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Summary

We have developed a method for the rapid and stereoselective synthesis 

of p-hydroxycyclohexanones v, using a route that relies on four key reactions as 

shown below.
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Substrates for the anionic oxy-Cope (AOC) rearrangement iii were 

obtained by Takai alkylidenation of aldol products ii derived from a,p- 

unsaturated aldehydes i. The AOC rearrangement of alcohols iii containing an 

enol ether was investigated. Conditions were developed that resulted in the 

formation of cyclohexanones v from alcohols iii in a one-pot process. The 

stereochemistry of this rearrangement/cyclisation process was investigated. 

Substrate alcohols iii were found to rearrange predominantly through a chair

like transition state vi, with the potassium counterion chelated to the oxyanion 

and the enol ether oxygen atom.
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vi

The acid-catalysed intramolecular aldol reaction of intermediate 

aldehydes iv was found to result in the preferential formation of an axial 

hydroxyl group in cyclohexanones v. This result was explained in terms of a 

stabilising interaction present in intermediate oxonium ion viii, between an axial 

hydroxyl group and the oxonium ion. The corresponding intermediate with an 

equatorial hydroxyl group vii, does not contain such an interaction and so is 

disfavoured. Modelling studies were used to show that this interaction was 

significant.

© viiiVII
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A angstrom

Ac acetyl

aq. aqueous

AOC anionic oxy-Cope
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°C degrees centigrade
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Cl chemical ionisation
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IR infra red
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LG leaving group

LUMO lowest unoccupied molecular orbital

LRMS low resolution mass spectrum

m multiplet (NMR spectroscopy)

m medium (IR spectroscopy)

mCPBA meta chloroperbenzoic acid
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mol mole(s)

MOM methoxym ethyl
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TBAF tetrabutylammonium fluoride

TBS tert- butyldimethylsilyl

TES triethylsilyl

THF tetrahydrofuran

TLC thin layer chromatography

TMEDA N,N,N\N’-tetramethylethylenediamine

TMS trimethylsilyl

TS transition state

Xc chiral auxiliary



Introduction

1.1 Background

Our research has focused on the development of methodology for the rapid 

and stereoselective synthesis of polyfunctionalised ring systems, in particular the 

formation of p-hydroxycyclohexanones. The route we have developed is shown 

below, Scheme 1.
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Assembly of the target cyclic product 5 relies on four key reactions:

• an intermolecular aldol reaction

• a Takai alkylidenation reaction

• the anionic oxy-Cope (AOC) rearrangement

• an intramolecular aldol reaction

Stereochemical complexity is built up rapidly in the sequence. Starting with 

an a,p-unsaturated aldehyde 1, an intermolecular aldol reaction adds two new 

chiral centres to give hydroxy ester 2. Takai alkylidenation of 2 results in the 

selective formation of a Z  enol ether to give AOC substrate 3. Alcohol 3 undergoes 

AOC rearrangement to give, after quenching with an electrophile, the final acyclic 

precursor 4, which contains an aldehyde and an enol ether ideally placed for 

cyclisation. Finally, compound 4 undergoes an acid-induced intramolecular aldol 

reaction to give the target p-hydroxycyclohexanone 5.

The intermolecular aldol reaction1 is well-known and will be discussed in 

brief in a later section. The remaining three key reactions however, are less well 

established. The rest of this chapter will therefore be divided into the following 

sections:

• a short overview of alkylidenation reactions

• a more comprehensive review of work carried out to date on the AOC 

rearrangement of acyclic substrates

• an overview of the intramolecular aldol reaction.

1.2 Alkylidenation Reactions

1.2.1 The Wittig Reaction

The most commonly used alkylidenation reaction is the Wittig olefination.2 A 

phosphorous ylid 7, and a carbonyl compound 8 react together to give an alkene 9 

and a trialkylphosphine oxide 10. Variations on this reaction have been developed 

by Wadsworth, Horner and Emmons,3 which employ a trialkylphosphite in place of

2



a phosphine. In these cases 11 reacts with 8 to give alkene 9 as before, but the 

water soluble by-product 12 is formed instead of the trialkylphosphine oxide 10, 

Scheme 2.
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As well as being routinely employed for simple olefinations, the Wittig 

reaction can be used as a key coupling step late in the synthesis of complex 

natural products. An impressive recent example is provided by Evans and co

workers in their synthesis of Spongistatin 2,4 Scheme 3. The ylid formed from 

phosphonium salt 13 is reacted with aldehyde 14 to give predominantly the Z  

alkene 15.

The Wittig reaction however, is effective only for ketone and aldehyde 

carbonyl compounds. Carboxylic acid derivatives such as esters and amides are 

resistant to olefination, and so considerable research has gone into finding a 

suitable equivalent to the Wittig reaction that is effective on these substrate types.

3



Scheme 3
OTBS

MeO OTBS
Z:E> 95:5

MeO
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CHO MeO.
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1 .2.2 Titanocene Based Reagents

Early progress in this area was made by Tebbe, who found that titanocene 

derived compound 16 was effective for the methylenation of esters and amides,5 

Figure 1.

Figure 1

yx Me
Cp2Ti( AIMe2 -n / \ /  Cp2T i /

V  CP2TiV \  \ / l e
16 17 18

Similar reagents were also developed by Grubbs 17,6 and later Petasis 18.7 

All three reagents are believed to give titanium-alkylidene species 19 as the 

reactive intermediate, Scheme 4.8
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Scheme 4

CpaTi:<x
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Cp2Ti( AIMe2V
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[Cp2Ti=CH2]

19

-CH4

Petasis and co-workers have also used dibenzyltitanocenes and a 

tris(trimethylsilylmethyl)titanium complex to alkylidenate carbonyl compounds.93,13 

However, titanium alkylidenes cannot be generated from alkyl groups that are 

capable of p-elimination. A more general method for the preparation of substituted 

enol ethers was reported by Takai and co-workers in 1987.10

1.2.3 The Takai Reaction

Takai found that the titanium-alkylidene (or 1,1-dimetalloalkane), formed in 

situ from titanium tetrachloride, zinc and a 1,1-dibromoalkane in the presence of 

A/,A/,A/',A/'-tetramethylethylenediamine (TMEDA), was capable of cleanly 

transforming esters 20 into the corresponding enol ethers 21 with high levels of Z- 

selectivity, Scheme 5.

