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Summary

Until recently, photo electric devices have mostly been used in stellar polarimetry. They 

usually involve a rotatable m odulator, such as either a polaroid or a half-waveplate with 

fixed polaroid in the beam of light. This m odulator is either positioned at different 

angles and exposures are taken (at least 3 exposures a t different positions are necessary, 

to compute the normalized Stokes param eters q and u) or it is rotated continuously. The 

second m ethod has the advantage, th a t fluctuations in sky-transparency are averaged 

out. But a m ajor drawback of photo electric devices is th a t they are essentially single 

pixel devices, so th a t only one object at a time can be observed. Another handicap 

are dead-time problems. If bright objects are to be observed, neutral density filters 

have to be used to reduce the photon flux to acceptable counting rates which is rather 

painful since it is the number of counted photons th a t determines the final accuracy.

W ith the advent of CCD technology these detectors are now more and more applied 

in stellar polarimetry. CCDs, being imaging devices, allow the observation of whole 

sky areas or several objects a t a time. The method which is usually applied involves 

taking several exposures with a m odulator a t different angles. Once again, changes 

in sky transparency have to be taken into account. Also the to tal photon count per 

exposure is limited, this time by the full-well capacity of the pixels and the number of 

pixels used.

In this Thesis a new design for a CCD-Polarimeter is presented which is a hybrid 

between the traditional photo electric instrum ents and modern CCD-imaging. Analo

gous to photom ultiplier devices, the m odulator is rotated continuously. A co-rotating 

glass wedge in the light path deviates the beam and the eventual image is recorded



by a CCD camera. The rotation together with the deviation converts the point-like 

images of the stars into rings. These rings contain, encoded as intensity modulation 

along their circumference, all the information necessary to determine the normalized 

Stokes parameters. By choosing suitable deviation angles, either a group of stars can 

be observed simultaneously, or a single star, slightly out of focus, can be observed with 

high accuracy, since a high photon count can be achieved by spreading the light into 

many pixels along the ring. Theoretically with the presented instrum ent an accuracy 

for p of about ± 7  x 10-5 could be achieved with one single exposure. Variations in sky 

transparency do not cause any problems since they are averaged out.

This design has been explored by means of a simple prototype and new data  re

duction techniques have been developed to reduce and analyze the obtained data. In 

particular, finding the circles and extracting the information from the intensity modu

lation along the circumference of the circle.

Experiments with the prototype have been carried out, both in the laboratory 

using artificial ‘stars’ and at the Cochno observatory, this time involving real stars. 

Different modulators and deviators have been tested. During the tests various problems 

were encountered, the instrum ent was returned to  the workshop and modifications 

were made. This cycle of testing and improving was quite time consuming and the 

main problem, the motor inducing vibrations and not rotating uniformly could not 

really be overcome in the current design. The obtained frames were used to check the 

data  reduction and analyzing software. The presented algorithms fulfilled their tasks 

satisfactorily.

The experiments with the prototype CCD-Polarimeter have shown th a t in principle 

it is a very potent technique but with some, mostly mechanical, obstacles to overcome. 

Based on the experiences in the described test runs, improvements for a further second 

prototype are proposed.
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It is self evident th a t this Thesis has been prepared using DTeX 2£ and its ap

propriate packages. One of the niceties of this is the possibility of inventing special 

fonts. It turns out th a t the stellar images containing the polarim etric information are 

so beautiful in concept and appearance th a t it was impossible to  resist making one 

special character which has been incorporated in the title  page.

“In some ways this single letter "C " sums up the ingenuity o f mankind of 

being able to express and write about ideas of the Universe simply by using 

star light. ”

David Clarke, 2000.
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Introduction

In the words of a one-time popular song: “Birds do it, Bees do it...”. In the animal 

kingdom many species are able to do it. In fact, much research is carried out on the 

sensitivity to it of practically all living creatures. For example as recently as 1999, it 

has been found th a t spiders use it to find their way home after dawn [Dacke et al., 

1999]. Light has an additional property to its well known characteristics like colour 

and intensity, viz: polarization. It is this characteristic th a t animals put to advantage 

in determining direction — it is not available to humans as our retinas are virtually 

insensitive to polarization.

To allow us to sense and measure this property of polarization, we need special 

optical devices. The topic of this Thesis is the building and evaluating of such a 

device, in this case a device to  analyze stellar light.

But what is polarization? Light can be represented as transverse electromagnetic 

waves made up of m utually perpendicular, fluctuating electric and magnetic fields. In 

a beam of light where all electric field vectors E  have the same direction of vibration, 

we speak of linearly polarized light. A single wave train, em itted by an excited atom is 

an example for linear polarized light. N atural or unpolarized light, however, consists 

of the to ta l output from a very large number of randomly oriented atomic emitters.

1



1. INTRODUCTION 2

The average of the directions of all the electric field vectors, sampled over a few cycles 

of the wave is zero. There are several processes th a t give rise to polarization. A few 

th a t are of special interest in stellar polarim etry are as follows:

- Thom son scattering (scattering by free electrons), e.g. solar corona, envelopes 

of early-type stars

- M ie scattering (scattering by small grains), e.g. comets, reflection nebulae, 

atmosphere of late-type stars, circumstellar discs, interstellar polarization

- R ayleigh scattering (scattering by molecules), e.g. terrestrial blue sky, late- 

type stellar atmospheres

- Hanle effect, due to resonance scattering of bound electrons in magnetic fields, 

e.g. in emission lines of solar chromosphere and corona.

Stellar polarim etry is a useful diagnostic for learning about stars and the interstellar 

material (ISM).

As an example of a recent and exciting application, polarim etry is being applied to 

identifying possible planetary systems and circumstellar disks in nearby stars. [Rivera 

and Penprase, 1999]. It is hoped to detect the thinned disks around main-sequence 

stars by observing the polarization of light reflecting off the top of the disk a t a shallow 

angle.

1.1 A brief historical outline

The concept of polarization as an additional property of light emerged in 1808. Etienne- 

Louis Malus, lying ill in a hospital, discovered a phenomenon, later to be nam ed polar

ization. He was looking through a calcite crystal a t the light reflected obliquely from a
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window of the Luxembourg Palace in Paris, and observed th a t the two images produced 

by the calcite were extinguished alternately when he rotated the crystal [see Geherls, 

1974, page 5]. His observation linked the property within reflected light with the same 

property within the separate beams produced by calcite crystals. Malus is also famous 

for the discovery of the cos2 6 law associated with the flux of light transm itted  by two 

polarizers, set with their principal axes a t an angle 6 with respect to  each other [see 

Malus, 1810].

Immediate investigations by Arago followed to see if astronomical objects exhibit 

polarized light. The moon and comets were observed, but star light could not be 

measured, due to lim itations set by the human eye.

In 1852 Sir George G. Stokes introduced the four parameters, named after him 

[Stokes, 1852], which can be used to describe partially polarized light (see Appendix A 

for a m athem atical description).

Although photography was developed early in the 19th century, there was a major 

delay in its application to polarim etry of stellar sources. The first reference related to 

its use is Ohman [1934] but only limited advances were made.

A main boost to  stellar polarim etry was triggered by the development of photo

multiplier tubes (first applied by Hall [1948]) following the theoretical predictions by 

Chandrasekhar [1946]. In this la tte r paper Chandrasekhar predicted th a t the radia

tion of early-type stars is polarized and varying from zero at the center of the disk to 

11 % at the limb and th a t this intrinsic polarization “could be detected under suitably 

favorable conditions

A  short time later Hall and Mikesell [1949] and Hiltner [1949] investigated Chan

drasekhars predictions by monitoring eclipsing binary systems but, by serendipity, they 

discovered interstellar polarization instead. Figure 1.1 on the following page shows some 

of the findings of Hall and Mikesell [1949].
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Fig. 1.1. Vector diagram showing polarization of individual stars [Hall and Mikesell, 
1949]. Note that the directions of vibration are generally orthogonal to the Galactic 
plane.

From these observations Hall and Mikesell concluded: “Several groups of stars show 

considerable homogeneity (see Fig. 1.1) in the direction of their planes o f polarization; 

this suggests that their light has passed through the same polarizing cloud or clouds. ” 

Independent of these observations, Hiltner discovered the same phenomena. In his 

paper [Hiltner, 1949] he concludes: “Furthermore, it is obvious that this polarization is 

not associated with the individual stars but is introduced to stellar radiation in its pas

sage through interstellar space”. Also “if  the polarization is a consequence of scattering 

by interstellar particles, it follows that these particles must be unsymmetrical, that is, 

elongated, and that these particles are subject to some alignment force. This force may 

take the form  of magnetic fields”.

Following the discovery of interstellar polarization, observations were pursued to 

investigate the properties of the Galactic magnetic field and the interstellar m aterial 

(ISM). Davis and Greenstein [1951] proposed th a t the observed parallelism of the di

rections of polarization of different stars is due to small elongated dust grains, tha t
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are aligned by a Galactic magnetic field. In their paper properties of such grains are 

discussed, e.g. size, shape, composition and dielectricity. They presented an alignment 

model which is now known as the ‘Davis-Greenstein mechanism’. It explains the align

ment of rapidly spinning grains by a torque due to paramagnetic relaxation in m aterial 

containing a few percent of iron. Vast developments have been made in the study of the 

ISM since then. Especially w ith new instrum ents th a t are capable to  measure in the 

infrared, like the ground-based telescope UKIRT or the astronomical satellites IRAS 

and ISO, a great deal has been learned about the nature of the interstellar dust.

In the era of 50 years ago, most stellar polarim etry was undertaken using photo 

electric devices. In comparison to the photographic plate these detectors provide a bet

ter accuracy, better linearity and a wider dynamic range. However, they are essentially 

“single pixel” devices and can only deal with one object a t a time.

Some photographic studies were made as well, chiefly of extended objects like galax

ies, nebulae or star fields. An interesting stellar instrum ent was proposed and investi

gated by Treanor [1968]. He was looking for an effective way to determine the polar

ization angle of a large star field to trace the Galactic magnetic field. His approach 

will be briefly described in C hapter 2. A development of his concept is the theme of 

this Thesis.

Charge-Coupled Devices (CCDs) now available provide better quantum  efficiency 

(about 10-100 times better than  photography [Ratledge, 1997]) and better linearity. 

From the time when they became available, CCDs were soon applied to polarim etry 

[e.g. see Roser and Meisenheimer, 1986].
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1.2 Development of a high accuracy CCD-Polarimeter

The development of new instrum ents for stellar polarim etry (wide colour-band) is still 

of interest — particularly if accuracy can be improved. This can be done by collecting 

and utilizing more photons, so improving the signal-to-noise ratio.

If bright objects are to be observed, the photon count rate has practical limitations. 

In the case of photomultipliers, the lim itation is due to dead time problems. In modern 

polarimetric systems, the signals of the photom ultiplier are recorded by photon count

ing techniques. If the photo-electron production rate is high, pulse overlap occurs and 

the signal becomes non-linear. For bright stars, neutral density filters are often used 

to reduce the photon rate — this defeating the purpose of using telescopes to collect 

the photons in the first place!

If CCDs are used, there is a similar problem. The to ta l photon count is limited by 

the full-well capacity of each pixel and the number of pixels used.

One possibility of accepting the potentially large signals from bright stars is by 

spreading the light into many detectors — for example using many pixels of the CCD, 

each acting as a small ‘light bucket’. Out of focus imaging explored by Clarke and 

Naghizadeh-Khouei [1997] provides such a technique with potential for high accuracy 

polarimetry.

Another possible technique to spread the light into many pixels of the CCD is based 

on the “ring-polarim eter” developed by Treanor [1968] as mentioned earlier. It uses a 

fast rotating tilted glass plate placed in the telescopes converging beam. This results in 

the light being spread over the area of a ring. W ith a polaroid attached to  the rotating 

glass plate the polarimetric information of the light source is encoded on the circle and 

can be extracted.

