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Abstract

The expansion of CAG'CTG trinucleotide repeat sequences has been identified as the 

genetic cause of several human diseases, including myotonic dystrophy type 1, Huntington disease, 

and an ever-increasing number of spinocerebellar ataxias. Once above a size threshold, the repeats 

become dramatically unstable in the germline and also throughout the soma, with a marked bias 

towards further expansion. Such expansions constitute a unique form of dynamic mutation, whose 

mechanism is poorly understood. While germline instability serves as the molecular basis for 

genetic anticipation; age-dependent, tissue-specific somatic instability most likely contributes to 

the tissue specificity, phenotypic variability and progressive nature of these conditions. The study 

of the mutation mechanism is therefore of major interest, as it may provide valuable clues towards 

a better understanding of disease pathophysiology.

It is generally assumed that the repeat length changes arise through DNA polymerase 

slippage during DNA replication, however no direct evidence exists to support this hypothesis in 

mammalian systems. Transgenic mouse models of unstable CAG'CTG repeats have been 

previously generated, and shown to recreate the dynamic nature of somatic mosaicism observed in 

humans. Tissues from these mice have now been used in order to establish an in vitro cell culture 

system, where the repeat dynamics could be investigated under controlled conditions. Monitoring 

of repeat stability in these cells over long periods of time, and numerous population doublings, has 

revealed the progressive accumulation of larger alleles, as a result of repeat length changes in vitro, 

confirmed by single cell cloning. Selection of cells carrying longer repeats was observed during the 

first few passages of the cultures, and frequent additional selective sweeps were also detected at 

later stages. The highest levels of instability were observed in cultured kidney cells, whilst the 

transgene remained relatively stable in eye cells and very stable in lung cells, paralleling previous 

in vivo observations. More importantly, the levels of repeat instability in cultured cells did not 

correlate with cell proliferation rates, rejecting a simple association between length change 

mutations and cell division, and suggesting an important role for additional cell type-specific and 

possibly environmental trans-acting modifiers of repeat metabolism.

The effects of multiple genotoxic agents on the mutational dynamics of expanded 

trinucleotide repeats were assessed in this tissue culture model of unstable DNA. The drugs tested 

were selected based on their ability to affect cell cycle progression, DNA polymerase activity, 

DNA methylation, intracellular levels of oxidative stress or DNA conformational metabolism. The 

analysis led to the identification of chemicals, such as aspirin, 5-azacytidine and 1-B-D- 

arabinofuranosyl-cytosine that resulted in the deceleration of the rate of trinucleotide repeat 

expansion, particularly in a kidney clonal cell line carrying rapidly expanding repetitive tracts. 

These observations were reported in the absence of major changes in the rates of cell turnover. In 

contrast, forced cell cycle progression by exposure to caffeine resulted in a significantly higher rate 

of triplet repeat expansion. Increased levels of oxidative stress, generated in culture by exposure to
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a variety of drugs, were associated with reduced levels of repeat size variability, most likely 

through means of cell selection in culture. Since pathology in CAG#CTG-associated diseases is 

mediated by a variety of complex and unrelated molecular pathways, drug induced modification of 

DNA dynamics could present a possible therapeutical route for these disorders. Specifically, 

chemical treatments that resulted in suppression of somatic repeat expansion would be expected to 

be beneficial, whilst reversion of the expanded mutant repeat to the normal repeat size range, 

observed in the general population, would be predicted to be curative. Although preliminary, the 

findings described in this study may open new avenues in the search for novel therapeutical 

strategies.

Mechanistic models of repeat length mutation based on DNA replication, recombination 

and repair have been proposed. The latter have implied the involvement of mammalian M utS  

homologues (M sh2 , Msh3 and M s h 6 ). In order to gain further insight into the molecular 

mechanisms driving trinucleotide repeat mutation, the involvement of a mammalian M utL  

homologue (Pms2) in the mutation dynamics was investigated. No significant differences were 

observed between Pms2+I+ and P m s2+I' mice, suggesting that a single functional Pm s2  allele is 

sufficient to maintain high levels of somatic mosaicism. The levels of Pms2 mRNA and protein in 

heterozygotes deficient for Pms2 have not yet been investigated. In contrast to what would be 

predicted by the replication slippage model, lower levels of trinucleotide somatic mosaicism were 

detected in homozygous Pms2-nu\l mice, compared with age-matched controls, carrying either one 

or two functional copies of the Pm s2  allele. In addition, a higher frequency of rare but large 

deletion events was detected in Pm s2'1' animals. Both results proved statistically significant by 

single molecule analysis. These findings imply that, not only MMR enzymes that directly bind to 

DNA, but also proteins that are subsequently recruited by MutS proteins, play a central role in the 

accumulation of repeat length changes, arguing against a mutation mechanism mediated by 

stabilisation of alternative DNA secondary structures by MMR proteins. MMR gene 

polymorphisms and variants might therefore be considered potential determinants of trinucleotide 

repeat instability in humans, predicted to affect both age of onset and disease progression.
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1. Introduction

1.1. Trinucleotide repeats and human disease

In 1991, a new mutational disease mechanism was identified as the molecular basis of two 

human genetic diseases, fragile X syndrome (FRAXA), and spinobulbar muscular atrophy 

(SBMA): the expansion of simple trinucleotide repeats. A DNA repetitive trinucleotide sequence 

(GGOCCG or CAG'CTG), was found to be increased in copy number beyond a certain threshold 

in affected individuals (Fu et al., 1991; La Spada et al., 1991). Triplet repeat expansions have since 

been found to cause an ever-increasing list of human diseases (Table 1.1), all showing neurological 

and/or neuromuscular involvement, and clinical pictures that range from mild to severely 

debilitating, or even fatal. Trinucleotide repetitive sequences are usually polymorphic in normal 

individuals, being usually shorter than 35 repeats, depending on the loci (Cummings and Zoghbi, 

2000b). However, once into the expanded disease-associated range (usually corresponding to more 

than 35 triplet repeat units) the repeat tracts become dramatically unstable, exhibiting very high 

mutation rates, with a marked tendency for further expansion, not only in the germline but also in 

somatic cells (Richards, 2001).

Following the description of FRAXA and SBMA mutations, came the identification of five 

other neurological diseases caused by untranslated triplet repeats: myotonic dystrophy type 1 

(DM1) (Aslanidis et al., 1992; Brook et al., 1992; Buxton et a l ,  1992; Fu et al., 1992; Harley et 

a l ,  1992; Mahadevan et al., 1992), fragile XE mental retardation (FRAXE) (Knight et al., 1993), 

Friedreich ataxia (FRDA) (Campuzano et al., 1996), spinocerebellar ataxia (SCA) type 8 (SCA8) 

(Koob et al., 1999) and SCA12 (Holmes et al., 1999). Additionally, other neurodegenerative 

diseases were described as the result of an expansion of CAG'CTG repeats within multiple genes, 

encoding for polyglutamine stretches in the corresponding proteins: Huntington disease (HD) (The 

Huntington's Disease Collaborative Research Group, 1993); dentatorubral pallidoluysian atrophy 

(DRPLA) (Koide et a l ,  1994; Nagafuchi et al., 1994), SCA1 (Orr et al., 1993), SCA2 (Sanpei et 

a l ,  1996), Machado-Joseph disease (MJD), also termed SCA3 (Cancel et al., 1995), SCA6 

(Zhuchenko et al., 1997), SCA7 (David et al., 1997) and SCA17 (Koide et al., 1999; Nakamura et 

al., 2001). Trinucleotide repeat disease can therefore be grouped into two subclasses based on the 

relative location of the trinucleotide repeat within the affected gene (Figure 1.1). The first subclass, 

collectively referred to as “polyglutamine diseases”, is characterised by exonic CAG'CTG repeats 

that code for polyglutamine tracts. The second subgroup includes disorders caused by repeats that 

map within non-coding regions of a gene. At the moment all these human conditions have very 

limited treatment options.

Both FRAXA and FRAXE are associated with fragile sites, which are chromosomal points 

that show a high frequency of non-random breaks, under specific in vitro conditions. Fragile sites 

are readily observed by cytogenetic analysis, following exposure of the cells, from which the 

chromosomes are prepared, to particular conditions of tissue culture or chemical agents (Sutherland 

e ta l., 1998; Sutherland and Richards, 1995).
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Table 1.1. Summ ary of trinucleotide repeat disorders (adapted from Sinden e ta ! ., 2002)

Disease Inheritance Locus Gene Protein product Repeat
sequence3

Repeat
location

DM1 Autosomal
dominant

19q13.3 DMPK Myotonic dystrophy 
protein kinase

CTG 3’UTR

DRPLA Autosomal
dominant

12p13.31 DRPLA Atrophin-1 CAG Coding

FRAXA X-linked
recessive

Xq27.3 FMR1 Fragile X mental 
retardation protein

CGG 5’UTR

FRAXE X-linked
recessive

Xq28 FMR2 FMR2 protein CGG 5’UTR

FRDA Autosomal
recessive

9q13-21.1 X25 Frataxin GAA Intronic

HD Autosomal
dominant

4p16.3 HD/IT15 Huntingtin CAG Coding

SBMA X-linked
sex-limited

Xq13-21 AR Androgen receptor CAG Coding

SCA1 Autosomal
dominant

6p23 SCA1 Ataxin-1 CAG Coding

SCA2 Autosomal
dominant

12q23.1 SCA2 Ataxin-2 CAG Coding

SCA3/
MJD

Autosomal
dominant

14q32.1 SCA3/MJD Ataxin-3 CAG Coding

SCA6 Autosomal
dominant

19p13 CACNA1A aiA-voltage-dependent 
calcium channel 
subunit

CAG Coding

SCA7 Autosomal
dominant

3p12-13 SCA7 Ataxin-7 CAG Coding

SCA8 Autosomal
dominant

13q21 None None CAG 3' endb

SCA12 Autosomal
dominant

5q31 -33 PPP2R2B Protein phosphatase 
2, regulatory subunit 0

CAG 5’UTR

SCA17 Autosomal
dominant

6q27 TBP TATA-binding protein CAG Exonic

a On the coding/sense DNA strand 
b Untranslated transcript (see Section 1.2.2.5)

Not all trinucleotide expansions (>35 repeats) are associated with a clinical phenotype, 

since at least two non-pathogenic CAG'CTG repeat expansions have been described (Breschel et 

al., 1997; Ikeuchi et al., 1998; Nakamoto et al., 1997).

As a consequence of the expanding number of neurological and neuromuscular diseases 

associated with trinucleotide repeat sequences, both the molecular mutational mechanisms and the 

pathogenic pathways leading from mutation to disease phenotype, have been the subjects of intense 

research. The common properties of the repeats in different diseases and fragile sites have given 

insight into this unique form of DNA instability. Referring to the idiosyncratic properties of 

trinucleotide repeat sequences, the term “dynamic mutation” was introduced to distinguish mutant 

alleles, which once beyond a specific size threshold become dramatically unstable in a length- 

dependent manner (Richards and Sutherland, 1992).
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DM1
SCA8

F igu re  1.1. L oca tion  of tr in u c le o tid e  re p e a t t r a c ts  in trip le t re p e a t d is e a s e  g e n e s .
An idealised gene is shown in the figure. The dark grey areas represent the coding 
region that is transcribed and translated into the final gene product. The transcription 
start and stop positions are indicated. The light grey bars represent the 5’ upstream 
and 3’ downstream untranslated regions (UTR). Introns are shown in black. Both 
disease-associated (CGG)n triplet repeats are located in the 5’ UTR. The (CAG)n 
repeat in SCA12 is also located in the 5’ UTR. Glutamine encoding (CAG)n 
expansions are located within exons of the gene coding regions. The (GAA)n repeat in 
FRDA is located in an intron. The non-coding (CTG)n repeats in DM1 and SCA8 map 
within the 3’ UTR of the associated genes (adapted from Sinden eta!., 2002).

The application of comparative molecular anatomy to the study o f molecular fragile sites and 

disease loci associated with triplet repeat disorders has led to the identification o f a number of  

common properties, which most likely reflect common molecular mechanisms for both the genesis 

o f expanded alleles and pathophysiology. First, the mutant repeats exhibit both som atic and 

germline instability, with a clear bias towards expansion in repeat copy number, and with mutation 

rates related to the initial number o f repeats. W hile polyglutam ine disorders typically involve  

smaller repeat expansions (ranging from -3 5  to -1 0 0  units) the second subclass o f conditions, 

caused by non-coding repeats, is usually characterised by m assive repeat expansions (from -3 5  up 

to several hundreds, or even thousands o f repeats), both between generations and in the soma. 

Second, rare founder events hint at the existence o f alleles with increased likelihood o f undergoing 

changes in repeat copy number. Third, diseases caused by trinucleotide repeat expansion exhibit a 

relationship between copy number o f the repeat and the severity and age o f onset o f symptoms 

(Richards, 2001). Taken together, these properties account for the phenom enon o f clin ical 

anticipation, the increasing severity, more rapid disease progression and decreasing age o f onset in 

successive generations within an affected fam ily. Although there are som e unifying phenomena 

connecting the dynamic mutation disorders, little is understood, not only about the pathways that 

lead from mutation to disease, but also about the m olecular m echanism s o f repeat mutation 

(Cummings and Zoghbi, 2000a; Richards, 2001; Sinden, 2001).
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1.2. Molecular pathogenesis

Increasing the copy number of an existing DNA repeat sequence might appear to be a 

relatively simple process with no major biological implications. In reality, the biological 

consequences can be remarkably complex. Indeed, trinucleotide repeat expansions may cause 

pathology through a variety of mechanisms, including interference with DNA structure, 

transcription, RNA-protein interaction and altered protein conformation and metabolism. This is 

clearly indicated by the fact that the currently known triplet repeat expansions associated with 

disease are found in both 5 ’ and 3 ’ untranslated regions (UTR), introns and within coding 

sequences of various affected genes (Cummings and Zoghbi, 2000b). A brief summary of the 

molecular pathophysiological events that may link trinucleotide repeat expansion to the disease 

phenotype is presented below.

1.2.1. Polyglutamine diseases

Polyglutamine diseases are most frequently autosomal dominant, with the exception of 

spinobulbar muscular atrophy (SBMA), which exhibits an X-linked sex-limited pattern of 

inheritance (Table 1.1). Although the proteins mutated in these conditions do not share any degree 

of identity or similarity, aside from the polyglutamine tract, several outstanding features are shared 

by this subclass of disorders, hinting at a possible shared mechanism of pathogenesis. All these 

diseases are progressive, typically striking in mid-life and causing increasing dysfunction and 

eventual neuronal loss 10 to 20 years after the onset of symptoms (Cummings and Zoghbi, 2000a; 

Cummings and Zoghbi, 2000b; Zoghbi and Orr, 2000). Analysis of repeat size and 

symptomatology in polyglutamine disease patients has demonstrated an inverse relationship 

between the repeat size and the age at onset. Each disorder shows a characteristic threshold for 

glutamine tract length, below which symptoms do not occur. Above the threshold, the progressive 

decrease in age of onset with increasing polyglutamine length shows a slightly different slope for 

each disorder, indicating that the increased severity, due to each extra glutamine residues, depends 

on the protein context. It is also clear from careful study of various kindreds that additional factors, 

probably either environmental or genetic, contribute to the onset of disease (Gusella and 

MacDonald, 2000; Zoghbi and Orr, 2000). Despite the widespread expression of the relevant 

protein throughout the brain and other tissues, only a certain subset of neurons is vulnerable to 

dysfunction in each of these diseases (Table 1.2). The variability in cell-specific degeneration is 

lost, however, when the expansions are very large, leading to severe juvenile-onset disease. In these 

cases, there is significant overlap in the phenotypes (Cummings and Zoghbi, 2000b). The loss of 

cell specificity hints that toxicity is probably much more widespread through neuronal and non

neuronal cells, which are normally spared when the repeat sizes are moderately expanded. It may 

also reinforce the idea that repeat expansions are smaller in the coding repeat disorders because of 

selective pressure against very large expansions, which are likely to be embryonic lethal. Very long 

polyglutamine expansion may be so neurotoxic that they override their specific disease context,
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causing a more widespread “glutaminopathy” (Cummings and Zoghbi, 2000a; Cummings and 

Zoghbi, 2000b; Paulson, 1999; Zoghbi and Orr, 2000).

Table 1.2. Protein localisation and patterns of degeneration in polyglutamine 
diseases (adapted  from Zoghbi and  Orr, 2000).

Disease Protein Normal protein 
localisation

Brain regions most 
affected

DRPLA Atrophin-1 Cytoplasmic Cerebellum, cerebral cortex, 
basal ganglia, Luys body

HD Huntingtin Cytoplasmic Striatum, cerebral cortex

SBMA Androgen receptor Nuclear and 
cytoplasmic

Anterior horn and bulbar 
neurons, dorsal root ganglia

SCA1 Ataxin-1 Nuclear in 
neurons

Cerebellar Purkinje cells, 
dentate nucleus, brain stem

SCA2 Ataxin-2 Cytoplasmic Cerebellar Purkinje cells, 
brain stem, fronto-temporal 
lobes

SCA3/MJD Ataxin-3 Cytoplasmic Cerebellar Purkinje cells, 
brain stem, spinal cord

SCA6 aiA-voltage-dependent 
calcium channel subunit

Cell membrane Cerebellar Purkinje cells, 
dentate nucleus, inferior olive

SCA7 Ataxin-7 Nuclear Cerebellum, brain stem, 
macula, visual cortex

SCA17 TATA-binding protein Nuclear Cerebellar Purkinje cells, 
molecular layer, dentate 
nucleus

1.2.1.1. Toxicity of polyglutamine tracts

There are no described cases of polyglutamine diseases caused by deletions or point 

mutations, and the CAG'CTG repeat expansion does not appear to compromise the normal 

function of the protein (Dragatsis et al., 2000; Zoghbi and Orr, 2000), suggesting that these 

disorders do not result from a loss of gene function. A  model of pathogenesis posits that the 

expanded glutamine tract mediates some undefined toxic gain-of-function, which results in 

neuronal dysfunction and death. Studies of mouse models have been the most compelling to show 

the enhanced toxicity of longer polyglutamine tracts in causing disease (Burright et al., 1995; Ikeda 

et al., 1996). The development of neuropathological phenotype by transgenic mice expressing a 

highly expanded polyglutamine tract (239 glutamines) alone, under the control of the human 

androgen receptor promoter (Adachi et al., 2001), strongly suggested that polyglutamine tracts are 

toxic per se, and can induce neuronal dysfunction, irrespective of the protein context. In contrast, 

expression of an untranslated human HD transcript in transgenic mice, failed to cause the 

development of any phenotype despite the high levels of expression (Goldberg et al., 1996). The 

causative agent in these conditions is clearly different from other diseases, in which untranslated 

triplet expansions are located in non-coding regions of mRNA transcripts. These findings
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established that these inherited neurodegenerative disorders may appropriately be termed 

“polyglutamine diseases”.

1.2.1.2. Polyglutamine protein intranuclear inclusions

The presence of intranuclear inclusions is a shared pathological hallmark of polyglutamine 

disorders. These aggregates were first identified in mouse models of HD and in human HD brains 

(Becher et al., 1998; Davies et al., 1997; DiFiglia et al., 1997), but they have also been described in 

other polyglutamine diseases. The predominant nuclear localisation of the inclusions is intriguing 

given the various subcellular localisations of the soluble forms of these proteins (Table 1.2). 

Nuclear inclusions might compromise neuronal function by sequestering transcription factors, or 

other regulatory nuclear proteins, containing glutamine-rich or pure polyglutamine domains, 

thereby altering transcription of genes that are critical for neuronal functions, mRNA splicing, or 

the export of proteins and RNA to the cytoplasm (Green, 1993; Paulson, 1999; Perutz et al., 1994). 

The redistribution of proteosome components molecular chaperones to intranuclear inclusions 

suggests that a stress response is mounted to cope with the presence of toxic misfolded 

polyglutamine proteins (Davies et al., 1999; Matilla etal., 2001; Paulson, 1999).

The discovery of intranuclear inclusions suggested a common pathogenic pathway for all 

polyglutamine disorders. However, the initial evidence that nuclear inclusions were only present in 

vulnerable neurons, which once offered a clue to the selective vulnerability observed in 

polyglutamine diseases, is not holding true. Studies of brains of HD and SCA7 patients revealed 

that the regional distribution of the nuclear inclusions was not selectively restricted to specific 

regions of pathology (Gutekunst et al., 1999; Holmberg et al., 1998). Furthermore, studies in cell 

culture and mouse models of polyglutamine diseases, have shown that, while polyglutamine 

localisation in the nucleus is critical for pathogenesis (Klement et al., 1998), the formation of 

nuclear inclusions does not correlate with neuronal death (Cummings et al., 1999; Klement et al., 

1998; Saudou et al., 1998). Consequently, it has been proposed that, rather than being pathogenic, 

nuclear inclusions may instead be protective against the toxic effects of the expanded 

polyglutamine (Sisodia, 1998). Soluble mutant proteins may actually be more toxic if not properly 

ubiquitinated, turned-over or possibly sequestered to a nuclear inclusion.

1.2.1.3. Cytoplasmic aggregates

It has become clear that, apart from intranuclear inclusions, cytoplasmic protein aggregates 

are also present in the cortex and striatum of adult and juvenile HD patients, but not in control 

brains (DiFiglia et al., 1997). Cytoplasmic aggregates are typically more common than those in the 

nucleus, appear to accumulate with the duration of the disease and, most significantly, were 

observed in a presymptomatic HD patient (Gutekunst et al., 1999). The development of 

cytoplasmic aggregates correlates with the progression of symptoms in transgenic mice (Li et al., 

1999; Schilling et al., 1999), being preferentially detected in the striatal neurons, which degenerate 

during the early stages of HD knock-in mice, expressing full-length mutant huntingtin (Li et al.,
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2001). Cytoplasmic polyglutamine aggregates may play a role in polyglutamine-induced 

neurodysfunction, as they promote a pathological mechanism of protein-protein interaction, which 

may result in recruitment of caspases, which upon activation may enter the nucleus and trigger the 

apoptotic cell death pathway (Li et al., 2000c; Ona et a l,  1999; Sanchez et al., 1999). Despite the 

latest progress, it still remains unclear whether protein aggregation does indeed contribute to 

pathogenesis, or whether it is simply a by-product of the disease process, indicative of cell stress.

1.2.1.4. Cell dysfunction versus cell death

Although it had long been assumed that the neurological phenotype in polyglutamine 

patients resulted from neuronal death, the generation of transgenic mice expressing truncated forms 

of polyglutamine-containing peptides, revealed minimal and delayed neuronal death, relative to the 

development behavioural symptoms (Davies et al., 1997; Mangiarini et a l,  1996). Gene targeting 

approaches enabled the generation of knock-in HD mouse models, carrying a precise insertion of a 

CAG'CTG expanded repeat into the appropriate position of the endogenous Hdh  mouse gene, 

homologous to the human HD  gene (Shelboume et al., 1999; Wheeler et al., 1999b; White et a l, 

1997). Some of these mice show aggressive behaviour (Shelboume et al., 1999) and impaired 

synaptic plasticity in the absence of neurodegeneration (Usdin et al., 1999). Others exhibit 

disruption of striatal cell homeostasis and activation of cellular stress pathways (Trettel et al.,

2000), in the absence of obvious neuronal loss or gliosis (Menalled and Chesselet, 2002). Neuronal 

dysfunction, rather than neuronal death, may therefore be responsible for the pathological 

phenotype. Transcriptional alterations, prior to behavioural changes and cell death, could affect 

signalling pathways and neurotransmitter receptor levels (Cha et al., 1998; Iannicola et al., 2000; 

Lin et al., 2000a; Luthi-Carter et al., 2000), thereby providing the trigger for cell dysfunction and 

pathology in the absence of neuronal loss

1.2.1.5. Cell-specific vulnerability in polyglutamine diseases

Cell specificity in polyglutamine diseases is an interesting, yet puzzling, feature of these 

conditions. If polyglutamine tracts are a necessary and sufficient condition to cause pathology 

(Adachi et a l,  2001; Marsh et a l,  2000; Ordway et al., 1997), which factors determine the regional 

patterns of neurodegeneration, given that at least some of these proteins are widely expressed? The 

cell specificity of the various phenotypes could be due to a number of factors, such as cell-specific 

protein interactions and cell specificity of putative modifying proteins. Another possibility is that 

selective processing of full-length mutant protein is specific for a particular population of neurons, 

in agreement with the observation that N-terminal huntingtin fragments were preferentially found 

in striatal neurons of HD knock-in mice (Li et a l, 2000a). The distribution of neurologic symptoms 

may also depend on expression levels, as suggested by widespread development of neurological 

disease in mice expressing a truncated, but highly expanded, androgen receptor under the control of 

the prion promoter, in contrast with the motor symptoms developed when the expression of the 

same transgene was controlled by the neurofilament light chain promoter (Abel et al., 2001). The
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cell type specificity suggests that there may be intrinsic mechanisms in each cell, which render 

some cells resistant, while others become sensitive.

Interestingly, assessment of trinucleotide repeat dynamics in a knock-in HD mouse model 

revealed cell-specific expansion of the unstable CAG’CTG repeat in the striatum, the major 

affected tissue in HD (Kennedy and Shelboume, 2000). This result suggests that ongoing somatic 

mutation may contribute to disease, by the continuous accumulation of expanded repeats. The time 

taken for the disease to manifest could therefore represent how long it takes for the disease- 

associated allele to reach a critical higher copy number. It is possible that over time, the striatal 

cells, no longer able to cope with fast accumulating mutant polyglutamine proteins, eventually 

succumb.

1.2.2. Non-coding repeat disorders

Diseases in this subgroup are characterised by a complexity of symptoms and phenotypic 

variability. The mechanism of pathogenesis in non-coding repeat conditions varies from disease to 

disease, depending on the consequences of loss-of-function of the respective protein or, in some 

cases, acquired function of a toxic triplet repeat transcript. The trinucleotide sequence and its 

location within the affected gene may play a prominent role in dictating the unique mechanism of 

pathogenesis for each disease. Despite these inherent differences, many similarities exist within this 

group of diseases. First, the size and variation of the repeat expansion are much greater in the non

coding repeat disorders than in polyglutamine repeat conditions. Second, the non-coding repeat 

diseases are typically multisystemic disorders, involving the dysfunction and/or degeneration of 

many different tissues. Phenotypes within a disorder of this subclass are often variable, perhaps due 

to a more prominent degree of somatic repeat size heterogeneity in the non-coding repeats 

compared with the exonic repeat tracts; this is especially evident in FRAXA and DM1. Finally, 

many of the non-coding repeat disorders can be associated with a small pool of clinically silent, 

intermediate-sized expansions or premutations that may expand to the full mutation after germline 

transmission (Cummings and Zoghbi, 2000a; Cummings and Zoghbi, 2000b).

1.2.2.1. Fragile X syndrome (FRAXA)

FRAXA is an X-linked disorder, which typically presents in males, with mental retardation 

being the most common feature of the disease, but it is also associated with testicular abnormalities 

(Jin and Warren, 2000; Kooy et al., 2000). The FRAXA locus contains a polymorphic CGG'CCG 

repeat in the 5’ UTR of the fragile X  mental retardation-1 (FMR1) gene (Fu et al., 1991). The 

FMR1 gene product, FMRP, is a selective RNA-binding protein, which is widely, but not 

ubiquitously, expressed, with particularly high expression levels in neurons and gonads. Expansion 

of the CGG'CCG repeat beyond 230 trinucleotides causes disease and hypermethylation of the 

repeat tract, as well as the CpG island within the FM R1  promoter region (Hansen et al., 1992; 

Sutcliffe et al., 1992). Promoter hypermethylation results in transcriptional silencing, through 

histone deacetylation (Chiurazzi et al., 1999; Coffee et a l ,  1999), leading to low levels of FMRP.
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Identification of other mutations in the FMR1 gene, such as deletions and point mutations among 

patients showing the usual FRAXA phenotype, but without fragile site expression, firmly 

established that FMR1 is the only gene involved in the pathogenesis of FRAXA, and confirmed 

that the disease results from a loss of FMRP function (Jin and Warren, 2000; Kooy et al., 2000). 

Given that FMRP shuttles between the nucleus and the cytoplasm, and is associated with actively 

translating ribosomes in neurons, the phenotypic manifestations associated with FRAXA may 

result from the potential pleiotropic effects caused by abnormal brain RNA metabolism, essential 

for synaptic development or maintenance (Jin and Warren, 2000; Kooy et al., 2000).

1.2.2.2. Fragile XE mental retardation (FRAXE)

The FRAXE chromosomal fragile site is associated with a mild form of mental retardation. 

Similar to FRAXA, FRAXE is caused by an expansion of a polymorphic GCOGGC trinucleotide 

repeat immediately adjacent to a CpG island, in the promoter region of a gene termed FM R2  

(Knight et al., 1993). The expanded repeats are also abnormally hypermethylated, leading to 

transcriptional silencing of FMR2 (Gecz et al., 1997). The cognitive and behavioural deficits in 

FRAXE likely result from the transcriptional silencing of the FMR2 gene and subsequent loss of 

FMR2 protein function (Cummings and Zoghbi, 2000b). Although the precise function of the 

FMR2 gene product is still unknown, its putative role as a transcriptional activator and its high 

level of expression in areas of the brain involved in learning, memory and emotion, suggests that 

the pathogenesis in FRAXE results from alterations in neuronal gene regulation (Cummings and 

Zoghbi, 2000b). An additional gene, FM R3, has also been identified in the same region and it 

shares the same methylated CpG island with FM R2  (Gecz, 2000). Expression of FMR3 is also 

silenced by FRAXE full mutation, and therefore may also contribute to the disease phenotype.

1.2.2.3. Friedreich ataxia (FRDA)

FRDA is a progressive neurodegenerative disorder, involving both the central and 

peripheral nervous systems. It is autosomal recessive and characterised by progressive ataxia, 

hypertrophic cardiomyopathy, optic atrophy and diabetes (Timchenko and Caskey, 1999).

FRDA is primarily caused by a large intronic GAA*TTC repeat expansion located in the 

centre of an A /m repeat in the X25  gene, also known as frataxin (Campuzano et al., 1996). Reduced 

X25 mRNA results in decreased frataxin protein levels, suggesting that the clinical symptoms result 

from a partial loss of frataxin function (Bidichandani et al., 1998; Campuzano et al., 1996; 

Ohshima et a l ,  1998). In support of this view, patients who carry only one expanded allele and a 

point mutation within the coding region of the second allele have all the clinical features of typical 

FRDA (Patel and Isaya, 2001; Puccio and Koenig, 2000). Reduced X25  expression, maybe the 

result of transcriptional interference, via the self-association of the GAA^TTC tract, which 

stabilises a novel higher-order triplex non-B structure, known as “sticky DNA”, with the third 

DNA strand occupying the major groove of the duplex DNA (Sakamoto et al., 1999). The 

implications of the FRDA expansion on reduced gene expression is supported by the observation
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that GAA'TCC repeats from intron 1 of the X25  gene inhibit transcription in mammalian cultured 

cells (Ohshima et al., 1998). Furthermore, intrinsic biochemical properties of GAA*TTC tracts 

cause reduced transcription elongation in vitro, in the absence of any other frataxin gene sequences 

(Grabczyk and Usdin, 2000).

Frataxin has been found to localise in mitochondria, in agreement with the presence of a 

mitochondrial targeting signal in its amino acid sequence. The protein is likely to be involved in the 

respiratory function and in iron homeostasis. Frataxin insufficiency is therefore associated with 

abnormal iron-sulphur homeostasis leading to mitochondria dysfunction, free radical production, 

oxidative stress and cellular degeneration (Patel and Isay a, 2001; Puccio and Koenig, 2000). The 

enhanced sensitivity of FRDA fibroblasts to iron and oxidative stress provides further support to 

this hypothesis (Wong et a l ,  1999). Expression studies in mice and humans showed that X25  gene 

expression is higher in tissues with greater mitochondrial content, and is broadly correlated with 

the primary sites of FRDA pathology (Patel and Isaya, 2001; Puccio and Koenig, 2000).

1.2.2.4. Myotonic dystrophy type 1 (DM1)

Myotonic dystrophy or dystrophia myotonica (DM) type 1 is an autosomal dominant 

multisystemic disorder, with highly variable manifestations and clinical anticipation. The classical 

adult onset form of DM1 is primarily characterised by myotonia (delayed muscle relaxation), 

muscle weakness, and progressive muscle wasting. Other features may include facial 

dysmorphology, presenile cataracts, testicular atrophy, premature balding in males, kidney failure, 

hyperinsulin secretion and cardiac muscle conduction abnormalities. Atrophy of facial muscle 

produces a characteristic haggard appearance. Mental retardation, as well as swallowing and speech 

difficulties, is sometimes observed. There is also variable loss of mental function, but this is more 

common is congenital DM1, which is the most severe form of the disorder, also associated with 

hypotonia, respiratory distress at birth and development abnormalities (Harper, 1998).

DM1 is caused by an expanded CTG*CAG trinucleotide repeat tract in the 3 ’ UTR of the 

dystrophia myotonica protein kinase (DMPK) gene (Aslanidis et a l ,  1992; Brook et al., 1992; 

Buxton et al., 1992; Fu et al., 1992; Harley et al., 1992; Mahadevan et a l ,  1992). The gene is 

expressed predominantly in smooth, skeletal and heart muscle, and at low levels in brain and 

endocrine tissues (Jansen et al., 1992b).

The underlying molecular mechanism by which the expanded CTG'CAG repeat causes the 

DM1 phenotype is not fully understood, but some critical clues have recently emerged. DM1 is 

likely to have a complex pathophysiology and a number of mechanisms may contribute, either 

mutually or exclusively to the disease: haploinsufficiency of DMPK protein, local chromatin 

effects on the expression of neighbouring genes and novel gain-of-functions conferred on the 

expanded DM PK  mRNA (Cummings and Zoghbi, 2000a; Cummings and Zoghbi, 2000b; Richards, 

2001).

DMPK is predicted to have several functions based on putative substrates and interacting 

proteins, including the modulation of skeletal muscle sodium channels (Mounsey et al., 2000),
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calcium homeostasis (Benders et al., 1997), RNA metabolism and cell stress response (Timchenko 

and Caskey, 1999). The CTG*CAG repeat could indirectly alter DMPK protein levels by 

interfering with gene transcription, RNA processing and/or translation (Fu et al., 1993), resulting in 

abnormal phosphorylation of downstream substrates. The effect of the CTG'CAG expansion on 

DMPK levels and the protein role in disease manifestation has been, however, controversial. 

Although in a majority of patients DMPK protein levels were reduced (Fu et a l ,  1993), some cases 

of DMPK activation have also been described (Sabouri et al., 1993). Contradictory reports on the 

levels of D M P K  RNA levels detected in DM1 patients and cell lines were also contradictory 

(B hagw ati et al., 1996; Carango et al., 1993; Hofmann-Radvanyi et al., 1993). A possible 

explanation for the different results may result from the disrupted processing of DM PK  transcripts 

in DM1. Indeed, it was demonstrated that DM1 patients show abnormalities with D M PK  RNA 

polyadenylation, as polyA+ DM PK  mRNA levels were reduced more significantly compared with 

total RNA (Hamshere et al., 1997; Krahe et al., 1995; Wang et al., 1995). In addition, abnormal 

accumulation of DMPK  transcripts into stable nuclear foci was found in DM1 patients (Davis et al., 

1997; Hamshere et al., 1997; Taneja et al., 1995). The nuclear retention of expansion-derived 

transcripts may not only explain a loss-of-function mechanism, but may also support a gain-of- 

function for the nuclear-retained transcripts. Unlike FRDA and FRAXA, no confirmed cases of 

DM1 have been attributed to mutations in the D M P K  gene, other than the expansion of the 

CTG'CAG repeat. Additionally, patients who are homozygous for the DM1 mutation do not differ 

in clinical expression from typical DM1 heterozygotes (Cobo et al., 1993). Moreover, mice lacking 

DM PK  develop minor myopathies and muscle weakness (Jansen et al., 1996; Reddy et al., 1996), 

whereas those overexpressing DM PK  develop hypertrophic cardiomyopathy and neonatal lethality 

(Jansen et al., 1996), suggesting that changes in DMPK  expression levels alone are not sufficient to 

give rise to the full spectrum of the DM1 phenotype.

A more general effect of the mutation on chromatin structure is suggested by the fact that 

CTG*CAG repeats are strongly associated with histones (Godde and Wolffe, 1996; Wang et al., 

1994; Wang and Griffith, 1995). It is possible that the accessibility of nuclear proteins, such as 

transcription factors, to the DM1 locus could affect gene expression. The identification of two other 

genes flanking D M P K  raised the possibility that the expanded repeat might alter chromatin 

structure and alter neighbouring gene expression (Figure 1.2). Sequence analysis of the repeat 

region showed that the CTG'CAG tract is located within the promoter region of a downstream 

homeobox gene, initially termed dystrophia m yotonica-associated homeodomain protein  

(DMAHP), now known as sine oculis related homeobox 5 (SIX5) (Boucher et al., 1995). As with 

variable DMPK levels in DM1, contradictory observations on SIX5 expression were reported. It 

was initially shown that no gross change in the level of expression of SIX5 was observed in DM1 

fibroblast cell lines (Hamshere et al., 1997). However, other studies indicated that there could be an 

allele-specific CTG'CAG repeat length effect on the expression levels of SIX5 in muscle biopsy 

specimens, myoblasts and myocardium (Klesert et al., 1997; Korade-Mimics et al., 1999; Thornton 

et al., 1997). Heterozygous deletion of Six5 is sufficient to cause ocular cataracts in transgenic mice 

(Klesert et al., 2000; Sarkar et al., 2000), and therefore SIX5 haploinsufficiency, brought about by
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the CTG*CAG expansion, is likely to contribute to the DM1 eye phenotype. Indeed, the expression 

pattern o f SIX5 in the normal adult eye matches the sites o f the ocular pathology in DM 1, w hile  

D M P K  is not expressed in adult lens (Winchester et al., 1999). Since SIX5 protein binds to the 

murine sodium and potassium ATPase a l  subunit gene (A tp a l ) (Harris et al., 2000), it is not 

unreasonable to suggest that SIX5 dysfunction may cause cataracts by affecting ion balance in the 

lens. The third gene in the DM 1  locus is the dystrophia myotonica-containing WD repeat m otif 

(DMWD), located immediately upstream to D M PK  (Figure 1.2). The murine hom ologue is highly 

expressed in brain, testis, heart and kidney, but absent in skeletal m uscle. The tissue-specific  

expression profile o f DM W D  makes this gene another candidate, w hose loss-of-function could  

contribute to som e clinical features o f DM 1, particularly mental retardation, testicular atrophy and 

kidney failure (Jansen et al., 1995). Conflicting data also exist regarding the expression levels of 

DMWD  in DM1 patient material, with no changes in DMWD  mRNA cytoplasm ic levels (Hamshere 

et al., 1997), dramatic allele-specific effects (Alwazzan et al., 1999) and an inverse relationship 

between the size o f the CTG 'CAG  expansion and levels o f cytoplasm ic polyA + m RNA from  

DMWD  gene in muscle biopsies of DM1 patients being reported (Eriksson et al., 1999). A  fourth 

gene was recently brought into the picture. A  mammalian hom ologue o f a radial spokehead-like 

gene (RSHL1) maps at the DM1 locus (Figure 1.2), upstream to the DM W D  gene (Eriksson et al.,

2001). Given the importance o f radial spokehead proteins in ciliary or flagellar action in the lower 

organisms, and the expression o f the human RSHL1 in the adult testis, it is not unreasonable to 

speculate that altered RSHL1 expression levels in DM1 patients could account for male infertility, 

characteristic o f this condition (Eriksson et al., 2001).

Telomere Centromere

RSHL1 DMWD DMPK
3’ UTR

CpG island

Figure 1.2. Genomic organisation of the human DM1 locus.
The figure shows the four genes mapped within the DM1 locus on human 
chromosome 19q13.3. The CTG*CAG repeat expansion is located within the 3’ UTR 
of the DMPK gene. The CpG island extends from the last intron of the DMPK gene to 
the first intron of SIX5. The promoter region of SIX5 is situated within the CpG island.

Another hypothesis to explain the variety o f clinical features seen in DM1 proposes a gain- 

of-function model at the RNA level. It is based on a rra/is-dominant effect o f the CUG-expanded  

transcript, which interferes with the normal processing and/or metabolism  o f numerous RNAs
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(Morrone et al., 1997; Taneja et a l,  1995; Wang et al., 1995). Expansion of CUG repeats could 

create RNA binding sites for specific CUG-binding proteins. Overexpression of these RNA binding 

sites would cause sequestration of specific proteins, resulting in a general effect on the cell RNA 

metabolism. This hypothesis is supported by the identification of a CUG-binding protein (CUG- 

BP), a regulator of pre-mRNA splicing (Timchenko et al., 1996a; Timchenko et al., 1996b). 

Although it was initially hypothesised that CUG-BP levels should be reduced due to sequestration 

by CUG repeats, CUG-BP levels and activity are in fact enhanced in DM1 cells (Timchenko et al., 

1996a), partially through an increased half-life following titration of CUG-BP from a free pool into 

RNA-protein complexes, through direct interaction with CUG expanded repeats (Timchenko et al., 

2001a). It was also reported that CUG-BP might be a substrate for DMPK, and that decreased 

levels of DMPK in DM1 patients could cause hypophosphorylation and nuclear retention of CUG- 

BP, thereby establishing an autoregulatory loop (Roberts et al., 1997). Activation of nuclear CUG- 

BP activity in DM1 results in alteration of RNA processing of CUG-BP dependent RNAs, being 

therefore considered a key mediator of a frans-dominant effect of the DM1 mutation. Aberrant 

RNA splicing of human cardiac troponin T (cTNT) (Philips et al., 1998), insulin receptor (Savkur 

et al., 2001) and tau protein (Sargent et a l ,  2001) have all been reported and associated with 

increased levels of CUG-BP activity in DM1 cells. In addition, CUG-BP is involved in the 

translation of a transcription factor, CCAAT/enhancer binding protein 6, (C/EBP6) which plays an 

important role in cell proliferation and differentiation (Timchenko et al., 1999). Indeed, 

translocation of CUG-BP from the cytoplasm into the nucleus, through the association with 

expanded CUG repeats, leads to a significant reduction of proteins responsible for cell cycle 

control (Timchenko et al., 2001b). Furthermore, expanded DM1 CUG repeats bind and activate the 

double-stranded RNA-activated protein kinase (PKR) in a length-dependent manner (Tian et al.,

2000). PKR is involved in regulating cell proliferation and stress responses in mammalian cells 

(Tian et al., 2000; Williams, 1999). It now seems very likely that a family of proteins that bind 

CUG repeats, as well as their dependent RNAs, might be affected by the CTG'CAG expansion at 

the DM1 locus, mediating the multisystemic character of this disorder.

CUG repeats form unusual and stable RNA hairpins in their natural sequence context of the 

DMPK  gene transcript (Michalowski et al., 1999; Napierala and Krzyosiak, 1997). Theoretically, 

large hairpins may sterically block RNA export through nuclear pores accounting for the nuclear 

accumulation of DM PK  transcripts in the nucleus (Koch and Leffert, 1998). Most importantly, the 

entire hairpin stem forms a perfect double-stranded RNA structure that serves as a binding site for 

triplet repeat expansion (EXP) proteins (Miller et al., 2000), while CUG-BP localises to the base of 

the RNA hairpin (Michalowski et al., 1999). The EXP proteins are homologous to the Drosophila 

muscleblind proteins, required for terminal differentiation of muscle and photoreceptor cells 

(Artero et al., 1998; Begemann et al., 1997). Rather than a single human musclelind gene, three 

homologues have been identified in humans: MBNL, MBLL and MBXL (Fardaei et al., 2002), and 

the three human muscleblind related proteins co-localise with nuclear foci in DM1 (Fardaei et al., 

2001; Fardaei et al., 2002; Mankodi et al., 2001).
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Crucial experimental support for the toxic RNA effect in DM1, came from both cell culture 

systems and transgenic mice. Overexpression of long CTG repeats in myoblast culture cells inhibits 

myogenesis (Amack et al., 1999; Bhagwati et al., 1999; Sabourin et a l ,  1997), whereas transgenic 

mice expressing large untranslated CUG repeats inserted into an unrelated mRNA, under the 

control of the human skeletal actin promoter, developed myotonia and myopathy, with no evidence 

of muscle wasting (Mankodi et al., 2000). In addition, transgenic mice carrying the human genomic 

DM1 region, which includes DMWD, DM PK  and SIX5, with a large CTG*CAG expansion (at least 

300 repeat units), display abnormalities in both skeletal muscle and brain, consistent with those 

observed in DM1 patients (Seznec et al., 2001). These findings imply that expanded CUG repeats 

are indeed sufficient to generate at least some aspects of the DM1 phenotype.

Defining a second human mutation that causes the multisystemic clinical phenotype of 

DM1 provided vital support for the pathogenic RNA hypothesis. Myotonic dystrophy type 2 

(DM2), which shows remarkable clinical similarity to DM1, is caused by a large untranslated 

CCTG tetranucleotide expansion within intron 1 of the zinc finger protein 9 (ZNF9) gene on 

chromosome 3, in a locus where genes homologous to D M PK , S IX 5 and DMWD are absent 

(Liquori et al., 2001). The common theme resides in the accumulation of ZNF9 transcripts in 

discrete nuclear foci (Liquori et al., 2001), which also bind MBNL, MBLL and MBXL (Fardaei et 

al., 2002; Mankodi et a l ,  2001). These RNA foci are likely to cause global disruptions in RNA 

splicing and cellular metabolism, and may well be the unifying mechanism, which underlies all 

forms of myotonic dystrophy.

1.2.2.5. Spinocerebellar ataxia type 8 (SCA8)

SCA8 is the result of the expansion of an untranslated CTG#CAG repeat. Although the 

repeat is not translated, it is present in the 3 ’ terminal exon of a processed transcript (Koob et a l, 

1999). A second brain-specific mRNA was isolated in an orientation opposite to that of the SCA8 

transcript, and found to encode a protein termed kelch-like 1 (KLHL1), but this transcript does not 

include the repetitive sequence (Nemes et al., 2000). Nonetheless, it is possible that the SCA8 

transcript may regulate the expression of KLHL1. The pathology of SCA8 is intriguing, as there is 

a CTG#CAG repeat size range that is pathogenic, with shorter and larger repeats not resulting in 

disease. Although this phenomenon is still not yet understood, it is possible that these very large 

repeats interfere with SCA8 expression or confer altered RNA processing and/or stability, so that 

the toxic gain-of-function does not happen (Cummings and Zoghbi, 2000b). Alternatively, SCA8 

transcripts containing alleles in the pathological range can be exported to the cytoplasm, where 

they exert their effect on the KLHL1 transcript, while transcripts with larger expansions are 

retained in the nucleus (Usdin and Grabczyk, 2000). It is interesting to note that although the SCA8 

mutation shares molecular similarities to the DM1 mutation, SCA8 does not exhibit the 

multisystemic features of DM1. The divergence between these two disorders may be accounted for 

by the cerebellum-specific expression pattern of the SCA8 transcript (Koob et al., 1999).
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1.2.2.6. Spinocerebellar ataxia type 12 (SCA12)

SCA12 is a rare disease caused by a non-coding CAG'CTG trinucleotide repeat expansion in 

the 5 ’ UTR of the brain-specific protein phosphatase 2, regulatory subunit fi (PPP2R2B) gene 

(Holmes et al., 1999). Although the repeat is flanked by transcriptional start sites and conserved 

promoter elements, it is not known whether the expanded repeat is associated with transcriptional 

interference of the PPP2R2B gene or not.

1.3. Repeat dynamics

Trinucleotide repeat tracts are intrinsically unstable DNA sequences, as initially revealed 

by diffused hybridisation signals observed on Southern blot analysis of restriction fragments of 

genomic DNA containing expanded trinucleotide repeats. The heterogeneous smears were later 

shown to comprise multiple unresolved bands, each one derived from a single allele carrying a 

specific repeat number (Monckton et a l ,  1995; Worhle et a l ,  1995). Expanded trinucleotide 

sequences can indeed undergo changes in repeat number. Although both expansions and 

contractions have been detected, there is a massive bias towards expansion, not only in the 

germline but also in somatic cells. The expansion mutation is strongly dependent upon the repeat 

tract length, such that the probability of expansion increases with the number of tandem repeats, 

hence the term “dynamic mutations” (Richards and Sutherland, 1992). The molecular bases of 

repeat instability are not well understood, nor is it known whether somatic and germline 

instabilities share common mechanisms of expansion.

1.3.1. Germline instability

Clinical anticipation refers to the increased severity of the phenotype and earlier age of 

onset in successive generations of an affected family, and has been described as a hallmark of 

trinucleotide repeat disorders. Anticipation has now been explained at the molecular level by the 

positive correlation of disease severity and the inverse correlation of the age of onset with the 

inherited repeat length, and the propensity of the repeat to increase in length when transmitted 

through the germline (Harper et a l,  1992). Repeats within the non-disease range are relatively 

stable when transmitted from one generation to the next, and are believed to only rarely expand in 

steps of one or a few repeats. However, with increasing size of the repeat the chance of further 

expansion rises dramatically, and disease-associated alleles typically show large changes in size on 

transmission from parent to offspring (Cummings and Zoghbi, 2000b; Richards, 2001).

The parental origin of the disease allele can influence anticipation. Some expansions are 

predominantly paternally inherited, while others show a maternal bias. For most of these disorders, 

especially those involving smaller repeat expansions (-35-80 repeats), such as polyglutamine 

diseases, there is greater risk of repeat expansion upon paternal transmission. In contrast, FRAXA 

and FRDA, which involve very large expansions (-200-2000 repeats), are most often associated
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with maternal transmission (Jin and Warren, 2000; Kooy et al., 2000; Patel and Isaya, 2001). DM1 

presents rather more complex sex-related differences in the intergenerational amplification of the 

CTG'CAG repeat. Small expansions (from 37, up to ~200 repeats) are most unstable when 

transmitted by males, giving rise to the excess of transmitting grandfathers in DM1 pedigrees 

(Brunner et al., 1993), whilst the largest expansions (up to several thousand repeats), associated 

with congenital DM1, are usually transmitted by females (Lavedan et al., 1993; Tsilfidis et al., 

1992). Whether sex-of-origin effects reflect some sex-specific differences in the mutational 

pathway, or some sort of selection, either in the spermatogenic cells or in the sperm cells directly, 

remains unclear. The analysis of the grossly unstable SCA7 alleles shed some light on this subject. 

Single molecule analysis of sperm DNA revealed that the vast majority of the mutant sperm cells of 

two SCA7 males contained alleles that were so large that most of the affected offspring would, at 

best, have a severe infantile form of the disease in the next generation. The under-representation of 

such very large expanded alleles in patients suggests that a significant proportion of such alleles 

might be associated with dysfunctional sperm or embryonic lethality (Monckton et al., 1999). In an 

interesting exception, sperm analysis of 500-800 CTG'CAG repeat tracts at the SCA8 locus, 

displayed strong bias towards contraction (Moseley et al., 2000).

The parent-of-origin effect has been recreated in some animal mouse models carrying 

transgenic trinucleotide repeats. Nevertheless, repeat number changes through mouse germline 

transmission, are considerably smaller than in humans, involving only a few CAG'CTG repeats. 

Knock-in HD mouse models exhibit modest germline instability (±1-5 repeat units), showing an 

expansion bias in male transmission, and a deletion bias upon maternal transmission (Shelboume et 

al., 1999; Wheeler et al., 1999b). A knock-in transgenic mouse model of FRAXA, in which a long 

(CGG«CCG )98  repeat was inserted into the murine Fm rl gene by homologous recombination, 

showed moderate expansion-biased triplet repeat instability upon both maternal and paternal 

transmission, with a tendency for longer repeat changes (both expansions and deletions) to occur 

during paternal transmission (Bontekoe et al., 2001).

Pedigree analyses have attempted to estimate human germline instability from the 

relationship of the allele sizes in the parent and their offspring by direct comparison of the repeat 

numbers in their somatic cells, but only one report confirmed that a CAG'CTG repeat expands with 

increasing age of the father (Sato et al., 1999). Nonetheless, sizing of individual HD sperm cells 

revealed that both mutation frequency and mean change in allele size increases with increasing 

somatic repeat number, and suggested a paternal age effect on expansion of the CAG*CTG repeat 

(Leeflang et al., 1999). In addition, pedigree data of trinucleotide repeat germline instability in 

mouse models carrying expanded CAG*CTG repeat tracts derived from the human DM1 and 

DRPLA loci, revealed an age-dependent bias towards expansion with age in male transmissions 

(Mangiarini et al., 1997; Sato et al., 1999; Seznec et al., 2000; Zhang et al., 2002). Similarly, 

enhanced deletion-biased germline instability, concerning both the overall mutation frequency and 

the extent of repeat contraction, has been associated with advanced age of the transmitting mother 

in SCA1 (Kaytor et al., 1997) and DRPLA (Sato et al., 1999) transgenic mice.
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Contradictory reports have been published regarding segregation distortion in favour of 

mutant alleles in some CAG'CTG trinucleotide repeat disorders. Single sperm analyses, performed 

in Japanese SCA3 patients, revealed a segregation ratio between sperm with an expanded allele and 

those with a normal allele of -6:4, significantly different from the expected 1:1 segregation ratio, 

suggesting meiotic drive in male meiosis (Takiyama et al., 1997). In contrast, the data collected 

from a similar study performed on French patients, did not support gametic segregation distortion 

in favour of expanded SCA3 alleles, showing that the segregation ratio of single sperm with an 

expanded allele was not statistically different from the expected 1:1 segregation ratio (Grewal et 

al., 1999). Similarly, single sperm analyses did not reveal meiotic drive in DM1 (Leeflang et al., 

1996; Monckton et al., 1995), HD (Leeflang et al., 1995) or DRPLA (Takiyama et al., 1999).

In summary, trinucleotide repeats exhibit expansion-biased germline instability, which 

does not entirely depend on the repeat tract length per se, being also dependent on yet unidentified 

factors, intimately associated with the sex of the transmitting parent.

1.3.2. Somatic instability

Repeat size differences between somatic cells have been documented in most trinucleotide 

repeat disorders. In DM1 families, the enormous fluctuations in repeat length, both between and 

within tissues, is outstandingly evident and easy to study. The high prevalence of the disorder, the 

availability of large families, and tissue biopsy samples render DM1 a particularly interesting 

model in which to study somatic dynamic mutations. Therefore, in this section, greater focus will 

be given to the dynamics of expanded CTG'CAT repeats in the soma of DM1 patients, and a 

parallel with other conditions will be presented when appropriate.

The extensive somatic instability of DM1 CTG'CAG repeats is well documented, with the 

expanded allele frequently presenting as a smear on restriction digested genomic DNA Southern 

blot analysis for a wide range of tissues, including peripheral blood lymphocytes, liver, brain and 

heart (Jansen et al., 1994; Lavedan et al., 1993; Shelboume et al., 1992). Moreover, genomic 

Southern blot procedures were able to detect large tissue-to-tissue variability in the repeat size, 

between skeletal muscle and blood (Anvret et al., 1993; Ashizawa et al., 1993; Lavedan et al., 

1993; Thornton et al., 1994). Cloning DM1 cells proved that heterogeneous smears result from 

somatic mosaicism of cells carrying different repeat lengths (Worhle et al., 1995). CAG'CTG 

tissue-specific somatic instability has also been reported in HD (Telenius et al., 1994), SCA1 

(Chong et al., 1995; Chung et al., 1993), DRPLA (Takano et al., 1996) and SBMA (Tanaka et al.,

1999). Although associated with different trinucleotide repeat expansions, tissue-specific somatic 

mosaicism has also been described in FRAXA (Wohrle et al., 1996) and FRDA (Bidichandani et 

al., 1999; Hellenbroich et al., 2001)

Moderate somatic instability becomes apparent during foetal development. Analysis of five 

DM1 foetuses and two DM1 neonates, using standard Southern blot procedures, revealed that low 

CTG'CAG repeat size heterogeneity between tissues was detectable between 13 and 16 weeks of 

gestation (Martorell et al., 1997), with the largest expansions being found in kidney, adrenal gland,
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ovary, diaphragm, heart and brain (Worhle et al., 1995). Consistent with the prenatal development 

of somatic mosaicism, a congenital DM1 newborn was reported to exhibit somatic repeat instability 

soon after birth in a wide range of tissues (Wong and Ashizawa, 1997). However, analyses of 

peripheral blood DNA from adult DM1 patients, revealed that an increase in the average repeat 

length could be detected over a time span of two to five years (Martorell et a l ,  1995; Wong et al., 

1995), establishing that the accumulation of repeat length mutations is certainly not limited to 

embryogenesis. Analysis of somatic mosaicism in autopsied brains of DRPLA patients also showed 

that the degree of somatic mosaicism increases with age (Takano et al., 1996). A more detailed 

study of DM1 somatic instability, using sensitive single molecule analysis, confirmed the 

progression of expansion-biased repeat size heterogeneity over time, and established a correlation 

between the average repeat number, the inherited CTG'CAG repeat length and the time interval 

(Martorell et al., 1998). It is therefore assumed that in DM1, and possibly in most of trinucleotide 

repeat diseases, somatic instability proceeds throughout adult life, through a directional pathway, 

which involves “step-wise” gains of small number of repeat units, resulting in an increasing overall 

range and mean size, and decreasing modal allele frequency, over time. The rate of progression 

appears to be proportional to progenitor allele length and dependent on tissue type.

Neither the molecular mechanisms underlying repeat instability, nor the bases of variability 

between tissues at any of the expanded repeat loci are understood. Further analysis of these 

processes in patients is limited by the availability of appropriate samples throughout the lifetime of 

an individual, and is further compromised by inter-individual genetic and environmental variation. 

Transgenic mouse models have therefore been generated, in order to provide powerful animal 

systems with which to assess trinucleotide dynamics. Somatic CAG'CTG repeat instability 

observed in DM1 patients was detected in transgenic mice for a large genomic fragment of the 

human DM1 locus (Gourdon et al., 1997; Lia et al., 1998; Seznec et al., 2000) or for the 3’ UTR of 

the DM PK  gene (Fortune et al., 2000; Monckton et al., 1997), and also in knock-in mouse model 

of DM1, in which an expanded CTG#CAG repeat was inserted in the endogenous mouse Dmpk 

gene by targeted recombination (van Den Broek et al., 2002). Transgenic and knock-in mice 

carrying an expanded CAG*CTG repeat derived from a mutated H D  gene have also recreated 

somatic repeat instability observed in HD patients (Kennedy and Shelboume, 2000; Mangiarini et 

a l,  1997; Wheeler et al., 1999b). In addition, transgenic murine lines, harbouring a single copy of a 

full-length expanded DRPLA gene, randomly integrated into their genome, have also exhibited age- 

dependent, tissue-specific somatic mosaicism (Sato et al., 1999). These findings established that 

mouse models are capable of recreating large repeat length changes in the soma, similar to those 

observed in human patients. Transgenic mice have therefore provided a valuable tool to investigate 

the molecular mechanisms underlying somatic trinucleotide repeat instability in mammalian 

systems, and created new avenues to assess the complex dynamics of simple repetitive DNA 

sequences.
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1.3.3. Dmt transgenic mice

The availability of genetically and biochemically defined systems in E. coli and S . 

cerevisiae have enabled detailed investigation of the mechanisms that drive trinucleotide repeat 

instability in these simple organisms. Although major differences between mammalian, bacterial 

and yeast cells exist in terms of DNA replication enzymology and chromatin structure, studies in 

bacteria and yeast have provided numerous insights into the factors affecting stability of repeated 

DNA sequences. However, it is clear that complete comprehension of the biology of the triplet 

repeat diseases requires studies in more complex systems. To facilitate more detailed studies of 

repeat dynamics and the mutational mechanisms underlying instability throughout mammalian 

development, Monckton et al. (1997) generated five transgenic mouse lines incorporating 

expanded CAG*CTG arrays derived from the human DM1 locus. Transgene analysis has revealed 

germline instability, exhibiting expansions and deletions, parent-of-origin effects and segregation 

distortion (Monckton et al., 1997; Zhang et al., 2002). Trinucleotide repeat somatic instability has 

been extensively studied particularly in two mouse lines, both carrying a single copy of the 

transgene. D m t-D mice showed age-dependent, tissue-specific somatic mosaicism, whilst the 

transgene showed remarkable stability in the soma of D m t-E mice (Fortune et al., 2000). An 

investigation into the integration sites has revealed that the transgene is flanked by DNA sequences 

of chromosome 11, syntenic to human chromosome 17, in the Dmt-D line, while it integrated into a 

long interspersed nuclear element family 1 (LINE1) in the D m t-E line (G.J. Brock and D.G. 

Monckton, personal communication). Mutational differences between the lines illustrate that triplet 

repeat stability in mice, as in humans, is not purely a function of repeat length, but must be also 

modulated by as yet unidentified cis-acting genetic modifiers. On the other hand, tissue-specific 

patterns of somatic mosaicism in Dmt-D  mice suggest the involvement of tissue- and/or cell- 

specific trans-acting factors in the control of the dynamics of expanded trinucleotide repeats.

1.3.4. Possible link between somatic instability and pathophysiology

Somatic instability of trinucleotide repeats involves a dynamic process in which the repeat 

size increases with age, at different rates in various tissues and therefore it appears logical to 

assume that trinucleotide repeat somatic mosaicism plays an important role in tissue- and age- 

specific phenotypic variability, and that it is most certainly correlated with the clinical disease 

progression. Mounting evidence has indeed provided strong support to this hypothesis.

In DM1 patients, expansion of the CTG*CAG repeat shows a positive correlation with the 

severity of the disease (Hunter et al., 1992). More interestingly, much larger repeat expansions are 

consistently observed in the major affected tissue, skeletal muscle, relative to peripheral blood 

leukocytes from the same individual (Anvret et al., 1993; Ashizawa et al., 1993; Monckton et al., 

1995; Thornton et a l ,  1994). Very little is known about the relative stability of the repeats in 

additional DM1 tissues, with far fewer observations having been reported. General findings suggest 

that in addition to skeletal muscle, heart and kidney usually display the largest expansions (Jansen
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et al., 1994; Joseph et al., 1997; Lavedan et al., 1993; Tachi et al., 1995; Tachi et a l,  1993; Worhle 

et a l ,  1995), possibly associated with heart conduction defects and kidney failure exhibited by 

DM1 patients. In addition, longer average repeat lengths and broader ranges of variability have 

been found in older patients, usually presenting a more severe DM1 clinical picture (Martorell et 

a l,  1998; Monckton et al., 1995; Wong et a l,  1995).

An inverse correlation has been established between the amount of frataxin protein and the 

expansion size of the smaller FRD A  allele in tissues from human patients (Campuzano et a l ,  

1997). Limited somatic mosaicism has been described in FRDA blood leukocytes by low DNA 

input polymerase chain reaction (PCR) amplification across the GAA'TTC repeat (Bidichandani et 

a l ,  1999; Hellenbroich et a l,  2001). If trinucleotide repeat instability is extended to other somatic 

tissues, it could be speculated that somatic cells carrying longer alleles would be more dramatically 

affected, exhibiting more severe defects in mitochondrial metabolism and higher sensitivity to 

oxidative stress. Although speculative, such a scenario could account for the phenotypic variability 

observed in this condition.

FRAXA patients carrying fully expanded CGG'CCG repeats (>250 units) exhibit FMR1 

promoter methylation, associated with transcriptional silencing and lack of FMRP. However, subtle 

fragile X-like features have been described in premutation carriers (-60-250 repeat units) 

(O'Donnell and Warren, 2002). Although controversial, positive correlations between the 

intermediate repeat size, cognitive impairment (as assessed by intelligence quotient tests) 

(Kaufmann et al., 1999; Tassone et al., 1999), interpersonal sensitivity and depression (Johnston et 

a l ,  2001) and ovarian failure (premature menopause) (Allingham-Hawkins et a l, 1999) have been 

reported in premutation carriers. In addition intermediate FRAXA allele sizes has been shown to 

correlate negatively with FMRP levels, and positively with FMR1 transcription (Kenneson et a l ,

2001), possibly accounting for a parallel between the premutation repeat length and the severity of 

symptoms. It is not unreasonable to hypothesise that such a parallel might be mediated by somatic 

expansion is a subset of cells.

Crucial evidence in support of an association between tissue-specific somatic mosaicism 

and polyglutamine pathology emerged from studies in HD mouse models. The HD  gene is widely 

expressed in many tissues both within and outside the central nervous system (Li et a l , 1993; 

Strong et a l ,  1993). Given that mutant huntingtin is present at similar levels in many central 

nervous system and non-central nervous system tissues (Li et a l , 1993; Strong et a l, 1993), it is 

unclear why medium spiny striatal neurons are selectively vulnerable to the disease process 

(G raveland et a l ,  1985). If the degree of CAG'CTG expansions is directly related to the 

pathogenesis, is it theoretically possible that the neuropathological findings in HD reflect somatic 

mosaicism with different levels of CAG'CTG expansion in different tissues. Indeed CAG'CTG 

repeat tracts display tissue-specific mosaicism in autopsied brains of HD patients. The highest 

instability was found in those regions showing greatest neuropathological involvement and was 

seen most dramatically in juvenile patients (Telenius et a l ,  1994). However, the repeat length 

changes observed in these studies were relatively small, most probably because the methods used 

to assess repeat size variation were based upon bulk DNA analysis. Using much more sensitive
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small pool polymerase chain reaction (SP-PCR) techniques (Monckton et al., 1995), dramatic age- 

dependent instability of the expanded CAG repeat tract was reported in a knock-in mouse model of 

HD (Kennedy and Shelboume, 2000). Most importantly, striking large expansions were restricted 

to the affected tissue, the striatum, in the absence of progressive striatal loss (Kennedy and 

Shelboume, 2000; Shelboume et al., 1999), commonly observed in post-mortem tissue from end- 

stage human HD patients. The median mutation length in the striatum was significantly greater 

than the corresponding measures in both cerebellum and cortex (Kennedy and Shelboume, 2000). 

Similarly, very large expansions have also been observed in post-mortem striatum samples of 

human HD brain material (P.F. Shelboume, personal communication). These findings clearly 

suggest that the selective vulnerability of neurons in HD may be caused by cell-specific 

determinants, which directly or indirectly induce dramatic expansion-biased mutability of the 

CAG'CTG repeat over time, and provide a crucial clue to the puzzling regional selectivity of 

neuronal loss in polyglutamine diseases. CAG'CTG repeats, being particularly prone to expansion 

in the striata of aging HD humans and mice, would render striatal cells more prone to succumb 

early, in virtue of the fact that they would exceed a critical polyglutamine concentration threshold 

first.

1.4. Modifiers of trinucleotide repeat instability

Mounting evidence suggests that the intrinsic nature of repeating DNA is causative of 

mutation within trinucleotide repeat sequences. However, in vitro studies, human studies, and 

transgenic mouse models, as well as simple model organisms, have suggested that the process of 

dynamic mutation is affected by a variety of elements and factors. The nature and degree of 

instability may depend on the predisposition of a repetitive sequence to form secondary structures, 

the location of the repeat within the affected gene, cell and tissue type-specific factors, parent-of- 

origin effects, sequences within and around the repeat, stage of embryonic development, state of 

epigenetic modification, and possibly other as yet unidentified factors. Such modifiers have been 

categorised into those directly associated with the expanding repeat (ds-acting elements) and those 

whose interaction with the repeat contributes to its instability (frans-acting factors).

7.4.7. Cis-acting modifiers of trinucleotide repeat instability

Trinucleotide repeat instability is governed by unique ds-elements. The chromosomal 

position may account for interlocus variation in repeat mutability, whereas differences in mutation 

rates within a single locus (intralocus variation) may be associated with the copy number and the 

composition of the repeat tract.

The instability of the repeat is sensitive to the length of the repeat tract, as the products of 

an expansion mutation are more likely to undergo subsequent mutation than the original substrate 

(Richards and Sutherland, 1992). Unstable trinucleotide repeats are almost always CNG sequences,
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whose secondary structure-forming ability is thought to promote instability (Mitas, 1997; Pearson 

and Sinden, 1998b; Sinden et al., 2002). If expansion were solely driven by repeat length, two 

alleles of similar size would be expected to exhibit similar levels of instability. That appears not to 

be the case. Similar sized HD  alleles, carrying 29-35 repeats, have shown marked differences in 

expansion rates, as determined by single sperm analysis (Chong et al., 1997). The initial mutation 

on these alleles is likely a rare event that increases the instability of the repeat, setting in process 

the subsequent expansion of these few founder mutations (Chong et al., 1997; Goldberg et al., 

1995). Male germline mutational pathways in DM1 patients exhibit allele length-independent 

variation, which does not correlate with progenitor allele size and is clearly distinct from that of the 

soma (Martorell et al., 2000). These data strongly support a role for cis- and trans-acting genetic 

modifiers of DNA metabolism.

Experimental data suggest that the sequences in the vicinity of the repeat may contribute to 

the mechanism of instability in several disease loci. Haplotype analyses have revealed that specific 

haplotypes are particularly enriched on disease-associated chromosomes, suggesting that 

chromosome-specific ds-acting factors play a significant role in influencing trinucleotide repeat 

intergenerational behaviour. Chromosomes with specific flanking haplotypes are associated with 

expansions in DM1 (Imbert et al., 1993; Mahadevan et al., 1993; Neville et al., 1994), HD 

(Goldberg et al., 1995), FRAXA (Crawford et al., 2000; Zhong et al., 1996), FRDA (Cossee et al., 

1997) and SCA2 (Choudhry et al., 2001). This association may, however, depend on either intra

repeat effects or extra-repeat ds-factors. Some disease-associated haplotypes are characterised by 

loss of interspersed interruptions within the trinucleotide repeat tract (Choudhry et al., 2001; 

Eichler et al., 1996), supporting the importance of repeat interruptions in maintaining trinucleotide 

stability. However, some disease-associated haplotypes retained repeat interruptions, hinting that 

other haplotype-specific ds-acting factors, flanking the repeat are important in determining the 

allele’s predisposition to instability and to cause disease. Indeed, a CGG/GGG polymorphism at the 

3 ’ end of the SCA3 CAG'CTG repeat affects intergenerational instability (Igarashi et al., 1996). 

Nevertheless, these factors can only explain a small portion of the variance observed, suggesting 

that other cis and/or trans-modifiers may play a role in repeat dynamics.

The influence of immediately flanking sequences has also been proposed as a key factor 

controlling repeat germline instability at different chromosomal loci. The mutation rate, the size 

and direction of the length change mutations observed vary, with some loci being apparently more 

mutable and liable to expand to greater lengths than others (Brock et al., 1999). The instability of 

an expanded CAG'CTG repeat during germline transmission is indeed correlated to the flanking 

GC levels: the higher the GC level, the greater the mutation rate of the repeat (Brock et al., 1999). 

It is of interest that these effects were less pronounced in female transmissions than in male 

transmissions, suggesting that the mutation process is less susceptible to flanking sequence 

modifiers in females.

Proximity to a preferred origin of replication may be another major chromosomal 

component of instability. The distance between the origin of replication and the repeat tract has 

been described as a key variable that affects repeat stability in a simian virus 40 (SV40) DNA
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system replicated within primate COS-1 African green monkey cells (Cleary et al., 2002). A 

location effect may therefore explain the existence of founder chromosomes, and their possible 

predisposition to trinucleotide repeat expansion. The Alu insertion/deletion polymorphism detected 

in linkage disequilibrium with expanded DM1 alleles in the Caucasian population (Mahadevan et 

al., 1993), might have changed the distance between the origin of replication and the trinucleotide 

repeat itself, enhancing its propensity to expand and cause disease. In addition, the location of the 

origin of replication to the repeat tract might vary between tissues, explaining the tissue-specific 

patterns of somatic mosaicism (Cleary et al., 2002).

The repeat size variability in somatic tissues of different transgenic mouse lines (Fortune 

et al., 2000; Lia et al., 1998; Mangiarini et al., 1997) has also provided support to the suggestion 

that an undefined chromosomal component or position might be critical for somatic (Fortune et al., 

2000; Lia et al., 1998; Mangiarini et al., 1997) and germline instability (Zhang et al., 2002).

1.4.2. Trans-acting modifiers of trinucleotide repeat dynamics

While there is indirect evidence for the existence of fra/is-acting modifiers of trinucleotide 

repeat dynamics (such as gender bias in repeat instability during their transmission from parent to 

offspring), the identity of such factors remains elusive. In vitro studies and data from bacteria, yeast 

and mouse models, suggest that candidates may include proteins involved in DNA replication and 

repair (Richards, 2001). DNA polymerase III proofreading activity, for instance, was shown to be 

essential for maintaining the integrity of long CAG'CTG triplet repeat tracts in E. coli (Iyer et al.,

2000), suggesting that expansion and deletion events of triplet repeats in bacteria are enhanced by 

mutations that reduce the fidelity of replication. The proofreading exonuclease activity in E. coli 

probably removes slipped structures, formed in the triplet repeat sequence tracts during replication, 

thereby significantly reducing the frequency of deletion and expansions. Among the components of 

the replication machinery, mutations in DNA polymerase 6, polymerase e and in the proliferating

cell nuclear antigen (PCNA) also destabilise CAG*CTG repeat tracts in yeast (Schweitzer and 

Livingston, 1999).

