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Summary

Amongst the set of 11 proteins which are required for human cytomegalovirus (HCMV) 

origin-dependent DNA synthesis, are six which are conserved amongst the herpesvirus 

family and which perform the essential functions required for viral DNA synthesis. In 

HCMV these functions, a processive DNA polymerase, ss DNA-binding and helicase- 

primase activities are provided by the UL54, UL44, UL57, UL70, UL102 and UL105 

proteins which are referred to as the core replication fork proteins. UL54 and UL44 

comprise the catalytic and processivity subunits, respectively, of the DNA polymerase 

holoenzyme, UL29 functions as the ss DNA-binding protein whilst UL70, UL102 and 

UL105 associate to form the heterotrimeric helicase-primase complex.

Current models of herpesvirus DNA synthesis are based mostly upon knowledge 

regarding the herpes simplex virus type 1 (HSV-1) replication fork proteins which have 

been more extensively studied than any of their counterparts in other herpesviruses. In 

HSV-1 the replication fork proteins are UL30/UL42 (DNA polymerase), UL29 (ss DNA- 

binding protein) and UL5/UL8/UL52 (helicase-primase complex). Multiple interactions 

between the HSV-1 replication fork proteins have been demonstrated and it is thought 

that these interactions serve to co-ordinate the functions of the HSV-1 replication 

proteins for efficient viral DNA synthesis.

Unlike the HSV-1 replication proteins, the HCMV replication proteins are not well 

characterised and therefore their roles in HCMV DNA synthesis have been largely 

predicted by analogy with their HSV-1 counterparts. The aim of this project was to 

investigate the properties of UL102, one of the essential HCMV replication fork proteins 

which forms part of the helicase-primase complex, and compare its characteristics with 

that of its HSV-1 homologue, UL8, to assess whether it may perform similar functions 

to UL8 during HCMV DNA synthesis.

The following specific properties of UL102 were investigated to allow direct comparison 

with HSV-1 UL8:

1) Its ability to interact with the HCMV DNA polymerase catalytic subunit, UL54.

2) Its ability to bind to DNA and DNA/RNA hybrid oligonucleotides representing the 

forms of nucleic acid present at the replication fork.

3) Its intracellular localisation when expressed'atone in mammalian cells and also its 

ability to alter the intracellular localisations of the other HCMV helicase-primase



subunits, UL70 and UL105, when it is co-expressed with these proteins in 

mammalian cells.

In order to address these objectives and to enable subsequent structure-function 

analysis, a variety of UL102 reagents were produced. These included 1) a panel of 51 

UL102-specific monoclonal antibodies 2) constructs to express, in E. coli, full-length 

and truncated UL102 GST-fusion proteins 3) constructs to express, in mammalian 

cells, full-length UL102, UL70 and UL105 proteins and truncated UL102 proteins and 4) 

constructs which express UL102 and UL54 that permit 2-hybrid analysis in mammalian 

cells.

Using three different methods, ELISA, co-immunoprecipitation and mammalian-2- 

hybrid analysis, no evidence for a specific interaction between UL102 and UL54 could 

be demonstrated. In this respect UL102 may differ from its HSV-1 counterpart, UL8.

In immunofluorescence studies, UL102 efficiently translocated to the nucleus of 

mammalian transfected cells. In this respect it differs from UL8, which localises to the 

cytoplasm when expressed alone. Both UL70 and UL105 displayed a cytoplasmic 

localisation when expressed on their own. UL102 did not influence their cytoplasmic 

localisations when co-expressed with either protein. Preliminary results indicate that 

nuclear localisation of the helicase-primase proteins occurs only when all three are co­

expressed. In this respect, UL102 behaves similarly to UL8, which is required for 

efficient nuclear localisation of the HSV-1 helicase-primase proteins but does not 

influence their intracellular localisation when it is expressed with either protein 

individually.

Nucleic acid binding experiments were performed either in the presence of 50 mM 

NaCI or in the absence of any salt. Under both conditions, UL102 did not detectably 

bind to ss DNA, ds DNA or DNA-RNA hybrids representing the structures of nucleic 

acid present at the replication fork. Similarly, UL8 did not detectably bind DNA.

The UL102 characterisation studies presented in this thesis indicate that it is unlikely 

that UL102 performs the same precise set of functions which have been attributed to 

HSV-1 UL8. As UL102 shares some characteristics in common but also possesses 

differing characteristics to UL8, it is probable that it performs a subset of the functions 

carried out by UL8 including a likely role in nuclear translocation of the HCMV helicase- 

primase complex. Since UL102, like UL8, is dispensable for the enzymatic activities of



the helicase-primase and does not bind DNA, it is possible that it functions to augment 

the activities of the complex and likely mediates necessary interactions between the 

helicase-primase complex and other replication fork protein/protein complexes during 

DNA synthesis, which are established characteristics of UL8.

Conversely, the demonstration that the properties of UL102 and UL8 differ in some 

aspects suggests that it is unlikely that UL102 performs some of the functions which 

have been predicted by analogy with UL8. Most notably, a specific interaction between 

UL102 and UL54 could not be established, and may not exist, in marked contrast to 

UL8 which has been shown to interact specifically with the HSV-1 polymerase catalytic 

subunit, UL30. The UL8-UL30 interaction is predicted to facilitate the UL8-mediated 

increased efficiency in primer utilisation by UL30. If UL102 and UL54 do not interact 

then it is unlikely that a similar effect of UL102 on primer utilisation by HCMV UL54 

would be observed. In addition, the observation that UL102, in contrast to UL8, can 

localise to the nucleus independent of any other replication proteins suggests that 

UL102 may perform a function which is not shared by UL8. The reagents produced in 

this study will be of benefit to any future studies that address the issue of the as yet, 

undefined role of UL102 in HCMV DNA replication.
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Multiple cloning site

Mammalian-2-hybrid

Major histocompatibility complex

Major immediate early

milliampere

millilitre

millimetre

milli-molar



mRNA Messenger RNA

MW Molecular weight

ND10 Nuclear domain 10

ng nanograms

nm nanometre

N-terminal Amino terminal

nt nucleotide

OD Optical density

ORF Open reading frame

% percent

PBS Phosphate buffered saline

PCR Polymerase chain reaction

PEG Polyethylene glycol

pH Potential of hydrogen

pM pico moles

PML Promyelocytic leukemia protein

PODs PML oncogenic domains

RNA Ribonucleic acid

rpm Revolutions per minute

RR Ribonucleotide reductase

SCP Smallest capsid protein

SDS-PAGE Sodium dodecyl sulphate polyacrylamide gel

electrophoresis 

Sf Spodoptera frugiperda

SRT Shortest replicator transcript

ss DNA single-stranded DNA

SV40 Simian virus 40

TAE Tris, acetate, EDTA

TBS Tris-buffered saline

TLC Thin layer chromatography

Triton-X-100 Octyl phenoxy polyethoxy ethanol

TRS/L Terminal repeat short/long

UL Unique long

US Unique short

UV Ultraviolet

V Volts

vRNA virus-associated RNA



VZV Varicella-Zoster virus

v/v volume per volume (ratio)

w/v weight per volume (ratio)

pg microgram

pi microlitre

2-YTA YT medium containing ampicillin

Amino acids

alanine A leucine L

arginine R lysine K

asparagine N methionine M

aspartate D phenylalanine F

cysteine C proline P

glutamate E serine S

glutamine Q threonine T

glycine G tryptophan W

histidine H tyrosine Y

isoleucine 1 valine V

Nucleotide Bases

adenine A

cytosine C

guanine G

thymine T

uracil U



Chapter 1 

Introduction



1.1 The Herpesviruses

1.1.1 General characteristics

The herpesviruses are a large and diverse family of over 100 viruses that share a 

variety of common characteristics, including their genome type, virion morphology, 

basic mode of replication and the ability to establish different forms of infection in their 

natural hosts. The herpesvirus-common characteristics have been summarised by 

Roizman etal., (1992) and Davison & Clements, (1998).

All herpesviruses possess large, linear double-stranded (ds) DNA genomes and hence 

have the capacity to encode many viral proteins and enzymes. All specify a variety of 

enzymes involved in nucleic acid synthesis and metabolism. Herpesvirus virions are 

correspondingly large and complex with a common morphology consisting of four 

elements; core, capsid, tegument and envelope. The core consists of the ds DNA 

genome which is packaged into an icosahedral capsid. The nucleocapsid is 

surrounded by an amorphous, proteinaceous layer known as the tegument which 

contains a variety of viral proteins and enzymes. The tegument is, in turn, enclosed 

within an envelope consisting of a lipid bilayer derived from host nuclear or golgi 

membranes, which contains several viral glycoproteins. The number of viral 

glycoproteins on the virus particle varies between different herpesvirus but four, gB, 

gH, gL and gM appear to be common to all herpesviruses. The generalised 

herpesvirus particle structure is shown in Figure 1.1.

The general life cycles of the herpesviruses are similar. Virus entry to the host cell is 

accomplished by glycoprotein-mediated binding and fusion with the cell membrane.

The nucleocapsid complex is then transported to the nucleus, into which the viral 

genome is released. Replication of the viral genome and construction of progeny 

nucleocapsids then takes place in the nucleus. Virions acquire an envelope by 

budding through the inner nuclear membrane, but this is followed by de-envelopment at 

the outer nuclear membrane. It is thought that virions finally acquire an envelope from 

post-endoplasmic reticulum cytoplasmic compartments. This has been shown for 

herpes simplex virus (Skepper et al.t 2001). Mature virions are thought to exit the cell 

by a process of exocytosis. Ultimately, virus production results in cell death.

Replication is mediated largely by viral enzymes but is dependent on host cell enzymes 

for several functions such as DNA ligation and synthesis of base precursors.

Herpesvirus genome arrangements consist of various combinations of unique
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Figure 1.1 Generalised structure of a Herpesvirus virion

A schematic representation of a herpesvirus particle virion is shown, with 
the DNA core, icosahedral capsid, tegument layer and lipid envelope 
indicated. The viral envelope also contains various glycoproteins which 
protrude from the surface. The number of envelope glycoproteins varies 
amongst the herpesviruses. An indication of the average virion diameter is 
also given.
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sequences and repeated elements, which may be present either internally or at the 

genome termini. This gives rise to a variety of distinct genome organisations and sizes 

depending on the sequence arrangements and the copy number of the repeated 

regions, respectively. Hence, herpesvirus genomes have been classified into seven 

groups according to the genome arrangement, as described by Roizman et a/., (1992) 

and Davison & McGeoch, (1995). The structures of the seven genome classes are 

represented in Figure 1.2.

Perhaps the most distinctive feature of the herpesviruses is their ability to establish 

latent infections in their natural hosts. Following primary infection, herpesviruses can 

persist in a quiescent state, with strictly limited gene expression and without active 

replication. Such latent infections typically last for the entire life of the host. The cell 

type in which latency is established varies between the different herpesviruses, but the 

exact site has been elucidated in only a few cases. Reactivation to productive 

infections may occur sporadically throughout the life span of the host. The 

mechanisms underlying the establishment of latency and reactivation are not 

completely understood.

Collectively, the herpesviruses have a wide host range, from invertebrates (Comps & 

Cochennec, 1993) to a wide variety of vertebrate organisms including fish, amphibians, 

reptiles, birds and mammals. Those which infect humans have been widely studied. 

Human herpesviruses (HHVs) are ubiquitous agents with large proportions of the 

world-wide population having been exposed to and latently infected by one or more of 

these viruses. They are generally spread by close contact via bodily secretions. HHVs 

are discussed further in section 1.1.3.

1.1.2 Herpesvirus sub-classification

Owing to the large numbers and diversity within the herpes family, it is sub-divided into 

three subfamilies (Roizman et a/., 1981). Sub-classification has traditionally been 

made on the basis of differing biological properties, such as host range, length of 

reproductive cycle, cytopathology and site of latent infection. However increasingly, 

genome sequence data is being used for the purpose of herpesvirus classification (e.g 

McGeoch et al., 1995). In most cases, the original classifications have been 

substantiated by the groupings which have now been made on the basis of comparison 

of sequence data. The updated herpesvirus classifications were published in the 

current International Committee on Taxonomy of Viruses report (Minson etal., 2000). 

The herpesvirus sub-families are as follows;
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Figure 1.2 Herpesvirus genome arrangements
Schematic representations of the 7 classes of herpesvirus genomes are shown (not to 
scale). Unique and repeat regions are depicted by horizontal lines and rectangles, 
respectively. The orientations of unique and repeated sequences are indicated by 
arrows. Genome structure 0 corresponds to the F group described by Roizman et a!., 
(1992) whilst structures 1-6 correspond to those described by Davison & McGeoch 
(1995).
Group 0 consist of a single unique sequence e.g tree-shrew herpesvirus.
Group 1 consist of a single unique region flanked by direct terminal repeats e.g HHV- 
6, HHV-7.
Group 2 consist of a single unique region flanked by groups of direct terminal repeats 
e.g herpesvirus saimiri.
Group 3 consist of two unique regions (UL and US) flanked and separated by a group 
of direct repeats e.g cottontail rabbit herpesvirus.
Group 4 consist of two unique regions separated by a group of internal repeats. Each 
end of the genome is flanked by groups of direct terminal repeats unrelated to the 
internal repeats e.g EBV
Group 5 consist of two unique regions, each region being flanked by a pair of 
unrelated inverted repeats. The pair of repeats flanking UL are relatively short. VZV 
has this genome arrangement.
Group 6 consist of two unique regions, each region flanked by a pair of inverted 
repeats. The repeats flanking UL and US regions are not related. An additional 
repeat, called the ‘a’ sequence is found at the genomic termini and between the 
internal repeated regions. HSV-1 and HCMV both share this type of genome 
arrangement.



Alphaherpesvirinae

These are typically neurotropic viruses with a short reproductive cycle and a wide host 

range in vitro. They are highly cytolytic and some members have been shown to 

establish latent infections in neurones.

Betaherpesvirinae

These are slow-growing viruses with a narrow host range in vitro and characteristic 

cytopathology. Infected cells often become enlarged and fuse to form multinucleate 

cells called cytomegalia. Latent infections have been associated with cells of the 

monocyte series.

Gammaherpesvirinae

Gammaherpesviruses are generally lymphotropic and often establish latency in T or B 

lymphocytes. Host range in cell culture and length of reproductive cycle is variable, as 

is the resulting cytopathology. Productive infections are associated with the 

development of lymphoproliferative disorders.

Subfamilies of the herpesvirus are further divided into genera, on the basis of 

nucleotide or predicted amino acid sequences. Members of a distinct genus are 

grouped if their sequences form a distinct lineage within the subfamily.

1.1.3 Human herpesviruses (HHVs)

Eight herpesviruses which infect humans have been identified to date (designated 

HHV-1 to HHV-8). Generally, primary herpesvirus infection in immunocompetent hosts 

does not result in severe or fatal disease. However, herpesvirus infections in certain 

susceptible populations, such as immunocompromised individuals, may cause serious 

illness. In addition, several HHVs are also associated with the development of 

malignant tumours.

Three alphaherpesviruses are known to infect humans. Herpes simplex viruses 1 

(HSV-1 or HHV-1) and 2 (HSV-2 or HHV-2) are closely related. Both are associated 

with mucosal infections and establish latency in sensory ganglia. HSV-1 is primarily 

associated with mucosal infections of the mouth and throat and may cause symptoms 

including fever and more commonly, oral lesions (cold sores), but is also associated to 

a lesser extent with genital mucosal infections. Conversely, HSV-2 is primarily 

associated with mucosal infections of the genitalia and to a lesser extent the mouth 

and throat. Both viruses can reactivate which is manifested by lesions in the skin
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served by the sensory ganglia. Varicella-zoster virus (VZV or HHV-3) is the third 

human alphaherpesvirus and the causative agent of chicken pox during primary 

infection. VZV establishes latency in sensory neurones and reactivation results in the 

more severe illness of shingles.

Human cytomegalovirus (HCMV or HHV-5) is a well-studied betaherpesvirus which 

causes widespread infection in humans. As with other HHVs, primary infection is 

usually asymptomatic but severe disease can occur in susceptible populations infected 

with HCMV. The scope of HCMV-associated disease is discussed further in section

1.2.1. HHV-6 and HHV-7 are more recently identified human betaherpesviruses. Both 

are associated with febrile illnesses in children and post-transplant disease in 

immunosuppressed transplant recipients. Recent studies have also implicated HHV-6 

in the aetiology of multiple sclerosis and chronic fatigue syndrome (Ablashi et al.,

2000). HHV-6 has been found in a latent state in macrophages (Levy, 1997) whereas 

the site of latency for HHV-7 is unclear.

The final 2 HHVs are members of the gammaherpesvirinae. Epstein-Barr virus (EBV 

or HHV-4) was the first human gammaherpesvirus to be identified and is the causative 

agent of infectious mononucleosis in a proportion of primary infections. EBV 

establishes latency in B-lymphocytes and has been associated with malignancies 

including Burkitts lymphoma, Hodgkin’s disease and nasopharyngeal carcinoma. HHV- 

8, also known as Kaposi’s sarcoma-associated herpesvirus (KSHV), is a 

gammaherpesvirus which is the causative agent of Kaposi’s sarcoma and is also 

associated with two other human cancers, primary effusion lymphoma and multicentric 

Castleman’s disease. HHV-8 may also be a co-factor involved in the progression of 

HIV infection. Kaposi’s sarcoma is the most common neoplasm in AIDS sufferers and 

is a serious complication, being associated with an increased risk of death (Brodt etal., 

1998).

1.1.4 Anti-herpetic chemotherapy

As herpesvirus DNA replication is largely autonomous from the host cell replicative 

machinery, this stage of the life cycle is a suitable target for anti-viral therapies. 

Herpesvirus DNA replication enzymes are sufficiently distinct from their cellular 

counterparts to allow specific targeting of viral functions. Hence, the vast majority of 

current anti-herpetic drugs target herpesvirus DNA polymerase enzymes and many are 

nucleoside analogues.
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Acyclovir is the most widely utilised and successful anti-herpetic drug, used mainly to 

treat HSV infections. Acyclovir is a guanine nucleoside analogue which is 

phosphorylated to the mono-phosphate form (acyclo-GMP) by the viral thymidine 

kinase (tk) and to the triphosphate form (acyclo-GTP), by host cellular kinases. The 

activated form is incorporated selectively by the viral polymerase into the growing viral 

DNA chain, where it acts as a terminator of further chain elongation. The success of 

acyclovir can be attributed to its high specificity for viral enzymes, as it requires 

phosphorylation by the viral tk, and in addition, incorporation is far more specific to the 

viral polymerase than cellular counterparts. However, other herpesviruses are less 

sensitive to acyclovir than HSV.

HCMV-specific chemotherapy became available with the introduction of gancyclovir, 

which is a guanine analogue similar to acyclovir. It also requires tri-phosphorylation 

before it is incorporated into the growing DNA chain. The first phosphorylation is 

catalysed by the HCMV protein kinase UL97 and subsequent phosphorylations are 

carried out by cellular enzymes. Incorporation of gancyclovir decreases the likelihood 

of further extension of the DNA chain. Despite its effectiveness against the HCMV 

polymerase, gancyclovir has unpleasant side effects and is associated with 

haemotoxicity and nepherotoxicity which precludes its use beyond serious and life- 

threatening HCMV infection.

Anti-herpetic nucleoside analogues such as acyclovir and gancyclovir suffer from poor 

bioavailabilty and short half life. Consequently, various other nucleoside analogues 

which have improved pharmacokinetic properties, such as the pro-drug, valaciclovir, 

have been developed. Valaciclovir is a valine ester of acyclovir which is better 

absorbed prior to its cleavage to render acyclovir and the natural amino acid. Non­

nucleoside analogues to treat herpesvirus infections have also been developed. 

Foscarnet is distinct from other herpesvirus drugs as it does not require 

phosphorylation to an active form. It is a pyrophosphate analogue which functions as a 

direct DNA polymerase inhibitor, interfering with the binding of incoming nucleotide 

triphosphates (Coen, 1992). Unfortunately, foscarnet is also associated with side 

effects including nepherotoxicity which limit its usefulness.

Considering the wide spectrum of human disease associated with herpesvirus 

infections and the poor bioavailability, undesirable side effects and emergence of 

resistant strains associated with many current herpesvirus treatments, the need for 

novel antiviral therapies effective against HHVs is clear. Recently, novel HCMV
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therapeutic compounds which target viral proteins other than the polymerase have 

been developed and some are currently undergoing trials. Benzimidavir is one such 

drug, which targets the HCMV viral protein kinase UL97 (Davis etal., 1998; Sethna et 

al., 1998). An antisense oligonucleotide based therapy, Fomiversen, has recently been 

licensed for intraocular HCMV treatment. Fomiversen works by binding to 

complementary mRNA sequences transcribed from the major immediate-early gene, 

which encodes the IE1 and IE2 proteins. As the IE1 and IE2 proteins are essential for 

transactivation of subsequent classes of genes, viral replication is blocked at this stage 

through inhibition of translation of the IE1 and IE2 mRNAs (Azad etal., 1993).

1.2 HCMV Biology

1.2.1 HCMV Pathogenesis

HCMV is extremely prevalent amongst all populations world-wide. Infection rates, as 

defined by seropositivity, range from 50-75% in developed countries to nearly 100% of 

the population in closely crowded environments and under-developed countries (Haffey 

& Field 1995). Crowded environments, rather than hygiene or social class, are 

correlated with higher rates of infection (Britt & Alford, 1996). Transmission occurs via 

contact with infectious bodily fluids.

In vitro, HCMV has a very restricted host cell range and a slow replicative cycle, 

however, In vivo, HCMV is capable of infecting and replicating in a wide variety of cell 

types (reviewed by Sinzger & Jahn, 1996), and has been shown to be a quickly- 

replicating virus (Emery et al., 1999). Major cell types that are susceptible to HCMV 

infection in vivo are the ubiquitously distributed epithelial, endothelial and fibroblast 

cells. Leukocytes also harbour infectious HCMV, although viral gene expression has 

so far only been detected in these cells during acute infection (Gerna et al., 1992).

The vast majority of HCMV infections are asymptomatic in immunocompetent hosts. 

Although rare, symptomatic HCMV infection may take the form of a mononucleosis-like 

syndrome similar to that caused by EBV. Primary infection with HCMV results in a 

lifelong latent infection. Granulocyte/monocyte progenitor cells have been proposed as 

sites of HCMV latency and reactivation of HCMV from these cells has been described 

(Soderberg-Naucler etal., 1997; Hahn etal., 1998). Stress which stimulates the 

release of catecholamines is suggested as one pathway of HCMV reactivation in 

latently infected individuals (Prosch etal., 2000).

HCMV is, however, a medically important virus owing to its propensity to produce 

serious illness in immuno-compromised individuals, in which it is a common
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opportunistic pathogen. The main populations susceptible to severe HCMV-associated 

disease are infants infected in utero, neonates, organ transplant recipients receiving 

immunosuppressive treatments and AIDS patients.

HCMV is the most common congenital viral infection, with an incidence in the USA of 

between 0.2-2.2%. Clinical aspects of congenital HCMV infection have been reviewed 

by Britt & Alford, (1996). Approximately 10-15% of infected babies will develop 

symptomatic HCMV disease, with the major risk factors associated with severe disease 

being primary infection of the mother during pregnancy and infection early in gestation. 

Severe disease can result in a range of symptoms including retinitis, hepatitis, 

gastroenteritis, pneumonitis and permanent neurological damage such as hearing loss.

HCMV is a consistently prevalent pathogen in transplant recipients with high 

proportions of patients developing HCMV infections following transplantation. In solid 

organ transplant recipients, infection rates can be between 60-100% (Pollard, 1988). A 

wide variety of HCMV disease is observed in such patients, with increased severity in 

individuals experiencing primary infection. Severe infection of the Gl tract, hepatitis 

and pneumonia are frequent and potentially life-threatening complications. In bone 

marrow transplant (BMT) recipients, in particular, HCMV infection is associated with 

high mortality rates, with HCMV-associated pneumonia the major manifestation of 

disease (Britt & Alford, 1996).

HCMV is one of the most common opportunistic infections in AIDS patients and 

frequently causes severe and life-threatening disease, either through primary infection 

or reactivation of productive infection in seropositive individuals. One autopsy study 

showed that 90% of AIDS patients experience active HCMV infections and up to 40% 

will develop life- or sight-threatening HCMV disease (Gallant et al., 1992). HCMV 

disease in AIDS patients can involve multiple organ systems but the most clinically 

significant occur in the lung, CNS and Gl tract (Britt & Alford, 1996). In particular, 

HCMV pneumonitis and retinitis are associated with poor prognosis and high mortality. 

The introduction of highly active anti-retroviral therapy (HAART) for AIDS patients has 

resulted in a decrease in severe disease caused by opportunistic pathogens, such as 

HCMV. However, HCMV-associated disease is still a concern, especially as drug- 

resistant HIV and HCMV strains continue to emerge.

In addition to its role as an opportunistic pathogen in HIV-infected patients, HCMV has 

been implicated as a co-factor in the pathogenesis of AIDS. HCMV seropositivity is 

associated with increased risk of AIDS development and early death of AIDS patients
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(Webster et al., 1989; Gallant etal., 1992). Numerous studies have demonstrated 

interactions between HCMV and HIV in vitro, such as those by Toth etal., (1995) and 

Lathey etal., (1994) who showed that HCMV could enhance replication and production 

of infectious HIV-1. However, direct evidence that HCMV contributes to progression of 

HIV infection in vivo has yet to be established (Britt & Alford, 1996). HCMV has also 

recently been shown to activate lytic replication of latent HHV-8 (Kaposi’s sarcoma- 

associated herpesvirus), suggesting that it may be an “augmenting co-factor” in HHV-8 

disease (Vieira et al., 2001).

HCMV has also been implicated in the pathogenesis of other disease states. Hiemstra 

et al., (2001) presented evidence that HCMV may be involved in the development of 

autoimmune disease through a mechanism of molecular mimicry of human glutamic 

acid decarboxylase (GAD65) by the HCMV UL57 protein. HCMV has also been 

implicated in the development of atherosclerosis (Horvath et al., 2000).

1.2.2 The HCMV Genome

The linear ds DNA genome of HCMV is 230-240 kbp and represents the largest of all 

the herpesviruses identified to date. HCMV is the only betaherpesvirus to possess a 

Group 6 genome structure, an arrangement which is also shared by HSV-1 (Figure 

1.2). It consists of 2 unique sequences (UL and US), each flanked by a pair of inverted 

repeats, IRS/TRS and IRL/TRL, which are not related. An additional repeat, known as 

the a sequence, is found at the genomic termini and the junction between the internal 

repeats (IRL/IRS). This genomic arrangement can give rise to 4 genome isomers, 

through inversion and differential orientation of the L and S components which is 

mediated by the a sequence (Kemble & Mocarski, 1989). The four isomers appear to 

be functionally equivalent.

HCMV strain AD169 has been completely sequenced (Genbank accession number 

X17403) by Chee etal., (1990) and is predicted to encode 208 ORFs. HCMV contains 

seven conserved sequence blocks shared with other herpesviruses. The gene 

products of the ORFs contained within these conserved blocks are involved in DNA 

repair and replication, nucleotide metabolism or virion structure. Many HCMV gene 

products have yet to be characterised, but of those which have been identified, 41 are 

dispensible for growth in human fibroblast (HF) cell culture (Mocarski, 1996). It has 

become evident that there is considerable genome heterogeneity amongst the highly 

passaged laboratory strains Towne and AD169, and clinical HCMV isolates. Cha et al., 

(1996) found segments of DNA in the virulent Toledo strain that were absent in Towne
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and AD169 strains. Both laboratory strains also lacked up to nineteen reading frames 

found in clinical isolates. Heterogeneity between different stocks of AD169 strain has 

also been demonstrated by Dargan etal., (1997) who showed that the published 

AD169 sequence lacks 1 kbp of DNA present in other AD169 stocks. Hence, as the 

published sequence was obtained from a highly passaged strain of HCMV, it is 

perhaps not appropriate to extrapolate the findings to clinical strains. Long-term 

passage in cell culture is associated with a decrease in virulence which may result 

from the loss of genetic information during propagation in cell culture (Brown etal.,

1995).

The HCMV genes are designated according to the region of the genome where they 

are positioned (e.g UL, US) and are numbered sequentially. Throughout this thesis, 

the gene product encoded by a particular HCMV gene is named after the gene itself. 

This is the generally accepted nomenclature but some proteins are additionally named 

on the basis of their size and function, for example UL83 is also known as pp65 or the 

lower matrix protein. A schematic representation of the HCMV genome, with the cis- 

acting regions and genes involved in DNA replication indicated, is given in Figure 1.3.

1.3 HCMV Lytic cycle
1.3.1 HCMV attachment and penetration of host cells

The primary step in HCMV infection of target cells is virus attachment to the cell 

surface. Initial interactions between the virus particle and the cell surface are known to 

involve heparan sulphate (Compton etal., 1993), however the cellular receptor(s) 

which mediate binding has not yet been identified. Several studies have implicated 

cellular surface proteins with molecular masses of 30-34 kDa and 92.5 kDa, 

respectively, as candidate receptors (Adlish etal., (1990); Taylor & Cooper (1990); 

Keay etal., (1989)). Nowlin etal., (1991) studied the distribution of the putative 30-34 

kDa receptor and found it was ubiquitously expressed on a wide range of cell types and 

that the level of virus attachment to target cells, but not penetration, correlated with the 

abundance of this receptor. These results are consistent with the ability of HCMV to 

infect a wide range of cell types in vivo (Sinzger & Jahn, 1996).

HCMV gB is thought to mediate the interaction with cellular receptors and binding 

kinetic experiments have suggested it may associate with two classes of receptor 

(Boyle &'Compton, 1998). In addition, gB-specific MAbs have been shown to block 

penetration, but not attachment, of HCMV to cells (Navarro et al., 1993). Studies 

carried out by Keay & Baldwin (1991) suggest that gH may also be involved in fusion of
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viral and host cell membranes. Virus entry occurs through direct fusion of the viral 

envelope with the cellular plasma membrane and is pH independent (Compton etal., 

1992).

1.3.2 Early events in HCMV lytic infection/replication

Following penetration, HCMV capsids migrate to the nucleus by an as yet, unknown 

mechanism. The DNA is released into the nucleus and the genome is circularised prior 

to replication (LaFemina & Hayward, 1983; McVoy & Adler, 1994). Once inside the 

nucleus, viral DNA associates with or close to nuclear structures called nuclear domain 

10 (ND10), also known as promyelocytic leukemia protein (PML) oncogenic domains 

(PODs) (Ishov & Maul, 1997). ND10 are punctate nuclear structures that contain 

several cellular proteins, including PML and transcription factor SP100. Various HCMV 

encoded proteins subsequently associate with ND10. HCMV immediate-early protein 

IE1 causes a redistribution of PML from punctate ND10 structures to a diffuse nuclear 

pattern and IE2 associates with PML without any obvious effect on its localisation (Ahn 

& Hayward, 1997). The disruption of PML-associated nuclear bodies may therefore be 

a critical event for efficient lytic replication of HCMV. Ishov et al., (1997) demonstrated 

that association with ND10 is also necessary for HCMV IE gene transcription and that 

viral transcripts were directed from ND10 into splicesome assembly factor (SC35) 

domains through the accumulation of viral IE2 protein at these sites. IE2 then recruits 

components of the basal transcription machinery, such as TFIIB. Hence, HCMV 

creates an immediate transcription environment by utilising existing intranuclear 

structures, facilitating initiation of lytic replication.

The dispersal of ND10-associated proteins is a feature common to several DNA 

viruses, suggesting this may be an important event in the early stages of lytic infection. 

This characteristic was first observed in HSV-1 infected cells where the viral Vmw110 

protein was found to be responsible for redistribution of PML from ND10 domains 

(Everett & Maul, 1994). Redistribution of ND10 proteins also occurs in EBV-infected 

cells (Szekely etal., 1996) and adenovirus-infected cells (Carvalho etal., 1995).

1.3.3 DNA Replication

As with the other herpesviruses, replication of HCMV DNA is initiated at a specific site 

on the genome, called the origin of replication. In HCMV, this is known as orilyt, which 

is described further in section 1.5.1. Following the circularisation of viral genomic DNA, 

synthesis of viral DNA begins at orilyt, although the process of initiation of replication 

has not yet been elucidated. Initial rounds of replication are thought to proceed via
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theta replication of the circular template followed by rolling circle replication which 

produces concatemeric products. Viral DNA synthesis takes place in replication 

compartments which form near the cellular ND10 structures described in section 1.3.2.

HCMV IE2 protein and auxiliary replication protein UL112-113 co-localise in close 

proximity to ND10 at early times in infection and both proteins are subsequently 

incorporated into large viral replication compartments which form at the periphery of 

ND10. These are the sites at which core replication proteins accumulate for initiation 

of viral DNA synthesis (Ahn et al., 1999). Penfold & Mocarski, (1997) have also 

reported the localisation of UL112-113 and replication fork proteins UL57 and UL44 to 

subnuclear structures which subsequently develop into replication compartments.

HCMV DNA replication is discussed further in section 1.5.

1.3.4 HCMV gene expression

As with the other herpesviruses, HCMV gene expression is highly regulated with genes 

being sequentially expressed in three temporal classes; immediate early or a, early or 

p and late or y, based on the time of synthesis following infection.

Immediate-early gene expression

Immediate early genes are the first to be expressed upon infection and do not require 

de novo protein synthesis for their expression. Four major regions of the HCMV 

genome are expressed with immediate-early kinetics; the major immediate-early (MIE) 

region (UL122/UL123), UL36-38, TRS1/IRS1 and US3. All of these gene products are 

involved mainly in regulating the expression of subsequent classes of genes. The vast 

majority of IE transcripts originate from the major IE locus spanning the UL122 and
nnW& • /-tJ

UL123 genes, giving rise to two main gene products which are both nuclear 

phosphoproteins; IE1 (IE72) and IE2 (IE86). IE2 is a potent transactivator which can 

stimulate expression of HCMV early genes by itself or can act synergistically with IE1, 

or other IE gene products, to activate some early gene promoters (Artl et al., 1994;

Schwartz etal., 1994; Scully etal., 1995; Depto etal., 1989; Malone etal., 1990;

Colberg-Poley etal., 1992; Kerry et al., 1994;). IE1 and IE2 can also positively and 

negatively modulate expression from their own promoter, respectively (Cherrington &

Mocarski, 1989; Stenberg et al., 1990; Hermiston et al., 1990). Detailed 

characterisation of IE1 and IE2 has revealed that, in addition to their involvement in 

gene expression, these proteins can modulate diverse cellular processes. IE1 and IE2 

can both inhibit apoptosis and IE2 was recently also shown to block cell cycle 

progression following transition into the S phase (Zhu et al., 1995; Murphy et al., 2000).

The regulation of HCMV IE gene expression has been reviewed by Meier & Stinski,
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(1996). Expression of immediate-early genes is required for activation of subsequent 

early and late gene expression, as well as for modulating cellular processes to promote 

a favourable environment for viral replication. As the IE proteins are essential for lytic 

HCMV replication, the ability of a given cell type to support expression of IE gene 

expression may determine HCMV cell tropism. Expression of IE1 and IE2 does not 

occur in blood monocytes or granulocyte-macrophage progenitor cells, in which HCMV 

genomes are found only in a latent state.
|V QA OC*-j I

The UL36-38 locus gives rise to several proteins which synergise with IE1 in regulating 

transcription of early genes (Colberg-Poley et al., 1992). Similarily, the IRS1/TRS1 

gene products co-operate with IE1/IE2 to activate early gene products. US3 can also 

transactivate gene expression in conjunction with other HCMV proteins but also 

functions to aid immune evasion by binding to and retaining MHC class I chains in the 

endoplasmic reticulum, thereby inhibiting antigen presentation (Colberg-Poley et al., 

1992; Ahn etal., 1996).

Early gene expression

The HCMV early genes are the second class of genes to be transcribed and their 

expression is dependent upon synthesis of functional IE proteins. The early genes 

encode a wide variety of proteins including many involved in DNA replication and 

metabolism, and some non-structural proteins.

Late gene expression

The late genes are the final class of genes to be transcribed and their expression is 

either dependent on or greatly stimulated by viral DNA synthesis. Late genes 

constitute the majority of the HCMV genome and primarily encode structural proteins. 

Expression usually occurs at 48 hours post-infection or later.

Temporal distinction of HCMV gene expression is perhaps not always clear-cut as 

translation of mRNAs does not always immediately follow their transcription and during 

productive infection, IE, E and L gene expression can all occur simultaneously at late 

times in infection (Mocarski, 1996).

1.3.5 Capsid assembly and DNA packaging

The process of DNA packaging in herpesviruses involves the cleavage of long linear 

concatemeric DNA molecules at specific junctions between individual genomes 

followed by packaging the DNA into pre-formed capsids. HCMV capsid assembly is

12



not well understood and current models are based on what is known regarding capsid 

assembly in HSV-1. The structure and assembly of HCMV virions has been reviewed 

by Gibson, (1996). The four proteins which constitute the capsid shell are the major 

capsid protein (MCP or UL86), minor capsid protein (mCP or UL85), mCP-binding 

protein (mCP-BP or UL46) and the smallest capsid protein (SCP or UL48/49). Two 

other proteins are involved in capsid assembly: the assembly protein (AP) precursor 

and the proteinase precursor. The capsid shell proteins migrate to the nucleus where 

they assemble into precursor capsids called preB-capsids. Maturation of the preB- 

capsids occurs upon proteolytic cleavage of the proteinase and assembly protein 

precursors, which causes a conformational change in the particle. Cleaved assembly 

protein is then eliminated, allowing packaging of DNA into the mature capsid.

Cis -acting sequence elements known as pac-1 and pac-2, located within the genomic 

a sequence repeats, act as signals for DNA packaging in herpesviruses, including 

HSV-1 and HCMV. These sequences are located near to the cleavage site and are 

thought to bind viral and possibly, cellular proteins involved in the cleavage process. 

Individual HCMV genomes are probably packaged into capsids in a process similar to 

that in HSV-1, supported by data which shows that HSV-1 recognises and packages 

plasmid DNA bearing the HCMV a sequence (Spaete & Mocarski, 1985). However, the 

process of genome maturation in HSV-1 and HCMV is not well understood.

In HSV-1, seven proteins have been identified that have probable roles in cleavage and 

packing of newly synthesised viral DNA (reviewed by Homa & Brown, 1997).

Homologs of these proteins have also been identified in HCMV. These are UL104, 

UL89, UL77, UL56, UL52, UL51 and UL93 (Chee etal., 1990). All the genes encoding 

these proteins have homology with ORFs in other herpesviruses (Mocarski, 1996), 

suggesting the mechanism of DNA packaging may be a conserved feature within the 

herpesvirus family.

Direct evidence has been obtained that supports the involvement of UL56 and UL89 in 

HCMV packaging. This evidence was provided by the demonstration that mutations 

conferring resistance to benzimidazole ribonucleotides, which inhibit viral DNA 

packaging, mapped to the UL56 and UL89 ORFs (Krosky et al., 1998). UL89 has 

subsequently been shown to have some sequence homology with bacteriophage T4 

terminase protein and binds to HCMV packaging signals (Underwood et al., 1998;

Wang & McVoy, IHW 1999). UL56 is a nuclease which also binds specifically to HCMV 

packaging signals and cleaves DNA bearing these signals (Bogner et al., 1998). UL56 

also localizes to viral replication compartments and interacts with the viral DNA

13



polymerase processivity sub-unit, UL44 (Giesen et al., 2000). These findings suggest 

that DNA replication and packaging may be coupled processes.

1.3.6 Virus maturation and egress

Following encapsidation, the next stage in virion assembly is tegument acquisition. 

Virion assembly is a poorly understood process in the herpesviruses in general and 

HCMV is no exception. Tegumentation and envelopment of HCMV has been 

suggested to follow a similar pathway to the model proposed for HSV-1. Originally, it 

was thought that tegumentation occurs in the nucleus and envelopment takes place at 

the nuclear membrane (Roizman, 1996). However, recent evidence suggests that 

virions acquire an envelope at the inner nuclear membrane, but this is lost as the 

virions traverse the outer nuclear membrane. Final envelopment then occurs in a post­

endoplasmic reticulum cytoplasmic compartment (Skepper et al., 2001). Studies on 

HCMV indicate that virions acquire their envelope by a similar mechanism. Several 

HCMV tegument proteins, including UL25, UL99 (pp28) and UL32 (pp150), localize 

exclusively within the cytoplasm of infected cells, which is inconsistent with a model of 

nuclear tegumentation (Battista et al., 1999; Sanchez et al., 2000a; Sanchez et al., 

2000b). These results indicate that acquisition of tegument in HCMV involves a 

cytoplasmic phase and hence that final envelopment must also take place in the 

cytoplasm. Sanchez et al., (2000b) further showed that several HCMV tegument 

proteins (pp65, pp150 and pp28) accumulated in a cytoplasmic juxtanuclear structure 

along with three HCMV virion glycoproteins (gB, gH and gp65) and propose that this 

structure may represent a cytoplasmic site of virion assembly.
^ e y *  1 ve>

Egress of HCMV virions from the cell may be mediated by an exocytic pathway as 

there is evidence that virions are transported in vesicles via the golgi apparatus and is 

sensitive to Brefeldin A, which is an inhibitor of protein secretion (Mocarski, 1996).

1.4 Herpesvirus DNA replication

1.4.1 Initiation of replication

DNA replication begins at defined regions within herpesvirus genomes known as 

origins. These c/s-acting sequences provide all the necessary signals required for 

initiation of DNA replication and are assumed to be the sites at which viral DNA 

synthesis commences. There is considerable variation in the size and structure of 

origins amongst the human herpesviruses, indicating that mechanisms of initiation of 

replication at these sites, involving unwinding of the DNA duplex to form a replication 

fork and recruitment of the essential viral DNA synthesis proteins, may differ. Some
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herpesviruses, such as HSV, VZV and HHV-6, encode specific origin-binding proteins 

which are involved in establishing DNA replication, but such proteins have not been 

identified in other herpesviruses (Elias et al., 1986; Stow et al., 1990; Inoue et al., 

1994). This is a further indication of the likely diversity in initiation of herpesvirus DNA 

synthesis.

Once a replication fork has been established, DNA synthesis is presumed to proceed 

via a common mechanism as the ORFs encoding essential replication fork proteins are 

amongst the conserved gene blocks found in all herpesviruses. HSV-1 was the first 

herpesvirus for which the origins of replication and the essential viral DNA replication 

proteins were identified. Having been extensively studied, it has become the prototype 

herpesvirus DNA replication system and much knowledge regarding herpesvirus DNA 

replication in general has been inferred by analogy to HSV-1.

The seven HSV-1 proteins found to be essential for origin-dependent DNA replication 

constitute 4 proteins or protein complexes with the following functions; an origin- 

binding protein, a ss DNA-binding protein, a heterodimeric DNA polymerase 

holoenzyme and a heterotrimeric complex possessing helicase and primase activity. 

Homologs of all of these proteins, except the origin-binding protein, have subsequently 

been identified in all herpesviruses sequenced to date, including the human 

herpesviruses EBV (Baer etal., 1984), HCMV (Chee etal., 1990) and VZV (Davison & 

Scott, 1986). Confirmation that the predicted homologues were required for EBV and 

HCMV origin-dependent DNA synthesis was obtained using transient replication 

assays (Fixman etal., 1992; Pari & Anders, 1993). Conservation of the six proteins 

which constitute the basic replicative machinery indicates that the mode of DNA 

synthesis is shared throughout the herpesvirus sub-families. The names and functions 

of the six conserved DNA replication proteins in HSV-1, and their proposed homologs 

in HCMV and EBV, representing the a, p and y herpesvirus sub-families, respectively, 

are listed in Table 1.1. The biochemical functions of the essential herpesvirus 

replication proteins are summarised in Figure 1.4.

1.4.2 HSV-1 origins of replication

HSV-1 contains two different origins of replication, known as orisand oriL(Stow, 1982; 

Weller et al., 1985). Oris is located in the inverted repeat sequence (TRs/IRs) which 

flanks the Us segment and hence two copies are present within the genome. One 

copy of oriL is present in the centre of the U l segment. Although they vary in size, the 

sequences of orisand oriL are very similar. Each contain palindromic sequences
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Function HSV-1 (a) HCMV (P) EBV(y)

ss DNA-binding protein UL29 UL57 BALF2

DNA Polymerase catalytic sub-unit UL30 UL54 BALF5

DNA Polymerase processivity sub-unit UL42 UL44 BMRF1

Helicase UL5 UL105 BBLF/4

Primase UL52 UL70 BSLF1

Helicase-primase accessory protein UL8 UL102 BBLF2/3

Table 1.1 Conserved Herpesvirus DNA replication proteins
Six core replication fork proteins are conserved throughout the Herpesviridae. The 
table gives the names and functions of the conserved replication fork proteins in HSV- 
1, HCMV and EBV, which represent the a-, p- and y-herpesviruses, respectively. HSV- 
1 was the herpesvirus for which the minimal set of proteins required for origin- 
dependent DNA synthesis was elucidated (Wu et al., 1988). Homologs of the HSV-1 
replication fork proteins were subsequently identified amongst the virus encoded 
proteins required for DNA synthesis in HCMV and EBV, using transient replication 
assays (Fixman etal., 1992; Pari & Anders, 1993).
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centered around a region consisting of A and T residues only. The core region of oris 

is approximately 80 bp and contains an imperfect 45 bp palindrome with a central 18 

bp A+T region. Within the palindromic sequence flanking the A+T region of orisare 

three related sequences, box I, box II and box III, which are binding sites for the HSV-1 

origin-binding protein, UL9. Box I (CGTTCGCACT) has the highest affinity for UL9, 

with a five-fold higher affinity than box II (TGCTCGCACT) and 1000-fold higher affinity 

than box III (CGTTCTCACT) (Olivo etal., 1988; Koff & Tegtmeyer, 1988; Elias etal., 

1990; Hazuda etal., 1991). OriLis larger and more symmetrical than oris,spanning a 

core region of 425 bp and containing a perfect 144 bp palindrome with a 20 bp A+T 

central region. OriL contains one box I and one box III sequence on either arm of the 

palindromic sequence. Hence, oriL contains two very high affinity UL9-binding sites.

