class and the corresponding stub and skeleton classes in the store.
Thus, the interface supported by the stub no longer matched that supported by the service
implementation class and this resulted in errors on the next lookup of that service.

3.5.3 The Effects of Feedback

Feedback from users has influenced PJRMI development: descriptions of some resulting
changes have already been indicated in section 3.4 on the PJRMI implementation; a sum
mary of changes and observations is included below:

• Early feedback from Huw Evans (section 3.5.2.1) helped to motivate the separation
of persistence support from the implementation of the Registry, moving it to its own
class PJamaPJExported instead.

• Both the users at Loria (section 3.5.2.2) and ANU (section 3.5.2.4) required that
PJama be used as a server and PJRMI used to communicate with clients which were
either standard Java applets or standard Java programs. This raised the issue of inter
operability between PJRMI and standard RMI, resulting in the changes described in

Chapter 3. Persistent Remote Method Invocation (PJRMI) 39

section 3.4.5.

• The students in Hamburg (section 3.5.2.3) wanted to encapsulate the persistence mech
anisms used in their software to fit with the internal framework structure of their sys
tem, in order to follow good software engineering practices. However, the registry
could not be encapsulated because of its use by remote components but is required to
be persistent by the current implementation of PJRMI. The PJRMI requirement for
the persistence of the R egistry should be reviewed in the future.

• Users of PJama do have some idea of which objects they expect to become persistent
by reachability and which should not. It has been demonstrated by some users’ feed
back that the persistence of all remotely-invokable objects does sometimes conflict
with application design and users’ expectations. Separation of persistence from other
concerns of the system can be compromised, even though, due to the support pro
vided by PJRMI, applications with persistent, remotely-invokable objects do work. A
cleaner separation of persistence and distribution support is still a goal for PJRMI.

Feedback from users will continue to influence future work on PJRMI.

3.6 PJRMI: Could Do Better

PJRMI adds support to RMI for persistent, remotely-invokable objects and persistent refer
ences to them. It solves the problems created when non-persistence-aware RMI objects are
pulled into a store through persistence by reachability. This includes maintaining the illusion
of a persistent connection between a remotely-invokable object and a persistent reference to
it. However, it also illustrates some problems with combining persistence and distribution.

Clients can obtain, and make persistent, references to remotely-invokable objects, either
via a Registry lookup by name on a registered remotely-invokable object or by obtaining a
reference to one from another object. Over time, it is possible for many references to be
built up between distributed, persistent stores, creating dependencies between them.

RMI passes objects as parameters to remote method calls and as return values from them.
If the object inherits from the interface Remote, it will be passed by reference. If it doesn’t
inherit from Remote but does inherit from the interface Seria lizab le , the whole transitive
closure of the object graph will be passed by copy. PJRMI may end up serialising and
sending very large object graphs from one persistent store to another, including graphs that
have built up incrementally in the persistent store over many program executions.

The rest of this dissertation presents the approaches taken for PJama to address these prob
lems.

Chapter 4

Approaches of Related Work

4.1 Introduction

Experience with PJRMI has identified problems with orthogonal persistence when it is used
in a distributed system. This section briefly sets the context for this dissertation and reiterates
the problems themselves. The rest of the chapter examines the approaches of related work.
Existing systems with the same potential problems are identified and the extent to which
they have dealt with them is evaluated.

4.1.1 Context

Much work has been done on persistent systems over the last twenty years or so. A number
of significant contributions in this field are referenced below to give the reader some context
for the work examined in this dissertation.

Persistent systems have been developed based on a variety of languages. Examples include
Pascal/R [Sch77], the E programming language [RC89] and Texas [SKW92], which are both
based on C++, and the Mneme persisent object store [Mos90b], versions of which have been
used with Smalltalk [HMB90], C++ and Modula3. Systems that respect the principles of
orthogonal persistence presented in [AM95] include PS-algol [ABC+83], P-Pascal [Ber91]
and Napier88 [MBC+96].

Most persistent systems are developed as virtual machines to run on top of conventional op
erating systems, but other approaches have been also been taken. Grasshopper [DdBF+94]
is an example of an operating system designed to support orthogonal persistence directly,
for greater efficiency. PSI, a Persistent Store Interface [Bla98], was developed as a result
of investigations into the scalability of orthogonally-persistent systems, in the context of a

Chapter 4. Approaches of Related Work 41

multi-computer architecture.

Both Grasshopper and PSI are also concerned with issues of distribution. Other systems
concerned with these issues include those mentioned below. The Argus object-oriented
programming language [Lis88] was developed specifically for distributed programming,
with support for atomic objects to ensure the consistency of the persistent data used. A
model of distributed programming was integrated with PS-algol [Wai88], The address
ing of large, distributed collections of persistent objects was examined in the context of
Mneme [Mos90a]. A persistent RPC was implemented for Napier88 [dSAB96]. The work
of this dissertation builds on that of these and other systems, focussing specifically on the
two problems described below.

4.1.2 Problem One: Maintaining Object References Between Stores

Use of orthogonal persistence in a distributed system implies that it should be possible to
make references to remote objects persistent. Support for persistent references to remote
objects requires persistence of the reference itself, the subsequent persistence of the ref
erenced, remote object and the continued persistence of the remote object, as long as the
reference to it persists.

The persistent of references between stores is useful for increased simplicity and reliability
of application execution in the short term, but such dependencies between stores threaten the
maintainability of the stores involved in the long term. The store providing a service may
be obliged to provide remote access to objects for as long as references are held to them
from other stores. The store holding a client reference to a remote object is dependent on
the remote store for its own referential integrity.

Where existing work provides support for references to remote objects, the manner in which
those references are managed is considered. Where references can persist, the handling of
the implications of such support is examined.

4.1.3 Problem Two: Copying Large Object Graphs Between Stores

Large graphs of objects can be created and made persistent or grown incrementally in a
persistent store. With machines that can now have gigabytes of RAM, the size of in-memory
object graphs created and made persistent by an application can correspondingly become
large relatively quickly; easily megabytes in size.

Given the potential for large object graphs, of at least megabytes in size, some management
for the copying of persistent object graphs between stores is necessary. However, since
policies for the passing of objects across a distributed system are typically defined statically,

Chapter 4. Approaches of Related Work 42

there is a lack of flexibility for adapting the management of copying of persistent object
graphs between processes to cope with their size.

Once an object is persistent, if the object passing policy is static and thus persistent too,
the resulting lack of flexibility has other implications too. It affects copying in the face of
changes in use of a persistent object graph by different applications, since these applications
may each have their own differing object passing requirements. Changes in distributed
environment can also affect the handling of copying during the object graph’s lifetime.

Existing systems, with support for copying object graphs between distributed sites, are ex
amined in detail in section 4.2 for their approach to dealing with these problems. A summary
can be found in section 4.4.

4.2 Existing Work

The problems presented above are considered in the context of a selection of relevant ex
isting systems. While this is not intended to be exhaustive, it gives a clear picture of the
approaches taken in related work. Each of these systems is considered for its approach to
problem one, with regard to references and problem two on its approach to coping with
copying.

4.2.1 Java Distribution Technologies

Java RMI has already been discussed, in section 3 in the context of PJRMI. Related distri
bution technologies are provided by Sun Microsystems for Java that do already use some
form of persistence. While the members of the PJama project obviously do not believe that
these technologies provide a sufficiently integrated solution for persistence, in comparison
with PJama’s Orthogonal Persistence for Java, they are considered below.

4.2.1.1 Remote Object Activation

Remote Object Activation (ROA) is supplied with Java RMI in JDK1.2 and documented
in chapter seven of the corresponding Java RMI specification [RMI98]. According to this
chapter, the aim of ROA is to support long-lived, persistent objects and persistence of client-
held references to them, to support communication between them in the face of system
crashes. It addresses some of the same issues as PJRMI. Activatable objects are remotely-
invokable objects which can be activated on first use; this is similar to PJRMFs support for
re-exportation of persistent, remotely-invokable objects and to CORBA Object Activation.
An activation description, registered with an ActivationSystem , includes information on

Chapter 4. Approaches of Related Work 43

the class of the object to be activated and, optionally, a MarshalledObject of serialised
data. The MarshalledObject is used, when an instance of the specified class is created
at the point of activation, to initialise its fields. The MarshalledObject data is only in
tended for bootstrapping the activated object; it is serialised for efficient communication,
rather than for maintaining an object’s changing state persistently. Unlike PJama, there is
no support for tracking updates to objects and propagating those updates automatically to
the MarshalledObject, or to stable storage.

With Regard to References

A client can obtain an activation identity corresponding to a registered activation descrip
tion. These identities remain valid across multiple program executions so they can be made
persistent in some way and then used in subsequent client VM executions. While PJRMI is
intended to keep remotely-invokable objects persistent as long as there are persistent refer
ences to them, the Activator, in comparison, does not track which clients hold activation
identifiers. It is intended to run continuously and to maintain the activation descriptors
persistently, as long as those descriptors are registered with it. Programmers explicitly un
register activation descriptors when they no longer require them.

Coping with Copying

Since Java RMI is used for communication with activatable objects, the potential for copying
large object graphs does exist and, as previously indicated, there is no extra support for
dealing with this problem in a manner that is flexible in the long term.

4.2.1.2 Enterprise Java Beans

Enterprise Java Beans [EJB99b] is a component architecture targeted for the development
and deployment of component-based distributed business applications.

An EJB server process hosts one or more containers. Each container contains an EJBHome,
that acts as a factory for creating Enterprise JavaBeans (EJBs), plus one or more EJBs them
selves. These EJBs may be session beans or entity beans. A session bean executes on behalf
of a single client and is intended to be relatively short-lived. Thus, it cannot persist beyond
the lifetime of its EJB container. Although it doesn’t represent shared persistent data, it
can update persistent data. An entity bean is persistent. It provides an object view of en
tities in persistent storage, such as an object in a database, and can itself have the lifetime
of the corresponding persistent data. Thus, it may persistent across multiple server JVM
executions.

With Regard to References

A client initially obtains a reference to an EJBHome, via a lookup using the standard Java

Chapter 4. Approaches of Related Work 44

Naming and Directory Interface (JNDI). It can then use the EJBHome to obtain RMI refer
ences (stubs) to EJBs within the EJBHome’s container. Clients use Java RMI for communi
cation with EJBs. A client always interacts with an EJB via an interface. Rather than an
EJB implementing this interface directly, there is another object, known as an EJBObject,
which provides a level of indirection. The EJBObject is system-generated and implements
the interface provided to the client for interaction with the EJB. This allows extra function
ality such as transactional support to be provided at the level of the EJBObject. Thus, in the
simple case, an EJBObject just forwards a client’s method call on to the EJB while, where
transaction support is included, the EJBObject wraps the method calls appropriately.

A client can explicitly synchronise the state of an entity EJB with its persistent data by in
voking the ejbLoad and ejbStore methods to read and write data from persistent storage
respectively. This is comparable to the load and store methods supported for DCOM com
ponents (see section 4.2.8 for more details on DCOM). A container may also invoke these
methods; to update the persistent state of an entity EJB when the transaction in which the
update took place is committed, for example.

A client-held reference to a session bean is only valid for the lifetime of the container of that
bean. If the process hosting that container crashes, the client must obtain a new reference
to a new, equivalent session bean after restart. A client-held reference to a remote entity
bean is (ideally) valid for the entity’s lifetime, which may span multiple EJB server process
executions. The reference becomes invalid if the entity is removed or if it is moved to a
different EJB container or server. A client-held reference to an EJBHome can be serialised
and then made persistent; it can later be deserialised and used again as a reference to a
remote EJBHome.

A client can also obtain the handle of an entity EJB, containing its identity and serialise it
to make it persistent. This serialisation can later be translated back into a handle, which
can then be used to obtain a reference to a remote EJBObject once more. This is obvi
ously intended to be an implementation of the support for persistence of a CORBA Object
Reference as a string (see section 4.2.6 on CORBA for more details).

The lifetime of a handle or of a reference to an EJBHome actually depends on its imple
mentation, which depends on the persistence mechanism used by the entity EJB’s container.
It must at least be usable across server restarts. However, the intention is that “Containers
that store long-lived entities will typically provide handle implementations that allow clients
to store a handle for a long time (possibly many years).” Thus, the problem of long-term
dependencies between client and server persistent stores is highly relevant to Enterprise
JavaBeans.

A client can explicitly create and remove EJBs from an EJBHome. The client uses a method

Chapter 4. Approaches of Related Work 45

of the EJBHome interface to remove an EJB. If the client tries to use its reference to the EJB
subsequently, it will get an java.rmi.NoSuchObjectException.

The implications of the EJB specification for dependencies between distributed, persistent
stores, is that the onus is on a server to provide remote access to EJBs for as long as required
by its clients. The use of Java RMI for communication between client and server implies
that the EJB must remain remotely-reachable for at least as long as it is remotely-referenced,
since the implicit use of leases in the Java RMI DGC implementation will result in leases
being renewed on access to an EJB from a client-held reference for as long as the client
holds the reference or client is active. Since there is support for a client to make references
and handles for EJBs persistent and to make EJBHome references persistent, the implication
is that the server EJB should persist as long as there may be a client holding a persistent
reference or handle that it can use to obtain access to the EJB, even if the client is not
currently active. The support for explicit calls by clients to remove EJBs implies that it is
the client’s responsibility to decide when an EJB is no longer required. All this leaves little
scope for server store autonomy.

Coping with Copying

An entity EJB is a component: it represents an independent business object. The entity
object may itself hold references to a large number of dependent objects. Although an EJB
must always be passed by reference (i.e. replaced with a stub) when supplied as a parameter
in an RMI call, other objects passed in RMI calls between an EJB and its clients may be
passed by reference or may be passed by copy.

A “feature” of Enterprise JavaBeans is that all communication between an EJB and its client
is made using RMI calls, even when both are instantiated within the same JVM. Thus, all
parameters passed by copy in these RMI calls must be serialised and deserialised, even
when passed within the one JVM. In fact, local objects must be passed by copy in RMI calls
between EJBs that are instantiated in the same JVM, to avoid sharing object state between
two EJBs, which breaks the EJB’s semantics.

The copying of RMI parameter objects raises the issues described in chapter 3 on PJRMI.
Because these objects may have large transitive closures of objects and may be passed as a
deep copy, they can take a long time and a lot of space to serialise and deserialise.

The Importance of Being Persistent

It is notable that, according to the WWW page introducing the new features of the lat
est EJB specification [EJB 99a], under the heading of “Persistence”, mandatory support for
entity beans has been introduced earlier than planned “Due to strong demand from the mar
ketplace”. Given the popularity of support for persistence in a distributed system, it is clear
that there is a need for well-integrated persistence and distribution support that does consider

Chapter 4. Approaches of Related Work 46

the implications for long-term maintenance of valuable persistent data.

4.2.2 DPS-algol

Turning to orthogonally persistent technologies, early attempts to integrate orthogonal per
sistence and distribution included Distributed, Persistent Algol (DPS-algol). Distributed,
persistent Algol [Wai88, Wai89] aims to simplify the programming model for distributed ap
plications. It integrates a model of distributed programming with the PS-algol orthogonally-
persistent programming model. It maintains location transparency over the distributed data
as much as possible. The same syntax can be used to manipulate both local and remote data.
Light-weight processes can be started remotely and data objects in a remote location can be
referenced.

It is acknowledged that the application programmer may wish to manage the location of data
explicitly, for management of resilience and resource utilisation. Thus, a lo c a l i ty type is
introduced into the programming language for this purpose. A node is a locality type that
refers to a specific remote machine, while a loca provides a way for a programmer to refer
to a collection of remote data objects while abstracting away from the node that actually
hosts them.

Remote procedure calls (RPCs) are used for communication in DPS-algol. A procedure is
invoked remotely on an en try , supported by the process corresponding to a given process
handle. As with procedure calls in PS-algol, parameters are passed by value in RPCs, in an
attempt to support something similar to the “blackboard view” of data in PS-algol stores;
this is not the same as pass by copy.

The passing of parameters by value applies to pointers, as well as to scalar types. Thus, when
a pointer is passed in an RPC, it is replaced with a universally recognisable remote pointer.
The difference between a local and a remote pointer is transparent to the programmer. Once
a remote pointer has been received at a remote site, any store operations that perform updates
to remote referends trigger implicit RPCs back to the pointer’s original site.

4.2.2.1 With Regard to References

Once an object has been exported, the intention is that it remains available for remote use as
long as it is remotely-referenced. Once the object becomes referenced from an Export Table
in a persistent store, it persists.

The persistent store is described as containing a graph of nodes which are collections of
local and remote data. Remote pointers are implemented as objects on the heap and can be
made persistent, like any other heap object. Once a universal address has been exported for

Chapter 4. Approaches of Related Work 47

use in a remote pointer, the corresponding data is expected to persist for as long as a pointer
is held to that data, even if the pointer is in a remote address space.

If no abstract machine is currently running over the store when a remote pointer referencing
one of the store’s objects is dereferenced, the dereference request is redirected to a “per
petual server” process. This server retrieves the required object from the store itself and
performs the required operation on it.

No distributed garbage collection has been implemented for DPS-algol but the need for it
is acknowledged. The need for a server to keep track of remote pointers is identified, as is
the need for a client to inform a server when a pointer it held to a server object has been
garbage-collected.

With use of a “perpetual server” to ensure availability of remotely-referenced objects, the
implication is that a server store can never escape its obligations to other stores, as long as
remote pointers are held to its objects. Since remote pointers can persist, a server can be
obliged to maintain objects indefinitely. Subsequent experience with this technology in the
COMANDOS project demonstrated that stores become interdependent and hard to manage
as a direct result of such obligations. This has been a major influence in the quest for a
balance between store autonomy and a uniform model of orthogonal persistence [Atk96],

4.2.2.2 Coping with Copying

Where copying of objects is required between stores, it is explicit. The transcopy and
assign operations are used for this purpose.

The transcopy operation uses type to determine what should be copied. The aim is to avoid
unnecessary copying and particularly to avoid the copying of a whole persistent store. Some
examples of how type influences copying in this case include: immutable base types such as
integer, boolean and string are copied; loca and node base types are passed by reference;
process handles are passed as handles to processes on remote machines; images of pixels
are deep copied; the top level of a vector or structure is copied while the rest is presumably
referenced. Thus, to obtain a complete copy of data structures with some depth, they must
be copied incrementally.

The assign operation has the same effect on an object as transcopy. It copies the top-level
of one object graph and assigns this copy to another object, which may be in a different
locality.

Such incremental copying, when applied to large, complex graphs of data structures, is
imposed on the basis of type. Thus, it is not adaptive over time to changes in graph size
or the context in which it is used. High latency costs are incurred on iterations through the

Chapter 4. Approaches of Related Work 48

transitive closure of a large graph over the network.

4.2.3 r x for Napier

Napier88 [MCC+99], like PS-algol, is an orthogonally-persistent programming language.
The work on a remote execution mechanism for Napier88, described in [DRV91], points out
the lack of scalability in a one-world model for distributed, persistent systems. It advocates
a federated model where the application programmer is fully aware of the distributed nature
of the system.

4.2.3.1 With Regard to References

The remote execution mechanism rx designed for use with distributed Napier stores avoids
the passing by reference of any data, on the grounds that this creates dependencies between
stores that necessitate coordination of global stabilisations. Such global stabilisations are
avoided on the grounds that they impose an unrealistic requirement for stores distributed
across a wide-area network.

4.2.3.2 Coping with Copying

All parameters for an rx call are instead passed by copy. Although it is acknowledged that
the design of rx allows arbitrary amounts of data and code to be copied between stores, no
specialised handling of large amounts of data is advocated.

4.2.4 Persistent, "type-safe RPC for Napier88

Coming from the same stable as PS-algol, Napier88 [MCC+99] supports orthogonal persis
tence. It, in turn, is the predecessor of the support provided by PJama for orthogonal persis
tence for Java. The support developed for persistent, type-safe RPC for Napier88 [dS96] is
comparable to PJRMI and raises the same issues.

4.2.4.1 With Regard to References

Napier88’s support for language reflection, dynamic binding and first-class procedures en
ables the creation of RPC client and server stubs as procedures at run-time.

A server makes one of its procedures remotely-invokable by obtaining a server-side stub for
it; this exports the signature of the procedure and the identity of the server itself to a binding

Chapter 4. Approaches of Related Work 49

service and has the effect of making the procedure persistent too. The binding service is a
trusted entity in the system.

A client obtains a client-side stub by making a local procedure call that generates the stub,
based on the given signature of the procedure it requires to use. This supports independent,
unordered creation of client and server stubs. The first time a client actually makes a proce
dure call on its stub, the binding service’s import procedure is automatically called to bind
the client stub to an actual server-side procedure. A capability for an exported procedure is
returned, along with the address of the server supporting it, allowing the client to go ahead
and make RPCs using its stub.

A server can remove support for a procedure arbitrarily. The client will find out that the
procedure is no longer exported when its RPC fails. The client can throw away the stub
when it no longer wishes to make RPC calls on the server-side procedure. Doing so has no
effect on the exported server procedure, on the grounds that other clients may still use it.

Thus, maintenance of persistent data at the server is independent of client use; this means
a client-side persistent store may contain references to server-side procedures that are no
longer usable.

4.2.4.2 Coping with Copying

In the first version of Napier88 RPC, parameters to Napier88 RPCs are passed by value, to
avoid accumulating references, and thus dependencies, between persistent stores. A deep
copy is made of every complex value parameter, resulting in whole transitive closures being
transferred in RPCs (though there are restrictions on the types that can be copied). No shared
subgraphs of data objects are maintained, even between the parameters in one RPC.

Objects in a Napier88 store can be highly interconnected, because of the language’s rich
type system and the persistence of objects by reachability. To address the problem of avoid
ing unnecessary copying of large object graphs between persistent stores, “migration by
substitution” was implemented for a subsequent version of Napier88 RPC. Application pro
grammers at source and destination must agree on the substitutable objects in advance. Each
substitutable object is registered by name. During copying, each object is looked up by value
in the substitution table. If it is substitutable, it is replaced with a surrogate. At the desti
nation, the surrogate is used to identify the local value that is equivalent to the original.
Parameter objects must either be copied between sites, or substituted with equivalent ob
jects at the destination site. This avoids the creation of remote references at the cost of
doing copying and managing substitution. The cost of migration by substitution lies in the
registration and lookup of substitutable objects. For one process interacting with a number
of other different processes, this is likely to require maintenance of one substitution table

Chapter 4. Approaches of Related Work 50

per remote site.

Persistent spaces were also developed as another alternative for sharing objects between
persistent stores. These containers of objects are published by a server and copied in their
entirety by a client. In this case, it is the application programmer’s responsibility not to
place object graphs into a persistent space that are too large for copying.

4.2.5 Thor

Thor is a persistent object store developed for use in a distributed system [LCSA99, LAC+96]
It is similar to PJama in that it supports the persistence of objects through reachability from
a root object; thus, when objects are no longer reachable, they are garbage-collected. It
aims to support good performance for use of distributed Thor objects, even in a wide-area,
large-scale distributed environment.

Thor objects are implemented using Theta: an object-oriented, type-safe programming lan
guage developed by the Programming Methodology Group at MIT. However, an application
does not have to be written in Theta to use Thor. It can be written in a language such as C or
C++. A veneer of a few procedures can then be used to interact with the Thor store and to
make method calls on persistent objects in the store, indirectly via stubs for each persistent
type.

Copies of Thor objects are cached at clients, in order to reduce the load on the server and
Thor objects may be replicated across multiple servers for high availability.

4.2.5.1 With Regard to References

A client starts a session to interact with a Thor store. It runs a series of transactions to
perform operations on Thor objects.

An initially volatile Thor object can be created within a client transaction; it becomes per
sistent if a reference is established to it from an already-persistent Thor object and the trans
action is committed successfully at the server. A Thor object then persists at the server as
long as it is reachable from one of the persistent server root objects or from a handle of a
current session. When it is no longer reachable, it can be garbage-collected.

Distributed garbage collection is managed using reference lists [ML97]. Whenever a client
process receives an object reference, whether from its originating site or from a third party,
the client adds the reference to its o u tre fs table and sends an in s e r t message to the
originating site. The originating site containing the referenced object puts the client process
into its in re f s table, under the entry for the referenced object. Correspondingly, when the

Chapter 4. Approaches of Related Work 51

garbage collector local to the client identifies the object reference as garbage, it removes it
from its o u tre f s table and sends an update message to the originating site. The originating
site can then remove the client from its list of processes that reference the corresponding
server object in its in re f s table. If no other reference is left to the server object, remotely
or locally, the server object is then eligible for garbage collection itself. The paper [ML97]
focusses particularly on how to deal with cycles in distributed garbage collection, using back
tracing.

A client can obtain references to Thor objects within a session, either by looking up a server
root object by name or as the result of a method call on another Thor object. However,
these references are not valid across multiple Thor sessions. Thus, client use of references
is limited to the lifetime of one session. There is no point in a client trying to make such
references persistent. A client can, at most, require a Thor object to exist until the end of the
session in which the client obtains a reference to it.

Thor objects are stored at a server in an object repository. Though transparent to the clients,
there are multiple object repositories and an object can either reside in one or migrate from
one to another.

Store maintenance problems exist where Thor objects in one repository hold references to
Thor objects in a different repository.

4.2.5.2 Coping with Copying

Copying of Thor objects to clients, done only for the implementation of caching, is limited
to the page size, by the Hybrid Adaptive Caching (HAC) cache management scheme used in
the Thor implementation. When an object is accessed by the client, the page containing the
object is copied from the Thor store to the client cache. To counteract the problem of pages
with bad clustering filling the client cache with unwanted objects, hot objects are kept while
unused objects on a page may be discarded subsequently from the cache, to make room to
copy more pages to the client. Thus, the copying of a large graph of Thor objects, which
could be required to support an application’s iteration through all the objects of the graph,
is done by incrementally copying over the relevant pages.

The problem with copying pages at a time is, as acknowledged in [LAC+96], that the cost of
sending the potentially unwanted objects contained in the rest of the page will be significant
when used in a WAN or wireless network.

Chapter 4. Approaches of Related Work 52

4.2.6 CORBA

The Common Object Request Broker Architecture (CORBA) [OMG99a, OH98] is com
prised of a collection of designed-by-committee specifications for middleware. Produced
by the Object Management Group (OMG) [OMG], a consortium of over 800 companies,
CORBA has a dominating influence on current distributed systems development. It’s use of
persistence for reliability makes it relevant in this chapter.

Part of the power of the CORBA specifications is that they describe the interfaces for a
large range of distributed system services, while leaving a clear separation between these
interfaces and their implementation. One of the benefits of this is that, while the interfaces
are defined using CORBA’s Interface Definition Language (IDL), their implementations can
be written in any language with a CORBA binding, including C, C++, Smalltalk or Java, for
example. This enables interoperability across a distributed system of applications written in
these different languages and incorporation of existing, legacy systems.

The discussion below, on features of CORBA, that are relevant to the problems of this
dissertation, is based on the latest formal CORBA specification [OMG99c], unless otherwise
stated.

4.2.6.1 With Regard to References

An Object Request Broker (ORB) acts as an object bus. An object implementation accesses
services provided by the ORB through an object adapter. Services of the ORB-supported
object adapter can include generation and interpretation of object references, method invoca
tion, object and implementation activation and deactivation, mapping of object references to
implementations and registration of implementations. An object implementation providing
an application service must be associated with a Portable Object Adaptor (POA) to specify
what policies are applied to it, and registered with the ORB, before it can be used remotely.

Clients usually obtain object references as parameters or return values from invocations
between the client and other objects, or from the OMG Naming and Trading Services.

Persistent CORBA Objects

By default, an object created in a POA is transient: it cannot outlive the POA in which it
is created; after the POA has been deactivated, use of an object reference generated from it
will result in an 0BJECT_N0T_EXIST exception. However, if, when the POA is created, it is
passed a LifespanPolicy set to PERSISTENT, the objects created in that POA can outlive
the process in which they are created.

The recently adopted Persistent State Service (PSS) specification [OMG99b] is intended to

Chapter 4. Approaches of Related Work 53

supercede the Persistent Object Service of the formal CORBAservices
specification [OMG98]. It supports the persistence of CORBA object implementations.

Persistence is supported by datastores that may be implemented as, for example, flat files,
an object database management system or a relational database management system. A
datastore contains a set of storage homes. A storage home contains storage objects. Each
storage object contains an identity and a type that defines the state members and operations
for its instances.

Storage types, storage homes and catalogs can either be defined using the Persistent State
Definition Language (PSDL), which is a superset of the OMG’s IDL, or can be defined
directly using a programming language; the latter is known as “Transparent Persistence”.

An application process interacts with a datastore in a session. An ORB contains a connector
registry, which can be used to obtain a connector to a named datastore. A session is estab
lished between the application and the datastore, using the connector. The application uses
the session as a catalog to look up storage home instances within a datastore, which gives
it access to the storage object instances in that storage home. Storage objects can be made
remotely accessible by binding their identity to that of a CORBA object.

Persistent References

The representation of the object reference that is handed to a client is only valid for the
lifetime of that client. It cannot be made persistent as-is, because different ORBs generate
aind handle different representations of object references and these references are opaque.
The default persistence solution is to convert an object reference to a string; in this form
it can be made persistent across multiple client runs or communicated to other processes.
An ORB can subsequently generate its own representation of an object reference from the
string. Thus, clients can hold references to CORBA objects, store the references in string
format and then reconstitute them for use again later.

Maintainability

As long as an object implementation persists, it appears to be always available to the CORBA
clients that use it. Like PJRMI, support for activation on first use ensures that, as long as the
server is running, the object is active when it needs to be used. The POA, with which the
object is registered, defines how it is activated.

However, while an ORB can keep track of outstanding connections between client and
server, this only applies to active clients; not to client-held object references that have been
converted to string format. This means the server does not necessarily know whether per
sistent references exist to its CORBA object.

Similarly, even though an object reference can persist as a string and be recreated by an

Chapter 4. Approaches of Related Work 54

ORB as a valid object reference, it is not possible for a client’s ORB to ensure that the
state of the referenced CORBA object is available. The PSS specification states that the
lifetime of the state of a CORBA object is not visible to its clients. Thus, a client cannot
tell whether the implementation of the object it uses is persistent. A client can only call the
n o n -ex is ten t operation on an object reference to try to determine whether the referenced
object still exists: the operation can return true or false, or it can raise an exception if, for
example, distribution-related errors prevent the operation from working out whether or not
the object exists.

An object reference itself exists until it is explicitly freed with a call to its re le a se op
eration. The re le a se call on the object reference has no effect on the referenced object
implementation.

According to the text of the CORBAservices LifeCycle Service specification [OMG98],
storage management through use of, for example, garbage collection and reference counts,
is implementation dependent.

Thus, although there may be, at the application level, an implicit requirement for a CORBA
object to be made persistent if an object reference generated for it becomes persistent, there
is no support for this in CORBA. It follows that any management of persistent references to
create, maintain and limit dependencies between distributed stores is entirely specific to the
CORBA implementation being used.

4.2.6.2 Coping with Copying

Whether to Copy

Until recently, CORBA only supported the passing of parameters to IDL-specified methods
by value if they were scalar types; objects were always passed by reference. The CORBA
specification now acknowledges the utility of copying objects between processes where, for
example, the main purpose of the object is to encapsulate data or where the application
requires a copy of an object. During specification development, this was referred to as
passing “Objects By Value” [MOM98]; it is now described in the formal specification under
the heading of “Value Type Semantics”.

The criteria for deciding whether to pass a parameter object by reference or by copy is based
on the signature of the operation to which it’s being passed. If the parameter type in the
operation’s signature is a CORBA interface, then the object to be passed as this parameter
will be passed by reference. If the parameter type is a CORBA value type then the object
will be passed by copy.

An interface in CORBA is comparable to a Java interface. It declares the signatures of a

Chapter 4. Approaches of Related Work 55

collection of operations but does not define their implementations. A value type in CORBA
is comparable to a Java class, in that it describes a set of operations and some associated
state.

Thus, passing by reference or by copy is not defined on the object definition itself, but rather
on the parameters in the method signature of operations that use the object. However, in
order for the programmer to have the option whether to pass an object by reference or by
copy for a given operation, the object must have been defined with a CORBA interface.

This means that object passing policy in CORBA is defined statically, but with regard to the
application code that uses the object, rather than with regard to the object definition itself.
The same policy is not enforced on an individual object, without any consideration of the
context in which the object is used. By setting the policy using the operation signature,
different applications (or even different operations within the same application) can pass the
same object between processes in different ways. If an object implements an interface, it
can be passed as a copy of the object implementation in one operation invocation and as a
reference to its interface in a different one.

The object to be copied can have complex state, with arbitrary graphs, recursion and cycles.
During copying, shared subgraphs are preserved between the parameters involved in one
invocation. However, the copy shares no state with its original. At its destination, the object
copy has a separate identity from the original object.

What to Copy

The ORB implementation defines the code for marshalling parameter and return values at
their source and unmarshalling them at their destination. Thus, the manner in which an
object graph will be copied from one process to another is dependent on the marshalling
code of a specific ORB implementation.

Value types are allowed to override the standard ORB marshalling with their own code for
marshalling and unmarshalling their own state. However, this is regarded as exceptional,
rather than the norm, intended only for integration of existing “class libraries” and other
legacy systems.

The CORBAservices Life Cycle Service specification describes how an object can be copied
in a distributed system; so it could be used in a marshalling implementation. To take ad
vantage of this service, the object implementation to be copied must support the interface
LifeCycleObject, which supports the operations copy, move and remove. A simple ob
ject, with no references to other objects, provides its own implementation for each of these
LifeCycleObject interface operations. As an appendix to the Life Cycle Service, a Com
pound Life Cycle Specification is provided, which defines how a compound life cycle oper
ation is applied to a graph of related objects, given a starting node.

Chapter 4. Approaches of Related Work 56

The CORBAservices Relationship Service is used by the Compound Life Cycle Service
to inform the copying of an object graph, based on the relationship declared between ob
jects of the graph. Consider the example of a folder object that contains a document ob
ject. The relationship between folder and document is defined using three objects. The
folder is associated with a ContainsRole object, while the document is associated with
a ContainedlnRole object. A containment relationship object connects the two roles.
Thus, three Relationship Service objects represent the relationship between the folder and
the document. The Compound Life Cycle specification makes two passes over an object
graph, initially to analyse the relationships between objects to determine what objects of
the graph should be copied and subsequently to actually perform the copying. An object
with a ContainsRole should be deep copied, to include the objects that it contains, while
an object with a ContainedlnRole is shallow copied for the purposes of this relationship
(though presumably if the latter object has a ContainsRole in relation to a different object,
it can actually still end up being deep copied ultimately).

4.2.7 GemStone

GemStone is a commercial implementation of persistence. It was originally developed in
Smalltalk, now available as GemStone/S, and has now also been developed in Java, as Gem-
Stone/J [Gem99]. The benefit of years of experience with Smalltalk are evident in the ma
turity, sophistication and scalability of the current systems. A Persistent Cache Architecture
maintains the illusion of shared memory over server processes (Smalltalk execution engines
or JVMs respectively) for high-performance, server-side persistence. Server objects become
persistent by reachability from server-side named root objects. Client applications must es
tablish a session with a GemStone/J server in order to get access to its objects and services.
They then initially get access to server objects by looking them up by name in the Object
Name Service. When a client wishes to make changes to persistent server objects, it must
make the changes within a transaction; the changes become persistent if the transaction
commits successfully at the server. Distributed clients communicate with the server using
one of a range of technologies: for GemStone/S this includes Smalltalk, Java and CORBA,
while for GemStone/J this includes Java RMI, Enterprise JavaBeans and CORBA.

The GemStone/J server has been implemented for scalability. Two models provide this
scalability in different ways, depending on the requirements of the client.

1. For scalability through use of threads, a server object is instantiated in one server-side
JVM and shared by multiple clients using multi-threading.

2. For scalability through use of persistent objects, multiple instantiations are made of

Chapter 4. Approaches of Related Work 57

one server object, each in their own server-side JVM, providing unshared access for
each client.

The problems of this dissertation are considered below, largely in the context of GemStone/J.

4.2.7.1 With Regard to References

GemStone/J supports CORBA through use of the VisiBroker for Java ORB [Gem98a]. The
Visibroker ORB supports communication between CORBA client and server objects. To
use a Java object as a CORBA object, the Java object’s class must implement a CORBA-
supported interface. CORBA objects can be activated using Visibroker’s Object Activation
Daemon. A client can then obtain references to the CORBA objects supported by the Gem
Stone/J server.

GemStone/J also supports Enterprise Java Beans (EJB). JavaBeans are created at the Gem
Stone/J server. A client communicates with a JavaBean either via a Remote Adaptor sup
porting the JavaBean’s interface, or through use of JavaBean events. However, a Remote
Adaptor appears to be valid only for the lifetime of the current client-server session1. Thus,
even if a client has its own persistence support, it is of no benefit to the client to make the
Remote Adaptor persistent beyond the lifetime of the session in which it was obtained from
the GemStone/J server.