2q R3CHBr2 21

The reaction has proven to be effective in the alkylidenation of amides 22 to 

give enamines 23,11 thioesters 24 to give alkenyl sulfides 25,11 and silyl esters 26

Scheme 5

TiCI4 
O TMEDA

* 3

R»

5



to give silyl enol ethers 27.12 Thioesters and silyl esters react with high levels of Z  

selectivity. Amides react to give E-enamines, Scheme 6.

Scheme 6

O

AN Ph

22

O

SMe

24

O

Zn, TiCU, TMEDA 
 >

CH3CHBr2
70%

N Ph

23
E:Z 98:2

as above

CH3(CH2)2CHBr2 I w J  
75% 25

OTMS
as above

26

CH3CHBr2
80%

E:Z 16:84

r ^ Y ^ 0 ™ 3

27 1 0 0 % Z

The mechanism of the reaction is poorly understood. We propose the 

following process occurs, Scheme 7.
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Scheme 7
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Titanium tetrachloride is added to THF to give bright yellow complex 28. 

TMEDA is then added and the orange/brown adduct 29 is formed. (A crystal 

structure of a titanium(ll) complex analogous to titanium(IV) complex 29 has been 

published.133) Geminal dizinc compound 31, formed by double zinc-insertion into 

the C-Br bonds of 1,1-dibromoalkane 30, reacts with 29 by transmetallation to give
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the active alkylidenating species 32. Takai has investigated the catalytic effect of 

lead on the zinc-insertion process,1313 Scheme 8.

Transmetallation of zinc-carbenoid 34 with lead (II) gives the lead-carbenoid 

35. This is then readily reduced by zinc to give the lead-zinc species 36. Finally, 

transmetallation from lead to zinc gives geminal dizinc compound 37.

Once the active species 32 has formed, the carbonyl compound must also 

bind to Ti to allow transfer of the alkylidene moiety, Scheme 9.

Scheme 9

Ln
TiFa*
38 39

U ThrO  
*  H r

40 41

U
Ti

A
42

Stereocontrol in the reaction must also arise at this stage. Scheme 10 

shows how selectivity for the Z  geometrical isomer of an enol ether could arise in 

the reaction between a titanium alkyidene 43 and an ester 44. The transition state 

leading to oxatitanacyclobutane 46 is higher in energy than that leading to 

oxatitanocyclobutane 45 due to the developing steric crowding between the alkyl 

group R1 of the titanium alkylidene 43 and alkyl group R2 of the ester 44. The fact 

that branching a to the carbonyl (ie increasing the size of R2) greatly improves the 

stereoselectivity of the reaction agrees with this model. The model also explains 

the reversed selectivity observed during the alkylidenation of amides.



Scheme 10

LnTi
, 0

TiLn

R1 
43

R2'

R1

R ^ "OR" 
47

45

46

steric crowding

.R OR" 
48

The Takai reaction has not been widely used in synthesis to date. This is 

surprising as it is superior to alternative methods, both in terms of versatility and 

ease of use. The reaction has also been shown to be effective where other more 

popular methods fail. For example, the Tebbe reagent failed to methylenate ester 

49, but methylenation occurred smoothly under Takai conditions to give enol ether 

50 in good yield, Scheme 11.

Scheme 11

14

BnO
BnO OBn OTBDPS 

DBn
49

TiCI4
TMEDA
Zn, PbCI2 (cat.)

CH2Br2
THF
6 8 %

BnO 
BnO OBn OTBDPS 

,OBn

Until recently, the main drawback of the Takai method was the relative 

inaccessibility of 1,1-dibromoalkane compounds 51, which were usually prepared 

by alkylation of dibromomethane at low temperature, Scheme 12.15a

9



Scheme 12

1. LDA
CH2Br2 ------------------ ► RCHBr2

2. RBr 51 
THF/ether 
-100 oC

A method has now been reported for the formation of these compounds 

from hydrazones 53, which are readily prepared from carbonyl compounds 52, 

Scheme 13.15b 

Scheme 13

/NH2
o  HkNNhVMeOH N tBuOLi-CuBr2 Br Br

molecular sieves THF Ft1 R2
52 53 5 4

1.2.4 Takeda Alkylidenation

Recently Takeda and co-workers showed that when dithioacetals 55 were 

reacted with titanocene 56, the titanium-alkylidene complex 57 was formed. This 

could then be reacted with carbonyl compounds to yield the corresponding olefins 

58, Scheme 14,16

Scheme 14

Cp2Ti[P(OEt)3]2 
RS SR 56
R1/ \ R 2

55

R1

Cp2Ti=<(^

57

R2

R3̂ 4,

58

The attractiveness of this method lies in the easy access to dithioacetals 55 

which are formed in a single step from aldehydes or ketones. At present the E.Z 

ratios obtained in the reaction are not good for aldehydes and ketones, but are 

better for esters, Scheme 15. For example, ketone 60 is alkylidenated to give the

10



alkenes 61 with an E:Z ratio of 54:46, while the ester 63 is alkylidenated to give the 

enol ethers 64 with a better E:Z ratio of 14:86.

Scheme 15

Cp2Ti[P(OEt)3]2
PhS SPh

P tT ^ H
59

Ph

PhS SPh

H
62

60
80%

Cp2Ti[P(OEt)3]2

Ph
O

OEt 
63

75%

61
E:Z 54:46

OEt
64

E:Z 14:86
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1.3 The Anionic Oxy-Cope (AOC) Rearrangement

1.3.1 Sigmatropic rearrangements

In 1965, Woodward and Hoffmann introduced the term sigmatropic 

rearrangement, defining “a sigmatropic change of order [i,j] is the migration of a a 

bond, flanked by one or more n electron systems, to a new position whose termini 

are i-1 and j-1 atoms removed from the original bonded loci, in an uncatalysed 

intramolecular process” .17 This definition grouped together processes as diverse 

as hydrogen atom-shifts and Claisen rearrangements, Scheme 16. Hence the H- 

atom shift of diene 65 is order [1,5] as the original 1'-1 a-bond moves to 1'-5, i.e. 

one of the loci remains the same (i = 1) and the other is 4 atoms removed from the 

original position (j = 5). Similarly, the Claisen rearrangement of ether 67 is order 

[3,3] as the original loci (1-T) and the new loci (3-3') are two atoms removed. 

