Limited Copies
and Leased References

for Distributed Persistent Objects

Susan Spence

Submitted for the Degree of Doctor of Philosophy
Department of Computing Science
University of Glasgow

March 2000

(©Susan Spence, March 2000

ProQuest Number: 13818969

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 13818969

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M 48106- 1346

gNIVEBS‘g:Y |
LIBRARY

148%- Coev |

Contents

Abstract ix
Acknowledgements xi
1 Introduction 1

1.1 Overview of Problems

Combining Persistence and Distribution 2

1.1.1 Implications of Dependencies Between Stores 2

1.1.2 Problems with Copying Object Graphs Between Stores 3

1.2 Realistic Solutions for Persistence and Distribution 4
1.2.1 Limiting Dependencies Between Stores 4

1.2.2 Policies for Flexible Object Graph Copying between Stores 5

1.3 ThesisStatement, 5

14 TheGuidedTour, 6

2 Orthogonal Persistence 7
2.1 Orthogonal Persistence forJava 8
2.2 PJama: an Open Persistent System 8
2.3 Managing Externalities 9

3 Persistent Remote Method Invocation (PJRMI) 11
3.1 JavaRMI R 12
3.2 UsingJavaRMIwithPJama 13

3.3 PJRMI: Remote Method Invocation Tailored for PJama 15
3.3.1 Persistent, Remotely-invokable Objects 15

3.3.2 Persistent Clients of Remotely-invokable Objects 16

3.3.3 Interoperability of PIRMI with Standard RMI 17

CONTENTS ii
334 PIRMISummary 17

3.4 PIJRMI Implementation Details 18
34.1 Using PJActionHandlers 18

3.4.2 Supporting Persistent, Remotely-invokable Objects 19

3.4.3 PJRMI Re-initialisation on Store Restart 20

3.4.4 Supporting Persistent References to Remotely-invokable Objects . . 22

3.4.5 Interoperability of RMIand PJRMI 24

3.4.6 Implementation Revisions 28

35 UsingPIRMI e 30
35.1 ModelofUsage., 30

352 UserFeedback, 31

353 TheEffectsof Feedback 38

36 PIRMIL:CouldDoBetter 39
4 Approaches of Related Work 40
4.1 Introduction e e 40
4.1.1 Context e ... 40

. 4.1.2 Problem One: Maintaining Object References Between Stores . . . 41
4.1.3 Problem Two: Copying Large Object Graphs Between Stores 41

42 ExistingWork - 42
4.2.1 Java Distribution Technologies 42
422 DPS-algol. e 46

423 rxforNapier 48

4.2.4 Persistent, Type-safe RPC for Napier88 48

425 Thor. e 50
426 CORBA. e 52

427 GemStone. e 56

428 DCOM e 59

429 AQUNA e e e e e e e e e 60
4210 PerDiS e 61
4211 FlexiNet. 63

4.3 Related Work on Alterative Approaches 64
4.3.1 Approaches of Database Systems 64
432 ObjectSubstitutiono 64

CONTENTS iii

433 ObjectMovement., 65

434 Oblig and Network Objects 65

4.3.5 Other References toRelated Work 66

44 Summary e e e e e e 66
441 WithRegardtoReferences 66

442 CopingwithCopying 67

4.5 Influences of Related Workon Solutions 68
4.5.1 SpringSubcontracts L 68

452 CORBA. e 69

453 GARF. 69

4.5.4 A Framework for Policy Bindings 70

455 MobileComputing 70

5 Research Issues to be Addressed 72
5.1 Problem One: With RegardtoReferences 72

5.2 Problem Two: Coping withCopying 73

6 Persistence by Reachability across a Distributed System 75
6.1 Imtroduction 75
6.2 Determining Persistence Across a Distributed System 77
6.2.1 Orthogonal Persistence in a Distributed Context 77

6.2.2 Persistence with Direct and Indirect Reachability 78

6.2.3 The Object Should Persist - But Where? 81

6.24 PIRMI'sSolution 82

6.3 Application Leases on Remote Use of Persistent Objects 84
6.3.1 Application Leases for Limiting Store Obligations 85

6.3.2 Lease Management for Limiting Store Dependencies 88

6.3.3 Implications of Using Application Leases 91

6.3.4 Comparison with Use of Leases in Related Work 95

635 FatureWork L . 96

7 Object Copying Policies: Introduction 99
7.1 Motivation e e e e e 99

7.2 ASSUmMPtiOnS e e 101

CONTENTS

iv

8 Object Copying Policies: Design
8.1 Object Passing inJavaRMI

8.2 Object Copying Policies AddedtoPJRMI

8.2.1 Definition of a Policy . . .

8.2.2 How aPolicy is Set for an Application

8.2.3 Setting a Policy Using a DistributedContext
8.24 Creation and Use of a DistributedContext

8.2.5 Platform Support Common to all Object Copying Policies
8.2.6 PIJRMI Object Copying Policies

8.2.7 Defining New Policies . .

9 Object Copying Policies: Implementation

9.1 Class DistributedContext

......................

9.2 Supporting Policy Upcalls During an Application’s Lifetime

9.2.1 Adaption of Serialisation for Policy Hooks

9.2.2 Adaption of Deserialisation
9.3 Policy Use of Stub Objects

for Policy Hooks

9.3.1 Triggering Access to aRemote Object

9.3.2 Accessing a Remote Object

9.3.3 PCopyStubs and Garbage Collection

9.3.4 Persistence of PCopyStubs
9.4 Hooks for New Policies

......................

9.4.1 How to Implement the Policy Interface

9.4.2 Leaving the Rest to the Policy Support

9.5 Implementation of Individual Object Copying Policies

9.5.1 Behaviour CommontothePolicies

9.5.2 Policy CopyToRefs
9.5.3 Policy CopyToSize
9.5.4 Policy CopyToDepth . . .
9.5.5 Policy CopyByUsage . . .

10 Object Copying Policies: Evaluation
10.1 Introduction

10.2 Separation of Architectural Issues

......................

103
103
105
106
106
107
107
109
110
113

114
114
116
116
121
122
123
125
125
125
126
126
128
128
128
129
130
131
132

CONTENTS v
10.3 Measurements SEtuUp L. e e e e e e 138
10.4 How Large is a Large Object Graph? 141
10.5 Same Object Graph, Different Applications 143
10.6 Same Object Graph, Different Distributed Environments 145
10.7 The Pros and Cons of Object Copying Policies 148
108 Future Work 149

10.8.1 NewPolicies, 149
10.8.2 SharedSubgraphs 150
10.8.3 Setting A Policy across Multiple Sites 151
10.8.4 Measurementsl 151
10.8.5 Porting e 151

11 Future Work 152

11.1 PIRMI 153
11.1.1 ReconnectionRetries 153
11.1.2 StoreMovement 153
11.1.3 Persistence of RMIRegistry 154
11.1.4 Removing Remote Access to Persistent Objects 154
11.1.5 Evolutionof Services 155
11.1.6 New, Improved PJama Platform 155

11.2 Synthesis of Solutions in a DistributedContext 156

11.3 Additional Support for Persistence and Distribution 156
11.3.1 Consistencyo e e 156
11.3.2 Transactions i ittt ittt e 157
11.3.3 Group Communication 157
11.3.4 Aspect-Oriented Programming 158

114 TheBigPicture 158

12 Conclusion 159
12.1 Limiting Dependencies Between Stores 160
12.2 Policies for Flexible Object Graph Copying Between Stores 161
123 AndFinally... 162

A PJRMI Tutorial 164
A.l Imtroduction 164

CONTENTS

vi

A.2 A non-persistent RMI program
An RMI-based MessageService

A21

A.2.2 A non-persistent client for the MessageService

A.3 A persistent RMI program

A3l

Creating and using persistent, remotely-invokable objects

A.3.2 Creating and using persistent references

A.4 Using the SuspendService to close down a persistent store

A.5 RMI Exceptions
A.5.1 java.lang.ClassNotFoundException
A5.2 javarmi.server.ExportException
A.5.3 java.lang.lllegalAccessException
A.5.4 java.lang.NullPointerException

A.6 Comments

to remote, remotely-invokable objects

B PJActionHandler Usage

C Object Copying Policy Support

C.1 The Lifetime of a PCopyStub

C.1.1
C.12
C.13
Cl14
C.15
C.1.6

Trademarks
Glossary

Bibliography

Deserialisation of PCopyStub
Residency check on PCopyStub in GC Heap
Promotion of a PCopyStub from the GC Heap

...........

Residency check on persistent, non-resident PCopyStub

Promotion of a remote-faulted object

Residency check on persistent, remote-faulted object

........

165
165
169
172
172

179
183
185
185
185
185
185
187

188

192
192
192
193
193
193
194
194

197

198

200

List of Figures

3.1
3.2
33
34

6.1
6.2
6.3

8.1
8.2
8.3
8.4

9.1

9.2
9.3
94

10.1
10.2
10.3
10.4
10.5
10.6

Al

Objectsinan RMIcall 12
Permutations for communicating VMs in an open persistent system 17
PJamaPJExported tables track export information by name and identity . . 20
Renewing stub information L. 23
Direct and indirect reachability from a remote, persistent object 79
Movement of stores betweenhosts L. 84
Setting a local lease limitinaclient’sstub 92
Server-side tree of objects, plus initial client-side CopyToRefs tree copy . . 110
The tree copy after CopyToRefs accessismadetob 111
The initial depth-first CopyToSize 111
The initial width-first CopyToSize 111
Classes involved in object serialisation and deserialisation. (Method names

not in bold type indicate a method overridden in a subtype.) 117
Object fault from storeto VMmemory 124
Object fault from remote VM tolocal VM 124
class TrackUsage tables of the CopyByUsage policy 134
Comparison of platformcosts 140
Keytoplatformlabels. 140
Effect of policies on communicating projects 144
Size of binary trees atrange of depths L. 146
Policy-controlled copying over local areanetwork 146
Policy-controlled copying over wide areanetwork 147

ObjectsusedforRMI 165

LIST OF FIGURES viii

A.2 Interface MessageService 166
A3 Class MessageServicelmpl L., 167
A.4 class RunService creates MessageService 168
A.5 MessageClient uses MessageService 170
A.6 RunClient creates and uses MessageClient 171
A.7 CreateSupportServices creates persistent support services 174
A.8 CreateService creates persistent MessageService 176
A.9 UseService makes persistent, remotely-invokable objects available 178
A.10 CreateClient creates a persistent MessageClient 181
A.11 UseClient uses MessageClient 182
A.12 SuspendService L. oL 183
A.13 SuspendServicelmpl implements SuspendService 184
A.14 SuspendClient uses SuspendService 186

C.1 Formats of PCopyStub/corresponding object copy handles duringuse . . . 196

Abstract

As businesses become global organisations and as e-commerce opens up markets to cus-
tomers across the Internet, demand grows for increasingly ambitious distributed software
applications and platforms. Where these applications run over potentially huge collections
of data, sophisticated management of data storage and communication is required. There is a
need for well-integrated persistence and distribution support that considers the implications
for long-term maintenance of valuable persistent data.

Orthogonal persistence is intended to ease the programmer’s job by providing support for
data management that is integrated with a programming language. The simplicity of the
orthogonal persistence model argues for its use in distributed systems, in order to make
life simpler for the application programmer. PJRMI is an implementation of Java RMI for
the orthogonally-persistent PJama platform. This dissertation addresses two problem areas
raised by combining orthogonal persistence with support for distributed applications. These
problem areas are illustrated by PIRMI.

The first problem is raised as a consequence of attempting to provide the illusion of a per-
sistent connection between stores. Distribution-related errors easily break this illusion. In
an open system, it can be difficult to determine when an object should become persistent by
remote reachability. In the long term, persistent references to remote objects threaten the
maintainability of the persistent stores involved.

A solution has been implemented to address the problems raised by maintaining persistent
references between distributed stores. Greater autonomy of individual stores is achieved
by limiting remote access to objects to a duration of time associated with a specific dis-
tributed application’s lifetime. Within the application’s lifetime, the benefits are retained of

persistence of inter-store references for resilience.

The second problem is encountered when copying object graphs between stores. Large ob-
ject graphs tend to build up in persistent stores over time. Copying such large object graphs
can be prohibitively expensive in terms of resources and performance. A programmer may
assume that the size of graph they are copying is acceptable, based on their knowledge of

Abstract X

a system in its infancy. However, the problem is that, in a long-lived system, their assump-
tions may be challenged, since the size of an object graph and the context in which it is
used are more likely to change during a persistent object graph’s lifetime. The combination
of a typically statically-defined policy for passing objects to remote sites and programmer
assumptions that fail to take into account the lifetime of an object can also result in other
problems. These problems include failure to support different requirements on remote use
of the same object graph by different applications during that object graph’s lifetime.

A solution has been implemented to address the problems raised by remote copying of large
object graphs. Flexibility of control over such copying is achieved. Separation of policy
from object definition ensures flexibility. Choice of object-copying policy for a specific
distributed application’s lifetime provides control, while ensuring it is adaptable to changes
in size of persistent object graphs over their lifetime and to changes in the context in which
these graphs are used.

Acknowledgements

This dissertation has been accomplished with much support from my supervisor, partner,
family, friends and colleagues. I am very grateful to them all. Special thanks are due to
those named below.

Malcolm Atkinson: for his energy, enthusiasm, encouragement as my super-
visor and for his ability to keep his researchers in contracts and interesting,
challenging jobs.

Satnam Singh: for waiting so patiently on another continent for me to finish
this PhD and for agreeing to be my husband.

My parents Graham and Irene Spence: for their love and support; they are

always there for me.

My sister Alison Campbell: for her love and encouragement and especially for
the PhD monster decoy. It worked - I've escaped!

Carol Emslie: for our enduring friendship, particularly through the university
years of relaxed flat-sharing in Dowanhill Street.

Mick Jordan: for supporting my internships at Sun Microsystems Laboratories.

Quintin Cutts: for his role as second supervisor. I enjoyed comparing notes on

time management.
Peter Dickman: for taking on the unofficial role of third supervisor.

All my friends and colleagues in the Department of Computing Science at the
University of Glasgow: through my four years as an undergraduate and seven
and a half years as a research assistant. It’s the people of this excellant depart-

ment that have made me stay around as long as I have.

Huw Evans: for his friendship, thorough proof-reading, leading me astray with
whisky and good memories of trips, especially to Paris and Pisa, to appreciate
their fine food and wine, purely in the line of duty. I appreciated even his most
in-seine jokes.

Acknowledgements xii

Tony Printezis: I have greatly enjoyed the fruits of his enthusiasm for cook-
ing; even though it has never quite matched his enthusiasm for C hacking and

garbage collection.

Craig Hamilton: who always has an entertainingly sharp word to say on some

of our favourite PJama project conversational subjects.
Others I have worked with on the PJama project, including Laurent Daynes.

Users of PJRMI: who kindly provided me with feedback on using PJIRMI in
their work and cooperated, sometimes very patiently over weeks at a time, in
helping me to fix bugs with PIRMI and PJama in general.

This work has been supported by the PJama project, funded by Sun Microsystems Labora-
tories and the EPSRC.

Apologies to those readers who, like Huw, do not always appreciate the verbose nature off
my writing; it could admittedly be considered, as Stephen Fry would say, rather pleonastic

or sesquipedalian or ...

Chapter 1

Introduction

According to a recent article in the Financial Times [FT98], “the Internet will inevitably
become the dominant medium for the global economy”. This is backed up by USA Today,
which reports that “The Internet economy generated $301 billion in revenue last year” and
that “The Internet economy is doubling every nine months” [Bel99]. A quarterly report on
Internet Economy Indicators, by the University of Texas Center for Research in Electronic
Commerce {1I00], provides many more fascinating statistics on this subject.

As more businesses become global organisations and as e-commerce opens up markets to
customers across the Internet, demand grows for increasingly ambitious distributed soft-
ware applications and platforms. Where these applications run over potentially huge col-
lections of data, sophisticated management of its storage and communication is needed, to
handle data access across wide area networks between, for example, the departments of
an organisation around the world, as well as across local area networks within one site of
an organisation. Sun Microsystems, with offices in 150 countries, is a good example of a
global business that increasingly runs product and employee information and administration

systems over wide area networks [Sun99].

Consequently, programmers need flexible, reliable platforms that will ease both develop-
ment and long-term maintenance of these distributed applications and their associated data

management.

Orthogonal persistence is intended to ease the programmer’s job by providing support for
data management that is integrated with a programming language. By automating the stor-
age of data and propagation of its updates to disk, the application programmer’s job is sim-
plified, leaving them to focus on the coding of the application itself. The PJama project
has designed and implemented orthogonal persistence for the object-oriented programming
language Java [ADJ*96, JA98]. The type-safety of Java makes it an appropriate language

Chapter 1. Introduction 2

for integration with orthogonal persistence. Strong typing is crucial for maintaining con-
sistent graphs of objects in stable storage. The commercial viability of Java, its purported
platform neutrality and the current popularity of object-oriented programming enables the
PJama project to make its research available and attractive to a wide audience.

Providing orthogonal persistence of objects within a single address space is well-understood.
The challenge, partly addressed by the work in this dissertation, is how to address the issues
raised by combining orthogonal persistence with support for distributed applications.

1.1 Overview of Problems
Combining Persistence and Distribution

The use of orthogonal persistence in a distributed system has a number of implications. This
dissertation focusses on dealing with these implications in two subject areas.

1.1.1 Implications of Dependencies Between Stores

Orthogonal persistence, as implemented for the PJama platform and summarised in chap-
ter 2, maintains a consistent and stable state of the objects that become reachable, via ref-
erences, from objects identified as roots of persistence. Within one process running over a
persistent store, it is possible to guarantee the consistent, stable state of persistent objects.

The simplicity of the orthogonal persistence model argues for its use in distributed systems,
in order to make life simpler for the application programmer. Despite the inherently transient
nature of connections between distributed objects, the illusion of a persistent connection can
be provided, as demonstrated by the support for persistent remote method invocation for Java
(PJRMI) described in chapter 3.

However, such attempts to extend orthogonal persistence, from a single process to the less
reliable and less controllable world of a distributed system, sacrifice the guarantees on con-
sistency (and the integrity of object references, in particular) in the persistent stores involved.
It is unrealistic to assume that, just because a reference to a remote object has been made
persistent, it will always be possible to access the remote object successfully. Distribution-
related errors caused by process crashes and network delays or failures easily break the

illusion of a persistent connection.

Another challenge, for support of persistent references to remote objects, is that it can also
be difficult to ensure that the remotely-referenced object exists as long as it is required.
Extending persistence by reachability across a distributed system implies that if an object
becomes persistent and it holds a reference to a remote object then the remote object must

Chapter 1. Introduction 3

become persistent too. It can be difficult to determine when and how an object should

become persistent by remote reachability though, as described in chapter 6.

There is also a long-term problem with persistent connections between distributed objects:
they threaten the maintainability of the persistent stores involved, by decreasing autonomy
of an individual store’s data management. A store does not have the control to maintain
a consistent state over its objects and to garbage-collect those that it no longer wishes to
contain if it is obliged to provide remote access to objects for as long as references are held
to them from other stores. By the same token, a store does not have control over the integrity
of its references when it holds a reference to an object in a remote store, making it dependent

on the remote store for its own referential integrity.

1.1.2 Problems with Copying Object Graphs Between Stores

The trend for remote object access in distributed programming is currently moving away
from the model of passing objects solely by reference (as espoused by DCOM and, until
recently, CORBA) to one where objects can also be copied between processes. Thus, having
considered some of the implications of managing references between persistent, distributed
objects, focus is now placed on how to manage the copying of persistent object graphs
across a distributed system, when such object-copying is required by an application. (For
clarification: the issue of object migration is not one of the topics of this dissertation.)

The introduction of persistence into a distributed application changes assumptions about
how objects are used in a distributed system. For a distributed application with no per-
sistence support, the programmer is likely to make the assumptions that the object graphs
passed by copy between processes will be small and always used in the same way, in the

same context.

However, like traditional databases, a persistent object store is often populated incremen-
tally, with the intention of maintaining it over months or years. Large object graphs can
build up in persistent stores over time. Thus, for example, an application that remotely ac-
cesses a persistent object graph by making a deep copy of it may be able to do so efficiently
during executions early in the lifetime of the store, but it may find that such copying has
prohibitive costs or that it even becomes error-prone, as the object graph grows. The long
lifetime of the store increases the likelihood that the same persistent object graphs may be
used by different applications. It also increases the likelihood that the same persistent object

graphs may be used in different distributed environments.

Given that current practice is for the policies for passing objects between processes to be
defined statically, tied to the object’s class definition, there is a lack of flexibility for adapting
the copying of persistent object graphs between processes to cope with their size and the

Chapter 1. Introduction 4

context in which they are used, when in fact both may change during the lifetime of a store.

1.2 Realistic Solutions for Persistence and Distribution

The emphasis on the solutions proposed in this dissertation, for dealing with the problems
above, is that they be realistic, rather than idealistic. Having examined the approaches of
related work to these problems, presented in chapter 4, and found them wanting, the author’s
solutions address the two problem areas as summarised below.

1.2.1 Limiting Dependencies Between Stores

The application programmer must choose which of two issues is most important for their
persistent, distributed application: a simple model of programming with automated storage
of objects, even when those objects represent objects in a remote store, or a reliable, con-
sistent, local persistent store. Realistically, because of the intrinsic lack of reliability in a
distributed system, they cannot rely on having both.

To run a distributed application with reliable, consistent persistent stores, it is necessary to
ensure that no references to remote objects ever become reachable from a persistent object
and to ensure that no process that uses an object remotely is long-running, in order to limit
the obligation of the store providing remote access to the object.