The garbage collection criteria for when a server object is no longer reachable are not known,
since details of GemStone’s GcGem garbage collector have not been made public. Thus,
although there is apparently some tracking done of the objects accessed by clients, it is not
clear whether the server is obliged to maintain remote access to GemStone/J server objects
as long as they are in remote use. However, since GemStone/J only supports persistence at
the server side, the implications of persistent references and the complications of having a
mixture of persistent and non-persistent clients, as encountered in PJRMI, are not addressed.

4.2.7.2 Coping with Copying

The potential exists for the copying of large object graphs between a GemStone server and
its clients. GemStone/J supports classes for large collections, which it describes as scalable
containers because of the attention paid to their scalability in the GemStone/J implementa
tion.

VisiBroker for Java 4.0 conforms to CORBA 2.3. Thus, it includes support for passing

'This is certainly the case with their equivalent in GemStone/S, which are referred to as forwarders. A
message sent to a forwarder after the end of a session results in a “defunct forwarder” error [Gem96].

Chapter 4. Approaches of Related Work 58

objects by value. Its use for communication between clients and servers in GemStone/J has
the implications described in section 4.2.6 on CORBA.

Where EJB is used, parameters to remote message invocations between a client and a server
JavaBean may be passed by reference or by copy.

• Java scalar type values and Strings are passed by copy.

• A remote adaptor is marshalled in place of an object that implements the interface
GsRemotelF.

• An application can choose at runtime whether to copy an object or replace it with a
remote adaptor, if it implements the interface GsExtendedRemotelF.

• If the object does not implement a remotely-enabled interface, but it does implement
the Java interface java . i o . S e r ia liz a b le , then the object is passed as a deep copy
of its object graph.

The documentation for Gemstone/J Distributed JavaBeans [Gem98b] explicitly warns that
“Where the entire object graph must be returned as a copy, performance is likely to be of
concern in the case of large collections or large object graphs.” It is recommended that
large object graphs are accessed by remote reference rather than by copying, for the reason
of maintaining sharing as well as communication performance, but ultimately it is left to
the application programmer to try to avoid passing large object graphs between client and
server.

Of the support described above, the interface GsExtendedRemotelF is of most interest to
the author. An object that implements this interface must define its only method asCopy ().
This method is called during serialisation and returns a boolean indicating whether the object
should be copied or not. It could be implemented, for example, to pass by copy normally but
pass as a remote adaptor if its size is larger than some limit. This, unlike other existing sys
tems, does provide support for a run-time, and therefore adaptive, decision to be made about
whether or not an object should be copied between sites. The programmer must, of course,
have defined the object from the outset to implement the interface GsExtendedRemotelF in
order to have that run-time choice.

It is also interesting to note that while GemStone/J does not currently have any other dy
namic way of controlling object copying, such support was implemented for management
of copying for replication in GemStone/S. It has recently been brought to the attention of
the author that this support exists in GemStone/S and is comparable to one of the solutions
presented later in this dissertation, in chapter 8. In GemStone/S, copying for replication

Chapter 4. Approaches of Related Work 59

is controlled by specifying the level (depth) to which objects in a graph should be repli
cated, after which object stubs are created to represent the non-replicated lower-levels of
the graph [Gem96]. Subsequent access to the stub objects results in them being copied on
demand.

4.2.8 DCOM

Because CORBA and DCOM currently have much influence in commercial distributed sys
tems development, both are considered in this chapter. DCOM has been developed by Mi
crosoft, using its COM component model, to support use of components across distributed
processes [RE98, Ses98]. A component is a module of software, designed to do a specific
task, and with a well-defined interface. The aim is to be able to compose a system from com
ponents to provide, for example, support for electronic commerce for banks, travel agents,
credit card services, etc. (EJB, as presented in section 4.2.1.2, is comparable to DCOM, in
that it provides a component model for Java.)

4.2.8.1 With Regard to References

COM components can be made persistent in flat files, architected files (e.g. sequential or
indexed files) or relational databases. Server-side support uses the IMoniker interface, im
plemented for a specific persistence mechanism, for maintaining an association between a
name, which can be considered a persistent identifier, and the corresponding persistent state
of a component. The interface includes a BindToObject method that, given a name in the
appropriate naming convention for the persistence mechanism, returns a reference to the
corresponding persistent component. It’s implementation instantiates a new component of
the correct type and relies on that component’s implementation of the IP ersist interface
to populate it with the persistent state.

Since component references are only valid for the lifetime of the process in which they are
generated, there is no point in making them persistent. However, the Moniker for an object
can be made persistent, using the IMoniker interface method to convert a Moniker to a
string. Another method of the same interface can be used to convert the string back to a
Moniker, after which its BindToObject method can be called to establish a reference to a
component containing the corresponding persistent state once more.

Client applications can obtain remote references to components as proxies, generated from
Microsoft’s Interface Definition Language. Communication between distributed compo
nents is done using Microsoft’s remote procedure call support (MS RPC). Management of
referenced, remote components is done explicitly in application programs. When a ref

Chapter 4. Approaches of Related Work 60

erence is established, an explicit call can be made, by the application programmer, to the
component to inform it that it is being remotely used. When a reference is no longer needed,
an explicit call can be made to the component to inform it that one less reference will use
it from now on. Additionally, a pinging protocol is used by client’s to regularly inform a
DCOM server that it is still alive, in order to keep alive its connections to the server’s DCOM
components. However, this is only applicable for the lifetime of the client.

4.2.S.2 Coping with Copying

Marshalling of parameters in calls between components is usually done in the code of the
IDL-specified client proxies. While the potential for copying large amounts of data between
distributed components does exist, no additional support is provided for handling large data
volumes in any specialised way.

4.2.9 Arjuna

Arjuna aims to provide support for building fault-tolerant, distributed applications, using
persistence for reliability and transaction recovery. Several products are available from Ar
juna Systems. They benefit from years of experience doing research on support for fault-
tolerant, distributed applications in the Arjuna project at the University of Newcastle in the
UK. This section focusses mainly on Arjuna Integrated Transactions (AIT) for Java [Arj99],
on the grounds that it is representative of the approach of Arjuna solutions.

AIT provides support for use of objects in transactional applications, with persistence to aid
reliability and recovery. The state of an object is marshalled and stored in a file or database
for persistence. Clients obtain references to these objects in the form of stubs. AIT objects
may have one of three flavours. If they are recoverable and persistent, their state is tracked
for recovery and maintained on stable storage for use over multiple program executions.
If they are only recoverable, then they cannot have a lifetime beyond the current program
execution, but their state is tracked within transactions for recovery purposes. If they are not
recoverable or persistent, they do not survive program crashes or shutdowns.

4.2.9.1 With Regard to References

Like GemStone, as described in section 4.2.7, AIT supports two models of server object
usage. Multiple clients may use one shared, persistent object at the server. Alternatively,
multiple clients may each have their own replicated copy of the persistent object at the
server. The first of these two models is the default.

Chapter 4. Approaches of Related Work 61

Remote use of Java objects in this context has the same reference management issues as for
standard Java RMI, except for the following extra transaction-related support. A reference
to a persistent object may be created in a transaction or, if stored as a CORBA Inter Orb Ref
erence (see section 4.2.6) it may be re-established from a string form of the object reference.
A call may be made explicitly to destroy a server object or a referenced object may become
unreachable, in the course of a transaction. However, it will not be garbage-collected until
the transaction commits successfully, in case it is necessary to reestablish a reference to the
object in the course of an abort of the transaction instead. For long-running transactions, the
server is thus obliged to maintain the objects used for the lifetime of the transaction.

4.2.9.2 Coping with Copying

Remote use of Java objects has the same issues in this context for copying of object graphs
between distributed sites as for standard Java RMI.

4.2.9.3 The Arjuna Project

Much work has been done in the context of the Arjuna project on support for fault-tolerant
distributed systems, with particular focus on replication of persistent objects, to provide
reliability and high availability in the face of the inevitable distribution-related failures. This
has included work done on integration of replication support with transactions [LS99b] and
with caching [LS99a]. Aijuna’s focus does not encompass consideration of the long-term
implications of dependencies between persistent stores. The onus is left on the server to
provide remote access for its clients as long as it is needed. While large object graph copying
is obviously an issue with replication and caching technologies, only the management of
interdependencies has been considered for replication of large object graphs [LS96], while
the cost of the actual copying does not appear to be addressed.

4.2.10 PerDiS

The aim of the Persistent Distributed Store (PerDiS) project is to provide support for dis
tributed, collaborative engineering applications [FSB+98]. The significant feature of such
applications is that they share large volumes of fine-grain, complex objects across wide-area
networks. PerDiS aims to provide integrated, automated support for this.

Chapter 4. Approaches of Related Work 62

4.2.10.1 With Regard to References

PerDiS attributes distributed CAD application problems, of abysmal performance and lack
of server scalability, to client use of remote references to access server objects. To deal with
these problems, it instead provides the illusion of distributed shared memory (DSM) across
the network, with support for consistency and concurrency control.

Objects persist by reachability from named root objects. Multiple persistent stores cooperate
to provide the persistence of the objects in DSM. Currently, this seems to be implemented as
one cluster per file on disk. Clusters in one store may hold references to clusters in another
store. However, it is not possible for individual stores, that can in theory contain one or
more, possibly replicated, clusters of persistent objects, to be managed separately and thus
autonomously.

Local caching of remote objects is implemented using either

• explicit calls, made by an application navigating through an object graph, to identify
the objects in that graph to be cached locally, or

• automatic faulting of pages of the cluster’s storage on access.

All updates are done in the context of a transaction and applied to the, possibly persistent,
cache and to disk when the transaction commits.

The problem of dangling pointers, caused by deleting an object that is still reachable, is iden
tified. The PerDiS solution is automatic storage management, using the Larchant distributed
garbage collection algorithm [FS98].

Every application process interacts with PerDiS through the interface provided by a User
Level Library (ULL). The ULL interacts with the single PerDiS daemon running on its local
machine. The PerDiS daemons cooperate to support DSM. The ULL is responsible for
detecting new inter-cluster pointers when they are established by the application. A stub is
created, to be associated with the pointer, and a message is sent to the referenced cluster,
where a corresponding scion is created, to be associated with the referenced object in that
cluster.

The PerDiS daemon, running on each machine hosting application processes, does garbage
reclamation by marking all the objects in locally-cached clusters that are reachable from
persistent roots or scions. Non-marked objects can then be deleted. The implication is that
objects must exist as long as any reference to it exists, whether the reference is local or
remote (the latter represented by the existence of scions).

Chapter 4. Approaches of Related Work 63

4.2.10.2 Coping with Copying

Given the two methods described above, for identifying which remote objects or remote
pages of objects should be cached locally, there is support for controlling the amount of data
copied between distributed sites. The application programmer may control the caching, and
thus the copying, of the object graphs they expect to use. They must be aware that calling
hold on very large graphs of objects will result in long and expensive copying operations, in
order to bring them into the local cache. Alternatively, when pages are automatically faulted,
their copying is batched to the size of a page on disk. The efficiency of this mechanism
depends on how well the required data is clustered on these pages.

4.2.11 FlexiNet

A product of the ANSA collaborative research programme on distributed systems, Flex
iNet is intended to demonstrate the ANSA architectural principles at work [HAN99b]. The
flexibility of this system is in its ability to support a range of RPC mechanisms. These
mechanisms take the form of binders, that support different combinations of layers of the
communication protocol stack at client and server. This enables a plug-and-play philosophy,
covering aspects of the protocol stack including naming, serialisation and transport proto
col. A Trader, object location service, mobile object workbench and persistent information
space are just a selection of FlexiNet’s other services.

4.2.11.1 With Regard to References

FlexiNet rejects passing objects purely by reference in remote method calls, because of the
performance overheads of following such references over the network when access to the
referenced object is required. FlexiNet also rejects the Java RMI model of passing objects
by value normally and by reference if they extend the interface java.rm i.Remote. The
rejection in this case, in agreement with the author of this dissertation, is on the grounds
that it is not reasonable to pass an object by value in some cases and by reference in others.
Instead, FlexiNet takes the same approach as CORBA’s Value Type Semantics 4.2.6. The
decision on whether to pass a parameter object by value or by reference is based on the
declared type for that parameter, in the definition of the operation to which the object is
being passed. Thus, if the object is passed as an interface, then it will be passed by reference;
otherwise it will be passed as an object and thus by value.

Chapter 4. Approaches of Related Work 64

4.2.11.2 Coping with Copying

FlexiNet has the potential for large object graph copying. It has support for persistence and
for management of clusters of objects. However, no extra support is provided for handling
communication of large object graphs between sites.

4.3 Related Work on Alterative Approaches

There are many other systems that support both distribution and persistence, in some form.
However, the descriptions of those above demonstrate the degree of general awareness in ex
isting work of the issues explored in this dissertation and the kind of steps, if any, that have
been taken to deal with them. Brief descriptions of some other related work are now pre
sented, to demonstrate alternative approaches, including object substitution, object move
ment and network objects.

4.3.1 Approaches of Database Systems

Database systems are increasingly being used over wide-area networks, laying them open
to the issues of this dissertation. Oracle have introduced support for an Internet database,
Oracle 8i [Ora99], that has support for SQLJ and for use with JavaBeans and CORBA. The
Jasmine Object Database [KDM99] is a good example of the approaches being taken for
support of distributed object database access. Its WebLink component supports inclusion of
ODQL statements in web pages, with the results of queries being presented as “exploded”
web pages displaying object values. There is also support for Java RMI communication
from Java client applications to an application server using the pJ Java persistence layer
for Jasmine. None of these systems address the potential problems of communicating large
object graphs from server to client and, since most of them use Java, they suffer from the
same lack of flexibility with respect to remote object access that has been described above.

4.3.2 Object Substitution

Work on Octopus [FD93] and object migration by substitution [dSA96] has tried to address
the problem of copying large object graphs by limiting the copy to those objects in the
graph that have no equivalent at the copy’s destination. The Octopus mechanism supports
the cutting of bindings within the closure of an object graph to be copied, and the rewiring
of the partially-copied object in another context.

Although lacking the elegance of the dynamic linguistic reflection mechanism of Octopus

Chapter 4. Approaches of Related Work 65

and Napier88, the use in Java RMI of readObject and writeObject methods associated
with copied object classes, can provide a similar ad-hoc solution. Java Object Serialisation
allows a programmer to override the default serialisation implementation with specialised
marshalling, defined on a per class basis. A programmer can choose to omit or replace
certain fields of an object during marshalling. These fields can then either be left with a
default value during unmarshalling, or set to reference local resources at their destination.

4.3.3 Object Movement

Emerald supports location-transparent use of Emerald objects distributed across a local area
network [BHJ+87]. It considers the problems of maintaining references and moving objects
in this context, with the aim of supporting efficient inter-object communication.

Mutable Emerald objects are passed by reference in remote invocations, to preserve con
sistency. However, Emerald tries to avoid remote references to invocation parameters by,
where possible, moving the parameters to the site of the callee.

Immutable objects are moved automatically and a programmer can explicitly request move
ment of an object, based on their knowledge of the application, using the “call-by-move”
parameter passing mode. It is acknowledged that the moving of objects between sites does
depend on their size and usage. Moving the object whenever it is passed as a parameter to
a remote invocation will be of benefit if it is used multiple times by the destination site but
will become inefficient if it keeps being moved between multiple sites that are using it. The
implication seems to be that only small object graphs should be moved, while larger ones
should only be passed by reference.

4.3.4 Obliq and Network Objects

Obliq is a language developed for distributed, object-oriented computation [Car94]. It is
implemented using Modula-3’s Network Objects [BNOW93]. Oblique makes a point of
avoiding automatic copying of object state between sites. Network references to objects are
usually passed instead. Values can be transmitted by copying if required; any references held
to other objects are replaced with network references during transmission. The Network Ob
jects system provides a general purpose mechanism called Pickles for marshalling object
graphs of arbitrary complexity.

Chapter 4. Approaches of Related Work 66

4.3.5 Other References to Related Work

Further references to related work are made in comparison with the solutions of this dis
sertation: with regard to references in section 6.3.4. Future work in chapter 11 includes
references to related work that could influence and benefit further development based on the
solutions in this dissertation.

4.4 Summary

A summary of the approaches taken by existing systems to this dissertation’s issues is pre
sented below, firstly with regard to references and secondly on their approach to coping with
copying.

4.4.1 With Regard to References

The lifetime of references to remote objects falls into two main categories: those that are
only valid within one client program execution and those which may be used across multiple
program executions. Objects that represent a reference to a remote object (i.e. stubs) are
usually only valid within one client program execution. Systems including Thor, CORBA,
GemStone and DCOM take this approach. However, a large number of systems do support
persistence across multiple client program executions of a reference, but only in the form
of a string identifier. CORBA IORs, DCOM Monikers and EJB handles to entity beans are
three examples of client-held representations for remote objects that are converted to a string
to be made persistent and, in a subsequent client execution, can be translated back from a
string and used to try to obtain a reference to the corresponding remote object once more.

The influence of clients on the lifetime of remotely-accessible objects at the server varies
widely. At one end of the scale, CORBA’s Persistent State Service specification makes it
clear that the persistence of a service is not made visible to a client, never mind influenced by
it. Some systems track references held to services, to maintain those services while they’re
used, but only for the lifetime of the current client program execution. Those systems that
support conversion of a reference to a string for persistence cannot expect a server to be able
to track what references are held by clients once they are strings though, in the expectation
that the services will be maintained as long as the string identifiers for them persist. As
an alternative, DCOM is an example of a system that allows the programmer to make an
explicit call from client to server to ensure a service is maintained for the client. At the
other end of the scale, systems including DPS-algol and PerDiS take the “integrated persis
tence” approach of tracking references to remote objects and obliging a server to maintain

Chapter 4. Approaches of Related Work 67

its services as long as they are remotely used.

The integrated persistence approach is the one taken by PJRMI, as described in chapter 3.
It attempts to avoid lack of referential integrity between distributed stores by ensuring a
remotely-invokable object persists as long as a client holds a reference to it. Its drawback is
the consequent lack of autonomy and thus lack of long-term maintainability, because of the
dependencies created between stores supporting persistent connections.

4.4.2 Coping with Copying

Support for coping with the copying of object graphs across a distributed system tends to be
either inflexible or non-existent.

The criteria for whether or not to copy an object varies. Some systems base the deci
sion on the object’s type. Java uses interfaces including ja v a .io .S er ia liza b le and
java.rmi.Remote for this purpose. GemStone/J’s EJB support is similar but, for added
flexibility, it also provides the ability for the programmer to make the decision at runtime
when the interface GsExtendedRemotelF is used. CORBA Value Type Semantics base the
decision about object copying on the declared parameter type for the operation to which a
parameter object is passed. DPS-algol requires an explicit call to be made by the program
mer in order to make a copy of a data structure.

Where support for object copying is provided, there is usually limited or inflexible control
over the proportion of an object graph that is actually copied. A common approach, taken by
Java RMI, EJB and DCOM for example, is to make a deep copy of the full transitive closure
of a given object graph. No consideration is given to the handling of large object graphs at
all. As an alternative, some systems leave it to the programmer to specify exactly what parts
of an object graph should be copied. PerDiS provides a mechanism for the programmer to
iterate through their object graphs making an explicit call on each object in them that they
wish to be copied. The persistent spaces solution for Napier88 RPC requires the programmer
to explicitly place copyable objects into the persistent space. By contrast, the migration by
substitution for Napier88 RPC requires the programmers at all sites involved to agree and
register the objects that are substitutable: i.e. the parts of the object graph that should not be
copied.

There are more implicit, controlled-copying mechanisms though. Incremental shallow copy
ing is enforced by DPS-algol for data types that can hold references to other data objects.
PerDiS and Thor both incrementally copy pages between sites. GemStone/S, which copies
object graphs for replication purposes, has support for limiting the copy to a specified depth
of the graph initially; remaining objects of the graph are subsequently copied on demand.

Chapter 4. Approaches of Related Work 68

A solution is needed which doesn’t leave the decision on how much to copy entirely to the
programmer, since they may not be fully aware of the actual number of objects reachable
from the object they wish to use2. This solution should be flexible enough to work well
with long-lived objects. Given that such objects may be used by different applications and
in different contexts over time, it is not desirable to require that support for whether and
how much of an object graph to copy should be hard-wired into the object’s type definition.
More dynamic control is needed, on how much of an object graph to copy, that is adaptable
over time to the size of the object graph and to the context in which it is used.

4.5 Influences of Related Work on Solutions

To avoid hardwiring the specification, of whether and how much of an object graph to copy,
into an object’s type definition, support is needed which promotes a separation of concerns.
There are existing technologies that advocate a separation of concerns in the provision of dis
tributed systems support. Some examples of these are described here in sections 4.5.1,4.5.2,
4.5.3 and 4.5.4. However, while such technologies are more likely to provide the flexibility
for handling persistent objects throughout their lifetime, they do not address directly the
concerns of this dissertation on how to control the copying of large object graphs between
distributed sites. The technologies of section 4.5.5 do consider how to control volume of
data communication, with an emphasis on quality of service, but these tend to be at the
lower levels of transport protocols. The aim of the solutions in this dissertation is to provide
control over object graph copying at the application level.

4.5.1 Spring Subcontracts

The Spring system is a distributed operating system that provides a platform for supporting
distributed applications. It promotes separation of concerns by supporting specification of
a remote method invocation mechanism in a subcontract, separately from the objects to
which it applies [HPM93]. A subcon trac t implements an interface of operations that are
called at significant points in communication between distributed sites; such as at the point
of marshalling and unmarshalling RMI parameters, for example. The application program
mer chooses from one of a selection of pre-defined subcon trac ts or defines their own and
applies it to a Spring object at the server. The Spring platform makes the appropriate calls to
subcon tract operations at client and server. Applying a subcontrac t to communication
with a Spring object is largely hidden from the client. The default marshalling operation

2This is particularly likely to be the case when components are being used that have been developed by a

third party.

Chapter 4. Approaches of Related Work 69

moves a parameter between sites. An alternative marshalling operation provides support for
copying where it is required instead. Subcontracts, as presented in [HPM93], have been
defined for replication, access to clusters and caching.

4.5.2 CORBA

The separation of policy specification from application code is achieved through the asso
ciation of a policy with a Portable Object Adaptor (POA) in CORBA. A number of policy
objects are created and associated with a POA. These policies then apply to all objects reg
istered with that POA, to influence, for example, marshalling of requests and activation of
object implementations.

When an object reference is generated by an ORB, the ORB implicitly associates it with one
or more policy domains, thus imposing certain policies on use of that object reference. Any
conflict between the policies set on an object reference and the policies that apply to the
referenced object implementation must be resolved. The specification does not yet include
interfaces for management of CORBA policy domains though.

4.5.3 GARF

GARF supports the development of reliable, distributed object-oriented applications by pro
viding a library of abstractions for concurrency, distribution and reliability [GGM96]. It
promotes a separation of concerns by encouraging the programmer to write the code for
their application task separately from the code concerned with the abstractions supported by
the GARF libraries. The latter code is written in the form of behavioural objects, also known
as meta data objects, which are either E ncapsulators that wrap the objects to be used re
motely or M ailers which support communication between the Encapsulators. Support
for replication, for example, is provided by an Encapsulator while support for ordered
message delivery to replicas, for example, is provided by a Mailer.

In the assessment of GARF, it is noted that while dynamic establishment of the association
between application objects and behavioural objects is currently supported, it is not neces
sary. Static, ’’once for all”, association is considered sufficient, except for open applications
such as operating systems, which are outside the scope of GARF. (The author of this dis
sertation would argue that use of PJama in a distributed system is categorised as an open
application in this case.)

Chapter 4. Approaches of Related Work 70

4.5.4 A Framework for Policy Bindings

0yvind Hanssen has been developing a framework for setting quality of service (QoS) poli
cies on bindings created for communication between distributed sites [HE99]. This work
is based on the FlexiNet architecture developed as part of the ANSA Architecture for Open
Distributed Systems [HAN99b], as described in section 4.2.11. The aim of the framework
is to provide a clean separation between, on the one hand, definition and dynamic setting of
the QoS policy to be used and, on the other, the code of the distributed application to which
the policy applies.

A policy in this case refers to a combination of properties associated with the communica
tion mechanisms at client and server, which may include transport protocol, transparency
management and resource management. A policy is negotiated between client and server
and then applies to all communication between them for as long as is defined in the pol
icy; probably the duration of a transaction or session. Like the work described above, the
separation of policy definition from application code is supported. Like the work in mobile
computing (see below), the intention is that the dynamic choice of QoS policy should allow
communication between sites to be adaptive to the current distributed environment. A policy
for logging has been implemented for this framework so far [Han99a].

4.5.5 Mobile Computing

The issues raised in this paper are of relevance in the domain of mobile computing. The need
for a distributed application to be adaptable to the current execution context is of particular
importance in this highly variable domain. Mobjects [WB95, WB97] focusses on the need
for distributed applications to be able to find out information about the environment in which
they are running, with a view to adapting communication policies between mobile host and
server in an effort to meet quality of service requirements. Changes in, for example, the
network connectivity of a mobile host and in the range of services (e.g. printing) currently
available to it are intimated to an application as EventObj ects. Odyssey [NPS95, NSN+97]
has a similar model for allowing an application to register interest in notifications about
changes to a specified resource, including the acceptable bounds in which the resource can
be used and an upcall procedure to be called to adapt behaviour. The impossibility is ac
knowledged of a system providing support for mobile data access that is appropriate for
every application running in every environment: thus, service guarantees are not provided.
What is provided is application data filtering that is adaptive to the current network con
nection and application requirements. In [NPS95], a comparison is made between a video
playback application and a video scene editor; they both work over the same data but, while
the player can afford to drop frames when bandwidth is low, the editor needs to be able to

Chapter 4. Approaches of Related Work 71

display every frame to the user to ensure accurate editing. The more recent work on Odyssey
requires wardens to be written for every type to manage fidelity of data between client and
server. Doing data filtering in order to limit the amount of network bandwidth or destination
resources used is comparable to using policies for limiting the number of objects transferred
across the network from a persistent store but the ability to filter tends to be very type or
protocol-specific.

Chapter 5

Research Issues to be Addressed

This chapter summarises the research issues of this dissertation, to set the scene for the
presentation of solutions.

Orthogonal persistence is intended to ease the programmer’s job by providing support for
data management integrated with a programming language. The simplicity of the orthogonal
persistence model argues for its use in distributed systems, in order to make life simpler for
the application programmer.

Support can be developed for interactions between persistent objects in distributed stores.
Persistent objects in one store can hold references to persistent objects in another store.
Persistent objects can also be copied from one store to another. However, such support
reveals problems with combining orthogonal persistence and distribution.

As described in chapter 3, PJRMI supports persistent, remotely-invokable objects and per
sistent references to them. It attempts to maintain the illusion of persistent connections
between stores for as long as they are required. However, PJRMI demonstrates the two
important problems which are the focus of this dissertation.

5.1 Problem One: With Regard to References

The first problem is in the provision of this illusion of a persistent connection between stores.
Distribution-related errors easily break the illusion. In an open system, it can be difficult to
determine when an object should become persistent by remote reachability. In the long term,
persistent references to remote objects threaten the maintainability of the persistent stores
involved.

With regards to this problem, existing related work typically avoids the issue completely.

Chapter 5. Research Issues to be Addressed 73

It may force the application programmer to ensure that client programs explicitly establish
references to remotely-invokable objects every time they are run. It may allow the program
mer to make references to remote objects persistent in the form of string identifiers; but
with no requirement that services be maintained as long as references for them in the form
of string identifiers persist. Where existing work does address the first problem, it obliges
servers to maintain their services for as long as they are remotely used. The problem with
this approach is that the server can suffer from having to maintain resources indefinitely, if
it cannot determine that a client no longer needs them.

Chapter 6 presents solutions for a workable compromise. It explores the issues associated
with extending persistence by reachability across a distributed system. Persistent references
to remote objects are still supported, but the intention is that they can only be preserved for
use within one lifetime of an application. Application leases, set on remote use of persistent
objects for the duration of a distributed application’s lifetime1, limit the use of remote ref
erences. They provide a solution that compromises on reliability of references in favour of
greater store autonomy.

5.2 Problem Two: Coping with Copying

The second problem is raised by copying object graphs between stores, as happens, for
example, when an object is passed by copy as a parameter in an RMI call. Large object
graphs tend to build up in persistent stores over time. In a long-lived system, assumptions
are more likely to change about the size of an object graph and the context in which it is
used, during its lifetime.

Some existing related work ignores this problem, by assuming that the programmer is aware
of the size of object graphs that they copy between sites and is happy to cope with the costs
of copying large object graphs when this does occur. Other work forces the programmer to
explicitly indicate which objects of a graph should be copied and/or which should not, on a
per object basis. Alternatively, the programmer may have no control; copying may be done
between sites only in the implementation at the level of pages rather than objects.

Existing work does demonstrate that it is possible to separate policy for object usage from
object definition. This sort of flexibility needs to be applied to the handling of object graph
copying. The GemStone/S support for limiting the depth of an object graph copy demon
strates that it is possible to adapt to changing object graph size over time. This sort of
adaptability is needed for controlling object graph copying, with greater choice for how that
control should be achieved.

1A distributed application’s lifetime may span multiple store shutdowns and restarts.

Chapter 5. Research Issues to be Addressed 74

Object-copying policies provide the solution. Chapter 7 presents the motivations and as
sumptions behind the use of object-copying policies for persistent applications. The de
sign is described in chapter 8, with greater detail included at the implementation level in
chapter 9. The evaluation in chapter 10 concludes that use of these policies does ensure
adaptability, over time, for the copying of object graphs between persistent stores to deal,
in particular, with the problem of how to handle large graphs of persistent objects in a dis
tributed system.

Chapter 6

Persistence by Reachability across a
Distributed System

6.1 Introduction

The simplicity of the orthogonal persistence model argues for its use in distributed systems.
By removing the burden of explicit data storage management, orthogonal persistence sup
port leaves the application programmer free to focus on the details of the application task
and the challenges of distributed application management, rather than having to juggle the
concerns of all three simultaneously. In theory, applying principles of orthogonal persis
tence to a distributed system means that, to ensure that persistence remains orthogonal to
type, it should be possible for an object of any type to become persistent; even if the object is
actually of a proxy type that holds a reference to an object in a remote process. It also means
that, where the determination of an object’s persistence is by reachability from root objects,
there is a requirement to ensure referential integrity: once an object becomes persistence
reachable, even from a remote VM, that object and all the objects it references, directly and
indirectly, will persist.

Within one process running over a persistent store, it is possible to guarantee the consistent,
stable state of persistent objects. However, such attempts to extend orthogonal persistence,
from a single process to the less reliable and less controllable world of a distributed system,
sacrifice consistency guarantees (and the integrity of object references, in particular) in the
persistent stores involved.

The illusion of a persistent connection can be provided, as demonstrated by the support for
persistent remote method invocation for Java (PJRMI) described in chapter 3. However,
there are several problems with maintaining this illusion.

Chapter 6. Persistence by Reachability across a Distributed System 76

1. It is unrealistic to assume that, just because a reference to a remote object has been
made persistent, it will always be possible to access the remote object successfully.
Distribution-related errors caused by process crashes and network delays or failures
are unavoidable and easily break the illusion of a persistent connection.

2. It can be difficult to ensure that the remotely-referenced object exists for as long as it
is required. Extending persistence by reachability across a distributed system implies
that if an object becomes persistent and it holds a reference to a remote object then
the remote object must become persistent too. It can be difficult to determine when,
where and how an object should become persistent by remote reachability though.

3. A long-term problem exists with persistent connections between distributed objects:
they threaten the maintainability of the persistent stores involved. A store does not
have the control to maintain a consistent state over its objects and to garbage-collect
those that it no longer wishes to support, if it is obliged to provide remote access to
objects for as long as references are held to them from other stores. By the same
token, a store does not have control over the integrity of its references when it holds a
reference to an object in a remote store, making it dependent on the remote store for
its own referential integrity.

A range of solutions have been considered for these problems. The emphasis on the solu
tions is that they be realistic, rather than idealistic. The appropriateness of a solution for
a distributed, persistent system depends on the priorities of the application programmer(s)
that develop and maintain the system.

Thus, an application programmer must choose which of two issues is more important for
their persistent, distributed application: a reliable, consistent, local persistent store or a
simple model of programming with automated storage of objects, even when those objects
are proxies for objects in a remote store. Realistically, because of the intrinsic lack of
reliability in a distributed system, they cannot rely on having both.

To run a distributed application with reliable, consistent persistent stores, it is necessary to
ensure that no references to remote objects ever become persistence reachable and to ensure
that no process that uses an object remotely is long-running, in order to limit the obligation
of the store providing remote access to the object.

Alternatively, to take advantage of the orthogonal persistence model in applications running
over distributed persistent stores, the application programmer must make a tradeoff between
the simplicity of using distributed objects that can become persistent and the consequent
lack of reliability and consistency in their persistent stores.

Section 6.2 explores the issues of problem 2 above, associated with determining persistence

Chapter 6. Persistence by Reachability across a Distributed System 77

by reachability across a distributed system, and describes the extra support developed to
help address this issue for PJRMI.

Where the orthogonal persistence model has higher priority, it is still recommended that
indefinitely maintaining references between distributed, persistent stores is avoided. Sec
tion 6.3 presents support for a compromise to address problem 3 above. This compromise
provides the benefit of persistent, distributed objects, but restricts it to within the lifetime of
a distributed application. A conservative position is taken on the persistence of remotely-
accessible objects for the duration of an application’s lifetime. The compromise involves
introducing time limits, appropriate to the duration of a given application’s lifetime, on the
remote accessibility of objects and on the usability of references to remote objects. The long
term usability of references to remote objects is traded off against the increased autonomy
of persistent stores, with the intention of increasing the stores’ long-term maintainability.

6.2 Determining Persistence Across a Distributed System

6.2.1 Orthogonal Persistence in a Distributed Context

PJama supports persistence by reachability from named roots of persistence. Within one
PJama VM (PJVM), such reachability is determined each time a stabilisation is initiated. At
stabilisation, persistent object updates are propagated to stable storage automatically. The
challenge for PJRMI is to be able to determine whether an object should be made persistent
because of its reachability from remote, persistent roots.

In theory, the rule of persistence by reachability can be applied to a distributed system as
follows:

1. An object will become persistent if it is referenced by a local, persistent object.
(It will not become persistent if it is only referenced by a local, non-persistent object.)

2. It will become persistent if it is only referenced by a persistent object in another
PJVM.

3. It will not become persistent if it is only referenced by a non-persistent object in
another VM.

The PJama platform addresses point one by taking care of local, persistence-reachable ob
jects. However, the PJRMI support described in section 3 does not ensure that remotely-
invokable objects do not become or remain persistent: it takes a conservative approach
to their persistence precisely because of the difficulty of determining when a remotely-
invokable object is reachable or no longer reachable from a remote, persistent object. This

Chapter 6. Persistence by Reachability across a Distributed System 78

difficulty, particularly in the face of client store shutdowns and restarts, is explored in detail
in the rest of this section.

To address points two and three, Java RMI’s Distributed Garbage Collection (DGC) imple
mentation, as introduced in section 3.1, is helpful. The exportation of an object for remote
use in standard Java RMI is not sufficient on its own for that object to be reachable and so ex
ist beyond an invocation of the Java VM’s garbage collector. Only weak references track the
object from tables of the RMI implementation; if they are the only references to an object,
it can still be garbage-collected. Once a remote reference has been established to it though,
the DGC implementation ensures a strong reference is then maintained to the remotely-
invokable object within its own VM; ensuring the object cannot be garbage-collected at
least as long as this strong reference is maintained. Thus, the DGC implementation can
be leveraged to find out which local, remotely-invokable objects are referenced from other
VMs.

However, while the DGC information tells us which objects are in use by the current dis
tributed program execution, it does not tell us what objects must persist beyond the current
program execution. If a client makes a reference to a server object persistent, and then the
client terminates and wishes to use that reference at some later time when it is rerun, then
additional support is necessary to determine that the service is referenced from a persis
tent client. Thus, it is necessary to distinguish between a reference from a persistent object
in another PJVM and a reference from a non-persistent object in another VM in order to
determine persistence by reachability.

Since PJama operates in an open environment, the distributed system can be composed of
both standard JVMs with no persistence support and PJVMs, running Java over persistent
stores, which do have the ability to make objects persist. There are four possible permuta
tions for the VMs involved in the two sides of an RMI call, as illustrated in figure 3.2. This
adds to the complexity of determining whether an object is persistent by reachability across
a distributed system, as will be illustrated in the next section.