The topic of this Thesis is to explore this concept of a “ring-polarim eter” in associ

ation with a CCD detector.
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There are obvious differences as to how the data  are reduced depending on whether 

photographic plates are employed or the record is made using CCDs. An im portant 

difference is the fact th a t plates provide detection-centers which are essentially dis

tributed at random while the pixels of a CCD comprise a regular m atrix. Thus, when 

it comes to analyzing data  by assessing sections of the image, regular photographic 

plates will have the same sampling rate no m atter the direction of the cut. In contrast 

the sampling rate with CCD-images will vary, with the sampling rate being highest 

along the axes of the pixel grid. Another im portant difference is th a t the CCD pro

vides the data  in digital format th a t can be directly processed by appropriate software, 

whereas the data  of the photographic plate have to be gleaned by means of subsidiary 

laboratory machines such as micro-densitometers with their associated problems.

To investigate Treanor’s m ethod, adapted to modern technology, a prototype po

larim eter has been built as described in Chapter 2. The theoretical description of the 

polarim eter is outlined in C hapter 3. To analyze the obtained data, specially devel

oped software needed to be written. This is described in Chapter 4. The prototype 

was tested, both in the laboratory and at the observatory. In C hapter 5 it is shown 

how the test da ta  have been reduced and analyzed and the results will be discussed. 

In C hapter 6 the experiences with the prototype will be discussed and proposals will 

be made for the next generation of CCD-Ring-Polarimeters.



2

The prototype CCD-Polarimeter

2.1 Treanor’s “ring-polarimeter”

The general setup of the prototype CCD-Polarimeter is based on Treanor’s [1968] “ring- 

polarim eter”. The main feature of Treanor’s device is a rotatable cell placed just in 

front of the photographic plate in the telescope’s focal plane. The cell contains a 

polaroid placed in front of an inclined plane parallel glass plate (see Fig. 2.1). The

c

F ig. 2.1. Original diagram of Treanor’s ring-polarimeter: P, photographic plate; F, 
filter; G, inclined plane parallel glass plate; A, analyzing polaroid; C, rotating cell.

8



2. THE PR O TO TYPE CCD-POLARIMETER 9

glass plate serves merely to displace the star images, so tha t rotation of the cell will 

convert the point-like images into rings. For an unpolarized star, the ring will be uni

form in intensity. For a completely polarized star, however, there are two orientations 

of the polaroid at which the star-light is completely extinguished. Therefore the inten

sity of the ring is strongly m odulated around its circumference, so th a t it adopts the 

appearance of two French croissants, horn-to-horn (see Fig. 2.2).

Fig. 2.2. Picture of an artificially polarized star, recorded with the CCD-Polarimeter.

2.2 C ons truc t ion  of th e  p ro to ty p e  C C D -P o la r im e te r

The CCD-Polarimeter has been built following the optical principals of Treanor’s “ring- 

polarim eter'’. The main difference is the use of a modern CCD cam era as photon 

counting device instead of the original photographic plate. Another difference is the 

use of a glass wedge to deviate the light beam instead of a tilted glass plate. The reason 

for this change was simply the better availability of glass wedges with optical quality.

The prototype instrum ent was essentially a bread-board model with most of the el

ements being scavenged from discarded equipment. Although in the end the modulator 

system might be applied to any telescope, it was decided to test out the polarimetric 

principles by making a stand alone instrum ent complete with its own small telescope.
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By doing this, bright stars could be investigated, something th a t larger telescopes are 

ju st too big to allow.

A sketch of the setup is shown in Fig. 2.4. A telescope (a) with a focal length 

of 350mm and a diam eter of 75mm is connected to a flip mirror (b). This flip mirror 

allows the light to be sent either to an ocular, for purposes of alignment, or through the 

aluminium box to the CCD. In the box the light beam passes through several optical 

elements. First there is a selection of different colour filters mounted on a wheel (c). 

This wheel is mechanically connected to a control outside the box so th a t it is possible 

to change the filters w ithout opening the box.

Immediately following the filter wheel comes the analyzer (d). A rotatable cell 

tha t, in the final design, contains a polaroid (e) placed in front of an anti-reflective 

glass wedge (f). The glass wedge has one face inclined to the other by ~  1.5°. It has 

a similar effect like the inclined plane parallel glass plate Treanor used. The beam 

is deviated by a small angle; when the cell is rotated, the point-like star images are 

transformed into ring images. Unpolarized stars will have a flat intensity distribution 

around the circumference, a polarized star instead will have a cos 2a  m odulated inten

sity distribution. The form of the modulation for generally partially polarized light 

will be derived m athem atically in Chapter 3.

Some other possibilities to analyze the beam of light have been tested: First a thick 

superachromatic half-waveplate was inserted in the rotatable tube a t an angle so th a t 

the beam of light is deviated. In addition a fixed polaroid was placed just in front 

of the CCD camera at (i). W ith this design the ring image of a polarized star will 

have a cos 4a  modulated intensity distribution along its circumference (see Fig. 5.2 

on page 40). Thereafter, an analyzer similar to the final version has been tried, but 

with a tilted glass plate in the form of a beam splitter instead of the glass wedge. In 

C hapter 5 the experiences with the different methods will be presented.
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The analyzer is embedded in a ball-race and connected with several gear wheels to 

an electric, synchronised AC motor (g) th a t is attached at the outside of the box. The 

motor, produced by FRACMO LTD. London, performs 500 revolutions per minute. 

During exposure the motor will be running, and the cell is rotated by ~  715 rev/m in 

with a gear transmission ratio of 1.43.

Behind the analyzer, a 50 mm photographic lens (h) is mounted on an optical 

bench. Its purpose is to reimage the focus further out and this way providing more 

space for the different optical elements. By moving the Transfer-lens’ on the bench, the 

image can be focused onto the CCD chip. The last element in the box is an optional 

polaroid (i). Finally a CCD camera (k) is plugged in a socket at the outside of the 

box.

The box was mounted on a thick aluminium plate tha t could be screwed on to the 

Grubb-Parsons 20-inch (0.5m) telescope at the Cochno observatory, simply used as a 

platform for guiding purposes. Additional connecting bars and damping m aterials were 

used to reduce the effect of vibration to a minimum.

Fig. 2.3. Picture of the CCD-Polarimeter
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Fig. 2.4. The cross-sectional drawing of the setup of the prototype is shown: a) 75mm 
telescope; b) flip mirror; c) wheel containing a variety of different filters that can be 
positioned in the light beam; d) the analyzer: a metal tube, held in a ball-race, that 
contains e) a polaroid followed by f ) a glass wedge; g) AC motor that drives the rotatable 
cell; h) 50 mm lens; i) optional polaroid; k) CCD camera. Overlaid on the diagram, a 
sketch of three light paths is shown to emphasize the purpose of the glass wedge (the 
beam is deviated) and the ‘transfer-lens’ (focus is reimaged).
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2.2.1 The advantages of the design

The design outlined above has several advantages:

- Changes in sky transparency are averaged out over the measurement.

- One frame or one exposure contains all necessary information to  determine the 

normalized Stokes param eters and the polarization angle.

- By choosing a suitable wedge according to its angle either a large star field can 

be analyzed at once (see Fig. 4.4 on page 31) or alternatively one bright star can 

be analyzed with high accuracy.

2.2.2 Details of the CCD camera

As photon recording device a CCD camera HX516 from Starlight-Xpress was used.

It provides an actively cooled CCD chip with 660x494 pixels and a 16 bit interface.

The HX516 comes with a Windows based control and processing program, PIX_H 5.

Although this software package has its bugs (see Section 4.1 on page 24) the overall

performance has been satisfactory.

The HX516 camera specification:

- CCD type: Sony ICX084AL HyperHAD CCD with u ltra  low dark current and 

vertical anti-blooming.

- CCD pixel data: Pixel size: 7.4 x 7.4/im, Image format: 660 x 494 pixels 

(unbinned). In 2 x 2 binned mode - Pixel size: 14.8 x 14.8/xm, Image format: 330 

x 247 pixels.

- C C D  size: Imaging area: 4.9mm (horizontal) x 3.6mm (vertical).

- Spectral response: Peak response at 520nm (green), 50% at 400nm (violet) 

and 670nm (near infra-red).
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- R eadout noise: Approx. 15 electrons RMS.

- Full-well capacity: Approx. 40,000 e~ (160,000 binned).

- A D C  factor: 0.75 e~/ADU unbinned, 1.5 e_ /ADU binned [Platt, 2000].

- Anti-bloom ing: Overload margin greater than  800x.

- Dark current: Typical dark frame saturation time longer than  150 hours. Less 

than  0.1 electrons/pixel/second.

- D ata format: Full 16 bits.

- Com puter interface: 8 bit unidirectional parallel port with bi-directional status 

lines (Standard Centronics interface). 25 pin ’D ’ style plug for LPT1, 2 or 3, via 

a 5 metre x 6mm diam eter cable.

- Cooling system: Regulated constant-current cooling supply built-in. Single- 

stage thermoelectric cooler to give a CCD tem perature of approximately —30°C 

below ambient.

- Size: 50 x 100mm black anodised aluminium barrel with M42 thread a t CCD 

window end and 15 way ’D ’ style input plug at rear.

- Weight: 200g.

2.3 Instrumental effects in CCD detectors

To get clean data  with a CCD, a few of its imaging characteristics need to be taken 

into account. The raw images returned by a CCD contain a number of instrum ental 

effects which must be removed before the image can be used for quantitative purposes.
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Bias and Therm al N oise

Usually the amplifier which boosts the signal prior to its digitisation by the analogue- 

to-digital converter will also generate an offset (bias), which is added to  the real signal 

generated by illuminating photons. A technique to estim ate the bias is to  take several 

short exposures with closed shutter and then average the frames. The resulting ‘m aster’ 

bias frame is then simply subtracted from the image frames.

Another effect which is sometimes present is an offset from zero th a t is generated 

therm ally within the CCD chip, even when no light is present. It varies somewhat 

from pixel to pixel and can be minimized by cooling the CCD. It can be measured by 

taking long exposures with the shutter closed, removing the bias and dividing by the 

exposure time. This dark frame can then be scaled to the exposure time of the image 

frame and subtracted from the latter.

A very convenient way to correct image frames for both effects, the bias and the 

therm al noise, is to simply obtain exposures with exactly the same exposure time as 

the actual image frames, but with closed shutter. Averaging these dark frames and 

then subtracting them of the image frames gives the necessary corrections.

Variation in P ixel sensitivity, flat fielding

The sensitivity of the pixels will vary slightly across the CCD grid, due to imperfections 

in the m anufacturing process. The relative sensitivities of the pixels can be calibrated 

by acquiring several images of an evenly illuminated source, such as the twilight sky 

or the inside of the dome. Having these so called flat fields allows calculation of a 

m aster flat field (MFF) th a t is normalized to a mean intensity of unity. By dividing 

image frames by this M FF, the images are calibrated. The flat fielding procedure also 

corrects for inequalities introduced by filters and other optical elements. Therefore it 

is im portant, th a t the flat fields are taken at the same conditions like the real frames, 

e.g. with the same filters and with ro tating analyzer in the case of the prototype 

CCD-Polarimeter.



3

Theory of the polarimeter

3.1 Mathematical description of the polarimeter

As shown in Chapter 2 , the main part of the CCD-Polarimeter consists of a rotating 

tube th a t contains either a half-waveplate or a polarizer. These arrangements can 

be expressed in m athem atical terms using Stokes param eters and Mueller calculus (see 

Appendix A). Optical elements such as a polaroid or a half-waveplate can be expressed 

by matrices (see table A .l) and a beam of light can be described by a Stokes vector 

(e.g. S  = [ I ,Q ,U ,V )J ).