Scheme 16

new position - order [1,5]
t

2' f—' 1

 ̂ 23'
3
67 new position - order [3,3]

Such processes can be used to bring about useful structural changes in the 

carbon skeletons of organic compounds by, for example, creating new 

functionality. The most important aspect of these reactions is however their ability 

to establish new chiral centres in a molecule, often at positions which are 

inaccessible to direct chemical synthesis. In other words, they can be used to 

transfer chirality from one centre which can be set up by direct methods 

(nucleophile/electrophile reactions, etc.) to another, remote site without loss of 

stereochemical information.

12



1 .3 . 2  Development of the anionic oxy-Cope rearrangement

The thermal rearrangement of a 1,5-diene through a [3,3]-sigmatropic 

process is known as the Cope rearrangement. Discovered in 1940 by Cope,18 it is 

the all-carbon variant of the Claisen rearrangement and is the parent reaction for a 

range of related rearrangements, Scheme 17. Although this rearrangement has 

been used widely in synthesis, its scope is limited by the high reaction 

temperatures required, and, as the process is reversible, by unfavourable equilibria 

in some cases.

Scheme 17

Cope
rearrangement

69 70

An important advance was made in 1964 when Berson and Jones realised 

that the placement of a hydroxyl group at C-3 of the 1,5-diene 71 would lead, after 

rearrangement, to the formation of an enol 72. Subsequent tautomerisation would 

yield an aldehyde 73 and so render the rearrangement irreversible, Scheme 78.19 

Scheme 18

OH o

j .  j

72 73

The oxy-Cope rearrangement is much more synthetically useful than the 

Cope rerrangement.20 In addition to the valuable carbonyl functionality generated, 

the reaction takes place at much lower temperatures. The utility of the oxy-Cope 

reaction was further enhanced when, in 1975, Evans and Golob discovered that 

the formation of an alkoxide anion resulted in remarkable accelerations in the rate 

of reaction (up to 1017! ) 21 Under these conditions the rearrangement takes place

13



at, or near to ambient temperature. The anionic variant of the oxy-Cope 

rearrangement has seen wide application in synthesis,20, 22 as the following 

sections will show.

1.3.3 Rate acceleration

The enormous rate accelerations achieved on formation of the oxyanion in 

the [3,3]-sigmatropic rearrangement have been investigated in several theoretical 

studies.23a d In all cases the origin of the effect was found to be a charge-induced 

weakening of the C-3/C-4 bond, rather than stabilisation of the transition state, 

Figure 2.

Figure 2

weakened bond

2

1
6

74

The ability of the oxyanion to weaken the bond increases with the 

‘nakedness’ of the anion. The use of a potassium base and 18-crown-6 is 

therefore commonly used to enhance this effect. The potassium counterion is 

chelated by the crown ether and so ion pair formation with the alkoxide is generally 

believed to be prevented (see Section 3.3 for an exception). Deuterium labelling 

experiments have provided experimental evidence for the existence of a highly 

dissociated transition state, Figure 3 24 A secondary kinetic isotope effect (KIE) is 

observed for rearrangement of compound 75. No KIE is found for compound 76. 

Secondary KIEs are observed when a change takes place in the hybridisation of 

the carbon atom to which the label is attached before the transition state of a 

reaction is reached. Hence, a KIE for 75 means that the hybridisation of C-4 

changes from sp3 to sp2, i.e. the C-3/C-4 a bond is substantially broken before the 

transition state of the AOC rearrangement. The fact that no KIE is observed for 76 

shows that the degree of C-1/C-6 bond formation before the transition state is 

minimal.

14



Figure 3

HO

76

The rest of this section will give an overview of the most interesting and 

impressive uses of the rearrangement to date. (It should be noted that most of the 

examples shown were selected from the recent comprehensive review by 

Paquette.25) This will be followed by a more detailed examination of the work that 

has been carried out on acyclic systems.

1.3.4 Ring expansions

Perhaps the most common early use of the anionic oxy-Cope 

rearrangement was in the formation of cyclodecanones. An elegant example is 

illustrated below, Scheme 19.2G In an efficient one-pot process the enolate 

resulting from AOC rearrangement of 77 is trapped as its TMS enol ether 82 (see 

Scheme 20), and then oxidised by the action of mCPBA to give the hydroxy 

ketone 78.

Scheme 19

OH
1. KH, 18-C-6; 

TMSCI

EEO' 77

2. mCPBA 
THF
57% EEO 79

periplanone-B

The above example illustrates the use of a trans 1,2-divinylcyclohexanol. In 

such systems, the anionic oxy-Cope reaction proceeds through a chair-like 

transition state with an axial oxyanion, 80. This arrangement generates an E- 

double bond in the resulting silyl enol ether 82, Scheme 20.

15



Scheme 20

OH 

H 77

KH

EEO EEO18-C-6
80

| tm s c i

EEO

OTMS

When the vinyl substituents are cis to each other, two chair-like reacting 

conformations are possible, Scheme 21.

Scheme 21

OH KH

84
THF
95% O

87

86:87 10:86

The geometry of the product is dependent upon the conformation of the 

transition state. In reacting conformation 84, the oxyanion adopts an equatorial 

orientation with respect to the cyclohexane, but is axial with respect to the 

rearranging system. A Z-double bond is formed. In conformation 85, the situation 

is reversed to give an E-double bond. Experimentally, it is found that 86 and 87 are 

produced in a ratio of 10:86.27 Clearly there is a preference for an equatorial 

oxyanion during the [3,3]-sigmatropic event.