6.2.2 Persistence with Direct and Indirect Reachability

The reachability of objects across distributed VMs is tracked by the DGC implementation, as
described below. A client obtains a reference to a remotely-invokable object in another VM,
initially in the form of a marshalled stub object. The DGC client implementation detects the
stub object during deserialisation and, using the object identity and VM identity held in the
stub, makes a d i r ty method call back to the DGC server implementation at the VM that
hosts the actual remotely-invokable object. The VM hosting the remotely-invokable object
now knows that this object is referenced from the client’s VM.

Chapter 6. Persistence by Reachability across a Distributed System 79

step 7

PJVM 5 JVM 10 PJVM 1

stub stub
step 6 step 3

STORE STORE

Figure 6.1: Direct and indirect reachability from a remote, persistent object

The DGC implementation is not concerned with the persistence of objects across the dis
tributed VMs though. If the client object is made persistent then, by reachability, the ref
erenced, remotely-invokable object should also be made persistent. A way is needed to
inform the VM hosting the remotely-invokable object that this object now needs to be made
persistent. In PJama, the persistence of new objects is only actually determined at stabili
sation points in a persistent program. Tracing reachability from persistent objects through
multiple VMs, especially in an open, persistent system where some of those VMs may have
no support for persistence, raises interesting issues. These are illustrated in the steps of the
following scenario (see figure 6.1):

1. A remotely-invokable object A is created in PJVM 1. It is not currently reachable from
any persistent object.

2. An object M is created in JVM 10. Note that there is no support for persistence in this
VM, since it is a standard JVM.

3. Object M obtains a reference to A. A stub object is created in JVM 10, representing A.

The situation at this point is that the only reference established between VMs is the
one labelled step 3 in figure 6.1. If stabilisation takes place in PJVM 1 after step 3,
then PJVM 1 is aware that A is remotely-used, courtesy of the DGC tracking of remote
references. A is not currently persistent.

4. An object X is created in PJVM 5.

5. Object X obtains a reference to remotely-invokable object M. A stub object is created
in PJVM 5, representing M.

Chapter 6. Persistence by Reachability across a Distributed System 80

6. Object X is made persistent, by being made reachable from an existing persistent
object W.

At this point the second reference established between VMs is the one labelled step 6
in figure 6.1. After step 6, a stabilisation at PJVM 5 will make object X persistent,
by reachability from W. This also means that the stub local to PJVM 5 for object M
becomes persistent by reachability from X. The implication is that M and A are now
also persistent by reachability but their VMs are not aware of this.

7. Object X then obtains a direct reference to A from M. A stub object is created in PJVM
5 representing A.

The final situation for this scenario is the complete illustration in figure 6.1, where all
three references are now established between the VMs. If stabilisation takes place in
PJVM 1 after step 7, then PJVM 1 is aware that A is remotely-used by objects in both
JVM 10 and PJVM 5. In fact, A should now also be persistent by direct reachability
from X and by indirect reachability from X via object M.

The important aspects of this scenario are brought out in the paragraphs below.

Firstly, the usage of object M in this scenario demonstrates that it is possible for an object to
have roles in a distributed application as both a client and a server.

Secondly, the scope of the problem of determining persistence by reachability across the
distributed system can be examined using this scenario. The DGC implementation can de
termine reachability even when remote references are passed via intermediary sites to third
party VMs. Thus, it is the DGC implementation that informs PJVM 1 when A becomes
reachable from object X in PJVM 5, as illustrated in step 7 of figure 6.1. However, determin
ing the persistence of object A at that point is a little more complex. We cannot afford to
freeze the whole distributed system and do a global checkpoint that follows all references
from each persistent root in the system to determine all the objects reachable from persis
tent roots. It’s not scalable, very difficult in the face of errors and the freezing of program
execution in one PJVM, because another remote PJVM wants to stabilise its objects, is not
likely to be acceptable to its users; neither is the amount of time it would take to trace all the
objects reachable from persistent roots across the whole distributed system.

Support could be added to PJama so that PJVM 5 can detect which local stubs have been
made persistent and inform other VMs of this. After stabilisation has completed, it is possi
ble to determine whether a stub is persistent. PJVM 5 could notify PJVM 1 when A becomes
persistent by reachability. However, there is no code at JVM 10 to deal with the same sort of
notification for object M. The standard JVM hosting M loads its standard JDK core classes,
including those for Java RMI and DGC, locally, so there is no scope for adding extra support

Chapter 6. Persistence by Reachability across a Distributed System 81

here for forwarding on messages about persistence reachability. It is not clear what action
should be taken on object M in this situation.

6.2.3 The Object Should Persist - But Where?

This scenario raises an interesting issue for an open persistent system. With reference to
the final situation illustrated in figure 6.1, object X is now persistent by reachability from
the already-persistent object W. Semantically, remotely-invokable object M is reachable from
object X and should also become persistent. However, object M has been created in a JVM
which itself has no support for persistence, so M cannot be made persistent locally.

Should the remotely-invokable object M be copied or moved to the site of the client
object X, so that it can be made persistent?

Moving object M to a PJVM with a persistent store, such as PJVM 5 from which it is refer
enced, might at first glance seem a reasonable solution. However, if the scenario is extended
to include other VMs that also hold references to M at this point, it quickly becomes an un
workable solution. If M was moved to PJVM 5, all references to M would have to be updated
to refer to the new object at PJVM 5. The DGC tracks all the VMs that hold references to
M, so identifying the VMs that have to be notified of this move would not be a problem.
However, dealing with this notification would only be feasible for other PJVMs that have
modified PJRMI support to deal with this. Standard JVMs with references to M may exist
and have no mechanism for replacing one stub with another containing updated location
information for a moved, remotely-invokable object such as M. Alternatively, if M is copied
to PJVM 5 instead, there is no mechanism in JVM 10 for ensuring that any updates made to
the original M are subsequently propagated to the copy at PJVM 5. If M has connections to a
large graph of objects or it is dependent on its locality, it should probably not be moved or
copied at all.

Should the autonomy of the JVM be respected?

The persistent client X will eventually get a ConnectException if it tries to use object M
after the standard JDK program that created it has been terminated or fails.

A compromise.

A review of the situation reveals that, while it is not problematic to make remotely-invokable
objects persistent, there are risks involved in making clients of remotely-invokable objects
persistent. A compromise of referential integrity is risked by a client that is persistent or may
later become persistent, when it obtains a reference to a remotely-invokable object running
in a standard JVM. Since the mechanisms for obtaining a reference to a remotely-invokable

Chapter 6. Persistence by Reachability across a Distributed System 82

object in both JVMs and PJVMs are exactly the same, it is difficult for a client to evaluate
this risk. Thus, the best recommendation is for PJRMI to track whether a client references
objects in a PJVM running over a persistent store or not, and for clients to be able to query
this information so they are at least better informed. If PJRMI users do not make use of this
information, they must be aware that making clients of remotely-invokable objects persistent
can potentially corrupt that client’s persistent store.

6.2.4 PJRMI’s Solution

It has been illustrated that it is a challenge to track the reachability of objects for persistence
across a distributed system of VMs where some of these VMs are PJama VMs supporting
persistence and others are not. This is one of the effects of supporting an open, persistent
system like PJama. For PJRMI, it seems best to take a practical, conservative position
when dealing with the problems raised above. This type of approach is most likely to yield
working and understandable support for communication across the distributed system.

6.2.4.1 Detecting No Persistence By Reachability

Additional support is added to PJRMI for detecting where there is no persistence by reach
ability of remotely-invokable objects; this support builds on that provided by Java RMI’s
DGC implementation. In addition to the information currently collected on the references
created between objects in different JVMs, PJRMI tracks which of the objects, holding ref
erences to a remotely-invokable object, are created in a PJVM running over a persistent
store. Each client PJVM running over a persistent store now generates a persistent store
ID. Whenever the DGC implementation detects that a VM has received a stub object, it
normally sends back a d i r ty call to the VM where the stub originated, passing the VM’s
ID as a parameter. This allows the originating site to track which VMs hold a reference
to its object. The originating site issues a lease on the reference, for which the client must
regularly make renewal requests. Such requests are necessary in order to avoid the leases
expiring, which could make the remotely-invokable object available for garbage collection.
For PJRMI, when the DGC makes a d i r ty call for a PJVM running over a persistent store,
it passes back to the originating site not only the VM ID and the lease but also the persistent
store ID.

The table of information about which VMs hold references to a remotely-invokable object is
made persistent at server PJVMs running over persistent stores. On store restart, this table is
checked for expired leases: where a remote VM’s lease has expired and it is not a PJVM that
was running over a persistent store (indicated by the existence or otherwise of a recorded

Chapter 6. Persistence by Reachability across a Distributed System 83

persistent store ID for that VM), local remotely-invokable objects are no longer considered
to be reachable from that VM. The implication of this is that if the lease has expired but
this was for a PJVM that was running over a persistent store, then references to the local
remotely-invokable objects may still be held in that store.

Thus, if a client is run in a standard JDK and it is the only client of a remotely-invokable ser
vice, that service will become unreachable after the termination of the client. Alternatively,
if a client is run over a persistent store and it is the only client of a remotely-invokable ser
vice, any services it uses will become persistent, unless the client drops its reference during
program execution, the reference is garbage-collected and the DGC implementation informs
the server that the remote reference no longer exists.

6.2A.2 Determining Non-persistence of Remotely-invokable Objects

Additional support is added to PJRMI for determining which objects are clients of remotely-
invokable objects in VMs with no persistence support. Where a remotely-invokable object
is created in a PJVM running over a persistent store, the stub object generated for it will
include a persistent store ID. PJRMI determines whether a client in a persistent context
references an object in a context with no persistence support by checking for the existence
of a persistent store ID in the stub.

6.2A.3 Supporting the Movement of Stores Between Hosts

The addition of persistent store IDs to stubs also contributes towards support for moving
stores from one host to another. The store ID in the stub identifies the location of objects
as being in a store rather than in a VM execution. The PJRMI mechanism for refreshing
client’s stubs on first use after store restart is used to update store location too.

The relocation of a store takes place as follows, illustrated in figure 6.2.

1. At a convenient and consistent point in program execution, the store is shut down on
its old host and later it is restarted on its new host.

2. A client makes an RMI call on an object in that store.

3. The PJRMI implementation at the client attempts to make the call to the remotely-
invokable object at its original host. It catches the ConnectException raised because
this service is no longer listening for incoming calls from there.

4. The PJRMI implementation initially makes the assumption that the store has moved
and delegates its call to a distributed-system-level service holding registrations of per-

Chapter 6. Persistence by Reachability across a Distributed System 84

p e r s i s t e n t

r o o t

2 . R M I c a l l f a i l s

s t u b A

5 . R M I c a l l

s u c c e e d s

3 . n e w s t o r e

l o c a t i o n

1 . S e r v e r \

m o v e s h o s t s
4 . u p d a t e d s t u b

S t o r e l D - > H o s t

S t o r e l D - > H o s t

S t o r e l D - > H o s t
P J E x p o r t e d

S e r v e r P J V M S t o r e L o o k u p

@ h o s t 2

Figure 6.2: Movement of stores between hosts

sistent stores available in the system. (This uses a mechanism similar to that described
in the distributed support system of the DRASTIC project [ED99]).

5. This service returns the new location of the persistent store that the client wishes
to communicate with. The PJRMI implementation then uses the stub-update code
supported by the PJExported service in the PJVM at the store’s new location to
obtain an up-to-date stub.

6. The client’s current and subsequent RMI calls then use this new stub for the new
location of the store from that point on.

6.3 Application Leases on Remote Use of Persistent Objects

With support provided for the persistence of remotely-invokable objects and of the remote
references to them, consideration must be given to the maintainability of persistent stores
containing such objects. It is hard to prove whether a store is maintainable over its lifetime,
when that lifetime may be measured in years; such a study is outwith the scope of the
author’s work. However, there are steps that can be taken to improve the probability of a
maintainable store.

The first step is to limit the obligations of one store by, for example, limiting remote access
to objects in it. The greater the autonomy of an individual store, the greater the likelihood

Chapter 6. Persistence by Reachability across a Distributed System 85

that a store can maintain a consistent state over its reachable objects. After the limit on
remote access to an object has run out, it can free resources that were used for supporting
remote access and is free to make unreachable, locally as well as remotely, those objects
that the server no longer wishes to support; they may then be garbage-collected.

The second step that can be taken for store maintainability is to limit the dependency of one
store upon another. The successful execution of an application over a store is dependent
on its ability to follow references between objects in order to access their state. As soon as
even a single reference is established from one store to an object in another, the former store
becomes dependent on the latter for the successful execution of an application that needs to
follow that reference e.g. to invoke a method on the remote object.

Given that a limited persistence is desirable for connections between remotely-invokable
objects and the remote references to them, support has been developed to set and maintain
limits on a store’s obligations and dependencies. The support for limiting a store’s obliga
tions is described in section 6.3.1, while that for limiting a store’s dependencies is described
in section 6.3.2.

6.3.1 Application Leases for Limiting Store Obligations

A lease, in the form of a time limit or a duration of time, can be set and enforced to limit
remote access to objects to within the scope of an individual application’s lifetime over a
store. This application-level lease does not have the same implications as the leases used by
Java RMI for distributed garbage collection (DGC).

In Java RMI, the DGC implementation uses leases and reference counting to keep track of
the reachability of objects across distributed VMs, to try to ensure that a remotely-invokable
object is not garbage-collected while a reference to it is still held by a remote VM. The
client-side DGC implementation requests a lease on a remotely-invokable object, when it
receives a reference to one, and regularly makes requests to renew the lease while the ref
erence is still in use. This lease renewal is done automatically; the default lease is for ten
minutes. The lease on the remotely-invokable object will run out if it is not renewed by a
client holding a reference to it; because clients have crashed or network problems prevent
clients from contacting the server. The lease will be terminated if all proxies for the object
that were referenced by clients have been garbage-collected or if the clients holding such
references are shut down.

Thus, if a DGC lease is granted to a client, it can only be maintained by the client as long
as its process is active. The model of operation for orthogonally-persistent applications
is one of maintaining the illusion of continuous operation, across shutdowns and restarts
of programs running over a persistent store, as described in the OPJ specification [JA99].

Chapter 6. Persistence by Reachability across a Distributed System 86

Using the basic PJRMI support described in section 3, if the client runs over a persistent
store, it cannot maintain the lease over a store shutdown and restart. Using the extra support
described in section 6.2 relieves a client running over a persistent store from depending on
regular renewal of a lease to ensure the remotely-invokable object is not garbage-collected
while the client still holds a reference to it. However, it does make the client dependent
on getting access to the remotely-invokable object and leaves the server with the obligation
to provide remote access for at least as long as it is needed. If both the reference held
by the client and the remotely-invokable object at the server are made persistent, then to
try to ensure the client can always use its reference, the server is obliged to support the
remotely-invokable object forever. This is because, if the persistent reference at the client
becomes unreachable, it can only be garbage-collected by a disk garbage collector. It would
be prohibitively costly to add support to the disk garbage collector to notify the server that
the reference has been freed1.

An application-level lease allows an application to benefit from the persistence of a
remotely-invokable object during the application’s lifetime, while ensuring that there is no
obligation to maintain the object for remote use after that application has completed or is
terminated.

6.3.1.1 Setting the Lease: Design

A lease is set on a server application process i.e. one that makes remotely-invokable objects
available for remote use. Though an application process can, of course, have the role of both
client and server for different objects, the significant point here is that the lease applies to its
role as a server.

To set a lease on an application, the application is run within an instance of a wrapper class.
This wrapper is configured with the lease during initialisation and enforced on the objects
made remotely-invokable in the course of the subsequent application lifetimes.

Objects exported for remote use within the application wrapper will be remotely-invokable
until the lease time limit runs out. After that time, the objects, that were exported in the
course of the application’s lifetime to which the lease applies, will be unexported so that
they are no longer remotely-invokable. If no local references remain to the object, it is
possible for it to be subsequently garbage-collected.

1 Dave Ungar of Sun Microsystems Laboratories estimates that adding support for weak references to a disk

garbage collector would increase the complexity o f its implementation threefold. Tony Printezis backs this up

with consideration of one of the difficulties of providing such support in his own disk GC implementation:
where there is currently only one reference count per object in a store partition, two counts would be needed

- one each for strong and weak references - for every object in a store partition, to support references that are

weak for persistence [PriOOb],

Chapter 6. Persistence by Reachability across a Distributed System 87

An application lease is intended to be set with a large-grained value (i.e. with a value of
hours, days or months, rather than minutes or seconds) and used with a large margin for
error.

6.3.1.2 Setting the Lease: Implementation

The wrapper class org.opj .d istribution .pcopy .DistributedContext is used for set
ting a lease on an application. An application programmer creates an instance of this class,
referred to hereafter as the DC, to wrap their application. The DC is configured, on creation
or immediately before application task invocation, with the class to be used to run the appli
cation and the lease to be enforced on its objects.

The lease is initially specified as a duration of time. Immediately before the application
process is invoked, a lease time limit is set; calculated from the lease duration, where:

leaseLimit = currentTime + leaseDuration

The DC creates a thread to run a DCLeaseMonitor. This is run just before the application
task is invoked, and put to sleep until the lease runs out.

The application runs as normal, invoked from within its DC wrapper. Once the application is
running, objects can be made remotely-invokable, maintained as such and references to them
can be passed to remote VMs until the lease time limit is reached. When an object is made
remotely-invokable it is registered with the DC. The DC maintains only a weak reference
to the object though, so that the object may be garbage-collected if it becomes otherwise
unreachable.

After the lease time limit is reached, the DCLeaseMonitor Thread wakes up. It “unexports”
all objects that were made remotely-invokable during the course of the application’s lifetime
in this DC. The unexported objects may continue to exist in their local JVM and/or store, if
they are reachable locally, but they will no longer be remotely-invokable.

By iterating through the list in the current DC, unexporting each of the objects listed there,
only the objects made remotely-invokable during the current application’s lifetime are un
exported, rather than removing all the remotely-invokable objects in the above tables after
the current DC’s lease has run out.

Unexporting a remotely-invokable object removes the entries for that object from the im
plementation tables that track them for Java RMI: i.e. the DGC lease tables and remotely-
invokable object lookup tables of the sun.rm i.transport.ObjectTable class. It also
removes the entry for that object from the PJRMI implementation PJamaPJExported table.
This table is used to make a persistent object remotely-invokable again on its first remote use
after a persistent store restart. Removal of an object’s entry from this table means that, even

Chapter 6. Persistence by Reachability across a Distributed System 88

if a remote JVM maintains a reference to a remotely-invokable object beyond its DC lease, it
will not be possible for the remote JVM’s use of that reference to trigger a re-exportation of
the object for remote use, after the lease has run out.

A PJActionHandler defined for the DCLeaseMonitor ensures that its thread is recreated
on a store restart. If the lease time limit has not yet been reached, the thread will be set to
sleep again and remotely-invokable objects of the associated DC will be re-exported on first
use. If the lease time limit has passed or is too close for any remote method invocations to
be serviced before the limit is reached, then unexportation of the DC’s remotely-invokable
objects will take place at this time. In this case, since none of the DC’s objects will yet
have been re-exported for remote use, it is only necessary to remove the entry for DC’s listed
objects from the PJamaPJExported table, to prevent their re-exportation in the future. The
DCLeaseMonitor thread then terminates.

6.3.2 Lease Management for Limiting Store Dependencies

Given the support for server-side application leases described above, once a server applica
tion process has made objects available for remote use with its application-level lease ini
tialised, then client application processes can obtain references to these remotely-invokable
objects. However, the clients can only use these references until the lease at the server runs
out. The client will get an exception if they try to use those references subsequently.

Thus, the imposition of a lease on remote access to server objects also limits the usability
of the references to those objects held by clients. The benefit of this is that it reduces the
dependency of the client on the server; in that the client can only depend on the server for
as long as its reference is valid.

6.3.2.1 Coping with a Lease: Design

The key to handling the client’s now-limited dependency on remote objects is to ensure that
the client does not waste time and resources making RMI calls from its reference to the
server after the lease has run out and to provide informative exceptions to the client when it
tries to use the defunct reference so that it knows that the timed-out lease is the reason for
the failure.

To support informed client use of references to application-leased server objects, the stub
objects used for these references by clients are set with the lease value of the server from
which the stub originated. When a client makes a remote method call, the stub object ensures
that the lease has not run out yet at the server before forwarding the call to it. If the stub finds
that the lease has run out, then the call is never made to the server. Instead, an exception is

Chapter 6. Persistence by Reachability across a Distributed System 89

raised at the client with an informative error message containing the identity and location
of the no-longer accessible object, to aid the programmer in diagnosis and handling of the
failure. The tradeoff here is that the client is informed of the identity and location of the
object it failed to use remotely, in order to help the client with error diagnosis, at the cost of
losing location transparency and compromising security for the remote object.

6.3.2.2 Coping with a Lease: Implementation

The DC creates an org.opj .d is tr ib u tio n .co n tex t. DCLeaseServer as a remotely-
invokable object and configures it with the current lease time limit just before invoking
its application, in order for a server to provide lease information to client VMs. The
DCLeaseServer can then be contacted from the client VM’s class
org. op j . d is tr ib u tio n . con tex t. DCLeaseClient class in a client VM. A client uses the
DCLeaseClient to work out the remaining lease on a server object, relative to the client’s
local time, and set this lease in the appropriate stubs as described below.

When a stub is serialised by the server running within a DC, the code of the writeObject
method in the j ava. rmi. server . RemoteStub class ensures that:

• if the lease duration is already set in the stub, it will currently be set as a local absolute
time limit: rather than serialising this absolute time limit, a duration relative to the
current time is calculated from it and serialised instead, or

• if the lease duration is not set, it is left unset when serialised.

A lease duration is a period of time: five hours or thirty days, for example. A local absolute
time limit is a point in time at a specific host machine: Fri Feb 18 16:46:33 GMT 2000 on
the machinejava.dcs.gla.ac.uk, for example.2.

When a stub is deserialised by a client, the j ava. m i . server. RemoteStub’s readOb j ect
method ensures that:

• if the lease duration is already set in the stub, it is converted to a local absolute time,
or

• if the lease duration is not set, the static method registerStub of the DCLeaseClient
class is called. This method adds the stub to a list of stubs, for which the lease dura
tion should be obtained from its originating server. These lease durations are obtained
after deserialisation of the current stream has finished.

2The implications of using lease durations and local time limits, with respect to the problems of global time
in a distributed system, are discussed in section 6.3.3.2

Chapter 6. Persistence by Reachability across a Distributed System 90

When deserialisation of the current stream has finished, a call is made to the method
setStubLeaseLimits of the class org.opj.distribution.context.D C L easeC lient,
to set lease durations for those stubs that still need them. One call is made to each VM
from which these stubs originated, to obtain its current DC lease time. The current time
is noted just before the call is made. The lease is obtained via an RMI call to the method
getDCLeaseDuration of class DCLeaseServer . The DCLeaseServer calculates an up-to-
date lease duration, relative to the current time at the server. Back at the client, the returned
lease duration is added to the time noted before the call, to obtain a local lease time limit.
Then each of the stubs, in the list associated with that VM, is set with that lease limit.

During client execution, when an RMI call is made, using one of the references obtained
from the server running in a DC, then the code of the stub class representing the reference
makes a check on the lease limit held in the stub for the remotely-invokable object.

• If the lease time limit, as set in the stub, has not yet been reached then the stub goes
ahead and makes the RMI call.

• If the current time is later than the limit, then a RemoteException is raised with
an informative error message, that includes the information held by the stub on the
object it represents. For example, the following error message was given on failure of
a client’s access to a remotely-invokable m essage.service.M essageServicelm pl
object, where connections to the remotely-invokable object were originally made via
port 59058 on the machine java.dcs.gla.ac.uk (represented as an IP address below).

org.op j.d is tr ib u tio n . con text. ExpiredLeaseException:
RemoteStub method invocation:
aborted because server's lease on corresponding object has run out:

message.service.MessageServiceImpl_Stub
[RemoteStub [ref: [endpoint:[130.209.240.54:59058](remote),

objID:[66d7b0el:dd74619f61:-8000, 1]]]]

6.3.2.3 Lease at Client and Server: an Illustration

The steps taken to set a lease in a client’s stub are illustrated in an example in figure 6.3.
In this example, it is assumed for simplicity that the clock at both client and server are set
to the same time, but this is not a requirement for use of application leases. A lease is
set within a VM as a time relative to the local host’s clock. The lease is converted to a
duration for communication between the client and server VMs. The implications of using
lease durations and local time limits are discussed in section 6.3.3.2. The local time limit
calculated by the client will work out to be earlier than the time limit at the server, because

Chapter 6. Persistence by Reachability across a Distributed System 91

it takes into account the time for the lease request message to be sent across the network
between client and server and the result returned. While it may cheat the client out of
some time when it could interact successfully with server objects, it does ensure that the
client cannot end up with a lease limit set to a later time than the limit at the server; the
latter would be the case if the lease limit at the client did not take into account the time to
communicate the lease duration over the network from the server.

6.3.3 Implications of Using Application Leases

6.3.3.1 Lease on Application, Not Object

A lease is set on an application process, on the basis that there is one application process
running at any one time in a VM operating over one store. This is a reasonable assumption
for the PJama platform, since PJama allows only one VM at a time to run in read/write
mode over a store, and Java has no notion of multiple, protected address spaces within
one JVM. A tradeoff is made between fine-grained control over the time limits for remote
access to individual objects in a store and control over all remote access to the store for
greater store autonomy. It may, for application purposes, be appropriate to provide remote
access to one object in the store for a short period of time and to another object in a store
for a longer period of time. However, the implication of application leases is that all objects
made remotely-accessible in one application will continue to be remotely-accessible until
the application lease time limit is reached.

More complex lease support could be provided. An application lease could be set initially
on overall remote access to a store. Additional leases could then be set on individual objects
made remotely-accessible during the application’s lifetime; with the proviso that individual
object leases can be set to run out before the overall application lease but are never allowed
to be set to run out after it. The lease value in a stub would be set to: the lease on the
individual object, if it exists; the application lease otherwise. The author prefers the clean-
cut semantics of the current application lease though.

6.3.3.2 Leases and Time

Use of application leases does not require global clock synchronisation. This is because the
lease should always be set with a large-grained value and used with a large margin for error
(i.e. with a value of hours and days rather than minutes or seconds). It is also because the
lease, though represented as a local absolute time limit within one VM, is converted to a
duration whenever it is passed between VMs; so the validity of the lease is not dependent
on the source and destination machines having clocks set to the same global time.

Chapter 6. Persistence by Reachability across a Distributed System 92

S E R V E R C L I E N T

1 . C r e a t e D C :

c o n f i g u r e w i t h a p p l i c a t i o n c o d e

a n d l e a s e s e t t o 6 h o u r s

2 . R u n D C :

t i m e = 1 0 : 0 0

l e a s e l i m i t = t i m e + l e a s e = 1 6 : 0 0

D C r u n s s e r v e r a p p l i c a t i o n

3 . C r e a t e o b j e c t A

4 . E x p o r t A f o r r e m o t e u s e

7 . R e t u r n A :

R e p l a c e d w i t h s t u b d u r i n g s e r i a l i s a t i o n

L e a s e c u r r e n t l y u n s e t i n s t u b

1 0 . R e t u r n c u r r e n t l e a s e d u r a t i o n =

l e a s e l i m i t - c u r r e n t t i m e =

1 6 : 0 0 - 1 2 : 0 2 = 3 h o u r s 5 8 m i n s

5 . R u n c l i e n t a p p l i c a t i o n

6 . L o o k u p o b j e c t A

8 . R e c e i v e s t u b f o r A

9 . t i m e = 1 2 : 0 0

R e q u e s t l e a s e o n A

1 1 . R e c e i v e l e a s e d u r a t i o n

L o c a l l e a s e l i m i t =

t i m e b e f o r e r e q u e s t + l e a s e d u r a t i o n =

1 2 : 0 0 + 3 h o u r s 5 8 m i n s = 1 5 : 5 8

t i m e

Figure 6.3: Setting a local lease limit in a client’s stub

Chapter 6. Persistence by Reachability across a Distributed System 93

Leases could be set and used always as durations, if they were used in a non-persistent
system. However, they are converted to local absolute time limits for use within one PJVM
so that, if they become persistent, they should still be valid if the store containing them is
shutdown and later restarted. A persistent duration cannot be interpreted correctly across a
store shutdown and restart: it is impossible to determine for how long a store was shut down,
so that this down-time can be deducted from a lease duration on store restart. However, a
local absolute time limit is still valid on restart, since it is still comparable to the current
time on the local host machine.

6.3.3.3 Reaching Lease Limit During RMI Call

There is a risk of failure for remote method calls, that are initiated by a client before the
lease time limit for the object they wish to use, when the time limit is reached before the
call is completed. A client may initiate an RMI call with what it considers plenty of time for
the call to complete before the lease on the called object runs out. However, factors such as
network delays arid heavily-loaded servers can result in the lease time limit being reached
before the completion of the call anyway.

The Java RMI implementation allows an application programmer to specify whether a
remotely-accessible object should be forcibly unexported, even if there are pending calls or
calls still in progress on the object, or whether these calls should be allowed to run/complete.
For the implementation of application leases, the author has chosen to forcibly unexport
remotely-accessible objects when the lease time limit is reached. While it may be debatable
whether this is the correct choice for this implementation, the reason for it is that servicing
all pending or in-progress calls before removing remote access effectively extends the lease
to the end of execution of the last of these calls, which could be significantly later than the
time limit. Imposing the time limit absolutely provides clean semantics for leases at the
server, at the expense of client failures.

6.3.3.4 Telling the Difference Between Lease Limit and Server Failure

When no process is running over a store, an RMI call made by a client on an object in
that store will fail. How the client handles the failure may depend on whether or not the
application lease on the server-side object has run out. If the lease has run out, the non
active server cannot raise an exception to indicate this. Thus, to support an informed client,
a stub contains the value of the application lease on the object it represents. If the lease has
run out when a client tries to make an RMI call then, even when the server is inactive, the
client gets an informative exception from the stub and it can cut its reference(s) to the stub,
since the stub is no longer usable. If the lease has not run out, the client can confirm this by

Chapter 6. Persistence by Reachability across a Distributed System 94

checking the current value of the lease in the stub; if the server has crashed but may come
back up again before the lease runs out, the stub need not be thrown away, since it’s possible
that it will become usable again in the future.

6.3.3.5 Server-side Persistence

Use of application leases does not compromise the consistency of a persistent store from
the server’s point of view. While an application lease is used to limit remote access to
objects, note that it does not necessarily limit their persistence. Unexporting a remotely-
invokable object to prevent further remote access to it will not confound the expectations of
the programmer about the object’s persistence, unless the programmer has relied only on an
object’s exportation for its persistence.

6.3.3.6 Client-side Persistence

Use of application leases does not improve the consistency of a client’s persistent store.
However, the application lease support provided at the client at least allows for an informa
tive error to be raised on attempted use of a stub with an expired lease.

6.3.3.7 Non-leased Objects in a PJama VM

Because application leases are set relative to a DC to apply to the objects that are made
remotely-invokable within it, it is still possible for objects to persist and be made remotely-
invokable without a lease, when created outside of a DC. The implication of this is that a
store makes no guarantees about remote access to objects that are not under lease: it may
unexport or even drop all references to them at any time. From the client’s point of view,
references it holds to these objects may fail at any time and without the informative error
message of a leased stub.

6.3.3.8 Interoperability Between Lease-aware PJVMs and standard JVMs

Given that PJVMs can operate in an open, persistent system where they may interact with
standard JVMs, the implications of interoperability must be considered. Java RMI classes
that have been extended with support for application leases are still compatible for use by
standard JVMs, with regard to the rules for object serialisation and deserialisation. If a stub
containing a lease is serialised and passed from a PJVM to a standard JVM, its lease will
be disregarded during deserialisation. Standard JDK clients, that have obtained references
to application-leased objects available from a PJama server, may attempt to make RMI calls

Chapter 6. Persistence by Reachability across a Distributed System 95

on those objects after the server’s application lease has run out and the relevant server-side
objects have been unexported.

6.3.3.9 Leasing Remote Access to a Store

Application leases are more persistently maintainable than the leases of Java RMI’s DGC
implementation. They are also more tailored and specific to the handling of remotely-
invokable objects in a persistent system than the style of resource leases for Jini [JL99]
(see section 6.3.4 for more details).

It would be hard to maintain a persistent form of DGC indefinitely across store shutdowns
and restarts, because of scalability and failure problems and because stores, holding refer
ences that need to be taken into account, are not likely to always be active.

If different objects in the same store were to have different lease values, the store would not
be able to do any independent store management until the last of these leases had run out, if
the store is to honour the obligations implied by the leases.

If there were no leases, then a client would have no guarantee at all that it would be able to
get its task done using server-side objects, before those objects disappear or at least become
no longer remotely-accessible.

A lease could be applied to a VM, a transaction, a thread or an object. However, in this case
it is applied to an application, running over a persistent store, that supports remote access to
its objects. This is because the aim of this lease is to set one limit per store on remote access
to its persistent objects.

The support for an application lease allows a client to have some confidence in getting a
task done while there is sufficient time before the lease time limit. However, primarily, it
provides a store with some autonomy. The lease provides one cut-off point, after which
store management can be done independently of all other distributed stores.

6.3.4 Comparison with Use of Leases in Related Work

The use of application leases is similar to the use of leases [GC89] for the maintenance of
file cache coherency in the V system. For this purpose, it was found that short leases on
cached files were usable and fault-tolerant. However, synchronised physical clocks with
bounded drift were assumed. On the grounds that this assumption is unrealistic in large-
scale systems, the author of this dissertation has chosen to support application leases at a
coarser grain. Application leases should rarely be affected by the clock drift of NTP, since
they use lease durations to deal with different clock settings at sites distributed across a

Chapter 6. Persistence by Reachability across a Distributed System 96

network.

The use of leases as durations can also be found in the implementation of leases for
Jini [JL99]. Unlike the implicit use of leases tied to the tracking of stubs for RMI objects in
the Java RMI DGC implementation [RMI98], Jini leases are set and maintained explicitly
by the application programmer on a resource. Their use is intended for dealing with par
tial distributed system failures and also to prevent the accumulation of resources that are no
longer in use.

One of the drawbacks of Jini leases, from the point of view of persistent reference man
agement, is that these leases are set on individual objects representing resources, rather
than imposed by a context over all the relevant objects in that context. Thus, different re
sources in the same JVM can have radically different lease times. The intended use of
application leases, in comparison, is that they ensure that all remote access granted during
an application’s lifetime is revoked by the same lease time limit. This leaves a store with no
commitments to other sites after that lease has expired, giving the store greater autonomy.

Another weakness in Jini leases is that, typically, a client must regularly renew their lease on
a resource to ensure access to it. If a client wishes to keep renewing its lease on a resource
even when it is inactive, it is recommended that lease renewal is passed to a third party
that does continue to be active in the meantime. The problem with this solution, in a long
running persistent system, is that certain processes must be active constantly to renew leases
that are to be maintained for resources that may not themselves be active for some time.
The implication is that the server providing the leased service must be constantly active
to grant these lease renewals and that there is some obligation on the server to maintain
the leased service. This seems unrealistic for long-term maintainability, in all but the most
sophisticated (and expensive) of systems that are required to stay up 24*7.

6.3.5 Future Work

6.3.5.1 Lease Extension

The support provided for application leases does not currently allow extension of those
leases, but there is no reason why this could not be supported. The onus should be kept on
server-control of leases, by ensuring that only the server can extend the value of its lease
beyond its current time limit. The server may be able to base its decision on whether to
extend a lease or not on the information on reachability to its objects from remote VMs, if
it can query this information in its local DGC lease tables.

Once a lease has been extended, updating its value in the DCLeaseServer, it should then be
a client’s responsibility to find out about this lease extension. The client could check for a

Chapter 6. Persistence by Reachability across a Distributed System 97

lease extension on use of its stub close to or after the lease limit in the stub has expired.

6.3.5.2 Stub Lease Values From a Third Party

The current implementation of application leases allows a stub object, already set with a
lease time limit on reception from its server by one client, to be passed to a third party client
with the lease set as a duration based on that time limit. This means that the calculation
of a lease time limit from the duration received by the third party does not take account of
the communication time for the stream containing the stub when it was passed between the
sending client and the receiving, third-party client.

Rather than relying on the received existing lease duration, the third-party client could in
stead directly contact the stub’s originating server, as is the case for other stubs with no lease
already set, and calculate a lease duration based on one received directly from the server.
This is likely to be more accurate.

6.3.5.3 Leases Set Per Store

The current implementation sets a lease on the lifetime of an application program, on the
basis that one Java VM is managed as a single address space, enforcing the model of one
application task running over a VM at a time. Where multiple tasks may be supported over
a single VM, as individual transactions for example, or one VM may work over multiple
stores, in the future, a lease should apply to an individual store. This is because the aim of
using leases is for increasing an individual store’s autonomy.