In R6/1 mice, transgenic for a single integrated copy of a CAG'CTG repeat in exon 1 of 

the human HD  gene (Mangiarini et al., 1996), expansion and contraction germline events appear to 

be influenced post-zygotically by the gender of the embryo (Kovtun et al., 2000), suggesting that 

there might be X- and Y-encoded trans-acting factors that influence the dynamics of expanded 

trinucleotide repeats. In contrast, no such effect was identified in Dmt mice, transgenic for the 3’ 

UTR of the DMPK  gene (Zhang et al., 2002).

Regardless of their still speculative nature, it is not unreasonable to imagine that 

individual-specific factors may also be key determinants of trinucleotide repeat dynamics in 

humans. The nature of such modifiers might be envisaged to include factors such as DNA repair 

gene variants or environmental genotoxic agents.
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In the next section an overview of the different DNA repair systems is presented, as 

deficiencies in the DNA repair machinery have been implicated in several human diseases, often 

associated with genomic instability.

1.5. DNA repair systems

DNA repair pathways must operate in all living cells to respond to the endogenous threats 

to DNA, as well as to toxic external damaging agents. The different mechanisms of DNA repair 

have proved to be unexpectedly complex and diverse, and have also been implied in surveillance 

and maintenance of genomic stability.

1.5.1. Base excision repair

Base excision repair (BER) is the process used for removing many types of damage 

produced spontaneously in DNA, such as oxidation or alkylation products. The initial step is the 

removal of the damaged base by one of a series of lesion-specific DNA glycosylases to generate an 

abasic (AP) site, either apurinic or apyrimidinic. An incision is made 5 ’ to the AP site by an AP 

endonuclease. The deoxyribose phosphate at the 5’ end of the incised strand is removed by the 

phosphodiesterase activity of DNA polymerase 6, and the resulting one-nucleotide gap is filled in 

by DNA polymerase 6 and sealed by either DNA ligase I or DNA ligase III, with the involvement 

of other accessory proteins (Lehmann, 1998; Moses, 2001).

1.5.2. Nucleotide excision repair

The nucleotide excision repair (NER) is an important DNA repair pathway involved in the 

removal of a wide variety of DNA lesions, including photoproducts induced by ultraviolet (UV) 

light and chemically-induced bulky lesions, which result in major distortions of the double helical 

structure. Mammalian NER has been studied extensively in rodent and human fibroblasts as well as 

in established cell lines. This process involves the products of some 30 genes (Wood, 1997). 

Genetic defects in individual NER proteins can cause severe human diseases, including Cockayne’s 

syndrome (CS) and xeroderma pigmentosum (XP). Cockayne’s syndrome patients manifest 

extreme dwarfism, severe mental retardation, characteristic retinal pigmentation, photosensitivity 

and deafness. Xeroderma pigmentosum is associated with high sensitivity to UV light, 

predisposition to skin cancer and neurological abnormalities (Moses, 2001). In humans, genes 

required for NER have been identified as the seven repair-deficient complementation groups 

(groups A to G) of this disease (Cleaver et al., 2001; de Laat et a l,  1999; Wood, 1997). The NER 

mechanism involves large protein complexes, which recognise structural changes caused by DNA 

damage, and proceeds by a three-step mechanism: dual incisions on both sides of the lesion;
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excision of the damaged base in an oligonucleotide approximately 24-31 nucleotide long; filling in 

of the post-excision gap and ligation (Cleaver et a l,  2001; de Laat et al., 1999; Wood, 1997).

NER can be divided into two subpathways. Transcription-coupled repair (TCR) refers to 

the preferential repair of transcribed strands in active genes (Mellon et al., 1987), while global 

genome repair (GGR) refers to removal of DNA damage indiscriminate of the transcriptional status 

of the DNA (Cleaver et al., 2001; de Laat et al., 1999).

In E. coli, the deficiency of some NER functions dramatically affects the stability of long 

CTG*CAG tracts cloned into bacterial plasmids (Pamiewski et al., 1999).

1.5.3. DNA mismatch repair

The preservation of genomic integrity requires the proper functioning of multiple 

replication, repair, and recombination processes. DNA mismatch repair (MMR) is one of such 

processes. The primary function of this system is to eliminate base-base mismatches and insertion- 

deletion loops, which arise as a consequence of DNA polymerase errors generated during DNA 

replication. The former lesions typically affect non-repetitive DNA, and lead to single base 

substitutions. Insertion-deletion loops are usually found within repetitive DNA sequences and are 

responsible for gains or losses of short repeat units within microsatellites, a phenomenon referred 

to as microsatellite instability (Buermeyer et al., 1999; Harfe and Jinks-Robertson, 2000). It is 

therefore conceivable that MMR mutations might somehow affect the stability of trinucleotide 

repetitive sequences associated with human diseases (for further details on the effects of MMR 

mutations on the stability of triplet repeats see Chapter 8).

The isolation of E. coli strains with elevated frequencies of spontaneous mutations, so- 

called mutator phenotypes, contributed to the identification of four “mutator” genes that play 

central roles in MMR: mutS, mutL, mutH  and mutU. MutS is an ATPase that acts as a homodimer 

to initially recognise base/base mismatches or small insertion/deletion loops, which arise during 

DNA replication and escape proofreading by the replicating polymerase. The MutS protein bound 

to a base mispair is then recognised by the MutL protein. The interaction with MutS results in the 

activation of a third protein MutH. MutH is an endonuclease that introduces a nick into 

hemimethylated DNA on the nascent strand. MutL is also required to load MutU at the site of the 

MutH-induced nick, facilitating DNA unwinding and subsequent exonucleolytic removal of the 

nascent strand. Finally, DNA polymerase II and DNA ligase are necessary for resynthesis and 

ligation. The combined action of all proteins directs the repair of mismatches to the newly 

synthesised DNA strand. This system works in a bidirectional way, and mismatches of up to four 

bases are efficiently repaired (Buermeyer et al., 1999; Harfe and Jinks-Robertson, 2000). In yeast 

and mammals, the existence of multiple homologues of m utS  and m utL  reflects not only 

conservation of the MMR pathway, but also both specialisation and overlaping functions for MMR 

gene products (Table 1.3). Given the similarities, most of the actual understanding of the 

mammalian MMR is derived from studies of the E. coli MutHLS mismatch repair system.
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Table 1.3. mut homologues in yeast and humans.

E. coli S. cerevisiae H. sapiens

mutS msh2, msh6, msh3 MSH2a, MSH6* MSH3
m shl N/l
msh4, msh5 MSH4, MSH5

mutL mlh1 MLH1a
pm sl PMS2a
mlh2, mlh3 PMS1a

mutH N/l N/l

mutU (UvrD) N/l N/l

a Mutations found in cancer families 
N/l, Not identified

Six MutS homologues have been identified in eukaryotes (MSH1-6). m shl is required for 

normal mitochondrial function in S. cerevisiae. Mammalian MSH1 homologues have not been 

reported to date. Based on studies in yeast and mice, MSH4 and MSH5 are thought to have 

specialised roles in the control of recombination processes during meiosis and do not appear to 

function in mutation avoidance. MSH2, MSH3 and MSH6 participate in primary mismatch 

recognition, with MSH2 functioning as an obligate partner in two heterodimers: M utSa, composed 

of MSH2 and MSH6; and MutSB, composed of MSH2 and MSH3. M utSa primarily binds single

base mismatches as well as single base insertion/deletion mispairs, whereas MutSB preferentially 

recognises 2-4 bp insertion-deletion loops. However, MutSB can also bind single base 

insertion/deletion mispairs (Figure 1.3). The overlapping binding specificities of M utSa and MutSB 

suggest partially redundant roles during MMR (Buermeyer et al., 1999; Jiricny, 2000; Peltomaki, 

2001b).

Multiple eukaryotic homologues of MutL have also been identified in yeast and 

mammalian cells (Table 1.3). As with MutS homologues, the MutL homologues MLH1, PMS2 

(pm sl in yeast) and PMS1 (mlh3 in yeast) can interact to form two heterodimers: M utLa and 

MutLB. M utLa, which is composed of MLH1 and PMS2, appears to be involved in the repair of 

both single-base mismatches and insertion/deletion loops. MutLB is composed of MLH1 and 

MLH3, and participates specifically in the repair of insertion/deletion loops (Figure 1.3) 

(Buermeyer et al., 1999; Harfe and Jinks-Robertson, 2000; Jiricny, 2000).

In eukaryotes, there appears to be some functional overlap between NER and MMR 

pathways, and certain gene products are required for both processes. Human tumour cell lines 

defective in MSH2 or MLH1 perform less TCR on UV-induced damage (Leadon and Avrutskaya, 

1997). MMR proteins are also involved in TCR of oxidative damage, as MutSa-defective human 

cells are unable to remove thymine glycol from the transcribed strand of an active gene (Leadon 

and Avrutskaya, 1997).
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Figure 1.3. Human DNA MMR protein complexes.
The figure shows different human DNA MMR complexes and their preferences for 
different types of mismatches. Mismatches are shown before and after correction 
(adapted from Peltomaki, 2001a).

1.5.3.1. MMR, microsatellite instability and cancer

MMR plays an important role in the prevention o f tumourigenesis. D N A  lesions, if not 

properly repaired, may be responsible for the development o f human cancers. In humans, defective 

MMR is causative o f hereditary non-polyposis colorectal cancer (HNPCC). HNPCC is a common 

cancer predisposition syndrome characterised by a dominant mode o f transm ission and high 

penetrance. HNPCC patients develop predominantly colon, endometrial and ovarian tumours, as 

w ell as m alignancies o f the stom ach, pancreas, sm all intestine, skin, breast and urinary tract 

(Peltomaki, 2001a). Mutations in the human MMR genes MSH2 and MLH1 are a frequent cause of 

predisposition to HNPCC (Peltom aki, 2001b), with 70% o f the germ line mutations identified  

producing truncated forms o f the protein, and the remainder being m issense mutations (Toft and 

Arends, 1998). Genomic deletions at the MSH2 locus are also another frequent cause o f HNPCC  

(W ijnen et al., 1998). In contrast, mutations in PMS2, MSH3, MSH6 or MLH3 are rarely correlated 

with cancer (Peltomaki, 2001b). In addition to mutations, epigenetic inactivation of MMR genes 

may also be responsible for microsatellite instability in non-hereditary types o f cancer. Such is the 

case for MLH1 promoter hypermethylation in the majority o f patients suffering from sporadic 

endometrial carcinoma (Gurin et al., 1999). Loss o f D N A  MMR is a rate-lim iting step in the
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aetiology of tumours associated with HNPCC. Affected HNPCC family members inherit a mutant 

allele in one of the MMR genes. The presence of a wild-type allele appears to be sufficient for 

normal MMR activity. Cancer progression, in predisposed individuals, results from the loss of the 

wild-type allele, through somatic mutation, promoter methylation or loss of heterozygosity 

(Peltomaki, 2001a; Peltomaki, 2001b; Toft and Arends, 1998).

MMR deficiencies can result in increased mutation rates, 100- to 600-fold above normal 

levels, and therefore lead to an overall genomic instability, also referred to as a mutator phenotype, 

a typical feature of HNPCC (Breivik and Gaudernack, 1999; Toft and Arends, 1998). Although the 

mutator defect that arises from an impaired MMR system can affect any DNA sequence, 

microsatellite sequences are particularly sensitive to MMR abnormalities. It has indeed been 

hypothesised that random accumulation of mutations in genes with repetitive DNA tracts within 

their coding regions, as a result of a defect in the MMR pathway, is associated with tumour 

progression (Bametson et al., 2000). The association between microsatellite instability and cancer 

is not restricted to HNPCC, but is best documented for this condition (Peltomaki, 2001a; 

Peltomaki, 2001b).

Animal models of MMR deficiencies have been generated (Table 1.4) and they have 

corroborated the involvement of MMR mutations in cancer development (Heyer et al., 1999).

Table 1.4. Phenotypes of MMR-deficient mice.

Gene Tumour phenotype Meiotic
phenotype

Microsatellite instability Reference

Mlh1 Lymphomas 
Gla tumours

Male and
female
sterility

Tumours and normal 
tissues from homozygous 
null mice

Edelmann e t al., 
1996; Prolla etal., 
1998

Msh2 Lymphomas 
Gl and skin tumours

None Tumours from 
homozygous null mice

Reitmair et al., 
1995

Msh3 No tumours until late age 
Lymphomas 
Gl tumours

None Tumours from 
homozygous null mice

de Wind etal., 
1999; Edelmann et 
al., 2000

M sh6 Gl tumours'3 
Noneb

None Not detected de Wind etal., 
1999; Edelmann et 
al., 1997

P m sl None None Not detected Prolla et al., 1998

Pm s2 Lymphomas Male sterility Tumours and normal 
tissues from homozygous 
null mice

Baker et al., 1995; 
Prolla e t al., 1998

8 Gl: gastrointestinal 
b Depending on the genetic background

Unlike adult HNPCC individuals, mice heterozygous for MMR defects do not develop 

cancer at an early stage (up to two years of age) and inactivation of both alleles is required for 

cancer development. This divergence may be accounted for by the limited life span of mice, 

relative to humans. Msh2- (Reitmair et al., 1995) and Ms/t6-deficient mice (Edelmann et al., 1997) 

are viable and fertile, but show a strong cancer predisposition phenotype. M lh l (Edelmann et al., 

1996; Prolla et al., 1998) and Pms2  (Baker et al., 1995; Prolla et al., 1998) mice are also viable in
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the homozygous state and show a predisposition to cancer, but exhibit varying degrees of sterility 

(Table 1.4), indicating that mutations in M lh l and Pms2  cause defects in meiosis, and suggesting 

unique roles for these genes in gametogenesis (Baker et al., 1995; Edelmann et al., 1996; Prolla et 

al., 1998). Microsatellite instability was observed in mice nullizygous for Msh2 (Reitmair et al., 

1995), Msh3 (de Wind et al., 1999; Edelmann et al., 2000), M lhl (Edelmann et al., 1996; Prolla et 

al., 1998) and Pm s2  (Baker et al., 1995; Prolla et al., 1998). In contrast, microsatellite instability 

has not been reported in M sh6- or P m sl-deficient animals (Baker et al., 1995; Edelmann et al., 

1996; Prolla et al., 1998).

1.5.3.2. MMR proteins in cell cycle surveillance and apoptosis

MMR proteins appear to be involved in biological activities, other than simple mismatch 

repair, including signalling of apoptosis or cell cycle arrest in response to DNA damage (Hickman 

and Samson, 1999; Toft et al., 1999; Wu et al., 1999). The futile-repair model proposes that 

repetitive, yet unsuccessful, cycles of DNA mismatch repair events directed to the newly 

synthesized strand opposite a major DNA lesion (e.g. induced by oxidative stress or radiation), 

create persistent DNA strand breaks and gaps without removing the offending DNA adducts. Futile 

cycles of excision and resynthesis result in the generation of persisting DNA termini, which might 

trigger an apoptotic signal that leads to cell death. Alternatively, cell death may be due to the 

binding of MMR proteins to DNA adducts, which either leads directly to a checkpoint response, or 

blocks other DNA transactions such as replication, transcription and proper damage repair 

(Aquilina and Bignami, 2001). MMR mutations may therefore predispose to malignancy not only 

through failure to repair mismatched DNA lesions, but also through failure to engage apoptosis and 

eliminate damaged cells that otherwise may be potential founders of clones bearing unrepaired 

mutations. The obvious implication of this finding is the refractory behaviour of MMR-deficient 

tumours to chemotherapy (Toft et al., 1999).

1.6. Mechanistic models of trinucleotide repeat expansion

The sequence and location of the expanded trinucleotide repeat are most likely responsible 

for the unique mechanism of pathogenesis characteristic of each disorder. Nevertheless, it is not 

unreasonable to speculate that a common, or a least similar, mutation mechanism could be shared 

by different trinucleotide repeat sequences. It is currently not clear exactly how the triplet repeat 

expansion occurs, why the mutation frequency depends on repeat length and why some diseases 

display a sex bias. It is however generally assumed that unusual structural features of the repeats, 

play a role, and several models for expansion have been proposed, involving alternative DNA 

structures in erroneous DNA replication, recombination or repair.

Trinucleotide repeat sequences possess sequence motif and symmetry elements that allow 

increased flexibility of the double DNA helix and the formation of stable and reproducible
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structures, alternative to the more conventional double-stranded B-DNA conformation. Indeed, 

several studies of single-stranded and cloned trinucleotide repeats suggest the formation of hairpins 

(Darlow and Leach, 1998a; Darlow and Leach, 1998b; Petruska et al., 1996; Zheng et a l ,  1996), 

triplexes (Bidichandani et al., 1998; Gacy et al., 1998; Sakamoto et al., 1999), slipped-stranded 

structures (Pearson et al., 1998a; Pearson et al., 1997; Pearson and Sinden, 1996; Pearson and 

Sinden, 1998a) and parallel duplexes (LeProust et al., 2000). The unique structural features of 

trinucleotide repeat sequences might therefore affect their genetic stability, and their presentation to 

other interacting molecules, particularly proteins involved in DNA metabolism (the structural 

properties of trinucleotide repeat sequences are discussed in further detail in Chapter 4).

Current models for expansion fall into two basic classes: those that are replication based, 

and those that involve recombination. It is important to be aware that most of these mechanisms 

have been proposed based on studies performed in simple model organisms, such as E. coli and S. 

cerevisiae. Unlike humans, microbial systems have not mimicked the inclination towards repeat 

expansion (Freudenreich et al., 1997; Kang et al., 1995b; Schweitzer and Livingston, 1997; Wells 

et al., 1998). This disparity could reflect fundamental differences in DNA metabolism, and it raises 

serious questions about the extent in which the findings based on simple model organisms apply to 

humans.

1.6.1. DNA polymerase slippage model

In simple strand slippage models, transient dissociation of the nascent strand from the 

template during DNA replication provides an opportunity for the strand to slip relative to one 

another, and for primer template misalignment during replication of a triplet repeat tract. If the 

nascent strand slips backwards and DNA polymerase primes DNA synthesis from this position, a 

gain of repeat units or expansion may result, if the loop-out is not subsequently repaired by the 

MMR system prior to a second round of DNA replication. If, on the other hand, the nascent strand 

slips forward, a deletion can result (Richards and Sutherland, 1994; Wells, 1996) (Figure 1.4).

The tendency for strand misalignment during replication of triplet repeat regions is 

attributed to the ability of primer or template strand to fold into hairpin structures stabilised by 

intrastrand base-pairs. Such stable hairpins may act as DNA polymerisation obstacles, impeding the 

transversal of the replication fork through a repeat stretch and creating the opportunity for strand 

misalignment. In vitro DNA polymerisation is indeed blocked through trinucleotide repeat tracts 

(Kang et al., 1995c; Ohshima and Wells, 1997). In vivo, CGG'CCG and GAG'CTG tracts block 

the progression of the replication fork in bacteria (Samadashwily et al., 1997), while GAA*TTC 

tracts inhibit replication in mammalian cells (Ohshima et al., 1998). In addition, DNA replication 

of methylated CGG'CCG expansions, in lymphoblastoid cell lines derived from FRAXA patients, 

occurs late in S phase (Hansen et al., 1993). Interestingly, interruptions within the repetitive DNA 

sequences, which destabilise possible alternative structures, abolish replication blockage 

(Samadashwily et al., 1997). These findings suggest that the formation of unusual DNA structures
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Figure 1.4. DNA polymerase slippage model for trinucleotide repeat expansion.
The parental DNA sequence is shown in black. Arrows indicate the DNA strands 
being synthesised, with the arrowheads pointing in the direction of DNA polymerase 
movement. (A) Schematic representation of the replication fork. While the leading 
strand is synthesised in a continuous manner, replication of the lagging strand 
depends on the discontinuous synthesis of Okazaki fragments. (B) Although replication 
slippage can in theory occur during both leading and lagging strand synthesis, the 
latter is probably more prone to polymerase slippage. Strand slippage is facilitated 
by the formation of alternative DNA structures, presumably stabilised by intra-strand 
base pairs. Slippage within the template DNA strand will lead to repeat contraction, 
whereas slippage within the newly synthesised DNA strand will lead to repeat 
expansion, if alternative secondary DNA structures are not properly repaired prior 
to the following genome replication event.
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accounts for the observed replication blockage, which might facilitate misalignment between the 

newly synthesised and the template DNA strand, potentially leading to changes in repeat number.

Expansions in bacteria and yeast occur predominantly when the strand that forms more 

stable secondary structure is the lagging daughter strand, while deletions occur predominantly 

when this strand is the template for lagging strand DNA synthesis (Freudenreich et al., 1997; Kang 

et al., 1995b; Maurer et al., 1996; Miret et al., 1997). Discontinuous synthesis of the lagging strand 

implies that a portion of the lagging strand must be transiently single-stranded, so that a 

trinucleotide repeat has better chance to form a secondary structure in the lagging strand template. 

The greater stability of the hairpins formed by the single-stranded CTG strands compared to the 

CAG strands (Mitas, 1997) is sufficient to explain the observed differences in deletion frequencies 

between leading and lagging strand (Kang et al., 1995b). The instability of GAA'TTC repeats is 

also greater when GAA is the lagging strand template, than when it is the leading strand template 

(Ohshima et al., 1998). This differential instability may again be explained by the greater ability of 

single-stranded GAA to adopt a more stable secondary DNA structure than single-stranded TTC 

sequences (LeProust et al., 2000). Cloning TGG'CCA into E. coli yields similar results: higher 

levels of trinucleotide repeat instability are detected when the TGG sequence serves as template for 

the lagging strand synthesis, which is consistent with the higher G content of this repeat, enabling it 

to form quadruplex structures (Pan and Leach, 2000). The proposed mechanism is therefore based 

on the discontinuous synthesis of the lagging strand during DNA replication (Figure 1.4).

The replication slippage model could account for relatively small changes in repeat 

number, and could also explain how interspersed interruptions stabilise the repeat tract. For large 

expansions to occur via this mechanism, many slippages would be needed in a single round of 

replication. This might be possible in E. coli, if the Okazaki fragments generated during lagging 

strand DNA synthesis were entirely comprised within the repeat, so that they are free to slip 

repeatedly during replication. Such fragments are not anchored by neighbouring non-repetitive 

sequences and might be able to slip or slide during DNA polymerisation, possibly resulting in 

addition of many copies of the repeat to the lagging strand (Sarkar et al., 1998).

The replication-based model, in which slippage of perfect repeat Okazaki fragments leads 

to repeat expansion, has been favoured in the literature, however DNA polymerase slippage has not 

been definitively proven to be responsible for the trinucleotide expansions found in human 

disorders.

1.6.1.1. Transcription interference in repeat length changes

Since in all situations in which the expansion of a trinucleotide repeat is associated with a 

human disease, the repetitive sequence is located within a gene, there is the possibility for 

transcription-associated events to influence the stability of trinucleotide repeats, by interfering with 

the transversal of the replication fork through a repetitive sequence. Active transcription through 

triplet repeat tracts increases the frequency of deletions of long CAG*CTG tracts from plasmids in 

E. coli, and reduces the frequency of expansions (Bowater et al., 1997; Bowater et al., 1996;
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Schumacher et al., 2001). In contrast, transcription fails to affect the stability of shorter CTG*CAG 

repeat tracts (Schmidt et al., 2000). It has been hypothesised that transcription of long CTG*CAG 

repeats influences the transition between stationary and exponential growth phase, conferring a 

growth advantage to cells harbouring deleted CTG*CAG tracts (Bowater et al., 1997). The 

selective growth advantage, if any, would not be so evident in bacteria carrying shorter 

trinucleotide arrays, therefore reconciling these two apparently contradictory observations.

The presence of transcription complexes within trinucleotide repeat sequences may favour 

the formation of secondary structures, enhancing the error rate of replication, leading to a higher 

frequency of deletions (Bowater et al., 1997). Alternatively, DNA replication and transcription can 

occur simultaneously on the same DNA sequence, leading to eventual head-on collisions of the 

RNA polymerase with the replication machinery. Head-on collisions could lead to an increase in 

double strand breaks and illegitimate recombination (Schumacher et al., 2001).

By analogy with factors that affect repeat instability in bacteria, transcription through a 

given region may mediate the mutation mechanism in mammals. The tissue-specific pattern of 

somatic mosaicism detected in SBMA patients appears to correlate with the expression pattern of 

the androgen receptor, as assessed by western blot and immunocytochemistry analysis (Tanaka et 

a l ,  1999), suggesting the involvement of gene expression and transcription in the mechanism of 

expansion. An effect of transgene expression was suggested in transgenic mice for HD  exon 1, 

given that the lowest levels of somatic mosaicism were detected in a line that did not express the 

transgene (Mangiarini et al., 1997). Nevertheless, tissue-specific levels of somatic instability in 

transgenic mice carrying repeat tracts, derived from the human DM1 locus, did not show a simple 

correlation with the transcriptional levels of the transgene. Although the transgenic repeat was 

indeed ubiquitously expressed in the transgenic lines exhibiting somatic mosaicism, the highest 

expression levels, as assessed by reverse transcriptase polymerase chain reaction (RT-PCR) 

analysis, did not correlate with the tissues showing the greatest somatic instability (Fortune, 2001; 

Lia et al., 1998).

1.6.1.2. FEN1 interference model

Attractive as it might be, the replication slippage model cannot easily explain the clear 

expansion-biased nature of trinucleotide instability. Therefore, yet another model based on the 

displacement synthesis of Okazaki fragments has been proposed (Gordenin et al., 1997). Each 

replication fork comprises a continuous leading strand and a discontinuous lagging strand, which 

consists of several fragments. Unlike continuous synthesis at the leading strand, which is 

maintained mostly as a duplex, the lagging strand synthesis proceeds in a discontinuous fashion. A 

portion of the lagging strand template must be rendered single-stranded to permit the priming of an 

Okazaki fragment. As a consequence of the discontinuous mechanism of DNA synthesis of the 

lagging strand, an Okazaki fragment may have its 5’ end displaced by polymerase extension of the 

immediately upstream Okazaki fragment. Normally, the processing of Okazaki fragments involves 

the excision of the flap by flap endonuclease 1 (FEN1), gap filling and ligation (Figure 1.5).
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Figure 1.5. A model of repeat expansion via a FEN1-resistant folded flap.
(A) Usually, the displaced 5’ flap of an Okazaki fragment is removed by the structure- 
specific endonuclease FEN1. Synthesis of the upstream Okazaki fragment results 
in the displacement of the 5’ end of the downstream Okazaki fragment to generate 
a flap. FEN1 is loaded at the 5’ end of the flap and slides down to the base of the 
flap, removing the flap from the Okazaki fragment. (B) Depending on its sequence, 
a single-stranded flap may form FEN 1-resistant structures, such as hairpins. Ligation 
and replication results in expansion, by insertion of the FEN 1-resistant flap into the 
new double-stranded DNA helix.
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However, a displaced flap containing CAG or CTG repeats, or even other triplet repeats, 

may form a thermodynamically favourable secondary structure. Given that FEN1 can only act on 

single-stranded DNA, a partially double-stranded flap blocks FEN1 activity, and hence its own 

removal (Chen et al., 1995; Gacy et a l , 1995; Spiro et al., 1999). Aberrant flaps, resulting from the 

formation of a hairpin or triplex structure, will be inefficiently excised on completion of lagging- 

strand replication. Ligation of the 5 ’ end of a flap (which has not been removed by FEN1) to the 3’ 

end of the upstream Okazaki fragment will result in a nascent DNA strand with an increased 

number of repeats equal to the length of the flap, and eventually result in mutation, with lack of 

excision providing the initial step in generating large DNA expansions (Gordenin et a l ,  1997). It 

was demonstrated that in yeast, secondary structure could indeed inhibit flap processing in a 

length-dependent manner (Henricksen et a l ,  2000; Spiro et a l,  1999). In addition deletion of rad.27 

(the yeast homologue of human FEN1), causes length-dependent destabilisation of the CAG*CTG 

tracts and a substantial increase in expansion frequency (Freudenreich et al., 1998). The FEN1 

interference model is appealing because it may account for the gross mutation bias towards 

expansion.

1.6.2. Recombination-dependent mechanisms of expansion

Theoretically, trinucleotide repeat expansion could also result from recombination- 

dependent events. Complex patterns of haplotype variation and gene disequilibrium in FRAXA 

were explained on the basis of unequal crossing-over or gene conversion (Brown et al., 1996; 

Losekoot et a l ,  1997). In DM1, there is no direct evidence for exchange of flanking material 

around the CTG*CAG repeat (Imbert et al., 1993; Jansen et al., 1992a; Shutler et al., 1994), with 

only one exception being reported (O'Hoy et al., 1993). In addition, GAA*TTC instability in FRDA 

is not a function of the number of long alleles, ruling out homologous recombination as a major 

mechanism of mutation (Gacy et a l ,  1998). The usual mechanisms for homologous recombination 

appear not to be essential for triplet repeat mutation also in E. coli, since expansions have been 

observed in recA' strains (Kang et al., 1995b; Kang et al., 1996; Napierala et al., 2002; Ohshima et 

al., 1996a; Ohshima et al., 1996b) and similar extents of deletions were observed in isogenic 

strains with functional or deficient RecA activity (Jaworski et al., 1995).

However, the expansion of CTG*CAG trinucleotide repeats by recombination, without the 

exchange of flanking markers, has been reported in recombination-proficient E. coli strains, 

transformed with two distinct plasmids carrying repetitive sequences (Jakupciak and Wells, 1999; 

Jakupciak and Wells, 2000), as well as in S. cerevisiae (Jankowski et al., 2000; Richard et al., 

1999). Moreover, conditions that favour recombination events increase the frequency of expansion 

mutations (Jakupciak and Wells, 1999; Jankowski et al., 2000; Richard et al., 2000), in contrast to 

the massive deletion-biased instability previously detected in microbial systems (Freudenreich et 

al., 1997; Kang et a l ,  1995b; Schweitzer and Livingston, 1997; Wells et al., 1998). This finding 

led to the hypothesis that, under especial circumstances, complex recombination events may be a 

robust process to originate trinucleotide repeat length variability in bacteria and in yeast. It has

55



Mario Gomes-Pereira, 2002 Chapter 1

therefore been speculated that similar complex recombination events, between sister chromatids or 

homologous chromosomes, could also play a role in both somatic and germline trinucleotide repeat 

instability in humans (Jakupciak and Wells, 1999; Jakupciak and Wells, 2000), similar to the non

reciprocal transfer of repeats between alleles in the germline, previously described for human 

minisatellites (Jeffreys et al., 1994).

1.6.2.1. Generation of DNA strand breaks within trinucleotide repeat sequences

Recombination-mediated trinucleotide repeat instability requires DNA strand breaks. 

Replication stalling at CAG#CTG tracts (K ang et al., 1995c; Ohshima and W ells, 1997; 

Samadashwily et al., 1997), may increase the rate of double strand break formation within repeat 

sequences, and stimulate recombination events (Michel, 2000). Indeed, CAG'CTG repeats showed 

length-dependent susceptibility to strand breaks in yeast (Freudenreich et al., 1998). Alternatively, 

the presence of unprocessed Okazaki fragments could also generate recombinogenic double strand 

breaks (Gordenin et a l,  1997).

1.6.2.2. Trinucleotide repeat instability by double strand break repair

According to this model, trinucleotide repeat instability would be initiated by an 

intramolecular double strand break. Exonucleolytic cleavage of the 5 ’-containing strands leaves 

two 3’ over-hang ends, which can be processed in a number of different ways, leading to changes 

in the repeat number. Annealing of the two 3 ’-containing complementary strands, followed by 

DNA ligation would result in repeat contraction (Figure 1.6). Alternatively the gaps formed 

provide binding sites for the recombination machinery. Both 3 ’ ends would each invade the donor 

template sequence, on a sister chromatid or sister chromosome, which might be aligned out-of- 

register with the first chromatid or chromosome. DNA repair synthesis extends both chains, and 

both the recipient and the donor locus become heteroduplexes, with one original and one newly 

synthesised strand (Figure 1.6). By analogy to the normal replication of trinucleotide repeat 

sequences, it might be imagined that during repair synthesis DNA polymerase undergoes strand 

slippage, facilitated by the formation of hairpin structures, to further add or subtract repeats 

(Paques et a l, 1998). In fact, DNA synthesis associated with double strand breaks is more prone to 

errors than S phase genomic DNA synthesis (Richard et al., 1999). Resolution of the junctions may 

or may not imply exchange of non-repetitive flanking sequences, resulting in the generation of two 

recombinant DNA molecules or in a gene conversion-type mechanism (Figure 1.6). The exact 

repeat length gained will depend on the degree of horizontal slippage during the alignment step, 

between the 3’ free end and the template DNA strand (Jankowski et al., 2000).

Alternatively the newly synthesised DNA does not remain base-paired to the template, as 

in normal DNA replication, instead, newly synthesised strands are displaced and reannealed, in a 

process called synthesis-dependent strand annealing (SDSA) (Paques et al., 1998; Richard and 

Paques, 2000) (Figure 1.6). DNA synthesis is thus conservative and fundamentally different from 

the semiconservative genome replication that occurs during the S phase of the cell cycle. The
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Figure 1.6. Expansion of trinucleotide repeats by double strand break repair.
A double strand break occurs within the trinucleotide repeat (thin lines) of the recipient 
molecule (black). Exonucleolytic cleavage of the double strand break creates 3’ ends 
(A). Single strand annealing of tandem repeats, followed by DNA ligation, leads to 
repeat contraction or expansion (B). Strand invasion of the homologous template 
(grey) by a resected 3’ end initiates recombination and forms two Holiday-like junctions 
(C). DNA repair synthesis occurs on both strands (dashed lines) and restores the 
double-stranded trinucleotide sequence (D). Arrowheads indicate the direction of 
DNA synthesis. Unwinding and out-of-register reinvasion of one (or both) the newly 
synthesised strand(s) may happen during repair synthesis (E), as well as strand 
misalignment, involving single-stranded loops (F). Different ways of resolving the 
junctions generate distinct products. Exchange of flanking non-repetitive sequences 
(thick lines) results in recombinat molecules (G). Alternatively gene conversion or 
synthesis-dependent strand annealing type mechanisms leave the flanking regions 
unaltered (H)
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recipient locus will receive two newly synthesised strands of DNA, while the donor template 

remains unchanged (Paques et al., 1998). Since alignment of complementary newly synthesised 

strands can occur in different registers, the total number of repeats in the recipient site can easily 

have fewer or more copies that the donor template. In conjunction, double strand break repair and 

replication slippage, could indeed mediate multiple-fold expansions of trinucleotide repeat 

sequences (Richard and Paques, 2000).

In summary, it is theoretically possible, and it has indeed been experimentally confirmed, 

that under controlled circumstances, trinucleotide repeat instability in simple organisms, can arise 

through a variety of molecular pathways, such as replication slippage, transcription-dependent 

mechanisms, and complex recombination events, initiated by double strand breaks. However, it is 

not clear if these mechanisms are operating in mammalian cells, and if so, to which extent they are 

responsible for trinucleotide repeat mutation.

1.6.3. Models of germline trinucleotide repeat instability

Following the repeat dynamics in the male germline of transgenic R6/1 mice, carrying an 

expanded HD exon 1 (Mangiarini et al., 1996), trinucleotide repeat expansion in haploid cells does 

not appear to occur during either mitotic or meiotic replication. Rather, repeat instability appears to 

be a post-meiotic event, which occurs late in spermatogenesis, when haploid spermatids undergo 

terminal differentiation into mature spermatozoa, in the absence of DNA replication or 

recombination (Kovtun and McMurray, 2001). The parallel between the age of the transmitting 

mother and the enhanced deletion-biased germline instability, described in other mouse models 

(Kaytor et al., 1997; Sato et al., 1999), is also consistent with a mutation process that occurs in a 

developmental time window of the oocyte, following meiotic replication, but prior to fertilisation 

(Kaytor et al., 1997).

The model proposed by Kovtun and McMurray hypothesises that once DNA strand breaks 

form, single-stranded folding generates loops, possibly stabilised by Msh2 protein, leaving a gap 

behind. The gap is subsequently filled by repair-associated DNA synthesis, which may also create 

additional loop-outs and hairpins by polymerase slippage within the repeat tract (Figure 1.7). 

Following ligation, the loops would be trapped in the DNA (Kovtun and McMurray, 2001). If not 

repaired by the DNA repair machinery, heteroduplex sequences, similar to the slipped-stranded 

intermediate DNA (SI-DNA) structures previously described (Pearson et al., 1997), would be 

present in sperm, possibly giving rise to mosaic embryos following fertilisation.

In support of this model Afs/i2-deficiency completely abolishes germline expansion, 

suggesting that Msh2 may indeed mediate germline instability (Kovtun and McMurray, 2001). It 

was further suggested that a similar model might also account for the somatic instability observed 

not only in R6/1 mice but also in humans, consistent with previous findings that M sh2  deletion 

stabilises expanded CAG'CTG repeats in the soma of R6/1 mice (Manley et al., 1999b).
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Figure 1.7. Mechanism for trinucleotide repeat expansion in germ cells by gap repair.
Introduction of a single strand break enables single stranded folding into a secondary 
structure such as loop or hairpin, which is stabilised upon Msh2 recognition and 
binding. Gap-filling DNA repair synthesis fills the gap and creates the opportunity for 
polymerase slippage and formation of additional loops. Loops are trapped into the 
double-stranded DNA molecule following ligation (adapted from Kovtun and 
McMurray, 2001).

In contrast with the model proposed by Kovtun and McMurray, the high mutation 

frequency estimated for the male germline in HD patients, appears to be more consistent with a 

m utational process that occurs throughout germ line m itotic division in the renewing 

spermatogonial stem cell population, rather than resulting from a single event (Leeflang et al., 

1999). Recombination between the HD-containing sister chromatids is another theoretical 

possibility, but appears highly unlikely as it would have to occur in almost every meiosis and result 

in an increase in repeat number on both sister chromatids, in order to account for an average 

mutation frequency of 98% in individuals with at least 50 repeats (Leeflang et al., 1999). No 

mechanism consistent with these assumptions has yet been described. In addition, simple 

mathematical modelling of germline instability, always involving small repeat changes, in mice 

carrying a single copy of the 3’UTR of the DMPK gene (Monckton et al., 1997), taking into
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account the number of cell divisions of spermatogenic stem cells and the calculated mutation 

frequency, provided support for a model of germline repeat instability based on replication slippage 

events and on the displacement of Okazaki fragments (Zhang et al., 2002). Nevertheless, time per 

se, rather than the number of cell divisions, could also serve as the critical factor controlling repeat 

expansions in spermatogenic stem sells in a cell division-independent mechanism (Zhang et al., 

2002).

1.7. Project design

Most trinucleotide repeat diseases are associated with the expansion of CAG'CTG 

trinucleotides, including DM1, HD, SBMA, DRPLA and SCAs types 1, 2, 3, 7 and 8 and 17 

(Section 1.1). Although progress has been made in understanding the pathophysiology of diseases 

associated with genetic instability of simple trinucleotide repetitive DNA sequences, the 

mechanisms of expansion of repeat sequences remain unclear. Trinucleotide repeat disorders may 

develop through a complex interplay between hereditary factors and the genomic instability 

induced by DNA damage within the cell environment. Much of this damage results from the 

intrinsic chemistry of DNA in living cells, and it is conceivable that the cellular processes designed 

to maintain genomic integrity will affect trinucleotide dynamics. Many questions about the 

mechanism and the consequences of expansion remain unanswered. These questions are not simply 

of academic interest, since their answers may suggest new therapeutic approaches to this group of 

diseases.

The detailed analysis of the dynamics of trinucleotide repeat mutation might be envisaged 

as a preliminary step in determining the common molecular mechanisms shared by trinucleotide 

repeat disorders. The transgenic D m t-D line replicates the gross age-dependent, tissue-specific, 

expansion-biased somatic mosaicism observed in DM1 patients (Fortune et al., 2000). In terms of 

the rate of repeat length mutation change as a function of time, it may even be greater in Dmt-D 

mice than in humans. These animals provide a valuable source of tissue samples, from which cell 

cultures might be established. Cell lines containing expanded CAG'CTG repeats may offer a 

powerful system, in which repeat dynamics can be accurately monitored under controlled 

conditions over large numbers of cell divisions in a relatively short period of time. The repeat 

instability mechanisms {e.g. mitotic vs. repair synthesis) could be easily tested in cell lines, which 

accumulate repeat length mutations over time. The establishment of a Dm t-D cell culture system 

and detailed characterisation of repeat dynamics in vitro should therefore shed more light on the 

molecular mechanisms involved in repeat length variation. In addition, Dmt-D cell lines may even 

create new avenues for the preliminary assessment of therapeutical intervention, by means of 

modulating trinucleotide repeat instability.

A major issue is the understanding of the pathway that links genotype to phenotype, and to 

distinguish between cause and consequence. Although each triplet repeat disorder contains a 

mutation in a single gene, the mechanism for each disorder is complex and requires identification
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of all components of the triplet repeat pathway. Trinucleotide repeat expansions associated with 

human diseases, appear to lead to pathology by a variety of different mechanisms, including 

induction of methylation and gene silencing, inhibition of transcription elongation by higher-order 

DNA non-orthodox structures, aberrant mRNA processing, or a toxic gain-of-function at the 

protein level (Section 1.2). Consequently, therapeutical strategies aimed at preventing the 

pathophysiological consequences of trinucleotide expansions will most likely be highly specific, 

and only suitable to a singular disease or to a particular subclass of triplet repeat disorders. 

Regulation of gene expression, would appear as a possible therapeutical approach. In mice 

transgenic for tetracyclin-regulated HD  exon 1, neurological signs are largely reversed when 

transgene expression is then turned off (Yamamoto et al., 2000), suggesting that some neurological 

damage can indeed be reversed, by down-regulating the expression of the affected gene. However, 

conditional inactivation of Hdh  expression in the forebrain of mice, at postnatal day five, led to 

neurological deficits, progressive neurodegeneration, motor phenotypes, and early mortality, 

suggesting that huntingtin is required for neuronal function and survival in the brain, and that a loss 

of function may partially contribute to HD pathogenesis (Dragatsis et al., 2000). A  similar scenario 

may also apply to other dominant polyglutamine disorders, rendering therapeutical strategies based 

on gene down-regulation less than ideal, if not specifically targeted to the expanded allele.

Alternatively, the development of means of causing repeat length contraction and reversion 

to non-pathogenic repeat sizes would be predicted to be potentially curative, possibly leading to 

reversion of symptoms, or at least interruption of disease progression. Nevertheless, suppressing 

trinucleotide repeat instability, resulting in decreased expansion rates, may also be highly 

beneficial, as it may possibly decelerate clinical progression or delay disease onset. D m t-D  cell 

lines, which recreate the complex metabolism of trinucleotide repeats, offer the unique opportunity 

to assess the effect of multiple genotoxic agents on the dynamics of expanded CAG'CTG tracts. 

Potential chemical reagents, which might modify the somatic repeat dynamics, could be tested in 

cell culture models. In the long run, the preliminary identification of genotoxic modifiers of triplet 

repeat instability may suggest novel therapies based upon control of repeat size variation in vivo.

In summary, this project was designed, not only to achieve a better understanding of the 

molecular mechanisms underlying trinucleotide repeat mutation, but also to gather preliminary data 

supporting intervention at the DNA level as a valid therapeutical approach to battle trinucleotide 

repeat disorders.
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2. Materials and methods

2.1. General materials

2.7.7. Chemicals and reagents

AnalaR and molecular biology grade chemicals were obtained from Fisher Scientific, 

Merck Ltd. (BDH Laboratory Supplies), Riedel-de Haen or Sigma Chemical Company Ltd. Other 

reagents obtained from alternative sources are mentioned in Table 2.1.

Table 2.1 Chemicals and reagents

Chemicals and reagents Supplier
[a-32P]dCTP (3000 Ci/nmol) Amersham Pharmacia Biotech
30% (w/v) acrylamide/bis 29:1 (3.3% C) BioRad
Acetic acid Fisher Scientific U.K. Ltd.
Agar Difco Laboratories
Agarose Boehringer Mannheim
Apicidin Calbiochem
Bacto® tryptone Difco Laboratories
Bacto® yeast extract (without amino acids) Difco Laboratories
Boric acid Fisher Scientific U.K. Ltd.
Chloroform Fisher Scientific U.K. Ltd.
Ethanol, absolute 100%, analytical reagent Bamford Laboratories
ExpressHyb hybridization solution Clontech
Formamide Fluka
Hydrochloric acid Fisher Scientific U.K. Ltd.
IPTG Boehringer Mannheim
PMSF Boehringer Mannheim
Sephadex® G-50 Amersham Pharmacia Biotech
Sodium dodecyl sulphate Anachem
X-gal Boehringer Mannheim

2.7.2. Immunochemicals

Immunochemicals were obtained from Sigma Chemical Company Ltd.

62



Mario Gomes-Pereira, 2002 Chapter 2

2.1.3. General disposable plasticware

General disposable plasticware materials used during the course of this project are listed in 

Table 2.2 below.

Table 2.2. Plastic materials and suppliers.

Plastic Materials Supplier
0.2 ml micro-tubes ABgene®
15 ml centrifuge tubes, gamma irradiated Sterilin
20 (i\, 200 fi\ and 1 ml filter pipette tips Rainin Instrument Co. Inc. 

and Greiner Labortechnik

200 /rl and 1 ml pipette tips Sarstedt
50 ml centrifuge tubes Sterilin
90 mm Petri dishes Philip Harris Scientific
Thin-wall polycarbonate 96-well plates and 
thermosealers

Costar

2.1.4. Tissue culture disposable materials

Tissue culture disposable plastic materials are listed in Table 2.3 below. 

Table 2.3. Tissue culture materials and suppliers.

Disposable Materials Supplier
100 x 20 mm polystyrene tissue culture dishes Corning
25 cm2 tissue culture flasks Costar and Iwaki
5, 10 and 25 ml pipettes Corning
6-, 12- and 96-well tissue culture microplates Iwaki
60 x 15 mm polystyrene tissue culture dishes Corning
75 and 150 cm2 tissue culture flasks Iwaki
Cell scrapers Sigma
Cryo 1 °C freezing container Nalgene
Immunocytochemistry 8-well chamber glass slides Nalge Nunc
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2.1.5. Enzymes

The enzymes used for DNA analysis are listed in Table 2.4, together with their suppliers, 

from where their reaction buffers were also obtained.

Table 2.4. Enzymes and suppliers.

Enzyme Supplier
Taq DNA polymerase Bioline
T4 DNA ligase GibcoBRL Life Technologies
EcoRI GibcoBRL Life Technologies
Hinti\\\ GibcoBRL Life Technologies
Proteinase K Boehringer Mannheim
RecA New England Biolabs

2.1.6. Nucleic acids size markers and mass ladders

Following gel electrophoresis, DNA and RNA samples were sized and/or quantified using 

the following size markers or mass ladders listed in Table 2.5.

Table 2.5. Nucleic acid size markers and/or mass ladders and their 
suppliers.

Size marker and/or mass ladder Supplier
1 kb+ ruler GibcoBRL Life Technologies
2.5 kb molecular ruler BioRad
Amplisize ruler BioRad
Haelll digested <|)X174 DNA New England Biolabs
High MW mass ladder GibcoBRL Life Technologies
H/'ndlll digested X DNA New England Biolabs
Low DNA mass ladder GibcoBRL Life Technologies
RNA ladder GibcoBRL Life Technologies
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2.1.7. Kits

The kits used during the course of this project are listed in Table 2.6.

Table 2.6. Kits and suppliers.

Kit Supplier
5’-Bromo-3-deoxyuridine detection and 
labelling kit I

Roche Boehringer

Nucleon® BACC kit Nucleon
PGEM®-Teasy vector system Promega
QIAprep® miniprep kit Qiagen
QIAquick® spin kit Qiagen
Ready-to-go DNA labelling beads (-dCTP) Amersham Pharmacia Biotech

2.1.8. Membranes and paper

TM + T MHybond -N and Hybond -N nylon membranes were obtained from Amersham 

Pharmacia Biotech. Magna nylon transfer membrane was purchased from Osmonics. Biodyne b 

membrane was obtained from Flowgen.

Schleicher & Schuell supplied gel blotting paper. Saran wrap was obtained from Dow.

2.1.9. Photography and autoradiography

Agarose gels were photographed using a UVP gel documentation system 7500. Konica X- 

ray film and autoradiography cassettes were obtained from Genetic Research Instrumentation Ltd. 

Films were developed using an X-Ograph Compact X2 system (X-Ograph Ltd.). Both fixing and 

developer solutions were supplied by Kodak.

Cells were photographed using a Canon EOS300 camera and 400 ISO films.

2.1.10. Microscopes

A Nikon TNS phase contrast microscope and a Zeiss Axiovert S I00 fluorescence 

microscope were used during the course of this project.
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2.1.11. Spectrophotometer

A Shimadzu UV-1201 UV-Vis spectrophotometer was used to estimate the concentration 

and purity of nucleic acids in aqueous solution.

2.1.12. DNA crosslinker

A  Stratagene® UV crosslinker 2400 was used during the course of this project, to fix DNA 

and RNA onto nylon membranes and also to irradiate cultured mouse cells with defined doses of 

ultraviolet (UV) light (wavelength 254 nm).

2.2. Experimental materials

2.2.1. Animals

The D m t-D  and D m t-E transgenic mice used during the course of this project were 

generated by Darren G. Monckton (Monckton et al., 1997). All D m t mice were on an FVB/N 

genetic background, and kept at the Central Research Facility of the University of Glasgow.

C57/black 6 mice, transgenic for the disrupted murine Pms2 gene (Baker et al., 1995) were 

obtained from Michael Liskay (Department of Molecular and Medical Genetics, Oregon Health 

and Science University, Oregon, USA) and bred onto the FVB/N background.

2.2.2. Bacterial host strains

Escherichia coli TOP 10 strain was obtained from Invitrogen.

2.2.3. Vectors

pGEM®-T Easy bacterial vector was obtained from Promega.

2.2.4. DNA sources

pGEM-T750.19, pGEM-T750.21 and pGEM-T750.22 constructs, containing CTG#CAG 

trinucleotide repeats subcloned in pGEM®-T Easy bacterial vector, were a gift from Christine 

Howarth (Division of Molecular Genetics, University of Glasgow, Glasgow, UK). In all of them, a 

human CTG'CAG repeat derived from the DM1 locus was amplified using oligonucleotide primers 

DM-H and DM-BR (Table 2.7) and the polymerase chain reaction (PCR) product was subsequently 

ligated into pGEM®-T Easy.
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2.2.5. Oligonucleotides

The oligonucleotide primers used in this project were obtained from Genosys. The primer 

sequences are listed in Table 2.7 and the locations of the Dmt transgenic oligonucleotide primers 

are shown in Figure 2.1.

Table 2.7. Oligonucleotides name, 5'-3' sequence, melting temperature (7m) and target 
sequence.

Oligonucleotide 5'-3' Sequence 7m Target sequence
DM-A AGTGCAGTTCACAACCGCTCCGAGC 67°C CTG repeat 5’ 

flanking region

DM-BR CGTGGAGGATGGAACACGGAC 64°C Dmt transgene

DM-C AACGGGGCTCGAAGGGTCCT 64°C Dmt transgene

DM-DR CAGGCCTGCAGTTTGCCCATC 64°C Dmt transgene

DM-ER AAATGGTCTGTGATCCCCCC 60°C Dmt transgene

DM-F CTGAGGCCCTGACTGGGATGGGCAAACTGC 72°C Dmt transgene

DM-GR GCAGGGCGTCATGCACAAGAAA 62°C Dmt transgene

DM-H TCTCCGCCCAGCTCCAGTCC 66°C Dmt transgene

DM-PRENK GTCCGGTACCGAATTCCGCTAGCTCCTCCC

AGACCTTC

73°C Dmt transgene

DM-QR CACTGTGGAGTCCAGAGCTTTG 62°C Dmt transgene

DM-R GTCCTCCGACTCGCTGACAG 64°C Dmt transgene

H1 TGCTTACCTTGTTACGACTTA 57°C Mouse mitochondrial 
DNA

L1 CGCTCTACCTCACCATCTCTT 62°C Mouse mitochondrial 
DNA

mDmtD-GR AAAGGCAGGCATGGTTAGATTGAC 61 °C Transgene 3' 
flanking region on 
mouse genomic 
DNA

mP2-1 TTCGGTGACAGATTTGTAAATG 55°C Mouse Pms2 gene

mP2-2 TTTACGGAGCCCTGGC 57°C Mouse Pms2 
disrupted gene

mP2-3 TCACCATAAAAATAGTTTCCCG 55°C Mouse Pms2 gene

mUSF-A GCCCCTGCCTCACCGTATAG 63°C Mouse upstream 
stimulatory factor 2  
gene

mUSF-BR CTGGGGTCCACCACTTCAAG 62°C Mouse upstream 
stimulatory factor 2  
gene
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A. Human genomic DNA at the DM1 locus

DM-A DM-H DM-C DM-F DM-R

(CAG-CTG)n

B. Dmt-D transgene

DM-H DM-C

DM-ER DM-DR DM-BR DM-QR DM-PRENK

DM-F DM-R

(CAG*CTG)n

DM-ER DM-DR DM-BR DM-QR DM-PRENK mDmtD-GR

■  DMPK coding DNA
■  Sequence of mouse genomic DNA on chromosome 11 
Q  Dmt162 transgene
□  CAG*CTG repetitive tract

Figure 2.1. Annealing sites for the oligonucleotide used to amplify the D/nM 62 transgene.
(A) The figure represents a fragment of the human DM1 locus, from which the 
Dmt162 transgene was derived. (B) In the Dmt-D mouse line, the transgene integrated 
on mouse chromosome 11. The figure also shows the annealing sites for the primers 
used during the course of this work.

2.2.6. Probes

Double-stranded DNA probes used in Southern blot hybridisations included (a) DM56, a 

CTG#CAG repeat PCR product amplified with oligonucleotide primers DM-C and DM-ER; and 

(b) DM-F/DM-PRENK, a non-repeat D m t transgenic PCR product. Both were generated by PCR 

amplification and purified using the Qiagen PCR purification kit.

Double-stranded DNA probes, generated by PCR amplification of mouse genomic DNA 

samples and cloned into TOPIO plasmids, were used in northern blot hybridisation to detect (a) 

cytochrome oxidase complex I I  and (b) fi-actin  mRNA transcripts. Both probes were kindly 

provided by Chiung-Mei Chen (Division of Molecular Genetics, University of Glasgow, Glasgow, 

UK).

2.3. Solutions

2.3.1. General solutions

k  DNA x H indU l and (j>xl74 DNA x H a e lll  size ladders

25 ng/pl X DNA digested with H indlll and 25 ng/pl cj)xl74 DNA digested with H aelll, IX  TE, IX  

DNA loading dye.
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0.5M EDTA pH 8.0
0.5M EDTA with NaOH to pH 8.0.

1 kb+ ladder
60 ng/pl 1 kb ladder, IX  DNA loading dye in IX  TBE.

10% (w/y) SDS
10 % (w/v) SDS in H20 .

100X Denhardt’s solution
2% (w/v) Ficoll®400, 2% (w/v) polyvinylpyrolidone, 2% (w/v) BSA.

100X Ethidium bromide-acridine orange stock solution
2.75 mM ethidium bromide, 1.25 mM acridine orange, 2% (v/v) ethanol in H20 .

10X MOPS pH 7.0
0.2 M MOPS, 50 mM sodium acetate, 10 mM EDTA with NaOH to pH 7.0 (stored at 4°C in the 

dark).

10X MOPS pH 8.0
0.2 M MOPS, 50 mM sodium acetate, 10 mM EDTA with NaOH to pH 8.0 (stored at 4°C in the 

dark).

1M Tris*HCl pH 8.0
1 M Trizma base and HC1 to pH 8.0.

IX TBE
90 mM Trizma base, 90 mM orthoboric acid, 2 mM EDTA.

2.5 kb molecular ruler
333 ng/pl of 2.5 kb molecular ruler in IX  TE, IX  Orange G loading dye.

20X SSC
3.0 M NaCl, 0.3 M sodium citrate.

20X SSPE
3.0 M NaCl, 0.2 M NaH2P 0 4, 20 mM EDTA, pH 8.0.

3 M Sodium acetate pH 7.5
3 M sodium acetate with NH3 to pH 7.5.
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3.3X RNA sample buffer
240 nM ethidium bromide, 2.3X MOPS pH 8.0, 5% (w/v) formaldehyde, 70 % (v/v) formamide 

(used on the day of making).

5X DNA loading dye
0.5% (w/v) SDS, 0.25% (w/v) xylene cyanol, 0.25% (w/v) bromophenol blue, 1.5% (w/v) 

Ficoll®400, in 3X TBE.

5X Orange G loading dye
0.06 % (w/v) Orange G, 50 % (v/v) glycerol in H2O.

75% (v/v) Ethanol
75% (v/v) absolute ethanol in H2O.

80% (v/v) Ethanol
80 % (v/v) absolute ethanol in H2O.

Amplisize molecular ruler
333 ng/pl of amplisize molecular ruler in IX  TE, IX  Orange G loading dye.

Denaturing solution
0.5 M NaOH, 1.5 M NaCl in H20 .

Depurinating solution
0.25 M HC1 in H20 .

Ethidium bromide
Stock solution: 25 mM in H20 .

Working concentration: 500 nM.

Genomic Southern blot hybridisation solution
5X SSPE, 5X Denhardt’s solution, 0.5% (w/v) SDS, 7% (w/v) dextran sulphate, 100 pg/ml salmon 

sperm DNA in H20 .

Lysis buffer
50 mM Tris*HCl pH 8.0,100 mM EDTA pH 8.0, 0.5% (w/v) SDS in H20 .

Neutralising solution
1.5 M NaCl, 0.5M Trizma base and HC1 to pH 7.5.
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PCR buffer
45 mM Tris*HCl pH 8.8, 11 mM ammonium sulphate, 4.5 mM MgCl2, 6.7 mM 2-mercaptoethanol, 

4.4 \iM EDTA, 1 mM dATP, 1 mM dCTP, 1 mM dGTP, 1 mM dTTP and 113 jig/ml BSA.

Phenol
Phenol saturated in 10 mM Tris pH 8.0,1 mM EDTA.

Phenol:chloroform:isomayl alcohol, 25:24:1
Phenol:chloroform:isomayl alcohol, 25:24:1, saturated in 10 mM Tris pH 8.0,1 mM EDTA. 

Proteinase K
Stock solution: 20 mg/ml proteinase K in filter sterilised 50 mM Tris#HCl pH 8.0.

Squash blot hybridisation solution
7% (w/v) SDS, 1M N aP04, 2 mM EDTA.

TAE
40 mM Tris‘acetate, 1 mM EDTA in H20 .

TE
10 mM Tris'H Cl pH 8.0,1 mM EDTA pH 8.0 in H20 .

2.3.2. Bacterial solutions, media and antibiotics

Ampicillin
Stock solution: 50 mg/ml in H20  (stored at -20°C).

Working concentration: 100 pg/ml.

IPTG
Stock solution: 100 mg/ml in H20  (stored at -20°C).

Working concentration: 10 [Xg/ml.

Luria-Bertani (LB) medium
3% (w/v) Bacto® tryptone, 0.5% (w/v) Bacto® yeast extract, 1% (w/v) NaCl.

LB agar contained 1.5% (w/v) agar.

SOB medium
2% (w/v) Bacto® tryptone, 0.5% (w/v) Bacto® yeast extract, 0.85 mM NaCl, 0.25 mM KC1 pH 7.0 

with NaOH. Sterilized 10 mM M gS04 added prior to use.
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SOC medium
0.04% (w/v) glucose in SOB medium.

X-gal
Stock solution: 50 mg/ml in dimethylformamide (stored at -20°C).

Working concentration: 50 pg/ml.

2.3.3. Tissue culture solutions, media and antibiotics

Tissue culture media, serum, antibiotics and solutions were obtained from GibcoBRL Life 

Technologies or Sigma.

Dulbecco’s modified Eagle medium (DMEM)
DMEM with 862 mg/1 L-alanyl-L-glutamine (GlutaMax1), 4 mg/1 pyrodoxine*HCl, 4500 mg/1 

glucose, 110 mg/1 sodium pyruvate.

Trypsin/EDTA solution
Stock solution: 5.0 g/1 trypsin, 2.0 g/1 EDTA, 8.5 g/1 NaCl (stored at -20°C).

Working concentration: 0.5 g trypsin, 0.2 g EDTA*4Na/l in PBS.

Penicillin and streptomycin solution
Stock solution: 10,000 U/ml penicillin, 10,000 pg/ml streptomycin. Utilising penicillin G (sodium 

salt) and streptomycin sulphate: prepared in normal saline (stored at -20°C).

Working concentration: 100 U/ml penicillin, 100 pg/ml streptomycin.

10X Dulbecco’s phosphate buffered saline (PBS)
8 g/1 NaCl, 0.2 g/1 KC1, 2 g/1 KH2P 0 4, 2.16 g/1 Na2H P04-7H20 .

Foetal bovine serum (FBS)
Origin E.C. Virus and mycoplasma tested.

2.4. Mouse tissue culture methods

2.4.1. Establishment of primary cell cultures

D m t transgenic mice were sacrificed by cervical dislocation, and the kidneys, eyes and 

lungs removed and kept on ice for up to 1 hour until processed. All mice were hemizygous for the 

transgene on a pure FVB/N genetic background. Depending on the tissue, the primary cultures
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were established either by the explant technique (eye cultures) or enzymatic dissociation (lung and 

kidney).

2.4.1.1. Eye cell cultures

The eye balls were transferred to 100 mm dishes, rinsed and dissected in IX  phosphate 

buffered saline (PBS). The tissue was placed cell-side down on a 60 mm dish and minced into 

small fragments (~1 mm2). All pieces of tissue were flattened and dispersed on the dish. Culture 

medium was gently added and the culture was incubated at 37°C in a humidified 5% CO2 

atmosphere. The standard growth medium consisted of Dulbecco’s modified Eagle medium with 

high glucose (DMEM) supplied with 10% foetal bovine serum (FBS), 100 U/ml of penicillin and 

100 pg/ml of streptomycin. Once cells became 60-80% confluent they were subsequently 

subcultured at a 1:5 or 1:10 ratio during the first 5 passages and at a higher ratio (varying from 1:20 

to 1:50) thereafter, as described in section 2.4.4.

2.4.1.2. Lung and kidney cell cultures

The enzymatic dissociation of kidney and lung tissues was essentially performed as 

described previously (Rybak and Murphy, 1998). The organs were transferred to 100 mm dishes 

containing 10 ml of sterile PBS and minced into 1 mm3 cubes. The minced tissues were transferred 

into 15 ml Falcon tubes and washed twice with sterile PBS. The tissues were digested with 5 ml of 

trypsin/EDTA solution, in a 37°C humidified 5% CO2 incubator for 30 minutes with limited 

shaking. After the incubation the pieces of tissue were allowed to settle down and the supernatants 

transferred into fresh 15 ml tubes. The cells in suspension were collected by centrifugation at 200 g  

for 5 minutes. The final pellets were resuspended in 5 ml of standard culture medium, plated on 25 

cm2 flasks and incubated at 37°C in a humidified 5% C 0 2 atmosphere. The remaining portions of 

tissue were repeatedly digested with fresh trypsin for 6-12 times. After the first passage all the 

pellets derived from the same tissue were pooled together and an initial single culture was 

maintained for each tissue. Once the cells became -80%  confluent, they were subcultured at a 1:5 

or 1:10 ratio during the first 5 passages, and at a higher ratio (varying from 1:20 to 1:50) thereafter, 

as described below in section 2.4.4.

2.4.2. Establishment of single cell-derived clones

Clones derived from a single cell were established by seeding an average of 0.5 cells in 

each well of a 24 or 96-well cluster. Once the cells became confluent they were transferred into 25 

cm2 tissue culture flasks thereafter grown as described below (Sections 2.4.3 and 2.4.4).

73



Mario Gomes-Pereira, 2002 Chapter 2

2.4.3. Feeding cultured cells

Cells were grown in a 5% CO2 incubator at 37°C. Initially cells were cultured in 25 cm2 

flasks during the first 5-10 passages. All solutions (cell growth medium, PBS and trypsin/EDTA) 

were warmed to 37°C. The old medium (5 ml) was removed carefully, avoiding scratching the 

surface of the cells. Cells were washed gently with 3 ml of PBS, and 5 ml of fresh culture medium 

was added. The same standard protocol was adapted for cells growing in 6-well clusters: each well 

was washed with 2 ml of PBS and the cells grown in 3 ml of cultured medium.

2.4.4. Subculturing cultured cells

Cells growing in 25 cm2 flasks were washed in PBS as described before: 2 ml of 

trypsin/EDTA solution were added and the cells incubated at 37°C, 5% CO2 for 5 minutes. The 

cells were observed under the microscope to check if they had rounded up and lifted off the surface 

of the culture flask. The flask was tapped gently against the bench to help the cells dissipate from 

the surface of the flask. If necessary, the cells were incubated for an extra two minutes and a cell 

scraper used to make sure that nearly every cell was floating. Trypsin digestion was stopped by the 

addition of 3 ml of fresh culture medium. The cell suspension was pipetted up and down repeatdly 

to dissociate cell clumps, and transferred into a 15 ml falcon tube. The cells were collected by 

centrifugation at 200 g  for 5 minutes, the supernatant removed and the cell pellet resuspended in 5 

ml of fresh culture medium. A  variable amount of the cell suspension, depending on the split ratio 

(1:5 or 1:10), was collected and mixed with fresh growth medium, up to a final volume of 5 ml. For 

higher split ratios cells were not collected by centrifugation after trypsin digestion and prior to 

seeding. Instead, a small aliquot of the cell suspension (usually 100 pi or 125 pi for split ratios of 

1:50 or 1:40, respectively) was mixed with 5 ml of fresh medium and plated in a fresh 25 cm2 tissue 

culture flask. Cells were finally returned to the 37°C, 5% CO2 incubator. At every passage the 

number of population doublings was determined based on the cell number.

When growing on 6-well clusters, cells were washed in 2 ml of PBS, digested with 0.5 ml 

of trypsin/EDTA solution, neutralised with 1.5 ml of standard growth medium and finally 

resuspended in 3 ml of fresh culture medium.

2.4.5. Measuring cell counts and determining population doubling 
times

Following trypsin digestion and neutralisation with standard growth medium, cells were 

counted on a haemocytometer, using a phase contrast microscope. The haemocytometer was 

covered with the coverslip and a drop of cell suspension was dropped at the edge of the coverslip 

on both sides of the chamber. At least 100 cells were counted, and the number of cells/ml

74



Mario Gomes-Pereira, 2002 Chapter 2

calculated. The number of population doublings (PD) was determined, based on the cell number for 

two consecutive passages as follows:

PD = log2 ( cell number at passage n+j  x split ratio ) 
cell number at passage n

Finally, the population doubling times were calculated by dividing the number of 

population doublings, by the time over which they had occurred:

PDT = PD / time

2.4.6. Measuring cell viability

To differentiate between live and dead cells in culture, acridine orange and ethidium 

bromide (both DNA intercalating agents) were used to determine cell viability. Acridine orange 

stains DNA bright green, whereas ethidium bromide stains DNA orange, but the latter is excluded 

by viable cells. As a result, living cells fluoresce green and dead cells fluoresce orange.

Cells were trypsinised and neutralised with standard growth medium. Equal volumes of 

cell suspension and ethidium bromide-acridine orange working solution (27.5 pM ethidium 

bromide, 12.5 pM acridine orange, 0.02% (v/v) ethanol in IX  PBS) were mixed together. The cells 

were subsequently counted on a haemocytometer under a fluorescence microscope with an 

excitation filter of 495 nm. Both live and dead cells were counted and viability was calculated as:

Viability (%) =  Live cells  x jqq

Total cells counted

2.4.7. Freezing cultured mouse cells in liquid nitrogen

A single cell suspension was obtained following trypsin digestion as described before 

(section 2.4.4). Cells were precipitated by centrifugation at 200 g  for 5 minutes, resuspended in 

fresh culture medium at a concentration of -1.3-3 x 106 cells/ml and transferred into 2 ml cryovials. 

Dymethylsulphoxide (DMSO) was added to a final concentration of 10% (v/v), and then mixed 

well by gently inverting the tubes.

The vials were transferred into a freezing container with isopropanol at room temperature, 

and then cooled down to -70°C for at least 4 hours. Finally the frozen samples were moved to 

liquid nitrogen (-190°C), where they were kept until needed.
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2.4.8. Thawing cultured mouse cells

Frozen cell samples stored in liquid nitrogen were quickly thawed by immersion of the 

cryovials in a water bath at 37°C. Five ml of fresh warm medium were added to the cells, and 

mixed gently by repeated pipetting. The cells were then collected by centrifugation at 200 g  for 5 

minutes, resuspended in fresh culture medium, and finally plated on a tissue culture flask or plate.

2.4.9. Immunocytochemical characterisation of cultured cell types

Vimentin and cytokeratins were detected immunocytochemically in cultured mouse cells 

using mouse monoclonal antibodies raised against human proteins, which cross-react with mouse 

homologues. Semiconfluent cells growing on 8-well chamber slides were washed once with serum- 

free DMEM and fixed in 2% (w/v) paraformaldehyde in DMEM for 20 minutes at room 

temperature. The cells were washed once with PBS, left in 0.1 M glycine for 20 minutes and 

washed twice with PBS. Cells were permeabilised in 1% (v/v) Triton-XlOO in PBS for 6 minutes, 

and washed twice with PBS. Monoclonal anti-vimentin (mouse IgM isotype; Sigma, catalogue 

number: V5255) or monoclonal anti-pan cytokeratins (mouse IgG l isotype; Sigma, catalogue 

number: C1801) were applied at 1:200 in 0.01% (v/v) Triton-XlOO and incubated over night at 4°C 

with gentle shaking. The cells were washed 4 times in PBS for five minutes. Both anti-mouse IgM- 

fluoresceine isothiocyanate isomer I (FITC) conjugate (Sigma, catalogue number: F9259) and anti

mouse IgG-tetramethylrhodamine isothiocyanate (TRITC) conjugate (Sigma, catalogue number: 

T7657) were applied in a 1:100 dilution in 3 mg/ml bovine serum albumin (BSA) in PBS with 

0.01% (v/v) Triton-XlOO and incubated for 2 hours at room temperature with gentle shaking. Cells 

were finally washed 4 times in PBS for 5 minutes and observed using fluorescence microscopy.

2.4.10. 5’-Bromo-3-deoxyuridine (BrdU) incorporation and detection 
assay

In order to assess nuclear DNA synthesis and/or cell proliferation in cultured mouse cells, a 

5 ’bromo-3-deoxyuridine (BrdU) incorporation and detection assay was performed, following the 

manufacturer's protocol. This assay relies on the principle that BrdU can be incorporated into DNA 

molecules in place of thymidine, and later detected by monoclonal antibodies directed against 

BrdU. Cells that incorporate BrdU into their DNA can be detected using a fluorochrome- 

conjugated second antibody.

In brief, cells were grown on 8-well chamber slides until they reached -60%  confluency. 

The cell medium was removed and the cells washed once in PBS. The cells were incubated for 15 

minutes, 60 minutes or 30 hours in standard growth medium containing 10 pM BrdU. The medium
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was aspirated, the cells washed 3 times in “washing buffer”1 for five minutes and fixed in 70% 

(v/v) ethanol, 15 mM glycine, pH 2.0 for 45 minutes at -20°C. The cells were washed 3 times in 

“washing buffer”, covered with anti-BrdU diluted 1:10 in “incubation buffer”1 and incubated for 30 

minutes at 37°C. Following the first antibody incubation, the cells were washed 3 times in 

“washing buffer” for 5 minutes, and incubated in anti-mouse-Ig-fluorescein, which had been 

diluted 1:10 in PBS, containing 10 mg/ml BSA. The cells were finally washed 3 times in “washing 

buffer”, and examined in a fluorescence microscope (excitation wavelength in the range 450-500 

nm, and detection in the range of 515-565 nm).

2.5. Preparation, purification and analysis of DNA

2.5.1. Preparation of plasmid DNA

Qiagen kits were used in order to obtain high yields of good quality plasmid DNA. DNA 

was purified from 5-ml bacterial cultures by alkaline lysis followed by anion-exchange columns, 

according to the manufacturer’s protocol.