16



1.3.5 Construction of bicyclic ketones

Bicyclic ketones can be constructed if one or more of the rearranging 

double bonds is contained within a ring. In Still’s synthesis of eucannabinolide 90, 

the formation of the bicyclic ketone 89 from alcohol 88 is accompanied by ring 

expansion, Scheme 22.28

Scheme 22

1. KHMDS 
DME
85 °C 
14 h

...OCH3
2. K2C03

o c h 3 Me0H
rt 24 h 
90%

...•OCI-h

AcO

OH
OH

90
eucannabinolide

29

This type of reaction has been used in the construction of decalins. For 

example, AOC rearrangement of alcohol 92, obtained from the microbially-derived 

dehydrocatechol 91, gives the enantiopure c/s-decalin 93, Scheme 23/

Scheme 23

BnO
BnO

•OH
"OH

91 92

OBn

KH, 18-C-6 o

THF
60 °C 
80%

OBn
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1.3.6 Polycyclic ketones

If the complexity of the starting alcohols is increased to include several 

fused rings, impressive polycyclic arrays can be generated in a single step, e.g. the 

highly complex tetracycle 95 is formed by AOC rearrangement of the relatively 

simple alcohol 94 Scheme 24.30 

Scheme 24

OH

,0 MOM

94

KHMDS, 18-C-6

THF, 0 °C;

CH30

MOMO

OCH3
95

1.3.7 Formation of bridgehead double bonds

The use of spirocyclic alcohols as substrates for the rearrangement leads to 

the formation of compounds containing bridgehead double bonds, Scheme 25?Aa'° 

For example ketone 97 is obtained by the rearrangement of spirocyclic alcohol 96. 

The formation of such compounds by other methods is difficult.

Scheme 25

O

KH

THF

80%
9796

The use of the rearrangement for the formation of the taxane skeleton has 

been extensively investigated, 32a‘e eg the AOC rearrangemnt of alcohol 98 gives, 

after alkylation of the resulting enolate, the taxane 99 Scheme 26 320
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Scheme 26

OMOM
1. KH, 18-C-6, 

-20oC

OMOM 
O

2. Mel 
THF

X ' - ^ O T B S  86 %

98

A spectacular example of the use of the rearrangement for the formation of 

a bridgehead double bond is provided in Paquette’s synthesis of cerorubenic acid- 

III 102, Scheme 27.33*’b 

Scheme 27

.OTBSOMOM

1. KHMDS 
18-C-6

2. MeOH
-78 °C
THF
72%

OTBS

100 MOMO
101

OOOH

102
cerorubenic acid-l

1.3.8 Participation of other double bond types

The rearrangement is not limited to the use of simple olefins. Allenes,34 enol 

ethers,35 dienes35 and aromatic compounds36 have also been used as substrates, 

as the following examples illustrate, Scheme 28.
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Scheme 28

allenes

C 02Et NaOEt 
THF,rt;

90%

C 02Et

104

dienes

.OH

105

KHMDS

THF, rt;
60%

106

enol ethers 

CH30 ^  OCH3

KHMDS

THF, rt; CH30

CH3O
H /.O C H 3

< ^ \ ^ ^ O C H 3 76 0/0

107

aromatic systems

KH, HMPA 
 ►

A
H20
10%

108

HO

109

CHO

110

Unsurprisingly, loss of aromaticity during the rearrangement means that 

aromatic compounds such as alcohol 109 are poor substrates for the reaction.
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However, if strain is present in the starting material, the thermodynamics of 

the reaction can become more favourable, as shown in the formation of steroidal 

hormone analogues eg 112, Scheme 2 9 37 

Scheme 29

.OH

111

NaH

THF, A 
75%

112

1.3.9 Doubly-charged systems

In recent years, the behaviour of doubly-charged systems has been 

investigated.383'8 Rapid access to very complex structures, eg 117, is possible 

Scheme 3 0 38e Diisopropyl squarate 113 is treated sequentially with lithiated 

dihydrofuran 114 and lithiated cyclopentene 115 to give the dianionic species 116. 

114 then undergoes AOC rearrangement to give the bis-enolate 117 which reacts 

further as shown to give tetracyclic hydroxyenone 119 as the major product.
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Scheme 30

Li
\ ^ Q

'PrO O
0 114

'P r t /  Li'
113

115

'PrO

'PrO

116

O0 O

'PrO

W r \ _

Q©
117

118

'PrO

'PrO W1 'H 
119

26 %, major isomer

1.3.10 Tandem Processes

The initial product of the rearrangement is an enolate anion. Most tandem 

processes take advantage of this situation by using the inherent reactivity of the 

enolate to carry out further chemical transformations. Several examples of this 

type of tandem process have already been illustrated. The enolate can of course 

react at oxygen39a,b (120 -»121) Scheme 31a or at carbon,40 (122 -»123) Scheme 

31b.
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Scheme 31

a)

OH
120

2 . PhSeCI 
2 2 %

1. KHMDS
18-C-6 

 ►
THF, rt;

2 . TMSCI 
81 %

1. KH, 18-C-6 
DME.120 °C a < ^ (

123

OTMS

121

mCPBA

NaHC03
DCM, 0 °C 
100% 124

The initially formed enolate is subject to equilibration in some cases, eg 

enolate 126, formed initially on AOC rearrangement of alcohol 125, undergoes 

equilibration to enolate 127, which is quenched by the addition of PhSeCI to give 

the observed product, selenide 128 Scheme 32.41
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Scheme 32

18-C-6

THF 
80 oC

125 126 127
reacts
here

PhSeCI
„ - 7 8 °c

128 65%

The enolate can be trapped by oxygen to form a-hydroxy ketones, Scheme 

3 3 42 Note in the example below that enolate equilibration takes place prior to 

oxygenation to give hydroxy ketone 130.

Scheme 33

HO“

131

? CH3 KHMDS
JL 18-C-6

OHTHF
85%129

In certain cases, a second enolate can be generated after rearrangement 

via a proton transfer mechanism. The new enolate can then react with the carbonyl 

group formed from the original enolate. For example, enolate 133, formed on AOC 

rearrangement of alcohol 132, undergoes proton transfer to generate enolate 134. 

A transannular ring closure onto the ketone formed during proton transfer gives the 

observed product, alcohol 135, Scheme 34 43
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Scheme 34

OEt

132

0
OEt

KH

DME
0 °C
50%

° 0  133

H+-transfer

OEt

134

OEt

OH
135

In cases where proper orbital alignment can be achieved, the enolate anion 

can displace remote alkoxide substituents in an intramolecular sn' reaction as 

shown in the conversion of alcohol 136 into polycyclic ketone 138 via enolate 137, 

Scheme S5.44 Again structural complexity is greatly increased.

Scheme 35

KHMDS

THF
20 °C 
4 days 
51 %

M eO^H H
138

In the previous examples, the oxy-Cope rearrangement has been followed 

by another chemical process. Cases where the oxy-Cope takes place after a 

preliminary transformation are less well known. Two examples where the AOC 

rearrangement is preceded by a [2,3]-Wittig rearrangement are illustrated below,
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Scheme 36.45,46a The second example will be discussed in more detail in a later 

section as it concerns acyclic stereocontrol.