6.3.5.4 Lease Time Limits in the face of Store Movement

Use of application leases does not require global clock synchronisation. This is because the
lease should always be set with a large-grained value and used with a large margin for error
(i.e. with a value of hours and days rather than minutes or seconds); and also because the
lease is converted to a duration whenever it is passed between VMs. However, an absolute
time lease limit within one store, set in a DC or in a stub object, will not be valid if the store
containing it is moved from one machine to another and the two machines involved do not
have reasonably-close synchronisation of their clocks. Since the lease time limit is set as a
time obtained from a Java VM, it is set relative to midnight, January 1, 1970 UTC. Thus, it
should be possible to consider the two machines to be synchronised sufficiently for use of
lease time limits, if their clocks are synchronised at least to within a few minutes of each
other. Where they are not sufficiently synchronised, extra support is needed to configure a

Chapter 6. Persistence by Reachability across a Distributed System 98

restarted store with the information about the difference between the clocks and to enable
stubs to obtain this difference and adjust their leases appropriately.

6.3.5.5 Stub Error Handling

The problem with failure diagnosis, on raising an exception when a stub’s lease has expired,
is that the same object may be used by different applications. The raising of such an ex
ception lacks the contextual information necessary to work out what application made the
object remotely-accessible in the first place.

Once a stub’s lease has run out, the stub will remain unusable for the rest of its lifetime
at the client. A tool could be developed to replace a persistent, unusable stub with a new,
usable stub, perhaps representing a different object that provides the same service as the
original. Finding the stub in the store, in order to replace it, would be the first challenge.
Including the stub object’s persistent identifier in the failed-use error message would help
here. A store maintainer could then feed this persistent identifier into the tool to identify the
stub object to be replaced.

Chapter 7

Object Copying Policies:
Introduction

Existing object-oriented languages and platforms used in a distributed environment typically
require programmers to make decisions statically about whether objects of a particular class
are passed by reference or by copy to remote sites. Where these objects are persistent,
greater flexibility is required in the specification of such object passing. This is necessary
to cope with the remote use of persistent objects, which have potentially large and complex
object graphs, by a variety of applications and in a variety of distributed environments over
the lifetime of the store.

The following chapters present distribution support integrated with orthogonal persistence
for Java, providing a range of policies for deciding when object graphs are copied between
widely-distributed applications running over persistent stores. Use of these policies pro
motes separation of architectural issues, since they can be adopted dynamically for most
object classes to suit a particular application task and local or wide area network. The poli
cies are evaluated, performance figures are given and the benefits of their use in this and
other programming contexts are described.

7.1 Motivation

A number of variations on support for passing data between distributed sites have been pro
vided over the years. Traditionally, data has been copied between sites, as typified by Birrell
and Nelson’s RPC [BN84] and by Argus [Lis88]. Languages including Emerald (described
in more detail in section 4.3.3) have advocated “call by move” as an alternative. DCOM
and, until recently, CORBA have espoused the passing of objects purely by reference. Now,

Chapter 7. Object Copying Policies: Introduction 100

the trend for remote object access in distributed programming is moving away again from
the model of passing objects solely by reference to one where objects can also be copied be
tween processes (as in Java RMI and the Object-by-Value specification recently published
for CORBA) [OH98]. Given support for both models, it is necessary for the programmer
to define which should be applied to the communicated objects. For example, in a Java
remote method invocation, objects may be passed as parameters or return values: these ob
jects and all the objects reachable from them are passed by copy, unless explicitly marked
(by the programmer who implemented them) to be passed by reference. Given that copy
ing large graphs of objects between processes is expensive in terms of time and space, it is
assumed that the programmer understands the implications of such copying and either only
ever copies object graphs that they know are small or is willing to accept the performance
costs and semantic implications of copying large ones.

Since the object-passing model is defined statically in Java on a per-class basis, this means
that the manner of remote access to all instances of a given class is fixed. This seems to
imply that, when designing an object for use in a distributed application, the programmer
makes the assumption that it will only be used by the application for which it has been
implemented and in the one context of that application’s distributed environment.

Combining support for persistent objects with support for distributed applications changes
these assumptions. Like traditional databases, a persistent object store is intended to be
populated incrementally and maintained over months or years. This means that persistent
objects may be used by different applications over time: for example, one application adds
objects to the store, another browses the objects in the store while a third updates the state
of those objects. The applications that will use an object later in its lifetime may not even
have been envisaged when the object was first created. The persistent objects may also
be used in different distributed environments over time: for example, the persistent store
may be accessed over a LAN during one application lifetime while it is accessed over a
WAN during a different application lifetime. As objects often build up incrementally in
persistent stores over time, the stores tend to contain large object graphs. Thus, for example,
an application that remotely-accesses a persistent object by making a deep copy of it may be
able to do so efficiently during executions early in the lifetime of the store, but it may find
the costs of such copying become prohibitive or even error-prone over time, as the object
graph grows.1

It is necessary to populate a persistent store incrementally when the volume of data to be
stored is too large to create objects for it and make it persistent all in one go. GAP, a Geo
graphical Information System developed at the University of Glasgow, is a good example of

1 It should be noted that handling the build up of large object graphs is equally applicable to OODBs and to

long running systems with potentially large in-memory object graphs too.

Chapter 7. Object Copying Policies: Introduction 101

an application that both requires storage of large volumes of data and that allows new data
to be added to the store incrementally over time. This application, developed originally in
Java and subsequently ported to PJama, stores mapping data. The UK Ordnance Survey data
store is about 420MB, while the US TIGER data store for some of California is 1.5GB. The
graph of objects reachable from one root in the former contains 699434 objects, totalling
30.45MB in size. Given the availability of US TIGER mapping data, it is possible to add
new US states to an existing store as required, during the lifetime of the store.

Given the above changes in assumptions, the static, per-class definition of how objects
should be remotely-accessed, as required by CORBA, DCOM and Java RMI, is not suffi
ciently flexible. While for some intrinsically local objects, a static definition is suitable, for
the majority of objects, a more dynamic model is required; particularly given the increasing
ubiquity of wide-area computation with sophisticated data usage across the Internet.

Dynamic specification of object-passing policies for remote method invocation has a num
ber of advantages which address the changed assumptions described above. Firstly, there
is a separation of architectural issues: the object-passing policy can be specified separately
from a particular application’s code or a particular object’s class. Secondly, greater flexibil
ity of remote object usage is supported. The benefits include adaptability of the copying of
object graphs between processes to the scale of the network, the manner in which the ob
ject is manipulated remotely by the current application and the size of the graph of objects
reachable from the accessed object.

Support for a range of dynamically-set, object-copying policies has been developed for the
persistent object system OPJ. Policies have been developed to handle the copying of large
object graphs in a controlled manner. Their design and implementation is presented in
chapters 8 and 9 respectively, and evaluated in use with applications in chapter 10.

7.2 Assumptions

The following summary of assumptions hold for the work presented below on object-
copying policies:

• large, complex object graphs build up, often incrementally, in persistent stores over
time;

• some applications do require copying of object graphs between distributed processes;

• consistency of these copies, where required, is handled by the application - cache
coherency is not being supported by the platform;

Chapter 7. Object Copying Policies: Introduction 102

• object migration is not addressed;

• persistent objects of the same class may be used

- by different applications over time and

- in different distributed environments over time;

• static, per-class definition of object-passing between distributed processes is not suf
ficiently flexible for a long-lived system;

Where appropriate, these assumptions are explored in more detail in the evaluation of object-
copying policies presented in section 10.

Chapter 8

Object Copying Policies: Design

Having made a case for more flexible object-passing policies and the need for policies which
control the copying of object graphs between persistent stores, this section examines the
drawbacks of the standard Java object-passing policies in more detail and presents the design
of object-passing policies for use with PJRMI.

8.1 Object Passing in Java RMI

Java RMI is an example of distribution support which requires the programmer to make de
cisions, about how objects should be passed to remote sites, at the point of defining the ob
ject’s class. Java RMI’s support for making method calls between distributed processes can
involve passing objects as parameters or return values. Java Object Serialization [JOS97]
(JOS) is used to serialise (marshal) and deserialise these objects. The rules for object-
passing in RMI are:

• If the object’s class implements the j ava. m i .Remote interface then the object is
passed by reference. In the serialisation, the object is substituted with a stub object
that holds information on the identity and location of the object it represents; it is this
stub object that is actually copied to the remote site.

• Otherwise, if the object’s class implements the j ava. io . External izab le interface
plus two serialisation methods called writeExternal and readExternal then these
methods are called, giving the application programmer complete control over the for
mat and content of the serialisation and deserialisation of that object and its super
types.

• Otherwise, if the object’s class implements the j ava. io . S er ia lizab le interface

Chapter 8. Object Copying Policies: Design 104

plus two serialisation methods called writeObject and readObject then these meth
ods are called and an application programmer defined serialisation and deserialisation
of the object is performed. This may involve, for example, only writing out a subset
of the fields or replacing field values.

• Otherwise, if the object’s class only implements the j ava. io . S er ia lizab le inter
face then the object is passed by copy. A deep copy is made of the object and all
the objects reachable from it, except where one of the other rules applies. Thus, if a
Remote object is reachable, it will be substituted in the serialisation with a stub, rather
than being deep-copied itself.

• If the object’s class does not implement any of the above interfaces then the exception
java.io .N otSerializableE xception will be raised; this results in the RMI call
being aborted at the stub.

While the above list demonstrates the variety of approaches that can be taken, it also il
lustrates the complexity of defining serialisation1. An advantage of explicitly specifying
remote object access on a per-class basis is that it is clear which object classes have been
considered by the programmer for serialisation. All the classes that can be serialised im
plement the interface ja v a .io .S e r ia l iz a b le . All the classes that do not implement this
interface cannot be serialised and may never have been considered for serialisation. The
disadvantage is that such a fixed policy risks being applicable in only one environment. For
those classes that have been considered for serialisation, it may be hard for an application
programmer to be sure that they have made the right decision, at the time of writing the
class definition, on how the object should always be communicated to remote sites. This
is particularly likely to be a problem in a system where objects persist, since this increases
the likelihood of multiple applications being developed to use the same classes in different
ways and in different distributed environments. The change in context could be due to mul
tiple applications that work over the same persistent objects; it is common to see a change
in the way objects are used, as long-lived systems evolve over time. Different applications
are likely to access the same persistent object graphs in different ways: one object-passing
policy may be more appropriate for read-only access while another may be better-suited for
write access. Different applications may also access different parts of the same object graph.
The change in context could also be due to variations in the scale of the network over which

Another contributing factor to the complexity of Java Object Serialization (JOS) is the confusion over the

tr a n s ie n t keyword, as described in [PAJ99]. The tr a n s ie n t keyword was once used in its original intended

sense by OPJ as an indicator of which fields of an object should not persist. However, JOS now overloads its

meaning, for both Java RMI communication and for the JOS version of persistence, using it as an indicator of

which fields of an object should not be serialised, or for which there is user-specified code for serialisation. For

an article on the problems with using JOS for persistence, see [Jor99]. For a full critique of JOS, see [Eva99].

Chapter 8. Object Copying Policies: Design 105

an application accesses persistent objects. The object-passing policy used over a local area
network may cause problems with latency when applied within a wide area network.

The implications of object-passing policies for persistent systems should also be considered.
On one hand, passing objects by reference in a distributed system of persistent stores can
lead to a build up of references, and thus dependencies, between stores that can cause se
rious problems for long-term maintenance and autonomy of the individual stores. On the
other hand, passing objects by deep copy of the transitive closure of their object graph can
be expensive and even erroneous when the object to be passed has a large and complex
object graph. If the large object graph has been built up incrementally in the persistent
store over a period of time, the application programmer may not even be aware of its size,
and therefore the implications of trying to do a deep copy from the top-level object of that
graph. In the worst case, if the whole store is reachable from that object, they may un
wittingly try to copy the whole store. Performance problems and errors because of buffer
or memory overflow and heavy network loads are likely to result. This was found to be a
common problem with previous work on supporting distribution for the DPS-algol [Wai88]
and Napier88 [MCC+99] persistent systems, as reported in [Atk96, dS96].

The object-passing support developed for PJRMI attempts to address some of the problems
described above with Java RMI. It focusses on adding extra support to the existing object
serialisation code for more controlled copying of object graphs, while demonstrating the
ability to define a policy separately from the class definitions of objects being passed in
RMI calls.

8.2 Object Copying Policies Added to PJRMI

An object-passing policy influences which (and when) objects are serialised at source and
deserialised at their destination, during communication between distributed processes. The
previous section presented the object-passing policies applied by Java RMI. This section
presents a range of object-passing policies for use with PJRMI. It demonstrates that greater
separation of policy from individual application class definitions can be achieved. The in
tention is to support experimentation with the use of different policies over the same objects,
based on the context in which those objects are to be used. Thus, a range of policies are pro
vided to support, specifically, more flexible copying of object graphs between distributed
VMs. The aim is to determine which policies are usable, have acceptable performance and
are maintainable, and for which types of distributed application and execution environment
they are appropriate. This chapter presents the object-copying policies that have been de
veloped so far by the author and describes how to use them. It then defines the hooks which
experts in serialisation could use to define their own policies.

Chapter 8. Object Copying Policies: Design 106

8.2.1 Definition of a Policy

Each object-copying policy for PJRMI is represented by a Java class. This allows a user
to specify the policy they want to use by giving its class name. The class must implement
the interface org. op j . d is tr ib u tio n . pcopy. Policy. The details of the interface are pre
sented in chapter 9; it is sufficient here to say that implementation of its methods enables a
policy to add to or override parts of the functionality of standard Java Object Serialisation
used for Java RMI.

The policies with the following class names currently exist.

• org .op j.distribution.pcopy.CopyToRefs

• org .op j.distribution.pcopy.CopyToSize

• org. op j . distribut. ion. pcopy .CopyToDepth

• org .op j.distribution.pcopy.CopyByUsage

These policies are described in detail in section 8.2.6.

8.2.2 How a Policy is Set for an Application

In order to maintain a clear separation between object-copying policy and application, a pol
icy is specified in its own class as an implementation of the interface
org.opj .d istr ibution .pcopy.P olicy . An application program could set the policy to
be used by invoking a method of the Policy interface from its own setup code, in its main
method for example. However, where more than one object-copying policy might be appro
priate for separate lifetimes of the same application in different circumstances, this would
require modification of the application code to change the policy. To avoid changing appli
cation code, a policy could be applied to an application program by providing a policy as a
wrapper for an application’s lifetime.

However, a more generalised wrapper is envisaged for distributed application execution,
which could be used not only to apply an object-copying policy to the each of the appli
cation programs that cooperate in the distributed application, but also for other configu
ration of the current application’s lifetime. Such configuration could include: checking
that access is possible to the remote sites involved before beginning application execu
tion, negotiating timeouts on remote object access, setting a consistency policy for objects
shared between the processes involved and managing distribution-related errors. To sup
port such a potential range of configuration issues requires a clean separation between the

Chapter 8. Object Copying Policies: Design 107

wrapper in which the execution environment for an application is configured and each of
the configuration issues themselves. Thus, the wrapper in which an application lifetime
can be configured, independently from the application code itself, is provided by the class
org. op j . d istr ib u tion , pcopy. D istributionContext. A policy is decided upon for a
distributed application. It is then set in a DistributedContext for each application process
involved, as described below.

8.2.3 Setting a Policy Using a DistributedContext

The user is required to set the object-copying policy to be used at all the sites involved,
before executing the code of a given distributed application. By default, if the user does not
explicitly set an object-copying policy, the standard Java Object Serialisation rules apply.
Once the policy has been set, it applies to all the serialisation and deserialisation of objects
(i.e. all parameters and return values of RMI calls) to be passed by copy during the lifetime
of the distributed application.

The policy is set during configuration of an instance of the DistributedContext policy
support class. A DistributedContext instance binds an application program to an object-
copying policy so that the two are always used together in that context. The policy and
application are both specified by class name, the latter being the name of the class contain
ing the main method for that application. Executing the application involves invocation of
the DistributedContext wrapper which in turn runs the application with the appropri
ate settings for the context. Thus, for example, one DistributedContext instance may
be configured for running an application using one object-copying policy within a local
area network, while another is configured for running the same application using a different
object-copying policy over a wide area network. A DistributedContext instance may be
created and used once, or it may itself be made persistent, with a view to running the same
application repeatedly in the same context. Details of the DistributedContext API and
implementation can found in section 9.1.

8.2.4 Creation and Use of a DistributedContext

A tree traversal will be used as a simple example to illustrate the running of code in an
instance of a DistributedContext and the effect of applying different policies.

The code for creating and running an instance of a DistributedContext is Java code that
could be written by an application platform developer. For demonstration however, the
utility class org.opj .d is tr ib u tio n .co n tex t.CreateAndRunDC is used for this purpose
in the explanations below.

Chapter 8. Object Copying Policies: Design 108

The command-line for invoking the OPJ interpreter to run an application in an instance of a
DistributedContext is as follows:

opj d is tr ib u te d Context setup class> <name for context instance>
<policy classname> [<policy arguments>]

a p p lic a tio n main method classname> [<application arguments>]

Thus, to run the client program to traverse a tree using a object-copying policy referred to
by name as CopyToRef s, the OPJ interpreter would be invoked as follows:

opj org .op j.d istr ib u tio n .co n tex t.CreateAndRunDC RefDCPCopyTestClient
org. op j.d is tr ib u tio n .pcopy.CopyToRefs

pcrmi. c l ie n t . PCopyTestClient $SERVICEHOST

The class org. op j . d istr ib u tion , context .CreateAndRunDC contains a main method
that creates an instance of a DistributedContext, hereafter referred to as a DC, pass
ing configuration information as parameters to the constructor. The DistributedContext
constructor sets the DC’s name to RefDCPCopyTestClient, sets the policy it will use to that
specified in the class org .op j.distribution.pcopy.CopyToRefs and sets the program
to be invoked by the DC to the class pcrmi . c l i e n t . PCopyTestClient that contains the
main method for this application. Once the DC has been configured, CreateAndRunDC in
vokes the method DC. runTask passing the rest of the arguments supplied (in this case just
the environment variable $SERVICEHOST that specifies the server hosting access to the tree
of objects).

Configuration of a DC is separated from invocation of the application that has been associated
with it. This allows a DC to be created and configured for a particular application, possibly
making the DC persistent. Then the already-configured DC can be looked up by its name and
invoked repeatedly with dynamically-supplied parameters.

Once the application is running, an upcall is made to the DC every time an OutputStream or
InputStream is created for the purpose of serialising or deserialising RMI object parame
ters; while leaving creation and usage of I/O streams for other purposes unaffected2. This al
lows the policy to add to or override functionality during serialisation and/or deserialisation
of the given objects. Each policy provides its own code to influence serialisation and/or dese
rialisation as an implementation of the interface org. opj .d istr ib u tio n , pcopy. Policy.

2The modifications made to RMI classes to provide this support are described in detail in sections 9.2.1

and 9.2.2

Chapter 8. Object Copying Policies: Design 109

8.2.5 Platform Support Common to all Object Copying Policies

All the object-copying policies presented in this dissertation support some form of par
tial object graph copying, with different criteria for determining how much of the object
graph is copied and when it is copied. Common to the implementation of all these poli
cies is the use of a stub object org.opj .distribution.PCopyStub, as a substitute for
application objects at the top level of the non-copied portions of the object graph. A
PCopyStub holds the identity of the original object. The substitution of a PCopyStub
for an application object is recorded by an implementation-level policy support service
org. op j. d is tr ib u tio n . PCopyObj ects.

8.2.5.1 PCopyStub as Placeholder

Unlike the j ava. rmi. server. RemoteStub used to support remote references in standard
Java RMI, a PCopyStub is not a medium for communication with the object it represents,
but rather it is a placeholder for that object. After a PCopyStub has been passed in an RMI
call and deserialised at its destination, it is put into a format that catches the first access
made to it. A “residency check” made at this point detects that this is a PCopyStub object
and that its originating site should be contacted in order to gain access to the object which
it represents. The manner in which the remote object is then accessed is determined by
the object-copying policy currently in force. This typically involves looking up the original
object at the PCopyObj ects service, with which it was registered when the PCopyStub was
first generated, and copying it over to the accessing site. This manner of copying remote
objects on first access is known hereafter as “remote-faulting”.

8.2.5.2 Persistence of PCopyStubs

It is possible for a PCopyStub object to become persistent. It may not be desirable for it,
as a representation of a remote object, to be persistent in the long-term, for maintenance
reasons3. However, its persistence may at least be required for resilience of the current
distributed application in the short-term.

When a PCopyStub has become reachable from a persistent object, it will be written to the
persistent store. Its persistence will not stop it from continuing to be a placeholder for a
remote object though: a subsequent access made to the persistent PCopyStub will still trig
ger a remote-fault to retrieve the appropriate object from the PCopyStub’s originating store.
The object returned by the remote fault will become persistent, in lieu of its PCopyStub.

3See section 6 on the tradeoffs between supporting persistent references to remote objects and maintaining
long-term autonomy of a store.

Chapter 8. Object Copying Policies: Design 110

K E Y

o o b j e c t

/ \ s t u b

a o b j e c t n a m e

a ’ o b j e c t c o p y n a m e

Figure 8.1: Server-side tree of objects, plus initial client-side CopyToRef s tree copy

Full details of the implementation supporting use of the PCopyStub are presented in sec
tion 9.

8.2.6 PJRMI Object Copying Policies

Specification of an object-copying policy for PJRMI involves writing methods to add to
or override the functionality of the Java Object Serialisation code. Thus, if no policy is
specified to override the normal Java Object Serialisation code, the standard object-passing
policy for Java RMI is used. As alternatives to this, there are currently four experimental
object-copying policies available. Each policy, when given an object which is not to be
passed by reference, handles the object in a different way. The effect of each of these
policies is described below. An evaluation of the policies is presented in chapter 10.

8.2.6.1 The CopyToRef s Object Copying Policy

The org.opj .distribution.pcopy.CopyToRefs class specifies a PJRMI object-copying
policy that does an incremental copy of an object graph between sites. Initially, given an
object parameter, it creates a shallow copy of the top level object to be passed to the remote
site. The shallow copy contains a copy of each of the scalar field values of the given object.
Each of the reference field values is replaced with a PCopyStub object to represent the
replaced object remotely.

T r e e S e r v e r T r e e C l i e n t

R M I c a l l

r e t u r n s a

Chapter 8. Object Copying Policies: Design 111

Thus, for example, using the tree traversal example, figure 8.1 illus
trates the original tree of objects at the server. The client makes an
application-level remote method call to the server to get a reference to
the tree; a shallow copy of a is passed back to the client, as also illus
trated in figure 8.1. Stubs have been substituted for references from
object a to objects b and c.

Figure 8.2: The tree
When the client accesses a reference field of a ' at the application- copy after copyToRef s
level, this triggers a remote-fault at the PJRMI implementation level, access is made to b

as described in section 8.2.5. A shallow copy of b is made from the
server; all references from it are replaced by stubs. The state of the tree at the client after
this call is illustrated in figure 8.2.

8.2.6.2 The CopyToSize and CopyToDepth Object Copying Policies

The policy org.opj .d istribution .pcopy .CopyToSize makes a depth-first copy of the
objects reachable from the given object; limiting the total graph size
of the copied objects to below the specified size in bytes. The size of
the copy depends on the parameter provided during the policy’s con
figuration. The size is specified in bytes rather than number of objects,
since objects can be of different sizes. Use of bytes is a more accurate
measure of how much room the copy will take up at the client. This
may be important if the client has only a small amount of memory.

References to objects reachable from the copied object graph but out
side the size limit are replaced with references to PCopyStub objects.
Using the tree traversal example, this means that if the specified size limits copying to three
objects, the client’s remote method call to get a reference to the server’s tree will return the
graph of objects illustrated in figure 8.3.

In comparison, the policy org. op j . d is tr ib u tio n . pcopy. CopyToDepth makes a breadth-
first copy, that is limited to a specified depth of objects reachable
from the given object graph. The depth limit is specified as a pa
rameter during the CopyToDepth policy’s configuration. It is spec
ified as a number greater than or equal to one, to indicate the num
ber of levels down the object graph to copy. As an illustration, with
a specified depth of two, the tree traversal client’s remote method
call to get a reference to the server’s tree, will return the graph of
objects illustrated in figure 8.4.

T r e e C l i e n t

Figure 8.4: The initial
width-first CopyToSize

T r e e C l i e n t

Figure 8.3: The initial
depth-first CopyToSize

T r e e C l i e n t

Chapter 8. Object Copying Policies: Design 112

Subsequent access by the client to objects b' and c ' will succeed
locally, while access to any other object of the graph that is currently represented as a
PCopyStub object will trigger a further copy of the object it represents.

Consider the example of a full tree traversal, where the size limit is greater than or equal to
the size of the tree, or the depth limit is greater than or equal to the depth of the tree: the
number of remote calls made from client to server is reduced from a minimum of seven sep
arate requests using CopyToRef s to only one request using CopyToSize or CopyToDepth.

Depending on the size of a given object graph to be passed as a parameter in an RMI call
and the size or depth limit applied by these policies, a full or partial copy will be made of the
object graph. The aim is to use the size or depth limit judiciously to allow full graph copying
where it is of manageable size, while ensuring that copying of the full graph is prevented
when it is prohibitively expensive. The latter is done on the basis that passing the limited
object graph copy will normally be sufficient to provide access to the objects required.

8.2.6.3 The CopyByUsage Object Copying Policy

The policy specified by org.opj .distribution.pcopy.CopyByUsage is designed to in
crease the likelihood of copying the parts of an object graph that a remote application may
be interested in. During the first lifetime of an application in its DistributedContext,
this policy adopts the CopyToRefs policy to incrementally copy objects as they are ac
cessed. However, as accesses to PCopyStub objects trigger the remote-faulting of their
corresponding remote objects, the access paths traced through the graphs of the originat
ing persistent store are recorded, indexed by the class of the object at the top level of the
object graph. The recorded object graph usage information is associated with the current
DistributedContext. Thus, the tree traversal client program’s access to the server tree
will initially receive the incremental copies as illustrated in figures 8.1 and 8.2.

Subsequent lifetimes of the same application in the same DistributedContext will make
use of the usage information collected from previous runs to influence what parts of an
object graph are optimistically copied (i.e. prefetched). Thus, when a top level object is
passed as an RMI call parameter, the usage information is looked up and only the parts of
its object graph which have been accessed in previous runs will be copied over; but this time
all in one go. Where objects contain fields that have not been previously accessed remotely,
the objects in those fields are still substituted with PCopyStubs. Thus, since in the example
the client eventually traverses the whole tree in its first run, its subsequent runs against the
server using this policy will receive a copy of the whole tree during the first call to the server.

Copying based on past usage is done on the basis that an application will typically follow

Chapter 8. Object Copying Policies: Design 113

similar access paths through a graph of objects during repeated invocations.

8.2.6.4 Policy Evaluation

The policies described above have been implemented and used with a range of applications.
An evaluation of the benefits and drawbacks of each policy, their appropriateness to appli
cations and measurements of their performance is presented in section 10.

8.2.7 Defining New Policies

It is possible for an expert in serialisation to define their own policies, in addition to the
ones that have already been provided. A summary of the hooks provided for this purpose is
presented in section 9.4. It follows a description of the implementation of policy support in
chapter 9, since a lot of the details of how these hooks work are presented there.

Chapter 9

Object Copying Policies:
Implementation

The main aspects of the platform supporting use of policies have been introduced in chap
ter 8. These aspects include the use of a Policy interface by each defined policy, the
DistributedContext, in which a policy is set for use with a particular application, and the
PCopyStub used by each of the policies to represent non-copied portions of object graphs.
This chapter now elaborates on each of these aspects of the platform, describing what occurs
at the implementation level during policy set up and usage.

9.1 Class DistributedContext

The class org.opj .d istr ib u tion .con tex t .DistributedContext is used to establish
what object-copying policy will be used for a particular application’s lifetime. The user is
required to create a DistributedContext at every site involved in a distributed application;
ensuring that they are all configured to use the same policy 1. When a DistributedContext
instance is created, the following constructor is called:

public D istributedContext(String DCName,
String policyName,
S trin g[] policyArgs,
String taskName);

Although policy is currently set in an ad-hoc manner across all processes involved in a distributed applica
tion, a tool is envisaged for administrating such details from one site across all the processes involved, in the

future.

Chapter 9. Object Copying Policies: Implementation 115

The DCName is the name of this DistributedContext instance, used to identify this par
ticular binding of application and object-copying policy; where a DistributedContext is
made persistent, the name can be used to look it up during subsequent VM executions over
the current store. The constructor registers the new DistributedContext instance under
its DCName with an object in a static field of the DistributedContext class itself:

private s ta t ic DistributedContexts distributedC ontexts;

This instance of the org.opj .d istr ib u tio n , context .DistributedContexts container
class is registered as a root of persistence in the store.

The policyName is the fully-qualified class name of the object-copying policy to be used;
for example, “org. opj . d is tr ib u tio n . pcopy. CopyToSize”. It can alternatively be set to
the string “StandardRMI” to indicate that the standard Java RMI object-passing rules are to
be used for executing an application in this context. Typically though, where this is required,
it would not be necessary to wrap an application in a DistributedContext at all. The latter
support is really only for testing and measurement purposes.

The array of policyArgs is used to configure the specified policy: for the CopyToSize
policy, for example, this array would contain the size limit in bytes to which an object graph
may be copied when it is first accessed. The DistributedContext constructor creates an
instance of the specified policy class and initialises it, by passing the policyArgs in a call
to the in it method of its org.opj .d istr ib u tio n .pcopy. P olicy interface.

The taskName is the fully-qualified name of the class containing the main method for the
application to be run in this context. The DistributedContext constructor checks to en
sure that this class exists.

Once an instance of a DistributedContext has been created, an execution of its asso
ciated application task may be run, either in the current VM or in a subsequent VM run
over the same store. To mn the application in this context, the following method of the
DistributedContext class is invoked:

public void runTask(S tr in g [] taskA rgs);

The array of taskArgs provides the parameters for this execution of the application.

The runTask method first calls method D istributedContext. registerDCByThread()
to register the association of the current “main” java.lang.Thread with this instance
of DistributedContext in a table of the DistributedContext .distributedC ontexts
static object. This registration then supports lookup of the DistributedContext for this
application by thread in the middle of application execution, to determine which object-
copying policy to apply at that point; see section 9.2.1 for more details. The runTask
method then invokes the main method of the DistributedContext’s application task, pass

Chapter 9. Object Copying Policies: Implementation 116

ing the taskArgs as its parameter. This invocation is done from within a try - catch
block that allows the DistributedContext to report fully on any exceptions raised.

9.2 Supporting Policy Upcalls During an Application’s Lifetime

Once an application task has been invoked from within its DistributedContext wrapper
object, the code executes as the application programmer intended until a call is made to
serialise an object, in order to pass it as a parameter in an RMI call. At this point, hooks
added to the standard Java RMI code are exercised to bring the influence of the current
PJRMI object-copying policy into play.

To aid the reader’s understanding of the adaptions made to serialisation and deserialisa
tion, as described in sections 9.2.1 and 9.2.2 respectively, figure 9.1 illustrates the adapted
class hierarchies. The OutputStream classes involved in serialisation are illustrated on the
left, the InputStream classes involved in deserialisation are illustrated on the right and the
Policy to which some method calls are redirected is shown in the middle. Method calls,
made on an instance composed of this inheritance hierarchy of classes, pass from the top
most class downwards, until they reach the first definition of that method. The methods
relevant for this discussion are listed for each class. The emboldened method is the one
that will actually be called, overriding definitions of the same method that are lower in the
inheritance hierarchy.

9.2.1 Adaption of Serialisation for Policy Hooks

The standard Java RMI code creates a sun.rmi.transport.ConnectionOutputStream
to handle the serialisation of the object. In pseudo Java code, its inheritance hierarchy is as
follows:

c la ss sun.m i . transport.ConnectionOutputStream
extends c la ss sun.mi.server.MarshalOutputStream

extends c la ss java.io.ObjectOutputStream

Together, these classes support the object-passing policies of standard RMI, as described
in Section 8.1. The class java.io.ObjectOutputStream provides the standard Java Ob
ject Serialisation support, for objects whose classes implement one of the two interfaces
ja v a .io .S er ia liza b le or java.io .E xternalizab le; it deep-copies object graphs by
default. RMI-related support is added by the su n .m i .server .MarshalOutputStream
class, for passing objects by reference if their class implements the java.m i.Rem ote in-

Chapter 9. Object Copying Policies: Implementation 117

C o n n e c t i o n O u t p u t S t r e a m C o n n e c t i o n l n p u t S t r e a m

P C o p y O u t p u t S t r e a m P o l i c y

P C o p y l n p u t S t r e a m

M a r s h a l O u t p u t S t r e a m M a r s h a l l n p u t S t r e a m

replaceObject

r e s o l v e O b j e c t

r e p l a c e O b j e c t

o u t p u t C l a s s F i e l d s

o u t p u t A r r a y R e f s

r e p l a c e O b j e c t

o u t p u t C l a s s F i e l d s

o u t p u t A r r a y R e f s

r e s o l v e O b j e c t

O b j e c t O u t p u t S t r e a m O b j e c t l n p u t S t r e a m
f \

w r i t e O b j e c t

replaceObject

outputClassFields

outputArrayRefs

r e a d O b j e c t

resolveObject

Figure 9.1: Classes involved in object serialisation and deserialisation. (Method names not
in bold type indicate a method overridden in a subtype.)

Chapter 9. Object Copying Policies: Implementation 118

terface. The sun.rmi.transport.ConnectionOutputStream class supports RMI’s Dis
tributed Garbage Collector in tracking remote references.

To support PJRMI object-copying policies, a new class has been inserted into this hierarchy.
In pseudo Java code, the PJRMI version of the same inheritance hierarchy is as follows:

c la ss sun. rmi. transport.ConnectionOutputStream
extends c la ss org .op j.distribution.pcopy.PCopyOutputStream

extends c la ss sun.rmi. server.MarshalOutputStream
extends c la ss java.io.ObjectOutputStream

Thus, all the functionality of the standard object-passing policies is still available, while the
class org. opj . d is tr ib u tio n . pcopy. PCopyOutputStream provides the hooks for PJRMI
object-copying policies to override certain aspects of the standard functionality where ap
propriate.

The class org.opj .distribution.pcopy.PCopyOutputStream contains the following
methods:

public c la ss PCopyOutputStream
extends MarshalOutputStream

{

public PCopyOutputStream!Outputstream o u t);

protected Object replaceObject(Object obj);

protected void outputClassFields(Object o,
Class c l ,
in t[] fieldSequence);

protected void outputArrayRefs(Object ob j);

}

The constructor establishes which PJRMI object-copying policy is to be used during the cur
rent serialisation. It calls the method DistributedContext. getDCByThread () , to look up
the application’s DistributedContext and obtains the associated policy from the result.

Chapter 9. Object Copying Policies: Implementation 119

The DistributedContext was registered with the “main” java. lang.Thread of execu
tion on invocation of the application in DistributedContext. runTask (), so determin
ing the main thread of execution in getDCByThread allows the DistributedContext to
be obtained at this point. The main thread is obtained through method calls on the class
j ava. lang. Thread.

The methods replaceObject and outputClassFields of PCopyOutputStream intercept
calls to methods of the same name in MarshalOutputStream and ObjectOutputStream
respectively. The method outputArrayRefs also overrides code of ObjectOutputStream.

To achieve this, a small number of changes were made to Ob j ectOutputStream. The mod
ifier for its method outputClassFields was changed from private to protected so it
could be overridden by a subclass. Also, rather than leaving the code for serialising an array
of object references as part of the larger method ObjectOutputStream.outputArray, it
was put into a separate method

protected void outputArrayRefs(Object obj);

which is now called from outputArray instead. This allows the code to be overridden by
the method PCopyOutputStream. outputArrayRefs.

After PCopyOutputStream intercepts one of the methods that it overrides, it redirects the
call to the equivalent method as implemented by the current PJRMI object-copying policy.
Each of the policies implements the interface org.opj .d istr ibution .pcopy .P olicy ,
which includes all of the serialisation methods overridden by PCopyOutputStream, as de
scribed above.

public in terface Policy {

public void in it(S tr in g N args);

public Object replaceObject(ObjectOutputStream out,
Object obj);

public void outputClassFields(ObjectOutputStream out,
Object
Class
in t []

o ,

c l ,
fieldSequence);

public void outputArrayRefs(ObjectOutputStream out,
Object obj);

Chapter 9. Object Copying Policies: Implementation 120

public Object resolveObject(ObjectlnputStream in,
Object obj);

}

Thus, the PCopyOutputStream makes upcalls from the standard serialisation code to the
current DistributedContext to enable its object-copying policy to override the default
serialisation as appropriate.