In addition to the UL9-binding sites, both orisand oriL contain binding sites for a cellular 

protein, designated OF-1, whose role in HSV-1 replication is not known but appears to 

be necessary for full origin function (Dabrowski etal., 1994). The A+T regions, UL9- 

binding sites and OF-1 binding sites represent the minimal core regions of orisand oriL 

that are essential for optimal efficiency of initiation of DNA replication, however the 

auxiliary flanking sequences are necessary for maximum origin activity. These regions 

contain binding sites for cellular transcription factors but the mechanism by which they 

enhance origin activity is not clear.

The functional significance of the presence of three origins of replication within the 

HSV-1 genome and the structural differences between orisand oriLis not known.

There appears to be a degree of redundancy between orisand oriL as mutant viruses 

lacking either oriL or both copies of oris grow as well as wild type virus in cultured cells 

(Polvino-Bodnar etal., 1987; Igarashi etal., 1993).

1.4.3 Essential HSV-1 DNA replication proteins

The identification of the HSV-1 origins of replication enabled investigation of the 

identity of the viral-encoded proteins involved in DNA synthesis, using a transient 

complementation assay. A series of cosmids containing cloned fragments of the HSV- 

1 genome were tested for their ability to support replication of a plasmid containing an 

HSV-1 origin of replication when all were co-transfected into cells. This led to the 

identification of six fragments of HSV-1 DNA which supplied the necessary trans-acting 

functions required to replicate the transfected origin (Challberg, 1986). Systematic 

sub-cloning of these fragments resulted in the identification of seven viral genes which 

were necessary and sufficient for origin-dependent replication (Wu et al., 1988). The
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results of the transient assay were subsequently confirmed by detailed mapping of 

DNA negative mutant HSV-1 viruses (reviewed by Boehmer & Lehman, 1997) and by 

demonstrating that replication of an origin-containing plasmid is supported by infection 

of Spodoptera frugiperda-9 (Sf) cells with recombinant baculoviruses expressing the 

seven replication proteins (Stow, 1992).

The seven HSV-1 genes that are essential for origin-dependent DNA replication are: 

UL5, UL8, UL9, UL29, UL30, UL42 and UL52. The functions of these gene products 

elucidated by biochemical analysis are summarised in Table 1.1. The UL9 gene 

specifies an origin-binding protein, which is involved in initiation of the replication fork. 

The remaining genes encode proteins which are conserved throughout the 

herpesviruses and provide the core activities required at the replication fork: a 

processive DNA polymerase, a ss DNA-binding protein, and a helicase-primase 

function (Figure 1.4). The characteristics of the HSV-1 replication proteins are 

described further below.

The HSV-1 DNA polymerase isolated from HSV-1 infected cells is a heterodimer 

consisting of the UL30 and UL42 proteins (Vaughan et al., 1985). UL30 is the catalytic 

sub-unit, which has been extensively studied since it is the target for many antiviral 

drugs. It shares sequence similarity to other DNA polymerases and hence, has also 

been studied as a model eukaryotic DNA polymerase. In addition to its polymerase 

function, UL30 possesses a 3’—>5’ exonuclease activity and RNase H activity (Knopf, 

1979; O’Donnell etal., 1987; Crute & Lehman, 1989). These properties are presumed 

to confer a proof-reading activity and the ability to remove RNA primers during the 

processing of Okazaki fragments, respectively.

UL42 is a phosphoprotein with sequence-independent ds DNA-binding activity which 

associates with UL30 and serves to increase its processivity (Gallo etal., 1988; 

Hernandez & Lehman, 1990; Gallo etal., 1989; Gottlieb etal., 1990). The mechanism 

by which it retains UL30 on the DNA template is distinct from other processivity factors, 

which have no intrinsic DNA-binding ability but associate to form a multimeric toroidal 

structure around the duplex DNA and interact with the polymerase to prevent its 

dissociation. Instead, it is thought that by interacting with UL30 and ds DNA 

simultaneously, UL42 tethers UL30 to the template, enabling the synthesis of long DNA 

chains (Gottlieb & Challberg, 1994). The interaction between UL30 and UL42 is 

mediated by a short aa sequence in the C-terminus of UL30 and appears to be critical 

for DNA replication. Deletion of this sequence has no effect on the DNA polymerase
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activity of UL30 but abolishes its ability to support long chain synthesis (Digard et al., 

1993; Tenney etal., 1993) and origin-dependent DNA replication (Stow, 1993). This 

finding has identified the UL30-UL42 interaction as a possible novel target for anti-viral 

intervention, discussed further in section 1.4.5.

UL29 functions as the HSV-1 ss DNA-binding protein (Bayliss etal., 1975), also known 

as ICP8. It binds more tightly to ss DNA than ds DNA and its binding is co-operative 

and independent of nucleotide sequence (Ruyechan, 1983; Ruyechan & Weir, 1984). 

Its main function is to bind the unwound ss DNA at the replication fork and maintain it 

in a conformation which can be utilised as a template by the polymerase. There is also 

evidence that UL29 may have additional roles at the replication fork, as it can stimulate 

the helicase activity of the UL9 origin-binding protein (Boehmer et al., 1993) and the 

helicase and primase activities of the helicase-primase complex (Hamatake et al.,

1997).

Essential helicase and primase functions in HSV-1 infected cells are provided by a 

heterotrimeric complex comprised of the UL5, UL8 and UL52 proteins (Crute etal., 

1989). The 5’—>3’ helicase activity has both ATPase and GTPase activities (Crute & 

Lehman, 1991). The primase exhibits strong template sequence preference for the 

synthesis of short oligoribonucleotide primers of between 8-10 bases (Tenney et al., 

1995; Crute & Lehman, 1991). The UL5 protein contains six motifs characteristic of 

helicases and UL52 contains a sequence motif similar to that found in other DNA 

primases (McGeoch etal., 1988), hence the helicase and primase functions have been 

assigned to the UL5 and UL52 sub-units, respectively. However, neither protein can 

be purified in isolation in a functional form so that assignment of these functions can be 

proven. A sub-assembly of the UL5 and UL52 proteins displays both helicase and 

primase functions, indicating strongly that the proposed functions are correct (Calder & 

Stow, 1990; Dodson & Lehman, 1991). In addition, site-directed mutagenesis studies 

have demonstrated that the helicase and primase active sites reside within the UL5 

and UL52 components, respectively (Zhu & Weller, 1992; Klinedinst & Challberg,

1994).

The role of the UL8 protein was initially unclear, as it does not appear to perform any 

obvious enzymatic functions and does not bind to DNA (Parry et al., 1993). Several 

studies have now indicated it is likely that UL8 has several auxiliary roles at the 

replication fork. It is known to be necessary for efficient primer utilisation by the 

polymerase in a model of lagging strand synthesis (Sherman et al., 1992), to stimulate
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primer synthesis (Tenney et al., 1994) and is required for efficient nuclear translocation 

of the helicase-primase complex (Calder etal., 1992; Marsden etal., 1996). UL8 is 

known to interact with several other replication proteins, indicating a multifunctional role 

at the replication fork. These interactions are described further in section 1.4.4.

The seventh essential HSV-1 DNA replication protein is UL9, which functions as an 

origin-binding protein, involved in the initiation of DNA replication. This function is not 

one of the core activities conserved throughout the herpesvirus family. Homologues of 

UL9 have only been identified in the alphaherpesviruses and the roseolavirus genera of 

the betaherpesvirus sub-family, such as HHV-6. UL9 exists as a homodimer in solution 

and binds to specific sequences present in HSV-1 origins (Elias & Lehman, 1988; Olivo 

et al., 1988). It possesses DNA-dependent ATPase and helicase activity (Fierer & 

Chalberg, 1992; Boehmer etal., 1993). The amino-terminal portion of the protein 

mediates the helicase, ATPase and dimerisation activities whilst the carboxy-terminal 

domain is involved in sequence-specific DNA binding. The non-sequence specific 

helicase activity of UL9 appears to be required for DNA synthesis as the introduction of 

mutations into the helicase motifs renders the protein unable to support DNA 

replication (Martinez et al., 1992). There is conflicting evidence as to whether UL9 

binds to single origin binding sites as a monomer or dimer (Fierer & Challberg, 1995; 

Martin et al., 1994). Recent data from surface plasmon resonance studies indicates 

that UL9 binds to an oligonucleotide template containing the HSV box 1 sequence as a 

dimer (Graeme Thomson, personal communication). Binding of UL9 to sites I and II in 

oris is co-operative, indicating that an interaction occurs between UL9 protein(s) bound 

at each site (Elias et al., 1990). The helicase activity of UL9 is stimulated by the ss 

DNA-binding protein, UL29 (Fierer & Challberg, 1992).

1.4.4 Host cell-encoded functions involved in herpesvirus DNA replication

HSV-1 DNA replication is largely autonomous from the host cell, however, several 

essential functions are not encoded by HSV-1 and are therefore assumed to be 

provided by host cell enzymes. A topoisomerase would be required to remove 

supercoils from replicating DNA and in addition a DNA ligase would be necessary to 

join the Okazaki fragments produced during lagging strand synthesis. Neither of these 

functions are thought to be encoded by HSV-1. Other host cell proteins may also be 

involved in other aspects of HSV-1 DNA replication. A cell line deficient in the cellular 

regulator of chromosome condensation (R ed) is unable to support the circularisation 

of HSV-1 genome DNA and its subsequent replication, indicating that this protein plays 

an essential role in HSV-1 replication in BHK cells (Umene & Nishimoto, 1996).
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1.4.5 Assembly and co-ordination of replication fork protein functions

The recruitment of the replication fork proteins and subsequent co-ordination of their 

functions is mediated through a series of protein-protein interactions. Since the 

essential replication fork proteins were identified, they have been extensively studied to 

elucidate both their biochemical characteristics and how they interact with each other 

to perform co-ordinated DNA synthesis at the replication fork. Consequently, multiple 

interactions between the HSV-1 replication fork protein have now been demonstrated. 

The nature of these interactions and their significance to HSV-1 DNA replication has 

recently been reviewed by Stow, (2000). Since the replication fork proteins are 

conserved amongst the herpesviruses, similar interactions can be predicted to occur 

amongst the conserved proteins in other herpesviruses. Figure 1.5 summarises the 

interactions that have been demonstrated amongst the HSV-1 replication proteins, and 

those that have been demonstrated, or are predicted to occur between HCMV and EBV 

replication proteins.

HSV-1 replication protein interactions

UL30 and UL42 physically associate to form the DNA polymerase holoenzyme and are 

co-purified from HSV-1 infected cells (Vaughan et al, 1985) and there is strong 

evidence that the interaction is essential for viral DNA replication (Digard et al., 1993; 

Stow, 1993; Tenney et al., 1993)) The helicase-primase complex is formed through 

interactions between the UL5, UL52 and UL8 proteins (Crute etal., 1989). The 

physical interactions between the helicase-primase subunits underlie a strong 

functional interdependence to the extent that none of these proteins exhibits detectable 

enzymatic activity in isolation.

In addition to interactions involved in the formation of enzyme complexes, further 

interactions between individual proteins/enzyme complexes have been described. The 

origin-binding protein, UL9, interacts with UL29 (Boehmer & Lehman, 1993), UL8 

(McLean etal., 1994) and UL42 (Monahan etal., 1998). These interactions may be 

important for recruitment of essential replication proteins and complexes to the origin 

for initiation of DNA synthesis. UL29 interacts with the polymerase accessory protein, 

UL42, (Vaughan et al., 1984), resulting in a stimulation of polymerase activity 

(Ruyechan & Weir, 1984), although this interaction is not well characterised. UL29 

also interacts with the helicase-primase complex, probably mediated by the UL8 

subunit (Falkenberg et al., 1997), and stimulates the enzymatic activities of the 

complex (Hamatake etal., 1997). UL8 also interacts with the catalytic sub-unit of the 

polymerase holoenzyme, UL30 (Marsden etal., 1997).
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Interactions which are common to HSV-1, HCMV and EBV are those which occur 

between the three subunits of the helicase-primase complex and also between the two 

subunits of the DNA polymerase holoenzyme. Interactions between the HCMV 

replication fork proteins are described further in section 1.5.3. In EBV, the BSLF1, 

BBLF2/3 and BBLF4 proteins associate to form the helicase-primase complex 

(Yokoyama etal., 1999), whilst the polymerase holoenzyme is formed by the 

interaction of the BALF5 and BMRF1 proteins (Tsurami etal., 1993). The interaction 

between the UL30 and UL8 proteins in HSV-1 (Marsden etal., 1997), is also observed 

between their counterparts in EBV, the BALF5 and BBLF2/3 proteins, respectively 

(Fujii et al., 2000). Conservation of the interactions that occur between the core 

replication fork proteins in different herpesvirus sub-families is a further indication of a 

common basic mode of herpesvirus DNA synthesis.

Interactions between herpesvirus DNA replication proteins are of importance to study, 

firstly, as it is clear such interactions are fundamental for co-ordinated DNA synthesis. 

Hence, dissection of the complex interplay between the replication proteins should 

result in a better understanding of the process of herpesvirus DNA replication. 

Secondly, it is likely that many of the interactions between the replication fork proteins 

are essential for DNA synthesis and therefore they represent potential novel anti-viral 

targets. The disruption of essential protein-protein interactions as a means of inhibiting 

viral DNA replication, or indeed any other process necessary for the production of 

infectious progeny, obviously requires a detailed knowledge of the characteristics of 

the interaction and the region(s) on one or other of the proteins involved.

The HSV-1 UL30-UL42 interaction is one of the best characterised HSV-1 protein- 

protein interactions owing to its potential as a target for anti-viral drugs. Several 

studies initially strongly indicate that the interaction is essential for viral DNA 

replication, as UL30 proteins with mutations in the region involved in interacting with 

UL42 retain basal polymerase activity but do not support long chain DNA synthesis or 

origin-dependent DNA synthesis (Digard etal., 1993; Stow, 1993; Tenney etal., 1993). 

It was subsequently shown that the interaction can be disrupted by short peptides 

corresponding to the C-terminus of UL30 (Marsden etal., 1994; Digard etal., 1995) 

and that this inhibits the ability of UL30 to synthesise long DNA chains, thus identifying 

the interaction as a target for novel anti-viral drugs aimed at inhibiting the interaction. 

Loregian etal., (1999) have demonstrated that a peptide corresponding to the C- 

terminal 27 residues of UL30 fused to the B subunit of E.coli enterotoxin can enter the 

nucleus of HSV-1 infected Vero cells and specifically inhibit viral replication.
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The well characterised interaction between the HSV-1 ribonucleotide reductase (RR) 

enzyme subunits, R-i and R2, is another example of a herpesvirus protein-protein 

interaction whose disruption leads to inhibition of viral replication in vitro (Marcello et 

al., 1994). This antiviral strategy is more likely to result in a lower incidence of drug 

resistant strains and this was found to be true in the case of inhibition of RR, as drug 

resistant virus which emerged through mutation was found to have impaired RR activity 

and consequently was less viable (Bonneau et al., 1996).

1.4.6 Model for origin unwinding and initiation of DNA replication in HSV-1

Using the information that has been gathered regarding the HSV-1 origins, replication 

proteins and how they interact with each other, a model for the unwinding of the 

replication origin and establishment of a replication fork has been proposed (Boehmer 

& Lehman, 1997 and Stow, 2000). Although the initial events in unwinding the 

replication origins may vary amongst the different herpesviruses, the subsequent 

recruitment of replication proteins and establishment of a replication fork may follow a 

similar mechanism to that which is proposed for HSV-1. Figure 1.6 depicts the model 

that has been proposed, although it should be noted that not all the events proposed 

have been substantiated experimentally. Each stage is numbered with an explanation 

for each step given below;

1) The initial step involves the binding of UL9 to recognition sites on either side of the 

AT region at the centre of oris and oriL. UL9 may bind in the form of a monomer or 

dimer.

2) Bound UL9 proteins interact with each other, possibly mediated by a leucine zipper 

motif within the N-terminal region of UL9. This interaction results in a distortion of 

the DNA helix in the AT region between the binding sites. Specifically, it has been 

suggested that the intervening DNA is held in a loop configuration as a result of the 

interaction (Koff et al., 1991).

3) The interaction between UL9 and UL29 serves to recruit UL29 to the origin, where 

it binds to the distorted DNA in the AT region. UL29 stimulates the helicase activity 

of UL9 and increases its processivity. The UL9-UL29 complexes then proceed to 

unwind the duplex DNA adjacent to the origin, utilising the sequence-independent 

helicase activity of UL9. The UL9-UL9 interaction is maintained during initial 

unwinding, ss DNA extruded from the UL9-UL29 complex is stabilised by coating 

with UL29. Sequence specific unwinding of an HSV-1 origin by UL9 has only been 

demonstrated in the presence of UL29, indicating the importance of the UL9-UL29 

interaction to the unwinding process (Lee & Lehman, 1997).
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4) Once unwinding of the duplex DNA has begun, recruitment of the helicase-primase 

and polymerase functions is necessary for DNA synthesis to commence. It is 

postulated that the arrival of the helicase-primase and polymerase enzyme 

complexes result in either the displacement of UL9, or disruption of the interaction 

between UL9 proteins, allowing the origin to take the form of a replication bubble. It 

is likely that the helicase-primase heterotrimer is probably recruited via protein- 

protein interactions involving the UL8 component, as UL8 physically interacts with 

UL9 (McLean etal., 1994) and an interaction with UL29 is strongly suggested 

(Falkenberg etal., 1997; Tanguy Le Gac etal., 1996). Either of these interactions 

may serve to recruit the helicase-primase complex to the unwound DNA at the 

origin, although it seems more likely that the UL8-UL9 interaction may be the 

mechanism of recruitment. This is supported by the fact that the same N-terminal 

regions of UL9 involved in co-operative binding to the origin (Hazuda etal., 1992) 

are also necessary for its interaction with UL8 (McLean & Stow, unpublished data). 

Hence, the interaction would not only recruit UL8 to the origin but would also 

disrupt the UL9-UL9 interaction, allowing the formation of a replication bubble. 

Subsequently, the UL8-UL29 interaction may serve to direct the helicase-primase 

complex to regions of ss DNA and to modulate the enzymatic activities of the 

complex. UL29 stimulates the DNA-dependent ATPase and helicase functions of 

the complex (Hamatake etal., 1997) and efficient helicase-primase activities on 

UL29-coated templates are dependent on the presence of UL8 (Falkenberg et a!., 

1997; Tanguy Le Gac etal., 1996).

5) The helicase-primase complex then directs the synthesis of short RNA primers on 

both unwound DNA strands to enable elongation of complementary strands by the 

polymerase holoenzyme.

6) Recruitment of the polymerase holoenzyme to the sites of unwound and RNA- 

primed DNA is possibly mediated through interactions between the polymerase 

holoenzyme and UL9 or the UL8 subunit of the helicase-primase complex. At 

present, it is not known whether recruitment of polymerase occurs before or after 

recruitment of the helicase-primase complex and RNA priming. The polymerase 

accessory protein, UL42, specifically interacts with UL9 (Monahan etal., 1998).

The N-terminal region of UL9 is involved in binding to UL42, hence this interaction 

may also contribute to the proposed dissociation of UL9 to allow formation of a 

replication bubble. Another interaction which may be involved in recruitment of 

polymerase occurs between UL30 and the UL8 subunit of the helicase-primase 

complex. Characterisation studies indicate that the region spanning the C-terminal 

32 amino acids of UL8 is involved in the interaction (Marsden et a!., 1997). It is
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interesting to note, therefore, that a UL8 mutant lacking the C-terminal 33 residues 

does not support origin-dependent replication (Barnard etal., 1997), supporting the 

hypothesis that the UL8-UL30 interaction may be crucial for DNA synthesis. 

However, whether or not the loss of viability of the UL8 mutant was directly related 

to a disruption of the interaction with POL cannot be ascertained, as other functions 

may be affected by the truncation also. In addition to involvement in recruitment of 

the polymerase, the UL8-UL30 interaction likely has a role in co-ordination of DNA 

unwinding and leading strand synthesis and also the synthesis of RNA primers with 

lagging strand synthesis.

7) Once polymerase has been recruited to the replication fork, the RNA primers are 

extended and bi-directional DNA synthesis is established. The helicase-primase 

complex proceeds to further unwind and prime the duplex DNA to allow lagging 

strand synthesis to continue.

1.4.7 Pathway of DNA replication in HSV-1

Whilst much knowledge has been accumulated regarding the HSV-1 origins of 

replication and the essential replication proteins, the pathway and forms of replicative 

intermediates which are utilised remain unclear. Current models for HSV-1 DNA 

replication propose that initial rounds of replication proceed via a theta-like mechanism, 

followed by a rolling-circle mode of replication at later times in infection (reviewed by 

Boehmer & Lehman, 1997). It is known that linear HSV-1 genomes are rapidly 

circularised following infection, probably via direct ligation of the complementary single 

overhanging nucleotides at the genomic termini (Mocarski & Roizman, 1982).

Genomes remain circularised throughout the replicative cycle, a strategy that 

overcomes the problems of replicating the genomic termini. A theta-like mechanism is 

indicated by the rapid non-linear accumulation of viral DNA during early stages of DNA 

synthesis, which is inconsistent with rolling-circle replication. (Zhang etal., 1994).

The final products of HSV-1 DNA replication, however, are long head-to tail genome 

concatemers, indicated by sedimentation and restriction fragment analysis of newly 

synthesised DNA (Jongeneel & Bachenheimer, 1981). These findings are consistent 

with a rolling-circle mode of DNA replication, but how the proposed switch from theta to 

rolling-circle replication occurs is not known. In model systems for rolling-circle 

replication (reviewed in Kornberg & Baker, 1992), initiation occurs at a free 3’-OH end 

on one of the DNA molecules, which requires a ‘nicking’ of one of the DNA strands.

The viral and/or cellular proteins which may be involved in nicking the DNA remain 

unknown. DNA synthesis is likely to proceed in the same way as during theta
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replication, but whilst the uncleaved circular DNA strand would act as the template for 

leading strand synthesis, the displaced concatemeric single-stranded product of 

leading strand synthesis would act as the template for lagging strand synthesis.

It has recently been shown that the HSV-1 replication proteins are capable of directing 

rolling-circle DNA synthesis in vitro on a circular DNA molecule partially annealed to a 

complementary strand with a free 5’-poly-dT tail (Falkenberg et al., 2000). Using this 

system, it was demonstrated that the product of synthesis was double-stranded 

concatemeric DNA, and that leading and lagging strand synthesis were concurrent. 

Interestingly, the only HSV-1 proteins that were absolutely required were the 

polymerase holoenzyme and the UL5 and UL52 subunits of the helicase-primase 

complex. Whilst the use of this artificial in vitro system demonstrates that the HSV-1 

proteins can direct rolling-circle DNA synthesis, it does not provide any information 

regarding the initiation of replication or recruitment of the enzyme complexes.

1.5 HCMV DNA replication
1.5.1 HCMV Origins of replication

A region of the HCMV genome which serves as an origin of DNA replication was first 

identified by Hamzeh etal., (1990) and Anders & Punturieri, (1991), using a novel 

gancyclovir-induced chain terminating method and a transient replication assay, 

respectively. Hamzeh etal., (1990) observed that DNA synthesis was detectable in 

one genomic region only in cells treated with gancyclovir, which acts as a chain 

terminator when incorporated into a growing viral DNA chain. A transient replication 

assay, involving the transfection of plasmids containing cloned regions of the HCMV 

genome into cells followed by superinfection with HCMV, revealed that sequences 

upstream of the ORF encoding the ss DNA-binding protein, UL57, and including the 

amplified region in gancyclovir treated cells, provided the c/s-acting signals required to 

mediate DNA replication. The boundaries and structure of this origin of lytic-phase 

DNA replication, designated orilyt, were further defined by Anders et al., (1992). They 

found that sequences spanning approximately 2.4 Kbp near the centre of the UL 

segment, upstream of the gene encoding the UL57, contributed to orilyt function. This 

region contains the highest content of inverted and direct repeats in the HCMV genome 

(Masse et al., 1992) and is comprised of multiple components required for orilyt 

function and regulation. These include various repeated sequence motifs, transcription 

factor binding sites, including ATF, CREB and Sp-1, and an A-T rich segment (Anders 

etal., 1992).
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The presence of transcription factor binding sites is a common feature of eukaryotic 

and viral replication origins. The possible role of transcription units in HCMV orilyt 

function was investigated by Huang etal., (1996), who demonstrated that several 

transcripts originate within or span regions of orilyt. Of particular interest was the 

identification of a series of short, non-polyadenylated transcripts, collectively known as 

the smallest replicator transcript (SRT), which originate in the centre of the core orilyt 

sequence and terminate within an oligopyrimidine sequence, known as the Y block, 

which is essential for orilyt function. Spanning approximately 0.22 Kbp, with a common 

5’ terminus and heterogeneous 3’ ends, SRTs are early transcripts, as defined by 

sensitivity to cyclohexamide, and are driven by a candidate upstream promoter. The 

structure of SRT suggests that it is not an mRNA, leading to suggestion that it may 

have a role in initiation of DNA synthesis. This possibility is discussed further in 

section 1.5.4. Another feature of HCMV orilyt which may provide clues to the 

mechanism of orilyt activity is the presence of persistent RNA-DNA hybrid structures 

covalently linked to DNA-DNA segments, which are integrated into the genomes of a 

proportion of HCMV virions (Prichard etal., 1998). Two virus-associated RNAs 

(vRNAs) were identified; vRNA 1 lies within the region between nt 93799 and nt 94631 

and is approximately 500 bp long, whereas vRNA 2 maps to a 300 bp sequence 

between nt 92636 and nt 93513.

Further analysis of orilyt defined a minimal core region of approximately 1.5 Kbp, 

between nt 91751 and 93299 (Zhu et al, 1998). Deletion analysis of this sequence 

defined two essential regions of 364 bp and 166 bp, respectively. Essential region I 

contains the Y-block element which consists of an oligopyrimidine tract. The Y block 

has a homologous counterpart in EBV, which is also essential for EBV orilyt function. In 

addition, the heterogeneous 3’ ends of the SRT overlap the Y-block (Huang et al., 

1996). Region I also contains various repeated sequences, including inverted pairs of 

ATF-CREB binding sites, reported to be the most important component of the left half 

of this region (Zhu etal, 1998). Region II contains consensus SP-1 binding sites and 

sequences with potential SRT promoter function (Huang etal., 1996; Zhu etal, 1998). 

vRNA 2 also overlaps essential region II (Zhu etal, 1998). A schematic representation 

showing structural features of HCMV orilyt is shown in Figure 1.7.

1.5.2 HCMV replication proteins

A set of 11 loci encoding functions that are necessary and sufficient to direct HCMV 

origin-dependent DNA replication were elucidated by Pari & Anders, (1993), who used 

a transient replication assay similar to that utilised to investigate the essential HSV-1
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Figure 1.7 Structural Features of HCMV oriLyt
A) A schematic diagram of the HCMV genome showing the location of oriLyt.
B) The region encompassing oriLyt and flanking sequences. The position of 

the UL57 ORF and the stabiy incorporated viral RNA molecules (vRNAs) 
(Prichard et al., 1998) are indicated. The lilac box represents the 2.4 Kbp 
region which contributes to orilyt function (Anders et a!., 1992), containing 
the 1.5 Kbp oriLyt ‘core’ sequence (Zhu et ai., 1998). The positions of 
essential regions I and II (ERI and ERII) are indicated.

C) The core region of HCMV oriLyt lies between nt 91751-93299 (Zhu et al.,
1998). It contains both the essential regions, I and II and vRNA 2. The 
smallest replicator transcript (SRT) refers to a series of 0.22 Kbp RNA 
molecules which are transcribed from nt 92686 and terminate in the region 
of the Y block (Huang et al., 1996). The Y-block is an essential 45 nt long 
oligopyrimidine tract (Huang et al., 1996).



replication proteins (Wu et al., 1988). Amongst the 11 loci were ORFs which encode 

predicted homologues of the six core, conserved herpesvirus replication fork proteins; 

the DNA polymerase catalytic (UL54) and accessory (UL44) sub-units, a ss DNA- 

binding protein (UL57) and a heterotrimeric helicase-primase complex (UL70, UL102 

and UL105). The other five loci encode auxiliary proteins; UL36-38, UL84, IRS1/TRS1, 

UL122-123 (MIE) and UL112-113. In contrast to their HSV-1 counterparts, the HCMV 

replication fork proteins have not been extensively characterised.

Core Replication Fork Proteins

Similar to HSV-1, DNA polymerase activity in HCMV-infected cells was originally found 

to be associated with two proteins (Huang, 1975), which were subsequently identified 

as UL54 and UL44. The catalytic sub-unit, UL54, is the most extensively characterised 

of all the HCMV replication fork proteins, being the target for the majority of currently 

licensed anti-HCMV drugs. UL54 shares considerable homology with the HSV-1 DNA 

polymerase and contains a set of six sequence motifs in common with HSV-1 Pol and 

other members of the a-like DNA polymerase family (Wang, 1991). UL54 likely 

possesses the 3’->5’ proofreading exonuclease function associated with the 

holoenzyme purified form infected cells (Nishiyama et al., 1983) and, on the basis of 

sequence homology, possibly a 5’—>3’ exonuclease/Rnase H-like function also (Marcy 

et al., 1990). Analysis of the arrangement of the conserved motifs in UL54 suggests 

that the exonucleolytic activities are mediated by the amino half and the polymerase 

functions in the central domain. The interaction between UL54 and UL44, the 

polymerase accessory protein, is mediated by the C-terminus of UL54, as is found in 

their HSV-1 counterparts, UL30 and UL42. A peptide corresponding to the 21 C- 

terminal amino acids of UL54 disrupts the physical interaction between the proteins 

and the stimulatory effect of UL44 (Roberto Rigatti & Howard Marsden, personal 

communication). UL44 is an abundant 53 kDa DNA-binding phosphoprotein, which 

has only limited aa sequence homology with its HSV-1 counterpart, UL42. UL44 

physically associates with UL54 and serves to stimulate its polymerase activity and its 

processivity also (Ertl & Powell, 1992; Weiland etal., 1994;). The DNA-binding domain 

of UL44 resides in the N-terminal two thirds of the protein whereas C-terminal regions 

do not contribute to stimulation of UL54 or DNA-binding properties (Weiland et al., 

1994).

The HCMV ss DNA-binding protein is encoded by ORF UL57. It has not been well 

studied, however sequence alignment with other herpesvirus counterparts reveals it 

contains several conserved aa sequence blocks (Anders, 1990). The limited
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characterisation carried out so far indicates that UL57 has similar properties to its HSV- 

1 counterpart, UL29 and hence is predicted to fulfill the same role of stabilising single­

stranded DNA unwound at the replication fork (Anders etal., 1990; Kemble etal.,

1987).

Helicase-primase activity in HCMV-infected cells is associated with a 1:1:1 

heterotrimeric complex comprised of the UL70, UL102 and UL105 proteins, which can 

be purified from the nuclei of HCMV-infected cells (McCollum etal., 1999). The 

purified complex possesses DNA-dependent ATPase, DNA helicase and RNA primase 

activities. The UL70, UL102 and UL105 components also stably associate when co­

expressed in both mammalian and insect cells (McCollum etal., 1999; Anders & 

McCue, 1996). Immunoprecipitation experiments indicate that each of the helicase- 

primase subunits is able to form pair-wise interactions with all other members of the 

complex, and that interacting sequences of each subunit reside in the N-terminal 

domain (McMahon et al., 1999). On the basis of sequence homology with their HSV-1 

counterparts and the presence of conserved functional sequence motifs, helicase and 

primase functions are attributed to the UL105 and UL70 proteins, respectively (Chee et 

al., 1990; Martignetti etal., 1991). Analysis of the recombinant complex, expressed in 

insect cells, demonstrated that a sub-assembly comprised of the UL70 and UL105 

proteins retains helicase and primase activities (McCollum etal., 1999). This feature is 

also observed with a heterodimer comprised of the UL5 and UL52 subunits from the 

HSV-1 helicase-primase complex (Calder & Stow, 1990; Dodson & Lehman, 1991). 

However, in contrast to its HSV-1 counterpart, UL5, the HCMV helicase subunit,

UL105, retains detectable ATPase activity when purified in isolation (McCollum etal.,

1999).

UL102 is an essential HCMV replication protein which is proposed to be analogous to 

the HSV-1 helicase-primase associated protein, UL8, with which it shares only limited 

sequence homology (Chee etal., 1990; Smith & Pari, 1995a). No characterisation 

studies of UL102 have been carried out. Like its HSV-1 counterpart, UL102 does not 

appear to possess any detectable enzymatic activity. Hence, its role as part of the 

helicase-primase complex at the replication fork is unclear, but several functions can 

be predicted by analogy with its HSV-1 counterpart, UL8.

Auxiliary replication proteins

In addition to the six proposed replication fork proteins, five additional loci were 

required for origin-dependent HCMV DNA replication; UL36-38, UL84, UL112-113,
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UL122-123 (MIE region) and IRS1/TRS1 (Pari & Anders, 1993). None of these 

auxiliary loci encode proteins which are analogous to the HSV-1 origin-binding protein, 

UL9. Subsequent studies have shown that UL36-38, UL112-113, UL122-123 and 

IRS1/TRS1 have roles in transactivating expression of the replication fork proteins from 

their native promoters (Iskenderian etal., 1996). The functions of the MIE region 

(UL122-123), UL36-38 and IRS1/TRS1 have been reviewed (Colberg-Poley, 1996; 

Stenberg,1996).

The UL122-123 locus, or MIE region, encodes four immediate-early proteins and one 

late protein, via differential splicing. The major products are the IE1 and IE2 proteins, 

both of which have been the subject of extensive characterisation. IE1 and IE2 play 

key roles in regulating both viral and cellular promoters, functioning at the level of the 

transcription complex. IE2 alone is a potent transcriptional modulator which can 

activate early viral genes and also auto-regulate the MIE promoter by repressing its 

transcription. IE1, in contrast, activates the MIE promoter and acts synergistically with 

IE2 to activate a variety of early viral promoters. In addition, IE1 and IE2 co-operate 

with other IE regulatory proteins (UL36-38, IRS1/TRS1 and UL112-113) to enhance 

expression from early promoters (Iskenderian etal., 1996).

IE2 interacts with the UL84 protein and this complex can be co-immunoprecipitated 

from HCMV-infected HF cells (Spector & Tevethia, 1994). IE2 is thought to exert its 

regulatory effects through a variety of mechanisms. These include binding to DNA 

directly, illustrated by studies which demonstrated IE2 binds to its own promoter (Lang 

& Stamminger, 1993), by interaction with cellular transcription factors, e.g. CREB (Lang 

etal., 1995) or by interactions with components of the basal transcription machinery 

e.g, TFIIB (Caswell et al., 1993). The importance of IE2 to the HCMV replicative cycle 

was recently highlighted by studies using a bacterial artificial chromosome (BAC) clone 

of the HCMV Towne strain genome with the IE2 gene deleted (Marchini etal., 2001). 

The growth cycle of the IE2 mutant was arrested due to a failure in expression of early 

genes. IE1, however, is non-essential for growth in tissue culture, as a mutant HCMV 

virus lacking IE1 grows comparably to wild-type when used to infect cells at a high 

multiplicity (Greaves & Mocarski, 1998).

The UL36-38 locus encodes the IE proteins UL36, UL37 and UL37-exon1 (UL37x1) as 

well as the early temporal class UL38 protein. UL36 is a member of the US22 gene 

family which regulates viral gene expression (Colberg-Poley et al., 1992). There have 

been conflicting results regarding the necessity of UL36 for growth of HCMV in cell
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culture. In one study, the use of antisense nucleotides to inhibit splicing of UL36 and 

UL37 transcripts resulted in inhibition of HCMV DNA replication in HF cells (Smith & 

Pari, 1995b). However, more recently, an HCMV recombinant virus lacking UL36 was 

shown to display wild-type growth kinetics in HF cells (Patterson & Shenk, 1999).

UL37 is a transmembrane glycoprotein which shares its first 162 aa’s with UL37x1. 

Both are reported to have transcriptional regulatory activity (Colberg-Poley etal.,

1992). An acidic domain is common to both proteins, however, in UL37, this has been 

shown to be dispensable for its transcriptional regulatory activity (Zhang etal., 1996). 

The function of UL38, an early protein, is unknown, however it does not appear to 

possess any regulatory activity (Colberg-Poley etal., 1992).

The IRS1/TRS1 loci are contained within repeated elements flanking the short genome 

segment and encode highly homologous proteins which are members of the US22 

gene family. Their homology is such that either protein can support DNA replication 

(Pari et al., 1993; Pari & Anders, 1993) by transactivating DNA replication protein 

promoters in transient assays (Iskenderian et al., 1996). IRS1/TRS1 co-operate with 

other IE proteins to transactivate the early gene promoters. TRS1 acts in conjunction 

with IE1/IE2 to transactivate the UL44 gene promoter (Stasiak & Mocarski, 1992).

The UL112-113 locus specifies a family of differentially spliced transcripts which 

encode four early temporal class DNA-binding phosphoproteins. Proteins specified 

from this locus co-operate with IE1/IE2, IRS1/TRS1 and UL36-38 proteins to activate 

transcription of early genes encoding DNA replication fork proteins (Iskenderian etal.,

1996). UL112-113 gene products co-localise with viral DNA prior to and during 

replication in infected cells and expression of antisense UL112-113 RNA blocks DNA 

replication (Yamamoto etal., 1998). In addition to its role in transactivation of early 

viral genes, UL112-113 gene products are involved in recruitment of replication fork 

proteins to viral pre-replicative compartments (Ahn et al., 1999).

UL84 is an early protein which interacts with IE2 in HCMV-infected cells (Spector & 

Tevethia, 1994). Although the significance of this interaction is not fully understood, 

the interaction may serve to regulate IE2 function, as UL84 can inhibit IE2-mediated 

transactivation (Gebert et al., 1997) and it may also be a means by which UL84, which 

lacks an obvious nuclear localisation signal, to translocate to the nucleus. It has also 

been suggested that UL84 may possess RNA endonuclease activity (Sarisky & 

Hayward, 1996b).
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Roles of the HCMV auxiliary replication proteins

The findings of Iskenderian etal., (1996) indicate that the UL36-38, IRS1/TRS1,

IE1/IE2 and UL112-113 auxiliary proteins are required for adequate expression of the 

essential replication fork proteins. They found that the gene products of each of these 

loci co-operatively promote expression of the replication fork genes, with each 

contributing to activation to varying degrees. The MIE proteins were found to be the 

most potent activators of transcription. Despite testing for an effect upon activation of 

all the early replication fork promoters, no clear evidence was found to support a role 

for the fifth auxiliary protein, UL84, in modulation of expression of these genes.

The role of the auxiliary proteins in HCMV DNA replication was further investigated by 

Sarisky & Hayward, (1996a), who carried out transient replication assays in Vero and 

HF cells. These experiments involved co-transfection of a HCMV orilyt-containing 

plasmid and plasmids expressing all 11 HCMV auxiliary proteins under the control of 

constitutive heterologous promoters. The requirement for the individual auxiliary 

proteins was investigated by omitting each, in turn, from the replication assay. Whilst 

omission of plasmids encoding other auxiliary proteins, in particular IE1/IE2, resulted in 

a reduction in replication efficiency, UL84 was the only protein whose omission 

completely abrogated replication of the origin-containing plasmid. UL84 was the only 

auxiliary protein which was found to be indispensable for replication of orilyt, when all 

the other auxiliary proteins were present. Although UL36-38 was also found to be 

necessary initially, it was subsequently found that the HCMV UL69 protein could 

substitute for the UL36-38 expressing plasmid, indicating that UL36-38 has an indirect 

role in DNA synthesis. UL69 is not one of the originally identified essential HCMV 

replication proteins, but is known to possess transactivation properties (Winkler et al., 

1994).

Sarisky & Hayward (1996a) also demonstrated functional complementation of the 

HCMV core proteins by substituting them with the EBV replication fork proteins. The 

EBV core proteins were capable of directing replication of an HCMV orilyt-containing 

plasmid, when supplemented with the UL84-expressing plasmid alone. No other 

auxiliary proteins could substitute for UL84 under these conditions, indicating that UL84 

is the only auxiliary protein absolutely necessary for orilyt-dependent replication in the 

transient assay. In addition, the formation of intranuclear replication compartments in 

HF cells, which is observed upon co-transfection of the 11 essential HCMV replication 

proteins, was absolutely dependent on the presence of UL84.
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When taken together, the results of Iskenderian et al., (1996) and Sarisky & Hayward 

(1996a) strongly implicate UL84 as serving an essential origin-specific function. Whilst 

four of the five auxiliary proteins are required for adequate expression of the core 

replication proteins, no such role for UL84 was substantiated (Iskenderian et al., 1996). 

However, UL84 is the only auxiliary protein which is a) absolutely required for HCMV 

orilyt-dependent replication; b) able to mediate replication of HCMV orilyt by the EBV 

replication fork proteins and c) indispensable for the formation of viral replication 

compartments in HF cells (Sarisky & Hayward, 1996a). Hence it was concluded that 

UL84 was the most likely candidate to perform an origin-specific function in HCMV 

although this does not necessarily imply that UL84 binds the HCMV origin directly 

(Sarisky & Hayward, 1996a). No further work on the role of UL84 in HCMV DNA 

replication has been published.

Recent work carried out in the Institute of Virology (Ellsmore, (2000) has provided an 

alternative insight into the roles of the HCMV auxiliary DNA replication proteins. A 

novel transient replication systems was utilised to investigate the HCMV-encoded 

proteins which provide origin-specific functions. The HSV-1 replication fork proteins 

were used to replicate an HCMV origin-containing plasmid in Vero cells, in the 

presence of the HCMV auxiliary proteins. No absolute requirement for UL84 was 

demonstrated, as omission of the UL84-expressing plasmid did not significantly reduce 

replication of the origin-containing plasmid when the four remaining auxiliary loci were 

present. IE2 was found to be the sole auxiliary protein required to direct replication of 

the HCMV origin by the HSV-1 replication proteins. UL36-38 was not absolutely 

required but was found to increase the efficiency of replication. These findings are in 

contrast to those of Sarisky & Hayward (1996a), who reported that UL84 was the only 

auxiliary protein absolutely required for origin-dependent DNA replication.

Whilst the available data indicates that the UL112-113, IE2/IE1, UL84 and UL36-38 

proteins have roles in transactivation of early genes involved in DNA replication, they 

may also have additional roles in DNA replication during viral infection. IE1 is involved 

in the redistribution of PML from ND10 structures in early stages of replication (Ahn & 

Hayward, 1997). In addition, UL112-113 has been shown to be necessary for the 

recruitment of core replication proteins to viral replication compartments (Ahn et al., 

1999).

1.5.3 Interactions between HCMV replication proteins

The HCMV core replication proteins have not been as well characterised as their
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counterparts in HSV-1, and consequently far fewer interactions between them have 

been reported. Figure 1.5 summarises the interactions which have been described so 

far and those which are predicted to occur by analogy with the HSV-1 replication 

proteins.

The HCMV DNA polymerase holoenzyme is formed by a close association of the UL54 

and UL44 proteins (Huang, 1975; Ertl & Powell, 1992). Similarily, the UL70, UL102 

and UL105 proteins associate to form the helicase-primase complex (McCollum etal., 

1999). The interactions between subunits of the DNA polymerase and helicase- 

primase enzyme complexes are conserved amongst the mammalian herpesviruses.

So far, none of the inter-enzyme-complex interactions that occur between HSV-1 and 

EBV DNA replication enzyme complexes have been described for HCMV (Figure 1.5). 

The results of an investigation into the putative interaction between the HCMV DNA 

polymerase, UL54, and the helicase-primase accessory subunit, UL102 are presented 

in Chapter 5 of this thesis.

1.5.4 Models for initiation o f HCMV DNA replication

Whilst the overall mechanism of HCMV DNA synthesis is likely to be similar to that in 

HSV-1, the information which has been gathered so far regarding the HCMV origin of 

replication and essential HCMV replication proteins suggests that HCMV employs a 

mechanism of initiation of DNA replication distinct from that of HSV-1. Firstly, HCMV 

orilyt bears little resemblance to the HSV-1 origins, oris and oriL- HCMV orilyt is 

distinctive due to its far greater size and structural complexity. Secondly, no known 

homolog of the HSV-1 origin-binding protein, UL9, is encoded by HCMV.

Several features of HCMV orilyt have been reported which may provide an insight into 

the possible mechanism of initiation of DNA synthesis. Huang et al., (1996) reported a 

series of short replicator transcripts, or SRT, which originate in orilyt and terminate in 

the essential Y-block element. Subsequently, stable RNA-DNA hybrid structures within 

orilyt were identified (Prichard etal., 1998). Together with the identification of 

numerous transcription factor binding sites in orilyt (Anders et al., 1992), these findings 

are consistent with models in which transcription elements and/or transcription across 

the origin are involved in the initation of DNA synthesis.