3.1.1 Rotating Polarizer

Since the axes of the polaroid are rotated a t an angle a  to the reference frame of the 

initial signal S,  which is the reference frame of the fixed CCD camera, the Stokes vector 

of S  has to be converted to the axes of the polaroid by multiplying the vector with the 

rotation m atrix [R(a)]. Then the beam of light passes through the polaroid, represented 

by the polarization m atrix [P]. Now it has to be rotated back to the reference frame

16
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of the CCD by multiplying the vector with the rotation m atrix [R(—a)]. In short we 

have:

5 > =  [R ( -a ) ] - [P ] - [R (a ) ] .S  .

Using m atrix notation, the received signal can be calculated:

(3.1)

I* 1 1 0 0

Q* 1 1 0 0

U* 2 0 0 0 0

v * 0 0 0 0

I* 1 1 0 0

Q* ]_ 1 1 0 0
=  [R(—Or)] »

U* 2 0 0 0 0

v * 0 0 0 0

1 0  0 0

0 cos(2 a ) sin(2a ) 0

0 — sin(2 a) cos(2 a) 0

0 0 0 1

Q cos (2 a) +  U sin (2 a) 

—Q sin (2a) +  U cos (2a) 

V

I

Q
u

V

I* 1 0 0 0 I  + Q cos (2a ) +  U sin (2a)

Q* 0 cos(—2a) sin(—2 a) 0 1 /  +  Q cos (2a ) +  U sin (2a)

u * 0 — sin(—2a) cos(—2 a) 0 2 0

v* 0 0 0 1 0

(3.2)

(3.3)

(3.4)

Since the CCD is only1 sensitive to the intensity of light, the observed quantity is I* (a) 

whereas Q*, U* and V* are not taken into account. The formula for the received signal 

/* (a ) is then:

7*(a) =  i ( / +  Qcos (2 a) +  f/s in  (2 a)) (3.5)

1For the purposes of the development here, it is assumed that CCD detectors are insensitive to any 
polarization in their illumination, and respond only to the total flux received.
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It can be seen th a t the received signal comprises a constant level ( | / )  with a su

perimposed modulated component with frequency twice th a t of the rotating polaroid 

(analyzer).

Only I, Q and U of the original Stokes vector contribute to the received intensity, 

the V part is filtered out in this method of measurement.

G etting the Stokes param eters q and u

Three different equations are needed to get the three unknown variables / ,  Q and U . 

One approach involves integrating I* (a) over three different ranges of a. Assuming 

the polarizer rotates N times during exposure, so producing N overlaid circles, the 

equations are:

p 2 t t

S i = N  I* (a) da = N n J  (3.6)
J  o

(3.7)

(3.8)

The normalized Stokes parameters q and u may then be derived as

(3.9)

(3.10)

The degree of polarization is calculated by

p =  yjq 2 +  u 2 (3.11)
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One of the benefits of this formalism is th a t it concentrates on the 2 +  4n harmonics, 

n — 0 , 1 , 2 ,3... — all other harmonics do not contribute to the integration.

In the case of the CCD-Polarimeter, the signals 6 1 ,2,3 are measured in arbitrary 

units of so-called ‘analogue data  units’ (ADU). Usually they have to be multiplied with 

the ADC factor G which is the constant of proportionality to  convert ADUs into the 

amount of charge (expressed as number of photon-electrons) stored in the pixels. For 

the calculation of the normalized Stokes param eters this factor is not needed because 

it cancels out. For the calculations of the influence of measurement uncertainties, G 

must be taken into account, however.

C om putation o f errors

Estim ates for the errors associated with the measurements are based on photon count

ing statistics. Since the values of q and u are obtained at least partially over the same 

parts of the m odulation profile, effects of noise introduce a correlation between the 

determined normalized Stokes parameter. As Stewart [1985] shows in his Research 

Note, this results in an increased uncertainty region for the true values (qo,Uo) on the 

q — u plane. He shows also th a t “under situations where polarizations are < 10% and 

... i f  the photon count per measurement is greater than a few thousand, the correlation 

effects are i n s i g n i f i c a n t In our case we have a high photon count (usually ~  4 x 105) 

which allows us to neglect this correlation and to assume th a t a  of each pixel value 

G x v is y/G x v , with G being the ADU conversion factor. To calculate the errors, 

Gaussian error propagation is used which in general form is

A f ( x ,  y) =  ( j ^ A x ) 2  + ( ^ A y ) 2 (3.12)

For the normalized Stokes param eters the errors are as follows:
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A u =
V g

q2 (Aq ) 2 +  u 2 ( A u ) 2  

q2  +  u 2

In the special case of an unpolarized star we have:

(3.15)

5 2 = 5 3 = l  -  =  <3-16)

To increase the accuracy of the polarimeter, a high photon count (G N I ) is im portant. 

Since the capacity of each pixel is limited, it is useful to spread the light over a larger 

area of pixels. For example the ring image of an out of focus star with outer radius 

r o u t  =  100 pixels, inner radius rjn = 80 pixels uses about 22500 pixels. If e.g. 20000 

photons may be counted by each pixel the to tal photon count is 4.5 x 108 and the 

accuracy of p is about ± 7  x 10-5 .

3.1.2 Rotating half-waveplate version

For completeness the derivation of the intensity m odulation for the rotating half- 

waveplate version will be shown. It was only used for first tests of the polarimeter 

in the laboratory and was not run using real stars. Consequently the computation 

of errors and the determ ination of the normalized Stokes param eters will not be pre

sented. Generally this kind of modulation has the advantage th a t the detector receives 

a constant direction of vibration of polarized light. For this design the polarimeter con

sists of a rotating HWP, followed by a fixed polaroid. Since the axes of the HW P are 

ro tated  at an angle a  to the reference frame of the CCD camera and the fixed polaroid, 

the Stokes vector of the incoming signal 5, which is referred to the reference frame of 

the CCD camera, has to be converted into the reference frame of the rotating HWP,
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by applying a rotation m atrix [R(a)]. Then the beam passes the HWP, represented by 

[A =  7r]. Now it has to be rotated back [R(—a)] and pass through the polaroid [P].

In short:

5 - =  [P] [R(—a)] [A =  t ]  [R(a)] • S  (3.17)

The m atrix  calculation, using a general retarder [A] is developed as follows:

r 1 0 0 0 I

Q*

u*
=  [P] [R(—a)] [A]

0

0

cos(2a) sin 

— sin(2a) cos

(2a) 0 

(2a) 0
Q
U

v * 0 0 0 1 v_

I* 1 0 0 0
-

I

Q*

u*
=  PI [R (-* )l

0

0

1

0

0 0 

cos A sin A

Q cos(2a) +  U sin(2a) 

—Q sin(2a) +  U cos(2a)

v * 0 0 — sin A cos A
-

V

I* 1 0 0 0 I
-

Q*
u*

=  [P]
0 cos(—2a) 

0 — sin(—2a)

sin(—2a) 0 

cos(—2a) 0 cos A(

Q cos(2a) +  U sin(2a)

—Q sin(2a) +  U cos(2a) +  P  sin A

v* 0 0 0 1 — sin A (—Q sin(2a) +  U cos(2a) +  V  cos A

Assuming no circular polarization (V  =  0):

/* 1 1 0  0 I

Q* 1 1 1 0  0 Q(cos2(2a) +  cos A sin2(2a)) +  U cos(2a) s in (2a)(l — cos A)

IT* 2 0 0 0 0

V* 0 0 0 0
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Again, since the CCD is only sensitive to  the intensity of light, the observed quantity 

is I*(a). The m odulation of the received signal I*(a)  is then:

I*(a)  =  +  Q{cos2(2a) +  cos A sin2 (2a)) +  U cos(2a) sin (2a)(l — cosA)^

Using the relation cos2 a  — sin2 a  =  cos(2a):

I*(a) = i  +  Q (cos(4a) +  sin2(2a) [l +  cos A ]) +  ^ -(sin (4 a)(l — cos A))^

(3.18)

W ith A =  7r for a half-waveplate, the wave form reduces to the form:

I*(a) = i ( /  +  Qcos (4a) -(- U sin (4a)) (3.19)

Thus, for this arrangem ent, the received signal consists of a constant level ( | / )  with 

a superimposed m odulated component with frequency four times the frequency of the 

rotating half-waveplate.

In this chapter a formalism was derived to calculate the normalized Stokes parameters. 

In order to apply these formulas to the CCD data, a specialized software program was 

developed. The main procedures of this software will be described in the following 

chapter.



4

Software

Due to the uniqueness of the obtained images, specially developed software was required 

to reduce and analyze the data. This software should be able to

1) identify the circles and determine their centres and radii

2) produce an intensity profile along the circumference of each circle

3) determine the degree of polarization

Initially, the programming was done in a UNIX environment. The GNU C++ compiler 

gcc was used to compile the code. Later, to allow the software to be used directly at 

the observatory, the code has been ported to WIN32, using the freely available cygwin  

package.

Before starting to explain the actual analyzing program, another problem needs to 

be mentioned. During the work on this project it was noticed th a t the software package 

provided by the camera (PIX _H 5 V2.2 b) does not produce standard output files. An 

extra program had to be w ritten to do the necessary conversions. In the following 

section this program (FITCONV) will be explained. The analyzing program (ANALYSE) 

will be described in Section 4.2.

23
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4.1 FITCONV explained

4.1.1 The problem with P IX _H 5

First of all, it is im portant to  know how the raw data  files are formatted. In our case 

the image files are stored in the Flexible Image Transport System format (FITS). These 

files contain FITS-Keywords such as EXPTIM E (exposure time) or OBJECT and a 

two dimensional image array corresponding to 600x550 pixels. Each pixel is stored as 

a 16 bit value, resulting in an integer range of 0-65535.

Unfortunately it turned out th a t the PIX _H 5 software does not comply to the 

FITS standard in the way it stores these pixel values. The problem is th a t PIX _H 5 

saves the values as unsigned integers although FITS doesn’t directly support unsigned 

integers. The convention used in FITS files is to store the unsigned integer da ta  values 

as signed integers with an associated offset (specified by the BZERO keyword). For 

example, to store unsigned 16-bit integer values in a FITS image, the image should 

be defined as a signed 16-bit integer with the keyword BZERO =  32768. Thus the 

unsigned values of 0, 32768 and 65535 for example, are physically stored in the FITS 

image as —32768, 0, and 32767, respectively.

4.1.2 Correcting the files

The program works fairly simply thanks to the CFITSI0 package provided by HEASARC 

[Pence, 1999]. It provides many useful and easy to use routines for handling FITS files. 

First the image is read into an array. Then all values < 0 are corrected by adding 216.

For example the value 32772 would be stored by PIX _H 5 as unsigned integer which 

is in dual notation 1000 0000 0000 0100 (32772 =  215 +  22). However, any other software 

th a t conforms to the FITS standard will interpret this value as signed integer and return 

—32764 (—32764 =  —215 +  22). Adding 2 x 215 therefore restores the original value.
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Then the corrected data  array is saved as FITS again using a CFITSIO routine. 

This routine follows the above mentioned convention and stores the values according 

to the FITS specification as signed integers with an associated offset. Care was taken 

to make sure th a t the original keywords, if not already set by the save routine (like 

BZERO), are transferred to the new file. Em pty COMMENT and HISTORY keywords are 

stripped off. Finally a new keyword FITCONV is appended to mark the file as converted.

As an example of the problem discussed above, Figure 4.1 on the next page shows 

an unconverted image and a slice taken at row 300 through the circle. It is obvious 

what has gone wrong. The range is -32768 to 32767 and the part of the image th a t 

should be brightest turns into dark colours (or to negative values). Figure 4.2 shows 

the converted image. Now the image is ready for further processing and analyzing.
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Fig. 4 .1. a) Raw image with 
negative intensity values (shown 
as black colour).b) Intensity dis
tribution along a slice cut in the 
middle of the circle (at row 300) 
showing intensity values drop
ping to negative values when 
reaching 32768.