Scheme 36

?nBu3 LDA, - 40 °C
SiMe3----------------►

[2,3]-Wittig 
100%

A

o SiMe3 
nBu3 

140
| i AOC 
{ ii quench

SiMe3

142

KH
18-C-6 

 »
Ph DMSO

25 °C 
44% 143

i AOC

ii quench
P l r ' ^ ^ O  

144

1.4 Rearrangement of Acyclic Substrates
The previous sections have dealt with the rearrangement of cyclic 

substrates, that is, substrates in which at least one of the a-bonds connecting the 

two reacting rc-bonds are contained within a ring. This imposes steric constraints 

upon the system and is often the source of the excellent chiral transfer observed in 

these cases. The rearrangement of acyclic systems, in which the rc-bonds are free 

to adopt essentially any conformation has been less well explored.

General considerations

The rearrangement can proceed through two 6-membered reacting 

conformations a chair-like conformation 145 and a boat-like conformation 146, 

Figure 4.
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Figure 4

_ 1/
R 146

The relative stereochemistry of substituents positioned at C-1 and C-6 is 

determined by which of these two transition states the rearrangement adopts. A 

chair-like transition state results in an anti relationship 147, while a boat-like 

transition state gives syn stereochemistry 148. The absolute stereochemistry of 

substituents at C-1 and C-6 is determined by the orientation of the oxyanion. 

Rearrangement through a transition state with an axial oxyanion 149 gives 

opposite absolute stereochemistry to that produced by rearrangement through the 

corresponding transition state with an equatorial oxyanion 145, Figure 5.

Figure 5

O

145

o® AOC

XR2
147

149

©

©

AOC

R2
150
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Most of the work carried out to date on the AOC rearrangement of acyclic 

substrates has centred on whether the oxyanion prefers to adopt a 

pseudoequatorial or a pseudoaxial position.

The first example of the rearrangement of an acyclic substrate (as defined 

above) was reported in 1990 by Lee and co-workers, Scheme 37.AT 

Scheme 37

KH, 18-C-6 
 »
DME, A
3h
75%

HO

152
er > 95:5

They found that there was a > 95:5 preference for an equatorial oxyanion, 

Scheme 38.

Scheme 38

1,3-diaxial 
interaction

axial
oxyanion

153

disfavoured

154

equatorial
oxyanion

favoured

156

The observed stereoselectivity can be explained as illustrated in Scheme 

38. When the oxyanion adopts a pseudoaxial orientation, it experiences a severe

1,3-pseudodiaxial interaction with one of the methyl substituents on the 

cyclohexene ring (153). However, this interaction is avoided when the oxyanion 

adopts an equatorial orientation (155).
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The first example of a substrate containing no rings was reported by 

Paquette and Maynard in 1991.48 They studied the rearrangement of compounds 

157 and 158, Figure 6.

Figure 6

They found that a preference for an equatorial anion existed, but that the 

preference was modest, Scheme 39. Hence, the major product of AOC 

rearrangement of alcohol 157 was aldehyde (S)-167, produced via reacting 

conformation 159 which contains an equatorial oxyanion. Similarly, alcohol 158 

rearranges predominantley through conformation 164 to give (R)-167. However, in 

both cases a significant amount of the other enantiomer is formed via 

rearrangement through the corresponding reacting conformations containing an 

axial oxyanion.

OH OH

157
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Scheme 39

OH KH

-*■18-C-6
THF157 159 160

©

162161

61 % 39%

,CHO

(S)-167

43%

OH KH

18-C-6
THF158 QQ

163

CHO

(R)-167 

|  57 %

166

164

They also investigated post-rearrangement enolate geometry. Quenching 

the rearrangement of 157 with TBSCI gave a 64:36 mixture of cis and trans silyl 

enol ethers. Hydrogenation of each pure isomer lead to samples of 168 each 

enriched (60 %) in the R enantiomer, Figure 7.

Figure 7

(R)-168
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This shows that enolate geometry is not fixed under the reaction conditions, 

as examination of reacting conformations 159 and 160 reveals that the E-enolate 

should have given enantiomerically pure fi-isomer (161) and the Z-enolate (162) 

the S-enantiomer, provided the reaction proceeds only through a chair-like 

transition state. This result shows that the ratio of enolate geometry after 

rearrangement is not a proper guide to the ratio of reaction through the two chair

like transition states.

In a later study, Paquette and coworkers went on to explore the effect of a 

cyclohexene ring on the rearrangement.49 They were prompted by Ireland’s study 

of the Claisen rearrangement,50 Figure 8, which showed that there was a 

preference for the formation of an axial bond on the cyclohexene ring.

Paquette and co-workers observed a similar effect during the AOC 

rearrangement of alcohols 171 and 172, Scheme 40.

Figure 8

169

axial bond formation 
>87%

equatorial bond formation 
<13%

170
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Scheme 40

,©KH O'

/18-C-6
THFOH

173 174

equatorial bond 
axial oxyanion

171
axial bond 
equatorial oxyanion

i AOC rearrangement
ii NaBH4

OH

OH

177 178
i AOC rearrangement
ii NaBH4

KH
OH

18-C-6
THF172

175

axial bond 
axial oxyanion

176
equatorial bond 
equatorial oxyanion

Alcohol 171 gave (after borohydride reduction) a 61:1 ratio of alcohols 177 

and 178, while 172 gave an essentially 1:1 mixture of the two. The results show 

that there are two conflicting stereoelectronic factors operating in this system. 

There is a bias in favour of the formation of an axial bond, and there is also a bias 

in favour of an equatorial oxyanion. When the two factors co-operate, as in 173, 

there are high levels of stereoselectivity. However, when the two factors compete 

as in 175 and 176, no stereoselectivity is observed. The two processes are 

therefore energetically equivalent.

Nakai and co-workers in 199151 and later in 1993,52 reported investigations 

into the effect of substituents at C-4 of the 1,5-hexadien-3-ol system. They 

proposed that if the hydroxyl group and the substituent at C-4 were syn to each
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other, as in 179 and 183, good stereocontrol could be achieved via a large bias in 

favour of reacting conformations 181 and 185 respectively, Scheme 41.