2.5.2. DNA extraction from mouse tissues

Ten to 20 mg of tissue were minced and placed in a 1.5 ml screw top Eppendorf tube with 

550 pi of lysis buffer and 15 pi of 20 mg/ml of proteinase K to a final concentration of 530 pg/ml 

of proteinase K. The tissue was incubated overnight at 60°C. The lysate was briefly centrifuged at

21,000 g  to precipitate the debris. Two hundred and fifty pi of the supernatant were transferred into 

a fresh tube and an equal volume of phenol was added and mixed vigorously by vortexing for 5 

seconds to emulsify the two phases. The mixture was centrifuged for 5 minutes at 21,000 g  to 

separate the two phases. The upper phase was placed into a clean tube, and 250 pi of 

phenol:chloroform:isoamyl alcohol (25:24:1) were added and mixed vigorously by vortexing for 5 

seconds. The upper phase was removed and transferred into a clean tube. In order to remove any 

remaining traces of phenol, 250 pi of chloroform were added and emulsified with the aqueous 

phase by vortexing for 5 seconds. The upper aqueous phase was removed and transferred into a 

clean tube, and 25 pi of 3 M sodium acetate pH 7.5 were added and mixed briefly by inverting the 

tube 5 to 10 times. The DNA was finally precipitated by the addition of 500 pi of ice-cold absolute 

ethanol, followed by incubation at -20°C  for at least 1 hour, and centrifugation at 21,000 g  in a 

bench top centrifuge. The supernatant was decanted off and the pellet rinsed with 1 ml of ice-cold 

80% (v/v) ethanol, and precipitated again by centrifugation at 21,000 g  in a top bench centrifuge. 

The DNA pellet was either air dried at room temperature for 30 to 60 minutes, or at 4°C overnight.

1 Both “washing” and “incubation” buffers were supplied by the manufacturer
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Once dried the DNA pellet was dissolved in 100 to 200 pi of TE at 60°C for 30 minutes, or at 37°C 

overnight.

2.5.3. DNA extraction from cultured mouse cells

Cell culture DNA samples were extracted using a Nucleon DNA extraction kit for blood and 

tissue culture, following the manufacturer’s protocol. Briefly, cells were collected by centrifugation 

at 800 g  for 5 minutes, resuspended in washing “Buffer A”2 and left on ice for 5 minutes. Cells 

were collected by centrifugation at 1,300 g  and subsequently lysed in “Reagent B”2 by gently 

pipetting up and down, followed by a 30-minute incubation at 37°C. Proteins were precipitated by 

the addition of 5M sodium perchlorate and subsequently extracted by the addition of chloroform, 

Nucleon resin and centrifugation at 370 g  for 2 minutes. The upper aqueous phase was removed 

and transferred into a fresh 1.5 ml Eppendorf tube, without disturbing the resin layer or the 

chloroform phase. An extra centrifugation step at 5,000 g  for 2 minutes was performed to pellet 

down any resin that might have been carried over. The supernatant was collected and transferred 

into a fresh 1.5 ml Eppendorf tube. DNA was precipitated by the addition of ice-cold absolute 

ethanol and centrifugation at 21,000 g  for 10 minutes. The supernatant was discarded and the DNA 

pellet washed in ice-cold 80% (v/v) ethanol and either air-dried at room temperature for 30 

minutes, or at 4°C overnight. Once dried, the DNA pellet was dissolved in 100 pi of TE at 60°C for 

30-60 minutes, or at 37°C overnight, and finally stored at -20°C.

2.5.4. Determination of DNA concentration

When necessary, the concentration and purity of DNA in aqueous solution were estimated 

by measuring the UV absorbance of the solution at wavelengths ranging from 200-300 nm. Pure 

double-stranded DNA solutions have an absorbance maximum at 260 nm, at which an optical 

density of 1 corresponds to 50 mg/ml of DNA in the solution. The purity of the DNA samples was 

estimated by comparing the ratio of the OD at 260 nm (OD26o)to 280 nm (OD280), at which 

wavelength proteins have an absorbance maximum. An OD260/OD28o ratio of 1.8 or greater is taken 

as an acceptable level of purity. DNA samples were diluted 1:100 in H20  and the 

spectrophotometer baseline corrected with H20 . The OD was measured and the concentration 

calculated as 100 x 50 x OD26o mg/ml.

Alternatively, DNA concentrations were determined by electrophoresis on agarose gels, 

followed by densitometry analysis against low molecular weight DNA mass ladder (GibcoBRL, 

Life Technologies), using Kodak Digital Science ID software (Kodak).

2 Both “Buffer A” and “Reagent B” were supplied by the manufacturer.
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2.5.5. Polymerase chain reaction (PCR)

All PCR amplifications were carried out in either a Biometra Uno thermal cycler or a 

Biometra T3 thermal cycler, in either Costar 96 well plates or Anachem thin walled 200 pi tubes. 

Each reaction was overlaid with white light mineral oil and then sealed. The thermal cycler lid was 

preheated to 105°C.

Except for small pool PCR analysis (section 2.7.2), standard PCR amplifications were 

performed with 1 pM of each primer, IX  PCR buffer and 0.5 U Taq DNA polymerase in a total 

volume of 10 pi. The annealing temperature varied according to the primers selected to carry out 

the amplification, but in general fell within a range from 60°C to 68°C. Reactions were thermal 

cycled under the following conditions:

20-35 cycles: 96°C for 45 seconds

60-68°C for 45 seconds 

70°C for 3 minutes 

1 step: 60-68°C for 1 minute

1 step: 70°C for 10 minutes

2.5.5. DNA cloning techniques

2.5.6.1. Restriction endonuclease digestion of plasmid DNA

Restriction digests were carried out to generate gene fragments for checking the inserts of 

recombinant plasmids containing foreign DNA.

1-5 pg of purified plasmid DNA, 5-10 units of restriction endonuclease, IX  recommended 

restriction endonuclease reaction buffer in a total of 10 pi with H 2O were incubated at 37°C for 90- 

120 minutes.

2.5.6.2. DNA ligation

Bacteriophage T4 DNA ligase was used to catalyse the formation of phosphodiester bonds 

between the 3’-hydroxyl groups and the 5 ’-phosphate groups of the DNA inserts and vectors. A 

recombinant plasmid with 2 single-stranded nicks results owing to the removal of the 5’-phosphate 

groups from the digested vector. The nicks are repaired after the recombinant plasmids have been 

introduced into competent bacteria.

Ligations of vector and insert DNA were incubated at 4°C overnight with 1 U of 

bacteriophage T4 DNA ligase and IX  T4 DNA ligase buffer in a total volume of 10 pi. Generally, 

DNA molecules were ligated at vector:insert molar ratio of 1:3. Control ligations, with one 

component missing, were also incubated at 4°C overnight.
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2.5.6.3. Transformation of competent bacterial cells

Fifty pi aliquots of competent cells were thawed on ice for 10 minutes. One pi of the 

ligation mixture or 10 ng of control plasmid were added and after gentle mixing, the bacteria were 

incubated on ice for 30 minutes. The cells were heat-shocked at 42°C for 45 seconds and cooled on 

ice for 2 minutes. Pre-warmed SOC medium (450 pi) was added to the cells and the samples 

incubated at 37°C for 1 hour. The transformed cells were split into two aliquots of 50 pi and 450 

pi, which where subsequently spread on a Luria-Bertani (LB) plate containing 100 pg/ml 

ampicillin, 50 pg/ml 5-brom o-4-chloro-3-indolyl-B-D-galactoside (X-gal) and 10 pg/ml 

isopropylthyo-B-D-galactoside (IPTG), and allowed to dry for up to 30 minutes, before overnight 

incubation at 37°C. Ampicillin, X-gal and IPTG are used to positively select transformed bacteria, 

which are resistant to the antibiotic ampicillin, and are white because of the insertional inactivation 

of the lacZ gene of the recombinant plasmid. As a result (3-galactosidase is not synthesised and the 

bacterial colonies are white rather than blue.

2.5.6.4. Generation of plasmid stocks

Stocks of bacteria transformed with recombinant plasmids were prepared for long-term 

storage. A colony from an agar plate was used to inoculate 5 ml of LB medium, containing 100 

pg/ml of ampicillin and incubated at 37°C overnight. An aliquot of overnight culture (usually 500 

pi) was mixed with an equal volume of 2% (w/v) peptone, 40% (v/v) glycerol, by repeated 

inversion. The stocks were stored at -70°C until needed.

2.5.7. Gel electrophoresis

2.5.7.1. Agarose gel electrophoresis

DNA molecules were separated according to their size by agarose gel electrophoresis. 

Solutions of 0.8-2% (w/v) of agarose in 0.5X TBE were prepared in a microwave. When the 

solution had cooled to approximately 50°C, ethidium bromide was added to a final concentration of 

500 nM and the gel was cast in a horizontal tray. DNA samples were mixed with IX  DNA loading 

dye and electrophoresed in 0.5X TBE for periods of time varying from 2-16 hours to overnight at 

~ l-4  volts/cm. An aliquot of a DNA size ladder (usually 100-200 ng) was also electrophoresed and 

used as a size marker. Separated DNA samples were visualised using an UV transilluminator 

(wavelength 254 nm) and photographed.

2.5.7.2. Non-denaturing polyacrylamide gel electrophoresis

Non-denaturing polyacrylamide gel electrophoresis (PAGE) was carried out in a BioRad

Protean II gel apparatus, which included 15 x 14 cm separating gels. 8% (w/v) non-denaturing

acrylamide/bis (29:1) gels, containing 10% (v/v) glycerol were prepared in IX  TBE. The
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polymerising agents ATWW’-tetramethylethylenediamine (TEMED) and ammonium persulphate 

(APS) were added to a final concentration of 0.625%o (v/v) and 0.125% (w/v), respectively. Once 

the gel polymerised, 100 V were applied for 90 minutes with continuous re-circulation of the 

running buffer (IX  TBE) at 4°C.

Each DNA sample was mixed with an equal volume of 5X loading dye and 

electrophoresed at 140V for 16 hours at 4°C with buffer re-circulation. The gel was stained with 

500 nM ethidium bromide in IX  TBE for 20 minutes at room temperature. Separated DNA samples 

were visualised using an UV transilluminator (wavelength 254 nm) and photographed.

2.5.7.3. DNA extraction from non-denaturing polyacrylamide gels

Bands corresponding to the DNA samples of interest were cut out from the polyacrylamide 

gel under an UV transilluminator. DNA was eluted from the gel fragments by simple diffusion, in 

500 pi of IX  TE, at 37°C for 48 hours. Given the low efficiency of the elution process, very low 

amounts of DNA were expected to be recovered from the gel bands, and therefore linear 

polyacrylamide was used as a DNA carrier to precipitate gel-purified DNA samples.

Linear polyacrylamide stock solution was prepared as follows. A 5% (w/v) acrylamide 

solution in 40 mM Tris*HCl, 20 mM sodium acetate, 1 mM EDTA, pH 7.8 was used in the 

polymerisation reaction, which was initiated by the addition of 1/100 volume of 10% (w/v) 

ammonium persulphate, and 1/1000 volume of TEMED. Acrylamide was allowed to polymerise 

for 30 minutes. When the solution became viscous the polymer was precipitated with 2.5 volumes 

of ethanol, centrifuged at 21,000 g  for 10 minutes and redissolved in 20 volumes of water, to obtain 

a 0.25% (w/v) linear polyacrylamide solution, which was stored at 4°C.

Gel-purified DNA was precipitated by the addition of 50 pi of 3M sodium acetate, pH 5.3, 

25 pg of linear polyacrylamide and 1.5 ml of ice-cold absolute ethanol. The mixture was left at 

-70°C for 30 minutes and then centrifuged at 21,000 g  for 10 minutes. The supernatant was 

carefully removed, and the pellet washed in ice-cold 70% (v/v) ethanol. DNA samples were air- 

dried, resuspended in 30-50 pi of IX  TE and stored at -20°C.

2.5.8. Southern blotting

2.5.8.1. Genomic DNA transfer from agarose gels onto a nylon membrane by 
Southern blotting

Gels were rinsed in deionised water, incubated in depurinating solution for 10 minutes, 

denaturing solution for 30 minutes and neutralising solution for 30 minutes and rinsed in deionised 

water between incubations. Incubations were performed with gentle shaking. The capillary blot was 

assembled using Hybond™-N+ nylon membrane and 20X SSCE. Sheets of Hybond™-N+ were 

rinsed first in deionised water and then in 20X SSPE. All sheets of gel blotting paper were rinsed in 

20X SSPE before assembly, and care was taken to eliminate any air bubbles. Gels were blotted for
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16 hours and then the membrane was baked at 80°C for 2 hours and finally crosslinked with

1.200 J/m2.

2.5.8.2. DNA transfer from agarose or polyacrylamide gels onto a nylon membrane 
by Southern “squash” blotting

Once the gels had run sufficient distance, a scalpel and a stainless steel ruler were used to 

cut off excess gel not required. Gels were rinsed in deionised water, incubated in depurinating 

solution for 10 minutes, denaturing solution for 30 minutes and neutralising solution for 30 minutes 

and rinsed in deionised water between incubations. Incubations were performed with gentle 

shaking.

A piece of Magna nylon membrane the same size as the gel was wet in deionised water 

first, and then in neutralising solution. A piece of Saran Wrap, somewhat larger in size than the gel, 

was placed on the bench, with a piece of gel blotting paper, the same size as the gel and wet in 

neutralising solution, layered on top. The gel was placed on the Saran Wrap, and the membrane 

layered on top of the gel. Any air bubbles trapped under the membrane were carefully removed. 

Two sheets of gel blotting paper were rinsed in neutralising solution and layered onto the 

membrane. The blot was topped with a thick layer of paper towels, a glass plate and a weight 

(500 g for a small gel, 1 kg for a large gel). The DNA was transferred from the gel onto the 

membrane by capillary action for 3 up to 16 hours. The blot was dismantled in reverse order and 

the membrane placed on a piece of dry gel blotting paper, the DNA side up. The membrane was 

baked for at least 20 minutes in an 80°C oven and the DNA fixed to the membrane by exposure to

1.200 J/m2 in a UV crosslinker.

2.5.9. Preparation of radiolabelled double-stranded probes

Double-stranded DNA probes were radiolabelled using a -32P-labelled 2’-deoxycitidine-5’- 

triphosphate ([cx-32P]dCTP) and the Ready-to-go kit, following the manufacturer’s instructions. 

Briefly, 30 ng of DNA double-stranded probe, 5 ng of DNA size marker and H20  to a final volume 

of 45 pi were denatured at 100°C for 5 minutes and quenched on ice for 3 minutes. The lyophilised 

reaction mix was resuspended in the DNA solution. Five pi of [a-32P]dCTP (3,000 Ci/nmol) were 

added and the mixture incubated at 37°C for 1 hour. At the end of the reaction time, 250 pi of H20  

were added to stop the reaction.

Double-stranded DNA probes radiolabelled for genomic Southern blot hybridisation, and 

northern blot hybridisation, were purified using a 1.0 ml Sephadex® G-50 column, prepared in a

1.0 ml plastic syringe. The Sephadex® was compacted by centrifugation at 1,800 g  for 2 minutes. 

The probe was added to the column and centrifuged at 2,000 g  for 3 minutes. The eluate was 

collected and the percentage of incorporation calculated by taking counts per minute (cpm)
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readings before and after purification. Probes used for the detection of PCR products were not 

purified, since a low background was expected.

2.5.10. Southern hybridisation

2.5.10.1. Hybridisation of genomic DNA transferred onto a nylon membrane

Filters to be hybridised were placed in a hybridisation bottle with 20 ml of genomic 

Southern blot hybridisation solution and rotated at 65°C for 16 hours. The purified radiolabelled 

probe was denatured at 100°C for 5 minutes and quenched for 2 minutes on ice before being added 

to the bottle. Hybridisation was carried out at 65°C overnight in a rotating hybridisation oven.

Filters were washed flat with gentle shaking in 0.1% (w/v) sodium dodecyl sulphate (SDS), 

sequentially to the following stringencies:

2X SSPE room temperature 20 minutes

2X SSPE 65 °C 20 minutes

IX  SSPE 65°C 20 minutes

0.1X SSPE 65°C 20 minutes

At each stage the filters were monitored with a Geiger counter, and washing was stopped 

when the reading was below 10 counts per second (cps). Filters were sealed in a plastic bag whilst 

still damp, and exposed to X-ray film in the presence of an intensifying screen at -70°C. 

Autoradiographs were developed after a two- to three-week exposure.

2.5.10.2. Hybridisation of PCR products and plasmid DNA transferred onto a nylon 
membrane

Filters to be hybridised were placed in a hybridisation bottle and rotated at 65°C for 30 

minutes with 10 ml of squash blot hybridisation solution. The pre-hybridisation step was repeated 

twice. The radiolabelled probe was denatured at 100°C for 5 minutes and quenched on ice for two 

minutes before being added to the bottle, which contained 10 ml of fresh squash blot hybridisation 

solution. Hybridisation was performed at 65°C overnight in a rotating hybridisation oven.

Following hybridisation, the filters were briefly washed inside the bottle in 0.2% (w/v) 

SDS, 0.2X SSPE at room temperature to remove the excess of probe and free [a-32P]dCTP. The 

filters were then washed twice in the same high stringency washing solution for 30 minutes at 

65°C. Finally the filters were transferred onto a flat tray and washed by gently shaking them at 

room temperature in the same solution. The filters were baked at 80°C until dry, and exposed to X- 

ray film at room temperature. Autoradiographs were developed after an exposure time varying 

from 4 hours to 3 days.
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2.6. Preparation, purification and analysis of RNA

2.6.1. RNA extraction from cultured mouse cells

Since RNA is vulnerable to degradation from nucleases, to optimise the successful 

handling of RNA, the following precautions were taken. RNA work was restricted to a dedicated 

bench. Dedicated equipment and stock reagents were used wherever possible and gloves were worn 

at all times. All solutions required for RNA related techniques were made using 

diethylpyrocarbonate (DEPC) treated water. DEPC was added to a concentration 0.1% (v/v) to 

deionised water, mixed and allowed to stand overnight before the inactivation of the DEPC by 

autoclaving. All plasticware was soaked in active DEPC-treated water before autoclaving, all 

glassware was soaked in active DEPC water before baking.

Mouse cells were grown on a 75 cm2 tissue culture flask until they became confluent. 

Approximately 6 x 106 cells were collected after trypsin digestion (see section 2.4.4), washed once 

in IX  PBS and lysed in 1 ml of Tri Reagent™ by repeated pipetting. The lysate was allowed to 

stand for 5 minutes, to ensure complete dissociation of nucleoprotein complexes. Following cell 

lysis, 200 pi of chloroform were added, the mixture was shaken vigorously for 15 seconds and 

allowed to stand for 15 minutes at room temperature. The mixture was then separated into three 

phases by centrifugation at 12,000 g  for 15 minutes at 4°C. The aqueous phase was transferred into 

a fresh tube, 500 pi of isopropanol were added and the mixture was allowed to stand for 10 minutes 

at room temperature. The RNA was precipitated by centrifugation at 12,000 g  for 10 minutes at 

4°C. The supernatant was removed, the RNA pellet washed in 1 ml of 75% (v/v) ethanol and 

collected by centrifugation at 7,500 g for 5 minutes at 4°C. The RNA pellet was let to air-dry for 

10-30 minutes and finally resuspended in 40 pi of IX  TE, 0.1% (w/v) SDS. Repeated pipetting at 

60°C for 15 minutes facilitated RNA solubilisation.

2.6.2. Determination of RNA concentration

The concentration and purity of RNA in aqueous solution was estimated by measuring the 

UV absorbance of the solution at wavelengths ranging from 200-300 nm. Pure RNA solutions have 

an absorbance maximum at 260 nm, at which a solution containing 40 mg/ml of RNA gives rise to 

an absorbance of 1. The purity of the DNA samples was estimated by comparing the ratio of the 

OD at 260 nm to 280 nm, at which wavelength proteins have an absorbance maximum. An 

OD260/OD28o ratio of 1.65 or greater is taken as an acceptable level of purity. RNA samples were 

diluted 1:80 in H20  and the spectrophotometer baseline corrected with H20 . The OD was measured 

and the concentration calculated as 80 x 40 x OD26o mg/ml.
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2.6.3. RNA visualisation by agarose gel electrophoresis

In order to assess RNA integrity and quality, RNA samples were electrophoresed through a 

1% (w/v) agarose gel containing 0.1% (w/v) SDS, 500 nM ethidium bromide, and prepared in IX  

TAE. Five pg of RNA were diluted in DNA loading buffer in a final volume of 10 pi, heated at 

65°C for 5 minutes and immediately cooled on ice. The samples were electrophoresed at 100 V for 

1 hour. 100-200 ng of 1 kb+ DNA size marker was also electrophoresed. Separated RNA molecules 

were visualised using a UV transilluminator (wavelength 254 nm) and photographed.

2.6.4. Northern blotting and hybridisation

2.6.4.1. RNA electrophoresis in denaturing agarose gels

A solution containing 1.3% (w/v) of agarose in DEPC treated water was prepared and 

heated in a microwave. Shortly after boiling 10X 3-(iV-morpholino)-propanesulphonic acid 

(MOPS) buffer H 8.0 was added to a final concentration of IX, and 40% (w/v) formaldehyde was 

added to a final concentration of 4% (w/v). The solution was allowed to cool to approximately 

50°C and only then was the gel cast on a horizontal tray. Fifteen pg RNA aliquots in DEPC treated 

water were made up to a final volume of 20 pi in IX  RNA sample buffer and IX  DNA loading 

dye. RNA samples were subsequently heated at 65°C for 5 minutes, immediately cooled on ice and 

finally electrophoresed in 10X MOPS pH 7.0, at 150V, for 4 hours in a fume hood. An aliquot of 

RNA size ladder (100-200 ng) was also electrophoresed and used as an RNA size marker. 

Separated RNA samples were visualised using a UV transilluminator (wavelength 254 nm). The 

integrity of separated RNA molecules, in particular the 28S and 18S ribosomal RNA molecules, 

was checked and the gel photographed beside a fluorescent ruler.

2.6.4.2. RNA transfer from denaturing agarose gels onto a nylon membrane by 
northern blotting

The denaturing gels were rinsed in deionised water, incubated in 6X SSC for 30 minutes. 

The RNA was transferred onto a biodyne B nylon membrane by capillary action, in 10X SSC. 

Sheets of biodyne B nylon membrane were rinsed first in deionised water and then in 10X SSC. All 

sheets of gel blotting paper were rinsed in 10X SSC prior to blot assembly, and care was taken to 

eliminate any air bubbles. Gels were blotted for 16 hours and then the membrane was baked at 

80°C for 2 hours and finally crosslinked with 1,200 J/m2.

2.6.4.3. Hybridisation of RNA transferred onto a nylon membrane

The membranes to be hybridised were placed in a hybridisation bottle with 5 ml of 

ExpressHyb hybridisation solution and rotated at 68° C for 1 hour. The purified radiolabelled DNA
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probes were denatured at 100°C for 5 minutes and quenched on ice for 2 minutes, before being 

added to the bottle. Hybridisation was carried out at 68°C for 2 hours in a rotating hybridisation 

oven. The filters were washed flat with gentle shaking in 0.1X SSC, 0.1% (w/v) SDS, at 65°C for 

30 minutes. After each wash the filters were monitored with a Geiger counter, and washing was 

stopped if the background reading was below 10 cps. Filters were sealed in a plastic bag whilst still 

damp, and exposed to X-ray film in the presence of an intensifying screen at -70°C or at room 

temperature. Autoradiographs were developed after an exposure time varying from 1 hour to 3 

days.

2.7. Small pool PCR analysis

Small pool polymerase chain reaction (SP-PCR) allows for the detection of infrequent 

heterogeneous mutant alleles by limiting the number of DNA molecules to be amplified (Jeffreys et 

al., 1994; Monckton et al., 1995).

2.7.1. Restriction endonuclease digestion of mouse genomic DNA

Prior to PCR amplification mouse genomic DNA was digested with H indlll restriction 

endonuclease. Twenty pi of genomic DNA stock solution (approximately 20-100 pg of genomic 

DNA) were digested with 10 U of Hindlll in the presence of 10 mM spermidine, in a final volume 

of 100 pi, for 2-16 hours at 37°C. Following digestion the enzyme was inactivated at 65°C for 10 

minutes, and the digested DNA samples stored at -20°C.

2.7.2. Small pool PCR amplification

SP-PCR analyses (Jeffreys et al., 1994; Monckton et al., 1995) were performed to assess 

the levels of trinucleotide repeat instability in a particular DNA sample.

//m dlll-digested mouse genomic DNA was serially diluted in IX  TE, containing 0.1 pM of 

carrier primer. As a general rule, the forward oligonucleotide primer used in subsequent PCR 

amplifications, was used as a carrier primer to prepare the dilution buffer. The dilutions usually fell 

in the following range: 1/10 to 1/100,000, depending on the DNA concentration in the original 

stock solution. Four different dilutions were prepared for each DNA sample, and 8 independent 

PCR amplifications were set up for each individual dilution.

The amplification of 0.5 pi of each DNA solution was carried out in a final volume of 7 pi, 

with 0.175 U of Taq DNA polymerase, 0.2 pM of each primer, in IX  PCR buffer. Except where 

otherwise stated, the annealing temperature was set at 68°C. The reactions were cycled in a 

Biometra Uno thermacycler as follows:
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28 cycles: 96°C for 45 seconds

68°C for 45 seconds 

70°C for 3 minutes 

1 step: 68°C for 1 minute

1 step: 70°C for 10 minutes

SP-PCR amplifications were usually carried out using PCR primers DM-C and DM-BR, 

unless otherwise stated.

2.7.3. Gel electrophoresis of SP-PCR products

Following PCR amplification, 3 pi of DNA loading dye were added to each 7 pi reaction, 

and 5 pi of the final mixture was loaded on a 1.25% (w/v) agarose gel (20 x 50 cm) in 0.5X TBE. 

The initial power of 300 V was applied for 30 minutes to ensure minimal DNA diffusion from the 

wells into the buffer. The PCR products were subsequently resolved at 160-180 V for 16 hours at 

4°C in 0.5X TBE. DNA ladders were also electrophoresed, and used as DNA size markers.

2.7.4. DNA transfer from the gel onto nylon membranes by Southern 
“squash” blot

Once the gels had run sufficient distance, the DNA was transferred from the gel onto a 

magna nylon membrane and hybridised with a double stranded DNA probe (DM56) comprising a 

CAG*CTG repetitive sequence (see section 2.2.6) as described in sections 2.5.8.2 and 2.5.10.2, 

respectively). The PCR products were sized using Kodak Digital Science ID software (Kodak).

2.7.5. Single molecule SP-PCR analysis

High DNA input SP-PCR amplifications are useful as an indication of the general pattern 

of repeat instability and also to detect rare expansion or deletion events. However, the amplification 

of a high amount of DNA per reaction does not allow the precise quantification of the repeat 

number distribution in a given sample. A precise method of quantitative analysis was required to 

plot accurate repeat number frequencies for a population of cells.

Preliminary SP-PCR amplifications at low DNA concentrations were used to determine 

more accurately the number of molecules amplified in each reaction, according to the Poisson 

distribution. As the DNA concentrations have been derived by serial dilution, the bands observed in 

a single lane (hereafter named positive lane) may result from the amplification of multiple original 

template molecules. The use of positive lanes to calculate the average number of molecules
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amplified in each reaction leads, therefore, to an underestimation the DNA concentration. Instead, 

the frequency of blank lanes (lanes lacking amplification products) appears to be an adequate 

alternative for the calculation of the DNA concentration in a given sample, and was determined as 

follows:

_ total number of lanes - number of positive lanes 

total number of lanes

The average number of molecules amplified per reaction at the chosen DNA concentration 

to carry out this calculation, was derived from the Poisson distribution:

Average number of molecules per reaction = - In p(0)

From these calculations it was possible to carry out SP-PCR amplification of an average of 

one transgene molecule per reaction. Around 100 transgene molecules were usually taken as the 

minimum number that should be sized for each time point, to obtain a repeat distribution 

representative of the whole population of cells.
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3. Establishment and characterisation of a mouse cell 
culture model system of trinucleotide repeat 
instability

3.1. Introduction

The expansion of unstable trinucleotide sequences in the human genome is the primary 

genetic defect associated with a specific class of complex human disorders, including myotonic 

dystrophy type 1 (DM1), Huntington disease (HD), fragile X syndrome (FRAXA), Friedreich 

ataxia (FRDA) and an ever-increasing number of spinocerebellar ataxias (SCAs) (Cummings and 

Zoghbi, 2000a; Cummings and Zoghbi, 2000b). Most of these diseases, such as DM1, HD and the 

SCAs are caused by the expansion of CAG*CTG repeats. In addition to a common genetic defect, 

these conditions also share an unusual pattern of inheritance, known as genetic anticipation, that is, 

a decreasing age of onset and the worsening of symptoms through successive generations (Harper 

et al., 1992). At the molecular level, clinical anticipation relies on the expansion-biased germline 

instability of expanded trinucleotide repeats as they are transmitted from one generation to the next. 

Moreover, the repeats are also somatically unstable, with differences in repeat mutation profiles 

being commonly observed, not only between different tissues from the same individual, but also 

within the same tissue. It is generally assumed that variability arises through DNA replication 

slippage during cell division (Richards and Sutherland, 1994; Wells et al., 1998). Such a 

mechanism might be facilitated by the propensity of these sequences to adopt non-orthodox non-B- 

DNA secondary structures, such as slipped-stranded DNA (S-DNA) (Pearson and Sinden, 1996). 

Alternative DNA conformations could induce polymerase stalling and/or stabilise replication 

intermediates. Attractive as this suggestion is, there is as yet no direct evidence from a mammalian 

system to support the existence of such structures in vivo, nor the hypothesis that mutations arise 

during DNA replication. Indeed, there are no obvious correlations between human and mouse 

tissues in which the repeats are more prone to change and rates of cell turnover in vivo (Anvret et 

al., 1993; Ashizawa et al., 1993; Fortune et al., 2000; Hashida et al., 2001; Kennedy and 

Shelboume, 2000; Lia et al., 1998; Monckton et al., 1995; Seznec et al., 2000; Thornton et al., 

1994). However, it should be considered that such analyses have been primarily performed on 

whole tissues or organs comprised of multiple cell types, most likely to have very differing 

dynamics in terms of both cell turnover and repeat metabolism. Such a complex scenario 

confounds attempts to establish simple correlations and may have masked subtle but valid 

relationships.

In order to gain greater insight into the molecular mechanisms underlying triplet repeat 

dynamics, trinucleotide repetitive tracts have been cloned into simple model organisms, such as E. 

coli (Bacolla et al., 1998) and S. cerevisiae (Jinks-Roberston et al., 1998). These systems have 

proved useful and indeed revealed some important insights into the factors affecting repeat
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dynamics, such as orientation with respect to replication origins, transcription status of the repeat 

and DNA repair and/or recombination gene mutations. However, the repeats are inherently biased 

towards contraction in such systems, in complete contrast to the predominantly expansion-biased 

behaviour observed at most loci in humans (Freudenreich et al., 1997; Kang et al., 1995b; Schmidt 

et al., 2000; Schweitzer and Livingston, 1997; Wells et al., 1998)

So far the analysis of repeat stability in cell cultures of patient-derived cells has yielded 

mixed results. The DM1 repeat continues to expand in vitro in primary dura mater or skeletal 

muscle cell cultures, derived from a DM1 foetuses, and the dynamics profile of the expansion in 

vitro closely resembled a sigmoid function of culture time (Worhle et al., 1995). In contrast, 

Epstein-Barr virus (EBV)-transformed lymphoblastoid cell lines (LBCLs) derived from DM1 

patients reveal an unusual pattern of repeat variability, with two types of mutations being detected. 

In addition to the frequent small length change mutations, which are biased towards expansion, 

rare, but very large, deletion mutants are also observed at a frequency exceeding that detected in 

vivo (A shizaw a et al., 1996; Khajavi et al., 2001). These results suggest that the EBV- 

transformation process results in altered cellular DNA metabolism. Such an effect might be 

expected, given that some EBV proteins alter the transcriptional activity of cellular genes involved 

in DNA processing (Kuhn-Hallek et al., 1995). It has also been reported that expanded GAA*TTC 

repeats at the FRDA locus in EBV-transformed LBCLs display contractions and expansions of 

similar magnitudes and frequencies (Bidichandani et al., 1999). Thus, it appears that although 

EBV-transformed LBCLs may be useful for modelling some aspects of repeat metabolism, their 

failure to accurately recreate the in vivo dynamics limits their overall utility. Moreover, although 

primary human cell cultures may be a good model, not only their availability from individuals with 

rare inherited disorders is severely limited, but also further dissection of the factors affecting 

instability, using patient-derived tissue samples, is complicated by confounding influences of 

patient age, progenitor allele length, tissue type, and genetic background, et cetera, on mutation 

rates and directions.

In order to create additional model systems in which repeat biology may be assessed in 

vivo in a mammalian system, transgenic mice containing unstable expanded CTG'CAG arrays have 

been created (Gourdon et al., 1997; La Spada et al., 1998; Mangiarini et al., 1997; Monckton et al., 

1997; Sato et al., 1999; Shelbourne et al., 1999; van Den Broek et al., 2002; Wheeler et al., 

1999b). To examine the intrinsic stability of CAG'CTG, five transgenic mouse lines carrying a 

portion of the D M PK  3'-UTR with 162 CTG repeats, derived from the human DM1 locus, were 

previously generated by Monckton et al. (1997). One line in particular, Dmt-D, which comprises a 

single copy of the construct, has been shown to reproduce the dramatic tissue-specific, age- 

dependent and expansion-biased repeat instability associated with somatic mosaicism in DM1 

patients (Fortune et al., 2000). Similar mutational dynamics have been reported in transgenic 

models carrying large 45 kb fragments of the human DM1 locus, incorporating ~300 repeats 

(Seznec et al., 2000). In contrast, the Dmt-E mouse line, also carrying a single copy of the D m tl62  

transgene, yet inserted elsewhere in the mouse genome, does not exhibit detectable levels of 

trinucleotide repeat instability in the soma (Fortune et al., 2000). A role for the flanking DNA
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sequences as a modifier of repeat instability was previously suggested, and striking correlations 

between mutation rate and flanking GC content and proximity to CpG islands have been found in 

humans (Brock et al., 1999). Taken together, these observations strongly suggest that global e x 

acting mutational modifiers affect the relative stability of expanded CAG*CTG repeats.

Transgenic mouse models that mimic the trinucleotide somatic instability observed in 

patients represent a powerful tool to resolve the molecular mechanisms regulating repeat dynamics 

in a mammalian environment. The development of a cell culture system from such animals, which 

faithfully reproduces the in vivo trinucleotide dynamics in vitro, may create new avenues to 

investigate the multiple factors affecting the metabolism of repetitive sequences under controlled 

conditions. To this end, cell cultures could be established from tissue samples harvested from Dmt- 

D transgenic mice in order to monitor the CTG'CAG repeat size variability over extensive time 

periods, aiming to clarify the effect of a large number of cell divisions on trinucleotide repeat 

stability. Such a model system should provide new insights into the cellular metabolism of the 

simple CAG'CTG tandem repeats associated with inherited human disease.

3.2. Results

3.2.1. Mouse genotyping for the Dmt 162 transgene

With the aim of establishing a mouse cell culture system capable of mimicking the 

complex dynamics of expanded trinucleotide repeats, Dm t-D mice (Monckton et al., 1997) have 

been selected as a reliable and reproducible source of tissue samples. These mice carry a single 

copy of the D m tl62  transgene, randomly integrated in their genome, and faithfully recreate the age- 

dependent, tissue-specific, expansion-biased somatic mosaicism detected in human patients 

(Fortune et al., 2000).

D m t hemizygous mice3 were identified by PCR amplification of transgenic sequences 

using 10-100 ng of tail DNA as template and different set of oligonucleotide primers in 10 pi 

reactions (Figure 3.1, Table 3.1). Primers mUSF-A and mUSF-BR were used to amplify a 1019 bp 

fragment within the mouse upstream stimulatory factor (mUSF) 2 gene. The generation of a PCR 

product in this reaction confirmed the presence of mouse DNA in the sample. Transgene-specific 

primers DM-R and DM-QR amplify a 175 bp transgenic sequence, which maps 3 ’ to the 

CAG'CTG repetitive tract, establishing the presence of the D m tl62  transgene within the mouse 

genome. Transgene-specific primers DM-C and DM-BR amplify across the transgenic CAG*CTG 

tract, giving rise to a PCR product of variable size (usually ranging from ~600 to ~700 bp) 

depending on the repeat number. Finally, the transgene-specific DM-R primer and the insertion 

site-specific mDmtD-GR primer only generate a DNA sequence if the transgenic mouse belongs to 

the D m t-D line. A positive DM-R/mDmtD-GR reaction serves therefore to specifically identify

3 Mouse mating pairs were set up by Teresa Fortune (Division of Molecular Genetics, University of 
Glasgow, Glasgow, UK).
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D m t -D  transgenic m ice. The annealing temperatures for each primer com bination, and the 

respective number of amplification cycles are indicated in Table 3.1.

Table 3.1. Annealing tem pera tu res and num ber of 
cycles for each primer combination used in 
the Dmt mouse PCR genotyping analyses.

Primer
combination

Annealing
temperature

Number 
of cycles

mUSF-A/mUSF-BR 63°C 28
DM-R/DM-QR 68°C 30
DM-C/DM-BR 68°C 30
DM-R/mDmtD-GR 68°C 30

Negative
controls

Positive
controls Dmt- D Dmt-E

1650 bp

1000 bp

650 bp

400 bp

200 bp

100 bp

I *  • •

Figure 3.1. Mouse genotyping for the DmM 62 transgene.
The ethidium bromide-stained agarose gel shows the PCR products obtained from 
the amplification of three different mouse DNA samples, plus negative control 
reactions without template DNA. The sets of oligonucleotide primers used in each 
PCR amplification are shown above each lane. The positive controls consist of a 
DNA sample extracted from a Dmt-D mouse previously genotyped. The two mice 
analysed in this gel both carried a DmM 62 transgene in their genome, since a PCR 
product was generated upon amplification with primers DM-R and DM-QR. The 
transgenic CAG*CTG repetitive sequence was amplified with primers DM-C and 
DM-BR. The two mice differed in the insertion site of the Dmt 162 transgene in their 
genome: one animal was classified as Dmt-D, since its tail DNA gave rise to a PCR 
product when amplified with primers DM-R and mDmtD-GR; whereas the other 
belonged to the Dmf-E line, with no PCR product generated in the same reaction.The 
sizes of molecular weight markers (M) are shown on the right. PCR analyses were 
perfomed as described in Section 2.5.5, using the annealing temperatures listed in 
Table 3.1. The PCR products were resolved through a 1.5% (w/v) agarose gel, as 
described in Section 2.5.7.1.
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3.2.2. Growth dynamics of mouse cell cultures

In an attempt to establish primary mammalian cell cultures in which the dynamics of 

expanded CAG'CTG repeat tracts could be monitored and investigated in vitro over long periods 

of time, lung, eye and kidney tissue samples were originally harvested from a six-month-old male 

Dmt-D  transgenic mouse, since this is the time point at which obvious tissue-specific differences 

can be easily detected. Using either the explant technique (eye, Section 2.4.1.1) or enzymatic 

dissociation procedures (lung and kidney, Section 2.4.1.2), mouse cell cultures were successfully 

established. Cell lines were identified by a designated letter referring to the transgenic mouse line 

(D, D m t-D; E, D m t-E), followed by a four-digit number that identifies the mouse they were 

established from, and a final letter corresponding to the progenitor tissue (L, lung; E, eye; K, 

kidney) (Table 3.2). Following an initial period characterised by low growth rates, all the D2763 

cell cultures entered a continuous exponential growth phase, proliferating at similar and constant 

rates (Figure 3.2). The cell proliferative capacity of each culture was estimated according to the 

population doubling time (PDT), which was calculated based on the cell counts determined at each 

passage (Table 3.2). The late rapid cell growth observed in vitro is consistent with the spontaneous 

immortalisation of cells, which is known to occur at a relatively high frequency with mouse cell 

cultures (Meek et al., 1977; Todaro and Green, 1963). The time taken to reach peak growth rate 

was longest for the kidney culture, which took around 120 days, in contrast to the lung and eye cell 

cultures, which took around 60 days.

Table 3.2. Population doubling times of cell lines and relative trinucleotide repeat stability.
The proliferative capacity of each cell culture was estimated based on the population 
doubling times (PDT), which was calculated as a function of the cumulative cell 
numbers determined at each passage. Trinucleotide repeat instability was assessed 
by sensitive SP-PCR techniques.

Mouse
genotype

Mouse age Tissue Cell line 
name

PDT Trinucleotide
instability

Dmt-D 6 months lung D2763L 32 hours low
u i t eye D2763E 30 hours medium
i t ( i kidney D2763K 31 hours high

Dmt-D 5 weeks kidney D3111K 42 hours low

Dmt-D 3 months kidney D2967K 45 hours medium

Dmt-D 30 months kidney D979K 29 hours very high

Dmt- E 8 months kidney E3994K 54 hours very low
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Figure 3.2. Growth dynamics of D2763 cel! cultures.
The graphs show growth curves for the three cell lines established from a six-month- 
old Dmt-D male mouse: triangles ( A),  lung cells; circles ( • ) ,  eye cells; squares 
( ■ ), kidney cells. For each culture the cells were counted at each passage, the 
population doubling time was calculated and the cumulative number of population 
doublings plotted as a function of days in culture.
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Figure 3.3. Fibroblastic phenotype of D2763 cultured cells.
The pictures show the phenotype of cultured lung, eye and kidney cells after 20 
population doublings, derived from a six-month-old Dmt-D mouse. The top row shows 
light micrographs. Note the prevalent fibroblastic spindle morphology. The bottom 
pictures represent the immunofluorescence detection of vimentin. Cells were stained 
with a primary mouse monoclonal antibody raised against human vimentin, and a 
secondary anti-mouse IgM-FITC conjugate. All cells stained positive. All cells stained 
negative for a panel of cytokeratins.

Eye cells Kidney cells
D2763E D2763K
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3.2.3. Characterisation of cultured cell types

Each culture consisted of an initial heterogeneous cell population, comprising cells with 

clearly different morphologies and probable distinct proliferative capacities. The cultures soon 

became more homogeneous, exhibiting prevalent spindle morphology, typical of fibroblasts, after 

less than five passages (Figure 3.3). The nature of the cultured cells was confirmed 

immunocytochemically by staining with primary antibodies directed against vimentin and 

cytokeratins (Herrmann and Aebi, 2000; Schmid et al., 1979; Spector et al., 1998). All the cultures 

stained positive for vimentin and negative for a panel of cytokeratins, consistent with a fibroblastic, 

rather than epithelial phenotype (Figure 3.3). Nonetheless, the exact morphology was clearly 

distinct between the cultures derived from the different tissues. In particular the precise pattern of 

cytoplasmic staining was not exactly the same for all the cultures investigated. This observation 

may indicate a different absolute origin for each culture.

3.2.4. Tissue-specific trinucleotide instability and selection for longer 
alleles in cultured mouse cells

Following the establishment of these tissue-specific D m t-D murine cell lines, DNA 

samples were collected at every passage and transgene repeat length variability assessed by SP- 

PCR analysis (Jeffreys et al., 1994; Monckton et al., 1995). The length of the repeat in the cultures 

and the level of variation were compared with the progenitor allele length in the donor mouse (173 

repeats, as determined by PCR analysis of tail DNA at weaning) and the level of variability present 

in the tissue from which the culture was originally derived.

3.2.4.1. Repeat size variability in lung cell cultures (D2763L cell line)

The lung tissue from which the culture was established showed relatively low levels of

variability with most alleles (>90%) remaining within ±10 repeats of the progenitor allele (173

repeats) (Figure 3.4.A). After 15 doublings the lung cell culture displayed an even lower level of 

variability with the vast majority of cells within ±5 repeats of the predominant allele (~175 

repeats). The reduction in variability observed in the progression from in vivo to in vitro, suggests 

that only a very few cells grew in culture. Indeed, the degree of repeat length homogeneity 

observed in the culture and the relative increase in size detected, suggest that this culture may have 

very quickly been taken over by derivatives of a few, or possibly even only one, of the cells present 

in the original tissue carrying a slightly larger allele. Surprisingly, even after as many as 100 or 200 

doublings in vitro (corresponding to more than 300 days), the level of repeat variability remained 

very low with only a small increase in average allele length up to 177 repeats. The maintenance of 

such a low level of variability in vitro after so many doublings indicates that mammalian cells are 

capable of faithfully replicating large expanded CAG*CTG repeat tracts through numerous cell 

divisions, even at a locus that is extremely unstable in other cells. Also of note was the relatively 

late appearance in the culture of a subset of cells carrying a deletion of around 30 repeats relative to
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Figure 3.4. Repeat length variation in Dmt-D cultured cells from a six-month-old mouse.
SP-PCR techniques were used to monitor transgene repeat length variation in DNA 
samples extracted from cultured (A) lung, (B) eye and (C) kidney cells harvested 
from a six-month-old Dmt-D male mouse. Five to 10 copies of genomic DNA, collected 
at different passages were amplified in five independent SP-PCR. Representative 
SP-PCR amplifications of DNA isolated from the progenitor tissues are shown on 
the left; each reaction containing around 20 copies of the transgene, except for the 
first kidney panel, in which around 50-100 molecules of DNA were amplified. The 
scale on the right displays the molecular weight markers converted into CTG repeat 
numbers. The repeat lengths of the major PCR products detected are shown on the 
left.
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the major allele in the culture. After 200 doublings these cells comprised approximately 10% of the 

cell population, but rose to -25%  by 250 doublings. Presumably, this shift was mediated by drift 

and/or selection within the cell population rather than repeated mutations to the same length allele. 

This assertion is supported by the bidirectional nature and different sizes of similar shifts observed 

in other cultures.

3.2.4.2. Repeat size variability in eye cell cultures (D2763E cell line)

Higher levels of instability were detected in cultured eye cells (Figure 3.4.B). Once again, 

very early in the establishment of the culture, the range of variability observed was very different to 

that detected in the progenitor tissue. By as few as 5 doublings, the predominant cell population 

contained an average allele length of -185 repeats, 12 repeats larger than the major allele in the 

original tissue (173 repeats). By 10 doublings a distinct subpopulation of cells appeared, with an 

average size of -210 repeats. This population presumably represents clonal expansion of a rare cell 

carrying a large expanded allele, either present in the original tissue or having arisen as a 

spontaneous mutant in vitro during one of the earlier passages. Nonetheless, by 10 doublings each 

population showed moderate size variability, characterised by small changes mostly limited to 

fewer than ±5 repeats around the average repeat length. The moderate instability was maintained, 

with the level of variability and the average allele length gradually increasing within each of the 

two main populations of cells. This effect was very clear up to 70 doublings, by which time the 

average allele size in each population had risen by a further five repeats relative to that observed at 

10 doublings. After 110 doublings however, the proportion of cells in the population carrying the 

larger alleles started to decrease. By 240 doublings in vitro, the eye cell population initially 

carrying -185 repeats had increased in average allele length to -195 repeats, but had overgrown the 

culture causing a reduction in overall repeat length variability.

3.2.4.3. Repeat size variability in kidney cell cultures (D2763K cell line)

Kidney is the tissue that shows the highest levels of variability and the largest expansions 

in vivo. Repeat variability within the original tissue showed the typical trimodal distribution highly 

biased towards expansion (Fortune et al., 2000) (Figure 3.4.C). Most cells carried repeats within 

the first peak of variability with alleles within -5 to +10 repeats of the progenitor (173 repeats). 

Additional peaks of variability were observed most clearly at -200 and -230 repeats. Although a 

relatively high level of variability was retained after 5 doublings in vitro, the predominant alleles 

from the first peak of variability detected in the original kidney tissue were entirely absent. It 

appears as if only cells from the second and third peaks were able to grow in vitro. Indeed, by as 

few as 20 doublings, the second peak of cells had disappeared and only cells carrying the largest 

repeats were maintained. Single molecule analyses allowed us to quantitatively define more clearly 

the progression of repeat variability in cultured kidney cells (Figure 3.5). After 20 doublings a 

narrow range of repeat sizes was defined, with an average repeat length of -260 repeats, which not 

only corresponded to the longest repeats initially found in vivo, but also overlapped with the largest
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Figure 3.5. Repeat length distributions in cultured kidney cells.
The graphs display the repeat length distributions observed in cultured kidney cells 
harvested from a six-month-old Dmt-D male mouse. For each time point at least 100 
individually amplified transgene repeat tracts (n) were sized by SP-PCR at low DNA 
concentration (1-3 DNA molecules per reaction). Allele lengths were grouped into 
five repeat size ranges.
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peak described above after five doublings in culture. After 50 doublings, a pattern of instability 

very reminiscent of the highly positively skewed distributions observed in vivo in both humans 

(Monckton et al., 1995) and mice (Fortune et al., 2000) was observed, with very few alleles being 

detected below the lower boundary of -250 repeats. The level of repeat variability peaked at this 

stage, with a mean allele length of 270 repeats and with -5%  of cells containing alleles longer than 

300 repeats in length. However, the repeat length heterogeneity was reduced dramatically and the 

mean allele length decreased to 260 repeats after 100 divisions in culture. A similarly low level of 

variability was retained even after 150 population doublings. The repeat dynamics in cultured 

kidney cells suggests the development of an expansion-biased mechanism in vitro, which may be 

disturbed by population fluctuations, such as the dramatic selective sweeps described at 20 and 100 

doublings.

It is important to note that no obvious relationship was found between the repeat instability 

in the three tissue-specific cell lines analysed and their proliferative capacity, as assessed by the 

population doubling times (Table 3.2). Taken together, the results reported above for the three 

different tissues, support the maintenance of in vivo tissue-specific trinucleotide instability in vitro, 

which is expansion-biased, particularly during the early stages of the eye and kidney cell cultures.

3.2.5. Age-of-donor effect on trinucleotide repeat instability observed 
in culture

To investigate the influence of the age of the donor mouse at sacrifice on the trinucleotide 

instability detected in culture, kidney cell lines were established from two younger D m t-D male 

mice, aged five weeks (D3111K cell line) and three months (D2967K cell line), and one very old 

mouse aged 30 months (D979K cell line). The two cultures from the young mice showed similar 

growth rates, with population doubling times of 42 and 45 hours, respectively (Table 3.2). 

Consistent with the age-dependent accumulation of somatic mosaicism in vivo, the youngest mouse 

analysed in this study displayed very little somatic variation in the original tissue from which the 

cell line was derived, with most cells with an allele size of -160 to -175 CTG repeats (Figure 

3.6.A). As with previous cultures though, the level of variability in the D3111K cell culture was 

almost immediately reduced in the first few passages and by 5 doublings the average allele size was 

-165 repeats with most variants within ±5 repeats. The range of variation and average allele length 

increased up to 35 doublings, by which point two major populations of cells with -170 and -185 

repeats were present. After an additional 30 doublings the cells containing the larger alleles 

predominated, accompanied by an overall reduction in the range of variability, reflective of a 

selective sweep. The repeat sizes ranged from -185 to -215 repeats in the original kidney tissue of 

the three-month old mouse, intermediate between that observed in the five-week and six-month old 

mice (Figure 3.6.B). Once again, variability was rapidly reduced in the D2967K culture: most 

notably by 20 doublings the average allele length had increased to -195 repeats, but with a reduced 

overall range. By 35 doublings a second major population of cells carrying approximately 225 

repeats appeared. This population took over the culture completely by 65 doublings and increased
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A. Population doublings in culture
Progenitor ---------------------------------------------------------------------------

tissue 5 20 35 65

B. Population doublings in culture
Progenitor ------------------------------------------------------------------

tissue 5 20 35 65

C. Population doublings in culture
Prog. First -----------------------------------------------------------------
tissue passage 5 10 35 60 100 125

-  725

Figure 3.6. Age-of-donor effects on repeat length variation in cultured kidney cells.
The autoradiographs shown are representative SP-PCR analyses of DNA samples 
collected from cultured kidney cells harvested from (A) a five-week-old Dmt-D mouse, 
D3111K cell line; (B) a three-month-old Dmt-D mouse, D2967K cell line; and (C) a 
30-month-old Dmt-D mouse, D979K cell line (see Table 3.2). Representative SP- 
PCR amplifications of DNA isolated from the progenitor kidneys are also presented 
on the left, each reaction containing around five to 50 copies of the transgene. The 
molecular weight markers are shown on the right, after conversion into number of 
CTG repeats. The length sizes of the main PCR products detected are shown on 
the left.
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in length up to ~240 repeats.

The level of variation present in vivo in the very old mouse was, as expected, very high 

with a small subset of cells carrying alleles as large as 720 repeats (Figure 3.6.C). Nonetheless, the 

most predominant cells contained expansions in the range of 160 to 180 repeats. This high level of 

variability though, was massively reduced very early in the establishment of the D979K culture. By 

five and 10 doublings only three major, but highly distinct, populations persisted suggesting that 

this culture was most likely derived from only three progenitor cells, carrying transgenic sequences 

with average sizes of 220, 280 and 340 CTG repeats. Once again the allele sizes present in the cells 

that predominated in culture were much larger than present in the majority of cells in vivo. As the 

culture was continuously passaged, not only the repeat size variability within each subpopulation 

but also the mean repeat length appeared to increase significantly. However, the population of cells 

carrying 220 repeats disappeared after 100 doublings, following a rapid expansion of the transgene 

by 20 units (up to 240 CTG repeats) over as few as -60  population doublings in culture. After 100 

doublings the upper population of cells displayed major repeat size heterogeneity, with some alleles 

containing up to 600 repeats. These repeats appear to undergo rapid expansion-biased mutation, 

resulting in a dramatic increase in the mean repeat number over as few as 25 population doublings 

in vitro: from -315 repeats after 100 doublings, up to -355  repeats after 125 doublings. 

Interestingly, no evident selective sweeps were observed over the last two time points analysed for 

this culture, in contrast to the results obtained with the D2763K cell line, and indeed supporting a 

high propensity for rapid expansion of the CAG« CTG repetitive tract in this particular cell line 

(D979K).

The difference in repeat size variation observed between the cell lines established from 

three different aged mice could not obviously be accounted for by the nature of the cell types 

grown from each animal. All cells cultured in vitro displayed a characteristic spindle morphology, 

and expressed vimentin filaments, as detected by immunocytochemistry techniques (Figure 3.7), in 

agreement with their fibroblastic phenotype. Nevertheless, as observed for D2763 cell lines, careful 

examination revealed subtle differences regarding the exact morphology of the cells and patterns of 

cellular staining, particularly between D979K cells and the other two cell lines. Whether or not this 

observation is relevant, and indicates genuine differences in the absolute origin of each culture 

remains unclear.

Overall, these data confirm the proliferative advantage in vitro of cells that contained large 

repeats in vivo. They also indicate that the expansion-biased progression of somatic instability in 

vitro is a reproducible phenomenon using kidneys from Dmt-D  mice as a source material and that 

selective sweeps are a common occurrence. These data also appear to support an effect of the age 

of the mouse at sacrifice on the stability of the transgene in culture, with the repeat appearing to be 

less stable in cell lines derived from older mice than those from younger mice. However, this may 

be a result of the longer allele lengths that predominate in the cultures derived from older mice, 

rather than a true age-of-donor effect on repeat stability.
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D3111K D2967K D979K

Figure 3.7. Fibroblastic phenotype of cultured kidney cells from different aged mice.
The pictures represent the immunostaining of kidney cells derived from three different 
mice aged three weeks (D3111K cells), six months (D2967K cells) and 30 months 
(D979K cells). Vimentin filaments were detected with a primary mouse monoclonal 
antibody raised against human vimentin, and a secondary anti-mouse IgM-FITC 
conjugate. All cells stained positive for vimentin, but negative for a panel of cytokeratins.
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3.2.6. Accumulation of mutations in single cell-derived clones from 
kidney cell cultures

To discount the possibility that the variability detected in culture could be an artefact 

derived purely from an in vitro selection process for the cells harbouring longer alleles, rather than 

the outcome of the intrinsic instability of the transgene in vitro, clonal lines derived from single 

cells were established. The clones were isolated by limiting dilution from kidney cell cultures 

established from two Dmt-D  mice aged six and 30 months: D2763K and D979K, respectively. 

D2763K cells had been growing for 20 population doublings, whereas D979K had been growing 

for only 10 doublings prior to the cloning step. All the clones were expanded for a further 20 

doublings and the CTG repeat size variability was subsequently assessed by SP-PCR. In this 

experiment, if the progenitor cell, which was clonally expanded, carried a stable allele, low levels 

of repeat size variability would be detected in the final culture. On the other hand, if the original 

cell carried an unstable repeat tract, a high degree of trinucleotide repeat length heterogeneity 

would be expected at later stages. If, however, the culture resulted from the expansion of more than 

one cell, we would expect to see distinct subpopulations of variants. Therefore, clones that showed 

two or more clear independent subpopulations of cells carrying different sized repeats were 

considered to represent either the presence of multiple input cells at the time of cloning or, 

possibly, new mutant alleles that arose soon after plating. In either case those clones were excluded 

from the study.

All the clones derived from a six-month-old mouse cell line exhibited repeat size 

heterogeneity, which corroborates the progression of somatic instability in culture over as few as 

20 population doublings (Figure 3.8.A). In addition, they showed different average repeat sizes and 

different ranges of repeat distribution. For one clone in particular (clone D2763Kc2), a very broad 

range of repeat sizes was observed. Such a difference could not be accounted for by cell division 

rates, since no significant variations in the proliferative capacities were observed between the three 

clones studied here: all the clones were proliferating at an average rate of one population doubling 

every 30 hours.

The original D979K kidney cell culture, from which several clones were derived, exhibited 

three main subpopulations of cells, carrying repeats with average sizes of -230, -290 and -340  

CTG units. The repeat sizes of the alleles carried by the ten D979K clones fall within these three 

major peaks of length variability (Figure 3.8.B), suggesting that each clone was derived from 

individual cells originally included in those three main subpopulations. One particular clone (clone 

D979Kcl) carries a transgene sequence longer than any of the alleles previously detected in the 

progenitor culture under the conditions employed in the SP-PCR analysis (DNA concentration and 

number of replicates). There is, therefore, the possibility that clone D979Kcl shows greater 

propensity for trinucleotide repeat expansion than all the others, leading to a rapid increase in its 

mean repeat size. Clones D979Kc4 and D979Kc5 both exhibit higher levels of repeat size 

heterogeneity compared to the remaining clonal cell lines. The possibility exists that these two 

clones did not expand from a single cell present in the progenitor culture, but from multiple cells
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Progenitor
culture

Clones

D2763Kc1 D2763KC2 D2763KC2
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B. Clones
Progenitor --------------------------------------------------------------------------------

culture c1 c2 c3 c4 c5 c6 c7 c8 c9 c10
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Figure 3.8. Repeat length variation in single cell clones of cultured kidney cells.
The autoradiographs shown are representative SP-PCR analysis of DNA samples 
extracted from independent single cell clones derived from cultured kidney cells 
harvested from two Dmt-D mice aged (A) six months (D2763K cells), or (B) 30 
months (D979K cells). An average of five DNA molecules were amplified in each 
reaction. The scale on the right displays the molecular weight markers converted 
into CTG repeat numbers.
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carrying different repeat lengths. As observed for the D2763K clones, differences in the repeat 

dynamics between D979K clones could not be explained by clonal-specific proliferative capacities, 

since no significant variations in the population doubling times (-30 hours) were observed between 

the ten clones studied here.

Interestingly, the repeat size variability within single-cell derived cultures was greater in 

D2763K clones than in D979K clones (Figure 3.8). This difference may be the result of a greater 

repeat length heterogeneity previously detected in the progenitor D2763K culture. In contrast, 

although the parental D979K culture consisted of three distinct subpopulations of cells carrying 

different sized alleles, little repeat number variation was detected around the average repeat size 

carried by each subpopulation. Different degrees of somatic mosaicism between these two 

independent cell lines may be explained by differences in the progenitor cell types, despite the 

fibroblastic phenotype developed by cultured cells at later stages. Alternatively, the accumulation 

of distinct mutations over time, particularly during spontaneous immortalisation, most likely to 

involve genes associated with DNA repair and/or cell cycle surveillance, may also contribute to the 

different degrees of repeat size variability observed between the two cell lines.

3.2.7. Preferential accumulation of longer alleles in competition 
assays between clones carrying different sized repeats

Given the preferential accumulation of cells carrying longer alleles, particularly over the 

first few passages in culture (Figures 3.4 and 3.6), it was our hypothesis that this phenomenon 

could be mediated by the growth advantage of cells carrying large CAG*CTG repeats. Clonal cell 

lines were therefore deliberately mixed prior to serial passage and repeat size monitoring by SP- 

PCR. Competition growth assays were performed with clonal cell lines derived from a 30-month- 

old Dmt-D  mouse (D979K clones), carrying different sizes of the CAG'CTG repeat but sharing the 

same genomic background. Three D979K clones were selected according, not only to their 

different repeat numbers, but also to their low transgene size heterogeneity, to ensure that clonal 

expansion had occurred from a single progenitor cell. Clones D979Kcl, carrying -380 repeats, 

D979Kc9, carrying -300 repeats and D979KclO, carrying -240 repeats (Figure 3.8.B), were 

chosen to carry out this study. These clones were mixed together in pairs, at three different cell 

number ratios, either an equal cell number from each clone (1:1 ratio) or a two-fold excess of one 

of the clones relative to the other (1:2 and 2:1 ratios). Two replicates of each mixed culture were 

grown for 40 population doublings in vitro, prior to analysis of repeat size variability by SP-PCR 

techniques (Figure 3.9).

SP-PCR analyses revealed that cells carrying longer alleles overgrew the culture over the 

period of time monitored in this study and at all the cell ratios tested (Figure 3.9). Regardless of the 

exact repeat tract length in each clone and the extent of the difference in repeat size between the 

two clones mixed together (differences varying from 60 to 140 CTG repeats), the cells carrying 

larger transgene molecules overgrew the culture, even when they were outnumbered by a two-fold 

excess of cells harbouring shorter trinucleotide repeats. Consequently, following 40 doublings,
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A. Clones Cell ratio between clones (D979c10:D979c9)
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Figure 3.9. Competition growth assays between single cell-derived clones.
Three kidney cell clones carrying different sized CAG*CTG repeats were mixed in 
duplicate at three different ratios. The ratios between the numbers of cells from each 
clone in a mixed culture are shown above each autoradiograph. The autoradiographs 
show representative SP-PCR products obtained from the amplification of DNA 
samples extracted from the mixed cultures following 40 population doublings in 
culture. An average of 5-20 DNA molecules were amplified in each reaction. The 
scale on the right displays the molecular weight markers converted into CTG repeat 
numbers.
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very few short alleles were detected in culture. Particularly interesting, yet intriguing, are the 

results obtained with clone D979Kcl (-380 repeats), which exhibited clear preferential growth 

survival in culture, and consistent higher levels of expansion-biased repeat instability when mixed 

together with clone D979KclO. D979Kcl cells showed evidence of rapidly expanding unstable 

repeat tracts, as illustrated by the rapid increase of -30  units in repeat length over a period of 40 

doublings in culture.

The probability that one clone would completely outgrow another in six independent 

replicate cultures, regardless of their relative repeat sizes (two-tailed analysis), would be 1/25 

(1/32). If the relative repeat sizes are taken into account, the probability that the clone carrying 

longer alleles would overgrow another clone carrying shorter repeats (one-tailed analysis) would 

then be 1/26 (1/64). Both numbers are low enough to consider that the relative growth survival for 

the three clones tested was unlikely to have occurred by chance. It may therefore be concluded that 

the selective growth advantage follows the order: D979Kcl > D979Kc9 > D979KclO, which 

happens to parallel the average repeat size rank. Nevertheless, given the low number of clones 

tested in this experiment, the probability of the correlation between preferential growth and allele 

size to occur by chance (1/3! = 1/6) is not low enough to make this observation highly significant.

In summary, competition assays between three independent single cell-derived clones 

established from the same progenitor culture, which proliferated at similar rates, suggested a 

parallel between the average repeat length and preferential growth survival in culture. However, the 

analysis must be extended to additional clones to increase the significance of this result, and 

provide further evidence in support of a growth advantage for cells harbouring longer CAG*CTG 

repeat tracts in culture.

3.2.8. Repeat size distributions in kidney and liver tissue samples in 
vivo

Three cell lines, established from independent organ samples collected from one single six- 

month-old Dmt-D  mouse, revealed different repeat dynamics in vitro, suggesting the replication of 

the tissue-specific character of somatic mosaicism in culture. Differences in cell line-specific 

trinucleotide repeat instability in vitro could not be accounted for by the observed nature of the 

cells grown from each tissue. Immunocytochemical characterisation of the cultured mouse cells has 

revealed a typical fibroblastic phenotype, characterised by vimentin expression and lack of 

cytokeratin staining. However, one cannot reject the hypothesis of a cell-specific trinucleotide 

repeat instability mechanism. In fact it has now been established that most cells grown in vitro 

develop a fibroblastic phenotype, including the expression of vimentin- and fibroblast-specific 

proteins (Pollack et al., 1997), independently of the original cell type they may have derived from. 

It might be possible that by the time cell characterisation was performed in this study, the cultured 

cells had already adopted a fibroblastic phenotype. Alternatively, fibroblasts derived from distinct 

tissues may be sufficiently different to explain the diversity in the trinucleotide repeat stability 

observed among lung, eye and kidney fibroblastic cell lines. In either case, differences in
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trinucleotide somatic repeat instability would be dependent on cell-specific factors. To support this 

hypothesis, three peaks o f repeat size variability have been observed in the kidney o f Dmt-D  mice 

(Figure 3.4.C ) (Fortune et al., 2000). Furthermore, different mouse m odels that show  trinucleotide 

som atic m osaicism , have displayed a clear bimodal repeat distribution in liver D N A  sam ples (Lia 

et a l ,  1998; Mangiarini et al., 1997; Manley et al., 1999a). This pattern o f instability in the liver of 

Dmt-D  mice has been confirmed by SP-PCR analysis o f D N A  samples collected at 24 months of 

age (Figure 3.10).

High input D N A  SP-PCR amplifications (10-50 template m olecules per reaction) revealed 

the bim odal distribution o f repeat sizes in both liver sam ples. The first population o f cells, 

consisting o f -20%  o f the cells, carried short repeats that had only expanded an average o f 0-10  

units from the progenitor allele. A  second population o f alleles, with a similar size, was detected, 

and shown to carry repeats 70 ± 5 repeats longer than the progenitor allele. The two m ice analysed 

here inherited progenitor alleles that differed 20 repeats in size, which may explain the apparent 

higher levels o f expansion-biased somatic instability observed in mouse B (progenitor allele: -1 8 8  

repeats) compared to mouse A  (progenitor allele: -1 6 6  repeats)

In summary, Dmt-D  m ice, in agreement with other murine m odels o f trinucleotide repeat 

instability found in the published literature, exhibit a characteristic bimodal pattern o f repeat size 

variability in the liver, suggesting a possible cell type-specific somatic instability and a role for 

cell-specific factors controlling somatic m osaicism , as previously proposed for kidney (Fortune et 
al., 2000).

+236

+144

+76

-14

Figure 3.10. Trinucleotide repeat length variability in liver tissue sam ples from two 24- 
month-old Dmt-D mice.
The stability of the CAG*CTG transgenic repeat in the liver of two Dmt-D mice was 
assessed by SP-PCR analysis at 24 months of age. The autoradiographs show eight 
independent SP-PCR amplifications of 10-50 transgene molecules for each sample. 
The repeat size lengths show a clear bimodal distributions in both mice, with two 
main peaks of repeat variability. The apparent higher levels of expansion-biased 
repeat instability observed in mouse B may result from the longer progenitor allele 
inherited by this mouse (-185 repeats), when compared to mouse A (-165 repeats). 
The size of the molecular weight markers are shown on the right, after conversion 
into repeat size differences from the progenitor allele.

Mouse BMouse A
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3.2.9. Trinucleotide repeat stability in Dmt-E kidney cells

The instability of the D m tl62  transgene is highly dependent on positional factors, given the 

major effect of the integration site on the levels of somatic mosaicism detected in the different 

mouse lines. While the CAG-CTG transgenic repeat shows great levels of somatic mosaicism in 

D m t-D  mice, it appears to remain remarkably stable in the somatic tissues of Dmt-E  animals 

(Fortune et a l,  2000). To test if trinucleotide repeat dynamics would be similarly controlled by cis 

factors in an in vitro environment, particularly, if low levels of repeat instability would still be 

observed in Dmt-E  cell cultures, a kidney cell line was established from an eight-month-old Dmt-E  

male mouse by enzymatic dissociation as described before (Section 2.4.1.2). This culture consisted 

of cells with a fibroblastic phenotype, as determined by immunostaining of vimentin intermediate 

filaments (Figure 3.11).

SP-PCR analyses were carried out to monitor the repeat size dynamics over time in this cell 

line (Figure 3.12). As expected, the original tissue exhibited extremely low levels of somatic 

trinucleotide instability, with all the cells carrying around 156 CAG'CTG repeats. A  total lack of 

repeat length mutations was apparent throughout the culture, with no major expansions or 

contractions being detected at any time point included in this study. All cells appeared to carry the 

same repeat number, even after 45 population doublings in culture.

The cis factors controlling the repeat instability in the somatic cells of the different Dmt 

mouse lines are still retained in culture, giving rise to marked differences in the levels of repeat 

length variability between D m t-D and D m t-E  kidney cell lines. This observation rejects the 

hypothesis that the instability observed in cultured Dmt-D cells might arise from major changes in 

the DNA metabolism during the transition from an in vivo environment to in vitro conditions, 

leading to an overall genomic destabilisation.

3.3. Discussion

The expansion of simple repetitive trinucleotide sequences is causally involved in the 

molecular bases of an increasing number of human diseases. In the soma, repeat instability is 

expansion-biased, tissue-specific and age-dependent; dynamics that are consistent with a role in the 

tissue specificity and progressive nature of the symptoms. However, little is known about the 

mutation processes that give rise to somatic mosaicism. To facilitate the study of somatic repeat 

instability in a mammalian system, mouse models of unstable CAG'CTG trinucleotides were 

previously created (Monckton et al., 1997), one line of which (D m t-D) replicates gross age- 

dependent, tissue-specific, expansion-biased somatic mosaicism (Fortune et a l ,  2000). Tissue 

samples have now been harvested from these mice to establish cell lines, and monitor repeat 

stability over a long period of time under conditions of rapid cell proliferation. These investigations 

have revealed that the dynamic pathway observed in vivo, i.e. accumulation of multiple small 

mutations biased towards expansions, is conserved in an in vitro mammalian cell model. Most
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V i

Figure 3.11. Fibroblastic phenotype of cultured kidney cells from a Dmt-E mouse.
The pictures show the presence of vimentin intermediate filaments in a kidney cell 
culture established from a Dmt-E mouse. A primary mouse monoclonal antibody 
raised against human vimentin, and a secondary anti-mouse IgM-FITC conjugate 
were used in the immunostaining. All cells stained positive for vimentin. 
No cytokeratin expression was observed in the same cells.

. Population doublings in cultureProgenitor First    - -----------------------
tissue passage 1 10 45

k — 242

Figure 3.12. Trinucleotide repeat stability in cultured kidney cells from a Dmt-E mouse.
The repeat dynamics in a kidney cell line established from an eight-month-old male 
Dmt-E mouse was monitored by SP-PCR analysis overtime. The autoradiographs 
show representative SP-PCR products obtained from the amplification of 10-20 
copies of genomic DNA, collected at different passages. Five independent amplification 
reactions are shown for each time point. The scale on the right displays the molecular 
weight markers converted into triplet repeat numbers.
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interestingly, the tissue specificity observed in vitro also reflects that observed in vivo. In 

particular, the repeat remains remarkably stable in lung cells, even after several hundred days and 

hundreds of cell divisions in culture. In contrast, the repeat is very unstable in cultured kidney cells. 

These tissue-specific differences are observed, despite the fact that the population doubling time for 

cell lines from the three different tissues is similar. It has been postulated that mitotic cycles 

generate somatic heterogeneity of repeat lengths. According to this model, it would be predicted 

that the higher the cellular proliferation rates, the higher the variability in repeat number generated. 

Although the tissue specificity of somatic mosaicism in vivo shows no obvious correlation with the 

known rates of cell turnover, it could be argued that the multi-cell type complexity of whole tissues 

might have masked such a relationship. The results presented from an in vitro model demonstrate 

conclusively that variation in repeat stability cannot be accounted for simply in terms of population 

doubling times and must be related to other cell type-specific effects. Cell lines homogeneous for 

cell type, such as those described here, should greatly facilitate the identification of such factors.