Fig. 4 .2 . a) Same image af
ter converting with FITCONV, 
this time having a correct 
intensity range.b) Intensity 
distribution of row 300, showing 
a smooth curve and no negative 
intensity values after conver
sion.
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4.2 ANALYSE explained

The ANALYSE program is divided into two parts. The first part (main menu) serves to 

find the circles. Therefore several commands are available. The positions and radii 

of the circular star images can either be typed in from the keyboard or autom atically 

found using an algorithm th a t will be described in Section 4.2.2 in more detail. To 

facilitate the manual search for the circles, it is possible to plot intensity distributions 

along rows and columns. This function has been used to create Fig. 4.1 b) and Fig. 4.2 

b) on page 26, for example.

The second part (analyze  menu) serves to analyze the found circles. Here the 

degree of polarization of a selected circle can be computed and an intensity profile 

along the circumference can be plotted.

In the following sections some procedures and algorithms will be explained in more 

detail.

4.2.1 Accessing the data

The first task for the program is to access the data  held in the CCD frames. As seen 

in Section 4.1, the input files are stored as FITS and contain a two dimensional image 

array of 500x660 16 bit integer values.

Since the data  are in FITS format, it is not straight forward to actually transfer the 

data to the memory of the computer. The first approach was to use Starlink software 

to convert the FITS-files into ASCII-files, which then can be easily accessed by a simple 

C-routine. The scheme worked well but there were a few disadvantages:

1) The required disk-space for each file was easily tripled.

2) The conversion process was time consuming.
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It would be neat and more “professional" to access the FITS files directly. An alterna

tive package CFITSIO was available through Starlink but at the time was not installed 

in Glasgow. This was rectified and became the standard means to access and handle 

files in FITS format.

In the load  routine (see Appendix B) CFITSIO routines are used to load the image 

da ta  into a 500x660 integer array. Now it is time to find the circles.

4.2.2 Finding the circles

The general procedure to locate the circular images is to scan the data  array row by 

row and search for peak intensities1. If more than  one peak is found in a row r, their 

centres (row centres) are calculated (cri...crn). Then, for all row centres cri...c rn, the 

column th a t goes through the centre cr* is scanned for peaks and their centres (column 

centers) are calculated (cci...ccn). Now, if a column centre ccj lies on row r we have 

probably found the centre of a circle. To check on this, the distances of this point 

to the neighbouring peaks in the row and column are compared. If they match, this 

distance corresponds to the radius for the circle with centre at (cr*,ccj).

The algorithm described above was implemented using three functions, rowscan(row) 

scans a row for peaks and returns a table with the positions of the centres and the dis

tances between the centre and their neighbouring peaks, c o ls c a n (c o l)  works likewise 

with columns. These two functions are invoked by the function scan  th a t at the end 

returns a table containing the circle centers and their radii.

The scan routine is controlled by two parameters: d  and base . Both can be changed 

in the main menu.

1) b a se  is a value th a t is multiplied with the average (mean intensity) of all pixels.

Only pixels with higher values than (base x average) are candidates for peaks.

*A pixel is considered to be a peak intensity if d pixels on the right and left (or up and down) 
have lower intensity values. Parameter d can be changed in the main menu during runtime.
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2) d determines how many pixels on the left and right (or up and down) of the 

regarded pixel have to have lower intensity values than the one itself to declare 

it a peak.

The flowchart (Fig. 4.3 on the following page) illustrates the scanning algorithm. 

On page 31 a prepared example (Fig. 4.4) shows a snapshot of the scanning process. 

The examined frame features a part of the Pleiades. This picture has been taken at 

an early stage of evolution of the CCD-Polarimeter using an inclined glass plate to 

deviate the light. The star images appear as ellipses due to problems with vibration. 

To illustrate how the circles are detected, intensity profiles along a row and a column 

are shown, both going through the center of a circle.



S O F T W A R E

start scan

LOOP
for row r from row 1 to row  

500

SCANROW
scan row r for peaks

d e te rm in e  th e  c e n tre s  o f  
neighbouring  p ea k s  and 
the ir rad ii (d is ta n c e  of 

c e n tre  to n e ig h b o u rin g  
p ea k )

m o re  th an  
o n e  p ea k ?

LOOP
lor centre cr from tirst

centre to the last centre

SCANCOL
scan column cr for peaks

d e te rm in e  th e  c e n tre s  o f  
n e ig hbouring  peaks and 
th e ir rad ii (d is tan c e  of 

ce n tre  to n e ig h b o u rin g  
pea k )

more than 
one peak

LOOP
lor center cc from first center to 

the lust center

C e n tre  cc lies on ro w  r 
(cc= r) 

and
rad ius... = ra d iu s ...?

print: cen ter  found  
at (cr ,cc)

e n d  l o o p

LOOP

LOOP

F i g .  4 . 3 .  Flowchart showing how the data array is scanned for circles
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b) p l e ia d e s O I  .fit

a )  pleiadesOI
intensity distribution at 
column 395

5000

4500
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3500

3000
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0 100 200 300 400 500 600

Fig. 4 .4 . A snapshot of the scanning process is shown. The examined frame, a part of the 
Pleiades, is displayed in b). This picture has been taken at an early stage of evolution of 
the CCD Polarimeter. The star images appear as ellipses due to problems with vibration. 
Row 39 has just been scanned for peak intensities. Its intensity distribution is shown 
in c). Four peaks have been found. For every center of two neighbouring peaks the 
according column is scanned. In a) the intensity distribution of column 395 is shown. 
This column corresponds to the center of the two peaks on the right. In column 395 
peak intensities around 39, 190 and 341 are found. Since one of them matches with the 
position of the row (39) it is likely that a circle with center (395,39) has been found.

q \ p leiadesO I
intensity distribution at 
row 39
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In the program, as soon as the table containing the circle properties is not empty, 

the analyze  menu becomes available. Here, for a chosen circle, the intensity distri

bution along the perimeter can be plotted as a 2-D graph and the normalized Stokes 

param eters can be computed.

4.2.3 Determining the Stokes parameters

The normalized Stokes param eters q and u are calculated using the formulas (3.9) and

(3.10), derived in Chapter 3:

The values for S i , S 2 and S 3 are obtained as follows: A ring around the center of the 

chosen circle with radius r  is considered. The inner radius of the ring is r in =  r —range 

and the outer radius is rout =  r + range.

The value for range is autom atically determined as follows: First the position 

(rm ax-, o:) on the circumference, where the intensity is maximum ( /max) is found. Then, 

starting from the center going towards (rmax, a) in radial direction the intensity profile 

is looked at. It is expected th a t the values will rise from background level to Imax and 

then fall back again. The two positions r\ and r<i where the intensity profile crosses the 

value 0.1 x Imax are determined. This chosen value is arbitrary, but provides a realistic 

way of utilizing the m ajority of collected photons without introducing the noise from 

pixels containing responses to  low light levels. The average of |r  — 7*11 and |r — 7*2 ! gives 

the value for range. The range can be adjusted manually in the analyze menu.
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Back to the ring. This ring is divided into 8 sectors of 45°, see Fig. 4.5.

F i g .  4 .5 . Ring divided into 8 equally sized sectors.

The determ ination of Si,  S 2 and S 3 as shown in Chapter 3 corresponds to:

5*1 =  A\ +  A2 +  Ei +  B2 +  Ci +  C2 +  D\ +  D2

52 =  A\ +  A2 +  B\ +  B2

53 =  B\ +  B2 +  Ci +  C2

Applying these integrations to Equations (3.9-11) allows q, u and p to be evaluated. 

To calculate the errors of g, u and p to their photon limit, the formulas derived in 

C hapter 3, 3.1.12-14 are used.

If the ring is not perfectly circular and the range is to small, a spurious sin(2a) 

polarisation signal is produced. A similar effect is produced by an error in determi

nation of the ring center, giving rise to a wrong modulation signal. These effects can 

be reduced by setting the range wide enough. The second effect is neglectable be

cause the accuracy of determining the position of the centers is estim ated to be ±1 

pixel. Compared to the size of the ring images of about 100 pixels in radius this is a 

small amount. Further, the pixels th a t might get lost because of a slightly displaced 

center are those a t the border of the ring, containing only few more photons than  the 

background.

(4.1)

(4.2)

(4.3)
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a) b) c)

F i g .  4 . 6 .  These three illustrations show in an exaggerated manner how a )  an elliptic 
ring may lead to a sin(2a) signal or b) how a misplacement of the center will distort the 
signal. This happens because some pixels are outside of the range and the pixels in the 
sectors are not symmetrically distributed. The ideal case is shown in c ) ,  a perfect circle 
correctly centered.

4.2.4 Plotting the intensity distribution along the perimeter of 

a selected circle

To dem onstrate how the recorded intensity varies with the angle ce, an intensity profile 

along the circumference can be plotted. This is achieved by scanning through pixels 

from the center of the circular image along various radius vectors with different angles a.

As the angular image is approached along such a radial scan, the recorded inten

sity will rise from the background level, achieve a maximum value near radius R  and 

then fall away to the background. The position ( R m a x )  of this maximum value is 

determined in the interval [RE flex]. If the angular image were perfectly circular, the 

position R m a x  would match the radius R , but perhaps because of telescope tracking 

irregularities, this is almost never the case. Figure 4.7 on page 36 shows an intensity 

profile in a radial direction.

Now, the intensity values of the pixels in the interval [Rm ax±  plotrange] are 

summed up and stored in an array. The pixels which are interrogated are determined 

by stepping through this radial interval with a step-size of 1 pixel and converting the 

polar coordinates of these points (r, a) to  their Cartesian positions (x,y).  For values 

of a = 0°, 90°, 180°, 270° the converted coordinates m atch exactly the positions on the 

pixel grid. Since the CCD chip is an array of square pixels, for intermediate values
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of a , the conversion provides a path along the radius which is not regular — the 

determined positions are floating point numbers and do not reflect points of the grid. 

By simply cutting off the decimal part they are converted to grid positions. More 

sophisticated interpolation schemes could be imagined. This simple method, however, 

produces smooth intensity profiles because the resolution of the CCD is very high and 

the image is spread somewhat in focus, giving a wider range.

This radial scanning is done for all angles a  starting  from 0° to 360° with steps of 

1°. The sums of the intensity values are stored together with the according angle in 

an array. To actually show the graph of 1(a ) , external software such as gnuplot can 

be used. Therefore the array is saved in an ASCII file. The param eter b in , th a t can 

be changed in the menu, determines the size of the bins. For example if b in  is set as 

6, then 360/b bins are stored, containing the average value of b neighbouring values 

respectively.

The figures on the following page show the ring image of a star made polarized to 

100% by placing a sheet polarizer prior to the telescope objective (Fig. 4.7). In Fig. 4.8 

the radial intensity distribution for an arbitrary angle a  is shown, together with the 

two intervals [R±  flex] and [Rm a x ±  p lo t range]. The final intensity profile along the 

circumference is displayed in Fig. 4.9, using a bin-size of 12°. It can be seen th a t the 

intensity varies with angle a  according to cos(2a) (Malus law, see page 3).
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Fig. 4 .7 . It is shown how 
the circle is scanned az- 
imuthally through all angles.

Fig. 4 .8 . Here a radial inten
sity distribution and the differ
ent ranges are shown. It can be 
seen that the position of R m a x  

is not always identical with R .
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Fig. 4 .9 . The intensity profile along the circumference of Fig. 4.7, the ring image of a 
100 %  polarized star, is shown. The intensity varies with angle a  according to cos(2a) 
(Malus law).
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The Polarimeter in practice

5.1 Tests in the Laboratory

In order to explore the feasibility of the polarimeter, trial experiments were set up in 

the laboratory. These allowed various optical m odulators to be tested and provided 

sample frames to allow the development of the software as the polarimeter neared its 

more final form.