The covalently integrated RNA within orilyt is a key feature in one such model. If 

cleaved by an RNase H-like enzyme, the free 3’-OH end of the RNA moiety could then 

act as a primer from which DNA synthesis could be initiated. This model requires an,



as yet unidentified, RNA endonuclease function, however UL84 is a possible candidate 

for this role. An RNA endonuclease function has been attributed to UL84 (Sarisky & 

Hayward, 1996b) and Prichard et al., (1998) also comment that UL84 has an effect on 

RNA stability.

In another model, proposed by Huang et al., (1996), initiation would occur via a 

mechanism similar to that of mitochondrial DNA (mtDNA) heavy strand replication, 

which has been reviewed by Shadel & Clayton (1997). The two strands of mtDNA are 

designated as heavy and light, due to a strand bias in G+T content, and are not 

replicated simultaneously. Transcription of each strand is initiated from either the 

heavy strand promoter (HSP) or the light strand promoter (LSP), respectively. Initation 

of mtDNA replication begins with transcription from the LSP, involving the mtRNA 

polymerase and one or more transcription factors. As transcription proceeds, the 

newly synthesised transcript forms a RNA-DNA hybrid with the light template strand, 

and the heavy strand is displaced. The hybrid adopts a stable configuration which is 

then processed to form RNA primers. DNA synthesis can then be initiated by 

extension of the processed RNA primer by DNA polymerase y.

By analogy with the mtDNA heavy strand replication mechanism, Huang et al., (1996) 

have proposed that transcription of the HCMV SRT wouid commence from the SRT 

promoter, possibly mediated by cellular RNA polymerase III and transcription factors 

with binding sites located in the vicinity of the SRT promoter. The SRT transcript would 

subsequently form a stable hybrid with the Y-block element, causing displacement of 

the opposite DNA strand and creating a locally unwound region. Processing of the 

RNA component of the hybrid region, likely by RNase-H activity, would provide a free 

3’-OH tail from which DNA synthesis could commence. The known characteristics of 

UL84 are consistent with a role in initiation of DNA replication by this mechanism.

The relationship, if any, between the SRT, which is not embedded in the HCMV 

genome, and the two vRNAs which are incorporated into orilyt, is unclear. It has been 

suggested that the SRT may represent a portion oi vRNA2 which is not integrated into 

the genome (Prichard et al., 1998). However, as not all HCMV virions appear to contain 

vRNA in their genomes, this feature cannot be essential for initiation of DNA replication 

in HCMV.

Considering the overall complexity of HCMV orilyt, and the differing requirements for 

trans-acting factors which have been observed in different cell lines (Sarisky &
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Hayward, 1996a) and in different transient replication assays (Sarisky & Hayward, 

1996a; Ellsmore, 2000), it is possible that initiation of replication can proceed by more 

than one mechanism and may therefore depend on the availability of the necessary 

trans-acting factors in a given cell type and possibly the stage of the cell-cycle. If 

transcription and/or transcription elements play a role in initiation, then different factors 

may be utilised in different cell lines, as orilyt contains a variety of cellular transcription 

factor binding sites and also potential IE2-binding sites (Anders etal., 1992; Huang et 

al., 1996).

1.6 Aims of this project
Current models for HCMV DNA replication are based on what is known about the 

prototype herpesvirus replication system, HSV-1. Since many of the details of the 

proposed model for HCMV have yet to be demonstrated and, unlike their HSV-1 

counterparts, the HCMV replication proteins have not been well studied, further 

characterisation of the replication proteins and how they interact with each other is 

required to fully understand the mechanism of HCMV DNA replication. As well as 

furthering overall understanding of the biology of HCMV, this may also lead to the 

identification of novel targets for the development of anti-HCMV treatments.

In HSV-1, the helicase-primase associated protein, UL8, appears to have multiple roles 

in DNA replication. It enhances the functions of the helicase-primase complex, it is 

required for nuclear translocation of the complex, and also interacts with all of the other 

core replication proteins. These interactions are probably important for the recruitment 

of other essential protein complexes to the replication fork and the co-ordination of both 

leading and lagging strand DNA synthesis. Its HCMV counterpart, UL102, has not 

been characterised although by analogy with UL8, it is likely to perform several 

essential functions during HCMV DNA replication. The gene encoding UL102 had been 

cloned and expressed using the baculovirus system prior to the start of this project.

The overall aim of this project was to characterise UL102 and establish whether it 

shares common properties with the HSV-1 UL8 protein. The specific aims were;

a) To generate a variety of reagents enabling structure-function analysis of UL102. 

This included the generation of monoclonal UL102-reactive antibodies and 

constructs expressing truncated versions of UL102 in a variety of systems.

b) To establish whether UL102 shares common characteristics with that of the HSV-1 

UL8 protein. The specific aspects of UL102 behaviour to be investigated were its;
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DNA-binding properties.

Ability to interact with the HCMV DNA polymerase catalytic subunit, UL54. 

Ability to influence the intracellular localisation of the other HCMV helicase- 

primase complex proteins.
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Chapter 2

Materials and General Methods



2.1 General materials
2.1.1 Chemicals and reagents

All chemicals and solutions were obtained from Sigma Chemicals Company, Mo, USA 

or BDH Laboratory Supplies, Poole, UK with the following exceptions;

Amersham Pharmacia Biotech (APB) 

Boehringer Mannheim, Germany 

Bio-Rad Laboratories, CA, USA

Calbiochem Corporation, CA, USA 

Kirkegaard & Perry Laboratories, USA 

Prolabo, Fontenay Sur Bois 

Life Technologies, UK 

Smithkline Beecham Research

ECL western blotting detection reagents,

Rainbow protein MW markers

Tris base, Nonidet-P-40, complete EDTA-

free protease inhibitor tablets

Ammonium persulphate, 30 %

acrylamide/Bis solution, Protein assay dye

reagent concentrate

Cleland’s reagent

ABTS-peroxidase substrate

Glycerol, Chloroform, Methanol

1Kb DNA ladder markers

Ampicillin

2.1.2 Enzymes

Restriction endonucleases were obtained from Boehringer Mannheim. Other enzymes 

were obtained from;

Boehringer Mannheim, GmbH, Germany T4 DNA Ligase,

Alkaline Phosphatase 

New England Biolabs, Massachusetts, USA T4 Polynucleotide Kinase

2.1.3 Antibodies

UL54-specific monoclonals were made by Dr Susan Graham (MRC Virology Unit, 

Glasgow). Other antibodies were supplied by the following;

Sigma Chemical Company, MO, USA Anti-mouse-HRP, Anti-FLAG monoclonal,

Anti-c-myc monoclonal, Anti-mouse-FITC 

Amersham Pharmacia Biotech (APB) Anti-rabbit-Cy5 conjugate

2.1.4 Radiochemicals

y-32P-ATP, 35S-Methionine and 14C-Chloramphenicol were supplied by NEN, MA, USA.
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2.1.5 Miscellaneous materials

Other materials used in experimental 

Schleicher & Schuell 

Macherey-Nagel GmbH & Co 

Medicell International Ltd 

Dynex Technologies Inc, USA 

Whatman International Ltd 

Kodak Ltd 

Citifluor

work were obtained from the following; 

Protran BA 85 Nitrocellulose, 

Polygram 0.2mm sil G TLC sheets 

Dialysis membrane 

Immulon Imicrotitre Plates 

3mm filter paper 

X-omat Film

UKC Chemical Laboratories

2.1.6 Plasmids

Commercial plasmids were obtained from; 

Amersham Pharmacia Biotech 

Stratagene, CA, USA 

Clontech Laboratories, CA, USA

pGEX-2T, pGEX-4T2, pGEX-4T3 

pCMV-Tag2, pCMV-Tag3 

Mammalian-2-hybrid vectors: pM, pVP16, 

pM3-VP16

Dr Marion McElwee (MRC Virology Unit, Glasgow) made and supplied plasmids 

pTZ18u-102, pacCL29.105 and pacCL29.70. pCMVIO was supplied by Dr Nigel Stow, 

(MRC Virology Unit, Glasgow) (Stow et al, 1993). Plasmid PY-POL was made by Dr 

Sun Yi, (MRC Virology Unit, Glasgow).

2.1.7 Viruses

HCMV strain AD169 was obtained from Dr Derrick Dargan, MRC Virology Unit, 

Glasgow. Recombinant baculoviruses AcNPV-UL102 and AcNPV-UL54, which 

express the HCMV UL102 and UL54 proteins under the control of the polyhedrin 

promoter, were made by Dr Sun Yi and Mary Murphy (MRC Virology Unit, Glasgow).

2.1.8 Oligonucleotides

Oligonucleotides used for PCR amplification and sequencing of UL102 gene fragments 

(primers 4166, 4641, 4643 and 250C) were made by Mr D McNab in the Division of 

Virology. Universal and reverse sequencing primers for pUC-derived plasmid 

sequencing were obtained from New England Biolabs, Inc. DNA oligonucleotides 

(j)X174A and <|)X174B, used for DNA binding studies, were obtained from MWG Biotech. 

RNA olionucleotide primers RNA1 and RNA2, also used in DNA binding experiments, 

were synthesised and purified by Cruachem Ltd.
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2.2 LIST of SOLUTIONS

AE buffer
100 mM Tris base (pH 8), 100 mM NaCI, 2 mM 
EDTA, 0.5% (v/v) deoxycholate, 1% (v/v) NP-40, 
10% (v/v) glycerol, 1 complete protease inhibitor 
tablet per 50 ml

Cell Fix solution 19 ml PBS, 1 ml formaldehyde, 0.4g sucrose

Cell freezing Mix Appropriate cell medium + 10% DMSO

Cell Permeabilisation 

Solution
19 ml PBS, 1 ml 10% NP40, 2 g sucrose

Coomassie blue gel stain 5% (v/v) methanol, 7% (v/v) acetic acid, 0.2 % 
Coomassie brilliant blue in 1 L H20

DNA loading buffer (5x) 4% sucrose, 0.25% bromophenol blue, 0.25% 
xylene cyanol

DNA binding buffer (+ salt) 50 mM Hepes, 10% (v/v) glycerol, 0.1 mM EDTA, 
0.5 mM DTT, 50 mM NaCI

DNA binding buffer (- salt) 50 mM Hepes, 10% (v/v) glycerol, 0.1 mM EDTA, 
0.5 mM DTT

ELISA washing buffer 

(EWB, 10x)
1.45 M NaCI, 75 mM Na2HP04, 28 mM NaH2P 04, 
0.5% (v/v) Tween-20

Gel destain 5% (v/v) methanol, 7% (v/v) acetic acid, 88% (v/v) 
water

IP wash 100 mM Tris (pH 8), 100 mM NaCI, 2 mM EDTA

PBS 170 mM NaCI, 3.4 mM KCI, 10 mM Na2HP04, 1.8 
mM KH2P 04, 6.8 mM CaCI2, 4.9 mM MgCI2 (pH 7.2)

PBS-Tween PBS with 0.001% Tween-20

Resolving gel buffer 0.74M Tris-HCL (pH 8.0), 1% SDS

SDS-PAGE sample buffer
6% SDS, 30% stacking gel buffer, 30% glycerol, 
210 mM p-mercaptoethanol, 0.3% bromophenol 
blue

SDS-PAGE tank buffer 52 mM Tris, 53 mM Glycine, 0.1% SDS

Stacking gel buffer 0.122M Tris-HCL (pH 6.7), 0.1% SDS

TAE 40 mM Tris.acetate, 1 mM EDTA

TBS 20 mM Tris-HCL (pH 7.5), 500 mM NaCI

Trypsin 0.25% (w/v) trypsin in tris-saline containing phenol 
red (pH 7.5)

Tryptose Broth 29.5 g Difcobacto tryptose phosphate broth in 1L 
H20

Towbin transfer buffer 25 mM Tris base, 192 mM glycine, 20% methanol 
(v/v), 0.01% SDS (w/v)

Versene 0.6 pM EDTA, 0.02% phenol red in PBS
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2.3 Chromatography materials and buffers

All chromatography buffers were made using sterilised distilled water.

2.3.1 UL102 Purification

DEAE-sepharose CL-6B was obtained from Amersham Pharmacia Biotech.

Hydroxyapatite pre-packed 5 ml columns were obtained from Bio-Rad.

Buffer G extraction buffer 20 mM Triethanolamine, 10% (v/v) Glycerol, 10 mM KCI,

1.5 mM MgCI, 1 mM DTT, 1 complete protease inhibitor 

tablet per 50 ml.

DEAE-sepharose chromatography buffers:

Triethanolamine Buffer 20 mm Triethanolamine, 10 % (v/v) Glycerol, 100 mM

NaCI.

Low-salt NaCI 20 mM Tris (pH 8), 10 % (v/v) Glycerol, 100 mM NaCI.

High-salt NaCI 20 mM Tris (pH 8), 10 % (v/v) Glycerol, 2M NaCI.

Hydroxyapatite chromatography buffers:

NaCI Loading buffer 20 mM Hepes (pH 7.6), 10% (v/v) Glycerol, 1 mM DTT,

1 mM EDTA, 50 mM NaCI.

Low Salt (NH4)2S 04 20 mM Hepes (pH 7.6), 10% (v/v) Glycerol, 1 mM DTT,

1 mM EDTA, 50 mM (NH4)2S 0 4.

High Salt (NH4)2S 04 20 mM Hepes (pH 7.6), 10% (v/v) Glycerol, 1 mM DTT,

1 mM EDTA, 500 mM (NH4)2S 0 4.

2.3.2 UL54 Purification

Cellulose phosphate was obtained from Whatman International, ss DNA cellulose was

obtained from Sigma.

NSC extraction buffer 20 mM Hepes (pH 7.9), 1.5 mM MgCI, 0.2 mM EDTA, 1

mM DTT, 600 mM NaCI, 25% (v/v) glycerol, 0.5% NP-40, 

1 complete protease inhibitor tablet per 50 ml.

POL dialysis buffer 20 mM Hepes (pH 7.5), 50 mM NaCI, 10% (v/v) glycerol,

0.5 mM EDTA, 1 mM DTT.

Phosphocellulose chromatography buffers

Low-salt NaCI 20 mM Hepes (pH 7.5), 50 mM NaCI, 10% (v/v) glycerol,

0.5 mM EDTA, 1 mM DTT.

High-salt NaCI 20 mM Hepes (pH 7.5), 0.85 M NaCI, 10% (v/v) glycerol,

0.5 mM EDTA, 1 mM DTT.
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ss DNA cellulose chromatography

Low-salt buffer 20 mM Hepes (pH 7.5), 50 mM NaCI, 10% (v/v) glycerol,

0.5 mM EDTA, 1 mM DTT.

High-salt buffer 20 mM Hepes (pH 7.5), 0.65 M NaCI, 10% (v/v) glycerol,

0.5 mM EDTA, 1 mM DTT.

2.4 Cell culture

2.4.1 Bacterial cells and culture

E. coli strain DH5a was used for the maintenance and propogation of plasmid DNA. 

Bacterial cells were grown in L-broth (LB) (10g NaCI, 10g bactopeptone, 5g yeast 

extract in 1 litre of water at pH 7.5) or 2YT for protein expression from pGEX plasmids 

(5g NaCI, 16g bactopeptone, 10g yeast extract in 1 litre of water at pH 7.5). Agar 

plates were made using 1.5 % (w/v) agar in LB. When necessary, media and agar 

plates were supplemented with the appropriate antibiotics.

2.4.2 Eukaryotic cells and cell culture

All cell media and supplements were obtained from Gibco, BRL except tryptose broth 

which was produced by Media services, Institute of Virology. The following cell lines 

were used in experimental work. All were obtained from the Cytology department in 

the Institute of Virology.

Spodoptera frugiperda-9 (Sf)

BHK21 C13

HFFF 

Hela

Vero

2.5 General Methods
2.5.1 DNA Manipulation

2.5.1.1 Restriction enzyme digestion of DNA

Restriction enzyme digestions were carried out using commercial enzymes and 

corresponding buffers. Typically, 0.5-2pg of DNA was digested in a final volume of 10- 

2 0 jliI  using an excess of enzyme (5-10 units/digest) and the corresponding buffer at the 

recommended temperature for 1-2 hours.

Insect cell line derived from worm ovarian tissue 

(Vaughn etal., 1977).

Syrian hamster kidney fibroblasts (MacPherson & 

Stoker, 1962)

Human foetal foreskin fibroblasts

Human epithelial cell line derived from cervical

carcinoma

African green monkey kidney fibroblasts

41



2.5.1.2 Agarose gel electrophoresis of DNA

DNA samples were mixed with a 1/5 volume of DNA loading buffer and loaded into 

wells in horizontal 1% agarose gels made in 1x TAE containing 0.5 pg/ml EtBr. A 1 kb 

DNA ladder size marker was also loaded onto the gel. Electrophoresis was carried out 

using BIO-RAD sub-cell DNA gel electrophoresis systems with the gel submerged in 1x 

TAE also containing EtBr for approximately 40 minutes at 70 V. DNA was visualised 

using either a short wave or long wave UV transilluminator, as appropriate.

2.5.1.3 Purification of DNA from non-denaturing agarose gels

DNA fragments resolved by agarose gel electrophoresis were visualised under long­

wave UV illumination and the required bands were cut from the gel. Gel slices were 

melted and the DNA subsequently purified using the Geneclean kit by Bio 101 inc, 

according to the manufacturer’s instructions and using supplied materials. The volume 

of the gel slices was determined and 3x volumes of Nal was added. They were melted 

by incubating at 45°C for 5-10 minutes. A 10 pi volume of DNA-binding glassmik was 

added and the solution was incubated at room temperature, with mixing, for 

approximately 15 minutes. The glassmilk was pelleted at 13 000 rpm for 5 secs and 

washed using 400 pi of wash. This wash was repeated twice. After the final wash, 

tubes were left open at room temperature for 10 minutes to ensure ethanol from the 

wash solution had evaporated. The DNA was re-suspended in dH20, approximately 20 

pi for < 5 pg of DNA.

2.5.1.4 Quantification of plasmid DNA

Plasmid DNA was quantified by UV absorption in a spectrophotometer at 260 nm. 

Concentrations were calculated assuming that an absorbance value of 1.0 corresponds 

to 50 pg/ml ds DNA.

2.5.1.5 DNA Ligation reactions

Ligation of DNA fragments and linearised plasmid DNA was carried out as follows. 

Fragment and plasmid DNA were mixed such that the fragment or insert DNA was in 

molar excess of the plasmid DNA by approximately 3-fold. One unit of bacteriophage 

T4 DNA ligase enzyme was added along with an appropriate amount of 10X ligase 

enzyme buffer in a final volume of 10-20 pi. Reactions were incubated overnight at 

room temperature. Where the insert was to be ligated into the plasmid by means of 

one restriction enzyme site only, the plasmid was subjected to treatment using calf 

intestinal phosphatase (CIP) enzyme prior to the ligation, in order to prevent
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recircularisation during the ligation reaction. Typically, 10 units of CIP along with 

phosphatase buffer was added to 1 pg of restriction enzyme-digested plasmid DNA in 

a final volume of 10-20 pi and incubated at 37°C for one hour.

2.5.1.6 Preparation of competent DH5a E.coli cells

A single colony of DH5a E.coli cells was used to inoculate 5ml of LB and cells were 

grown overnight at 37°C in an orbital shaker. The next day, 1 ml of the overnight 

culture was diluted in 50 ml LB and allowed to grow for 2 hours at 37°C, with shaking. 

Cells were chilled on ice for 20 minutes and then pelleted at 3000 rpm (microfuge) for 5 

minutes at 4°C. The pellet was resuspended in 25 ml 0.1 M CaCI2 and incubated on ice 

for 30 minutes. The cells were pelleted again at 3000 rpm (microfuge) for 5 minutes at 

4°C and finally resuspended in 4 ml CaCI2. Cells were stored at 4°C for at least one 

hour before use in transformation reactions.

2.5.1.7 Transformation of competent DH5a E.coli cells

Approximately 100 ng of DNA (either unmodified plasmid DNA or that from ligation 

reactions) was mixed with 200 pi of competent cells and incubated on ice for 30 

minutes. Competent cell/DNA mixtures were then subjected to “heat-shock” by 

incubating at 42°C for 90 seconds. 800 pi of LB was added immediately and samples 

were incubated at 37°C for 1 hour, with shaking. Cells were then pelleted at 13000 

rpm in a microfuge for 30 seconds and 800 pi of the supernatant discarded. The cell 

pellet was resuspended in the remaining 200 pi of media and then spread onto LB agar 

plates, containing appropriate antibiotics (100 pg/ ml ampicillin or 25 pg/ ml kanamycin) 

using a sterile plastic spreader. Plates were incubated overnight at 37°C.

In the case of cells transformed using DNA from ligation reactions, individual bacterial 

colonies that had grown were picked from agar plates into 5 ml of sterile LB containing 

the appropriate antibiotic (to which the transformed plasmid had conferred resistance) 

at the afore-mentioned concentrations, and shaken overnight at 37°C. The following 

day, small-scale preparations of plasmid DNA were made.

2.5.1.8 Small scale preparation of plasmid DNA (mini-prep)

Bacteria contained in 1.5 ml of overnight culture were pelleted by centrifugation at 

13000 rpm (microfuge) for 30 seconds and the supernatant discarded. Plasmid DNA 

was then isolated using a ‘Perfect Prep’ kit (5’—>3’, Inc) according to the manufacturers
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instructions and using reagents as supplied. Plasmid DNA was eluted using 60pl of 

dH20  at 65°C, and stored at -20°C.

2.5.1.9 Large-scale preparation of plasmid DNA (midi-prep)

A single colony or glycerol stock of bacteria was used to inoculate 100 ml of LB 

containing the appropriate antibiotic, using a sterile loop. Cultures were grown in 500 

ml flasks. The cells were pelleted by centrifugation at 3000 rpm for 15 minutes and the 

supernatant was discarded. The DNA was extracted using a Qiagen midi-prep kit 

following the manufacturers instructions.

2.5.1.10 Propagation of plasmid DNA

Stocks of plasmid DNA were stored long-term in glycerol at -70°C. To prepare these 

stocks, 0.5 ml of an overnight culture of the plasmid-containing bacteria was mixed with

0.5 ml glycerol. When new preparations of plasmid DNA were required, a small 

sample of glycerol stock was streaked out onto an LB agar plate (containing 

appropriate antibiotics, where necessary) using a sterile loop and incubated at 37°C 

overnight. The following day, an individual bacterial colony was picked into a suitable 

volume of LB containing the necessary antibiotics and grown at 37°C, with shaking, for 

the required time. Cells were then harvested and the DNA isolated using a Qiagen 

midi-prep kit as described previously.

2.5.1.11 DNA sequencing

An ABI automated sequencer was used for sequencing of double-stranded 

recombinant plasmid DNA, using the dideoxy method of Sanger, (1977).
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2.6 Analysis of Proteins

2.6.1 SDS-PAGE

Complex protein mixtures were resolved using SDS-PAGE. Bio-Rad Mini Protean II gel 

apparatus was used to prepare and run mini gels. Usually 7.5% polyacrylamide 

resolving gels (acrylamide:bisacrylamide 37.5:1)were prepared in 1x running gel buffer 

and poured between vertical mini-gel plates. A 5% polyacrylamide stacking gel 

(acrylamide:bisacrylamide 19:1) prepared in 1x stacking gel buffer was polymerised on 

top of this. Prior to loading into gel wells, protein samples were mixed with 1/3 volume 

of SDS-PAGE sample buffer and boiled for 5 minutes. Gels were electrophoresed at 

180 mA for 40-60 minutes, until the dye front reached the bottom of the gel. Proteins 

could then be detected by staining gels in 0.2 % Coomassie blue stain for 10 minutes 

followed by de-staining or transferred onto nitrocellulose membrane by western blotting 

for detection using antibodies.

2.6.2 Western Blotting

Proteins were transferred from polyacrylamide gels onto nitrocellulose membranes 

according to the method of Towbin et al, (1979). Gels were places on top of Whatman 

3 mm paper presoaked in Towbin transfer buffer. A sheet of nitrocellulose membrane 

followed by another sheet of 3 mm paper (both pre-soaked) was placed on top of the 

gel. This assembly was transferred into a Bio-Rad mini trans-blot cartridge and tank as 

instructed. Electro-blotting was carried out in Towbin transfer buffer for 1 hour at 200 

mA.

2.6.3 Detection of proteins on nitrocellulose membrane using antibodies

Nitrocellulose membranes were immersed in blocking buffer, consisting of 5% dried 

milk in PBS, and agitated for 1 hour at room temperature or overnight at 4°C. Blocking 

buffer was rinsed off using PBS containing 0.001% Tween-20 (PBS-Tween) and then 

the membranes were incubated with primary antibody, either in sealed plastic bags or 

suitable plastic containers, at room temperature for 1-2 hours. After six 5 minute 

washes in PBS-Tween, the membranes were incubated with either anti-mouse or anti­

rabbit IgG horseradish peroxidase-conjugate antibody (depending on the source of 

primary antibody), diluted 1:1000 in PBS-Tween 20, at room temperature for 1 hour, 

with agitation. Unbound secondary antibody was removed by six 5 minute washes 

using PBS-Tween. Membranes were then transferred onto glass plates and treated 

using Amersham ECL western blotting reagents according to the manufacturer’s 

instructions. After a 1 minute incubation, the nitrocellulose was covered with
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transparent film and then exposed to Kodak X-Omat film, which was processed using a 

Kodak X-Omat film developer.

2.6.4 Quantification of proteins

Protein concentrations were determined using the Bio-Rad protein assay kit (micro­

assay), which is based on the Bradford dye-binding protein assay (Bradford, 1976), 

according to the manufacturers instructions. A standard curve of protein concentration 

against absorbance at 595 nm was produced, using BSA as the standard protein at the 

following concentrations (ng/ml); 50, 100, 200, 400, 800 and 1000. The absorbance of 

the sample proteins was measured and protein concentration calculated from the 

standard curve.

2.7 Cell Culture

2.7.1 Insect cell culture

Sf cells were grown in 600 ml plastic flasks containing 50 ml of medium or alternatively 

in 2 L plastic roller bottles containing 250 ml of medium. They were grown in TC-100 

medium supplemented with 5% FCS, 1% penicillin-streptomycin and 0.5% neomycin 

and incubated at 28°C without C 0 2. Cells were passaged by removing the existing 

medium then tapping the cells into a small amount of fresh Sf medium added to the 

vessel. Harvested cells were typically split 1:4 into fresh flasks.

2.7.2 Mammalian cell culture

Mammalian cells were grown in 600 ml plastic flasks containing 50 ml medium and 

maintained in a humidified incubator at 37 °C with 5% C 0 2. Cells were passaged by 

washing the monolayer with 10 ml of versene and then removing the cells by 

trypsinisation using 10 ml of trypsin/versene (1:6). Once dispersed, 10 ml of the 

appropriate fresh medium was added and cells were split into fresh flasks. Where 

necessary, cells were counted using a Neubauer haemocytometer. The media 

composition for each cell type is listed below;

BHK cells: BHK cells were grown in BHK-21 medium supplemented with 10% 

newborn calf serum, 10% tryptose broth and 1% penicillin-streptomycin.

Vero cells: Vero cells were grown in DMEM supplemented with 5% FCS, 1% 

penicillin-streptomycin and 1% non-essential amino acids.

HFFF-2 cells: HFFF-2 cells were grown in DMEM supplemented with 10% FCS, 1% 

L-glutamine, and 1% penicillin-streptomycin.

Hela cells: Hela cells were grown in DMEM supplemented with 10% FCS and 1%
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penicillin-streptomycin.

2.8 Transfection protocols

2.8.1 Preparation of cationic liposomes

DDAB (dimethyldioctadecyl ammonium bromide) was made up to a concentration of 4 

mg/ml using 1 ml of chloroform. The DDAB solution was mixed with 1 ml DOPE 

(dioleoyl-a-phoshatidyl ethanolamine) which was already suspended in chloroform.

The chloroform was evaporated by passing under a stream of nitrogen. The resulting 

white solid was lyophilised overnight in a freeze dryer. The dried liposomes were 

resuspended in 10 ml sterile distilled water by sonication. The liposome suspension 

was further sonicated, on ice, using a soniprobe intermittently until the suspension 

cleared. Liposomes were stored at 4°C for up to three months.

2.8.2 Transfection of mammalian cells using cationic liposomes

24-well plates containing 13 mm glass coverslips were seeded with mammalian cells at 

a concentration of 0.4x 105 cells/well, unless otherwise stated. The following day, 

provided cells were between 50-70% confluent, they were transfected with 2 pg/well of 

plasmid DNA as follows. DNA was mixed with 250 pi of serum-free Optimem medium 

(Gibco-BRL). 10 pi of liposome suspension, vortexed immediately prior to use, was 

also mixed with 250 pi of optimem in a separate tube. The Optimem/ DNA solution 

was added dropwise to the Optimem/liposome solution. The mixed solutions were 

vortexed for 30 seconds and then incubated at room temperature for 15 minutes. The 

existing medium was removed from the cells to be transfected and they were washed 

twice using PBS. The 500 pi transfection mixtures were added to each well and the 

plates were rocked gently to ensure the mix was evenly distributed. Cells were 

incubated at 37°C for 3 hours, after which the transfection mixtures were removed. 

Cells were washed once using PBS and then 1 ml of fresh medium was added to each 

well. Cells were replaced at 37°C for the required period of time.

2.9 Purification of recombinant insect cell-expressed proteins

2.9.1 Preparation and purification of recombinant UL102 

2.9.1.11nfection of Sf cells with baculovirus AcNPV~UL102

Typically, 12 large flasks of Sf cells at approximately 70% confluency (3.5x107 cells/ 

flask) were infected with recombinant baculovirus AcNPV-UL102 at a MOI of 5-10 in 

2mls medium. Virus was allowed to adsorb for 1 hour, then 20 ml medium was added

47



to flasks which were then incubated for 3 days at 28°C. Cells were harvested 3 days 

post infection by shaking into the medium. The contents of each flask was then 

transferred to a roller bottle of Sf cells at a confluency of 1x106 cells/ml. Cells were 

incubated at 28°C for 28 hours.

2.9.1.2 Harvesting of infected Sf cells and extraction o f protein

Cells from the roller bottles were harvested into the existing cell medium by shaking 

and transferred to Falcon 225 ml conical centrifuge bottles. Cells were pelleted by 

centrifugation at 3000 rpm for 7 minutes at 4°C and the supernatant discarded (Sorvall 

RT-7 Benchtop centrifuge). Cells were washed 3 times by resuspension in 80 ml ice- 

cold TBS followed by centrifugation at 3000 rpm for 7 minutes at 4°C, each time the 

supernatant being discarded. Cells were kept on ice throughout this procedure. 

Following the final wash, cell pellets were resuspended in 5 ml cold Buffer G then 

transferred to a dounce homogeniser. Cells were lysed by 12-15 strokes in the 

homogeniser. The lysed cell suspension was transferred to Sorvall 35 ml centrifuge 

tubes and centrifuged at 40000 rpm for 1 hour at 4°C using a Sorvall T865 

ultracentrifuge rotor (Sorvall OTD-50B Ultracentrifuge). The final supernatant was 

carefully decanted and kept on ice if the purification was being carried out immediately 

or alternatively stored at -70°C.

2.9.1.3 Purification ofUL102

Recombinant UL102 was purified from insect cell lysate by a two-step chromatographic 

process. UL102 was initially captured from insect cell lysate onto a column consisting
~ ~ y /  »■ / £ ■

of the anion exchange resin, DEAE-Sepharose CL-6B. A 100 mM-2M gradient of NaCI 

was then applied to the column, causing elution of UL102 at about 200 mM NaCI. 

Fractions containing UL102 from this stage were identified by SDS-PAGE followed by 

both Coomassie blue staining and western blotting using a UL102-specific antisera.

The second stage of purification utilises an Hydroxyapatite column. Hydroxyapatite 

(Ca5(P04)30 H)2 is a form of calcium phosphate which is thought to act as a “mixed­

mode” ion exchanger, as it contains both positively and negatively charged ions. Peak 

fractions from DEAE-separation were then pooled and applied to a pre-packed 

commercial Hydroxyapatite column in low-salt NaCI loading buffer. UL102 does not 

bind to this column but instead flows straight through, separating it cleanly from the 

mixture of other proteins in the preparation. The contaminating proteins bind to the 

column and are eluted by applying a 50-500 mM gradient of ammonium sulphate salt. 

All chromatography was carried out using a Pharmacia Biotech ‘AKTA purified.
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DEAE-Sepharose column purification of sf cell extract containing UL102 

Column preparation: DEAE-Sepharose CL-6B beads were packed to a final volume of 

12 ml inside a Pharmacia glass chromatography column then equilibriated using low- 

salt triethanolamine buffer overnight at a flow rate of 0.2 ml/minute.

This first stage of UL102 purification consisted of 3 steps as follows;

1. Loading Run; Clarified sf cell extract was injected onto the column at a flow rate of 

0.5 ml/minute using triethanolamine buffer. Many of the insect cell proteins do not 

attach to this column but UL102 binds and remains bound until eluted using NaCI 

buffer.

2. Wash Run; The purpose of this stage was to wash away proteins that were not 

tightly bound to the column. The column was washed using 90 ml of low-salt (100 

mM) NaCI buffer at a flow-rate of 0.5 ml/minute.

3. Elution Rum, In this stage a salt gradient was applied to the column, causing elution 

of the bound proteins on the basis of their charge. The gradient applied had two 

parts. In the first, the salt concentration in the buffer was increased from 100 mM 

to 260 mM NaCI salt (0-13%) over 26 ml buffer volume. The second part of the 

gradient consisted of a steep increase in salt concentration applied to the column, 

from 260 mM to 2M NaCI (13-100%) over a volume of 2.4 ml. UL102 was eluted 

during the first part of the gradient, at approximately 200 mM NaCI salt 

concentration. The flow rate was 0.5 ml/minute, and fractions of 1.5 ml volume 

were collected. Small samples of 50 pi volume were taken from each fraction to be 

used in subsequent analysis. The remainder of each fraction was stored at -70°C.

Fractions eluted from the DEAE-Sepharose column were analysed using SDS-PAGE. 

The 50pl samples were split equally between two gels. One was stained with 

coomassie blue and the other was used for western blotting analysis as described in 

section 2.6.3 using a UL102-specific antisera to allow unambiguous identification of the 

peak fractions containing UL102.

Hydroxyapatite Column Purification of UL102 from DEAE-Sepharose fractions 

Column preparation: A Bio-Rad Econo-Pac CHT-II 5 ml pre-packed hydroxyapatite 

column was equilibriated using 2 ml of 50 mM ammonium sulphate buffer followed by a 

gradient from 50-500 mM ammonium sulphate salt over 20 ml buffer volume. The 

column was washed with a further 2 ml high salt buffer before the salt concentration 

was reduced to 50 mM again over 3 ml buffer volume. The flow rate used was 1 

ml/minute.

Sample loading and run details; Following equilibriation, the column was washed using
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low-salt (50 mM) NaCI for 30 minutes at 1 ml/minute. Pooled fractions from the DEAE- 

Sepharose purification were mixed 1:1 by volume with NaCI buffer then injected onto 

the column in volumes not exceeding 9 ml. Samples were loaded and resolved using 

the same ammonium sulphate wash and gradient run conditions described above. 1ml 

fractions were collected throughout, with 50pl samples removed from each for analysis 

before storing at -70°C.

The purity of the UL102 preparation was determined by SDS-PAGE analysis of the 

peak fractions followed by coomassie blue staining. The protein content of each 

fraction was then quantitated using a standard protein assay (section 2.6.4).

2.9.2 Preparation and purification of recombinant UL54

2.9.2.1 Infection of Sf cells with baculovirus AcNPV-UL54

Typically, 12 large flasks of Sf cells at approximately 70% confluency (3.5x107 cells/ 

flask) were infected with recombinant baculovirus AcNPV-UL54 at a MOI of 5-10 in 2 

ml medium. Virus was allowed to adsorb for 1 hour, then 20 ml medium was added to 

flasks which were then incubated for 3 days at 28°C. Cells were harvested 3 days post 

infection by shaking into the medium. The contents of each flask were then transferred 

to a roller bottle of Sf cells at a confluency of 1x106 cells/ml. Cells were incubated at 

28°C for 3 days.

2.9.2.2 Harvesting of infected s f cells and extraction of protein

Cells infected with AcNPV-UL54 were treated to extract the soluble protein content 

exactly as described in section 2.9.1.2, with the exception that 20 ml of NSC buffer was 

used to resuspend the cells prior to homogenisation. After the final centrifugation, the 

supernatant containing UL54 was dialysed extensively overnight at 4°C in 4 litres of 

POL dialysis buffer.

2.9.2.3 Purification of UL54

Recombinant UL54 was purified from dialysed insect cell lysate by a two-step 

chromatographic process. UL54 was initially captured from the lysate onto a column 

consisting of the phosphocellulose beads. Phosphocellulose acts as a cationic 

exchanger, which binds positively charged UL54 via negatively charged phosphate 

groups on the beads. UL54 is eluted from this column by applying a NaCI gradient.

The second stage of purification utilises a ss-DNA cellulose column. DNA cellulose 

acts as an affinity column which consists of ss-DNA attached to cellulose beads to
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which DNA-binding proteins adhere. UL54 binds to this column and is eluted using a 

NaCI gradient. All chromatography was carried out using a Pharmacia Biotech ‘AKTA 

purifier*.

Phosphoceilulose coiumn purification of Sf cell extract containing UL54 

Column preparation: Whatman P11 cellulose phosphate was prepared according to 

the manufacturers instructions and then packed to a final volume of 15 ml inside a 

Pharmacia glass chromatography column (diameter 1.6 cm). The column was then 

equilibriated using a salt gradient of 50 mM-0.85M NaCI overnight at a flow rate of 1.0 

ml/minute.

Sample loading and run details: Dialysed extract containing UL54 was loaded onto the 

phosphocellulose column using low salt buffer at a flow rate of 1.0 ml/minute then a 

salt gradient of 50 mM-0.85M NaCI was applied over a volume of 250 ml. UL54 was 

eluted at approximately 0.35 M NaCI. Fractions of 4.5 ml volume were collected 

throughout. Small samples of 50 pi volume were taken from each fraction to be used in 

subsequent analysis. The remainder of each fraction was stored at -70°C. Fraction 

samples were split between 2 gels and analysed using SDS-PAGE followed by 

Coomassie blue staining and western blotting analysis (section 2.6.3), using a UL54- 

specific antiserum to allow unambiguous identification of the peak fractions containing 

UL54.

DNA cellulose Column Purification of UL54 from phosphocellulose fractions 

Column preparation: Sigma ss DNA cellulose was swollen in Buffer A then packed to a 

volume of 9.6 ml in a Pharmacia glass chromatography column (diameter 1.6 cm) and 

then equilibriated using a 50 mM-0.65 M NaCI gradient using a flow rate of 1 ml/minute.

Sample loading and run details; Peak UL54-containing fractions eluted from the 

phosphocellulose column were pooled, transferred to dialysis membrane which was 

sealed at either end and then dialysed overnight in 3 litres of low-salt DNA cellulose 

column buffer. The pooled fractions were then loaded onto the ss DNA cellulose 

column in low-salt buffer using a flow rate of 1.0 ml/minute. A NaCI gradient of 50 mM- 

0.65 M was then applied to the column, causing elution of bound UL54 protein at 

approximately 0.3 M NaCI. Fractions of 1.5 ml were collected throughout the salt 

gradient, with 50 pi samples removed from each for analysis. Fractions were stored at 

-70°C. The purity of the UL54 preparation was determined by SDS-PAGE analysis of 

the peak fractions followed by Coomassie blue staining and western blot analysis. The
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protein content of each fraction was then quantitated using a Bio-Rad protein assay 

(section 2.6.4).
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Chapter 3

Generation and characterisation of 
UL102-specific monoclonal antibodies



3.1 Introduction

Antibodies are an essential tool in the study of proteins and their function. Mono­

clonal antibodies (MAbs) are especially useful as their highly specific and unique 

binding properties can be exploited for many purposes. A further advantage is that 

they can be produced repeatedly and in limitless quantities. Since the aim of this 

project was to characterise UL102, it was necessary first to raise UL102-reactive 

antibodies. Producing MAbs was the primary objective as this would likely give rise to 

a range of antibodies each with unique individual specificities, but collectively, with 

reactivity to a variety of epitopes on the UL102 protein. The production of a panel of 

MAbs is also more likely to result in a selection of antibodies which, collectively, are 

suitable for a wider range of applications. This is an important consideration, as 

polyclonal antiserum does not always suit every application. Also, once epitope- 

mapping of a monoclonal antibody has been carried out, its unique specificity to a 

defined region can be employed for working with truncated forms of the protein which 

contain that epitope. This characteristic was particularly desirable for the purpose of 

dissecting putative interactions between UL102 and other replication proteins.

Having isolated MAbs, it is necessary to characterise their properties to determine their 

affinities and the applications in which they are useful. This is an important objective 

as the hybridoma cell lines used in this study were selected and isolated on the basis 

of screening against UL102 in ELISA only. For the purposes of this project, the three 

most appropriate immunochemical techniques in which to test the reactivities to UL102 

of each monoclonal were; Western blotting, immunofluorescence and 

immunoprecipitation. The reactivities of the MAbs in each of these techniques was 

tested.

Another aspect of antibody characterisation which is useful for their application in 

protein analysis is epitope-mapping. Having UL102-specific antibodies that mapped to 

defined regions would be potentially useful for investigating the regions of UL102 

involved in binding to other replication proteins, and also for assigning functions to 

different domains of the protein. Fine epitope mapping of the UL102-specific MAbs was 

outwith the constraints of this project. However the epitopes recognised by the UL102- 

specific MAbs in Western blotting were approximately located by testing their 

reactivities to truncated UL102 GST-fusion proteins which are described in Chapter 4. 

In addition, each MAb was tested in ELISA for reactivity to peptides corresponding to 

C-terminal and C-proximal regions of UL102, allowing a finer mapping of the epitopes
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recognised by C-terminal reactive MAbs. MAbs whose reactivity mapped to the C- 

terminus of UL102 were potentially useful for the purpose of investigating the putative 

interaction between UL102 and UL54, as the homologous interaction in HSV-1 

between the UL8 and UL30 proteins is mediated by the C-terminal region of UL8 

(Marsden et al., 1997). Figure 3.1 depicts the reagents used for locating epitopes 

recognised by the UL102 MAbs.

Principles of monoclonal antibody production

MAbs are secreted from single clones of hybridoma cells, these cells being created 

following the fusion of myeloma cells and antibody-producing immune lymphocytes. 

Polyethylene glycol (PEG) is the agent used to promote membrane fusion between the 

cells. This process was first described by Kohler & Milstein, (1975). Hybridoma cells 

therefore inherit both immortality from the myeloma cells and antibody-producing 

capability from the B lymphocytes. Following fusion, the hybrid cells are selected from 

the mixture of spleen cells, myeloma cells and hybrids by the addition of HAT 

(hypoxanthine, aminopterin, thymidine) to the culture medium. Aminopterin is an 

antibiotic which inhibits de novo nucleic acid synthesis by blocking purine and 

pyrimidine synthesis. However in normal cells, this pathway can be bypassed by using 

the salvage pathway, which requires the substrates hypoxanthine and thymidine for 

purine and pyrimidine synthesis, respectively. Since myeloma cells are deficient in 

the salvage pathway, they do not survive. Neither do the unfused spleen cells due to 

their limited life span in culture. Hence the only cells which survive are hybrid cells 

which have inherited the ability to utilise the salvage pathway from the spleen cells and 

long-term viability from the myeloma cells. Some of these hybrid cells will also have 'Hw. 

antibody producing capacity of the splenic lymphocytes. The culture supernatant from 

single colonies of the hybridoma cells is then tested for the presence of the desired 

antibody. Cell lines positive for the secretion of antibody are propagated and frozen 

down in liquid N2 vapour for long-term storage.

Inbred Balb/c mice were immunised with purified UL102 mixed with adjuvant. After a 

good antibody response had been achieved, the spleens were removed and the 

extracted spleen cells were fused with Sp2/0-Ag14 mouse myeloma cells (Shulman et 

al., 1978). Hybridoma cell colonies were tested for the secretion of UL102-specific 

antibody by enzyme-linked immunosorbent assay (ELISA).
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B1104C 844d e w v r s l a v d a q h a a k r v a s e g l r f f r l n a 873
B1104E 849SLAVDAQHAAKRVASEGLRFFRLNA873
B1104G 854AQHAAKRVASEGLRFFRLNA873
B1106C 838TWLEERDEWVRSLAVDAQHAARRVAS863

Amino Acid Number

Figure 3.1A Biotinylated peptides used to map epitopes recognised by UL102 
MAbs
Schematic diagram indicating regions of the C-terminus of UL102 to which N- 
terminally biotinylated peptides B1104C, B11Q4E, B1104G and B1106C
correspond. UL102 is represented as a solid bar with the N and C-termini 
indicated. The amino acid numbers of UL102 represented by each peptide are also 
indicated.