On the other hand, to take advantage of the orthogonal persistence model for applications
running over distributed persistent stores, the application programmer must make a trade-
off between the simplicity of using distributed objects that can become persistent and the

consequent lack of reliability and consistency in their persistent stores.

Support has been developed for a compromise, described in chapter 6, that provides the
benefit of persistent, distributed objects within the lifetime of a distributed application. (The
lifetime of a distributed application is the time for which a group of distributed applica-
tion programs run until the application is completed; this run may span multiple process
executions, across store shutdowns and restarts.) A conservative position is taken on the
persistence of remotely-accessible objects for the duration of an application’s lifetime. The
compromise involves introducing time limits, appropriate to the duration of a given appli-
cation’s lifetime, on the remote accessibility of objects and on the usability of references to
remote objects. The long-term usability of references to remote objects is traded off against
the increased autonomy of persistent stores, with the intention of increasing the stores’ long-

term maintainability.

Chapter 1. Introduction 5

1.2.2 Policies for Flexible Object Graph Copying between Stores

In order to avoid making fixed assumptions about the copying of object graphs between
distributed processes, it is necessary to avoid statically defining the copying policy within
the class of an application object. Chapter 8 describes how a separation of architectural
issues is achieved by instead specifying an object-copying policy in its own class, separately
from the classes of a particular application and those of the objects it uses. A wrapper class
is then used to apply a particular object-copying policy for the lifetime of an application.
The details of the implementation can be found in chapter 9.

For evaluation, a number of object-copying policies have been developed and tested with
applications, as described in chapter 10. Policies for limiting the copying of large object
graphs between processes are demonstrated; different policies are successfully applied to
the same persistent object graphs used by different applications; and different policies show
adaptability to the changing scale of network for different executions of the same applica-

tion.

1.3 Thesis Statement

Existing platform support for orthogonal persistence of objects and distribution of those
objects over wide area networks is not sufficiently integrated or flexible. This dissertation
addresses two important issues raised by providing such integrated support in an open, per-

sistent system.

Supporting referential integrity for the lifetime of persistent references to remote objects
places unrealistic obligations on the stores containing the referenced objects. A tradeoff is
made between resilience of inter-store references and maintainability through autonomy of
individual persistent stores. This is done by combining support for persistent references to
remote objects in the short-term, with appropriately-set timeouts on access to the remotely-

referenced objects in the long-term.

Where the passing of objects by copy between persistent stores is required, support is needed
to avoid unnecessary or prohibitively-large serialisations of persistent object graphs. A num-
ber of object-copying policies have been developed. For evaluation, and to illustrate how
the separation of class definition from object-copying policy can be achieved, experiments
have been performed with a variety of applications. These applications can use the same ob-
ject graphs in different ways and in diverse distributed environments, given an appropriate

object-copying policy.

Chapter 1. Introduction

1.4 The Guided Tour

Chapter 2: Orthogonal Persistence
Defines orthogonal persistence and introduces the PJama project’s implemen-
tation of it for the object-oriented programming language Java.

Chapter 3: Persistent Remote Method Invocation (PJRMI)

Describes support for maintaining the illusion of persistent connections be-
tween distributed objects; developed for the PJama platform by the author.
PJRMI forms the basis for exploration of the problems raised in the author’s
thesis and experimentation with the proposed solutions.

Chapter 4: Approaches of Related Work
Examines the approaches of related work to the specified problems raised by
combining persistence and distribution support.

Chapter 5: Research Issues to be Addressed

Summarises the problems that have been raised and existing approaches taken
to deal with them. The scene is set for addressing each of the two problems.
The rest of the dissertation is presented in two parts: the first part, in chapter 6,
presents the author’s solution to the problem raised in section 1.1.1; the second
part then presents the author’s solution to the problem raised in section 1.1.2.

Chapter 6: Persistence by Reachability across a Distributed System
Explores the issues associated with extending persistence by reachability across
a distributed system. Presents leases, set on remote use of persistent objects for
the duration of a distributed application’s lifetime, as a solution that compro-
mises on reliability in favour of greater store autonomy.

Chapter 7, 8, 9, 10: Object Copying Policies:

Introduction, Design, Implementation and Evaluation

States the motivations and assumptions behind the use of object-copying poli-
cies for persistent applications. Presents the design and implementation of these
policies. The policies ensure adaptability, over time, for the copying of objects
between persistent stores to deal, in particular, with the problem of how to han-
dle large graphs of persistent objects in a distributed system. The policy support
is shown to be adaptable in use with several applications.

Cﬁapter 11: Future Work
Describes challenges for future work in the area of persistence and distribution.

Chapter 12: Conclusion
Summarises achievements of the author’s work and presents the conclusions.

Chapter 2

Orthogonal Persistence

Orthogonal persistence [AM95] integrates data management into the support for a program-
ming language, so that it no longer pervades application code. In traditional database ap-
plications, data management commands, in SQL for example, are embedded throughout
the application code, explicitly managing the movement of data between memory and the
database on disk. In comparison, applications using orthogonal persistence usually need
only a few lines at the beginning of an application to indicate which objects will persist.
Thereafter, the application programmer can focus solely on the application task, while the
persistent system automatically manages application data storage and updates transparently.

Support for orthogonal persistence in an object-oriented language, is required, as described
in [AM95], to meet the following criteria:

o Persistence is orthogonal to type: The lifetime of an object does not depend on its
type. Thus, there is no restriction on which types can be made persistent.

o Persistence independence: The application code for creating and using objects is al-
ways the same; i.e. it’s independent of the lifetime of the objects themselves. The
point here is that there is no specialised code for creating persistent objects, that is
different from that for creating objects that will not persist beyond the current pro-

gram execution.

o Simple persistence identification: A simple mechanism is used to identify those ob-
jects which are to persist beyond the program execution in which they are created.
Conforming to the criteria above, this mechanism must be independent of the type
system.

Chapter 2. Orthogonal Persistence 8

2.1 Orthogonal Persistence for Java

The PJama project has produced a specification for Orthogonal Persistence for Java
(OPJ) [JA99] and a number of releases of the PJama implementation of orthogonal per-
sistence for Java [ADJ96, JA98] have been made for research and evaluation purposes. A
PJama release includes a Java Virtual Machine modified for support of persistence and the

Java classes that provide the PJama APL

Applying the orthogonal persistence criteria, in OPJ an object of any Java class may persist;
including the Class objects themselves, threads, windows, etc. Persistence by reachability
is used to identify persistent objects. An object registered by name using the PJama API is
treated as a root of persistence; there are usually only a small number of these root objects
per store — typically one per application. Other objects that become reachable, directly or
indirectly, from a persistent root will themselves become persistent. These are referred to as
“persistence reachable” objects. Ensuring that all objects that are persistence reachable do
become persistent guarantees referential integrity: a persistent object should never be left
holding a dangling reference.

The type-safety of Java makes it an appropriate language for integration with orthogonal
persistence. Strong typing helps to ensure the referential integrity of object graphs within
a persistent store, which is crucial for maintaining persistence by reachability reliably. As
long as an object is reachable from a persistent root, PJama automatically maintains both its
data and code on stable storage. The commercial viability of Java also enables the PJama
project to make its research available and attractive to a wide audience.

The work for this dissertation has been done with successive releases of PJama integrated
with 1.1.x and 1.2.x Classic versions of the Java Development Kit (JDK), the latest of
which is PJama version 0.5.7.13 [PJR98]. A second generation implementation of OPJ
has subsequently been released with a simpler API and more scalable store implementa-
tion [PAD198b, PAD98a]. Integrated with JDK 1.2 for Solaris production release!, it is
available from Sun Microsystems Laboratories as PJama version 1.5.1 and upwards [For(0].

2.2 PJama: an Open Persistent System

If PJama was a closed, persistent system, where everything in a program was under the
control of the persistent system, as in Napier88 [MCC*99], the state of all supported data
types would be known and could be made persistent but no other state external to the system

IRenamed “SunLabs Virtual Machine for Research (ResearchVM)” when re-targeted to purely research
purposes in autumn 1999.

Chapter 2. Orthogonal Persistence 9

would be handled. Napier88 supports interaction with some system-level entities: files, win-
dows and sockets; but this support is built into Napier’s implementation. Napier88 cannot
interact with any technology that is not specifically managed in its implementation.

Being an open, persistent system enables PJama programs to make use of many other tech-
nologies, rather than making it necessary to implement these technologies entirely in the
PJama platform. To enable such openness, PJama provides a way for programmers to spec-
ify the extra, specialised support for dealing with external technologies.

This is where the effects of running in an open, persistent system are felt. Java classes
can use facilities such as windowing toolkits and socket connections, which are inherently
transient and outside the control of an open persistent system. Since referential integrity
cannot be maintained between persistent objects and the external resources that they refer-
ence, PJama’s hooks for specifying extra, specialised support must be exploited to deal with
them.

One issue, of relevance to distribution support for PJama, which currently challenges
PJama’s claim to orthogonal persistence, is the handling of threads. The aim is that sup-
port will be provided for persistent threads in the future, but technical difficulties currently
prevent its implementation. Thus, PJama’s hooks for managing external technologies must
currently also be used to deal with threads.

2.3 Managing Externalities

Java objects can be created which represent entities that are intrinsically transient in, or
external to, the PJama platform. Such objects may represent, for example, sockets, files,
windows or threads. Although the objects may become persistent by reachability, the things
that they represent will not actually be usable across multiple program invocations, because
they are not under the control of PJama. Thus, extra support is needed for PJama to try to
re-establish the state of these objects as required, after they have become reachable from

persistent roots.

Two mechanisms are used by PJama to manage, at key points in the execution of a persistent
application, the state of these objects, which may be viewed as persistent by a persistent
application, but which are actually objects external to the persistent system.

Firstly, fields of a class can be marked as being transient? using a static method of the PJama

2See [PAJ99] on the differing interpretations of the definition and handling of transient fields in Java and
PJama.

Chapter 2. Orthogonal Persistence 10

API class org.opj.utilities.PJSystem.
public final static void markTransient (Class clazz, String fieldName)

PJama interprets any field marked transient in this way as a field which should not persist,
even when the object which contains it is made persistent. Instead, this field is set to a

default value (null or zero) on store restart.

Secondly, an instance of the PJama API class org.opj.store.PJActionHandler can be
used to, for example, open and close sockets and files, open and close GUI windows and start
and stop threads associated with objects in the store. PJActionHandlers are registered with
a org.opj.store.PJActionManager, which ensures that they are executed at significant
points in a persistent program’s execution: on startup: just before program execution begins
when re-opening a persistent store; on stabilisation: just before a user-initiated stabilisation
(checkpoint) of reachable object state to persistent storage during program execution or
on shutdown: just before the implicit stabilisation at the end of a program’s successful

execution.

The use of these mechanisms, for handling socket connections and threads associated with
remote method invocations, is described in detail in chapter 3. For more on the usage
of PJActionHandlers in general, see [JA99]. Documentation on the use of PJAction-
Handlers, with examples, can be found on the javadoc-generated HTML page for the
PJActionManager interface. The documentation for the PJActionManager and its asso-
ciated classes is part of the PJama API documentation distributed with the PJama software
releases, up to and including PJama version 0.5.20.2. The support for PJActionHandlers

has been redesigned and reimplemented for the second generation of PJama.

Chapter 3

Persistent Remote Method Invocation
(PJRMI)

Remote method invocation (RMI) is the object-oriented equivalent of RPC, the well-known
procedural model of inter-process communication [BN84]. Java RMI is an example of an
RMI implementation [RMI98]. It supports the calling of a method of an object instantiated
in one Java Virtual Machine (JVM), from the code of another object, instantiated in a dif-
ferent JVM. The two JVMs involved in the call may be on the same or on different host
machines.

The use of standard Java RMI in the context of PJama becomes problematic when remotely-
invokable objects and objects holding references to them from other VMs become persistent
by reachability. This is because, without additional support, they will be unusable after store
restart.

As the context in which to investigate distribution issues for a persistent system, an imple-
mentation of RMI enhanced for PJama (PJRMI) has been developed !; providing additional
support to ensure a working and understandable usage of persistent RMI objects. It ad-
dresses the need for maintenance of the same object identity for a persistent RMI object
across multiple program executions and handles externalities, such as socket connections in
the persistent context.

PJRMLI is described in detail in this chapter, since it forms the base for the research presented
in the rest of this dissertation. Relevant details of Java RMI are introduced in section 3.1.
The problems of using Java RMI in the context of an orthogonally-persistent system are
described in section 3.2. The solutions supported by PJRMI are presented in section 3.3.
This is followed by the details of the PIRMI implementation in section 3.4. The chapter is

IPJRMI was developed with versions of PJama using JDK1.1.x; then ported later to PJama using JDK1.2.x.

Chapter 3. Persistent Remote Method Invocation (PJRMI) 12

CLIENT JVM SERVER JVYM

Figure 3.1: Objects in an RMI call

concluded with section 3.5 on how users have employed PJRMI for their applications and
feedback from their experiences. The tutorial used to introduce users to PJRMI is included
as appendix A.

3.1 Java RMI

The basics of Java RMI are described in this section, including details of the implementation
which are relevant to discussions later in this chapter.

A number of objects are usually involved in an RMI call, as illustrated in figure 3.1.

A remotely-invokable object provides a service: it implements a specified interface
to those of its methods that can be called remotely. RMI mechanisms are used to

“export” it in order to make it available for remote use.
o A client object obtains a reference to the remotely-invokable object.

e A stub (proxy) object represents the remotely-invokable object in the client’s JVM.
The stub holds information on the location and identity of the object it represents.

e A skeleton object forwards calls, received at the server-side from the stub, to the
remotely-invokable object, and returns the results of these calls back through the stub
to the caller.

In a standard RMI program, a remotely-invokable object is created and usually made avail-
able until the program is terminated. From the point at which it is exported for remote use,
a thread listens for incoming connections on its behalf; this daemon thread runs indefinitely,
or at least until its host JVM is shut down.

Objects in another JVM wishing to use the remotely-invokable object can obtain references
to it in one of two ways. Usually, clients obtain the references from other application ob-

jects. For bootstrapping purposes, Java RMI also includes support for a name service called

Chapter 3. Persistent Remote Method Invocation (PJRMI) 13

the RMI Registry. This is run on the same host, usually as a separate process. A remotely-
invokable object can be registered by name with the Registry. Subsequently, clients any-
where on the network can look up the remotely-invokable object by name to obtain a refer-

ence to it.

Client objects treat the obtained reference as a direct reference to the remotely-invokable
object. However, they are actually given a reference to a local stub for that object, created
automatically in the client’s JVM. Calls made by the client to the remote object’s interface
are actually invoked on its local stub. The RMI implementation then uses a socket connec-
tion to send these calls to the JVM hosting the remotely-invokable object, where dispatcher
code in the corresponding skeleton object invokes the appropriate method and returns the
result, again via the stub, to the client. The client thread making the RMI call is blocked
until the method has been invoked remotely and the call returns.

The object to be invoked from a client is identified in the stub object by: the host and port
number where a thread is listening for incoming connections on behalf of the remotely-
invokable object, plus an object identity composed from the identity of the JVM and a count
incremented for each object identity generated in that JVM., Thus, the identity in the stub
identifies an object in a specific JVM on a specific host.

Java RMI also includes support for Distributed Garbage Collection (DGC). This is based on
DGC for Network Objects [BEN193]. This DGC system uses reference listing: each JVM
supporting remotely-invokable objects maintains a list of client JVMs that hold references to
them. For each client JVM in that list, another list is kept of the specific remotely-invokable
objects which are referenced by that client. As far as DGC is concerned, a reference from a
client JVM is only valid until: it is no longer reachable and is garbage-collected; the client
has failed to contact the server within a server-specified lease period of time; or the client

has terminated.

3.2 Using Java RMI with PJama

This section examines the problems with using standard Java RMI unchanged in a persistent
system. If standard RMI is used in a persistent context, remotely-invokable objects and the
objects that hold references to them can become persistent by reachability from persistent
roots. However, if these persistent objects are accessed in subsequent programs, they prove
unusable because the data they contain describing the connection between them is as tran-
sient as the socket connection to which it refers. This problem is examined in more detail

below.

If a client object, holding a reference to a remotely-invokable object in another VM, is

Chapter 3. Persistent Remote Method Invocation (PJRMI) 14

made persistent in one program, the client’s reference will continue to work, in subsequent
program runs over the same store. This will be the case as long as the server program that
created the remotely-invokable object has continued to run in the meantime. The server-side
thread continues to listen for socket connections and, at the RMI implementation level, the
restarted client can use its existing information on connecting to the server to recreate the
socket connection, the first time an RMI call is made to the server after restart.

Once the server program terminates, the next time the client object tries to use its reference,
it will get a java.rmi.ConnectException, whether or not a program over the server store
has been restarted before the client’s latest call. The reason for this is that the socket connec-
tion to the remotely-invokable object is transient; it is associated with the specific execution
of the VM that created it. Connection information is held in the stub at the client’s VM.
Except in the case of well-known services, the socket connection for a remotely-invokable

“object is likely to use different port numbers in different VM executions, but there is no
facility for keeping the port number in a persistent client stub up-to-date.

Even if a remotely-invokable object is made persistent, PJama does not currently support
persistent threads, so the thread that listens for incoming connections on behalf of the
remotely-invokable object will be terminated when the program that created the remotely-
invokable object is terminated. Attempting to re-activate the thread to listen for incoming
calls after the server is restarted also does not work. If a server program attempts to do so by
re-exporting the persistent, remotely-invokable object then, as a result of its call to the static
method UnicastRemoteObject.exportObject, a java.rmi.server.ExportException
will be raised with the message “object already exported”. This is because exportation is
necessary to create the listening thread but RMI does not support the re-entry of an object
into the RMI implementation tables if it is already found to be there. Although the now-
persistent object identity of the remotely-invokable object, as held in the client stubs and
in the RMI implementation tables, could be used in a persistent context, there is however
no existing support for making a remotely-invokable object with the same identity available

across multiple program runs.

Applying the principle of orthogonal persistence to remotely-invokable objects and to the
objects that use them remotely means that, ideally, their behaviour should be unaffected,
whether or not they become persistent. To benefit from the resilience of a persistent client
and/or server, PJama must incorporate additional support to ensure that remotely-invokable
objects can be used remotely throughout their lifetime, and that objects holding references
to them can use those references throughout their lifetime too. Supporting the illusion of
continuous operation for such objects, throughout their lifetime, across multiple client and
server program restarts, requires specialised support for maintaining the illusion of a per-
sistent connection between the remotely-invokable object and its client. This is the support

Chapter 3. Persistent Remote Method Invocation (PJRMI) 15

provided by persistent RMI.

3.3 PJRMI: Remote Method Invocation Tailored for PJama

Having demonstrated that standard Java RMI will not work in a persistent context across
multiple client and server program restarts, this section presents PJRMI: an enhanced im-
plementation of RMI for PJama that is intended to solve the problems raised by combining
persistence with distribution. This section focuses on the support provided by the release
version of PJRMI for PJama running on JDK1.2 [PJR99], unless otherwise stated.

3.3.1 Persistent, Remotely-invokable Objects

Currently, PIRMI takes a conservative approach to the persistence of remotely-invokable
objects; all such objects created in a PJama Virtual Machine (PJVM) running over a persis-
tent store are automatically made persistent. This is intended to be a short term decision,
on the basis that it is better to keep unused remotely-invokable objects in a persistent store,
rather than to garbage-collect a remotely-invokable object mistakenly. Although this con-
servative solution is not scalable and uses up system resources unnecessarily, it is safe and
it does support experimentation with persistent RMI. In the long-term, if we extend the no-
tion of persistence by reachability across a distributed system then, given a reliable way
of determining persistence by reachability from existing objects in other VMs, automatic
persistence of all remotely-invokable objects would no longer be necessary. The difficul-
ties of determining persistence by reachability across a distributed system are explored in

section 6.

To address the problem of being able to use a persistent, remotely-invokable object, that re-
lies on state external to the persistent system, beyond the duration of the program execution
that created it, PJRMI uses the PJama mechanism called a PJActionHandler, as introduced

in section 2.3.

The support enabled by PJActionHandlers is intended to recreate the transient state asso-
ciated with remotely-invokable objects whenever necessary to ensure these objects continue
to be usable as long as they are persistent.

In the first implementation of PJRMI?, PJActionHandlers were used to re-export all per-
sistent, remotely-invokable objects on every store restart. This ensured that every persistent,
remotely-invokable object was available whenever the store was active. However, if a store
was opened to support the use of one of these objects, all the others in that store were also

2 Available in releases of PJama made during 1998: from version 0.4.6.12 to version 0.5.7.13.

Chapter 3. Persistent Remote Method Invocation (PJRMI) 16

re-exported, even though they were never used during that store run.

PJRMI now only re-exports each remotely-invokable, persistent object on its first use af-
ter store restart. This avoids unnecessary transfer of objects between persistent storage
and main memory (object-faulting) and unnecessary use of system resources for objects
not used in the current program execution; while still ensuring that the objects are avail-
able when they are required. Instead of a PJActionHandler instance being registered with
the PJActionManager for each and every remotely-invokable object in the store, there is
one PJActionHandler instance registered for all of them. This PJActionHandler re-
exports one PJRMI-implementation-level, remotely-invokable object on every store restart,
which acts as a well-known service, called PJExported. This service handles PJRMI-
implementation-level requests from other PYVMs, to trigger the re-exportation of the speci-
fied object if it is not already available for use. Use of the PJExported service is described
in more detail below.