5.1.1 The setup of the experiment

The basement laboratory at the observatory in Acre Road, Glasgow was used, this being 

a long room, allowing an artificial star to be established at one end with the polarim eter 

attached to a bench at the other a t a distance of approxim ately 10 metres. The ‘s ta r’ 

is simply an ordinary light bulb behind a diaphragm, both  mounted on a tripod, 

so th a t it could be aligned with the telescope. This arrangem ent guaranteed th a t 

experiments could be undertaken independent of the weather. There were, however, 

practical difficulties to overcome. The field of view of the telescope-CCD combination 

is small and it was difficult to ‘find’ the star. The m otor vibration also caused a large

37
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am ount of image bounce. The polariineter had to be fixed onto the bench with several 

clamps and additional heavy weights had to be placed on top of it to reduce the effect 

of vibration. Figure 5.1 shows a picture of the apparatus in the laboratory, with the 

weights on top of it.

The instrum ent had also been designed to use real stars at infinity, and adjustm ents 

were required to focus the laboratory artificial ‘s ta r’. To adjust the focus, the position 

of the transfer lens inside the box had to be set. Although mounted on an optical 

bench within the instrum ent, precise adjustm ent was very difficult. In retrospect, use 

of a gear rack instead of the optical bench would be a convenient remedy.

Fig. 5 .1 . The CCD-Polarimeter is shown as used in the experiments in the laboratory.

5.1.2 F irst light (laboratory)

The first test m odulator was a thick superachromatic half-waveplate, inserted into the 

rotatable cell, at an angle so th a t the light beam is deviated. Art additional polaroid
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was fixed just in front of the CCD camera. Now if the telescope receives light of 

a completely polarized star, the recorded image should show a cos(4a) m odulation 

(see Equation 3.18 on page 22) along the circumference of the ring image. After 

the telescope and the artificial star were aligned and the focus was adjusted, several 

exposures were acquired. Figure 5.2 on the following page shows an example. The four 

intensity peaks expected from the modulation along the circumference can clearly be 

seen.

Looking at the intensity profile along this circle reveals something interesting. The 

cos(4a) m odulation seems to have an overlaid cos(2a) modulation (see Fig. 5.3).

This can be explained by realizing th a t because the superachromatic half-waveplate 

was used at an inclined angle, it acted as a partial polarizer. The intensities of the 

reflected and refracted components behave according to the well known Fresnel laws. 

An unpolarized beam may be resolved into || and _L components and their transm it

ted intensities are not the same, resulting in a partial polarization. A m athem atical 

treatm ent is presented on page 41.
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Fig. 5 .2 . The image of a 100% polarized light source is shown, taken with the half- 
waveplate version of the CC'D-Polariineter.
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Fig. 5 .3 . The intensity distribution of Fig. 5.2 is shown. Apparently the expected 
cos(4«) modulation seems to have an overlaid cos(2o) modulation.
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5.1.3 M athematical derivation

To m athem atically describe the situation, it is assumed th a t a partial polarizer is a t

tached prior to the half-waveplate with its reference frame shifted by angle /? compared 

to the reference frame of the half-waveplate. In term s of matrices the setup would be 

the following:

S* =  [P] [R(—a)] [A] [R(—/?)] [ P ] ^  [R(a  +  /?)]• 5  (5.1)

To simplify the problem /3 is first assumed to be 0. For better readability the following 
abbreviations in the m atrix for the partial polarizer [P]# 2 (see Table A .l) will be 
made:

K+ = ( Ki + K 2) K -  =  {Kx - K 2) K l2 = 2{Kl K 2)^

I* K+ K_ 0 0

Q* = [P] [R(-a)] [A]
1 K_ K + 0 0
X

u* 2 0 0 k 12 0

V* 0 0 0 K \ 2

i* 1 0 0 0

Q* 1 0 1 0 0
= o[P][R(-«)lu* z 0 0 cos A sin A

v* 0 0 -  sin A cos A

1 0  0 0

0 cos(2a) sin(2a) 0

0 — sin(2a) cos(2a) 0

0 0 0 1

K+I  +  K -  (iQ cos(2a) +  U sin(2a)) 

K - I  + K+{Q cos{2a) + U sin(2a)) 

K \ 2(—Q sin(2a) -I- U cos(2a))

k 12v

Assuming no circular polarization (V = 0):

T 1 0 0 0 K +I +  K _ (Q cos(2a) +  U sin(2a))

Q*
=  i [p]

0 cos(—2a) sin(—2a) 0 K - I  +  K+(Q  cos(2a) -1- U sin(2a))

U* z 0 — sin(—2a) cos(—2a) 0 c o s ( A ) K i 2( - Q  sin(2a) +  U cos(2a))

V* 0 0 0 1 — sin(A).ftTi2 (—Q sin(2a) +  U cos(2a))
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To simplify the calculation, a reference axis can be chosen so th a t U is zero.

K + I  +  K - Q  cos(2a) 

cos(2a ) ( K - I  +  K+Q cos(2a)) -  sin(2o:)(cos(A)i;Ci2(—Q sin(2a)))

I* 1 1 0  0

Q* 1 1 1 0  0

u * -  4 0 0 0 0

V* 0 0 0 0

The recorded intensity will be:

I*{a) =  ^ [ k +I + K - Q  cos(2a) +  cos(2a) [ K - I  + K+Q  cos(2a)) — sin(2a)(cos(A).ftri2(—<2 sin(2a)))^

Since the half-waveplate is somewhat inclined, the light path  is longer affecting the 

value of A being slightly larger than 7r, such th a t cos A =  —(1 — |£|).

I*(a) = \  ( P + I  +  (K - Q  +  K - I Q )  cos(2a) +  K+Q cos2{2a) -  (1 -  \8\)KUQ sin2(2a))

W ith constants Cx =  K+I, C2 = K - Q  +  K - I Q ,

C3 =  K+Q, C4 = K 12Q( 1 -  \6\) :

I* (a) =  ^ -I- C2 cos(2a) +  Ci cos2 (2a) — C4 sin2 (2a) j

Application of standard trigonom etry leads to the following modulation:

= >  I* (a) =  i  ^A +  B  cos(2 o:) +  C3 cos(4o:)^ (5.2)

with

B — (C4 —

The record as shown in Fig. 5.3, however, shows th a t the predicted waveform is 

not an exact match. It can be made to do so by adding a phase to the harmonic as
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would ensue if j3 does not have zero value, as would happen if the principal axes of the 

waveplate and the partial polarizer do not coincide.

Because of this complication this m odulator was abandoned although in principal, 

a scheme could be designed to allow data  reduction. Another m odulator using a tilted 

glass plate (optical beam splitter) with a co-rotating polarizer was also tried in the 

laboratory (and on the telescope) but this was also abandoned because of disturbing 

ghost-images introduced by its coatings.

In the end the chosen m odulator was in the form of a th in  glass wedge (a laser 

anti-reflective device), but this was implemented a t the time when the polarim eter was 

transferred to the Cochno observatory.
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5.2 Real Stars

After several trials th a t mostly resulted in the insight th a t even more steel bars, screws 

and rubber is needed to reduce the persisting effect of vibration to an acceptable 

amount the system was finally ready, with the right glass-wedge, etc. All tha t was 

missing now, was a clear night.

On the evening/night of the 6th of April, 2000 we got our chance.

5.2.1 The objectives

It was planned to take several frames of an unpolarized star. The bright star a  Leo 

(HD87901), also referred to as Regulus, was therefore a suitable choice. It was measured 

by Behr [1959] and is essentially unpolarized.

The prim ary objective of taking frames of an unpolarized light source is to check the 

system for polarization introduced by the telescope/system itself. Ideally the intensity 

profile along the circumference of the circular image should be flat, indicating tha t 

there is no instrum ental polarization.

The secondary objective was to check if the squared pixels of the CCD chip are 

themselves sensitive to polarized light. Because the size of the pixels is small, being 

only a few times larger than the wavelength of light, some effects may be present and 

detectable. One notion is th a t the pixels might be more sensitive to light polarized 

in direction along the diagonal of the pixels than to light polarized parallel to the 

pixel-edges. If such effects are present, the intensity profile should show a cos(4a) 

m odulation because of the symmetry of the problem. Higher harmonics may also 

occur. If for example the direction of polarization is a t an angle so th a t the ‘slice’ 

across the pixel has the length of an integer multiple of the wavelength, resonance 

effects are conceivable, similar to those occurring with diffraction gratings in the form 

of W ood’s anomalies (see [Breckinridge, 1974]). This would be more apparent if the
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wavelength pass band is sufficiently small. The current setup of the CCD-Polarimeter 

is an ideal experiment to check for this. Having a beam of unpolarized light entering 

the telescope, the rotating analyzer tube will polarize this light and produce a circular 

image on the CCD chip, with all possible polarization angles involved.

Further a series of frames will also be taken with a sheet polarizer placed in front of 

the telescope lens. The object of doing this is to check the system for its modulation 

efficiency. It also produces ‘nice’ pictures and intensity profiles according to Malus’ 

law. Further these frames can be used to test the analyze-software.

Another interesting target would be to take some exposures of a star with known 

degree of polarization, to compare the results with already published values.

5.2.2 D ata acquisition

The prototype CCD-Polarimeter was mounted onto the Grubb-Parsons 20-inch tele

scope in Cochno. This outpost of the Glasgow University Observatory is situated in the 

Kilpatrick Hills a t an elevation of about 150m (500 ft), just far away enough to avoid 

Glasgow’s light pollution. The 20-inch telescope serves merely to provide a platform 

for guiding and tracking of the prototype.

An IBM compatible laptop 486 computer, running under OS Win3.11, was con

nected to  the HX-516 CCD camera. The software package PIX _H 5 provided with 

the CCD camera was used to control the camera and store the data  on the hard disk. 

“W hite” light was used for all exposures.

Flat fields

First, five flat-fields were acquired on the twilight sky at dusk. They were taken in 

exactly the same way as later the targets, with rotating analyzer tube. The integration
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time was 120 seconds for each frame. Three dark frames with the same exposure time 

were also taken.

Regulus

As soon as it was dark, the telescope was pointed towards the bright star a  Leo. First 

a dark frame of 60 seconds was acquired. Then the motor was switched on and ten 

exposures were taken with an integration time of 60 seconds. This was done using the 

PIX _H 5 automode.

Artificially 100% polarized a  Leo

A sheet polarizer was attached to the objective of the telescope, to  artificially polarize 

the stellar light to 100%. Again two dark frames were taken first then five exposures 

of 120 seconds integration time respectively were taken via automode.

5.2.3 Data reduction

The first step on the way to calibrated frames is to convert the files to the FITS stan

dard so th a t they can be processed further. Therefore the especially w ritten program 

f  itc o n v  is used. This is necessary because the images saved by PIX _H 5 fail in com

plying to the FITS standard (see C hapter 4.1). After the conversion, the raw images 

required calibration for CCD specific errors (see Section 2.3 on page 14). Several steps 

are required:

1) Correcting for B ias and Therm al noise

The raw images have to be corrected for bias and therm al noise. Therefore the dark 

frames th a t belong together are averaged. These averaged dark frames are then sub

tracted of both, the da ta  frames and flat fields respectively.
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2) M a s te r  fla t field  (M F F )

An M FF must be created. Therefore the dark subtracted flat fields are averaged and 

normalized. Unfortunately only three of the five fiat fields could be used because the 

twilight sky was already too dark for the last two frames. According to Poisson statis

tics, the MFF has a relative uncertainty of about 0.5% for each pixel. Using more 

flat fields would reduce this contribution to the noise. For good statistical accuracy 

it would be preferable to have at least 20 frames. Fig. 5.4 shows the MFF for the 

current observations. Now, every data  frame is divided by the M FF to correct for the 

non-uniformity of pixel sensitivity.

flat_flat.fits_0
(pixels)

5 0 0  -

4 0 0  -

3 0 0  —

2 0 0  -

1 0 0  -

0 -

0 2 0 0  4 0 0  6 0 0
(pixels)

0 . 8  0 . 9  1 1 . 1  1 . 2
(counts)

flat_flat.fits_0 Colorbar

F i g .  5 . 4 .  The m aster flat field of the current observation is shown. It is noticeable that 
especially in the lower right corner of the pixel array the sensitivity is much smaller than 
in average.
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For calibrating the raw frames, the image processing engine e c l ip s e  [Devillard, 

1997] and the FITS utilities f to o l s  provided by HEASARC have been used. Several 

C-Shell scripts were written to incorporate and autom ate the reduction procedures.