Evidence for cell-specific dynamics was revealed by the detailed analysis of repeat 

variability in the liver of old Dmt-D mice. The repeat length distributions showed two distinct cell 

populations with differing repeat dynamics. Interestingly, a characteristic bimodal pattern of 

mutation has also been observed in liver samples from R6/1 mice transgenic for exon 1 of the 

human HD  gene (Mangiarini et al., 1997; Manley et a l ,  1999a). This observation may serve as 

evidence for a role for cell-specific, as well as tissue-specific factors in the dynamics of 

trinucleotide repeats. The liver shares nervous, lymph, vascular and fat-storing systems with tissues 

in which the repeat remains relatively stable. It is therefore reasonable to speculate that these cell 

types are not the origin of the great liver-specific expansions. Instead, it may be speculated that the 

shared cell types carry stable repetitive tracts. Given the characteristic two peaks of trinucleotide 

instability detected in liver samples, at least one highly specialised liver cell type might exhibit 

great expansion-biased repeat instability and account for the accumulation of longer transgenic 

alleles. Two cell lineages that are unique to this tissue, such as the liver-specific epithelial cell (the 

hepatocyte) and the Kupffer cell (liver-specific phagocytic cell), can be considered as good 

candidates. Both cells types exhibit high metabolic rates, and possibly high levels of oxidative 

stress (Kono et al., 2000; Wheeler et al., 2001), which may be associated with high levels of triplet 

repeat instability (Chapter 5), and with the development of the characteristic mutation profile in 

liver samples. Similarly trimodal repeat distributions have been reported in the kidney of Dmt-D 

mice, and likewise it was speculated that nephron cell types, present specifically in that organ, 

would be the underlying cause of this observation (Fortune et a l , 2000). Microdissection and/or 

cell sorting procedures should be used to address this issue in further detail. Indeed, single cell PCR 

analyses, associated to laser microdissection techniques, were carried out on human DRPLA brains 

and revealed cell-to-cell differences in the CAG'CTG repeat number. Again, the distinct patterns of 

somatic mosaicism detected between neuron types could not be explained by the differences in the 

number of cell division cycles alone, and the authors claimed a major role for cell-specific 

modifiers of somatic mosaicism (Hashida et al., 2001).
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Surprisingly, cells carrying longer repeats were selected during the first few passages of all 

of the cultures, quickly giving rise to a larger average size than observed in the progenitor tissue. 

This increase was accompanied by an overall reduction in variability, suggesting that each cell line 

was expanded from a very small number of cells. The probable explanation for this effect is the 

selective growth advantage in culture of cells that already contained a longer repeat in vivo. 

Alternatively, it is possible, that the highly proliferative cells from which the cultures were 

established had a very high rate of expansion during their establishment. However, the fact that this 

effect was observed in all of the cultures, but was most prominent in cultures established from 

tissues with a high degree of mosaicism already established in vivo, suggests the former possibility 

is most likely. Similarly, EBV-transformed lymphoblastoid cell lines harbour larger repeats than 

peripheral blood leukocytes (Ashizawa et al., 1996), also supporting a growth advantage in vitro of 

cells that contained longer repeat tracts in vivo. The factors that might co-facilitate repeat 

expansion in vivo and rapid proliferation in vitro remain unknown.

Selective sweeps are not restricted to the early stage of the culture, and continue to occur at 

later passages. These later sweeps can similarly result in dramatic shifts in repeat length 

distributions. For instance, the shift from a mean allele size of -195 repeats after 20 doublings in 

the kidney cell culture from the three-month-old mouse, to -240 repeats after 65 doublings does 

not appear to result from the gradual accumulation of multiple mutations in a homogeneously 

evolving population (Figure 3.6.B). Rather, it appears that at some point in the culture a rare cell 

arose with a markedly larger allele than the average, and that derivatives of this cell had a selective 

advantage, eventually taking over the culture completely. Other less dramatic selective sweeps 

have been observed at late passages, but they were not always in favour of the cells carrying larger 

alleles. For instance, the bimodal distribution present in the eye cell culture after 70 doublings 

(peaks at 190 and 210 repeats), resolved to a unimodal population of -200  repeats by 240 

doublings (Figure 3.4.B). Presumably, the favourable advantages gained by the selected cells 

resulted from the acquisition of additional mutations elsewhere in the genome, rather than from any 

direct effect of expanded CAG*CTG repeats on cell proliferation. In contrast to the bidirectional 

selective sweeps observed in Dmt-D  cultures, competition growth assays between three Dmt-D  

single cell-derived clones with the same clonal origin, and hence the same genetic background, has 

consistently revealed a growth advantage for cells carrying longer alleles over a maximum of 40 

population doublings, which could not be accounted for by differences in the rates of cell turnover 

between clonal cell lines. Despite the low number of clones tested, and lack of statistical 

significance, these results may suggest a parallel between the selective growth, proliferative 

capacity and the repeat tract length.

Similar selective sweeps have been observed in human EBV-transformed LBCLs carrying 

GAA*TTC expansions at the FRDA locus (Bidichandani et al., 1999), and CTG'CAG expansions 

at the DM1 locus (Khajavi et al., 2001). Whilst the selective sweeps observed at the GAA*TTC 

expansion in the FRDA cells were not obviously biased in their direction, those at the DM1 locus 

were associated with a growth advantage of cells carrying longer repeats. Indeed, the authors have 

suggested that there is a direct cause and effect relationship between the CTG*CAG expansion
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length at the DM 1 locus and the proliferative capacity of the cell, presumably mediated by 

abnormal function of one of the genes flanking the endogenous repeat. At present we cannot 

exclude a positive correlation between the size of the CAG'CTG repeat expansion and Dmt-D cell 

proliferation capacity, as previously reported for DM1 LBCLs (Khajavi et al., 2001). The use of 

sensitive flow-cytometric techniques of pulse-labelled cells with 5 ’-bromo-3-deoxyuridine would 

allow a more precise calculation of the population doubling time, and might reveal subtle 

differences that might have not been detected with the techniques used in this work. Nevertheless, 

if confirmed, a correlation between CAG'CTG repeat size and cell turnover in D m t-D cell lines 

would not be expected to be mediated by one of the genes flanking the endogenous repeat, since 

the transgene contains no coding sequences, it has been randomly integrated into the mouse 

genome and it is not associated with any obvious phenotype in either hemi- or homozygous Dm t-D 

mice (see Chapter 9).

More sensitive techniques would also clarify the relationship between the number of 

population doublings and the number of cell generations. In a cell culture undergoing multiple 

passages, cells are subjected to a periodic reduction of the population size at each passage and to 

genetic drift, which increases the likelihood of a selective sweep to occur. Since non-dividing cells 

accumulate in the culture, dividing cells have to compensate for non-dividers in order to 

accomplish additional population doublings, thus, individual proliferating cells undergo more 

divisions, called cell generations, than the number of population doublings. In fact, the number of 

cell generations can be twice as high as the number of population doublings (Rubelj et a l,  1999). 

The differential proliferation rates within a cell culture may well be on the basis of the selective 

sweeps observed. Such selective sweeps complicate attempts to provide an accurate measure of the 

repeat dynamics in any given cell line since the level of variation present can be rapidly reduced by 

selection. Moreover, the mutations that are selected will be those affecting cell growth and turnover 

and these might also be expected to indirectly or directly affect DNA metabolism. As such, it is 

probable that the dynamics of repeat metabolism will change with time. Indeed, it appears as if the 

repeats are most unstable in the early passages of the culture and become more stable with time. 

Thus, it appears as if the early passage cells are more in Wvo-like, initially retaining the cell-type 

specificity of instability, but progressing toward a similar level of high stability. This further 

emphasises the requirement for a readily accessible source of tissue as afforded by the transgenic 

mice. Patient-derived human samples from individuals with rare conditions are not readily 

available. Moreover, the common genetic background of inbred transgenic mouse lines and their 

controlled environment reduces variability due to other factors that are not easily corrected when 

using human samples.

In addition to complicating attempts to quantify repeat dynamics in cells lines, the selective 

sweeps observed may have other more general implications. Sweeps have been detected given that 

very high levels of variation are a feature of the system described. There is no reason to assume 

that such sweeps are not also a feature of other tissue culture systems, and it is important that their 

potential effects are also considered when attempting to interpret the results obtained. This is 

particularly critical for attempts to study other aspects of triplet repeat biology such as effects on
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gene expression. It is standard practice to measure repeat length in either the progenitor tissue or at 

one time point in the culture and assume this remains constant. Our results indicate that such 

simple assumptions cannot be made.

Manley et al., have reported the establishment of a similar mouse tissue culture system 

using tissues from the R6/2 mice transgenic for exon 1 of the HD  gene carrying 154-155 CAG 

repeats. Rather than using primary cell lines though, they have established continuously passaged 

simian virus 40 (SV40)-transformed fibroblasts (Manley et al., 1999a). This system also provides 

evidence for selection accompanied by reductions in the level of variation observed. Expansion 

biased repeat instability was also observed, although the length changes recorded were all relatively 

modest (<15 repeats), even after 600 doublings in vitro. The higher levels of repeat heterogeneity 

detected in our system may result from either a higher intrinsic instability of the Dmt-D  transgene, 

the dynamics of the repeat in the source tissues used or an effect of immortalisation. SV40 

expression clearly alters progression through the cell cycle with evidence for direct effects on 

aspects of the DNA repair and metabolism machinery (Lanson et al., 2000). Alternatively, it may 

simply result from the higher sensitivity of SP-PCR in detecting rarer alleles compared to the 

electrophoretic profiles generated using high template levels, fluorescent primers, automated 

fragment analysis and GeneScan software (Fortune e ta l ,  2000; Kennedy and Shelboume, 2000).

The differences in the levels of somatic mosaicism previously reported between Dmt-E and 

Dmt-D transgenic mouse lines (Fortune et al., 2000) remained in culture, corroborating a role for 

positional factors as major modifiers of trinucleotide dynamics. These results further highlight the 

considerable effect that flanking DNA sequences have in modifying expanded repeat stability 

(Brock et al., 1999) and reject a global genomic destabilisation under in vitro growth conditions, as 

the cause of the trinucleotide repeat instability observed in cultured somatic cells.

Taken together, the data presented here strongly suggest that DNA replication is not the 

sole explanation for repeat instability, implying a role for additional cis- and/or trans- acting tissue- 

specific factors in the control of the dynamics of repetitive sequences in the soma. Additional 

evidence for non-cell division dependent instability is afforded by the age-dependent decrease in 

stability of maternally transmitted expanded CAG repeats in SCA1 and DRPLA transgenic mice 

(Kaytor et al., 1997; Sato et al., 1999) and the patterns of somatic mosaicism observed in various 

transgenic mouse models (Fortune et a l ,  2000; Kennedy and Shelboume, 2000; Mangiarini et al., 

1997; Seznec et al., 2000).

In summary, cell lines derived from a transgenic mouse model for triplet repeat instability 

have been established and shown to retain the tissue-specific, expansion-biased instability observed 

in vivo. Under conditions of rapid cell turnover, the data described support an expansion 

mechanism that might not be strictly dependent on cell division, contrasting to the prevalent DNA 

polymerase slippage hypothesis. This readily renewable primary cell system creates novel and 

exciting avenues to study the complex dynamics of triplet repeats.
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4. Investigating the role of DNA topology as a 
mediator of trinucleotide repeat dynamics

4.1. Introduction

Although multiple mutation mechanisms for trinucleotide repeats are under debate, they all 

share a unifying theme: the speculation that stable non-B-DNA structures, by either or both of the 

DNA repetitive strands, is involved in the mechanism of genetic instability, acting as the driving 

force for expansion (Mariappan eta l., 1998; McMurray, 1999; Pearson and Sinden, 1998b; Sinden 

et al., 2002). Several pieces of evidence have suggested an association between alternative DNA 

structures and human disease. First, nearly all trinucleotide repeat sequences, which expand into the 

disease-associated range, form stable single-stranded DNA hairpins in vitro (Chen et al., 1995; 

Gacy et al., 1995; Mariappan et al., 1996; Mitas, 1997; Zheng et al., 1996), with the possible 

exception of single-stranded GAA and TTC oligonucleotides (Gacy et al., 1998; LeProust et al., 

2000). Second, thermodynamic analysis of single-stranded repeats revealed that the formation of 

intrastrand structures, or hairpins, within Watson-Crick duplexes, is favoured for the disease- 

associated CAG*CTG and CGG'CCG repeats relative to the non-disease associated GTC'GAC 

repeats (Zheng et al., 1996). Third, unusual helical properties have been identified for DNA 

sequences containing CAG’CTG and CGG'CCG repeats: unusual electrophoretic mobility 

(Chastain et al., 1995; Pearson and Sinden, 1996; Pearson et al., 1998b), hyperflexibility (Chastain 

and Sinden, 1998), and preferential nucleosome assembly have been reported (Godde and Wolffe, 

1996; Wang et al., 1994; Wang and Griffith, 1995). Fourth, computational analyses have confirmed 

that disease-associated triplet repeats generally fall into extreme categories concerning their 

biophysical properties, such as bendability, position preference in the DNA helix and protein- 

induced deformability (Baldi et al., 1999). For all these reasons, it appears logical to speculate that 

triplet repeat instability specific to CAG'CTG, CGG*CCG, and GAA-TTC is likely to depend on 

the formation of unusual DNA structures.

Studies carried out with single-stranded DNA sequences have revealed significant 

differences in the stability of the hairpins formed by individual repeats in vitro, which may result in 

different levels of instability. Among sequences able to form hairpins, the CAG*CTG trinucleotide 

repeats, studied in this work, have been considered to form the most stable hairpins, and folding 

has been reported for single-stranded DNA sequences containing as few as five or six CTG repeats, 

over a wide range of solution conditions (Mariappan et al., 1996). It has been shown that the CTG 

strand forms hairpins, where the T*T mismatches are well stacked in the helix, and appear to be 

stabilised by two hydrogen bonds. In contrast, the A* A mismatches in the CAG strand are not well 

stacked in the helix, and exhibit conformational instability (Mariappan et a l ,  1996; Mitas, 1997; 

Pearson and Sinden, 1998b). Additional structures have also been identified within particular 

tandem trinucleotides. Although single-stranded GAA repeats may not show the propensity to form
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hairpins, they can form a triple helix containing non-Watson-Crick pairs (Gacy et al., 1998; 

LeProust et a l ,  2000; Ohshima et al., 1996a), in which the third DNA strand folds into the major 

groove of the purine-pyrimidine duplex tract. In addition, G-rich CGG sequences also display more 

complex structural features. These repeats have the potential to form, not only hairpins, but also 

inter- or intramolecular tetraplexes (Darlow and Leach, 1998b; Mitas, 1997; Pearson and Sinden, 

1998b), in which the G residues are involved in the establishment of G4-tetrads as the major 

stabilising force (Darlow and Leach, 1998b; Fojtik and Vorlickova, 2001; Usdin, 1998).

Double-stranded DNA sequences comprising trinucleotide repetitive tracts, have also 

exhibited unusual properties. Both gene fragments containing either CAG'CTG or CGG'CCG 

repeats, and pure duplex CAG'CTG or CGG'CCG sequences, migrate 20% faster in non

denaturing polyacrylamide gels than expected for linear duplex B-DNA (Chastain et al., 1995; 

Chastain and Sinden, 1998). Both electrophoretic mobility analysis and cyclisation kinetic studies 

revealed that CAG*CTG tracts are more flexible or curved than random B-DNA (Bacolla et al., 

1997; Chastain and Sinden, 1998). The rapid mobility has, therefore, been suggested to result from 

the presence of a long flexible helical region (Chastain and Sinden, 1998). The preferential 

assembly of CAG'CTG repeats into nucleosomes, mentioned above, (Godde and Wolffe, 1996; 

W ang et al., 1994; Wang and Griffith, 1995), is consistent with a curved flexible helix (Chastain 

and Sinden, 1998).

More interestingly, a novel form of non-B-DNA structures was identified within 

trinucleotide repetitive tracts. After melting and reannealing of plasmid DNA or gene fragments 

containing CAG'CTG or CGG*CCG repeats, a high proportion of the DNA population adopts 

alternative conformations that can be deduced from the retarded mobility of these new species in 

native polyacrylamide gels. Biochemical evidence and analysis by means of electron microscopy 

are consistent with the existence of slipped-stranded DNA structures formed within the triplet 

repeats in otherwise linear duplex molecules (Pearson et al., 1997; Pearson and Sinden, 1996; 

Pearson et a l, 1998b). Two types of slipped-stranded DNA structures have been identified: 

homoduplex slipped structures (S-DNA) (Pearson and Sinden, 1996), which are formed between 

two complementary strands with the same number of repeats, paired in an out-of-register fashion; 

and heteroduplex slipped-stranded intermediates (SI-DNA) (Pearson et al., 1997), which have 

different numbers of repeats in each strand (Figure 4.1). It was proposed that SI-DNA might arise 

through replication slippage, resulting in repeat expansions or deletions, whereas strand slippage in 

the absence of replication results in the generation of S-DNA. These structures are remarkably 

thermostable and display minimal interconversion between isomers and/or the linear duplex form 

under physiological conditions, possibly as a result of the formation of intrastrand hairpins, which 

imply that branch migration requires breaking of stabilising base pairs in the slipped-out junction 

and within the slipped-out hairpin (Pearson and Sinden, 1998a; Pearson and Sinden, 1998b). In S- 

DNA, the CAG strand is preferentially susceptible to mung bean nuclease, compared to the CTG 

strand (Pearson and Sinden, 1996), indicating the greater single-stranded character of the CAG 

strand, consistent with the lower thermal stability of the CAG hairpin relative to the CTG hairpin 

(Gacy et al., 1995). Both the propensity for S-DNA formation and the complexity of the structures
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increase with the length of the pure repeat tract (Pearson et al., 1997; Pearson and Sinden, 1996) 

and parallels the probability of repeat expansion (Richards and Sutherland, 1992; Sinden et a l ,  

2002). Moreover, sequence interruptions within pure repeat tracts dramatically decrease the 

propensity to form slipped-stranded DNA structures as well as the heterogeneity of the structures 

formed. Thus, the total number of possible stable structures formed will be much lower for a 

triplet-repeat tract containing sequence interruptions, suggesting that hairpin structures containing a 

sequence interruption are relatively unstable compared with those formed within pure repeat tracts 

(Pearson et al., 1998a). The protective effect of sequence interruptions in the formation of 

alternative DNA structures parallels an identical protective effect on the acquisition of the disease 

state. The interruption of the perfect CAG'CTG triplet may be significant in maintaining the 

stability of SCA1 alleles (Chung et al., 1993). Similarly, interruptions in expanded FRAXA (Eichler 

et al., 1994) and FRDA alleles (Cossee et a l,  1997; Montermini et al., 1997) clearly stabilise the 

repeats. Taken together these observations strongly suggest a role of slipped-stranded structures in 

the process of “dynamic mutation”.

A.

B.
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Figure 4.1. Models of S-DNA and SI-DNA structures.
(A) Schem atic representation of homoduplex B-DNA. (B) Models of various 
structural isomers of S-DNA generated by denaturation and renaturation of a  
triplet repeat tract in an out-of-register fashion. Looped-out regions can be of 
variable size and/or number, and they can be positioned throughout the repeat 
tract. (C) Models of possible SI-DNA structural isom ers consisting of two 
single-stranded DNA seq u en ce s  of different sizes. Thin lines rep resen t 
trinucleotide repetitive tracts. Thick solid lines represent flanking non-repetitive 
sequences (Pearson and Sinden, 1996; Pearson and Sinden, 1998b).
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The great biological relevance of unorthodox DNA structures is enhanced by their central 

involvement in hypothetical models of genetic instability, and their biophysical properties may 

even explain the relative stability exhibited by different repeats. A hairpin containing flexible base 

pairs is anticipated to melt rapidly and/or rapidly incorporate additional triplet repeats into the 

hairpin, relative to one containing only Watson-Crick pairs. The kinetics of melting and refolding 

of CTG and CAG hairpins would require fewer steps than a CGG tetraplex. Thus, on the basis of 

the known biophysical properties of the CCG-, CGG-, CTG- and CAG-containing single-stranded 

structures, it was anticipated that CTG'CAG sequences would be more prone to expansion 

compared with CCG'CGG sequences (Mitas, 1997). The greater expansion rate of CAG*CTG 

repeats in E. coli compared to another nine repetitive sequences supports this model (Ohshima et 

al., 1996b). This finding corroborated the importance of DNA structural properties as central 

mediators of repeat metabolism.

Despite the progress achieved following a series of in vitro approaches, unambiguous proof 

of the existence of unusual DNA secondary structures in vivo has been extraordinarily difficult. 

The conformational dynamics of trinucleotide repeats was studied in E. coli using a bacteriophage 

X derivative containing a long palindrome. Assuming that hairpin loop stability correlates inversely 

with plaque size, the measurement of plaque size would, therefore, be a reliable estimate for the 

stability of DNA hairpin loops in bacteria. It was suggested that both CAG'CTG and CGG'CCG 

sequences, containing as few as two repeat units, can fold into hairpin-type secondary structures 

(Darlow and Leach, 1995).

In summary, circumstantial evidence supports the idea that if DNA secondary structures 

exist in vivo they may interfere with DNA metabolism. Indeed, secondary structures may elude the 

cellular machinery designed to detect and repair single-stranded loops in yeast (Moore et al., 1999). 

Nonetheless, definite proof of the existence of unconventional secondary structure in a mammalian 

cell environment has been particularly challenging. The possibility exists that trinucleotide repeats 

fold into various alternative structures that might co-exist in dynamic equilibrium in vivo, 

depending on the environmental conditions and on their interaction with cellular proteins. The 

possibility that DNA interactions with proteins involved in regulating DNA topology could disturb 

such equilibrium in vitro was investigated. If conformational fluctuations between structural 

isomers were shifted towards linear B-DNA, a stabilisation of the repeat could be expected. Using 

D m t-D cell lines a role for DNA topology and alternative structures in the mechanism of 

trinucleotide repeat expansion in mammalian cells was also examined.
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4.2. Results

4.2.7. Detection of DNA alternative structures in CAG*CTG sequences 
generated by PCR amplification

4.2.1.1. Analysis of alternative CAG*CTG-containing PCR products by native 
polyacrylamide gel electrophoresis

DNA sequences containing a different number of CAG'CTG repeats (ranging from five up 

to 200) were generated by two rounds of PCR amplification. Human genomic DNA was initially 

amplified by single molecule SP-PCR, with oligonucleotide primers DM-A and DM-BR 

(Monckton et al., 1995). The PCR products obtained served as templates for a second 

amplification, with primers DM-A and DM-DR.

To search for the presence of alternative DNA structures in the PCR products, the 

amplified molecules were resolved through a native 8% (w/v) polyacrylamide gel, with 10% (v/v) 

glycerol (Section 2.5.7.2). Although each PCR product generated a single band following agarose 

gel electrophoresis in the presence of ethidium bromide (Chapter 5, Figure 5.10), complex 

electrophoretic profiles, consisting of a series of novel, closely spaced migrating DNA species, 

were observed on native polyacrylamide gels (Figure 4.2). The patterns of anomalously migrating 

products were very similar to those previously described for triplet repeat-containing gene 

fragments or plasmids following denaturation and renaturation protocols (Pearson and Sinden, 

1996; Pearson et al., 1998b). This observation strongly suggests that the additional bands observed 

correspond to alternative DNA structures, particularly S-DNA. Alternatively, given the natural 

tendency for Taq  DNA polymerase slippage during DNA synthesis of trinucleotide repeat 

sequences in vitro (Lyons-Darden and Topal, 1999), it may be considered that the additional bands 

may also correspond to heteroduplex SI-DNA structures, consisting of different sized single

stranded DNA sequences (Pearson et al., 1997). Small size DNA species were detected following 

amplification of a DNA sequence containing 200 CAG’CTG repeat units. The fast migrating 

smeary bands may be the result of non-specific DNA degradation, or they may represent SI-DNA, 

generated following the accumulation of large, but rare, repeat deletions during PCR amplification.

The major band, detected for each PCR product, migrated faster than expected through 

native polyacrylamide gels (Chastain et al., 1995; Pearson and Sinden, 1996; Pearson et al., 

1998b). To quantify this observation, the ratio between the mobility rates through polyacrylamide 

and agarose gels was calculated (R=bppoiyacryiamide/bpagarose) (Chastain et al., 1995). This calculation 

serves as a good estimate of the ratio between the apparent and the actual sizes for a particular 

band. For the major and fast migrating band this ratio varied from 0.95 for the PCR product 

containing 5 CTG repeats (corresponding to a -5%  increase in mobility) down to 0.78 for the 

longest repeat (corresponding to a ~22% increase in mobility). A linear correlation (R2=0.9864) 

was revealed when the bpPo]yacryiamide/bpagarose ratios were plotted against the repeat numbers (Figure

4.3), suggesting that the fast mobility of these sequences in native polyacrylamide gels is intimately
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Figure 4.2. Analysis of CAG*CTG-containing PCR products by native polyacrylamide gel 
electrophoresis.
Human DNA samples derived from the DM1 locus, carrying different repeat numbers, 
were amplified using oligonucleotide primers DM-A and DM-DR, and eletrophoresed 
through a non-denaturing 8% (w/v) polyacrylamide gel, containing 10% (v/v) glycerol. 
The PCR products were detected by Southern blot hybridisation. The gel shows the 
presence of a complex pattern of multiple bands for each PCR product. The molecular 
size markers (M) are shown on the left.
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Figure 4.3.

Figure 4.4.
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Increase mobility in native polyacrylamide gels as a function of repeat number.
The ratio between the relative mobility in native polyacrylamide gels and the mobility 
in agarose gels (b p p0|yacry|am ide/bPagarose)is plotted against the repeat number of 
the PCR products included in this study. The graph shows a linear relationship 
(R2=0.9864), indicating that the increase in the electrophoretic mobility through non
denaturing polyacrylamide gels increases as the CAG-CTG repeat tract lengthens.
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Percentage of B-DNA conformation as a function of repeat length.
The percentage of B-DNA detected in a non-denaturing polyacrylamide gel was 
estimated for each PCR product by densitometic analysis, and plotted as a  function 
of the CAG*CTG repeat number. The graph reveals that the percentage of duplex 
B-DNA decreases as the trinucleotide repeat gets longer, suggesting a parallel 
increase in the propensity to form alternative S-DNA structures.
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dependent on the repeat tract length, and may be associated with the enhanced flexibility of 

trinucleotide repeat tracts (Chastain and Sinden, 1998).

The additional lower mobility bands defined electrophoretic patterns that were similar for 

all triplet repeat lengths analysed. The slowly migrating products fell into two distinct populations 

with apparent size ratios (bpPo]yacryiamide/bpagarose) of ~l-5 and -2.5 (Table 4.1). It is noteworthy that 

the shortest PCR product carrying only five CAG*CTG repeats did not give rise to the slowest 

mobility band (R=-2.5), indicating that the corresponding alternative structure cannot be formed 

with such a low repeat number (Figure 4.2 and Table 4.1). Similar ratios of 1.25 and 2.0 have been 

previously reported in a study performed with plasmid DNA carrying cloned CAG'CTG repeats 

derived from the DM1 locus (Pearson et al., 1998b). The differences between the ratios reported 

here, and the ratios described by other authors, may be attributed to the mobility dependence on the 

length and nature of DNA sequences flanking the triplet repeat (see below).

Table 4.1. Relative mobilities of CAG'CTG-containing PCR products through native 
polyacrylamide gels.
The table displays the relative mobility of each band detected for each PCR 
product by native PAGE (bppoiy0), and the ratio between the relative mobility 
through polyacrylamide and agarose gels (bpPoiy/bpagarose)-

5 CAG*CTG 22 CAG*CTG 46 CAG*CTG 56 CAG«CTG 200 CAG*CTG

Band bppoly bppoly/
bpagaroM

bPpoly bppoly/
bpagarose

bppoly bppoly/
bpagarosa

bppoly bPpoly/
bpagarose

bppoly bppoly/
bpagarose

1 214 0.95 260 0.94 315 0.90 346 0.91 633 0.78
2 297 1.31 373 1.35 465 1.33 478 1.26 1048 1.29
3 352 1.56 403 1.45 534 1.53 517 1.37
4 447 1.62 602 1.72 572 1.51
5 494 1.78 837 2.40 639 1.68
6 640 2.31 894 2.36
7 708 2.56

a poly, polyacrylamide

Assuming that the fast mobility band represents linear duplex B-DNA (Pearson and 

Sinden, 1996; Pearson et al., 1998b), a densitometric analysis was performed in an attempt to 

quantify the propensity of different repeat sizes to adopt alternative S-DNA. The relative intensity 

of the highest mobility band was determined and plotted as a function of the repeat number (Figure

4.4). The graph shows that the proportion of linear duplex DNA decreases as the repeat gets longer, 

reaching a plateau around 50 CAG*CTG repeat units. This observation indicates that lengthening 

of the repeat tract enhances the propensity to form S-DNA structures, as described in earlier reports 

(Pearson et al., 1998b).

It might be speculated that, for the same repeat number, the tendency for out-of-register 

reannealing and S-DNA formation, increases with the size of non-repetitive flanking DNA 

sequences. Longer non-repetitive DNA sequences, flanking the CAG'CTG repeat, would reanneal 

more readily than shorter flanking sequences, creating greater opportunities for the trinucleotide 

repetitive tract to reanneal out-of-register, forming intrastrand loops and/or hairpins. For the same
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repeat number, longer non-repetitive flanking sequences would therefore be associated with lower 

percentages of conventional homoduplex B-DNA, and a greater extent of S-DNA formation. 

Indeed, for long CAG*CTG repeat tracts (>50 units), whereas a flanking region of 211 bp is 

associated with -15%  of B-DNA (Figure 4.4), a flanking sequence of 113 bp is associated with 

-30%  of B-DNA (Pearson et al., 1998b). Similarly, different sized non-repetitive flanking DNA 

sequences, may explain the greater bppoiyacryiamide/bpagarose ratios determined in this study, relative to 

the lower ratios reported elsewhere (Pearson et al., 1998b), again suggesting that longer flanking 

DNA sequences may facilitate the formation of alternative structures upon reannealing.

4.2.1.2. Confirmation of S-DNA folding within CAG'CTG sequences

The similarity between the electrophoretic profiles observed when PCR products were 

electrophoresed in native polyacrylamide gels and previous reports (Pearson and Sinden, 1996; 

Pearson et al., 1998b), was considered as a strong indication that slipped-stranded non-B-DNA 

structures were already present in the PCR products generated under standard conditions. Further 

experimental support was obtained by melting and reannealing DNA purified from single bands in 

non-denaturing polyacrylamide gels.

Individual bands (Figure 4.5, black arrowheads) were isolated from two PCR products 

containing either 22 or 56 CAG'CTG repeats. These particular PCR products were selected to 

perform this experiment, since they gave rise to discrete sharp individual bands, easily purified 

from the gel (Figure 4.5, black arrowheads). DNA was eluted from the gel fragments by simple 

diffusion and then ethanol precipitated, with the addition of linear polyacrylamide as a DNA carrier 

(Section 2.5.7.3). For each DNA sample derived from a single band, two treatments were 

performed. The denaturation procedure consisted of heating the DNA at 100°C for five minutes in 

the presence of 40% (v/v) formamide, followed by rapid chilling on ice. The reannealing protocol 

consisted of a first step of DNA melting, performed at 100°C for five minutes, followed by slow 

cooling to room temperature, over a period of at least three hours.

The samples were analysed by PAGE (Figure 4.5). All gel-purified DNA samples migrated 

as single bands (Figure 4.5, lanes C), confirming their high stability throughout the elution and 

precipitation procedures. DNA melting in the presence of formamide resulted in the detection of a 

couple of very low mobility bands (Figure 4.5, lanes D). These bands are believed to correspond to 

slowly migrating linear single-stranded DNA. The full set of anomalously migrating bands, 

identical to that observed for the original PCR product, was restored following the reannealing 

protocol (Figure 4.5, lanes R). The results were identical for both PCR products included in this 

study, independently of the number of repeats carried by the repetitive sequence.

The observation that the reannealing protocol resulted in a pattern of products that was 

very similar to that previously observed in the original PCR products, further confirmed that the 

slow migrating DNA species detected correspond to slipped-stranded DNA (S-DNA).
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Figure 4.5. Reannealing experiments on PCR products containing CAG*CTG repeats.
PCR products containing either (A) 22 or (B) 56 CAG*CTG repeats were amplified 
with oligonucleotide primers DM-A and DM-DR. DNA was extracted from single 
bands following native PAGE (Bands 1-4, indicated by black arrowheads,^) and re- 
electrophoresed (lanes C). Duplex DNA samples were melted at 100°C in the 
presence of 40% (v/v) formamide, and originated a couple of presumed single
stranded DNA bands of low mobility (lanes D). Alternatively, DNA samples were 
denaturated at 100°C, and subsequently reannealed by slow decrease of temperature 
for over 3 hours (lanes R), reoriginating a complex pattern of bands, previously 
observed in the originial PCR product. The molecular size markers (M) are shown 
on the left.
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4.2.1.3. G eneration of alternative s tru c tu re s  by PCR am plification

If the additional bands observed do represent S-D N A  conformations adopted by CAG'CTG  

repetitive structures, these results indicate that non-B-DNA structures are generated under standard 

PCR cycling conditions, since they were previously detected in the original am plified products 

(Figure 4 .2). To confirm  that PCR am plification is sufficient to produce alternative D N A  

structures, gel-purified D N A  samples derived from single bands (Figure 4.6, black arrowheads) and 

carrying 22 CAG*CTG repeats, were used as template in a second amplification reaction with the 

same oligonucleotide primers. The D N A  samples were analysed by native PAGE before and after 

the second round o f PCR am plification (Figure 4.6). The products generated by the second  

am plification reaction migrated as a com plex pattern o f  heterogeneous bands, exhibiting  

electrophoretic profiles very similar to those detected in the original PCR product, as w ell as 

following the reannealing protocol, described in Section 4.2.1.2.

In summary, the amplification o f D N A  samples, derived from the human DM1 locus by 

standard PCR techniques generates a com plex mixture o f alternative D N A  conformations, which 

are interconvertible follow ing a reannealing protocol, and most likely to be slipped-stranded D N A  

structures.

Band 1 Band 2 Band 3 Band 4 

M C T P T P T P T P M

1500 bp —

tfm m ip

*
400 bp mmi 

200 bp —

Figure 4.6. Generation of alternative DNA structures by PCR amplification.
DNA samples, containing 22 CAG*CTG repeat units, were eluted from four bands 
(Bands 1-4, indicated by black arrowheads, ) cut out from a native 8% (w/v) 
polyacrylamide gel and used as templates for a second PCR amplification. Each 
DNA sample was re-electrophoresed before (T) and after the second PCR amplification 
(P). The amplification resulted in a complex pattern of bands very similar to that 
previously observed in the original PCR product (C) from which the bands were 
eluted. The molecular size markers (M) are shown on the left.
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4.2.2. Testing RecA activity on CAG*CTG repetitive sequences

In vitro studies indicate that in the presence of ATP, RecA protein promotes the strand 

exchange of single-strand DNA fragments with homologous duplex DNA. The reaction has three 

distinct steps: (a) RecA protein polymerises on the single-stranded DNA, (b) the nucleoprotein 

filament binds the duplex DNA and searches for a homologous region, (c) the strands are 

exchanged (Radding, 1991). More interestingly, RecA has been reported to recombine short stable 

hairpin substrates sharing homologous stems through a four-strand exchange model that requires 

partial unwinding of DNA hairpins (Gamper et al., 2000). Furthermore, RecA is also able to 

catalyse the realignment of stochastically paired suboptimal frames in order to maximise the 

aligned register. RecA binds a single-stranded oligonucleotide and mediates such realignments of 

suboptimally paired frames in a slow, time- and ATP-dependent manner, probably by sliding the 

paired strand across repetitive DNA sequences (Sen et al., 2000). RecA was consequently 

considered as a good candidate to bind and mediate triplet repeat metabolism, therefore, its ability 

to interact with CAG*CTG sequences, to promote strand exchange and/or to interconvert 

alternative slipped structures was assessed in vitro.

4.2.2.1. RecA activity assay on CAG*CTG repetitive tracts

Making use of the PCR products previously generated, a simple RecA activity assay 

(Bennett and Holloman, 2001) was carried out on a PCR product containing 22 CAG'CTG repeat 

units, in order to test the ability of the protein to catalyse strand exchange reactions, and 

interconvert alternative S-DNA structures formed by triplet repeats. The assay was based on the 

principle that RecA-catalysed interconversion between structural isomers would alter the 

electrophoretic profile of the reaction product in a native polyacrylamide gel. Briefly, duplex DNA 

molecules were incubated in the presence of a melted single-stranded (CTG)i2 oligonucleotide, 

RecA and ATP for increasing periods of time (up to 16 hours; for further details see legend of 

Figure 4.7). Reactions were stopped at different time points by the addition of EDTA, which 

caused depletion of free magnesium ions in solution, an essential co-factor for RecA catalysis. 

Analysis of the reaction products by native PAGE and subsequent Southern blot hybridisation, 

failed to reveal differential DNA electrophoretic profiles at any time point, even after 16 hours of 

incubation with RecA in the presence of ATP. All individual bands, corresponding to a 

heterogeneous population of structural isomers present in the original substrate, remained 

unaffected throughout the reaction (Figure 4.7, lane S). Furthermore, with the exception of subtle 

and presumably not significant changes in the relative mobility of the fast migrating band after 

120-minute and overnight incubations, no DNA species showed major and consistent gel 

retardation or band shift, indicating that RecA failed to bind duplex alternative DNA structures 

formed within a CAG'CTG repetitive sequence containing 22 repeat units. In summary, RecA 

appears to be unable to interconvert alternative S-DNA structures adopted in vitro by CAG*CTG 

PCR products, containing as few as 22 repeats, at least under the conditions tested in this assay.
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Figure 4.7. Assay for RecA activity on CAG'CTG repetitive sequences.
Reactions (20 pi) containing 16 pM single-stranded (CTG)i 2 oligonucleotide (previously 
melted at 100°C for 5 minutes and rapidly cooled down on ice) in 30 mM tris-acetate, 
pH 8.0, 1 mM magnesium acetate, 2 mM DTT, 100 pg/ml BSA, 1.3 mM ATP, 20 mM 
phosphocreatine, 10 units/ml phosphocreatine kinase and 1 pM RecA protein were 
preincubated at 37°C. After 10 minutes, magnesium acetate was increased to 13 
mM and duplex PCR product containing 22 CAG*CTG repeats (amplified with DM- 
A and DM-DR) was added to a final concentration of 8 pM. Thus, the molar ratio of 
single-stranded DNA to duplex DNA was 2:1. After further incubation up to a maximum 
of 16 hours, reactions were quenched by the addition of 15 mM EDTA and rapidly 
frozen on a mixture of dry ice and absolute ethanol. Reaction products, collected 
at the time points indicated in the figure, were electrophoresed on a native 8% (w/v) 
polyacrylamide gel, transferred onto a nylon membrane by Southern “squash” blot 
and detected by hybridisation with a radio-labelled DM56 probe. Two additional 
controls were included, the original duplex DNA substrate (S), and a reaction mixture 
incubated for 16 hours in the absence of RecA (N). No obvious differences in the 
electrophoretic profile were observed at any time point. The molecular weight markers 
are indicated on the left.

It is important to be aware o f the lack o f a positive control for RecA activity in this study. 

Despite the use o f standard reaction conditions, the possibility remains that RecA was not fully  

functional and therefore unable to catalyse the strand exchange reaction. In addition, the assay was 

designed to assess the effect o f R ecA  activity on a possib le dynam ic equilibrium between  

alternative D N A  structures formed by CAG 'CTG -containing PCR products. This hypothetical 

equilibrium might have been disturbed by RecA, but given its dynamic nature, the outcome could 

not be detected by our assay. Ideally, RecA activity should be individually tested on D N A  species 

purified from single bands.

In conclusion, RecA  strand exchange activity was not detected on short trinucleotide 

repetitive sequences. However, given the highly preliminary nature and the limitations of the assay, 

the results presented must be considered inconclusive. Rather than being performed on a mixture o f  

putative alternative D N A  conform ations, the analysis should be extended to individual D N A  

structural isomers, and possibly to longer repeat tracts.
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4.2.3. Novobiocin as a genotoxic modifier of trinucleotide repeat
instability: a possible role for topoisomerase II in triplet repeat 
metabolism

Some of the physical properties of CAG'CTG repeats are mediated by topological features 

associated with their increased flexibility (Chastain and Sinden, 1998). Being more flexible and 

more highly writhed than random B-DNA, CAG’CTG repeats are expected to act as sinks for the 

accumulation of super-helical density (Bacolla et al., 1997). Statistical mechanical calculations 

revealed that free energies of supercoiling are lower for trinucleotide repeats than for B-DNA 

(Gellibolian et a l,  1997), which led to the suggestion that trinucleotide repeat instability might be 

mediated by the accumulation of supercoiling within the repeats. Given the biophysical properties 

of expanded repeats and their propensity to adopt unusual non-B-DNA structures in vitro, it may be 

hypothesised that proteins involved in resolving complex DNA structures might be important in the 

mutational process. The formation of alternative DNA conformations, such as S-DNA, in duplex 

chromosomal DNA would be predicted to alter the normal displacement of superhelical tension. It 

is not unreasonable to imagine that proteins that regulate DNA superhelical tension may play a role 

in trinucleotide repeat metabolism.

The various problems of disentangling DNA strands or duplexes in a cell are all rooted in 

the double-helical structure of DNA. Torsional constraints are introduced during replication and 

transcription, due to underwinding and overwinding of the helices, causing a dramatic alteration in 

the local superhelical densities of DNA (Wang, 1996). DNA topoisomerases solve the topological 

problem s associated with DNA replication, transcription, recom bination and chromatin 

remodelling by either passing one strand of the DNA through a transient break in the opposing 

strand (type I subfamily), or by passing a region of duplex from the same or a different molecule 

through a double-stranded gap generated in a DNA molecule (type II subfamily). The primary 

cellular functions of these enzymes include their roles in replication, transcription, chromosome 

condensation and maintenance of genome stability (Nitiss, 1998; Wang, 1996). Eukaryotic 

topoisomerase type I plays a major role in supporting fork movement during replication and in 

relaxing transcription-related supercoils, and is indispensable during development and probably 

also during cell division (Champoux, 2001; Wang, 1996). Topoisomerase II is responsible for 

unlinking intertwined daughter complexes during DNA replication, it also contributes to DNA 

relaxation during transcription and it is involved in the final stage of chromosome condensation, 

and probably in certain phases of decondensation (Champoux, 2001; Wang, 1996). Both types of 

DNA topoisomerases may also play a role as suppressors of mitotic recombination (Wang, 1996). 

In addition, these enzymes adjust the steady-state level of DNA supercoiling, both to facilitate 

protein interactions with the DNA and to prevent excessive supercoiling that might be deleterious 

for the cell (Berger, 1998; Champoux, 2001; Wang, 1996). Interestingly, topoisomerase II is 

capable of recognising and interacting with secondary structures within nucleic acids, such as 

hairpins (Froelich-Ammon et a l ,  1994), and it preferentially binds to DNA containing mismatches 

(Bigioni et a l, 1996). This phenomenon might actually be further amplified through the formation
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of molecular complexes between topoisomerases and proteins involved in DNA mismatch repair 

(Larsen and Skladanowski, 1998). As a result, it appears logical to speculate that topoisomerase II 

represents a plausible candidate protein in the mutational pathway of trinucleotide repeats.

A wide variety of topoisomerase-targeted drugs have been identified. “Topoisomerase 

poisons” generate cytotoxic lesions by trapping the enzymes in covalent complexes on the DNA 

and thereby stabilising covalent complexes that are normally transient intermediates in the catalytic 

cycle of the enzyme (Burden and Osheroff, 1998; Capranico and Binaschi, 1998), thus generating 

double strand breaks that may lead to cell death (Kaufmann, 1998). These topoisomerase poisons 

include both antimicrobials (Hooper, 1998), but also anticancer chemotherapeutics, some of which 

are currently in widespread clinical use (Burden and Osheroff, 1998). Topoisomerase “catalytic 

inhibitors”, unlike topoisomerase poisons, are thought to inhibit specific steps of the catalytic cycle, 

without stabilising covalent intermediates (Andoh and Ishida, 1998). Novobiocin is a non-specific 

catalytic inhibitor of the ATPase activity of type II DNA topoisomerases (Lewis et al., 1996). The 

accumulation of positive supercoils in a plasmid was observed when an E. coli strain, permeable to 

novobiocin, was treated with the drug (Lockshon and Morris, 1983). The effect of novobiocin on 

trinucleotide repeat dynamics was consequently tested on Dmt-D mouse cells.

4.2.3.1. D2763K cell line

Transgenic Dmt-'D  mouse kidney cells (line D2763K, Table 3.2) were treated with 

novobiocin, a potent inhibitor of DNA topoisomerase type II. Six replicate cultures were exposed 

to 60 pM of novobiocin for 73 days (60 population doublings) maintained in parallel with six 

untreated controls (77 days, 63 population doublings). At the end of the exposure period the degree 

of repeat length variation was assessed in all cultures using sensitive SP-PCR procedures and 

compared to that observed in the starting culture. High input DNA analyses revealed that during the 

experimental period the cell line had split into two subpopulations, here described as “upper” (U, 

^300 repeats) and “lower” (L, <300 repeats). More interestingly a decreased rate of expansion was 

observed in novobiocin treated cells, not only at the end of the treatment, but also at an 

intermediate point, when novobiocin treated and control cells had undergone 36 and 39 population 

doublings, corresponding to 39 and 47 days in culture, respectively (Figures 4.8.A and 4.8.B).

Single molecule analysis was performed, and 50-100 transgene molecules collected at the 

end of the treatment were accurately sized for each individual subpopulation (L or U) of cells, in 

order to quantify the effect of novobiocin on the repeat dynamics in cultured mouse cells.4 Median 

rates of expansion, corrected for time and population doublings, were calculated for each 

subpopulation in treated and control cultures, and compared using the two-tailed Mann-Whitney U 

test (Figure 4.8.C). Analysis of the control cultures revealed that in population L the repeat had 

expanded only slowly (median gain = 0.043 repeats per day); in population U however, the repeat 

expanded rapidly (median gain = 1.78 repeats per day). Both populations of cells were also

4 Some of the single molecule SP-PCR amplifications were performed by Sanam Mustafa, a summer student 
working under my supervision.
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Figure 4.8. Novobiocin treatment and expanded CAG*CTG repeat dynamics in D2763K 
cells.
The autoradiographs shown are representative SP-PCR analyses of DNA samples 
extracted from six replicate D2763K cultures treated with 60 pM novobiocin. Control 
cultures maintained for approximately the same amount of time and the progenitor 
culture (P) from which all cells were derived at day zero are also shown. Fresh media 
with or without novobiocin was added to the cultures every 2-3 days and the cells 
were passaged weekly. Repeat size variability was monitored (A) at the end of the 
treatment (73 days of exposure to novobiocin, 77 days in culture for the controls) 
and (B) at an intermediate time point (47 days of exposure to novobiocin, 39 days 
in culture for the controls). Note that the D2763K cultures spontaneously split into 
two main populations of cells labelled “upper” (U) and “lower” (L). An average of five 
to 50 DNA molecules were amplified in the reactions shown.The scale on the left 
displays the molecular weight markers converted into CTG repeat numbers. (C) The 
boxplots show the degree of variation observed in both the U and L populations in 
treated and control cells at the end of the treatment. The top and bottom of the boxes 
correspond to the third (Q3) and first quartiles (Q1), respectively and the line across 
the box displays the median repeat number. The lines extending from the top and 
the bottom of the boxes, include values that fall inside the lower and upper limits: 
Q1-1.5(Q3-Q1) and Q3+1.5(Q3-Q1), respectively.
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observed in the treated cultures in similar proportions. Although most dramatic in population U, the 

rate of expansion in both populations of treated cells was significantly reduced (median gain = 1.65 

repeats per day for population U, p=0.0082; and -0.017 repeats per day for population L, p=0.0131, 

two tailed Mann-Whitney U  test). The differences between treated and control cultures were also 

found to be significant when the median repeat gain per population doubling was compared 

between cultures. In controls, the median repeat expansion was 0.052 repeats per population 

doubling for population L and 2.17 for population U, whereas novobiocin treated cells showed 

median repeat gains of -0.017 per population doubling for population L, and 2.00 for population U 

(p=0.0131 for populations L and p=0.0082 for population U, two-tailed Mann-Whitney U test). 

These data strongly suggested that inhibition of topoisomerase II resulted in a decrease in the rate 

of expansion, possibly mediated by alternative processing of mutation intermediates.

4.2.3.2. D2763KC2 cell line

Encouraged by these results we sought to determine if this effect could be replicated in 

other cell lines. However, rather than using the D2763K cell line with the two subpopulations, we 

used a cloned derivative in which the repeat expands rapidly with time (D2763Kc2, Figure 3.8). 

Furthermore, since the D2763Kc2 cell line was derived from a single cell by limiting dilution, it is 

expected to exhibit reduced genetic variability between individual cells when compared to the 

progenitor culture, which might have accumulated multiple genetic mutations prior to 

immortalisation, giving rise to a heterogeneous genetic background within the cell population.

D2763Kc2 cells were exposed to 60 pM of novobiocin for 99 days and 80 population 

doublings. Control replicates were grown for the same number of population doublings over a 

period of 97 days. Novobiocin revealed a minor effect on the growth rate of D2763Kc2 treated 

cells, causing a 6% decrease in the population doubling time. Previous studies indicated that cell 

proliferation rates were not the most critical factor underlying differences in expansion rates 

between cell lines (Chapter 3). Nevertheless, the median repeat change was corrected for both time 

in culture and number of population doublings and compared between controls and treated cells.

SP-PCR amplification of an average number of five to 30 molecules per reaction revealed 

that the transgenic repeat length continued to expand rapidly in the control cells, but failed to detect 

any major differences in the levels of triplet repeat instability between control and treated cells 

(Figure 4.9.A). Single molecule analyses allowed the quantification of the expansion rates in 

cultured cells (Figure 4.9.B) and confirmed that the transgenic repeat length expanded rapidly in 

the controls (median rate of expansion = 0.792 repeats per day after 97 days). As in the previous 

experiment, novobiocin treatment did result in a decrease in the median rate of expansion (median 

rate of expansion = 0.696 repeats per day), however the measured reduction was not statistically 

significant for the number of molecules individually sized (p= 0.5752, two-tailed Mann-Whitney U 

test).
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Figure 4.9. Novobiocin treatment and expanded CAG'CTG repeat dynamics in D2763Kc2 
ceils.
(A) The autoradiographs shown are representative SP-PCR analyses of DNA samples 
extracted from replicate D2763Kc2 cells cultured for 80 population doublings with 
60 pM novobiocin (99 days), control cultures maintained for 82 population doublings 
(97 days), and the progenitor culture from which all cells were derived at day zero. 
The D2763Kc2 cell line was cloned by limiting dilution from D2763K (see Figure 3.8) 
and the cells passaged and analysed as indicated in the legend to Figure 4.8. An 
average of five to 30 transgene molecules were amplified in independent reactions. 
The molecular weight markers were converted into CTG repeat number and shown 
on the right. (B) The boxplots show the degree of variation observed in treated and 
control cultures as described in Figure 4.8. Differences between median rates of 
expansion, corrected for time and population doublings, were not significantly different 
according to a two-tailed Mann-Whitney U test.
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4.2.3.3. D4132K cell line

Both D2763K and D2763Kc2 cell lines had already undergone a considerable number of 

population doublings prior to novobiocin treatment. When the treatment was initiated D2763K 

cells had been growing for 263 days (131 population doublings), while D2763Kc2 cells had been 

cultured for 186 days (45 population doublings) since the establishment of the original culture from 

the progenitor tissue. Given that trinucleotide repeat dynamics might be more faithfully replicated 

in cultured D m t-D mouse cells over the first passages (Chapter 3), the effect of novobiocin on 

repeat instability was tested on a third cell line, which had been growing in vitro for a shorter 

period of time, closely resembling a primary mouse cell culture, prior to spontaneous 

immortalisation. The D4132K cell line was established from a kidney tissue sample harvested from 

a six-month-old Dmt-D mouse, and cultured for 84 days and only 12 population doublings, prior to 

the starting of the novobiocin treatment. By this point D4132K cells already exhibited a constant 

growth rate, characterised by a population doubling time of 60 hours, considerably higher than 

those determined for both D2763K and D2763Kc2 cell lines, consistent with the lack of 

spontaneous immortalisation. Six replicates were treated with 60 pM of novobiocin for 86 days (34 

population doublings) and the repeat dynamics assessed as described.

As observed with D2763K cells, SP-PCR analyses of transgene molecules extracted from 

D4132K cells also revealed that the cell line had split into two subpopulations: “lower” population 

(L, <170 repeats) and “upper” population (U, ^170 repeats). The establishment of the two distinct 

populations happened early during the establishment of the culture, since a bimodal profile of allele 

sizes was already detected in the progenitor culture (Figure 4.10.A). The results also show that the 

transgenic repeats did not expand rapidly in this cell line, neither in the control cells nor in the 

novobiocin treated cultures. In fact, the longer alleles appear to have contracted during the course 

of this experiment.

Single molecule SP-PCR analyses were carried out on a low number of “lower” (L) and 

“upper” (U) alleles (ten to 20 molecules), in order to quantify the median repeat change rate 

(Figure 4.10.B). Overall, when the two subpopulations were not considered individually, both 

control and treated cultures exhibited modest levels of repeat contraction during the course of this 

experiment, with median repeat changes of -0.0279 and -0.0343 repeats per day, respectively. As a 

result, this cell line may not be a powerful tool to test the stabilising effect of novobiocin on 

expanded trinucleotide repetitive tracts. When lower alleles were considered individually, a median 

expansion of 0.0626 repeats per day was determined for control cells, whereas the same alleles 

only gained 0.0347 repeats per day in novobiocin treated cultures. Nevertheless, the difference 

between the rates of expansion was not statistically significant (p=0.8102 for lower alleles, two- 

tailed Mann-Whitney U test). Despite their larger size, longer alleles underwent overall contraction 

in both cultures, exhibiting median repeat number changes of -0.0803 and -0.0880 repeats per day 

in control and novobiocin treated cells, respectively. Yet again, the difference was not statistically 

significant (p=0.6889 for upper alleles, two-tailed Mann-Whitney U  test). Novobiocin might have
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Figure 4.10. Novobiocin treatm ent and expanded CAG*CTG repeat dynamics in D4132K 
cells.
(A) The autoradiographs show representative SP-PCR amplifications of DNA samples 
extracted from replicate D4132K cell cultures established from a kidney tissue sample 
harvested from a six-month-old Dmt-D mouse. Treated cells were cultured in the 
presence of 60 pM novobiocin for 86 days (34 population doublings). Control cells 
were grown for the same period of time and population doublings in the absence of 
the drug. The cells were passaged and analysed as indicated in the legend to Figure 
4.8. Two main subpopulations of alleles were detected in culture and named “lower” 
(L) and “upper” (U) as previously. An average of ten to 20 molecules were amplified 
in each reaction. The molecular weight markers converted into CTG repeat numbers 
are displayed on the left. (B) The boxplots show the degree of variation observed 
in treated and control cultures as described in Figure 4.8. Median rates of expansion 
were compared between treated and control cultures and found not to be significantly 
different.
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restricted the expansion-biased repeat instability, but the differences were too subtle to be 

statistically significant, at least for the low number of molecules individually sized.

In summary, whereas topoisomerase type II inhibition by novobiocin showed a statistically 

significant stabilising effect on the trinucleotide repeats dynamics in D2763K cells, the results 

obtained with two additional cell lines may suggest a similar but extremely subtle effect, yet 

lacking statistical significance. A higher number of transgene molecules, collected from D2763Kc2 

and D4132K cells, should be individually sized by single molecule SP-PCR, in order to clarify 

these inconclusive results.

4.3. Discussion

The molecular mechanisms responsible for the genetic instability observed in triplet repeat 

disorders are likely to involve the unique structural properties associated with simple trinucleotide 

sequences, such as the formation of flexible hairpin structures, which may interfere with the 

activity of enzymes involved in DNA replication, transcription, repair and/or recombination. Both 

genetic and biochemical data suggest that trinucleotide repeat instability is a replication/repair error 

that is dependent on improper DNA secondary structure formation at the repeating region of the 

affected gene (McMurray, 1999; Richards and Sutherland, 1994; Wells, 1996). The formation of 

DNA structures such as hairpins or slipped-stranded structures might therefore be responsible for 

the unusual biology associated with trinucleotide repeats.

Alternative non-B-DNA conformations, presumably S-DNA structures, were generated by 

standard PCR amplification of human DNA samples. The PCR products migrated in native 

polyacrylamide gels as a broad distribution of distinct products ranging up to more than twice their 

actual size. The reduced gel mobility of the additional bands observed is consistent with that 

expected for DNA containing bends introduced from the three- and four-way junctions generated 

by the looped-out strands (Pearson and Sinden, 1998b). Mimicking single-stranded DNA 

reannealing in vitro, by denaturing and renaturing DNA sequences, presumably with equal number 

of repeats, confirmed that the DNA species detected in native polyacrylamide gels consisted of 

stable alternative DNA conformations, formed within the CAG'CTG tracts, previously described as 

slipped-stranded structures, S-DNA. (Pearson and Sinden, 1996). However, it must be also 

considered that DNA polymerase slippage might have occurred during PCR amplification, 

originating heteroduplex double-stranded DNA products. Therefore, at least some of the DNA 

species detected by native PAGE may indeed correspond to SI-DNA structures, formed by the 

reannealing of single-stranded trinucleotide sequences with different repeat numbers (Pearson et 

al., 1997).

The very nature of the repeating units, which can form multiple out-of-register mispairings, 

involving different lengths of loop-outs at multiple locations throughout the repeat tract, leads to 

the generation of a high degree of structural variability. The complex pattern of bands observed for 

each PCR product is believed to reflect multiple structural polymorphisms within a run of triplet
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repeats. The complexity of the S-DNA populations, as well as the propensity for folding into S- 

DNA structures was shown to increase with increasing length of the repeat tract, corroborating the 

slipped nature of the DNA structures formed by CAG'CTG-containing PCR products. Previous 

electron microscopy analyses (Pearson et al., 1998b) confirmed that S-DNA secondary structures 

occur at random locations throughout the repeat tract, and consist of a heterogeneous population of 

products. Nevertheless, the various structural isomers detected did not result in an evenly 

distributed smear of products: certain structural variants were favourable, resulting in major 

alternative structures observed as major bands, as previously reported (Pearson and Sinden, 1996; 

Pearson et al., 1998b).

Interestingly, short double-stranded repeat sequences, containing repeat lengths that are not 

associated with disease (5 and 22 CAG'CTG repeat units), also exhibited the potential to generate 

stable alternative structures in vitro. The ability for S-DNA formation per se does not distinguish 

long unstable repeats from short stable repeats. Therefore, S-DNA formation does not entirely 

explain why long repeats, but not short repeats, expand. Longer disease-associated repeats, 

however, displayed a higher propensity to form S-DNA structures, as estimated by the percentage 

of linear B-DNA detected by native PAGE. Furthermore, it was previously speculated that despite 

their ability to form stable non-B-DNA structures, short repeats are not prone to expansion given 

the short lifetime of the structures formed, in contrast with long repeat stretches, which form 

alternative structures with notably longer lifetimes (Gacy and McMurray, 1998). Therefore, the 

ability to form DNA secondary structures might be necessary, but not sufficient, to explain the 

molecular mechanisms underlying trinucleotide repeat expansion in human disease. Quantitative 

differences in the propensity for alternative folding and/or in the kinetic properties may explain 

why expansion occurs with higher frequency at long repeats, but not at short repeats.

Alternative stable DNA loops containing triplet repeats are inefficiently repaired by 

FENl/rad27 both in vitro (Henricksen et al., 2000; Spiro et al., 1999) and during yeast meiotic 

recombination (Moore et al., 1999). In contrast, DNA loops containing AAG'CTT and CAA*TTG, 

which are not likely to be capable of hairpin formation, are readily repaired in vivo (Moore et al.,

1999). One can hypothesise that alternative DNA structures of sufficient length and threshold 

energy may exist long enough in the cell to allow protein recognition and binding, promoting the 

assembly of high-order molecular complexes, which will not only interfere with gene function, but 

also trap the secondary structure until repair occurs. Stable secondary structures might therefore be 

viewed as substrates for the DNA repair machinery, which is most certainly involved in repeat 

instability (Kovtun and McMurray, 2001; Manley et al., 1999b; Pearson et al., 1997; van Den 

Broek et al., 2002; Chapter 8). Considered together, these observations make error-prone DNA 

repair, mediated by alternative structures and mismatch repair proteins, a very attractive model for 

triplet repeat instability. Rather than preventing recognition by repair enzymes and totally escape 

repair, alternative DNA structures may instead be “mis-repaired”, causing repeat expansion. In this 

view, slipped structures can be considered a logical candidate for mediating trinucleotide 

instability, and in fact there may be a number of ways by which slipped DNA can form in a 

mammalian cell. Any cellular process that requires transient single-stranded DNA (e.g. replication,
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transcription, recombination or even repair) is a potential source of S-DNA structures, which may 

trigger a complex cascade that ends in repeat expansion. Theoretically, simple DNA breathing, 

could also initiate trinucleotide repeat mutation by disrupting hydrogen bonds between both 

strands.

Given the remarkable stability of slipped structures, one may speculate that a cellular 

protein is required to drive branch migration and facilitate the removal of slipped-stranded 

structures or interconversion between conformational isomers. We tested the ability of RecA to 

catalyse such a reaction, and our data reveals that this protein fails to catalyse the interconversion 

between structural isomers under the experimental conditions tested. Moreover, clear evidence of 

gel retardation was not detected. Since suboptimally paired frames, such as S-DNA structures, are 

known to retain higher levels of RecA than fully maximised products (Sen et al., 2000), detection 

of band shifts might have been anticipated for low mobility DNA species, as a result of RecA 

binding to non-B-DNA structures containing hairpins and loop-outs. Several reasons may account 

for the lack of enzymatic binding and/or activity of RecA on duplex CAG'CTG trinucleotide 

repeats. The enzyme may be unable to interact with the (CTG)i2 oligonucleotide in the pre-synaptic 

step of the reaction, during which the protein binds and polymerises onto the single-stranded DNA 

prior to strand exchange. It has been reported that the folding of single-stranded DNA into 

secondary structure within self-hybridised sequences and base stacking causes a strong barrier for 

RecA binding (Bar-Ziv and Libchaber, 2001). Despite the melting step carried out prior to the 

reaction, the stable alternative structure adopted by short single-stranded CTG repeats (Gacy et al., 

1995; Mitas, 1997), may create a strong obstacle for RecA polymerisation in vitro. Alternatively, as 

observed with GT dinucleotide repeats (Dutreix, 1997), RecA may bind to single-stranded CTG 

sequences with great affinity, but the repetitive sequences may strongly inhibit the formation of 

stable synapses, which requires the alignment of homologous sequences between different 

molecules, and the subsequent strand exchange step. Assuming that the reaction could proceed in 

the absence of a single-stranded (CTG)i2 sequence through a four-strand exchange mechanism, 

previously described for a 25-nucleotide substrate (Gamper et al., 2000), one may hypothesise that 

this mechanism may not take place with a 277 bp long double-stranded DNA target, such as that 

used in the assay described in Section 4.2.2.1. The duplexes may be held so tightly that the 

scanning required for hom ologous alignment might be extremely slow (Zaitsev and 

Kowalczykowski, 1999). Since branch migration of slipped-out trinucleotide repeats would require 

not only the breaking and reforming of base pairs at the junction point, but also at every base pair 

within the slipped-out hairpin, it may be severely impeded by intrastrand base pairs within the 

loop-outs. Therefore, the activation energy for breakage of long intrastrand duplex regions may be 

so high, that complete renaturation will be extremely time-consuming. Regardless of the reason 

underlying the lack of RecA-catalysed interconversion between structural isomers, it is noteworthy 

that an evident role for the RecA recombination system in instability was not detected on both long 

and short CAG'CTG repetitive tracts cloned into E. coli (Jaworski et al., 1995; Schmidt et al., 

2000). More recently, it has been reported that intramolecular RecA-independent recombination
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can still occur between long CAG'CTG repetitive tracts cloned into recA' E. coli strains, although 

at lower levels than in RecA-proficient strains (Napierala et al., 2002).

Inhibition of topoisomerase type II in Dmt-D mouse kidney cells by novobiocin, resulted in 

a highly significant decrease in the levels of expansion-biased trinucleotide repeat instability in one 

particular cell line. Since topoisomerase enzymes affect the topology and organisation of 

intracellular DNA, the primary effects of their inactivation are likely to generate far-reaching 

ripples. Therefore it is not easy to pinpoint the specific molecular mechanism by which 

topoisomerase II inhibition by novobiocin affects the dynamics of trinucleotide repeats.

The fundamental need for topoisomerases in DNA metabolism derives from the double 

helical structure of genomic DNA. Not only does DNA structure lead to topological predicaments 

that must be solved by topoisomerases, but also the topological state of the DNA itself must be 

fine-tuned to optimise DNA function. As a consequence, these enzymes have been found to 

participate in nearly all cellular transactions of DNA (Wang, 1996). Topoisomerase II, in 

particular, unknots and untangles DNA by passing an individual intact helix through a transient 

double-stranded break, generated in a separate helix, thereby resolving intramolecular DNA knots 

as well as intermolecular tangles (Burden and Osheroff, 1998; Wang, 1996). Eukaryotic type II 

DNA topoisomerases were reported to interact preferentially with curved DNA and with DNA 

crossovers, which may possibly account for the preferential binding of eukaryotic type II enzymes 

to positively or negatively supercoiled DNA (Wang, 1996). Therefore it might be possible that 

topoisomerase II binds to trinucleotide repetitive sequences, as they accumulate greater levels of 

supercoiled DNA (Bacolla et al., 1997; Gellibolian et al., 1997), in order to resolve complex 

supercoiled motifs, prevent excessive supercoiling of intracellular DNA and to allow protein 

access. The failure to prevent excessive supercoiling may affect DNA structure and its interactions 

with other molecules (Nitiss, 1998). Consequently, excessive levels of supercoiling, induced by 

topoisomerase II inhibition, may hinder DNA recognition by proteins involved in repeat 

metabolism, particularly in repeat dynamics, resulting in decreased rates of expansion. In 

conformity with this hypothesis, topoisomerase was unambiguously identified as a component of a 

chromatin-remodelling factor, which uses energy to increase the general accessibility of DNA in 

chromatin (V arga-W eisz et al., 1997). It is reasonable to imagine that the components of the 

mismatch repair system, may not be able to interact with inaccessible supercoiled trinucleotide 

repeat sequences in the absence of topoisomerase activity, which would result in decreased levels 

of somatic mosaicism (Manley et al., 1999b; van Den Broek et a l ,  2002; Chapter 8). Alternatively, 

S-DNA formation may cause superhelical tension displacement and accumulation of supercoiling 

with the DNA sequences flanking loop-outs and hairpin-like structures, through a topoisomerase II- 

dependent manner. Impaired DNA topoisomerase II activity may, therefore, inhibit S-DNA 

formation, and consequently repeat expansion.

The lack of a significant effect of novobiocin on the two other cell lines studied is also 

intriguing, and may reflect different sensitivities to the drug developed by independent cell lines. 

The mechanisms of natural and acquired resistance to topoisomerase inhibitors may rely on 

intrinsic differences between the three cell lines. The classical multidrug resistance phenotype is
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associated with increased expression or activity of a transmembrane glycoprotein named Pgp, a 

product of the multidrug resistant 1 (MDR1) gene (Gottesman and Pastan, 1988). Interestingly, Pgp 

is highly expressed in the kidney (Fojo et al., 1987), and may therefore justify the low sensitivity to 

novobiocin shown by D2763Kc2 and D4132K cells. In contrast, decreased M D R 1  

expression/activity levels in D2763K cells might explain the greater effect of novobiocin on the 

dynamics of the transgenic repeat in this line. Resistance to novobiocin may also occur by any 

mechanism that tends to reduce the interaction between the drug and its target enzyme, such as the 

appearance of a mutant topoisomerase II enzyme in cultured cells (Larsen and Skladanowski, 

1998), which would account for the decreased effect of novobiocin in the dynamics of trinucleotide 

repeats in D2763Kc2 and D4132K cells. Plus, slow growing cell populations with a low S phase 

fraction show increased resistance to topoisomerase inhibitors (Larsen and Skladanowski, 1998), 

which would explain the lack of a significant stabilising effect on the transgenic repeat carried by 

the slow proliferating D4132K cells, which divide twice as slow as the other cell lines studied. 

Alternatively, the subtle effect of novobiocin on the triplet repeat dynamics in D4132K cells may 

be explained by the intrinsic dynamics of the transgene in this particular cell line. This culture 

failed to show a great degree of repeat expansion, in contrast to the other two ceil lines. In fact, at 

the end of the treatment, the median repeat sizes for both control and treated D4132K cells were 

lower than that observed for the progenitor culture. Expansion-biased repeat instability appears to 

be an essential requirement for a cell line to become a suitable tool in the search for genotoxic 

agents that may stabilise trinucleotide repetitive sequences. The intrinsic repeat dynamics of 

D4132K cells may therefore raise serious questions about the use of this cell line in this 

investigation. Nevertheless, this culture may be extremely useful in the identification of genotoxic 

factors that are able to destabilise trinucleotide repeats and induce somatic mosaicism. Finally, 

DNA repair activity levels may also be associated with resistance to topoisomerase inhibitors. 

Resistant cells lines developed in vitro are more likely to have attenuated checkpoints due to p53 

mutations (Ogretmen and Safa, 1997). Likewise, mutations in the mismatch repair genes result in 

the development of resistance to topoisomerase inhibitors (Fedier et al., 2001). Marked culture-to- 

culture heterogeneity in mismatch repair activities may result in different levels of sensitivity 

towards topoisomerase inhibitors displayed by distinct cells and therefore explain the differing 

results obtained with the three cell lines studied here. For that reason one must be aware that rather 

than a direct consequence of topoisomerase II inhibition, the decreased levels of expansion-biased 

repeat instability might have resulted from a selection for mutations in the DNA MMR genes. The 

accumulation of MMR-deficient cells in culture would consequently lead to a decrease in repeat 

instability, in agreement with the recently reported functions of mismatch repair genes as enhancers 

of somatic mosaicism in mouse cells (Manley et al., 1999b; van Den Broek et al., 2002; Chapter 

8). Nevertheless, the effect of novobiocin on triplet repeat dynamics should be extended to 

additional cell lines, and possibly tested in vivo, to clarify the involvement of topoisomerase II in 

trinucleotide repeat metabolism,

Although novobiocin was previously reported to inhibit replicative DNA synthesis in some 

human and rodent cell lines at concentration higher than those used in this study (Mattem and
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Scudiero, 1981), some contradictory reports claimed that inactivation of DNA topoisomerase II 

does not prevent DNA synthesis (Andoh and Ishida, 1998). It is important to note that the 

population doubling time of treated cultures did not increase significantly, suggesting that the DNA 

replication in the cells lines used in this study is not sensitive to the amount of novobiocin added to 

the growth medium. Therefore, it can be concluded that the novobiocin-induced decrease in repeat 

expansion is not mediated by a decrease in the rate of replicative DNA synthesis.

If alternative DNA structures were the ultimate molecular bases of trinucleotide repeat 

disorders, altering such structural dynamics could influence the mutation dynamics of these 

sequences and serve as a potential therapeutic strategy, and topoisomerase inhibitors may represent 

a good chemical candidate. The results obtained with novobiocin not only corroborate this idea, but 

also bring topoisomerases as new players into the field of trinucleotide repeat dynamics. There is 

also evidence that some topoisomerases might interact with one or more of the mammalian 

helicases, such as Bloom (BLM) and Werner (WRN) helicases (Champoux, 2001; Duguet, 1997). 

It is noteworthy that WRN helicase has also been implicated in trinucleotide repeat metabolism, as 

it efficiently unwinds single-strand CGG tetraplex structures (Fry and Loeb, 1999), and through a 

concerted interaction with DNA polymerases is able to resolve tetraplex secondary structures in 

DNA templates and restore full-length DNA synthesis of CGG-containing sequences (Kamath- 

Loeb et al., 2001). In addition, tetraplex structures of CGG oligomers interspersed by AGG 

interruptions are unwound by human WRN helicase at higher rates and to a greater extent than 

tetraplexes consisting of monotonous uninterrupted CGG*CCG repeats (Weisman-Shomer et al.,

2000), suggesting a possible molecular mechanism by which AGG*CCT interruptions may stabilise 

CGG'CCG tracts and restrict their expansion. The significance of these protein interactions is still 

poorly understood, but they support the involvement of a multi-component ensemble in triplet 

repeat biology.