Scheme 41

HO,/3N5 n sR
©o

180
O©

181

©o
184

R3

O©
186

E; anti
185

They prepared suitable substrates via a [2,3]-Wittig rearrangement. Anionic 

oxy-Cope rearrangement afforded aldehydes 191 and 192 with 94% de, 99% E 

and 88% de, 97% E respectively, showing that the rearrangement proceeds almost 

exclusively through transition state 181 for E,E-substrates and transition state 185 

for E,Z-substrates, Scheme 42.

Scheme 42

[2,3]-Wittig

187 188

HO"

AOC

189

HO"

191

190 192

They also investigated the rearrangement of alcohols of type 193 and 197. 

These substrates contain no substituent at C-4, and have a Z  C-1 -  C-2 double 

bond. This leaves the 1,3-diaxial interaction between the oxyanion and R3 as the 

sole controlling influence in the reaction Scheme 43. The results show a 

decreased level of stereoselectivity, indicating that the 1,3-diaxial interaction is
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large enough for effective stereocontrol, but does not provide complete transfer of 

chirality.

Scheme 43

HO"'

R\Z: E
©o

194

R3 
R2 I

©O
195 3S,4fl

196

R3

197
R\Z\Z

©o
198 3S, 4S 

200

Example:
0Tr KH, 18-C-6

^  \ = /  \)tB u  j h F
201

O

OTr 

OtBu
202

80% de, 84% ee

Nakai proposed a boat-like transition state to account for the decreased 

diastereoselectivity, Figure 10.

Figure 10

©O Ph
Ph

203
O

This is the first reported example of a boat-like transition state operating in 

the AOC rearrangement of an acyclic substrate. Previous work had disregarded 

this as a possibility. As a note, Nakai reports that the rearrangement of 204 also 

proceeds to some extent through a boat-like TS, Scheme 44. Aldehydes 208 and
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209 both result from a chair-likeTS, but E; anti aldehyde 210 results from a boat

like TS.

Scheme 44

204

KH

DMSO
205

208

Z; syn 
57%

206

209

E; syn 
31%

207

210
E; anti 
12%

In an extension to their earlier work , Lee and co-workers prepared a series 

of compounds to further investigate substituent effects, Figure 11.53 

Figure 11

ratio of ecluat9r'a* : . in AOC rearrangementoxyanion oxyanion a

OH
212

63:37

OH

214
62:38

Lee drew the following conclusions from these results, and the previous work of 

Paquette and Nakai:

45:55 35:65

81:19
215
69:31
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1. There is a modest bias for a pseudoaxial oxyanion for substrates with E- 

alkyl and aryl substituents at C-1

2 . Equatorial oxyanion orientation becomes favoured with Z-substituents at C- 

1 and substituents at C-5; very efficient chiral transfer is possible with sterically 

demanding groups at these positions

3. Substituents at C-4 tend to be oriented equatorially in the absence of other 

effects.

His conclusions are summarised in Figure 12.

Conclusion 2 should be viewed with some caution with respect to 

substituents at C-5 as the ratios for a methyl substituent (212) and a terf-butyl 

group (214) are almost identical. The tert-butyl group can obviously move to avoid 

a severe steric interaction. Good stereocontrol is only achieved via this 1,3- 

interaction when bulky groups are rigidly held in place, and point towards the 

oxyanion when it adopts an axial orientation. The gem-dimethyl groups on the 

cyclohexene ring in Lee’s first example illustrate this point nicely, see Scheme 38.

In work closely related to that of Nakai, Greeves and co-workers have 

reported a one-pot [2,3]-Wittig/AOC rearrangement tandem process, Scheme 

45.46a e For example, when bis allylic alcohol 221 is treated with potassium hydride 

and 18-crown-6 in DMSO, [2,3]-Wittig rearrangement to give alkoxide 222 is 

followed by AOC rearrangement to give aldehydes 223-225.

Figure 12

favoured-
stereoelectronic

favoured-
steric
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Scheme 45

° \ ^ ^ ph
221

[2,3]-Wittig

AOC

E; anti

The major syn-isomers 223 and 224 are formed through chair-like transition 

states, while the anti-isomer 225 is derived from a boat-like transition state. This is 

an interesting result in view of the fact that Nakai only observed the operation of a 

boat-like transition state for the rearrangement of anti substrates. Syn substrates 

rearranged exclusively through a chair-like transition state. Greeves later reported 

the results of extensive investigations into substituent effects on this one-pot 

process.460 For example, [2,3]-Wittig/AOC rearrangement of substrate 226 

resulted, via 227, in the formation of aldehyde 228 as the sole product, Scheme 

46.

Scheme 46

226 227
p i r ^ ^ o

228

The significance of this result is shown in Scheme 47. The rearrangement of 

225 proceeds solely through reacting conformation 229, containing an axial 

oxyanion. In reacting conformation 230 with an equatorial oxyanion, the isopropyl
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group experiences 1,3-diaxial interactions large enough to force the oxyanion into 

an axial orientation.

Scheme 47

PI

229

PI

230

Ph'
231228

Finally, several reports have been made recently on the use of chiral 

auxiliaries in acyclic oxy-Cope and silyloxy-Cope rearrangements.54'56 

A representative example is given below, Scheme 46.

Scheme 46

OTBS

h 232

Xc

OTBS
233

TBSO

R OTBS

236

OTBS

yields 84-98%

235:236 from 3:1 to 31:1 depending 
on the substituent R

The transition state geometry is controlled by the bulky chiral auxiliary 

adopting an equatorial orientation. Indeed, the steric bulk of the silyl group makes 

little difference, as the TMS ether rearranges more slowly and with poorer 

selectivity. A drawback of this approach is the requirement for high temperatures
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and sealed tube techniques. (The anionic rearrangement of these systems was 

attempted, but resulted in retro-aldol reaction.)

Conclusion

The exciting work detailed in this review clearly demonstrates that with 

careful placement of suitable substituents, good stereocontrol is possible in the 

anionic oxy-Cope rearrangement of acyclic substrates. The review also serves to 

place our work on the rearrangement of substrates containing an enol ether in 

context.