709 164C  873

584 290C 873

543 3 30C 873

UL102

Figure 3.1 B Truncated UL102 proteins used to map reactivites of UL102 
MAbs
Schematic diagram showing regions of the UL102 protein expressed in bacteria 
and used for screening reactivity of UL102 MAbs in Western blotting. UL102 is 
represented as a solid bar with its N- and C-termini indicated. The regions of 
UL102 cloned and expressed are also depicted by solid bars with the amino acid 
numbers of UL102 which each region spans indicated. The nomenclature of the 
truncated UL102 proteins is given in blue text.



3.2 Chapter-specific methods

3.2.1 Generation of UL102-specific MAbs

3.2.1.1 Preparation of immunogen

UL102 was purified from insect cell lysate by two-column chromatography as described 

in section 2.9.1. Figure 3.2 shows Coomassie blue stained gels of UL102-containing 

fractions from both stages of the purification process, analysed by SDS-PAGE. UL102 

of at least 95% purity was used for immunisation.

3.2.1.2 Immunisation schedule

Female Balb/c mice were immunised subcutaneously initially using 5pg of soluble 

recombinant UL102 protein emulsified in Freund’s complete adjuvant. This was 

followed by three booster injections of 60pg recombinant UL102 protein emulsified in 

Freund’s incomplete adjuvant at two week intervals. Sera from test bleeds was titrated 

against UL102 protein in ELISA to ascertain which animals exhibited the best antibody 

response. In preparation for the fusion, the 2 best-responding mice were given final 

intra-peritoneal boosts of protein as follows;

Mouse 1; 200pg of UL102 five days prior to the fusion.

Mouse 2; 150pg of UL102 four days prior to the fusion.

3.2.1.3 Preparation of spleen cells for fusion protocol

Mice were killed by cervical dislocation and the spleens removed immediately and 

placed in sterile DMEM medium on ice. Spleen cells were isolated by puncturing the 

spleen surface several times with a 26-G needle and injecting sterile medium into the 

spleen using another 26-G needle and syringe, forcing cells out through the 

perforations. The extracted cells were pelleted at 1400rpm (Sorvall RTH-250 rotor) for 

10 minutes at 4°C then the supernatant was removed and 10ml of sterile DMEM was 

used to resuspend the cells, which were then counted.

3.2.1.4 Preparation of Myeloma Cells

Confluent Sp2/0-Ag14 cells were harvested by shaking into their existing medium and 

then pelleted at 1400 rpm (Sorvall RTH-250 rotor) for 10 minutes at 4°C. The cell 

pellet was stored on ice. Some of the supernatant was retained for use in the 

conditioned medium to be added subsequently to the cells following fusion.
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Figure 3.2 Purification of UL102 protein
Coomassie biue stained geis showing SDS-PAGE analysis of fractions collected 
from A DEAE-Sepharose column chromatographic separation of crude insect cell 
lysate containing UL102, and B Hydroxyapatite column purification of UL102 from 
pooled DEAE-Sepharose fractions. Lanes labelled ‘ST’ contains the start material 
injected onto each column. Fractions numbers are indicated. Lanes labelled ‘102’ 
contain an earlier preparation of purified UL102 to act as a marker. Lanes labelled 
‘Mw’ contain molecular weight marker proteins. Sizes in kDa are shown. The 
position of UL102 on each gel is indicated.



3.2.1.5 Fusion protocol

1 x 107 myeloma cells and 1 x 108 spleen cells, were mixed in a 50 ml tube, then 

pelleted at 1400 rpm (Sorvall RTH-250 rotor) for 5 minutes. The supernatant was 

removed and the cell pellet tapped loose. Fusion of the splenocytes and myeloma cells 

was achieved by adding 1 ml of 50% PEG (1 ml of PEG mixed with 1 ml of DMEM at 

37°C) to the cells and mixing gently. After 1 minute, the PEG was diluted 1:2 using 

1ml of DMEM. Dilution of the PEG was repeated by adding a further 4, 8 and 16 ml 

DMEM at 2, 3 and 4 minutes respectively. The cells were then centrifuged at 1400 rpm 

(Sorvall RTH-250 rotor) for 15 minutes and re-suspended in conditioned HAT medium, 

comprising 75% fresh HAT medium and 25% pre-conditioned Sp2/0-Ag14 cell medium 

(medium in which Sp-2 cells had previously been grown), to a final concentration of 107 

Sp2/0-Ag14 cells per 100 ml. The cell suspension was distributed into 96 well 

microtitre plates, by adding 150 pi per well and incubated at 37°C in a humidified 

incubator with 5% C 02.

3.2.1.6 HAT selection and maintenance of fused myeloma/spleen cells

The cells were checked after 3 days to ensure the HAT medium was killing the Sp2/0- 

Ag14 cells. At 7-10 days following the fusion, the wells were monitored for the 

appearance of large colonies of hybrid myeloma/spleen cells. The supernatant from 

wells containing single colonies of diameter a third of the well was screened for 

reactivity against recombinant UL102 protein by ELISA, as described below.

3.2.1.7 ELISA screening of hybridoma cell supernatant

Immulon 1 microtitre plates were coated with 200 ng/well of purified recombinant 

UL102 protein diluted in PBS at 37°C overnight, then blocked using 2% BSA in PBS 

(100 pl/well) for 1 hour at 37°C. Hybridoma cell supernatant (50 pi) was added to the 

wells and incubated at 37°C for one hour then plates were washed 6x in PBS + 0.005% 

Tween 20. The plates were tapped dry before adding 50 pl/well of anti-mouse-HRP 

conjugate secondary antibody and incubating at room temperature for 1 hour.

Unbound conjugate was removed by washing 6x using PBS/Tween-20 and plates

tapped dry. 10OpI per well of ABTS-peroxidase substrate was added and the colour
d-+'\r

change'in each well after twenty minutes was measured by reading the optical density 

at 405 nm. UL102-reactive supernatant was designated as that producing a colour 

change greater than that produced by control supernatant from Sp-2 cells.
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3.2.1.8 Propagation of positive-secreting hybridoma cell lines

Cells secreting positive antibody were transferred to small flasks and topped up with 

fresh HAT medium. Once cells reached confluency in the small flasks, the supernatant 

was tested again for reactivity against UL102 to ensure they were still secreting UL102- 

reactive antibodies. If positive for anti-UL102 antibody, cells were harvested and 

transferred to medium flasks and, ultimately, large flasks. Once cells were confluent in 

large flasks, the supernatant was collected and frozen in aliquots at -20°C. The 

hybridoma cells were aliquoted in HAT medium containing 10% DMSO then frozen 

down for long-term storage in liquid N2.

3.2.2 Characterisation of UL102-specific MAbs

3.2.2.1 Testing reactivity of MAbs against UL102 in Western blotting

Semi-purified recombinant UL102 was used to screen the UL102 MAbs for reactivity in 

western blotting. Peak fractions eluted from DEAE-sepharose column purification of 

Spodoptera frugiperda (Sf) cell extracts containing UL102 were subjected to SDS- 

PAGE and transferred to nitrocellulose as described in sections 2.6.1 and 2.6.2. The 

nitrocellulose membranes were cut into 0.5 mm strips and incubated in blocking buffer 

overnight at 4°C. Individual strips were incubated with 1 ml of a single hybridoma cellA
supernatant at room temperature for 1 hour. The remainder of the Western blotting 

protocol was as described in section 2.6.3.

3.2.2.2 Testing reactivity of MAbs to UL102 in immunofluorescence

Sf cells were seeded at 1x105cells/ well in 24-well plates containing 13mm coverslips. 

The next day, existing medium was removed and the cells were infected using 1 ml per 

well of recombinant baculovirus AcNPV-UL102 at a MOI of 10 (diluted using complete 

Sf cell medium) then replaced at 28°C overnight. After 24 hours, the cells were 

washed 3 times using PBS-Tween. They were then fixed by adding 200pl/well of-20°C 

acetone/methanol (1:2) solution and incubating at -20°C- for 20 minutes. After a further 

3 washes with PBS-Tween, 200pi/well of blocking solution (1% FCS in PBS-Tween) 

was added and left at 37°C for 1 hour. This solution was removed then 400jal of 

undiluted supernatant medium from monoclonal hybridoma cells was added to each 

well. After 1 hour at 37°C, cells were washed 3 times using PBS-Tween (1%). A 1:200 

dilution of a-mouse-FITC conjugate was added to the cells (150pl/well) and incubated 

at RT for 1 hour then the cells were again washed 3 times using PBS-Tween. 

Coverslips were mounted onto a small drop of Citifluor solution (UKC) on microscope 

slides. Cells were viewed under x 400 magnification using a Nikon Microphot SA
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microscope and a FITC filter.

3.2.2.3 Screening MAbs for reactivity against UL102 by immunoprecipitation

3.2.2.3.1 Expression of radiolabelled UL102 protein

24-well dishes were seeded with 1x10 6 Sf cells/well in 1ml medium. At approximately 

70% confluency, they were infected with 10Opil of concentrated recombinant 

baculovirus AcNPV-UL102 or wild-type Pac6 baculovirus at a MOI of 5-10. Virus was 

adsorbed for 1 hour at 28°C, then fresh medium was added and the cells were 

incubated at 28°C overnight. The next day, the medium was replaced with 5 0 0 jliI of 

methionine-free SfceW medium containing 30pCi per well of 35S-methionine. Cells were 

incubated at 28°C overnight. The medium was removed and the cells were harvested 

in 500pl of cold TBS and then pelleted by centrifugation at 6000 rpm (microfuge). The 

supernatant was discarded and the cells were washed twice more in 500pl TBS. The 

cells were centrifuged again at low speed, the supernatant was removed and the pellet 

frozen at -70°C. Proteins were extracted by resuspending the cell pellet in 150pl of 

cold AE buffer and incubating on ice for 20 minutes. Extracts were then centrifuged at 

35000 rpm for 30 minutes at 4°C in a Beckman TLA-100.2 rotor (Beckman TLA-100 

benchtop ultracentrifuge). The supernatant containing extracted proteins from AcNPV- 

UL102-and Pac6-infected cells was then analysed by SDS-PAGE to check that UL102 

had been expressed. The gels were dried and exposed to photographic film overnight.

3.2.2.3.2 Immunoprecipitation ofUL102 from insect cell extracts

Proteins were extracted in cold AE buffer as described above. Cell extracts were 

mixed with 10Opil of MAb (neat hybridoma cell supernatant) for 2.5 hours at 4°C. 50pl 

of a 50% suspension of Protein A-sepharose beads in buffer AE was then added and 

extracts were mixed for a further 1.5 hours at 4°C. Samples were then centrifuged at 

6000 rpm (microfuge) for 2 minutes to pellet the protein A sepharose beads and the 

supernatant was discarded. The beads were then washed to remove any proteins not 

specifically bound. The beads were re-suspended in 500pl of cold AE buffer and then 

centrifuged at 6000 rpm (microfuge) for 2 minutes. The supernatant was discarded 

and the beads were washed twice. After the final wash, the pelleted beads were mixed 

with 50pl of SDS-PAGE sample buffer and boiled for 5 minutes to dissociate the bound 

proteins. The beads were briefly centrifuged again at 6000 rpm (microfuge) and the 

supernatant was analysed by SDS-PAGE, together with a whole insect cell lysate 

sample to allow identification of the UL102 protein band. Following electrophoresis, 

gels were vacuum dried at 80°C for 1 hour, exposed to X-ray photographic film
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overnight and the resulting autoradiograph was developed.

3.2.2A Testing MAbs for recognition ofUL102 C-terminal/C-proximal peptides in 

ELISA

UL102 C-terminal and C-proximal peptides, B1104C, B1104E, B1104G and B1106C, 

that were specifically biotinylated at their N-terminus, were diluted (200ng/well in 50pl 

PBS) and bound to streptavidin coated microtitre wells by incubation at 37°C overnight. 

Wells were blocked for 1 hour using 5% dried milk in PBS-Tween, washed using PBS- 

Tween (1%) and then 5 0 jllI of MAb (undiluted supernatant medium from hybridoma 

cells) was added to individual wells and incubated at 37°C for 1 hour. The remainder 

of the ELISA protocol was as described in section 3.2.1.7.

3.2.2.5 Testing reactivities of MAbs against UL102 GST-fusion proteins in 

Western blotting

Full-length and truncated UL102 GST-fusion proteins (UL102-GST, 544N-GST, 330C- 

GST, 290C and 164C) were inducibly expresed in E. coli. After centrifugation, bacterial 

cell pellets were mixed with SDS-PAGE sample buffer and boiled for 10 minutes. 

Samples were then resolved by SDS-PAGE and transferred to nitrocellulose as 

described in section 2.6.2. Blots were then incubated with individual MAbs (2 ml of 

undiluted hybridoma cell medium supernatant) for 1 hour. Blots were washed and then 

incubated with 5 ml of a 1:1000 dilution of anti-mouse HRP conjugated antibody for 1 

hour. After further washing, blots were treated with ECL reagents and exposed to 

photographic film.
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3.3 Results
3.3.1 Generation of UL102 MAbs

51 hybridoma cell lines secreting UL102-specific antibodies were isolated following the 

fusion of Sp2/0-Ag14 myeloma cells and spleen cells from mice immunised with 

purified recombinant UL102.

3.3.2 Characterisation of UL102 MAbs

3.3.2.1 Reactivity of MAbs in Western blotting

Over half (29/51) of the UL102-specific MAbs recognised denatured UL102 protein 

bound to nitrocellulose blots. Figure 3.3 shows the reactivity of a subset of the UL102 

MAbs. The protein band recognised by some of these MAbs was confirmed as UL102 

as it co-migrated with the protein band recognised by the polyclonal UL102 antisera 

373 and was of the correct molecular weight. MAb numbers 658, 626, 546, 549, 683, 

707 and 778 are positive. MAb 555 does not react with full-length UL102 but reacts 

with a protein band of smaller molecular weight. Western blot positive MAbs are 

indicated by '+’ in summary Table 3.3.

3.3.2.2 Reactivity o f MAbs in immunofluorescence

All MAbs were screened for their ability to recognise UL102 by immune-fluoresence. 

Each MAb was incubated with fixed Sf cells that had been infected with UL102- 

expressing recombinant baculovirus AcNPV-UL102 or wild type Pac6 baculovirus. 

Twenty eight MAbs produced a fluorescent signal in the UL102-expressing cells but no 

significant background fluorescence in the Pac6-infected cells. These MAbs were 

scored as '+’ for IF reactivity, with scores o f '++’ and '+++’ indicating increasing 

strength of fluorescence in Table 3.3. Figure 3.4 shows IF images of UL102- and 

pac6-infected cells treated with positive or negative staining MAbs. MAbs 70 and 546 

were judged to react whilst MAbs 532 and 807 were non-reactive.

3.3.2.3 Reactivity of MAbs in immunoprecipitation experiments

Twelve MAbs were capable of immune-precipitating UL102 from extracts of Sf cells 

Infected with recombinant baculovirus AcNPV UL102 whilst no proteins were 

precipitated from mock-infected Sf cell extracts. Figure 3.5 shows the results from a 

typical screening experiment. MAb numbers 657, 658 and 707 clearly 

immunoprecipitate UL102 whereas MAbs numbers 559, 672 and 683 do not.

3.3.2A Reactivity of MAbs to UL102 C-terminal/C-proximal peptides

MAbs were tested for their ability to recognise four peptides (Figure 3.1 A)
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Pac-6 Infected AcNPV-102
S f cells Infected S f  cells

MAb 70
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MAb 546
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MAb 532
(-)
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(-) H j a

Figure 3.4 Reactivity of Mabs to UL102 in immunofluorescence assays
Sf cells were infected at a MOI of 5-10 with recombinant baculovirus AcNPV- 
UL102 or wild-type baculovirus Pac6 as indicated. Following a 24 hour 
infection, cells were fixed and incubated with Mabs for 1 hour then washed and 
incubated with a 1:100 dilution of anti-mouse FITC conjugated antibody for a 
further hour. Cells were washed again and, after drying, placed face down in 
citifluor mounting agent on microscope slides. The cells shown were viewed 
under x40 magnification.



MAb Numbers

UL102

Ml 102 102/54

Figure 3.5 Reactivity of MAbs to UL102 in immunoprecipitation 
experiments
Sf cells were infected with recombinant baculovirus AcNPV-UL102 at an MOI of 
5-10. After 24 hours, the medium was replaced with methionine-free Sf medium 
containing 35S-methionine and incubated for a further 24 hours. Cells were 
harvested and washed 3 x in TBS. Proteins were extracted in cold AE buffer 
and mixed with individual MAbs for 1 hour at 4°C, then a suspension of protein 
A-sepharose was added. After mixing for a further hour, protein A-sepharose 
beads were pelleted by centrifugation, washed 3 x in AE buffer then boiled in 
SDS-PAGE buffer. Beads were pelleted by centrifugation and the supernatant 
was analysed by SDS-PAGE. Gels were dried and exposed to photographic film 
overnight, which was then developed. Figure 3.5A shows the results obtained 
for a subset of the UL102 Mabs. MAb numbers are indicated, along with the 
position of UL102. ‘Ext’- clarified whole cell extract, ‘MW’- Molecular weight 
markers. Figure 3.5B shows SDS-PAGE analysis of radiolabelled proteins 
extracted from Sf cells either mock infected (Ml), infected with AcNPV-UL102 
(102) or doubly-infected with AcNPV-UL102 and AcNPV-UL54 (102/54).



corresponding to UL102 C-terminal/proximal regions in ELISA. Over a quarter of the 

MAbs bound to at least one of these peptides. A positive result was attributed where 

sufficient binding of the MAb and then HRP-conjugated secondary antibody had 

produced a colour change, upon addition of a chromatogenic substrate, of greater than 

0.5 OD units. The 13 MAbs which recognised at least one of the 4 peptides screened 

in this assay are listed in Table 3.1 below.

MAb No B1104C B1104E B1104G B1106C
59 + +
70 + +
123 + +
154 + +
175 + + +
188 + + +
278 + +
532 + + +
546 +
549 + +
568 + + +
778 + +
782 + +

Table 3.1 UL102 MAbs which recognise UL102 C-terminal/C-proximal peptides

A '+’ indicates binding of MAbs to individual peptides as labelled.

OD measurements obtained for each of the 13 reactive MAbs tested against all 4 

peptides are shown in Figure 3.6. Generally, B1104G was bound relatively weakly as 

compared to B1104C and B1104E, producing significantly lower OD measurements. 

The majority of the MAbs bound both peptides B1104C and B1104E but only one MAb 

(546) bound peptide B1106C.

3.3.2.5 Testing Western blot-positive MAbs for ability to recognise full-length and 

truncated UL102 GST-fusion proteins

MAbs capable of recognising UL102 in Western blotting were further tested for their 

ability to recognise a range of truncated UL102 GST-fusion proteins expressed in 

bacteria in Western blotting. One C-terminally and three N-terminally truncated UL102 

proteins, depicted in Figure 3.1, were used in this experiment. A full-length UL102 

GST-fusion construct and GST protein alone were also included as positive and 

negative binding controls, respectively. The reactivity of each WB-positive MAb to 

UL102 GST-fusion proteins is summarised in Table 3.2 below. Figure 3.7 shows the 

Western blotting results obtained for two of the MAbs screened against the UL102
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MAb Number 

B1104G ■ 1104E □  1104C H1106C

Figure 3.6 Reactivity of MAbs to UL102 C-terminal and C-proximal 
peptides
MAbs were incubated with biotinylated peptides B1104C, B1104E, B1104G and 
B1106C bound to streptavidin-coated microtitre wells. After washing to remove 
any unbound MAb, anti-mouse HRP-conjugated antibody was added. Unbound 
secondary antibody was removed by further washes, then chromogenic ABTS- 
peroxidase substrate was added to each well. The optical density (595nm) in 
each weii was measured after 30 minutes using a plate reader. There are four 
readings shown for every MAb, each bar corresponding to one of the 4 
peptides, as indicated in the legend.



MAb145: 
N-terminally reactive
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290C-GST

MAb70: 
C-terminally reactive

Figure 3.7 Reactivity of MAbs to UL102 GST-fusion proteins in Western 
blots
Whole bacterial cells expressing UL102 GST-fusion proteins were boiled in 
SDS-PAGE buffer and then resolved by SDS-PAGE. Proteins were transferred 
to nitrocellulose membranes. After blocking with milk protein, membranes were 
incubated with individual MAbs for 1 hour then washed and incubated with anti 
mouse HRP-conjugated antibody for a further hour. Membranes were washed 
again, treated with ECL Western blotting reagents and exposed to photographic 
film. Labels 1-6 refer to whole bacterial cells expressing proteins as follows: 1 = 
UL102-GST, 2= 544N-GST, 3=330C-GST, 4=290C-GST, 5=164C-GST and 
6=GST only.



GST-fusion proteins. MAb 145 reacts with full-length UL102 and the 544N truncated 

UL102 protein. In contrast, MAb 70 reacts with full-length UL102 and all three C- 

terminal UL102 proteins. In both cases, there are multiple bands due to degradation 

products of the expressed proteins. The bands corresponding to the 330C, 290C and 

164C proteins appear bubble-like. The intensity of signal (light emission following 

addition of ECL substrates) from the middle of these protein bands is diminished. This 

‘quenching’ phenomenon was observed several times when heavily loaded gels were 

treated with ECL reagents.

UL102 GST-fusion protein Reactivity
MAb No UL102 544N 330C 290C 164C GSTonly

59 Y Y Y Y Y N
70 Y N Y Y Y N
81 Y Y N N N N
123 Y N Y Y Y N
145 Y Y N N N N
154 Y Y Y Y Y N
157 Y Y N N N N
175 Y Y Y Y Y N
185 Y Y N N N N
188 Y N Y Y Y N
266 NON-REACTIVE
278 Y N Y Y Y N
508 NON-REACTIVE
532 Y N Y Y Y N
537 NON-REACTIVE
539 NON-REACTIVE
543 NON-REACTIVE
546 Y N Y Y Y N
549 Y N Y Y Y N
555 Y N Y Y Y N
556 NON-REACTIVE
568 Y N Y Y Y N
626 Y Y N N N N
658 Y Y N N N N
683 NON-REACTIVE
707 Y Y N N N N
747 NON-REACTIVE
778 Y N Y Y Y N
782 Y N Y Y Y N

Table 3.2 Reactivities of MAbs to UL102 GST-fusion proteins in Western blotting
Binding of MAbs to UL102 GST-fusion proteins is indicated by a ‘Y ’. ‘N’ means no 
binding between the protein and MAb was detected.

As expected, no MAbs reacted with GST protein alone and most MAbs displayed 

reactivity to either N-terminal or C-terminal regions of UL102. However, MAbs 59, 154
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and 175 were found to be reactive to both regions of the protein and this observation is 

discussed further in section 3.4.2.

3.3.2.6 Defining epitope-containing regions of UL102 for each MAb

The combination of the C-terminal peptide reactivity data with the results from the 

screening against truncated UL102 proteins made it possible to determine regions of 

UL102 containing the epitopes recognised by each of the MAbs. Five epitope- 

containing regions of UL102 were defined, as depicted in Figure 3.8. The epitopes 

recognised by MAbs which did not recognise any of the truncated UL102 proteins or 

any of the C-terminal peptides could not be defined to any particular region of UL102, 

Hence the epitope-containing region to which they have been assigned (region 1) 

consists of full-length UL102. MAbs mapping to region 2 (residues 1-545) were those 

which did not bind any of the UL102 C-terminal peptides but recognised the UL102 

GST fusion protein 545N in WB. Therefore the epitopes recognised by this subset of 

MAbs lie within the first 545 residues of UL102. Region 3 was recognised by one MAb 

only (number 555), which reacts with all the C-terminal UL102 GST fusion proteins, 

collectively spanning residues 546-873, but did not react with any of the C-terminal 

UL102 peptides (residues 838-873). Therefore the UL102 region to which this MAb 

reacts lies between residues 546-838. Region 4 (residues 838-863), corresponding to 

peptide B1106C, is recognised by MAb 546 only. Although this peptide contains six 

unique residues (838-843), it cannot be excluded that downstream residues also 

contribute to epitope formation, hence the precise location of the epitope within the 

peptide cannot be determined. Region 5 (aa’s 844-873) corresponds to the UL102 

residues spanned by peptides B1104C, B1104E and B1104G. Hence, MAbs which 

recognised any of these peptides could be epitope-mapped to this region. The region 

to which each MAb maps is indicated in Table 3.3.

3.4 Discussion

3.4.1 Locating epitopes recognised by UL102-specific MAbs; Use o f C-terminal 

UL102 peptides

Interactions between several of the HSV-1 replication proteins are known to be 

mediated by the C-terminal regions of one or both of these proteins. Examples include 

the interactions between proteins UL8/UL30 (Marsden etal., 1997) and UL30/UL42 

(Tenney et al., 1993; Digard et a/., 1993; Stow, 1993; Marsden et a/., 1994; Digard et 

al., 1995). As one of the aims of this project was to investigate the putative interaction 

between UL102 and another HCMV replication fork protein, UL54, antibodies which
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Region 2 (1-545)

Region 5 (844-873)

Region 4 (838-863) 

Region 3 (546-838)

Region 1(1-873)

U L 1 0 2

Figure 3.8 Summary of epitope-containing regions of UL102
UL102 is represented as a solid bar with its N- and C-termini indicated. Above it 
are marked 4 epitope-containing regions, with the amino acid numbers of UL102 
which they represent written in brackets.
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bind the C-terminal region of UL102 were potentially of use in determining whether any 

demonstrated interactions are also mediated by this region, as was found for the HSV- 

1 counterparts. Hence, each monoclonal was screened for reactivity against peptides 

corresponding to C-terminal and C-proximal regions of UL102 in ELISA. Four 

overlapping peptides spanning this region of UL102 were used for this purpose, to 

allow the identification of short amino acid sequences containing or contributing to the 

epitopes in this region to which any MAbs bound.

Of the 51 MAbs, 13 recognised at least one of the 4 peptides (Figure 3.1 A) spanning 

the C-terminal region (Table 3.1). Furthermore, 8 of these bound to both peptides 

B1104C and B1104E, but neither peptide individually, indicating that these MAbs 

recognise an epitope common to both peptides. By comparing the sequences of 

B1104C and B1104E to B1104G (Figure 3.1 A), to which these MAbs do not bind, it can 

be concluded that the amino acid sequence SLAVD (aa’s 849 to 853) must be involved 

in the formation of this epitope. However, this sequence does not appear to be the sole 

sequence involved in formation of the epitope, because it is also present in peptide 

B1106C, and none of the 8 MAbs bound to this peptide. B1106C differs from B1104C 

and B1104E as it lacks the C-terminal 10 residues of UL102 (EGLRFFRLNA), 

indicating that this sequence may also contribute to the formation of the epitope which 

is recognised by these MAbs.

As 2 distal regions within the C-terminal 25 amino acid residues of UL102 are required 

for recognition by these 8 MAbs, this suggests that they may together form a 

conformational epitope. For these regions to be in close enough proximity to allow 

binding of the antibody, the extreme C-terminus of UL102 may form a loop structure. 

Structural information on UL102 obtained using the “predict-protein” programme (Rost, 

1996) predicts that the extreme C-terminal residues of UL102 are either looped or are 

not predicted to form any recognised structures (Figure 8.1). Considering that a large 

proportion of the C-terminally reactive MAbs recognise the epitope(s) formed by these 

regions, it seems that this is an immunodominant region of the protein. An additional 

three MAbs; 175, 188 and 568, show limited reactivity to peptide B1104G as well as 

B1104C and B1104E. It is possible that these MAbs bind to an alternative epitope 

common to all 3 sequences or perhaps more likely that they have reduced reactivity to 

1104G as its N-terminally truncated sequence does not allow complete formation of the 

dominant epitope present in B1104C and B1104E. MAb 546 shows unique reactivity to 

peptide 1106C and is the only MAb to bind to this sequence. As it does not recognise 

any of the other peptides, it can be concluded that the residues unique to this peptide

64



must contribute to formation of the epitope to which it binds. However, it is possible 

that other residues of the peptide may also contribute to epitope formation.

The C-terminus of UL102, specifically the 36 terminal amino acids represented by the 

four peptides used in this epitope mapping experiment, seems to be strongly 

immunogenic as a quarter (13/51) of the UL102 MAbs recognise epitopes residing in 

this region of the protein. This is quite a high proportion considering that the protein is 

873 amino acids in length and hence this region represents only 4% of the total protein. 

This observation provides an insight into the possible native conformation of UL102, 

suggesting that the C-terminal region of UL102 occupies an exposed, exterior position 

in the UL102 molecule and is therefore available for recognition by B-lymphocytes 

which would therefore produce antibodies reactive to this region.

3.4.2 Locating epitopes recognised by UL102-specific MAbs; Use of truncated 

UL102 proteins

MAbs which recognised full-length insect cell-expressed UL102 by Western blotting 

were also screened for their ability to recognise bacterially-expressed truncated UL102 

proteins by Western blot also. One C-terminally (545N) and three N-terminally 

truncated (330C, 290C and 164C) forms of UL102 were used in these experiments.

This allowed the epitopes recognised by these MAbs to be mapped to broad regions of 

UL102, and also identified which MAbs were suitable for use in conjunction with these 

truncated forms of the protein in subsequent experiments.

MAbs were found to recognise either the C-terminally truncated 545N protein or all 3 N- 

terminally truncated proteins; 330C, 290C and 164C. None of the MAbs recognised 

any of the C-terminal UL102 GST-fusion proteins individually, suggesting that they all 

recognise epitopes residing in the terminal 164 residues of UL102. All MAbs, with the 

exception of MAb 555, which recognised C-terminal UL102 GST-fusion proteins also 

recognised at least one of the 4 UL102 C-terminal peptides, so the region of UL102 

containing the epitopes recognised by these MAbs can be further defined to residues 

838-873, which are the UL102 aa's represented by these peptides.

Three MAbs (59, 154 and 175) showed reactivity to both N-terminal and C-terminal 

UL102 GST-fusion proteins. Clearly it is not possible for a MAb to do this as they 

should, by definition, bind to one specific epitope only. It was concluded that these 

were antibodies derived from more than one clone. These hybridoma cell lines were 

subcloned by Dr Susan Graham, who found that all 3 contained dominant clones
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whose specificity mapped to the C-terminal region of UL102 and no subclones reactive 

with the N-terminal fragment could be recovered. The dominant clones were 

propagated and adopted to solely represent each cell line. Hence any information 

referring to locations of epitopes for MAb numbers 59, 154 or 175 was elucidated from 

these dominant hybridoma cell lines.

Of the 29 western positive MAbs, 8 were found to be non-reactive to any of the 

bacterially-expressed full-length or truncated UL102 proteins (MAb numbers 266, 508, 

537, 539, 543, 556, 683 and 747). One possible explanation for this lack of reactivity is 

that the formation of the epitopes recognised by these MAbs is dependent on post- 

translational modification of UL102, such as glycosylation or phosphorylation, which is 

not carried out in bacterial cells. An alternative explanation may be that the GST-fusion 

may interfere with the folding of the expressed truncated protein, resulting in the 

epitope(s) to which these MAbs react being masked. All the MAbs which recognised 

insect cell-expressed UL102 but none of the bacterially expressed UL102 proteins 

recognise epitopes within region 1 (Figure 3.8). Hence, mapping of the regions to 

which these MAbs react may provide useful information regarding sites of modifications 

made to UL102.

3.4.3 Reactivities of UL102-specific MAbs in immunochemical assays: Western 

blotting, immunoprecipitation and immunofluorescence

A significant proportion (58%) of the MAbs were reactive to UL102 in Western blotting. 

There was variability in the strengths of signals and also specificities of binding 

amongst these MAbs. As can be seen in Figure 3.3, several MAbs also bind smaller 

molecular weight protein bands, which probably correspond to degradation products of 

full-length UL102 containing the epitopes recognised by these particular MAbs. The 

epitopes recognised by the Western blot-positive MAbs are unlikely to be 

conformational (ie formed as a consequence of the tertiary fold of UL102) since they 

retain the ability to bind their cognate MAbs following extensive denaturation by SDS- 

PAGE. Many of these MAbs also recognise UL102 in IF, IP or both, hence these linear 

epitopes must also be available when UL102 is in a more native form. An interesting 

anomaly is apparent when the Western blot results and the epitope mapping data is 

considered together. The eight MAbs which appeared to recognise conformational 

epitopes on the basis of the C-terminal peptide data are all capable, however, of 

binding to UL102 in Western blotting. It is possible that the loop structure may 

withstand the denaturing process or reform after blotting onto the nitrocellulose 

membrane.
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Many of the MAbs (29/51) also recognise UL102 in immune-fluorescence assays. 

Eighteen of these are also positive for Western blotting, indicating that the epitopes 

which they recognise are probably linear and are likely to be present in the same form 

when UL102 is expressed in insect cells, presumably in a more native form. The other 

11 IF-positive MAbs must recognise conformational epitopes that are disrupted when 

the protein is denatured by SDS-PAGE. None of these MAbs recognise epitopes 

located in the extreme C-terminal region of UL102.

A far smaller proportion (12/51) of the MAbs were capable of immune-precipitating 

UL102 from extracts of cells infected with AcNPV-UL102 baculovirus. This perhaps 

reflects the fact that UL102 epitopes are presented in this assay amongst a complex, 

dynamic mixture of insect cell proteins and hence this is a more stringent test of the 

MAb binding affinities. Five of the IP-positive MAbs do not react with UL102 in 

Western blotting, probably due to denaturation of conformational epitopes. Again, 

none of these five MAbs map to the C-terminus of UL102. A subset of 9 MAbs do not 

recognise UL102 in any of the immunoassays tested, making them useful only for 

detection of the protein in ELISA.

The panel of 51 UL102-specific MAbs described in this chapter represent a diverse and 

potentially powerful resource for the study of UL102. The spectrum of MAb reactivities 

available enables the analysis of full-length and truncated forms of UL102 in a variety 

of assays. The reactivities of all the UL102 MAbs are summarised in Table 3.3. These 

antibodies were used to investigate the putative interaction between UL102 and UL54 

and also the intracellular localisation of full-length and truncated UL102 proteins by 

immunofluorescence, described in Chapters 5 and 7, respectively.
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Chapter 4

Generation of UL102-expressing 
constructs



4.1 Introduction

The UL102 characterisation studies undertaken in this project required that the UL102 

gene be cloned into several different vectors for expression in a variety of cell systems, 

including bacterial and mammalian cells, in addition to the insect-cell system already 

established for the expression and purification of the UL102 protein. At the outset of 

the study the main characterisation studies intended included;

A) Investigation of the putative interaction between UL102 and UL54 proteins

As it was anticipated that an interaction between UL102 and UL54 would be 

demonstrated, a primary objective was to clone several regions of the UL102 gene 

in order to express truncated UL102 proteins, with which the regions involved in 

interaction with UL54 could be investigated. A bacterial system was selected to 

express the truncated proteins, because of the relative ease of generation and 

expression of constructs, as compared to recombinant baculovirus production. The 

Pharmacia GST Gene Fusion System was chosen, in which the cloned protein is 

expressed as an N-terminal fusion with the 26 kDa Glutathione-S-transferase (GST) 

protein from Schistosoma japonicum. This confers the advantage of simple and 

quick purification of the fusion protein (provided it is soluble) by affinity 

chromatography using Glutathione Sepharose 4B and the GST tag can then be 

cleaved. The system uses the pGEX series of vectors (Figure 4.1). The UL102 

gene fragments were cloned into either pGEX-2T, pGEX-4T2 or pGEX-4T3, 

dependent on the availability of suitable in-frame restiction sites.

B) UL102 Immunofluorescence studies

A second aim was to perform immunofluorescence studies on UL102, to determine 

its intracellular localisation when expressed alone, or in combination with other 

HCMV replication proteins. For this purpose, the mammalian expression vector 

pCMVIO was chosen. pCMVIO is a pUC-based vector which contains a multiple 

cloning site downstream of the HCMV major IE promoter sequence (Stow et al., 

1993; Figure 4.2). It can produce high levels of expression of cloned genes in 

mammalian cells. The full-length UL102 gene, as well as a UL102 gene fragment 

encoding a C-terminally truncated UL102 protein were cloned into pCMVIO. In 

addition, a UL102 gene fragment encoding an N-terminally truncated protein was 

cloned into mammalian expression vector pCMV-Tag 2B (Stratagene), which is 

described further in section 7.1.
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Tlwwfcn pGEX-2T (27-4801-01)
| Leo Val Pro Arg J Gly Ser] Pro Gly He Hts Arg Asp
CTG GTT CCG CGT GGA TCC CCG GGA ATT CAT CGT GAC TGA CTG ACGi----- n n r

BamH I Sma I EcoR I Stop codons

Thrombin pGEX-4T-2 (27-4581-01)
I Leu Val Pro Arg I Gly Ser | Pro Gly lie Pro Gly Ser Tbr Arg Ala Ala Ala Ser
CTG GTT CCG CGT GGA TCC CCA GGA ATT CCC GGG TCG ACT CGA GCG GCC GCA TCG TGA,! i  y__|-J

Sma I Sail Xho IBamH I EcoR I Not I

_  • Thrombin pGEX-4T-3 (27-4583-01)
I Leu Val Pro Arg 1 Gly Seri Pro Asn Ser Arg Val Asp Ser Ser Gly Arg lie Val Thr Asp
CTG GTT CCG CGT GGA TCC CCG AAT TCC CGG GTC GAC TCG AGC GGC CGC ATC GTG ACT GAC TGAI J I || I] | I 14 I

BamH I EcoR I Sma, Sail Xho, Noll Stop codons

pSj10ABem7Stop7

p G E X
-4900 bp

p4.5

Apa I / 
BstE II I

Figure 4.1 pGEX Vector Map
A schematic diagram of the pGEX series of vectors is shown 
with the position and orientation of the fusion sequence and the 
multiple cloning site (MCS) region indicated. Above the vector 
map are the MCS regions from the three pGEX vectors into 
which regions of the UL102 gene were cloned: pGEX-21, pGEX- 
4T2 and pGEX-4T3, with the positions of each restriction site 
indicated. The map was reproduced from the Pharmacia 
catalogue.



GAATTCGAGCTCGGTACCCGGGGATCCTCTAGAGTCGACCTGCAGGCATGCAAGCTTi______ 11______ 11_______ i i______ ii______ ii______ 11______ i i______11_______ i
Eco Rl Sac I Kpn I Bam HI Xba I S a il Sph I Hind IIIPst I

Sma I

SV40 intron and poly (A)HCMV major IE promoter

pCMVIO
3762 bp

Figure 4.2 Map of mammalian expression vector pCMVIO
The pCMVIO vector is represented in schematic form, with the positions and 
orientations of the HCMV IE promoter and SV40 intron and poiy (A) 
sequences indicated by large arrows. The position of the multiple cloning 
site (MCS) is also shown. An enlarged diagram of the MCS indicates the 
restriction sites included and their relative positions.



C) Investigation of the putative UL102-UL54 interaction using the mammalian-2- 

hybrid system. The final system in which the UL102 gene was expressed was 

the Clontech mammalian-2-hybrid system, which was used to investigate the 

putative interaction between the UL102 and UL54 proteins, when expressed in 

mammalian cells. This two-hybrid system consists of two vectors; pVP16, which 

expresses the first protein as a fusion with the activation domain (AD) of the HSV 

VP16 transcriptional activator and pM, which expresses the second cloned protein 

as a fusion with the DNA-binding domain (DNA-BD) from the yeast GAL-4 protein. 

Both UL102 and UL54 proteins were cloned into each of the vectors so that each 

protein could be expressed as a fusion with either the AD or BD (Figure 4.3).

4.1.1 Truncated UL102 prote\ns

Cloning regions of the UL102 gene in order to express truncated UL102 proteins was 

necessary to investigate which regions are involved in mediating putative functions, 

such as interactions with other replication proteins or binding to nucleic acids. As the 

main focus of the project was investigating the putative interaction with UL54, the C- 

terminal half of UL102 was of particular interest, as the multiple interactions between 

HSV replication proteins characterised to date are predominantly mediated by C- 

terminal regions within one (of onejof the respective proteins. Three portions of the 

UL102 gene encoding C-terminal regions and one portion encoding an N-terminal 

region of the UL102 protein were cloned. These regions are shown in Figure 4.4. The 

nucleotide numbers, relative to the A of the ATG start codon, and the amino acids of 

UL102 to which each of these regions corresponds is listed in Table 4.1 below.

UL102
Fragment

Name

UL102 nt 
Numbers 
(inclusive)

UL102 aa 
Numbers

Total 
Number of 

aa’s

Nomenclature 
of encoded 

protein

Predicted 
Mw of GST- 
Fusion (kDa)

1635 bp 1-1635 1-545 545 545N 86

993 bp 1630-2622* 543-873 330 330C 62.3

x 873 bp 1750-2622* 583-873 290 290C 58.9

495 bp 2128-2622* 709-873 164 164C 44

Table 4.1 Summary of the UL102 gene fragments cloned for expression as GST- 

fusion proteins (these numbers include the UL102 stop codon nucleotides, which do 

not encode an amino acid residue) nt=nucleotides.



Nde I Ndc I

Pvu I

Bgl II (390)

—  A /b e  I (398)

/la/II
(3190)

SV40 Xho I (631)

GAL4 BD

Amp
3.5 kb SV40 

poly A

puc
ori

(3234)
Aat\
(2985)

SV40
(2662) VP16 

AD 2

pVP16
3.3 kb

Pvu I  I
(2433) i

B d  I (703)SV40 
poly AAmp'

pUC

MCS Pvu I  I
(857-899) (2433)

A SV40 large T-antigen m 
localization signal

pM/pVP16 MCS

pVP16 Activation Domain Sequencing Primer 
  ►

CTG GAT ATG GCC GAC TTC GAG TTT GAG CAG ATG TTT ACC GAT GCC CTT GGA ATT GAC GAG

643 V P 1 6  A c t iv a t io n  D o m a in  ^  sU)p stop

TAC GGT GGG GAA TTC CCG GGG ATC CGT CGA CGC GTCJGCAGA AGC TTC TAG A fA A G T  AA 
EcoR I Srrui I fla/nH I Sal I Mfu 1 Ps/I Hind III Xba I455

Figure 4,3 Maps of Clontech Mammalian-2-Hybrid system vectors; pM and 
pVP16
Schematic diagrams of the pVP16 and pM vectors from the Clontech mammalian-2- 
hybrid system are shown. The positions and orientations of the promoter, SV40 poly 
(A), and fusion protein sequences are indicated. Beneath the vector map, the 
sequence of the MCS which is common to both vectors, is given. The locations of 
all the available restriction sites are given. Vector maps were reproduced from the 
Clontech catalogue.



2128 495 bp 2622

1750 873 bP 2622

993 bp1630 K 2622

Bam HI UL102 S a il Bam HI

°  I I I °
1 1630 2622
1 1635 b P 1635

Figure 4.4 Regions of the UL102 gene cloned for expression of 
truncated UL102 proteins
Schematic diagram showing regions of the UL102 gene which were sub 
cloned in order to express truncated versions of the UL102 protein. The 
UL102 gene is represented as a solid bar with the 5’ and 3’ termini indicated. 
The regions of the gene which were sub-cloned are also depicted by solid 
bars, with the UL102 nucleotide numbers which each region spans also 
indicated. The Bam HI sites, introduced by PCR and used originaliy to clone 
the UL102 gene are indicated, as is the unique Sal I site at nucleotide 
position 1630, which was used to create the 1635 bp and 993 bp fragments.



The C-terminal regions that were cloned were chosen after consulting the ‘predict- 

protein’ analysis of UL102 (Appendix 1). This analysis predicts that an a-helical 

domain is contained within the C-terminal 110 aa’s, and this region is preceded by a 

stretch of over 60 aa’s which are predicted not to form a distinct structural domain. It 

was decided to express this predicted a-helical domain in its entirety to increase the 

likelihood that it would retain a more native secondary structure and form a functional 

domain. The final 495 nucleotides (nts) of UL102 (2128-2622 inclusive), encoding the 

C-terminal 164 aa’s which include this predicted a-helical domain, were amplified by 

PCR and cloned. The 873 bp region (nts 1750-2622 inclusive), encoding UL102 aa’s 

583-873 and which incorporates the predicted a-helical domain and a further 126 

upstream aa’s, were also amplified by PCR and cloned. The 1635 and 993 bp 

fragments were cloned using the unique Sal I site at nt position 1630, which divides 

UL102 into two large N- and C- terminal regions. As both fragments were 

subsequently cloned into vectors using this Sal I site at the 3’ or the 5’ ends of the 1635 

bp and 993 bp fragments, respectively, both encode the aa’s specified by the Sal I site, 

and these aa’s have been included in the total number of aa’s encoded by each 

fragment. Hence, the nomenclature used to refer to these gene fragments throughout 

the text (1635 bp and 993 bp) also includes the nucleotides spanned by the Sal I site. 

The PCR primers and restriction sites used to clone the four UL102 gene fragments 

are illustrated in Figure 4.5.

Initially the UL102 fragments were cloned into pGEX vectors to express as GST-fusion 

proteins in bacteria, which could then be used to investigate the putative UL102-UL54 

interaction by ELISA. The UL102 gene fragments could subsequently be cloned into 

the other expression vectors to investigate the roles of these regions in other aspects 

of UL102 function. The 1635 bp and 993 bp UL102 fragments were cloned into 

expression vectors pCMVIO and pCMV-Tag2B, respectively, for use in immuno­

fluorescence studies.

The sources of the UL102 and UL54 genes for sub-cloning into different vectors were 

plasmid pTZ18u-102, which consists of the UL102 gene amplified by PCR using 

primers which specify Bam HI sites at the 5’ and 3’ ends of the gene, and plasmid PY- 

POL, which consists of cloned copy of the UL54 gene amplified by PCR using primers 

specifying Xba I sites at the 5’ and 3’ ends of the gene.