The notion that secondary structure mediates repeat expansion in double-stranded DNA 

may finally be more of a fact than a hypothesis. A greater understanding of both the triplet repeat 

DNA structures and the molecular mechanisms for spontaneous mutation will be required before 

we can understand which of the molecular mechanisms currently under discussion are responsible 

for trinucleotide repeat instability and development of human disease.
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5. Genotoxic effects of oxidative stress on 
trinucleotide repeat dynamics

5.1. Introduction

Oxidative stress, a phenomenon resulting from the imbalance between oxygen species and 

protection against oxidants, contributes to spontaneous mutagenesis in somatic cells (Rossman and 

Goncharova, 1998). Endogenous oxidative damage to DNA is extensive and has been estimated to 

account for 10,000 hits per cell per day in humans (Ames et al., 1993), and has been implicated in 

the aetiology of cancer and ageing, as well as several other human diseases, particularly 

neurodegenerative conditions (Ames et al., 1993; Beckman and Ames, 1997; Croteau and Bohr, 

1997; Gracy et al., 1999).

Many of the biological effects of oxidative damage are mediated by the highly reactive 

oxygen species (ROS). Metabolism, like other aspects of life, involves trade-offs. Oxidant by

products of normal metabolism cause extensive cellular damage. There are various intra- and 

extracellular sources of oxygen radicals, the major intracellular sources probably being the leakage 

associated with the reduction of oxygen to water during mitochondrial respiration and the by

products of peroxisomal metabolism (Ames et a l ,  1993; Burcham, 1999; Raha and Robinson, 

2000).

The unpaired orbitals of oxygen can sequentially accommodate single electrons, to yield 

superoxide radical (02*')> hydrogen peroxide (H2O2), the extremely reactive hydroxyl radical (OH*) 

and finally water (H20 )  (Davies, 1999):

e' e' e' e'
0 2 — 0 2” -* H20 2 -* OH* H20

The leakage of partially reduced oxygen molecules from the mitochondrial electron chain

is around 2%, yielding about 2x l010 superoxide and hydrogen peroxide molecules per cell per day 

(Ames et al., 1993; Rossman and Goncharova, 1998). Free superoxide is relatively unreactive. 

However, superoxide undergoes dismutation (either spontaneously or via enzyme-catalysed 

reactions) to produce hydrogen peroxide. Hydrogen peroxide is not itself an oxygen radical and is 

also relatively stable. Nevertheless, hydrogen peroxide is a diffusible, latent oxygen species that 

can move great distances within cells to react with transition metals, such as iron, to produce 

extremely reactive hydroxyl radicals by the Fenton reaction (Henle and Linn, 1997; Raha and 

Robinson, 2000):

Fe2+ + H+ + H20 2 — Fe3+ + HO* + H20

Hydroxyl radicals are not only capable of damaging all macromolecules in the cell,

including phospholipids, proteins and DNA, but also of causing DNA-protein crosslinks, as well as
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single and double strand DNA breaks (Burcham, 1999; Epe, 1996; Henle and Linn, 1997; Mamett, 

2000). Much endogenous DNA damage arises from the direct attack of intermediates of oxygen 

reduction on the bases or the deoxyribosyl backbone of DNA. Alternatively, oxygen radicals can 

oxidise other cellular components such as lipids, sugars, estrogens, amino acids, heme groups, to 

generate reactive intermediates capable of attacking DNA bases, giving rise to bulky adducts, 

which distort the B-DNA conformation (Burcham, 1999; Mamett, 2000; Moller and Wallin, 1998). 

Radical attack on the bases results primarily in the addition of a hydroxyl group to the electron-rich 

double bonds, resulting in more than 30 different types of base alterations, with some authors 

reporting more than 100 modifications (Henle and Linn, 1997; Marnett, 2000). The mutagenic 

consequences of only a few of these adducts are known. The deoxyguanosine oxidation product 8- 

oxo-7,8-dihydro-2’-deoxiguanosine (8-oxoG), for instance, can be produced in DNA by hydroxyl 

radical attack, and if not repaired can cause G*C—»T*A transversions. Another highly mutagenic 

oxidised base, 5 ’-hydroxy-2’-deoxycytidine, causes C*G->T*A transitions, while thymine glycol 

causes T*A—>C*G transitions (Mamett, 2000).

In spite of the constant presence of ROS in the cell and the generation of a diverse range of 

premutagenic DNA adducts by oxygen metabolism, the background level of oxidative damage in 

normal mammalian cells is probably very low, since antioxidant defences and DNA repair 

pathways have evolved to maintain DNA integrity. Minimal damage accumulation is achieved by 

multiple interacting systems of antioxidant compounds, antioxidant enzymes, damage removal 

enzymes and repair enzymes (Collins and Horvathova, 2001). Many defence mechanisms have, 

therefore, evolved to limit the levels of reactive oxidants and the damage they inflict. The first level 

of cellular responses to oxidative stress consists of a series of antioxidant scavengers and enzymes 

that rapidly remove reactive oxygen species, thereby avoiding cellular damage. Small dietary 

antioxidants such as vitamin C (ascorbate), vitamin E (tocopherol) and carotenoids have 

antioxidant activities. Antioxidant compounds are sacrificed to oxidation in order to directly protect 

more important cellular components. Antioxidant enzymes such as superoxide dismutases, 

glutathione peroxidases, and quinone reductases act catalytically to convert oxidants to less 

reactive species. Superoxide dismutase reduces superoxide anion radicals to molecular oxygen and 

hydrogen peroxide. Catalase and glutathione peroxidase reduce hydrogen peroxide or other 

hydroperoxides to water or corresponding hydroxyl compounds (Ames et al., 1993; Davies, 1999; 

Henle and Linn, 1997).

The production of endogenous oxidants is expected to increase under the conditions of 

oxidative stress, and since the first line of antioxidant defences developed by animals is not perfect, 

some DNA is consequently oxidised. Oxidatively damaged DNA is repaired by enzymes that 

excise the lesions. Repair of oxidative damage becomes especially important, given that 

endogenous oxidatively damaged bases are continuously generated in the DNA of normal, healthy 

individuals, being influenced by numerous environmental factors. Once DNA nucleoside damage is 

manifested, the lesion must be recognised, removed and replaced with normal nucleotides (Ames et 

al., 1993; Beckman and Ames, 1997). Due to the high levels of endogenous oxidative damage, 

mammalian cells evolved multiple repair mechanisms to survive the daily insults. Most DNA
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lesions are repaired by either of the two excision repair processes: the base excision repair (BER) 

or the nucleotide excision repair (NER). The two processes are similar in the overall mechanism: a 

patch of DNA containing the lesion is removed, a DNA polymerase synthesises a new strand using 

the complementary strand as template, and a DNA ligase seals the last nick. However these two 

repair pathways utilise different enzymes and differ in detail (Moller and Wallin, 1998). BER is 

initiated by DNA glycosylases, a class of enzymes that recognise a specific set of modified bases, 

such as 8-oxoG or thymine glycol. Glycosylases cleave the A-glycosylic bond between the 

modified base and the sugar moiety, generating an abasic site (AP site). Following the glycosylase 

step, AP endonucleases are required to remove the 3 ’-deoxyribose moiety and generate a 3’- 

hydroxyl group, which can be extended by a DNA polymerase. The process is completed by a 

DNA ligase, which rejoins the free DNA ends (Croteau and Bohr, 1997; Henle and Linn, 1997; 

Krokan et al., 1997; McCullough et al., 1999). NER is the most complicated of the excision repair 

systems. The system acts upon a wide range of alterations that result in large distortions in DNA 

and removes the lesion as part of an oligonucleotide. A new DNA sequence is synthesised using 

the intact strand as template (Cleaver et al., 2001; Henle and Linn, 1997). Many studies show that 

NER plays a fundamental role in repair of oxidative lesions that are not substrates for BER. In 

addition, NER may also act as a backup system, if BER happens to be saturated (Moller and 

Wallin, 1998).

One of the most frequent mutagenic base lesions, induced by oxygen free radicals, is 8- 

oxoG. This altered base can mispair with adenine as well as cytosine residues, leading to a greatly 

increased frequency of spontaneous G*C-»T*A transversions mutation (Burcham, 1999; Mamett, 

2000). In bacterial cells, three enzymes act to prevent spontaneous mutagenesis induced by 8-oxoG 

(Figure 5.1). MutT (a 8-oxo-dGTPase) provides the first line of defence by eliminating 8-oxo- 

dGTP from the dNTP pool. If 8-oxo-dGTP escapes MutT activity, this oxidised nucleotide 

triphosphate may be incorporated opposite either adenine or cytosine. Here, MutM constitutes a 

second line of defence by removing 8-oxoG incorporated opposite cytosine or formed by the 

oxidation of DNA guanine. MutM repairs 8-oxoG incorporated opposite adenine with low 

efficiency. If both of these defence levels are bypassed, and the DNA is replicated, MutY provides 

a third level of defence by removing adenine incorporated opposite 8-oxoG (Burcham, 1999; 

Krokan et al., 1997; Marnett, 2000; McCullough et al., 1999; Michaels and Miller, 1992). The 

human and the mouse 8-oxoguanine MutM  glycosylase gene (human 8-oxoG DNA glycosylase, 

OGGI, or mouse Oggl) have been cloned, and they are ubiquitously expressed in a variety of 

organs and exhibit a repair activity that selectively excises 8-oxoG from oxidatively damaged DNA 

(Aburatani et al., 1997; Arai et al., 1997; Bjoras et al., 1997; Lu et a l, 1997; Radicella et al., 1997; 

Roldan-Arjona et a l ,  1997; Rosenquist et a l,  1997). Homozygous ogg l'1' null mice are viable and 

exhibit a moderately, but significantly, elevated spontaneous mutation rate especially in slowly 

proliferative tissues (Klungland et al., 1999). Human m utY  and mutT  homologues, M YH  and MTH, 

respectively, have also been identified (McGoldrick et al., 1995; Sakumi et al., 1993; Slupska et 

al., 1996). The cloning of the human homologues has strongly suggested that human cells possess 

repair systems, similar to those of bacteria and yeast, to protect the genome from the mutagenic
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Figure 5.1. The bacterial 8-oxoG base excision repair system.
Oxidative damage can lead to 8-oxoG (GO) lesions in DNA. The 8-oxoG lesions can 
be removed by MutM protein, and subsequent repair can restore the original G*C 
basepair. If the 8-oxoG lesion is not removed before replication, synthesis by 
replicative DNA polymarses is frequently inaccurate, leading to misincorporation of 
A opposite the 8-oxoG lesion. MutY removes the misincorporated adenine from the 
8-oxoG*A mispairs. Repair polymerases are much less error prone during synthesis 
and they usually generate a 8-oxoG*C mismatch, a substrate for MutM. A third repair 
enzyme, MutT, is active on 8-oxodGTP and hydrolysis it to 8-oxodGMP, effectively 
removing the oxidised triphosphate from the deoxynucleotide pool, otherwise, 
inaccurate replication could result in the misincorporation of 8-oxodGTP opposite 
template A residues, leading to 8-oxoG#A mispairs.

144



Mario Gomes-Pereira, 2002 Chapter 5

lesions induced by endogenous and environmental ROS.

However, a greater level of complexity is present in higher eukaryotes by the introduction 

of a mitochondrial genome. Mitochondrial genomes encode ribosomal mitochondrial RNA, all the 

tRNAs and 13 polypeptides, all of which are subunits of the enzymatic complexes involved in 

oxidative phosphorylation. It has been shown that oxidative damage to mitochondrial DNA occurs 

more frequently than damage to nuclear DNA (Yakes and Van Houten, 1997). The increased 

susceptibility of the mitochondrial genome to oxidative damage could be due to a lack of repair 

enzymes, a lack of histones protecting mitochondrial DNA (Enright et al., 1992), and the proximity 

of mitochondrial DNA to oxidants generated during oxidative phosphorylation (Ames et al., 1993; 

Yakes and Van Houten, 1997). Any impairment of the mitochondrial genome will cause 

dysfunction of the respiratory chain and hence reduce ATP synthesis (Raha and Robinson, 2000; 

Yakes and Van Houten, 1997). Given the essential mitochondrial function of generating energy, the 

integrity of mitochondrial DNA must be maintained. Different forms of OGGI and MYH enzymes, 

generated by alternative splicing, have been found in the mitochondria and nuclei (Nishioka et al., 

1999; Takao et al., 1998; Takao et al., 1999), strongly suggesting that the same repair system 

against 8-oxoG mutagenic lesions operates in mitochondria. In addition, mitochondria also contain 

an error avoidance mutT homologue (Kang et al., 1995a). However, NER as it exists in the nucleus 

does not operate in mitochondria. It is therefore apparent that mitochondria possess the capability 

to remove oxidative DNA damage, whether they use the same nuclear repair proteins or different 

ones (Croteau and Bohr, 1997).

Given the high levels of endogenous oxidative damage, both BER and NER systems may 

be overwhelmed. Therefore, the MMR pathway has also been implicated in the repair of DNA 

oxidative damage, by correcting newly acquired ROS-induced mutations after DNA replication, 

immediately before mitosis (Gasche et al., 2001; Lin et al., 2000b). Indeed, mutations in bacterial 

MMR genes result in increased microsatellite instability of repetitive sequences upon oxidative 

damage, implicating the involvement of the MMR repair system in mutation avoidance induced by 

oxidative stress (Jackson and Loeb, 2000). It has been speculated that being an abundant source of 

endogenous mutagens, ROS have a major impact on genetic integrity, particularly promoting 

instability of microsatellite sequences. Several pieces of evidence suggest that DNA oxidative 

damage by hydrogen peroxide is sufficient to promote instability of microsatellite repetitive 

sequences, even in the presence of proficient DNA repair systems. Exposure of E. coli to low levels 

of hydrogen peroxide increases the frequency of expansions and deletions within dinucleotide 

repetitive sequences (Jackson and Loeb, 2000). Increased rates of frameshift mutations, exclusively 

localised within microsatellite sequences, have also been reported following direct exposure of 

plasmid DNA to hydrogen peroxide in vitro, and subsequent transformation into repair-proficient 

E. coli (Jackson et al., 1998). This observation confirms that the increased mutation rate is a direct 

consequence of the DNA damage induced by hydrogen peroxide, rather than a secondary effect, 

mediated by an intermediate pathway. Similarly, repeated exposure of mammalian cells to 

hydrogen peroxide leads to a 9-fold increase in the mutations rate of CA*GT dinucleotide 

microsatellite sequences, cloned into plasmids and transfected into human colorectal cancer cells
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(Gasche et al., 2001). In addition, the CA*TG microsatellite mutation rate is 27 times higher than 

the spontaneous mutation frequencies, following the exposure of lung cancer cell lines to hydrogen 

peroxide (Zienolddiny et al., 2000). In the same way as bacteria, MMR-proficient mammalian cells 

are less susceptible to hydrogen peroxide-induced mutations than MMR-deficient cells, indicating 

that the mammalian MMR enzymes play a crucial role in the repair of mutations after oxidative 

stress (Gasche et a l ,  2001). The mechanism by which oxidative stress-induced DNA damage 

promotes microsatellite instability has not yet been identified. One mechanism could be mediated 

by pausing of DNA polymerase at sites of oxidative base damage (Feig and Loeb, 1993), while 

another mechanism could be dependent on single strand breaks. Both provide the opportunity for 

strand displacement, formation of slipped-stranded intermediates at different positions, generating 

insertion or deletion loops (Jackson et a l,  1998). Furthermore it has been suggested that oxidative 

stress may alter MMR function and allow mutations to accumulate over time. Alternatively, the 

higher levels of DNA damage during oxidative stress may also overwhelm the MMR system 

allowing replication errors to pass the G2 cell cycle checkpoint (Gasche et a l,  2001).

Given the effect of hydrogen peroxide-induced oxidative stress on dinucleotide 

microsatellite instability, one may speculate that oxidative stress might also modify the dynamics 

of trinucleotide repeats in mammalian cells. Previous independent reports, when considered 

together, appear to point to an association between levels of oxidative stress and repeat dynamics in 

mouse models of trinucleotide repeat instability. Increased levels of 8-oxoG and lipid peroxidation 

were found in the striatum of HD knock-in R6/1 and R6/2 transgenic mice, relative to their wild- 

type littermates (Bogdanov et a l,  2001; Perez-Severiano et a l,  2000). No significant differences in 

lipid peroxidation were found between cerebella of R6/1 transgenic and wild-type mice at any age 

(Perez-Severiano et a l ,  2000). Interestingly, the striata of both R6/1 and R6/2 mice exhibit the 

greatest levels of trinucleotide repeat instability, in particular, higher degrees of somatic mosaicism 

have been reported in the striatum, relative to the cerebellum of these mice (Mangiarini et a l ,  

1997). Taken together, these data may indicate that increased levels of oxidative stress parallel 

greater degrees of trinucleotide repeat instability. In addition, the Dmt-D mouse tissues that exhibit 

the highest levels of somatic mosaicism (kidney, liver and brain (Fortune et a l ,  2000)) also reveal 

the highest levels of antioxidant defences. When mouse tissues are ranked from highest to lowest 

regarding the activity of superoxide dismutase, catalase and glutathione peroxidase enzymes, liver 

and kidney exhibit the highest average rank, followed by brain (Grankvist et a l, 1981; Ibrahim et 

a l ,  2000). Moreover, kidney also reveals great expression levels of extra cellular superoxide 

dismutase (Ookawara et a l ,  1998). Similarly, the levels of non-enzymatic antioxidants, such as 

glutathione, vitamin C and vitamin E are higher in kidney and liver, compared to other mouse 

tissues (Ibrahim et a l, 2000). These data suggest that these particular tissues accumulate protective 

enzymes and antioxidants, possibly as a result of their own high levels of endogenous oxidative 

stress. Yet, despite the greatest antioxidant defences in kidney, this tissue still exhibits the high 

levels of malondialdehyde (Ibrahim et a l,  2000), a lipid oxidation product able to attack DNA with 

major implications on DNA integrity (Burcham, 1999; Marnett, 2000; Moller and Wallin, 1998). In
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summary, a correlation between the redox status of a tissue and trinucleotide repeat dynamics 

appears to emerge from the analysis of previously published data.

Oxidative damage might therefore be a key factor in modifying the mutation rate of 

trinucleotide repetitive sequences, possibly contributing to the age-dependent and tissue-specific 

mutation profile, characteristic of trinucleotide repeat disorders. In order to test the hypothesis that 

ROS may create transient hypermutable intermediates, which may affect the faithful maintenance 

of triplet repeats and lead to instability, Dmt-D cell cultures were exposed to chemical compounds 

known to increase the intracellular levels of oxidative stress, and following the treatment, 

trinucleotide repeat size variability was monitored by sensitive SP-PCR techniques.

5.2. Results

5.2.1. Association between levels of somatic instability and sensitivity 
to oxidative stress in culture

In order to test for a possible association between the intrinsic levels of tissue-specific 

trinucleotide repeat instability, exhibited by a cell line, and the sensitivity of the culture to 

oxidative damage, two different cell lines were treated with increasing concentrations of hydrogen 

peroxide. D2763 lung and kidney cells (D2763L and D2763K cultures, respectively, Table 3.2) 

were selected to perform this study, since they were derived from the same mouse, and exhibited 

distinct levels of somatic instability: whereas the transgene remains remarkably stable in cultured 

D2763L lung cells, great levels of expansion-biased repeat instability were detected in D2763K 

kidney cells (Section 3.2.4). Replicates of each culture were treated with concentrations of 

hydrogen peroxide ranging from 50 to 200 pM, for 8 hours, at 37°C and 5% (v/v) C 0 2. Following 

the incubation period, cell viability was assessed according to the acridine orange and ethidium 

bromide method (Section 2.4.6), to determine the percentage of cell survival following each 

treatment (Figure 5.2). As expected, an increase in cell death was measured with increasing levels 

of hydrogen peroxide added to the culture, independently of the cell line. More interestingly, the 

graph reveals a marked difference in the sensitivity of the two cell lines to the exogenous oxidant. 

The resistance of lung cells to 50 and 100 pM hydrogen peroxide proved significantly higher 

(p<0.05, two-tailed Mest), with levels of cell viability -1 .5- and ~2-fold higher than kidney 

cultures, respectively.

This observation suggests a parallel between the levels of sensitivity to hydrogen peroxide- 

induced oxidative stress, and the intrinsic levels of trinucleotide repeat instability exhibited by the 

different cell lines under standard growth conditions, indicating a possible role for ROS in triplet 

repeat metabolism.
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Figure 5.2. Sensitivity of Dmt-D cultured cells to hydrogen peroxide.
Four independent Dmt-D lung and kidney cell cultures, derived from the same mouse, 
were treated for eight hours with increasing concentrations of hydrogen peroxide, 
ranging from 50 to 200 /iM. At the end of the treatment, cell viability was measured by 
the acridine orange and ethidium bromide method, and plotted as a function of the 
concentration of hydrogen peroxide in the culture medium. The graph shows a 
decrease in cell survival with increasing concentrations of hydrogen peroxide. Kidney 
cells exhibited greater sensitivity to hydrogen peroxide than lung cell cultures. The 
difference between the sensitivity of the two cell lines to hydrogen peroxide proved 
statistically significant at 50 and 100 /jM (*, p<0.05, two-tailed f-test).

5.2.2. Induction of trinucleotide repeat size variability in vitro by 
hydrogen peroxide: a preliminary study

To further test the involvement of ROS in the molecular mechanisms driving trinucleotide 

repeat dynamics, a preliminary study was performed on three D m t-D cell lines. Two replicate 

cultures were established from the same progenitor cell population: one was treated with 100 pM 

hydrogen peroxide (unless otherwise stated) for up to 58 population doublings, while the other was 

cultured under standard growth conditions, in the absence of the oxidative chemical. At the end of 

the treatment, the repeat size variability within each culture was determined by sensitive SP-PCR 

procedures. Since the hydrogen peroxide treatment affected the proliferative capacity of the cells, 

and resulted in a marked increase in the population doubling time, the repeat size variation in 

treated cells was not only compared with controls grown for the same number of population 

doublings, but also with controls maintained in culture for the same period of time.

It should be stressed at this point that an extensive single molecule analysis was not 

performed at this initial stage, as the aim of this study was the gathering of experimental qualitative 

evidence indicative of a possible role of oxidative stress in the metabolism of triplet repeats. Thus,
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no statistical tests were performed, and the average allele sizes presented were estimated based on 

the sizing of a low number of transgene molecules, usually between ten and 20.

5.2.2.1. D2763K kidney cell line

The progenitor kidney cell culture derived from a six-month-old D m t-D mouse had 

previously been analysed and reported to exhibit great levels of expansion-biased trinucleotide 

repeat instability (Section 3.2.4). Hydrogen peroxide treatment resulted in reduced cell proliferation 

with an increase of 80% in the population doubling time.

When the hydrogen peroxide treatment was established, the progenitor culture, which had 

previously been growing for 215 days and 91 population doublings, consisted of a major 

subpopulation of cells carrying an average allele size of -260 repeats. Less than -10%  of the cells 

carried longer alleles, containing up to 400 repeats (Figure 5.3.A). A lower level of repeat size 

variability was retained by the controls throughout this study, indicating that the repeat length 

variation was primarily being shaped by a major selective sweep, as discussed previously in 

Chapter 3. In contrast to the control cells, treatment of D2763K kidney cultures with 100 pM 

hydrogen peroxide for 121 days and 57 population doublings cultures, resulted in a striking 

increase in the overall median repeat length, as a result of the expansion of a second subpopulation 

of cells within the culture. This population comprised -50-60%  of the total number of cells, 

carrying longer alleles with an average size -330 repeats, estimated by the sizing of ten to 20 

individual molecules. Although a small subset of large expansions was present in both controls, 

these mutants occurred at much lower frequency relative to hydrogen peroxide exposed cells 

(Figure 5.3.A), even though time control cultures had undergone nearly twice as many population 

doublings as the treated culture. To test for the progressive effect of hydrogen peroxide treatment 

on repeat dynamics and the continuous accumulation of longer alleles under conditions of oxidative 

stress, repeat size variability was also assessed at an intermediate time point, following 84 days and 

29 population doublings of treatment. By this stage an emergent second population of larger alleles 

was already noticeable in treated cultures, nevertheless it consisted of only -30-40%  of the total 

number of cells. An accurate comparison between the average repeat sizes of the longer alleles at 

the two time points could not be established, since extensive single molecule sizing was not 

performed at this stage. Nevertheless, an average repeat size of -320 repeats was estimated based 

on the sizing of ten to 20 individual molecules collected at this intermediate point. This very 

preliminary bulk SP-PCR analysis not only suggests a significant growth of the population of cells 

carrying longer alleles, but also a steady increase in the repeat number carried by those cells over 

the second half of the treatment, indicating that oxidative stress induced by hydrogen peroxide 

might strongly affect the trinucleotide repeat size profile in culture in a progressive time-dependent 

way.
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Figure 5.3. Preliminary analysis of CAG*CTG repeat instability in Dmt-D kidney and eye 
cells treated with hydrogen peroxide.
Independent Dmt-D cells lines, showing different levels of trinucleotide repeat 
instability, were treated with 100 pM (D2763K and D3111K kidney cell lines) or 200 
pM (D2763E eye cell line) hydrogen peroxide for 54 to 58 population doublings (PD) 
and variable periods of time. SP-PCR analyses were performed to assess the repeat 
size variability in treated cells, in control cultures maintained under standard conditions 
for a similar number of population doublings (doublings control) or days in culture 
(time control), and in the progenitor culture, from which all cultures were derived at 
day zero. The autoradiographs show representitive SP-PCR amplifications of DNA 
extracted from each cell sample. (A) A dramatic accumulation of large expansions 
was observed in Dmt-D kidney cells (D2763K), which had previously shown higher 
levels of somatic mosaicism under standard growth conditions. Also note the 
progressive increase proportion of longer alleles from 84 to 121 days of treament. 
(B) The treatment of a second kidney cell line (D3111K), exhibiting modest levels 
of triplet repeat instability, resulted in an apparent increase in the average repeat 
sizes, when compared to the doublings controls. (C) Trinucleotide repeat instability 
in eye cells (D2763E) was not greatly affected by the treatment. An average of five 
to 20 transgene molecules were amplified in independent reactions. The molecular 
weight markers are shown on the right, after conversion into repeat number.
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5.2.2.2. D3111K kidney cell line

The ability of hydrogen peroxide to induce increased levels of repeat size variability was 

studied in another kidney cell line, which exhibits moderate levels of repeat instability under 

standard growth conditions (D3111K cell line, Table 3.2 and Section 3.2.5). The progenitor culture 

had been growing for 166 days and 40 population doublings prior to the establishment of two 

replicates and the beginning of the treatment, as described above. At that time point D3111K cells 

showed a bimodal repeat size distribution with two peaks of variability with average repeat sizes of 

-160 and -175 repeats (Figure 5.3.B). Following hydrogen peroxide treatment for 141 days and 54 

population doublings, which resulted in a 25% increase in population doubling time, D3111K 

treated cells showed low levels of repeat size variability, with no signs of multiple peaks of repeat 

length variation. However, the average repeat size had increased to -200 units (Figure 5.3.B), in 

contrast with the shorter alleles detected in both doublings (average repeat number of -180) and 

time controls (average repeat number of -195 repeats). Given that extensive single molecule sizing 

was not performed, one cannot comment on the statistical significance of these observations. 

Regardless of the lack of quantitative data, the results appear to reveal a subtle effect of hydrogen 

peroxide treatment on the repeat dynamics in cultured D3111K kidney cells.

5.2.2.3. D2763E eye cell line

Finally, a similar study was performed with a D m t-D eye cell line (D2763E line, Table 

3.2), which exhibited the lowest levels of trinucleotide repeat instability among the three lines 

selected to carry out this study. Assuming a lower sensitivity to hydrogen peroxide, given the 

association between intrinsic levels of trinucleotide repeat instability and resistance to the oxidant 

chemical (Section 5.2.1), D2763E eye cells were expected to survive under higher levels oxidative 

stress. Consequently, and also to test a possible dose-response association between the levels of 

exogenous hydrogen peroxide and the effect on the repeat dynamics, this cell line was treated with 

200 |xM of hydrogen peroxide, resulting in an increase of 86% in the population doubling time. The 

progenitor culture carried an average repeat number of -185 units, and had been growing for 196 

days and 122 population doublings in vitro. Exposure to hydrogen peroxide for 135 days and 58 

population doublings, did not result in any evident changes in the trinucleotide repeat profile 

detected by high DNA input SP-PCR analysis (Figure 5.3.C). The average repeat size increased by 

5 units up to -190  repeats, similarly to the increase exhibited by the doublings control cells. 

However, time controls, whose cells underwent twice as many population doublings as the treated 

cells, had gained 10 repeats, displaying an average allele length of -195 repeats. Differences in the 

repeat size heterogeneity within each culture could only been established by single molecule 

analysis, which was not performed at this stage. In summary, the results obtained with D2763E eye 

cells failed to reveal a detectable association between oxidative stress and altered trinucleotide 

repeat dynamics.

Considered together, the data collected from the three cell lines may suggest that high 

levels of oxidative stress, induced by the addition of chemicals to the cell growth medium, may

151



Mario Gomes-Pereira, 2002 Chapter 5

mediate triplet repeat metabolism, and in particular affect levels of somatic mosaicism detected in 

culture. Furthermore, the very preliminary analysis performed on D2763E eye cells, supports the 

view that a cell line must exhibit a measurable degree of intrinsic trinucleotide repeat instability 

under standard growth conditions, to increase the likelihood that a visible effect (if any) of an 

environmental agent upon the stability of trinucleotide repeats is detected.

5.2.3. Quantitative analysis of the effect of hydrogen peroxide- 
induced oxidative stress on the dynamics of expanded 
CAG'CTG repeats

5.2.3.1. D2763Kc2 kidney cell line

Encouraged by the preliminary results described in Section 5.2.2, we sought to quantify the 

effect of oxidative stress induced by hydrogen peroxide on the stability of trinucleotide repeats in 

cultured mouse cells. To this end D2763Kc2 kidney cells were selected to carry out a detailed 

analysis, since they presented two major advantages relative to other cell lines. First, being a 

clonal cell line established from a single cell, differences in the genetic background between 

individual cells are minimised and expected to have a minor influence on the outcome of the 

treatment. Second, the transgenic repeats have been shown to expand rapidly in this cell line under 

standard conditions, being more likely to be affected by the addition of hydrogen peroxide to the 

growth medium, in line with the preliminary observations previously presented. To avoid a major 

effect of population fluctuations (selective sweeps, Chapter 3) and the consequent artefacts they 

may generate, six parallel replicate cultures were established from a single progenitor population, 

and treated with 100 pM hydrogen peroxide for 126 days, corresponding to 80 population 

doublings. As a result of the treatment, an increase of 36% in the population doubling time was 

observed. Despite the previous observation (Chapter 3) that different expansion rates do not 

necessarily rely on differences in the proliferation capacity between cell lines, two sets of control 

cultures were established as usual: time and doublings controls. Furthermore, the expansion rates 

corrected for both time and population doublings, were compared to the closest control in terms of 

days in culture, or population doublings, respectively.

At the end of the treatment the repeat size variability within each culture was assessed by 

SP-PCR (Figure 5.4.A). Despite great variation between treated replicate cultures, the amplification 

of an average of five to 30 transgene molecules per reaction illustrated a marked decrease in the 

average repeat size in treated cells, when compared with both controls, in contrast with the 

preliminary results obtained with both D2763K and D3111K kidney lines. Single molecule analysis 

allowed the quantification of this effect. Twenty to 80 individual molecules were individually sized 

and the repeat lengths confirmed that hydrogen peroxide treatment resulted in a decreased rate of 

expansion, along with a dramatic increase in the frequency of cells containing large deletions 

(Figure 5.4.B). The median rate of expansion of 0.180 repeats per day, in hydrogen peroxide 

treated cells, was significantly lower than the median gain of 0.615 repeats per day in the controls
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Figure 5.4. Hydrogen peroxide treatm ent and expanded CAG'CTG repeat dynam ics in 
D2763KC2 cells.
(A) The autoradiographs show representative SP-PCR amplifications of DNA samples 
extracted from replicate D2763Kc2 cells cultured for 80 population doublings with 
100 pM hydrogen peroxide (99 days). Two control cultures were also analysed: 
doublings control cells consisted of cultures maintained for 82 population doublings 
(97 days), and time control cultures were grown for 105 population doublings (122 
days). The progenitor culture from which all cells were derived at day zero is shown 
on the left. The D2763Kc2 cell line was originally cloned by limiting dilution from 
D2763K kidney cells (see Figure 3.8). Fresh media, with or without hydrogen peroxide, 
was added to the cultures every 2-3 days and the cells were passaged weekly. An 
average of five to 30 transgene molecules were amplified in independent reactions. 
The molecular weight markers, converted into CTG repeat numbers, are displayed 
on the right. (B) The boxplots show the degree of repeat size variation observed in 
treated and control cultures. The top and bottom of the boxes correspond to the third 
(Q3) and first quartiles (Q1), respectively, and the line across the box displays the 
median repeat number. The lines extending from the top and the bottom of the boxes, 
include values that fall inside the lower and upper limits: Q1-1.5(Q3-Q1) and 
Q3+1.5(Q3-Q1), respectively. The median rates of expansion, corrected for time 
and population doublings, were determined and revealed to be significantly different 
between control and treated cells (p<0.05, two-tailed Mann-Whitney U test).
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(p=0.0202, two-tailed Mann-Whitney U test). Significant differences were also found when the 

median expansion rates were corrected for population doublings, with treated cells expanding 0.284 

repeats per doubling, and the controls increasing their repeat number by 1.050 repeats per doubling 

(p=0.0131, two-tailed Mann-Whitney U test). However, it should be noted that hydrogen peroxide 

treated cells showed evidence of reduced size variability around sharp and well defined peaks of 

variability (Figure 5.4.B, black arrowheads), suggesting that some of this effect might have been 

mediated by clonal growth of cells selected for enhanced viability under conditions of oxidative 

stress, which were most certainly already present in the progenitor culture, although in such a small 

number that their detection by SP-PCR procedures was not possible.

5.2.3.2. D4132K kidney cell line

Similarly to what was previously described for novobiocin, the effect of hydrogen peroxide 

treatment on the dynamics of expanded CAG'CTG repeats was investigated in an additional kidney 

cell line that had only undergone a few population doublings (12 population doublings in 84 days) 

prior to hydrogen peroxide exposure, hence reducing the chances of accumulating multiple genetic 

mutations, and thereby resembling a primary cell culture. The analysis was performed on D4132K 

cells as described for the D2763Kc2 cell line, with the exception that the drug treatment was 

finished after 19 population doublings in culture (95 days), and the repeat size variability in treated 

cells was only compared with time controls. D4132K cultures experienced a 34% decrease in their 

proliferation capacity in the presence of the oxidant agent, as estimated by their population 

doubling time. The amplification of an average number of five to 20 molecules in multiple 

independent reactions revealed marked differences in the repeat size variability between treated and 

control cultures (Figure 5.5.A). The controls retained the bimodal repeat distribution previously 

detected in the progenitor culture, consisting of two major peaks of variability with median allele 

sizes of -150 and -180 repeats. In contrast, in treated cells the proportion of cells carrying shorter 

repeats decreased, and most of the replicate cultures were actually overtaken by the cells carrying 

longer alleles, with a median size of -185 repeats. These results suggest that the addition of 

hydrogen peroxide to the growth medium might have greatly enhanced the repeat expansion rates 

of both subpopulations and/or induced a selection for cells displaying higher resistance to oxidative 

stress, which in this particular cell line happen to carry longer repeats. Since we cannot reject any 

of these two hypotheses based on our data, single molecule analysis was performed and two sets of 

comparisons were established (Figure 5.5.B). Regardless of the possibility of cell selection, 

expansion rates in hydrogen peroxide treated cells (0.0674 repeats per day) were compared with the 

overall repeat gain in control cells, considering both subpopulations altogether (-0.0279 repeats per 

day). The enhanced expansion-biased repeat instability detected in treated cells was highly 

significant (p=0.0082, two-tailed Mann-Whitney U  test). In addition, in view of the great likelihood 

of cell selection in the presence of hydrogen peroxide, only the upper alleles detected in the 

progenitor culture and in the six time controls were included in the analysis, since they were most 

certainly favoured by the selection event that might have occurred in these cultures. Whereas
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Figure 5.5. Hydrogen peroxide treatm ent and expanded CAG*CTG repeat dynam ics in 
D4132K kidney cells.
(A) The autoradiographs show representative SP-PCR analyses of DNA samples 
extracted from replicate D4132K cells cultured for 19 population doublings (PD) with 
100 pM hydrogen peroxide (95 days) as indicated in the legend to Figure 5.4. Time 
control cultures were maintained for 34 population doublings (86 days), and the 
progenitor culture from which all cells were derived at day zero were also analysed. 
An average of five to 20 transgene molecules were amplified in independent reactions. 
The molecular weight markers, converted into CTG repeat numbers, are displayed 
on the right. The boxplots show the degree of repeat length variability observed in 
treated and control cultures as described in Figure 5.4. Boxplots for the overall repeat 
size variability within control cultures (B), and for the upper allelles from which 
hydrogen treated cells might have derived (C) are presented individually. The median 
rates of expansion, corrected for time and population doublings, were determined 
following single molecule analysis, and revealed to be significantly different between 
control and treated cells, in both B and C analyses (p<0.05, two-tailed Mann-Whitney 
U test).
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control cells showed a median rate of contraction of 0.0808 repeats per day, hydrogen peroxide 

treated cells only exhibited a significantly lower median contraction of 0.00302 repeats per day 

(p=0.0131, two-tailed Mann-Whitney U test).

In conclusion, the addition of hydrogen peroxide to the cell growth medium appeared to 

alter the repeat dynamics in D4132K cell cultures, causing an apparent reduction in the rate of 

contraction of CAG*CTG repeats. The results were highly significant, even when the possible 

contribution of selection for a particular subpopulation of cells with enhanced viability was 

minimised by excluding the presumed unselected cells from the analysis. Nonetheless, a more 

subtle selection mechanism, within the subpopulation of cells carrying longer alleles, might still 

have accounted for the effect of hydrogen peroxide exposure on the dynamics of the transgenic 

CAG«CTG sequence in D4132K cells.

5.2.4. Effect of hydrogen peroxide treatment on stable expanded 
CAG'CTG repeats

The preliminary data presented in Section 5.2.2 suggested the reduced ability of oxidative 

stress to enhance the mutation rate repeat of stable CAG'CTG sequences. To further test this 

hypothesis the effect of the addition of hydrogen peroxide on the dynamics of long trinucleotide 

repeats was assessed in a kidney cell line derived from a Dm t-E mouse, previously reported to 

carry stable transgenic repetitive sequences (Section 3.2.9). The study was carried out as described 

before. The progenitor E3994K kidney culture had been growing for 81 days, and undergone 9 

population doublings prior to the establishment of replicates and the beginning of the treatment. No 

repeat size variability was detected by SP-PCR analysis in the progenitor cells, which carried -160 

CAG*CTG repeats. Following a treatment period of 89 days (29 population doublings) with 100 

pM hydrogen peroxide, which increased the population doubling time by 31%, the repeat size 

variation was monitored by SP-PCR and compared to time control cultures, grown for 84 days (36 

population doublings). More than 1000 transgene molecules were amplified in multiple 

independent reactions, with an average DNA input of ten to 30 transgene molecules per reaction. 

High DNA input SP-PCR amplifications failed to detect evident expansions or deletions within 

both control and hydrogen peroxide treated cell populations (Figure 5.6). The average repeat sizes 

were found to be identical in both sets of replicates and in the progenitor culture, indicating that the 

repeat remained remarkably stable, even under significant levels of oxidative stress. These results 

confirm that hydrogen peroxide does not induce detectable levels of repeat instability in cell lines 

carrying intrinsically stable trinucleotide sequences, and that ds-acting factors have greater impact 

on the control of repeat dynamics, compared to environmental agents, such as oxidative stress.

156



Mario Gomes-Pereira. 2002 Chapter 5

H ydrogen peroxide  
8 9  d a ys, 29  PD

T im e controls  
8 4  d a y s , 3 6  PD

Figure 5.6. Hydrogen peroxide treatment and CAG«CTG repeat dynamics in E3994K kidney 
cells.
Six replicate cultures derived from an eight-month-old Dmt-E mouse (E3994K cell 
line) were treated with 100 pM hydrogen peroxide for 89 days, corresponding to 29 
population doublings (PD). Cells were treated and passaged as described in the 
legend to figure 5.4. The autoradiographs show representative SP-PCR analyses 
of DNA samples extracted at the end of the treatment. Time control cultures maintained 
for 84 days (36 population doublings), and the progenitor culture from which all the 
cells were derived at day zero are also shown. An average of ten to 30 transgene 
molecules were amplified in independent reactions. The molecular weight markers, 
converted into CTG repeat numbers, are displayed on the right. Similarly to the 
controls, the CAG-CTG transgenic repeats remained remarkably stable in treated 
cells, with no obvious expansions or deletions being detected by high DNA input 
SP-PCR analysis.

5.2.5. Triplet repeat instability in mouse cells with impaired 

mitochondrial function

The mitochondrial genom e encodes for only 13 o f more than one hundred mitochondrial 

proteins, the rest are encoded by the nucleus. Mitochondrial D N A  depletion leads to increase ROS 

generation and cellular oxidative stress, probably because o f  incom plete b iogenesis o f the 

m itochondrial electron transport chain (M iranda et al., 1999). A  possible sequence o f events 

resulting in severe mitochondrial dysfunction and oxidative stress could be: first, a functional 

defect in the mitochondrial electron transport chain due to improper protein assembly, or assembly 

o f a protein com plex with abnormal properties; second, diversion o f electrons to form increased 

amounts o f superoxide; third, induction o f superoxide dismutase; fourth, increased formation of 

hydrogen peroxide from superoxide, via superoxide dism utase catalysis; fifth, generation o f  

hydroxyl radicals from hydrogen peroxide, via the Fenton reaction or other mechanisms (Raha and 

Robinson, 2000). This severe scenario was recreated in D m t-D cell cultures, and the outcome on 

the trinucleotide repeat metabolism investigated.
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5.2.5.1. Effects of ethidium bromide on trinucleotide repeat dynamics

Ethidium bromide is a DNA intercalating drug, with known mutagenic properties (McCann 

et al., 1975). Although ethidium bromide has been shown to be effective for isolating 

mitochondrial DNA-less (p°) cell lines from avian (Desjardins et al., 1986) and human cells 

(Hayashi et al., 1991; King and Attardi, 1989), it does not induce depletion of mitochondrial DNA 

in mouse cells. However, mitochondrial transcription is dramatically inhibited by ethidium bromide 

treatment (Inoue et al., 1997a; Inoue et al., 1997b; Morel et al., 1999). Ethidium bromide is also 

capable of inhibiting endogenous mitochondrial respiration by reducing the activity of the 

respiratory complexes and ATPase activity (Miko and Chance, 1975), to generate point mutations 

in the mitochondrial genome (Morel et al., 1999) and also to specifically inhibit mitochondrial 

protein synthesis by preventing polysome formation (Avadhani and Rutman, 1975). For all these 

reasons exposure to ethidium bromide is thought to result in dramatic mitochondrial dysfunction 

and increased levels of intracellular oxidative stress.

To investigate the effect of ethidium bromide-induced oxidative stress in the dynamics of 

expanded CAG'CTG trinucleotide repeats, six replicates established from the D2763Kc2 clonal 

cell line were treated with 250 nM of ethidium bromide for 122 days. During this period of time the 

cultures underwent 66 population doublings, corresponding to a reduction of 66% in their 

proliferative capacity, compared to the controls. SP-PCR procedures allowed the analysis of repeat 

size variability in both treated and control cells (Figure 5.7.A). The analysis indicated continuing 

trinucleotide expansion in all sets of cultures, but revealed a decreased expansion rate in cells 

exposed to ethidium bromide, compared with the controls, particularly the time controls. More 

interestingly, the reduction in repeat expansion shows no association with clonal proliferation of 

selected cells as reported for hydrogen peroxide treatments. To quantify the effect of the drug 

treatments on the stability of trinucleotide repeats in cultured cells, single molecule analysis was 

performed (Figure 5.7.B) and the expansion rate of the CAG-CTG repeats compared between 

treated and control cells, as described previously. The control cells showed a median repeat gain of 

0.615 repeats per day, in contrast with the median expansion of 0.310 repeats per day exhibited by 

ethidium bromide treated cells (p=0.0051, two-tailed Mann-Whitney U test). Similarly, statistically 

significant differences were also revealed when the expansion rates were corrected for population 

turnover: median gain of 0.890 and 0.602 repeats per population doubling in control cells and 

treated cells, respectively (p=0.0202, two-tailed Mann-Whitney U  test). In summary, ethidium 

bromide treatment resulted in decreased rates of expansion, with no association with the 

accumulation of cells carrying large deletions or reduction in repeat size variability, characteristic 

of a selection process similar to that observed following exposure to hydrogen peroxide.
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Figure 5.7. Ethidium bromide treatm ent and expanded CAG-CTG repeat dynam ics in 
D2763KC2 cells.
(A) The autoradiographs show representative SP-PCR amplifications of DNA samples 
extracted from replicate D2763Kc2 cells cultured for 66 population doublings (122 
days) with 250 nM ethidium bromide. Doublings control cells were maintained for 
70 population doublings (82 days), whereas time controls were grown for 122 days 
(106 doublings). The progenitor culture from which all cells were derived at day zero 
is shown on the left. Fresh media, with or without ethidium bomide, was added to 
the cultures every 2-3 days and the cells were passaged weekly. An average of five 
to 20 transgene molecules were amplified in independent reactions. The molecular 
weight markers were converted into CTG repeat numbers, and shown on the right.
(B) The boxplots show the degree of repeat size variability observed within treated 
and control cultures. The median rates of expansion, corrected for time and population 
doublings, were determined for treated cells, and compared with both controls. The 
results proved to be significantly different between control and treated cells (p<0.05, 
two-tailed Mann-Whitney U test).
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5.2.5.2. Investigating the biological bases of the effects of ethidium bromide on 

trinucleotide repeat dynamics

To gain insight into the m echanism (s) that mediate(s) the effect o f ethidium bromide on 

trinucleotide repeat dynamics, the presence o f mitochondrial D N A  in cells chronically exposed to 

the chemical was assessed by PCR amplification of a 355-bp mitochondrial D N A  sequence, which  

maps within the 12S ribosomal RNA gene. The product was amplified with oligonucleotide primers 

HI and LI (Table 2.7) from D N A  sam ples collected from D 2763K  cells grown either with or 

without ethidium bromide added to the medium (Figure 5.8). A ll D N A  samples generated great 

amounts o f a PCR product with the predicted size. The results could not be considered for 

quantitative densitometric analysis, given the large excess of mitochondrial D N A  used as template 

in PCR amplification. Therefore, w e can only suggest that continuous exposure o f D m t-D mouse 

cells to ethidium bromide did not result in gross depletion o f the mitochondrial genom e. Subtle 

differences, if any, could only be detected by reducing the amount o f input mitochondrial DNA, by 

using com petitive PCR techniques or by including a nuclear locus in the analysis, as an internal 

reference for mitochondrial D N A  quantification.

C o n tr o ls  E th id iu m  b r o m id e

M N E1 E2 K1 K2 E1 E2 K1 K2 N M

-  1000 bp
-  850 bp

-  650 bp

-  500 bp

-  400 bp

-  300 bp

-  200 bp

Figure 5.8. PCR amplification of mouse mitochondrial DNA extracted from Dmt-D cells 
treated with ethidium bromide.
In order to determine the effect of ethidium bromide exposure on the integrity of 
mouse mitochondrial genome, DNA samples collected from mouse cultured cells 
were amplified with oligonucleotide primers L1 and H1, which amplify a 355-bp 
sequence within the mitochondrial 12S rRNA gene. Two control replicate cultures 
were maintained under standard growth conditions, in the absence of ethidium 
bromide, whereas treated replicates were exposed to 250 nM (kidney cells, K1 and 
K2) or to 1 pM (eye cells, E1 and E2) of the chemical for at least 50 generations. 
Ten to 100 ng of total DNA were amplified by PCR, using 62°C as annealing 
temperature, and 30 cycles of amplification (Section 2.5.5). The PCR products were 
electrophoresed through an ethidium bromide-stained 1.5% (w/v) agarose gel (Section 
2.5.7.1). The scale on the right represents the molecular size markers (M). Lanes 
N represent no template DNA controls.

160



Mario Gomes-Pereira, 2002 Chapter 5

To confirm the effect of ethidium bromide on mitochondrial DNA transcription, the 

steady-state transcript levels of the mitochondrial encoded enzyme cytochrome oxidase II were 

investigated in treated cells. Total RNA was extracted from six D2763Kc2 cultures treated with 

250 nM ethidium bromide for 95 days, and six control cultures. The integrity of the RNA samples 

was verified by agarose gel electrophoresis, and the analysis revealed the presence of good quality 

RNA (Figure 5.9.A). Northern blot analysis was performed in order to quantify the levels of 

mitochondrial cytochrome oxidase II  transcripts against nuclear-encoded fi-actin mRNA levels 

(Figure 5.9.B). Densitometric analysis was carried out, taking care to perform the quantification in 

the linear range of signal intensity (Figure 5.9.C). A  highly significant reduction by -2/3 in the 

mRNA levels of cytochrome oxidase II  in exposed cells compared with the controls was found 

(p=0.0002, two-tailed f-test), confirming that ethidium bromide strongly affects mitochondrial 

transcription, and most certainly causes great levels of oxidative stress, which may therefore 

mediate the changes in repeat dynamics.

5.2.5.3. Altered electrophoretic mobility of trinucleotide repeat PCR products in the 
presence of ethidium bromide

In addition to investigating the biological consequences of ethidium bromide exposure on 

mitochondrial metabolism, the intercalating properties of this chemical and the possible effect upon 

the complex conformational fluctuations and physical features of trinucleotide repeats were also 

analysed. PCR products containing different sized CAG'CTG tracts were amplified from the 

human D M 1  locus (as described in Section 4.2.1.1) with various oligonucleotide primer 

combinations. The samples were electrophoresed through agarose gels, either with or without 500 

nM ethidium bromide, in both gel and electrophoresis buffer, and detected by Southern “squash” 

blot hybridisation (Figure 5.10). In the presence of ethidium bromide, all PCR products migrated as 

a single DNA species, and generated a sharp and well defined band. In contrast, amplified 

repetitive sequences containing 22, 56 and 200 triplet repeats generated multiple alternative bands 

in the absence of ethidium bromide. The major bands observed in the absence of the intercalating 

chemical exhibited the same electrophoretic mobility as the single band detected when ethidium 

bromide was added to the gel and buffer. However, the additional DNA species exhibited apparent 

sizes that were -10%  higher for PCR products containing 22 and 56 repeats, and -20%  higher for 

the amplification products carrying 200 CAG'CTG units. In addition to the enhanced gel 

retardation for the additional DNA species, the longest PCR products also generated a couple of 

fast migrating bands, instead of a single one (Figure 5.10). In other words, not only the intensity of 

the effect of ethidium bromide on the mobility of the PCR products, but also the complexity of the 

electrophoretic profile in the absence of the intercalating chemical, appear to increase as the 

repetitive tract gets longer, suggesting that the addition of ethidium bromide to the gel and buffer 

must change the mobility of structural isomers formed within CAG'CTG expanded sequences. 

Interestingly, PCR products containing only five CAG'CTG repeats did not generate detectable 

additional DNA bands in the absence of ethidium bromide, although the same products have been
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Figure 5.9. Quantification of cytochrome oxidase II mRNA levels in ethidium bromide 
treated cells.
(A) RNA visualisation by agarose gel electrophoresis to check the integrity and the 
quality of the RNA samples extracted from six D2763Kc2 replicate cultures treated 
with 250 nM ethidium bromide for 95 days, and six control cultures. Note the labelled 
bands corresponding to rRNA species 28S, 18S and 5S. (B) The autoradiographs 
show a northern blot analysis of mRNA levels of cytochrome oxidase II (COII) and 
3-actin transcripts in ethidium bromide treated cells, compared to control cultures. 
See Sections 2.2.6 and 2.6.4 for further details. (C) The graph shows the quantitative 
analysis of expression levels of cytochrome oxidase II relative to 3-actin nuclear 
control, in both control (C) and ethidium-bromide treated (EtBr) cultures. The observed 
reduction in cytochrome oxidase II mRNA levels in treated cells is highly significant 
(p=0.0002, two tailed f-test).
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Figure 5.10. Effect of ethidium bromide on the mobility of expanded CAG*CTG sequences 
in agarose gells.
PCR products containing five, 22, 56 or 200 CAG*CTG repeats were amplified from 
the human DM1 locus with various combinations of oligonucleotide primers (DM-A, 
DM-H, DM-C, DM-BR, DM-DR and DM-ER) and resolved through 1.8% (w/v) agarose 
gels, with (left) or without (right) 500 nM ethidium bromide in both the gel and running 
buffer. The amplified products were subsequently detected by Southern “squash” 
blot hybridisation. The scale on the left shows the position of the molecular weight 
markers (M) in base pairs. The autoradiographs illustrate the increased mobility of 
alternative expanded CAG*CTG conformers in agarose gels in the presence of 
ethidium bromide. Note the multiple alternative products observed in the absence 
of the intercalating chemical.
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shown to have the ability to g ive rise to, at least, som e alternative structures in vitro, as 

demonstrated by native PAGE (Section 4.2.1.1).

Surprisingly, when the PCR products were incubated with 500 nM ethidium bromide for 

48 hours prior to electrophoresis, they still generated additional slow -m igrating bands when  

resolved through an agarose gel without ethidium bromide (Figure 5.11). This observation suggests 

that ethidium bromide does not interconvert stable S-D N A  structures. Given that the presence o f  

ethidium bromide is required in the gel and electrophoresis buffer so that a single band is detected 

by Southern “squash” blot hybridisation, it may be hypothesised that this chemical interferes with 

the migration o f alternative D N A  structures adopted by CAG*CTG repetitive sequences through 

agarose gels. Imagining that ethidium bromide is able to bind to D N A  over a 48-hour incubation 

period, it is possible that it is removed from the D N A  samples during the migration through the gel, 

sin ce  D N A  and ethidium  brom ide are forced to m ove in opposite directions through  

electrophoresis. This might explain the generation o f slow  migrating bands by PCR products 

treated with ethidium bromide.
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Figure 5.11. Effect of ethidium bromide incubation on the mobility of expanded CAG«CTG 
sequences through agarose gels.
Human DNA sequences derived from the DM1 locus, and carrying different repeat 
numbers were amplified by PCR using multiple oligonucleotide primer combinations, 
indicated in the figure above each lane. Half of each PCR product was incubated 
with 500 nM of ethiudium bromide for over 48 hours prior to electrophoresis through 
a 1.8% (w/v) agarose gel and detected by Southern “squash” blot hybridisation. The 
autoradiographs do not reveal any obvious difference in the electrophoretic profile 
between treated and non-treated samples. The scale on the left represents the 
position and sizes (in base pairs) of the molecular weight markers (M).
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5.2.5.4. Searching for alternative DNA structures in vivo

Despite the simplicity of the assay, the findings described in the last section opened new 

avenues for the study of alternative DNA structures adopted by trinucleotide repeat sequences in 

vivo. Given that ethidium bromide affects the electrophoretic mobility of conformational isomers 

formed within repetitive CAG*CTG sequences, genomic DNA samples were analysed to test if 

alternative structures might exist in vivo. The hypothesis being that if different electrophoretic 

profiles were observed in the absence of ethidium bromide, this would be a preliminary indication 

that alternative DNA conformations may also occur in vivo, and also that the effect of ethidium 

bromide on the repeat dynamics in cell culture might be a consequence of a modified DNA 

topology induced by exposure to the intercalating dye.

The presence of alternative slow-migrating DNA conformations was initially assessed in 

bacteria. Different sized CAG'CTG sequences, ranging from 22 to 450 repeats, were cloned into 

pGEM®-T Easy bacterial vector, and transformed into E. coli (for further details see Section 2.2.4). 

The plasmid DNA was purified from a 5-ml culture, grown overnight, and digested with EcoRl 

restriction endonuclease, prior to electrophoretic analysis, either with or without 500 nM ethidium 

bromide in the gel and electrophoresis buffer, and finally detected by Southern “squash” blot 

hybridisation (Figure 5.12). The electrophoretic mobility profiles in both autoradiographs are 

identical, not only in terms of the number of bands detected but also in the mobility of each band 

relative to the molecular weight markers, suggesting that the presence or absence of ethidium 

bromide in the gel and buffer does not reveal a difference in the mobility of CAG'CTG-containing 

plasmid DNA, purified from E. coli. It is worth mentioning the dramatic deletion-biased instability, 

particularly for the larger trinucleotide repeat tracts (Figure 5.12), already described for microbial 

model systems (Freudenreich et al., 1997; Kang et al., 1995b; Schweitzer and Livingston, 1997; 

Wells etal., 1998).

Interestingly, although bacterial plasmid DNA, containing CAG*CTG repeats, is capable of 

generating alternative S-DNA structures, when subjected to a reannealing protocol, no evidence of 

alternative DNA conformations was reported for purified plasmid DNA, following native PAGE 

(Pearson et al., 1998b).

To address the possibility that alternative structures could be detected by this method in 

genomic DNA samples purified from D m t-D mouse tissue of cultured cells, Southern blot 

hybridisation techniques were performed following agarose gel electrophoresis in the presence or 

absence of ethidium bromide added to the gel and buffer. As observed with purified plasmid DNA, 

no additional low mobility bands were observed in the absence of ethidium bromide in purified 

mouse genomic DNA samples (Figure 5.13). Some minor differences in the mobility of a few 

bands were however detected between the two autoradiographs shown, but they most likely 

resulted from differences in salt concentration in the sample, and are therefore not relevant for this 

study (Figure 5.13). Nevertheless, a minor increase in the electrophoretic mobility of mouse 

genomic DNA fragments (up to 5%) was detected in the presence of ethidium bromide, relative to 

the molecular weight markers.
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Figure 5.12. Effect of ethidium bromide on the mobility of CAG*CTG-containing plasmid 
DNA through agarose gels.
CAG«CTG repeat sequences varying from 22 to 160 units in size were amplified 
with DM-A and DM-DR oligonucleotide primers from the human DM1 locus. The 
PCR products were ligated into pGEM®-T Easy and transformed into E. coli TOP10 
bacterial strain. Plasmids purified from 5 ml cultures grown overnight were digested 
with EcoRI and resolved through 1.8% (w/v) agarose gels with (right) or without (left) 
500 nM ethidium bromide (EtBr) in both the gel and running buffer, and detected by 
Southern “squash” hybridisation (lanes 1-7). pGEM-T750.19, pGEM-T750.21 and 
pGEM-T750.22 constructs, carrying longer CAG'CTG sequences (between 250 and 
450 repeats) amplified from the human DM1 locus with oligonucleotide primers DM- 
H and DM-BR (Section 2.2.4), were analysed as described above (lanes 8-10). The 
scale on the left displays the sizes of the molecular weight markers (M) in base pairs. 
No major differences in the mobility profiles were detected between the two gels, 
independently of the presence or absence of ethidium bromide. Note the preferential 
accumulation of deletion mutants, particularly for longer trinucleotide repeat tracts 
(lanes 7-10).
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Figure 5.13. Effect of ethidium bromide on the mobility of CAG*CTG-containing m ouse 
genomic DNA fragments.
Mouse genomic DNA samples (20 pg) were digested with 40 units of EcoRI for 16 
hours and the digested products resolved through 1% (w/v) agarose gels, with (right) 
or without (left) 500 nM ethidium bromide (EtBr) in both the gel and running buffer. 
The CAG*CTG-containing transgenic sequences were detected by Southern 
hybridisation with radiolabelled DM-F/DM-PRENK probe (Section 2.2.6), which maps 
downstream to the repetitive tract. Genomic DNA samples were extracted from the 
following sources: kidney of a wild-type mouse (lane “wt Kd tissue”), Dmt-E kidney 
tissue sample (lane “E Kd tissue”), Dmt-D lung tissue sample (lane “D Lg tissue”), 
Dmt-D kidney tissue sample (lane “D Kd tissue”), Dmt-D lung cell line (lane “D Lg 
cell line”), Dmt-D kidney cell line (lane “D Kd cell line”) and Dmt-D eye cell line (lane 
“D Eye cell line”). The scale on the right represents the molecular weights of the size 
markers (M) in base pairs. Multiple alternative conformers were not observed in the 
absence of ethidium bromide. Yet, a slight increased mobility (up to 5%) was detected 
in the presence of ethidium bromide, relative to the molecular weight markers.
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If alternative DNA structures do occur in vivo, both in bacteria and in mammalian cells, 

they may not exist at sufficient levels to be detected by standard Southern blot hybridisation in the 

absence of ethidium bromide. Alternatively, DNA purification protocols may introduce nicks and 

single strand breaks, which may cause relaxation of non-B-DNA conformations.

5.2.5.5. Effects of rhodamine-6G on trinucleotide repeat dynamics

Inhibition of mitochondrial electron transport chain may accelerate oxidant production 

(Duranteau et al., 1998). The lipophilic dye rhodamine-6G binds very tightly to mitochondria, and 

causes powerful inhibition of oxidative phosphorylation, drastically reducing the efficiency of ADT 

phosphorylation without damaging the mitochondrial structure (Gear, 1974). Great levels of 

oxidative stress are therefore expected following exposure to rhodamine-6G. Moreover, 

rhodamine-6G has not been reported to interact directly with nuclear genomic DNA, and any effect 

derived from exposure to this chemical might be considered to result from an overproduction of 

intracellular ROS by the mitochondria. This drug was therefore selected to confirm the hypothesis 

that oxidative stress may be a mediator of repeat metabolism, affecting the mutation rate of 

trinucleotide repetitive sequences.

D2763Kc2 kidney cells were treated with 50 nM rhodamine-6G for ten days and the 

intracellular localisation of drug analysed by fluorescence microscopy (Figure 5.14). Rhodamine- 

6G staining was detected in numerous cytoplasmic foci, particularly in the nuclear periphery, 

which is consistent with mitochondrial accumulation of the drug. Furthermore, an increase of 22% 

in the population doubling time was estimated, in agreement with enhanced levels of oxidative 

stress. Following a 116-day exposure period to 50 nM rhodamine-6G, corresponding to 80 

population doublings, the trinucleotide repeat size variability was assessed in six D2763Kc2 

replicate cultures by SP-PCR procedures (Figure 5.15.A). As described for hydrogen peroxide 

treated cells, the analysis revealed an overall decrease in the average repeat size in cells exposed to 

rhodamine-6G, with evidence for cell selection, mediated by growth advantage of mutant cells 

displaying enhanced resistant to the chemical (Figure 5.15.A, black arrowheads). Single molecule 

analysis was carried out, and the expansion rates, corrected for both time and population doublings, 

were calculated and compared between treated and control cells, as described previously (Figure 

5.15.B). Whereas the control cells exhibited a median rate of expansion of 0.615 repeats per day, 

rhodamine-6G treated cells only gained a median number of 0.298 repeats per day (p= 0.0051, two- 

tailed Mann-Whitney U  test). A decrease in the median repeat expansion from 1.050 to 0.432 

repeats per population doubling was also found to be statistically significant between control and 

treated cultures, respectively (p=0.0082, two-tailed Mann-Whitney U  test).

Despite the lower median repeat number in cells treated with rhodamine-6G, and evidence 

for clonal expansion driven by selection, at least in some of the exposed replicates, a large 

proportion of cells carrying longer alleles, containing ~400-600 repeats, was detected in treated 

cultures. In fact, the variance for the allele sizes carried by cells exposed to rhodamine-6G was 

significantly higher than in the six doubling control cultures (p=0.0082, two-tailed Mann-Whitney
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Figure 5.14. Intracellular localisation of rhodamine-6G in mouse kidney cells.
The picture reveals the intracellular localisation of cultured mouse cells treated with 
50 nM rhodamine-6G for ten days. The chemical accumulates in multiple cytoplasmic 
foci, mainly around the nucleus, which are likely to represent mitochondria.
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Figure 5.15. Rhodamine-6G treatment and expanded CAG-CTG repeat dynamics in D2763Kc2 
cells.
(A) Representative SP-PCR amplifications of DNA samples extracted from replicate 
D2763Kc2 cells are shown in the autoradiographs. D2763Kc2 cells were cultured 
for 80 population doublings (116 days) with 50 nM rhodamine-6G. Doublings control 
cells were maintained for 82 population doublings (97 days), and time controls were 
grown for 122 days (106 doublings), both in the absence of rhodamine-6G. The 
progenitor culture, from which all cells were derived at day zero is shown on the left. 
Fresh media, with or without rhodamine-6G, was added to the cultures every 2-3 
days and the cells were passaged weekly. An average of five to 30 transgene 
molecules were amplified in independent reactions. The molecular weight markers, 
converted into CTG repeat number, are shown on the right. (B) The boxplots show 
the degree of repeat size variability observed within treated and control cultures. 
The median rates of expansion, corrected for time and population doublings, were 
determined for treated cells, and compared with the closest control in terms of time 
and population doublings, respectively. The treatments resulted in significant 
differences in the rate of expansion between treated cells and both controls (p<0.05, 
two-tailed Mann-Whitney U test).
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U  test), and five of the time control replicates (p=0.0358, two-tailed Mann-Whitney U  test). 

Therefore, one may assume that an initial selection for cells, exhibiting higher resistance to 

rhodamine-6G, took place over the initial stage of the treatment, followed by an increased mutation 

rate as a result of the great levels of oxidative stress. To test this hypothesis, the repeat size 

variability at the end of the rhodamine-6G treatment was compared with the repeat size variation at 

an intermediate time point (Figure 5.16.A). None of the cultures revealed a significant decrease in 

the median repeat size over the second half of the treatment, rejecting a continuous selection for 

cells carrying shorter repeats (Figure 5.16.B). In fact, one of the cultures (replicate 1) actually 

exhibited a significant increase in the median repeat number, from 341 to 371 (p=0.0042, two- 

tailed Mann-Whitney U test). However, only replicates 1 and 2 showed a significant increase in the 

variation of the allele sizes between 40 to 80 population doublings under exposure to rhodamine- 

6G (p<0.05, F-test).

These results indicate that the possible selection process, which caused a significant 

reduction in the median allele length, was most certainly an early event that occurred shortly after 

the first exposure to rhodamine-6G, or at least over the first 40 population doublings. A continuing 

reduction in repeat size is not likely to have occurred. However, the data failed to indicate an 

increased accumulation of expanded mutant alleles following the initial expansion of viable cells.

5.3. Discussion

DNA damage caused by exposure to ROS, such as hydroxyl radicals, singlet oxygen, 

superoxide radical and hydrogen peroxide, is believed to be one of the most important reasons for 

endogenous DNA decay and spontaneous mutation (Ames et al., 1993; Beckman and Ames, 1997; 

Rossman and Goncharova, 1998). During normal cell metabolism, the genome is exposed to 

numerous reactive oxidative substances. A range of endogenous processes has been assessed for 

their ability to generate DNA reactive species, such as lipid peroxidation products, endogenous 

alkylating agents, glycoxidation products, estrogens, reactive nitrogen species, chlorinating 

reagents, heme precursors and amino acids (Burcham, 1999). Most of these species might attack 

DNA bases or sugars and cause critical damage and may affect genomic stability.

To investigate a possible association between the cellular redox status and the dynamics of 

triplet repeats, Dmt-D cell lines were used during the course of this work. The susceptibility of two 

different cell lines to oxidative stress was assessed and correlated with the levels of somatic 

mosaicism previously detected. Higher cellular sensitivity to hydrogen peroxide in culture matched 

the greater levels of trinucleotide repeat instability exhibited by one of the two cell lines 

investigated. The findings presented here are indeed consistent with a parallel between cellular 

sensitivity to oxidative stress and greater levels of trinucleotide repeat dynamics, but an extended 

analysis of multiple cell lines, showing different levels of somatic mosaicism, should be performed 

to determine the statistical significance of this correlation.
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Replicate 1 2 3 4 5 6

Population 4 0  8 0  4 0  8 0  4 0  80  4 0  8 0  40  8 0  4 0  8 0
doublings >

P opulation 4 0  8 0  4 0  8 0  4 0  80  40  80  4 0  8 0  4 0  80
d ou b lings -------------------  -------------------  ------------- ------ -------------------  -------------------  -------------------

R ep licate  1 R eplicate  2 R eplicate  3  R eplicate  4  R ep lica te  5 R ep licate  6

Figure 5.16. Investigating the progressive effect of rhodamine-6G on expanded CAG*CTG 
repeat dynamics.
(A) The autoradiographs show representative SP-PCR amplifications of DNA samples 
collected from six replicate D2763Kc2 cells following treatment with 50 nM rhodamine- 
6G for 40 and 80 population doublings (PD). An average of ten to 100 transgene 
molecules were amplified in independent reactions. The molecular weight markers 
were converted into CTG repeat numbers, and displayed on the right. (B) The 
boxplots show the degree of repeat size variability and the median repeat number 
for each culture at both time points. None of the cultures showed a statistically 
significant decrease in the median repeat size between 40 and 80 population 
doublings. Replicate 1 exhibited a significant increase in the median repeat size over 
the same period of time (p=0.0042, two-tailed Mann-Whitney D-test), with an expansion 
rate of 0.762 repeats per population doubling, or 0.347 repeats per day.

172



Mario Gomes-Pereira, 2002 Chapter 5

Although the activity of enzymes directed to eliminate ROS varies considerably between 

cell types and changes with cell growth state, the sensitivity to oxidative injury does not reflect the 

levels of detoxifying enzymes (such as catalase and superoxide dismutase) in cultured cells (Duthie 

and Collins, 1997). The mutagenic response of mammalian cells to hydrogen peroxide is more 

likely to depend on the extent of free radical generation, and the inherent DNA repair activity rate 

and fidelity, and finally cell growth (Duthie and Collins, 1997; Henle and Linn, 1997; Rossman 

and Goncharova, 1998). For instance, lipopolysaccharide-induced oxidative stress increases the 

BER activity in extracts prepared from mouse monocytes and fibroblasts, and consequently their 

resistance to oxidative stress (Chen et al., 1998a). Assuming that Dmt-D  lung cells exhibit greater 

antioxidant defences, one may speculate that these cultures exhibit lower levels of intracellular 

ROS, and therefore lower spontaneous mutation frequency and a lower mutation rate within the 

transgenic trinucleotide sequence. In contrast, the higher resistance of lung cells to hydrogen 

peroxide might alternatively result from the lower activity levels of the DNA repair enzymes 

exhibited by this cell line, thereby avoiding the apoptotic pathway. Human cells selected for their 

resistance to hydrogen peroxide display reduced OGGI and MYH activity and increased levels of 

anti-apoptotic protein BCL-2, consistent with the development of a resistance mechanism that 

bypasses apoptosis (Gu et al., 2001). In line with this view, the higher DNA repair activity level 

exhibited by D m t-D kidney cells, which eventually leads to apoptosis and to a greater death rate 

under oxidative stress compared to the lung cell line, may contribute to the increased levels of 

repeat instability in this cell line, according to recent models of trinucleotide mutation (Manley et 

al., 1999b; van Den Broek et al., 2002, Chapter 8).

In order to test for the ability of oxidative stress to modify trinucleotide repeat dynamics, a 

D m t-D kidney clonal cell line was exposed to hydrogen peroxide, ethidium bromide, and 

rhodamine-6G. Whereas hydrogen peroxide is capable of originating extremely reactive hydroxyl 

radicals by the Fenton reaction (Henle and Linn, 1997), ethidium bromide and rhodamine-6G cause 

mitochondrial dysfunction and consequent production of ROS (Avadhani and Rutman, 1975; Gear, 

1974; Miko and Chance, 1975; Morel et al., 1999). In any case, increased levels of intracellular 

oxygen species are expected to cause great levels of oxidative stress. Whatever the treatment, a 

decreased rate of repeat expansion was observed between treated and control cells, suggesting that 

trinucleotide repeats show higher stability under particular conditions of slow cell proliferation 

induced by oxidative stress. Some of the hydrogen peroxide and rhodamine-6G treated cultures 

exhibited clear evidence of reduced repeat length variability, indicating that some of the effects 

observed might have been mediated by clonal expansion of cells selected for enhanced viability 

under conditions of oxidative stress, which happened to carry shorter repeats than the average 

repeat length in the overall population.