1.5 Choice of enol ethers as substrates
Prior to our work, only five examples of the rearrangement of substrates 

containing enol ethers had been reported. In addition, only two of these examples 

bear the same 1,3-relationship between the enol ether and the oxyanion as in 237, 

Figure 13.

Figure 13

237

However, all of the examples are cyclic, and the orientation of the oxyanion 

during rearrangement is controlled by the ring(s) present in the substrate. We were 

therefore interested in investigating whether the transition state geometry of the 

AOC rearrangement of an acyclic substrate could be controlled by the oxygen 

atom of the enol ether. The type of controlling interaction we envisaged is 

illustrated in Scheme 47.
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Scheme 47

In transition state (TS) 238, the oxyanion would experience both a 1,3-steric 

and a strong repulsive electrostatic interaction with the enol ether oxygen. In TS 

239 these interactions are not present, so TS 239 should be favoured over TS 

238.

Substitutuent effects

We considered the effect that substituents on the 1,5-hexadiene-3-ol 

framework would have on the proposed controlling interaction. In particular, we 

hoped that by defining the relative stereochemistry between the oxyanion and a 

substituent at C-4, good stereocontrol could be achieved in the rearrangement of 

acyclic enol ether substrates, Schemes 48a and 48b.

Scheme 48a

OR,5 R OR5

241 243

R i5 Ov© o e

240
syn alkoxide

R

OR

R
242 244
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Scheme 48b

■O
&

o©

R1
OR5

246 248

245
anti alkoxide

R

247 249

Syn alkoxide 240 can rearrange through either transition state (TS) 241, 

with a pseudoequatorial oxyanion, or through TS 242, with a pseudoaxial 

oxyanion. Similarly, anti alkoxide 245, can rearrange through TS 246 or TS 247. 

Examination of the transition states for syn alkoxide 240 shows that TS 241 should 

be favoured over TS 242, since TS 241 contains only one large 1,3-pseudodiaxial 

ineraction, (between R1 and OR5), while TS 242 contains a total of four (between 

the oxyanion and R1 and OR5, between R3 and R4, and between OR5 and R1). The 

repulsive electrostatic interaction between the enol ether and the alkoxide is also 

present in TS 242. This means that the difference in energy between these two 

competing transition states would be large, and so the population of TS 241 would 

be far greater than that of TS 242; hence only one diastereomer (243) should be 

produced in the reaction. The situation for anti alkoxide 245 is not so clear-cut. TS 

246 contains two large 1,3-interactions (between R1 and OR5 and between R3 and 

R4), while TS 247 contains three (between the oxyanion, R1 and OR5). TS 247 also 

contains the electrostatic interaction. This means that the difference in energy 

between these two competing transition states should be relatively small, and so
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the bias in favour of the production of 248 over 249 would be relatively small. We 

therefore decided to investigate primarily the rearrangement of syn alkoxides.

1.6 The Intramolecular Aldol Reaction
The presence of an alkoxide substituent at C-5 performs two functions in 

the AOC rearrangement of substrate alcohols 237. In addition to the electrostatic 

interaction discussed above, the alkoxide also generates new functionality, as 

illustrated in Scheme 49.

Scheme 49

0

quench

ulor
251

1 intramolecular aldol 
f reaction

OH

252

The initial product of the rearrangement is enolate 250. Quenching with an 

electrophile gives 251 which contains a new enol ether and an aldehyde. The 

newly formed enol ether is ideally placed to take part in an intramolecular aldol 

reaction with the aldehyde to give hydroxycyclohexanone 252.

This type of cyclisation is termed a 6-(enolendo)-exo-trig process.57 Similar 

intramolecular aldol reactions are some of the most important synthetic (e.g. 

Robinson annulation) and biological transformations (e.g. aromatic ring formation 

in polyketide synthesis.) However, prior to our work, the 6-(enolendo)-exo-trig 

cyclisation of an enol ether onto an aldehyde was unknown. Furthermore, no 

systematic study of the orientation of the hydroxyl group produced in the reaction 

had been reported.

The selectivity may be determined by face selectivity on a ring. For 

example, the enolate generated from the methyl ketone in 253 can react only with

OP rearrangement
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the lower face of the cyclooctanone carbonyl group to give bicyclic alcohol 254, 

Scheme 50.58

Scheme 50

BnO OMOM

OBnOBn
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1. LHMDS 
-100 -  -78°C

2. HMPA 
-35°C
92 % on 40 % 
conversion

BnO OMOM

HO,

OBnOBn

254

If the selectivity is not determined by a ring, the hydroxyl can be axial or 

equatorial. Reported selectivities have varied from only axial59 to mostly 

equatorial,60 Scheme 51.

Scheme 51
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For example, alcohol 256 with an axial hydroxyl, is the sole product of the 

intramolecular aldol reaction of ketone 255, while the tandem Michael 

addition/intramolecular aldol reaction of ketone 257 with vinyl formaldehyde gives 

a mixture of axial and equatorial isomers.

Finally, Ley 61 has reported a 6-(enolexo)-exo-trig intramolecular aldol 

reaction between an enol ether and an acetal under acidic conditions, Scheme 52. 

Again, a mixture of isomers 261 -  263 is produced.

Scheme 52

PhMe2Si"
Me02CMe02C

260
PTSA cat. 

r 0.5 % H20-MeCN 55°C, 5.5 h, 
then 6 % h^O-MeON, rt, 2 h
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Me0 2u  s—u  

261
45%

262
1 0 %
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2
Synthesis of substrates for rearrangement
2.1 Initial Studies

To test the efficacy of our route, our initial studies of the AOC 

rearrangement focused on the construction of some simple substrates 276-278, 

Scheme 53.

Scheme 53

O OH O PO O

OR -OR
-►

Ph ^  OR

264 R= CH3 H= CH3 268 R— CH3, P—TBS
265 R— iPr 267 R= >Pr 269 R= 'Pr, P=TBS

270 R= iPr, P=TES

IV

276 R= CH3, R'=H
277 R= ‘Pr, R'=H
278 R= 'Pr, R'= CH3

PO

Ph

R'

OR

271 R= CH3, R'=H, P=TBS
272 R= iPr, R'=H, P=TBS
273 R= iPr, R'=H, P=TES
274 R= 'Pr, R'=CH3, P=TBS
275 R= 'Pr, R'=CH3, P=TES

Reagents and conditions i a) LDA, THF, -78 °C, 40 mins, b) E-cinnamaldehyde, 
THF, -78 °C, 30 mins; ii TBSCI or TESCI, iPr2EtN, DMF, rt, 17 h; iii TiCU, 
TMEDA, Zn, PbCI2, R'CHBr2, THF, 0 °C-rt; 4-17 h; iv TBAF, 4 A MS, THF, rt, 2- 
4 h.