70



21
27

 
21

48

5’ 
t

t
a

g
g

a
t

c
c

c
t

c
t

t
t

c
g

t
t

t
c

g
t

g
g

c
t

c
g

'c 
3’

£<o
CQ

m  CO 

(N to
CM | _

o
o
o
o
o
<H
<
o
o
o
o
<
o
0

m

o  ^
£_o  
-  0  

0 
o  
<  
<  o  
0 
0 
o  
<  h
oh-h
oI—

-  2M- <
!^ <o

<
0
0I-I-
<
En

nj
CQ

a : -
C CM M

m ^CQ cm

CDCMCDCM

IO
<h-f—
0
<
<»-h-
o

It
It
It

o
oin
CM

ID
CO

COTt
to

Ctt
CO

£
CQ

oo

 ̂ sCO CM <5 
CM O ^

m \

o>
CM
CO

h
o'
<H
CMO

ooUJ
O
0h-I-

0
o
0I-h”
0
<
0
O
o
0

CD 0

s sCM_̂

CO

io
<

2 o
"~ o

o
' s  <  

o  
0 h- 
0 
<  
oh-
o
0

<
oo <
5 O
CM_ O  

CO

ooUJ

X £  cm 
LU  ~  O

0 *  n
^  TO 3

5  0c o r
o  ~o 
C CD 0) C 
0)0 

CM O  

© CD

5 g3  O) 
o  cm

« —1 °  3  
0 
C
o

(D

® o
CD °
*“  CO
CD Co o
£ CD 
CD (D  3 *- O" <D 
0
w 2
"O CD

s i

0- "O

o w
CD ■ v_

—  CD

E l
CD Q _

CO O  

CD CO

CD 
TO  CD 
CD *“

C ^  
CD ! =  
CO Q .

2? E
Q . CD 

£  O

-  "O
0  CD C w 0 13 
CD CO

cm <d  

2  £

0 0 L_ 1—ro to
0  a) 0 co
ETO £  
C
v- 0 
0 0
E •- .E 0

Cl c

CD .2
P  a

o M_ a  o
~o C  0 O 
0
3 iS
0  C  
»- 00 C
E o 
■c "o a. c
_  CD O)c c
1  iO 0 
£  o
0  Q .

EEco £

E o
0 73 C C 0 0
2  g
Q . j |
C 0
2 2 
0

c/)
^  TD 
CM £  

O  CD51
0 2
TO

Si-t c

. 0 
0 0 
C »-
u 0
C3)

CM

5  8.
=j o 3  o
0  .2 
£  0

 ̂ 2 o E
5 '4
i52  
0 ~
>  0

E o
CD £
i_ >
0
-C±i 0 
0 C

2 Q- 
CD 0  

-Q  i_

l g
C/) Q .

>■» _C“
o"O 0 0 0 •M0 JCo o

T 3  £
.2 £
2 ^ 0

c 
0

CD 0  
0 -2 
C £
1 S 
r a g
CD °

3cr
0
0
0

r a  o )  o  cd

c S 
o o 
'0 jy0 o 
0  3
cL cX X5 0 c 

0

c 
T3 ^
. a l  
ts “
E E 
0 0

Tj 3  -Cl
0 0 C 0 0 
O -C if

£O

IQ

CD 
CD
T3

in o
^  CD
E ^3
.? O 
U. C/D

0 <- CD E. TO c
0

^  ^  £
^ o

0 L_
o 
o 
0 >

■Oc
0

■cTO
0

0

cd -a  
0a) o c

0 X 
3  <D "O O" ■*- C
0 "O 0

2 "O 
0c c

0

0■oc
CD CD 3



4.2 Chapter specific methods
4.2.1 General cloning procedures

In all cases described below, the cloning of inserts into vectors was carried out using 

standard cloning techniques for ligation, transformation and isolation of plasmid DNA 

as described in sections 2.5.1.5, 2.5.1.7 and 2.5.1.8. Recombinant plasmid DNA 

isolated was analysed by restriction digestion and electrophoresis on a 1% agarose gel 

as described in sections 2.5.1.1 and 2.5.1.2.

4.2.2 Cloning of full-length UL102 and truncated UL102 gene fragments into 

pGEX vectors for expression as GST-fusion proteins in E. coli

4.2.2.1 PCR amplification of the UL102 495 bp and 873 bp fragments

The partial UL102 sequences spanning nucleotides 2128-2622 inclusive (495 bp) and 

1750-2622 inclusive (873 bp) were amplified by PCR from a cloned copy of the Hind III 

restriction fragment of HCMV strain AD169. The amplification was carried out using 

the Clontech Advantage cDNA PCR kit, according to the manufacturer’s instructions. 

The primers used were (Figure 4.5);

For amplification of the 495 bp fragment;

4166: 5’ TTAGGATCCCTCTTTCGTTTCGTGGCTCGC 3’ and 

4640: 5’ ATTGAATTCTCGTTAAGCGTTGAGCCGGAA 3’,

For amplification of the 873 bp fragment;

4643: 5’ ATTGGATCCAACTTCTTCTACGGCAACGGC 3’ and 

4641: 5’ ATT GAATT CCCCCT ACGT G ACT CGTT AAGC 3’

These primers incorporate Bam HI and Eco Rl sites (underlined) at the 5’ and 3’ ends 

of each fragment, respectively. Reaction mixtures were subjected to an initial 

denaturation step of 94°C for 1 minute, then allowed to cycle 30 times through the 

following sequence of temperatures; 1) template denaturation at 94°C for 30 seconds, 

2) primer annealing at 50°C for 40 seconds, 3) DNA polymerisation for 4 minutes at 

68°C. A final elongation step at 68°C for 3 minutes was also performed. Products were 

analysed on a 1% TAE EtBr agarose gel alongside DNA markers and products of the 

correct size were excised from the gel and purified using the BIO 101 Geneclean kit, 

following the manufacturer’s instructions.

4.2.2.2 Cloning of the amplified 495 bp and 873 bp fragments into pUC 119

Purified 495 bp and 873 bp PCR products and pUC 119 vector DNA were cloned into 

the pUC 119 vector MCS as Bam Hl-Eco Rl inserts.
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4.2.2.3 Sequencing of cloned UL102 495 bp and 873 bp fragments

Single pUC 119-495 bp and pUC 119-873 bp clones were chosen for sequencing 

analysis, to ensure the fidelity of each of the amplified fragments to the original UL102 

clone sequence. Both the 495 bp and 873 bp inserts were sequenced using;

A) Standard pUC universal and reverse sequencing primers (NEB), which bind to 

regions upstream and downstream of the pUC MCS to give sequencing data 

across the MCS in both sense and anti-sense directions.

B) An internal primer, 250C, corresponding to UL102 nts 2293-2313 (Figure 4.5).

C) For the larger 809 bp insert, an additional internal primer corresponding to UL102 

nts 2153-2173.

Sequencing reactions consisted of 3pg of mini-prep plasmid DNA, 10 pmoles of primer 

and 4pl of ABI sequencing reaction buffer in a total volume of 10pl and were carried out 

in triplicate (Sequencing facility in the Institute of Virology). An ABI automated 

sequencer was used for double stranded sequencing of the DNA, using the dideoxy 

method of Sanger, (1977). Triplicate sequences obtained using each primer were 

compared to generate a consensus sequence. Consensus sequences derived from 

each of the primers were then compared with that of the original UL102 clone using the 

FASTA programme (Wisconsin package version 9.1, Genetic Computer Group (GCG) 

software, Madison, Wise.).

4.2.2.4 Sub-cloning of the 495 bp and 873 bp fragments into the pGEX-4T2 vector

Following confirmation that both the cloned 495 bp and 873 bp fragments contained no 

nucleotide changes from the original UL102 sequence, they were excised as Bam Hl- 

Eco Rl fragments from the pUC 119-495 bp and pUC 119-873 bp plasmids and cloned 

into the MCS of vector pGEX-4T2 as Bam Hl-Eco Rl inserts.

4.2.2.5 Cloning of the UL102 1635 bp and 993 bp fragments into vectors pGEX- 

4T2 and pGEX-4T3, respectively

The 1635 bp UL102 fragment was excised from plasmid pTZ18u-102 by digesting with 

Bam HI and Sal I, which cuts the Bam HI site upstream of the UL102 start codon and 

the Sal I site at UL102 nt position 1630, and cloned into the MCS of vector pGEX-4T2 

as a Bam HI/ Sal I insert. The 993 bp UL102 fragment was excised from the MCS of 

plasmid pTZ18u-102 by digesting with Sal I, which cuts UL102 at nt position 1630 and 

the MCS of pTZ18u-102 downstream of the UL102 stop codon, and cloned into the 

MCS of vector pGEX-4T3.
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4.2.2.6 Cloning of the complete UL102 gene into the pGEX-2T vector

The whole UL102 gene was excised from plasmid pTZ18u-UL102 by digestion using 

Bam HI and cloned into the Bam HI site of the pGEX-2T vector.

4.2.3 Expression of UL102 GST-fusion proteins in E. coli

Colonies of E. coli DH5a cells, containing the plasmid clones of full-length and 

truncated UL102 GST-fusion proteins; pGEX 1635, pGEX 993, pGEX 873 and pGEX 

495, were picked and grown overnight in 5 ml 2YT medium containing ampicillin 

(2YTA). The following day, 100 pi of the overnight culture was transferred to 10 ml 

fresh 2YTA medium and grown until the absorbance at 600nm (A 6oo) of each culture 

reached between 0.6 and 0.8 units. Expression of the GST-fusion proteins was 

induced by adding IPTG to a final concentration of 1mM to each culture and growing 

for a further 1 -2 hours at 37°C, with shaking. The final A 60o reading of each culture at 

600nm was taken, then 1.5 ml of each culture was transferred to a microfuge tube and 

centrifuged for 10 seconds at 12000 rpm (microfuge) and the supernatant discarded. 

Cell pellets were resuspended in a volume of PBS equal to the A60o value multiplied by 

ten. Resuspended cells were lysed by sonication on ice until the suspension became 

clear and then centrifuged at 12000 rpm (microfuge) to pellet insoluble material. 50% 

glutathione sepharose-B beads (20pl/sample) were added to the supernatant and 

mixed for 10 minutes. After centrifugation to pellet the beads, the supernatant was 

removed and the beads were washed three times in 100pl of PBS. After the final 

wash, the pelleted beads were resuspended in 10pl of Glutathione elution buffer and 

mixed for 10 minutes. The beads were centrifuged at 12000 rpm briefly and the 

supernatant, containing eluted proteins, was retained for SDS-PAGE analysis.

4.2.3.1 Experiments to increase the solubility of the UL102 GST-fusion proteins

UL102 GST-fusion proteins were expressed and purified as described in section 4.2.3, 

with the following variations in order to investigate the effect of these parameters on the 

solubility of the expressed proteins;

A) Temperature at which cultures were grown; 25°C or 37°C.

B) Concentration of IPTG used to induce expression: Finai concentrations of either

0.5mM or 0.1 mM were used.
A

C) Composition of the bacterial cell lysis buffer. Four buffers were compared:

Buffer G (10% glycerol), PBS-Tween (1%), PBS-Tween (2%) and PBS/Triton-X-

100 (1%).
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4.2.4 Constructs used in immunofluorescence studies

4.2.4.1 Cloning of the UL102 gene into expression vector pCMVIO

The entire UL102 gene was excised from plasmid pTZ18u-UL102 as a Bam HI 

fragment and cloned into the Bam HI site of the pCMVIO vector MCS.

4.2.4.2 Cloning of the UL102 1635 bp gene fragment into vector pCMVIO

The UL102 1635 bp gene fragment was excised from plasmid pGEX-2T2-1635 by 

digesting with Bam HI and Sal I restriction enzymes and cloned into vector pCMVIO as 

a Bam HI I Sal I insert.

4.2.4.3 Cloning of the UL102 993 bp gene fragment into vector pCMV-Tag2B

The UL102 993 bp gene fragment was excised from plasmid pGEX-4T3-993 by 

digesting with Sal I and cloned into MCS of vector pCMV-Tag 2B as a Sal I insert.

4.2.5 Constructs used for mammalian-2-hybrid studies

4.2.5.1 Cloning of the UL102 gene into the pVP16 and pM vectors

The UL102 gene was excised from plasmid pTZ18u-UL102 using the Eco Rl site in the 

MCS upstream of the UL102 start codon and the Hind III site in the MCS downstream 

of the UL102 stop codon. It was cloned into vectors pVP16 and pM as a Eco Rl /H ind  

III insert.

4.2.5.2 Cloning of the UL54 gene into the pM and pVP16 vectors

Plasmid PY-POL was digested with Xba I to excise the UL54 gene. The UL54 gene 

was then cloned into Xba I digested and de-phosphorylated pM and pVP16 vectors as 

an Xba I insert.

4.3 Results

4.3.1 Cloning of UL102 fragments for expression in bacteria

4.3.1.1 Amplification of UL102 495 bp and 873 bp fragments by PCR

Figure 4.6A shows the products from the PCR reactions described in sections 4.2.2.1, 

following electrophoresis on a 1% agarose gel. These reactions resulted in the 

generation of products of 495 and 873 bp respectively. Lanes A and B contain 5pl 

samples (from 50pl total volume) of duplicate reactions containing the 495 bp product, 

whilst lanes C and D contain 5pl samples of duplicate 873 bp reaction mixtures.
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Figure 4.6 PCR amplification and cloning of UL102 495 bp and 873 bp
fragments
DNA products were electrcphoresed on 1% TAE agarose gels containing EtBr. 5jJ 
of mini-prep DNA was digested in a total volume of IOp.1, then each digest was
mixed with 2.5p.l of 5X DNA-loading buffer prior to electrophoresis:
A: Products obtained from PCR amplification of fragments of the UL102 gene 
corresponding to the finai 495 and 873 nts using UL102 sequence-specific primers. 
5pl from the total PCR reaction mixture of 50pl was mixed with 2pl of 5X DNA- 
loading buffer in a 10pl volume then loaded onto the gel.
B: Products formed following Bam Hl/Eco Rl restriction digestion of recombinant
plasmid DNA isolated following cloning of the UL102 495 bp and 873 bp PCR 
products into pUC119 vector DNA.
C: Products formed following Bam Hl/Eco Rl restriction digestion of recombinant 
plasmid DNA isolated following cloning of the UL102 495 bp and 873 bp PCR 
products into pGEX-4T2 vector DNA.
Lanes marked M contain DNA molecular size markers.



4.3.1.2 Cloning of UL102 495 and 873 bp PCR products into pUC 119

Recombinant plasmid DNA isolated following the cloning of the 495 bp and 873 bp 

PCR products into pUC 119 was digested with Bam HI and Eco Rl to confirm that the 

inserts were present. Both the 495 bp and 873 bp PCR products had been 

successfully cloned into the pUC 119 vector, as only bands corresponding to the 

linearised pUC 119 vector and either the 495 (Figure 4.6B, lanes 1-6) or 873 bp 

products (Figure 4.6B, lanes 7-12).

4.3.1.3 Sequencing of the UL102 495 bp and 873 bp cloned PCR products

Sequencing analysis of the cloned 495 bp and 873 bp UL102 fragments in plasmid 

pUC 119 revealed that there were no nt differences between either PCR product and 

the original UL102 sequence. Hence, further sub-cloning into appropriate pGEX 

vectors could proceed.

4.3.1.4 Cloning of UL102 495 bp and 873 bp fragments into pGEX~4T2

Recombinant plasmid DNA. isolated was digested with Bam HI and Eco Rl, to verify the 

presence of the 495 bp and 873 bp inserts and a vector band of the right size for 

pGEX-4T2 (4.9 kbp). Figure 4.6C shows that all 8 pGEX-495 clones contain vector 

and insert bands of the appropriate size, (lanes 1-8) as do al! 6 pGEX-873 clones 

(lanes 9-14).

4.3.1.5 Cloning of UL102 1635 bp and 993 bp fragments into pGEX vectors

To verify that the 1635 and 993 bp UL102 fragments had been cloned successfully into 

the pGEX-4T2 and pGEX-4T3 vectors, respectively, the recombinant plasmid DNA 

isolated was digested with the appropriate restriction enzymes. The pGEX-1635 

clones were digested with Bam HI and Sal I then resolved on a 1% agarose gel. All 12 

recombinant plasmids picked contain the pGEX vector and the 1635 bp DNA bands 

(Figure 4.7A). The presence and orientation of the 993 bp insert was determined by 

digesting the pGEX-993 clones with Xho I. When the insert is in the correct orientation, 

restriction digest with Xho I cuts at UL102 nt position 2518, 196 bp’s from the 3’ end of 

the insert and also in the pGEX MCS, downstream of the Sal i site used to clone the 

fragment, generating two DNA bands of sizes 196 bp (plus a few additional bp 

corresponding to the vector sequence between the Sal I and Xho I sites and the 

sequence between the UL102 stop codon and the Sal I site) and 5 kbp (5 kbp band 

corresponds to the linearised pGEX vector and the remainder of the 993 bp insert). As 

can be seen in Figure 4.7B, clones 1 and 6 consisted of vector and insert bands of the 

appropriate sizes. Clones 2, 6, 10 and 11 consist of DNA bands of the correct size, but
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PGEX-4T2 +

1635- *
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Figure 4.7 Cloning of 1635 bp and 993 bp UL102 gene fragments into pGEX 
vectors
The following DNA products were elecirophoresed on 1% TAE agarose gels 
containing EtBr. 5pl of mini-prep DNA was digested in a total volume of 10pJ. then 
each digest was mixed with 2.5ptl of 5X DNA-loading buffer prior to 
electrophoresis.
A: Products formed following Bam Hi/Sal i restriction digestion of recombinant 
plasmid DNA isolated following cloning of the UL102 1635 bp fragment into 
pGEX-4T2 vector DNA.
B: Products formed following Xho I restriction digestion of recombinant plasmid 
DNA isolated following cloning of the UL102 993 bp fragment into pGEX-4T3 
vector DNA.
Lanes marked M contain DNA molecular size markers.



also contain an additional band (approximately 3 kbp), which is difficult to see on the 

reproduced gel.

4.3.1.6 Cloning of the complete UL102 gene into the pGEX-2T vector

Recombinant plasmid DNA isolated was digested with Sal I and EcoRI then 

electrophoresed on a 1% agarose gel, to confirm the presence and orientation of the 

UL102 insert. These restriction enzymes were chosen as they allow distinction of 

clones containing the UL102 insert in either orientation. Sal I cuts UL102 internally at 

nt position 1630 and EcoRI cuts pGEX-2T downstream of the Bam HI site in the MCS. 

If UL102 is in the correct orientation in pGEX-2T, digestion with Sal I and EcoRI 

produces two DNA fragments; one of approximately 1 Kb corresponding to the UL102 

3’-terminal 993 nts and the other of 5 Kbp, corresponding to the pGEX-2T vector and 

the remainder of the UL102 gene. Figure 4.8 shows that all the clones isolated, with 

the exception of clones 1, 8, 9, and 16, generate fragments corresponding to these 

products.

4.3.2 Expression of UL102 GST fusion-proteins in bacteria

SDS-PAGE analysis of E. coli extracts containing the various UL102 GST-fusion 

proteins was carried out to check for expression of each protein. Samples of clarified
Ejc* &JI) C-gXl j'

cell lysates were taken before and after the addition of IPTG to each culture. Proteins 

were resolved on a 7.5% polyacrylamide gel along with a sample of the final eluent 

from each culture following purification using Glutathione sepharose-4B (GS-4B) 

(Figure 4.9). For each of the UL102 GST-fusion constructs, there is a protein band in 

the post-induction sample which is either absent or significantly increased from the pre­

induction sample. In all cases this band is of the predicted molecular weight of the 

expressed UL102 GST-fusion protein and the 29 kDa GST tag. Although all the 

UL102-GST fusion proteins clearly express in the DH5a cells, very little or none of 

these proteins were subsequently purified from the bacterial cell lysate using 

Glutathione sepharose-4B (lane 3), with the exception of the 290C-GST truncated 

UL102 fusion protein, where small amounts were recovered from the GS-4B 

purification. Further analysis or samples taken from various stages of the expression 

and purification process for each of the UL102 GST-fusion proteins revealed that the 

majority of the expressed protein was found in the insoluble fraction of the cell lysate. 

SDS-PAGE analysis of samples taken from expression and purification of the 330C- 

GST and 290C-GST fusion protein is shown in Figure 4.10. These show that the 

expressed protein was largely found in the insoluble fraction although a small amount 

of 290C-GST was found in the soluble fraction (lane 6).
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Clone Number

M 'l 2 3 4 5 6 7 8 9 10 111213141516 '

Figure 4.8 Cloning of the UL102 gene into vector pGEX-2T

Recombinant plasmid DNA isolated following cloning of the UL102 gene 
into pGEX-2T vector DNA was digested with Sal I/Eco Rl restriction 
enzymes. 5pl of mini-prep DNA was digested in a total volume of 20jil, 
then each digest was mixed with 5pl of 5X DNA-loading buffer prior to 
electrophoresis on a 1% TAE agarose ge! containing EtBr. Lanes 
marked M contains DNA molecular size markers.
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Figure 4.10 SDS-PAGE analysis of samples taken from stages in the 
expression and purification of UL102 330C-GST and 290C-GST fusion 
proteins
Bacterial cells transformed with recombinant UL102-pGEX plasmids 
expressing the 330C-GST and 290C-GST UL102 fusion proteins were grown in 
LBA at 37°C, with shaking, until the A600 reached between 0.6 and 0.8. 
Samples of each culture were removed then 0.1 mM IPTG was added and 
growth was continued for a further 1.5 hours. After removal of post-induction 
culture samples, the bacterial cells were lysed by sonication and centrifuged to 
pellet insoluble material, which was retained for analysis The clarified cel! 
iysates were mixed with 50% GS-4B. The GS-4B beads were washed 3 times 
to remove non-specifically bound proteins and then mixed with glutathione 
elution buffer to elute bound GST-fusion proteins. The beads were centrifuged 
briefly to pellet and the supernatant and beads were retained for analysis. The 
following samples taken were taken for each UL102 GST-construct (as 
indicated), analysed by SDS-PAGE on a 7.5% polyacrylamide gel and then 
stained using Coomassie blue;
1= Pre-induction whole bacterial cells, 2= post-induction whole bacterial cells, 
3= lysate following incubation with GS-4B, 4= Insoluble material following lysis, 
5= Sample of GS-4B beads following elution of GST-fusion proteins, 6= Final 
eluate from GS-4B.



4.3.2.1 Varying expression and purification conditions to increase solubility of 

the UL102 GST-fusion proteins

To overcome the solubility problems associated with the expression of the majority of 

the UL102 GST-fusion proteins, various expression and purification conditions were 

utilised to determine their effect on the soluble yield of each of these proteins. The 

following parameters were investigated:

Effect of culture growth temperature: Growing the bacterial cultures at 25°C or 37°C 

had no effect on the solubility of the expressed proteins, as no increase in the final 

amount of protein eluted following purification using GS-4B was seen (Data not 

shown).

Effect o f concentration oflPTG used to induce expression o f proteins: Similarly, 

the final concentration of IPTG used to induce expression of the proteins made no 

detectable difference to the amount of purified protein isolated (Data not shown). 

Effect o f buffer composition in which bacterial cells were lysed: Four different 

buffer types were compared for their effect on the solubility of the UL102 GST-fusion 

proteins. Pelleted bacterial cells were resuspended, prior to lysis, in either: Buffer G, 

PBS-Triton-X-100 (1%), PBS-Tween (1%) or PBS-Tween (2%). Figures 4.11 and 4.12 

show samples recovered from various stages of expression and purification of each 

fusion protein^, analysed by SDS-PAGE on 7.5% polyacrylamide gels and stained with 

Coomassie blue. Lanes numbered 6 in each gel contain the final eluted proteins from 

GS-4B. For each UL102 GST-fusion protein there are four lane 6 samples 

corresponding to each of the 4 lysis buffers used.

For the full-length UL102 GST and the 330C GST-fusion proteins, none of the buffer 

conditions used resulted in the recovery of any protein from the GS-4B. In the case of 

the 545N GST-fusion protein, all the buffer conditions used resulted in a small amount 

of purified protein being recovered. There was little difference in the amount of protein 

recovered between the different buffers used and in all cases this amount was small 

compared to the total amount of protein expressed. A very small amount of protein 

was present in the eluate from the 290C GST-fusion protein samples. As was found 

for the 545N GST-fusion, the lysis buffer used made no difference to the amount of 

protein recovered and this amount was a very small proportion of the total amount 

expressed (lane 2).
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4.3.3 Constructs used in im m unofluorescence

4.3.3.1 UL102 in vector pCMVIO

Recombinant plasmid DNA isolated was digested with Bam HI to verify the presence 

of the UL102 insert in pCMV10. All six clones isolated generate vector and UL102 

insert bands of the correct sizes (Figure 4.13A). The orientation of the UL102 insert in 

each plasmid was determined by digesting with Sal I, which cuts the UL102 gene 

uniquely at nt position 1630 and also the pCMVIO MCS, downstream of the UL102 

stop codon. When UL102 is cloned in the correct orientation, Sal I digestion yields a 

DNA fragment of 993 bp, corresponding to the 3’-terminal 993 bp nt’s of UL102, and 

also a 5.4 kbp fragment, consisting of the pCMV10 vector and the remainder of the 

UL102 gene. Clones 2, 3, 5 and 6 contain DNA bands of the correct sizes, confirming 

these clones consist of the UL102 gene cloned into pCMV10 in the correct orientation 

(Figure 4.13B).

4.3.3.2 Cloning of the UL102 1635 bp gene fragment into pCMVIO

To verify the presence of the 1635 bp insert in vector pCMVIO, recombinant plasmid 

DNA isolated was digested with Bam HI and Sal I. This should generate vector and 

insert DNA fragments of 3.8 kbp and 1635 bp, respectively. The results of these 

digests are shown in Figure 4.14A. All the clones isolated (numbers 1-10) generate 

vector and insert bands of the correct sizes.

4.3.3.3 Cloning of the UL102 993 bp gene fragment into pCMV-Tag 2B

To verify the presence and orientation of the 993 bp insert in the pCMV-Tag 2B vector, 

recombinant plasmid DNA was digested with Bam HI and EcoRV. Bam HI cuts the 

pCMV-Tag MCS upstream of the 993 bp insert and EcoRV cuts the 993 bp insert at nt 

position 679. If the insert is in the correct orientation, this yields DNA fragments of 4.3 

kbp, 679 bp and 400 bp (although only 314 bp of this fragment encodes UL102, the 

remainder is insert sequence beyond the stop codon). Figure 4.14B shows that clone 

numbers 1, 4, 5, 6, 8, 9 and 12 produce DNA fragments of the correct size.

4.3.4 Constructs used in m am m alian-2-hybrid studies

4.3.4.1 Cloning of UL102 into the pVP16 and pM vectors

The presence of the UL102 gene in the recombinant pVP16 and pM plasmids isolated 

was verified by triply digesting the DNA using Eco Rl , Hind III and Sal I restriction 

enzymes. This excises the UL102 gene from the pVP16/pM vectors and cuts it at the 

unique UL102 Sal I site at nucleotide position 1630, resulting in vector DNA fragments
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A
Bam HI d ig e s t

B
Sal 1 d ig e s t

M
Clone Number Clone Number

1 2 3 4 5 6 M M ' 1 2 3 4 5 6'

3.8 K b p -  
2.7 Kbp-

- 4  Kbp 
“ 3 Kbp

-1 .6  Kbp

-  5 4  Kbp

“ 1 Kbp -1 .1  Kbp

Figure 4.13 Cloning of the UL102 gene into vector pCMVIO
Products formed following Bam HI (A) or Sal I (B) restriction digestion of 
recombinant plasmid DNA isolated following cloning of the UL102 gene into 
pCMVIO vector DNA. 5pJ of mini-prep DNA was digested in a total volume of 
10u.1, then each digest was mixed with 2.5^1 of 5X DNA-loading buffer prior to 
electrophoresis on a 1% TAE agarose gel containing EtBr. Lanes marked M 
contain DNA molecular size markers.



Clone Number
M 1 2 3 4 5 6 M 7 8 9 10

4.0 kbp
3.0 kbp
1.6 kbp

Clone Number
B

4.0 kbp -

1.0 k b p -

400 bp -

-  4.3 kbp

-  679 bp 

" 400 bp

Figure 4.14 Cloning of the UL102 1635 bp fragment into vector pCMVIO 
and the 993 bp fragment into vector pCMV-Tag2B.
The following DNA products were electrophoresed on 1% TAE agarose gels 
containing EtBr. 5pJ of mini-prep DNA was digested in a total volume of 10pl, 
then each digest was mixed with 2.5pl of 5X DNA-loading buffer prior to 
electrophoresis;
A: Products formed following Bam HI /Sal I restriction digestion of recombinant 
plasmid DNA isolated following cloning of the UL102 1635 bp fragment into 
vector pCMVIO.
B:Products formed following Bam HI/Eco RV restriction digestion of 
recombinant plasmid DNA isolated following cloning of the UL102 993 bp 
fragment into pCMV-Tag2B vector.
Lanes marked M contain DNA molecular size markers.



of 3.3 kb (pVP16) or 3.5 kb (pM) and UL102 DNA bands of 1630 bp and 992 bp (which 

appear slightly larger in the gel due to the presence of vector sequences from pTZ18u- 

102 which flank the UL102 start and stop codons). Clones 4, 6 and 11 contain DNA 

bands of the correct molecular weight for UL102 cloned in the correct orientation in 

pVP16 vector (Fig 4.15A). Fig 4.15B shows that clones 1, 3, 4, 5 and 7 contain bands 

of the right size for UL102 cloned into pM in the correct orientation (also shown are the 

Eco Rl/Hind III digests for the pM-UL102 recombinant plasmids which show the 

presence of the UL102 insert).

4.3.4.2 Cloning of the UL54 into the pM and pVP16 vectors

To verify the presence and orientation of the UL54 gene in the isolated recombinant 

plasmid DNA, it was digested using Sal I restriction enzyme. Sal I cuts the UL54 gene 

at a unique site at nt position 813 and also cuts the pM/pVP16 MCS upstream of the 

UL54 insert. If the UL54 gene is cloned in the correct orientation, this results in the 

generation of DNA fragments of 850 bp and 6.4 Kbp for the pM-UL102 recombinant 

plasmids or 850 bp and 6.2 Kbp for UL54 cloned into the pVP16 vector. Figure 4.16 

shows that clones 2, 3, 4, 6, 10 and 11 contain bands of the correct molecular weight 

for UL54 cloned into the pM vector (Fig 4.16A), whereas clones 4, 6, 7, 9 and 12 

contain the correct size bands for UL54 cloned in the correct orientation into pVP16 

(Fig 4.16B) (also shown are the Xba I digests for the pVP16-UL54 recombinant 

plasmids which show the presence of the UL54 insert).

4.4 Discussion
The full-length UL102 gene, as well as two UL102 gene fragments, were successfully 

cloned into mammalian expression vectors pCMVIO or pCMV-Tag, allowing an 

investigation of the intracellular localisation of these proteins in transfected cells 

(Chapter 7). The successful cloning of UL102 and UL54 into pM and pVP16 vectors 

enabled the putative interaction between these proteins to be investigated using the 

mammalian-2 hybrid system (M-2-H) (see Chapter 5). If an interaction was 

demonstrated using this system, the 5' and 3'-truncated UL102 gene fragments could 

then be cloned into the M-2-H vectors to determine which regions of UL102 were 

involved in binding to UL54. The truncated UL102 proteins could also be expressed in 

the M-2-H system to determine regions of interaction with other HCMV replication 

proteins, such as the UL70 and UL105 proteins, in future UL102 characterisation 

studies. In addition, the entire UL102 gene and 5’ and 3’ truncated UL102 gene 

fragments were successfully cloned into pGEX vectors, which allowed the expression
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Clone Number
l------------------------------------------------ 1

M 1 2 3 4 5  6 7 8  9 10 11 12 M

Eco Rl/Hind III Eco Rl/Hind III/S a l I

Clone Number

M 1 2 3 4 5  6 7 8  1 2 3 4 5 6 7 8

3.5 kbp
B  3.0 Kbp -

_ 1.6 kbp
1.6 Kbp -

-1.1 kbp
1.0 Kbp

Figure 4.15 Cloning of the UL102 gene into mammalian-2-hybrid vectors
The following DNA products were electrophoresed on a 1% TAE agarose gel 
containing EtBr. 5pl of mini-prep DNA was digested in a total volume of 20pl. 
10pl of each digest was mixed with 2.5pl of 5X DNA-ioading buffer prior to 
electrophoresis ;
A: Products formed following Eco R\/Hind III /Sal I triple restriction digestion of 
recombinant plasmid DNA isolated following cloning of the UL102 gene into 
pVP16 vector DNA.
B: Products formed following either Eco Rl /Hina III or Eco Rl/H ind  III /Sal I 
restriction digestion of recombinant plasmid DNA isolated following cloning of the 
UL102 gene into pM vector DNA (as indicated).
Lanes marked M contain DNA molecular size markers.



Clone Number

M ' 1 2 3 4 5 6 7 8 9 10 11 121

4.0 Kbp —

A

1.0 Kbp -  

0.5 Kbp —

Xba I digestion S a l! digestion
( | - 

Clone Number

M 1 2 3 4 5 6 7 8 9 101112 M 1 2 3 4 5 6 7 8  9 10 1112

®  4.0 Kbp—
3.0 Kbp—

Figure 4.16 Cloning of the UL54 gene into mammalian-2-hybrid vectors
The following DNA products were electrophoresed on a 1% TAE agarose gel 
containing EtBr. 5j.il of mini-prep DNA was digested in a total volume of 10jil 
then each digest was mixed with 2.5pl of 5X DNA-loading buffer prior to 
electrophoresis.
A:. Products formed following Sal I digestion of recombinant plasmid DNA 
isolated following cloning of the UL54 gene into pM vector DNA.
B: Products formed following Xba I or Sa11 digestion of recombinant plasmid 
DNA isolated following cloning of the UL54 gene into pVP16 vector DNA (as 
indicated).
Lanes marked M contain DNA molecular size markers.



of both full-length and four truncated forms of the UL102 protein as GST-fusions in 

bacteria. Although these proteins were largely insoluble, they were utilised for defining 

regions of UL102 which are recognised by UL102 MAbs (section 3.3.2.5) and could, in 

principle, be used to perform UL102 structure-function studies if they were expressed 

in alternative systems.

Purification of the UL102 GST-fusion proteins was hindered by their lack of solubility. 

As only the 290C-GST protein was sufficiently soluble to allow purification using GS- 

4B, various aspects of the expression and purification protocol were altered to try and 

increase the solubility of the UL102-GST fusion proteins. The parameters investigated 

included the bacterial culture growth temperature and the concentration of IPTG used 

to induce expression. By using either lower growth temperatures or lower 

concentrations of IPTG, the rate of expression of the fusion proteins may be reduced 

so that proper folding may occur and the protein may be less likely to gather in 

inclusion bodies. However, neither the growth temperature or concentration of IPTG 

were found to have any effect on the solubility of the expressed proteins. The final 

parameter altered to try and increase the solubility of the fusion proteins was the 

composition of the buffer in which the bacterial cells were lysed. Four different buffers 

were compared; Buffer G, PBS-1% Tween, PBS-2% Tween and PBS-1% Triton X- 

100. Buffer G has been used to extract baculovirus-expressed UL102 and also HSV-1 

UL8 protein from insect cells (Parry etal., 1993; Marsden etal., 1998). PBS formed 

the basis for the other buffers used, with either Tween-20 or Triton-X-100 detergents 

added. The presence of detergents in the lysis buffer can increase recovery of the 

insoluble protein by reducing the intermolecular interactions which lead to aggregation, 

or at higher concentrations, detergents cause denaturing of the protein, allowing it to 

be solubilised from inclusion bodies. For the full-length UL102 and 330C-GST fusion 

proteins, none of the buffers used increased the solubility of the proteins sufficiently to 

allow purification. However, in the case of the 545N-GST and 290C-GST proteins, all 

four lysis buffers increased the solubility of the proteins sufficiently such that small 

amounts could be recovered using GS-4B. The presence of detergents in the lysis 

buffers likely decreased aggregation of insoluble protein, making it accessible to the 

GS-4B. The amount of 545N-GST and 290C-GST proteins recovered from the GS-4B 

in all cases was small compared to the total amount expressed. However, if the 

volumes of cultures were to be increased, then this would allow purification of small 

amounts of protein.

It is possible that altering other conditions during expression and purification of the full-
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length UL102 and 330C-GST fusion proteins might increase their solubility so that they 

could be purified. Other parameters that could be investigated include the timing of 

induction, the period of induction or aeration levels of the cultures. Isolation of the 

protein from inclusion bodies could be carried out by denaturation of the aggregated 

protein in common denaturants, such as 4-8 M urea or 4-8 M guanidium hydrochloride, 

followed by attempted refolding by the removal of the denaturant by dilution or dialysis. 

However, extensive denaturation caused by such denaturants would require that the 

proteins would need to be properly refolded to regain function.

A lack of solubility of recombinant expressed HCMV replication proteins, including 

UL102, has been reported by other workers (McCue & Anders, 1998). Owing to the 

poor solubility of the HCMV helicase-primase proteins when expressed using 

recombinant baculovirus, they have subsequently utilised the Semliki Forest virus 

expression system to express these proteins and have reported that their solubility is 

improved using this system.

Sufficient constructs were obtained from the work described in this chapter to allow 

most of the objectives of my project to be pursued.
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Chapter 5

Investigation of the putative interaction 
between UL102 and UL54



5.1 Introduction
In HSV-1, the UL8 protein interacts specifically with UL30, the DNA polymerase 

catalytic subunit (Marsden etal., 1997). An interaction has also been reported 

between BBLF2/3 and BALF5, the EBV counterparts of HSV-1 UL8 and UL30 (Fujii et 

al., 2000). These findings suggest that this interaction may be conserved amongst the 

herpesviruses. The aim was to establish whether a specific interaction also occurs 

between the homologous proteins in HCMV, UL102 and UL54 and if so, to establish 

which regions of UL102 were involved in the interaction. Three different methods were 

used to investigate the putative UL102-UL54 interaction:

A: ELISA interaction assay

An ELISA-based assay was developed to investigate the UL102-UL54 interaction. This 

method has been used previously to demonstrate interactions between the HSV 

replication proteins UL8 and UL30 (Marsden etal., 1997) and UL30 and UL42 

(Marsden et al., 1994). The assay utilised purified UL102 and UL54 proteins and either 

UL102- or UL54-specific MAbs. UL54 was immobilised onto microtitre plate wells. 

Following a blocking step, UL102 was added to the wells and incubated at 37°C. 

Binding between UL102 and UL54 was detected by adding a UL102-specific MAb. 

Formation of antigen-antibody complexes was visualised using a peroxidase-coupled 

a-mouse antibody, which catalyses a colour-change reaction when a chromogenic 

substrate is added. The colour change of the added substrate in each well was then 

measured using a microtitre plate reader. Extensive washing to remove unbound 

proteins and components was carried out in between each stage of the protocol.

Hence, a signal is only produced where binding between the two proteins and all the 

subsequently added components has occurred (Figure 5.1). All 51 UL102-specific 

MAbs, described in Chapter 3, were screened in this assay for their ability to detect an 

interaction between UL54 and UL102. In addition, 8 UL54-specific MAbs were tested 

for their ability to detect UL54 bound to UL102 by performing the assay with the 

proteins added in the reverse order.

B: Co-immunoprecipitation experiments

Co-immunoprecipitation is a widely used technique for demonstrating protein-protein 

interactions. Extracts from insect cells containing radiolabelled UL102 and UL54 were 

mixed with either UL102- or UL54-specific MAbs. The MAb-antigen complexes formed 

were captured on Protein-A-sepharose, analysed by SDS-PAGE and visualised by 

autoradiography. Twelve UL102 IP-positive MAbs (section 3.3.2.3) were screened for 

their ability to co-precipitate UL54 along with their cognate antigen, UL102. In addition,
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t
+
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Washed off

Washed off

Washed off

A) Protein-protein interaction

KEY: UL54

O UL102

B) No protein-protein interaction

A UL102 MAb

a-mouse HRP-conjugated antibody

Figure 5.1 UL102-UL54 Interaction ELISA
Schematic diagram illustrating the UL54-UL102 interaction ELISA. Fig 1A depicts 
the complexes formed if the proteins bind to each other. If UL102 interacts with 
UL54, it will be subsequently be bound by UL102-specific MAb added to the wells. 
Binding of the UL102-specific MAb is then detected by addition of an HRP- 
ccnjugated a-mouse antibody followed by a chromogenic substrate (ABTS- 
peroxidase). The colour change of the substrate in each well is then measured by 
reading the OD (595nm) using an ELISA plate reader. The detection of the 
colour-change signal is therefore dependent on the binding of all the added 
components following immobilisation of UL54 to the wells. Fig 1B: If UL102 does 
not bind to UL54, it is lost from the wells during the washes following the 
incubation period. Hence, there is no binding of the subsequently added UL102- 
specific MAb or HRP-conjugated a-mouse antibody and these components are 
lost during washing of the wells. No signal can therefore be produced upon 
addition of the chromogenic substrate.



a panel of UL54-specific MAbs was screened to determine whether any could 

specifically co-precipitate UL102 as well as UL54 from cell extracts containing both 

proteins.

C: Mammalian-2-hybrid system

The Clontech mammalian-2-hybrid (M-2-H) system was utilised to determine whether 

UL102 and UL54 interact in vivo in mammalian cells. It is based on the same principle 

as yeast-2-hybrid systems, in which the two proteins of interest are expressed as 

fusions with the DNA-binding domain (DNA-BD) and the activation domain (AD) from 

two different transcription factors, respectively. If the proteins interact, the DNA-BD 

and AD will be brought in close enough proximity to activate transcription of the 

Chloramphenicol transferase (CAT) reporter gene, which is co-transfected into the cells 

along with the plasmids expressing the fusion proteins. Cell extracts are then assayed 

for CAT activity to determine whether the proteins have interacted. The system is 

outlined in Figure 5.2.

The pM vector is used to express one of the proteins of interest as a N-terminal fusion 

to the DNA-BD from the yeast GAL4 protein. The pVP16 vector creates a fusion 

between the N-terminus of the second protein and the AD derived from the HSV VP16 

protein. The CAT gene is situated downstream of five consensus GAL4 binding sites 

and a promoter derived from the adenovirus E1b gene on the pG5CAT reporter vector. 

Vector pM3-VP16, which expresses a fusion of the GAL4 DNA-BD and the VP16 AD, 

was also used as a positive control plasmid.

Recombinant plasmid combinations of either pVP16-UL102 and pM-UL54 or pM- 

UL102 and pVP16-UL54 were transfected into Hela cells along with the pG5CAT 

reporter plasmid. The transfected cell extracts were then assayed for CAT activity 

using a conventional radioactive CAT assay.
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5.2 Chapter Specific Methods

5.2.1 Investigation of the UL102-UL54 interaction by ELISA

5.2.1.1 Purification ofUL102 and UL54 proteins

Recombinant UL102 and UL54 proteins were expressed in Sf insect cells and purified 

as described in sections 2.9.1 and 2.9.2 respectively. The purity of each protein was 

determined by SDS-PAGE analysis followed by Coomassie blue staining and then 

quantified using a Bio-Rad protein assay, according to the manufacturer’s instructions.

5.2.1.2 UL102-UL54 interaction ELISA protocol

Groups of four wells in 96-well Immulon 1 microtitre plates were coated with protein, 

diluted in PBS, as indicated below using 50pl/well by incubating overnight at 37°C.

The concentrations used are indicated in the figure legends.

A: UL54 
B: UL54 
C: PBS only 
D: PBS only

Microtitre plates were washed 8 times in ELISA wash buffer (EWB) to remove any 

unbound protein. Any parts of the well surface not coated with the proteins indicated 

were then blocked using 2% BSA in PBS by incubation for 1 hour at 37°C. Wells were 

washed in EWB to remove the BSA/PBS. UL102 protein was added (50pl/well) to 

wells A and C in each group of 4 wells at the concentrations indicated in the figure 

legends and then incubated for 1 hour at 37°C. Wells were washed 8 times in EWB to 

remove unbound UL102. A UL102 MAb (50pl/well of neat hybridoma cell supernatant) 

was added to each group of 4 wells and incubated for 1 hour at 37°C and then washed 

8 times in EWB. A 1:1000 dilution of a-mouse HRP-conjugated antibody in PBS was 

added to each well (50pl/well) and plates were incubated at room temperature for 1 

hour. Unbound secondary antibody was removed by washing plates 8 times in EWB. 

Wells were tapped dry before adding 100|il/well of ABTS-peroxidase substrate. The 

colour change of the substrate was detected by measuring the OD (595nm) in each 

well after 30 minutes using a Titertek plate reader. All 51 UL102 MAbs were tested for 

their ability to detect UL102 bound to UL54 using this interaction ELISA. In addition, a 

panel of UL54-specific MAbs were tested for their ability to detect the UL102-UL54 

interaction. In this case, wells were coated as described with UL102 initially and UL54 

was subsequently added following the blocking step.
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5.2.1.3 Control protein interaction ELISA

Immulon 1 microtitre plate wells were coated with either UL54 or control proteins 

alcohol dehydrogenase (AD), carbonic anhydrase (CA) or BSA diluted in PBS at the 

concentrations indicated in the results figures. Following coating of the microtitre wells 

with protein, the ELISA protocol was performed exactly as described in section 5.2.1.2. 