3.3.2 Persistent Clients of Remotely-invokable Objects

PJRMI tries to maintain the illusion of a persistent connection between client and server
by automatically re-establishing their connection on first use after store restart. Whereas
the usage of transient sockets and threads makes it impossible to maintain this illusion for
standard Java RMI, the PJRMI implementation ensures that if a PTVM is running over the
store containing the required remotely-invokable object, the client will be able to use that
object, even if the server PJVM has been stopped and restarted. If the server PTVM is not
running, an exception is raised at the client to let it know that the referenced, remotely-

invokable object is not currently accessible.

The client-side stub object is put into a state on store restart that indicates to PJRMI that,
on first use, the service PTVM should be contacted to obtain up-to-date connection infor-
mation for the stub. Using the org.opj.utilities.PJSystem method markTransient
introduced in section 2.3, the connection information field of the stub class is marked tran-
sient; thus, PJama sets the field to null on store restart. Then, when the client object tries
to make an RMI call via this stub, after client store restart, the PJRMI implementation de-
tects the null connection field of the stub. It contacts the POExported service in the PJVM
running over the referenced, remotely-invokable object’s store. Up-to-date connection in-
formation is obtained from PJExported and renewed in the client’s stub object, allowing
RMI calls to be resumed.

Chapter 3. Persistent Remote Method Invocation (PJRMI) 17

No Persistent Server Persistent Server

No Persistent Client
o Persistent Clien RMI <= RMI RMI =— PJRMI

Persistent Client
PJRMI <=— RMI PJRMI =— PJRMI

Figure 3.2: Permutations for communicating VMs in an open persistent system

3.3.3 Interoperability of PJRMI with Standard RMI

Given the open nature of the PJama persistent system, RMI communication between persis-
tent and non-persistent VMs can potentially take on any of the four permutations illustrated
by the matrix in figure 3.2. Some users of PJama use RMI for communication between
a persistent server and transient clients: the server program runs on a PIVM and the client
programs or applets run on standard JVMs. This raises the issue of compatibility between
the versions of the RMI classes used by the JVM and those modified for PIRMI. Without
support for class evolution, a standard JDK client would be prevented from communicating
successfully with a PJama server using RMI, because of the mismatch between versions of
the same class in the different VM implementations involved. PJRMI uses the class ver-
sioning support provided with Java Object Serialisation (JOS) [JOS98]. Changes made to
RMI classes for PJRMI are compatible with standard RMI versions of those classes, accord-
ing to the guidelines described in chapter five on the “Versioning of Serializable Objects”
in the Object Serialisation documentation [JOS98]. The compatibility of the evolved class
with the original is indicated by the inclusion in the evolved class of a field known as a
serialVersionUID; the field contains a fingerprint of the original class, generated using a
standard JDK tool. With such support, it is possible for two VMs holding different versions
of the same class to communicate objects of that class between them successfully.

The class versioning support in JOS is minimal, when considered for use in a persistent
system, and it is tailored to object serialisation. The class versioning support required for
PJama is somewhat different. Given that the lifetime of a persistent store may be counted
in years, the potential for changes to classes over time is high. Thus, more sophisticated
support for class evolution is being investigated as part of the PJama project [Dmi98].

3.3.4 PJRMI Summary

The current implementation of persistent RMI for PJama (PJRMI) supports:

Chapter 3. Persistent Remote Method Invocation (PJRMI) 18

o the execution of standard RMI programs by a PYVM that is not running over a persis-
tent store;

¢ the running of persistent RMI programs by a PYVM over a persistent store; where the
latter includes support for:

— persistence of all remotely-invokable objects,

~ persistence by reachability of objects holding references to remotely-invokable
objects from remote VMs,

— automatic re-exportation of persistent, remotely-invokable objects on first re-
mote use after store restart and

~ automatic re-establishment of the connection between a remotely-invokable ob-
ject and the object in another VM holding a reference to it, on first use of the
reference after store restart;

o the compatibility of PJRMI with standard RMI to support RMI communication be-
tween a standard JDK VM and a PJVM.

PJRMI has been distributed with releases of PJama since April 1998. It has had a number
of users outside of the PJama project whose feedback seems to indicate that this technol-
ogy is usable and reliable. For more information on PJRMI users and their feedback, see
section 3.5. |

3.4 PJRMI Implementation Details

3.4.1 Using PJActionHandlers

As described in section 2.3, support is provided in PJama for associating callbacks, known
as action handlers, with classes or class instances, to be run principally before stabilisation
or on store restart. This allows the application programmer to set, re-constitute or tidy up
the state of objects which may be viewed as persistent by a persistent application but which
are actually objects external to the persistent system. These action handlers can be used to,
for example, open and close sockets and files, open and close windows and, as long as there
is no support in PJama for persistent threads, re-create and stop threads associated with a

store.

A significant proportion of PJActionHandlers in the PJama platform are used for doing
PJRMI-related actions. PIRMI associates PJActionHandlers with certain RMI classes for
two purposes:

Chapter 3. Persistent Remote Method Invocation (PJRMI) 19

1. to re-initialise static fields of persistent objects and

2. to recreate intrinsically transient objects which cannot be made persistent.

Classes typically use static code blocks to initialise their static fields; this code is run when
a class is first loaded into a JVM. However, once classes have become persistent, it is nec-
essary to implement PJActionHandlers to rerun such initialisation code where required,
before the class is used for the first time after a store restart. PJActionHandlers used to
re-initialise the static variables of classes on store restart should ideally only be run on the
loading of the appropriate classes from the persistent store. Running this reinitialisation
code on each store restart brings every one of the classes registered for this reinitialisation
into memory, even though the classes themselves may never actually be used during the

current program execution over the store. There is a tradeoff between:

e paying the cost of running PJActionHandler code for a class during store restart that
may prove unnecessary because the class is unused during the subsequent program

execution and

e paying the cost of a check every time a class is loaded into the VM to see whether
PJActionHandler code should be run before using it.

The former ultimately seems much less of a penalty, given that in PJama 0.5.20.2 for ex-
ample, PdActionHandlers are associated with only twenty classes, which is likely to be a
small proportion of the number of classes used in most persistent program executions.

The PJRMI implementation describes, in more detail, the use of PJActionHandlers where
they are directly relevant to the implementation of PIRMI functionality.

3.4.2 Supporting Persistent, Remotely-invokable Objects

An object is made available for remote use (exported) either on creation, because it extends
the class java.rmi.server.UnicastRemoteObject, or by making an explicit call to that
class’s method:

public static RemoteStub exportObject (Remote obj)

An addition to the code of class sun.rmi.server.UnicastServerRef for PIRMI ensures
that every object exported in one of these two ways will be persistently-usable if the current
VM is running over a persistent store. It does this with a call to the saveIfPersistent
method of the class org.opj.distribution.PJamaPJExported:

public static void saveIfPersistent (ObjID id, Object o, RemoteStub s)

This enables the PJamaPJExported class to maintain a mapping between a stub’s object

Chapter 3. Persistent Remote Method Invocation (PJRMI) 20

Hashtable idExportMap Hashtable nameExporth
Key Value Key

E—
(ObjID } ExportInfo { Name)

Object

£
'B
®

Stub

b

Figure 3.3: PJamaPJExported tables track export information by name and identity

identity and its corresponding remotely-invokable object.

A mapping is also created in the PJamaPJExported class for every object registered by
name with the RMI Registry. Thus, given either a name or an object identity, the class
PJamaPJExported has sufficient information to, if necessary, update and then return the
connection information for the corresponding remotely-invokable object. The two tracking
tables are illustrated in figure 3.3.

3.4.3 PJRMI Re-initialisation on Store Restart

The PJActionHandlers associated with PJRMI classes are principally used
for re-initialisation of state on store restart. In summary, PJActionHandlers are run on
all of the following RMI implementation level classes on every store restart:

org.opj.distribution.PJamaPJExported
sun.rmi.transport.DGCImpl
sun.rmi.transport.DGCAckHandler
sun.rmi.transport.DGCClient
java.dgc.VMID
sun.rmi.transport.ObjectTable
sun.rmi.transport.tcp.TCPEndpoint

sun.rmi.transport.tcp.TCPTransport
Their use is described in more detail below.

The code of PJamaPJExported, called during the exportation of the first remotely-invokable
object over a store, ensures the persistence of an instance of the class PJamaPJExported too.

Chapter 3. Persistent Remote Method Invocation (PJRMI) 21

A PJActionHandler is registered when this object is created, to ensure that it is re-exported
on every store restart. This makes the services of its org.opj.distribution.PJExported
interface available whenever the store hosting the service is active. The uses of this service
will become apparent during the explanation of automatic re-exportation for application
objects below.

Distributed Garbage Collection (DGC) objects are used in the Java RMI implementation
for tracking references between JVMs. They were designed to work for the lifetime of
one VM execution. It is unlikely this implementation would be sufficiently maintainable or
scalable for use over the lifetime of a store. Thus, although the state of DGC implemen-
tation objects can become persistent once RMI objects are in use over a persistent store,
DGC tracking information is only valid within one program execution over a store. Thus,
a persistent sun.rmi.transport.DGCImpl instance will also be re-exported on every store
restart, to track any remote references created or recreated during the current program exe-
cution. On store restart, PJActionHandlers also re-initialise the static fields of the classes
sun.rmi.transport.DGCAckHandler and sun.rmi.transport.DGCClient, to recreate
their transient values.

On each store restart, the local IP address held in a static field of the java.dgc.VMID class,
is reinitialised with a PJActionHandler. This demonstrates the need to reinitialise location-
specific information associated with a particular VM execution since, for example, one pro-
gram may be executed over a store on one host, while the next program may be executed
over the same store but on a different host with a different IP address.

The class sun.rmi.transport.ObjectTable is used for maintaining the mapping from
0b3jID to remotely-invokable implementation object for servicing method invocations from
remote sites. A PJActionHandler has been added to this class to ensure the state of its static
tables is reinitialised on every store restart. Clean tables on store restart ensure successful

re-exportation of persistent, remotely-invokable objects.

Other static connection-related tables are reinitialised on store restart. The localEndpoints
table of the class sun.rmi.transport. tcp.TCPEndpoint and the table mapping threads to
socket connections in the class sun.rmi.transport.tcp.TCPTransport are both recre-
ated, since the information held in them from previous executions will be invalid for the

current program execution.

Once the initialisation of store restart is complete, the application code for this run is in-
voked. At this stage, although a couple of implementation-level PIRMI objects are now ac-
tively available for remote use, the default support for application-level remotely-invokable
objects is to leave them quiescent in the store until they are required. This ensures system

resources are not taken up unnecessarily.

Chapter 3. Persistent Remote Method Invocation (PJRMI) 22

3.4.4 Supporting Persistent References to Remotely-invokable Objects

Extra support has been added to PJRMI to detect a client’s first use after store restart of a
reference to a remotely-invokable object. This section describes how this first use of the
reference is caught and used, if necessary, to trigger re-exportation of the corresponding

remotely-invokable object.

3.4.4.1 Obtaining a reference to a remote object

A client obtains a reference to a remotely-invokable object, either by looking it up by
name in the RMI Registry or as the result of an RMI call on another remotely-invokable
object. What the client actually gets is a reference to an instance of the stub class, de-
rived from the interface supported by the remotely-iinvokable object and extending the class

java.rmi.server.RemoteStub.

3.4.4.2 Preparing a Stub to Trigger Re-exportation

Every instance of RemoteStub that is passed to a cllient contains a ref field inherited from
its superclass java.rmi.server.RemoteObject. This ref field contains the information
necessary to create a connection from the stub back to the remotely-invokable object it rep-
resents, whenever the client uses it to make an RMI call. Since such connection information
is only valid as long as the server process that generated it continues to run, static code has
been added to the java.rmi.server.RemoteObject class to mark its ref field as tran-
sient, using the markTransient method of org.opj.utilities.PJSystem. This ensures
that the ref field of a persistent stub is null after a store restart, when the connection infor-

mation will probably no longer be valid.

The connection information in a standard RMI stub directs remote method invocations to
the correct JVM location, while the object identity, an instance of the class ObjID, indi-
cates which object at that location should service them. The RemoteStub class has its
own code for serialisation and deserialisation of its iinstances, defined as writeObject and
readObject methods with the signatures expected! by Java Object Serialisation. On re-
ception of a RemoteStub instance at its destinatiom, its readObject method takes care
of deserialisation of its connection information. For PIRMI, code has been added to this
method to extract the host and ObjID from the ref and store it in fields of the RemoteStub
itself. This ensures the information is available in a. persistent stub after the ref itself has
been set to null. Another extra field added to the RemoteStub class for PIRMI stores the
reexportPort which, along with the existing host ffield, comprises the information neces-
sary to make a connection to the PJExported service in order to update the stub’s ref field

Chapter 3. Persistent Remote Method Invocation (PJRMI) 23

UnicastServerRef

CLIENT SERVER
R —— : Coo T :
i ' ']
1 Stub P : '
: [) ' | i
! ! ! !
1 1
i 1. getRef() RemoteRef ! ! !
1 ' 1
E 2. lookup() ! 3.lookup() | !
' [Naming) Registry ! :] Registrylmpl ,
|

) PJExported ! PJExported . !
E | : '
| ' i :
4 pStub() [| RemoteStuk i ; i
| e ~ i 5.lookupStub() « i
i
E l\ PJExported }L : = — E LPJamnPJExported :
b e : ! :
1 6. reexportObject() RemoteStub !
‘ '
1 "
' v
1 t
' |
' i

'

[

Figure 3.4: Renewing stub information

when it is found to be null.

3.4.4.3 Re-exportation on First Access

Once a stub has become persistent by reachability, the PIRMI implementation will detect
first use of that stub after restart because of its null ref field and renew the stub’s connection
information. The method calls invoked to achieve this are illustrated in figure 3.4; they are
numbered for ease of reference in the description below. The class sun.rmi.Generator
is used by the Java RMI Stub Compiler rmic to generate the code for a stub from its cor-
responding remotely-invokable object class. The Generator class has been extended for
PJRMI. Extra code is generated at the beginning of each stub method. It ensures that, when
the stub’s ref field is found to be null, the getRef method of the class java.rmi.Naming

is invoked to renew the stub’s connection information (method one in figure 3.4).

The Naming.getRef method first looks up the PJExported service at the host and
reexportPort given by the stub (method two calls method three in figure 3.4):

PJExported pjexported = (PJExported) Naming.lookup (
"rmi://" + host + ":" + reexportPort + "/PJExported");

It then uses the returned PJExported remote reference to make an RMI call to retrieve up-
to-date stub information for the given id (method four in figure 3.4):

RemoteStub stub = pjexported.lookupStub(id);

The PJamaPJExported implementation of this call looks up the object with the given iden-
tity and re-exports it if it is not currently available for remote use (method five in figure 3.4).

Chapter 3. Persistent Remote Method Invocation (PJRMI) 24

The following method of UnicastServerRef is called to return an updated stub after re-
exportation of the remotely-invokable impl (method six in figure 3.4):

public RemoteStub reexportObject (Remote impl, Object portData)

Note that during re-exportation the object retains its association with the object identity al-
located to it during its initial exportation. This object identity is thus maintained across
multiple program invocations. The client-side stub is refreshed with up-to-date connection
information. The RMI call made on the stub, that triggered this re-exportation in the first
place, can then go ahead as normal.

3.4.5 Interoperability of RMI and PJRMI

The original development of PJRMI focussed on client-server programs communicating
using RMI where both client and server used PJama. This meant that both client and server
picked up the same version of PJRMI classes, so that versioning was not an issue.

However, the first users of the release version of PJRMI were interested in using RMI for
client-server communication where, although the server used PJama, the clients used a stan-
dard JVM. These clients, whether Java programs or Java applets, used the standard JDK
RMI classes to communicate with a PJRMI service supported by the server. Failures dur-
ing serialisation and deserialisation for RMI calls occurred, because the RMI classes at the
clients were not the same version as the RMI classes modified to include PTRMI function-

ality at the server.

Responding to the users’ feedback, a new version of PJRMI was released that exploits the
versioning support that exists for Java Object Serialisation. The issues raised and changes
made to PJRMI to ensure support for all the permutations for communicating PJama and
standard Java VM, as illustrated by the matrix in figure 3.2, are described in the rest of this

section.

3.4.5.1 Evolving Interfaces: the Effects on Stubs and Skeletons

When two VMs are participating in an RMI call, the class of the stub in the client VM
must support exactly the same interface as the class of the corresponding skeleton in the
server VM. To ensure this, a check is made in the code of every method of the skeleton (as
described below), before it will forward a call from a stub to its remotely-invokable object.

The implication of this is that if an interface to a remotely-invokable object is evolved then

3For a description of the more sophisticated class evolution support now being provided with PJama,
see [Dmi98].

Chapter 3. Persistent Remote Method Invocation (PJRMI) 25

a client, that obtained a reference to the object before evolution took place, will no longer be
able to use it. This applies even to theoretically-acceptable forms of evolution, such as only
adding new methods to an existing interface, while continuing to support the old ones. The
client would need to be able to replace the old version of the stub class with a newly-loaded
one and obtain an instance of the new stub class before being able to resume use of services
provided by the evolved RMI service interface. This would be a challenging task in standard
Java. Since the type equivalence of classes in Java is based on their name and classloader,
replacement of one version of a class with another version of the same class is non-trivial
using Java alone. Given the potential for long-lived classes in a persistent system, there is
a need to address this issue though. Thus, an off-line tool is provided with PJama, called
opjcs, which does support the substitution of one version of a class with another version of

the same class in a persistent store, as described in [Dmi98].

The check for a matching interface at client and server is implemented in standard RMI as
follows. At compile time, the rmic compiler sets a private static field to the same value in
both the skeleton and stub class; this field contains a hashcode generated from the signatures
of each method of the corresponding remotely-invokable interface. Thus, for the standard
JDK Registry interface, calling rmic sun.rmi.registry.RegistryImpl generates the
sun.rmi.registry.RegistryImpl_Stub and sun.rmi.registry.RegistryImpl_Skel
classes, both of which contain the field:

private static final long interfaceHash = 4905912898345647071L;

At run-time, when a remote method invocation is made from the client, the stub forwards
this call to the server, including the interfaceHash field of the stub class as a parame-
ter. At the server, the skeleton checks whether the given interfaceHash from the client
matches the interfaceHash field of its own class, before making the method invocation
on its intended target. If the interfaceHash fields of stub and skeleton do not match, a

java.rmi.server.SkeletonMismatchException is raised.

The PJRMI implementation originally included the addition of an extra method to the in-
terface java.rmi.registry.Registry, but this caused a mismatch of the PJRMI Registry
interface with the standard JDK Registry interface. It was possible to revise PJRMI so
that this additional method could be removed, leaving both PIRMI and RMI with the same
Registry interface once more.

The implication of this restriction on the evolution of interfaces is that when client references
to remotely-invokable objects are made persistent, long term maintenance in the face of an

evolving system is difficult without sophisticated evolution support [Dmi98].

Chapter 3. Persistent Remote Method Invocation (PJRMI) 26

3.4.5.2 Evolving Classes to Handle Multiple Versions

Unlike interfaces, there is support for having Java classes at different versions in the two
VMs involved in an RMI call. The Java support for serialising instances of classes does take
compatibility of the different class versions at source and destination into account.

This support comes in two parts. Firstly, object serialisation code must be written for the
evolved class to handle serialisation and deserialisation of objects created with the original
version of the class, as well as the evolved one. Secondly, a field must be added to the

evolved class to indicate that it is now compatible with the original.
Adaptable Serialisation

Standard Java Object Serialisation includes support for serialising and deserialising different
versions of the same class which works quite well; as long as the programmer respects the
recommendations of the JOS documentation [JOS98] meticulously.

Where evolution of a class involves the addition of new fields which are to be serialised, the
programmer must create or extend writeObject and readObject methods for the evolved
class, to handle serialisation and deserialisation correctly. They must also ensure that they
do not perturb the writing and reading of the original class when extending the code for the

evolved class.

When the default serialisation provided by java.io.ObjectOutputStream applies to the
original class, it can handle the automatic serialisation of the additional fields of the evolved
class too. However, if a writeObject method exists in the original class, which writes out
fields explicitly, it may be necessary to extend it to ensure the additional fields are serialised.

Where the default deserialisation provided by java.io.ObjectInputStream applies to
the original class, this is not sufficient for an evolved class with additional fields. If an
original class version is expected but an evolved class instance is supplied, the extra fields
of the evolved class will automatically be skipped. However, if an evolved class version is
expected but an original class instance is supplied, the default serialisation code will expect
to deserialise more fields than the stream contains. Thus, a readObject method for the
evolved class must be created or extended to handle deserialisation of instances of both the
original and the evolved class. For the readObject method of the evolved class to determine
whether it is currently deserialising an original or evolved instance of the class, it must use
the java.io.0ObjectInputStream method:

public int available()

to determine whether any more bytes are available, before trying to read the extra fields of
the evolved class. ’

Chapter 3. Persistent Remote Method Invocation (PJRMI) 27

Adapting Serialisation for PJRMI Classes

In order to make certain PJRMI classes compatible with their standard JDK originals, it was
necessary to make some modifications to their serialisation code. The standard JDK version
of the stub class java.rmi.server.RemoteStub contains no writeObject or readObject
methods at all. Because of the addition of extra fields to the PJRMI version of the class
java.rmi.server.RemoteStub, writeObject and readObject methods were added to
the evolved class. These new methods contain calls to the original default serialisation code,
before the code for serialisation and deserialisation of the extra fields, to ensure the original

serialisation is still maintained correctly.