To corroborate the establishment of a selection process in culture under oxidative stress, 

the opposite effect on the expansion rate of trinucleotide repeats was observed following the 

exposure of D4132K kidney cells to hydrogen peroxide. The median repeat length of the transgenic 

sequence was significantly higher in D4132K treated cells, compared to the controls. This result 

appears to suggest that increased levels of oxidative stress may result in either an increase or a
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decrease of the median repeat length of the CAG'CTG tracts, depending on the nature of the 

progenitor culture selected to carry the experiment. The bidirectionality of this phenomenon 

strongly suggests that the outcome of the exposure to great levels of oxidative stress on the 

trinucleotide dynamics in D m t-D cultures cells is most certainly the result of a selection event, 

which favours cells exhibiting enhanced resistance to oxidative stress, rather than the consequence 

of a direct effect of ROS on the mutation rate of trinucleotide repetitive sequences.

It should be stressed at this point that a major component of oxidative stress defences is to 

keep actual cellular oxygen tension to a minimum. Oxygen concentration decreases from 

atmospheric levels (20%) in the lungs to only 2-5% in the tissues. Therefore, cultured cells grown 

in 20% oxygen are essentially preadapted or preselected to survive under conditions of oxidative 

stress (Davies, 1999). Furthermore, the chronic exposure of cell lines to various levels of oxidative 

stress over several generations is likely to select for pre-existing or mutant phenotypes that confer 

oxidative stress resistance (Davies, 1999). It appears therefore logical, that the altered trinucleotide 

repeat profile of cultured cells upon exposure to oxidative stress is mainly based on the selection 

and rapid growth of mutant cells that exhibited enhanced resistance to oxidative stress, and that 

happen to carry shorter (in the case of D2763Kc2 cells) or longer repeats (D4132K cells) than most 

of the other cells in culture.

In addition to a selection event, and independently of an increase or decrease in the 

expression levels of DNA repair enzymes in oxidative stress resistant cells, as discussed above, the 

activity levels of the repair proteins, including MMR enzymes, are most certainly altered under 

conditions of oxidative stress. It may be therefore speculated that altered MMR activity will be 

involved in the alternative processing of mutation intermediates, contributing to a modified rate of 

trinucleotide repeat expansion. Non-cytotoxic levels of hydrogen peroxide inactivate both single

base mismatch and insertion/deletion loop repair activities of the MMR system in human cell lines 

(Chang et dl., 2002). This inactivation is most likely caused by oxidative damage of MSH2-MSH6, 

MSH2-MSH3 and MLH1-PMS2 heterodimers. Reduced MMR activity in Dmt-D  cells, exposed to 

high levels of oxidative stress, could account for the altered dynamics of the transgenic repeats in 

culture, given the involvement of MMR genes as key genetic modifiers of trinucleotide repeat 

metabolism (Manley et a l,  1999b; van Den Broek et al., 2002; Chapter 8).

Moreover, MSH2-MSH6 heterodimers have also been reported to play a direct role in the 

repair of 8-oxoG#A  mispairs and 8-oxoG*C base pairs in S. cerevisiae, suppressing the rate of 

G*C-»T*A transversions in oggl mutants (Ni et al., 1999). Thus, it appears that in eukaryotic cells, 

an MSH2-MSH6-dependent mismatch repair pathway is also involved in the repair of 8-oxoG 

lesions. The repair activity of MSH2-MSH6 heterodimers on oxidised bases might only be 

significant under conditions of high oxidative stress, or when OGGI or possibly other repair 

proteins are unable to repair the damaged base pair. Therefore, an MSH2-MSH6-dependent 

pathway might function as a mechanism for detection of otherwise unrepairable levels of oxidative 

damage. The recruitment of MSH2-MSH6 by oxidative damage may be intimately associated with 

a decrease of trinucleotide repeat instability (van Den Broek et al., 2002; a more extended 

discussion on the dynamics of MMR proteins and triplet repeat mutation is presented in Chapter 9).
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Alternatively, an excessive amount of hydrogen peroxide may saturate the overall activity 

of the MMR system, which might be shifted towards the repair of oxidative damage. As a result, 

significantly lower levels of MMR proteins could be available to act on trinucleotide repeat 

substrates, and mediate triplet repeat expansion, leading to a change in repeat mutation profile 

(Manley et al., 1999b; van Den Broek et al., 2002; Chapter 8).

The marked accumulation of shorter repeat tracts in D2763Kc2 cells exposed to hydrogen 

peroxide may result from multiple deletion events. Hydroxyl radical attack on the deoxyribose in 

DNA induces strand breaks, which might be expected to contribute to deletion events and structural 

chromosome rearrangements (Marnett, 2000). When mouse kidney cells, with an adenine 

phosphoribosyltransferase gene heterozygous deficiency, were exposed to hydrogen peroxide, they 

showed loss of heterozygosity at nonadjacent loci on the same chromosome (Turker et al., 1999). 

One possibility is that oxidative stress produces a markedly elevated rate of recombination, given 

the great number of strand breaks induced by hydrogen peroxide. Alternatively, multiple deletions 

may explain the discontinuous loss of heterozygosity.

Trinucleotide repeats carried by D m t-E kidney cells did not exhibit increases in the 

mutation rate upon hydrogen peroxide treatment. Similarly, triplet repeat dynamics in D2763E eye 

cells was not significantly affected by hydrogen peroxide. Several hypotheses may explain these 

observations. First, the influence of both cis and tissue-specific factors on trinucleotide repeat 

instability may be greater than the effect of environmental agents, thus the lack of an effect of 

hydrogen peroxide exposure on the triplet repeat dynamics on cell lines that exhibit naturally stable 

transgenic sequences. Second, and more likely, hydrogen peroxide may still induce trinucleotide 

repeat instability in these cell lines. However, given the extremely low intrinsic levels of somatic 

mosaicism detected under standard conditions for both cultures, the enhanced trinucleotide repeat 

mutation rate would still be too low to be detectable by SP-PCR procedures. Third, and finally, the 

effects observed in vitro with other cell lines, particularly the D2762Kc2 kidney clonal cultures, 

may simply result from a selection process, which necessarily requires repeat size variability prior 

to the establishment of the treatment. In the absence of repeat size variability within a particular 

culture, selection may still occur but will not be detectable by techniques designed to monitor 

repeat size heterogeneity.

Cultures treated with ethidium bromide did not show any evidence of clonal expansion 

driven by selection. Nonetheless, a significant decrease in the expansion rate was still observed 

upon exposure to this chemical, raising serious questions about the induction of trinucleotide repeat 

instability by ROS. However, the consequences of the ethidium bromide treatment may derive 

from a wide range of effects that this chemical may inflict upon the metabolism of cultured cells, 

other than increased levels of oxidative stress. Ethidium bromide interacts directly with DNA, and 

it is able to alter the migration of putative alternative DNA conformations through agarose gels. 

The inherent sequence-dependent structural features of DNA such as handedness, planarity and 

twisting of curved segments can be dramatically changed by ethidium bromide, on the basis of a 

close relation between sequence-dependent DNA shape and ethidium bromide-induced untwisting 

of DNA (Brukner et al., 1997). Ethidium bromide not only untwists DNA, but also destabilises the
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fine stacking interactions that are important for DNA bending. Under stress-free conditions 

(absence of ethidium bromide), bent DNA molecules have shown marked gel retardation, relative 

to untwisting conditions, which were introduced by the addition of ethidium bromide to the gel and 

running buffer (Brukner et al., 1997). Since trinucleotide repeat sequences are preferential sites for 

the accumulation of supercoiling and twisting (Gellibolian et a l,  1997), it may be possible for 

ethidium bromide to modify the physical properties of trinucleotide repetitive tracts. Indeed, 

additional slowly migrating DNA species were clearly observed following Southern blot 

hybridisation analysis of CAG'CTG-containing PCR products, resolved through agarose gels in the 

absence of ethidium bromide. Moreover, a slight increase in the electrophoretic mobility of mouse 

genomic DNA fragments, containing the D m tl62 transgene, through agarose gels in the presence 

of ethidium bromide was detected. However, no additional low mobility bands were present when 

both mouse genomic DNA and bacterial plasmid DNA fragments, both containing long CAG*CTG 

repeat units, were resolved through agarose gels, with or without ethidium bromide, possibly 

indicating that the alternative structures clearly observed in the PCR products, are either not present 

in vivo or exist in extremely low levels within the cell (either bacterial or mammalian cells), so that 

they are not detected by this method. Interestingly, ethidium bromide failed to affect the DNA 

mobility through agarose gels, when PCR products containing CAG'CTG repeats were incubated 

with the intercalating agent, preceding electrophoresis. Given the opposite directions of migration 

of DNA and ethidium bromide during the course of electrophoresis, the intercalating dye may be 

removed from the PCR products, early during migration through agarose gels, and multiple DNA 

species were consequently detected.

In addition to the direct interaction of ethidium bromide with DNA, this dye can also 

inhibit topoisom erase II activity (Thielmann et a l ,  1993), and result in chromatin 

hypercondensation in human lymphocytes (Belyaev et al., 1999), thereby possibly causing a 

decrease in trinucleotide repeat instability, by a mechanism similar to the one previously discussed 

in Chapter 4.

Finally, it should be noted that oxygen radicals, like all electrophiles, react with many 

molecules in the cell and can induce a wide range of responses that are not necessarily dependent 

on DNA damage. Oxygen radicals are known to affect various signal transduction pathways and 

transcription factors (Allen and Tresini, 2000; Dalton et al., 1999) and to alter cell cycle kinetics 

(Leroy et al., 2001; Martin et al., 2000). Some of these effects may be the result of DNA damage- 

induced signalling, but others may not (Marnett, 2000). It was previously reported that 

concentrations of hydrogen peroxide ranging from 120 to 150 pM cause a temporary growth arrest 

of mouse fibroblasts (Wiese et al., 1995). At least 40 gene products are involved in the adaptive 

response: some genes being up-regulated, some being down-regulated. Most of the genes that 

participate in the mammalian adaptive response are involved in the antioxidant defence; others are 

damage-removal or repair enzymes. In addition, proto-oncogenes, interleukins, many protein 

kinases and phosphatases (Davies, 1999) and also RNA species of unknown function (Crawford et 

al., 1996) are also involved in the response to oxidative stress. Furthermore, oxidants increase 

cytosolic calcium ions concentration, which is a key messenger in multiple metabolic pathways,
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including apoptosis (Dalton et al., 1999; Kowaltowski et al., 2001; Wong and Cortopassi, 1997). It 

is apparent from the findings of the studies reported by others, that the effects of specific redox 

perturbations involve a wide range of metabolic pathways, and although they can be similar among 

organisms and tissues, some redox-active stimuli are highly cell- and tissue-specific (Allen and 

Tresini, 2000). Therefore, independently of the hypothetical molecular mechanism linking 

oxidative stress to trinucleotide repeat dynamics, it is important to note that many cellular pathways 

are affected by ROS, and therefore it is extremely difficult to pinpoint the exact causes of altered 

repeat stability following exposure to increased oxidative stress.

The findings presented in this chapter suggest that trinucleotide dynamics in cultured cells 

can be modified by DNA damage induced by oxygen free radicals. Furthermore, the results clearly 

illustrate that selection of cells exhibiting enhanced resistance to oxidative stress, may play a 

crucial role in determining the final repeat mutation profile exhibited by Dm t-D cultured cells. In 

most cases the selected cells appear to carry shorter trinucleotide repeats than the overall 

population, suggesting that the mutations that confer higher resistance to oxidative stress are 

usually, but not necessarily always, associated with smaller trinucleotide repeat tracts. However, 

the observations gathered from the D m t-D cell culture system may not reflect the complex in vivo 

scenario, where there is a lower probability for cell selection, followed by clonal expansion. It 

would be extremely interesting to correlate the levels of oxidative stress in vivo, determined by cell 

sorting coupled with fluorescent techniques (Jakubowski and Bartosz, 2000), with the degrees of 

somatic mosaicism trinucleotide repeat dynamics in vivo determined by SP-PCR. We must also 

question whether the undoubted ability of dietary antioxidants to decrease DNA oxidation (Ames et 

al., 1993) has any biological significance in trinucleotide repeat metabolism. The inclusion of 

radical scavengers, such as vitamin C, vitamin E or carotenoids, in the diet of Dmt-D  mice, might 

have an effect on the stability of the transgene. It would be of great relevance to assess the effect of 

dietary antioxidants on the mutation rate of trinucleotide sequences. Clinical strategies designed to 

control the levels of oxidants species may even prove to be useful in the therapy of trinucleotide 

repeat conditions.
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6. Investigating the effects of multiple genotoxic 
agents, affecting cell cycle progression, DNA 
replication and DNA repair, on the dynamics of 
expanded triplet repeats

6.1. Introduction

Based on experimental data collected from simple model organisms, DNA polymerase 

slippage has been put forward as the most favoured mechanism of trinucleotide repeat expansion 

(Richards and Sutherland, 1994; Wells etal., 1998). However, at present there is no direct evidence 

to support the hypothesis that repeat length mutations arise during DNA replication in mammalian 

cells. In reality, there are no obvious relationships between the estimated rates of cell turnover and 

the levels of somatic mosaicism, neither in human patients (Anvret et al., 1993; Ashizawa et al., 

1993; Hashida et al., 2001; Monckton et a l, 1995; Thornton et al., 1994) nor in the mouse models 

that replicate CAG'CTG somatic mosaicism (Fortune et a l ,  2000; Kennedy and Shelboume, 2000; 

Lia et al., 1998; Seznec et al., 2000). Furthermore, monitoring the dynamics of expanded 

trinucleotide repeats in homogenous D m t-D cell lines, failed to reveal a correlation between 

proliferative rates, assessed by population doubling times, and levels of trinucleotide stability 

detected in culture (Chapter 3). Taken together, these results suggest that the mechanism of 

expansion is not strictly based on cell division, implying the involvement of additional factors, 

other than DNA replication, in the control of the mutation rate of trinucleotide repeats in 

mammalian cells.

All eukaryotes have evolved a plethora of mechanisms to minimise DNA damage and 

maintain DNA integrity and stability. The genomes of eukaryotic cells are under continuous assault 

by environmental agents {e.g. UV light and reactive biochemicals) as well as the by-products of 

normal intracellular metabolites {e.g. reactive oxygen species intermediates and inaccurately 

replicated DNA). Whatever the origin, genetic damage threatens cell survival and may lead to 

organ failure, immunodeficiency, cancer and other pathologies. To ensure that cells pass accurate 

copies of their genomes to the next generation, evolution has provided the cell cycle machinery 

with a series of surveillance pathways termed cell cycle checkpoints (Abraham, 2001; Bartek and 

Lukas, 2001; Elledge, 1996). The overall function of the cell cycle checkpoints is to detect 

damaged or abnormally structured DNA, and to coordinate cell cycle progression with DNA repair. 

In a broader context, cell cycle checkpoints can be envisaged as biochemical pathways of signal 

transduction, which sense various types of genetic lesions and induce a multifaceted cellular 

response, which activates DNA repair and delays cell cycle progression, allowing time for 

appropriate repair mechanisms to correct genetic damage before they are passed on to the next 

generation, hence linking the pace of cell cycle phase transitions to the timely and accurate
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completion of prior contingent events (Abraham, 2001; Bartek and Lukas, 2001; Elledge, 1996). In 

response to DNA damage and obstruction of DNA replication, checkpoints can generate signals 

that arrest the cell cycle in the Gi phase, slow down S phase, arrest cells in the G2 phase and induce 

the transcription of repair genes (Elledge, 1996). When DNA damage is irreparable, checkpoints 

also have the ability to eliminate such potentially hazardous cells by permanent cell cycle arrest, or 

by inducing cell death by apoptosis (Bartek and Lukas, 2001; Elledge, 1996; Smits and Medema, 

2001). Checkpoint malfunction leads to accumulation of mutations and chromosomal aberrations, 

which in turn increase the probability of developmental malformations or genetic syndromes and 

diseases, including cancer (Bartek and Lukas, 2001).

Diverse cell types and cell cycle phases are assumed to share the upstream elements of the 

checkpoint cascade, responsible for monitoring DNA integrity. In contrast, the downstream 

checkpoint effectors and their final targets within the cell cycle machinery may differ in Gi, S or 

G2/M phases (Bartek and Lukas, 2001). During the very earliest stages of checkpoint activation, 

DNA damage sensors relay information, via a still elusive mechanism, to members of a family of 

phosphoinositide 3-kinase related kinases (PIKKs). In mammalian cells two PIKK family 

members, ATM (ataxia-telangiectasia mutated) and ATR (ATM and Rad3-related) play critical 

roles in early signal transmission through cell cycle checkpoints (Abraham, 2001). ATM and ATR 

respond to DNA damage in fundamentally different ways: ATM becomes catalytically active, 

whereas ATR redistributes into nuclear foci, where it presumably gains access to its substrates 

(Abraham, 2001). Both kinases regulate other downstream players, such as p53, being therefore 

proposed as central players in DNA damage checkpoint (Abraham, 2001; Bartek and Lukas, 2001; 

Smits and Medema, 2001).

Two conditions allow mitosis to occur without repair of DNA damage or completion of 

DNA synthesis: mutational inactivation of the checkpoint control and exposure to caffeine or a 

caffeine-like agent (Lau and Pardee, 1982; Schlegel and Pardee, 1986). Caffeine was first reported 

to potentiate the lethality of the alkylating agent nitrogen mustard, 2-chloro-A^-(2-chloroethyl)-JV- 

methylethanamine, on baby hamster kidney cells, by inducing cells to undergo mitosis before 

properly repairing lesions in their DNA (Lau and Pardee, 1982). In the absence of caffeine, cells 

were arrested in G2 shortly after treatment with nitrogen mustard. Unscheduled DNA synthesis was 

detected during the G2 delay. After an arrest of six hours, when DNA repair of the lesions induced 

by nitrogen mustard was completed, treated cells proceeded into mitosis and from then on behaved 

like normal untreated cells. Exposure to caffeine prevented the G2 arrest, inducing cells to undergo 

mitosis, forcing them to divide without providing enough time for damaged cells to repair their 

DNA (Lau and Pardee, 1982; Schlegel and Pardee, 1986). Caffeine abolishes the mammalian G2 

checkpoint through the inhibition of ATM and ATR kinase, thereby inhibiting the phosphorylation 

of downstream targets in the biochemical cascade that mediates the G2/M arrest (Blasina et al., 

1999; Zhou et al., 2000). Indeed, caffeine has also been reported to mediate override of checkpoint 

control in Schizosaccharomyces pombe, thereby reducing cell viability (Rowley and Zhang, 1999; 

Wang et al., 1999b), through the inhibition of Rad3 kinase, the fission yeast kinase related to the
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human ATM checkpoint protein (Moser et al., 2000). In conclusion, caffeine acts by modifying the 

function of cell cycle progression control which sensors DNA damage.

Ultraviolet (UV) light is a potent mutagenic and genotoxic agent, capable of causing 

serious damage, which can ultimately result in mutagenesis and cell killing. In contrast to caffeine, 

UV-induced DNA damage may lead to an arrest in cell cycle progression (Franchitto et al., 1998), 

increased transcription of genes involved in DNA repair and DNA replication (Weinert, 1998). UV 

light is absorbed by nucleic acids and produces several types of DNA damage, which interfere with 

DNA replication and transcription. Two major classes of mutagenic DNA lesions induced by UV 

light (UV-C: X = 280-280 nm and UV-B: X = 280-320 nm) are cyclobutane-pyrimidine dimers 

(CPDs) and pyrimidine-pyrimidone 6-4 photoproducts (6-4PPs) (Thoma, 1999). After DNA 

damage by UV radiation, p53 expression is up-regulated, and it can either arrest cell cycle 

progression, allowing DNA repair, or induce apoptosis (Levine, 1997).

Several mechanisms of repair have been identified for UV-damaged DNA. Nucleotide 

excision repair (NER) is the major pathway to remove UV-induced DNA lesions from the 

mammalian genome, hence preventing mutagenesis and cell death (Thoma, 1999). NER in normal 

human fibroblasts, monitored as unscheduled DNA synthesis, was strongly induced by irradiation 

with UV-C (Roza et al., 1985), whereas NER-deficient hamster cells were reported to be 

dramatically more sensitive to UV-C induced apoptosis than proficient cells (Dunkem et al., 2001). 

Mutations in the mutS or mutL bacterial mismatch repair (MMR) genes, render the cells moderately 

sensitive to UV light (Mellon and Champe, 1996). In addition, UV-induced mutations are elevated 

in E. coli strains carrying mutS, mutL and m u tH  mutations (Liu et al., 2000). The increased 

sensitivity of yeast strains carrying mutation in both MMR and NER systems, compared with NER 

single mutants suggested that an MMR-dependent process could serve as an alternate, yet minor, 

pathway for the repair of UV damage in yeast cells (Bertrand et al., 1998). In addition, mutations in 

MSH2 or PMS2 genes, in cancer cell lines, were found to render human cells slightly more 

sensitive to UV light (Mellon and Champe, 1996; Mellon et al., 1996). Taken together, these 

results demonstrate an association between MMR proteins and the NER, and implicate the 

involvement of MMR enzymes in the repair of UV-induced DNA damage.

Nucleoside antimetabolites constitute one of the major groups of anticancer drugs, which 

are also able to cause serious DNA damage, inhibit replication and repair, alter cell cycle 

progression and cause apoptosis. As implicit in their name, these compounds owe their antitumour 

activity to an ability to masquerade as natural intermediates and thereby inhibit critical biochemical 

pathways, such as DNA or RNA synthesis. Two deoxycytidine analogues, 1-6-D-arabinofuranosyl- 

cytosine (araC) and 5-aza-2’-deoxycytidine are the drugs of choice in the treatment of acute 

myeloid leukaemias (Grant, 1998; Hatse et al., 1999).

AraC is efficiently phosphorylated by deoxycytidine kinase and incorporated into nuclear 

DNA in both human T-lymphoblastoid and Chinese hamster ovary cells (Zhu et al., 2000). 

Inhibition of DNA synthesis follows the incorporation of araC into growing DNA strands, 

whereupon the incorporated nucleotide analogue acts as a potent block to further chain elongation 

by purified DNA polymerases a ,  6 and e (Harrington and Perrino, 1995; Mikita and Beardsley,
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1988; Ohno et a l ,  1988; Parker and Cheng, 1987; Perrino and Mekosh, 1992; Townsend and 

Cheng, 1987). At concentrations that inhibit DNA synthesis, araC induces a dramatic accumulation 

of Okazaki fragments in leukaemia cells, implying that DNA polymerase elongation is seriously 

compromised in vivo by the incorporation of araC in the nascent DNA strand (Catapano et al., 

1991). However, despite being an inhibitor of DNA elongation, the incorporation of araC into 

newly synthesised strands does not terminate the production of full-length DNA, instead it is 

believed to cause a profound decrease in the rate of DNA synthesis and therefore replication (Wills 

et al., 1996; Wills et al., 2000). More interestingly, araC is responsible for a specific alteration in 

replication fork progression, affecting DNA synthesis on the two strands of the replication fork to a 

different extent, and causing an imbalance between leading and lagging strand synthesis. Analysis 

of newly replicated DNA, synthesised in the presence of this antimetabolite, revealed a greater 

inhibition of leading strand synthesis, compared with lagging strand synthesis (Carbone et al., 

2001). In addition to blocking semiconservative DNA synthesis, araC has also been reported to 

inhibit the polymerisation step during excision repair pathways (Fram and Kufe, 1985).

Although 5-azacytidine is another efficient anti-cancer drug, it shows high cytotoxicity at 

concentrations that do not inhibit DNA synthesis (Momparler and Goodman, 1977). When 

incorporated into DNA, this antimetabolite causes extensive hypomethylation in dividing cells. 

This is due to the covalent binding of DNA methyltransferase to 5-azacytidine incorporated into 

DNA (Juttermann et al., 1994; Santi et al., 1984). Treatment of mammalian cell lines with 5- 

azacytidine or its deoxyribose congener, 5-aza-2’-deoxycytidine, has resulted in a variety of altered 

phenotypes, including changes in chromosome structure, gene expression and cellular morphology 

(Parrow et al., 1989; Singal et al., 1997), and in the induction of apoptosis (Canova et al., 1998; 

Kajikawa et al., 1998; Kizaki et al., 1992).

DNA hypomethylation, induced by 5-azacytidine, may also have great impact on DNA 

repair, by affecting the strand discrimination step by MMR enzymes. In E. coli, adenine 

hemimethylation within GATC sequences provides the information that allows for strand 

discrimination. MutS, MutL and MutH act in coordinated fashion to make a single-strand nick at a 

hemimethylated GATC site in the newly replicated strand (Buermeyer et al., 1999). Given the 

similarities between both prokaryotic and eukaryotic MMR systems, there is at least the possibility 

that the process might also be methyl group-directed in eukaryotes (Bellacosa, 2001; Cleaver, 

1994). Alternatively, it has been proposed that mammalian strand discrimination relies on DNA 

termini generated at the replication fork, which may provide the strand-targeting signal in vivo. The 

proliferating-cell nuclear antigen (PCNA) might facilitate this process, by physically linking the 

replicative DNA polymerase with MMR proteins (Umar et al., 1996). Regardless of the nature of 

the strand discrimination signal in mammalian cells, it has been reported that promoter 

hypermethylation of MMR genes (Herman et al., 1998; Veigl et al., 1998) and mutations in 

methyl-CpG binding proteins are associated with microsatellite instability in humans (Bader et al., 

1999; Riccio et al., 1999).

Nonsteroidal anti-inflammatory drugs (NSAIDs) are well known cancer preventatives, 

which has been largely attributed to their antiproliferative and pro-apoptotic activities. Aspirin, in
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particular, has been reported to display profound antiproliferative effects on tumour cell lines, alter 

the cell distribution through the cell cycle phases and induce apoptosis (Arango et al., 2001; Li et 

a l ,  2000b; Ricchi et a l, 1997; Sheng et a l ,  1997; Shiff et a l ,  1995; Stark et a l, 2001). NSAID 

treatment of colon tumour cells results in a dramatic increase in arachidonic acid, which in turn 

stimulates the conversion of sphingomyelin to ceramide, a mediator of apoptosis (Chan et al.,

1998). Several epidemiological studies have shown that prolonged use of aspirin is associated with 

reduced risk of colorectal cancer by as much as 40-50% and it also appears effective in other 

gastrointestinal cancers, such as esophageal and gastric carcinoma as well as several other tumour 

types (Coogan et al., 1999; Cramer et al., 1998; Egan et al., 1996; Funkhouser and Sharp, 1995; 

Garcia-Rodriguez and Huerta-Alvarez, 2001; Schreinemachers and Everson, 1994; Suh et al., 

1993; Thun et a l ,  1993). The best-known mechanism of NSAIDs is the inhibition of 

cyclooxygenases, the enzymes that convert arachidonic acid to prostanoids in the inflammatory 

response (DuBois and Smalley, 1996; Gustafson-Svard et al., 1997; Lu et a l ,  1995; Xu et a l,

1999). Interestingly, it has been shown that tumours contain high-level expression of 

cyclooxygenase-2, which appears to inhibit apoptosis in colon carcinogenesis (Patrignani, 2000; 

Sano et al., 1995; Tsujii and DuBois, 1995). Western blot and immunocytochemical analyses of 

NSAID treated cell populations suggested that some pro-apoptotic proteins were markedly induced 

upon exposure to aspirin (Ruschoff et al., 1998). However, in contrast with araC and 5-azacytidine, 

aspirin was reported to reduce genomic instability. In particular, aspirin was reported to stabilise 

dinucleotide sequences in human cells carrying MLH1, MSH2 or MSH6 mutations (Ruschoff et al., 

1998). The stabilisation of the dinucleotide tracts was confined to non-apoptotic cells, while higher 

levels of microsatellite instability were still detected in apoptotic cells, which were eliminated from 

the growing population. It was concluded that aspirin reduces microsatellite instability by means of 

genetic selection (Ruschoff et a l,  1998).

Since the genotoxic agents described above, affect distinct aspects of the cellular 

metabolism, including cell cycle progression, DNA replication and repair, and induction of 

programmed cell death, we sought to investigate their effects on the dynamics of expanded 

CAG'CTG trinucleotide repeats carried by Dmt-D cultured cells, aiming to gain greater insight into 

the biology of triplet repeats, and in particular, into the possible modifiers of the mutation 

mechanism.

6.2. Results

6.2.1. Association between increased sensitivity to UV radiation and 
greater levels of trinucleotide repeat instability

If the mechanism of trinucleotide repeat mutation were strictly dependent on DNA 

replication and cell division, a tight correlation between the levels of repeat size variability and the 

rates of cell turnover in culture should be expected for the different cell lines established from Dmt-
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D mice. Nevertheless, the results presented in Chapter 3 reject such a simple association and 

suggest that factors, other than DNA replication, must be involved in the mechanism of 

trinucleotide repeat mutation. Being involved in the maintenance of genomic integrity, the multiple 

DNA repair systems might be considered as potential modifiers of repeat metabolism in vivo. To 

test this hypothesis, the sensitivity of two Dm t-D cell lines to UV-C radiation (A = 254 nm) was 

assessed. Assuming that greater survival to UV exposure is associated with higher DNA repair 

activity of UV-induced damage during cell cycle arrest (Weinert, 1998), the sensitivity of a cell 

line to UV damage might be considered as an approximate indicator of the efficiency of its DNA 

damage checkpoints, repair pathways, and/or efficiency of the MMR signalling cascade leading to 

apoptosis. The cells lines selected to perform this study were both derived from the same animal, 

yet from different tissues, exhibiting distinct levels of repeat length variability in culture: D2763L 

lung cells show low levels of repeat instability, whereas D2763K kidney cells exhibit greater levels 

of repeat size heterogeneity (Figure 3.4). Despite the differing degrees of repeat instability, both 

cell lines proliferated at identical rates, with a population doubling time of -30  hours (Table 3.2).

Three replicates of each cell line were exposed to increasing doses of UV-C light, ranging 

from 10 to 100 J/m2, allowed to recover for a period of time equivalent to one population doubling 

(-30 hours), to ensure that all cells underwent at least one cell cycle during this period. At the end 

of this period, cell survival was determined by the acridine orange and ethidium bromide method 

(Section 2.4.6). Both cell lines exhibited a rapid increase in the rate of cell death with greater doses 

of UV-C radiation (Figure 6.1). Kidney cells (D2763K), however, showed greater levels of cell 

death compared to lung cells (D2763L). A significantly ~3-fold higher cellular survival was 

detected in lung cells following an exposure to 20 J/m2 UV-C (p=0.0106, two-tailed r-test).

In summary, the results appear to suggest an association between greater levels of 

trinucleotide repeat instability and enhanced sensitivity to UV-C exposure. A  similar association 

between higher levels of repeat trinucleotide mutation in Dmt-D cultures and increased sensitivity 

to hydrogen peroxide was previously described for the same cell lines (Section 5.2.1).

6.2.2. Effects of exposure to UV radiation on the dynamics of 
expanded trinucleotide repeats

To test the involvement of the DNA repair systems in the molecular mechanisms driving 

trinucleotide repeat instability, DNA repair activity was induced by the exposure of Dmt-D cultured 

cells to UV-C radiation (Figure 6.2). Confluent cultures were irradiated with UV-C light (A = 254 

nm), resulting in a variable degree of cell death depending on the dose of UV-C light used. Once 

the cells reached confluency they were passaged as usual, and the cells plated on a fresh tissue 

culture dish were grown until they became 80-100% confluent, to be then subjected to a second 

UV-C exposure. The remaining cells, which were not seeded, were used to collect DNA and size 

the transgenic CAG’CTG repeats by sensitive SP-PCR techniques (Figure 6.2).

The effects of the exposure to UV-C radiation on the dynamics of expanded CAG'CTG 

trinucleotide repeats were initially investigated in two independent cell lines derived from the same
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Figure 6.1. Sensitivity of D/nt-D cultured cells to UV-C light exposure.
Three replicate Dmt-D lung and kidney cell cultures, derived from the same mouse, 
were exposed to increasing doses of UV-C radiation (X. = 254 nm), ranging from 5 
to 100 J/m2. The cells were initially washed in 1X PBS twice. The washing buffer 
was removed and the cells exposed to UV-C light in a Stratagene® UV crosslinker 
2400. Fresh growth medium was added to the cultures and the ceils were allowed 
to recover for 30 hours. The cell viability was measured by the acridine orange and 
ethidium bromide method and the percentage of survival was plotted as a  function 
of the dose of UV-C light the cells were exposed to. The graph shows a decrease 
in cell survival with increasing doses of UV-C radiation. D2763K kidney cells exhibited 
slightly greater sensitivity to UV-C light than D2763L lung cell cultures. The difference 
between the sensitivity of the two cell lines to UV-C radiation was statistically 
significant following an exposure to 20 J/m2 (*, p=0.0106, two-tailed f-test).

UV-C
exposure

1 week 30 hours

Figure 6.2.

1 week

Experimental design to assess the effect of UV-C light 
exposure on trinucleotide repeat dynamics in Dmt-D cultured 
ceils.
Dmt-D cell cultures (a) were grown to 80-100% confluency (b) 
in standard growth medium. The cells were then washed twice 
with 1X PBS prior to exposure to UV light. The washing buffer 
was removed and the cells exposed to 5, 10 or 20 J/m2 UV-C 
radiation (X, = 254 nm) in a Stratagene® UV crosslinker 2400 (b) 
and allowed to recover for a week in standard growth medium, 
following UV-induced cell death (c). Fresh medium was added 
to the cells every 2-3 days. Once the cultures became confluent 
(d), the cells were digested with trypsin, seeded at a ratio of 1:40 
and exposed to UV-C radiation when they reached 80-100% 
confluency once again. The remaining cells were collected and 
used to extract DNA, and to assess trinucleotide repeat variability 
by SP-PCR analysis (e).

SP-PCR
analysis

(e)
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six-month-old mouse: D2763L and D2763K cells (Figure 6.3). Both cell lines were exposed to 

20 J/m2 UV-C light for six consecutive times, resulting in great levels of cell death (~70-90%), 

significantly higher for the D2763K cell line. Interestingly, both the levels of repeat size variability 

and the average repeat size carried by D2763K kidney cells increased dramatically following the 

first UV-C exposure, compared to the control cells (Figure 6.3.A). Despite the great effect observed 

following the first exposure of kidney cells to UV light, lower levels of repeat length heterogeneity 

and lower average repeat numbers, identical to those found in control cultures, were detected 

following subsequent exposures (Figure 6.3.A). The surprising results obtained with the kidney cell 

line were not replicated with lung cell cultures. The exposure of D2763L lung cells, which exhibit 

intrinsically low levels of repeat size instability, failed to cause any obvious change in the repeat 

number profile detected by high DNA input SP-PCR analysis (Figure 6.3.B).

In an attempt to clarify these inconclusive results, a clonal kidney cell line (D2763Kc2, 

Figure 3.8.A) that carried rapidly expanding CAG*CTG repeats, was used in a very similar 

experimental approach. Given that 20 J/m2 UV-C is a high dose of radiation, which causes the 

death of more than 90% of kidney cells in culture (Figure 6.1), lower doses of radiation were used 

in subsequent assays. Two replicate cultures derived from the same progenitor cells were initially 

exposed to 5 J/m2 UV-C radiation three times as described in Figure 6.2. The repeat size variability 

was monitored following each exposure by SP-PCR analysis, and the repeat number profile 

observed after three exposures was compared to a control culture maintained for the same period of 

time under normal conditions (Figure 6.4). In contrast to the observations described for the 

D2763K cell line when exposed to 20 J/m2, the exposure of D2763Kc2 kidney cells to 5 J/m2 

UV-C light appeared to result in a decrease in the average repeat length. However, consistent with 

the results described previously, the effect observed following a single exposure to 5 J/m2 UV-C 

light was not replicated following subsequent exposures (Figure 6.4). In fact, a dramatic increase in 

the average repeat number was observed in both replicates following the second exposure to 5 J/m2, 

and no major differences between the repeat size variability in cells exposed to 5 J/m2 UV-C for 

three times and control cells was detected by high DNA input SP-PCR analysis. An apparent 

greater level of repeat size heterogeneity might have developed in UV-C exposed cells, compared 

to the final control culture. This result could have only been confirmed by single molecule analysis. 

Following three consecutive exposures to 5 J/m2 UV-C, the same cells were then exposed to 

10 J/m2 UV-C for three additional times, as described before, and the degree of trinucleotide repeat 

instability compared with a single final control (Figure 6.4). In agreement with the results 

previously described, the exposure of D2763Kc2 kidney cells to 10 J/m2 results in a decrease in the 

average repeat size and a simultaneous increase in the repeat length variability (Figure 6.4). 

However, similarly to the data presented above, consecutive exposures to 10 J/m2 UV-C failed to 

cause a progressive decrease in the average repeat size, or a continuous increase in the repeat 

number variability in culture (Figure 6.4). Nevertheless, the repeat profile detected in repeatedly 

exposed cells by high DNA input SP-PCR analysis, is clearly distinct from that exhibited by 

control cells; the former being characterised by a much lower average repeat number.
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Figure 6.3. UV-C exposure and expanded CAG-CTG repeat dynam ics in D2763K and 
D2763L cells.
The autoradiograhs show representative SP-PCR analyses of Dmt transgenic 
sequences extracted from kidney (A) and lung (B) cultured cells. The cells were 
exposed to 20 J/m2 of UV-C radiation (X = 254 nm) for six times, as described in 
Figure 6.2, and the trinucleotide repeat instability assessed by SP-PCR (panels E 
for D2763K cells). Control cells were maintained under standard growth conditions 
for the same period of time (panels C for D2763K cells). An average of 10 to 30 
transgene molecules from each cell sample were independently amplified in replicate 
reactions. The molecular weight markers are shown on the right, upon conversion 
into CTG repeat numbers. (A) D2763K kidney cells exhibited greater expansion- 
biased repeat size variability following the first exposure to UV light, compared to 
control cells. However, following subsequent exposures, the degree of repeat instability 
decreased to levels that were indistinguishable from those detected in control cultures.
(B) Two replicate cultures of D2763L lungs cells were exposed to UV-C light. No 
effect of UV-C exposure on trinucleotide repeat dynamics was detected.

186



Mario Gomes-Pereira, 2002 Chapter 6

A.

P rogenitor - 
culture 1

E x p o su res to 5 J /m 2 E x p o su res to  10 J /m 2

3 Control 1

618 -

5 01  -

V  I  m
284 -

234 -

168 -

I

% t * i

Final 
3 control

*

B.

618 -  

501 -

Progenitor -  
culture 1

E x p o su res to 5  J /m 2 E x p o su res to 10 J /m 2

3  Control 1
Final 

3 control

284 -

234 -

m

M » •  ■ •  ?lUf'Nii
‘  * !  •

i  : •  ,*» •
•:*! aillf 

|  ■ | f i #  *
# • •  at ( •

168 -

Figure 6.4. UV-C exposure and expanded CAG-CTG repeat dynamics in D2763Kc2 kidney 
cells.
The autoradiograhs show representative SP-PCR analyses of DNA samples extracted 
from D2763c2 kidney cells. Two replicate cultures (A and B) derived from the same 
progenitor culture were exposed to 5 J/m2 of UV-C radiation (k = 254 nm) for three 
consecutive times, as described in Figure 6.2, and the trinucleotide repeat instability 
assessed by SP-PCR techniques and compared with a control culture maintained 
under standard growth conditions for the same period of time. The same cells were 
subsequently exposed to 10 J/m2 for three times, and the trinucleotide repeat 
dynamics monitored by SP-PCR analysis and compared with a control culture grown 
for the same period of time under normal conditions (final control). An average of 
10 to 30 transgene molecules were amplified in independent reactions. The molecular 
weight markers, converted into CTG repeat numbers, are shown on the left. The 
initial exposure to 5 J/m2 and 10 J/m2 appear to induce a decrease in the average 
trinucleotide repeat size in cultured D2763Kc2 kidney cells. However, subsequent 
exposures failed to replicate the same effect.
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Changes in the mutation profile in culture might be caused by the preferential survival of 

cells carrying particular repeats sizes, which could be associated with mutations elsewhere in the 

genome, which not only control cell survival upon stress conditions, but also trinucleotide repeat 

metabolism. The repeats carried by the most resistant cells may either be longer than the average 

repeat size, which would give rise to an apparent overall repeat expansion, or shorter, which would 

result in an apparent overall repeat contraction. This hypothesis does not imply a progressive effect 

following repeated UV-C exposures, as observed. In this case the change in repeat number would 

take place in a cell division independent way, and over the first hours following the exposure to 

UV-C light, independently from the repeat size mutation trend (expansion or deletion). To test this 

hypothesis two replicate confluent cultures, derived from the same progenitor D2763Kc2 culture, 

yet at a later passage corresponding to an additional 130 population doublings, were exposed to 10 

J/m2. The cells were collected after a recovery period ranging from one hour to one week and the 

repeat size variability assessed by SP-PCR amplification. Unfortunately, the analysis failed to 

reveal any effect of UV-C exposure on the trinucleotide repeat profiles over time, as detected by 

high DNA input SP-PCR analysis (Figure 6.5). Ideally, this experiment should have been done 

with replicates of the D2763Kc2 culture previously studied, collected at an earlier stage, given the 

likelihood of continuous accumulation of mutations over time, which may interfere with the effects 

of UV light on trinucleotide metabolism (Figure 6.4).

In summary, UV-C exposure has little effect, if any, on the trinucleotide dynamics of stable 

expanded CAG'CTG repeats carried by D m t-D lung cells. In contrast, the dynamics of unstable 

CAG'CTG trinucleotides carried by D m t-D kidney cells is usually, but not always, affected by 

exposure to UV-C. However, the final trend in the repeat number change may differ between 

different cultures.

6.2.3. Inhibition of DNA damage checkpoint by caffeine induces 
greater levels of trinucleotide repeat instability

Caffeine is able to uncouple DNA repair and replication from the progression of the cell 

cycle (Lau and Pardee, 1982; Schlegel and Pardee, 1986). This is now known to be achieved by 

directly inhibiting ATM kinase activity (Blasina et a l,  1999). Progression through the G2/M DNA- 

damage checkpoint, before replication and repair are completed, inevitably leads to a general 

increase in the mutation rate. Thus, it is possible that “forced” progression through the cell cycle 

may also destabilise difficult to replicate expanded trinucleotide repeats. To test this hypothesis, 

Dmt-D cells were exposed to caffeine and the repeat size variability assessed by SP-PCR sensitive 

techniques at the end of the treatment.

D2763Kc2 kidney cell cultures were continuously exposed to 2 mM of caffeine for 130 

days and 80 population doublings, which resulted in an increase of 38% in the population doubling 

time compared to cells growing under standard conditions, in the absence of the drug (Table 6.1). 

Trinucleotide repeat size variability was assessed by SP-PCR techniques and compared to time and 

population doubling control cultures. High DNA input SP-PCR analysis revealed greater expansion
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Figure 6.5. Time course monitoring of the effects of UV-C radiation on the expanded 
CAG'CTG repeat dynamics in D2763Kc2 cells.
Two replicate D2763c2 kidney cell cultures (A and B) were exposed to 10 J/m2 UV- 
C radiation (X = 254 nm) and the cells collected following a recovery period varying 
from one hour to one week. Trinucleotide repeat size variability was monitored by 
SP-PCR analysis, and representative amplifications are shown in the autoradiographs. 
Two control cultures, consisting of cells grown under standard conditions for one 
week, were also used for DNA extraction and SP-PCR analysis. An average of 10 
to 20 molecules were amplified in independent reactions. The molecular weight 
markers, converted into CTG repeat number, are shown on the right side. Both 
replicates failed to reveal an apparent effect of UV-C exposure on the dynamics of 
transgenic CAG«CTG repeats.
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rates in caffeine treated cultures compared to both controls (Figure 6.6.A). To quantify the degree 

of repeat length variation, a statistical analysis was performed on the repeat numbers determined 

for a 20 to 50 individual transgene sequences collected from each replicate culture (Figure 6.6.B). 

The change in repeat number was determined for replicate cultures exposed to caffeine, corrected 

for both time and cell turnover, and compared to the closest control culture, in terms of time or 

population doublings, respectively. Caffeine treated cells exhibited a significantly higher median 

expansion rate compared to time and doubling control cultures (Table 6.1).

Table 6.1. Summary of the effects of multiple chemical treatments on the dynamics of 
expanded trinucleotide repeats in D2763Kc2 cells.
The table shows the time and number of population doublings (PD) of D2763Kc2 
cell cultures upon chronical exposure to several chemicals, and the consequent 
increase in the population doubling time (PDT). The median repeat gain was 
determined by single molecule SP-PCR analysis, corrected for both time and 
population doublings, and compared with the closest control cultures in terms of 
days and PD in culture, respectively (two-tailed Mann-Whitney U test).

Time
(days)

PD Increase 
In PDT

(%)

Median 
repeat 
gain 
per day

Two-tailed 
Mann- 
Whitney 
U test (p)

Median 
repeat 
gain 
per PD

Two-tailed 
Mann- 
Whitney 
U test (p)

Control 82 70 - 0.890 - 1.043 -

Control 97 82 - 0.887 - 1.050 -

Control 122 106 - 0.615 - 0.709 -

Caffeine 130 80 38% 1.006 0.0202 1.634 0.0453

AraC 95 71 13% 0.219 0.0082 0.293 0.0082

Continuous8
5-azacytidine

99 80 5% 0.461 0.0202 0.548 0.0202

Interrupted5
5-azacytidine

97 80 2.5% 0.547 0.0306 0.663 0.0453

Aspirin 99 80 5% 0.565 0.0453 0.699 0.0453

“Continuous 5-azacytidine: cells were treated with 10 /j M 5-azacytidine for 80 PD.
interrupted 5-azacytidine: cells were treated with 10 /jM 5-azacytidine for 40 PD, followed for a further 40 PD in 

the absence of the chemical.

To further test the effect of caffeine on the dynamics of expanded CAG'CTG repeats, 

replicate cultures derived from the D4132K cell line were exposed to 2 mM of caffeine for 19 

population doublings, over 95 days, resulting in a two-fold higher population doubling time (Table 

6.2). The D4132K cell line had only undergone a few population doublings (12 population 

doublings in 84 days) prior to caffeine treatment, thereby reducing the chances of accumulation of 

multiple genetic mutations elsewhere in the genome, which may affect the trinucleotide repeat 

metabolism and mask the effect of caffeine on the expanded CAG'CTG sequence dynamics.

190



Mario Gornes-Pereira. 2002 Chapter 6

A.
Control 

97 days, 82 PD
Continuous 5-azacytidine Interrupted 5-azacytidine

99 days, 80 PD 97 days, 80 PD
Aspirin 

99 days, 80 PD

$>3 1 2 3 4 5 6 1 2 3 4 5 6  1 2 3 4 5 6  1 2 3 4 5 6

Mi 951

iti |  ****** I

t o  * * * § *  n

-  618 
- 5 0 1

i
-  284 

i -  234

-  168

Control 
82 days, 70 PD

AraC 
95 days, 71 PD

Caffeine 
130 days, 80 PD

Control 
122 days, 106 PD

0) 3 1 2 3 4 5 6  1 2 3 4 5 6  1 2 3 4 5 6  1 2 3 4 5 6

I * : ■ 
**- *#**

<*

Ji
l l

IIP  *
■

* t j
■'C ' i

i
4

$

I r- * , « 
•

M iti*
•a |M

-'.t
&

rV

*

. * m.
is.

-  951

B.
</) 700 -
CO 600 -
0) 500 -
o 400 -
c5

n 300 -
E
3 200 -
Z 100 -

6 1 2 3 4 5 6 1 2 3 4 5 6

Control 
97 days, 82 PD

Cont. 5-azacytidine 
99 days, 80 PD

Inter. 5-azacytidine 
97 days, 80 PD

a> 700

S 600 -
S' 500 -  
O 400 -  

300 -  
|  200 - 
Z  1 0 0  -

O 3 
£ 3

6 1 2 3 4 5 6 1 2 3 4 5 6

Control 
82 days, 70 PD

AraC 
95 days, 71 PD

Caffeine 
130 days, 80 PD

^  ^  ^  E±3 ^

1 2 3 4 5 6

Aspirin 
99 days, 80 PD

1 2 3 4 5 6

Control 
122 days, 106 PD

Figure 6.6. Chemical treatm ent and expanded CAG*CTG repeat dynamics in D2763Kc2 
cells.
(A) The autoradiographs show representative SP-PCR amplifications of DNA samples 
extracted from replicate D2763Kc2 cells, cultured for 71-80 population doublings 
(PD) in the presence of 10 |iM 5-azacytidine (99 days; replicates labelled “continuous 
5-azacytidine”), 5.6 aspirin (99 days), 500 nM araC (95 days) and 2 mM caffeine 
(130 days); control cultures maintained for 82 (70 PD), 97 (82 PD) and 122 days 
(106 PD), and the progenitor culture, from which all cells were derived at day zero. 
Replicates labelled “interrupted 5-azacytidine” were exposed to 10 p,M 5-azacytidine 
for 40 PD, and then grown for a further 40 PD in the absence of the chemical. The 
molecular weight markers, converted into CTG repeat numbers, are shown on the 
right. (B) For the quantitative analyses an average of 20 to 50 alleles from each 
culture were individually sized. The boxplots show the degree of variation observed 
in treated and control cultures, as previously described (e.g. Figure 4.8). Statistically 
significant differences (p<0.05, two-tailed Mann-Whitney U test) in the median rates 
of expansion, corrected for time and population doublings, were observed for all 
treatments relative to both time and PD controls.
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Previous studies indicated that cell turnover is not the most critical factor underlying 

differences in expansion rates (Chapter 3), therefore the repeat length heterogeneity in treated 

cultures was compared with the repeat number variability in time control cultures maintained for 86 

days and 34 population doublings under normal growth conditions. The analysis revealed that 

cultures exposed to caffeine carried transgenic repeats that were on average longer than those found 

on control cells (Figure 6.7.A). The median repeat number for each culture were determined by 

single molecule analysis performed on 20 to 50 individual transgene sequences (Figure 6.7.B). As 

described previously for the D2763Kc2 clonal cell line, statistical analysis revealed that caffeine 

treatment resulted in a significant enhancement of the median repeat number change, relative to the 

time controls (Table 6.2). Nevertheless, it should be mentioned that in the case of replicate 1 the 

dramatic increase in repeat length is mainly mediated by the clonal expansion of mutant cells 

carrying extremely long repeats, which may exhibit enhanced resistance to caffeine (Figure 6.7.A, 

black arrowheads).

Table 6.2. Summary of the effects of multiple chemical treatments on the dynamics of 
expanded trinucleotide repeats in D4132K cells.
The table shows the time and number of population doublings (PD) of D4132K cell 
cultures upon chronical exposure to several chemicals, and the consequent change 
in the population doubling time (PDT). The median repeat change, corrected for 
days in culture, was determined by single molecule SP-PCR, and compared with the 
control cultures in terms of days and PD in culture, respectively.

Time
(days)

PD Change 
in PDT

(%)

Median repeat 
change per day

Two-tailed 
Mann-Whitney 
U test (p)

Control 86 34 - -0.0279 -

Caffeine 95 19 98% +0.0313 0.0131

Continuous8 5-azacytidine 86 34 0% -0.0313 0.9362

Interrupted115-azacytidine 81 34 -6% -0.0279 0.5752

Aspirin 93 34 8% -0.0382 0.5752

Continuous 5-azacytidine: cells were treated with 10 pM 5-azacytidine for 34 PD.
blnterrupted 5-azacytidine: cells were treated with 10 ^/M 5-azacytidine for 17 PD, followed for a further 17 PD in 

the absence of the chemical.

In conclusion, “forced” progression through the DNA-damage checkpoint induced by 

exposure to caffeine leads to enhanced levels of trinucleotide repeat instability, consistent with the 

accumulation of non-repaired DNA-replication slippage errors during mitosis.
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Figure 6.7. Chemical treatment and expanded CAG*CTG repeat dynamics in D4132K cells.
(A) The autoradiographs show representative SP-PCR amplifications of DNA samples 
extracted from replicate D4132K cells, cultured for 34 population doublings (PD) in 
the presence of 10 pM 5-azacytidine (86 days; replicates labelled “continuous 5- 
azacytidine”) and 5.6 pM aspirin (99 days). Replicates labelled “interrupted 5- 
azacytidine” were exposed to 10 pM 5-azacytidine for 17 PD, and then grown for a 
further 17 PD in the absence of the chemical. Six replicates were exposed to 2 mM 
caffeine for 19 PD (95 days). Control cultures maintained for 86 days (34 PD). The 
progenitor culture, from which all cells were derived at day zero is shown on the left. 
The molecular weight markers, converted into CTG repeat numbers, are shown on 
the right. Note evidence of clonal expansion in caffeine treated replicates (black 
arrowheads, ►). (B) For the quantitative analyses, an average of 20 to 50 transgene 
molecules from each culture were individually sized. The boxplots show the degree 
of variation observed in treated and control cultures, as previously described (e.g. 
Figure 4.8). Statistically significant differences (p<0.05, two-tailed Mann-Whitney U 
test) in the median rates of expansion, corrected for time and population doublings, 
were observed for caffeine treatment, relative to controls.
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6.2.4. Inhibition of DNA polymerase elongation step by araC is 
associated with lower levels of expansion-biased repeat 
instability

In addition to inhibiting ATM kinase activity and thereby bypassing the DNA damage 

checkpoint, caffeine has also been reported to inhibit replicative DNA synthesis in normal human 

fibroblasts, transformed hamster cells and human cancer cell lines, in which caffeine is capable of 

decelerating the progression through S phase (Deplanque et al., 2001; Deplanque et al., 2000). 

Therefore the effect of caffeine exposure on the stability of trinucleotide repeats may either be 

caused by the inhibition of cell cycle checkpoint and forced progression into mitosis, or by a more 

general effect of caffeine on DNA replication. To investigate the effects of DNA replication 

inhibition on the stability of CAG'CTG repetitive sequences, six replicate D mt-D kidney cultures 

derived from the D2763Kc2 clonal cell line, were exposed to 500 nM (Table 6.1) and the repeat 

variability was analysed at the end of the drug treatment, as previously described (Section 6.2.3). 

The analyses revealed an apparent fall in the average repeat number in araC treated cultures 

compared to both doublings and time controls (Figure 6.6.A). Single molecule SP-PCR 

amplification (Figure 6.6.B) and statistical analysis (Table 6.1) revealed a significant and dramatic 

~4-fold decrease in the median repeat gain in cell cultures grown in the presence of araC, compared 

to both controls.

The inhibition of DNA polymerase by araC may therefore cause a significant decrease in 

the expansion rate of rapidly expanding CAG*CTG unstable repeats.

6.2.5. Induction of DNA hypomethylation by 5-azacytidine and its 
consequences on the dynamics of CAG'CTG repeats

Striking correlations between repeat expandability, GC content and proximity to CpG 

islands have been previously reported in humans (Brock et al., 1999). A potential way in which this 

effect could be mediated is by DNA methylation at CpG dinucleotides. The nucleotide analogue 5- 

azacytidine is a potent inhibitor of CpG methylation in mammalian cells and results in global 

hypomethylation (Juttermann et al., 1994; Santi et al., 1983; Santi et al., 1984). In addition, the 

DNA methylation status also mediates changes in chromatin structure and may affect DNA-protein 

interactions, with consequences in gene expression and repair efficiency (Bird and Wolffe, 1999; 

Razin, 1998).

Given that the D m t 162 transgene derives from the human DM1 locus, the CAG'CTG 

trinucleotide repeats are flanked by a portion of a CpG island, which extends from the last intron of 

the human D M PK  gene to the first intron of the downstream SIX5 gene (Monckton et al., 1997). 

Adult D m t-D mice exhibit high levels of methylation in the flanking region of the transgenic 

repeat, which possibility accumulates in an age-dependent manner (G J. Brock and D.G. Monckton, 

personal communication). Therefore, exposure of D m t-D mouse cells to 5-azacytidine presents a
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valid approach to assess the potential genotoxic effect of this chemical, and more generally, of 

DNA methylation as a modifier of trinucleotide repeat dynamics.

In order to test the effect of global genomic hypomethylation on the stability of expanded 

CAG'CTG repetitive sequences, six replicate D2763Kc2 cell cultures were exposed to 10 pM 5- 

azacytidine (Table 6.1) and their repeat size variability assessed by SP-PCR analysis and compared 

with the repeat profile in six control cultures, as previously described (Section 6.2.3). High DNA 

input SP-PCR analysis appeared to indicate an apparent decrease in the average size of the 

transgenic repeat tracts in cells exposed to 5-azacytidine (Figure 6.6.A), despite the accumulation 

of a few cells carrying very long repeats (~550 CTG units) in some of the replicates (particularly 

replicates 5 and 6, Figure 6.6.A). Single molecule analysis was carried out in order to quantify the 

effect of 5-azacytidine treatment on the mutation rate of CAG'CTG repeats in this cell line (Figure

6.6.B), and the expansion rates determined and corrected for both time and population doublings 

(Table 6.1). Statistical analysis also revealed significantly lower expansion rates in 5-azacytidine 

exposed cultures, when compared with time and doubling controls (Table 6.1).

The adducts formed between DNA methyltransferase and genomic DNA with 5- 

azacytidine substitution can sterically inhibit DNA replication, transcription and DNA repair, and 

may induce mutagenesis in mammalian cells (Amacher and Turner, 1987; Bender et al., 1998; 

M cGregor et al., 1989). 5-Azacytidine has also the ability to disturb chromatin condensation in 

treated cells mainly in heterochromatic regions (Takahashi-Hyodo et al., 1999). Since 5- 

azacytidine is randomly incorporated into genomic DNA during replication, it may also be 

incorporated within the CAG*CTG transgenic sequence. Therefore, the possibility exists that 5- 

azacytidine may interfere with the physical properties of the repetitive DNA tract, possibly 

affecting alternative non-B-DNA conformations, which may be formed within the trinucleotide 

sequence, and consequently the trinucleotide repeat dynamics (Chapter 4). A second approach was 

consequently followed to determine the effects of genomic hypomethylation caused by exposure to 

5-azacytidine on repeat instability, minimising the structural consequences of 5-azacytidine 

treatment on chromatin structure. D2763Kc2 cells were initially cultured in the presence of 10 pM 

5-azacytidine for 40 population doublings. Following this initial exposure to the drug, which 

should have caused extensive genomic hypomethylation, the same cultures previously analysed, 

were grown for a further 40 population doublings in standard growth medium, in the absence of the 

cytidine analogue (Table 6.1, “Interrupted 5-azacytidine”). During this period cytosine nucleotides 

should replace unmethylated 5-azacytidine previously incorporated into the genomic DNA and 

remain unmethylated. Following the last 40 population doublings in culture, DNA chromatin 

structure should no longer be affected by the formation of adducts between 5-azacytidine and 

methyltransferase. Instead, physical properties of DNA should now only depend on its methylation 

status, rather than on the incorporation of toxic nucleotide analogues.

The repeat size variability in culture was assessed following this short-term treatment, and 

compared to control cultures, grown in the absence of 5-azacytidine for 80 consecutive population 

doublings (Figure 6.6.A). High DNA input SP-PCR showed an apparent decrease in average repeat 

size in replicate D2763Kc2 cultures, temporarily exposed to 5-azacytidine. This result was
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confirmed by single molecule analysis (Figure 6.6.B), and proved statistically significant (Table 

6.1).
When the expansion rates were compared between D2763Kc2 cultures exposed to 5- 

azacytidine for 80 population doublings, to those determined for cultures temporarily treated with 

the chemical for the first 40 population doublings, the analysis failed to reveal statistically 

significant differences (p=0.3785, two-tailed Mann-Whitney U  test). This result supports the 

hypothesis that the lower expansion rates observed in D m t-D cells are correlated to the DNA 

hypomethylation status, rather than the incorporation of a nucleotide analogue into the genomic 

DNA per se. However, no comparison was performed between the final mutation profiles and the 

intermediate time point, at which 5-azacytidine was removed from the medium. This analysis 

should give some insight into trinucleotide repeat dynamics over the last 40 population doublings 

in culture, in the absence of 5-azacytidine.

As previously described for caffeine treatments, the effects of genomic hypomethylation on 

trinucleotide repeat metabolism were also studied in D4132K kidney cells. Six D4132K replicate 

cultures were continuously or temporarily exposed to 5-azacytidine (Table 6.2) and the repeat size 

variability in culture analysed and quantified as previously described (Figures 6.7). Despite the 

higher median rate of repeat contraction exhibited by D4132K cells exposed to 5-azacytidine, 

either continuously or temporarily, relative to control cultures, the difference lacked statistical 

significance (Table 6.2). As observed with D2763Kc2 cells, the median repeat change in D4132K 

was not significantly different between cultures continuously exposed to 5-azacytidine and 

replicates only treated over the initial 17 population doublings in culture (p=0.4712, two-tailed 

Mann Whitney U test).

Concluding, the exposure of Dmt-D cells carrying rapidly expanding CAG'CTG repeats to 

5-azacytidine caused a statistically significant decrease in the median repeat gain. On the other 

hand, the effects of 5-azacytidine treatments on slowly contracting CAG*CTG repeats carried by 

D4132K cells were not as clear, and lacked statistical significance.

6.2.6. The effects of aspirin exposure on the dynamics of expanded 
CAG*CTG repeats

NSAIDs, such as aspirin and sulindac, have previously been demonstrated to suppress the 

mutator phenotype associated with hereditary nonpolyposis colorectal cancer. Treatment of cell 

lines with known mutations in the MMR pathway with aspirin and sulindac reduced the 

microsatellite repeat instability normally associated with such cells. Aspirin is known to reduce the 

proliferative capacity of cell lines, produce a build up of cells at the Go/Gi boundary and induce 

apoptosis (Ruschoff et al., 1998). Given the established link between microsatellite instability and 

NSAIDs, aspirin would appear to be an excellent candidate chemical agent that might affect the 

metabolism of expanded triplet sequences.

Replicate cultures, derived from the D2763Kc2 cell line, were exposed to 5.6 pM (1 

pg/ml) aspirin (Table 6.1) and repeat size variability was assessed by SP-PCR techniques (Figure
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6.6.A). The analysis showed an apparent reduction in the repeat expansion rate in cells cultures 

treated with aspirin (Figure 6.6.A). The significance of this result was confirmed by accurate single 

molecule sizing (Figure 6.6.B) and statistical analysis (Table 6.1). When replicate cultures of 

D4132K kidney cells were subjected to the same treatment (Table 6.2), a greater median rate of 

contraction was detected in aspirin treated cells (Figure 6.7) relative to control cultures, however 

the difference was not statistically significant (Table 6.2).

In summary, despite not being totally conclusive, the results described above suggest a 

possible stabilising effect of aspirin on rapidly expanding trinucleotide repeat tracts carried by 

Dmt-D kidney cultured cells.

6.3. Discussion

The lack of correlation between cell division rates, as assessed by population doubling 

time, and the levels of trinucleotide repeat instability in Dmt-D cultured cells (Chapter 3), implies 

that pivotal factors, other than DNA replication and cell division, must affect the dynamics of 

expanded repetitive sequences. The threat of excessive genetic changes needs constant attention as 

DNA becomes damaged by inherent errors in processes such as DNA replication, as well as 

through genotoxic stress from reactive cellular metabolites and exogenous stimuli (e.g. ionising 

radiation, UV light, chemical mutagens). Mammalian cells cope with the required monitoring and 

maintenance of genomic integrity by means of a complex network of DNA repair pathways and 

cell cycle checkpoints (Bartek and Lukas, 2001). In the view that the DNA repair mechanisms, 

associated with cell cycle checkpoints, are essential for the safeguard of genome integrity and DNA 

stability, it is conceivable that disruption of cell cycle progression, particularly of checkpoint 

controls, may have dramatic effects on the dynamics of inherently unstable trinucleotide repeats.

In an attempt to correlate the DNA repair efficiency with the levels of trinucleotide 

instability exhibited by D m t-D cultured cells, the survival response of two cell lines derived from 

the same mouse was determined following exposure to UV-C radiation. The results suggested a 

parallel between higher levels of repeat instability in culture and greater sensitivity to UV light. If 

the increased death rates in kidney cells result from the accumulation of DNA damage, due to 

inefficient DNA repair, the differences between the two cell lines studied are consistent with an 

association between competent repair pathways and trinucleotide repeat stability. Alternatively, the 

greater survival of D m t-D lung cells following exposure to UV light, might be due to the 

dysfunction of the apoptotic cascade (Van Sloun et al., 1999), perhaps caused by an alternative 

MMR repair mechanism (Buermeyer et al., 1999). Since mutations in mouse MMR genes, such as 

Msh2, Msh3 and Pms2, and have been associated with reduced levels of somatic mosaicism 

(Manley et al., 1999b; van Den Broek et al., 2002; Chapter 8), it is reasonable to speculate that the 

greater trinucleotide stability in D m t-D lung cells may be correlated with MMR mutations 

accumulated by this cell line, which would simultaneously explain greater survival to UV radiation 

and hydrogen peroxide, due to impaired activation of the apoptotic signal (Section 5.2.1).
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UV light exposure induces cell cycle delay and activates DNA repair, primarily the NER 

pathway (Eckardt-Schupp and Klaus, 1999), therefore affecting DNA metabolism. To analyse the 

possible link between UV exposure and trinucleotide repeat dynamics in closer detail, Dmt-D cells 

were exposed to UV-C radiation, and the repeat size variability assessed by SP-PCR sensitive 

techniques. UV exposure resulted in altered repeat profiles, particularly in Dmt-D kidney cells that 

had previously exhibited high mutation rates under normal growth conditions. In contrast, Dmt-D 

lung cells, carrying stable transgenic sequences, failed to show any change detectable by SP-PCR 

techniques. Amongst the D m t-D kidney cell lines analysed, the mutation trend, induced by UV 

exposure, varied between experiments, possibly indicating that it may be determined by the UV 

fluence used and nature of the cell line studied. While low doses of UV light (5 and 10 J/m2) 

appeared to induce an overall reduction in the average repeat number, higher UV fluences (20 J/m2) 

generated a dramatic expansion of the transgenic tract in Dmt-D cells after a single exposure. The 

contradictory results may be explained by different cellular responses stimulated by exposure to 

UV light. On one hand, low doses of UV-C radiation may primarily stimulate DNA repair 

mechanisms, mainly the NER pathway, which might alter the repeat dynamics in culture, through 

the alternative processing of mutation intermediates. On the other hand, higher levels of radiation 

may trigger an apoptotic pathway, leading to cell death and to changes in the repeat numbers 

detected in cultured cells, due to the preferential survival of cell subpopulations, which happen to 

carry a particular repeat size, either shorter or longer than the average. In addition, upon irradiation 

with high doses of UV (50-100 J/m2), p53 activates transcription of the human mismatch repair 

gene M SH2  (Scherer et al., 2000), and mutations in msh2 increase the UV sensitivity of NER 

deficient yeast strains (Bertrand et al., 1998). Studies of photoproduct binding by the human 

MHS2-MSH6 heteroduplex have demonstrated specific binding to a variety of mismatched CPDs 

and 6-4PP, but not to matched photoproducts (Mu et al., 1997; Wang et a l ,  1999a). MMR might 

therefore mediate the repair of UV-induced lesions when error-prone DNA synthesis passes UV 

photoproducts, producing photoproduct/base mismatches, in which damaged nucleotides are 

superimposed on mismatches (Liu et al., 2000). If mouse Msh2-Msh6 heteroduplexes were 

involved in the excision of incorrect bases, inserted in nascent strands opposite photoproducts, 

altered levels of repeat length variability would be expected following UV exposure, given the 

reported roles of Msh2 and M sh6  as modifiers of trinucleotide repeat somatic mosaicism (Manley 

et al., 1999b; van Den Broek et al., 2002).

Interestingly, even when the dynamics of the repetitive transgenic tract was affected by UV 

radiation, the effect was not progressive and revealed to be more pronounced after a single 

exposure than following subsequent UV treatments. If a hypothetical radiation-induced repair 

pathway were permanently activated in culture, and inherited through cell division {e.g. epigenetic 

modification), this could possibly explain the absence of a progressive effect in cultures 

successively exposed to UV-C radiation. There is indeed evidence that a radiation-induced signal, 

which causes tandem repeat mutation in the mouse germline, is itself transmissible from parent to 

offspring, leading to the appearance of radiation-induced mutants in the germline of the unexposed 

progeny of irradiated mice (Dubrova et al., 2000).
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Complex mechanisms of adaptation exhibited by cells treated with UV might have 

accounted for the peculiar mutation profile exhibited by D2763K kidney cells. When repair of UV- 

induced lesions fails, the damaged cell may eventually resume its cell cycle, a phenomenon termed 

adaptation (Weinert, 1998). The generation of sufficient UV dimers to block the expression of 

genes involved in cell cycle arrest, such as p21, may mediate this process (McKay et al., 1998). 

Assuming that D2763K cells exposed to one dose of 20 J/m2 had the ability to adapt to UV 

exposure, the increased levels of expansion-biased trinucleotide repeat instability detected might be 

caused by the opportunity given to damaged cells to survive and generate genetically altered 

progeny. However, upon a second exposure to UV light these cells may accumulate numerous 

DNA lesions, so many that they become incompatible with cell survival, and the cells eventually 

die and are eliminated from the culture. Only the cells that did not show the capacity to adapt in the 

first place, and instead repaired their DNA, would be able to survive consecutive UV exposures, 

explaining the re-establishment of levels of repeat size variability identical to those of the 

progenitor cells, in cultures continuously exposed to UV light. The unusual response of D2763K 

cells to UV exposure could only be accounted for by adaptation, if the cells present in the original 

culture exhibited a considerable degree of variability in terms of their response to UV-induced 

lesions.

In summary, UV-C light may directly affect the repeat metabolism, maybe through the 

induction of DNA lesions and consequent activation of DNA repair pathways, which may lead to 

alternative processing of mutation intermediates. Alternatively, apparent changes in the 

trinucleotide repeat profile might be mediated by the preferential death of cells carrying particular 

repeats lengths. It should however be mentioned that while providing some insight into the 

mechanism of trinucleotide repeat biology, the exposure of D m t-D cells to UV-C cells has little 

biological significance, as UV-C is effectively absorbed by the atmosphere.

Since altered trinucleotide repeat profiles were detected in Dmt-D cultured cells following 

DNA damage and cell cycle arrest, induced by exposure to UV light, disturbance of the cell cycle 

checkpoints may affect the dynamics of expanded CAG'CTG trinucleotide repeats. Forced 

progression of cultured cells through the G2/M DNA damage checkpoint led to a significant 

increase in the rates of trinucleotide repeat expansion in both cell lines studied. Despite the 

dramatic increase in the population doubling time in the presence of caffeine, the appearence of 

longer alleles in the presence of caffeine is consistent with the accumulation of non-repaired DNA 

replication slippage errors during mitosis, due to checkpoint override. Caffeine primarily inhibits 

the G2/M checkpoint, whose general purpose is to allow cellular recovery from DNA damage and 

prevent cell division in the presence of DNA damage (Blasina et al., 1999). Structures in the 

replication complex or unreplicated DNA may send biochemical signals to inhibit mitotic entry 

(Elledge, 1996). Since CAG'CTG repeats can adopt non-B-DNA conformation (Chastain et al., 

1995; Pearson and Sinden, 1996; Pearson and Sinden, 1998a; Pearson and Sinden, 1998b; Sinden,

1999) and inhibit DNA polymerisation in vitro (Kang et al., 1995b), it is reasonable to assume that, 

if these unorthodox DNA structures also exist in vivo, they may trigger a biochemical signal that 

arrests cell cycle progression, allowing the cell to repair its DNA. Treatment with caffeine may
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inhibit such a checkpoint and induce the accumulation of mutations within the trinucleotide 

repetitive tract, which may presumably result from the inability to correct and convert loop-outs 

and hairpins formed within the transgene, into more conventional B-DNA structures.

Despite being forced to enter mitosis, cell populations exposed to caffeine still grow slower 

than controls, given the inhibitory effect of caffeine on DNA replication (Deplanque et al., 2001; 

Deplanque et al., 2000) or the high apoptotic levels induced by the continuous accumulation of 

replication errors and double strand breaks (Norbury and Hickson, 2001). Therefore, the effects of 

caffeine on the dynamics of CAG'CTG repeats may be alternatively explained by the decreased 

rate of DNA replication, and slowing down of the S phase of the cell cycle.

However, when DNA replication was decelerated by exposure to araC, which does not 

induce checkpoint override, D m t-D kidney cells exhibited lower levels of repeat expansion than 

those observed in control cultures, in contrast with the results described for caffeine treated cells. 

This result suggests that the changes in CAG'CTG repeat dynamics detected in cells exposed to 

caffeine cannot be explained by a slow cell progression through the S phase of the cell cycle. 

Instead, the increase in the rates of expansion observed in cells treated with caffeine may be 

intimately connected with the override of the G2/M DNA damage checkpoint.