UL102 protein was added to all of the above wells at a concentration of 100ng/well in a 

volume of 50pl unless otherwise indicated in the results figures. UL102 MAb number 

532 was used to detect bound UL102.

5.2.1.4 Modifying ELISA conditions to minimise non-specific interactions

The effect of varying ELISA protocol conditions on the detection of non-specific 

interactions between UL102 and control proteins was investigated. The protocol used 

was exactly as described in section 5.2.1.3 with the exception of varying the following 

two parameters;

A: Secondary protein diluent: Two types of diluent, PBS (pH 7.2) and Tris-buffer (pH 

8) were compared initially and then the Tris buffer diluent was used at four different pH 

values (7.5, 8.0, 8.5, 9.0) for comparison.

B: Wash buffer. Two different types of wash buffer, EWB (145 mM NaCI, 7.5 mM 

Na2HP04, 2.8 mM NaH2P 04,0.05% Tween-20) and IP wash (100 mM Tris (pH 8), 10 

mM NaCI, 2 mM EDTA|/W eJ^t5top^i^y/SObsequ9nfly,lth^^^t of5let6rg§ttj(0.5% 

deoxycholate, 1% NP40).and salt concentration (50-500 mM) in the IP wash buffer was 

also investigated. 'U rk  £ j

5.2.2 Investigation of the UL102-UL54 interaction using co-immunoprecipitation 

experiments

UL102 and UL54 proteins were expressed from recombinant baculoviruses AcNPV- 

UL102 and AcNPV-UL54, radiolabelled using 35S-methionine and extracted from Sf 

insect cells as described in section 3.2.2.3. Extracts from doubly-infected cells or 

extracts from cells singly-infected with either AcNPV-UL102 or AcNPV-UL54, which 

had been mixed together, were then incubated with either UL102 or UL54 MAbs (neat 

hybridoma cell supernatant), using 10Opl/extract for 2.5 hours at 4°C. The remainder 

of the immunoprecipitation protocol was as described in section 3.2.2.3.
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5.2.3 Investigating the putative UL102-UL54 interaction using the M-2-H system

5.2.3.1 Cloning of UL102 and UL54 genes into M-2-H vectors

The UL102 and UL54 genes were cloned into each of the M-2-H vectors, pM and 

pVP16, as described in sections 4.2.4.1. and 4.2.4.2.

5.2.3.2 Transfection of Hela cells with M-2-H vectors

35mm dishes were seeded with 4 x 105 cells/plate in 2 ml medium. Combinations of M- 

2-H vectors were mixed with cationic liposomes and serum-free Optimem medium 

(Gibco-BRL) as described in section 2.8.2 to create transfection mixtures of 500pl final 

volume. The existing medium was removed from each plate and the cells were 

washed twice in PBS. Transfection mixtures were added to the plates and incubated 

for 3 hours at 37°C. The transfection mixture was then removed from each plate and 

the cells were washed once in PBS. Cells were replenished with 2mls fresh medium 

and incubated at 37°C for 48 hours. After 48 hours, the medium was removed and 

cells were washed once in PBS. Cells were scraped from the plate surface into 1 ml 

PBS and kept on ice. Cells were pelleted by brief centrifugation in a microfuge, the 

supernatant was removed and the cells washed once more in 1 ml PBS. Following 

another brief centrifugation the final cell pellet, representing all the cells harvested from 

one plate, was stored at -20°C.

5.2.3.3 Determination o f CAT activity in cell lysates by radioactive CAT assay

Cell pellets were thawed and resuspended in 75 pi of 250 mM Tris buffer (pH 7.5) by 

vortexing. Cells were then lysed by 3 rounds of freeze-thaw treatment (5 minutes on 

dry ice followed by 5 minutes in a 37°C water bath). Lysed cells were centrifuged for 5 

minutes at 12000 rpm (microfuge) to pellet the insoluble material and each supernatant 

was transferred to a fresh tube. The supernatant was then mixed with 15pl of CAT 

assay mix, consisting of 1pl 50 mM acetyl-co-A, 1pl of 14C-chloramphenicol and 13pl of 

250 mM Tris (pH 7.5), and incubated at 37°C for 2 hours. Samples were centrifuged 

briefly before adding 250pl of ethyl acetate and vortexing for 20 seconds. Samples 

were centrifuged for 5 minutes at 13000 rpm and the upper phase was transferred to a 

fresh tube. The liquid was evaporated under vacuum for 20 minutes in a speedvac. 

Pellets were resupended by vortexing in 25 pi of ethyl acetate and then spotted onto 

silica gel-coated TLC plates and developed for 20 minutes in a 95:5 (vol:vol) mixture of 

chlorofomrmethanol. Plates were air-dried and then exposed to Kodak X-Omat film 

overnight.
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5.3 Results

5.3.1 Investigating the putative UL102-UL54 interaction by ELISA

5.3.1.1 UL102-UL54 interaction assay

Figure 5.3 shows the results of an interaction ELISA in which UL102 MAbs were used 

to detect binding between UL102 and immobilised UL54. All 51 MAbs were used in 

this assay, but only a selection of the results are shown. MAb numbers 59, 70, 123, 

154, 185 and 707 produced a signal in the presence of both proteins, whereas no 

significant signal was produced in the presence of either protein individually or in the 

absence of any protein, as expected. MAb 547 produced a signal only marginally 

higher than background. The detection of a signal indicates that a UL102 protein- 

UL102 MAb complex has formed and hence binding between UL102 and UL54 hac/S 

occurred. These findings were substantiated by the results obtained from ELISAs in 

which UL102 and UL54 had been added in the reverse order and where UL54 MAbs 

had been used to detect the binding of UL54 to immobilised UL102. The results 

obtained for 8 UL54-specific MAbs are given in Figure 5.4. UL54 MAb numbers 243 

and 355 produce a strong signal in the presence of both proteins, although there is 

also a less intense signal produced in wells containing UL54 only. No significant signal 

is detected in wells containing either UL102 only or no protein. The generation of a 

signal from wells containing both proteins indicates an interaction between UL102 and 

UL54. MAb 43 produces a slightly stronger signal in the presence of both proteins, but 

not appreciably stronger than background. Those UL102- or UL54-specific MAbs that 

did not produce a signal from wells containing both proteins may bind to regions of 

UL102 and UL54 which are masked as a result of the interaction.

5.3.1.2 Control protein ELISA

To investigate whether the UL102-UL54 binding observed using the interaction ELISA 

was specific, the experiments were repeated as before but with the inclusion of control 

proteins alcohol dehydrogenase (AD), carbonic anhydrase (CA) and BSA as well as 

UL54. Wells were coated with serial 3-fold dilutions of UL54 or control proteins and 

100ng/well of UL102 was subsequently added to each well. The results of one such 

ELISA are shown in Figure 5.5. A strong signal was detected from wells containing 

UL102 and UL54, indicating binding between the two proteins had occurred, as 

previously demonstrated (Figures 5.3 and 5.4). However, signals significantly stronger 

than background were also detected from wells containing UL102 and the control 

proteins AD or CA. This finding was unexpected, and although the UL102-AD and 

UL102-CA interactions did not result in as strong a signal as that produced by the
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UL102 MAb number

HUL102 +UL54 DUL102 only DUL54 only DNo protein

Figure 5.3 UL102-UL54 interaction ELISA using UL102-specific MAbs
Microtitre wells were coated with either 400 ng UL54 in PBS, or PBS only, then 
blocked for 1 hour using 2% BSA in PBS. 100 ng/well of UL102 was added to 
each well and incubated for 1 hour at 37°C. After washing, 50pJ/well of UL102 
MAbs were added and incubated at 37°C for 1 hour. Unbound MAbs were 
washed off and 50pl/wel! of a 1:1000 dilution of a-mouse-HRP was added to 
each well and incubated for 1 hour at room temperature. Unbound secondary 
antibody was washed off and 100pl of ABTS-peroxidase substrate was added to 
each well. The OD (595nm) of each well was measured after naif an hour. For 
each MAb, there are four data bars, corresponding to wells containing either 
UL102 and UL54, UL102 only, UL54 only or no protein, as indicated in the key.
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Figure 5.4 UL102-UL54 interaction ELISA using UL54-specific MAbs
Microtitre wells were coated with either 200 ng UL102, or PBS only then 
blocked for 1 hour using 2% BSA in PBS. 200 ng/well of UL54 was added to 
-each well and incubated for 1 hour at 37°C. After washing, 50^1/well of UL54 
MAbs were added and incubated at 37°C for 1 hour. Unbound MAbs were 
washed off and 50j.il/well of a 1:1000 dilution of a-rnouse-HRP was added to 
each well and incubated for 1 hour at room temperature. Unbound secondary 
antibody was washed off and 100jJ of ABTS-peroxidase substrate was added 
to each well. The OD (595nm) of each well was measured after half an hour. 
For each MAb, there are four data bars, corresoonding to wells containing 
either UL102 and UL54, UL54 only, UL102 only or no protein, as indicated in 
the key.
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Figure 5.5 Interaction of UL102 with control proteins in ELISA
Microtitre wells were coated with either UL54, carbonic anhydrase, BSA or alcohol 
dehydrogenase at the indicated concentrations. After blocking any remaining 
binding sites with 2% BSA in PBS for 1 hour at 37°C, 100ng/well of UL102 was 
added and plates were incubated for 1 hour at 37°C. Unbound UL102 was 
washed off using EWB. UL102 MAb 532 (50p/well) was added to each well and 
incubated at 37°C for 1 hour. Plates were washed again using EWB and then 
50pl of a-mouse HRP-conjugated antibody was added to each well and incubated 
for 1 hour at room temperature. Unbound secondary antibody was washed off and 
plates were tapped dry. 100pi of ABTS-peroxidase substrate was added to each 
well. After 30 minutes, the OD (595nm) in each well was measured.



UL102-UL54 interaction, they were sufficiently strong to suggest that UL102 is capable 

of interacting with control proteins in a non-specific manner under the conditions used. 

As expected, no signal was detected from wells containing BSA and UL102, indicating 

no binding between these proteins had occurred.

5.3.1.3 Varying interaction ELISA parameters

Several ELISA protocol parameters were varied in order to determine their effect on 

detection of non-specific interactions between UL102 and control proteins. The first of 

these was the effect of the type of protein diluent and wash buffer used. Protein 

diluents PBS and Tris buffer were compared initially. The effects of the different 

diluents are shown in Figure 5.6. Use of PBS diluent, in this experiment, did not result 

in any distinction between the UL102-UL54 interaction and the UL102-AD and UL102- 

CA interactions. Use of Tris buffer to dilute the proteins resulted in a slight distinction 

between the UL102-UL54 and the UL102-AD and UL102-CA interactions, but this was 

no greater than the difference in strength of signals between UL102-UL54 and UL102- 

AD and UL102-CA originally observed (Fig 5.5).

The second parameter investigated in this experiment was the effect of the composition 

of the buffer used to wash the ELISA plates. The original ELISA wash buffer (EWB) 

was compared to IP wash buffer, which contained NP40 and deoxycholate detergents, 

to determine the effect of detergents on the formation of non-specific interactions 

(Figure 5.6). When PBS diluent was used in conjunction with IP wash, there was little 

difference in the strengths of signal detected from the UL102-UL54 interaction and the 

UL102-AD and UL102-CA control protein interactions, although the overall strength of 

each signal was increased. The combination of IP wash and Tris diluent led to a 

reduction in the overall strength of signals detected and there was a slight decrease in 

the relative strengths of the signals generated from the UL102-AD and UL102-CA 

interactions compared to that from the UL102-UL54 interaction. However, the UL102- 

AD and UL102-CA signals were still significantly higher than background.

The effect of changing the pH value of the Tris buffer used to dilute the proteins was 

also investigated. In these experiments, IP wash was used throughout. Four Tris buffer 

diluent pH values were compared; 7.5, 8.0, 8.5 and 9.0. At pH 7.5, the signal detected 

from the UL102-UL54 interaction was slightly greater than those from the UL102-AD 

and UL120-CA interactions, in agreement with previous findings. At pH values of 8.5 

and above, all interactions, including that between UL102 and UL54, were almost 

completely inhibited, with the signals detected from each interaction reduced to
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background levels (data not shown). The final parameter investigated was the effect of 

the salt concentration of the wash buffer used during the ELISA. Four salt 

concentrations were compared; 50, 100, 200 and 500 mM NaCI. Proteins were diluted 

in Tris throughout. The wash buffer salt concentration was found to have no effect on 

either the overall magnitude of the signals generated or the relative strengths of the 

signals generated from the UL102-AD and UL102-CA interactions compared to that 

generated by the UL102-UL54 interaction (data not shown).

5.3.2 Co-immunoprecipitation experiments

Twelve UL102 IP-positive MAbs identified in section 3.3.2.3 were used in immune- 

precipitation experiments to determine whether UL54 could be specifically co­

precipitated along with UL102 from insect cell extracts containing UL102 and UL54. 

Figure 5.7 shows SDS-PAGE analysis of the immune complexes formed after mixing 

the UL102 IP-positive MAbs 809 and 658 with insect cell extracts containing UL102, 

UL102 and UL54 or mock-infected cell extracts. Two IP-negative UL102 MAbs 

(numbers 70 and 546) were also included in the experiment for comparison. As 

expected, MAb numbers 658 and 809 did not form complexes with any proteins from 

the mock-infected cell extract and both precipitated UL102 from UL102-containing 

extracts. Both MAbs also precipitated very small amounts of UL102 from the doubly- 

infected cell extract, as expected. However, neither MAb co-precipitated UL54 from 

the cell extract containing both UL102 and UL54. IP-negative UL102 MAbs 70 and 546 

did not precipitate proteins from either mock-infected, UL102-containing or 

UL102/UL54-containing cell extracts, as expected.

UL54 MAbs were also utilised in the immunoprecipitation experiments. The immune 

complexes formed when UL54 MAbs were mixed with cell extracts containing UL102, 

UL54, UL102 and UL54 or mock-infected extracts were analysed by SDS-PAGE. 

Representative results for one UL54 IP-positive and one UL54 IP-negative MAb are 

shown in Figure 5.8. MAb 20016 precipitated UL54 from the extracts of cells 

expressing UL54 only and from extracts of cells expressing UL102 and UL54 

individually, which had been mixed together, as expected. No UL54 was precipitated 

from the extract from cells expressing both UL102 and UL54, however this can be 

explained by the small amount of UL54 in the cell extract initially (see ’cell extract’ lane 

labelled 102/54). In the cell extracts containing both UL102 and UL54, only UL54 was 

precipitated using MAb 20016. None of the other UL54-specific MAbs tested in these 

immunoprecipitation experiments co-precipitated UL102 together with UL54 (data not 

shown from experiments carried out by Mary Murphy). UL54-specific MAb MM355 was
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Cell Ext MAb 809 MAb 70

102/H 102/1 I 102/
Ml 102 54 Ml 102 54 Ml 102 54

UL54

UL102

Cell Ext MAb 658 MAb 546

102/1' 102/^ I 102/ I
Ml 102 54 Ml 102 54 Ml 102 54

UL54 — 
UL102 -

Figure 5.7 Co-immunoprecipitation experiments using UL102 MAbs
S f cells extracts from mock-infected cells (Ml) or cells expressing either UL102 
only (102) or both UL102 and UL54 (102/54) were incubated with UL102 MAbs 
as indicated for 2.5 hours at 4°C, before adding a suspension of protein A- 
sepharose. After mixing for a further hour, protein A-sepharose beads were 
pelleted by centrifugation, washed 3 x in AE buffer then boiled in SDS-PAGE 
buffer. Beads were pelleted by centrifugation and the supernatant was 
analysed by SDS-PAGE. Gels were dried and exposed to photographic film 
overnight. Lanes labelled cell extract are crude insect cell extract from either 
mock-infected cells (Ml) or cells infected with recombinant baculoviruses 
expressing either UL102 (102), or UL102 and UL54 (102/54).



MAb 20016 Cell Extract

102/ 54+ 102/
Ml 54 102 54 102 Mw Ml 54 102 54

UL54

UL102

MAb MM355 Celi Extract

102/ 54+ 102/
Ml 54 102 54 102 Mw Ml 54 102 54

UL54

UL102

Figure 5.8 Co-immunoprecipitation experiments using UL54-specific MAbs
S f cells extracts from cells expressing either UL102 and UL54 individually, both 
proteins (102/54) or extracts from cells singly expressing UL102 and UL54, which 
had been mixed together (102 + 54), were incubated with UL54 MAbs as 
indicated for 2.5 hours at 4°C, then a suspension of protein A-sepharose was 
added. After mixing for a further hour, protein A-sepharose beads were pelleted 
by centrifugation, washed 3 x in AE buffer then boiled in SDS-PAGE buffer. 
Beads were pelleted by centrifugation and the supernatant was analysed by SDS- 
PAGE. Gels were dried and exposed to photographic film overnight. The first 5 
lanes on each gel show the immune complexes captured when UL54 MAbs were 
mixed with the cell extracts indicated. Ml refers to mock-infected cell extracts. 
Lanes marked MW contain 14C-labelled molecular weight marker. Lanes labelled 
cell extract are crude insect cell extract infected with recombinant baculoviruses 
expressing either UL102, UL54 or both proteins, as indicated.



used as a negative control MAb and did not precipitate any proteins from any of the cell 

extracts, as expected.

Considering that UL102 and UL54 were present in similar amounts in the mixed 

extracts used and that the conditions used allowed both proteins to be precipitated by 

their cognate MAbs, this suggests that under these conditions, UL102 and UL54 did 

not interact when co-expressed in insect cells, or when in solution through mixing 

extracts from cells expressing UL102 and UL54 individually.

5.3.3 Mammalian-2-hybrid experiments

Initial experiments were performed to ensure that the system was working in the Hela 

cells which were chosen to perform the mammalian-2-hybrid experiments. This 

involved transfecting the cells with combinations of control plasmids then performing 

CAT assays on the cell extracts to ensure CAT activity was only present in the 

appropriate cell extracts. Figure 5.9 shows the results of the CAT assay performed on 

cell extracts following transfection with M-2-H control plasmids. CAT mediates the 

transfer of acetyl onto one or both of the hydroxyl groups on the chloramphenicol 

molecule, resulting in either mono- or di-acetylated forms which are then resolved by 

thin layer chromatography. CAT activity was only detected, as expected, in extracts 

from cells transfected with varying amounts of the positive control plasmid, pM3-VP16 

and pG5CAT (lanes 3, 4, 5, 6 and 7). No CAT activity was detected in untransfected 

cells or negative control extracts (lanes 1, 2 and 8), as expected. Similarly, no CAT 

activity was detected in cells transfected with plasmids pM-UL54, pVP16 and pG5CAT, 

(lanes 9 and 10), indicating that in this experiment, no interaction occurred between 

UL102 and UL54 when co-expressed in Hela cells.

Consistent with this result, experiments performed with varying amounts of expression 

vectors pM-UL54 and pVP16-UL102 also resulted in a lack of detectable CAT, 

indicating an inability of UL102 to interact with UL54 in this system (Figure 5.10).

Lanes 1-4 are extracts from cells acting as negative CAT controls and as expected, no 

CAT activity was detected in these extracts. CAT activity was detected in extract from 

cells transfected with the positive control plasmid pM3-VP16, indicating that both the 

transfection and CAT assay had been successful (lane 5). Lanes 6-10 contain extracts 

from cells transfected with vectors pVP16-UL102, pM-UL54 and pG5CAT in varying 

amounts and ratios. No CAT activity was detected in any of these cell extracts. Up to 

10pg of each of the plasmids had been transfected into the cells, hence it seems 

unlikely that the lack of activity was a consequence of low intracellular amounts of
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UL102 and UL54 protein. In contrast, 1pg of the positive control vector pM3-VP16 was 

sufficient to produce significant levels of CAT activity. These findings suggest that 

under the conditions used, UL102 and UL54 do not interact in Hela cells when 

expressed as fusion proteins with VP16 AD and GAL4 DNA-BD, respectively.

In order to examine the possibility that potential conformational changes in UL102 and 

UL54 when expressed as fusion proteins with either VP16 or GAL4 prevented an 

interaction occurring between them, the experiments were repeated using vectors pM- 

UL102 and pVP16-UL54. These vectors express UL102 and UL54 as fusions with the 

GAL4 and VP16 proteins, respectively. Figure 5.11 shows the results of CAT assays 

performed on cell extracts from this experiment. No CAT activity was detected in the 

negative control samples (lanes 1, 2 and 5), whereas activity was detected in the 

extracts from positive control samples (lanes 3 and 4), as expected. Lane numbers 6- 

12 contain extracts from cells transfected with UL102- and UL54-expressing vectors 

and reporter plasmid pG5CAT. Lanes 6-8 contain extracts from cells transfected with 

pVP16-UL102 and pM-UL54, the combination of vectors which had been used 

previously (Figure 5.10). No CAT activity was detected in these cell extracts, in 

agreement with previous results. Neither was any CAT activity detected in cell extracts 

transfected with the other combination of UL102- and UL54-expressing vectors, pM- 

UL102 and pVP16 (lanes 9-12) and pG5CAT. Four different amounts and ratios of 

vectors were used, but even when 10pg of each plasmid was used, no CAT activity 

was detected in any of the samples.

UL102 and UL54 were expressed in two combinations as fusion proteins in Hela cells, 

but even when the amounts of DNA transfected were 10 times greater than that which 

resulted in expression of CAT using the positive control vector pM3-VP16, no CAT 

activity was detected in cells transfected with either combination of UL102- and UL54- 

expressing vectors, indicating that UL102 and UL54 do not interact in Hela cells under 

the conditions used.

5.4 Discussion
The results from initial interaction ELISAs using both UL102 and UL54 MAbs 

demonstrated that UL102 and UL54 could interact, although the specificity of the 

interaction could not be established from these experiments alone. Hence, several 

control proteins were included in the ELISA and the ability of UL102 to bind to these 

proteins was investigated. Unexpectedly, these experiments showed that UL102 was 

capable of binding in a non-specific manner to the control proteins AD and CA. It is

91



oo
'E
<D.C
Q.
E
(TJ

*0o
(TJ

o  s

ro ® 
a  
E
(TJ 
Oo ® ■=+-• .cro

^  "o(TJ a> 0
— oro

" i
I
I
I
I
I

I
I

1 1  i  

/ <
I

CM

o>

00

to

co

CM

0

T3Cro
T3
a)co_>*

TJ
0
CO
a)
£ro-C
<Di—
<d
£
co

0 
0  'ro 
^ co 
co <5a> $  
Q- <d
I S51 CL
>* £  ro £  co h- co
ro  •

=  CL ro
ro ^
g -

I fO 4=
2 S

CD

CM

<D

8
Co
t>
,<D

<  3 O C
. E

Id °CO CM
CM
id
c o

"fli O

(/) CO C
>» C —

o c
o *  a) ■ £  co a)

E
(/> ro

CM

0)

CO

CO

_ E
£  OQ•c O
CO o  
<D JZ 

TJ O

co *5 ro °8 3
o *

x: =3 
** oro-C 
.E CO (0 M-

Ii
ft ®
8 - °

,E g h  -
°  <  -D  O 0

LO

TO £  
CO 0 5

ro ro c

? E
■JZ >*
3  N
0 a
*“ K 0 <
S O
C D) 
— C 0 *-» 
f . s
c -D ro cco —

1 i_

^  0 L_ -♦-»
CD _CD
L .  ^
O 0 oco ro ■a ,±
C "Dro . 
■° o 
0 .

I iro
O .£o
g  Q

0
ro i=

ro 0

- J  in  
0 i5 > o.

tj -a ro c >- ro
ro co
o 2  ro

-C oO) .p
c c *“ 0 a> £
°  E 
E 2 
«♦= o

3  ~o CL ro

i £

E ®.2 o
ro 0
CB £
?  5 o -~
£ a?— 0

c l
d ro 
o> 0 
Ll x

■§ “■
0
XT'-  
3 TJ
if) 0
0 ro
5> 8

a  Si
£ « 2 o
x =  0 0
=  o
0 c o o
■O -o
£ g
™ aO If)

ro o

9 *  x HE

*! •O c

2  g
•O c 
0 0 
CO 0 
O  0

&&■ 
^  (1)

ro £
■O £  0 c c oTJ O sa

m
pl

e.
 

Th
e 

co
nt

en
ts

 
of 

ea
ch

 
lan

e 
are

 
as 

fo
llo

w
s;

1= 
Un

tra
ns

fe
ct

ed
 

ce
lls

, 
2= 

pM 
+ 

pV
P1

6 
+ 

pG
5C

AT
 

(1
jig

:1
pg

:1
pg

), 
3= 

pM
3-

VP
16

 
+ 

pG
5C

AT
 

(1
pg

:1
pg

), 
4= 

pM
3-

VP
16

 
+ 

pG
5C

AT
 

(2
pg

 
:2

pg
) 

5= 
pM

3-
Vp

16
 

on
ly 

(1
pg

), 
6= 

pV
P1

6-
10

2 
+ 

pM
-5

4 
+ 

pG
5C

AT
 

(1
pg

:1
pg

:1
pg

), 
7= 

pV
P1

6-
10

2 
+ 

pM
-5

4 
+ 

pG
5C

AT
 

(2
pg

:2
pg

:2
jig

), 
8= 

pV
P1

6-
10

2 
+ 

pM
-5

4 
+ 

pG
5C

AT
 

(5
pg

:5
pg

:1
pg

), 
9= 

pM
-1

02
 

+ 
pV

P1
6-

54
 

+ 
pG

5C
AT

 
(1

pg
:1

pg
:1

pg
), 

10
= 

pM
-1

02
 

+ 
pV

P1
6-

54
 

+ 
pG

5C
AT

 
(2

pg
:2

pg
:2

pg
), 

11
= 

pM
-1

02
 

+ 
pV

P1
6-

54
 

+ 
pG

5C
AT

 
(5

pg
:5

pg
:1

pg
), 

12
= 

pM
-1

02
 

+ 
pV

P1
6-

54
 

+ 
pG

5C
AT

 
(1

0p
g:

10
pg

:2
pg

).



perhaps not surprising that two purified proteins brought into contact in microtitre wells 

might interact to some degree, however the signals detected from wells containing 

UL102 and control proteins were considerably higher than background. This led me to 

investigate the effect of varying several parameters of the ELISA protocol on the 

formation of non-specific interactions between UL102 and control proteins.

The first parameter which was investigated was the effect of the buffer in which the 

proteins were diluted and added to the wells. PBS buffer and Tris buffer were 

compared, but neither significantly decreased the detection of non-specific interactions 

between UL102 and the control proteins AD and CA compared to UL102-UL54 

interaction. The effect of the composition of the buffer used to wash the wells was also 

investigated. The original Ip fe  wash buffer was compared with IP wash buffer, which 

contained deoxycholate and NP-40 detergents, to increase the stringency of the wash 

conditions. The inclusion of detergents was found to have little effect on the relative 

strengths of the signals detected as a result of non-specific interactions (UL102-AD 

and UL102-CA) compared to the signal detected from the UL102-UL54 interaction. 

When Tris diluent was used in conjunction with IP wash, the strengths of signals 

detected from the UL102-AD and UL102-CA interactions were slightly decreased but 

still significantly higher than background. Overall, the strengths of the signals resulting 

from all the interactions was decreased using this combination of diluent and wash 

buffer. Two other parameters were also investigated; the effect of the pH value of the 

protein diluent and the salt concentration of the wash buffer. The data resulting from 

these experiments is not shown, but neither was found to influence the relative 

strengths of the signals detected from the non-specific interaction as compared to the 

UL102-UL54 interaction.

An interaction ELISA was also developed in the laboratory to study the HSV-1 UL8- 

UL30 protein interaction. When control proteins were incorporated into the UL8-UL30 

ELISA, there was also a degree of non-specific binding between the UL8 or UL30 and 

the control proteins. However in this case, increasing the stringency of the ELISA 

wash conditions by introducing detergents was sufficient to decrease the non-specific 

interactions to background level, whilst detection of the UL8-UL30 interaction was 

unaffected. Similar results were seen with the HSV-1 UL8-UL9 interaction ELISA (data 

not shown, Mary Murphy, personal communication).

Although an interaction between UL102 and UL54 was consistently demonstrated 

using the interaction ELISA, the failure to establish ELISA conditions under which non­
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specific interactions between UL102-AD and UL102-CA were minimised and which 

allowed the distinction between specific and non-specific interactions, resulted in 

concluding that this assay was unsuitable for investigating the putative UL102-UL54 

interaction.

Co-immunoprecipitation experiments were also used to investigate the UL102-UL54 

interaction. This commonly used method for demonstrating protein-protein interactions 

is more stringent than the interaction ELISA method. This is because the proteins of 

interest are presented in a complex mixture of other proteins, derived from the insect 

cells in which the two proteins were expressed. When UL102-specific or UL54-specific 

MAbs were individually mixed with insect cell extracts containing both UL102 and 

UL54, none co-precipitated either UL54 or UL102 along with their cognate proteins. In 

further experiments, the stringency of the IP wash buffer used was decreased by 

omitting the detergents so that if the interaction was weak, then it would be less likely 

to be disrupted. However, even in the absence of detergents, no UL102-UL54 

complexes were precipitated using either UL102- or UL54-specific MAbs from insect 

cell extracts containing both proteins (Mary Murphy, personal communication). The 

results from the immunoprecipitation experiments provided no evidence that UL102 

and UL54 interact in insect cell extracts containing both proteins under the conditions 

used. Further work to investigate the UL102-UL54 interaction could involve performing 

similar co-immunoprecipitation experiments on HCMV-infected cell extracts. This 

would provide a more meaningful indication of whether the proteins interact in the 

context of viral infection. Yokohama etal., (1999) showed the co-immunoprecipitation 

of the three EBV helicase-primase complex subunits from cells in which lytic EBV 

replication had been induced.

The third approach adopted to investigate the UL102-UL54 interaction was a 

mammalian-2-hybrid system, this method being the closest to simulating the conditions 

that UL102 and UL54 would encounter in vivo during infection. UL102 and UL54 were 

both expressed as fusions with either the HSV VP16 AD or the GAL4 BD utilised by the 

M-2-H system. Various amounts and ratios of plasmid DNA expressing the fusion 

proteins and the CAT reporter plasmid were used, however no CAT activity was 

detected in extracts from cells transfected with UL102- and UL54-expressing plasmids, 

in either combination. Since CAT activity was detected in extracts from cells 

transfected with the positive control vector, the lack of activity could not be attributed to 

ineffective transfection or CAT assay protocols. Hence, these results indicate that 

UL102 and UL54 do not interact in Hela cells when expressed as fusion proteins with
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either the GAL4 DNA-BD or the VP16-AD under the conditions used. However, the 

possibility that any interaction between UL102 and UL54 may be disrupted due to the 

presence of the N-terminal fusion domains on each protein cannot be excluded. The 

fusion domains may interfere with folding and the native conformation of each protein 

thus inhibiting the interaction. By analogy with the known characteristics of the HSV-1 

UL8-UL30 interaction, the region of UL102 which may interact with UL54 is the C- 

terminal region. Hence, the presence of a N-terminal fusion may not have a profound 

effect on the conformation of this region of the protein and therefore, on its ability to 

interact with UL54. The region of UL30 with which UL8 interacts in HSV-1 has not 

been defined, and hence no prediction can be made with regard to possible UL102- 

interacting regions of UL54. However, as the C-terminus of UL30 is known to mediate 

its interaction with UL42 (Tenney etal., 1993; Digard etal., 1993; Stow, 1993), it is 

highly unlikely that this region would be involved in binding to UL8 also.

To investigate the putative interaction using the mammalian-2-hybrid more fully, the 

truncated UL102 proteins described in Chapter 2 could be cloned into the M-2-H 

vectors and then screened against UL54. This would investigate whether specific 

domains of UL102 can interact with UL54. Other studies in which 2-hybrid systems 

have been used to investigate interactions between herpesvirus replication proteins 

have been described. Constantin and Dodson, (1999) used the yeast-2-hybrid system 

to map regions of interaction between the UL52 and UL8 subunits of the HSV helicase- 

primase complex. Interestingly, they found that the interaction between a N-terminally 

truncated form of the UL52 protein and UL8 gave a stronger signal using this system 

then the interaction between full-length UL52 and UL8. Another consideration is the 

cell type used to perform the M-2-H assays. Hela cells were chosen in this study for 

their ease of growth and transfection, however it is noted that they are a highly 

transformed cell line. Hence it would also be of interest to perform the M-2-H assays in 

a cell line permissive for HCMV infection, if possible.

Using three distinct methods of investigation, I found no evidence that UL102 and UL54 

specifically interact in vitro or in vivo. The methods used are not exhaustive and hence 

it is possible that the interaction occurs but is below the threshold of detection of the 

three methods used. The interaction may be weak or transient, making detection 

difficult outwith the context of viral replication in HCMV-permissive cells. Another 

consideration is that an interaction between UL102 and UL54 may be dependent on 

the presence of other HCMV replication proteins. Both UL102 and UL54 exist as part 

of viral enzyme complexes in infected cells. UL102 closely associates with UL105 and
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UL70 to form the helicase-primase complex and UL54 forms a polymerase holoenzyme 

with UL44. The behaviour of either protein may altered when it is complexed with the 

other components of each enzyme complex. Hence, it would be worthwhile 

investigating the interaction using the whole viral enzyme complexes. Work is currently 

underway in the laboratory to express the HCMV helicase-primase complex from 

recombinant baculoviruses in insect cells. Once this is achieved, then the purified 

complex could be used in interaction ELISA experiments to investigate the putative 

UL54 interaction or extracts containing the whole complex could be used in immune- 

precipitation experiments.

The lack of evidence to support an interaction between UL102 and UL54 does raise 

the possibility that the proteins do not interact. This would distinguish UL102 and UL54 

from their counterparts in both HSV (UL8 and UL30) and EBV (BBLF2/3 and BALF5) 

which have been shown to specifically interact with each other (Marsden et al., 1997; 

Fujii et al., 2000). The significance of these interactions in the process of DNA 

replication in vivo has not been demonstrated. However, the interaction between the 

helicase-primase associated protein and the polymerase catalytic sub-unit could 

facilitate recruitment of the polymerase complex to the site of newly unwound and 

primed DNA at the replication fork. Neither the HSV UL8-UL30 or the EBV BBLF2/3- 

BALF5 interaction have been shown to be essential for viral DNA replication. However, 

Barnard et al., (1997) have shown that a truncated UL8 protein, lacking the C-terminal 

33 residues is unable to support viral DNA synthesis in a transient replication assay. 

Considering that this region is required for the interaction with UL30 (Marsden et al., 

1997), this suggests that the interaction is necessary for viral DNA synthesis. The 

model for recruitment of POL during herpesvirus DNA replication (section 1.4.6) would 

not apply to HCMV if UL102 and UL54 do not specifically interact. This would point to 

an alternative mode of recruitment for POL and also indicate that UL102 does not fulfill 

one of the functions predicted by analogy with HSV UL8.

In HSV, the UL8-UL30 interaction is suggested as an explanation for the stimulatory 

effect of UL8 upon the extension of primers by the POL holoenzyme during lagging 

strand synthesis (Sherman et al., 1992). In this model the UL8-UL30 interaction serves 

to increase the efficiency with which POL locates primers on the DNA template.

Hence, it would be useful to determine whether UL102 has a similar stimulatory effect 

on the extension of RNA primers by the HCMV polymerase holoenzyme in simulated 

lagging strand synthesis as this may provide alternative evidence as to whether UL102
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and UL54 interact with each other and address whether UL102 fulfills one of the roles 

predicted by analogy with UL8.
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Chapter 6

Investigation of the DNA-binding 
properties of UL102



6.1 Introduction

A specific enzymatic function for UL102 has not been established, although its HSV 

counterpart UL8 appears to augment the enzymatic activities of, and interact with, 

several other HSV replication proteins. UL102 may have a similar role in HCMV DNA 

replication and be involved in recruiting and mediating interactions between the HCMV 

replication fork proteins. The mechanism of recognition of the HCMV origin of 

replication is not yet understood, but it is likely that the helicase-primase complex is 

one of the first viral protein complexes to arrive, being required to unwind the duplex 

DNA. Hence it is possible that UL102 interacts with DNA either at this stage or at later 

stages of DNA replication. Establishing whether UL102 is capable of interacting with 

DNA would therefore be of use in determining its function at the replication fork. The 

homologous HSV replication protein, UL8, does not bind DNA under conditions which 

allowed binding between other HSV replication proteins and DNA oligonucleotides 

(Parry et al., 1993). The aim of the research presented in this chapter was to 

determine whether UL102 can bind DNA and hence establish whether it behaves like 

its HSV counterpart, UL8, in this respect. Similar DNA-protein binding assays as those 

carried out by Parry etal., (1993) were used to investigate the DNA-binding ability of 

UL102.

At the replication fork, various forms of DNA are present: double-stranded DNA (ds 

DNA), single-stranded DNA (ss DNA), and also DNA-RNA hybrids, formed as a result 

of RNA priming of unwound ss DNA to enable elongation by the viral DNA polymerase, 

UL102 potentially has the opportunity to interact with any of these forms of DNA at the 

replication fork. It was therefore appropriate to test the ability of UL102 to bind 

synthetic oligonucleotide templates representing either ss DNA, ds DNA or DNA-RNA 

hybrids. The template sequences used in this study were derived from bacteriophage 

<|)X174, which was chosen as it has been previously utilised in studies of DNA 

replication, including studies on the HSV helicase-primase proteins (Tenney etal., 

1994). The sequence of the oligonucleotides used in the binding assays corresponded 

to the preferred priming site for the HSV helicase-primase complex on <|)X174 DNA 

(Tenney et al., 1995). A 50-mer oligonucleotide was used as the ss DNA template and 

another complementary 50-mer oligonucleotide was annealed to this to make a ds 

DNA template. In addition, two 10-mer RNA oligonucleotides complementary to two 

non-contiguous regions of the 50-mer DNA molecule were synthesised. These RNA 

oligonucleotides were annealed to the 50-mer DNA oligonucleotide either individually 

or together to create hybrid DNA-RNA templates. The sequences of the templates 

used to test the DNA-binding ability of UL102 are shown in Figure 6.1.
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The ability of UL102 to bind the oligonucleotide templates was investigated by mixing 

purified UL102 protein with each of the templates in binding buffer either in the 

presence or absence of 50 mM NaCI. Salt is known to affect the strength of binding 

between a protein and DNA. Increasing salt concentrations will distinguish between 

weak and strong protein-DNA interaction, with only tightly binding proteins surviving 

high salt conditions. The binding reaction were carried out using buffer containing 

either no NaCI or 50 mM NaCI to provide information as to the effect of salt on the 

putative protein-DNA interactions.

A DNA band-shift assay was used to determined whether binding had occurred. 

Various control reactions were also carried out to ensure the conditions allowed other 

well characterised DNA-protein interactions to occur. Purified HSV UL29 protein was 

used as a ss DNA-binding protein control, as it is known to preferentially bind ss DNA 

in a non-sequence specific manner (Ruyechan & Weir, 1984). Similarly, HSV UL42 

protein was chosen as a ds DNA-binding protein control for its ability to preferentially 

bind ds DNA (Bayliss et al., 1975; Gallo et al., 1988). Lastly, HSV UL8 was included in 

the binding assays to act as a negative DNA oligonucleotide-binding control, and to 

confirm it behaved as previously described (Parry et al., 1993).

6.2 Chapter specific Methods

6.2.1 Preparation of purified UL102

UL102 was expressed and purified from Sf insect cells as described in section 2.9.1. 

The purity of the protein was determined by SDS-PAGE followed by Coomassie blue 

staining. Protein concentration was quantitated using a Bio-Rad protein assay, 

according to the manufacturers instructions.

6.2.2 5 ' radiolabelling of oligonucleotides

50 pmoles of single-stranded DNA oligonucleotide <j>X174A and 50 pmoles each of 

single-stranded RNA oligonucleotides 1 and 2 (Figure 6.1) were 5’ labelled using 20 

units of bacteriophage T4 polynucleotide kinase (PNK) and 75pCi of [y-32P]-ATP in 1x 

PNK buffer (NEB) for 30 minutes at 37°C. The reaction was stopped by the addition of 

2pl 0 5M EDTA and the DNA was purified by phenol/chloroform extraction followed by 

3 rounds of ethanol precipitation. DNA/RNA pellets were finally resuspended in 50pil of 

TE buffer (pH 7.5) and stored at 4°C.
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6.2.3 Annealing reactions

Equivalent molarities (12 pmoles) of each of the following sets of oligonucleotides were 

mixed and annealed by heating to 95°C for 5 minutes then allowing to cool gradually to 

room temperature. Annealed oligonucleotides were then stored at 4°C.

1) <|)X174A and <|)X174B (unlabelled).

2) <|)X174A and RNA 1.

3) <j)X174A and RNA 1/RNA 2.

6.2.4 DNA-protein binding assay

Oligonucleotide templates (5ng/reaction) were mixed with either 50 or 500ng of purified 

protein in a total volume of 20pl of binding buffer (with or without 50 mM NaCI) and 

incubated for 30 minutes at 37°C. Reactions were stopped by adding 5pl of 5x DNA 

loading buffer and analysed by non-denaturing electrophoresis in a 6% polyacrylamide 

gel made with 1x TAE for 1.5 hours at 100mA. Gels were dried at 80°C for 2 hours

then exposed to X-OMAT UV film overnight at -70°C and the resulting autoradiograph

was developed.

6.3 Results

6.3.1 Ability o f UL102 to bind oligonucleotide templates in salt-containing buffer

Under binding conditions in which 50 mM NaCI was present, no shift in the mobility of 

the oligonucleotides incubated with UL102 was observed, hence it was concluded that 

UL102 did not bind to any of the templates (Figure 6.2, lanes 1-8). However, under the 

same conditions, as expected, binding did occur between the HSV UL29 protein and 

the ssDNA template (lane 10) and also between the HSV UL42 protein and the dsDNA 

template, as expected (lane 12). The binding between UL29 and UL42 and the ss and 

ds DNA templates respectively appeared to be protein concentration-dependent, as 

incubation with 50ng of UL29 or UL42 failed to cause a shift in mobility of the 

templates, whereas incubation with 500ng resulted in a clear shift. As expected, no 

binding between the HSV UL8 protein and either ss DNA or ds DNA templates was 

observed (lanes 13-16).

6.3.2 Ability o f UL102 to bind oligonucleotide templates in salt-free buffer

In the absence of salt from the binding buffer, incubation with UL102 still did not cause 

any shift in mobility of the oligonucleotide templates (Figure 6.3, lanes 1-8). Binding 

between the control proteins UL29 and UL42 and the ssDNA and dsDNA templates, 

respectively, was still observed (lanes 10 and 12). Similarily, the absence of salt made
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M------------UL102----------- ► UL29 UL42 <— UL8— ► Protein

1 2 3 4 1  2 1 2  Template
i ii ii ii i i  ii i i  i i  1
50 500 50 500 50 500 50 500 50 500 50 500 50 500 50 500 Amt protein (ng)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 6.2 Ability of UL102 to bind DNA in buffer containing salt

Proteins were mixed with [y32P]-ATP 5’-labelled oligonucleotide templates in 
binding buffer containing 50 mM NaCI and incubated for 30 minutes at 37°C. 
Reactions were stopped by the addition of DNA-loading buffer and then 
electrophoresed in a 6% non-denaturing polyacrylamide gel (containing TAE). 
The gel was dried and then exposed to X-OMAT UV film overnight at -70°C. The 
resulting autoradiograph was developed using an X-omat developer. Templates 
used are as follows; 1= ss DNA, 2= ds DNA, 3= DNA/RNA Hybrid 1 and 4= 
DNA/RNA Hybrid 2.



 UL102---------- ► UL29 UL42 <— UL8— ► Protein

1 2  3 4  1 2 1 2  Template
I------------- II------------- II------------- II------------- II------------- II------------- II------------- II------------- 1

50 500 50 500 50 500 50 500 50 500 50 500 50 500 50 500 Amt protein(ng)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 6.3 Ability of UL102 to bind DNA in buffer lacking salt

Proteins were mixed with [y32P]-ATP 5’-labelled oligonucleotide templates in 
binding buffer without NaCI and incubated for 30 minutes at 37°C. Reactions 
were stopped by the addition of DNA-loading buffer and then electrophoresed 
in a 6% non-denaturing polyacrylamide gel (containing TAE). The gel was 
dried and then exposed to X-OMAT UV film overnight at -70°C. The resulting 
autoradiograph was developed using an X-omat developer. Templates used 
are as follows; 1= ss DNA, 2= ds DNA, 3= DNA/RNA Hybrid 1 and 
4= DNA/RNA hybrid 2.



no difference to the UL8 reactions, as no binding to either ss or dsDNA occurred under 

these conditions either (lanes 13-16).

6.4 Discussion

Under the assay conditions used, no binding between UL102 and four different DNA 

oligonucleotides was observed. However, binding between the HSV replication protein 

UL29 and ss DNA oligonucleotides and between UL42 and ds DNA oligonucleotides, 

was observed in the same assay. Considering that the assay conditions were suitable 

to allow DNA-binding by other herpesvirus replication proteins, these findings suggest 

that UL102 does not bind to either ss or ds DNA, or DNA/RNA hybrids. The data also 

confirms the findings of Parry etal., (1993), who found that UL8 did not bind to any 

form of DNA in a similar band shift assay.