The code of the evolved class’s readObject method uses a call to the method available of
class java.io.ObjectInputStream to determine whether the extra field of the RemoteStub
is in the stream before trying to read it. Where a standard JDK version of a RemoteStub is
being read, this call would return zero.

Indicating Compatability

Java Object Serialisation relies on the use of fingerprints generated from a class to indicate
compatibility of class versions. A serialVersionUID is generated from the original class
and incorporated as a static, final field of the evolved class, whenever it is appropriate to
indicate the compatibility of the evolved class with the original. Successful use of this
across sites requires programmers to be diligent about incorporating serialVersionUIDs

where appropriate into evolved classes.

The serialVersionUID is a fingerprint of the class, similar to the interfaceHash used
for interfaces. It is generated from the method signatures of the class and the field names
and types of every non-transient, non-static field of the class. This is done by running the
Java executable serialver with the original of a class as its parameter, as illustrated by the

example below:
susan@kona3l: serialver java.rmi.server.RemoteStub
java.rmi.server.RemoteStub:
static final long serialVersionUID = -1585587260594494182L;
Adding the resulting field
static final long serialVersionUID = -1585587260594494182L;

to the evolved class indicates its compatibility with the original.

The runtime check for class compatibility occurs during deserialisation. Every object, mar-
shalled using Java Object Serialisation for RMI communication between two sites, is pre-
ceded by a class descriptor indicating the class name and fields of that object. Every class
descriptor includes the serialVersionUID for that class. The site unmarshalling a se-

Chapter 3. Persistent Remote Method Invocation (PJRMI) 28

rialised object will only do so if the class descriptor’s serialVersionUID matches the
serialVersionUID of the class with the same name in the unmarshalling site’s VM. The
following message is an illustration of the exceptions raised when the serialVersionUIDs

do not match.

java.rmi.UnmarshalException: Error unmarshaling return;
java.io.InvalidClassException: java.rmi.server.RemoteStub;
Local class not compatible:
stream classdesc serialVersionUID=-5354926258777194346
local class serialVersionUID=-1585587260594494182

Where the serialVersionUIDs do match, this means that an object serialised at source
with one version of the class can safely been deserialised using the other version of the class
at its destination.

Indicating Compatability for PJRMI Classes

For PJRMI, it was necessary to generate and add serialVersionUID fields to the PJRMI
version of the java.rmi.server.RemoteStub and java.rmi.server.RemoteObject

classes, after ensuring their compatibility with their standard JDK originals.

3.4.6 Implementation Revisions
3.4.6.1 Automatic Stub Class Generation

In standard RM]I, after compilation of a remotely-invokable object class, it is necessary to
invoke a separate rmic compiler on this class to generate corresponding stub and skeleton
classes. This must be done before the application code for creating a remotely-invokable
object of that class can be run.

In the early releases of PJRMI, dynamic, automatic generation of the stub and skeleton
classes was introduced. A call to the rmic compiler was added to the code for exporting
an object. This was done because, from the programmer’s point of view, it removes an
extra and easily forgotten step for compiling code for remotely-invokable objects; thus also
removing a common source of errors in running RMI programs without stub and skeleton
classes being available. (The drawback with this approach is that, if the class definition
causes an error during stub generation, this only becomes apparent at runtime.)

However, although the cost of calling the compiler at run-time is incurred only once per
remotely-invokable object exportation, this cost can be noticeable to the user. Another prob-
lem is the question of where to put the automatically-generated classes. They cannot just be

Chapter 3. Persistent Remote Method Invocation (PJRMI) 29

created in-memory in the VM doing the exportation, since they must be available as class
files to remote client VMs that need to pick up the stub class in order to be able to use its
corresponding remotely-invokable object. Creating them in the current directory for the ex-
ecuting application proved confusing and too restrictive for PIRMI users; particularly when
these classes had to be made available from a codebase for downloading by applets. It was
not obvious that the user would have less problems explicitly stating where the class files
should be written than they had with using rmic themselves.

Avoidance of the extra compilation step for remotely-invokable objects did not prove to be
sufficiently warranted to cope with the problem of where these class files should be created,
so the runtime generation of stub and skeleton class files was dropped when PJRMI was
ported to PJama running on JDK1.2.

3.4.6.2 Use of the RMI Registry for PJRMI

The RMI Registry is provided as part of standard RMI. It is a well-known service, supporting
look-up by name of remotely-invokable objects on the Registry’s host machine. Clients can
use the Registry to obtain a reference to an object in a remote JVM. This sort of service is
often used for bootstrapping the interaction between two VMs.

It seemed reasonable, since the Registry is such a useful service presented as part of standard
RMI, to recommend that a Registry be installed in every store that is to contain remotely-
invokable objects. A PJActionHandler was written for the RegistryImpl class that sup-
ports the Registry interface, so that after a Registry is made persistent, it is then re-exported

on every store restart.

Given the persistence of the Registry, it then seemed appropriate to add to it the PJRMI
functionality for supporting persistent, remotely-invokable objects. It is necessary to track
all persistent, remotely-invokable objects in order to support their re-exportation after store
restarts. The first design for PIRMI identified the Registry as a suitable object to host the
data for such tracking.

Thus, in the first pre-release version of PJRMI, the class RegistryImpl contains a hashtable
supporting the lookup, by object identity, of information on an exported object. However, ‘
feedback from pre-release users indicated that they required more flexible use of the Registry
than was recommended for PJRMI. The recommendation of a Registry per store was not
popular with one user who wanted several stores on one host machine to share a single
Registry. The mere existence of the Registry in the store was not popular with another user
who wanted to implement their own lookup service as a replacement for the Registry in their

application.

Chapter 3. Persistent Remote Method Invocation (PJRMI) 30

The user feedback prompted a review of the design. A more modular design was produced,
separating the functionality of the Registry name service from that of the service tracking
persistent, remotely-invokable objects. A new class PJamaPJExported was introduced to
hold the information on the persistent, remotely-invokable objects. PJRMI now requires
that an instance of this class exists in every store containing remotely-invokable objects
instead. Since PJamaPJExported is purely used at the PIRMI implementation level, unlike

the Registry, this avoids the clash with user requirements.

3.4.6.3 Re-exportation of all RMI objects on Store Restart

As described in section 3.3.1, in the first releases of PIRMI, all persistent remotelyinvokable
objects were re-exported for remote use on every store restart. PIRMI now only re-exports

each remotely-invokable, persistent object on its first use after store restart.

3.5 Using PJRMI

This section is intended to give the reader information on the impact of using PJRMI. Some
recommendations on taking advantage of persistence are made for PIRMI in section 3.5.1.
The section also references the PJRMI tutorial that is included in the dissertation as ap-
pendix A. Section 3.5.2 presents the experiences of real users, whose feedback has been
beneficial in improving PIRMI, as described in section 3.5.3.

3.5.1 Model of Usage

Using PJRMI support, it is possible to take the code of remotely-invokable services and
their clients, as written for standard RMI, and use them in a persistent context unchanged.
Alternatively, when developing code from scratch, a recommended model of usage can be
followed for PJRMI, that takes advantage of persistence.

In a standard RMI program, a service supported by a remotely-invokable object is created
and exported for remote use and then, as the program continues execution, it waits to service
incoming method calls from other JVMs. If the program execution is killed, then the next
time that service is required, the program must be run again, creating and exporting the
remotely-invokable object anew, so it can continue servicing RMI calls.

In the persistent RMI model, the remotely-invokable object can be created once, made per-
sistent and is then available in the persistent store to service incoming method calls during
future sessions that use that store. This works on the basis that typical persistent application
usage involves populating a store once and then using the store contents repeatedly. Having

Chapter 3. Persistent Remote Method Invocation (PJRMI) 31

populated a store with persistent, remotely-invokable objects, subsequent programs running
over that store will find that these objects are still available for remote use.

A tutorial, developed to introduce PJama users to PYRM], illustrates the differences between
writing a standard RMI program and taking advantage of persistence in a PTRMI program.
A recent version of the tutorial, provided as part of the documentation for the PJama release
version 0.5.20.2, is included in appendix A. The tutorial is fully illustrated with working
code examples taken from the PJRMI demo programs, which are also included in each
PJama release. Having introduced a standard Java RMI program in section A.2, section A.3
then builds on this example to show what changes are necessary to take advantage of persis-
tence with PIRMLI. Section A.4 presents an example of a program that can be used to cleanly
shut down a persistent store containing remotely-invokable objects. Section A.5 concludes
the tutorial with a list of common exceptions and their probable causes, to aid in diagnosis
of problems that may occur during the execution of the example programs.

3.5.2 User Feedback

Extracting feedback from users and applying it to further iterations of the design process is
an important part of the software development cycle. A number of different methods have
been used to obtain feedback from users of PJRMI. A user is usually identified initially by
the complaints they send to the author, about PIRMI not working or not being what the user
wants or expects. Follow-up emails have been used to extract details of what the users are
using PJRMI for and what they think of it. PJRMI has been used by a number of users since
its inclusion in releases of PJama from April 1998 onwards. Some specimens of PJRMI
users and their applications are presented below.

3.5.2.1 The DRASTIC Project, University of Glasgow, Scotland

A distributed system has been developed by the DRASTIC project at the University of Glas-
gow, for supporting the run-time evolution of classes and objects at run-time [ED97, ED99].
Originally developed in Modula-3, it was ported to Java and used object serialisation for
persistence, before ultimately being ported to PJama to make use of orthogonal persistence.
A distributed application supported by DRASTIC is divided between a number of zones,
where each zone is a logical collection of processes. Zones are the unit of evolution within
DRASTIC. A zone contract is defined between a pair of zones. The contract specifies the
types that may be exchanged between the two zones and the transformations that need to
be applied to any remote invocations or object migrations that take place across the zone
boundary. Zones and contracts provide support to allow the software engineers to contain

Chapter 3. Persistent Remote Method Invocation (PJRMI) 32

and cope with the evolution of their classes and the whole system. Communication across

the distributed system is done using RML.

A paper written on “Porting a Distributed System to Persistent Java: An Experience Re-
port” [ES98] identified a number of problems and made some comments on PJRMI.

Flexible use of the RMI Registry was identified as important for DRASTIC. Rather than
being required to have one running on every machine hosting a remotely-invokable object,
as required by standard RMI, the preference was for a single Registry for the whole system,
for use by all hosts. This type of requirement did not result in a relaxation of the one-per-host
requirement of the Registry for PIRMI, since that would be contrary to the standard RMI
design, but it did imply both that the Registry was an unsuitable place to focus the PIRMI
functionality on a per-VM basis and that there should be flexibility over the persistence of
the Registry itself.

It was rightly pointed out that, given the orthogonal persistence of PJama, remotelyinvokable
objects, like any others, should only become persistent if they become reachable, directly
or indirectly, from an application object which has been registered as a root of persistence.
Despite the documentation on this current feature, there was some initial confusion of ex-
pectations over what becomes persistent; however, the persistence of all remotely-invokable
objects did not prove problematic for DRASTIC in practice.

PJRMI tries to retain referential integrity between a remotely-invokable object and the
clients that reference it. This involves automatically updating connection information on
persistent references at the clients in order to ensure a persistent connection to the remotely-
invokable object. It is noted in [ES98] that referential integrity can never be guaranteed in
a distributed system, due to the potential for network and host failure. A criticism of the
automation was that application programmers have no control over how it happens or the
ability to run application code immediately before or after the connection is re-established.
It was commented that it would be useful for the application programmer to be able to switch
off automated reconnection. However, PJRMI chooses to try, as far as possible, to maintain
referential integrity and at least the illusion of persistence across the distributed system. It
does this in order to try to provide orthogonal persistence across distributed VMs, as well as
within one VM.

3.5.2.2 TuaMotu: The ECOO Project, LORIA, France

The ECOO (Environnements pour la COOpération) project [ECOQ00] is based at the French
research institute LORIA (Laboratoire Lorrain de Recherche en Informatique et ses Ap-
plications) in Nancy, France. The researchers on this project have been working for some
years on developing distributed support environments for cooperative work, with empha-

Chapter 3. Persistent Remote Method Invocation (PJRMI) KX)

sis on the use of objects over wide-area networks. Their recent work on a system called
“TuaMotu” [CBGM98, CMG98] has included an evaluation of PJama and other persistence
technologies for provision of support for persistent object management services. The re-
searchers Jean-Marc Humbert and Pascal Molli have provided feedback on their experiences

working with PJama.

PJama feedback

The alternatives considered for persistence support include PJama, POET [POE98], Java
Object Serialisation [JOS97], JOP (Java Object Persistence) [JOP96] and Enterprise Java
Beans (EJB) [EJIB99c]. The application was first implemented using Java Object Seriali-
sation. However, PJama proved in comparison to be “the best one solution I've tested” so
far. It was described as “a very flexible solution”, because the memory management for per-
sistent objects is integrated with the existing managed heap and garbage collection of Java,
the writing of Java objects to persistent storage is done automatically and the persistence is
orthogonal to type, removing any requirement to specify which types can persist.

The lack of changes to Java code to use persistence was seen as a major benefit of PJama. In
comparison, the POET database required the adaption of TuaMotu package structures and
did not support hashtables transparently, which was unfortunate since a lot of them are used
in TuaMotu. The alternative implementation of hashtables provided by Poet does not sup-
port the same methods as java.util.Hashtable. Using POET with TuaMotu was stopped
because of the number of things that had to be modified to get them working together.

JOP, which does perform automatic mapping of Java objects to a relational database using
JDBC, has also been under trial, as has EJB.

PJRMI Feedback

For TuaMotu, PJRMI is used for client-server communication. The server hosts a single
remotely-invokable object, modelled on the Command pattern®, to represent the server ap-
plication. Clients look up the server’s RMI object in the RMI Registry and then send com-
mands to the server by passing command objects as parameters in RMI calls:

server.send(cmd)

A command sent from a client to the server may include a reference back to a remotely-
invokable object available at the client, to be used during execution of the command by the
server to make callbacks for event management. A series of commands forms a transac-
tion, terminated by the command EndAct. The server is designed as a global transaction
with checkpointing; each time a client commits a short transaction to change the state of the
server, a call is made at the server to ensure the changes persist in the store.

The application is designed to make a clear separation between volatile (short-lived) and

4For information on the Command pattern and other design patterns, see [GHIV95]

Chapter 3. Persistent Remote Method Invocation (PJRMI) 34

persistent objects. However, when the ECOO group tried using a version of PJama, even
before the inclusion of PJRMI, it was found that the server’s remotely-invokable object was
made persistent by reachability, whereas this was not the case in the standard Java version
of the application using Object Serialisation. This did not prove problematic, after they
received a version of PJama incorporating support for PIRMI so that persistent, remotely-
invokable objects would still be usable, but they did observe that a tool for inspecting the
objects stored in a PJama store would be useful for users to confirm whether or not objects
have been made persistent.

Support for persistence was only required at the server, for storing application data. It
was important for the clients to run standard JDK code, not necessary at exactly the same
version of the JDK as the server. The application’s RMI communications between client
and server soon revealed the incompatibilities of the first version of PJRMI with standard
RML. The problems with versioning, as described in section 3.4.5, were identified, fixed and
distributed in a subsequent PJama release.

3.5.2.3 A Hierarchical Archive: University of Hamburg, Germany

Two students, Norbert Schuler and Michael Otto, in the Software Engineering Group of
the Computing Science Department at the University of Hamburg, were set a project to
use PJama to make a hierarchical, multi-user archive persistent [OS98]. After some initial
confusion over the setting of environment variables (a common problem with Java), they
had no problems getting their application working with PJama and PJRMI. However, they
did have a few problems with how PJama and PJRMI fitted in with the design of their
application.

They built their application on top of an existing framework called JWAM, an implemen-
tation derived from a theoretical model of software engineering called WAM, used at their
university. This framework provides a service for easy communication between processes;
internally it uses RMI. An application incorporates a capsule providing this communication
service into its implementation.

Since the implementation of the capsule providing the communication service is multi-
threaded, and since persistent threads are not currently supported in PJama, it was not pos-
sible to make this capsule persistent. However, since the RMI objects in the framework are
created in this application over a persistent store, they are automatically persistent anyway.
The students instead marked the service as transient and wrote code to recreate it after every
store restart.

The framework classes use the Singleton design pattern, which ensures that only one in-
stance of a class exists: a static field of a class is set to reference the single instance of that

Chapter 3. Persistent Remote Method Invocation (PJRMI) 35

class. In order to make the framework services transient, the static singleton field of each of

these classes could either:

e be marked transient from the code that creates the store — which requires this store
creation program to have internal knowledge of the framework classes; or

¢ be marked transient from static code added to the classes themselves — which requires
modification of the framework classes for use with PJama.

Neither of these options demonstrate a clean separation between the framework for commu-
nication between processes and the support for persistence used by the application. In the
end, the students went with the first solution, to avoid making any change to the code of the
framework classes themselves.

Their concern for a clean separation of the support for persistence from other parts of the sys-
tem also extended to the RMI Registry. Although the students successfully built a solution
with PJRMTI’s integrated, persistent Registry, they really wanted to run it only as a separate,
external and non-persistent process, as it is supported in the standard JDK. However, be-
cause of the reliance of the PIRMI service PJExported on the existence of a Registry in its
store, it was not possible to have only a non-persistent Registry in the system.

Ultimately, the students observed that the combined support provided by PJama and PJRMI
is “not quite optimal” yet. While orthogonal persistence should be safe and easy to use, they
identified the following problems as the most important obstacles in the way of these goals:
lack of support for persistent threads, having to mark fields transient explicitly, occasional
crashes of PJama during stabilisation and a lack of integration of support for orthogonal
persistence with releases of the standard JDK.

3.5.24 007 Benchmark Server: Australian National University, Australia

Two researchers, Steve Blackburn and David Walsh, at the Australian National University
in Canberra, Australia, have been working in the Advanced Server Technologies program
on the UPSIDE project (Utilising Persistence and Scalable Information management in Dis-
tributed Environments). This project involves designing scalable transactional object storage
systems for use with orthogonally persistent systems and languages.

One of the applications they have worked on is composed of a PJama server providing
support for querying a 007 database plus non-persistent clients. It was originally a port of
the 007 benchmark from its C**/PSI version to a version for PJama; done by Luke Kirby,
an honours student at ANU. Walsh then removed the timing code and added a control loop

to accept query requests from a client.

Chapter 3. Persistent Remote Method Invocation (PJRMI) 36

At the server a store is created, the standard PJRMI support services Registry and
SuspendService are added, the 007 service is created using 007 . server .CreateService,
the store is populated with the 007 tiny database using 007 .server.GenDB with parame-
ter oo7.config.tiny and the service providing access to this database is run by invoking
007.server.Server with parameter oo7.config.tiny. Non-persistent clients can then
be run to trigger a range of queries over the 007 database at the server.

Walsh reported that he did find PJRMI easy and intuitive to use. He commented that “it
would have been difficult without your supporting documentation. This explained the RMI
differences quite well.” Since the application used the model of a persistent server with
standard JDK clients, like the researchers at LORIA, they initially came across the same
problems with incompatibility of class versions between standard RMI and PJRMI, that
existed in the early PJRMI releases. With the solutions to these problems provided in a
subsequent PJama release, they did get their software working successfully, using PJama
and PJRML

3.5.2.5 Distribution, Object-orientation and Persistence:
University of Adelaide, Australia

Kevin Lew Kew Lin, a PhD student supervised by Fred Brown at the University of Adelaide
in Australia, wrote his thesis on “orthogonal persistence, object-orientation and distribu-
tion” [Lin99]. A description of the work is included below.

“This project is investigating techniques to extend the benefits of the persistence abstraction
to wide area networks where distribution must be explicit and network failures and delays
are a significant programmer concern. Contributions of this project will include a locality
mechanism, a network wide indirection mechanism and a model for distributed program-
ming over confederated persistent object stores. Confederated stores exhibit the property of
autonomous control with limited interactions with other stores. An indirection mechanism
is to be provided to identify and address those services that stores wish to publish. Locali-
ties are an essential modelling mechanism to control pointer leaks and allow programmers

to reason about store interactions that do not permit pointers between stores. ”

Lew Kew Lin built a structure of logically nested “localities” i.e. nested persistent stores,
implemented as a tree of directories containing PJama stores. PJIRMI is used for commu-
nication within an application distributed over these nested localities and over distributed
stores. He developed an “indirections” mechanism, which supports the dynamic registration
of arbitrary objects as network services, without the need for stubs or precompilation, and
light-weight calling of the services. Experiments with some simple applications compared
the performance of this indirection mechanism with that of RMI and PJRMI.

Chapter 3. Persistent Remote Method Invocation (PJRMI) 37

For this work, Lew Kew Lin was the first external user of PJRMI after it was ported from
PJama on JDK1.1.x to PJama on JDK 1.2 FCS (PJama version 0.5.20.0). Kevin was one of
the few users who saw the persistence of the RMI Registry for PJRMI as a good thing. He
also made a valid criticism of the tutorial example program for making a client persistent,
saying: “I found it a bit confusing to have to

1. first write a message client that holds onto a remote reference, then
2. put the message client in the store and then

3. write programs that access and use the message client.

After understanding what was happening, I found it simpler to directly put the remote ref-
erence as a persistent root in the store and then write programs to access and use it.” This
demonstrates the importance of making example programs as direct and simple a demon-
stration of the technology as possible.

Since the support.service.persistent.CreateSupportServices PJRMI example
program is only ever called once to prepare a store for remote interaction, he also sug-
gested that it could in fact be an automatic step in store creation. This program creates two
support services and makes them persistent: the RMI Registry and a SuspendService. The
latter supports a remote call to shut down an otherwise indefinitely-running server cleanly.
However, the feedback from other users indicates that automatically making the Registry
persistent in every store is not a popular choice. Also, not all stores contain any remotely-
invokable objects at all, so adding services automatically for their support is not necessarily
helpful.