The uncoupling of the DNA synthesis on the two strands, induced by araC treatment, 

generates asymmetric replication forks, with areas of single stranded DNA corresponding to the 

site of blockage of DNA synthesis on the leading strand. This phenomenon may have biologically 

relevant consequences. The imbalanced DNA synthesis induced by araC is often associated with 

the generation of genomic instability (Carbone et al., 2001).

The cytidine analogue may affect the repeat metabolism by means other than the slowing 

down of DNA replication per se. T-lymphoblastoid cell lines incorporate araC into their DNA, not 

only by replication DNA synthesis, but also by repair synthesis. In fact, this cytosine analogue is 

incorporated into repairing DNA to a greater extent than into the replicating DNA of proliferating 

cells (Iwasaki et al., 1997). Indeed, araC is known to sensitise murine and human cells to a variety 

of mutagens, including radiation and radiomimetic compounds. This sensitisation is due to the 

ability of araC to act as a cytosine analogue and to inhibit DNA synthesis during DNA repair (Fram 

and Kufe, 1985). It is therefore reasonable to assume that the inhibition of DNA repair may, at least 

in part, account for the changes in the expansion rates observed in the presence of araC, again 

suggesting that the repair mechanisms have a dramatic impact on the mutation mechanism of 

expanded trinucleotide repeats.

While araC is incorporated into DNA to a limited extent, because of its inhibitory effect on 

DNA synthesis, 5-azacytidine is extensively incorporated into newly synthesised DNA strands. 

Previous correlations were reported between trinucleotide repeat instability, GC content and 

proximity to CpG islands (Brock et al., 1999). A potential way in which this effect could be 

mediated is by DNA methylation at CpG dinucleotides. When exposed to 5-azacytidine, at 

concentrations that do not affect cell proliferation as assessed by the population doubling time, 

D2763Kc2 cultures exhibited a reduction in the median rates of trinucleotide repeat expansion, 

relative to the control cells. The results presented here indicate that DNA methylation may act as a

200



Mario Gomes-Pereira, 2002 Chapter 6

modifier of trinucleotide repeat instability in vivo and raise the possibility that it may also account 

for interlocus differences and tissue-specific patterns of somatic mosaicism. Given the major 

impact of DNA methylation on DNA metabolism, there are several mechanisms by which 

hypomethylation, induced by 5-azacitidine, may stabilise the trinucleotide repeat tract. Methylation 

plays a pivotal role in establishing and maintaining the inactive state of a gene by rendering the 

chromatin structure inaccessible to the transcription machinery (Bird and Wolffe, 1999; Razin,

1998). Therefore, DNA hypomethylation induced by 5-azacytidine leads to the expression of 

previously silent genes (Bird and Wolffe, 1999; Momparler and Bovenzi, 2000). Methylation of the 

promoter region of the mismatch repair gene MLH1 correlates with its lack of expression in 

primary colon tumours, whereas normal adjacent tissue and colon tumours that expressed this gene 

did not show signs of MLH1 promoter methylation (Veigl et al., 1998; Wheeler et al., 1999a). 

Expression of MLH1 in colorectal cancer cells was restored after treatment with 5-aza-2’- 

deoxycytidine (Deng et al., 1999; Herman et al., 1998). Similarly, both MHS6 mRNA and protein 

levels were increased by 5-azacytidine treatment in human cell lines that did not express detectable 

levels of M SH6 (Bearzatto et a l,  2000). Therefore, MSH6 joins MLH1 MMR gene as a potential 

candidate gene whose expression can be reactivated by hypomethylation (Bearzatto et al., 2000). 

The possibility of enhanced expression of Msh6 in D2763Kc2 cells upon 5-azacytidine exposure is 

of particular interest, since Msh6 acts as an inhibitor of trinucleotide repeat somatic mosaicism (van 

Den Broek et a l , 2002), and may therefore be correlated with the stabilisation of the transgenic 

tract observed in these cells. 5-Azacytidine may affect the efficiency of the MMR pathway, not 

only by reactivating dormant genes, but also by interfering with the mechanism of strand 

discrimination. In E. coli DNA MMR is directed to the newly synthesised strand due to its transient 

lack of adenine methylation (Modrich, 1997). Although the nature of the strand signal has not been 

identified in any eukaryotic organism, heteroduplex DNA containing a site-specific incision is 

subject to mismatch-provoked, strand-specific repair by human cell extracts. Following DNA 

replication, mammalian DNA is characterised by a transient, strand-specific CpG hemimethylated 

parental strand. Cytosine hemimethylation within CpG sites may represent an analogous 

mechanistically plausible means of targeting mismatch correction (Cleaver, 1994). In an effort to 

identify human proteins that may mediate strand discrimination during MMR, methyl-CpG binding 

endonuclease 1 (MED1) was identified through its interaction with MLH1 protein in a yeast two- 

hybrid system analysis (Bellacosa et al., 1999). MED1 binds with different affinity to methylated 

and hemimethylated CpG sequences, hence discriminating between the two methylation status. 

Furthermore, deletion of the methyl-CpG binding domain of MED1 is associated with 

microsatellite instability (Bellacosa et al., 1999). MED1, also known as MBD4 (methyl-CpG 

binding domain 4), has also been identified in mice, binding specifically to methyl-CpG in vitro 

and in vivo (Hendrich and Bird, 1998). Similar to the bacterial methyl-directed reaction, strand 

specificity in human MMR could be mediated, at least in part, by MED 1-dependent recognition of 

transiently hemimethylated CpG sites generated after DNA replication (Bellacosa et al., 1999). 

However, neither hemimethylation nor full methylation at CpG sequences was found to have an 

effect on the magnitude or rate of correction of mismatched simian virus 40 (SV40) DNA
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molecules by nuclear extracts, prepared from HeLa cells, questioning a possible role of DNA 

methylation in eukaryotic strand discrimination (Drummond and Bellacosa, 2001). Nevertheless 

DNA methylation has been reported to play an important role in maintaining genomic integrity 

(Chen et al., 1998b). If we assume that DNA methylation has some influence on MMR efficiency, 

the reduced repeat instability detected in Dmt-D kidney cells upon exposure to 5-azacytidine might 

be mediated by the lack of repair activity on mismatches, possibly generated by replication 

slippage (Manley et al., 1999b; van Den Broek et al., 2002; Chapter 8).

Nevertheless, other factors must also be considered. By modifying the DNA methylation 

status, the incorporation of 5-azacytidine into genomic DNA can also change the chromatin 

structure and the physical properties of DNA, as well as the protein/DNA interactions (Hendrich et 

al., 1999; Hendrich and Bird, 1998; Takahashi-Hyodo et a l ,  1999). All these modifications may 

account for the effects of 5-azacytidine on the dynamics of triplet repeats. However, if the 

decreased levels of repeat instability in Dmt-D cultures cells treated with 5-azacytidine were the 

direct consequence of the incorporation of this antimetabolite, rather than the outcome of 

hypomethylation, a greater effect would be expected in cells continuously exposed to the chemical, 

compared to cells that were only temporary treated. That was not the case, as both treatments, 

resulted in sim ilar rates of expansion, both significantly lower than in the controls. 

Hypomethylation per se can also affect chromatin structure and protein accessibility (Kass et al., 

1997; Razin, 1998). DNA structural changes, and altered DNA/protein interactions induced by 

global genomic hypomethylation may therefore account for the decreased rate of expansion 

observed in treated cells.

In addition, both araC and 5-azacytidine have minor effects on topoisomerase activity. 

Once incorporated into the DNA, 5-azacytidine may change the topoisomerase II cleavage sites, 

altering the binding and activity of this enzyme (Jablonka et al., 1985; Jackson-Grusby et al., 1997; 

Jones and Taylor, 1980; Lopez-Baena et al., 1998; Santi et a l ,  1983; Takahashi-Hyodo et a l,

1999). AraC traps the topoisomerase I cleavage complexes, preventing the DNA religation step 

(Pourquier et al., 2000). Since topoisomerases appears to be key mediators of trinucleotide repeat 

somatic mosaicism (Chapter 4), the stabilising effect of both cytidine analogues on expanded triplet 

repeat sequences may be explained by a reduced activity of topoisomerase activity. Similarly, the 

outcome of UV exposure on the dynamics of unstable trinucleotide repeats may be intimately 

associated with modifications of DNA topology. A subset of proteins likely to be involved in the 

repair of UV photolesions are redistributed along the chromatin upon UV irradiation, being 

translocated from a loose to tight association with genomic DNA (Otrin et al., 1997). This may 

influence the DNA topology and therefore the dynamics of expanded CAG'CTG repeats in Dmt-D 

cultured cells (Chapter 4).

In addition to all the mechanisms by which the genotoxic discussed above may modify the 

dynamics of trinucleotide sequences, apoptosis may also play a role, determining which cells 

survive and pass their genetic information onto the progeny. NSAIDs, including aspirin, inhibit the 

growth of tumour cells, through the induction of apoptosis and inhibition of DNA replication. 

Nevertheless, inhibition of DNA replication must play a minor role, as DNA synthesis in
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carcinoma cell lines and Swiss 3T3 mouse fibroblasts never dropped below 50% of that in controls, 

when treated with doses similar to those used in this study (Castano et al., 1997; Ricchi et al., 

1997; R ichter et al., 2001). D2763Kc2 kidney cells chronically exposed to aspirin, at 

concentrations that did not inhibit cell proliferation, as assessed by population doubling times, 

showed a significant reduction in the expansion rates of expanded CAG*CTG trinucleotide 

sequences. However, the exposure of D4132K cultures, failed to reveal a significant effect on the 

dynamics of the transgenic repeats. Interestingly, aspirin also stabilises microsatellite sequences in 

tumour cell lines derived from HNPCC patients carrying mutations in one of the following MMR 

genes: MLH1, MSH2 and MLH6 (Ruschoff et al., 1998). Despite the reduction in the proliferative 

rates in aspirin treated cells and the altered cell cycle distribution, the reduction in dinucleotide 

frequency of mutation cannot be a mere consequence of reduced proliferation rate, as no significant 

changes in the frequency of microsatellite instability was detected when slowly growing serum- 

starved cells were compared with cells growing under standard conditions (Ruschoff et al., 1998). 

Moreover, the amount of aspirin that Dmt-D cells were exposed to, although sufficient to stabilise 

expanded trinucleotide repeat tracts, did not affect the population proliferation rates, as assessed by 

population doubling times. Rather than being mediated by a slow growth rate, the stabilisation of 

dinucleotide and trinucleotide microsatellites by aspirin might be due to the induction of apoptosis, 

which mediates a genetic selection for microsatellite stability (Ruschoff et al., 1998). The 

mechanism underlying such selection is currently unknown, and levels of apoptosis should be 

measured in Dmt-D cells in order to confirm the basis for the trinucleotide stabilisation by aspirin 

in these cultures. If increased apoptotic levels were confirmed in Dmt-D cells exposed to aspirin, 

one could speculate that aspirin might alter the recognition of the threshold of genetic instability, as 

well as the subsequent apoptotic decision, and trigger apoptosis in cells that exhibit higher levels of 

trinucleotide repeat instability, thereby selecting for cells that carry stable repeat tracts.

It has been recently reported that aspirin inhibits hydrogen peroxide-induced DNA strand 

breaks in plasmid DNA (Hsu and Li, 2002). Possibly, the inhibition of oxidative DNA damage by 

aspirin in Dmt-D mouse cells may also contribute to the stabilisation of trinucleotide repeat tracts 

in culture.

The expression of a large number of genes (more than 170), associated with transcription, 

signal transduction, cell cycle regulation and apoptosis is influenced by aspirin in colon cancer cell 

lines (Iizaka et al., 2002), making it very difficult to pinpoint the actual cause of the stabilisation of 

expanded CAG'CTG repeats in cultured Dmt-D kidney cells. MMR gene expression (Iizaka et al., 

2002) and protein levels (Ruschoff et al., 1998) could not account for the microsatellite 

stabilisation observed, eliminating expression compensation as the cause of the effect observed. 

Nevertheless, altered expression of unidentified genes was reported upon aspirin treatment (Iizaka 

et al., 2002), and the possibility exists that these may either indirectly affect or be involved in DNA 

repair.

It is worth noting that the lack of statistical significance in the results presented for the 5- 

azacytidine and aspirin treatments on D4132K cultures may be explained by the intrinsic behaviour 

of the repeats in these cells. First, the repeats carried by this cell line do not show a tendency for
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rapid expansion, as the repeats in the D2763Kc2 cell line. Second, the transgenic alleles carried by 

D4132K cells fall into two distinct peaks of repeat length variability. Therefore, only an extensive 

single molecule analysis, performed for each one of the two cell subpopulation observed, could 

resolve the problem and clarify the effect of 5-azacytidine and aspirin, if any, on the dynamics of 

the expanded CAG'CTG repeats carried by the D4132K cell line.

In summary, drug treatments that resulted in checkpoint override resulted in destabilisation 

of trinucleotide repeats, whereas, treatments that slowed down cell proliferation by inhibition of 

DNA replication, were associated with the stabilisation of the repetitive tracts. Global genomic 

hypomethylation was also found to stabilise trinucleotide repetitive tracts, as well as exposure to 

aspirin. Taken together, the results presented here provide strong evidence for the involvement a 

complex network of factors, acting either in trans  or cis, in the molecular mechanism of 

trinucleotide repeat mutation. Whatever the precise mechanism of action, some environmental 

agents destabilise trinucleotide repeat tracts and induce enhanced levels of repeat instability. If a 

similar scenario occurred in humans, environmental agents might possibly accelerate the 

development and progression of the symptoms. Caffeine itself is unlikely to be considered amongst 

these harmful agents, due to the high (millimolar) concentrations required to elicit checkpoint 

inhibitory activity. On the contrary, the ability of certain chemicals to specifically reduce the 

expansion rates in expanded CAG'CTG trinucleotide repeats carried by cultured D m t-D cells, 

presents the possibility that clinically relevant drugs may provide major therapeutical benefits, by 

stabilising the repeats at loci associated with severe human diseases.
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7. Trinucleotide repeat dynamics in slowly 
proliferating and non-dividing Dmt-D cells

7.1. Introduction

The first model proposed to address the molecular mechanisms driving repeat instability, 

predicted that small expansions or deletions within tracts of trinucleotide repeats were generated 

during genome replication, by DNA polymerase slippage, as cells divide. During DNA replication, 

a double-stranded DNA helix must first be unwound and unzipped; the two separated strands are 

then used as templates for the production of the two new strands. When the DNA includes long 

tracts of simple repeats, there is the potential for the growing DNA chain and the original template 

to become misaligned if DNA replicating enzymes pause and separate from the template. This can 

lead to deletions or expansions of sequences when replication reinitiates (Richards and Sutherland, 

1994). Despite its wide acceptance, this hypothesis raises several questions, which have not yet 

been resolved.

First, if trinucleotide repeat instability were primarily the result of replication slippage, 

mutations in MMR genes should increase the mutation rate. However, the study of mouse models 

carrying unstable transgenic CAG'CTG sequences, has revealed lower levels of somatic mosaicism 

in mice deficient for M sh2  (Manley et a l ,  1999b), Msh3 (van Den Broek et a l,  2002) and Pms2  

(Chapter 8) repair genes.

Second, if polymerase slippage is the driving force of repeat somatic instability, why is it 

that tissues with higher cell turnover rates, such as blood, do not necessarily show higher degrees of 

trinucleotide repeat mosaicism? In DM1 patients, allele sizes in post-mitotic muscle cells are 

consistently larger than in rapid proliferating circulating lymphocytes (Anvret et al., 1993; 

Ashizawa et al., 1993; Lavedan et a l ,  1993). Polyacrylamide gel electrophoresis of bulk DNA 

PCR amplification products, has initially suggested the absence of extreme mosaicism in human 

HD tissues such as blood, liver and intestine, where cell turnover is high, indicating that cell 

division alone is not the only event promoting somatic instability (Telenius et al., 1994). In 

addition, in SBMA patients the most prominent trinucleotide repeat somatic mosaicism is observed 

in the cardiac and skeletal muscles, composed predominantly of post-mitotic cells; and the skin, 

one of the tissues with the highest cell turnover rate, does not show a detectable increase in somatic 

repeat instability with age (Tanaka et al., 1999), strongly suggesting that cell division is unlikely to 

be the major cause of repeat size mutation.

In mouse models that recreate CAG'CTG somatic mosaicism, repeat instability occurs at 

different rates in distinct tissues, depending on the chromosomal context (Fortune et al., 2000; Lia 

et al., 1998; Mangiarini et al., 1997; Seznec et al., 2000), and showing continued repeat expansion 

as the mice age (Fortune et a l,  2000; Kennedy and Shelboume, 2000; Lia et al., 1998; Mangiarini 

et al., 1997; Seznec et al., 2000). However, in agreement with previous observations in humans, it
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appears that repeat variability can occur in the absence of the DNA replication that is associated 

with genome duplication. Indeed repeat size mutations often occur to a greater extent in cells that 

do not divide (such as brain and kidney cells) (Fortune et al., 2000; Kennedy and Shelbourne, 

2000; Lia et al., 1998; Seznec et al., 2000). In both Dmt-D mice (Monckton et al., 1997) and in a 

knock-in HD mouse model (Shelbourne et al., 1999) high levels of somatic mosaicism were 

detected in the striatum by sensitive SP-PCR techniques (Fortune et al., 2000; Kennedy and 

Shelbourne, 2000). Given that the vast majority of cells in the striatum are neurons, and therefore 

post-mitotic, it is difficult to reconcile this observation with small, successive replication-based 

expansions. In fact, the mutation profile obtained with a sample of striatal tissue containing 

replication-competent cells derived from the subventricular zone, did not differ significantly from 

that obtained when the same cells were excluded from the analysis (Kennedy and Shelbourne,

2000). CAG*CTG repeat length mutation has also been reported to occur in mature oocytes from a 

SCA1 transgenic mouse model (Kaytor et al., 1997) and in the developing sperm of R6/1 mice 

(Kovtun and McMurray, 2001), at stages when DNA replication and recombination do not take 

place. Both replication and recombination are thereby excluded as obligatory pathways to repeat 

variability in germ cells.

However, it should be considered that most of these studies have been predominantly 

performed on whole human or mouse tissue samples, consisting of multiple cell types likely to 

have differing dynamics in terms of both cell turnover rates and repeat instability. The presence of 

distinct cell populations most likely complicated attempts to establish simple correlations and may 

have masked some subtle relationships. When differences in repeat expansion among neuronal 

subgroups in DRPLA brains were revealed by single-cell PCR techniques, the distinct levels of 

instability detected could not be simply accounted for by the number of cell divisions (Hashida et 

al., 2001). In addition, monitoring the repeat dynamics in homogenous D m t-D cell lines over long 

periods of time, failed to reveal any correlation between rates of cell turnover, assessed by 

population doubling times, and repeat instability (Chapter 3). In particular, the extremely low 

mutation rates observed in a very rapidly proliferating D m t-D lung cell line, may reflect 

independence of repeat stability on factors other than DNA replication and/or cell division.

In summary, circumstantial evidence gathered from the study of somatic mosaicism, either 

in humans or mouse models, revealed that specific tissues have a non-random level of CAG'CTG 

instability, apparently not related to the number of cell divisions alone, strongly suggesting that 

there are separate factors that influence somatic triplet instability. It is reasonable to speculate that 

at least some mutants may arise during the resting phase of the cell cycle, in a time-dependent 

fashion. In order to test this hypothesis directly, it would be ideal to observe the accumulation of 

repeat length variation in non-dividing cells over time. Several strategies exist to arrest cell division 

in culture, such as contact inhibition, serum starvation, and chemical treatment with genotoxic 

agents that block cell cycle progression.

High cell density induces cell cycle arrest. This phenomenon, termed contact inhibition, is 

generally observed in normal or untransformed cells. Most non-transformed cell lines respond to 

confluence by arresting the cell cycle in a viable Gi phase, whereas immortalised cell lines growing
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in monolayer do not stop mitotic progression in response to high cell density and are subjected to 

density-dependent apoptosis (Brezden and Rauth, 1996).

Cell cycle progression is controlled by the periodic activation of cyclin-dependent kinases 

(CDKs). CDKs become activated by their association with activating subunits, referred to as 

cyclins. CDK activity is also modulated through association with negative regulatory subunits, 

known as CDK-inhibitory proteins, which prevent cells from progressing through the cell cycle. 

These negative regulators include a variety of proteins such as p l5 , p l6 , p l9 , p21, p27 and p57 

(Elledge, 1996). In response to contact inhibition, both mRNA and protein levels of p l5 , p l6  and 

p27 are up-regulated as the cell density increases; whereas cyclins A  and E are down-regulated, 

leading to inactivation of CDKs and cell cycle arrest (Chen et al., 2000; Kato et al., 1997; 

Yanagisawa et al., 1999). Sustained accumulation of p21 in the nucleus was also reported in 

contact-inhibited cultures, suggesting that targeting and m aintaining p21 in the nuclear 

compartment may contribute to slowing or arresting cell cycle progression, once cell-to-cell 

contacts are established. In addition, p21 may also play a role in inducing apoptosis (Ritt et al.,

2000). The additive effects of contact inhibition and serum starvation on [3H]thymidine 

incorporation by human fibroblasts led to the conclusion that the mechanisms underlying cell cycle 

arrest might be different (Dietrich et al., 1997). A strong decrease in CDK2 activity has also been 

reported in serum-starved cells, while the protein levels of p27 and p l6  remain low. In contrast, a 

rapid decrease of cyclin D1 and cyclin D3 was observed, which does not occur in contact-inhibited 

cells (Dietrich et al., 1997).

Mitomycin C is an antibiotic isolated from Streptomyces, which acts as a bifunctional DNA 

alkylating agent, inducing the formation of covalent links between guanine residues in 

complementary DNA strands (Iyer and Szybalski, 1963; Waring, 1968). The polycyclic structures 

might favour intercalation of this compound into DNA, as a step prior to selective crosslinking 

(Iyer and Szybalski, 1963). The remainder of the bound mitomycin C, which does not participate in 

the formation of interstrand crosslinks, presumably reacts by monofunctional alkylation (Waring, 

1968). Both crosslinks and mono-adducts are important cytotoxic lesions. The bis-adduct fit tightly 

into the minor groove of DNA and produces minimal distortion of the B-DNA helical structure 

(Tom asz et al., 1987), being therefore difficult to recognise and repair, and very toxic. The 

presence of a crosslink between the parental DNA strands effectively prevents the progress of the 

replicating fork, and thus might account for the powerful blockage of cell division (Iyer and 

Szybalski, 1963; Waring, 1968). Consequently, mitomycin C is a potent antiproliferative agent 

against mammalian cells, preventing DNA replication until the alkylated residue is replaced by 

intracellular DNA repair mechanisms (Tomasz et al., 1987). Cell cycle analysis has revealed an 

accumulation of cells arrested in S and G2/M phase following mitomycin C treatment, through the 

up-regulation of p53 and p21 (Kang et al., 2001). Mitomycin C has the distinct theoretical 

advantage that administration of a single dose may inhibit mammalian DNA replication and cell 

proliferation for at least three to four weeks (as long as measured in previous studies), probably 

suggesting permanent DNA damage without recovery (Castaneda and Kinne, 1999; Ho et al., 1997; 

Jampel, 1992; Murayama et al., 1996; Takahashi et al., 1998). Furthermore, the cytotoxicity of
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mitomycin C is independent of the proliferative status of the cultures, with similar toxicities being 

measured in exponentially growing and plateau phase mouse mammary tumour cells (Rockwell 

and Hughes, 1994).

Apicidin, is a potent inhibitor of histone deacetylase that exhibits a broad spectrum of 

antiproliferative activity towards various cancer cell lines (Han et al., 2000). The antiproliferative 

activity of apicidin in human cells is accompanied by morphological changes, cell cycle arrest at Gi 

phase, and accumulation of histone hyperacetylation in vivo, as a result of the inhibition of histone 

deacetylase activity (Han et al., 2000; Kim et a l, 2001). Several genes contain regulatory elements 

sensitive to acetylation, and are directly transcriptionally up-regulated in cells treated with histone 

deacetylase inhibitors. It is believed that transcription factors capable of activating transcription of 

acetylation-sensitive genes are present in the nucleus, but have a reduced affinity for their DNA 

binding sites when the local chromatin is deacetylated. Treatment with inhibitors of histone 

deacetylase activity shifts the equilibrium in the direction of acetylation, resulting in binding of 

transcriptional activators and subsequent gene transcription. Virtually all genes regulated by 

acetylation levels are associated with cell growth, differentiation or development (Hassig et al., 

1997). Whereas the protein levels of cyclin D l, CDK2 and p53 are not affected by apicidin 

exposure, the expression of p21 is markedly up-regulated by apicidin (Han et al., 2000; Kim et al.,

2001). Activation of p21 transcription has been associated with growth arrest and induction of 

differentiation in response to various agents (Dotto, 2000; Gartel and Tyner, 1999), and may 

therefore be the main cause of the antimitogenic properties of apicidin.

Interferons constitute a family of secreted polypeptides, also known as cytokines, of which 

interferon a  is an example. Interferons are capable of modulating a variety of cellular responses, 

including proliferation of both malignant and non-malignant mammalian cells of many different 

origins (Sangfelt et al., 2000). However, cells differ greatly in their sensitivity to the effects of 

interferons, with some cells being extremely sensitive, and others being more or less resistant. 

Treatment of susceptible cells with interferon a  has been found to affect various phases of the 

mitotic cycle. Most commonly, exposure to interferon a  leads to Gi arrest, although sometimes 

slowed growth is due to a blockage or prolongation of S-phase or a lengthening of all cell cycle 

phases (Sangfelt et al., 2000). Interferon a  can exert profound anti-mitotic effects in cell cultures, 

most likely involving multiple molecular pathways by regulating several components directly 

involved in the cell cycle machinery (Sangfelt et al., 2000). This cytokine has been shown to 

strongly repress the activity of CDKs, reduce the expression levels of cyclins A  and D3 and to 

induce the activity of p l5 , p l9 , p21 and p27 in a number of different cell types, correlating with 

cell growth inhibition (Matsuoka et a l ,  1998; Sangfelt et al., 1999; Sangfelt et al., 1997; Sangfelt 

et al., 2000; Tiefenbrun et al., 1996).

Dmt-D kidney cells, exhibiting high levels of repeat instability, were cultured in low serum 

or contact-inhibition conditions, and exposed to mitomycin C, apicidin or interferon a ,  in an 

attempt to stop culture proliferation. The effects of cell cycle arrest or high cell density conditions 

on somatic mosaicism were assessed by sensitive techniques, in order to gain some insight on the
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dependence of the mechanism of trinucleotide repeat length mutation on cell division and DNA 

replication.

7.2. Results

7.2.1. Trinucleotide repeat dynamics in Dmt-D cells growing at high 
density in low foetal bovine serum

In order to check for the possibility that non-dividing cells can still accumulate repeat 

length mutations, D m t-D kidney cells were arrested by serum starvation. Four D2763K and 

D3111K replicate cell cultures (Table 3.2) were maintained in standard growth medium, 

supplemented with 10% (v/v) foetal bovine serum (FBS), until they reached 80-90% confluency 

and the FBS levels were then decreased to 0.25% (v/v) to inhibit cell proliferation. Nevertheless, 

the accumulation of multiple cell layers over time was observed by phase contrast microscopy, 

suggesting continuing cell proliferation, still possible even under conditions of low FBS. In 

addition, the culture medium became acidic very quickly, as revealed by the development of a 

yellow/orange colour, indicating a rapid cell metabolism in serum-starved cultures.

Cells maintained at high density in 0.25% (v/v) FBS, without subculturing, were harvested 

at different time points and the levels of repeat size variability assessed by high DNA input SP- 

PCR techniques, and compared to those detected in the progenitor cells and in proliferating control 

cultures, maintained in 10% (v/v) FBS for similar periods of time (Figure 7.1). None of the control 

cultures exhibited major trinucleotide repeat instability, with no major expansion or deletion 

mutants being detected. The repeat dynamics in serum-starved D2763K did not reveal major 

differences relative to the controls. However, a small subpopulation of shorter alleles, showing 

clear evidence of clonal expansion, was detected at 56 days. In contrast, equally short repeats were 

not detected in the corresponding control culture (Figure 7.1.A). Similarly, D3111K confluent 

cultures, maintained in low FBS, did not exhibit major differences in the degree of repeat length 

variation relative to the controls, up to 70 days in culture. By this time point, a population of cells 

carrying longer repeats, and again showing clear signs of clonal proliferation, overgrew the culture 

(Figure 7.1.B).

The accumulation of subpopulations of mutant alleles, showing little repeat length 

variation, in Dmt-D  cells cultures grown in 0.25% (v/v) FBS, is indeed consistent with the clonal 

expansion of a few mutant cells exhibiting enhanced survival to conditions of high density, and 

rejects the hypothesis that these cultures were truly arrested by serum starvation. Nevertheless, it is 

not unreasonable to assume that serum-starved cells were indeed proliferating at lower rates than 

control cultures, as they were not passaged for at least 56 days.
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Figure 7.1. Trinucleotide repeat dynamics in Dmt-D kidney cells maintained at high density 
by serum starvation.
The autoradiographs show representative SP-PCR amplifications of DNA samples 
extracted from highly confluent Dmt-D kidney cell cultures, maintained in 0.25% (v/v) 
FBS. Fresh medium supplemented with 0.25% (v/v) FBS was added to the confluent 
cultures every two to three days. Control cells were cultured under standard growth 
conditions for the same period of time, and passaged when confluent. The number 
of population doublings (PD) for each control sample is shown in the figure. Two 
kidney cell lines were studied: (A) D2763K (derived from a six-month-old Dmt-D 
mouse), and (B) D3111K (established from a five-week-old Dmt-D mouse). Ten to 
30 transgene molecules were amplified in each reaction. The molecular weight 
markers, converted into CTG repeat numbers are shown on the right. Black arrowheads 
(**) indicate evidence of clonal expansion.
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7.2.2. Trinucleotide repeat dynamics in confluent Dmt-D cell cultures 
arrested by contact inhibition

Since cultured mouse cells undergo spontaneous immortalisation (M eek et al., 1977), 

primary kidney cultures arrested by contact inhibition were used as an alternative to monitor the 

dynamics of expanded CAG'CTG trinucleotide repeats in non-dividing cells. D4393K cells were 

collected by enzymatic dissociation from a kidney tissue sample harvested from a six-month-old 

male D m t-D mouse. These cells showed a typical fibroblastic phenotype, as revealed by their 

spindle morphology, vimentin expression and lack of staining for a panel of cytokeratins (Figure 

7.3). Multiple parallel replicates were established after the first passage and expanded until they 

reached confluency. The cultures were maintained at high density, and fresh medium was added 

regularly. SP-PCR analyses were performed at different time points, to monitor repeat size 

variability in two arrested replicate cultures (Figure 7.2.A). The analysis revealed minor differences 

over the first 63-65 days in culture, but a dramatic accumulation of longer alleles was detected in 

arrested cells at later stages. A  similar subpopulation of cells carrying longer alleles was not 

detected in control cells, growing for 89 days and 22 population doublings, but a few expanded 

mutants were observed at high DNA concentrations. However, similar expanded alleles were later 

observed in the control culture grown for 118 days and 40 population doublings (Figure 7.2.A). To 

quantify this observation, 20-50 transgene molecules from each culture were individually sized. 

The expanded alleles were on average ~300 repeat longer than those initially detected in culture. 

Given the low degree of repeat length variability within the population of longer alleles (Figure

7.2.A, black arrowheads), they were considered to have resulted from the clonal expansion of 

mutant cells exhibiting greater survival under conditions of high cell density, and analysed 

separately. Single molecule analysis of the shorter repeat tracts (^240 repeats) carried by control 

cells revealed the progressive expansion of trinucleotide repeat tracts from day 65 to day 118 

(median gain of 0.132 repeats per day). Arrested cells also showed some degree of repeat 

expansion, but the increase in repeat number was not always statistically significant (Figure 7.2.B). 

Single molecule analysis of the longer alleles (>240 repeats) carried by arrested cells (Figure 7.2.C) 

revealed a dramatic and statistically significant increase in the median repeat number from day 87 

to day 123 (p=0.0001, two-tailed Mann-Whitney U test).

Despite evidence suggesting that the longer repeats resulted from the clonal expansion 

mutant cells, rather than the accumulation of repeat size variation in non-dividing cells, extensive 

development of multiple cell layers was not observed using phase contrast microscopy. Therefore, 

a 5’-bromo-2-deoxyuridine (BrdU) incorporation and detection analysis was performed on D4393K 

cells hypothetically arrested by contact inhibition. Two incubation periods with BrdU were used. A 

15-minute BrdU incubation period should only label the proportion of cells that are actively 

undergoing DNA replication during S phase of the cell cycle (also known as the “labelling index”). 

On the other hand, a 30-hour incubation should label most, if not all, of the cells that are still 

capable of active proliferation (also known as the “growth fraction”) (Rew and Wilson, 2000). 

Despite the low plating efficiency of arrested cells onto an eight-well chamber slide, following

211



Mario Gomes-Pereira, 2002 Chapter 7

-  501

-  284

-  234

-  168 

118

B.
200

_g 190

|  180

i :  170 
CO 
© 160

£T 150 
140

P 65  8 9  118  P 63  6 3  8 7  8 7  123  123

D a y s in culture D a y s in culture

C. Upper alleles
450

L -
<Dn
E
c  350

Q.<ucr
250

D ays in culture

C ontact inhibition Control

Figure 7.2. Trinucleotide repeat dynamics in D4393K cells arrested by contact inhibition.
(A) The autoradiograph shown represent SP-PCR analyses of DNA samples extracted 
from D4393K cells arrested by contact inhibition. Fresh medium was added to the 
cultures every two or three days. Two replicate cultures, were analysed at each time 
point. Control cells were maintained for similar periods of time, and passaged when 
confluent. The number of population doublings (PD) is shown above each control 
panel. Twenty to 50 transgene molecules were amplified in each reaction. The 
molecular weight markers, converted into CTG repeat numbers, are displayed on 
the right. Note the expansion of a population of cells carrying longer repeats in both 
control and arrested cultures. Black arrowheads (< ) indicate evidence of clonal 
expansion. (B) The boxplots show the degree of repeat size variation in control, 
arrested and progenitor (P) cultures. The top and bottom of the boxes correspond 
to the third (Q3) and first quartiles (Q1), respectively, and the line across the box 
displays the median. The lines extending from the top and the bottom of the boxes, 
include values that fall inside the lower and upper limits: Q1-1.5(Q3-Q1) and 
Q3+1.5(Q3-Q1). The hash symbols (#) denote the exclusion of longer alleles (>240 
repeats) from the analysis. (C) The boxplots display the degree of repeat length 
variation within the subpopulations of cells carrying longer trinucleotide tracts.
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Figure 7.3. Immunocytochemical characterisation of D4393K kidney cells.
The two pictures represent the immunostaining of D4393K kidney. Vimentin filaments 
were detected with a primary mouse monoclonal antibody raised against human 
vimentin, and a secondary anti-mouse IgM-FITC conjugate. All cells stained positive 
for vimentin, but negative for a panel of cytokeratins

15-minute incubation with BrdU 30-hour incubation with BrdU

Figure 7.4. BrdU incorporation analysis on D4393K cells arrested by contact inhibition.
BrdU incorporation was analysed in D4393K cells, to assess DNA synthesis in 
cultures arrested by contact inhibition. Confluent cultures, maintained on six-well 
plates for 123 days, were incubated with BrdU for 15 minutes or 30 hours, digested 
with trypsin and plated on an eight-well chamber slide. BrdU incorporated into 
genomic DNA was detected by immunostaining. Proliferating D4393K cells, grown 
and passaged as usual, were used as a positive control. Light micrographs are 
shown on the left, whereas immunodetection of BrdU is shown on the right. Note 
that most of the cells arrested by contact inhibition exhibited non-specific staining 
in the cytoplasm, but did not reveal nuclear staining, in contrast with proliferating 
cells.
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BrdU incubation, BrdU staining was not detected in the nucleus of cells arrested by contact 

inhibition, in clear contrast with the extensive nuclear BrdU staining observed in proliferating cells 

(Figure 7.4). An average of ~20-30% of the cells showed nuclear staining following a 15-minute 

incubation, whereas -90%  of the cell population displayed nuclear BrdU incorporation under 

proliferating conditions (Figure 7.4).

In summary, although BrdU incorporation and immunodetection analysis failed to reveal 

DNA synthesis in the nuclei of D4393K cells arrested by contact inhibition, the accumulation of 

longer alleles most likely resulted from the proliferation and clonal expansion of a few mutant 

cells, which were resistant to contact inhibition and happened to carry longer repeats than the 

average repeat number. Alternatively, in those cultures where repeat size variability was detected 

amongst the new mutants (Figure 7.2, 123 days of contact inhibition), the expanded alleles might 

have resulted from cell proliferation into the gaps left by dead cells, which tend to dissociate from 

the substrate, possibly allowing their neighbouring cells to divide.

7.2.3. Trinucleotide repeat dynamics in Dmt-D cells arrested by 
mitomycin C

As an alternative attempt to stop cellular proliferation in culture, spontaneously 

immortalised cell lines, in which the trinucleotide repeat dynamics had been previously described, 

were treated with mitomycin C. Replicate cultures derived from the D2763Kc2 clonal cell line, 

carrying a rapidly expanding trinucleotide repeat tract were treated with 30 pM mitomycin C for 

three hours, and maintained in standard growth medium thereafter. Mitomycin C exposure resulted 

in the death of -50%  of the cells, as revealed by the levels of cell viability assessed by the acridine 

orange and ethidium bromide method (Section 2.4.6), one week after the treatment. However, no 

further decrease in cell viability was detected 49, 77 and 91 days following mitomycin C exposure, 

with the total number of living cells remaining unaltered. The repeat size variability was monitored 

at different time points by SP-PCR techniques, not only in cells exposed to mitomycin C, but also 

in control cells, which were maintained under proliferating conditions. High DNA input SP-PCR 

analyses revealed clear differences between the mutation profiles in mitomycin C treated cultures 

and progenitor cells (Figure 7.5.A). Twenty to 50 transgene molecules collected from each control 

and arrested cultures were accurately sized (Figure 7.5.B), and the analysis revealed that not only 

the control cells exhibited a significant median repeat gain of 0.897 units per day (p<0.0001, two- 

tailed Mann-Whitney U test), but also mitomycin C treated cells, showed a significant median 

expansion of 0.341 repeats per day (p=0.0389, two-tailed Mann-Whitney U  test). One could argue 

that the differences observed in the median repeat number between mitomycin C treated cells and 

the progenitor culture are intimately associated with a selection for resistant cells, given the cell 

death caused by exposure to this DNA crosslinker agent. If that were the case, the median repeat 

size would be expected to stabilise as long as the total cell numbers remained constant. However, 

statistical analysis revealed significant differences in the median repeat length carried by 

mitomycin C treated cells between days 49 and 91 (p=0.0484, two-tailed Mann-Whitney U  test), a
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Figure 7.5. Dynamics of expanded CAG*CTG trinucleotide repeats in D2763Kc2 kidney 
cells arrested by mitomycin C.
(A) The autoradiographs show representive SP-PCR analyses of DNA samples 
extracted from D2763Kc2 kidney cell cultures arrested following a three-hour exposure 
to 30 pM mitomycin C (MMC) in standard growth medium. Treated cells were 
subsequently kept in standard culture medium without mytomycin C, and fresh 
medium was added every two to three days. Control cells were maintained in culture 
for the same period of time, and passaged when confluent. The number of population 
doublings (PD) for each control sample is displayed above each panel. Ten to 40 
transgene molecules were amplified in each reaction. The molecular weight markers 
were converted into CTG repeat numbers and are shown on the right. (B) The 
boxplots show the degree of trinucleotide repeat length variability detected in control 
and mitomycin C arrested cells, as described in Figure 7.3. The median repeat size 
in both control and mitomycin C exposed cultures was compared with the median 
repeat number in the progenitor (P). Significant differences (p<0.05, two tailed Mann- 
Whitney U test) are identified by asterisks (*).
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period when a decrease in the number of viable cells was not detected (Figure 7.5.B). Moreover, in 

addition to an increase in the median repeat length, the overall range of allele sizes also showed a 

shift towards longer repeat numbers, suggesting the appearance of new mutants in mitomycin C 

treated cultures.

BrdU incorporation and immunodetection techniques revealed very low levels of nuclear 

staining in mitomycin C treated cells per culture, even following a 30-hour incubation with BrdU 

(<5%) (Figure 7.6.A), indicative of some DNA synthesis, which in some cases is associated with 

distinctive nuclear foci (Figure 7.6.B). In contrast, ~90-95% of the proliferating cells showed 

positive labelling, following an identical incubation period.

The dynamics of expanded CAG#CTG repeats was also studied in two additional D m t-D 

kidney cell lines, D2967K and D3111K (Table 3.2), following cell cycle arrest by mitomycin C 

exposure, and SP-PCR analysis as described above. Both cell lines carried slowly expanding 

trinucleotide sequences, and therefore bulk DNA SP-PCR amplifications might have masked subtle 

differences in allele size heterogeneity between mitomycin C treated cells and the progenitor 

culture. Single molecule analysis was then performed, and at least 100 transgene molecules 

collected from each culture were individually sized. Indeed, the repeat distributions confirmed very 

low levels of somatic instability in the control cells of both Dmt-D kidney lines, and an expansion 

bias was not always observed (Figures 7.7 and 7.8). However, some statistically significant 

differences were revealed, when the repeat distributions were compared between control cells and 

their progenitor cultures (p<0.05, two-tailed Mann-Whitney U test). More interestingly, similar 

differences were also observed between some cultures arrested by mitomycin C, and the original 

cells from which all cultures were derived (Figures 7.7 and 7.8). To account for the hypothesis of 

mitomycin C-induced cell selection and preferential survival, as described previously, the repeat 

profiles in treated cultures were also compared to those detected in treated cells collected 41-44 

days after cell cycle arrest, and significant differences were still detected (Figures 7.7 and 7.8).

Although the results presented here, particularly in regards to D2967K and D3111K cells 

lines are not totally conclusive, and do not represent the ultimate experimental evidence for the 

accumulation of repeat size mutations in cells arrested by mitomycin C, they do suggest that 

variation in trinucleotide repeat size may happen independently of cell division and DNA 

replication.

7.2.4. Trinucleotide repeat dynamics in Dmt-D cells arrested by 
apicidin

Although mitomycin C was able to inhibit cell proliferation of cultured Dmt-D  cells, this 

chemical acts as a potent DNA crosslinker and is likely to affect multiple aspects of DNA 

metabolism apart from replication, including transcription and repair. Therefore, alternative ways 

of arresting cell proliferation in culture were explored.

Continuous exposure of six replicate D2763Kc2 and D979K cultures to 320 nM apicidin 

for a week resulted in a minor decrease (~9%) in the number of viable cells, as assessed by the
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Figure 7.6. BrdU incorporation analysis on D2763Kc2 kidney cells arrested by mitomycin 
C or apicidin exposure.
(A) BrdU incorporation was analysed by immunocytochemistry techniques in D2763Kc2 
kidney cells, in order to assess DNA synthesis in cells treated with mitomycin C or 
apicidin. D2763Kc2 cells, plated on eight-well chamber slides, were exposed to 30 
pM mitomycin C for three hours (as described in Figure 7.5), and the BrdU incorporation 
levels assayed one week later, following a 15-minute or a 30-hour exposure to the 
chemical. Alternatively, D2763Kc2 cells were continuously exposed to 320 nM 
apicidin for a week, and then stained for BrdU incorporation. The left columns show 
light micrographs, whereas immunodetection of BrdU is shown on the right. Non
specific staining was revealed in cells that were not incubated with BrdU. Proliferating 
D2763Kc2 kidney cells were used as a positive control. Note that most of the arrested 
cells exhibited non-specific cytoplasmic staining, but revealed considerably lower 
levels of bright nuclear staining, when compared to proliferating cells. (B) Also note 
the distinctive pattern of speckled nuclear staining in mitomycin C treated cells, 
following a 30-hour incubation with BrdU.
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Figure 7.7. Repeat distributions in D2967K cells arrested by mitomycin C.
D2967K kidney cells were treated with 30 pM mitomycin C for three hours, and 
maintained in standard growth medium thereafter. Fresh medium without mitomycin 
C was added to the cultures every two to three days. Control cells were maintained 
under normal proliferating conditions, and the number of population doublings (PD) 
is displayed in each panel. DNA samples were collected at different time points and 
trinucleotide repeat profiles determined by single molecule SP-PCR analysis. For 
each time point at least 100 transgene molecules (n) were amplified by SP-PCR at 
low DNA concentration (1-3 DNA molecules per reaction) and individually sized. The 
median repeat number in each culture was compared with the progenitor cells, and 
significant differences (p<0.05, two-tailed Mann-Whitney U test) are identified by 
asterisks (*). Significant differences between treated cultures collected at later stages 
and cells collected 44 days after mitomycin C exposure are also indicated (t).
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Figure 7.8. Repeat distributions in D3111K cells arrested by mitomycin C.
D3111K kidney cells were treated with 30 pM mitomycin C for three hours, and 
maintained in standard growth medium thereafter. Fresh medium without mitomycin 
C was added to the cultures every two to three days. Control cells were maintained 
under normal proliferating conditions, and the number of population doublings (PD) 
is displayed in each panel. DNA samples were collected at different time points and 
trinucleotide repeat profiles determined by single molecule SP-PCR analysis. For 
each time point at least 100 transgene molecules (n) were amplified by SP-PCR at 
low DNA concentration (1-3 DNA molecules per reaction) and individually sized. The 
median repeat number in each culture was compared with the progenitor cells, and 
significant differences (p<0.05, two-tailed Mann-Whitney U test) are identified by 
asterisks (*). Significant differences between treated cultures collected at later stages 
and cells collected 41 days following mitomycin C exposure are also indicated (t).
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acridine orange and ethidium bromide method (Section 2.4.6). However, the difference did not 

prove to be statistically significant (p>0.05, two-tailed t test). The total number of living cells 

appeared to remain constant one month later, when cell viability was assessed again by the same 

method. Multiple cell layers could not be observed by phase contrast microscopy, indicating that 

cells were not proliferating upon exposure to apicidin. The effects of apicidin on cell proliferation 

were associated with morphological changes in cell shape and cell-to-cell adhesion, suggesting that 

growth of D m t-D kidney cells in apicidin restores contact inhibition (Figure 7.9). To confirm cell 

cycle arrest, BrdU incorporation and detection analyses were performed on both cell lines 

following one-week exposure to apicidin. Both D2763Kc2 and D979K treated cells exhibited very 

low levels of nuclear staining per culture (~5%-10%), indicative of low levels of DNA synthesis in 

the presence of this drug (Figures 7.6 and 7.10).

Trinucleotide repeat length variability was assessed in two treated replicate cultures at 

different time points, and compared with control cells, proliferating under normal growth 

conditions for similar periods of time. High DNA input SP-PCR analyses revealed that D2763Kc2 

treated cultures not only continued to accumulate expanded alleles, but they were also exhibited a 

higher expansion rate than control cells (Figure 7.11.A). Single molecule analysis was performed to 

confirm these observations, and accurate sizing of 20 to 50 transgene molecules collected from 

each culture revealed that the median repeat number in apicidin treated cultures was in fact 

significantly higher than in the progenitor cells (p<0.0003, two-tailed Mann-Whitney U test) at all 

time points analysed (Figure 7.1 l.B). More interestingly, while the median repeat number showed 

an increase of 0.426 units per day in the control cells, the apicidin treated cultures exhibited a 

significantly higher median repeat gain: 1.112 and 1.448 repeats per day (p<0.0001, two-tailed 

Mann-Whitney U  test), at 34 and 67 days of continuous apicidin exposure, respectively.

A similar analysis was performed on D979K cells arrested by continuous exposure to 320 

nM apicidin. However, the analysis proved more difficult, not only because the progenitor culture 

consisted of two subpopulations of cells as revealed by SP-PCR amplification, but also because the 

subpopulation carrying longer alleles soon overgrew the control cultures, with the concomitant loss 

of cells carrying shorter repeats (Figure 7.12.A). Nevertheless, accurate sizing of 20 to 50 

molecules revealed statistically significant differences, between some D979K cultures exposed to 

apicidin for 98 days and the progenitor culture (p<0.05, two-tailed Mann-Whitney U test) (Figure

7.12.B).

As observed with mitomycin C treated cells, the increase in the median repeat size in 

apicidin treated cells, was accompanied by an expansion-biased trend in the repeat size range 

detected in both D2763Kc2 and D979K cultures (Figures 7.11 and 7.12). This finding strongly 

suggests that changes in the mutation profiles are indeed the result of the occurrence of new 

mutants in culture exposed to apicidin, rather than a simple cell selection process in vitro.

In summary, regardless of the extremely low levels of nuclear DNA synthesis detected in 

cells exposed to apicidin, the repeats carried by treated cultures exhibited trinucleotide repeat 

instability, suggesting that cell division is not strictly required for repeat length mutations to occur 

within expanded CAG'CTG.
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Figure 7.9. Morphological changes in Dmt-D kidney cells cultured in 320 nM apicidin.
The pictures represent phase-contrast microphotographs of D979K cells maintained 
in (A) complete growth medium or in (B) complete medium containing 320 nM 
apicidin. Note the occurrence of multiple cell layers in the overgrown culture (A), 
and the presence of areas of cells detached from the substrate (black arrows). In 
cultures exposed to apicidin, flattened cells form a uniform confluent monolayer (B).
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Figure 7.10. BrdU incorporation analysis on D979K cells arrested by apicidin.
BrdU incorporation by D979K kidney cells was analysed by immunocytochemistry 
techniques, in order to assess DNA synthesis in cells treated with apicidin. D979K 
cells, plated on eight-well chamber slides, were exposed to 320 nM apicidin and the 
BrdU incorporation levels assayed one week later, following a 15-minute or a 30- 
hour exposure to the chemical. Light micrographs are shown on the left, whereas 
immunodetection of BrdU is shown on the right. Non-specific staining was revealed 
in cells that were not incubated with BrdU. Proliferating D979K cells were used as 
a positive control. Most of the arrested cells exhibited non-specific cytoplasmic 
staining in the cytoplasm, and only a few revealed nuclear staining.
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Figure 7.11. Dynamics of expanded CAG*CTG trinucleotide repeats in D2763Kc2 arrested 
by apicidin.
(A) The autoradiographs show representive SP-PCR analyses of DNA samples 
extracted from D2763Kc2 kidney cell cultures arrested by continuous exposure to 
320 nM apicidin. Fresh medium supplemented with the drug was added to the 
cultures every two to three days. Two replicate apicidin treated cultures were analysed 
at each time point. Control cells were maintained in culture for the same period of 
time, and passaged when confluent. The number of population doublings (PD) for 
each control sample is displayed above each panel. Ten to 30 transgene molecules 
were amplified in each reaction. The molecular weight markers were converted into 
CTG repeat numbers and are shown on the right. (B) The boxplots show the degree 
of trinucleotide repeat length variability detected in control and arrested cells, as 
described in Figure 7.3. The median repeat size in both control and apicidin exposed 
cultures was compared with the median repeat number in the progenitor culture (P). 
Significant differences (p<0.05, two tailed Mann-Whitney U test) are identified by 
asterisks (*).
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Figure 7.12. Dynamics of expanded CAG*CTG trinucleotide repeats in D979K cells arrested 
by apicidin.
(A) The autoradiographs show representive SP-PCR analyses of DNA samples 
extracted from D979 kidney cell cultures arrested by continuous exposure to 320 
nM apicidin. Fresh medium supplemented with the drug was added to the cultures 
every two to three days. Two replicate apicidin treated cultures were analysed at 
each time point. Control cells were maintained in culture for the same period of time, 
and passaged when confluent. The number of population doublings (PD) for each 
control sample is displayed above each panel. Ten to 40 transgene molecules were 
amplified in each reaction. The molecular weight markers were converted into CTG 
repeat numbers and are shown on the right. (B) The boxplots show the degree of 
trinucleotide repeat length variability detected in control and apicidin arrested cells, 
as described in Figure 7.3. The median repeat size in both control and apicidin 
exposed cultures was compared with the median repeat number in the progenitor 
culture (P). Significant differences (p<0.05, two tailed Mann-Whitney U test) are 
identified by asterisks (*).
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7.2.5. Trinucleotide repeat dynamics in confluent Dmt-D cell cultures 
exposed to interferon a

Interferon a  was also used given its ability to arrest mammalian cell cycle progression. Both 

D2763Kc2 and D979K cells were continuously exposed to 500 U/ml interferon a . Interferon a  

failed to inhibit D2763Kc2 cell proliferation. D2763Kc2 cells proliferated continuously even in the 

presence of the polypeptide, eventually dying, possibly due to the lack of nutrients in the medium. 

Proliferation of D979K cells was initially inhibited by interferon a , as revealed by their flattened 

morphology and absence of multiple cell layers. Following this initial period of apparent cell cycle 

arrest, D979K cells regained their proliferative capacity, as revealed by the growth of multiple cell 

layers, and rapid use of the nutrients, with simultaneous development of a characteristic 

yellow/orange colour in the culture medium. Nevertheless, these cells were capable of surviving 

under conditions of extreme cell density, as long as fresh medium, supplemented with the cytokine, 

was added to the cultures every two to three days. The treatment was therefore continued in order 

to investigate the effects of high cell density on the trinucleotide repeat dynamics in this cell line. 

Two replicate D979K cultures treated with interferon a  were collected at different time points, and 

the repeat size variability assessed by SP-PCR techniques. As discussed before, the analysis was 

complicated by the occurrence of a selective sweep within the control cell culture (Figure 7.13.A). 

Accurate sizing of 20 to 50 transgene molecules collected from each culture allowed the 

determination of the median repeat sizes and rate of expansion in treated and control cells (Figure

7.13.B). Not surprisingly, statistical analysis revealed significant differences between the two 

control cultures, and the progenitor culture (p<0.0001, two-tailed Mann-Whitney U  test), mainly 

due to the selection of cells carrying longer repeat tracts that happened over the first 40 days in 

culture. Most importantly, significant differences were also detected between the median repeat 

size in cells treated with interferon a  and in the progenitor culture (p<0.01, two-tailed Mann- 

Whitney U test), suggesting that trinucleotide repeats carried by cells cultured at high density are 

still unstable, in spite of the low rate of cell turnover. Furthermore, a higher degree of repeat size 

variation, within both subpopulations, appears to occur in treated cells, compared to the progenitor 

culture. An extensive single molecule analysis, performed with a higher number of replicates, 

would be required to establish a possible difference, if any, between trinucleotide repeat expansion 

rates in confluent cells relative to proliferating cells.

7.3. Discussion

To date, most discussion of the processes responsible for the dynamic behaviour of triplet 

repeat mutations has focused on replication-associated mechanisms such as DNA polymerase 

slippage (Richards and Sutherland, 1994). However, multiple lines of evidence support a mutation 

mechanism that may not be strictly dependent on cell division. To address the divergence between 

the assumptions resulting from the replication slippage mechanism, and the experimental data,
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Figure 7.13. Dynamics of expanded CAG*CTG trinucleotide repeats in D979K cells arrested 
by interferon a.
(A) The autoradiographs show representive SP-PCR analyses of DNA samples 
extracted from D979 kidney cell cultures arrested by exposure to 500 U/ml interferon 
a. Fresh medium supplemented with interferon a was added to the cultures every 
two to three days. Two replicate treated cultures were analysed at each time point. 
Control cells were maintained in culture for the same period of time, and passaged 
when confluent. The number of population doublings (PD) for each control sample 
is displayed above each panel. Ten to 40 transgene molecules were amplified in 
each reaction. The molecular weight markers were converted into CTG repeat 
numbers and are shown on the right. (B) The boxplots show the degree of trinucleotide 
repeat length variability detected in control and arrested cells, as described in Figure 
7.3. The median repeat sizes in all controls and cultures exposed to interferon a 
were found to be significantly different from the repeat size in the progenitor (P) 
culture (p<0.05, two tailed Mann-Whitney U test).
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D m t-D mouse kidney cell lines, exhibiting CAG*CTG instability in culture, were grown under 

conditions of high cell density or cell cycle arrest, and the repeat stability monitored over time.

Low serum levels and inhibition by cell-to-cell contact failed to completely arrest 

proliferation. Although these cells were not passaged for long periods of time, and were indeed 

growing under conditions of extreme cell density, SP-PCR analysis revealed the accumulation of 

mutant alleles that in some cases clearly resulted from clonal expansion of mutant cells. 

Presumably, these subpopulations of proliferating cells exhibited enhanced survival and/or 

proliferative capacity under stress conditions imposed by high levels of confluency. Suboptimal 

growth conditions may result in lack of nutrients and possibly oxidative stress, therefore imposing 

high selective pressure on the cultured cells. Increased spontaneous mutagenesis has been reported 

in cells cultured in low serum (Rossman and Goncharova, 1998). The same cells contained higher 

levels of oxidant species, suggesting that the elevated spontaneous mutagenesis resulted from 

enhanced levels of oxidative stress. The results presented here illustrate that D m t-D kidney cells 

exhibit CAG*CTG repeat instability, even when proliferation is limited.

Similarly, slowly proliferating interferon a  treated cells accumulated repeat length 

mutations. A  simple comparison between the rates of expansion in treated cells versus controls was 

not possible, given the occurrence of a selective sweep in the control culture, that resulted in the 

loss of a cell subpopulation, still present in the interferon a  exposed cells.

Mitomycin C clearly impaired DNA synthesis, as revealed by the low levels of BrdU 

incorporation exhibited by D2763Kc2 cells following treatment. Inhibition of DNA synthesis was 

not accompanied by great levels of cell death, as the cell viability levels never dropped below 50% 

at any of the time points analysed. Similarly, continuous exposure to apicidin also inhibited cell 

division in both D2763Kc2 and D979K cultures, as inferred from the reduced BrdU 

immunostaining in treated cells, with minor cell death. Cultures exposed to mitomycin C or 

apicidin did not show a continuous accumulation of BrdU stained nuclei, from a short 15-minute 

incubation period, up to a long 30-hour exposure. In contrast, an increase from -20-30% up to -90- 

95% was detected in proliferating cells. This difference might suggest that the nuclear staining 

detected in presumed arrested cultures, rather than representing cells undergoing S phase and active 

DNA replication, may instead be the result of unscheduled DNA synthesis, attempted DNA 

replication, or even DNA repair synthesis. Interestingly, mitomycin C treated cells showed a 

peculiar pattern of speckled nuclear staining. It is not unreasonable to speculate that these foci may 

be associated with futile cycles of DNA repair, activated in these cells in an attempt to remove 

permanent damage caused by mitomycin C-induced crosslinks (Kao et al., 2001). Considered 

together, these results suggest that the vast majority of the cells that survived the treatments were 

indeed arrested.

Trinucleotide repeat tracts continued to expand in D2763Kc2 cells treated with mitomycin 

C, yet at lower rates than in the controls. Nevertheless, significant higher median repeat numbers 

were found in exposed cultures, relative to the progenitor cells. Although significant differences, 

relative to the progenitor cell population, were detected in some D2967K or D3111K cultures 

exposed to mitomycin C, both cell lines failed to reveal continuing repeat expansion, in contrast to
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D2763Kc2 cells. The low repeat instability detected in D2967K and D3111K cells may be due to 

the inherent low somatic mosaicism detected in both cell lines, even under conditions of rapid cell 

proliferation. Regardless of the extent of repeat instability observed, these results indicate that cells 

arrested by mitomycin C can still accumulate repeat length mutations in the absence of cell 

division.

The response of mammalian cells to mitomycin C is multi-faceted, including inhibition of 

DNA synthesis, cell cycle arrest at S and G2/M  phases and induction of apoptotic cell death (Kang 

et al., 2001). The apoptotic index peaks shortly after exposure to mitomycin C, decreasing 

thereafter (Castaneda and Kinne, 1999; Clarke et al., 1997; Kang et al., 2001). It could be therefore 

suggested that the differences in the mutation profiles of treated cells between different time points 

were due to cell death, and preferential survival of cells carrying particular repeat lengths. If that 

were the case, a stabilisation of the CAG*CTG tract would be expected following the initial period 

of cell loss. However, not only the median repeat number continued to increase in exposed 

D2763Kc2 cells, but also greater expansion-biased repeat size ranges were observed over time. 

Moreover, significant differences in the median repeat number were found between D2967K and 

D3111K cell samples collected at later stages and the first cell sample, collected more than 40 days 

following mitomycin C treatment. The continuous repeat accumulation of repeat length variation 

strongly supports the occurrence of trinucleotide instability in arrested cells.

Although a great deal is known about the chemistry of mitomycin C attack on DNA, little 

is understood about the recognition and repair of interstrand crosslinks. Since these lesions involve 

both strands of duplex DNA they present special challenges to the repair machinery, being difficult 

to repair. No evidence of significant repair has been reported for mitomycin C crosslinks, 

suggesting these lesions can subsist in mammalian cells for extended periods of time (Larminat et 

al., 1998). Nevertheless, a number of multi-step DNA repair pathways, including NER, 

homologous recombination, and cell cycle checkpoint proteins are activated and take part in the 

recognition and attempted repair of DNA interstrand crosslinks (Dronkert and Kanaar, 2001). NER 

proteins recognise mitomycin C induced DNA crosslinks, and participate in the recruitment and 

formation of multimeric complexes on the crosslinked DNA (de Laat et a l ,  1999; Mustra et al., 

2001; Warren et al., 1998; Wood, 1997). It may be speculated that the recruitment and activation of 

a series of repair proteins may affect the trinucleotide repeat tract, leading to alternative processing 

of intermediate structures, and ultimately resulting in repeat length mutation. It should also be 

noted that two distinct types of lesions are produced in response to mitomycin C through different 

pathways: bulky adducts and crosslinks, resulting from mono-alkylation and bis-alkylation of DNA 

(Iyer and Szybalski, 1963; Tomasz et al., 1987); and DNA lesions produced by reactive oxygen 

species, generated during futile cycles of oxidation and reduction of mitomycin C (Doroshow, 

1981; Pritsos and Sartorelli, 1986). Therefore, mitomycin C-generated oxygen radical species may 

themselves play a critical role in inducing repeat length mutations in arrested cells.

The analysis of CAG'CTG repeat dynamics in D2763Kc2 cells continuously exposed to 

apicidin was particularly interesting. The expanded repeat tract not only continued to expand in 

arrested cells, but also appeared to expand more rapidly in non-dividing conditions relative to the
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proliferating controls. Although an extensive measurement of cell viability was not carried out at 

all time points, and a higher number of replicates would be required to reach greater levels of 

statistical significance, this result may imply that, under certain conditions, the mutation rate of 

expanded trinucleotide repeats is actually higher in non-dividing cells than in rapidly proliferating 

cultures. Interestingly, the mutator phenotype of some MMR-deficient cell lines was shown to 

depend on growth conditions, with enhanced accumulation of mutations within dinucleotide 

microsatellites in tumour cells when growth was limited (Richards et al., 1997). These results raise 

the possibility that repeat size mutations may occur in a time-dependent manner, in the absence of 

cell proliferation.

The interpretation of the results obtained with D979K cells, following exposure to both 

apicidin and interferon a , was again complicated by the occurrence of selective sweeps, and could 

only be resolved by a detailed single molecule analysis for each of the cell subpopulations present 

in some of the cultures. Nevertheless, monitoring of the repeat dynamics in D979K cells revealed 

the accumulation of repeat length variation in cultures exposed to both chemicals, again hinting at a 

mutation mechanism that is not necessarily dependent on cell division.

Inhibition of histone deacetylase by apicidin was associated with morphological changes in 

D m t-D kidney cells, as previously reported (Han et al., 2000). There is the possibility that the 

effects of apicidin treatment on D m t-D kidney cultures may not be uniquely attributed to the 

histone deacetylase inhibitor, as apicidin was initially dissolved in DMSO, and a final 

concentration of 0.02% (v/v) DMSO was present in the growth medium. At a concentration of 

1.5% (v/v), DMSO efficiently restores contact inhibition, and arrests Chinese hamster ovary cells 

in the Gi stage as a confluent monolayer. The restored contact inhibition phenotype is accompanied 

by suppression of apoptotic cell death usually observed in high cell density cultures. The arrest in 

cell cycle progression and the inhibition of apoptosis in response to DMSO is associated with 

increased p27 levels, morphological changes in cell shape and cell-to-cell adhesion capacity (Fiore 

and Degrassi, 1999). Therefore, despite its low concentration in the medium, the possibility that 

DMSO might have also played a role in the inhibition of cell cycle progression must be considered.

Regardless of the actual cause of cell cycle arrest, the results presented here suggest that, 

under particular conditions, non-dividing cells can still accumulate trinucleotide repeat length 

mutations. The possibility that multiple rounds of DNA damage and repair may mediate mutation 

instability in non-dividing cells is corroborated by the observation that the absence of M sh2  

(M anley et al., 1999b), Msh3 (van Den Broek et al., 2002) and Pms2 (Chapter 8) MMR gene 

products appears to reduce the degree of repeat size variability of expanded CAG'CTG tracts in 

mouse models that replicate trinucleotide repeat somatic mosaicism. In fact, the specific MMR 

activities of extracts derived from the entirely post-mitotic cells of young and senescent Drosophila 

adults were similar to those extracts derived from rapidly dividing embryos, suggesting the MMR 

system is still functional in post-mitotic and senescent tissues, maintaining DNA sequence integrity 

even in non-dividing cells (Bhui-Kaur et al., 1998). In addition, the findings described, particularly 

for apicidin, open new avenues to the study of the effect of genotoxic agents on the dynamics of 

expanded trinucleotide repeats. This potent antiproliferative histone deacetylase inhibitor appears
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to present the potential to be used in association with other genotoxic agents, in order to test their 

ability to modify repeat dynamics, with the abolishment, or at least minimisation, of the effect of 

selective sweeps.

Interestingly, histone deacetylase inhibitors can rescue the pathological effects of toxic 

polyglutamine peptides in vivo. Both genetic and pharmacological reductions in the activity of 

histone deacetylase in transgenic Drosophila models expressing expanded polyglutamine tracts, 

either alone, or in the context of H D  exon 1, retarded (or even arrested) neuronal degeneration 

(Steffan et al., 2001). Potential therapeutical approaches based on histone deacetylase inhibitors 

were therefore proposed to prevent neurodegeneration, characteristic of polyglutamine disorders. 

Despite the short-term benefits resulting from the administration of histone deacetylase inhibitors 

(Steffan et al., 2001), the results described in this chapter suggest that in the long-term, histone 

deacetylase inhibitors may result in an increased expansion rate, thereby possibly leading to a more 

severe symptomatology.
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8. P m s2  as a genetic modifier of trinucleotide repeat 
dynamics

8.1. Introduction

Instability within repetitive tracts of DNA is a feature shared by most, if not all organisms. 

The expansion of trinucleotide repeat sequences within the human genome has been implicated as 

the cause of an ever-increasing number of severe human conditions (Cummings and Zoghbi, 

2000a; Cummings and Zoghbi, 2000b), and yet the molecular mechanisms that drive the expansion 

of these sequences remain unclear (Richards, 2001; Sinden, 2001).

In the attempt to develop an insight into the biology of triplet repeats, bacteria (Jaworski et 

al., 1995; Kang et al., 1995b; Sarkar et al., 1998; Schumacher et al., 1998) and yeast (Freudenreich 

et al., 1997; Maurer et al., 1996; Miret et al., 1997) were initially used in the search for factors that 

influence repeat tract stability in vivo. Despite the simplicity of these model systems, these studies 

revealed a complex picture, in which the dynamics of trinucleotide repeat sequences is affected by 

multiple aspects of DNA metabolism, including DNA replication (Iyer and Wells, 1999; Kang et 

al., 1995b; Kang et al., 1996), transcription (Bowater et al., 1997), and various pathways of DNA 

repair (Jaworski et al., 1995; Parniewski et al., 1999; Parniewski et al., 2000; Rolfsmeier et al., 

2000; Schmidt et al., 2000; Schumacher et al., 1998; Schweitzer and Livingston, 1997). Different 

mutation mechanisms have been suggested, yet most of them only apply to simple model systems, 

where deletion-biased trinucleotide repeat instability appears to primarily depend on DNA 

replication. The most favoured mechanism, the DNA polymerase slippage model, predicts that 

trinucleotide repeat instability is dependent on cell division, and also that MMR gene mutations are 

associated with increased levels of repeat length variation, as a result of impaired repair of slipped- 

stranded DNA secondary structures. Although the analysis of trinucleotide repeat dynamics in 

microbial models has provided some support in favour of this mechanism (Wells, 1996), little is 

understood about the molecular pathways that control triplet repeat instability in a complex 

mammalian cell environment. Mouse models have been used as powerful tools to understand the 

dynamics of these mutations (Gourdon et al., 1997; Lorenzetti et al., 2000; Mangiarini et al., 1996; 

Monckton et al., 1997; Wheeler et al., 1999b). Monitoring somatic mosaicism in tissues collected 

from these mice revealed the lack of correlation between levels of trinucleotide instability and the 

rates of cell turnover (Fortune et al., 2000; Kennedy and Shelboume, 2000; Lia et al., 1998; Seznec 

et al., 2000). Moreover, the levels of repeat instability in homogeneous cell lines do not correlate 

with cell division rates in vitro (Chapter 3). Taken together, these observations have raised serious 

reservations about the replication slippage model (Richards and Sutherland, 1994), which would 

predict greater levels of somatic mosaicism in rapidly proliferating tissues or cell lines. It is 

therefore conceivable that the expansion mechanism operating in a mammalian scenario is not 

entirely dependent on DNA replication, embracing a complex series of other major factors.

230



Mario Gomes-Pereira, 2002 Chapter 8

DNA repair, particularly the DNA mismatch repair (MMR) system, was soon considered as 

a plausible modifier of trinucleotide repeat instability, since it is required to maintain genomic 

integrity in both prokaryotes and eukaryotes and stabilise the cellular genome, by correcting single 

mismatches, and short unpaired regions within DNA, such as small insertions and deletions. The 

current mammalian model of MMR implicates heterodimers formed between MSH2 and either 

MSH3 or MSH6 (MutSB and M utSa, respectively) as being critical for the initial recognition of 

single base mismatches or small insertions and deletions. Recruitment of a second heterodimer 

made up of MLH1 and either PMS2 (M utLa) or MLH3 (MutLB) is thought to be essential for 

subsequent excision and resynthesis, finally leading to DNA repair (Jiricny, 2000; Peltomaki, 

2001a). Upon inactivation of MMR, increased heterogeneities are observed at simple repetitive 

DNA sequences, such as mono- and dinucleotide tracts (Buermeyer et al., 1999; Harfe and Jinks- 

Robertson, 2000; Jiricny, 2000). The association of impaired MMR activity and elevated genetic 

instability at simple DNA repeat sequences is particularly strong in hereditary non-polyposis 

colorectal cancer (HNPCC) (Peltomaki, 2001b; Toft and Arends, 1998). Unlike HNPCC, which is 

characterised by genetic instability at all simple DNA repeats throughout the genome, trinucleotide 

repeat diseases are associated with the expansion of a repetitive sequence within a single locus. In 

fact, no dinucleotide instability is observed in the genome of HD patients (Goellner et al., 1997). 

Moreover, mutations in MMR genes are not solely responsible for triggering trinucleotide 

instability of normal sized CTG'CAG or CGG'CCG repeat tracts at the DM 1  or FRAXA loci, 

respectively, as assessed by bulk DNA PCR techniques (Kramer et al., 1996). Taken together, 

these observations suggest that microsatellite dynamics might be controlled by distinct molecular 

mechanisms in triplet repeat disorders and in HNPCC. Nevertheless, MMR mutations may still 

affect trinucleotide repeat dynamics, and extensive analysis of the role of MMR on triplet repeat 

expansion has been carried out in bacteria and yeast.

MMR has been reported to play opposite roles in the stability of CAG*CTG repeat arrays 

cloned into E. coli. While mutations in MMR genes stabilise long (CAG*CTG)i3o-i8o repeat tracts 

(Jaworski et al., 1995), the opposite result was observed with shorter (CAG*CTG)64 sequences 

(Schumacher et al., 1998). It was finally suggested that MMR might have two opposing effects on 

CTG'CAG repeat arrays: preventing single repeat unit insertions and deletions, and increasing the 

frequency of large contractions (Parniewski et al., 2000; Schmidt et al., 2000). MMR is also the 

major stabilising force of trinucleotide repeats in S. cerevisiae (Rolfsmeier et al., 2000; Schweitzer 

and Livingston, 1997). Mutations in other repair genes, such as those involved in the processing of 

Okazaki fragments, have also been shown to destabilise trinucleotide repeat tracts, in both bacteria 

(Henricksen et al., 2000) and yeast (Freudenreich et al., 1998; Spiro et al., 1999). The SOS system 

has also been proposed as a modifier of AC*TG dinucleotide instability in E. coli (Morel et a l,  

1998).