It cannot be excluded, however, that the sequence of the nucleotide templates chosen 

for this assay may influence the DNA-binding ability of UL102. The sequences chosen 

were derived from preferred priming sites by the HSV helicase-primase complex on 

bacteriophage <j>X174 DNA, and were intended as non-sequence specific templates to 

investigate DNA binding by UL102. It is possible that UL102 is capable of binding 

DNA, but in a sequence specific manner. In order to exclude this possibility, assays 

utilising templates corresponding to sequences of the HCMV genome, perhaps 

including the replication origin, could be performed. It seems unlikely, though, that the 

nucleotide sequence would have a profound difference on the ability of UL102 to bind 

to DNA. Most sequence-specific DNA-binding proteins bind non-specifically initially, 

then track along the DNA until they reach their specific recognition sequence (Kornberg 

& Baker, 1992). Some degree of non-specific DNA binding is therefore exhibited by 

sequence-specific DNA-binding proteins. Such binding was not demonstrated for 

UL102 in this set of experiments.

An important point to note, also, is that UL102 was tested in a purified form for its ability 

to bind DNA. In the context of viral DNA replication, UL102 exists as part of the closely 

associated helicase-primase complex, and hence its behaviour may be different when 

expressed alone. It is possible that the DNA-binding ability of UL102 may change 

when it is complexed with UL70 and UL105. An investigation of whether UL102 can 

bind DNA when associated with the other helicase-primase subunits would be 

complicated owing to the intrinsic DNA-binding ability of UL70 and UL105. However, a 

UV cross-linking experiment may indicate whether UL102, in addition to UL70 and 

UL105, binds to DNA. Radiolabelled DNA would be allowed to interact with the purified
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helicase-primase complex and then irradiated with UV light to cross-link the protein to 

the DNA. The complex would then be digested with proteases, resolved by non­

denaturing electrophoresis and transferred to nitrocellulose. The identity of the protein 

fragments could be determined by probing with antibodies reactive to each subunit of 

the complex in turn. Following immunoblotting to identify the protein fragments, the 

nitrocellulose membrane could be exposed to film and the resulting autoradiograph 

compared with the Western blot data. Cross-referencing of the protein fragments of 

known identity and the radioactive bands would indicate which protein had interacted 

with the DNA.

Although the possibility that UL102 binds DNA cannot be excluded, the results of the 

DNA band-shift assay presented here would suggest that this is not the case. This has 

implications when considering possible functions of UL102 at the replication fork. A 

DNA replication protein which does not bind DNA seems unusual, however, the finding 

that HSV UL8 does not appear to bind nucleic acids either, adds credence to this 

proposal. In other eukaryotic systems, proteins involved in DNA replication which do 

not bind DNA have been reported, such as proliferating cell nuclear antigen (PCNA) 

which is a DNA polymerase auxiliary protein (Tsurimoto and Stillman, 1991).

The observation that UL102 does not bind DNA excludes a number of putative 

functions at the replication fork, for which binding DNA directly is necessary. Such 

functions include locating the helicase-primase complex to the origin of replication and 

stabilising the association between newly synthesised primers and ss DNA templates. 

This is a possible role which has been inferred by analogy to HSV UL8, which is known 

to increase the efficiency of extension of primers by the HSV DNA polymerase 

(Sherman eta!., 1992). UL102 could still have a role in locating the helicase-primase 

complex to the origin by association with another protein which binds the origin directly. 

This situation would be analogous to that which is believed to occur during assembly of 

the HSV DNA replication complex, in which UL8 interacts with the viral origin binding 

protein UL9.
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Chapter 7

Intracellular localisations of the 
components of the HCMV helicase- 
primase complex in transfected and 
HCMV-infected cells



7.1 Introduction

Localisation of HCMV helicase-primase proteins

In HSV-1, the UL8 protein has been shown to be essential for efficient nuclear 

localisation of the heterotrimeric helicase-primase complex. In the absence of UL8, the 

UL5 and UL52 proteins remain predominantly cytoplasmic when expressed individually 

or together in Vero and BHK cells (Barnard et al, 1997). The aim in this part of the 

study was to establish whether UL102 is required for nuclear localisation of the other 

components of the HCMV helicase-primase complex, like its HSV-1 counterpart, UL8. 

The intracellular localisations of the UL102, UL105 and UL70 proteins when expressed 

individually or in various combinations in mammalian cells was investigated.

Vector pCMVIO, described in section 4.1, was used to express the UL102 protein and
i

UL102 MAbs were then used to detect the intracellular location of the protein by ! , r ; 

immunofluorescence microscopy. Owing to the unavailability of UL105- and UL70- 

specific antibodies, these proteins were expressed as fusion proteins with either the 

FLAG (DYKDDDDK) or c-myc (EQKLISEEDL) epitope tags using Stratagene pCMV- 

Tag mammalian expression vectors. The intracellular locations of UL105 and UL70 

were then detected using an anti-FLAG MAb. The pCMV-tag series of vectors allows 

the expression of the protein of interest as an N-terminal or C-terminal fusion with 

either the FLAG or c-myc epitope tags under the control of the CMV immediate early 

promoter (Figure 7.1). Both UL105 and UL70 were cloned into pCMV-Tag 2B. UL70 

was also cloned into pCMV-Tag 3B for expression as a c-myc fusion protein so that it 

could be distinguished from FLAG-tagged UL105 when both proteins were expressed 

together.

Initially, the cellular localisations of the UL102, UL105 and UL70 proteins when 

expressed individually in Vero and/or BHK cells was determined. Plasmids expressing 

UL102 and either UL105 or UL70 were then co-transfected to determine whether co­

expression with UL102 influenced the localisation of UL105 and UL70. Finally, the 

localisation of the UL102 and UL105 proteins when co-transfected with a UL70- 

expressmg plasmid was examined.

Localisation of truncated UL102 proteins

Preliminary UL102 localisation studies indicated that it was capable of localising to the 

nucleus in the absence of any other HCMV replication proteins. Analysis of the UL102 

amino acid sequence revealed several putative nuclear localisation signals (NLS), 

which typically comprise a short peptide sequence of basic amino acids (Garcia-Bustos
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Figure 7.1 pCMV-Tag Vector Map
A schematic representation of the pCMV-Tag series of vectors is shown, 
with the positions and orientations of the CMV major immediate-early 
promoter and the multiple cloning site indicated. Further details of the 
sequence of the MCS in both pCMV-Tag2/Tag3 vectors are given below. 
The locations of the fusion epitope tags and the restriction sites are shown. 
The map was reproduced from the Stratagene catalogue.



et al., 1991), although less typical sequences can act as NLS (see discussion). Two 

UL102 sequences that resemble typical NLS were identified in the N-terminal region of 

the protein and a further two sequences which are less typical but could still potentially 

function as NLS were identified in the C-terminal region. The putative NLS and the 

residues of UL102 to which they correspond are shown below;

UL102 Residue Numbers Sequence

189-194 HKKLRR

481-486 RFRSRR

692-697 RFVARR

847-853 RFFR

UL102 truncated genes spanning nucleotides 1-1635 and 1630-2622, which express 

the N-terminal 545 and the C-terminal 330 amino acids respectively, were cloned into 

mammalian expression vectors pCMVIO and pCMV-Tag2B, respectively (sections

4.3.3.2 and 4.3.3.3). The pCMVIO vector could not be used to express the 993 bp 

fragment as it lacks a suitable ATG start codon required to express the 5’ deleted 

fragment. The localisation of the C-terminally and N-terminally truncated UL102 

proteins was then examined by immunofluorescence microscopy to investigate which 

region of UL102 confers nuclear localisation.

Detection of UL102 in HCMV-infected HFFF cells

In addition to immune-fluorescence studies on UL102 in transfected cells, I carried out 

experiments to detect UL102 expression during the course of HCMV infection in HFFF 

cells. This would establish the ability of the UL102 MAbs raised against protein 

produced in insect cells to react with UL102 made in mammalian cells and the ability to 

detect the small amounts of UL102 which are expressed during HCMV infection. The 

experiments would also establish the kinetics of UL102 expression during the course of 

natural infection. HFFF cells were infected with HCMV strain AD169 and then 

harvested at various time points between 16 and 138 hours post-infection. UL102 was 

then detected by double immunolabelling with UL102-specific MAb number 658 and a- 

mouse-FITC conjugated antibody followed by fluorescence microscopy. UL102- 

specific MAb 658 was chosen because it was one of the strongest reacting MAbs 

against UL102 expressed in insect cells in immunofluorescence screening experiments

(Section 3.3.2.2).
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7.2 Chapter specific Methods
7.2.1 Cloning of UL105 and UL70 proteins into expression vectors

7.2.1.1 Cloning of the HCMV UL105 gene into the pCMV-Tag 2A vector

The source of the UL105 gene was plasmid pacCL29.105 which consisted of the 

pacCL29 baculovirus transfer vector containing the UL105 gene in the MCS. This 

clone of UL105 had been amplified by PCR with the introduction of Bam HI and Eco Rl 

sites at the 5’ and 3’ ends of the gene, respectively. The UL105 gene was excised 

from pacCL29.105 in two stages. In the first, the 3’ terminal 720 bp of the UL105 gene 

was excised using the Bam HI site at nucleotide position 2148 and the Eco Rl site 

downstream of the stop codon which had been introduced by PCR. This fragment was 

cloned into vector pCMV-Tag 2A as a Bam Hl-Eco Rl insert using methods described 

in sections 2.5.1.5 and 2.5.1.7. In the second stage of cloning the first 2147 

nucleotides of UL105 were excised from pacCL29.105 as a Bam HI fragment using the 

Bam HI site upstream of the start codon and the internal Bam HI site at nucleotide 

position 2148. pCMV-Tag 2A vector containing the initial UL105 Bam Hl-Eco Rl insert 

was digested with Bam HI and the 2148 bp fragment was ligated into the vector as a 

Bam HI insert.

To verify the presence of the entire UL105 gene insert, recombinant plasmid DNA was 

digested with Bam HI and Eco Rl, which yields a vector DNA fragment of 4.3 Kb and 

two insert DNA fragments of sizes 2148 bp and 720 bp. The orientation of the 2148 bp 

UL105 Bam HI insert was determined by digesting the recombinant plasmid DNA with 

Xba I and Xho I enzymes. Xba I cuts the UL105 gene internally at nucleotide position 

408 whilst Xho I cuts twice at nucleotide positions 2416 and 2668. If the Bam HI insert 

is present in the correct orientation in pCMV-Tag 2A, then Xba \-Xho I digestion yields 

DNA fragments of sizes approximately 4.6 kbp, 2.1Kbp, 0.25 kbp and 0.17 Kbp. 

Restriction digestion products were analysed on a 1% agarose gel.

7.2.1.2 Cloning of the HCMV UL70 gene into pCMV-Tag 2A/3A vectors

The source of the UL70 gene was plasmid pacCL29.70 which consisted of the 

pacCL29 baculovirus transfer vector with the UL70 gene (amplified by PCR with Bam 

HI and Eco RV restriction sites inserted at the 5’ and 3’ termini, respectively) cloned 

into the MCS. UL70 was excised from plasmid pacCL29.70 by digesting with Bam HI 

and Eco RV enzymes and then ligated into the pCMV-Tag 2A and pCMV-Tag 3A 

vectors as a Bam Hl-Eco RV insert using methods described in sections 2.5.1.5 and 

2.5.1.7. The presence of the UL70 gene insert in vectors pCMV-Tag 2A/3A was 

determined by digesting recombinant plasmid DNA isolated with Bam HI and Eco RV.
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This should yield vector and insert DNA fragments of 4.3 and 2.8 Kbp. respectively. In 

addition, recombinant clone number 3 from the ligation of UL70 into pCMV-Tag 2A 

vector was triply digested with Bam HI, Eco Rl and Eco RV enzymes, which yield DNA 

fragments of 4.3 Kbp, 2.5 Kbp and 0.35 Kbp. Restriction digestion products were 

analysed on a 1% agarose gel.

7.2.2 Transfection and antibody staining protocols

7.2.2.1 Transfection of BHK and Vero cells using cationic liposomes

13 mm circular glass coverslips were placed into wells in 24-well plastic plates. The 

wells were then seeded with either 0.5 x 105 Vero cells or BHK cells in 1ml of the 

appropriate medium. The following day, provided cells were approximately 70% 

confluent, they were transfected using cationic liposomes prepared as described in 

section 2.8.1. Plasmid DNA was mixed with liposomes and serum-free Optimem 

medium (Gibco-BRL) to prepare transfection mixtures of total volume 500 pl/well which 

were then added to each well as described in section 2.8.2. 24 hours post­

transfection, the cell medium was removed, cells were washed once in PBS and then 

fixed by adding 500 pi of fix solution and incubating at room temperature for 15 

minutes. After removing the fix solution, cells were washed twice using PBS.

7.2.2.2 Antibody staining of transfected BHK and Vero cells

Cells were incubated with 500 pi of permeabilisation solution for 10 minutes at room 

temperature then washed twice using PBS/1 % FCS. Coverslips were then placed cell- 

side down onto 20 pi of primary antibody in a linbro dish lid and incubated for 1 hour at 

room temperature. Coverslips were washed three times rapidly in situ using PBS/1 % 

FCS and then turned over and subjected to a further three 5 minute washes, with 

gentle agitation. Fluorescent secondary antibody, either a-mouse-FITC conjugate 

(1:100), or a-rabbit-Cy5 conjugate (1:200) was diluted in PBS/1 % FCS placed onto a 

fresh linbro lid (20 pl/coverslip). Coverslips were then placed cell side down onto the 

secondary antibody and incubated for 1 hour at room temperature in the dark. 

Coverslips were then washed again as described above. After the final wash, the 

coverslips were dipped into de-ionised water and air-dried in the dark. Citifluor 

mounting agent (UKC) at room temperature was used to mount the cells on 

microscope slides. Cells were then viewed under x 400 magnification lens using a 

Zeiss LSM 510 confocal microscope. Cells were scanned with lasers emitting light of 

wavelengths 488 or 633 nm, to detect either FITC or Cy5-conjugated secondary 

antibodies, as appropriate.
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7.2.3 Detection of UL102 in HCMV-infected cells

7.2.3.1 Infection o f HFFF cells with HCMV strain AD169

Linbro wells containing 13 mm glass coverslips were seeded with 5 x 104 HFFF cells 

in 1 ml medium. The following day, the medium was removed and cells were infected 

with HCMV strain AD169 at a MOI of 10 diluted in a total volume of 200 pi HFFF 

medium. Virus was adsorbed for 1 hour at 37°C then 1ml of fresh medium was added. 

An equal number of wells were treated with HFFF medium only to act as mock-infected 

controls. Cells were incubated at 37°C. At the following time points post-infection; 15, 

23, 40, 63, 70, 88, 114 and 138 hours, coverslips of HCMV- or mock-infected cells 

were removed and fixed as described in section 7.2.3.2.

7.2.3.2 Antibody staining of HCMV- or mock-infected HFFF cells

Cells were permeabilised and stained with UL102-specific MAb 658 and a-mouse-FITC 

conjugated antibody as described in section 7.2.2.2 and examined using a Nikon 

Microphot SA microscope and a FITC filter.

7.3 Results

7.3.1 Cloning of UL105 and UL70 proteins into pCMV-Tag2A/3A vectors.

7.3.3.1 Cloning of the UL105 gene into vector pCMV-Tag2A

Recombinant plasmid DNA was subjected to restriction enzyme analysis as described 

in section 7.2.1.1. Figure 7.2A shows that all clones isolated (1-12) contain bands of 

the correct sizes (Bam HIlEco Rl digest). The orientation of the Bam HI UL105 insert 

was determined by additionally digesting the clones using enzymes Xba I and Xho I, 

which generates DNA fragments of 4.6 kbp, 2.1 kbp, 0.25 kbp and 0.17 kbp if the insert 

is in the correct orientation. The products of the digestion are shown in Figure 7.2B. 

Clone numbers 1, 3, 5, 7, 8, 9, 11 and 12 produce fragments of the correct sizes.

7.3.1.2 Cloning of the UL70 gene into vectors pCMV-Tag2A/3A.

Recombinant DNA isolated was subjected to restriction enzyme analysis as described 

in section 7.2.1.2. Figure 7.3A shows that all 12 clones produce DNA fragments of the 

correct sizes. Clone number 3 was additionally digested with Bam HI, Eco Rl and Eco 

RV enzymes, to further verify the presence of the UL70 insert. Figure 7.3A shows this 

clone generates DNA fragment of the correct sizes: 4.3 kbp, 2.5 kbp and 0.35 kbp, 

which are produced if the UL70 insert is present in pCMV-Tag2A. Figure 7.3B show 

the products of the digestion of the pCMV-Tag3A recombinant clones. Clone numbers 

2-12 produce vector and insert DNA bands of the correct sizes.
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Figure 7.2 Cloning of the UL105 gene into vector pCMV-Tag2A
The following DNA products were electrophoresed on 1% TAE agarose 
gels containing EtBr;
A: Products following Bam Hl/Eco Rl digestion of recombinant plasmid 
DNA isoiated following cloning of UL105 into vector pCM\/-7ag2A. 5pl 
of mini-prep DNA was digested in a total volume of 1 OjllI, then 2.5 pi of 
DNA-loading buffer was added prior to electrophoresis.
B: Products following Xba l/Xho I digestion of recombinant plasmid DNA 
isolated following cloning of UL105 into vector pCMV-Tag2A. 5pl of 
mini-prep DNA was digested in a total volume of 10pl, then 2.5 pi of 
DNA-loading buffer was added prior to electrophoresis. Lanes marked 
M contain DNA molecular size markers.
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Figure 7.3 Cioning of the UL70 gene into vectors pCMV-Tag2A/3A
The following DNA products were electrophoresed on 1% TAE agarose 
gels containing EtBr;
A: Products following Bam Hl/Eco RV or Bam Hl/Eco Rl/ Eco RV
digestion of recombinant plasmid DNA isolated following cloning of UL70 
into vector pCMV-Tag2A, as indicated. 5pl of mini-prep DNA was digested 
in a total volume of 10pl, then 2.5 |J of DNA-loading buffer was added prior 
to electrophoresis.
B: Products following Bam Hl/Eco RV digestion of recombinant plasmid
DNA isolated following cloning of UL70 into vector pCMV-Tag3A. 5pl of 
mini-prep DNA was digested in a total volume of 10pl, then 2.5 fal of DNA- 
loading buffer was added prior to electrophoresis. Lanes marked M 
contain DNA molecular size markers.



7.3.2 Intracellular localisation of UL102 expressed alone in mammalian cells

Recombinant mammalian expression vector pCMV10-UL102 was transfected into both 

BHK and Vero cells in order to perform intracellular localisation studies on transientally- 

expressed UL102. Figure 7.4 shows typical immune-fluorescence images of BHK cells 

expressing UL102 and stained using MAb 658 (panels A, B and C). UL102 appears to 

be present in all parts of the cell, except the nucleoli, but the nucleus is particularly 

densely stained. In order to establish whether the distribution of UL102 was truly 

nuclear or just perinuclear, a series of scans at different depths throughout the section 

of the cell was taken. This process is known as a Z-stack. Hence, one of the mid-point 

scans will show a horizontal section right through the nucleus. If UL102 was 

perinuclear in localisation, then no fluorescence would be detected in the nucleus at 

this point. The Z-stack clearly shows nuclear fluorescence in all sections through the 

cell, confirming that UL102 has a true nuclear localisation (panel D).

A similar staining pattern is observed in Vero cells (Figure 7.5, panels A, B and C). 

Fluorescence, indicating the localisation of UL102, can be seen in both the cytoplasm 

and nucleus, but the nuclear staining is much more intense. Again, to confirm that the 

UL102 distribution was throughout the nucleus and not just perinuclear, a Z-stack scan 

was performed. Nuclear fluorescence was observed in all sections throughout the cell, 

indicating a true nuclear localisation of UL102 in Vero cells also (panel D). The results 

presented are representative of experiments which were performed at least three 

times.

7.3.2 Localisation of truncated UL102 proteins

BHK cells were transfected with plasmids expressing the truncated UL102 proteins 

545N or 330C and then stained using the N-terminally reactive UL102 MAb 707 or C- 

terminally reactive UL102 MAb 778, respectively. Images of BHK cells expressing the 

545N or 330C UL102 proteins are shown in Figure 7.6. The 545N protein clearly 

localises uniformly to the cytoplasm (panels A, B and C). In contrast, the 330C 

truncated UL102 protein localises to the nucleus of BHK cells (panels D, E and F), 

although fluorescence is also observed less densely in the cytoplasm also. These 

results are unexpected as the sequences which most closely resembled established 

NLS were all located in the N-terminal half of the UL102. The results presented are 

representative of experiments which were performed at least three times.
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Figure 7.4 Localisation of UL102 in transfected BHK ceils
BHK cells were transfected with plasmid pCMV10-102, which expresses 
UL102 protein. Twenty-four hours post-transfection, the cells were fixed and 
permeabilised before staining using UL102-specific MAb 546. After washing, 
the cells were further incubated with a-mouse-F!TC conjugated secondary 
antibody. The cells were mounted in citifluor on microscope slides and then 
visualised under x 400 magnification using a Zeiss LSM 510 confocal 
microscope and scanned using a 488 nm wavelength laser. Three different 
groups of cells expressing UL102 are shown (panels A, B and C). Panel D 
(1-9) shows a Z-stack scan through a UL102-expressing cell.
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Figure 7.5 Localisation of UL102 in transfected Vero cells
Vero cells were transfected with plasmid pCMV10-102, which expresses 
UL102 protein. Twenty-four hours post-transfection, the cells were fixed and 
permeabilised before staining using UL102-specific MAb 546. After 
washing, the celis were further incubated with a-mouse-FITC conjugated 
secondary antibody. The cells were mounted in citifluor on microscope 
slides and then visualised under x 400 magnification using a Zeiss confocal 
microscope and scanned using a 488nm wavelength laser. Three different 
groups of cells are shown (panels A, B and C ). Panel D (1-9) shows a Z- 
stack scan of the same group of cells as shown in panel C.



UL102 545N protein UL102 330C protein

Figure 7.6 Intracellular localisation of UL102 truncated proteins 545N and 
330C
BHK cells were transfected with plasmids expressing either UL102 545N or 
UL102 330C protein. Cells were fixed and permeabilised 24 hours following 
transfection. Cells transfected with the 545N-expressing plasmid were 
incubated with UL 102-specific MAb 707 whilst those transfected with the 330C- 
expressing plasmid were incubated with UL 102-specific MAb 778. After 
washing, cells were further incubated with a-mouse-FITC conjugated antibody 
then mounted in citifluor solution. Cells were viewed under x 400 magnification 
on a Zeiss confocal microscope and scanned using a laser at 488 nm 
wavelength. Panels A, B and C show BHK cells expressing the UL102 545N 
protein. Panels D, E and F show BHK cells expressing the UL102 330C protein.



7.3.3 Localisation of HCMV helicase-primase components

7.3.3.1 Localisation of UL105 and UL70 expressed individually in BHK cells

BHK cells were transfected with individual plasmids pCMV-Tag/UL105 or pCMV- 

Tag/UL70 expressing UL105-FLAG and UL70-FLAG fusion proteins, respectively.

After staining with FLAG-specific MAbs and FITC-conjugated secondary antibody, cells 

were visualised using a laser scanning microscope. Typical images of BHK cells 

expressing UL70 are shown in Figure 7.7 (panels A, B and C). UL70 localises 

exclusively to the cytoplasm in these cells. UL105 also displays a cytoplasmic 

localisation when expressed on its own, similar to that of UL70 (Figure 7.7, panels D, E 

and F). The results presented are representative of experiments which were performed 

at least three times.

7.3.3.2 Localisation of UL105 and UL70 when co-expressed with UL102

BHK cells were then doubly transfected with plasmids expressing either UL105 and 

UL102 or UL70 and UL102, to ascertain whether co-expression of UL102 influences 

the cellular localisation of either UL105 or UL70. Images of two different cells, A and 

B, co-expressing UL105 and UL102 are shown in Figure 7.8. There are three images 

of each cell: 1) cell stained for UL105 (green), 2) cell stained for UL102 (red) and 3) 

merged image of 1 and 2. In both the cells shown, UL105 displays a cytoplasmic 

localisation, whereas UL102 is predominantly nuclear and no co-localisation of the two 

proteins is seen. When co-expressed, the localisations of UL105 and UL102 do not 

vary from their localisations when expressed individually, indicating that UL102 does 

not interact with UL105 to alter its intracellular localisation in the absence of any other 

HCMV replication proteins.

Like UL105, the intracellular localisation of UL70 does not alter when it is co-expressed 

with UL102 in BHK cells (Figure 7.9). Two images of BHK cells co-expressing UL70 

and UL102 are shown (A and B). In both, UL70 (green) is localised in the cytoplasm 

and UL102 (red) displays a nuclear localisation. Hence, co-expression of UL70 and 

UL102 does not result in a change in localisation of either protein compared to when 

expressed on their own. The results presented are typical of those obtained from 

experiments which were performed at least twice.

7.3.3.3 Localisation of UL105 and UL102 when co-expressed with UL70

Finally, the localisation of the UL102 and UL105 proteins when co-expressed with 

UL70 in BHK cells was investigated. Cells were transfected with plasmids pCMVIO- 

102, pCMV-Tag2B/UL105 and pCMV-Tag3B/UL70, which express UL102, FLAG-
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Figure 7.7 Intracellular localisations of UL70 and UL105 in transfected 
BHK cells
BHK cells were transfected with plasmids expressing either FLAG-tagged 
UL105 or FLAG-tagged UL70. Cells were fixed and permeabilised 24 hours 
following transfection. Cells were then incubated with a FLAG-specific MAb 
followed by a-mouse-FITC conjugated secondary antibody as described in 
section 1.2.22. After washing, cells were mounted in citifluor solution and 
viewed under x 400 magnification on a Zeiss LSM 510 confocal microscope. 
Cells were scanned using a laser at 488 nm wavelength. Panels A, B and C 
show cells expressing UL70 and panels D, E and F show cells expressing 
UL105.
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Figure 7.8 Lccaiisation of UL105 and UL192 co-expressed in BHK cells
BHK cells were transfected with plasmids expressing UL102 and FLAG-tagged 
UL105. Cells were fixed and permeabilised 24 hours following transfection. Cells 
were then incubated with a mixture of UL102 polyclonal antisera 724 and a FLAG- 
specific MAb, followed by a mixture of a-mouse-FITC and a-rabbit-Cy5 conjugated 
secondary antibodies. After washing, cells were mounted in citifluor solution and 
viewed under x 400 magnification on a Zeiss LSM 510 confocal microscope and 
scanned using 488 nm and 633 nm laser wavelengths simultaneously. Two 
different groups of cells are shown; A and B. For each group of cells there are three 
images corresponding to 1) visualisation of UL70 (green), 2) visualisation of UL102 
(red) and 3) images 1 and 2 merged (co-localisation of proteins is indicated by 
yellow).
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Figure 7.9 Localisation of UL70 and UL1C2 co-expressed in BHK cells
BHK cells were transfected with plasmids expressing UL102 and FLAG-tagged 
UL70. Cells were fixed and permeabilised 24 hours following transfection. Cells 
were then incubated with a mixture of UL102 polyclonal antisera 724 and a 
FLAG-specific MAb, followed by a mixture of a-mouse-FITC and a-rabbit-Cy5 
conjugated secondary antibodies. After washing cells were mounted in citifluor 
solution and viewed under x 400 magnification on a Zeiss LSM 510 confocal 
microscope and scanned using 488 nm and 633 nm laser wavelengths 
simultaneously. Two different groups of cells are shown; A and B. For each 
group of cells there are three images corresponding to 1) visualisation of UL70 
(green), 2) visualisation of UL102 (red) and 3) images 1 and 2 merged (co­
localisation of proteins is indicated by yellow).



tagged UL105 and C-myc-tagged UL70, respectively. Cells were fixed and doubly- 

stained using polyclonal UL102 antibody 724 and an anti-FLAG MAb, to detect UL105. 

Two different groups of cells stained for UL102 and UL105 are shown in Figure 7.10 (A 

and B). Three images of each group of cells are shown, corresponding to 1) UL105 

localisation (green), 2) UL102 localisation (red) and 3) images 1 and 2 merged. In cell 

group A, the cell labelled ‘1’ (panel B), UL102 is visible in the nucleus. In the same cell 

stained for UL105, (panel A) UL105 is also visible in the nucleus, in contrast to 

previous findings on its localisation when expressed alone or together with UL102. 

When the images in panels A and B are superimposed, UL102 and UL105 are co­

localised within the nucleus of cell number 1 (panel C). Similar results are found in the 

cell labelled 1 (Group B), in which UL102 and UL105 are again both localised to the 

nucleus (panels G and H). These results indicate that in cells transfected with plasmids 

expressing all three HCMV helicase-primase proteins, the localisation of UL105 is 

altered from cytoplasmic to nuclear.

It should be pointed out that this experiment was only performed once and therefore 

needs to be repeated in order to confirm these preliminary findings and in addition, the 

necessary control of demonstrating that the pCMV-Tag3A-70 construct expresses c- 

myc-tagged UL70 was absent from this experiment. However, a definite change in the 

localisation of UL105 from cytoplasmic to nuclear was observed when this construct 

was included in the transfection of BHK cells together with plasmids expressing UL105 

and UL102. Therefore the most likely conclusion of these experiments is that, in the 

absence of either UL102 or UL70, UL105 is cytoplasmic but that when co-expressed, 

all three components of the helicase-primase complex localise to the nucleus.

7.3.3.4 Antibody controls for immune-fluorescence experiments

Transfection and antibody staining controls were carried out to exclude the possibility 

that any of the fluorescence observed in the above described transient transfection 

experiments was an artefact of either the vectors or the antibodies used. Two vectors 

were used to express the UL102, UL105 and UL70 proteins; pCMVIO and pCMV-Tag 

2B/3B. Cells were transfected with either empty pCMVIO or pCMV-Tag vectors and 

then labelled with the same antibodies as those used to label cells transfected with 

protein-expressing vectors. Images of cells transfected with either pCMVIO or pCMV- 

Tag vectors and stained with antibodies are shown in Fig 7.11. As expected, no 

fluorescence was observed in any of the control cells, confirming that the fluorescence 

corresponded to proteins expressed from either pCMVIO or pCMV-Tag.
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Figure 7.10 Localisation of UL105 and UL102 in triply-transfected BHK cells
BHK cells were transfected with plasmids expressing UL102, a UL105-FLAG fusion 
protein and c-myc-tagged UL70. Cells were fixed and permeabilised 24 hours 
following transfection. Cells were then incubated with a mixture of UL102 polyclonal 
antisera 724 and a FLAG-specific MAb, followed by a mixture of a-mouse-FITC and 
a-rabbit-Cy5 conjugated secondary antibodies. After washing cells were mounted in 
citifluor solution and viewed under x 400 magnification on a Zeiss LSM 510 confocal 
microscope using 488 nm and 633 nm wavelengths simultaneously. Two different 
groups of cells are shown: A and B. For each group of cells there are three images 
corresponding to 1) visualisation of UL105 (green), 2) visualisation of UL102 (red) 
and 3) images 1 and 2 merged (co-localisation of proteins is indicated by yellow). 
Individual cells are labelled with a number for reference in the text.



Figure 7.11 Controls for immune-fluorescence experiments
Cells were transfected with the plasmids indicated using methods described in section
7.2.2.1 and then stained with either monoclonal or polyclonal antibodies as indicated 
below:
Panel A: BHK cells transfected with plasmid pCMVIO and stained using UL102-
specific MAb 546 (control for pCMV10-102 transfections in BHK cells). Panel B: Vero 
cells transfected with plasmid pCMVIO and stained using UL102-specific MAb 546 
(control for pCMV10-102 transfections in Vero cells). Panel C: BHK cells transfected 
with plasmid pCMVIO and stained with UL102-specific MAb 707 (control for expression 
of UL102 545N protein using plasmid pCMV10-1635 in BHK cells). Panel D: BHK 
cells transfected with plasmid pCMV-Tag2B and stained using UL102-specific MAb 
778 (control for expression of 330C UL102 protein using plasmid pCMV-Tag2B-993 in 
BHK cells). Panel E: BHK cells transfected with plasmid pCMV-Tag2B and stained 
with FLAG-specific MAb (control for expression of UL105 and UL70 proteins using 
vectors pCMV-Tag2B-105 and pCMV-Tag2B-70, respectively in BHK cells). Panel F: 
BHK cells transfected with plasmid pCMVIO and stained with UL102 polyclonal 
antisera 724 (control for expression of UL102 using plasmid pCMV10-102 in BHK cells)



7.3.4 Temporal expression of UL102 in HCMV-infected cells

HFFF cells were infected with HCMV strain AD169 and then fixed at various time 

points up to 138 hours post-infection. They were then stained with UL102 MAb number 

658 followed by an a-mouse-FITC conjugated antibody and then examined by 

fluorescence microscopy. Images of HCMV-infected cells from each time point are 

shown in Figure 7.12. At 16 hpi (panel A), only a few individual cells display faint 

nuclear fluorescence and these cells are in isolation (1-2/13mm coverslip). 

Neighbouring cells may be beginning to express UL102 but at a level below the 

threshold of detection for the antibodies used. By 23 hpi (panel B), several small 

groups of cells (2-3 per coverslip) display faint nuclear fluorescence, indicating that 

infection has spread from individual infected cells to neighbouring cells, which are also 

expressing UL102. At 40 hpi (panel C), increasing numbers of cell clusters are 

expressing UL102 and the intensity of nuclear fluorescence has increased. By 70 hpi 

(panel D), whole sections of the cell monolayer are expressing UL102. The nature of 

the nuclear staining is also more specific, with distinct areas of the nucleus containing 

more intense fluorescence. The numbers of cells detectably expressing UL102 

increases between 88 and 114 hpi and by 138 hpi almost the entire cell monolayer is 

expressing UL102, (panels E, F and G). The distinct nuclear staining is more obvious 

at these stages in the infection also. Images of enlarged individual cells exhibiting this 

distribution of UL102 are inset in panels F and G, showing cells at 114 and 138 hpi. 

Within these cells, up to four large globular intranuclear compartments densely stained 

for UL102 are visible.

Mock-infected cells were also harvested at the same time points and stained with 

UL102 MAb 658. In contrast to the HCMV-infected cells, no fluorescence was 

observed in cells fixed at any of the time points, indicating that the fluorescence 

observed was as a consequence of HCMV infection and correlated to expression of 

UL102 (cells fixed and stained between 16 and 114 hpi, data not shown). Panel H 

shows mock-infected cells at 138 hpi, in which no fluorescence is observed after 

double-labelling with UL102-specific MAb and a-mouse-FITC conjugated antibody.

7.4 Discussion

7.4.1 Intracellular localisation of full-length and truncated UL102 proteins

When expressed on its own in both BHK and Vero cells, UL102 displayed a diffuse 

nuclear localisation. In this respect, UL102 is distinct from its HSV-1 counterpart, UL8,
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Figure 7.12 Detection of UL102 in HCMV-infected HFFF cells by fluorescence 
microscopy
HFFF cells were infected with HCMV strain AD169 and then fixed at the hours post­
infection (hpi ) indicated. Cells were stained with UL 102-specific Mab 658 followed 
by a-mouse FITC conjugated secondary antibody as described in Section 7.2.3.2. 
Cells were viewed using a Nikon Microphot-SA microscope using a FITC filter at x 
400 magnification unless indicated otherwise. Panels A-G are images of HCMV- 
infected cells fixed at the time points indicated. Panel H is an image of mock-infected 
HFFF cells at 138 hpi, for comparison with panel G (HCMV-infected cells at 138 hpi). 
Comparison of panels G and H demonstrates that the fluorescence observed is as a 
consequence of HCMV infection and expression of UL102.



which localises to the cytoplasm (Calder et al., 1992). This result suggests that UL102 

contains an endogenous nuclear localisation signal (NLS). Two putative NLS, whose 

sequences closely resembled those of typical established NLSs (Garcia-Bustos et al., 

1991), were readily identified within the N-terminal 486 residues of UL102 as well as 

two less typical potential NLSs in the C-terminal region of the protein (see section 7.1).

In order to investigate the location of the UL102 NLS, the truncated UL102 proteins 

545N and 330C, which span the 545 N-terminal and the 330 C-terminal residues of 

UL102, respectively, were expressed in BHK cells to determine their intracellular 

localisations. As the 545N UL102 protein contained both typical putative NLS, it was 

anticipated that it would localise to the nucleus. Unexpectedly, it displayed an 

exclusively cytoplasmic localisation. In contrast, the 330C, which contains less typical 

candidate NLS, displayed a nuclear localisation in BHK cells.

Whilst the identification of a sequence, or sequences which resemble the deduced NLS 

from a known nuclear protein may offer a preliminary indication that a protein may 

localise to the nucleus, it is clear from studies on NLS function that the presence of 

such a sequence is not necessarily sufficient to confer uptake into the nucleus 

(reviewed by Garcia-Bustos et al., 1991). One of the first difficulties in identifying 

putative NLSs within a protein primary sequence is that there is no good consensus 

sequence for NLSs. The prototypical NLS is considered to be that from the SV40 large 

T-antigen (PKKKRK), which satisfies the classical criteria of a stretch of generally less 

than 10 amino acids which contains a high proportion of the basic residues lysine (K) 

and arginine (R). More recently, alternative forms of NLS have been defined, such as 

that identified in the nucleoplasmin protein, which consist of two short stretches of 

basic amino acids separated by a spacer region of 10 amino acids which are not 

necessarily basic and can be mutated without affecting the function of the NLS. This 

type of NLS motif, which has been termed as a bipartite nuclear targeting sequence, 

has been identified in roughly half of nuclear proteins within the Swissprot data base, 

whereas only 5% of non-nuclear proteins contain such a sequence (Robbins et al.,

1991). These findings suggest that bipartite motifs may be a frequently occurring form 

of NLS. In addition, work carried out on the influenza virus nucleoprotein (NP) has 

shown that the sequences of the motifs which interact with cellular transport factors 

and confer nuclear localisation in this protein correspond to SxGTKRSYxxM and 

TKRSxxxM (Wang et al., 1997). Neither of these motifs bears any obvious homology 

with either the prototypic SV40 T-Ag or bipartite forms of NLS. Hence, it is clear that
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there is a variety of amino acid motifs which can be utilised for nuclear localisation. 

Another factor which determines the function of a putative NLS is the context and 

position of the signal. Studies investigating the effect of the NLS positioning within a 

protein sequence have indicated that the signal needs to be present on an exposed 

surface of the protein (Roberts et al., 1987) so whilst there may be a typical NLS within 

the primary sequence of a protein, if it is located within a buried hydrophobic domain 

then it will be masked and inactivated.

It follows that it is perhaps not surprising that the predicted localisations of the 

truncated UL102 proteins were not borne out, considering the variety of motifs that may 

confer nuclear localisation and the factors which influence their functioning. The 

putative NLSs identified in the 545N protein may actually be hidden in the native 

protein, alternatively they may possibly function in conjunction with another putative 

NLS within the C-terminal region of UL102 to confer nuclear localisation, but are 

inactivated as a result of misfolding of the truncated protein. The putative signals 

located within the C-terminal 330 residues of UL102, although less akin to classical 

NLS may act synergistically to mediate entry of this part of the protein. It is known that 

the effects of several weak NLS can be additive. Establishing which, if any, of the 

identified putative NLS within UL102 is responsible for transport into the nucleus could 

be achieved through mutagenesis of each in turn and assessing the intracellular 

localisation of the expressed mutant proteins. It is possible that other sequences within 

UL102, without obvious homology to SV40 T-Ag NLS, may be involved in conferring 

nuclear localisation to UL102. Therefore future work on resolving the localisation of the 

UL102 NLS should involve re-examining the aa sequence of UL102 to identify 

sequences with homology to bipartite NLS. If any homologous sequences were 

identified then mutational analysis could be performed to assess their role in 

translocation of UL102 to the nucleus.

7.4.2 Localisation ofUL102, UL105 and UL70 proteins expressed in BHK cells

The localisations of all three HCMV helicase-primase proteins when expressed 

individually was investigated. As described in section 7.4.1, UL102 was found to 

localise to the nucleus when expressed alone. However, both UL70 and UL105 

displayed a cytoplasmic localisation when expressed on their own in BHK cells, in 

common with their HSV-1 counterparts, UL52 and UL5 (Calder et al., 1992). As the 

helicase-primase proteins ultimately localise to replication compartments within the 

nucleus, this raises the possibility that UL102 has a role in the nuclear translocation of 

the other helicase-primase proteins. Hence the effect of co-expression of UL102 with

112



either the UL105 or UL70 proteins was investigated. The localisation of both UL105 or 

UL70 was not influenced by co-expression with UL102, as both remained cytoplasmic 

and displayed no co-localisation with UL102 in the nucleus. Similar results were 

observed in experiments investigating the effect of co-expression of HSV-1 UL8 on the 

localisation of the UL5 and UL52 proteins, in which neither protein was found to 

efficiently co-localise to the nucleus when expressed with UL8 alone (Calder et al.,

1992).

Finally, the effect of co-transfecting plasmids expressing UL102, UL105 and UL70 

upon the localisation of UL105 and UL102 in BHK cells was examined. As expected, 

the nuclear localisation of UL102 was unchanged, however the localisation of UL105 

changed from cytoplasmic to nuclear, co-localising with UL102. Whilst UL102 is 

capable of translocating to the nucleus when expressed on its own, both UL105 and 

UL70 proteins displayed strictly cytoplasmic localisation when expressed individually or 

when co-expressed with UL102. Only when cells are transfected with plasmids 

expressing all three proteins does UL105 localise to the nucleus. This result, although 

preliminary, indicates that for nuclear localisation of the HCMV helicase-primase 

proteins to occur, all three subunits need to be present. This finding is analogous to 

the situation in HSV-1, where efficient nuclear localisation of the helicase-primase 

proteins only occurs when all three subunits are present (Calder et al., 1992). The 

same finding was reported also for the EBV helicase-primase proteins, BBLF2/3,

BSLF1 and BBLF4. Whilst the counterpart of HCMV UL102, BBLF2/3, displays a 

mixed nuclear/cytoplasmic distribution on its own, the other two subunits, BSLF1 and 

BBLF4 localise to the cytoplasm when expressed individually. Only when all three 

proteins are co-expressed do all the sub-units localise to the nucleus (Gao et al.,

1998).

Although the expression of UL70 in these cells has not been directly demonstrated in 

this experiment, the results indicate that the inclusion of the UL70-expressing construct 

changes the localisation of UL105 from cytoplasmic to nuclear when UL102 is also 

present. The most likely explanation for the observed change in UL105 localisation is 

that UL70 is expressed, enabling the formation of the HCMV helicase-primase complex 

and its subsequent translocation to the nucleus. The dependence of UL105 (and 

possibly UL70) on the presence of the other sub-units of the complex is consistent with 

the model proposed for HSV-1, in which the helicase-primase proteins are transported 

to the nucleus as a complex (Calder et al., 1992). It is noted that the effect of co­

expression of UL105 with UL70 on the cellular localisation of UL105 has not been
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examined so far, hence it is possible that UL70 may on its own be sufficient to confer 

nuclear localisation to UL105. However, UL105 was not observed in the nucleus of 

any cells in the absence of UL102 in this experiment.

If the helicase-primase proteins are transported to the nucleus as a complex and the 

ability of UL102 to enter the nucleus using a putative NLS is exploited for this purpose, 

it might be expected that the pair-wise expression of UL102 with UL70 and UL102 with 

UL105 would result in nuclear localisation of UL70 and UL105, as co- 

immunoprecipitation studies have demonstrated that the HCMV helicase-primase 

subunits can form pair-wise associations with each other (McMahon et al., 1999). This, 

however was not observed in these studies. It is possible that the recognition of the 

putative UL102 NLS, or the context in which it is presented, may be altered when 

UL102 is complexed with UL105 and UL70, in such a way that confers transport into 

the nucleus. Another possibility is that the putative UL102 NLS is not responsible for 

transporting the complex into the nucleus and that a different signal, which is only 

present or is unmasked when the sub-units are associated is utilised, or possibly that 

nuclear entry relies on the cumulative effects of several NLSs which are present within 

the complexed proteins.

in order to establish whether the putative NLSs identified in UL102 are required for 

nuclear uptake of the complex, mutational analysis of the each putative NLS in could 

be performed in turn and the ability of the mutated UL102 proteins to facilitate nuclear 

localisation of the UL105 and UL70 subunits determined by fluorescence microscopy. 

Where mutation resulted in an inability of either protein to enter the nucleus, the 

appropriate NLS would have to be transferred to a non-nuclear protein and its 

intracellular localisation assessed to determine whether the NLS conferred transport 

into the nucleus and hence demonstrate proof of function.

7.4.3 UL102 in HCMV-infected cells

HCMV- and mock-infected cells were fixed and stained using UL102-specific MAb 658 

at various time points up to 138 hpi. UL102 was detected in the nuclei of cells infected 

with HCMV strain AD169 but not in mock-infected cells, as expected. Initially, the 

UL102 signal was weak and detectable in only a few cells, which represent the foci of 

infection (16 hpi). As expected, the number of cells expressing UL102 and the 

intensity of the UL102 signal increased progressively throughout subsequent time
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points as the infection spread throughout the cell monolayer. The pattern of UL102 

localisation within the nucleus also altered as the infection proceeded. Whereas at 

early stages of infection, UL102 appeared to display a diffuse nuclear localisation, by 

88 hpi, UL102 localised to distinct compartments within the nucleus. These structures 

are particularly apparent in the cells stained at 114 and 138 hpi (Figure 7.12, panels G 

and H), corresponding to times during infection at which active viral DNA synthesis 

occurs. Within these cells, up to four large globular intranuclear compartments 

containing UL102 are visible. These compartments appear very similar to the viral 

replication compartments in HCMV infected HF cells described by Sarisky & Hayward 

(1996a). These compartments are typical of those associated with active DNA 

replication in HCMV, as well as other herpesviruses, which contain the viral replication 

machinery and progeny DNA. Sarisky & Hayward (1996a) visualised these 

compartments in infected cells by staining for UL44, the HCMV polymerase accessory 

protein. The nuclear distribution of UL44 which they described at late times in infection 

matches very closely my findings for UL102 distribution in HCMV-infected cells, as 

expected.