5.2.4 Analyzing the frames

Now the calibrated frames can be analyzed. The specially w ritten software analyze  

(see C hapter 4) was used to determine the normalized Stokes Param eters q, u, the 

degree of polarization p and the intensity profiles along the circumference.

R egulus

The results for the frames acquired directly of the star a  Leo are as follows:

T a b l e  5.1: R e s u l t s  o f  a  L e o

Frame obs. time q Aq u A u P A p

1 21:44:52 0.0064 0.0002 -0.0003 0.0002 0.0064 0.0002
2 21:46:03 0.0100 0.0002 0.0042 0.0002 0.0109 0.0002
3 21:47:26 0.0095 0.0002 0.0011 0.0002 0.0096 0.0002
4 21:48:56 0.0104 0.0002 0.0039 0.0002 0.0111 0.0002
5 21:50:29 0.0084 0.0002 0.0047 0.0002 0.0097 0.0002
6 21:52:03 0.0083 0.0002 0.0009 0.0002 0.0083 0.0002
7 21:53:39 0.0092 0.0002 0.0035 0.0002 0.0098 0.0002

8 21:55:14 0.0115 0.0002 0.0023 0.0002 0.0118 0.0002

9 21:56:50 0.0068 0.0002 0.0027 0.0002 0.0073 0.0002
10 21:58:26 0.0091 0.0002 0.0009 0.0002 0.0091 0.0002
mean 0.0090 0.0015 0.0024 0.0016 0.0094 0.0016

The values for q,u  and p  vary from frame to frame with a dispersion significantly 

greater than expected by the estim ation based on photon counting statistics. This
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becomes even more evident if the points (g, u) and p  are plotted against frame number. 

This is shown in Fig. 5.5 and Fig. 5.6 on the following page. It is noticeable th a t 

most of the points are in the first quadrant. Also there seems to be a persistent 

degree of polarization, with the mean value of p  a t 0.0094 ±  0.0016. The standard 

error of the real repeated measurements is considerably higher than the error due to 

photon statistics of the individual measurements. O ther noises are obviously present. 

The read-out noise (RON) is according to  Starlight-Xpress approximately 15 electrons 

RMS. A simple estimation, however, shows th a t the effect of the RON is largely smaller 

than the photon noise and is not responsible for the high scatter. Assume a CCD-pixel 

is holding 10000 photon-electrons. The relative error due to photon counting statistics 

would be ±1% , the relative error due to the RON is only ±0.2%; the la tter can therefore 

be treated as insignificant.

W here is the instrum ental polarization com ing from?

By looking at the data  two questions arise:

1) Is there really a non-zero polarization and if yes, where is it coming from?

2) Why do the values vary from frame to frame to such an extent?

To check for this, it is sensible to have a look at the actual da ta  of the frames 

tha t were used to calculate the normalized Stokes parameters. Therefore it is useful 

to look at the intensity profile along the circumference of the circles. Figure 5.7 shows 

the profile of frame number 1. It may serve as an example for the others because it 

turned out th a t they all show similar features. It is noticeable th a t the profile shows 

neither a cos(2a) modulation nor a straight line, but instead the intensity is varying 

asymmetrically with a minimum at around 100°. The dominant m odulation is one 

of cos(a), directly related to the mechanical rotation of the modulator. There must 

also be a small quantity of the harmonic cos(2a) present which is detected as the
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Fig. 5.5. q — u plot of the test series with a  Leo. The individual measurements are the 
points with small error bars representing the estimated photon noise. The point with 
the large error bars is the mean value.
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Fig. 5.6. The values for p of the test series with a  Leo are plotted against frame number.
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polarization being present. Small fluctuations of the intensity of ~5%  over an interval 

of a few degrees are noticeable but do not show a repeated pattern . If the pixels are 

polarizationally sensitive to polarized light the effect is less than 5%. Probably these 

fluctuations are due to instrum ental noise

20000

15000

10000

5000

00 60 120 300180 240 360

angle a

F i g .  5 . 7 .  Example for an intensity profile along the circular image of an unpolarized 
star.

There may be several possible reasons for this unfortunate profile. One possibility 

is th a t the motor did not run in a uniform way. There was a hint of this by listening 

to the m otor’s noise during observation. Maybe the tube rotated a little bit faster on a 

part of its revolution than  on the average, resulting in an uneven intensity distribution 

as shown in Fig 5.7.

Another reason may be inaccurate flat fielding. Since only three frames could be 

used to generate the M FF, the statistical value of it is very poor. It could be tha t the 

sensitivity of the pixels is varying over the area where the circle is imaged and th a t the 

flat fielding was too poor to calibrate the frames properly.
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It might be also th a t the flat fields have not been illuminated uniformly. This 

would introduce artificial fluctuations of the intensity values th a t are not spatially 

random — in contrary to the fluctuations due to photon counting statistics. These 

noise patterns would certainly have relevance to the intensity distribution of the ring 

and could introduce a spurious polarization signal.

Imprecise alignment of the telescope could have led to the light being spread un

evenly along the circle. Parts of the resulting ring could be thicker than others. In 

this case and if not the maximum thickness of the ring is considered for the analysis, 

photons will be ‘lost’. This may also have contributed to the poor profiles.

Having the profile in mind, the calculated degrees of polarization can be explained. 

The software does not care whether or not the profile shows a cos(2a) m odulation — 

it simply applies its algorithm (see Section 4.2.3) and performs the calculations. The 

algorithm is designed to concentrate on the cos(2o;) m odulation and filter out the odd 

harmonics including the fundamental. But in these profiles, the fundamental harmonic 

is not a clear cos(o;) and in this way polluting the results. This problem could be 

avoided by either changing the algorithm, for example fitting a cos(2o;) curve to the 

profile and use this fit to calculate the normalized Stokes parameters, or adding a kind 

of quality check routine, th a t assesses the profile for symmetry and adjusts the errors 

where appropriate.

But since the goal is a high accuracy polarimeter, more effort needs to be applied 

to provide a uniform revolution of the analyzer tube w ithout vibration. As mentioned 

earlier a M FF of higher quality would be desirable since it cannot be ruled out th a t 

incorrect flat fielding caused the unseemly intensity profile.
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5.2.5 Regulus with polaroid

The results for the series of frames acquired with a sheet polarizer in front of the 

telescope are as follows:

T a b l e  5.2: R e s u l t s  o f  a r t i f i c i a l l y  100% p o l a r i z e d  a  L e o

Frame obs. time q A q u A u P A p

1 22:08:40 0.3455 0.0003 0.9193 0.0005 0.9821 0.0005
2 22:10:36 0.3671 0.0003 0.9124 0.0005 0.9835 0.0005
3 22:12:52 0.3733 0.0003 0.8886 0.0005 0.9638 0.0004

4 22:15:19 0.3506 0.0003 0.8685 0.0004 0.9366 0.0004

5 22:17:51 0.3489 0.0003 0.8293 0.0004 0.8997 0.0004
mean 0.36 0.01 0.88 0.03 0.95 0.02

In Fig. 5.8 the values o fp  are plotted against frame number. Looking at the results, 

especially those for p , it is evident th a t there is a trend with the values falling from 

frame to frame.

Only the first two values fairly m atch around 98.3 ±0.1% — a little lower than the 

expected 100%. Unprecise subtraction of the background is probably the reason for 

this. It may also be a sign th a t the sheet polaroid is not 100% efficient over the whole 

spectrum. Measurements with different colour filters would be interesting, to examine 

the efficiency of the polaroid for different wavelengths.

But why are the values of p decreasing? One possibility to explain the continuous 

fall in the value of p is, th a t the background noise was steadily increasing during the 

run and th a t no allowance was made for this. A perfect intensity profile of the ring 

image of a 100% polarized light source should have a cos(2o:) form and go down to zero 

at the minima. If the background noise is not accurately corrected, the profile does
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Fig. 5 .8 . 100 % polarized star — p plotted against frame number.

not reach zero in its minima. Hence the measured degree of polarization will be less 

than 100%.

To look for this, it might be interesting to plot the mean value of the data  frames 

against frame number. If the background noise is rising for whatever reason, the mean 

value should rise as well (see Fig. 5.9 on the next page).

Fig. 5.9 clearly shows th a t a rising background level is the reason for the falling 

values of p. But what gave rise to the increasing background? One reason could be 

th a t the CCD chip was getting warmer during the run, thus increasing the therm al 

noise. Since the dark frames have only been taken before the series of exposures, they 

would not reflect the increased therm al noise of the later frames.

Another more spectacular and uncommon reason could be the following: Even from 

the dome environment it was obvious th a t the brightness of the sky was undergoing 

strange fluctuations. Using the automode to acquire the exposures, the “crew” left the 

telescope dome to have a look at the night sky. Instead of encountering the starry sky,

p.withpol

Frame number
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Fig. 5.9. 100 % polarized star — mean intensity value of the frame taken over its 
complete area is plotted against frame number. Note that the scale of the ordinate is 
inverted so that the trend is more readily compared with Fig. 5.8. The points follow 
exactly the same trend as the values for p in Fig. 5.8.

decorated with a few clouds, a beautiful apparition of an Aurora Borealis had com

menced and within minutes painted the sky in its famous colours of excited elements. 

Some photographic pictures have been taken by the author and can be found in the 

Internet [Neumayer, 2000]. It is almost certain th a t the display of the Northern Light 

contributed significantly to the rise of the background of the exposures, but to rule 

out the theory of the chip getting warmer, the mean value of the frames taken without 

polarizer were checked. They show no signs of the chip getting significantly warmer 

during the series of exposures.

Unfortunately no exposures could be taken of a star with known degree of polar

ization, because the aurora would certainly disturb the quality of the frames. So the 

rest of the night was spent watching the natural spectacle.

pixel_mean_withpol

Frame number
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Discussion and Conclusion

A new design for a CCD-Polarimeter has been presented. Based on Treanor’s “Ring- 

Polarim eter” it combines the benefits of a m odulating device, as usually employed in 

photo electric devices, together with the advantages of a CCD-Chip as imaging device.

In the final version, a rotating polaroid was used to modulate the light and a glass 

wedge was used to deviate the beam on a circle. M athem atical treatm ent of the setup 

shows th a t the rotating polaroid should modulate the intensity of incoming light by 

cos(2o;). A formalism is presented to calculate the normalized Stokes param eters from 

the received signal.

The new design carried some challenges for the data  reduction. Because of the 

unique images, circles instead of point-like stars, no standard software could be used 

for the data  reduction process. Special algorithms have been developed to locate these 

circles on the image array and to extract the polarimetric information, encoded as an 

intensity variation along the circumference.

Although the presented algorithms worked fine, additional functions to analyze the 

data  would be useful. A weak point of the algorithm is th a t it can not determine 

the center of 100% polarized rings with their minima lying either on the same row or 

column. Additional scans along the diagonals would help to circumvent this problem
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and would enhance the accuracy of the center position. Further it would allow a better 

judgement of the ring’s shape. Elliptical rings for example would hint on misalignment 

of the telescope setup.

A bread-board designed prototype has been built, mainly of second hand parts. 