3.5.2.6 The Distributed Bibliography System: University of Glasgow, Scotland

Irene de las Heras, a Spanish ERASMUS student, worked on a project using PJama and
PJRMI. She successfully developed a Distributed Bibliography System. The bibliographic
Server runs over a persistent store containing a collection of bibliographic entries. It services
queries and performs updates on the collection. The client can be run as either a persistent
application or as a non-persistent application or applet; it communicates with the server
using RMLI. It is invoked by users to, for example, request one or more bibliographic entries
from the server based on given search criteria. Users can also add new bibliographic entries
to the existing collection and create their own views of the entries. The information on users
is maintained in the server’s persistent store, including each user’s views of bibliographic

entries and each user’s sets of entries.

Chapter 3. Persistent Remote Method Invocation (PJRMI) 38

Though Irene’s report was lacking in evaluation of the PJama and PIRMI technologies that
she used, she appeared to have very few problems with using the technology and developed
a reliable distributed application with a good interface.

3.5.2.7 Bioinformatics project: University of Glasgow, Scotland

Iain Darroch is a researcher working on a Bioinformatics project. For this project, a PJama
store has been populated with genetic map data. It is accessed by an applet that supports the
displaying of a genetic map. To support RMI calls between the applet and the store, the store
is hosted by the same machine as the WWW server from which the applet is downloaded.

Iain found it “reasonably straightforward” to follow the PTIRMI tutorial. However, he did
comment that the design of the tutorial examples (like the JavaSoft standard RMI exam-
ples) does not scale to a large application. He would have liked some guidance on design
techniques to use at the larger scale, such as the adaptive design pattern [Bec99, GHIV95].

He found it difficult to diagnose the cause of RMI errors in his program. The RMI mailing
list helped solve most of the problems he encountered. Like many others using RMI for
the first time, he initially had problems with looking up the correct service on the correct
host. He also had evolution problems: although he successfully used the PJama evolution
tool opjsubst to substitute the original version of a service in the store with a new version
containing an extra method, the tool couldn’t pick up the implicit dependency between the
service implementation class and the corresponding stub and skeleton classes in the store.
Thus, the interface supported by the stub no longer matched that supported by the service
implementation class and this resulted in errors on the next lookup of that service.

3.5.3 The Effects of Feedback

Feedback from users has influenced PIRMI development: descriptions of some resulting
changes have already been indicated in section 3.4 on the PJRMI implementation; a sum-

mary of changes and observations is included below:

o Early feedback from Huw Evans (section 3.5.2.1) helped to motivate the separation
of persistence support from the implementation of the Registry, moving it to its own

class PdamaPJExported instead.

e Both the users at Loria (section 3.5.2.2) and ANU (section 3.5.2.4) required that
PJama be used as a server and PJRMI used to communicate with clients which were
either standard Java applets or standard Java programs. This raised the issue of inter-
operability between PJRMI and standard RMI, resulting in the changes described in

Chapter 3. Persistent Remote Method Invocation (PJRMI) 39

section 3.4.5.

¢ The students in Hamburg (section 3.5.2.3) wanted to encapsulate the persistence mech-
anisms used in their software to fit with the internal framework structure of their sys-
tem, in order to follow good software engineering practices. However, the registry
could not be encapsulated because of its use by remote components but is required to
be persistent by the current implementation of PJRMI. The PJRMI requirement for
the persistence of the Registry should be reviewed in the future.

e Users of PJama do have some idea of which objects they expect to become persistent
by reachability and which should not. It has been demonstrated by some users’ feed-
back that the persistence of all remotely-invokable objects does sometimes conflict
with application design and users’ expectations. Separation of persistence from other
concerns of the system can be compromised, even though, due to the support pro-
vided by PJRMI, applications with persistent, remotely-invokable objects do work. A
cleaner separation of persistence and distribution support is still a goal for PIRML

Feedback from users will continue to influence future work on PJRMI.

3.6 PJRMI: Could Do Better

PJRMI adds support to RMI for persistent, remotely-invokable objects and persistent refer-
ences to them. It solves the problems created when non-persistence-aware RMI objects are
pulled into a store through persistence by reachability. This includes maintaining the illusion
of a persistent connection between a remotely-invokable object and a persistent reference to
it. However, it also illustrates some problems with combining persistence and distribution.

Clients can obtain, and make persistent, references to remotely-invokable objects, either
via a Registry lookup by name on a registered remotely-invokable object or by obtaining a
reference to one from another object. Over time, it is possible for many references to be
built up between distributed, persistent stores, creating dependencies between them.

RMI passes objects as parameters to remote method calls and as return values from them.
If the object inherits from the interface Remote, it will be passed by reference. If it doesn’t
inherit from Remote but does inherit from the interface Serializable, the whole transitive
closure of the object graph will be passed by copy. PJRMI may end up serialising and
sending very large object graphs from one persistent store to another, including graphs that
have built up incrementally in the persistent store over many program executions.

The rest of this dissertation presents the approaches taken for PJama to address these prob-

lems.

Chapter 4

Approaches of Related Work

4.1 Introduction

Experience with PJRMI has identified problems with orthogonal persistence when it is used
in a distributed system. This section briefly sets the context for this dissertation and reiterates
the problems themselves. The rest of the chapter examines the approaches of related work.
Existing systems with the same potential problems are identified and the extent to which
they have dealt with them is evaluated.

4.1.1 Context

Much work has been done on persistent systems over the last twenty years or so. A number
of significant contributions in this field are referenced below to give the reader some context
for the work examined in this dissertation.

Persistent systems have been developed based on a variety of languages. Examples include
Pascal/R [Sch77], the E programming language [RC89] and Texas [SKW92], which are both
based on C++, and the Mneme persisent object store [Mos90b], versions of which have been
used with Smalltalk [HMB90], C++ and Modula3. Systems that respect the principles of
orthogonal persistence presented in [AM95] include PS-algol [ABC*83], P-Pascal [Ber91]
and Napier88 [MBC*96].

Most persistent systems are developed as virtual machines to run on top of conventional op-
erating systems, but other approaches have been also been taken. Grasshopper [DdBF*94]
is an example of an operating system designed to support orthogonal persistence directly,
for greater efficiency. PSI, a Persistent Store Interface [Bla98], was developed as a result

of investigations into the scalability of orthogonally-persistent systems, in the context of a

Chapter 4. Approaches of Related Work 41

multi-computer architecture.

Both Grasshopper and PSI are also concerned with issues of distribution. Other systems
concerned with these issues include those mentioned below. The Argus object-oriented
programming language [Lis88] was developed specifically for distributed programming,
with support for atomic objects to ensure the consistency of the persistent data used. A
model of distributed programming was integrated with PS-algol [Wai88]. The address-
ing of large, distributed collections of persistent objects was examined in the context of
Mneme [Mos90a]. A persistent RPC was implemented for Napier88 [dSAB96]. The work
of this dissertation builds on that of these and other systems, focussing specifically on the
two problems described below.

4.1.2 Problem One: Maintaining Object References Between Stores

Use of orthogonal persistence in a distributed system implies that it should be possible to
make references to remote objects persistent. Support for persistent references to remote
objects requires persistence of the reference itself, the subsequent persistence of the ref-
erenced, remote object and the continued persistence of the remote object, as long as the
reference to it persists.

The persistent of references between stores is useful for increased simplicity and reliability
of application execution in the short term, but such dependencies between stores threaten the
maintainability of the stores involved in the long term. The store providing a service may
be obliged to provide remote access to objects for as long as references are held to them
from other stores. The store holding a client reference to a remote object is dependent on
the remote store for its own referential integrity.

Where existing work provides support for references to remote objects, the manner in which
those references are managed is considered. Where references can persist, the handling of
the implications of such support is examined.

4.1.3 Problem Two: Copying Large Object Graphs Between Stores

Large graphs of objects can be created and made persistent or grown incrementally in a
persistent store. With machines that can now have gigabytes of RAM, the size of in-memory
object graphs created and made persistent by an application can correspondingly become
large relatively quickly; easily megabytes in size.

Given the potential for large object graphs, of at least megabytes in size, some management
for the copying of persistent object graphs between stores is necessary. However, since
policies for the passing of objects across a distributed system are typically defined statically,

Chapter 4. Approaches of Related Work 42

there is a lack of flexibility for adapting the management of copying of persistent object

graphs between processes to cope with their size.

Once an object is persistent, if the object passing policy is static and thus persistent too,
the resulting lack of flexibility has other implications too. It affects copying in the face of
changes in use of a persistent object graph by different applications, since these applications
may each have their own differing object passing requirements. Changes in distributed
environment can also affect the handling of copying during the object graph’s lifetime.

Existing systems, with support for copying object graphs between distributed sites, are ex-
amined in detail in section 4.2 for their approach to dealing with these problems. A summary

can be found in section 4.4.

4.2 Existing Work

The problems presented above are considered in the context of a selection of relevant ex-
isting systems. While this is not intended to be exhaustive, it gives a clear picture of the
approaches taken in related work. Each of these systems is considered for its approach to
problem one, with regard to references and problem two on its approach to coping with

copying.

4.2.1 Java Distribution Technologies

Java RMI has already been discussed, in section 3 in the context of PJRMI. Related distri-
bution technologies are provided by Sun Microsystems for Java that do already use some
form of persistence. While the members of the PJama project obviously do not believe that
these technologies provide a sufficiently integrated solution for persistence, in comparison
with PJama’s Orthogonal Persistence for Java, they are considered below.

4.2.1.1 Remote Object Activation

Remote Object Activation (ROA) is supplied with Java RMI in JDK1.2 and documented
in chapter seven of the corresponding Java RMI specification [RMI98]. According to this
chapter, the aim of ROA is to support long-lived, persistent objects and persistence of client-
held references to them, to support communication between them in the face of system
crashes. It addresses some of the same issues as PJRMI. Activatable objects are remotely-
invokable objects which can be activated on first use; this is similar to PJRMI’s support for
re-exportation of persistent, remotely-invokable objects and to CORBA Object Activation.
An activation description, registered with an ActivationSystem, includes information on

Chapter 4. Approaches of Related Work 43

the class of the object to be activated and, optionally, a MarshalledObject of serialised
data. The MarshalledObject is used, when an instance of the specified class is created
at the point of activation, to initialise its fields. The MarshalledObject data is only in-
tended for bootstrapping the activated object; it is serialised for efficient communication,
rather than for maintaining an object’s changing state persistently. Unlike PJama, there is
no support for tracking updates to objects and propagating those updates automatically to
the MarshalledObject, or to stable storage.

With Regard to References

A client can obtain an activation identity corresponding to a registered activation descrip-
tion. These identities remain valid across multiple program executions so they can be made
persistent in some way and then used in subsequent client VM executions. While PJRMI is
intended to keep remotely-invokable objects persistent as long as there are persistent refer-
ences to them, the Activator, in comparison, does not track which clients hold activation
identifiers. It is intended to run continuously and to maintain the activation descriptors
persistently, as long as those descriptors are registered with it. Programmers explicitly un-
register activation descriptors when they no longer require them. '

Coping with Copying
Since Java RMI is used for communication with activatable objects, the potential for copying

large object graphs does exist and, as previously indicated, there is no extra support for
dealing with this problem in a manner that is flexible in the long term.

4.2.1.2 Enterprise Java Beans

Enterprise Java Beans [EJB99b] is a component architecture targeted for the development
and deployment of component-based distributed business applications.

An EJB server process hosts one or more containers. Each container contains an EJBHome,
that acts as a factory for creating Enterprise JavaBeans (EJBs), plus one or more EJBs them-
selves. These EJBs may be session beans or entity beans. A session bean executes on behalf
of a single client and is intended to be relatively short-lived. Thus, it cannot persist beyond
the lifetime of its EJB container. Although it doesn’t represent shared persistent data, it
can update persistent data. An entity bean is persistent. It provides an object view of en-
tities in persistent storage, such as an object in a database, and can itself have the lifetime
of the corresponding persistent data. Thus, it may persistent across multiple server JVM

executions.
With Regard to References

A client initially obtains a reference to an EJBHome, via a lookup using the standard Java

Chapter 4. Approaches of Related Work 44

Naming and Directory Interface (JNDI). It can then use the EJBHome to obtain RMI refer-
ences (stubs) to EJBs within the ETJBHome’s container. Clients use Java RMI for communi-
cation with EJBs. A client always interacts with an EJB via an interface. Rather than an
EJB implementing this interface directly, there is another object, known as an EJBObject,
which provides a level of indirection. The EJBObject is system-generated and implements
the interface provided to the client for interaction with the EJB. This allows extra function-
ality such as transactional support to be provided at the level of the EJBObject. Thus, in the
simple case, an EJBObject just forwards a client’s method call on to the EJB while, where
transaction support is included, the EJBObject wraps the method calls appropriately.

A client can explicitly synchronise the state of an entity EJB with its persistent data by in-
voking the ejbLoad and ejbStore methods to read and write data from persistent storage
respectively. This is comparable to the load and store methods supported for DCOM com-
ponents (see section 4.2.8 for more details on DCOM). A container may also invoke these
methods; to update the persistent state of an entity EJB when the transaction in which the
update took place is committed, for example.

A client-held reference to a session bean is only valid for the lifetime of the container of that
bean. If the process hosting that container crashes, the client must obtain a new reference
to a new, equivalent session bean after restart. A client-held reference to a remote entity
bean is (ideally) valid for the entity’s lifetime, which may span multiple EJB server process
executions. The reference becomes invalid if the entity is removed or if it is moved to a
different EJB container or server. A client-held reference to an EJBHome can be serialised
and then made persistent; it can later be deserialised and used again as a reference to a

remote EJBHome.

A client can also obtain the handle of an entity EJB, containing its identity and serialise it
to make it persistent. This serialisation can later be translated back into a handle, which
can then be used to obtain a reference to a remote EJBObject once more. This is obvi-
ously intended to be an implementation of the support for persistence of a CORBA Object
Reference as a string (see section 4.2.6 on CORBA for more details).

The lifetime of a handle or of a reference to an EJBHome actually depends on its imple-
mentation, which depends on the persistence mechanism used by the entity EJB’s container.
It must at least be usable across server restarts. However, the intention is that “Containers
that store long-lived entities will typically provide handle implementations that allow clients
to store a handle for a long time (possibly many years).” Thus, the problem of long-term
dependencies between client and server persistent stores is highly relevant to Enterprise
JavaBeans.

A client can explicitly create and remove EJBs from an EJBHome. The client uses a method

Chapter 4. Approaches of Related Work 45

of the EJBHome interface to remove an EJB. If the client tries to use its reference to the EJB

subsequently, it will get an java.rmi.NoSuchObjectException.

The implications of the EJB specification for dependencies between distributed, persistent
stores, is that the onus is on a server to provide remote access to EJBs for as long as required
by its clients. The use of Java RMI for communication between client and server implies
that the EJB must remain remotely-reachable for at least as long as it is remotely-referenced,
since the implicit use of leases in the Java RMI DGC implementation will result in leases
being renewed on access to an EJB from a client-held reference for as long as the client
holds the reference or client is active. Since there is support for a client to make references
and handles for EJBs persistent and to make EJBHome references persistent, the implication
is that the server EJB should persist as long as there may be a client holding a persistent
reference or handle that it can use to obtain access to the EJB, even if the client is not
currently active. The support for explicit calls by clients to remove EJBs implies that it is
the client’s responsibility to decide when an EJB is no longer required. All this leaves little

scope for server store autonomy.
Coping with Copying

An entity EJB is a component: it represents an independent business object. The entity
object may itself hold references to a large number of dependent objects. Although an EJB
must always be passed by reference (i.e. replaced with a stub) when supplied as a parameter
in an RMI call, other objects passed in RMI calls between an EJB and its clients may be

passed by reference or may be passed by copy.

A “feature” of Enterprise JavaBeans is that all communication between an EJB and its client
is made using RMI calls, even when both are instantiated within the same JVM. Thus, all
parameters passed by copy in these RMI calls must be serialised and deserialised, even
when passed within the one JVM. In fact, local objects must be passed by copy in RMI calls
between EJBs that are instantiated in the same JVM, to avoid sharing object state between
two EJBs, which breaks the EJB’s semantics.

The copying of RMI parameter objects raises the issues described in chapter 3 on PIRMIL.
Because these objects may have large transitive closures of objects and may be passed as a
deep copy, they can take a long time and a lot of space to serialise and deserialise.

The Importance of Being Persistent

It is notable that, according to the WWW page introducing the new features of the lat-
est EJB specification [EJB99a], under the heading of “Persistence”, mandatory support for
entity beans has been introduced earlier than planned “Due to strong demand from the mar-
ketplace”. Given the popularity of support for persistence in a distributed system, it is clear
that there is a need for well-integrated persistence and distribution support that does consider

Chapter 4. Approaches of Related Work 46

the implications for long-term maintenance of valuable persistent data.

4.2.2 DPS-algol

Turning to orthogonally persistent technologies, early attempts to integrate orthogonal per-
sistence and distribution included Distributed, Persistent Algol (DPS-algol). Distributed,
persistent Algol [Wai88, Wai89] aims to simplify the programming model for distributed ap-
plications. It integrates a model of distributed programming with the PS-algol orthogonally-
persistent programming model. It maintains location transparency over the distributed data
as much as possible. The same syntax can be used to manipulate both local and remote data.
Light-weight processes can be started remotely and data objects in a remote location can be
referenced.

It is acknowledged that the application programmer may wish to manage the location of data
explicitly, for management of resilience and resource utilisation. Thus, a locality type is
introduced into the programming language for this purpose. A node is a locality type that
refers to a specific remote machine, while a 1loca provides a way for a programmer to refer
to a collection of remote data objects while abstracting away from the node that actuaily
hosts them.

Remote procedure calls (RPCs) are used for communication in DPS-algol. A procedure is
invoked remotely on an entry, supported by the process corresponding to a given process
handle. As with procedure calls in PS-algol, parameters are passed by value in RPCs, in an
attempt to support something similar to the “blackboard view” of data in PS-algol stores;

this is not the same as pass by copy.

The passing of parameters by value applies to pointers, as well as to scalar types. Thus, when
a pointer is passed in an RPC, it is replaced with a universally recognisable remote pointer.
The difference between a local and a remote pointer is transparent to the programmer. Once
aremote pointer has been received at a remote site, any store operations that perform updates
to remote referends trigger implicit RPCs back to the pointer’s original site.

4.2.2.1 With Regard to References

Once an object has been exported, the intention is that it remains available for remote use as
long as it is remotely-referenced. Once the object becomes referenced from an Export Table
in a persistent store, it persists.

The persistent store is described as containing a graph of nodes which are collections of
local and remote data. Remote pointers are implemented as objects on the heap and can be
made persistent, like any other heap object. Once a universal address has been exported for

Chapter 4. Approaches of Related Work 47

use in a remote pointer, the corresponding data is expected to persist for as long as a pointer
is held to that data, even if the pointer is in a remote address space.

If no abstract machine is currently running over the store when a remote pointer referencing
one of the store’s objects is dereferenced, the dereference request is redirected to a “per-
petual server” process. This server retrieves the required object from the store itself and

performs the required operation on it.

No distributed garbage collection has been implemented for DPS-algol but the need for it
is acknowledged. The need for a server to keep track of remote pointers is identified, as is
the need for a client to inform a server when a pointer it held to a server object has been

garbage-collected.

With use of a “perpetual server” to ensure availability of remotely-referenced objects, the
implication is that a server store can never escape its obligations to other stores, as long as
remote pointers are held to its objects. Since remote pointers can persist, a server can be
obliged to maintain objects indefinitely. Subsequent experience with this technology in the
COMANDOS project demonstrated that stores become interdependent and hard to manage
as a direct result of such obligations. This has been a major influence in the queét for a
balance between store autonomy and a uniform model of orthogonal persistence [Atk96].

4.2.2.2 Coping with Copying

Where copying of objects is required between stores, it is explicit. The transcopy and
assign operations are used for this purpose.

The transcopy operation uses type to determine what should be copied. The aim is to avoid
unnecessary copying and particularly to avoid the copying of a whole persistent store. Some
examples of how type influences copying in this case include: immutable base types such as
integer, boolean and string are copied; loca and node base types are passed by reference;
process handles are passed as handles to processes on remote machines; images of pixels
are deep copied; the top level of a vector or structure is copied while the rest is presumably
referenced. Thus, to obtain a complete copy of data structures with some depth, they must
be copied incrementally.

The assign operation has the same effect on an object as transcopy. It copies the top-level
of one object graph and assigns this copy to another object, which may be in a different
locality.

Such incremental copying, when applied to large, complex graphs of data structures, is
imposed on the basis of type. Thus, it is not adaptive over time to changes in graph size
or the context in which it is used. High latency costs are incurred on iterations through the

Chapter 4. Approaches of Related Work 48

transitive closure of a large graph over the network.

4.2.3 rxfor Napier

Napier88 [MCC99], like PS-algol, is an orthogonally-persistent programming language.
The work on a remote execution mechanism for Napier88, described in [DRV91], points out
the lack of scalability in a one-world model for distributed, persistent systems. It advocates
a federated model where the application programmer is fully aware of the distributed nature

of the system.

4.23.1 With Regard to References

The remote execution mechanism rx designed for use with distributed Napier stores avoids
the passing by reference of any data, on the grounds that this creates dependencies between
stores that necessitate coordination of global stabilisations. Such global stabilisations are
avoided on the grounds that they impose an unrealistic requirement for stores distributed

across a wide-area network.