To confirm that the structures to which UL102 localises are truly viral replication 

compartments representing sites of active DNA synthesis, the experiment could be 

repeated, but incorporating a BUdR pulse prior to fixing and immunofluoresence 

analysis of cells. BUdR is a thymidine analog which is incorporated into growing DNA 

chains. Hence, if followed by double-immunolabelling of the infected cell monolayer 

using UL102-specific antisera and anti-BUdR antibody, this approach would determine 

whether active DNA symthesis occurs in the intranuclear compartments to which 

UL102 localises.

In contrast to the findings on the localisation of UL44 by Sarisky & Hayward (1996a), I 

did not observe the localisation of UL102 to smaller intranuclear pre-replicative 

structures at early times in infection, prior to onset of viral DNA synthesis (16-40 hpi, 

see Figure 7.12, panels A, B and C). Rather, UL102 displayed a diffuse nuclear 

distribution. As no other studies on the localisation of UL102 during the course of 

HCMV infection have been published, no comparisons can be made. However, it is 

possible that these results indicate that UL102 does not localise to pre-replicative 

nuclear structures, unlike the other HCMV core replication proteins UL44 and UL57 

and the auxiliary protein UL112-113 (Sarisky & Hayward, 1996a; Penfold & Mocarski, 

1997).
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Smith and Pari, (1995a) performed Northern analysis on HCMV-infected total cell RNA 

to investigate the time course of UL102 expression. They detected a specific UL102 

transcript at 24 hours post-infection but could not detect it at earlier times in infection. 

My findings suggest that UL102 is transcribed and expressed at earlier stages of 

infection (16 hpi) in a small number of cells in an infected monolayer. This discrepancy 

may be due to variations in the sensitivity of the methods used. However, Penfold & 

Mocarski, (1997) examined the formation of HCMV viral replication compartments by 

staining infected cells for UL57 and UL44, which are both also early essential 

replication proteins, like UL102. They detected both proteins at 12 hours post­

infection, a time-scale for expression which is more consistent with my findings on 

UL102.
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Chapter 8 

Discussion



8.1 Discussion
The set of replication proteins required for origin-dependent HCMV DNA replication 

include six core replication fork proteins which are conserved amongst the herpesvirus 

family. So far, the HCMV core replication proteins have not been well characterised, 

hence their proposed functions and characteristics have been predicted by analogy 

with their more extensively studied HSV-1 counterparts. The aim of this project was to 

investigate the properties of UL102, one of the essential HCMV DNA replication 

proteins, in order to determine whether it shares common properties with its HSV-1 

counterpart, UL8, and assess whether it may play a similar role to UL8 during DNA 

synthesis. The following specific properties of UL102 were investigated:

A) The ability to interact with the HCMV DNA polymerase catalytic subunit, UL54.

B) The DNA-binding properties of UL102.

C) The intracellular localisation of UL102 when expressed alone in mammalian cells 

and the effect of co-expression with UL102 on the intracellular localisations of the 

other two HCMV helicase-primase subunits, UL70 and UL105.

In summary, the UL102 characterisation studies presented in this thesis revealed that; 

i) a specific physical interaction between UL102 and UL54 could not be demonstrated, 

raising the possibility that the interaction between the helicase-primase complex and 

the DNA polymerase catalytic subunit may not be common to all herpesviruses, ii) 

UL102 does not bind DNA or DNA/RNA hybrid oligonucleotide templates which 

represent the forms of nucleic acid present at the replication fork, iii) unlike HSV-1 UL8, 

UL102 displays a nuclear localisation when expressed alone in mammalian cells and 

therefore likely contains an endogeneous nuclear localisation signal (NLS), iv) UL102 

does not influence the intracellular cytoplasmic localisations of either UL70 or UL105 

when it is co-expressed with either protein in BHK cells, but when it is expressed with 

both UL70 and UL105 it results in UL105 (and likely also UL70) being transported to 

the nucleus and v) UL102 localises in HCMV-infected HFFF cells to sub-nuclear 

regions that might likely correspond to viral replication compartments.

With respect to its DNA-binding ability and the ability to influence the intracellular 

localisation of the other helicase-primase subunits, UL105 and UL70, when it is co­

expressed with either protein in mammalian cells, UL102 was found to behave like its 

HSV-1 counterpart, UL8. Taken together with the results obtained by McCollum etal., 

(1999) who demonstrated that UL102, like UL8, is dispensable for the enzymatic 

activities of the HCMV helicase-primase complex, it is clear that UL102 shares several
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characteristics in common with HSV-1 UL8. However, in other respects, most notably 

the inability to demonstrate a specific interaction between UL102 and the polymerase 

catalytic subunit UL54, and also the ability to translocate to the nucleus when 

expressed on its own, UL102 displays characteristics different to UL8. In the light of 

these findings, UL102 may not perform the identical functions as HSV-1 UL8 during 

viral DNA replication. As it possesses some characteristics in common with but others 

that are different from those of UL8, a reasonable prediction is that UL102 performs 

some but perhaps not all of the roles which have been so far attributed to UL8.

A comprehensive comparison of UL102 and UL8 is not yet possible as many of the 

biochemical properties of UL102 have still to be investigated and compared to the 

known properties of UL8. In vitro studies have demonstrated that UL8 is necessary for 

efficient primer utilisation by the HSV-1 polymerase, stimulates primer synthesis and 

mediates an interaction between the helicase-primase complex and the ss DNA- 

binding protein UL29, which optimises the utilisation of UL29-coated DNA templates 

(Sherman et al.t 1992; Tenney etal., 1994; Tanguy Le Gac etal., 1996). A thorough 

study is required to determine whether UL102 modulates the functions of the UL70- 

UL105 sub-assembly of the HCMV helicase-primase complex and/or influences primer 

utilisation by the HCMV DNA polymerase. In HSV-1 the UL8-UL30 interaction possibly 

facilitates the UL8-mediated increased efficiency of primer utilisation by the DNA 

polymerase, as it would serve to recruit polymerase directly to the site of unwound and 

newly-primed template DNA. Hence, as a specific physical association between 

UL102 and UL54 could not be demonstrated in this study, it would be especially 

pertinent to determine whether UL102 increases primer utilisation by the UL54-UL44 

polymerase complex.

The inability to demonstrate an interaction between UL102 and UL54 in the in vitro 

studies presented in Chapter 5 raises the possibility that they do not, in fact, physically 

interact. This would distinguish UL102 and UL54 from their counterparts in both HSV-1 

(UL8 and UL30, respectively) and EBV (BBLF2/3 and BALF5, respectively), which 

have been shown to interact with each other (Marsden et al., 1997; Fujii et al., 2000),. 

The demonstration of a homologous interaction in both HSV-1, an alphaherpesvirus 

and EBV, a gammaherpesvirus, makes it tempting to speculate that it is common to all 

herpesviruses. Whilst the findings of Fujii et al., (2000) confirmed the interaction 

between the BBLF2/3 and BALF5 proteins predicted by analogy to HSV-1, it is to be 

noted that the methodology used was not as stringent as that adopted by Marsden et 

al., (1997) in demonstrating the HSV-1 UL8-UL30 interaction. An approach involving
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immunoprecipitation followed by western blotting was used by Fujii et al., (2000) to 

demonstrate the BBLF2/3- BALF5 interaction. They detected BALF5 which had co­

precipitated with BBLF2/3 by resolving and transferring the captured antibody-protein 

complexes onto nitrocellulose and probing with an anti-BALF5 antibody. This clearly 

demonstrates co-precipitation of BALF5 with BBLF2/3 but does not however, illustrate 

the specificity of the interaction as it gives no indication of the presence of other 

proteins which may have also co-precipitated with BBLF2/3.

The possibility that UL102 does not physically interact with UL54 is curious considering 

the predicted structural similarities in the C-terminal regions of HCMV UL102 and HSV- 

1 UL8. As it has been demonstrated using peptide inhibition studies that the C- 

terminal 33 residues of UL8 are involved in the interaction with UL30 (Marsden et al., 

1997), the similar C-terminal structure predicted for the same region in UL102 is 

consistent with its putative interaction with UL54. The “predict-protein” programme 

(Rost, 1996) suggests that the C-terminal regions of UL102 and UL8 both comprise an 

a-helical region, flanked by residues which are either predicted to form loops or have 

no predicted structure, summarised in Figure 8.1 (compiled using the sub-set of 

predicted secondary structures with an expected average accuracy of greater than 

82%). Ordering the residues within the predicted helical region onto an a-helical wheel 

reveals that the helices are amphipathic in nature, meaning that when the a-helical 

region is viewed from above, one half of the helix is comprised predominantly of 

hydrophillic residues whilst the other half is comprised predominantly of hydrophobic 

residues (Nigel Stow, personal communication). The conservation of this specific 

structure in the same regions of UL8 and UL102 suggests that it may serve a common 

function and hence it would be of interest to determine whether this region mediates 

any of the other known functions of UL8 in addition to the interaction with UL30. If so, 

then this may indicate a possible function for this region of UL102 also.

The predicted UL102 C-terminal structural data is consistent with the epitope mapping 

of UL102-specific MAbs (section 3.3.2.4), which revealed that a high proportion of the 

MAbs recognise epitope(s) in the UL102 C-terminal region. Specifically, the C-terminal 

25 residues (represented by peptide B1104E, Figure 3.1 A) were found to contain the 

epitope(s) recognised by 12 out of 51 of the UL 102-specific MAbs generated, indicating 

that this region occupies an exposed, exterior position in native folded UL102 and is 

therefore available for recognition by B-lymphocytes.

As described in Chapter 7, UL102 was found to be distinct from HSV-1 UL8 in its ability
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to translocate efficiently to the nucleus independently of the other helicase-primase 

subunits, indicating that it contains an endogeneous NLS. As, in contrast, UL105 and 

UL70 display a cytoplasmic localisation when expressed alone, it is tempting to 

speculate that UL102 may therefore mediate, by virtue of association, transport of the 

other helicase-primase subunits into the nucleus. However, although it has been 

demonstrated that UL102 can form pair-wise associations with both UL105 and UL70 

(McMahon et al., 1999), it was not found to alter the localisation of either UL105 and 

UL70 when co-expresed with either protein as might be expected.

Preliminary results presented in section 7.3.3.3 suggest that UL105 only localises to 

the nucleus in cells transfected with UL102-, UL70- and UL105-expressing constructs, 

in a situation analogous to that found with the HSV-1 helicase-primase proteins in 

which efficient localisation of the helicase-primase proteins only occurs when all three 

subunits are present (Calder et al., 1992; Barnard et al., 1997). These results indicate 

that the HCMV helicase-primase proteins may enter the nucleus as a complex, 

possibly utilising an NLS(s) which is manifested only upon association of the three 

subunits and raise the possibility that UL102 is perhaps not responsible for nuclear 

uptake of the helicase-primase complex.

Why then, would UL102 contain a NLS enabling it to translocate to the nucleus 

independently of the other helicase-primase proteins? One possibility is that UL102 

performs another function which requires that it be translocated to the nucleus on its 

own. This is a very speculative proposition, however evidence that another HCMV 

replication fork protein, UL44, performs a completely unrelated function in addition to 

its role as the DNA polymerase accessory subunit during DNA synthesis has recently 

been presented by Loh et al., (2000). In this study, it was demonstrated that UL44 

contains an Arg-Gly-Asp or RGD sequence, a motif which is recognised by cell surface 

adhesion molecules called integrins, and further that recombinant UL44 could mediate 

cell adhesion. Although it is not yet known whether this property of UL44 has any 

functional significance during the course of HCMV infection, the demonstration that an 

individual protein can potentially perform two extremely diverse roles is nonetheless 

extremely interesting. It is also of interest to note that Loh et al., (2000) have identified 

an RGD motif in the sequence of UL102 (residues 58-60).

It was also observed in immunofluorescence studies on UL102 expression in HCMV- 

infected cells that UL102 does not appear to localise to distinct pre-replicative nuclear 

structures like other HCMV replication proteins, such as UL44, UL57 and UL112-113
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(Sarisky & Hayward, 1996a; Penfold & Mocarski, 1997). It would be interesting to 

establish whether UL102 does or does not co-localise to pre-replicative structures 

along with other HCMV replication proteins. This could be achieved by performing 

immunofluorescence analysis of HCMV-infected cells labelled with antibodies specific 

for UL102 and another replication protein known to localise to pre-replicative 

structures, such as UL44. If my preliminary results were corroborated, it would be 

tempting to speculate that UL102 does not localise to replication compartments until 

such times in infection when viral DNA synthesis commences (indicated by the 

formation of large intranuclear viral replication compartments) because it is performing 

another function at a different cellular location.

The research presented in this thesis demonstrates that several UL102 characteristics 

are distinct from those of its HSV-1 counterpart, UL8 and furthermore that knowledge 

regarding the HSV-1 replication fork proteins cannot necessarily be extrapolated to 

other herpesviruses. It is well established that HCMV is distinct from HSV-1 in several 

aspects of its molecular biology which are relevant to DNA replication, such as the size 

and complexity of its origin of replication, orilyt, the apparent lack of a virally encoded 

origin-binding protein and the fact that it stimulates host cellular protein synthesis when 

HSV-1, in contrast, induces the opposite effect. It is therefore perhaps not surprising 

that it may also differ from HSV-1 and other herpesviruses in its precise mode of DNA 

replication.

The differences in the initiation of DNA replication of HSV-1 and HCMV pose an 

interesting question as to the sequence and mechanism of recruitment of the essential 

HCMV replication proteins/complexes to the origin of replication. Following the initial 

and as yet undefined events at the origin of replication, the helicase-primase complex 

is most likely the next viral enzyme complex to arrive, being required for essential DNA 

unwinding and RNA priming activities. In HSV-1, it is likely that the helicase-primase 

complex is recruited by virtue of the interaction between UL8 and the origin-binding 

protein, UL9. As no equivalent of HSV-1 UL9 has so far been identified in HCMV, the 

mechanism of recruitment of the viral helicase-primase remains enigmatic. It is 

possible that a cellular protein may be involved in the initiation of replication, as HCMV 

orilyt contains multiple cellular transcription factor binding sites (Anders et al., 1992) 

and conceivably, motifs which act as binding sites for other, unidentified cellular 

proteins. In HSV-1, both oris and oriL contain binding sites for a cellular protein known 

as OF-1, and mutational analysis indicates that binding of OF-1 is required for 

maximum origin function (Dabrowski et al., 1994; Hardwicke & Schaffer, 1995). The
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binding of cellular transcription factor Sp1 to consensus binding sites within oris has 

also been reported to enhance the efficiency of oris-dependent replication (Nguyen- 

Huynh & Schaffer, 1998). Likewise in EBV, Sp1 and another cellular transcription 

factor, ZBP-89, bind EBV orilyt and stimulate its replication (Baumann et al., 1999).

The authors also demonstrated that both proteins interact with the viral DNA 

polymerase complex (BALF5-BMRF1), and suggest that the interaction may facilitate 

the formation of the origin-bound viral replication complex. Hence a pertinent 

experiment may be to perform a two-hybrid screen, using a library produced from an 

HCMV permissive cell line, such as HFFF with UL102 acting as the ‘bait’ protein. This 

may lead to the identification of cellular proteins involved in initiation of replication at 

orilyt which interact with the helicase-primase complex.

In addition to carrying out two-hybrid screens against a library of proteins derived from 

a host cellular source, it would also be potentially informative to use a two-hybrid 

system to investigate putative interactions between UL102, or other helicase-primase 

subunits, and the HCMV auxiliary replication proteins. There are conflicting reports on 

the requirements for the auxiliary proteins in origin-dependent HCMV DNA replication 

(Sarisky & Hayward, 1996a; Ellsmore, 2000), but if any supplies an origin-specific 

function, then it is reasonable to anticipate it might interact with a component of the 

helicase-primase complex to facilitate the recruitment of the complex to the origin.

The rationale for this type of investigation is supported by the results of studies 

involving the EBV helicase-primase complex and auxiliary replication proteins. In 

similarity with HCMV, maximum efficiency of EBV origin-dependent DNA replication in 

a transient replication assay is dependent not only on the presence of the six core 

replication fork proteins but also upon two additional auxiliary proteins, Zta and Rta 

(Fixman et al., 1992). Rta is not absolutely required but significantly increases 

replication efficiency. Zta, however is a transactivator which also performs an EBV 

origin-specific function and is absolutely essential for DNA replication (Fixman et al., 

1995). Gao et al., (1998) have shown that Zta interacts with all components of the 

helicase-primase (BBLF2/3, BSLF1 and BBLF4) and converts the intracellular 

localisations of myc-tagged BSLF1 and BBLF4 from cytoplasmic to nuclear in a 

transient transfection assay. Further, they demonstrated that the helicase-primase 

proteins interact with EBV origin-bound Zta, indicating that the interaction may serve to 

stabilise an origin-bound replication complex.

An interaction between HSV-1 UL8 and the HSV-1 ss DNA-binding protein, UL29 is
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strongly suggested by the work of Falkenberg et al., (1997) and Tanguy Le Gac et al., 

(1996). Hence by analogy with HSV-1, UL102 may interact with UL57, the HCMV ss 

DNA-binding protein. This could also be investigated by means of a two-hybrid 

system, or other means for detection of protein-protein interactions, such as those 

utilised for the investigation of the putative UL102-UL54 interaction (Chapter 5). If an 

interaction between UL102 and any other viral or cellular protein was demonstrated, 

then structure-function analysis of the interaction could be performed using the UL102 

reagents described in Chapters 3 and 4, including a panel of UL102-specific MAbs and 

constructs expressing truncated forms of the UL102 gene.
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Appendix 1

‘Predict-protein’ analysis of HCMV UL102
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2 1 4 3 3 4 7 9 9 8 1 5 7 2 3 4 5  6 6 6 7 8  9 9 9 9 9 9 9 9 9 9 9 7 2 2 7 9 6 1 3 1 4  6 6 9 7 4 2 2 2 2 2 2 1 1 1 1 1 6  
............... E E E E . L L . . . HHHHHHHHHHHHHHHHHH. . L L L  L L L L ....................................L

b b b b b b b b b b b b e e b b b b b b e b b b b b b b e b b b e b b b e  e e b e e  b b e e b b e e b b b  b b b b
3 1 0 2 3 4 7 8 8 5 4 1 2 3 1 8 6 3  6 4 1 1 5 2 0 0  6 1 0 5 5 7 1 1 0 0 1 1 1 1 1 1 3 1 2 0 1 2 2 3 2 0 0 1 2 0 3 3 3 1  
 b b b b b b  b b . b b . . b . . . b . . b b b .................................................................................

  _____ 3 1 .  . . ,  3 2 .  .    3 3 .  . . , _____ 3 4 .  . . ,  3 5 .  .    3 6
PGFPPVPVYAVHGLHTLMRETALDAAAEVLSWCGLPDIVGSAGKLEVEPCALSLGVPEDE 

EEEE HHHHHHHHHHHHHHHHHHH EE EEE
8 9 9 9 9 8 4 5 7 7 4 2 4 1 4 6 7 7 9 9 9 9 9 9 9 9 9 9 9 9 8 4 4 7 6 2 1 1 2 2 5 7 8 1 4 3 2 2 3 1 4 5 4 4 8 9 8 4 2 2  
L L L L L L . E E E  HHHHHHHHHHHHHHHH. . L L  L L L .......................L . . L L L . . .

e e b e e b b b b b b b b b b b b b e e b b b e b b b e b b b b b b b e e b b e b b b e b e b e b b b b b b e b e e e e  
1 3 1 0 1 2 2 5 4  9 5 2 4 4 1 1 1 4 1 2 2 6 1 2 4 5 4 3 7 6 5 1 3 0 3 1 1 4 5 0 0 2 0 3 1 1 4 1 2 2 5 3 0 1 1 0 1 2 1 1  
.................. b b b b . b b . . . b . . . b . . b b b . b b b ...................b b ....................b . . . b .......................

  _____3 1 . . . ,  3 8 .  .   3 9 .  .   4 0  . . . ------------4 1 .  .  -------- 4 2
WQVFGTEAGGGAVRLNATAFRERPAGSDRRWLLPRCRVTTATVKTTSWKSARSTGGAHPP 

EEE EEE EEEEE EEE
1 1 4 2 3 3 1 5 8 8 4 2 5 5 5 2 2 2 2 2 3 5 8 8 8 8 7 7 5 2 1 3 7 9 9 9 8 7 7 8 9 9 9 8 9 9 2 5 5 1 4 4 7 8 9 9 9 9 9 9  
.................. L L L . . E E E .................. L L L L L L L L . . . L L L L L L L L L L L L L L . E E . .  . LLLLL LLL

b e b b b b e b e e e b b  b b b e b b e e  e e e e e  b b b e e e e e e e e e e e e e e e e e e e e e e e e  e e  
3 1 4 2 4 1 1 1 0 1 1 4  6 1 5 0 6 1 3 2 1 3 1 1 1 2 4 2 0 0 1 4 1 1 6 0 5 3 5 3 6 7 2 6 5 3 3 2 7 1 1 5 1 0 2 2 2 1 1 1  
. . b . b ................b b . b . b ..........................e . . . . b . . e . e . e . e e . e e . . . e . . e .......................



  _____4 3 . .  . ,  4 4 .  .  4 5 .  .   4 6 .  . ________ 4 7 .  .  ______ 4 8
AA SDDATFTVHVRDATLHRVLIVDLVERVLAKCVRARDFNPYVRYSHRLHTYAVCEKFIENL

E E E E E E E E  EEEHHHHHHHHHHHHHHH EEE E HHHHHHHHHHH
9 8 7 5 3 8 9 9 9 9 6 1 3 5 4 2 4  4 2 2  6 9 9 9 9 9 9 9 9 9 8 6 5 2 2 5 7 9 6 1 2 3 2 1 1 2 3 4 3 2 8 9 9 9 9 9 9 9 9 8  
LLLL . E E E E E E . . L ................HHHHHHHHHHHHH. . L L L L .................................HHHHHHHHHH

e e e b e b b b  b  e b b b b b b b b b e b b e e b b b e b b e b  e b e e  b  b b b e b b b  b b b e e b b e b b
2 2 3 2 0 6 0 5 0 8 0 1 5 0 1 1 0 5 8 9 4 1 6 7 1 1 6 6 5 4 4 3 1 6 1 2 0 0 0 0 5 0 2 3 1 1 2 1 3 0 4 6 8 1 2 4 4 3 0 5  
 b . b . b . . b . . . .  b b b b . b b . . b b b e b . . b ............... b ........................b b b . . b b . . b

PHD s e c
R e l s e c
SUB s e c

P 3 a c c
R e l a c c
SUB a c c

AA
PHD s e c
R e l s e c
SUB s e c

P 3 a c c
R e l a c c
SUB a c c

PHD s e c
R e l s e c
SUB s e c

P 3 a c c
R e l a c c
SUB a c c

 , _____ 4 9 .  . . ,  5 0 .  .   5 1 .  . __________ __________ 5 2 .  . . , _5 3 .  .   5 4
r f r s r r a f w q i q g l l g y i s e h v t s a c A s a g l l w v l s r g h r e f y v c d g y s g h g p v s a e v c v
HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH E EE E E E  E E EE EE
7 6 4 8 9 9 9 9 9 9 9 9 9 9 7 5  6 8 9 9 9 8 9 9 9 9 8 7 7 6 6 6 5 5 7 5 1 3 5 3 7 9 9 9 8 3  6 5 6 8 8 9 6 2 2 2 8 9 8 8  
H H . HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH. . L . E E E E E . L L L L L L L . . . EEEE

b e b  e b b b e b b e b b b  b b e b b b b b b b b b b b b b b b b e e  e e b b b b e b b e e e  e b b b e b b b  
2 0 1 2 1 1 5 4 2 0 7 0 0 4 3 0 0 6 4 3 0 7 2 2 5 6 4 2 3 1 4 6 4 8 4 4 1 1 0 1 1 8 2 6 0 0 1 1 1 1 1 0 1 1 2 6 2 6 7 5  
. . .'*r% . b b . . b . . b . . . b b . . b . . b b b . . . b b b b b b  b . b ................................b . b b b

  _____ 5 5 .  . ________ 5 6 .  .   ______ 5 1 .  . . , ______5 8 .  .  _____ 5 9 .  .  ______ 60
AA RTWDCYWRKLFGGDDPGPTCRVQESAPGVLLVWGDERLVGPFNFFYGNGGAGGSPLHGV

T7IT7 n  tjxTTJTJTJTJTJ IT171?t?P PT?n?U t?P P P P  171?eta u nnnnnnn CiCiCiCjCi CiCiCiCiCj CjuCiCjCi CiCi
7 2 3 3 2 2 5 3 5 8 7 3 5 7 8 9 9 9 8 1 3 5 5 5 4 5 8 9 6 6 9 9 8 6 1 5 2 2 2 3 4 3 3 3 5 5 4 1 7 8 8 8 9 7 6 6 2 1 1 3  
E .............. H . HHH. L L L L L L L . . E E E . L L L L E E E E E . L .......................E E . . L L L L L L L L ____

b b b e b b b e e b b e e e e e e e e b e b e e e b e e b b b b b b e e  b b e b b b b b b b e e e e e e b e b  b b  
0 4 7 6 1 4 1 5 1 2 1 0 1 0 1 2 3 1 0 1 3 1 5 2 2 1 0 2 0 5 7 6 5 0 1 1 2 1 1 2 0 0 3 1 3 4 0 1 0 1 0 0 2 0 0 0 1 0 4 3  
. b b b  . b . b ........................................ b ................b b b b ...................................b ....................................b .

AA
PHD s e c
R e l s e c
SUB s e c

P 3 a c c
R e l a c c
SUB a c c

. . . . ,  6 1 .  .   6 2 .  . . , _____ 6 3 .  .   6 4 .  .   6 5 .     6 6
VGGFAAGHCGGACCAGCWTHRHSGGGGGSGVGDADHASGGGLDAAAGSGHNGGSDRVSP 
E EEE EE E E E
2 3 3 2 2 4 4 6 5 6 6 5 3 2 3 1 7 8 9 8 7 6 2 4 7 9 8 7 5 5 4 2 4 3 4 1 3 3 3 4 7 3 1 1 2 2 4 6 7 8 7 9 9 8 7 6 5 2 5 7  
_________ L L L L L _____ E E E E E E . . L L L L L L  L ; ..............L L L L L L L L L L . LL

b b b b b b b  b b b b b b b b b b b b b e  e e e e e e e b b b e b e  b e e e e b e b b b b e e  e e e e e e b b e  
5 5 3 2 7 6 1 0 4 1 1 5 5 5 6 3 6 5 8 3 3 1 0 0 4 4 2 2 1 1 0 2 0 0 4 1 1 4 0 1 2 0 2 2 5 5 2 1 1 2 0 1 1 0 1 1 1 2 0 2  
b b . . b b . . b . . b b b b . b b b  e e . . . . . . . .  b . .  b ................b b .............................

AA
PHD s e c
R e l s e c
SUB s e c

P 3 a c c
R e l a c c
SUB a c c

  ____6 1 . . . , ______ 6 8 .  .  _____6 9 .    _____ 1 0 . . . , _____ 7 1 . . . , ______ 7 2
STPPAALGGCCCAAGGDWLSAVGHVLGRLPALLRERVSVSELEAVYREILFRFVARRNDV 

HHHHHHHHHHHHHHHHHH HHHHHHHHHHHHHHHHH 
9 9 9 2 2 3 5 7 7 2 0 1 4 5 5 3 1 2 2 2 3 5 5  6 7 7 6 6 6 9 9 9 8 6 3 4 6 6 1 1 8 9 9 9 9 9 9 9 9 9 9 9 8 7 3 2 2 6 4 4  
L L L . . . L L L  L L ............... HHHHHHHHHHHHH. . L L . . HHHHHHHHHHHHHH. . . L . .

e  e b b b b b b b b b b e e e b b b b b b b b b b  b b b b b e e e b b b b e b e b b b e e b b b  b b b  e e e b  
4 1 0 1 1 2 1 0 1 7 7 7 3 2 0 0 3 2 5 2 7 5 4 0 6 3 1 1 3 0 1 0 4 2 3 0 4 1 2 1 1 6 1 3 2 3 1 1 7 6 6 1 5 3 5 1 0 0 1 2  
e ......................b b b ................ b . b b b  . b ....................b . . .  b . . . .  b ..................b b b .. b . b ..............

AA
PHD s e c
R e l s e c
SUB s e c

P 3 a c c
R e l a c c
SUB a c c

  ____1 3 . . . , ______7 4 .  . _______ 1 5 . . . , ____ 1 6 . . . , _____1 1 . . . , ______7 8
DFWLLRFQPGENEVRPHAGVIDCAPFHGVWAEQGQIIVQSRDTALAADIGYGVYVDKAFA 

EEE E HHH E EEEE HHHH HHHHH
3 2 0 1 3 4 3 4 7 8 5 6 3 3 5 7 5 6 5 3 1 1 3 5 5 4 4 3 1 1 3 2 2 4 4 4 7 6 4 0 3 3 3 5 6 4 1 2 2 8 7 4 1 1 0 2 6 9 9 9  
..................... L L L L . . L L L L L  L L ................................E E ..............H H_____ L L ..............HHHH

e b b b b  b  e e e e e b  e e b b b b b b b b b  b b b b e e b e b b b e b  e e b b b b e b b b b b b b b e b b b  
0 5 5 5 5 1 0 1 3 1 1 1 1 4 1 0 0 5 1 4 5 0 6 6 0 0 0 2 2 4  4 2 0 3 1 5 6 5 0 5 1 2 0 5 2 8 4 1 2 1 0 3 4 0 7 0 1 7 4 5  
. b b b b ..................... b . . . b . b b . b b ...............b b . . . . b b b . b . . . b . b b  b . b .  . b b b

AA
PHD s e c
R e l s e c
SUB s e c

P 3 a c c
R e l a c c
SUB a c c

   7 9 .  . . . . . .  . 8 0 .  . . , _____ 8 1 .  .   8 2 .  .   8 3 .  .   8 4
M LT A CV EV W ARELLSSSTASTTACSSSSVLSSALPSVTSSSSGTATVSPPSCSSSSATW L 
HHHHHHHHHHHHHHHH EE EE E EEE EEE HHHH
9 9 9 9 9 9 9 9 9 9 9 9 9 9 6 2 4 5  6 4 2 2 1 3 2 1 3 3 1 1 2 4 5 7 7 4 1 3 3 3 7  6 6 2 2 1 3 2 8 9 8 8 8 4 3 2 1 5 7 8
HHHHHHHHHHHHHHH. . L L ..................................... L L L ............. L L L ..............L L L L L _____ HHH

b b b b b b e b b b e e b b e e e e b b e e b b b b b e b b b e b b e e b b b e e e e e b e b e e e e b e e e b b e b b  
4 5 1 7 5 7 1 4 3 9 2 2 3 2 1 2 0 1 2 0 0 1 2 3 0 0 0 0 4 5 3 1 2 1 0 2 2 0 1 0 0 2 0 0 4 1 1 0 1 2 1 2 0 0 0 0 4 1 1 2  
b b . b b b  . b . b ....................................................b b .........................................b ...............................b . . .



 , _____ 8 5 .  . . . . . .  . 8 6 .  .    8 7 .  . . , _____ 8 8
AA EERDEWVRSLAVDAQHAARRVASEGLRFFRLNA
P H D s e c  HHHHHHHHHHHHHHHHHHHHHHHH EEEE
R e l  s e c  8 8 8 9 9 9 9 9 9 8 7 5 6 9 9 9 9 9 9 9 9 8 7 5 2 1 2 1 4 2 4 3 9
SUB s e c  HHHHHHHHHHHHHHHHHHHHHHHH....................... L

P _ 3 _ a c c  e e  e e b b  b b b b e b e  b b e e b b e e b b  b b  b e e
R e l a c c  3 3 1 2 4 0 6 0 2 5 6 2 0 7 2 0 3 3 4 2 3  6 0 4 1 3 1 2 5 1 0 0 5
SUB a c c  . . . . e . b . . b b . . b . . . . e . . b . e . . . . b . . . e



Appendix 2

‘Predict-protein’ analysis of HSV-1 UL8



PHD results (normal)
  _____1 _____   2 _____ , ______3 _____   4 __________  5 __  6

AA MDTADIVWVEESVSAITLYAVWLPPRAREYFHALVYFVCRNAAGEGRARFAEVSVTATEL
P H D _ s e c  E E E EE  EEEEHHHHHH HHHHHHHHHHHHHHH E E E E E E E E E E  HHHH
R e l s e c  9 9 9 8 4 3 5 4 2 1 1 1 3 3 4 2 1 2 3 4 1 1 4 8 9 4 3 9 9 9 9 9 9 9 8 7 5 5 4 4 3 3 6 6 5 2 2 2 5 7 9 9 9 7 5 2 4  65  6
SUB s e c  L L L L . . E ..............................................L L . . HHHHHHHHHHH L L L . . . E E E E E E E . . HHH

P _ 3 _ a c c  e e b e e b b  b e e b b b b b b b b b b b b e e e e e e b b e b b b b b b b  e e e e e b e b e b b e b b b e b e e b
R e l a c c  1 1 1 1 0 5 0 0 5 1 0 5 6 5 7 8 4 8 3 5 3 3 0 1 2 2 0 1 2 1 7 1 7 9 9 3 9 8 9 0 1 0 1 1 4 0 1 5 2 6 7 1 8 0 6 0 2 3 1 3
SUB a c c   b . . b . . b b b b b b b . b ............................b . b b b . b b b  e . . b . b b . b . b ..............

  ____ 7 --------   8 ---------------  9    1 0 .  .    1 1 .  .    1 2
AA RDFYGSADVSVQAWAAARAATTPAASPLEPLENPTLWRALYACVLAALERQTGPVALFA
PHD s e c  HHHH HHHHHHHHHHHH HHHHHHHHHHHHHHHHHH EEE
R e l s e c  7 7 4 1 6 8 7 4 3 2 5 7 9 9 9 9 9 9 9 9 5 1 6 7 8 6 8 7 7 7 7 9 9 5 4 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 1 8 8 4 3 2 5 4
SUB s e c  H H . . L L L . . . HHHHHHHHHHH. L L L L L L L L L L L L . HHHHHHHHHHHHHHHHH. L L . . . E .

P _ 3 _ a c c  e e b e e b e e b b b b e b b b b b e b b b e b e b b b b  b b e e  e b b e b b b b b b b b b b e  e e b e  b b b b
R e l a c c  1 3 1 1 1 0 0 1 4 3 3 1 1 5 1 2 5 7 1 5 6 0 0 0 0 3 0 2 4 0 0 2 0 1 0 0 2 5 0 5 7 2 5 4 8 5 8 5 4 1 0 1 0 3 1 0  6 6 2 0
S U B _ a c c  ................. ' .  b . . . . b . . b b . b b .....................b .......................b . b b . b b b b b b b ....................b b . .

*

  _____1 3 .    ______ 1 4 . __________ 1 5 .  . . , _____ 1 6 . .   _____ 1 1 . . . , ______ 1 8
AA PLRIGSDPRTGLWKVERASWGPPAAPRAALLVAEANIDIDPMALAARVAEHPDARLAWA
P H D s e c  E EE  E E E EE E E  HHHHHHH HHHHHHHHHH HHHHHH
R e l s e c  2 0 1 1 3 4 9 8 6 6 2 6 8 7 9 7 3 3 8 8 9 9 9 9 8 5 2 1 3 7 7 8 5 4 1 3 3 2 3 5 6 4  6 8 7 8 8 7 7 4 2 4 8 6 6 8 8 8 9 9

' SUB s e c  ................L L L L . E E E E E . . L L L L L L L L . . . HHHH..................L L . HHHHHHH. . . LLHHHHHH

P _ 3 _ a c c  b b e b e e e  e b b b b b e b e e e e e e e e e b b  b b b b e b e b e b e b e e b b b e b b b b e e e e e e b b b b  
R e l a c c  2 1 1 2 1 2 1 0 1 2 4 5 5 7 2 2 1 1 0 1 1 0 1 3 0 1 2 1 5 7 5 5 1 3 1 4 2 4 0 6 0 0 0 5 5 0 8 0 2 6 3 1 1 0 0 1 4 9 1 9  
SUB a c c  ............................b b b b  b b b b . . . b . b . b . . . b b . b . . b ................b b . b

  _____ 1 9 .  ._________2 0 . . . , ______ 2 1 .  .   2 2 .  .    2 3 . .  _________ _2 4
AA RLAAIRDTPQCASAASLTVNITTGTALFAREYQTLAFPPIKKEGAFGDLVEVCEVGLRPR
P H D s e c  HHHHHH E EE EE  HHHHHHHHHHH HHHHHHHHEE
R e l  s e c  9 9 9 9 9 5 3 8 8 4 1 4 5 7 9 8 7 4 8 9 7 4 7 3 3 4 5 4 3 5 7 7 6 5 5 3 8 9 9 7 5 5 7 7 7 3 2 3 7 7 7 6 4 5 4 1 2 1 4 5
SUB s e c  H H H H H H .L L . . . L L L L L . E E E . L . . . H . . HHHHHH. L L L L L L L L L . . . HHHH. H  L

P _ 3 _ a c c  b b b b b  e e e e e e e e e e b e b e b b b e e b e b  b e b e e b e e  e e e e e b e b b b b b e b b e e e b e . e e
R e l a c c  1 9 3 7 4 1 3 1 2 3 1 1 2 1 0 1 2 0 8 1 6 2 3 2 2 6 1 5 0 0 1 2 1 1 0 0 1 0 0 1 2 2 3 1 1 1 2 0 5 5 1 5 0 0 0 1 4 1 0 4
SUB a c c  . b . b b .....................................b . b . . . . b . b ............................................................ b b . b . . . . b . . e

  _____2 5 . . . , ______2 6 .  .   2 1 . . . ,  2 8 .  .   2 9 .  . . , ___3 0
AA GHPQRVTARVLLPRDYDYFVSAGEKFSAPALVALFRQWHTTVHAAPGALAPVFAFLGPEF
PHD s e c  E E E E E EE  EE  HHHHHHHHHHHHHHHH HHHHHHE

R e l s e c  9 9 7 3 2 6 9 9 9 9 8 3 7 8 6 3 2 1 3 3 2 4 6 4 3 1 2 5 9 9 9 9 9 9 9 9 9 9 9 9 9 8 5 3 8 8 5 3 1 4 5 4 4 3 1 2 9 8 6 5  
SUB s e c  L L L . . E E E E E E . L L L ...................L . . . . HHHHHHHHHHHHHHHH. L L L . . . H  LLLL

P _ 3 _ a c c  e  e e e b b b b b b b b e e b b b b b b e b e e b b b b b b b b b b e b b b b b b  e e e e b b b b b b b b b b b e b
R e l a c c  0 1 1 2 1 4 3 9 1 8 7 6 2 1 0 5 0 4 7 5 0 0 0 2 1 0 4 1 1 7 7 5 7 7 6 0 1 5 2 4 4 3 0 0 0 0 1 0 4 3 2 9 9 8 4 5 3 0 1 4
SUB a c c   b . b .  b b b . . . b . b b b ................. b . . b b b b b b . . b . b b  b . . b b b b b . . . b

 , _____ 3 1 .  .   3 2 .  . . . . . .  . 3 3 .  .  3 4 .  . . , ______ 3 5 .  . . , _____ 3 6
AA EVRGGPVPYFAVLGFPGWPTFTVPATAESARDLVRGAAAAYAALLGAWPAVGARWLPPR
P H D s e c  E EE E E E  HHHHHHHHHHHHHHHH EEE
R e l s e c  7 7 9 9 9 8 6 3 6 9 9 8 8 1 5 8 9 1 0 4 4 4 5 8 8 7 3 1 4 6 8 9 9 9 9 9 9 9 9 9 9 9 9 9 2 8 9 7 4 3 2 3 2 1 5 2 3 4 7 8
SUB s e c  L L L L L L L . E E E E E . L L L  L L L L . . . HHHHHHHHHHHHHHH. L L L ............... E . . . LL

P _ 3 _ a c c  e e b e e  b b b b b b b b b b  b b b e b e b e b e e b e e b b  e b b b b b b b b e b b b b b b b b e b b b b b e
R e l a c c  1 1 3 0 1 2 0 0 2 6 5 5 6 3 3 0 1 0 1 0 5 2 1 0 5 1 0 2 0  4 , 1 1 3 8 0 0 5 3 0 3 1 1 0 1 1 1 1 4 3 3 2 6 3 0 7 3 0 0 0 0  
SUB a c c  ......................... b b b b ...................b . . . b . . . . b . . . b . . b .............................b . . . b . . b ..............

  ____ 3 1 . . . ,  3 8 .  .   3 9 .  . . , ___4 0 .  . . . . . .  . 4 1 .  . . , ______42
AA AWPGVASAAAGCLLPAVREAVARWHPATKIIQLLDPPAAVGPVWTARFCFPGLRAQLLAA
P H D _ s e c  HHHHHHHHHHH E E E EE EE  EEEE HHHHHHHHHH
R e l s e c  8 8 7 3 3 2 1 2 1 4 7 7 2 5 7 9 9 9 9 9 9 9 9 1 6 9 9 9 2 8 8 7 8 7 3 5 4 4 3  6 8 7 4 2 5  6 3 2 7 2 5 8 9 9 9 9 9 9 9 9
S U B s e c  L L L .................... L L . HHHHHHHHHH. L L L L . E E E E E . L . . . L L L . . E E . . L . HHHHHHHHHH

p  3 _ a c c  b b e e e b e e b b e e b  e e b e e b b b e b e e e e e b b e b b e e e b e b e e e b b b  b  b b e b  b e b b b b
R e l a c c  0 1 1 1 0 0 1 1 0 1 1 1 0 0 2 1 5 2 1 6 2 2 1 1 1 3 1 0 2 3 3 0 6 4 2 0 0 2 1 1 2 1 1 0 0 7 1 5 0 5 0 0 6 0 5 0 8 2 2 4
SUB a c c  ............................................. b . . b ...................................b b .................................b . b . b . . b . b . b . . b



AA
PHD s e c
R e l s e c
SUB s e c

P 3 a c c
R e l a c c
SUB a c c

AA
PHD s e c
R e l s e c
SUB s e c

P  3 a c c
R e l a c c
SUB a c c

AA
PHD s e c
R e l s e c
SUB s e c

P 3 a c c
R e l a c c
SUB a c c

AA
PHD s e c
R e l s e c
SUB s e c

P  3 a c c
R e l a c c
SUB a c c

AA
PHD s e c
R e l s e c

SUB s e c

P 3 a c c
R e l a c c
SUB a c c

AA
PHD s e c
R e l s e c
SUB s e c

P 3 a c c
R e l a c c
SUB a c c

  _____4 3 . . . , ______ 4 4 .  . ________4 5 . . . , ______ 4 6 . . .    4 7 .  . . . . . .  . 4 8
LADLGGSGLADPHGRTGLARLDALWAAPSEPWAGAVLERLVPDTCNACPALRQLLGGVM 
HHHHHH HHHHHHHHHH HHHHHHH HHHHHHHHHHHHHHH
9 9 9 9 8 5 2 4 5 2 4  6 8 9 6 1 3 8 9 9 9 8 8 8 7 5 2 9 9 9 8 1 1 1 8 9 9 9 8 7 4 2 4 7  6 2 4  6 9 9 9 9 9 9 9 9 9 8 5 3  
HHHHHH. . L . . L L L L . . HHHHHHHHH. L L L L . . . HHHHHH. . . L L . . HHHHHHHHHHHH.

b b e b b e e b .  b e e e b e e b b b  b e b b b b b b b b e e  b e b b b e e b  e e b e e b b e b b  e b b e b b b  
1 0 2 4  0 2 0 1 0 1 1 1 2 2 1 1 1 3 0 1 6 1 0 3 6 4 6 7 2 1 2 1 0 5 1 0 3  6 1 0 4 0 1 1 0 0 2 6 1 1 4 8 0 1 7 3 2 0 5 4  
. . . b .............................................. b . . . b b b b ...............b . . . b . . b .................b . . b b . . b . . . b b

  ____ 4 9 .  .    5 0 .  . . , _____5 1 .  .    5 2 .  . . ,  5 3 .  . . , _____ 5 4
AAVCLQIEETASSVKFAVCGGDGGAFWGVFNVDPQDADAASGVIEDARRAIETAVGAVLR 
HHHEEEHHHHH E E E EE E E  HHHHHHHHHHHHHHHHHHHHHHHH
5 4  4 2 3 2 1 2 5 4 2 0 2 5 2 1 6 8 7 3 1 1 4 4 3 1 0 0 2 2  6 9 9 6 3 1 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9  
H ...................H  L . . E E E ................................. L L L L . . HHHHHHHHHHHHHHHHHHHHHHHH
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