Tests in both the laboratory and at the observatory have been carried out. During 

these tests several weaknesses of the design emerged. The ‘transfer-lens’ incorporated 

to  reimage the focus on the CCD chip and mounted on an optical bench inside the 

box was difficult to access and hard to adjust in a precise way. Mounting of the 

lens on a gear rack, ideally accessible from outside the box, would greatly simplify 

the focusing process. But the main problems affecting all the tests and development 

were with the motor. V ibrations were generated which could only be reduced to an 

acceptable am ount by using additional steel bars and damping m aterial to stabilize the 

system. Mounting the motor on the base-plate and independent of the instrument-box 

could further improve the stability of the CCD-Polarimeter. Another problem was 

th a t the analyzer tube was probably not rotating in a uniform way. Hints th a t this 

was happening were suggested by variations in tone in the audible noise. Friction in 

the gear wheels, the ball-race and the quality of the motor might be reasons for this. It 

would be interesting to monitor the rotation by means of a tachometer. The ideal drive 

for the analyzer-cell would be the use of a hollow-shafted motor with the m odulating 

and deviating optics housed inside.

After the period of testing and improving of the CCD-Polarimeter, the unpolarized 

star a  Leo was measured. Ten exposures were taken and the normalized Stokes param 

eters were calculated. The mean value for p was 0.009 ±0.002, the ascribed uncertainty 

giving a preliminary indicator of the potential of the method for accurate bright star 

polarimetry. It may be noted th a t the error is larger than anticipated and further 

experiments should be able to identify the problems and allow them  to be removed. 

However, this apparent degree of polarization may not be ascribed to a  Leo; a closer
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look to the obtained da ta  revealed th a t a spurious signal dominated the records. Again 

further improvements of the instrum ent would be necessary.

The frames of a  Leo were also interesting as they allow an investigation as to 

whether the pixels are themselves sensitive to polarized light. As the m odulator spins, 

the annulus on to which the 100% polarized radiation falls on the CCD receives a 

direction of vibration which depends on the phase of the rotation. The intensity profiles 

along the circumferences of the obtained circles showed small fluctuations ~ < 5%  of the 

intensity over small sections. These patterns of fluctuations, however, did not repeat 

with a cos (4a) m odulation and cannot be ascribed to the pixels being polarizationally 

sensitive. The fluctuations may well arise from inadequate calibration by the flat- 

fielding process. It appears likely th a t any polarizational sensitivity of the CCD pixels 

is less than 1%.

Several exposures of a  Leo were taken with a sheet polarizer attached to the tele

scope lens. Only the first two frames could be used for the calculation of p, the later 

exposures were disturbed by fluctuations in sky background caused by Northern Lights. 

A degree of polarization of 98.3 ±0.1% was calculated — a little lower than the ex

pected 100%. This could signify th a t the polaroid is not 100% efficient over the spectral 

range involved with the experiments. It might also result from unprecise subtraction 

of the background.

Because of bad weather conditions and other tim e constraints no further observa

tions were carried out. Measurements of stars with known degree of polarization would 

be desirable. This would allow to compare the results of the observation with already 

published values and hence would be a test for the accuracy of the instrument. Also it 

would be interesting to use the instrum ent as a field-polarimeter. W ith an appropri

ate deviation angle, the bright stars of the Pleiades, for example, could be measured 

simultaneously.



6. DISCUSSION AND CONCLUSION 59

The tests with the CCD-Polarimeter have shown th a t once the mechanical prob

lems are overcome, this design represents a potential technique to measure the Stokes 

param eters of stellar light. Theoretically an accuracy for p of ± 7  x 10-5 could be 

achieved with one single exposure.

The ultim ate design would have a hollow-shafted m otor as drive for the modulator. 

A plane-parallel, anti reflective glass plate with adjustable inclination angle would be 

ideal to deviate the light. It would allow choice of the appropriate deviation angle, 

whether a large field is to be studied simultaneously, or single stars are to be measured 

with high precision.

R ather than being stand-alone equipment, the module could also be designed for 

attachm ent to a conventional telescope allowing fainter stars or star-fields to be inves

tigated.



Appendix A 

Theoretical Background

This chapter aims to give a brief introduction into the theory of polarized light and its 

measurement. The topics will be restricted to those necessary for the understanding of 

the presented polarimeter. Most of the information is derived from Clarke and Grainger 

[1971],

A .l Mathematical description of polarized light

To m athem atically describe partially polarized light, it is convenient to split it into a 

completely polarized and an unpolarized component.

The polarized component of the beam of light can then be resolved again into its 

components along the x- and y- axis of a Cartesian frame:

E x =  E xo cos (cut +  <y

E y  =  E y 0 C O S (u)t +  Sy)

with E Xq , E yo as the amplitudes and 8 Xl 8 y the phases of the x  and y vibrations. The 

angular frequency is u.
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The equation of the polarization ellipse is obtained by eliminating t from the two 

equations and can be w ritten as:

E j  +  _  2ExEy cos(6y -  6,) =  ^  ^  (A 1}

&X0 tiyo ^xo^yo

A. 1.1 The Stokes Parameters

A beam of partially polarized light can be described by the Stokes Param eter. In 

general the 4 Stokes param eter1 I ,Q ,U ,V  are given by

I  = E X 0 2 +  EyQ2 

Q =  E X o "  —  Ey0~

U — QEx^EyQ cos(Sy 6 X)

V  2E XoEy0 sin(<5y Sx)

Their relation to the geometric description of the polarization ellipse is as follows.

In ten s ity  1 = 1

A • UA zim u th  — = tan  2£

Shape ^  -  2V
I  1 +  T] 2

Handedness sign o f  V

Here, f  denotes the angle between the x-axis and the ellipse m ajor axis. The ratio 

between the minor and the m ajor axes is given by 77.

1Four parameters are always required to describe the polarization ellipse — corresponding physi
cally to its size, shape, orientation of the major axis and sense of rotation of the electric vector
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For unpolarized light it is easy to see, th a t the Q, U , and V  parameters are all 

zero. Although over a short timescale involving only few cycles of the wave, a definite 

polarization ellipse exists, the Q, U, and V  values of these instantaneous ellipses are 

symmetrically distributed about zero. And over any normal experimental time their 

tim e average will be zero. The two components of our partially polarized beam of light 

can then be represented by the following Stokes vectors:

Unpolarized component: Ip,  0, 0,0

Polarized component: Ip, Q , U, V.

The degree of polarization is given by:

_
P ~  I u + I p  

Or in terms of normalized Stokes parameters:

p = y /  q2 +  u 2 +  v 2

Q  U  V  A T T  T
with q — ~  u =  Y  V = Y  a =  Ip +  lu 

A. 1.2 Optical elements

Optical elements such as a retarder can be represented by matrices. The effect of the 

optical element on an beam of light can be simply calculated by multiplying the input 

Stokes vector by this element m atrix. This formalism is known as the Mueller calculus. 

The initial values of the Stokes vector are related to a reference frame and if an optical 

element is set so th a t its axes are at an angle a  to this reference frame, the Stokes 

vector has to be converted to the axes of the element, by multiplying the vector by a 

rotation matrix. Table A .l on the following page shows the m atrix representation for 

several optical elements.
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T a b l e  A .l: M a t r ix  n o t a t io n  o f  o p t i c a l  e l e m e n t s

63

Operation M atrix

Partial
polarizer2

[ P ] * „ =  5

\ k x + k 2) (k 1 - k 2) 0 0
( K 1 - K 2) (K! + K 2) 0 0 

0 0 2{K 1 K 2) 1> 0 

0 0 0 2 ( K iK 2)*

Perfect
polarizer

[P ]=  1

1 1 0  0 
1 1 0  0 
0 0 0 0 
0 0 0 0

Pure
retarder3

[A] =

' 1 0  0 o '  
0 1 0  0
0 0 cos A sin A 
0 0 — sin A cos A_

R otation4 [R(°0] =

' 1 0  0 O'
0 cos(2cr) sin(2a) 0 
0 — sin(2a) cos(2o;) 0 
0 0 0 1.

2K i t2 are the intensity transmission coefficient of the element to light perfectly polarized in the 
orthogonal directions 1 and 2. (It is usual to choose these directions such that \K\ — K 2\ is maximized.)

3 A is the differential retardation or retardance
4The rotation angle a  is measured anticlockwise from the x-axis.
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ANALYSE - the source code

In this section, parts of the sourcecode of the analyzing program are shown, particulary 

those th a t have been described in C hapter 4. Although the programing style maybe in

consistent and not very beautiful, they may serve as examples for the interested reader. 

The routines use several global variables like the param eters ra n g e  and flex or the 

table cnt th a t contains the positions and radii of the circles. They are defined as follows:

/ /  s t r u c t u r e s  
s t r u c t  p e a k s {

i n t  n ; / /  #  of e n t r i e s
f l o a t  p [ cmax ] , r [ cmax ] ;

};

s t r u c t  c e n t e r f  
i n t  n ;
f l o a t  x , y , rx , ry ;

};
/ /  g l oba l  v a r i a b l e s  
i n t  X = 5 0 0 , Y = 6 6 0 ;  
i n t  x = X , y = Y , a v e r a g e  =0 ;  
i n t  d = 8 ,  r a n g e = 5 ,  bi n = 1 ,  f l e x  = 1 3 ;  
f l o a t  mu l t  =  1. 2,  r m u l t  = 0 . 1 ;  
c h a r  * f i l e n a m e  ; 
i n t  p r o f i l e  [ 3 6 0 ] ,  e n t r i e s  [ 3 6 0 ] ;  
i n t  n u m b e r C e n t e r s  = 0 ;

/ /  X  rows,  Y columns  

/ /  par ame t e r s

/ /  #  ° f  cent e r s  found

64
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cent er  c n t [ c m a x ] ; / /  Table of  cent e r s

The main routine provides an additional array, int v[500][660], th a t will contain the 

intensity values of the image. The image in FITS format will be loaded by the load  

routine with the usage of the CFITSIO library:

i n t  l o a d ( c h a r  * f i l e  , i n t  v [ ] [ Y ] )

{
i n t  s = 0 ;  
i n t  * a n y n u I ;
l o n g  f i r s t e l  =  l , n e l e m e n t s  , n a x e s [ 2 ]  =  { X, Y} ;  
c h a r  f i I e f i t  [80] =  "" ; 
i n t  * n u I v a  I ; 
f i t s f i l e  * f p t r ;
p r i n t f ( "  r e a d i n g  f i l e :  % s " . f i l e ) ;
/ /  CFITSIO ROUTINE
f f o p e n  ( & f p t r  , f i l e ,  READONLY,& s );
n e l e m e n t s = n a x e s  [ 0 ] *  n a x e s  [1]  ;
i f  ( f i t s _ r e a d _ i m g ( f p t r  , TI NT,  f i r s t e l  , n e l e m e n t s  , n u l v a l  , v , a n y n u I  , & s ))  

e x i t  ( 0 ) ;  
f f c I o s  ( f p t  r , &s );  
f i t s _ r e p o r t _ e r r o r ( s t d e r r  , s ) ;  
p r i n t f ( "  s u c c e s s f u l ! \ n " ) ;  
r e t u r n ( 0 ) ;

}

Probably the most challenging part of the program was the finding of the circles 

in the data  array. This is done by the following routines. The routine scan co l is not 

shown since it is essentially the same as scanrow.

i n t  scan ( i n t  v [] [Y] . c e n t e r  * c n t )
{ _

i n t  r , i , j , k , s , c ount =0;  
f l o a t  rc , rr ;
i n t  base=abs  ( i n t  ( a v e r a g e * m u l t ) ) ;  
peaks * r o w = n e w  peaks;  
peaks * c o l = n e w  peaks;
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/ /  i n i t  the t ab l e  of c e n t e r s  cnt  
f o r ( i =0 ; i <cmax ; i ++)

{ cnt [ i ] . n=0; c n t [ i ] . x  =  0 ; c n t [ i ] . r x  =0; cnt [ i ] . y =0; cnt [ i ] . ry =0;}

c o u t  < <  " s c a n n i n g  wi t h  b a s e  " < <  b a s e  < <  " . . . "  
f o r  ( r =0 ;  r<y ; r + + )