4.23.2 Coping with Copying

All parameters for an rx call are instead passed by copy. Although it is acknowledged that
the design of rx allows arbitrary amounts of data and code to be copied between stores, no
specialised handling of large amounts of data is advocated.

4.24 Persistent, Type-safe RPC for Napier88

Coming from the same stable as PS-algol, Napier88 [MCC*99] supports orthogonal persis-
tence. It, in turn, is the predecessor of the support provided by PJama for orthogonal persis-
tence for Java. The support developed for persistent, type-safe RPC for Napier88 [dS96] is
comparable to PIRMI and raises the same issues.

4.24.1 With Regard to References

Napier88’s support for language reflection, dynamic binding and first-class procedures en-
ables the creation of RPC client and server stubs as procedures at run-time.

A server makes one of its procedures remotely-invokable by obtaining a server-side stub for
it; this exports the signature of the procedure and the identity of the server itself to a binding

Chapter 4. Approaches of Related Work 49

service and has the effect of making the procedure persistent too. The binding service is a

trusted entity in the system.

A client obtains a client-side stub by making a local procedure call that generates the stub,
based on the given signature of the procedure it requires to use. This supports independent,
unordered creation of client and server stubs. The first time a client actually makes a proce-
dure call on its stub, the binding service’s import procedure is automatically called to bind
the client stub to an actual server-side procedure. A capability for an exported procedure is
returned, along with the address of the server supporting it, allowing the client to go ahead
and make RPCs using its stub.

A server can remove support for a procedure arbitrarily. The client will find out that the
procedure is no longer exported when its RPC fails. The client can throw away the stub
when it no longer wishes to make RPC calls on the server-side procedure. Doing so has no
effect on the exported server procedure, on the grounds that other clients may still use it.

Thus, maintenance of persistent data at the server is independent of client use; this means
a client-side persistent store may contain references to server-side procedures that are no

longer usable.

4.2.4.2 Coping with Copying

In the first version of Napier88 RPC, parameters to Napier88 RPCs are passed by value, to
avoid accumulating references, and thus dependencies, between persistent stores. A deep
copy is made of every complex value parameter, resulting in whole transitive closures being
transferred in RPCs (though there are restrictions on the types that can be copied). No shared
subgraphs of data objects are maintained, even between the parameters in one RPC.

Objects in a Napier88 store can be highly interconnected, because of the language’s rich
type system and the persistence of objects by reachability. To address the problem of avoid-
ing unnecessary copying of large object graphs between persistent stores, “migration by
substitution” was implemented for a subsequent version of Napier88 RPC. Application pro-
grammers at source and destination must agree on the substitutable objects in advance. Each
substitutable object is registered by name. During copying, each object is looked up by value
in the substitution table. If it is substitutable, it is replaced with a surrogate. At the desti-
nation, the surrogate is used to identify the local value that is equivalent to the original.
Parameter objects must either be copied between sites, or substituted with equivalent ob-
jects at the destination site. This avoids the creation of remote references at the cost of
doing copying and managing substitution. The cost of migration by substitution lies in the
registration and lookup of substitutable objects. For one process interacting with a number

of other different processes, this is likely to require maintenance of one substitution table

Chapter 4. Approaches of Related Work 50

per remote site.

Persistent spaces were also developed as another alternative for sharing objects between
persistent stores. These containers of objects are published by a server and copied in their
entirety by a client. In this case, it is the application programmer’s responsibility not to
place object graphs into a persistent space that are too large for copying.

4.2.5 Thor

Thor is a persistent object store developed for use in a distributed system [LCSA99, LACt96].
It is similar to PJama in that it supports the persistence of objects through reachability from
a root object; thus, when objects are no longer reachable, they are garbage-collected. It
aims to support good performance for use of distributed Thor objects, even in a wide-area,
large-scale distributed environment.

Thor objects are implemented using Theta: an object-oriented, type-safe programming lan-
guage developed by the Programming Methodology Group at MIT. However, an application
does not have to be written in Theta to use Thor. It can be written in a language such as C or
C**. A veneer of a few procedures can then be used to interact with the Thor store and to
make method calls on persistent objects in the store, indirectly via stubs for each persistent

type.

Copies of Thor objects are cached at clients, in order to reduce the load on the server and
Thor objects may be replicated across multiple servers for high availability.

4.2.5.1 With Regard to References

A client starts a session to interact with a Thor store. It runs a series of transactions to
perform operations on Thor objects.

An initially volatile Thor object can be created within a client transaction; it becomes per-
sistent if a reference is established to it from an already-persistent Thor object and the trans-
action is committed successfully at the server. A Thor object then persists at the server as
long as it is reachable from one of the persistent server root objects or from a handle of a

current session. When it is no longer reachable, it can be garbage-collected.

Distributed garbage collection is managed using reference lists [ML97]. Whenever a client
process receives an object reference, whether from its originating site or from a third party,
the client adds the reference to its outrefs table and sends an insert message to the
originating site. The originating site containing the referenced object puts the client process
into its inrefs table, under the entry for the referenced object. Correspondingly, when the

Chapter 4. Approaches of Related Work 51

garbage collector local to the client identifies the object reference as garbage, it removes it
from its outrefs table and sends an update message to the originating site. The originating
site can then remove the client from its list of processes that reference the corresponding
server object in its inrefs table. If no other reference is left to the server object, remotely
or locally, the server object is then eligible for garbage collection itself. The paper [ML97]
focusses particularly on how to deal with cycles in distributed garbage collection, using back

tracing.

A client can obtain references to Thor objects within a session, either by looking up a server
root object by name or as the result of a method call on another Thor object. However,
these references are not valid across multiple Thor sessions. Thus, client use of references
is limited to the lifetime of one session. There is no point in a client trying to make such
references persistent. A client can, at most, require a Thor object to exist until the end of the
session in which the client obtains a reference to it.

Thor objects are stored at a server in an object repository. Though transparent to the clients,
there are multiple object repositories and an object can either reside in one or migrate from
one to another.

Store maintenance problems exist where Thor objects in one repository hold references to
Thor objects in a different repository.

4.2.5.2 Coping with Copying

Copying of Thor objects to clients, done only for the implementation of caching, is limited
to the page size, by the Hybrid Adaptive Caching (HAC) cache management scheme used in
the Thor implementation. When an object is accessed by the client, the page containing the
object is copied from the Thor store to the client cache. To counteract the problem of pages
with bad clustering filling the client cache with unwanted objects, hot objects are kept while
unused objects on a page may be discarded subsequently from the cache, to make room to
copy more pages to the client. Thus, the copying of a large graph of Thor objects, which
could be required to support an application’s iteration through all the objects of the graph,
is done by incrementally copying over the relevant pages.

The problem with copying pages at a time is, as acknowledged in [LAC™*96], that the cost of
sending the potentially unwanted objects contained in the rest of the page will be significant
when used in a WAN or wireless network.

Chapter 4. Approaches of Related Work 52

4.2.6 CORBA

The Common Object Request Broker Architecture (CORBA) [OMG99a, OH98] is com-
prised of a collection of designed-by-committee specifications for middleware. Produced
by the Object Management Group (OMG) [OMG], a consortium of over 800 companies,
CORBA has a dominating influence on current distributed systems development. It’s use of

persistence for reliability makes it relevant in this chapter.

Part of the power of the CORBA specifications is that they describe the interfaces for a
large range of distributed system services, while leaving a clear separation between these
interfaces and their implementation. One of the benefits of this is that, while the interfaces
are defined using CORBA’s Interface Definition Language (IDL), their implementations can
be written in any language with a CORBA binding, including C, C**, Smalltalk or Java, for
example. This enables interoperability across a distributed system of applications written in
these different languages and incorporation of existing, legacy systems.

The discussion below, on features of CORBA, that are relevant to the problems of this
dissertation, is based on the latest formal CORBA specification [OMG99c], unless otherwise
stated.

4.2.6.1 With Regard to References

An Object Request Broker (ORB) acts as an object bus. An object implementation accesses
services provided by the ORB through an object adapter. Services of the ORB-supported
object adapter can include generation and interpretation of object references, method invoca-
tion, object and implementation activation and deactivation, mapping of object references to
implementations and registration of implementations. An object implementation providing
an application service must be associated with a Portable Object Adaptor (POA) to specify
what policies are applied to it, and registered with the ORB, before it can be used remotely.

Clients usually obtain object references as parameters or return values from invocations
between the client and other objects, or from the OMG Naming and Trading Services.

Persistent CORBA Objects

By default, an object created in a POA is transient: it cannot outlive the POA in which it
is created; after the POA has been deactivated, use of an object reference generated from it
will result in an OBJECT_NOT.EXIST exception. However, if, when the POA is created, it is
passed a LifespanPolicy set to PERSISTENT, the objects created in that POA can outlive

the process in which they are created.

The recently adopted Persistent State Service (PSS) specification [OMG99b] is intended to

Chapter 4. Approaches of Related Work 53

supercede the Persistent Object Service of the formal CORBAservices
specification [OMG98]. It supports the persistence of CORBA object implementations.

Persistence is supported by datastores that may be implemented as, for example, flat files,
an object database management system or a relational database management system. A
datastore contains a set of storage homes. A storage home contains storage objects. Each
storage object contains an identity and a type that defines the state members and operations

for its instances.

Storage types, storage homes and catalogs can either be defined using the Persistent State
Definition Language (PSDL), which is a superset of the OMG’s IDL, or can be defined
directly using a programming language; the latter is known as “Transparent Persistence”.

An application process interacts with a datastore in a session. An ORB contains a connector
registry, which can be used to obtain a connector to a named datastore. A session is estab-
lished between the application and the datastore, using the connector. The application uses
the session as a catalog to look up storage home instances within a datastore, which gives
it access to the storage object instances in that storage home. Storage objects can be made
remotely accessible by binding their identity to that of a CORBA object.

Persistent References

The representation of the object reference that is handed to a client is only valid for the
lifetime of that client. It cannot be made persistent as-is, because different ORBs generate
and handle different representations of object references and these references are opaque.
The default persistence solution is to convert an object reference to a string; in this form
it can be made persistent across multiple client runs or communicated to other processes.
An ORB can subsequently generate its own representation of an object reference from the
string. Thus, clients can hold references to CORBA objects, store the references in string

format and then reconstitute them for use again later.

Maintainability

As long as an object implementation persists, it appears to be always available to the CORBA
clients that use it. Like PYRMI, support for activation on first use ensures that, as long as the

server is running, the object is active when it needs to be used. The POA, with which the
- object is registered, defines how it is activated.

However, while an ORB can keep track of outstanding connections between client and
server, this only applies to active clients; not to client-held object references that have been
converted to string format. This means the server does not necessarily know whether per-
sistent references exist to its CORBA object.

Similarly, even though an object reference can persist as a string and be recreated by an

Chapter 4. Approaches of Related Work 54

ORB as a valid object reference, it is not possible for a client’s ORB to ensure that the
state of the referenced CORBA object is available. The PSS specification states that the
lifetime of the state of a CORBA object is not visible to its clients. Thus, a client cannot
tell whether the implementation of the object it uses is persistent. A client can only call the
non-existent operation on an object reference to try to determine whether the referenced
object still exists: the operation can return true or false, or it can raise an exception if, for
example, distribution-related errors prevent the operation from working out whether or not
the object exists.

An object reference itself exists until it is explicitly freed with a call to its release op-
eration. The release call on the object reference has no effect on the referenced object

implementation.

According to the text of the CORBAservices LifeCycle Service specification [OMG98],
storage management through use of, for example, garbage collection and reference counts,
is implementation dependent.

Thus, although there may be, at the application level, an implicit requirement for a CORBA
object to be made persistent if an object reference generated for it becomes persistent, there
is no support for this in CORBA. It follows that any management of persistent references to
create, maintain and limit dependencies between distributed stores is entirely specific to the
CORBA implementation being used.

4.2.6.2 Coping with Copying

Whether to Copy

Until recently, CORBA only supported the passing of parameters to IDL-specified methods
by value if they were scalar types; objects were always passed by reference. The CORBA
specification now acknowledges the utility of copying objects between processes where, for
example, the main purpose of the object is to encapsulate data or where the application
requires a copy of an object. During specification development, this was referred to as
passing “Objects By Value” [MOMO98]; it is now described in the formal specification under
the heading of “Value Type Semantics”.

The criteria for deciding whether to pass a parameter object by reference or by copy is based
on the signature of the operation to which it’s being passed. If the parameter type in the
operation’s signature is a CORBA interface, then the object to be passed as this parameter
will be passed by reference. If the parameter type is a CORBA value type then the object
will be passed by copy.

An interface in CORBA is comparable to a Java interface. It declares the signatures of a

Chapter 4. Approaches of Related Work 55

collection of operations but does not define their implementations. A value type in CORBA
is comparable to a Java class, in that it describes a set of operations and some associated

state.

Thus, passing by reference or by copy is not defined on the object definition itself, but rather
on the parameters in the method signature of operations that use the object. However, in
order for the programmer to have the option whether to pass an object by reference or by
copy for a given operation, the object must have been defined with a CORBA interface.

This means that object passing policy in CORBA is defined statically, but with regard to the
application code that uses the object, rather than with regard to the object definition itself.
The same policy is not enforced on an individual object, without any consideration of the
context in which the object is used. By setting the policy using the operation signature,
different applications (or even different operations within the same application) can pass the
same object between processes in different ways. If an object implements an interface, it
can be passed as a copy of the object implementation in one operation invocation and as a
reference to its interface in a different one.

The object to be copied can have complex state, with arbitrary graphs, recursion and cycles.
During copying, shared subgraphs are preserved between the parameters involved in one
invocation. However, the copy shares no state with its original. At its destination, the object
copy has a separate identity from the original object.

What to Copy

The ORB implementation defines the code for marshalling parameter and return values at
their source and unmarshalling them at their destination. Thus, the manner in which an
object graph will be copied from one process to another is dependent on the marshalling
code of a specific ORB implementation.

Value types are allowed to override the standard ORB marshalling with their own code for
marshalling and unmarshalling their own state. However, this is regarded as exceptional,
rather than the norm, intended only for integration of existing “class libraries” and other
legacy systems.

The CORBAservices Life Cycle Service specification describes how an object can be copied
in a distributed system; so it could be used in a marshalling implementation. To take ad-
vantage of this service, the object implementation to be copied must support the interface
LifeCycleObject, which supports the operations copy, move and remove. A simple ob-
ject, with no references to other objects, provides its own implementation for each of these
LifeCycleObject interface operations. As an appendix to the Life Cycle Service, a Com-
pound Life Cycle Specification is provided, which defines how a compound life cycle oper-
ation is applied to a graph of related objects, given a starting node.

Chapter 4. Approaches of Related Work 56

The CORBAservices Relationship Service is used by the Compound Life Cycle Service
to inform the copying of an object graph, based on the relationship declared between ob-
jects of the graph. Consider the example of a folder object that contains a document ob-
ject. The relationship between folder and document is defined using three objects. The
folder is associated with a ContainsRole object, while the document is associated with
a ContainedInRole object. A containment relationship object connects the two roles.
Thus, three Relationship Service objects represent the relationship between the folder and
the document. The Compound Life Cycle specification makes two passes over an object
graph, initially to analyse the relationships between objects to determine what objects of
the graph should be copied and subsequently to actually perform the copying. An object
with a ContainsRole should be deep copied, to include the objects that it contains, while
an object with a ContainedInRole is shallow copied for the purposes of this relationship
(though presumably if the latter object has a ContainsRole in relation to a different object,
it can actually still end up being deep copied ultimately).

4.2.7 GemStone

GemsStone is a commercial implementation of persistence. It was originally developed in
Smalltalk, now available as GemStone/S, and has now also been developed in Java, as Gem-
Stone/J [Gem99]. The benefit of years of experience with Smalltalk are evident in the ma-
turity, sophistication and scalability of the current systems. A Persistent Cache Architecture
maintains the illusion of shared memory over server processes (Smalltalk execution engines
or JVMs respectively) for high-performance, server-side persistence. Server objects become
persistent by reachability from server-side named root objects. Client applications must es-
tablish a session with a GemStone/J server in order to get access to its objects and services.
They then initially get access to server objects by looking them up by name in the Object
Name Service. When a client wishes to make changes to persistent server objects, it must
make the changes within a transaction; the changes become persistent if the transaction
commits successfully at the server. Distributed clients communicate with the server using
one of a range of technologies: for GemStone/S this includes Smalltalk, Java and CORBA,
while for GemStone/J this includes Java RMI, Enterprise JavaBeans and CORBA.

The GemStone/] server has been implemented for scalability. Two models provide this
scalability in different ways, depending on the requirements of the client.

1. For scalability through use of threads, a server object is instantiated in one server-side
JVM and shared by multiple clients using multi-threading.

2. For scalability through use of persistent objects, multiple instantiations are made of

Chapter 4. Approaches of Related Work 57

one server object, each in their own server-side JVM, providing unshared access for
each client.

The problems of this dissertation are considered below, largely in the context of GemStone/J.

4.2.7.1 With Regard to References

GemStone/] supports CORBA through use of the VisiBroker for Java ORB [Gem98a]. The
Visibroker ORB supports communication between CORBA client and server objects. To
use a Java object as a CORBA object, the Java object’s class must implement a CORBA-
supported interface. CORBA objects can be activated using Visibroker’s Object Activation
Daemon. A client can then obtain references to the CORBA objects supported by the Gem-
Stone/J server. '

GemStone/J also supports Enterprise Java Beans (EJB). JavaBeans are created at the Gem-
Stone/J server. A client communicates with a JavaBean either via a Remote Adaptor sup-
porting the JavaBean’s interface, or through use of JavaBean events. However, a Remote
Adaptor appears to be valid only for the lifetime of the current client-server session!. Thus,
even if a client has its own persistence support, it is of no benefit to the client to make the
Remote Adaptor persistent beyond the lifetime of the session in which it was obtained from
the GemStone/J server.

The garbage collection criteria for when a server object is no longer reachable are not known,
since details of GemStone’s GcGem garbage collector have not been made public. Thus,
although there is apparently some tracking done of the objects accessed by clients, it is not
clear whether the server is obliged to maintain remote access to GemStone/J server objects
as long as they are in remote use. However, since GemStone/J only supports persistence at
the server side, the implications of persistent references and the complications of having a
mixture of persistent and non-persistent clients, as encountered in PJRMI, are not addressed.

4.2.7.2 Coping with Copying

The potential exists for the copying of large object graphs between a GemStone server and
its clients. GemStone/J supports classes for large collections, which it describes as scalable
containers because of the attention paid to their scalability in the GemStone/J implementa-
tion.

VisiBroker for Java 4.0 conforms to CORBA 2.3. Thus, it includes support for passing

I'This is certainly the case with their equivalent in GemStone/S, which are referred to as forwarders. A
message sent to a forwarder after the end of a session results in a “defunct forwarder” error [Gem96].

Chapter 4. Approaches of Related Work 58

objects by value. Its use for communication between clients and servers in GemStone/J has
the implications described in section 4.2.6 on CORBA.

Where EJB is used, parameters to remote message invocations between a client and a server

JavaBean may be passed by reference or by copy.

e Java scalar type values and Strings are passed by copy.

¢ A remote adaptor is marshalled in place of an object that implements the interface
GsRemotelIF.

¢ An application can choose at runtime whether to copy an object or replace it with a
remote adaptor, if it implements the interface GsExtendedRemotelIF.

o If the object does not implement a remotely-enabled interface, but it does implement
the Java interface java.io.Serializable, then the object is passed as a deep copy
of its object graph.

The documentation for Gemstone/J Distributed JavaBeans [Gem98b] explicitly warns that
“Where the entire object graph must be retummed as a copy, performance is likely to be of
concern in the case of large collections or large object graphs.” It is recommended that
large object graphs are accessed by remote reference rather than by copying, for the reason
of maintaining sharing as well as.communication performance, but ultimately it is left to
the application programmer to try to avoid passing large object graphs between client and
server.

Of the support described above, the interface GsExtendedRemoteIF is of most interest to
the author. An object that implements this interface must define its only method asCopy ().
This method is called during serialisation and returns a boolean indicating whether the object
should be copied or not. It could be implemented, for example, to pass by copy normally but
pass as a remote adaptor if its size is larger than some limit. This, unlike other existing sys-
tems, does provide support for a run-time, and therefore adaptive, decision to be made about
whether or not an object should be copied between sites. The programmer must, of course,
have defined the object from the outset to implement the interface GsExtendedRemoteIF in

order to have that run-time choice.

It is also interesting to note that while GemStone/J does not currently have any other dy-
namic way of controlling object copying, such support was implemented for management
of copying for replication in GemStone/S. It has recently been brought to the attention of
the author that this support exists in GemStone/S and is comparable to one of the solutions
presented later in this dissertation, in chapter 8. In GemStone/S, copying for replication

Chapter 4. Approaches of Related Work 59

is controlled by specifying the level (depth) to which objects in a graph should be repli-
cated, after which object stubs are created to represent the non-replicated lower-levels of
the graph [Gem96]. Subsequent access to the stub objects results in them being copied on
demand.

42.8 DCOM

Because CORBA and DCOM currently have much influence in commercial distributed sys-
tems development, both are considered in this chapter. DCOM has been developed by Mi-
crosoft, using its COM component model, to support use of components across distributed
processes [RE98, Ses98]. A component is a module of software, designed to do a specific
task, and with a well-defined interface. The aim is to be able to compose a system from com-
ponents to provide, for example, support for electronic commerce for banks, travel agents,
credit card services, etc. (EJB, as presented in section 4.2.1.2, is comparable to DCOM, in
that it provides a component model for Java.)