9.2.1.1 What the Serialisation Hooks Provide

The methods of the Policy interface, called from PCopyOutputStream, enable a policy
to affect the serialisation as follows. The ObjectOutputStream.replaceObject method
had no functionality of its own, but provided subclasses with the ability to replace the ob
ject to be serialised with a different one altogether. The MarshalOutputStream RMI class
overrides this method to replace objects that implement the interface java.rmi .Remote
with an instance of the class java . rmi. server. Remotes tub, to implement pass by refer
ence semantics for the given object. The policy class PCopyOutputStream redirects calls
to this method to the current policy, which can then itself maintain the functionality of
MarshalOutputStream, replace it or add to it.

The original method ObjectOutputStream.outputClassFields is, in the JDKl.l.x im
plementation, a native method that performs the default serialisation of an object. Given
a description of the type and position of each field in the object, it writes out each scalar
field and then recursively invokes ObjectOutputStream.writeObject on each field that
references an object or an array. The policy class PCopyOutputStream redirects calls to this
method to the current policy, which can then control the recursive copying for serialisation
by applying its criteria for what should be copied in its own version of this code.

The original code for serialising an array of object references, invoked from within the
method ObjectOutputStream.outputArray, iterated over the array, calling the method
writeObject on each object element. The policy class PCopyOutputStream redirects calls
to this code to the current policy, which then controls this part of the serialisation by applying
its criteria for how much of the array should be copied.

When a policy has determined that no more copying of an object graph should take place, the
objects from which the rest of the graph is reachable are usually replaced with PCopyStubs.
The methods described above provide the opportunities for a policy to track when replace
ment should occur and for this replacement to be done.

Chapter 9. Object Copying Policies: Implementation 121

9.2.2 Adaption of Deserialisation for Policy Hooks

Similar hooks, to those used for applying PJRMI object-copying policies to serialisation,
are used to allow a policy to influence deserialisation too.

When serialised objects, passed in an RMI call, are received at their destination, the standard
Java RMI code creates a sun. rmi. transport. ConnectionlnputStream, with a hierarchy
of classes similar to those described in section 9.2.1, to handle deserialisation. In pseudo
Java code, its inheritance hierarchy is as follows:

c la ss sun. rmi. transport.ConnectionlnputStream
extends c la ss sun.mi.server.M arshalInputStream

extends c la ss java.io.ObjectInputStream

The class java.io.ObjectlnputStream provides the standard Java Object Deserialisa
tion support; by default, it recreates the state of an object graph as it was at the point
of serialisation. If the object’s class contains methods of the ja v a .io .S e r ia liz a b le or
java .io .E xternalizab le interface that describe a more specialised deserialisation, they
apply instead. When a RemoteStub representing a remote reference to an object is to be
deserialised, the class sun. m i . server .Marshal Input St ream supports, where necessary,
the loading of the stub’s class from a remote WWW server where those classes have been
made available. The class sun. m i . transport. ConnectionlnputStream does its part to
support RMI’s Distributed Garbage Collector in tracking remote references.

To support PJRMI object-copying policies, a new class has been inserted into this hierarchy.
In pseudo Java code, the PJRMI version of the same inheritance hierarchy is as follows:

c la ss sun. m i . transport.ConnectionlnputStream
extends c la ss org .op j.distribution.pcopy.PCopylnputStream

extends c la ss sun.m i.server.M arshallnputStream
extends c la ss java.io.ObjectlnputStream

The class org.opj .distribution.pcopy.PCopylnputStream provides the hooks for
PJRMI object-copying policies to override certain aspects of the standard deserialisation
functionality where appropriate. It contains the following methods:

Chapter 9. Object Copying Policies: Implementation 122

public c la ss PCopylnputStream
extends MarshallnputStream

{

public PCopylnputStream(InputStream in);

protected Object resolveObject(Object obj);

}

Similarly to PCopyOutputStream, the PCopylnputStream constructor establishes which
object-copying policy is to be used during the current deserialisation. It does this via a
lookup of the current DistributedContext using the “main” Thread as the key, as de
scribed in section 9.2.1.

The method resolveObject of PCopylnputStream intercepts calls to the method of the
same name in MarshallnputStream. The call is then redirected to the equivalent method
as implemented by the current object-copying policy. This gives the policy an opportunity
to replace or modify the object that has just been deserialised, if required.

9.3 Policy Use of Stub Objects

As well as providing hooks for calling policy methods from serialisation code, the common
support for policies also includes the class org.opj .distribution.pcopy.PCopyStub.
During serialisation for an PJRMI call, all of the object-copying policies, that have been
defined for PJRMI, copy an object graph in a limited manner, based on the copying criteria
of the particular policy. In each case, the objects heading the non-copied parts of an object
graph are replaced with objects that can represent that non-copied portion of the object graph
remotely. The replacement objects used by each policy are instances of the PCopyStub class.
After the copied parts of an object graph have reached their destination and they’ve been
deserialised and traversed by application code, it is then part of the policy to define what
happens when an access is attempted to a non-copied portion of the graph now represented
by a PCopyStub.

During serialisation, to replace an object with a PCopyStub, a policy makes use of the class
org. op j . d is tr ib u tio n . pcopy. PCopyOb j ect s. A policy passes the object to be replaced

Chapter 9. Object Copying Policies: Implementation 123

as a parameter of the PCopyObjects method registerObject:

s ta t ic protected Object registerO bject(O bject o) ;

This method creates an object identity to uniquely identify the object in the current VM,
creates a PCopyStub instance to hold this identity and stores the association between the
original object and its corresponding PCopyStub in a table of the PCopyObjects class.
The PCopyStub is returned to the policy as the result of the method call. The policy then
modifies the object field that held a reference to the original object so that it now references
the PCopyStub instead. This PCopyStub is then serialised as part of the object graph and
passed by copy to the destination of the current RMI call.

During deserialisation, after a PCopyStub object has been deserialised by the method of the
class ObjectlnputStream for reading in an object:

private native void inputClassFields(Object o,
Class c l #
in t[] fieldSequence);

an addition to this method for PJRMI object-copying support of PCopyStubs goes on to
make a call to the PCopyStub method:

private s ta t ic native PCopyStub setToProxyType(PCopyStub p c s);

This method takes the newly-deserialised PCopyStub object, in its normal object format,
and returns it in a format that will trigger a “fault” during a residency check. In PJama,
every object undergoes a residency check before it is accessed, to ensure that the object is
in memory and, if not, then bring it into memory from its persistent state on disk, which
is known as “faulting” the object. This residency check mechanism has been extended for
object-copying support to trigger remote faulting between one PJVM and another, as well
as local faulting between a store and the memory of the PJVM running over it.

9.3.1 Triggering Access to a Remote Object

In the JVM Classic implementation, every object is accessed via a handle object. The handle
object contains two fields which, in normal object format, contain a pointer to the object
itself and a pointer to the table of methods for that object’s class. This is illustrated as the
key to figure 9.2. An object is usually accessed using the JVM macro unhand that, given
a handle, returns the pointer to the object. The PJama implementation has redefined this
macro so that, given a handle, it uses the isAFaultBlock macro to check whether its object
pointer field contains a valid memory address for a memory-resident object or whether it
contains a persistent object identifier (PID) that represents a persistent object still on disk.

Chapter 9. Object Copying Policies: Implementation 124

K E Y : H a n d l e t o O b j e c t J H a n d l e - f a u l t f o r m a t J H a n d l e - n o r m a l f o r m a t

r \
p o i n t e r t o o b j e c t P I D L o c a l o b j e c t f a u l t

.

T e s t O b j e c t o b j

p o i n t e r t o m e t h o d s
k o f o b j e c t ’s C l a s s ,

n u l l
J

T e s t O b j e c t m e t h o d s

Figure 9.2: Object fault from store to VM memory

D e s e r i a l i s e d P C o p y S t u b R e m o t e f a u l t f o r m a t J H a n d l e - n o r m a l f o r m a t

P C o p y S t u b o b j S e t t o f a i l

r
o b j a d d r + 1 (! 8 B a l i g n e d) R e m o t e f a u l t

r \
T e s t O b j e c t o b j

P C o p y S t u b m e t h o d s
v J

r e s i d e n c y c h e c k t y p e c o d e = T _ P R O X Y o n f i r s t a c c e s s T e s t O b j e c t m e t h o d s

Figure 9.3: Object fault from remote VM to local VM

If the field contains a PID, an object fault is triggered to bring the corresponding object on
disk into memory2. The change in contents of the handle itself during the object fault is
illustrated in figure 9.2.

For the implementation of object-copying support, the unhand macro has been further ex
tended so that if, on access, an object is found to be non-resident, it may be faulted from
a remote VM or from the local disk. As mentioned above, a PCopyStub is put into a for
mat after deserialisation that mimics a non-resident object. The transition of a PCopyStub
object’s handle, from its state on deserialisation to the “remote-fault format” state designed
to fail the first stage of a residency check, is illustrated in figure 9.3. Since all object
addresses are eight-byte aligned in the JVM implementation, the intentional adjustment of
the PCopyStub’s object address, so it is no longer eight-byte aligned, ensures that the resi
dency check fails3. A check added within the unhand macro then recognises that the type
code in the methods field of the handle is set to T.PROXY: this indicates that this is really a
PCopyStub object in remote-fault format. The PCopyStub handle is converted back to the
normal resident object format it had when first deserialised and the code is run for providing
access to the remote object that is represented by this PCopyStub. This usually results in the
original object being copied over and the PCopyStub’s handle being converted to the handle
of the remote-faulted object, as illustrated in the latter stage of figure 9.3.

2For more details of this PJama implementation, see [DA97].
3See section 9.3.3 for an explanation of how this format is handled during garbage collection

Chapter 9. Object Copying Policies: Implementation 125

9.3.2 Accessing a Remote Object

When access is attempted to a remote object that is locally represented by a PCopyStub,
the access is caught by a residency check as described above; at that point the informa
tion held in the PCopyStub is used to determine the location and identity of the remote
object. The identity is held as an Obj ID. It was registered, along with the object, in a ta
ble of the PCopyObjects class in the PJVM from which the PCopyStub originated. The
location is held as a reference to a remote lookup service. The PCopyObjects class also
supports this remotely-invokable, PJRMI implementation-level service through the inter
face org.opj.distribution.pcopy.PCopyO bjectService.

Once a residency check has revealed a PCopyStub, its method getRealObject makes an
RMI call to the following method of the PCopyObjectService, passing the object identity
as the key in the remote lookup:

public Object getObjectCopy(ObjID id) ;

This method returns the object on which the access, that triggered the residency check,
should now go ahead. The returned object is typically a copy of the original object’s graph,
but may only be a partial copy, since the current policy will be applied to the result of this
call too.

9.3.3 PCopyStubs and Garbage Collection

Setting the remote fault format of a handle’s pointer to a PCopyStub object involves incre
menting its address by one so it is no longer eight-byte aligned. This means that as long as
the handle is in remote fault format, the referenced PCopyStub object is not actually reach
able and could be considered garbage erroneously. To avoid this, PCopyStub handles are
reset from remote fault format to normal object format for the duration of the garbage collec
tion (GC). No remote faulting should ever be triggered during a GC anyway: an exception
is raised if this occurs. Remote fault format of still-reachable PCopyStub handles then is
reestablished at the conclusion of the GC, before application program execution continues.

9.3.4 Persistence of PCopyStubs

If a PCopyStub becomes reachable from a persistent object, it will be promoted from the
Java heap to the PJama object cache and written to the persistent store. This will occur
either within an explicit call to stabilise persistent state in the middle of program execution
or implicitly at the successful completion of a program execution. Because a PCopyStub is
set in remote-faulting format after deserialisation at its destination, this must be recognised

Chapter 9. Object Copying Policies: Implementation 126

and changed back to normal object format before its promotion can proceed.

The handle to a PCopyStub will be in remote faulting format when the promotion code
comes across it: this format is the one illustrated in the middle of figure 9.3. The format is
recognised from the type code set to T.PROXY in the methods field of the handle. A macro
is called to re-instate the normal object format for a PCopyStub object, as illustrated in the
first stage of figure 9.3. The PCopyStub object can then be promoted like any other normal
object.

Subsequently, as for any other persistent, non-resident object, an access attempted on a
PCopyStub that’s still on disk will initially result in a local residency check, which will trig
ger the faulting-in of the object from disk to object cache. Once the PCopyStub is resident
in memory, the second phase of the residency check will recognise this object as a place
holder for a remote object and trigger a remote-fault to retrieve the appropriate object from
the PCopyStub’s originating store. The object returned by this remote-fault will become
persistent by reachability, because its PCopyStub was reachable, and all future accesses to
the PCopyStub will be redirected to the newly-faulted object it represents.

A complete illustration of the formats of a PCopyStub handle at various points in its lifetime
is provided in appendix C.l.

It should be noted that the remote-faulting of an object, triggered on access to its PCopyStub,
can only succeed if the original object still exists in the store from which the PCopyStub
originated, and only if a server process is currently up and running over that store and
is accessible over the network. See section 6 for an exploration of the issues associated
with extending persistence by reachability across a distributed system to help ensure that a
remotely-referenced object persists as long as it is needed.

9.4 Hooks for New Policies

To summarise the support provided for object-copying policies and to make it clear what a
serialisation expert needs to do in order to implement their own policy, the hooks for policy
support are reviewed in this section.

9.4.1 How to Implement the Policy Interface

The API for policy support is provided by the org.opj .d istr ib u tion .p cop y .P o licy
interface. This interface is defined as follows:

Chapter 9. Object Copying Policies: Implementation 127

public in terface Policy {

public void in it (S tr in g [] a rg s);

public Object replaceObject(ObjectOutputStream out,
Object obj);

public void outputClassFields(ObjectOutputStream out,
Object o,
Class c l ,
in t[] fieldSequence);

public void outputArrayRefs(ObjectOutputStream out,
Object obj);

public Object resolveObject(ObjectlnputStream in,
Object obj);

}

The main class for defining a specific policy must implement this interface. The purpose of
the individual methods of this interface are summarised below. These are the steps that must
be followed to provide a Policy implementation.

9.4.1.1 Step 1: initialise policy on DistributedContext creation

Write the in it method to initialise fields of the policy implementation, before first use of the
policy for serialisation. It will be called from the constructor of a DistributedContext,
passing it the policy arguments supplied as one of the constructor’s parameters. This sup
ports initialisation of a policy before application execution begins.

9.4.1.2 Step 2: use serialisation methods to restrict copying

Override the methods replaceObject, outputClassFields and/or outputArrayRefs
with code to achieve the desired effect of your policy during serialisation.

This work is likely to fall into two parts:

1. tracking the serialisation of an object graph, to determine when the criteria are met

Chapter 9. Object Copying Policies: Implementation 128

for curtailing the copying of an object graph for serialisation and

2. substituting non-copied objects with instances of the class PCopyStub, so that the
stubs are serialised instead of the rest of the object graph.

To do the latter, calls will need to be made to the following method of the PCopyObjects
service:

s ta t ic protected Object registerO bject(O bject o) ;

which takes the object to be replaced as an argument and returns the PCopyStub containing
the corresponding object identity as the result. It is then the responsibility of the policy
to place the returned PCopyStub at the appropriate place in the serialisation of the object
graph, so that it does actually replace the object for which it is a substitute.

9.4.1.3 Step 3: use de-serialisation method

If any adjustment to the serialised objects is necessary, after deserialisation at their des
tination and before they are made accessible to the user, this should be done within the
Policy.resolveO bject method.

9.4.2 Leaving the Rest to the Policy Support

Once the policy has been defined, the policy support will take care of ensuring that the
appropriate policy methods are called during serialisation and deserialisation. Once object
graphs containing PCopyStub objects have been received at their destination, the policy
support handles the mapping of an access made to a PCopyStub to an access on the object
it actually represents.

9.5 Implementation of Individual Object Copying Policies

Having summarised the policy support and how it is used to implement a policy, the imple
mentation of the pre-defined policies introduced in chapter 8 is now described. This will
illustrate how the policy support is used in practice and show how the implementations of
each of the policies differ.

9.5.1 Behaviour Common to the Policies

The effect of each policy may be felt during:

Chapter 9. Object Copying Policies: Implementation 129

1. initialisation of the policy,

2. serialisation of an object for an RMI call and

3. deserialisation of an object for an RMI call.

In the serialisation of objects for RMI using each of the policies presented below, objects
defined to be passed by reference to remote sites are still passed by reference. Thus, if
an object implements the java.rm i .Remote interface, it is replaced by a corresponding
java.rm i .server .RemoteStub, as in the default method replaceO bject of the class
sun.rmi.server.M arshalOutputStream. This includes the substitution of a reference
to the PCopyObjects service with a RemoteStub, in a PCopyStub object itself.

9.5.2 Policy CopyToRefs

The policy defined in the class org.opj .distribution.pcopy.CopyToRefs supports in
cremental copying of object graphs on remote access, where each object in the graph is
shallow-copied and its references to other objects are replaced with PCopyStub objects.
Access to the stubs subsequently triggers remote faulting of the corresponding object. The
effect of this policy is described in section 8.2.6.1.

9.5.2.1 CopyToRefs Initialisation

No initialisation of the CopyToRefs policy is required before application execution begins.

9.5.2.2 Serialisation with CopyToRefs

The serialisation code is modified, for objects passed by copy, by this policy’s implementa
tion of the methods replaceO bject and outputC lassF ields, as follows:

• For objects defined to be passed by copy, the top-level object’s fields containing ref
erences to objects are replaced with references to PCopyStubs before the top-level
object is serialised.

• If the top-level object is an array of references to objects, it is replaced with an array
of references to PCopyStubs. To ensure the array is now serialised as an array of
PCopyStubs, its real type is moved to a temporary variable in the first PCopyStub
element of the array and the type of the array is changed to be an array of PCopyStubs.
Alternatively, if it is an array of scalar elements, the whole array is serialised.

Chapter 9. Object Copying Policies: Implementation 130

9.5.2.3 Deserialisation with CopyToRefs

An array of objects, that has been replaced with PCopyStubs, is serialised and deserialised
as an array of PCopyStubs. However, to avoid type-checking problems during subsequent
usage at the destination after deserialisation, the original type of the array is reinstated in a
call to the policy’s definition of resolveObject.

9.5.3 Policy CopyToSize

The policy defined in the class org.opj .distribution.pcopy.CopyToSize supports
depth-first copying of an object graph to a specified size limit in bytes. References to parts of
the graph still to be copied, when the size limit is reached during serialisation, are replaced
with PCopyStubs. The effect of this policy is described in section 8.2.6.2.

9.5.3.1 CopyToSize Initialisation

This policy is configured with a call to the in it method, that passes one argument: the
object graph size limit in bytes for this application’s lifetime. After being set from a
DistributedContext constructor, it will apply to all object graphs passed by copy dur
ing the lifetime of the associated application.

9.5.3.2 Serialisation with CopyToSize

The serialisation code is modified, for objects passed by copy, by this policy’s implemen
tation of the methods replaceO bject and outputC lassF ields. For each object to be
serialised:

• the object’s size is calculated (see below for details),

• if the total size of the graph serialised so far plus this object’s size equals less than
the size limit set during policy configuration, the object is serialised and the total size
adjusted accordingly,

• otherwise, once the maximum graph size has been reached, then all references to
objects are replaced with PCopyStubs.

An object’s size is determined from the instance size held in the class at the VM implemen
tation level: i.e. it is the size of the object memory referenced from the handle’s obj pointer
(see the key in figure 9.2 for an illustration of a handle to an object). It does not take into

Chapter 9. Object Copying Policies: Implementation 131

account the memory used for the handle object itself or the class and methodtable objects
that are also referenced from the handle, since neither of these are directly serialised so don’t
vary the size of the serialisation. Similarly, the size of an array is calculated to be the size of
one of its elements multiplied by the length of the array.

Since an object graph is serialised using recursive calls to the writeObject method of the
class ObjectOutputStream, a recursionDepth attribute of class ObjectOutputStream
is used to track when serialisation has finished serialising one object graph and is starting
on a new one. The recursionDepth has a value of one when at the top-level of an object
graph; it is incremented on each subsequent, recursive call to the writeObject method and
decremented on exit from the same call to keep track of the object graph’s current depth.
In standard serialisation, this is used in tracking the beginning and end of the writing of
a particular class of object so they can be marked in the serialisation. This is useful, for
example, where one version of the class is written and a different version is read, since
unexpected fields of a new version may be skipped by an older version. Similarly, the
recursionDepth is also used by this CopyToSize policy to determine when it has finished
tracking the size of the previous object graph and is now tracking the size of a new object
graph being serialised.

9.5.3.3 Deserialisation with CopyToSize

No code, additional to the default deserialisation, is required for this policy.

9.5.4 Policy CopyToDepth

The policy defined in the class org .op j. d istr ib u tio n , pcopy .CopyToDepth supports
breadth-first copying of an object graph to a specified depth, where one indicates only the
top level object, two indicates the top level object and all those only immediately reach
able from it, etc. References to parts of the graph still to be copied, when the depth limit
is reached during serialisation, are replaced with PCopyStubs. The effect of this policy is
described in section 8.2.6.2.

9.5.4.1 CopyToDepth Initialisation

This policy is configured with a call to the in i t method, that passes one argument: the
limit on the depth of the object graph for this application’s lifetime. After being set during
creation of a DistributedContext, it will apply to all object graphs passed by copy during
the lifetime of the associated application.

Chapter 9. Object Copying Policies: Implementation 132

9.5.4.2 Serialisation with CopyToDepth

The serialisation code is modified, for objects passed by copy, by this policy’s implemen
tation of the methods replaceObject and outputClassFields. For each object to be
serialised:

• While the ObjectOutputStream. recursionDepth is less than the depth limit spec
ified during policy configuration, continue to serialise the objects of the current object
graph.

• If the ObjectOutputStream.recursionDepth becomes greater than the policy’s
current depth limit, replace all references to objects with references to correspond
ing PCopyStubs.

9.5.4.3 Deserialisation with CopyToDepth

No code, additional to the default deserialisation, is required for this policy.

9.5.5 Policy CopyByUsage

The policy defined in the class org.opj .distribution.pcopy.CopyByUsage, and its as
sociated helper classes, supports the copying of an object graph based on past usage by
the current application. Keyed on the class of the top-level object, the access paths made
through a given object graph are tracked during application’s lifetime. Subsequent use of ob
jects of the same type results in the copying of objects in the graph that have been previously
accessed. The effect of this policy is described in section 8.2.6.3.

9.5.5.1 CopyByUsage Initialisation

This policy is configured with a call to the in i t method of CopyByUsage, which creates
an instance of this policy’s helper class org.opj .d istribution .pcopy .TrackUsage. A
single TrackUsage instance is created for use by a specific DistributedContext. It
may be used for one or for repeated lifetimes of the same application task in the same
DistributedContext. Thus, after being created as the result of this method call from the
DistributedContext constructor, it will be used to track the usage of all object graphs
passed by copy during the lifetime of the associated application. The cost of tracking us
age is most likely to be amortised if the same application is executed repeatedly from the
same DistributedContext, taking advantage of the usage information collected in the
TrackUsage tables during previous runs.

Chapter 9. Object Copying Policies: Implementation 133

9.5.5.2 Serialisation with CopyByUsage

As with all the other policies described in this chapter, objects defined to be passed by
reference to remote sites are still passed by reference. Thus, if an object implements
the java.m i.Rem ote interface, it is replaced with a corresponding instance of the class
ja v a .m i .server .RemoteStub, as in the default method replaceObject of the class
sun .m i .server .MarshalOutputStream. This includes the substitution of a reference
to the PCopyObjects service with an instance of a RemoteStub, in a PCopyStub object
itself.

The serialisation code is modified, for objects passed by copy, by this policy’s implemen
tation of the methods replaceObject and outputClassFields. They make calls on the
policy’s support class TrackUsage to establish and maintain information on what classes
are copied and used remotely.

Serialisation: first class use

Initially, the first instance of a class, that is passed by copy, is serialised as a shallow copy
of the top-level object, with its references to other objects replaced with PCopyStubs (as in
the CopyToRefs policy, first described in section 8.2.6.1).

The TrackUsage object associated with this policy contains the field:

private Hashtable classUsageTable;

which is used to hold collected information on accesses made to objects, using the class of
the top-level object of a serialised object graph as the lookup key. It also contains the field:

private Hashtable objectLookupTable;

which is used to map the object identities, held in PCopyStubs, back to the original objects
that they represent in a serialised object graph. These two TrackUsage tables are illustrated
in figure 9.4, for reference during the following explanation of how they are used.

The first instance of a class to be serialised initialises tracking of the class:

• An entry is created for that class in the classUsageTable: registered in the table
using the class name as the key, this ClassUsage entry keeps a record of the class’s
non-static reference fields: those that would appear in an instance of the class.

• The ClassUsage entry is initialised with an array of FieldEntry objects, one per
reference field of the class.

• The FieldEntry contains

- the reference field name from the class,

Chapter 9. Object Copying Policies: Implementation 134

H a s h t a b l e c l a s s U s a g e T a b l e

(string c l a s s N a m e) —

A r r a y U s a g e e x t e n d s C l a s s

C l a s s U s a g e

S t r i n g c l a s s n a m e

F i e l d E n t r y [] r e f F i e l d l n f o

F i e l d E n t r y [] r e f F i e l d l n f i

S t r i n g c l a s s n a m e
a r r a y o f F i e l d E n t r y
(-------------------

S t r i n g f i e l d N a m e

i n t a r r a y S i z e

i n t o f f s e t l n C l a s s

i n t c o u n t

C l a s s U s a g e r e f d C l a s s y

T
H a s h t a b l e o b j e c t L o o k u p T a b l e

(objlD o b j e c t i p } -

O b j e c t A c c e s s

F i e l d E n t r y f i e l d l n f o —

O b j e c t f i e l d l n s t a n c e

Figure 9.4: class TrackUsage tables of the CopyByUsage policy

- the offset of this field within an instance of the class,

- a count of the number of times this field has been accessed from an instance of
this class - which is initialised to zero, and

- a reference to the ClassUsage for the class of the field itself.

• If the top-level object is an instance of an array of objects instead, an entry is created
for the array in the classUsageTable: registered in the table using the array class
name as the key, this ArrayUsage (an extension of ClassUsage) keeps a record of
the reference fields of the array. It also records the size of the array.

• Each reference field of the top-level object or array is replaced with a PCopyStub.
Unlike the other policies, the service referenced from the PCopyStub is not the imple
mentation of PCopyObjectService supported by an instance of the PCopyObjects
class. In this case, the TrackUsage instance provides the implementation for the
PCopyObjectService instead; so it is a reference to the TrackUsage instance that is
put into the service field of the PCopyStub for this policy.

• An entry is created for each replaced field in the objectLookupTable. This entry
is registered using the object identity Obj ID, that has been generated for the field’s
PCopyStub. The entry, of class ObjectAccess, contains

- a reference to the object originally held in the field, before substitution with a
PCopyStub, and

Chapter 9. Object Copying Policies: Implementation 135

- the FieldEntry for the field, that holds the information already described
above, including the offset of this field in the top-level object that contains it.

Serialisation: mid-graph objects copied on access

After the top-level of an object graph has been passed by copy to its destination, access
to one of its reference fields, currently containing a PCopyStub, triggers a remote-fault,
as previously illustrated in figure 9.3. Since the service field of the PCopyStub holds a
reference to the originating site’s TrackUsage, as described above, it is this object that is
contacted with the remote method call on PCopyObjectService.getObjectCopy.

The TrackUsage implementation of the getObjectCopy method is passed the PCopyStub’s
Obj ID: it uses this object identity to do a lookup on the objectLookupTable, which returns
the corresponding ObjectAccess.

The ObjectAccess contains the object to be returned to the accessing site and a
FieldEntry: information on the field holding this object. To track the fact that the ob
ject is now being accessed, a call is made to increment the FieldEntry’s access count. To
serialise the object to be returned, the FieldEntry. ref dClass, containing the ClassUsage
information for the class of object, is used. If no usage information for the class of this ob
ject yet exists, a shallow copy of this object is made and PCopyStubs are substituted for
the other objects referenced from this one. Alternatively, if usage information does already
exist, the object is serialised as described below.

Serialisation: object graphs of previously-tracked classes

Once usage information is held on a class, it can be applied to subsequent serialisations of
instances of that class, done in the same DistributedContext, either in the same or in
subsequent application lifetimes. If an application object is passed as a RMI parameter, a
lookup on its classname in the classUsageTable returns its ClassUsage. If an access has
been made to a PCopyStub at a remote site, the ClassUsage for the object to be returned to
that site is obtained via an ObjectAccess as described above.

Where previous usage information is held in the ClassUsage, this takes the form of non
zero count values in the FieldEntrys associated with fields of the class. For the object
to be serialised, each of its top-level primitive fields are serialised first. Then, for each
reference field of the object’s class,

• if its FieldEntry contains a count value of zero, that field has not previously been
accessed remotely, so the object in that field is substituted with a PCopyStub during
serialisation, otherwise

• if its FieldEntry contains a non-zero count value, the primitive fields of the object

Chapter 9. Object Copying Policies: Implementation 136

in that field will also be serialised, and then

• the ClassUsage for the object in that field will be retrieved from the refdClass
attribute of the FieldEntry and, for each of its FieldEntrys, the same rules are
applied, recursively.

The result is a serialisation of all the fields of an object graph that have previously been ac
cessed, with PCopyStubs replacing objects in fields not previously accessed. This prevents
previously unused portions of object graphs for a particular class, and those reachable from
it, being copied over to a remote site.

9.5.5.3 Deserialisation with CopyByUsage

No code, additional to the default deserialisation, is required for this policy.

Chapter 10

Object Copying Policies: Evaluation

10.1 Introduction

The motivation for object-copying policies, as presented in section 7.1 can be summarised
as follows:

• large, complex graphs of objects build up incrementally over time in persistent stores;

• copying the full transitive closure of a large object graph between processes partici
pating in a distributed application can be prohibitively expensive in terms of time and
space;

• persistent objects may be used by different applications over time;

• persistent objects may be used in different distributed environments over time and

• per-class static definition of the object passing policy for an object is not sufficiently
flexible for handling the problems above for distributed, persistent objects.

The support for object-copying policies, as presented in sections 8 and 9, addresses these
points. Firstly, there is a separation of architectural issues: the object-copying policy can
be specified separately from a particular application’s code or a particular object’s class.
Secondly, greater flexibility of remote object usage is supported. The evaluation presented
below demonstrates this flexibility by examining the object-copying requirements of some
distributed applications and describing the effects of applying object-copying policies; with
measurements for illustration where appropriate.

Chapter 10. Object Copying Policies: Evaluation 138

10.2 Separation of Architectural Issues

Java RMI is an example of the type of system that requires a static definition to indicate
whether or not an object is to be passed by reference. Other existing work, including
CORBA’s Value Type Semantics (see section 4.2.6) and FlexiNet (see section 4.2.11), take
care to avoid such static definition of object passing policy on the object’s type itself. The
support for object-copying policies described in this dissertation takes the latter approach in
order to achieve the flexibility in the handling of persistent object graphs that is likely to be
needed through their lifetime.

Thus, object-copying policies are specified independently of the classes of objects used by
applications. This promotes separation of policy from class definition, enabling a policy to
be applied on a per-application-lifetime basis. The intention is not to be able to change the
way one application accesses an object remotely where this is inappropriate. Changing the
object-copying policy for a specific application’s use of an object may violate assumptions
made by the application about, for example, the consistency of the application’s view of
the object with its state at its original site. However, the intention is that the support for
applying policies on a per-application-lifetime basis does allow different applications to
influence communication of the same object graph in different ways, where this is deemed
appropriate by the application programmer. The object-copying policies that have been
defined provide the ability for applications to influence communication of object graphs
specifically with regard to control of copying between sites.

Sections 8 and 9 have described the design and implementation of support for definition of
a policy in its own class, and for specifying and applying a particular policy to the lifetime
of a distributed application. This clearly demonstrates the required separation of concerns.
The use of object-copying policies does enable greater control over the copying of object
graphs between sites in a distributed application lifetime than previously supported for Java
RMI. The sections below illustrate this by applying a number of policies to some distributed
applications.

10.3 Measurements Setup

A test environment has been created for taking measurements on the execution times of
a number of distributed applications using a range of object-copying policies. The aim
of taking these measurements is to determine the cost of applying various object-copying
policies to an application. This contributes to an evaluation of the use of such policies, based
not only on the execution times of an application but also on its usability and reliability of
access to the data that it uses.

Chapter 10. Object Copying Policies: Evaluation 139

Measurements have been taken on the use of object-copying policies over local and wide
area networks. Where communication is presented as being over local area network, the
distributed application programs have been run on two-processor SPARC 20 workstations
communicating over a 100 Mbps LAN within the Department of Computing Science at
the University of Glasgow. Communications over wide area network took place between
a two-processor SPARC 20 workstation in Glasgow and a SPARC Ultra workstation at the
Australian National University computing science department in Canberra, Australia.

The total cost of execution of a client program is measured, from the point of invoking the
client program’s main method, until control is returned to the invoker. Thus, the client is
initiated from within an already-running VM. In each case, the server is running before the
client is invoked and it is shut down after the client terminates. This setup enables a com
parison of communication costs over the duration of client program execution, whether all
communication of an object graph from the server takes place in one remote call or whether
communication of a graph of objects from server to client is done incrementally through the
course of client execution. The results of measuring the duration of client execution in each
case have been averaged over ten runs, unless stated otherwise. The measurements have
been taken in milliseconds but are presented in seconds for readability.

The platform used for the measurements is PJama release version 0.5.7.13 with modifica
tions for object-copying policy support. This version of PJama is a first generation imple
mentation of Orthogonal Persistence for Java, based on JDK 1.1.7.

To illustrate the base costs of persistence and of the object-copying policy support infrastruc
ture, the following graph illustrates the relative costs of running a simple application over a
number of platforms. The measured client application looks up a simple MessageService
at a remote site over a local area network. It makes one remote method call to that ser
vice, which passes one ten-character String to the server. The RMI call deserialises the
String at the server and then immediately returns, allowing the client program to com
plete. Figure 10.1 illustrates the platform costs in the form of a graph. Measurements are
given in seconds. Each point on the graph illustrates the cost of execution of the client
application over a different platform. The key to the indicated platforms is provided in fig
ure 10.2. Use of each of the policies is illustrated as a range of alternative costs over the
“copying-pjama” platform that supports the policy infrastructure, running the application in
a DistributedContext.

se
co

n
d

s

Chapter 10. Object Copying Policies: Evaluation 140

0 . 9 r -

0.8 -

0 . 7 -

0.6 -

0 . 5 -

0 . 4 -

0 . 3 -

0.2 -

0.1 -

t------------------------- 1------------------------- 1------------------------- 1------------------------- r

Ref

^ S iz
^ U se

- o D ep

_ i ___________________ i____________________ i____________________i____________________ i___

117 PJ C P DC Policy
Platform

Figure 10.1: Comparison of platform costs

Label Platform
117 JDK 1.1.7
PJ PJama 0.5.7.13
CP PJ + policy support
DC CP + DistributedContext
Dep DC + CopyToDepth Policy
Siz DC + CopyToSize Policy
Use DC + CopyByUsage Policy
Ref DC + CopyToRefs Policy

Figure 10.2: Key to platform labels

Chapter 10. Object Copying Policies: Evaluation 141

10.4 How Large is a Large Object Graph?

What constitutes a large object graph, or indeed a large object store, changes as storage and
object-oriented database (OODB) technology scales and as application demands become
correspondingly more ambitious over time.

The traditional benchmark for OODBs is the 007 benchmark. It was originally used to eval
uate several OODBs [CDN93]. The small database contains a module with 500 composite
parts, each composite part contains 20 atomic parts and its implementation averages 10MB
in size. The medium database contains a module with 500 composite parts, each composite
part contains 200 atomic parts and its implementation averages 102MB in size.

Nowadays, the scale of object-oriented databases has increased greatly. In the context of this
dissertation, “large” can be interpreted using the following examples. The PJama project
aims to support persistent object stores of at least 10GB in size, containing highly structured
data. A single graph of all the objects reachable from one root object in a store of that scale
could easily be of the order of 30 or 40 MB in size. It is necessary to populate a persistent
store incrementally when the volume of data to be stored is too large to create objects for
it and make it persistent all in one go. The Geographical Information System developed at
the University of Glasgow is a good example of an application that both requires storage
of large volumes of data and allows new data to be added to the store incrementally over
time. This application stores mapping data. Known as GAP, it was originally developed
in Java and subsequently ported to PJama. Stores have been populated incrementally with
mapping data from the UK and the US. The project’s UK Ordnance Survey data store is
about 420MB, while the US TIGER data store for part of California is 1.5GB. The graph of
objects reachable from one root in the former contains 699434 objects, totalling 30.45MB in
size. Given the availability of US TIGER mapping data, it is possible to add new US states
to an existing store as required, during the lifetime of the store. Use of the second generation
PJama platform is now increasing the scale of such stores to over 3GB for the TIGER map
ping data of the entire state of California and to 4.9GB for an unrelated benchmark called
the portable Business Object Benchmark1.