{
s = s c a n r o w  ( r , b a s e  , row , v ) ;  
i f  ( ( r o w - > n ) >  =  1 ) {

f o r  ( j =0 ;  j < r o w - > n  ; j + + ) {  
r r = r o w—> r  [ j ] ;
s c a n c o l  ( i n t  ( r o w—>p [  j ] ) ,  b a s e , c o l  , v ) ;  
f o r  ( k =  0 ; k < ( c o l — >n );  k +  +  ) { 

r c = c o  I—> r  [ k ] ;
i f  ((  c o l - > p  [ k ] > =  ( f l o a t ) r - 0 . 5 )

& & ( c o l - > p  [ k ] <  =  ( f l o a t ) r + 0 . 5 ) ) {  
i f  ((  r c>=r r - F<V\ / ) &&( r c<=r r +RW) ) { 

i f  ( (  c o l —>p [ k ] > =  c n t  [ c o u n t ]  . x +  1)
| | ( c o  I— >p [ k ] < c n t [ c o u n t ] . x  — 1))

{ p r i n t f  ( " . " ) ; c o u n t +  +  ;} 
c n t  [ c o u n t ] .  n + + ; c n t  [ cou nt  ] . x + = c o  I — 
c n t [ c o u n t ] .  y+=r ow—>p [j  ]; c n t [ c o u n t

} } } } } }  
f o r  ( i =1; i < =c o u  nt  ; i +  +  ){

< <  endl ;

/ /  Scan row r.
/ /  More than 1 c e n t e r ?  
/ /  Check every  column 
/ /  t ha t  goes through 
/ /  a c e n t e r .
/ /  Centers  found again?

/ /  Center  on row r?

/ /  the r a d i i  match?
/ /  Al ready in t a b l e ?
/ /  Add and count  them 
/ /  f o r  averaging . 

> p [ k ] ; c n t [ c o u n t ] .  rx+=rc;
] . ry+=row—>r [ j ] ;

cnt [ 
cnt [ 
cnt [ 
cnt [

] . x / = c n t [ i ]■n ;
]. rx /=cnt [ i ] . n ; 
] . y / = c n t [ i ] . n ;
]. ry /=cnt [ i ] . n ;

/ /  Averaging
/ /  the mul t i p l e  counted
/ /  c e n t e r s  .

}
pri ntCenters  (count  , cnt ) ; 
d e l e t e  row; 
d e l e t e  col ; 
r e t u r n ( c o u n t );

}
i n t  s c a n r o w ( i n t  r o w , i n t  b a s e , s t r u c t  peaks  * n e u r . i n t  v [ ] [ Y ] )  

{ _

i n t  count=0,  i , iold =0,j  ; 
neur—>n=0;

f o r  ( i=d ; i<x—d ; i =  i ++)
{ _

i f  ( v [ i ] [ row]> b a se )

{ . . .f o r  ( j =1; j<=d ; j + + )  / / c h e c k i n g  i f  d p o i n t s  on l e f t  & r i gh t  are lower
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i f  (( v [ i—j ] [ row]<v [ i ] [ row])&&( v [ i ] [ row]>v [ i+j  ] [ row ] ) )  

e l s e  br e ak;

}
i f  ( j = d  +  l )  / /  PEAK bei  i ! ! !

{
i f  ( c o u n t > 0 )

{
n e u r —>p [ c o u n t  —1] =  ( f l o a t ) (  i +  i o l d  ) / 2 ;
/ / p r i n t f  ( "Peak bei  %f \ n" , neur —>x);  
n e u r —>r  [ c o u n t  —l] =  ( f l o a t ) a b s (  i — i o l d  ) / 2 ;  
neu  r—> n = c o u  n t ; 
i f  ( c o u n t = c m a x )

{ p r i n t f ( " \ n  CMAX e r r e  i c h t \ n " ) ;  break ;}

}
i o l d  =  i ; 
cou n t + + ;

}
}

}
r e t u r n ( 0 ) ;

}

Once the circles are found, they can be analyzed. Therefore an intensity profile 

along their circumferences is generated. Two different methods have been applied, 

both consider a ring of a certain thickness. The first method is used to plot a profile 

(see Section 4.2.4), the second to determin the normalized Stokes param eters (see Sec

tion 4.2.3).

l o n g  i n t  f i 11 p r o f  i I e ( i n t  c i r c l e . i n t  v [ ] [ Y ] , i n t  p a r a m)

{
l o n g  i n t  p i x e l c o u  nt =0;
d o u b l e  q = 0 , d q = 0 , u = 0 , d u = 0 ,  pi , p = 0 , d p = 0 ;
i n t  a l p h a ;
i n t  m=0 ,  i , j , c , cc ,w, a v = 0 ,  r a d  i us  = 0 ,  r ad =0 ,  r a dma x  =  0;
i n t  I b = 0 ,  u b = 0 , d b = 0 ,  rb = 0 ;  / / 1 e f t  , u pppe r , down & r i gh t  bound
/ /  f l o a t  r = 0 ,a ,b  ;
i n t  r = 0 , a  , b ;
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r a d i u s  =  i n t ( ( c n t [ c i r c l e ] .  r x + c n t [ c i r c l e ] .  r y ) / 2 ) ;  
i n i t p r o f ( )  ;

s w i t c h  ( p a r a m )

{
c a s e  1:  / /  r a d i a l  me t ho d  

f o r  ( w = 0 ; w< 3 6 0 ; w+ + ) {  
m=0;
f o r  ( c c = - f  I e x  ; c c < = f  I e x  ; c c + + ) {

i =i  n t  ( (  r a d i u s + c c ) * s i n  ( ( ( 2*  M_PI )  / 3 6 0 )  *w))+ i n t ( c n t [ c i r c l e  ] .  x );  
j = i n t ( (  r a d i u s + c c ) * c o s (  ( ( 2  * M_PI )  / 3 6 0 )  *w)) +  i n t ( c n t [ c i r c l e ] . y ) ;  
i f  ( v [ j ] [ ■ ] >m) {m=v [ j  ] [  i ];  r a d m a x = r a d i u s + c c ; }

}
f o r  ( c=—r a n g e  ; c < = r a n g e  ; c + + ) {  

r a d = r a d m a x + c  ;
i = i n t ( r a d * s i n  ( ( ( 2 * M_ P I )  / 3 6 0 ) * w ) ) +  i n t ( c n t [ c i r c l e  ] . x );  
j = i n t ( r a d * c o s ( ( (  2 *M_PI )  / 3 6 0 )  * w) ) +  i n t ( c n t [ c i r c l e  ].  y );  
p r o f i l e  [ w] +=v [ j ] [ i ] ; 
p i x e l c o u n t + + ;

}
}
b r e a k  ;

c a s e  2 : / /  s e c t o r  me t ho d
lb =  i n t ( c n t [ c i r c l e ] . x — r a d i u s  —r a n g e ) ;  
r b = i n t ( c n t [ c i r c l e ] . x + r a d i u s + r a n g e ) ;  
u b = i n t ( c n t [ c i r c l e  ] . y— r a d i u s  — r a n g e ); 
d b = i n t ( c n t [  c i r c l e ] . y + r a d i u s  +  r a n g e ) ;  
f  o r ( i =  I b ; i < = r  b ; i + + )  

f  o r ( j =u  b ; j <=d  b ; j + + )

{
a =  (i —i n t ( c n t [ c i r c l e ] . x ) )  ; 
b =  (j  — i n t ( c n t [ c i r c l e  ] . y ) )  ; 
r = i n t ( s q r t (  pow(  a ,2)  - f pow(  b , 2 ) ) ) ;  
i f  ((  r > =  r a d i u s  — r a n g e )

r <=r  a d i u s + r a n g e ) ) {  
a l p h a = i n t ( ( 3 6 0  /  ( 2* M_PI  ) ) * ( a t a n 2 ( b ,  a ) + M _ P I ) ) ;  
p r o f i l e  [ a l p h a ]  =  v [ j  ][  i ]  +  p r o f  i I e [ a l p h a  ] ; 
p i x e l c o u  n t + + ;

}
}
b r e a k  ; 

d e f a u l t :
p r i n t f ( " D E F A U L T \ n " );  
b r e a k ;
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}
r e t ur n( p i x e l c o unt  );

}

The following routine calculates the normalized Stokes param eters and the esti

m ated errors due to photon counting statistics:

i n t  d e t p o l ( i n t  c i r c l e . i n t  v [ ] [ Y ] )

{
l o n g  i n t  I n , s i  , s2 , p i xe I  c o u  n t  =0;  
d o u b l e  q = 0 , d q = 0 , u = 0 , d u = 0 ,  pi , p = 0 , d p = 0 ;  
d o u b l e  G =  0 . 75 ;  
i n t  pa r am =1 ;

c o u t  < <  " R a d i a l  ( 1 )  or  S e c t o r  ( 2 )  m e t h o d ? " ;  
c i n  > >  pa r am ;

p i x e l c o u n t = f i  I I p r o f i  I e ( c i r c l e  , v , p a r a m ) ;

I n=s um ( 0 , 3 6 0 , v ) ; / /  s u m ( a , b , v )  i s  a s u b r o u t i n e  t h a t
s l = s u m ( 0 , 90  , v)-(-sum ( 1 8 0 , 2 7 0  , v ) ; / /  r e t u r n s  t he  sum o f  p r o f i l e f a . . b ] :  
s 2 = s u m ( 4 5 , 1 3 5 , v ) + s u m ( 2 2 5 , 3 1 5 1v)  ; / /  p r o f i l e  f  a f + p r o  f i l e  [ a  +  l ]+. . .  +  p r o f i l e  [ b  ]

q = d o u b l e  ( M_PI *  ( 0 . 5  — ( d o u b l e ( s 2 ) / l n  ) ) ) ;  
u = d o u b l e  ( M_PI  * ( ( d o u b l e ( s l ) / l n  ) — 0 . 5 ) ) ;  
p=d  o u b l e ( s q r t (  pow ( q , 2)  +  pow ( u , 2 ) ) ) ;
d q =  (1 /  s q r t  ( G ) ) * d o u b l e (  s q r t  ( pow ( ( M _ P I * s q r t  ( d o u b l e ( s 2 ) ) / d o u b l e (  In ) ) ,  2)  -h 

pow ( ( M_ P I *  d o u b l e  ( s 2 ) / ( d o u b l e ( l n ) * l n ) * s q r t ( l n ) ) , 2 ) ) ) ;  
du =  ( l / s q r t ( G ) ) * d o u b l e ( s q r t (  pow ( ( M_PI *  s q  r t ( d o u b l e ( s l ) ) / d o u b l e ( l n ) ) , 2 )  +  

pow ( ( M_PI *  d o u b l e  ( s l ) / ( d o u b l e ( l n ) * l n ) * s q r t ( l n ) ) , 2 ) ) ) ;  
d p = ( l / s q r t ( G ) ) * d o u b l e ( s q r t ( ( 1 / ( q * q + u * u ) ) * ( q * q * d q * d q + u * u * d u * d u ) ) ) ;

pr 
P r 
Pt  
Pr 
Pi” 
pr 
P r

n t f  ("-------------------------------------------------------------------------------------------------------------------- V")
n t f ( " l=%i, Sl=%i , S2=%i \ n " , I n , s i , s 2 ); 
n t f  ( "q=% g H— %g\n" , q , dq ); 
nt f  ( "u=% g H— %g\n" , u , du ); 
n t f ( " p=% g H— %g\n" , p , dp) ;  
n t f  ( " t o t a l  pi xe l s  used: %i \ n " , p i x e l c o u n t ) ;
n t f ("----------- :---------------------------------------------------------------------------------------------------------Vi" )

r e t u r n (0);
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