4.2.8.1 With Regard to References

COM components can be made persistent in flat files, architected files (e.g. sequential or
indexed files) or relational databases. Server-side support uses the IMoniker interface, im-
plemented for a specific persistence mechanism, for maintaining an association between a
name, which can be considered a persistent identifier, and the corresponding persistent state
of a component. The interface includes a BindToObject method that, given a name in the
appropriate naming convention for the persistence mechanism, returns a reference to the
corresponding persistent component. It’s implementation instantiates a new component of
the correct type and relies on that component’s implementation of the IPersist interface
to populate it with the persistent state.

Since component references are only valid for the lifetime of the process in which they are
generated, there is no point in making them persistent. However, the Moniker for an object
can be made persistent, using the IMoniker interface method to convert a Moniker to a
string. Another method of the same interface can be used to convert the string back to a
Moniker, after which its BindToObject method can be called to establish a reference to a
component containing the corresponding persistent state once more.

Client applications can obtain remote references to components as proxies, generated from
Microsoft’s Interface Definition Language. Communication between distributed compo-
nents is done using Microsoft’s remote procedure call support (MS RPC). Management of

referenced, remote components is done explicitly in application programs. When a ref-

Chapter 4. Approaches of Related Work 60

erence is established, an explicit call can be made, by the application programmer, to the
component to inform it that it is being remotely used. When a reference is no longer needed,
an explicit call can be made to the component to inform it that one less reference will use
it from now on. Additionally, a pinging protocol is used by client’s to regularly inform a
DCOM server that it is still alive, in order to keep alive its connections to the server’s DCOM
components. However, this is only applicable for the lifetime of the client.

4.2.8.2 Coping with Copying

Marshalling of parameters in calls between components is usually done in the code of the
IDL-specified client proxies. While the potential for copying large amounts of data between
distributed components does exist, no additional support is provided for handling large data
volumes in any specialised way.

4.29 Arjuna

Arjuna aims to provide support for building fault-tolerant, distributed applications, using
persistence for reliability and transaction recovery. Several products are available from Ar-
juna Systems. They benefit from years of experience doing research on support for fault-
tolerant, distributed applications in the Arjuna project at the University of Newcastle in the
UK. This section focusses mainly on Arjuna Integrated Transactions (AIT) for Java [Arj99],
on the grounds that it is representative of the approach of Arjuna solutions.

AIT provides support for use of objects in transactional applications, with persistence to aid
reliability and recovery. The state of an object is marshalled and stored in a file or database
for persistence. Clients obtain references to these objects in the form of stubs. AIT objects
may have one of three flavours. If they are recoverable and persistent, their state is tracked
for recovery and maintained on stable storage for use over multiple program executions.
If they are only recoverable, then they cannot have a lifetime beyond the current program
execution, but their state is tracked within transactions for recovery purposes. If they are not

recoverable or persistent, they do not survive program crashes or shutdowns.

4.2.9.1 With Regard to References

Like GemStone, as described in section 4.2.7, AIT supports two models of server object
usage. Multiple clients may use one shared, persistent object at the server. Alternatively,
multiple clients may each have their own replicated copy of the persistent object at the
server. The first of these two models is the default.

Chapter 4. Approaches of Related Work 61

Remote use of Java objects in this context has the same reference management issues as for
standard Java RMI, except for the following extra transaction-related support. A reference
to a persistent object may be created in a transaction or, if stored as a CORBA Inter Orb Ref-
erence (see section 4.2.6) it may be re-established from a string form of the object reference.
A call may be made explicitly to destroy a server object or a referenced object may become
unreachable, in the course of a transaction. However, it will not be garbage-collected until
the transaction commits successfully, in case it is necessary to reestablish a reference to the
object in the course of an abort of the transaction instead. For long-running transactions, the
server is thus obliged to maintain the objects used for the lifetime of the transaction.

4.29.2 Coping with Copying

Remote use of Java objects has the same issues in this context for copying of object graphs
between distributed sites as for standard Java RML

4.2.9.3 The Arjuna Project

Much work has been done in the context of the Arjuna project on support for fault-tolerant
distributed systems, with particular focus on replication of persistent objects, to provide
reliability and high availability in the face of the inevitable distribution-related faitures. This
has included work done on integration of replication support with transactions [LS99b] and
with caching [LS99a]. Arjuna’s focus does not encompass consideration of the long-term
implications of dependencies between persistent stores. The onus is left on the server to
provide remote access for its clients as long as it is needed. While large object graph copying
is obviously an issue with replication and caching technologies, only the management of
interdependencies has been considered for replication of large object graphs [L.S96], while
the cost of the actual copying does not appear to be addressed.

4.2.10 PerDiS

The aim of the Persistent Distributed Store (PerDiS) project is to provide support for dis-
tributed, collaborative engineering applications [FSB*98]. The significant feature of such
applications is that they share large volumes of fine-grain, complex objects across wide-area
networks. PerDiS aims to provide integrated, automated support for this.

Chapter 4. Approaches of Related Work 62

4.2.10.1 With Regard to References

PerDiS attributes distributed CAD application problems, of abysmal performance and lack
of server scalability, to client use of remote references to access server objects. To deal with
these problems, it instead provides the illusion of distributed shared memory (DSM) across
the network, with support for consistency and concurrency control.

Objects persist by reachability from named root objects. Multiple persistent stores cooperate
to provide the persistence of the objects in DSM. Currently, this seems to be implemented as
one cluster per file on disk. Clusters in one store may hold references to clusters in another
store. However, it is not possible for individual stores, that can in theory contain one or
more, possibly replicated, clusters of persistent objects, to be managed separately and thus
autonomously.

Local caching of remote objects is implemented using either

o explicit calls, made by an application navigating through an object graph, to identify
the objects in that graph to be cached locally, or

o automatic faulting of pages of the cluster’s storage on access.

All updates are done in the context of a transaction and applied to the, possibly persistent,
cache and to disk when the transaction commits.

The problem of dangling pointers, caused by deleting an object that is still reachable, is iden-
tified. The PerDiS solution is automatic storage management, using the Larchant distributed
garbage collection algorithm [FS98].

Every application process interacts with PerDiS through the interface provided by a User
Level Library (ULL). The ULL interacts with the single PerDiS daemon running on its local
machine. The PerDiS daemons cooperate to support DSM. The ULL is responsible for
detecting new inter-cluster pointers when they are established by the application. A stub is
created, to be associated with the pointer, and a message is sent to the referenced cluster,
where a corresponding scion is created, to be associated with the referenced object in that
cluster.

The PerDiS daemon, running on each machine hosting application processes, does garbage
reclamation by marking all the objects in locally-cached clusters that are reachable from
persistent roots or scions. Non-marked objects can then be deleted. The implication is that
objects must exist as long as any reference to it exists, whether the reference is local or
remote (the latter represented by the existence of scions).

Chapter 4. Approaches of Related Work 63

4.2.10.2 Coping with Copying

Given the two methods described above, for identifying which remote objects or remote
pages of objects should be cached locally, there is support for controlling the amount of data
copied between distributed sites. The application programmer may control the caching, and
thus the copying, of the object graphs they expect to use. They must be aware that calling
hold on very large graphs of objects will result in long and expensive copying operations, in
order to bring them into the local cache. Alternatively, when pages are automatically faulted,
their copying is batched to the size of a page on disk. The efficiency of this mechanism
depends on how well the required data is clustered on these pages.

4.2.11 FlexiNet

A product of the ANSA collaborative research programme on distributed systems, Flex-
iNet is intended to demonstrate the ANSA architectural principles at work [HAN99b]. The
flexibility of this system is in its ability to support a range of RPC mechanisms. These
mechanisms take the form of binders, that support different combinations of layers of the
communication protocol stack at client and server. This enables a plug-and-play philosophy,
covering aspects of the protocol stack including naming, serialisation and transport proto-
col. A Trader, object location service, mobile object workbench and persistent information
space are just a selection of FlexiNet’s other services.

4.2.11.1 With Regard to References

FlexiNet rejects passing objects purely by reference in remote method calls, because of the
performance overheads of following such references over the network when access to the
referenced object is required. FlexiNet also rejects the Java RMI model of passing objects
by value normally and by reference if they extend the interface java.rmi.Remote. The
rejection in this case, in agreement with the author of this dissertation, is on the grounds
that it is not reasonable to pass an object by value in some cases and by reference in others.
Instead, FlexiNet takes the same approach as CORBA’s Value Type Semantics 4.2.6. The
decision on whether to pass a parameter object by value or by reference is based on the
declared type for that parameter, in the definition of the operation to which the object is
being passed. Thus, if the object is passed as an interface, then it will be passed by reference;
otherwise it will be passed as an object and thus by value.

Chapter 4. Approaches of Related Work 64

4.2.11.2 Coping with Copying

FlexiNet has the potential for large object graph copying. It has support for persistence and
for management of clusters of objects. However, no extra support is provided for handling

communication of large object graphs between sites.

4.3 Related Work on Alterative Approaches

There are many other systems that support both distribution and persistence, in some form.
However, the descriptions of those above demonstrate the degree of general awareness in ex-
isting work of the issues explored in this dissertation and the kind of steps, if any, that have
been taken to deal with them. Brief descriptions of some other related work are now pre-
sented, to demonstrate alternative approaches, including object substitution, object move-
ment and network objects.

4.3.1 Approaches of Database Systems

Database systems are increasingly being used over wide-area networks, laying them open
to the issues of this dissertation. Oracle have introduced support for an Internet database,
Oracle 8i {Ora99], that has support for SQLJ and for use with JavaBeans and CORBA. The
Jasmine Object Database [KDM99] is a good example of the approaches being taken for
support of distributed object database access. Its WebLink component supports inclusion of
ODQL statements in web pages, with the results of queries being presented as “exploded”
web pages displaying object values. There is also support for Java RMI communication
from Java client applications to an application server using the pJ Java persistence layer
for Jasmine. None of these systems address the potential problems of communicating large
object graphs from server to client and, since most of them use Java, they suffer from the
same lack of flexibility with respect to remote object access that has been described above.

4.3.2 Object Substitution

Work on Octopus [FD93] and object migration by substitution [dSA96] has tried to address
the problem of copying large object graphs by limiting the copy to those objects in the
graph that have no equivalent at the copy’s destination. The Octopus mechanism supports
the cutting of bindings within the closure of an object graph to be copied, and the rewiring
of the partially-copied object in another context.

Although lacking the elegance of the dynamic linguistic reflection mechanism of Octopus

Chapter 4. Approaches of Related Work 65

and Napier88, the use in Java RMI of readObject and writeObject methods associated
with copied object classes, can provide a similar ad-hoc solution. Java Object Serialisation
allows a programmer to override the default serialisation implementation with specialised
marshalling, defined on a per class basis. A programmer can choose to omit or replace
certain fields of an object during marshalling. These fields can then either be left with a
default value during unmarshalling, or set to reference local resources at their destination.

4.3.3 Object Movement

Emerald supports location-transparent use of Emerald objects distributed across a local area
network [BHJ*87]. It considers the problems of maintaining references and moving objects
in this context, with the aim of supporting efficient inter-object communication.

Mutable Emerald objects are passed by reference in remote invocations, to preserve con-
sistency. However, Emerald tries to avoid remote references to invocation parameters by,
where possible, moving the parameters to the site of the callee.

Immutable objects are moved automatically and a programmer can explicitly request move-
ment of an object, based on their knowledge of the application, using the “call-by-move”
parameter passing mode. It is acknowledged that the moving of objects between sites does
depend on their size and usage. Moving the object whenever it is passed as a parameter to
a remote invocation will be of benefit if it is used multiple times by the destination site but
will become inefficient if it keeps being moved between multiple sites that are using it. The
implication seems to be that only small object graphs should be moved, while larger ones
should only be passed by reference.

4.3.4 Obliq and Network Objects

Obliq is a language developed for distributed, object-oriented computation [Car94]. It is
implemented using Modula-3’s Network Objects [BNOW93]. Oblique makes a point of
avoiding automatic copying of object state between sites. Network references to objects are
usually passed instead. Values can be transmitted by copying if required; any references held
to other objects are replaced with network references during transmission. The Network Ob-
jects system provides a general purpose mechanism called Pickles for marshalling object

graphs of arbitrary complexity.

Chapter 4. Approaches of Related Work 66

4.3.5 Other References to Related Work

Further references to related work are made in comparison with the solutions of this dis-
sertation: with regard to references in section 6.3.4. Future work in chapter 11 includes
references to related work that could influence and benefit further development based on the
solutions in this dissertation.

4.4 Summary

A summary of the approaches taken by existing systems to this dissertation’s issues is pre-
sented below, firstly with regard to references and secondly on their approach to coping with

copying.

4.4.1 With Regard to References

The lifetime of references to remote objects falls into two main categories: those that are
only valid within one client program execution and those which may be used across multiple
program executions. Objects that represent a reference to a remote object (i.e. stubs) are
usually only valid within one client program execution. Systems including Thor, CORBA,
GemStone and DCOM take this approach. However, a large number of systems do support
persistence across multiple client program executions of a reference, but only in the form
of a string identifier. CORBA IORs, DCOM Monikers and EJB handles to entity beans are
three examples of client-held representations for remote objects that are converted to a string
to be made persistent and, in a subsequent client execution, can be translated back from a
string and used to try to obtain a reference to the corresponding remote object once more.

The influence of clients on the lifetime of remotely-accessible objects at the server varies
widely. At one end of the scale, CORBA’s Persistent State Service specification makes it
clear that the persistence of a service is not made visible to a clienti, never mind influenced by
it. Some systems track references held to services, to maintain those services while they’re
used, but only for the lifetime of the current client program execution. Those systems that
support conversion of a reference to a string for persistence cannot expect a server to be able
to track what references are held by clients once they are strings though, in the expectation
that the services will be maintained as long as the string identifiers for them persist. As
an alternative, DCOM is an example of a system that allows the programmer to make an
explicit call from client to server to ensure a service is maintained for the client. At the
other end of the scale, systems including DPS-algol and PerDiS take the “integrated persis-
tence” approach of tracking references to remote objects and obliging a server to maintain

Chapter 4. Approaches of Related Work 67

its services as long as they are remotely used.

The integrated persistence approach is the one taken by PJRMI, as described in chapter 3.
It attempts to avoid lack of referential integrity between distributed stores by ensuring a
remotely-invokable object persists as long as a client holds a reference to it. Its drawback is
the consequent lack of autonomy and thus lack of long-term maintainability, because of the
dependencies created between stores supporting persistent connections.

4.4.2 Coping with Copying

Support for coping with the copying of object graphs across a distributed system tends to be
either inflexible or non-existent.

The criteria for whether or not to copy an object varies. Some systems base the deci-
sion on the object’s type. Java uses interfaces including java.io.Serializable and
java.rmi.Remote for this purpose. GemStone/J’s EJB support is similar but, for added
flexibility, it also provides the ability for the programmer to make the decision at runtime
when the interface GsExtendedRemoteIF is used. CORBA Value Type Semantics base the
decision about object copying on the declared parameter type for the operation to which a
parameter object is passed. DPS-algol requires an explicit call to be made by the program-
mer in order to make a copy of a data structure.

Where support for object copying is provided, there is usually limited or inflexible control
over the proportion of an object graph that is actually copied. A common approach, taken by
Java RMI, EJB and DCOM for example, is to make a deep copy of the full transitive closure
of a given object graph. No consideration is given to the handling of large object graphs at
all. As an alternative, some systems leave it to the programmer to specify exactly what parts
of an object graph should be copied. PerDiS provides a mechanism for the programmer to
iterate through their object graphs making an explicit call on each object in them that they
wish to be copied. The persistent spaces solution for Napier88 RPC requires the programmer
to explicitly place copyable objects into the persistent space. By contrast, the migration by
substitution for Napier88 RPC requires the programmers at all sites involved to agree and
register the objects that are substitutable: i.e. the parts of the object graph that should not be
copied.

There are more implicit, controlled-copying mechanisms though. Incremental shallow copy-
ing is enforced by DPS-algol for data types that can hold references to other data objects.
PerDiS and Thor both incrementally copy pages between sites. GemStone/S, which copies
object graphs for replication purposes, has support for limiting the copy to a specified depth
of the graph initially; remaining objects of the graph are subsequently copied on demand.

Chapter 4. Approaches of Related Work 68

A solution is needed which doesn’t leave the decision on how much to copy entirely to the
programmer, since they may not be fully aware of the actual number of objects reachable
from the object they wish to use?. This solution should be flexible enough to work well
with long-lived objects. Given that such objects may be used by different applications and
in different contexts over time, it is not desirable to require that support for whether and
how much of an object graph to copy should be hard-wired into the object’s type definition.
More dynamic control is needed, on how much of an object graph to copy, that is adaptable
over time to the size of the object graph and to the context in which it is used.

4.5 Influences of Related Work on Solutions

To avoid hardwiring the specification, of whether and how much of an object graph to copy,
into an object’s type definition, support is needed which promotes a separation of concerns.
There are existing technologies that advocate a separation of concems in the provision of dis-
tributed systems support.'Some examples of these are described here in sections 4.5.1, 4.5.2,
4.5.3 and 4.5.4. However, while such technologies are more likely to provide the flexibility
for handling persistent objects throughout their lifetime, they do not address directly the
concerns of this dissertation on how to control the copying of large object graphs between
distributed sites. The technologies of section 4.5.5 do consider how to control volume of
data communication, with an emphasis on quality of service, but these tend to be at the
lower levels of transport protocols. The aim of the solutions in this dissertation is to provide
control over object graph copying at the application level.

4.5.1 Spring Subcontracts

The Spring system is a distributed operating system that provides a platform for supporting
distributed applications. It promotes separation of concerns by supporting specification of
a remote method invocation mechanism in a subcontract, separately from the objects to
which it applies [HPM93]. A subcontract implements an interface of operations that are
called at significant points in communication between distributed sites; such as at the point
of marshalling and unmarshalling RMI parameters, for example. The application program-
mer chooses from one of a selection of pre-defined subcontracts or defines their own and
applies it to a Spring object at the server. The Spring platform makes the appropriate calls to
subcontract operations at client and server. Applying a subcontract to communication
with a Spring object is largely hidden from the client. The default marshalling operation

2This is particularly likely to be the case when components are being used that have been developed by a
third party.

Chapter 4. Approaches of Related Work 69

moves a parameter between sites. An alternative marshalling operation provides support for
copying where it is required instead. Subcontracts, as presented in [HPM93], have been
defined for replication, access to clusters and caching.

45.2 CORBA

The separation of policy specification from application code is achieved through the asso-
ciation of a policy with a Portable Object Adaptor (POA) in CORBA. A number of policy
objects are created and associated with a POA. These policies then apply to all objects reg-
istered with that POA, to influence, for example, marshalling of requests and activation of
object implementations.

When an object reference is generated by an ORB, the ORB implicitly associates it with one
or more policy domains, thus imposing certain policies on use of that object reference. Any
conflict between the policies set on an object reference and the policies that apply to the
referenced object implementation must be resolved. The specification does not yet include
interfaces for management of CORBA policy domains though.

45.3 GARF

GAREF supports the development of reliable, distributed object-oriented applications by pro-
viding a library of abstractions for concurrency, distribution and reliability [GGM96]. It
promotes a separation of concerns by encouraging the programmer to write the code for
their application task separately from the code concerned with the abstractions supported by
the GARF libraries. The latter code is written in the form of behavioural objects, also known
as meta data objects, which are either Encapsulators that wrap the objects to be used re-
motely or Mailers which support communication between the Encapsulators. Support
for replication, for example, is provided by an Encapsulator while support for ordered
message delivery to replicas, for example, is provided by a Mailer.

In the assessment of GAREF, it is noted that while dynamic establishment of the association
between application objects and behavioural objects is currently supported, it is not neces-
sary. Static, “once for all”, association is considered sufficient, except for open applications
such as operating systems, which are outside the scope of GARF. (The author of this dis-
sertation would argue that use of PJama in a distributed system is categorised as an open
application in this case.)

Chapter 4. Approaches of Related Work 70

4.5.4 A Framework for Policy Bindings

@yvind Hanssen has been developing a framework for setting quality of service (QoS) poli-
cies on bindings created for communication between distributed sites [HE99]. This work
is based on the FlexiNet architecture developed as part of the ANSA Architecture for Open
Distributed Systems [HAN99b], as described in section 4.2.11. The aim of the framework
is to provide a clean separation between, on the one hand, definition and dynamic setting of
the QoS policy to be used and, on the other, the code of the distributed application to which
the policy applies.

A policy in this case refers to a combination of properties associated with the communica-
tion mechanisms at client and server, which may include transport protocol, transparency
management and resource management. A policy is negotiated between client and server
and then applies to all communication between them for as long as is defined in the pol-
icy; probably the duration of a transaction or session. Like the work described above, the
separation of policy definition from application code is supported. Like the work in mobile
computing (see below), the intention is that the dynamic choice of QoS policy should allow
communication between sites to be adaptive to the current distributed environment. A policy
for logging has been implemented for this framework so far [Han99a].