Given the size of the stores described, the size of the object graphs contained in them also has
a tendency to be large. The mapping data of GAP, for example, is composed of lots of small
objects that are highly interlinked into large, complex object graphs. Thus, when the copying
of object graphs from a persistent store to a remote site is required in a distributed application
where such stores are involved, limitations are necessary on the amount of data transferred
in one communication between sites. The object-copying policies presented in this paper
do support such control: by making copying incremental in the case of the CopyToRefs

*See section 11.1.6 for more information on the second generation PJama platform

Chapter 10. Object Copying Policies: Evaluation 142

policy, incremental and batched in the case of the CopyToSize and CopyToDepth policies
and based on past usage in the case of the CopyByUsage policy. With appropriately chosen
parameterised limits, they prevent the objects, of whatever are considered prohibitively-large
graphs for the current application, being copied all in one go.

When copying of object graphs between distributed sites is required by an application, the
implication is that the costs of doing such copying are outweighed by the benefits to the
application of having that copy at its destination. The size and complexity of the GAP
application’s mapping data certainly argues for caching of local copies rather than repeated
remote accesses. Consider the following example. Working with a store of UK Ordnance
Survey mapping data, the decision is made to copy an object graph representing a particular
map from the server store to the client. The client makes a copy of a map from the server.
The map is represented as a root object in the server’s store. Copying the full graph of
objects reachable from that map root object results in a serialisation of an object graph from
server to client that is 1.74MB in size. A measurement has been taken to give an idea of the
costs involved in serialisation, communication and deserialisation of such an object graph.
A client program contacts the GAP server, makes a deep copy of the full transitive closure
of the object graph for the 1.74MB map from the server, using standard RMI serialisation,
and then terminates. The time taken for the client to complete is 5.66 seconds.

The original plan was to present the measurements for more controlled copying of this
map using the object-copying policies with GAP. The original, single-process application
has been converted to a client-server distributed application by the author and a significant
amount of work has been done to get GAP working with object-copying policies. However,
the complex interactions of this multi-threaded real-world application, with its large graphs
of lots of small objects, have proved too much for the current state of the object-copying
policy platform. Specifically, handling the interaction between the multi-threading of the
GAP client, the Java garbage collector and the remote-faulting support for object-copying
policies has proved to be the challenge.

However, the effects of applying the object-copying policies to large object graphs have
been successfully measured with several other slightly simpler applications. Experiences
with these applications are presented below. Section 10.5 presents two JP applications of the
Forest project as an example of two applications that have different requirements for remote
usage of the same objects. It describes the object graphs that they use remotely and shows
the effects of applying object-copying policies where they seem appropriate. Section 10.6
compares the use of a binary tree of varying sizes over local area network and wide area
network, using appropriate object-copying policies.

Chapter 10. Object Copying Policies: Evaluation 143

10.5 Same Object Graph, Different Applications

One of the issues raised by the combination of a static object passing policy and the persis
tence of objects is that the persistent objects of one class may be used by different applica
tions over time. While the object passing policy originally defined for the class may meet
one application’s requirements, it may not be as suitable for an application written months
or years later to use objects of that same class.

The need for setting an object-copying policy on a per-application basis is demonstrated
by a couple of applications that have been developed in the Forest project [ForOO]. The
Forest project aims to provide an environment, known as JP, for the support of large scale
software development, which includes distributed configuration management, development
and building of applications over sites distributed across wide-area networks [JV97]. De
veloping applications are managed as federated repositories of versioned software sources.
The application software at one site can incorporate specified versions of software available
in other repositories; reliable, repeatable builds are supported for the versioned software
whether it is all within one repository or distributed across multiple, remote repositories.

The JPBuild application enables a user to do a distributed software build. Although the user
may have some of their current application’s sources under JP version control locally, the
current version of their application may also use a specific version of software components
that are held under JP version control in remote repositories. Thus, in the course of building
their application, builds of the required version of each remote software component will
be triggered too. Objects in a JP repository represent versioned sources. For the purposes
of the JPBuild application, it is sufficient to always pass objects by reference in the RMI
calls that manage the distributed build. To avoid having distribution-related code in JP
classes themselves, support was developed in the Forest project for dynamically generating
wrappers for the objects to be passed to remote sites. When used, this enforces pass-by-
reference semantics at runtime.

However, another application developed for JP called the JPBrowser benefits more from
passing versioned object graphs by a controlled form of copying. The JPBrowser supports
browsing of local and remote versioned application sources that have been placed under
the control of the configuration management system. Use of one of the incremental object-
copying policies for browsing remote sources results in the copying of object graphs of
names of hierarchies of directories and versioned sources for display to the user by the
JPBrowser.

For these measurements, JPBrowser was initially run to browse over one remote project
containing a small set of versioned sources and then subsequently run to browse over a re
mote project containing a larger set of versioned sources. The serialised size of the full

Chapter 10. Object Copying Policies: Evaluation 144

70

60

50

40

30

20

10

0

object graph for the small project is 6302 bytes and for the large project is 15.35MB. The

measurements have been run between client and server processes, each running on a two-

processor SPARC 20 workstation, communicating over a 100 Mbps LAN. The measure

ments setup is as described in section 10.3.

The results (in seconds) are for the full execution of the JPBrowser application. In the first

case, the default JP wrapping technology developed in prior work of the Forest project is

used for passing by reference all parameters and results of RMI calls between JPBrowser
client and the browsed project server. This demonstrates its unsuitability for the JPBrowser.
The cost of dynamic generation of wrappers to pass objects by reference and the latency cost

of every access to the project’s objects over the network is high.

In the second case, the CopyByRefs object-copying policy is used. The copying of each

object on access is less of a penalty than generation of a wrapper for it. Even though there

are still latency costs on first client access to each object in the server-side project, the total

costs are greatly reduced. For the small project, the cost of using the CopyToRefs policy

is about a tenth of the cost of the original wrapper technology. For the large project, the

CopyToRefs policy is about a twentieth of the cost of the original wrapper technology.

The effect of this policy on the application is that, as the JPBrowser works through the

hierarchies of objects representing versioned sources, only their names are accessed and

Prior Work - Large/Small Projects
Policy - Large Project
Policy - Small Project

Wrappers Ref Use - first use Use - with usage
Policy

Figure 10.3: Effect of policies on communicating projects

Chapter 10. Object Copying Policies: Evaluation 145

therefore copied over the network incrementally.

In the third case, the CopyByUsage object-copying policy is used, with no existing usage
information held at the server for the objects in the project. Note that this policy effectively
applies the CopyToRefs policy when it has no existing usage information to go on, but that
it is also collecting usage information during this first execution using this policy. Thus, the
cost of using this policy for the application is six times the cost of CopyToRefs for the small
project and five times that cost for the large project.

However, in the final case illustrating subsequent executions of the same application with
the same CopyByUsage object-copying policy, the policy is able to take full advantage of
the existing usage information held at the server, which was collected from previous runs
on the classes of the project’s objects. Here, the objects in the object graph, which are
of classes that have been accessed by the client in previous runs, are copied over in one
go. The costs, compared with the CopyToRefs policy are reduced because less calls are
made over the network. In this case, the CopyByUsage policy working with previously-
collected usage information takes about a third of the time compared to CopyToRefs for
the application execution using the small project and nearly a quarter of the time for the
application execution using the large project. The effect for the JPBrowser is that it receives
the hierarchy of versioned source names, without the rest of the fields that are associated
with the sources, and all in one go. If the user is willing to pay the cost of the first run to
gather usage information on a per-class basis, there is obviously some benefit to be had in
subsequent use of the same application.

10.6 Same Object Graph, Different Distributed Environments

Another problem, raised by the combination of a static object-passing policy and the per
sistence of objects, is that one client may access an object in a server-side persistent store
over a LAN, while another client may access the same object over a WAN. If the accessed
object’s class is written with only LAN-scale access envisaged, the manner in which it is
passed to remote sites as a parameter in RMI calls may not be as suitable if the persistent
object is subsequently used at the scale of a WAN.

Use of an incremental copying policy is attractive when the user does not wish to pay the
cost of copying the whole of a large object graph in one go, or does not know how much of
the graph will actually be used. However, the benefit of avoiding one large graph copy is
offset by the increased latency costs of multiple calls for incremental copying. Running the
application over a wide area network, the cumulative latency costs are likely to be high for
remote access to the same object graph compared to the same application execution over a

Chapter 10. Object Copying Policies: Evaluation 146

Tree Depth Nbr Nodes Serialised Size (bytes)

5 31 767

10 1023 19615

15 32767 622751

Figure 10.4: Size of binary trees at range of depths

4000

3500

3000

2500

43§ 2000
o

1500

1000

500

0

local area network.

To give the reader some idea about the relative tradeoffs, measurements have been taken on

the performance of a client application iterating through a server’s binary tree, over both

local and wide area networks. For this evaluation, the different client program executions

have iterated over binary trees of increasing size. Each object in the tree is an object of 20

bytes in size. It contains three integer fields plus two fields containing references to other

nodes in the tree. The table in figure 10.4 indicates, for each depth of tree used, the number

of nodes it contains and its serialised size in bytes.

The graphs in figures 10.5 and 10.6 show the cost of client application executions using

various object-copying policies to control copying of the object graph of a binary tree of

varying sizes, over local and wide area networks respectively.

10
Tree Depth

Figure 10.5: Policy-controlled copying over local area network

Chapter 10. Object Copying Policies: Evaluation 147

4000
Ref

Dep
Siz
Std3500

3000

2500

2000
</>

1500

1000

500

5 10
Tree Depth

15

Figure 10.6: Policy-controlled copying over wide area network

The theory is that running the same application in a different distributed environment from

the one for which it was originally envisaged may challenge the assumptions made about

how objects of a given class should be copied between the participating processes of the

application. In the case of this binary tree application, whilst frequent, incremental copying

may be fine between processes communicating over a LAN, a more batched mode of copy

ing may be more practical to counter some of the increased latency cost over a WAN, when

communicating the same data.

In practice, it is clear that latency costs are certainly a significant factor when considering the

performance of the same application over local and over wide area networks. The batched

copying modes of the CopyToSize and CopyToDepth policies are more costly but not nec

essarily prohibitively so as the latency of the network rises. However, it is clear that the

incremental copying mode of the CopyToRefs policy is unacceptably costly when latency

is high. The graph in figure 10.6 includes an estimate of the cost of running the binary tree

client program using the CopyToRefs policy as it iterates over a binary tree at the server

with a depth of 15: it is running off the top of the graph. In fact, the author drew the line

at taking any concrete measurement of the cost after the program had already been running

for four hours and was still actively copying over the tree incrementally. Extrapolating from

the other measurements taken, it is possible that this particular measurement could take up

Chapter 10. Object Copying Policies: Evaluation 148

to ten hours in total if it was allowed to run to completion and didn’t crash the machine on
which it ran in the course of doing so.

10.7 The Pros and Cons of Object Copying Policies

The advantage of the CopyToRefs policy is that it avoids copying over any objects other than
those which are accessed by the application. Its disadvantages are the increased network
traffic of the many remote calls necessary to do an incremental copy of a graph and the
consequent latency costs accrued throughout the time taken to access the graph. This makes
it suitable for applications distributed over fast (low latency) networks with a high degree
of reliability. The performance penalty of using it across widely-distributed sites with high
latency is costly. Comparison of its performance for the JPBrowser and for the local area
network runs of the binary tree program suggest that this policy works best for incremental
copying of a partial object graph. There is no advantage to using this policy when the
programmer is aware that the whole of the accessed object graphs are likely to be copied
over eventually anyway.

The CopyToSize policy avoids copying over a greater volume of objects than the seriali
sation code and destination context can cope with. The disadvantage is the time and space
costs of copying over objects which may never be accessed. The batched manner of com
munication for object graphs performs much better than the CopyToRefs policy so it is more
suitable for applications running across widely-distributed sites where latency is greater.

The advantage of the CopyByUsage policy is the amortisation of the initial cost of collecting
usage information over several executions of the same application. Extra time and space
costs are incurred though, in recording the usage information. The collected usage informa
tion is of benefit if access paths are similar over multiple executions of the same application.
This is demonstrated by the measurements taken on the JPBrowser, which always accesses
the same fields of JP versioned source classes. If the object graph is updated radically, this
does make usage information redundant for parts of the object graph which become un
reachable. Future work on this policy is intended to include refinements to address some of
these issues.

It is worth noting that when an object graph is copied incrementally, it is possible for the
non-copied parts of the object graph to be modified after the initial top-level copy is made
and before the rest of the object graph is accessed. This means that the graph may not be
in the same state by the time an individual object is accessed as it was when the the initial
copy took place. In fact, the PCopyStubs held by clients can reference objects that are no
longer reachable from the original graph by the time the PCopyStub is accessed. This can

Chapter 10. Object Copying Policies: Evaluation 149

change the semantics of the application.

The intention with evaluation of these policies is that performance is not the sole judge of
their value, although this is important. There is plenty of scope for optimisations to the
existing policy implementations which could help to bring down their current costs. The
intended value to the application programmer is also in the policies’ flexible control over
how much of an object graph is copied, whether in a single call or over the lifetime of the
application. After all, the programmer will not want their client program to have to wait for
over five minutes for an object graph of 1.7MB to be serialised with standard RMI when
they only want to access selected fields of that object graph. As demonstrated with JP, there
is some benefit to be gained from use of a well-informed, controlled-copying policy.

10.8 Future Work

10.8.1 New Policies

In the future, policies could be implemented to refine the existing policies and to experiment
with new ways of controlling copying between distributed stores.

Further development and optimisation of existing policies is required to explore their poten
tial and costs. One option is to combine the CopyByUsage and CopyToSize policies on the
basis that this is likely to be more useful than either of the existing policies alone. It would
ensure that, even if large object graphs have been used in previous application lifetimes, they
are not copied over all at once.

There is plenty of scope for the refinement of the CopyByUsage policy implementation.
Although its implementation currently involves incrementing a FieldEntry’s counter on
every remote access, it is probably sufficient to stop incrementing once it has reached a
value that indicates the field is accessed often. A more subtle use of FieldEntry.count
would be to serialise the fields of the object corresponding to that FieldEntry only if the
count is above a certain threshold, where the threshold could be set for a specific class or for
the current DistributedContext.

The CopyByUsage policy may also benefit from some analysis of object graphs and how
they evolve during execution of code working over them. Identifying which parts of the
graph always need to be copied and which typically require indicators from the application
to determine further accesses would help to minimise unnecessary copying. Notions of
articulation points and ownership of (sub)graphs, as described in [PNC98] may also be
helpful. However, increasingly sophisticated usage tracking and analysis would have to be
balanced against the resultant increasing costs in terms of time and space.

Chapter 10. Object Copying Policies: Evaluation 150

New object-copying policies can be defined and used in the framework of an instance of
the class DistributedContext, using the hooks described in section 9.4. These could
include, for example, a policy which allows an application programmer to specify the ap
plication classes for objects that should or should not be copied, during configuration for a
DistributedContext. Another alternative would be to take an approach based on the pro
gramming model of the language Obliq [BC96]. In this case, immutable parts of an object
graph are copied but references to mutable objects are passed by reference (replaced with
network references).

10.8.2 Shared Subgraphs

CORBA Value Type Semantics, as described in section 4.2.6, and Java RMI both preserve
shared subgraphs across the parameters involved in one remote method call. The shared
subgraph maintenance currently supported by Java RMI is compromised by object-copying
policies that incrementally copy over a graph, since such incremental copying can span a
number of remote method calls. If policies are introduced in the future that, for example,
apply to some types but not others, the problem is exacerbated. If the policy partially copies
one parameter, while leaving the copying of another parameter in the same call to the default
Java Object Serialisation (JOS) implementation, shared subgraph maintenance will only be
done on the latter object’s graph. The reason for this weakening of subgraph maintenance
is the intentional separation of object-copying policy from JOS implementation. A tradeoff
would need to be made to deal with this issue.

Shared subgraph maintenance within the parameters of one remote method call only par
tially addresses the issue anyway. It may in fact be more useful to use the limited scope
imposed by a DistributedContext to manage shared subgraphs between a limited num
ber of distributed sites for the course of a distributed application lifetime. Such support
should be provided to the application programmer with similar flexibility to object-copying
policies e.g. as an option, so that they only pay the cost if they really need it. The chal
lenge is to provide an implementation which gives good performance and scalability over
the lifetime of the application.

Such an implementation would benefit from the use of more unique, system-wide object
identifiers than are currently provided by Java. A fingerprint, generated per serialised object,
unique for an object in a store, could meet this requirement. Some work is currently in
progress in this area [AJ00]. Even without more sophisticated support for shared subgraphs,
generation of a fingerprint as the identity of a server-side object would aid tests of equality
on multiple stubs that represent the same original object.

Chapter 10. Object Copying Policies: Evaluation 151

10.8.3 Setting A Policy across Multiple Sites

Currently, correct use of policies in a distributed application depends on the application pro
grammer specifying the same policy to be used at all the sites involved. An administration
tool for coordinating the setup of distributed contexts would be useful, to ensure the same
policy is used across all the sites involved.

10.8.4 Measurements

More measurement and evaluation is required of the effectiveness of various policies with
a greater range of distributed applications. Experience with real-world applications should
contribute to guidelines and recommendations for making the best use of object-copying
policies in the future.

10.8.5 Porting

The implementation and use of PCopyStubs by object-copying policies relies on the exis
tence of handles to objects in the VM implementation. While every object is accessed via a
handle in the VM upon which development of policies has been done so far, this is not the
case for the second generation of PJama releases that are based on the Java Solaris Produc
tion Release VM [PJR00]. Thus, a redesign would be required for porting this technology
to the latest releases of PJama. given the difficulties experienced by the author when try
ing to measure the copying of large, complex object graphs in a multi-threaded, real-world
application running over the first generation platform, the improvements in platform perfor
mance, reliability and store capacity, as described in more detail in section 11, would be
good incentives for such a port.

More Future Work

More general comments on future work on distribution support for the PJama platform can
be found in section 11.

Chapter 11

Future Work

The solutions presented in this dissertation have been implemented and are provided as a
platform for distributed, persistent system development. The author has focussed on two
issues on the grounds that a complete, integrated solution for persistence and distribution
is outwith the scope of a single PhD. However, the solutions provided can be considered
the basis for a well-integrated platform. Future work is intended to improve on the existing
solutions and to incorporate valuable work in related areas of distribution support, such as
distributed consistency management.

Improvements on the existing solutions have been considered.

Future work on application leases for control of dependencies between stores has been pre
sented in context in section 6.3.5. The issues it covers include extension of application
leases, the maintenance of leases in the face of store movement from one host to another
and the handling of persistent stub objects after lease expiration.

Future work on object copying policies for flexible control over the copying of object graphs
between stores has been presented as part of the evaluation of the technology in section 10.8.
The issues it covers include improvement of existing policies and development of new ones,
handling of shared subgraphs and porting of support for policies to the new, second genera
tion PJama platform.

This section focusses on future work for PJRMI and distribution support for persistent sys
tems in general.

Chapter 11. Future Work 153

11.1 PJRMI

The ultimate aim of PJRMI is to support resilience of RMI connections between PJVMs
within a DistributedContext, while also ensuring autonomy of stores by limiting the du
ration of an application’s lifetime in a DistributedContext. Aside from the solutions that
have been presented to deal with this, some further improvements to the PJRMI implemen
tation are described below.

11.1.1 Reconnection Retries

Since support for persistent remotely-invokable objects and their clients is intended to sup
port their resilience, support for re-tries on re-establishment of a client-server connection
after restart should be added to PJRMI, to ensure tolerance of temporary problems with
connections.

11.1.2 Store Movement

Persistent stores are likely to move between host machines during their lifetime. Reasons
for this may include upgrades to equipment and changes in personnel or to the department
within the organisation where the store is being used. For maintainability, persistent RMI
objects need, as much as possible, to be associated with the store containing them, rather
than the host machine on which that store currently resides. Thus, it should be possible for
PJRMI objects to adapt to the movement of a store from one host to another.

A solution has been presented in section 6.2.4.3 for updating the host information for a
remotely-invokable object dynamically in the stubs that reference it. It relies on the exis
tence of a third party store lookup process to supply the new location of a store with a given
store identity. However, this only deals with changes in host information.

Since the connection information for a remotely-invokable object includes both host and
portnumber, there must be support for updating both of these in PJRMI objects at client and
server, when necessary. For most remotely-invokable objects, the portnumber on which they
are available will change on every store restart. This is already handled by PJRMI’s support
for renewal of connection information in stubs, on first use by a client after store restart.
However, remotely-invokable objects representing well-known services, such as the RMI
Registry, are accessed via fixed portnumbers. When a store is moved from one machine to
another, it may be found that the portnumber currently used by a well-known service in that
store is already in use on the new machine. Thus, extra support is needed for updating the
fixed portnumbers of well-known services, as well as for updating the host information.

Chapter 11. Future Work 154

A PJRMI administration tool would be useful for updating the portnumber of well-known
services in a persistent store. Since these services are typically registered as named root
objects, they are not hard to locate in the store providing such services, in order to apply
such updates. The tool could also be used to inform a client store, that is known to contain
references to these services, about the new host information, leaving the client to apply this
information to the affected stubs the next time they are used (in order to avoid maintaining
an index of them or having to do a scan of a potentially large store to find them).

11.1.3 Persistence of RMI Registry

Some users of PJRMI have had problems with the persistence of the RMI Registry. In
theory, they should have the choice over whether or not the RMI Registry persists in their
store. However, in practice, the current PJRMI implementation requires it to persist to sup
port look-up by name of the PJRMI implementation service PJExported. The PJExported
service supports re-exportation of stubs on first use after store restart, in order to automat
ically update the connection information for the corresponding remotely-invokable object.
Supporting look-up of this service by name avoids the necessity of making it a well-known
service on a fixed portnumber, the issues of which have just been introduced above. If
PJExported was a well-known service, every client stub would hold a fixed portnumber
for it, meaning that every client stub would have to be updated if that portnumber has to be
changed.

However, given that the use of application leases effectively limits the lifetime of a client
stub, it may be reasonable to set the PJExported service to use a fixed portnumber within
a DistributedContext. Clients are only allowed to update their stubs within the duration
of the lease for the application in which they were obtained anyway. Thus, changing the
portnumber of PJExported between application executions should not be problematic or
have unacceptable overheads.

11.1.4 Removing Remote Access to Persistent Objects

PJRMI automatically makes objects persistent when they are exported for remote use. If
this exportation is done in a DistributedContext, these objects will be unexported when
the lease on the current application’s lifetime expires. However, if, for some reason, a user
wishes to export an object for remote use outwith the control of a DistributedContext, it
will persist for the lifetime of the store that contains it, even if remote access to it is subse
quently removed using the Java RMI unexportation support introduced in JDK1.2 and even
if it is no longer reachable from any other application-level persistent object. Extra support

Chapter 11. Future Work 155

needs to be added to PJRMI to ensure that, if an object is unexported, it will be removed from
the PJRMI tracking tables. It may still persist then if reachable from an application-level
persistent object but this would ensure that remotely-invokable objects created for relatively
short-term use do not persist for the lifetime of the store.

11.1.5 Evolution of Services

As noted in section 3.4.5, a stub becomes unusable once the interface to the service it ref
erences has evolved. Some support would be useful to ensure that stubs can be evolved
in line with their service implementation. This would be useful for standard Java RMI but
is, of course, particularly important for the long-term maintenance of persistent clients and
servers using PJRMI.

For a service’s store, support for evolving an RMI service class should also cover evolution
of its corresponding stub and skeleton classes, plus evolution of any stub class instances that
exist there.

For a client’s store, evolution support should apply to the stub class and instances, to ensure
their continued use with the corresponding, already-evolved remotely-invokable service.

The work of Misha Dmitriev on evolution support for PJama [Dmi98, DA99] and of Huw
Evans on DRASTIC [ED97, ED99] provides a good basis for development of such evolution
support for PJRMI.

11.1.6 New, Improved PJama Platform

PJRMI will benefit from progress of the PJama platform. An implementation of orthog
onal persistence for Java on a new store architecture called Sphere [PAD+98b, PAD98a]
has now been released [PJROO]. Amongst other things, the new PJama platform is being
used by members of the project to investigate support for persistent threads, technology that
improves on use of PJActionHandlers for handling externalities [JA99] and support for
transactions [DAV97, DayOO].

To give some idea of the improvements from which PJRMI can benefit, some statistics for
the latest PJama platform, as presented in [PriOOa], are included here. It should be possible
to support stores of up to at least 10GB in size. Stores that have actually been built using
the new platform include one for a GIS system that loaded the TIGER/Line data [USC98]
for the entire state of California (over 3GB store) and another for the portable Business
Object Benchmark (pBOB)[BDF+00] (4.9GB store, 24 warehouses, each with 5 threads).
The largest single object graph that the platform has been known to handle so far is 34MB
(a single scalar array). Speed improvements, in comparison with PJama releases on the

Chapter 11. Future Work 156

original store architecture, have also been reported. A University of Glasgow student has
reported on such improvements, saying “Roughly speaking it varies between 6 times to 16
times faster” [JapOO]. These are mainly due to the introduction of the JIT in the JDK and
the much more advanced memory management of Sphere.

Given the size of stores that can now be supported by PJama, long term maintainability is
an increasingly important issue for PJRMI.

11.2 Synthesis of Solutions in a DistributedContext

Application leases have been designed to apply to a distributed application where each pro
cess is running in a DistributedContext. The object copying policy for a distributed
application is set and applied within each process’s DistributedContext. Further de
velopment of a DistributedContext should therefore include integration of these solu
tions. The main implication of this integration is that application leases would be set on the
PCopyStub objects at the leaves of the copied part of an object graph, since they hold the ref
erences back to the remote, non-copied parts of the object graph. Such “leased” PCopyStub
objects would only be usable until the lease runs out. Since an application lease is intended
to last for the duration of a distributed application execution, this means that PCopyStub
objects created as the leaves of partially-copied object graphs are only valid for the duration
of that distributed application execution too.

11.3 Additional Support for Persistence and Distribution

Further development of the uses of a DistributedContext could include configuration
with more distribution-related information and policies on related issues. Setup of an ap
plication’s DistributedContext across multiple sites could include access checks on the
sites to be involved. Policies could be incorporated, integrated with the existing support for
object copying, for dealing with issues of checkpointing, replication and consistency.

11.3.1 Consistency

Objects are copied across a distributed system for a number of reasons. Depending on the
application, the programmer may be happy to make a copy that retains no association with its
original. On the other hand, there may be a requirement to maintain consistency between the
copy and its original. Much research has been done elsewhere on maintaining consistency
of objects across a distributed system. Distribution support for PJama would benefit from

Chapter 11. Future Work 157

exploring how existing consistency support could be integrated into the platform.

Thor is an example of an existing system that maintains consistency across distributed ob
jects. More details on this work can be found in section 4.2.5. Other work related to this
issue includes Arjuna, which provides support for fault-tolerant, distributed systems, using
replication of persistent objects, usually in the context of transactions. A brief summary of
Arjuna can be found in section 4.2.9. PJama could benefit from the work done on integration
of replication support with transactions [LS99b] and with caching [LS99a].

However, any such distribution support provided for PJama should be integrated with solu
tions addressing the issues of this dissertation. Support for consistency, for example, should
be limited to within a DistributedContext to avoid compromising the long-term auton
omy of the stores across which the consistency is being maintained.

It should be noted that support for replication and consistency is likely to require better
support for unique identities for objects across distributed VMs than is currently provided
in Java.

11.3.2 Transactions

Currently, only one DistributedContext runs one application process in a VM at any
one time. Given that support is currently being developed for transactions for the PJama
platform [DAV97, DayOO], the model of a DistributedContext will need to be revised in
the future to come up with a well-integrated model of usage in a transactional system.

Applying the solutions of this dissertation in a transactional context does require a change in
assumptions. It is probably most suitable in the future to apply leases at the level of a store,
rather than an individual application, if multiple concurrent applications may run as separate
transactions over one store. However, transactions participating in different applications
over the same store may wish to use different object copying policies concurrently.

11.3.3 Group Communication

Encompassing individual distributed applications within DistributedContexts is likely
to result in concurrent groups of cooperative, distributed processes. There is scope for ap
plying the extensive research work that has been done elsewhere on process groups and
group communication, as typified by the work of Birman et al. on the Isis and Horns
projects [vRBM96].

Chapter 11. Future Work 158

11.3.4 Aspect-Oriented Programming

The quest for a clean separation between application code and the policies for copying ob
jects between distributed sites can be seen as part of a more general aim to separate out and
modularise different concerns within large, complex software systems. The proponents of
aspect-oriented programming are well-known amongst those currently pursuing this holy
grail [KLM+97]. Aspect programming is supported by AspectJ, which is an aspect-oriented
extension to Java [LK99]. PJama’s distribution support might be greatly enhanced if it is
possible to apply the AspectJ approach to handling of RMI aspects. Identifying the “cross
cutting concern” of, for example, distributed exception handling and implementing it sep
arately from application code could help to free persistent objects from being tied to one
specific application context.

11.4 The Big Picture

Ultimately, the challenge in producing a well-integrated persistent, distributed system is to
make such a system truly maintainable. The problems raised in this dissertation and by
others working in this area are problems that affect the maintainability of persistent stores
used in a distributed system. For example, a persistent, distributed system should not, as has
been experienced in the past, seize up because the accumulation of dependencies between
stores becomes too great and uses up resources unnecessarily. The outstanding questions in
this area are:

• what makes a persistent, distributed system maintainable, and

• how can the maintainability of such a system be verified?

Only long-term experience with large persistent stores containing the complex object graphs
of real-world applications can confirm whether the challenge has really been met.

Chapter 12

Conclusion

Persistence support has been successfully integrated with distribution support for objects,
with greater flexibility that other systems for dealing with two important issues in this area.

A solution has been implemented to address the problems raised by maintaining persistent
references between distributed stores. Greater autonomy of individual stores is achieved,
by limiting remote access to object graphs to a duration of time associated with a specific
distributed application’s lifetime. Within the application’s lifetime, the benefits are retained
of persistence of inter-store references for resilience.

A solution has been implemented to address the problems raised by remote copying of large
object graphs. Flexibility of control over such copying is achieved. Separation of object-
copying policy from object definition ensures flexibility. Choice of object-copying policy for
a specific distributed application’s lifetime provides control, while ensuring it is adaptable
to changes in size of a persistent object graph over its lifetime and to changes in the context
in which that object graph is used.

These solutions address issues that are relevant to the current market place for distributed
systems. Global business organisations and E-commerce demand increasingly ambitious
distributed software applications with sophisticated data management requirements. Only a
platform with well-integrated persistence and distribution support can deliver fast develop
ment of such software plus high reliability and maintainability of the result. The importance
of such integration is borne out by the coverage of persistence in current industry-standard
distributed systems specifications. Strong demand forced early inclusion of mandatory sup
port for persistence in the Enterprise JavaBeans specification [EJB99a]. Demand for a work
able specification for persistence for CORBA resulted in the recent adoption of the Persistent
State Service specification [OMG99b].

More details on this dissertation’s solutions are presented below. Section 12.1 deals with

Chapter 12. Conclusion 160

the implications of creating and maintaining dependencies between distributed, persistent
stores. Section 12.2 presents the object-copying policies used to address the problem of
large object graph copying between distributed sites.

12.1 Limiting Dependencies Between Stores

The development and use of Persistent RMI (PJRMI), described in chapter 3, has demon
strated that it is feasible to provide the illusion of a persistent connection between two stores.
Chapter 6 has explained why it is not possible to maintain this illusion for the lifetime of the
distributed objects involved.

The PJama platform is intended for use in an open, persistent system. This conforms to
the current trend for open, distributed systems that is evident in current use of CORBA in
general and Java in particular. CORBA and Java are rapidly becoming the acceptable ways
to integrate legacy systems, such as relational databases, into a business’s distributed system.
A persistent system must be designed to work within this framework, to have any hope of
acceptance in the real world. The real world of distributed systems needs to acknowledge
that location-transparent use of objects throughout their lifetime is a holy grail, where long-
lived objects are concerned. Use of objects in a location-transparent and lifetime-transparent
manner makes the programming model simpler but leaves the application programmer with
no way to deal flexibly with the distribution-related problems that exist for persistent objects.

Applying persistence by reachability across such an open, distributed system is difficult
when not all of the sites involved in an application have support for persistence themselves.
Distribution-related errors can prevent successful access to an object, even if it is persistent.
The maintainability of a store is dependent on the degree of autonomy it has from other
stores; this is compromised by the dependencies this store has with other stores.

The solutions proposed in chapter 6 for dealing with the creation and maintenance of de
pendencies between stores address both the short-term concerns of the current distributed
application’s lifetime and the long-term concerns of store maintainability through increased
autonomy.

In the short-term, a persistent connection can be maintained between client and server. An
application-level lease is set in a wrapper class for the current application’s lifetime. The
server honours its obligation to provide a remotely-accessible service for the duration of its
application lease. The client can determine from stub information that the service runs in a
persistence-enabled VM, so that it can afford to make its reference to the service persistent
for reliability. It can also determine from stub information when the service is leased for a
specified duration, so it knows that it cannot depend on access to the service indefinitely.

Chapter 12. Conclusion 161

In the long-term, the server can remove remote access to a service after its application lease
has expired, so that it regains complete control over how and whether to maintain the object
itself. The client can determine that the lease on the service it references has run out. This
allows it to diagnose service access failures with greater confidence. Withdrawal of service
can be distinguished from distribution-related errors. A client can devise a strategy for
dealing with withdrawal of service.

The solutions presented here address the problem of unrealistic obligations being placed on
stores by support for referential integrity for the lifetime of persistent references to remote
objects. PJRMI supports persistent inter-store references within an application’s lifetime,
while application leases limit remote access to a store’s objects, to increase store autonomy
with the aim of greater long-term maintainability.

12.2 Policies for Flexible Object Graph Copying Between Stores

The capacity of computers to handle large amounts of data is constantly increasing. Object
graphs of at least megabytes in size can now easily be built in main memory but, for re
liability and scalability, persistence of object graphs on stable storage is important. These
persistent object graphs can be megabytes or even gigabytes in size. PJama now supports
object stores of gigabytes in size.

Application programmers may wish to make copies of object graphs for a number of reasons.
For example, in a distributed system, particularly one where server load can be high or the
latency of network communication is significant, making a copy of a server-side object graph
is important to increase availability, reliability and performance for a client.

The issue of object graph copying has been addressed here in the context of copying pa
rameters passed in RMI calls. Where an application programmer requires an object to be
passed by copy in an RMI call, they may be aware of the implications of doing so initially.
However, if a parameter object is persistent then, over its lifetime, the number of objects
reachable from it may grow incrementally. The cost of copying the object graph across the
network grows correspondingly.

Lack of flexibility in specification of a remote object access policy has been identified as a
problem for persistent objects. It prevents adaptability of this policy over the lifetime of the
object to which it is applied, particularly in the face of incremental growth of the graph of
objects reachable from it.

Chapter 8 addresses the lack of policy flexibility with support for specifying an object copy
ing policy separately from the definition of the object classes to which it applies. It addresses
the handling of passing persistent objects by copy, by enabling a programmer to apply an

Chapter 12. Conclusion 162

appropriate policy to a specific distributed application’s lifetime. The programmer chooses,
from a selection of object-copying policies, the control over object-copying that is required
for the current application. The chosen policy is set in a wrapper class for the current appli
cation’s lifetime, in a similar manner to the configuration for setting application leases.

As demonstrated in chapter 10, a separation is achieved between application object defini
tion and object-copying policy. The object-copying policies have successfully been applied
to control the copying of large object graphs across the network, limiting them by object
graph size, object graph depth or past usage. It has also been demonstrated that the same
object graphs can be used by different applications and in different distributed environments
with object-copying policies appropriate to their context.

The limitations of using these policies for object-graph copying stem mainly from the fact
that they are incremental: by its very nature, incremental copying can result in increased
network traffic and the possibility of differing application semantics in the face of updates
to a graph during its copying to a remote site.

The solutions presented here do address the problems of copying object graphs between
stores, when the object graphs may be very large and it may be unnecessary to copy them
completely. A number of object copying policies have been implemented that provide con
trol over the copying in different ways. Flexibility has been gained from defining the policies
separately from the objects to which they apply. This flexibility does enable the copying of
a persistent object graph to be adapted to changes in size and context over its lifetime.

12.3 And Finally...

This dissertation addresses two important issues within the field of distribution support for
persistent objects. Realistic solutions have been achieved, which address the problems of
trying to maintain long term store autonomy and coping with the remote copying of large
object graphs. These solutions require tradeoffs, including the following: application leases
limit the persistence of connections between stores in order to increase their long-term au
tonomy; and policies for copying are incremental to cope with the size of large, persistent
object graphs at the expense of performance and, sometimes, differing application seman
tics. Nevertheless, these solutions make a significant contribution towards the production of
well-integrated support for persistence and distribution.