In humans PMS2 gene mutations have been associated with dramatic microsatellite 

instability in both normal and tumour tissues in Turcot syndrome, which is characterised by an 

association of malignant tumours of the central nervous system and colon cancer (De Rosa et al., 

2000; M iyaki et al., 1997). PMS2 mutations have also been detected in HNPCC kindreds
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(Nicolaides et al., 1994). In order to gain a better understanding of the function of the Pms2 gene 

product in the MMR pathway of higher eukaryotes, Pms2 knock-out mice have been generated by 

gene targeting procedures (Baker et al., 1995). In these animals, exon 2 of the Pms2 gene was 

replaced by a neomycin (neo) resistance cassette, resulting in total absence of Pms2 protein in 

homozygotes (Baker et al., 1995). Pms2-mil\ homozygotes develop spontaneous lymphomas and 

sarcomas, but not intestinal tumours, whereas heterozygous mice for the Pms2  disruption develop 

normally, with no predisposition to any tumours (Baker et al., 1995; Prolla et al., 1998). However, 

both heterozygous (Qin et al., 2000) and homozygous (Qin et a l ,  1999) Pms2 knock-out mice are 

more susceptible to chemical carcinogenesis induced by alkylating agents than wild-type. Pms2- 

deficient mice are hypermutable to ionising radiation compared to wild-type animals, as revealed 

by sequence analysis of long mononucleotide repeat tracts (Xu et al., 2001), suggesting that Pms2- 

deficient mice have an altered response to DNA damage (Xu et al., 2001). In addition, lower levels 

of apoptosis have been reported in P/ns2-deficient mouse cells, following exposure to ionising 

radiation (Zeng et al., 2000), hinting at a role for the Pms2 gene product in damage-induced 

programmed cell death.

Pms2 nullizygous male mice are sterile, due to disrupted chromosome synapsis taking 

place during meiotic prophase I, providing evidence for the involvement of Pms2 in meiotic 

recombination (Baker et al., 1995).

Microsatellite analysis revealed an association between a Pms2 null mutation and 

destabilised dinucleotide repetitive sequences in the male germline, in tumour and in tail DNA 

samples. Therefore, the Pms2 gene product appears to play a role in DNA mismatch repair in 

multiple cell lineages (Baker et al., 1995). Further studies revealed that Pms2-null homozygous 

mice have shown high levels of spontaneous microsatellite mutation (up to 100-fold above the 

wild-type background) in mononucleotide sequences in multiple tissues, even in those that are not 

associated with an increased risk of cancer, such as skin, liver, spleen, colon, brain and lung, 

confirming a key role for Pms2 in the maintenance of genomic stability (Narayanan et al., 1997). In 

addition, Pms2 inactivation has a major impact on the frequency of deletions and insertions, with a 

significantly smaller effect on the occurrence of base substitutions (Narayanan et al., 1997), which 

may be highly significant in the expansion mechanism of trinucleotide repeats. Analysis of the 

immunoglobulin gene variable regions in P m s2 -deficient mice has also revealed an altered 

spectrum of mutation supporting a role of Pms2 in somatic hypermutation (Cascalho et al., 1998; 

Winter and Gearhart, 2001; Winter et al., 1998). Despite these high levels of spontaneous somatic 

mutations, Pms2 disruption appears to be compatible with mostly normal development and life 

(Baker et a l,  1995), making these animals a powerful tool to study trinucleotide dynamics in a 

repair-deficient background.

In summary, mounting evidence suggests the involvement of Pm s2  in a wide range of 

biological processes, increasing the interest of investigating the impact of a Pms2-deficient genetic 

background on trinucleotide repeat length mutation.

In an attempt to clarify the possible role of MMR enzymes, specifically of MutL 

homologues, as modifiers of trinucleotide repeat dynamics in mammalian cells in vivo, Dmt-D
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mice (Monckton et al., 1997), which show great levels of tissue-specific age-dependent expansion- 

biased somatic mosaicism (Fortune et al., 2000), were bred onto a MMR-deficient genetic 

background lacking Pms2 (Baker et al., 1995), and the levels of repeat instability assessed in 

different tissues for each of the different Pms2 status.

8.2. Results

8.2.1. Breeding Dmt-D mice onto a Pms2-cfef/c/enf genetic 
background

In order to breed Dmt-D mice onto a P/ns2-deficient genetic background, mating pairs were 

initially set up between Dmt-D mice (hemizygous for the transgene) and heterozygous mice for the 

Pms2 disruption (Pms2+I'). Mating pairs were then set up from subsequent generations between 

mice that carried both a Dmt-D transgene and a single Pms2 gene disruption (Dmt-D/Pms2+I~), and 

mice that were only heterozygous for the Pms2 mutation (Pms2+I').s

8.2.2. Mouse genotyping for the Pms2 deletion

Following the crossing between Dmt-D and Pms2-deficient mice, a genotyping procedure 

was performed on the progeny in order to determine, not only the presence or absence of the Dmt 

transgene, but also to establish the Pms2 status of each mouse. Dmt genotyping was carried out as 

described previously (Section 3.2.1). To determine the number of functional Pms2 alleles carried 

by each mouse a PCR analysis was performed, using the oligonucleotide primer combination mP2- 

1, mP2-2 and mP2-3 (Table 2.7). The mP2-l and mP2-3 primer set amplifies the undisrupted Pms2 

allele, generating a PCR product of 357 bp in size. Alternatively, a Pms2 allele that has been 

disrupted by the insertion of the neomycin gene will give rise to a shorter PCR product (190 bp), by 

amplification with primers m P2-l and mP2-2 (Figure 8.1). Therefore, a mixture of the three 

primers will allow the identification of mice carrying both functional Pms2 alleles (Pms2+I+), mice 

heterozygous for the deletion (Pms2+/') and nullizygous animals (Pms2'l~). Following amplification, 

the PCR products were resolved by agarose gel electrophoresis, and the mice genotypes determined 

according to the number and size of the PCR products observed for each reaction (Figure 8.2). The 

progenitor repeat length inherited by each mouse was calculated based on the analyses on tail DNA 

collected at weaning. Given the lack of trinucleotide instability at this stage, it is realistic to assume 

that the observed repeat size determined at this point, is a good estimate of the repeat size inherited 

by the mouse.6

5 Mouse mating pairs were set up by Teresa Fortune (Division of Molecular Genetics, University of 
Glasgow, Glasgow, UK).

6 Some of the genotyping analyses were performed by Teresa Fortune and John McAbney (Division of 
Molecular Genetics, University of Glasgow, Glasgow, UK).
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Figure 8.1 Mouse Pms2 gene disruption by insertion of a neo resistance cassette.
(A) Structure of mouse undisrupted Pms2 gene showing the annealing sites of 
primers mP2-1 and mP2-3. (B) Disruption of mouse Pms2 gene by the insertion of 
a neo resistance cassette by homologous recombination. (C) Disrupted Pms2 gene, 
showing the annealing sites of primers mP2-1 and mP2-2 (Baker et al., 1995)
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Figure 8.2. Mouse Pms2 genotyping by PCR analysis.
Ten to 100 ng of mouse tail DNA were amplified in a 10 pi PCR reaction with primers 
mP2-1, mP2-2 and mP2-3. The reactions were cycled 30 times, with an annealing 
temperature of 61 °C. Following amplification, the PCR products were resolved in a 
ethidium bromide-stained 2% (w/v) agarose gel, and the mice genotypes determined 
according to the number and size of the PCR products observed for each reaction. 
Negative: PCR negative control with no template DNA added to the reaction. Positive: 
PCR positive control, using a DNA sample from a Pms2+/• mouse. Extra PCR 
products of a similar size to the 357-bp product of interest are observed in this lane. 
Lanes 4-8: PCR products generated by the amplification of tail DNA samples from 
Pms2+/+, Pms2+I' or Pms2'/' mice. The Pms2 status for each animal is indicated 
above the lane. The sizes of the molecular weight markers are shown on the left.
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8.2.3. Somatic mosaicism in heterozygous Pms2 knock-out mice

In order to assess the effect of the lack of one functional P m s2  allele in the levels of 

somatic mosaicism detected in Dmt-D mice, SP-PCR analyses were performed on DNA samples 

collected from Pms2+I~ mice and Pms2+I+ age-matched controls. Four different tissues, which have 

shown different levels of trinucleotide somatic mosaicism (Fortune et al., 2000), were selected for 

this study, in order to cover the entire range of trinucleotide repeat instability that a tissue can 

display. Lung and heart were chosen given the very low levels of repeat instability they exhibit, 

whereas the kidney was selected as the tissue where the transgene exhibits the most dramatic repeat 

length changes. Brain was also included in this study, since it displays moderate region-specific 

trinucleotide repeat instability, and also because it is one of the more commonly affected tissues in 

CAG'CTG expansion disorders.

Initially, two 24-month-old littermates were studied: one carrying both undisrupted Pms2 

alleles (Pms2+/+), and one heterozygous for the Pms2 deletion (Pms2+I ). Preliminary amplification 

of 20-100 transgene molecules per reaction failed to detect any major difference in the levels of 

somatic mosaicism observed between the two mice, for any of the tissues studied (Figure 8.3). To 

quantify this observation, single molecule analysis was carried out (Section 2.7.5). Following 

accurate sizing of a large number of single molecules for each tissue (between 109 and 313 

molecules), repeat size distributions were determined (Figure 8.4). Once again, no major 

differences in the mutation profiles were detected between the Pms2*l+ and the Pms2+I~ mice.

The percentage of alleles differing more than ten repeats in either direction from the 

progenitor repeat might be taken as an approximate estimate of the levels of repeat instability in a 

particular tissue: the higher the percentage, the more unstable the repeat. Around half of the alleles 

sizes fell within this range in the lung of both mice: 50% in the Pms2+I+ mouse, and 55% in the 

Pms2+I'. On the other hand, 74% of the transgene molecules collected from the kidney differed 

more than 10 repeats in size from the progenitor allele for both genetic backgrounds. A  two-tailed 

Mann-Whitney U test has indeed revealed that the median repeat length change from progenitor 

allele is not statistically different between these two animals, not only for lung (p=0.54), but also 

for kidney (p=0.85). The apparent, but not statistically significant, higher levels in repeat instability 

observed in the lung of a Pms2+I' animal, may have resulted from the longer progenitor allele size 

inherited by this mouse: 196 repeats for Pms2+I~, versus 176 repeats for Pms2+I+ as determined by 

SP-PCR analysis of tail DNA at weaning.

The observation that Pm s2+I~ mice show similar levels of somatic mosaicism to those 

detected in Pms2*l+ animals, was further confirmed by the analysis of four other animals, aged 13 

months, with progenitor allele sizes ranging from 150 to 169 repeats (Figure 8.5). High DNA input 

SP-PCR analyses corroborated that the two MMR genetic backgrounds failed to reveal major 

differences in the levels of somatic mosaicism detected in any of the four tissues analysed.

In summary, Pms2+I+ and Pm s2+I' mice exhibit very similar levels of trinucleotide repeat 

somatic mosaicism in all the tissues included in this analysis, as revealed by high DNA input SP- 

PCR, and by single molecule analysis. Indeed, these results confirm that the tissue-specific pattern
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Figure 8.3. Somatic mosaicism in 24-month-old Dmt-D mice heterozygous for the Pms2 
deficiency.
Representative SP-PCR amplifications of DNA molecules extracted from lung, heart, 
brain and kidney, collected from two Dmt-D littermates aged 24 months. The mice 
differed on the number of functional Pms2 allele copies: either one {Pms2+/~) or two 
(Pms2+/+). Around 20 transgene molecules were amplified from DNA samples 
collected from lung, whereas 50-100 molecules were amplified for all the other tissues 
shown. The size markers, converted into repeat size differences from the progenitor 
allele, are displayed on the right.
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Figure 8.4. Quantification of the effect of the disruption of one Pms2 allele on the levels 
of trinucleotide somatic mosaicism detected in the lung and kidney of Dmt- 
D mice.
Repeat size distributions in the lung and kidney of two Dmt-D littermates at 24 
months of age. A mouse heterozygous for the Pms2 disruption (Pms2+/-) was 
compared to its control littermate, which carried both copies of the same gene 
(Pms2+/+). SP-PCR analyses were performed with a very low DNA input: an 
average of 1-2 transgene molecules were amplified per reaction. Each band 
observed was individually sized and the repeat lengths grouped into 10 repeat 
size intervals.The total number of transgene molecules sized for each tissue (n) 
are shown in the top right corner of each panel.
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Figure 8.5. Somatic mosaicism in 13-month-old Dmt-D mice heterozygous for the Pms2 
deletion.
Representative SP-PCR analyses of transgene molecules extracted from lung, heart, 
brain and kidney of four Dmt-D mice aged 13 months. The two Pms2+/~ mice carried 
a disrupted a Pms2 allele, and the trinucleotide somatic instability they exhibited 
was compared with two age-matched controls, carrying two functional Pms2 alleles 
(Pms2+/+). Around 10 transgene molecules from heart were amplified in each 
reaction, whereas 20-50 were amplified for the other three tissues. The size markers, 
converted into repeat number differences from the inherited allele are shown on the 
right.
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o f som atic m osaicism , usually observed in D m t-D mice, is highly reproducible, and most certainly 

controlled by tissue- and/or cell-type trans-acting modifiers.

8.2.4. Somatic mosaicism in homozygous Pms2 knock-out mice

It should be mentioned that the assessm ent o f som atic m osaicism  in old P m s2  ~ m ice 

proved very difficult, since the total absence o f the Pms2 gene product in these animals made them 

ill, usually before six months o f age. Pms2 h m ice developed paralysis o f the hind legs, a condition 

that led to rapid deterioration and the subsequent sacrifice of these mice (Fortune, 2001).

The levels o f somatic m osaicism  in P /ns2-nullizygous m ice were initially assessed in an 

eight-m onth-old m ouse, and compared to the levels o f triplet repeat instability detected in its 

Pms2+I age-matched control littermate. D N A  sam ples from lung, heart, brain and kidney were 

analysed by SP-PCR. The amplification o f - 5 0  transgene m olecules per reaction revealed lower 

levels o f som atic m osaicism  in the lung and kidney o f a hom ozygous Pms2 knock-out m ouse  

(Figure 8.6). The same result was observed for heart and brain samples (data not shown).7

Lung Kidney

P m s2 +/- -/- +/- -/-

Figure 8.6. Somatic mosaicism in lung and kidney of an eight-month-old Dmt-D m ouse 
homozygous for the Pms2 deletion.
The autoradographs shown in this figure represent SP-PCR analyses of transgene 
molecules extracted from lung and kidney tissue samples from two eight-month-old 
Dmt-D littermates: a heterozygous mouse for the Pms2 disruption (Pms2+/‘) and a 
homozygous for the same mutation (PmsZ1'). Around 50 transgene molecules were 
amplified in each reaction, using oligonucleotide primers DM-C and mDmtD-GR. 
The size markers were converted into repeat length differences from the progenitor 
alleles, and displayed on the right.

7 H ig h  D N A  in p u t  a n d  s i n g l e  m o l e c u l e  S P - P C R  a n a ly s e s  o f  D N A  s a m p le s  c o l l e c t e d  fr o m  th e  t w o  e ig h t -  

m o n t h - o l d  Dm t - D  m i c e ,  d i f f e r i n g  in  th e ir  Pms2 s t a t u s ,  w e r e  p e r f o r m e d  b y  L a u r a  I n g r a m , a n  h o n o u r s  

u n d e r g r a d u a te  s tu d e n t  at th e  U n iv e r s i t y  o f  G la s g o w ,  u n d e r  m y  s u p e r v is io n .
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The decreased trinucleotide repeat instability in a Pms2 knock-out genetic background was 

confirmed by single molecule analysis, performed on 89-170 transgene molecules collected from 

lung and kidney. The mutation profiles determined for these mice revealed lower levels of 

expansion-biased triplet repeat instability associated with the disruption of both Pms2 alleles, in the 

two tissues analysed (Figure 8.7). While only 25% of the lung cells carried transgene sequences 

differing more that five repeats in size from the progenitor allele in the Pms2'1' mouse, 53% were 

included in the same repeat length range in its Pm s2+I' littermate. The same comparison is also 

remarkable in the kidney of both animals: 52% in the Pms2'l~ mouse, against 71% in the Pms2+I~ 

animal (Figure 8.7). Furthermore, much greater repeat size ranges were detected in the tissues 

collected from the Pms2+I' mouse, relative to its Pms2-nullyzygous littermate, which emphasises 

the effect of Pms2 status on the repeat instability. Statistically, the median repeat length change 

from the progenitor in the heterozygous mouse was significantly larger than the median repeat 

length change in the homozygous littermate, for both lung (p=0.0007, two-tailed Mann-Whitney U 

test) and kidney (p=0.0038, two-tailed Mann-Whitney U  test).

Lung
40

n=112

n=89

Kidney
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n=170
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n=160
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’"'a v

Repeat change from progenitor allele

Figure 8.7. Quantification of the effect of a homozygous Pms2-deficient genetic 
background on the trinucleotide somatic mosaicism detected in the lung 
and kidney of Dmt-D mice.
Repeat size distributions in the lung and kidney of two Dmt-D littermates, aged 
eight months: a mouse heterozygous for the Pms2 disruption {Pms2+I~) and a 
Pms2-nu\\ homozygote (Pms2'/ ). SP-PCR analyses were performed with a very 
low DNA input: an average of 1 -2 transgene molecules were amplified per reaction, 
using oligonucleotide primers DM-C and mDmtD-GR. Each band observed was 
individually sized and the repeat lengths grouped into 10 repeat size intervals. 
The total number of transgene molecules sized for each tissue (n) are shown in 
the top right corner of each panel.
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Since no statistically significant differences were found between Pms2+I+ and Pms2+I~ mice, 

the study of the effects of Pms2-deficiency on the dynamics of expanded trinucleotide repeat tracts 

was further extended to another five six-month-old animals, with inherited repeat lengths ranging 

from 166 to 176 CAG'CTG units. The levels of somatic instability in two Pms2+I+ and three Pms2~l~ 

animals were assessed by SP-PCR amplification of 20 to 50 transgene molecules collected from 

lung, heart, brain and kidney (Figure 8.8). Lower levels of somatic mosaicism were consistently 

detected in the kidney of Pms2'h mice. A subtle but possibly significant difference may also be 

observed between lung DNA samples, with higher expansion rates being detected in P m s2+I+ 

animals. However, this type of analysis was inconclusive for the two other tissues analysed (heart 

and brain). At six months of age trinucleotide somatic mosaicism in tissues other than kidney is 

hardly detected, and it is only then that tissue-specific repeat instability profiles begin to develop. 

Therefore, any qualitative observations in tissues other than kidney are very preliminary at this 

stage. Absolute conclusions could only be drawn from these experiments if quantification of the 

levels of repeat stability was carried out by single molecule SP-PCR analysis. Nevertheless, 

qualitative SP-PCR analysis of kidney transgene molecules was sufficient to conclude that Pms2 

nullizygous mice display lower levels of repeat instability.

To summarise, Dmt-D  mice that lack both functional Pms2 alleles exhibited lower levels of 

somatic repeat instability compared to their age-matched controls, carrying either one or two 

undisrupted Pms2 copies.

8.2.5. Quantification of large repeat length mutations in a Pms2- 
deficient background.

During the course of this study, it became evident that the amplification of high numbers of 

transgene molecules per SP-PCR (more than 100 template molecules), revealed marked 

accumulation of rare, but large (longer than 20 or 30 repeats) repeat length mutations (either 

expansions or contractions) in Pms2-wA\ homozygotes. To confirm these findings, high DNA input 

SP-PCR analyses were performed on heart and brain DNA samples, collected from two eight- 

month-old littermates with different Pms2 status, either heterozygous or homozygous for the Pms2 

gene disruption (Figure 8.9). A higher frequency of large repeat deletions was indeed observed in 

both tissues of the homozygous mouse for the Pms2 mutation. Similar results were observed in the 

lung and kidney of the same mice (Figure 8.6). At six months of age, the same conclusion could be 

drawn from high DNA SP-PCR amplifications (Figure 8.8). However, at this earlier stage, only 

kidney DNA samples exhibited a detectable accumulation of large deletions in P m s2 h mice, 

relative to their Pms2+I+ age-matched controls (Figure 8.8).

To determine the difference in the frequency of large deletion events at eight months of age 

between Pms2+I~ and Pms2~l~ mice, 150-200 transgene molecules extracted from different tissues 

were amplified per reaction, in order to reveal the rare but large repeat length changes in lung, 

heart, brain and kidney. Following amplification of 3200-5000 transgene molecules, the frequency 

of these rare mutation events was calculated (Figure 8.10). The levels of large deletions showed a
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Pms2+/+ Pms2~1'

Heart

Brain

Kidney

Figure 8.8. Somatic mosaicism in six-month-old Dmt-D mice homozygous for the Pms2 
deletion.
Representative SP-PCR analyses of transgene molecules extracted from lung, heart, 
brain and kidney harvested from five Dmt-D mice aged six months. Three Pms2~/~ 
mice carrying a disruption in both Pms2 alleles were analysed, and compared with 
two age controls, carrying two functional copies of the same gene. Twenty to 50 
transgene molecules were amplified in each reaction. The size markers, converted 
into repeat size differences from the progenitor allele, are displayed on the right.
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three-fold increase in the heart, and a two-fold increase in the lung and kidney o f a P m sZ ' mouse, 

when compared to its Pms2+I~ littermate. M oreover the shortest m olecules amplified were around 

10 to 30 repeats shorter in the tissues collected from the hom ozygous mouse, except for lung. The 

median large deletion in the brain o f a Pms2 nuilizygous mouse was significantly lower than the 

median large deletion for the same tissue in a heterozygous littermate (p=0.0118, two-tailed Mann- 

W hitney U  test), meaning that in the absence o f Pms2, longer trinucleotide repeat contractions 

occur.8

In conclusion, in the total absence o f Pm s2, the frequency o f rare large deletions (>30  

repeats) was increased. Nonetheless, these still only occurred in a small subset o f cells (-1 /1 ,000 ).

Heart Brain

Pms2 +/- +/- - /-

— +49

I— -41

— -138

Figure 8.9. High DNA input SP-PCR amplifications for the quantification of large repeat 
number changes in the heart and brain of a Pms2-null homozygous mouse.
The amplification of high amounts of DNA in each reaction allowed the detection of 
large but rare repeat size changes (some examples pointed out in the figure by black 
a rrow heads,^). Around 150 to 200 transgene molecules extracted from heart and 
brain of two eight-month-old Dmt-D mice, were amplified in multiple independent 
reactions with oligonucleotide primers DM-C and mDmtD-GR, giving rise to the SP- 
PCR products shown. The size markers, converted into repeat size differences from 
the progenitor allele, are displayed on the right.

8 The quantification o f  large deletions in D m t-D heart and brain tissue sam ples was also performed by Laura 
Ingram, under my supervision.
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■ Pm s2+/- s  Pms2~,~

Figure 8.10. Frequency of large trinucleotide repeat number mutants in the brain, 
heart, lung and kidney in a Pms2-deficient background.
The frequency of large repeat size mutations was determined in two eight- 
month-old Dmt-D littermates: a mouse heterozygote for the Pms2 deletion, 
Pms2+/~(*), and a homozygote for the same mutation, Pms2~l~ ( i ). A total 
number of 3200-5500 transgene molecules were amplified at high DNA 
concentration (100-200 molecules per reaction) with oligonucleotide primers 
DM-C and mDmtD-GR. All large deletions and expansions detected were 
individually sized for each tissue. Quantitative analysis of repeat expansions 
in lung and kidney tissue samples is shown in Figure 8.7. Allele lengths were 
grouped into 10 repeat size ranges.

244



Mario Gomes-Pereira, 2002 Chapter 8

8.3. Discussion

The dynamics of trinucleotide repeats in the mammalian context is an intriguing issue, 

which may depend on the complex interaction between multiple factors. Although some deductions 

can be drawn from studies carried out with simple model organisms, such as bacteria and yeast, it 

appears that the mammalian system sits on a higher level of complexity. One should therefore be 

aware of the differences and limitations of using simple organisms to model the mammalian 

system, since the conclusions and hypotheses inferred may not entirely apply to higher eukaryotes.

It has been suggested that the MMR system plays a central role in determining the stability 

of trinucleotide repeats in bacteria (Jaworski et al., 1995; Parniewski et al., 2000; Schmidt et al., 

2000; Schumacher et a l ,  1998) and in yeast (Rolfsmeier et al., 2000; Schweitzer and Livingston, 

1997). MMR enzymes correct non-native DNA structures that arise primarily during DNA 

replication. These aberrant structures include incorrectly paired bases as well as insertion/deletion 

loops, which may form as a result of microsatellite instability. We have decided to investigate the 

relationship between DNA repair activity and levels of somatic instability in a murine model of 

trinucleotide repeat instability, by breeding Dmt-D  mice (Monckton et al., 1997) onto a Pm s2- 

deficient background (Baker et a l, 1995).

Given the impaired repair activity in cells heterozygous for MMR mutations (Edelmann et 

a l ,  1996; Marra et al., 2001), we first considered the hypothesis that Pms2+I’ mice would show 

levels of somatic mosaicism different from those detected in wild-type animals. However, the 

results showed that Pms2+I+ and Pms2+I' mice exhibited similar levels of repeat instability at 13 and 

24 months of age. Single molecule SP-PCR analysis has confirmed that the repeat distributions at 

24 months of age were not statistically different between the two genetic backgrounds. These 

results indicated that one Pms2 allele is sufficient to generate levels of trinucleotide repeat 

instability in somatic cells that are indistinguishable from those that develop when both Pm s2  

copies are functional.

Whereas a single Pms2 allele is sufficient to maintain the same high levels of somatic 

mosaicism than those observed in mice carrying a totally functional MMR system, the disruption of 

both Pms2 alleles causes a dramatic stabilisation of the triplet repeat tract, indicating that Pms2 acts 

as a major genetic modifier of trinucleotide repeat instability in somatic tissues. All Pms2’1' mice 

analysed in this study displayed lower levels of somatic mosaicism than their Pms2+I+ or Pms2+I' 

age-matched controls, in all the tissues analysed. Single molecule analysis revealed that the 

difference between Pms2+I' and Pm s2'1' was statistically significant at eight months of age. This 

result was qualitatively confirmed by the comparison of somatic mosaicism between Pms2+I+ and 

Pms2~l~ mice at six months of age. In all cases higher levels of repeat instability were observed in 

the presence of a fully functional MMR system, in particular for lung and kidney.

Taken together, these observations clearly suggest that Pms2  may be considered a genetic 

enhancer of trinucleotide repeat instability in the soma. This situation is in clear contrast with most 

studies, previously carried out in simple model organisms. In bacteria, mutS and mutL mutations 

cause an overall increase in the frequency of small length changes within trinucleotide repeat tracts
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(Parniewski et al., 2000; Schmidt et a l ,  2000; Schweitzer and Livingston, 1997). However, an 

increased frequency of large deletions within long trinucleotide repeat tracts cloned into MMR- 

proficient E. coli strains has been reported (Jaworski et al., 1995; Parniewski et al., 2000; Schmidt 

et al., 2000). In yeast, both p m s l  and msh2 mutations destabilise trinucleotide repetitive arrays 

(Schweitzer and Livingston, 1997), p m s l  being the yeast homologue of mammalian PMS2 

(Nicolaides et al., 1994). It appears that trinucleotide repeat dynamics is controlled by different 

mechanisms in different organisms, or that the same modifiers (such as MMR proteins) may play 

different roles in different contexts.

If replication slippage were the primary mechanism by which somatic mosaicism arose, 

then it would be expected that MMR loss of function would enhance repeat instability. In this 

particular case, if P m s2  monitored and prevented trinucleotide repeat expansions, the P m s2  

deletion would automatically impair the repair of slippage errors, thereby causing increased levels 

of somatic mosaicism. However, the data presented in this chapter strongly argues against such a 

mechanism. It is therefore conceivable that trinucleotide repeat expansion relies on recognition and 

binding of MMR proteins to alternative DNA structures (Pearson et al., 1997) formed within the 

repeat sequences (Pearson and Sinden, 1998b), followed by the inappropriate repair (or 

“misrepair”) of hairpins and loop-outs. Rather than being considered as lesions that have escaped 

MMR, trinucleotide repeat expansions may be viewed as the outcome of “misrepair” by at least 

some components of the MMR system. Alternatively, it is theoretically possible that the greater 

triplet repeat stability observed in P m s l1' mice might be explained by preferential repair of newly 

synthesised DNA, as opposed to the template strand, mediated by an underlying or competitive 

repair pathway still active in the absence of Pms2.

However, one important point should be made. Despite being highly sensitive, and able to 

detect subtle changes in repeat number, SP-PCR techniques cannot identify the origin of such 

mutations. It is therefore conceivable, that P m s l1' mice, being defective in MMR activity, exhibit a 

greater accumulation of small mutations due to DNA polymerase slippage, which cannot be 

properly repaired in an MMR-deficient genetic background. These mutations are most likely to 

involve only a very few repeat units and cannot be easily identified by SP-PCR procedures. In 

contrast with an overall mutation rate, the actual frequency of replication slippage errors cannot be 

determined. Indeed, increased instability of short CAG'CTG repeats at both DM1 and SBMA  loci 

have been described in tumour samples from HNPCC families (Wooster et al., 1994). Similarly, 

the mutation rates of expanded DM1 alleles in ovarian and gastrointestinal tumour tissue samples 

were higher than in normal tissue samples from the same organ (Jinnai et al., 1999; Kinoshita et 

al., 1997). This is in agreement with the models proposed, in order to resolve the opposing effects 

of MMR mutations on the dynamics of CTG*CAG repeat tracts cloned into E. coli (Parniewski et 

al., 2000; Schmidt et al., 2000). Small contractions and deletions, within short trinucleotide repeat 

sequences are generated by DNA polymerase slippage and unrepaired in the absence of MMR, 

leading to the accumulation of small repeat changes. In contrast, following a strand slippage event 

within a long trinucleotide repeat tract, the excision of the daughter strand by a functional MMR 

system, facilitates single-strand folding into secondary structures within the template DNA
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sequence, thereby promoting large deletions (Jaworski et al., 1995; Schmidt et al., 2000). By 

analogy, it is certainly likely that in the absence of Pms2, strand slippage-mediated mutations may 

accumulate in dividing cells, but they are certainly not key determinants in the development of the 

dramatic expansion-biased repeat profiles observed in tissues from D m t-D mice. However, 

contradicting the effect of MMR system in promoting large deletions in E. coli (Jaworski et al., 

1995; Parniewski et a l ,  2000; Schmidt et al., 2000) in the total absence of Pms2, a greater 

frequency, yet still very low, of large deletions was detected in Dmt-D  mice, implying a role for 

Pms2 in avoiding large repeat number changes within trinucleotide sequences. Similarly, the 

correction of very large looped mispairs in yeast involves, at least partially, msh2 and pm sl gene 

products (Clikeman et al., 2001), and it has also been reported that p m s l -deficient yeast also 

accumulate long contractions (Schweitzer and Livingston, 1997). It may be hypothesised, that in 

the absence of P m s2 , unusually long deletions may arise through the folding back of the 

CAG*CTG repeat tract. Under MMR-deficient conditions, single-stranded DNA secondary 

structures would be alternatively processed, leading to a large repeat contraction, possibly through 

a bypass of the structure during repair DNA synthesis.

In summary, MMR proteins may actually be active participants in the mutation mechanism 

that drives triplet repeat instability. Interestingly, Pms2  has been shown to be necessary for the 

accumulation of highly mutated sequences in the variable region of immunoglobulin genes (Kim et 

a l ,  1999), indicating that trinucleotide repeat diseases are not the first situation in which fully 

functional MMR components are involved in a mutational process.

Msh2 has also been reported as being required for the development of somatic instability of 

an expanded CAG'CTG repeat tract in a transgenic mouse model of Huntington disease, carrying 

an expanded exon 1 of the human HD  gene (Manley et al., 1999b). Similar findings have been 

described for M sh3  and somatic instability levels of an expanded CTG'CAG repeat inserted into 

the murine Dmpk gene by homologous recombination (van Den Broek et a l, 2002). The effects of 

Msh2 and M sh3  mutation observed in those mice appear to be more dramatic than the effect of 

Pms^-disruption reported here. In both studies electrophoretic profiles generated by bulk DNA 

amplification, using fluorescent primers, automated fragment analysis and GeneScan software, 

were compared between MMR-proficient and MMR-deficient mice. It is now well established that 

GeneScan-based techniques are not as sensitive as SP-PCR analysis, leading to an underestimation 

of the levels of repeat instability (Fortune et a l ,  2000; Kennedy and Shelboume, 2000). This may 

account for the apparent greater effects of M sh2  and M sh3 mutations on the CAG#CTG tract 

dynamics.

Nevertheless, the specific role of individual MMR genes in the repair pathway may have a 

greater impact on the different extents to which individual MMR gene mutations affect 

trinucleotide repeat instability. Indeed, in contrast to the effects of Msh2, Msh3 and P m s2  

mutations, a functional Msh6 gene has been found to stabilise trinucleotide repeat tracts in the 

somatic cells of DM1 knock-in mice (van Den Broek et a l,  2002), strongly suggesting that 

different MutS homologues have distinct functions in trinucleotide repeat metabolism (for further 

details see Chapter 9). Mononucleotide sequences have shown higher mutation frequencies in mice
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lacking Msh2, than in those deficient in Pms2 (Andrew et al., 2000). This is interesting in view of 

the fact that P m s l1' mice are predisposed to cancer, mainly lymphomas, but do not develop 

gastrointestinal neoplasias (Baker et al., 1995; Prolla et al., 1998), whereas M sh2'1' and M sh3'1' 

animals do (Edelmann et al., 2000; Reitmair et al., 1995). The differences with respect to tumour 

phenotype between Msh2-, Msh3- and Pms2-deficient mice may be indicative of differential roles 

for Msh2, Msh3 and Pms2 proteins in mismatch identification and error correction, and account for 

the lower incidence of PM S2  germline mutations in HPNCC patients (Peltomaki, 2001b). While 

MSH2 is involved in the repair of single base mismatches and insertion-deletion loops, MSH3 is 

specifically involved in the correction of insertion-deletion loops. In the absence of MSH2 or 

MSH3, loop-outs are very inefficiently corrected (Jiricny, 2000; Peltomaki, 2001a). After the 

characterisation of MLH3, some degree of redundancy between PMS1, PM S2  and MLH3 has been 

suggested (Lipkin et al., 2000). Both MLH1-MLH3 and M LH1-PM S2 heterodimers can 

specifically repair insertion-deletion loops. Therefore, in the absence of PMS2, insertion-deletion 

loops can still be repaired by MLH1-MLH3 complexes. These findings may also help to explain 

why a mutation in mouse P m s2  may have a weaker effect on genomic stability and cancer 

predisposition, compared to mutations in Msh2 and Msh3, and why there are still detectable levels 

of trinucleotide repeat somatic mosaicism in the absence of Pms2.

Differences in the genetic background between our mice and the animals used in other 

studies may also explain the greater effect of Msh2 and Msh3 deletions, in the same way that M sh6 

deficiency may or may not induce intestinal tumours, depending on the mouse genetic background 

(de Wind et al., 1999; Edelmann et al., 1997), indicating a role for genetic or environmental 

modifiers in determining the outcome of an MMR mutation. The genetic background also appears 

to contribute to the levels of somatic mosaicism detected in a knock-in mouse model of DM1 (van 

Den Broek et al., 2002).

Increasing evidence has suggested that the expansion mechanism of trinucleotide 

sequences is not entirely dependent on the pausing of DNA polymerase, followed by slippage and 

lack of repair of alternative structures, as the replication slippage model predicts (Richards and 

Sutherland, 1994). An alternative mechanism for trinucleotide repeat expansion has been proposed, 

suggesting that germline trinucleotide repeat expansion is controlled by repair-dependent 

replication machinery, rather than mitotic or meiotic events (Kovtun and McMurray, 2001). If 

instability were limited to mitotic populations, Msh2-dependent recognition and stabilisation of 

slipped-stranded DNA structures could lead to expansion following a subsequent round of 

replication. However, if the trinucleotide repeat mutation pathway were primarily dependent on 

MMR-mediated stabilisation of alternative DNA secondary structures, the changes in repeat 

number would still require cell division and DNA replication to occur. The high proportions of 

non-mitotic cells in brain tissues that show greatest instability in several mouse models (Fortune et 

al., 2000; Kennedy and Shelbourne, 2000; Lia et al., 1998; Mangiarini et al., 1997; Seznec et al., 

2000) indicate that repair or some other non-mitotic DNA synthesis may be a mechanism of 

expansion. Therefore, several factors appear to play determinant roles in the stabilisation of triplet 

repeat sequences within the mammalian genome. The work presented here suggests that at least
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Pms2, but quite possibly other components of the MMR system, act as genetic enhancers of 

somatic trinucleotide repeat instability. The involvement of the P m s2  gene product in the 

accumulation of repeat length variation is of major significance, since it implies that not only MMR 

proteins that recognise and directly bind to mismatches (MutS homologues), but also MutL 

homologues are involved in the mutation mechanism. Therefore, a more general involvement of 

MMR enzymes in the dynamics of expanded triplet repeats, further than the simple stabilisation of 

loop-outs or hairpin-like structures, must be considered (a more detailed discussion on this topic 

and a possible molecular mechanism of trinucleotide repeat expansion are included in Chapter 9).

It is noteworthy, that the ability of human mismatch repair proteins to interact with other 

members of the rodent mismatch repair machinery indicates a high degree of conservation (Marra 

et al., 1998), therefore it is not unreasonable to speculate that the findings reported here may also 

apply to humans, and that the MMR system may act as an enhancer of somatic mosaicism in 

trinucleotide repeat disorders.
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9. Main conclusions, final discussion and future 
perspectives

DNA has long been known as the reservoir of genetic information, thought to be essentially 

passive and stable through numerous cellular processes. However, this picture has been changing. 

Since 1991, a fast-growing group of neurological and neuromuscular diseases have been associated 

with chain length expansions of trinucleotide repeats CAG'CTG, CGG'CCG, and GAA*TTC. 

Multiple short trinucleotide sequences are normally present in the genome. They are usually 

polymorphic among the normal population, and relatively stable in both germline and somatic 

cells. However, under certain circumstances, the copy number increases beyond a certain level, at 

which point the triplet repeat expansion becomes highly unstable and pathogenic, causing severe 

human conditions. The length of these repeats is closely related to the onset and progression of 

clinical symptoms. Disease-associated unstable trinucleotide repeats have been found in various 

regions of the affected genes, such as 3’ and 5’-untranslated regions, exons and introns (Cummings 

and Zoghbi, 2000a; Cummings and Zoghbi, 2000b; Richards, 2001).

Although substantial progress had been made in understanding this fascinating mutational 

mechanism , new information continues to raise important questions. W hile a thorough 

understanding of the mechanism has not been achieved, the search is well worth the effort. A 

mechanistic solution to the problem of instability is likely to expose the very nature of heritable 

traits and provide valuable clues towards the development of promising therapeutical routes.

9.1. Main conclusions

9.1.1. Trinucleotide repeat dynamics and cell division

In order to better understand the mutational pathway of trinucleotide repeat sequences in 

somatic cells, repeat length variation was assessed in cell cultures established from Dmt transgenic 

mice carrying CAG'CTG repetitive tracts in their genome (Monckton et al., 1997). The site of 

integration of the transgene has proved to be a key determinant of trinucleotide instability, not only 

in the soma (Fortune et a l ,  2000), but also in germline transmissions (Zhang et al., 2002). Age- 

dependent, tissue-specific, expansion-biased somatic mosaicism had been previously detected in a 

particular transgenic line, the Dmt-D mice, carrying a single copy of the Dmt transgene (Fortune et 

al., 2000).

SP-PCR techniques were used during the course of this project to analyse in detail the 

variation in the CAG*CTG repeat length, not only in Dmt mouse cell lines but also in mouse tissue 

samples. SP-PCR is an extremely sensitive technique capable of revealing subtle, but important 

differences in repeat number distributions, not detectable using bulk DNA analysis. SP-PCR
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methods represent a robust approach for accurately assessing the level of repeat variation, 

providing both quantitative and qualitative data (Monckton et al., 1995).

Monitoring the dynamics of expanded CAG'CTG repeats in D m t-D cultured cells over 

long time periods, and numerous population doublings, revealed that these cultures were able to 

recreate expansion-biased trinucleotide repeat instability. In contrast to an apparent “synchronised” 

expansion, observed in EBV-transformed human lymphoblastoid cell lines (Khajavi et al., 2001), 

Dmt-D cell lines have usually shown a continuous increase in the mean repeat size, similar to that 

detected in human tissue samples. Most importantly, the tissue-specific patterns of somatic 

mosaicism detected in vivo (Fortune et al., 2000), were also retained in culture, suggesting that 

tissue- and cell-specific factors must play determinant roles in the process of somatic mosaicism. 

Intriguingly, cells carrying longer alleles appeared to preferentially accumulate in culture during 

the first few passages, possibly due to a selective growth advantage of cells that already contained 

longer repeats in vivo (Chapter 3).

EBV-transformed DM1 lymphoblastoid cell lines (LBCLs) with larger CTG'CAG repeat 

expansion appear to have a growth advantage over those with smaller expansions in culture, a 

phenomenon termed “mitotic drive” (K hajavi et al., 2001). The authors proposed that the 

expansion of the DM1 CTG'CAG repeat downregulates p21, leading to increased LBCL cell 

proliferation and possibly to increased levels of apoptosis, and resulting in shortened cellular life 

spans (Khajavi et a l , 2001). p21 down-regulation could result directly from altered expression 

levels of one of the genes in the DM1 locus (Khajavi et al., 2001), or could instead be mediated by 

the recruitment of CUG-BP into the nucleus (Timchenko et al., 2001b). The fact that cell 

proliferation rates of D m t-D cell lines did not correlate with CAG*CTG repeat lengths, suggests 

that the intriguing association reported by Khajavi et al. cannot be uniquely accounted for by the 

presence an expanded CAG'CTG sequence at the DNA level. Since the Dm t transgene does not 

include the DM PK  coding region, the effect observed in human DM1 LBCKs, could indeed result 

from the altered expression levels of one of the genes that map within the DM1 locus. 

Alternatively, the parallel between repeat size and cell proliferation rate might be mediated by 

expanded CUG repeats within DMPK  transcripts, again rendering it unlikely to be detected in our 

cell culture system. Reverse transcriptase PCR analysis revealed that the D m tl62  transgene is 

ubiquitously transcribed into heterogeneous nuclear RNA in D m t-D mice (even in those tissues 

where the repeat is stable), but is not present in mRNA transcripts, suggesting that it has probably 

integrated into a mouse intron. However, the CAG strand, as opposed to the presumed CUG toxic 

repeats, is preferentially transcribed (Fortune, 2001). In addition, no CUG-containing nuclear foci 

were detected in D2763L lung cells (J. Houseley and D.G. Monckton, personal communication).

Together with a basic expansion-biased mutation mechanism detected in cultured Dmt-D 

kidney cells (Chapter 3), an association between faster cell proliferation and larger CAG'CTG 

repeat expansions in DM1 cells (Khajavi et al., 2001) is particularly attractive since it could 

contribute to the bias of CAG'CTG repeat towards further expansion in rapidly proliferating cells 

in vivo, but may not be relevant to mainly post-mitotic tissues, such as the muscle or the brain 

(Anvret et al., 1993; Ashizawa et al., 1993; Fortune et al., 2000; Kennedy and Shelbourne, 2000;
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Lia et al., 1998; Mangiarini et a l ,  1997; Monckton et al., 1995; Seznec et a l,  2000; Telenius et al., 

1994; Thornton et al., 1994; van Den Broek et al., 2002).

Dmt-D fibroblastic cell lines may not represent a pathologically relevant cell type, but the 

generation of an in vitro system to study the complex pathophysiological cascade underlying the 

disease mechanism was never the purpose of this project. Although the continuous proliferation of 

mouse fibroblasts in this model system differs from the post-mitotic tissues, where the greatest 

expansions are usually detected in vivo, these cells still mimic stages of rapid proliferation, possibly 

similar to those occurring during embryogenesis, stem cell proliferation, or in pre-meiotic 

spermatogenic events, which may be important stages for the generation of significant repeat length 

variation (Leeflang et a l ,  1999). Nevertheless, no correlation was found between the rates of cell 

turnover in homogenous Dmt-D cell lines, and the average repeat length or the degree of repeat size 

heterogeneity in culture (Chapter 3), possibly suggesting that the accumulation of allele length 

variability detected in cell lines undergoing rapid proliferation does not occur during DNA 

replication. In addition, accumulation of repeat length variation was still detected in arrested cells, 

sometimes at higher rates than in control cells proliferating under standard conditions (Chapter 7). 

In DM1 patients, the rates of expansion are indeed greater in slowly proliferative muscle cells than 

in more rapidly dividing leukocyte populations (Anvret et a l ,  1993; Ashizawa et al., 1993; 

Monckton et al., 1995; Thornton et al., 1994). Similarly, striking repeat expansions were reported 

in non-replicating striatal cells in Dmt-D mouse brains (Fortune et a l,  2000) and in a HD knock-in 

mouse model (Kennedy and Shelbourne, 2000). In addition, several genotoxic agents, which did 

not necessarily interfere with the rates of cell division, assessed by the population doubling time, 

were capable of interfering with the dynamics of expanded CAG'CTG repeats in culture (Chapters 

4 and 6).

Combined, these data argue against a direct and simple link between cell division and the 

mutation process. The results described and discussed here do not preclude such a link, but indicate 

that other factors must be of critical importance. Indeed, the data presented in previous chapters 

does not exclude replication slippage as a possible mechanism for the generation of trinucleotide 

repeat length variability. The enhanced trinucleotide repeat dynamics in caffeine-treated cells, 

forced to enter mitosis through cell cycle checkpoint override, is consistent with the hypothesis that 

replication errors, generated by DNA polymerase slippage, can in fact mediate repeat expansion if 

not properly repaired (Chapter 6). The reduced rates of expansion in Dmt-D cells exposed to araC 

(Chapter 6) are also consistent with a role for DNA polymerase slippage in the expansion of 

trinucleotide repeat tracts. However, the decreased levels of somatic mosaicism in Msh2 (Manley et 

al., 1999b), M sh3  (van Den Broek et al., 2002) and P m s2  null homozygous mice (Chapter 8) 

strongly suggest that replication slippage is not the major factor driving trinucleotide repeat 

instability in the soma. Moreover, replication slippage during genome duplication cannot certainly 

account for the accumulation of repeat length variation in non-dividing cells (Chapter 7). It 

certainly appears as though there are multiple components of the expansion-biased mutation 

process operating on trinucleotide repeat sequences, which may function in concert in most of the 

cells.
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9.1.2. A possible model of trinucleotide repeat mutation

Few studies have addressed the molecular mechanisms underlying the dynamics of 

expanded trinucleotide repeats in post-mitotic cells. Messer and co-workers have reported that 

Msh2 deletion dramatically decreases the levels of somatic mosaicism in the striatum of transgenic 

mice for an expanded exon 1 of the human HD gene (Manley et al., 1999b). Moreover, M sh2  is 

also required for repeat instability in developing sperm of the same mice (Kovtun and McMurray, 

2001). These findings definitely implied MMR enzymes in the mechanism of trinucleotide repeat 

expansion and questioned the replication slippage mechanism. If replication slippage were the 

primary mechanism by which mosaicism arose, it would be expected that loss of function of MMR 

proteins would enhance repeat instability, since one of the primary functions of the mismatch repair 

machinery is to ensure the faithful replication of DNA during cell division.

Based on the ability of human MSH2 protein to bind slipped-stranded DNA structures 

(Pearson et al., 1997), it was hypothesised that stabilisation of alternative secondary structures 

formed within triplet repeat tracts by MSH2 recognition and binding would lead to expansion 

following DNA repair synthesis (Section 1.4.5) (Kovtun and McMurray, 2001; Manley et al., 

1999b). However, it should be noted that following DNA gap repair, loops and slipped-stranded- 

like structures would be trapped in a heteroduplex DNA molecule (Kovtun and McMurray, 2001), 

and a second round of DNA replication and cell division would be required to complete the 

mutation process. Increasing experimental evidence strongly hints that repeat expansion can occur 

in the absence of cell division, as discussed in Chapter 7. Therefore, attractive as it is, the 

mechanism proposed by Kovtun and McMurray may only account for somatic trinucleotide repeat 

mutation in proliferating tissues, and is unlikely to contribute to the expansion of trinucleotide 

repeat sequences in post-mitotic cells.

In addition to a functional Msh2 gene (Manley et al., 1999b), both Msh3 (van Den Broek et 

al., 2002) and Pms2 genes (Chapter 8) are also required for the accumulation of repeat size 

mosaicism of expanded CAG'CTG repeats in different transgenic mouse models. The finding that 

the Pms2 gene product is also involved in the mutation mechanism is of major significance, as it 

implies that not only MMR proteins that directly recognise and bind to DNA mismatches are 

responsible for changes in the repeat number. The involvement of Pms2 argues against the 

stabilisation of loop-outs and hairpins as the driving force of trinucleotide repeat mutation. 

Consequently, a mutational process relying on error-prone DNA repair, rather than on the simple 

binding of MMR components to secondary structures, presents a valid alternative hypothesis 

(Figure 9.1). The substrate for repair could either be damaged DNA, induced by reactive oxygen 

species (ROS) or other exogenous genotoxic agents, or non-orthodox DNA conformations. 

Alternative secondary structures, likely to form following dissociation of the double-stranded DNA 

duplex (not necessarily during DNA replication), might recruit functional components of the MMR 

machinery. In the absence of a strand discrimination signal, the MMR enzymes might mediate an 

expansion-biased repair pathway, by incorporating a newly synthesised DNA sequence opposite 

the loop, hairpin or DNA bulge.
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|  Single-stranded DNA formation

|  Misaligment and loop/bulge formation
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& = % = ■
|  DNA excision and gap formation

|  DNA repair synthesis and ligation

Figure 9.1. Mechanistic model of somatic trinucleotide repeat expansion mediated by 
MMR proteins.
A double-stranded trinucleotide DNA sequence unpairs to generate two single
stranded DNA trinucleotide sequences (thin lines). The unpaired region may or may 
not extend to the flanking non-repetitive DNA sequences (thick lines). Following 
denaturation, single-stranded trinucleotide repeats may fold into alternative secondary 
structures, such as loop-outs and hairpins, stabilised by intrastrand base pairs. 
Alternatively, DNA strands may fail to align correctly, giving rise to small bulges or 
loop-outs. The MMR proteins recognise and bind alternative secondary structures, 
and in the absence of a strand-discrimination signal, may mediate the incorporation 
of newly synthesised DNA sequences (dashed lines) in the opposite DNA strand, 
leading to expansion following DNA ligation. The process may be repeated if the 
DNA duplex undergoes a second round of denaturation. The mechanism is not cell 
division-based, depending instead on the tendency for double-stranded DNA 
denaturation, the stability of putative secondary structures and activity of MMR 
enzymes.
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This mutation mechanism may not only operate in proliferating cells during cell cycle 

stages other than the S phase, but also in non-dividing cells, as long as DNA damage or structural 

changes target MMR components to the repeat tract, and elicit a repair event. Although there is no 

evidence to support it, trinucleotide repeat tracts, or the alternative structures they form, may be 

particularly sensitive to damage, acting as a mutation hotspot, and therefore particularly dependent 

on DNA repair. Indeed, brain ageing is associated with the accumulation of DNA damage, thus 

DNA repair events may be increasingly important with age in neurons (M rak et al., 1997), 

accounting for the time-dependent accumulation of larger expansion in the brain of transgenic and 

knock-in HD mice (Kennedy and Shelbourne, 2000; Mangiarini et al., 1997). Alternatively, a 

MMR response may be initiated by the simple formation of alternative structures following double 

strand DNA denaturation. Metabolic processes such as transcription, would create conditions to the 

formation of simple bulges, loop-outs or hairpins, which might be readily recognised by MMR 

enzymes, and engaged in a DNA repair pathway. Nevertheless, an association between somatic 

mosaicism and DM PK  transcriptional activity has not been found (Lia et al., 1998). In contrast, 

transgenic mice for the first exon of the H D  gene have shown an association between transgene 

expression and relative stability, as the most stable line does not express the transgene (Mangiarini 

et at., 1997). However, this could reflect a requirement for an open chromatin structure, rather than 

for transcription per se (Bates and Davies, 1997). Non-repetitive sequences immediately flanking 

the trinucleotide sequences may not only influence the propensity to form alternative structures, but 

may also have an effect on their stability. A high GC content, associated with higher mutation rates 

in humans (Brock et al., 1999), might facilitate the folding of trinucleotide sequences into 

alternative DNA conformations, by undergoing faster reassociation, leaving two single-stranded 

trinucleotide sequences free to form intrastrand base pair and generate loop-outs or hairpins. In 

addition, once formed, alternative structures may also be more easily stabilised by a high GC 

content, given the higher melting temperature of GC-rich DNA sequences. Finally, it might be 

speculated that the high thermodynamic stability of alternative structures, may allow spontaneous 

folding in vivo, possibly mediated by subtle balance between cation concentrations (Darlow and 

Leach, 1998b), without the requirement for protein-mediated energy-dependent strand dissociation, 

or by simple DNA breathing.

It is not unreasonable to assume that being unable to extend the double-stranded 

trinucleotide sequence, which could imply breaking intrastrand base-pairs, and thereby eliminating 

any stable secondary structure, MMR proteins are left with two options: they can either remove the 

alternative structure, by DNA excision and re-ligation, or synthesise a complementary DNA 

sequence opposite to the loop. In the absence of cell division, there is no strand discrimination 

signal to direct MMR proteins onto a particular DNA strand. Under these circumstances, it may 

seem logical that the MMR system may opt for the incorporation of an extra DNA sequence 

opposite to the alternative structure, since excision might result in the loss of an important piece of 

genetic information (Figure 9.1). Successive rounds of error-prone MMR, would lead to a time- 

dependent accumulation of repeat size changes in post-mitotic cells, such as the skeletal muscle in 

DM1, and the striatum in HD, in the absence of cell division and DNA replication. Moreover, on
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the basis of the proposed model, the possible saturation of the MMR system by the requirements 

for rapid cell division remains as an attractive hypothesis to explain the relative repeat stabilisation 

in rapidly proliferating tissues (e.g. blood) and cell lines (e.g. Dmt-D lungs cell cultures). Although 

highly speculative and lack of direct experimental data to support the crucial expansion bias at the 

MMR level that is the basis of this model, this hypothetical mechanism of trinucleotide instability 

could not only explain repeat length changes in post-mitotic tissues, but it is also consistent with 

most of the reported data based on mammalian systems, particularly transgenic mouse models.

9.1.3. Dynamic equilibrium between MMR heteroduplexes and 
trinucleotide repeat mutation

It has recently been reported that competition between Msh3 and Msh6 proteins for 

binding to Msh2 mediates the outcome of distinct MMR deficiencies in the levels of trinucleotide 

repeat somatic mosaicism (van Den Broek et al., 2002). It is conceivable that different MMR 

heterodimers exhibit different roles in recognition and/or processing of non-orthodox DNA 

structures formed within trinucleotide repetitive sequences, dictating the effect of MMR mutation 

on repeat dynamics. The data reported for a knock-in DM1 mouse model, suggests that only MMR 

complexes containing Msh2 and Msh3, involved in the repair of insertion/deletion loops within 

microsatellite sequences (Figure 1.3), are specifically responsible for the triplet repeat expansion 

mutations. In contrast, MMR complexes consisting of Msh2 and Msh6, being specifically targeted 

for single-base mismatches (Figure 1.3), are not involved in the mutation mechanism. Indeed, 

Msh6 deletion results in a significant increase of somatic mosaicism (van Den Broek et al., 2002). 

Since M utSa heterodimers (Msh2-Msh6) are in large excess to MutSB heterodimers (Msh2-Msh3) 

or free Msh2 in wild-type cells (de Wind et al., 1999), it appears logical to assume that in the 

absence of Msh6, free Msh2 is recruited by Msh3 and targeted to loop/hairpin repair, which 

through DNA mis-incorporation opposite to the secondary structure, may result in repeat gain. In a 

similar way, the recruitment of Msh2-Msh6 heteroduplexes by UV- and ROS-induced DNA lesions 

(M u et al., 1997; Ni et al., 1999; Wang et al., 1999a), may explain the lower levels of repeat 

expansion detected in culture following exposure to ROS-generating compounds (Chapter 5) or 

ultraviolet (UV) light (Chapter 6). Therefore, to be more precise, the MutS homologues represented 

in Figure 9.1 should only include MSH2 and MSH3.

Given the excess of MSH2-MSH6 complexes, relative to MSH2-MSH3, and the opposing 

effects of the two protein heteroduplexes on the dynamics of trinucleotide repeats, it appears 

logical to speculate that a competition between MSH3 and MSH6 to bind MSH2, may be a key 

step in the mutation process. The ratio between the two MutS heteroduplexes is likely to be an 

important determinant of the alternative pathways operating on mutation intermediates, thereby 

controlling the expansion rates of trinucleotide repeat sequences. This hypothesis could be tested 

by treating Dmt-D mouse cells with methotrexate. Methotrexate induces a genomic amplification 

event of the dihydropholate reductase gene, co-amplifying the M sh3  gene as well (Drummond et 

al., 1997). Due to overproduction of Msh3 and heterodimer formation of this protein with virtually
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all the nuclear Msh2, higher levels of expansion-biased repeat instability would therefore be 

expected.

It is noteworthy that the reduction of somatic trinucleotide repeat instability in the absence 

of a functional Pms2 gene revealed by SP-PCR studies (Chapter 8), although highly significant, is 

not as dramatic as the consequences of Msh2 and Msh3 deletion in other mouse models (Manley et 

a l ,  1999b; van Den Broek et a l ,  2002), revealed by high DNA template levels PCR amplification, 

using fluorescent primers, automated fragment analysis and GeneScan software. These apparently 

discrepant results may be, at least partially, explained by the different methods used to assess 

trinucleotide repeat variability. However, the different extent in which MMR mutations affect 

trinucleotide repeat stability, most likely result from the overlapping functions of Pms2 and M lh l 

in the repair of insertion/deletion loops (Lipkin et a l ,  2000). In the total absence of Pms2 protein, 

M lhl can still form a functional MutLB heterodimer with Mlh3, and contribute to the expansion of 

trinucleotide repeats.

Overexpression of MMR genes, the use of dominant and/or anti-sense technology, could 

not only provide further insight into the actual MMR genes directly involved in the expansion 

mechanism of trinucleotide repeats, but also help to establish the importance of the dynamic 

equilibrium between MutS and MutL homologues in the expansion-bias mutation of triplet repeat 

sequences.

9.1.4. Involvement of NER, BER and recombination events in triplet 
repeat mutation

In addition to the direct involvement of the MMR pathway in the mechanism of 

trinucleotide repeat mutation, other repair mechanisms may also be involved. The exposure of 

cultured cells to genotoxic agents that mainly activate nucleotide or base excision repair (NER and 

BER), such as ROS-generating compounds (Chapter 5) and UV light (Chapter 6), was shown to 

alter the dynamics of expanded trinucleotide repeats in culture. Whether the outcome of such 

treatments reflects a direct effect on the mutation process, or a selection of cells with enhanced 

resistance to the specific genotoxic agents, remains unclear. However, the possibility exists that 

activation of NER and BER may lead to the alternative processing of mutation intermediates, 

resulting in an altered mutation profile.

In addition to MMR, NER, BER and more specialised systems to deal with specific DNA 

lesions, there is also a need for enzymatic complexes to maintain the structural integrity of DNA, 

which might be broken and give rise to double strand breaks. Double strand breaks can arise in 

many ways, such as failure of topoisomerase II to complete its cleavage and rejoining cycle, 

mechanical rupture of tangled sister chromatids during mitosis, or by ionising radiation. However, 

the major source of double strand breaks comes from the process of DNA replication itself. These 

breaks probably arise from events that occur at stalled replication forks. There are two major types 

of double strand break repair: non-homologous end-joining, in which ends are re-joined, often with 

the loss of a few base pairs of sequence; homologous recombination, which can lead to accurate
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repair of the double strand break by using a homologous chromosome, especially a sister 

chromatid, as the template to "fill-in" the gap (Jackson, 2002). Regardless of whether it is 

theoretically possible, there is as yet no direct evidence on the extent to which, if at all, 

recombination processes are responsible for trinucleotide repeat expansions in mammalian cells. If 

recombination between homologous chromosomes were the major source of repeat instability in 

somatic cells, mice carrying two expanded CAG'CTG repeat sequences would exhibit greater 

levels of somatic mosaicism. This appears not to be the case in a knock-in mouse model of HD 

(L. Kennedy and P.F. Shelbourne, personal communication). Furthermore, D m t-D hemizygous 

mice exhibit dramatic somatic mosaicism, although they only carry a single Dmt transgene copy in 

their genome (Fortune et al., 2000). Alternatively, if sister chromatid exchange were the driving 

force of repeat mutation, the process would be dependent on cell division. However, mounting 

evidence suggests this is not the case either (Chapter 7). In addition, double strand break-mediated 

recombination repair cannot account for the full mutation spectrum observed in human disease, 

because double strand break at CAG'CTG repeats in yeast are observed only above 130 repeat 

units (Freudenreich et al., 1998). Nevertheless, some of the repeat length mutations observed in 

Dmt-D  cultured cells might have been mediated by recombination-based events, given that several 

treatments might have induced double strand DNA breaks, which in turn might have triggered a 

recombination-based repair mechanism.

In summary, despite the major role of the MMR pathway in the expansion of trinucleotide 

repeats, polymerase slippage occurring during both DNA repair or replication synthesis, NER and 

BER pathways are also likely to be involved in the mutation mechanism. Since MMR proteins are 

also involved in NER and BER (Buermeyer et al., 1999), there is the possibility that the central 

players in all these co-operating mechanisms might be the same: MMR enzymes.

9.1.5. Central involvement of DNA topology in the dynamics of 
expanded trinucleotide repeats

In addition to MMR proteins, the results presented in Chapter 4 brought new players into 

the picture. Enzymes involved in DNA topology, such as topoisomerases, may also be involved in 

triplet repeat metabolism. The double helical nature of DNA creates topological problems that must 

be solved in order to allow the proper transmission of the genetic information. Two steps are 

required for this process: disruption of hydrogen bonds between the two DNA strands, performed 

by specialised DNA helicases; elimination of all the topological links between the two strands, 

performed by DNA topoisomerases (Duguet, 1997). The cooperation between helicases and 

topoisomerases is likely to be extended to many aspects of DNA metabolism, including 

progression of the DNA replication fork, segregation of newly replicated chromosomes, disruption 

of nucleosomal structure (especially during transcription), DNA super coiling and finally DNA 

recombination, repair and genome stability. The role of helicases seems to be so important, that as 

much as 1% of eukaryotic genes may indeed encode DNA and/or RNA helicase enzymes. In 

addition, helicase deficiencies have been associated with human genetic disorders featuring

258



Mario Gomes-Pereira, 2002 Chapter 9

inherent genomic instability, such as elevated frequency of homologous and illegitimate 

recombination, chromosomal deletions and aberrations (Mohaghegh and Hickson, 2001). The role 

of DNA topological enzymes in maintaining genome integrity has thus been well documented. 

Because the duplex helix structure associated with triplet repeat DNA sequence is so anomalous 

compared with the mixed-sequence DNA found in most of the genome, the interaction of helicases 

and topoisomerases with trinucleotide repetitive tracts may be quite distinctive. Indeed, some 

helicases have been reported to interact and unwind tetraplex structures formed by single-stranded 

CGG repeat sequences (Fry and Loeb, 1999). Nevertheless, their involvement in the molecular 

mechanisms of trinucleotide repeat mutation has never been described.

Further evidence supporting the involvement of topoisomerase in the dynamics of 

expanded trinucleotide repeats could be achieved by testing other topoisomerase inhibitors, or by 

transforming Dmt-D  cell lines with dominant negatives of topoisomerase or helicase enzymes, and 

monitoring the repeat size by sensitive SP-PCR techniques. Additionally, cellular proteins capable 

of binding CAG'CTG repeats could be purified by binding affinity procedures. Subsequent two- 

dimensional gel electrophoresis could lead to the identification of proteins that may interact with 

expanded CAG'CTG DNA repeats, and possibly mediate trinucleotide repeat metabolism in vivo.

9.2. On the molecular bases of tissue- and cell-specific 
somatic mosaicism

The patterns of tissue-specific somatic mosaicism exhibited by transgenic mice carrying 

expanded CAG'CTG repeats share striking similarities. Most notably, the transgenic repeats appear 

particularly unstable in kidney, liver and striatum, while relatively low levels of instability are 

detected in cerebellum and spleen in all different mouse models (Fortune et al., 2000; Lia et a l,  

1998; Mangiarini et al., 1997; Seznec et al., 2000; van Den Broek et al., 2002). The fact that the 

patterns of tissue-specific somatic mosaicism are broadly similar between independent transgenic 

lines suggests a major role for tissue-specific trans-acting modifiers of somatic trinucleotide repeat 

instability. Locus-dependent cis factors may, however, contribute to the dissimilarities between 

mutation profiles in different mouse models, as proposed for trinucleotide instability in the human 

germline (Brock et al., 1999).

According to the model presented (Section 9.1.2, Figure 9.1), tissue-specific repeat 

instability might be partially explained by different expression levels of the components of MMR 

in different tissues. Either because MMR naturally shows tissue-specific expression profiles (or 

even efficiency profiles), or because some tissues are more prone to DNA damage, which will 

subsequently activate different DNA repair systems.

Tissue-specific functions are predicted for MMR genes, according to the distinct tumour 

spectra observed in MMR-deficient mice (Section 1.6.3.1 and Table 1.4). It is also conceivable that 

the same differences may account for the tissue-specific patterns of trinucleotide repeat instability 

in somatic cells. In addition, tissue-specific expression levels have already been reported for some
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MMR genes (Lipkin et al., 2000; Prolla et a l ,  1998), together with cell type-specific alternative 

splicing forms for the human MSH2 gene (Clarke et al., 2000). These findings may well account 

for the characteristic tissue-specific patterns of trinucleotide repeat somatic mosaicism described in 

mice and humans.

Quantitative in vivo assays of DNA MMR activity has allowed the identification of MMR 

efficiency polymorphisms, caused by amino acid replacements that do not inactivate MMR, but 

result in lower efficiency of DNA repair (Ellison et al., 2001). Similarly, missense mutations in 

yeast msh2, msh3, m lh l, and p m s l  MMR genes have been shown to cause phenotypes that are 

different from those of null mutations (Sia et al., 2001). These observations raise the possibility 

that differences in the efficiency of DNA MMR, which have no detectable phenotypic outcome, 

exist between individuals in the population due to common polymorphisms. Together with putative 

haplotype-associated ds-acting factors, such differences may explain why different individuals 

who have inherited similar size repeat sequences, exhibit different levels of instability, and possibly 

distinct clinical pictures in respect to disease severity.

Spontaneous mutations have been analysed at a variety of loci in vitro. The spontaneous 

mutation spectrum depends heavily, not only on the genetic marker and its chromosomal location, 

but also on the cell type (Glickman et a l ,  1994; Gossen et a l ,  1993). In addition, levels of 

oxidative DNA damage appears to be broadly related to metabolic rate in a number of mammalian 

species (Ames et al., 1993). Oxidised DNA bases are indeed present at high levels in a wide range 

of human and rodent tissues and the variation in adduct levels correlates roughly with metabolic 

rates (Marnett, 2000). Exposure of D m t-D cells to acute levels of oxidative stress resulted in 

decreased rates of trinucleotide repeat expansion (Chapter 5), probably mediated by cell selection 

in culture, alternative processing of mutation intermediates or inhibition of MMR proteins, via 

protein oxidation (Chang et a l,  2002). Although it is unlikely that the severity of the treatments 

described recreates what happens in vivo, where a slow build up of oxidants over time is more 

likely to occur, the results presented in Chapter 4 strongly suggest that ROS may have an impact on 

repeat metabolism. It is conceivable that different tissues and cell types produce different 

endogenous mutagens, thereby activating distinct DNA repair pathways (MMR, NER and/or BER) 

to different extents, accounting for the tissue-specific triplet repeat mutation profiles detected, not 

only in humans, but also in mice.

Subtle differences in the cellular environment between different tissues and cell types, such 

as ion levels, could influence the proclivity of trinucleotide repeat tracts to adopt alternative 

structures, and therefore account for the differences in the expansion rates between tissues and cell 

types (Darlow and Leach, 1998b).

In summary, an intricate interplay of a variety of factors, involving DNA repair pathways, 

endogenous and exogenous genotoxic agents, and different DNA structural dynamics, may 

establish the central molecular bases of the tissue- and/or cell-specific nature of somatic mosaicism. 

In order to pinpoint the actual cell types exhibiting the highest expansion rates, sensitive SP-PCR 

analysis could be coupled to laser microdissection techniques or fluorescent activated cell sorting 

(FACS) methods. These assays should be particularly useful for tissues showing multimodal
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mutation profiles, such as liver and kidney. In addition, to further test the involvement of oxidative 

stress as modifier of repeat dynamics, measurement of reactive oxygen levels within cells, either in 

culture or in vivo (following enzymatic dissociation), by 2,4-dichlorofluorescin (H2DCF) oxidation- 

based methods (Jakubowski and Bartosz, 2000), might prove extremely informative. The 

association of SP-PCR techniques with H2DCF fluorescence methods, could possibly reveal a 

conclusive relationship between levels of oxidative stress and tissue- or cell-specific somatic 

mosaicism.

9.3. Future perspectives

Dm t-D mouse cell cultures appear to be a suitable and powerful model to investigate the 

dynamics of expanded trinucleotide repeat dynamics. However spontaneous immortalised mouse 

cell lines may carry many accumulated mutations and abnormalities that may interfere with DNA 

metabolism, and directly affect the stability of triplet repeats. Therefore, the use of mouse 

embryonic fibroblasts, or primary cultures, might be more appropriate. However, these cells may 

not live long enough, or they may undergo spontaneous immortalisation too soon, thereby reducing 

the time window to perform experiments similar to those reported in previous chapters. 

Nevertheless, mouse embryonic fibroblasts should be of great interest to assess the effects of 

proliferation inhibition by cell-to-cell contact, which cannot be achieved with immortalised mouse 

cell lines without exposure to drugs. It is also noteworthy that the selective sweeps described in 

Chapter 3, which correspond to unpredicted periods of reduced repeat length variability, may still 

influence the outcome of drug treatments on the dynamics of expanded CAG'CTG repeats, even 

when multiple replicates are established. The use of naturally arrested cells by contact inhibition, 

could help to overcome this limitation of the D m t-D cell culture model, and create new avenues to 

assess the effect of potential therapeutical chemicals on post-mitotic cells, which are usually the 

most affected cells in these disorders.

Nevertheless, selective sweeps may also prove informative. Microarray expression 

analysis, may lead to the identification of gene mutations or altered gene expression profiles 

associated with lower degrees of repeat length heterogeneity, thereby providing further insight into 

the genetic bases of triplet repeat mutation.

9.3.1. Novel therapeutical routes

W hilst it is unlikely that most of the specific compounds tested here, with a few 

exceptions, would have therapeutic utility in humans, the results presented may be considered as a 

proof of principle and a basis for more extended screens. Some of these effects reported might be 

mediated by cell selection in rapidly dividing cultures. Nonetheless, drugs that resulted in 

decreased repeat lengths through cell selection could still have therapeutic benefits. As a step 

forward, towards the development of novel therapeutical routes, and towards a better understanding
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of trinucleotide repeat dynamics in mammalian systems, promising agents identified in vitro, 

should have their utility assessed in vivo, in D m t-D transgenic mice, in which the unstable DNA 

phenotype is replicated. The assessment of the effects of novobiocin, and possibly other 

topoisomerase inhibitors, as well as aspirin on the dynamics of the transgene in these animals 

should be of great interest. If confirmed, these findings would render “chemogenetherapy” as a 

possible route to treat or prevent disease progression, as a means of modifying the nature of 

endogenous DNA sequences by the application of exogenous chemicals. The possibility is very 

attractive since it might be achievable with small chemical drugs, for which delivery methods 

would be less problematic.

The possibility of a presymptomatic diagnosis and the dramatic nature of the disease have 

prompted major efforts to develop early treatments to block the effect of the mutation before the 

symptoms show up. If a preventive treatment at the DNA levels is possible, it should therefore be 

administered to all individuals with the mutation as early as possible, without waiting for the 

appearance of symptoms. This would obviously imply a mutation screening for trinucleotide repeat 

expansions in the general asymptomatic population, which would raise ethical questions, which 

must be acknowledged and debated.
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