4.5.5 Mobile Computing

The issues raised in this paper are of relevance in the domain of mobile computing. The need
for a distributed application to be adaptable to the current execution context is of particular
importance in this highly variable domain. Mobjects [WB95, WB97] focusses on the need
for distributed applications to be able to find out information about the environment in which
they are running, with a view to adapting communication policies between mobile host and
server in an effort to meet quality of service requirements. Changes in, for example, the
network connectivity of a mobile host and in the range of services (e.g. printing) currently
available to it are intimated to an application as EventObjects. Odyssey [NPS95, NSN197]
has a similar model for allowing an application to register interest in notifications about
changes to a specified resource, including the acceptable bounds in which the resource can
be used and an upcall procedure to be called to adapt behaviour. The impossibility is ac-
knowledged of a system providing support for mobile data access that is appropriate for
every application running in every environment: thus, service guarantees are not provided.
What is provided is application data filtering that is adaptive to the current network con-
nection and application requirements. In [NPS95], a comparison is made between a video
playback application and a video scene editor; they both work over the same data but, while
the player can afford to drop frames when bandwidth is low, the editor needs to be able to

Chapter 4. Approaches of Related Work 71

display every frame to the user to ensure accurate editing. The more recent work on Odyssey
requires wardens to be written for every type to manage fidelity of data between client and
server. Doing data filtering in order to limit the amount of network bandwidth or destination
resources used is comparable to using policies for limiting the number of objects transferred
across the network from a persistent store but the ability to filter tends to be very type or
protocol-specific.

Chapter 5

Research Issues to be Addressed

This chapter summarises the research issues of this dissertation, to set the scene for the
presentation of solutions.

Orthogonal persistence is intended to ease the programmer’s job by providing support for
data management integrated with a programming language. The simplicity of the orthogonal
persistence model argues for its use in distributed systems, in order to make life simpler for
the application programmer.

Support can be developed for interactions between persistent objects in distributed stores.
Persistent objects in one store can hold references to persistent objects in another store.
Persistent objects can also be copied from one store to another. However, such support
reveals problems with combining orthogonal persistence and distribution.

As described in chapter 3, PIRMI supports persistent, remotely-invokable objects and per-
sistent references to them. It attempts to maintain the illusion of persistent connections
between stores for as long as they are required. However, PIRMI demonstrates the two
important problems which are the focus of this dissertation.

5.1 Problem One: With Regard to References

The first problem is in the provision of this illusion of a persistent connection between stores.
Distribution-related errors easily break the illusion. In an open system, it can be difficult to
determine when an object should become persistent by remote reachability. In the long term,
persistent references to remote objects threaten the maintainability of the persistent stores

involved.

With regards to this problem, existing related work typically avoids the issue completely.

Chapter 5. Research Issues to be Addressed 73

It may force the application programmer to ensure that client programs explicitly establish
references to remotely-invokable objects every time they are run. It may allow the program-
mer to make references to remote objects persistent in the form of string identifiers; but
with no requirement that services be maintained as long as references for them in the form
of string identifiers persist. Where existing work does address the first problem, it obliges
servers to maintain their services for as long as they are remotely used. The problem with
this approach is that the server can suffer from having to maintain resources indefinitely, if
it cannot determine that a client no longer needs them.

Chapter 6 presents solutions for a workable compromise. It explores the issues associated
with extending persistence by reachability across a distributed system. Persistent references
to remote objects are still supported, but the intention is that they can only be preserved for
use within one lifetime of an application. Application leases, set on remote use of persistent
objects for the duration of a distributed application’s lifetime!, limit the use of remote ref-
erences. They provide a solution that compromises on reliability of references in favour of
greater store autonomy.

5.2 Problem Two: Coping with Copying

The second problem is raised by copying object graphs between stores, as happens, for
example, when an object is passed by copy as a parameter in an RMI call. Large object
graphs tend to build up in persistent stores over time. In a long-lived system, assumptions
are more likely to change about the size of an object graph and the context in which it is
used, during its lifetime.

Some existing related work ignores this problem, by assuming that the programmer is aware
of the size of object graphs that they copy between sites and is happy to cope with the costs
of copying large object graphs when this does occur. Other work forces the programmer to
explicitly indicate which objects of a graph should be copied and/or which should not, on a
per object basis. Alternatively, the programmer may have no control; copying may be done
between sites only in the implementation at the level of pages rather than objects.

Existing work does demonstrate that it is possible to separate policy for object usage from
object definition. This sort of flexibility needs to be applied to the handling of object graph
copying. The GemStone/S support for limiting the depth of an object graph copy demon-
strates that it is possible to adapt to changing object graph size over time. This sort of
adaptability is needed for controlling object graph copying, with greater choice for how that
control should be achieved.

1A distributed application’s lifetime may span multiple store shutdowns and restarts.

Chapter 5. Research Issues to be Addressed 74

Object-copying policies provide the solution. Chapter 7 presents the motivations and as-
sumptions behind the use of object-copying policies for persistent applications. The de-
sign is described in chapter 8, with greater detail included at the implementation level in
chapter 9. The evaluation in chapter 10 concludes that use of these policies does ensure
adaptability, over time, for the copying of object graphs between persistent stores to deal,
in particular, with the problem of how to handle large graphs of persistent objects in a dis-

tributed system.

Chapter 6

Persistence by Reachability across a
Distributed System

6.1 Introduction

The simplicity of the orthogonal persistence model argues for its use in distributed systems.
By removing the burden of explicit data storage management, orthogonal persistence sup-
port leaves the application programmer free to focus on the details of the application task
and the challenges of distributed application management, rather than having to juggle the
concerns of all three simultaneously. In theory, applying principles of orthogonal persis-
tence to a distributed system means that, to ensure that persistence remains orthogonal to
type, it should be possible for an object of any type to become persistent; even if the object is
actually of a proxy type that holds a reference to an object in a remote process. It also means
that, where the determination of an object’s persistence is by reachability from root objects,
there is a requirement to ensure referential integrity: once an object becomes persistence
reachable, even from a remote VM, that object and all the objects it references, directly and
indirectly, will persist.

Within one process running over a persistent store, it is possible to guarantee the consistent,
stable state of persistent objects. However, such attempts to extend orthogonal persistence,
from a single process to the less reliable and less controllable world of a distributed system,
sacrifice consistency guarantees (and the integrity of object references, in particular) in the
persistent stores involved.

The illusion of a persistent connection can be provided, as demonstrated by the support for
persistent remote method invocation for Java (PJRMI) described in chapter 3. However,

there are several problems with maintaining this illusion.

Chapter 6. Persistence by Reachability across a Distributed System 76

1. It is unrealistic to assume that, just because a reference to a remote object has been
made persistent, it will always be possible to access the remote object successfully.
Distribution-related errors caused by process crashes and network delays or failures
are unavoidable and easily break the illusion of a persistent connection.

2. It can be difficult to ensure that the remotely-referenced object exists for as long as it
is required. Extending persistence by reachability across a distributed system implies
that if an object becomes persistent and it holds a reference to a remote object then
the remote object must become persistent too. It can be difficult to determine when,
where and how an object should become persistent by remote reachability though.

3. A long-term problem exists with persistent connections between distributed objects:
they threaten the maintainability of the persistent stores involved. A store does not
have the control to maintain a consistent state over its objects and to garbage-collect
those that it no longer wishes to support, if it is obliged to provide remote access to
objects for as long as references are held to them from other stores. By the same
token, a store does not have control over the integrity of its references when it holds a
reference to an object in a remote store, making it dependent on the remote store for
its own referential integrity.

A range of solutions have been considered for these problems. The emphasis on the solu-
tions is that they be realistic, rather than idealistic. The appropriateness of a solution for
a distributed, persistent system depends on the priorities of the application programmer(s)
that develop and maintain the system.

Thus, an application programmer must choose which of two issues is more important for
their persistent, distributed application: a reliable, consistent, local persistent store or a
simple model of programming with automated storage of objects, even when those objects
are proxies for objects in a remote store. Realistically, because of the intrinsic lack of
reliability in a distributed system, they cannot rely on having both.

To run a distributed application with reliable, consistent persistent stores, it is necessary to
ensure that no references to remote objects ever become persistence reachable and to ensure
that no process that uses an object remotely is long-running, in order to limit the obligation

of the store providing remote access to the object.

Alternatively, to take advantage of the orthogonal persistence model in applications running
over distributed persistent stores, the application programmer must make a tradeoff between
the simplicity of using distributed objects that can become persistent and the consequent
lack of reliability and consistency in their persistent stores.

Section 6.2 explores the issues of problem 2 above, associated with determining persistence

Chapter 6. Persistence by Reachability across a Distributed System 77

by reachability across a distributed system, and describes the extra support developed to
help address this issue for PIRMI.

Where the orthogonal persistence model has higher priority, it is still recommended that
indefinitely maintaining references between distributed, persistent stores is avoided. Sec-
tion 6.3 presents support for a compromise to address problem 3 above. This compromise
provides the benefit of persistent, distributed objects, but restricts it to within the lifetime of
a distributed application. A conservative position is taken on the persistence of remotely-
accessible objects for the duration of an application’s lifetime. The compromise involves
introducing time limits, appropriate to the duration of a given application’s lifetime, on the
remote accessibility of objects and on the usability of references to remote objects. The long-
term usability of references to remote objects is traded off against the increased autonomy
of persistent stores, with the intention of increasing the stores’ long-term maintainability.

6.2 Determining Persistence Across a Distributed System

6.2.1 Orthogonal Persistence in a Distributed Context

PJama supports persistence by reachability from named roots of persistence. Within one
PJama VM (PJVM), such reachability is determined each time a stabilisation is initiated. At
stabilisation, persistent object updates are propagated to stable storage automatically. The
challenge for PIRMI is to be able to determine whether an object should be made persistent
because of its reachability from remote, persistent roots.

In theory, the rule of persistence by reachability can be applied to a distributed system as
follows:

1. An object will become persistent if it is referenced by a local, persistent object.
(It will not become persistent if it is only referenced by a local, non-persistent object.)

2. It will become persistent if it is only referenced by a persistent object in another
PJVM.

3. It will not become persistent if it is only referenced by a non-persistent object in
another VM.

The PYama platform addresses point one by taking care of local, persistence-reachable ob-
jects. However, the PIRMI support described in section 3 does not ensure that remotely-
invokable objects do not become or remain persistent: it takes a conservative approach
to their persistence precisely because of the difficulty of determining when a remotely-
invokable object is reachable or no longer reachable from a remote, persistent object. This

Chapter 6. Persistence by Reachability across a Distributed System 78

difficulty, particularly in the face of client store shutdowns and restarts, is explored in detail
in the rest of this section.

To address points two and three, Java RMI’s Distributed Garbage Collection (DGC) imple-
mentation, as introduced in section 3.1, is helpful. The exportation of an object for remote
use in standard Java RMI is not sufficient on its own for that object to be reachable and so ex-
ist beyond an invocation of the Java VM’s garbage collector. Only weak references track the
object from tables of the RMI implementation; if they are the only references to an object,
it can still be garbage-collected. Once a remote reference has been established to it though,
the DGC implementation ensures a strong reference is then maintained to the remotely-
invokable object within its own VM; ensuring the ‘object cannot be garbage-collected at
least as long as this strong reference is maintained. Thus, the DGC implementation can
be leveraged to find out which local, remotely-invokable objects are referenced from other
VMs.

However, while the DGC information tells us which objects are in use by the current dis-
tributed program execution, it does not tell us what objects must persist beyond the current
program execution. If a client makes a reference to a server object persistent, and then the
client terminates and wishes to use that reference at some later time when it is rerun, then
additional support is necessary to determine that the service is referenced from a persis-
tent client. Thus, it is necessary to distinguish between a reference from a persistent object
in another PJVM and a reference from a non-persistent object in another VM in order to
determine persistence by reachability.

Since PJama operates in an open environment, the distributed system can be composed of
both standard JVMs with no persistence support and PJVMs, running Java over persistent
stores, which do have the ability to make objects persist. There are four possible permuta-
tions for the VMs involved in the two sides of an RMI call, as illustrated in figure 3.2. This
adds to the complexity of determining whether an object is persistent by reachability across

a distributed system, as will be illustrated in the next section.

6.2.2 Persistence with Direct and Indirect Reachability

The reachability of objects across distributed VMs is tracked by the DGC implementation, as
described below. A client obtains a reference to a remotely-invokable object in another VM,
initially in the form of a marshalled stub object. The DGC client implementation detects the
stub object during deserialisation and, using the object identity and VM identity held in the
stub, makes a dirty method call back to the DGC server implementation at the VM that
hosts the actual remotely-invokable object. The VM hosting the remotely-invokable object
now knows that this object is referenced from the client’s VM.

Chapter 6. Persistence by Reachability across a Distributed System 79

step 7
JYM 10 PJVM 1
M stu A

m step 3
N

STORE

Figure 6.1: Direct and indirect reachability from a remote, persistent object

The DGC implementation is not concerned with the persistence of objects across the dis-
tributed VMs though. If the client object is made persistent then, by reachability, the ref-
erenced, remotely-invokable object should also be made persistent. A way is needed to
inform the VM hosting the remotely-invokable object that this object now needs to be made
persistent. In PJama, the persistence of new objects is only actually determined at stabili-
sation points in a persistent program. Tracing reachability from persistent objects through
multiple VMs, especially in an open, persistent system where some of those VMs may have
no support for persistence, raises interesting issues. These are illustrated in the steps of the
following scenario (see figure 6.1):

1. A remotely-invokable object A is created in PJVM 1. It is not currently reachable from
any persistent object.

2. An object M is created in JVM 10. Note that there is no support for persistence in this
VM, since it is a standard JVM.

3. Object M obtains a reference to A. A stub object is created in JVM 10, representing A.

The situation at this point is that the only reference established between VMs is the
one labelled step 3 in figure 6.1. If stabilisation takes place in PJVM 1 after step 3,
then POVM 1 is aware that A is remotely-used, courtesy of the DGC tracking of remote
references. A is not currently persistent.

4. An object X is created in PJVM 5.

5. Object X obtains a reference to remotely-invokable object M. A stub object is created
in POVM 5, representing M.

Chapter 6. Persistence by Reachability across a Distributed System 80

6. Object X is made persistent, by being made reachable from an existing persistent
object W.

At this point the second reference established between VMs is the one labelled step 6
in figure 6.1. After step 6, a stabilisation at PJVM 5 will make object X persistent,
by reachability from W. This also means that the stub local to POVM 5 for object M
becomes persistent by reachability from X. The implication is that M and A are now
also persistent by reachability but their VMs are not aware of this.

7. Object X then obtains a direct reference to A from M. A stub object is created in PJVM
5 representing A.

The final situation for this scenario is the complete illustration in figure 6.1, where all
three references are now established between the VMs. If stabilisation takes place in
PJVM 1 after step 7, then PJVM 1 is aware that A is remotely-used by objects in both
JVM 10 and PJVM 5. In fact, A should now also be persistent by direct reachability
from X and by indirect reachability from X via object M.

The important aspects of this scenario are brought out in the paragraphs below.

Firstly, the usage of object M in this scenario demonstrates that it is possible for an object to
have roles in a distributed application as both a client and a server.

Secondly, the scope of the problem of determining persistence by reachability across the
distributed system can be examined using this scenario. The DGC implementation can de-
termine reachability even when remote references are passed via intermediary sites to third
party VMs. Thus, it is the DGC implementation that informs PJVM 1 when A becomes
reachable from object X in PIJVM 5, as illustrated in step 7 of figure 6.1. However, determin-
ing the persistence of object A at that point is a little more complex. We cannot afford to
freeze the whole distributed system and do a global checkpoint that follows all references
from each persistent root in the system to determine all the objects reachable from persis-
tent roots. It’s not scalable, very difficult in the face of errors and the freezing of program
execution in one PJVM, because another remote PJVM wants to stabilise its objects, is not
likely to be acceptable to its users; neither is the amount of time it would take to trace all the
objects reachable from persistent roots across the whole distributed system.

Support could be added to PJama so that PJVM 5 can detect which local stubs have been
made persistent and inform other VMs of this. After stabilisation has completed, it is possi-
ble to determine whether a stub is persistent. PJVM 5 could notify PJVM 1 when A becomes
persistent by reachability. However, there is no code at JVM 10 to deal with the same sort of
notification for object M. The standard JVM hosting M loads its standard JDK core classes,
including those for Java RMI and DGC, locally, so there is no scope for adding extra support

Chapter 6. Persistence by Reachability across a Distributed System 81

here for forwarding on messages about persistence reachability. It is not clear what action
should be taken on object M in this situation.

6.2.3 The Object Should Persist - But Where?

This scenario raises an interesting issue for an open persistent system. With reference to
the final situation illustrated in figure 6.1, object X is now persistent by reachability from
the already-persistent object W. Semantically, remotely-invokable object M is reachable from
object X and should also become persistent. However, object M has been created in a JVM
which itself has no support for persistence, so M cannot be made persistent locally.

Should the remotely-invokable object M be copied or moved to the site of the client
object X, so that it can be made persistent?

Moving object M to a PYVM with a persistent store, such as PJVM 5 from which it is refer-
enced, might at first glance seem a reasonable solution. However, if the scenario is extended
to include other VMs that also hold references to M at this point, it quickly becomes an un-
workable solution. If M was moved to PJVM 5, all references to M would have to be updated
to refer to the new object at PJVM 5. The DGC tracks all the VMs that hold references to
M, so identifying the VMs that have to be notified of this move would not be a problem.
However, dealing with this notification would only be feasible for other PYVMs that have
modified PJRMI support to deal with this. Standard JVMs with references to M may exist
and have no mechanism for replacing one stub with another containing updated location
information for a moved, remotely-invokable object such as M. Alternatively, if M is copied
to PJVM 5 instead, there is no mechanism in JVM 10 for ensuring that any updates made to
the original M are subsequently propagated to the copy at PJVM 5. If M has connections to a
large graph of objects or it is dependent on its locality, it should probably not be moved or
copied at all.

Should the autonomy of the JVM be respected?

The persistent client X will eventually get a ConnectException if it tries to use object M
after the standard JDK program that created it has been terminated or fails.

A compromise.

A review of the situation reveals that, while it is not problematic to make remotely-invokable
objects persistent, there are risks involved in making clients of remotely-invokable objects
persistent. A compromise of referential integrity is risked by a client that is persistent or may
later become persistent, when it obtains a reference to a remotely-invokable object running
in a standard JVM. Since the mechanisms for obtaining a reference to a remotely-invokable

Chapter 6. Persistence by Reachability across a Distributed System 82

object in both JVMs and PJVMs are exactly the same, it is difficult for a client to evaluate
this risk. Thus, the best recommendation is for PJRMI to track whether a client references
objects in a PTVM running over a persistent store or not, and for clients to be able to query
this information so they are at least better informed. If PIRMI users do not make use of this
information, they must be aware that making clients of remotely-invokable objects persistent
can potentially corrupt that client’s persistent store.

6.2.4 PJRMI’s Solution

It has been illustrated that it is a challenge to track the reachability of objects for persistence
across a distributed system of VMs where some of these VMs are PJama VMs supporting
persistence and others are not. This is one of the effects of supporting an open, persistent
system like PJama. For PJRMI, it seems best to take a practical, conservative position
when dealing with the problems raised above. This type of approach is most likely to yield
working and understandable support for communication across the distributed system.

6.2.4.1 Detecting No Persistence By Reachability

Additional support is added to PJRMI for detecting where there is no persistence by reach-
ability of remotely-invokable objects; this support builds on that provided by Java RMI’s
DGC implementation. In addition to the information currently collected on the references
created between objects in different JVMs, PIRMI tracks which of the objects, holding ref-
erences to a remotely-invokable object, are created in a PJVM running over a persistent
store. Each client PYVM running over a persistent store now generates a persistent store
ID. Whenever the DGC implementation detects that a VM has received a stub object, it
normally sends back a dirty call to the VM where the stub originated, passing the VM’s
ID as a parameter. This allows the originating site to track which VMs hold a reference
to its object. The originating site issues a lease on the reference, for which the client must
regularly make renewal requests. Such requests are necessary in order to avoid the leases
expiring, which could make the remotely-invokable object available for garbage collection.
For PJRMI, when the DGC makes a dirty call for a PTVM running over a persistent store,
it passes back to the originating site not only the VM ID and the lease but also the persistent
store ID.

The table of information about which VMs hold references to a remotely-invokable object is
made persistent at server PTVMs running over persistent stores. On store restart, this table is
checked for expired leases: where a remote VM’s lease has expired and it is not a PYVM that
was running over a persistent store (indicated by the existence or otherwise of a recorded

Chapter 6. Persistence by Reachability across a Distributed System 83

persistent store ID for that VM), local remotely-invokable objects are no longer considered
to be reachable from that VM. The implication of this is that if the lease has expired but
this was for a PTVM that was running over a persistent store, then references to the local
remotely-invokable objects may still be held in that store.

Thus, if a client is run in a standard JDK and it is the only client of a remotely-invokable ser-
vice, that service will become unreachable after the termination of the client. Alternatively,
if a client is run over a persistent store and it is the only client of a remotely-invokable ser-
vice, any services it uses will become persistent, unless the client drops its reference during
program execution, the reference is garbage-collected and the DGC implementation informs

the server that the remote reference no longer exists.

6.2.4.2 Determining Non-persistence of Remotely-invokable Objects

Additional support is added to PIRMI for determining which objects are clients of remotely-
invokable objects in VMs with no persistence support. Where a remotely-invokable object
is created in a PTVM running over a persistent store, the stub object generated for it will
include a persistent store ID. PIRMI determines whether a client in a persistent context
references an object in a context with no persistence support by checking for the existence

of a persistent store ID in the stub.

6.2.4.3 Supporting the Movement of Stores Between Hosts

The addition of persistent store IDs to stubs also contributes towards support for moving
stores from one host to another. The store ID in the stub identifies the location of objects
as being in a store rather than in a VM execution. The PJRMI mechanism for refreshing
client’s stubs on first use after store restart is used to update store location too.

The relocation of a store takes place as follows, illustrated in figure 6.2.

1. At a convenient and consistent point in program execution, the store is shut down on
its old host and later it is restarted on its new host.

2. A client makes an RMI call on an object in that store.

3.