The next challenge is to build an integrated platform based on these existing solutions. The
wrapper class, developed for setting an application lease and an object-copying policy on the
current application’s lifetime, provides a context for plugging in further distribution support
in the future. This support could include replication, consistency and checkpointing, for

Appendix. Conclusion 163

example. Limiting such support to within the distributed context for a particular application
and integrating it with respect for the existing solutions should avoid a recurrence of the
problems raised in this dissertation.

This platform should be of great interest to the existing PJRMI user community and to the
current business marketplace which has a need for well-integrated, realistic solutions for
persistence and distribution.

Appendix A

PJRMI Tutorial

This section contains the documentation for PJRMI at PJama version 0.5.20.2

A.l Introduction

The first step in implementing support for distribution in PJama is the porting of RMI to the
persistent context. A first implementation of persistent RMI (PJRMI) has been produced
and is described in this document.

The current implementation of Persistent RMI supports

• the running of standard RMI programs plus

• the running of persistent RMI programs.

These include support for:

- persistence of all remotely-invokable objects,

- lookup by name of remotely-invokable objects that are bound to a name in the
Registry,

- automatic re-exportation of persistent, remotely-invokable objects on first use
and

- automatic reestablishment of the connection between remote, persistent refer
ences and remotely-invokable objects on first use of the reference after store
restart.

Section A. 2 introduces a non-persistent RMI program. Section A. 3 then builds on this ex
ample to illustrate what changes are necessary to a standard RMI program to make it work
in the context of a persistent system.

Appendix A. PJRMI Tutorial 165

The following documentation is written in terms of server and client, where the server is the
provider of the persistent, remotely-invokable object (service) and the client is the remote
user, obtaining and holding a reference to the remote service and making method calls on
the service which are remote method invocations.

Other useful information included in this documentation consists of

• section A.4 providing an example of a program that can be used to cleanly shut down
a persistent store containing remotely-invokable objects and

• section A.5 containing a list of common exceptions that may be raised during the
execution of the example programs in this documentation, each with an explanation
of why the exception is likely to have been raised.

Note that the sources for the example code as used in this document are available as part of
the PJama release in the directory $PJAMAHOME/demo/pjrmi. Instructions for compiling
and running code are given relative to this directory.

A.2 A non-persistent RMI program

The diagram in figure A. 1 illustrates, using the example classes introduced below, the ob
jects involved in an RMI call.

CLIENT VM SERVER VM

MessageClient MessageServicelmpLStub \IessageServiceImpl_Skel MessageServicelmpI

ref to MessageService

Figure A .l: Objects used for RMI

A.2.1 An RMI-based MessageService

The example used in this document to illustrate the use of RMI uses a remotely-invokable
object providing a MessageService. This service stores a message as a String and pro
vides two remotely-invokable methods: setMessage to set the message to a given string
and getMessage to retrieve the current message. The code in figure A.2 defines a Java in
terface for this service, suitable for remote use. The code in figure A. 3 defines a Java class
that implements this interface.

Appendix A. PJRMI Tutorial 166

RMI places certain requirements on the definition of the class and interface providing the
implementation of a remotely-invokable object.

• A remotely-invokable object can only be accessed remotely via an interface.

• The interface for the remotely-invokable object must implement the j ava . rmi. Remote
interface. The RMI implementation relies on the use of this interface Remote to deter
mine whether to pass an object by copy or by reference: passing a remotely-invokable
object by reference results in the creation of a stub/proxy object in the remote VM.

• The class of the remotely-invokable object must implicitly or explicitly support the ex
portation of instances of that class to make them remotely usable. The example in fig
ure A.3 gains this functionality by inheriting it from the class
java.rm i. server.UnicastRemoteObject.

• A j ava. rmi .RemoteException must be thrown by every method of an interface to
a remotely-invokable object. This ensures that distribution-related errors that occur
during a remote method invocation can be signalled via the throwing of an appropriate
exception.

• Where not inherited, the class of a remotely-invokable object is expected to define
appropriate methods for toString, equals and clone.

package m essage.service;

import java.rmi.Remote;
import j ava. rmi.RemoteException;

public in terface MessageService
extends Remote

{

public void setM essage(String s)
throws RemoteException;

public String getMessage()
throws RemoteException;

}

Figure A.2: Interface MessageService

Appendix A. PJRMI Tutorial 167

package m essage.service;

import j ava.rmi. server.UnicastRemoteObj e c t ;
import java . rmi.RemoteException;

public c la ss MessageServicelmpl
extends UnicastRemoteObject
implements MessageService

{

private String message;

public MessageServicelmpl()
throws RemoteException

{
super(); //exp orts object for remote use
message = new S trin g("Hello World");

}

public void setM essage(String s)
throws RemoteException

{

message = s;

}

public String getMessageO
throws RemoteException

{

return message;

}

Figure A.3: Class MessageServicelmpl

Appendix A. PJRMI Tutorial 168

package message. se r v ic e .nonpersistent;

import message. se r v ic e .MessageService;
import message. se r v ic e .MessageServicelmpl;
import java. rmi.Naming;

public c la ss RunService {

public s ta t ic void main(S trin g[] args) {
try {

MessageService messageService = new MessageServicelmpl();
Naming. rebind("MessageService", m essageService);
System .out.printIn("MessageService ready for remote use");

} catch (Exception e) {
System .out.printIn("RunService.main: exception raised: ");
e .printStackTrace();

}
}

}

Figure A.4: class RunService creates MessageService

In order to create an instance of a MessageService and make it available to support remote
invocations on the methods in its interface, the following steps must be taken:

1. Compile service files
javac m essage/service/M essageService.java

m essage/service/M essageServicelm pl.java

2. Generate RMI files
m ic message. se r v ic e .MessageServicelmpl

produces m essage/service/M essageServicelm pl.Stub.class,
message/service/M essageServiceImpl_Skel. c la ss

3. Run name service
rm iregistry &

4. Run a program to make a MessageService available for remote use.

Appendix A. PJRMI Tutorial 169

An example program that creates and registers the service is shown in figure A.4.
It can be compiled and run using the following commands:
javac m essage/serv ice /n on p ersisten t/R u n S erv ice.java
java m essage. s e r v ic e .n o n p er s is te n t.RunService

This program has two significant steps:

(a) Create MessageService (exports it for remote use)
M essageService m essageService = new M essageServicelm pl();

(b) Register object by name
Naming. reb in d ("M essageService", m essageService);
This then allows clients to do a look up by name to obtain a reference to the
published messageService.

The execution of the program RunService on the machine called kona should pro
duce the following output:

susan@kona: java m essage.serv ice.n on p ersisten t.R u n S erv ice
M essageService ready for remote use

A.2.2 A non-persistent client for the MessageService

An object in a different VM from the one where the M essageService has been created
needs to obtain a reference to the service before it can use it. The code in figure A.5 defines
a client that, given a reference to a M essageService as an argument to its constructor,
supports one method to report the current message held at a M essageService and change
it to a new one.

An example program that creates and uses the M essageClient is shown in figure A.6. In
order to create and use the M essageClient, the following steps must be taken:

1. Compile client files
javac m essage/c lien t/M essageC lien t.java

m essa g e /c lien t/n o n p ersisten t/R u n C lien t. java

2. Run client program, in this example supplying the name of the host where the
M essageService should be available for remote use and the new message to set at
the M essageService.
java m essage .c lien t.n on p ersisten t.R u n C lien t k o n a .d cs .g la .a c .u k
''T h is i s a new m essage''

Appendix A. PJRMI Tutorial 170

package m essage.client;

import message. serv ic e .MessageService;

public c la ss MessageClient
{

private MessageService msRef;

public MessageClient(MessageService ms) {
try {

msRef = ms;
} catch (Exception e) {

System .out.println("M essageClient: exception occurred:");
e .printStackTrace();

}
}

public void changeMessage(String newMessage) {
try {

String oldMessage = msRef.getMessage();
msRef.setMessage(newMessage);
String checkedMessage = msRef.getMessage();
System .out.printIn("MessageClient: message changed from"

+ oldMessage + "to " + checkedMessage);
} catch (Exception e) {

System.out.println("M essageClient: exception occurred:");
e .printStackTrace();

}
}

}

Figure A.5: MessageClient uses MessageService

Appendix A. PJRMI Hitorial 171

package message. c l ie n t .nonpersistent;

import message. service.M essageService;
import message. c l ie n t .MessageClient;
import java . rmi.Naming;

public c la ss RunClient{

public s ta t ic void main(S trin g[] args) {
try {

String service = new S tr in g (" //");
try {

serv ice = serv ice .con cat(args[0]);
} catch (ArraylndexOutOfBoundsException ae) {

System .out.println ("\nUsage: RunClient <servername> <message>");
System .ex it(-1);

}

serv ice = serv ice .co n ca t("/MessageService");
System .out.println("RunClient: using service " + serv ice);

MessageService msRef = (MessageService) Nam ing.lookup(service);
MessageClient messageClient= new MessageClient(msRef);
m essageClient.changeM essage(args[l]);

} catch (Exception e) {
System.out.println("RunClient.main: exception raised: ");
e .printStackTrace();

}

}

}

Figure A.6: RunClient creates and uses MessageClient

Appendix A. PJRMI Tutorial 172

This program has three significant steps:

(a) Lookup service by name
MessageService msRef = (MessageService) Nam ing.lookup(service);

(b) Create client to use service
MessageClient messageClient= new MessageClient(msRef);

(c) Use service
messageClient.changeMessage(args[1]);

The execution of the program RunService should produce the following output:

susan@hawaii: java m essage.client.nonpersistent.R unC lient
kona.dcs.gla .ac.uk ''This i s a new m essage''
RunClient: using service //kona.dcs.gla.ac.uk/M essageService
MessageClient: message changed from ''H ello World'' to
''This i s a new message''

The standard RMI interface Naming provides a method lookup which, given a URL sup
plying the name of the service and the name of the host where the service is located, will
obtain and return a stub object representing that service for use by the client. Note that the
class of the service from the client’s point of view is that of the interface to the service.

A.3 A persistent RMI program

A.3.1 Creating and using persistent, remotely-invokable objects

The previous section introduced an example of a program that uses standard RMI to create
an object that supports the MessageService interface and make it available for remote
use. The modifications necessary to provide MessageService as a persistent, remotely-
invokable object are now described.

Firstly, a small change in programming model is recommended. In the standard RMI pro
gram, the MessageService was created, which also automatically exports it for remote use,
and then the program runs indefinitely, waiting to service incoming method calls from other
VMs. If the program execution is killed, then the next time the MessageService is re
quired, the program must be run again, creating and exporting the MessageService again,
and again it runs indefinitely. In the persistent RMI model, we would like to create the
service once, make it persistent and then have it available in the persistent store to service

Appendix A. PJRMI Tutorial 173

appropriate incoming method calls during future sessions that use that store. Thus, we rec
ommend two distinct stages in persistent RMI: in the first stage a service is created and made
persistent; in the second, an existing persistent service is available for remote use. To model
these stages, we have two programs: the first program runs over a persistent store, creates
a MessageService, exports it for remote use and makes it persistent; the second runs over
the same store, making the persistent services in that store available for remote use.1

A.3.1.1 Populating the persistent store with support services

Before presenting the code for creating and using a persistent application service, here are
the details for setting up a persistent store and populating it with a couple of remotely-
invokable objects that will be of general use to programs using persistent RMI. The store is
set up using the following steps:

1. Compile the support service classes
j avac support/ service/pers i s te n t / SuspendService. j ava

support/service/persistent/SuspendServicelm pl.java
support/service/persistent/C reateSupportServices.java

2. Generate RMI files
rmic support. se r v ic e .p e r s is te n t . SuspendServicelmpl

3. Create a persistent store using the appropriate tool opjcs provided as part of the
PJama release (Note: change the path and storename to ones which are appropriate to
your environment)
opjcs / lo c a l/s to r e s /se r v ic e s .p js

This creates a store which is written to disk in the file /local/stores/services.pjs. By
convention storenames are postfixed with .p js .

Note: to recreate an existing store there is an overw rite option to opjcs:
opjcs / lo c a l / s to r e s /s e r v ic e s .p js -overw rite

4. Run the program CreateSupportServices, illustrated in figure A.7, to create a cou
ple of standard persistent RMI services:
opj -Xstore / lo c a l/s to r e s /se r v ic e s .p js
support.service.persistent.C reateSupportServices

‘The alternative to the recommended model is to create and populate a store with remotely-invokable objects

and make them available for remote use all in one program. However, it is useful to be able to separate population

of a store from use of the objects in the store since normal usage often involves populating a store once and then
using the store contents repeatedly.

Appendix A. PJRMI Tutorial 174

package support. se r v ic e .p e r s is te n t;

import ja v a .m i.re g istry .R eg istry ;
import sun. m i . r e g is tr y . R egistrylm pl;
import org.opj.store.PJStore;
import org . op j. s to r e . PJStorelmpl;
import org.opj.store.PJActionHandler;
import j ava. m i . server.UnicastRemoteObjec t ;
import j ava. m i . Naming;

public c la ss CreateSupportServices{

public s ta t ic void main(S trin g[] args) {
in t portnumber;

try {
i f (args.length > 0) { //u ser sp ec ified Registry port number

portnumber = In teger.parse ln t(args[0]);

}
e lse {

portnumber = Registry.REGISTRY_PORT;

}

Registry reg istry = new Registrylmpl(portnumber);
PJStore pjs = PJStorelm pl.getStore();
pjs.newPRoot("Registry", r e g is tr y);
(PJStorelmpl.getActionManager()) .bind((PJA ctionH andler)registry);

SuspendService suspendService = new SuspendServicelmpl();
UnicastRemoteObj e c t . exportObj e c t (suspendService);
Naming. rebind("SuspendService", suspendService);

S ystem .exit(0);
} catch (Exception e) {

System.out.println("CreateSupportServices.main: exception raised: ");
e.printStackTrace();

}
}

}

Appendix A. PJRMI I\itorial 175

(a) A R egistry is created, which includes automatically exporting it for remote
use, registered as a persistent root and registered with the PJActionManager.
(See PJama API documentation for information for information about the
PJActionManager and the need for PJActionHandlers associated with some
classes.)

(b) A SuspendService object is created, exported and bound to a name. This ser
vice has just one method suspendAndQuit which suspends all currently running
threads (including all the threads associated with exported, remotely-invokable
objects listening for incoming method calls), stabilises the persistent store and
terminates the current execution of the VM.

(c) The call System. e x it (0) is made explicitly to terminate the potentially-indefinite
running of the threads associated with the exported, remotely-invokable objects
and stabilise the persistent store, which includes capturing the state of the newly-
persistent objects.

The explicit call to the static method UnicastRemoteObject .exportObject made for
the object suspendService demonstrates the alternative way to make objects available
for remote invocation. While, in section A.2 the c la ss MessageServicelmpl extends
UnicastRemoteObject in order to inherit the code necessary for automatically exporting
objects of that class on creation of an instance of the class, the static exportObject method
of UnicastRemoteObject supports the exportation of, in principal, any object, at any point
during the life of that object. The other RMI restrictions, as specified in section A.2, do still
apply to the class of that object though.

The persistence of instances of the Registry and SuspendService simplify the running of
programs that use RMI. Creating and making persistent an instance of the Registry means
that it is no longer necessary to start an rmi reg istry process running before invoking a
program that creates and uses remotely-invokable objects.

Note that support is not now provided for dynamic, automatic generation of the -Stub and
_Skel classes associated with remotely-invokable objects. As with standard RMI, remember
to invoke the rmic compiler to generate SuspendServicelmpLStub.class and SuspendServi-
celmpLSkel.class before running the persistent RMI program CreateSupportServices.
Do the same for MessageServicelmpLStub.class and MessageServicelmpLSkel.class in be
tween compiling the application classes and running the MessageService creation pro
gram.

Appendix A. PJRMI Tutorial 176

A.3.1.2 Populating the store with persistent, remotely-invokable application objects

Now that we have a persistent store prepared to support persistent, remotely-invokable ob
jects, we can run a program to create some. Firstly, it is important to note that the code of the
in terface MessageService and the c la ss MessageServicelmpl used by the persistent
RMI program is unchanged from that used by the standard, non-persistent RMI program; it
is still the code as illustrated in figures A.2 and A.3.

The code in figure A.8 is an example of a persistent RMI program that creates a
MessageService, exports it for remote use and makes it persistent. This program is run

package m essage .serv ice .p ersisten t;

import message. se r v ic e .MessageService;
import message. se r v ic e .MessageServicelmpl;
import java. rmi.Naming;

public c la ss CreateService{

public s ta t ic void m ain(String[] args) {
try {

MessageService messageService = new MessageServicelmpl();
Naming.rebind("MessageService", m essageService);
System .ex it(0);

} catch (Exception e) {
Systern.out.println("CreateService.main: exception raised: ");
e.printStackTrace();

}
}

}

Figure A. 8: CreateService creates persistent MessageService

as follows:

1. Compile the service classes.
(Only necessary to compile MessageService* files if not already compiled for non-
persistent program.)

Appendix A. PJRMI Tutorial 177

javac m essage/service/M essageService.java
message/service/M essageServicelm pl.java
m essage/service/persistent/C reateService.java

2. Generate RMI files.
(Only necessary to generate MessageServicelmpLStub.class and
MessageServicelmpLSkel.class if not already generated for non-persistent program.)
rmic message. se r v ic e .MessageServicelmpl

3. Run the program to create the service, over our existing persistent store
opj -Xstore / lo c a l/s to r e s /se r v ic e s .p js
message. se r v ic e .p e r s is te n t .CreateService

(a) The creation of the MessageService object includes the object’s exportation
for remote use, since the c la ss MessageServicelmpl inherits this functional
ity from the class
UnicastRemoteObject. Exportation of the object automatically registers it
with a persistent table, thus also making the M essageService object persistent
too.

(b) The call to Naming. rebind supports remote lookup of the M essageService by
name.

(c) The call S ystem .exit(0) is made explicitly to terminate the potentially-
indefinite running of the threads associated with the exported, remotely-invokable
objects and stabilise the persistent store, which includes capturing the state of
the newly-persistent objects.

The program should complete with no output.

A.3.1.3 Using existing persistent, remotely-invokable objects

Having populated the store with persistent, remotely-invokable objects, one program can be
used repeatedly to open a session over the store where the persistent, remotely-invokable
objects will be automatically available for remote use. The code in figure A.9 is an example
of such a program. To use this program, the following steps are taken:

1. Compile program
javac m essage/service/persistent/U seService.java

Appendix A. PJRMI Tutorial 178

package message. se r v ic e .p e r s is te n t;

import org.opj.store.PJStore;
import org. op j. s to r e . PJStorelmpl;

public c la ss UseService {

public s ta t ic void main(S trin g[] args) {
try {

PJStore pjs = PJStorelm pl.getStore();
i f (pjs != null) {

/ / maintain the running of th is JVM in d e fin ite ly
/ / t o service incoming method invocations
while (true) {

try {
System. ou t.p r in tIn ("\nUseService.main:

waiting for incoming connections");
//cop ied from sun.rm i.registry.R egistrylm pl
Thread. s le e p (In teger.MAX_VALUE - 1);

} catch (InterruptedException e) {}

}

}

e lse
System .out.println("UseService.m ain: no store");

} catch (Exception e) {
System .out.printIn("UseService.main: exception raised: ");
e .printStackTrace();

}

}

}

Figure A.9: UseService makes persistent, remotely-invokable objects available

Appendix A. PJRMI Tutorial 179

2. Run it to make the persistent, remotely-invokable objects available
opj -Xstore / lo c a l/s to r e s /se r v ic e s .p js
m essage.service.persistent.U seService

The program should give the following output:

susan@kona: opj -Xstore / lo c a l/s to r e s /se r v ic e s .p js
message. se r v ic e .p e r s is te n t .UseService
UseService.main: running...

Each persistent, remotely-invokable object, with which we populated our example store, is
automatically re-exported the first time that a client tries to access it. The program above just
ensures that the session running over the store continues running as long as it is required.
The SuspendService of this store can be used from a different VM to terminate the session
of this VM, when the services available from this store are no longer required for the time
being. (See the latter part of section A.3.2 for information on using the SuspendService.)

The next time an application programmer wants these services to be available again, all they
have to do is rerun this UseService program and the re-establishment of the services is
done automatically once again.

A.3.2 Creating and using persistent references
to remote, remotely-invokable objects

Just as remotely-invokable objects can be made persistent, references to them can also be
made persistent. The program with the code in figure A.5 is the client for the
M essageService, that was introduced in the non-persistent program example; as described
before, it has one method changeMessage that changes the message held at the server’s
M essageService and reports what message is held by the M essageService before and
after it is changed.

Just as a two-stage model of use was proposed for the creation and use of remotely-invokable
objects, the same idea is proposed here for the creation and use of a persistent reference to
a remote, remotely-invokable object. The program with the code in figure A. 10 creates a
MessageClient object, as defined in A.5, including the establishment of a reference to a
MessageService, and makes it persistent. The program is used as follows:

Appendix A. PJRMI Tutorial 180

1. Compile the client classes.
(Only necessary to compile MessageClient .jav a if not already compiled for non-
persistent program.)
javac m essage/client/M essageC lient.java

m essage/c lien t/p ersisten t/C reateC lien t.java

2. Create a persistent store for the client program to use
opjcs / lo c a l /s to r e s /c l ie n t s .p j s

3. Run the program to create the M essageClient and make it persistent, in this example
supplying the name of the host where the M essageService should be available for
remote use.
opj -Xstore / lo c a l /s to r e s /c l ie n t s .p j s
message.c l i e n t .p e r s is te n t .CreateClient kona.d cs .g la .ac.uk

(a) A reference to the MessageService is obtained from the specified host, using
the standard call to Naming. lookup.

(b) A MessageClient is created and supplied with the MessageService reference.

(c) The new instance of MessageClient is made persistent.

The program should give the following output:

susan@hawaii: opj -Xstore / lo c a l /s to r e s /c l ie n t s .p j s
message. c l i e n t .p e r s is te n t .CreateClient kona.d cs .g la .ac.uk
C lient using service: //k o n a .d cs .g la .ac.uk/MessageService

A.3.2.1 Using an existing, persistent reference to a service

To use an existing, persistent reference to a remote, remotely-invokable object, an applica
tion program can be written that uses the reference just as if it were a local reference. Any
re-establishment of connections between the persistent reference and the remote, remotely-
invokable object that is necessary is done automatically the first time the persistent reference
is accessed after the reopening of the persistent store containing the reference. The example
program with the code in figure A. 11 demonstrates the use of a persistent MessageClient
that contains and uses a persistent reference to a MessageService. To use the program:

1. Compile the client class
javac m essage/c lien t/p ersisten t/U seC lien t. java

Appendix A. PJRMI Tutorial 181

package message. c l ie n t .p e r s is te n t ;

import message. service.M essageService;
import message. clien t.M essageC lient;
import java. rmi.Naming;
import org.op j. s to r e . PJStore;
import org.op j. s to r e . PJStorelmpl;

public c la ss CreateClient {

public s ta t ic void main(S trin g[] args) {
try {

String serv ice = new S tr in g (" //");
try {

service = serv ice .con ca t(args[0]);
} catch (java.lang.ArraylndexOutOfBoundsException ae) {

System .out.printIn("\nUsage: CreateClient <servername>");
S ystem .exit(-1);

}
service = se r v ic e . concat("/M essageService");
System .out.println("C lient using service: " + serv ice);

MessageService msRef = (MessageService) Naming.lookup(service);
MessageClient messageClient= new MessageClient(msRef);

PJStore pjs = PJStorelm pl.getStore();
pjs.newPRoot("MessageClient", m essageClient);

} catch (Exception e) {
System .out.printIn("CreateClient.main: exception raised: ");
e.printStackTrace();

}

}

}

Figure A. 10: CreateClient creates a persistent MessageClient

Appendix A. PJRM I Tutorial 182

package message. c l i e n t .p e r s is te n t;

import message. c l i e n t .M essageClient;
import org.opj.store.PJStore;
import org.op j. s to r e . PJStorelmpl;

public c la ss UseClient {

public s ta t ic void main(S trin g[] args) {
try {

PJStore pjs = PJStorelm pl.getStore();
MessageClient messageClient =

(MessageClient) (pjs.getPR oot("MessageClient"));
try {

messageClient.changeMessage(args[0]);
} catch (java.lang.ArraylndexOutOfBoundsException ae) {

System .out.printIn("\nUsage: UseClient <messageString>");
System .exit(-1);

}

} catch (Exception e) {
System .out.printIn("UseClient.main: exception raised: ");
e .printStackTrace();

}

}

}

Figure A.l 1: UseClient uses MessageClient

Appendix A. PJRMI Tutorial 183

2. Run the client program, supplying a String to change the message to at the MessageService
opj -Xstore / lo c a l /s to r e s /c l ie n t s .p j s m essage.c lien t.p ersisten t.U seC lien t
' 'Working p ersisten t service and c lie n t - hurray''

(a) The MessageClient is looked up by name in the persistent store.

(b) The method changeMessage is called, passing the given string as a parameter.
It will use the persistent reference to a MessageService to change its message.

This program will give the following output:

susan@hawaii: opj -Xstore / lo c a l /s to r e s /c l ie n t s .p j s
m essage.c lien t.persisten t.U seC lien t ''Working p ersisten t
service and c lie n t - hurray''
MessageClient: message changed from "Hello World" to
"Working p ersisten t service and c l ie n t - hurray"

A.4 Using the SuspendService to close down a persistent store

As in standard RMI, a program running over a persistent store supporting remotelyinvokable
objects will run indefinitely, until it is interrupted or killed. However, an alternative to this
is to make use of the SuspendService to close down the store cleanly. A clean shutdown
ensures that persistent objects or updates to existing persistent objects are really made per
sistent.

The interface in figure A. 12 supports remote invocation of a method to shut down a store
cleanly. It may be implemented as in figure A. 13. The code in figure A. 14 is an example

package support. se r v ic e .p e r s is te n t;

public in terface SuspendService extends java.rmi.Remote

{
public void suspendAndQuit()

throws j ava. rmi.RemoteException;
}

Figure A. 12: SuspendService

of a client program that gets a reference to the SuspendService and then calls its method
suspendAndQuit to close down the store cleanly. Note that in the implementation of fig
ure A. 13 a thread is started to close down the store, separately from the thread executing the

Appendix A. PJRMI Tutorial 184

package support. se r v ic e .p e r s is te n t;

public c la ss SuspendServicelmpl implements SuspendService

{

public void suspendAndQuit()
throws j ava. rmi.RemoteException

{

RealSuspendService realSuspendService = new RealSuspendService();
new Thread(realSuspendService). s t a r t ();

}
}

c la ss RealSuspendService implements Runnable
{

public void run() {
try {

System .out.printIn("RealSuspendService running...");
Thread.sleep(30000) ; / / 30 secs
System .exit(0);

} catch (Exception e) {
System .out.printIn("RealSuspendService.run: exception raised "

+ e .getMessage());
e .printStackTrace();

}
}

}

Figure A. 13: SuspendServicelmpl implements SuspendService

Appendix A. PJRMI Tutorial 185

remotely-invoked method suspendAndQuit. This allows the remote method execution to
complete and return cleanly before the store is closed down.

A.5 RMI Exceptions

If one of the following exceptions is raised, this section may help in a diagnosis of the
problem.

A.5.1 java.lang.ClassNotFoundException

The exception j ava. lang. ClassNotFoundException may be raised when a client, having
made a remote method call, tries to receive a stub object as the return value but cannot find
its corresponding class. Ensure that the stub class is available to the client, e.g. included in
its CLASSPATH.

A.5.2 java.rmi.server.ExportException

The exception ja v a . rm i. s e rv e r . ExportException may be raised when a server tries to
export an object for remote use. Ensure that appropriate stub and skeleton classes have been
generated for the object being exported. Remember that it is necessary to call the rmic
compiler to generate the required class files before running the program that uses them.

A.5.3 java.lang.IllegalAccessException

The exception java. lang. IllegalA ccessE xception may be raised if a server picks up
the wrong version of stub files generated to support PJRMI operation. Ensure the PJRMI
classes rather than standard JDK RMI classes are being used i.e. if both appear in the
CLASSPATH, check the PJRMI classes appear first.

A.5.4 java.lang.NullPointerException

The exception java. lang.NullPointerException may be raised at a client when it tries
to use a persistent reference to a remote, remotely-invokable object. Ensure that the stub held
by the client has been generated by PJRMI. Since the stubs representing remotely-invokable
objects have slightly different functionality for PJRMI, stubs generated by standard JDK
RMI code will not always work after they have been made persistent.

Appendix A. PJRMI Tutorial 186

package support. c l ie n t .p e r s is te n t;

import support. s e r v ic e .p e r s is te n t . SuspendService;
import java. rmi.Naming;

public c la ss SuspendClient {

public s ta t ic void main(S trin g[] args) {
try {

String service = new S trin g(" //");
try {

service = serv ice .con cat(args[0]);
} catch (java.lang.ArraylndexOutOfBoundsException. ae) {

Systern.out.printIn(H\nUsage: CreateClient <servername>");
System .exit(-1);

}

service = serv ice .con ca t("/SuspendService");
System .out.println("C lient using service: " + serv ice);

SuspendService ssRef = (SuspendService) Nam ing.lookup(service);
ssR ef. suspendAndQuit();

} catch (Exception e) {
System .out.printIn("SuspendClient.main: exception raised "

+ e.getM essage());
e.printStackTrace();

}
}

}

Figure A. 14: SuspendClient uses SuspendService

Appendix A. PJRMI Tutorial 187

A.6 Comments

Your feedback on the current implementation of PJRMI would be appreciated.

• If you find any errors in the documentation, think something in the documentation
could be explained better or think something should be added to the documentation
or

• if there is something about the design of PJRMI that you think should be changed

please email comments to susan@dcs.gla.ac.uk

mailto:susan@dcs.gla.ac.uk

Appendix B

PJActionHandler Usage

summary

20 c la sses with PJActionHandlers
Majority registered during s ta t ic in it ia l is a t io n (16/20)
A ll but one ca lled on store restart
6 r e in it ia l is e native variables
7 r e in it ia l is e s ta t ic variables
Rest used for other tasks that u sually require execution
on store restart rather than la z i ly a fter i t

When registered

s ta t ic in it :
java/lang/ClassLoader. java
java/net/InetA ddress.java
java/net/P lainSocketlm pl. java
java/net/SocketInputstream .java
java/net/SocketOutputStream.java
java/net/DatagramPacket. java
java/net/PlainDatagramSocketlmpl.java
j ava/ awt/Window. j ava
java/rmi/dgc/VMID.java
sun/misc/Launcher. java

Appendix B. PJActionHandler Usage 189

su n /m i/ transport/ 1cp/TCPTransport. j ava
sun/rmi/transport/tcp/TCPEndpoint. java
su n /m i/ transport/DGCImpl .java
sun/rm i/transport/O bjectTable.java
sun/rmi/transport/DGCClient.java
sun/ m i / transport/ DGCAckHandler. j ava

instance method:
org/opj/store/ObjectCacheObserverStarter
org/opj/hidden/PJSharedTraceFile.java
org/opj/distribution/PJamaPJExported.java

e x p lic it ly by app:
sun/rm i/registry/R egistrylm pl.java

When ca lled

on s ta b ilisa tio n :
java/lang/ClassLoader. java

on store restart:
java/net/InetA ddress. java
java/net/PlainSocketlm pl.java
java/net/SocketlnputStream .java
java/net/SocketOutputStream.java
j ava/ n et/ DatagramPacket. j ava
java/net/PlainDatagramSocketlmpl.java
j ava/ awt/Window. j ava
java/rmi/dgc/VMID.java
sun/misc/Launcher. java
su n /m i/reg istry /R egistry lm pl .java
sun/ m i/tra n sp o rt/ tcp/TCPTransport. j ava
sun/rmi/transport/tcp/TCPEndpoint.java
sun/mi/transport/DGCImpl .java
su n /m i/ transport/ Obj ectT able. j ava
sun/ m i/tra n sp o rt/ DGCC1i e n t . j ava
sun/ m i/tra n sp o rt/ DGCAckHandler. j ava

Appendix B. PJActionHandler Usage 190

org/opj/store/ObjectCacheObserverStarter
org/opj/hidden/PJSharedTraceFile.java
org/opj/distribution/PJamaPJExported.java

Task

r e in it native variables:
j ava/net/ InetAddress. j ava
java/net/P lainSocketlm pl.java
java /n et/ SocketInputstream.java
java/net/SocketOutputStream. java
java/net/DatagramPacket.java
java/net/PlainDatagramSocketlmpl.java

r e in it s ta t ic variables:
java/rmi/dgc/VMID.java
sun/ rm i/transport/ tcp/TCPTransport. j ava
sun/ m i / transport/ 1cp/TCPEndpoint. j ava
sun/rmi/transport/DGCImpl.java
su n /m i/ transport/Obj ectT able. j ava
sun/ m i / transport/ DGCC1ie n t . j ava
sun/ m i/tra n sp o rt/ DGCAckHandler. j ava

m isc:
java/lang/ClassLoader. java

mark f ie ld s p ersistence transient
java/awt/Window.java

recreates every v is ib le Window instance
sun/misc/Launcher. java

resets classpath and classloader for main thread
su n /m i / regi s try/R egis try Imp 1 .java

manually reexport for remote use
org/opj/store/ObjectCacheObserverStarter

relaunches object cache observer i f to be used
org/opj/hidden/PJSharedTraceFile.java

r e in s ta lls tracing i f to be used
org/opj/distribution/PJamaPJExported.java

Appendix B. PJActionHandler Usage 191

manually reexports for remote use

Appendix C

Object Copying Policy Support

C.l The Lifetime of a PCopyStub

This section provides extra detail, to that given in section 9.3, on the support provided for a
PCopyStub at different points in its lifetime.

A PCopyStub is first created during serialisation of an object graph for an RMI call, where
an object-copying policy determines that, instead of copying the rest of the reachable objects
from a point in the graph, a PCopyStub placeholder should be inserted instead.

C. 1.1 Deserialisation of PCopyStub

On deserialisation of this modified object graph at its destination, the PCopyStub is initially
created as a normal object in memory. At the JVM implementation level, the handle to this
PCopyStub object is also initially in normal object format. However, in order to ensure that
any accesses made to the PCopyStub trigger a remote fault of the corresponding original
object, the format of the PCopyStub handle is modified before deserialisation is completed.
The address of the PCopyStub object held by the handle is modified, so that access to a
PCopyStub fails the initial residency check. The address is incremented by one, making
it look like a PID rather than a normal, eight-byte-aligned Java object. The methods of the
PCopyStub class, referenced from the other field of the handle, are moved to the trap field of
the PCopyStub object itself. The handle’s methods field can then be set with a typecode set
to T_PROXY. This leaves the handle to the PCopyStub in a remote fault format as illustrated
in step one of figure C.l.

Appendix C. Object Copying Policy Support 193

C.1.2 Residency check on PCopyStub in GC Heap

When access is attempted to a PCopyStub in remote fault format, the non-eight-byte-aligned
object address fails the initial residency check. This indicates that this is not a normal,
memory-resident Java object. The typecode set to T_PROXY distinguishes this remote fault
format object from a non-resident object in local fault format. A remoteObjectFault
function is called to accomplish the remote fault of the object represented by the PCopyStub.

The first stage of the remote faulting code resets the handle of the PCopyStub from remote
fault format to normal object format, as illustrated in the first two stages of step two in
figure C.l. A call to the method PCopyStub.getRealObject returns the remote object rep
resented by this PCopyStub. To ensure that all objects that referenced the PCopyStub handle
locally can now reference the returned remote object instead, the fields of the PCopyStub
handle are overwritten to hold the newly-faulted object and the methods of its class directly.
This is illustrated in the last stage of step two in figure C.l.

C.1.3 Promotion of a PCopyStub from the GC Heap

If a PCopyStub, still in remote fault format, becomes reachable from a persistent object, it
will be promoted in-memory from the Java garbage-collected heap to the persistent object
cache, as well as being written to the persistent store on disk. Step three of figure C.l
illustrates the format of the handle to a PCopyStub during this promotion. A PCopyStub is
identified during promotion by its typecode set to T_PROXY. A macro is called at this point to
reset the PCopyStub’s handle back from remote fault format to normal object format. This
then allows the PCopyStub itself to be promoted like any other normal object.

Unlike objects in the Java GC Heap, which are referenced via a JHandle, objects in the
object cache are referenced via a Resident Object Table Handle (ROTHandle). Once a
PCopyStub has been promoted to the object cache, it will be referenced via a ROTHandle.
Also, since the ROTHandle has space in its header for a number of flags, a PCS flag can be
set, as a shortcut for indicating that this is a PCopyStub object.

C.1.4 Residency check on persistent, non-resident PCopyStub

Once a PCopyStub has been made persistent, it may be accessed during the same or sub
sequent program executions. Step four of figure C.l illustrates the stages through which
a PCopyStub handle will go, from being accessed while not in memory at all, to faulting
the remote object that it represents. The residency check done on access to a Java object
detects when a PID is held for a non-resident, persistent object, instead of a reference to

Appendix C. Object Copying Policy Support 194

the in-memory object itself. A local fault is triggered on the object corresponding to that
PID, which transfers it from disk to object cache. Once a ROTHandle holds the PCopyStub
in memory, the next stage is to trigger a remote fault to obtain the object that it represents.
As described in section C.1.2, this should return a newly-created local copy of the remote
object. To provide direct access to this object from this point in application execution, the
object and methods fields of the PCopyStub’s ROTHandle are set to the object and methods
of the newly-remote-faulted object and the methods of its class respectively. The PCS flag
still remains set though, so that the objects may be handled correctly during promotion, as
described in the next section.

C.1.5 Promotion of a remote-faulted object

If the PCopyStub for a remote-faulted object has never been persistent, then promotion of the
remote-faulted object is treated as a normal object promotion. However, if the PCopyStub
for a newly-remote-faulted object was persistent before this remote fault took place, this
makes promotion of the remote-faulted object somewhat more complicated. This is to take
into account the fact that several objects already in the persistent store may hold references
to the PCopyStub, and thus, implicitly, to the newly-remote-faulted object which is about
to be made persistent. To deal with this complication, although the newly-faulted object
will continue to be reachable directly through the PCopyStub’s ROTHandle in memory,
it will be reachable indirectly through the PCopyStub object on disk. The transition of
the newly-remote-faulted object during promotion, from direct references in its PCopyStub
ROTHandle, to reference via the PCopyStub object’s tmp field, is illustrated in step five
of figure C.l. To reinstate the persistent PCopyStub object, this is local-faulted from the
persistent store first. The ROTHandle that referenced the newly-remote-faulted object, is set
to reference its PCopyStub object and class methods once more. Then the tmp field of the
PCopyStub object is set to reference a newly-created JHandle, set to reference the remote-
faulted object and class methods. The tmp field of the PCopyStub is then marked as updated
to ensure that the newly-remote-faulted object will be promoted to disk, now reachable from
its PCopyStub.

C.1.6 Residency check on persistent, remote-faulted object

Once a remote-faulted object has been promoted to the persistent store, referenced via its
PCopyStub, subsequent residency checks made on the PCopyStub will fault the persistent,
remote-faulted object from disk to memory, as illustrated in step six of figure C.l.

No object, apart from the PCopyStub itself, should hold a PID for its remote-faulted object.

Appendix C. Object Copying Policy Support 195

Any reference to the remote-faulted object should always go through its PCopyStub and
therefore should only have the PCopyStub’s PID. Thus, a residency check logically made on
the remote-faulted object will initially cause a local fault of the PCopyStub. The residency-
checking code will detect that the PCopyStub has a non-null tmp field, holding a reference
to the persistent, remote-faulted object. This will then trigger a local fault of the object in
PCopyS tub-> tmp. The object and methods of the remote-fault object will then be installed
in the fields of the PCopyStub’s ROTHandle so that the remote-fault object can then be
accessed directly in memory.

Appendix C. Object Copying Policy Support 196

1 . D e s e r i a l i s a t i o n o f P C o p y S t u b

J H a n d l e - n o r m a l f o r m a t

s e t t o

r e m o t e - f a u l t

f o r m a t

P C o p y S t u b o b j

P C o p y S t u b m e t h o d s

J H a n d l e - r e m o t e f a u l t f o r m a t

w h e r e v a l i d
•(P C o p y S t u b m e t h o d s)

o b j - > t m p =
P C o p y S t u b o b j = o b j a d d r + 1

t y p e c o d e = T P R O X Y

2 . R e s i d e n c y c h e c k o n P C o p y S t u b s t i l l i n G C h e a p

J H a n d l e - r e m o t e f a u l t f o r m a t J H a n d l e - n o r m a l f o r m a t J H a n d l e - n o r m a l f o r m a t

c ' >
P C o p y S t u b o b j = o b j a d d r + 1

r e s e t t o

n o r m a l o b j e c t

. . .

P C o p y S t u b o b j r e m o t e o b j e c t
C ^

A p p C l a s s o b j

[t y p e c o d e = T _ P R O X Y f o r m a t P C o p y S t u b m e t h o d s g f a u l t A p p C l a s s m e t h o d s

3 . P r o m o t i o n o f P C o p y S t u b f r o m G C h e a p

J H a n d l e - r e m o t e f a u l t f o r m a t J H a n d l e - n o r m a l f o r m a t

P C o p y S t u b o b j = o b j a d d r + 1

t y p e c o d e = T P R O X Y

r e s e t t o

n o r m a l o b j e c t

f o r m a t

P C o p y S t u b o b j

P C o p y S t u b m e t h o d s

w r i t t e n t o

s t o r e a n d

p r o m o t e d t o

o b j e c t c a c h e

R O T H a n d l e

P C S = 1

P C o p y S t u b o b j

P C o p y S t u b m e t h o d s

4 . R e s i d e n c y c h e c k o n p e r s i s t e n t , n o n - r e s i d e n t P C o p y S t u b

R O T H a n d l e R O T H a n d l e
___________________________ J H a n d l e - n o r m a l f o r m a t _______________

P C S = 1

r e m o t e A p p C l a s s o b j o b j a n d m e t h o d s

P C S = 1

P C o p y S t u b o b j A p p C l a s s o b j

^ P C o p y S t u b m e t h o d s f a u l t A p p C l a s s m e t h o d s i n s t a l l e d i n R O T H .
A p p C l a s s m e t h o d s J

5 . P r o m o t i o n o f c o p y o f r e m o t e o b j e c t

R O T H a n d l e

R O T H a n d l e J H a n d l e - n o r m a l f o r m a t

P C S = 1 l o c a l f a u l t

i t s P C o p y S t u b

P C S = 1 c
w h e r e A p p C l a s s o b j

A p p C l a s s o b j

^ A p p C l a s s m e t h o d s
s e t P C o p y S t u b

t o r e f i t s o b j e c t

r v u p ^ i u u u u j

P C o p y S t u b m e t h o d s ^

n h j - ' s t m p = [A p p C l a s s m e t h o d s J

6 . R e s i d e n c y c h e c k o n p e r s i s t e n t , n o n - r e s i d e n t P C o p y S t u b - c o n t a i n i n g c o p y o f r e m o t e o b j e c t

l o c a l

R O T H a n d l e R O T H a n d l e R O T H a n d l e

P C S = 1
l o c a l f a u l t

f " >
P C S = 0

o b j a n d m e t h o d s

P C S = 1

P C o p y S t u b o b j A p p C l a s s o b j
A p p C l a s s o b j

f a u l t
P C o p y S t u b m e t h o d s

o b j - > t m p
A p p C l a s s m e t h o d s

i n s t a l l e d i n

P C S R O T H .
A p p C l a s s m e t h o d s

Figure C.l: Formats of PCopyStub/corresponding object copy handles during use

Trademarks

Sun, Sun Microsystems, Java, JDK, Jini and JavaBeans are trademarks or registered trade
marks of Sun Microsystems, Inc. in the United States and other countries. CORBA and
ORB are trademarks of the Object Management Group, Inc. Gemstone, Gemstone/J, Gem-
Stone/S and Persistent Cache Architecture are trademarks or registered trademarks of Gem-
Stone Systems, Inc. VisiBroker is a trademark of Visigenic Software, Inc.

Glossary

application lease A lease, in the form of a time limit or duration of time, set to limit remote
access to objects to within the scope of an application’s lifetime.

application lifetime The lifetime of a distributed application is the time for which a group
of distributed application programs run until the application is completed; this run
may span multiple process executions, persistent store shutdowns and restarts.

distributed application Group of cooperating programs running as processes on a number
of distributed machines.

externality An entity which is external to the persistent system e.g. a file, socket or thread.

JDK Java Development Kit.

JOS Java Object Serialization. Used in Java RMI for the marshalling and unmarshalling of
parameters to remote method calls.

JVM Java Virtual Machine.

lease duration Period of time remaining until an application lease limit.

lease limit Time limit on an application lease.

object graph Transitive closure of all objects reachable directly and indirectly from a given
root object.

object passing Passing objects as parameters or return values of calls made between two
distributed processes, usually by reference or by copy.

object copying Passing objects by copy as parameters or return values of calls made be
tween two distributed processes. This may involve copying some or all of the graph
of objects reachable from the given object parameter.

Appendix C. Glossary 199

orthogonal persistence Integration of data management and programming language where
persistence is orthogonal to type, persistence independence is supported and a simple
persistence identification mechanism (such as persistence by reachability) is used. See
section 2.

O PJ Orthogonal Persistence for Java.

Orthogonal Persistence for Java Specification upon which the PJama implementations
are based [JA99].

persistence by reachability The mechanism used in PJama to identify the objects to persist
beyond the program execution in which they are created. An object registered by
name using the PJama API is treated as a root of persistence. An object persists if it
becomes reachable, directly or indirectly, from a persistent root.

persistence reachable An object is persistence reachable if it becomes persistent by reach
ability.

PJActionHandler PJama API class, instances of which are used to manage, at key points
in the execution of a program over a persistent store, the state of objects that may
be viewed as persistent by the application but which need special handling. See sec
tion 2.3.

PJam a Implementation of Orthogonal Persistence for Java (aka PJava).

pjamaO.5.7.13 Release of PJama based on JDK version 1.1.7. All PJama releases up to and
including this version are based on a JDK version 1.1.x.

pjama0.5.20.0 Release of PJama based on JDK version 1.2 FCS. All PJama releases from
this version upwards are based on JDK version 1.2.x.

pjamal.6.4 Release of second generation implementation of PJama based on JDK version
1.2. This second generation implementation has a simpler API and more scalable
store implementation (Sphere) than previous releases.

PJam a Project Collaboration between the University of Glasgow in Scotland and Sun Mi
crosystems Laboratories in California, USA.

PJava Original name for implementation of Orthogonal Persistence for Java. Now known
as PJama.

PJRM I Remote Method Invocation for PJama. See section 3.

PJVM PJama Virtual Machine: a JVM with modifications for support of orthogonal per
sistence.

Glossary 200

remotely-invokable object Implementation of an interface whose methods can be called
remotely.

RMI Registry Provided as part of standard RMI, it is a well-known service supporting
look-up by name of remotely-invokable objects available on the Registry’s host.

standard RMI Java RMI as implemented in an official release of Java from Sun Microsys
tems Inc.

stub An object which represents a remotely-invokable object remotely (aka proxy).

VM Virtual Machine. Used in this dissertation as a general term covering both Java Virtual
Machine and PJama Virtual Machine.

Bibliography

[ABC+83]

[ADJ+96]

[AJOO]

[AM95]

[AM97]

[Arj99]

[Atk96]

[BC96]

[BDF+00]

[Bec99]

M.P. Atkinson, P.J. Bailey, K.J. Chisholm, W.P. Cockshott, and R. Morrison. An
Approach to Persistent Programming. Computer Journal, 26(4):360-365, 1983.

M. P. Atkinson, L. Daynes, M. J. Jordan, T. Printezis, and S. Spence. An Orthog
onally Persistent Java. ACM SIGMOD Record, 25(4):68-75, December 1996.

Malcolm Atkinson and Mick Jordan. Improved Hash Coding Methods for Java.
Technical report, Sun Microsystem Laboratories, 2000. In Preparation.

M.P. Atkinson and R. Morrison. Orthogonal Persistent Object Systems. VLDB
Journal, 4(3):319^101, 1995.

Mehmet Aksit and Satoshi Matsuoka, editors. ECOOP’97 - Object-Oriented
Programming, 11th European Conference, Jyvaskyla, Finland, June 9-13, 1997,
Proceedings, volume 1241 of Lecture Notes in Computer Science. Springer, June
1997.

Arjuna Solutions Limited. JTSArjuna 1.2.4 Programmer’s Guide Volume 2: Us
ing AIT, 1999. Downloadable from http://www.arjuna.com.

M. Atkinson. Personal communication on experiences with DPS-algol, 1996.

Krishna A. Bharat and Luca Cardelli. Migratory Applications. Technical report,
DEC SRC, February 1996. SRC Research Report 138.

S. J. Baylor, M. Devarakonda, S. J. Fink, E. Gluzberg, M. Kalantar, P. Muttineni,
E. Barsness, R. Arora, R. Dimpsey, and S. J. Munroe. Java Server Benchmarks.
IBM Systems Journal, 39(1):57—81, 2000.

Dan Becker. Design networked applications in RMI using the Adapter design
pattern. JavaWorld, 4(5), May 1999.
http://www.javaworld.com/javaworld/jw-05-1999/jw-05-networked.html.

http://www.arjuna.com
http://www.javaworld.com/javaworld/jw-05-1999/jw-05-networked.html

BIBLIOGRAPHY 202

[Bel99] Beth Belton. Internet generated $301 billion last year. USA Today news
paper, 10 June, page 01 A, 1999. Available in the USA Today Archives:
http://usatoday.elibrary.eom/s/usatoday.

[BEN+93] Andrew Birrell, David Evers, Greg Nelson, Susan Owicki, and Edward Wobber.
Distributed Garbage Collection for Network Objects. Technical Report 116,
Systems Research Center, Digital Equipment Corporation, Palo Alto, December
1993.

[Ber91] S. Berman. P-Pascal: A Data-Oriented Persistent Programming Language. PhD
thesis, University of Capetown, 1991.

[BHJ+87] Andrew Black, Norman Hutchinson, Eric Jul, Henry Levy, and Larry Carter.
Distribution and abstract types in Emerald. IEEE Transactions on Software En
gineering, 13(l):65-76, January 1987.

[Bla98] S.M. Blackburn. Persistent Store Interface: A foundation for scalable persistent
system design. PhD thesis, Australian National University, Canberra, Australia,
August 1998.

[BN84] Andrew Birrell and Bruce Jay Nelson. Implementing Remote Procedure Calls.
ACM Transactions on Computer Systems, 2(l):39-59, February 1984.

[BNOW93] Andrew Birrell, Greg Nelson, Susan Owicki, and Edward Wobber. Network
Objects. Proceedings o f the 14th ACM Symposium on Operating System Princi
ples, 27(5):217-230, December 1993.

[Car94] Luca Cardelli. Obliq: A Language with Distributed Scope. Technical report,
Digital, June 1994. SRC Research Report 122.

[CBGM98] G. Canals, C. Bouthier, C. Godart, and P. Molli. Tuamotu : a Dis
tributed Framework for Supporting Enterprise Projects. In Proceedings
o f Colloque International sur les NOuvelles TEchnologies de la REparti-
tion (NOTERE’98), Montreal, Quebec, Canada, Oct 1998. Editions CRIM.
http://www.iro.umontreal.ca/NOTERE.

[CDN93] Michael J. Carey, David J. DeWitt, and Jeffrey F. Naughton. The 007 benchmark.
In Peter Buneman and Sushil Jajodia, editors, Proceedings o f the 1993 ACM
SIGMOD International Conference on Management o f Data, Washington, D.C.,
May 26-28, 1993, pages 12-21. ACM Press, 1993.

[CMG98] G. Canals, P. Molli, and C. Godart. TuaMotu: Supporting Telecooperative Engi
neering Applications Using Replicated Versions. Internet-based GROupware for

http://usatoday.elibrary.eom/s/usatoday
http://www.iro.umontreal.ca/NOTERE

BIBLIOGRAPHY 203

User Participation in product development (IGROUP’98), Seattle, Washington,
USA, November 1998.

[DA97] Laurent Daynes and Malcolm Atkinson. Main-Memory Management to support
Orthogonal Persistence for Java. In Mick Jordan and Malcolm Atkinson, editors,
Proceedings o f the Second International Workshop on Persistence and Javdm
(PJW2), number SMLI TR-97-63 in Sun Technical Report series, Half Moon
Bay, California, August 1997.

[DA99] Misha Dmitriev and Malcolm Atkinson. Evolutionary Data Conversion in the
PJama Persistent Language. In Proceedings o f the 1st ECOOP Workshop on
Object-Oriented Databases, Lisbon, Portugal, June 1999.

[DAV97] L. Daynes, M.P. Atkinson, and P. Valduriez. Customizable Concurrency Control
for Persistent Java. In S. Jajodia and L. Kerschberg, editors, Advanced Transac
tion Models and Architectures, Data Management Systems, chapter 7. Kluwer
Academic Publishers, Boston, 1997.

[DayOO] L. Daynes. Implementation of Automated Fine-Granularity Locking in a Per
sistent Programming Language. Software - Practice and Experience, 30:1-37,
2000. To appear.

[DdBF+94] A. Dearie, R. di Bona, J. Farrow, F. Henskens, A. Lindstrom, J. Rosenberg,
and F. Vaughan. Grasshopper: An Orthogonally Persistent Operating System.
Computing Systems, 7(3):289-312, 1994.

[Dmi98] Misha Dmitriev. The First Experience of Class Evolution Support in PJama. In
Morrison et al. [MJA98].

[DRV91] A. Dearie, J. Rosenberg, and F. Vaughan. A Remote Execution Mechanism
for Distributed Homogeneous Stable Stores. In Proceedings o f the Third Inter
national Workshop on Database Programming Languages: Object Models and
Languages, pages 125-138, Nafplion, Greece, 1991. Morgan Kaufmann.

[dS96] M. Mira da Silva. Models o f Higher-order, Type-safe, Distributed Computation
over Autonomous Persistent Object Stores. PhD thesis, University of Glasgow,
December 1996.

[dSA96] M. Mira da Silva and M. Atkinson. Higher-order Distributed Computation over
Autonomous Persistent Stores. In Proceedings o f The Seventh International
Workshop on Persistent Object Systems, Cape May, New Jersey, USA, May
1996.

BIBLIOGRAPHY 204

[dSAB96]

[ECOOO]

[ED97]

[ED99]

[EJB99a]

[EJB99b]

[EJB99c]

[ES98]

[Eva99]

[FD93]

[ForOO]

M. Mira da Silva, Malcolm P. Atkinson, and A. P. Black. Semantics for Pa
rameter Passing in a Type-complete Persistent RPC. In Proceedings o f the 16th
International Conference on Distributed Computing Systems (ICDCS’96), pages
411^419, Hong Kong, May 1996. IEEE Computer Society.

ECOO. Environnements pour la cooperation. WWW
site for ECOO project developing CSCW support, 2000.
http://www.loria.fr/equipes/ecoo/english/index.html.

Huw Evans and Peter Dickman. DRASTIC: A Run-time Architecture for Evolv
ing, Distributed, Persistent Systems. In Aksit and Matsuoka [AM97], pages
243-275.

Huw Evans and Peter Dickman. Zones, Contracts and Absorbing Change: An
Approach to Software Evolution. In Proceedings o f the Conference on Object-
Oriented Programming, Systems, Languages and Applications (OOPSLA ’99),
volume 34 of SIGPLAN Notices, pages 415^434, Denver, Colorado, USA, Oc
tober 1999. ACM.

Enterprise JavaBeans Specification 1.1 Introduces New and Ex
citing Features. Sun Microsystems Inc, November 1999.
http://java.sun.com/products/ejb/newspec.html.

Sun Microsystems Inc. Enterprise JavaBeans Specification v l .l , final release
edition, December 1999.

Sun Microsystems Inc. Enterprise JavaBeans™ Developer’s Guide, beta re
lease edition, 1999.

Huw Evans and Susan Spence. Porting a Distributed System to PJama: Orthog
onal Persistence for Java. In Morrison et al. [MJA98].

H. Evans. Why Object Serialization is Inappropriate for Providing Persistence
in Java. Technical report, University of Glasgow, UK, 1999. In Preparation.

A. Farkas and A. Dearie. Octopus: A Reflective Mechanism for Object Ma
nipulation. In C. Beeri, A. Ohori, and D.E. Shasha, editors, Proceedings o f the
Fourth International Workshop on Database Programming Languages: Object
Models and Languages, pages 50-64, Manhattan, New York City, USA, 1993.
Springer-Verlag.

The Forest Project. Sun Microsystems Laboratories, 2000.
http://www.sun.com/research/forest.

http://www.loria.fr/equipes/ecoo/english/index.html
http://java.sun.com/products/ejb/newspec.html
http://www.sun.com/research/forest

BIBLIOGRAPHY 205

[FS98] Paulo Ferreira and Marc Shapiro. Modelling a Distributed Cached Store for
Garbage Collection. In Eric Jul, editor, ECOOP’98 - Object-Oriented Program
ming, 12th European Conference, Lecture Notes in Computer Science, pages
234-259, Brussels, Belgium, July 1998. Springer.

[FSB+98] Paulo Ferreira, Marc Shapiro, Xavier Blondel, Olivier Fambon, Joao Gar
cia, Sytse Kloosterman, Nicolas Richer, Marcus Roberts, Fadi Sandakly,
George Coulouris, Jean Dollimore, Paulo Guedes, Daniel Hagimont, and Sacha
Krakowiak. PerDiS: design, implementation, and use of a PERsistent Dis
tributed Store. Technical Report QMW TR 752, CSTB ILC/98-1392, INRIA
RR 3525, ENESC RT/5/98, QMW, CSTB, INRIA and INESC, October 1998.

[FT98] Dominant web role forseen. page 2, FT-IT Review, Financial Times Newspaper,
5 November, 1998.

[GC89] C. Gray and D. Cheriton. Leases: An Efficient Fault-Tolerant Mechanism for
Distributed File Cache Consistency. SIGOPS Proceedings o f the Twelfth ACM
Symposium on Operating Systems Principles, 23(5):202-210, 1989.

[Gem96] GemStone Systems, Inc. GemBuilder for VisualWorks, GemStone Version 5.0,
July 1996.

[Gem98a] GemStone Systems, Inc. GemStone/J with VisiBroker Programming Guide, Ver
sion 1.1, March 1998.

[Gem98b] GemStone Systems, Inc. GemStone/fm Distributed JavaBeanstm Programming
Guide, Version 1.1, March 1998.

[Gem99] GemStone Systems, Inc. GemStone/J'm 3.0: the Secure Inte
grated Application Platform for Internet Commerce. Product
Overview published by GemStone Systems, Inc. on WWW, 1999.
http://www.gemstone.eom/products/j/overview.pdf.

[GGM96] Rachid Guerraoui, Benoit Garbinato, and Karim Mazouni. Lessons from De
signing and Implementing GARF. In Object Oriented Parallel and Distributed
Computing, LNCS. Springer Verlag, 1996.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat
terns: Elements o f Reusable Object-Oriented Software. Addison Wesley, 1995.

[Han99a] 0yvind Hanssen. Personal communication on experience with his framework
for policy bindings, 1999.

http://www.gemstone.eom/products/j/overview.pdf

BIBLIOGRAPHY 206

[HAN99b]

[HE99]

[HMB90]

[HPM93]

[1100]

[JA98]

[JA99]

[JapOO]

[JL99]

[JOP96]

[Jor99]

[JOS97]

[JOS98]

Richard Hay ton and the ANSA Team. FlexiNet Architecture, February 1999.
Part of the ANSA Architecture for Open Distributed Systems Initiative.

0yvind Hanssen and Frank Eliassen. A Framework for Policy Bindings. In
Proceedings o f the International Symposium on Distributed Objects and Appli
cations (DOA’99), Edinburgh, Scotland, September 1999. IEEE Press.

Antony L. Hosking, J. Eliot B. Moss, and Cynthia Bliss. Design of an Object
Faulting Persistent Smalltalk. Technical report, University of Massachusetts,
May 1990. COINS Technical Report 90-45.

Graham Hamilton, Michael L. Powell, and James G. Mitchell. Subcontract: A
Flexible Base for Distributed Programming. Technical report, Sun Microsystems
Laboratories, April 1993. SMLITR-93-13.

The Internet Economy Indicators™ indicators report. Univer
sity of Texas Center for Research in Electronic Commerce, 2000.
http://www.intemetindicators.com.

Mick Jordan and Malcolm Atkinson. Orthogonal Persistence for Java - a Mid
term Report. In Morrison et al. [MJA98].

Mick Jordan and Malcolm Atkinson. Orthogonal Persistence for the Java"” Plat
form - Draft Specification. Technical report, Sun Microsystems Inc., 1999. In
Preparation. Available from http://www.sun.com/research/forest/
COM.Sun.Labs.Forest.doc.opjspec.abs.html.

Robert Japp. Personal communication on the performance of PJama on the
Sphere architecture, 2000.

Sun Microsystems Inc. Jini Distributed Leasing Specification, January 1999.
Jini System Software 1.0 Specifications.

JOP (Java Object Persistence), Alpha release 0.4a, 15 Sep 1996. David Rothwell,
1996. http://www.magna.com.au/~davidr/.

D. Jordan. Serialisation is not a Database Substitute. Javatm Report, pages 68-
79, July 1999.

Java Object Serialisation Specification, Draft Revision 1.3. Sun Microsystems
Inc, 1997.

Java"” Object Serialisation Specification, jdk"” 1.2. Sun Microsystems Inc,
November 1998. Documentation supplied with Release of the JDK 1.2 FCS.

http://www.intemetindicators.com
http://www.sun.com/research/forest/
http://www.magna.com.au/~davidr/

BIBLIOGRAPHY 207

[JV97] Mick Jordan and Michael L. Van De Vanter. Modular System Building with
Java(tm) Packages. In Eighth Conference on Software Engineering Environ
ments, pages 155-163, Cottbus, Germany, April 1997.

[KDM99] Setrag Khoshafian, Surapol Dasananda, and Norayr Minassian. The Jasmine
Object Database: Multimedia Applications for the Web. Morgan Kaufmann,
1999.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Programming. In
Aksit and Matsuoka [AM97], pages 220-242.

[LAC+96] Barbara Liskov, Atul Adya, Miguel Castro, Mark Day, Sanjay Ghemawat,
Robert Gruber, Umesh Maheshwari, Andrew C. Myers, and Liuba Shrira. Safe
and Efficient Sharing of Persistent Objects in Thor. In H. V. Jagadish and In-
derpal Singh Mumick, editors, Proceedings o f the 1996 ACM SIGMOD Inter
national Conference on Management o f Data, pages 318-329, Quebec, Canada,
June 1996. ACM Press.

[LCSA99] Barbara Liskov, Miguel Castro, Liuba Shrira, and Atul Adya. Providing Per
sistent Objects in Distributed Systems. In Rachid Guerraoui, editor, ECOOP,
volume 1628 of Lecture Notes in Computer Science, pages 230-257. Springer,
June 1999.

[Lin99] Kevin C.F. Lew Kew Lin. Orthogonal Persistence, Object-orientation and Dis
tribution. PhD thesis, University of Adelaide, September 1999. Submitted.

[Lis88] Barbara Liskov. Distributed programming in Argus. Communications o f the
ACM, 31(3):300—312, March 1988.

[LK99] Cristina Lopes and Gregor Kiczales. Aspect-Oriented Programming with As
pect!. Notes for Tutorial #2, November 1999. Conference on Object-Oriented
Programming, Systems, Languages and Applications 1999 (OOPSLA99).

[LS96] M.C. Little and S.K. Shrivastava. Using Application Specific Knowledge for
Configuring Object Replicas. In Proceedings o f the Third International Con
ference on Configurable Distributed Systems, pages 169-176, Annapolis, Mary
land, May 1996. IEEE Computer Society Press.

[LS99a] M.C. Little and S.K. Shrivastava. A method for combining replication with
cacheing. In Proceedings o f the IEEE International Workshop on Reliable Mid
dleware Systems (WREMI99), Lausanne, Switzerland, October 1999. IEEE.

BIBLIOGRAPHY 208

[LS99b] M.C. Little and S.K. Shrivastava. Implementing high availability CORBA ap
plications with Java. In Proceedings o f the IEEE Workshop on Internet Applica
tions, San Jose, California, June 1999. IEEE.

[MBC+96] R. Morrison, A.L. Brown, R.C.H. Connor, Q.I. Cutts, A. Dearie, G.N.C. Kirby,
and D.S. Munro. Napier88 Reference Manual (Release 2.2.1). Technical report,
University of St Andrews, 1996.

[MCC+99] R. Morrison, R.C.H. Connor, Q.I. Cutts, G.N.C. Kirby, D.S. Munro, and M.P.
Atkinson. The Napier88 Persistent Programming Language and Environment.
In M.P. Atkinson and R. Welland, editors, Fully Integrated Data Environments.
Springer-Verlag, 1999.

[MJA98] Ron Morrison, Mick Jordan, and Malcolm Atkinson, editors. Proceedings o f the
Third International Workshop on Persistence and Java, Tiburon, CA, September
1998. Morgan Kaufmann.

[ML97] Umesh Maheshwari and Barbara Liskov. Collecting Distributed Garbage Cy
cles by Back Tracing. In Proceedings o f the Sixteenth Annual ACM Symposium
on Principles o f Distributed Computing (PODC 97), pages 239-248, Santa Bar
bara, California, USA, August 1997. ACM.

[MOM98] Jishnu Mukerji and OMG. CORBA Core Chapter revisions from RFP on
Objects-by-Value, 1998. ftp://ftp.omg.org/pub/orbrev/drafts/obv-java-jm-0730-
2.3-rtf.pdf.

[Mos90a] J. Eliot B. Moss. Addressing Large Distributed Collections of Persistent Ob
jects: The Mneme Project’s Approach. In Hull, Morrison, and Stemple, editors,
Second International Workshop on Database Programming Languages, pages
358-374, Gleneden Beach, OR, June 1990. Morgan Kaufmann.

[Mos90b] J. Eliot B. Moss. Design of the Mneme Persistent Object Store. ACM Trans, on
Information Systems, 8(2): 103-139, April 1990.

[NPS95] B. Noble, M. Price, and M. Satyanarayanan. A programming interface for
application-aware adaption in mobile computing. In Proceedings o f the 2nd
USENIX Symposium on Mobile and Location-Independent Computing, Ann Ar
bor, Michigin, USA, April 1995.

[NSN+97] B. Noble, M. Satyanarayanan, D. Narayanan, J.E. Tilton, J. Flinn, and
K. Walker. Agile Application-Aware Adaptation for Mobility. In Proceedings
o f the 16th ACM Symposium on Operating System Principles, St. Malo, France,
October 1997.

ftp://ftp.omg.org/pub/orbrev/drafts/obv-java-jm-0730-

BIBLIOGRAPHY 209

[OH98] Robert Orfali and Dan Harkey. Client/Server Programming with Javatm and
CORBA. Wiley, second edition, 1998.

[OMG] Object Management Group, http://www.omg.org.

[OMG98] CORBAservices: Common Object Services Specification. Object Management
Group, Inc. Publications and downloadable as document formal/98-12-09 from
http://www.omg.org/corba, December 1998.

[OMG99a] CORBA Success Stories, http://www.corba.org, 1999.

[OMG99b] Persistent State Service 2.0. Object Management Group, Recently
Adopted Specifications downloadable as document orbos/99-07-07 from
http://www.omg.org/techprocess/meetings/schedule/tech2a.html, August 1999.

[OMG99c] The Common Object Request Broker: Architecture and Specification, Version
2.3.1. Object Management Group, Inc. Publications and downloadable as docu
ment formal/99-10-07 from http://www.omg.org/corba, October 1999.

[Ora99] Oracle. Oracle 8i: Features Overview Document.
http://www.oracle.com/database/documents/o8i_new_features_summary_fo.pdf,
1999.

[OS98] Michael Otto and Norbert Schuler. Persistente softwaretechnische archive
zur kooperationsuntersttzenden verwaltung behlterartiger materialien. Master’s
thesis, University of Hamburg, Fachbereich Informatik, Arbeitsbereich Soft-
waretechnik, Universitt Hamburg, Vogt-Klln-Strae 30, 22527 Hamburg, oct
1998. Betreuung: Dr. Guido Gryczan, Report written on hierarchical archive
implemented using PJama for student project written up as a bachelor thesis.

[PAD98a] T. Printezis, M. P. Atkinson, and L. Daynes. The Implementation of Sphere:
a Scalable, Flexible, and Extensible Persistent Object Store. Technical Report
TR-1998-46, University of Glasgow, July 1998.

[PAD+98b] Tony Printezis, Malcolm Atkinson, Laurent Daynes, Susan Spence, and Pete
Bailey. The Design of a new Persistent Object Store for PJama. In Morrison
et al. [MJA98].

[PAJ99] T. Printezis, M. P. Atkinson, and M. J. Jordan. Defining and Handling Tran
sient Data in PJama. In Proceedings o f DBPL’99, Kinlochrannoch, Scotland,
September 1999.

http://www.omg.org
http://www.omg.org/corba
http://www.corba.org
http://www.omg.org/techprocess/meetings/schedule/tech2a.html
http://www.omg.org/corba
http://www.oracle.com/database/documents/o8i_new_features_summary_fo.pdf

BIBLIOGRAPHY 210

[PJR98]

[PJR99]

[PJR00]

[PNC98]

[POE98]

[PriOOa]

[PriOOb]

[RC89]

[RE98]

[RMI98]

[Sch77]

[Ses98]

[SKW92]

PJama: implementation of Orthogonal Persistence for Java, Release 0.5.7.13.
The PJama Project. Sun Microsystems Laboratories and University of Glasgow,
December 1998.

PJama: implementation of Orthogonal Persistence for Java, Release 0.5.20.2.
The PJama Project. Sun Microsystems Laboratories and University of Glasgow,
1999.

PJama: implementation of Orthogonal Persistence for Java, Release 1.6.4 (for
JDK 1.2). The PJama Project. Sun Microsystems Laboratories and University of
Glasgow, March 2000. http://www.sun.com/research/forest/opj.main.html.

John Potter, James Noble, and David Clarke. The Ins and Outs of Objects. In
Australian Software Engineering Conference (ASWEC98), Adelaide, Australia,
November 1998.

POET: Persistent Objects and Extended Database Technology. POET Software,
1998. http://www.poet.com.

T. Printezis. Management o f Long-Running High-Performance Persistent Object
Stores. PhD thesis, Department of Computing Science, University of Glasgow,
Scotland, 2000.

T. Printezis. Personal communication on weak references and disk garbage col
lection, 2000.

J. Richardson and M.J. Carey. Persistence in the E Language: Issues and Imple
mentation. SPE, 19(12): 1115—1150, 1989.

Rosemary Rock-Evans. DCOM Explained. Digital Press, 1998.

Java™ Remote Method Invocation Specification, Revision 1.50, JDK 1.2, Oc
tober 1998. Documentation supplied with JDK 1.2 FCS.

Joachim W. Schmidt. Some high level language constructs for data of type rela
tion. TODS, 2(3):247-261, 1977.

Roger Sessions. COM and DCOM: Microsoft’s Vision for Distributed Objects.
Wiley, 1998.

Vivek Singhal, Sheetal Kakkad, and Paul Wilson. Texas: An Efficient Portable
Persistent Object Store. In Proceedings o f the Fifth International Workshop on
Persistent Object Systems, pages 11-33, San Miniato, Italy, September 1992.

http://www.sun.com/research/forest/opj.main.html
http://www.poet.com

BIBLIOGRAPHY 211

[Sun99]

[USC98]

[vRBM96]

[Wai88]

[Wai89]

[WB95]

[WB97]

Sun Microsystems Inc. Sun on the Net: How Sun saves money and improves ser
vice using Internet technologies, http://www.sun.com/960101/featurel, Febru
ary 1999.

US Census Bureau. TIGER/Line® Files 1998, Technical Documentation, July
1998. http://www.census.gov/geo/www/tiger/index.html.

R. van Renesse, K. Birman, and S. Maffeis. Horus, a Flexible Group Commu
nication System. Communications o f the ACM, April 1996.

F. Wai. Distributed Concurrent Persistent Programming Languages: An Exper
imental Design and Implementation. PhD thesis, University of Glasgow, April
1988.

Francis Wai. Distributed PS-algol. In John Rosenberg and Davis Koch, edi
tors, Persistent Object Systems, Proceedings o f the Third International Work
shop (POS3), Workshops in Computing, pages 126-140, Newcastle, New South
Wales, January 1989. Springer.

Girish Welling and B. R. Badrinath. Mobjects: Programming Support for En
vironment Directed Application Policies in Mobile Computing. In Proceedings
o f the ECOOP ’95 Workshop on Mobility and Replication, Aarhus, Denmark,
August 1995.

Girish Welling and B. R. Badrinath. A Framework for Environment Aware Ap
plications. In 17th International Conference on Distributed Computing Systems
(ICDCS), pages 384-391, Baltimore, Maryland, USA, May 1997.

http://www.sun.com/960101/featurel
http://www.census.gov/geo/www/tiger/index.html