Cinnamaldehyde was reacted with the lithium enolate of the appropriate 

acetate ester to give the aldol products 266 and 267 in quantitative yield. 

Protection of the aldols with te/t-butyldimethylsilyl chloride (TBSCI) or 

triethylsilyl chloride (TESCI) gave silyl ethers 268-270 in excellent yield (80-97
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%). Takai alkylidenation of the protected aldols afforded enol ethers 271-275 in 

50-80 % yield and finally, deprotection using tetrabutylammonium fluoride 

(TBAF) gave the substrate alcohols 276-278 in 50-80 % yield.

The Takai reaction initially proved problematic. Alkylidenation of esters 

268 and 269 using commercially available 1 mol dm'3 titanium tetrachloride 

solution in dichloromethane (DCM) as described by Takai was unreliable in our 

hands, giving poor yields or no reaction. We overcame this problem by instead 

using neat titanium tetrachloride. This modification resulted in the smooth and 

reliable formation of enol ethers in moderate to good yield. We also found that 

protection of the hydroxyl group was vital to the success of the reaction. Hoping 

to avoid the need for protection/deprotection steps, we subjected the 

unprotected aldols to alkylidenation conditions. However, even when using 

double the normal ratio of reactants to ester, we were unable to isolate the 

product enol ethers, or even unreacted starting material. We believe that due to 

the high strength of Ti-O bonds the alcohol becomes irreversibly bound to 

titanium and so, even if alkylidenation does take place, the product is not 

released from the metal during work-up. The type of silicon protecting group 

used made little difference to the overall yield of the process. As mentioned 

previously, the Takai reaction is Z  selective. We found that the reaction 

proceeded with good selectivity; enol ethers 274 and 275 were both formed with 

an E:Z ratio of 15:85. The isomers were separated after deprotection by column 

chromatography. A fuller discussion of the determination of the E\Z ratios 

produced in the Takai reaction is given in Section 2.3.

Deprotection surprisingly proved to be the poorest yielding step in our 

sequence. The reasons for this are unclear, but may be due in part to the loss 

of material during the repeated chromatography required to purify the product 

alcohols.

We also employed a route using trimethylsilyl (TMS) as the alcohol 

protecting group. This avoided the need for purification until the final step, but 

did not allow the isolation and characterisation of the intermediate compounds, 

Scheme 54.
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Scheme 54

O OH O TMSO O
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284 R=H
285 R=CH3

Ph

R

OEt

282 R=H
283 R=CH3

Reagents and conditions i a) LDA, THF, -78°C, 40 min, b) E-cinnamaldehyde, 
THF, -78°C, 30 min; ii TMSCI, Et’PrgN, THF, rt, 17 h; iii TiCI4, TMEDA, Zn, 
PbCI2, RCHBr2, THF, 0°C-rt, 4-17 h; iv TBAF, THF, rt, 1 h.

The overall yield of alcohols 284 and 285 (34-34 %) was comparable to 

that obtained for TBS/TES protection.

2.2 Other substrates synthesised

Having developed our route to AOC substrates 286, we were able to 

readily alter the substituents on the 1,5-hexadien-3-ol framework, Figure 14. 

Figure 14

OH

286

2.2.1 Aliphatic substitution at C-1

By employing E-hexenal as the starting aldehyde, we synthesised 

substrate alcohol 290, bearing a propyl chain at C-1, Scheme 55.
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Scheme 55

OR O

290 289

Reagents and conditions i a) LDA, THF, -78 °C, 40 mins, b) E-hexenal, THF, - 
78 °C, 30 mins; ii TESCI, 'PfeEtN, DMF, rt, 17 h; iii TiCI4, TMEDA, Zn, PbCI2, 
CH2Br2, THF, 0 °C-rt; 4-17 h; iv TBAF, 4 A MS, THF, rt, 2-4 h.

The aldol 287 (89 %) was protected to give TES ether 288 in 88 % yield. 

Takai methylenation (85 %) followed by deprotection gave alcohol 290 in 38 % 

yield.

2.2.2 Endocyclic C-1 -  C-2 double bond

In order to investigate the effect of including one of the double bonds in a 

ring and to gain access to synthetically interesting decalin compounds, we 

constructed the substrates 295 and 296, Scheme 57. 1 -Cyclohexene- 

carboxaldehyde 253 was synthesised via Shapiro62 reaction of the tosyl 

hydrazone of cyclohexanone63, Scheme 56.

Scheme 56

O
N-NHTs

291 292 293

Reagents and conditions i TsNHNH2, TsOH (cat.), EtOH, rt, 17 h, 76 %; ii BuLi, 
DMF, TMEDA, -78 °C to rt, 48 %
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Scheme 57

O

OPr

OH O

OPr

294

IV

OPr

298 R= H
299 R= CH3

TESO O
ii

O'Pr

295
iii

O'Pr

296 R= H
297 R= CH3

Reagents and conditions i a) LDA, THF, -78°C, 40 min, b) 1- 
cyclohexenecarboxaldehyde 293, THF, -78°C, 30 min; ii TMSCI, Et'Pr2N, THF, 
rt, 17 h; iii TiCI4, TMEDA, Zn, PbCI2, RCHBr2, THF, 0°C-rt, 4-17 h; iv TBAF, 
THF, rt, 1 h.

Aldol 294 (92 %) was protected as its TES ether (85 %). Takai 

alkylidenation gave enol ethers 296 (51 %) and 297. (297 was formed with a 

Z.E ratio of 88:12, see Section 2.3.) Finally, deprotection gave enol ethers 298 

(60 %) and 299 (as a similar mixture of isomers, 58 % over two steps). Further 

chromatography was required to obtain enol ether 299 as a single Z-isomer.

2.2.3 Substitution at C-4

The introduction of an additional stereocentre at C-4 (ie R3 *  H in AOC 

substrate 286) raises the question of stereoselectivity during the aldol reaction. 

The formation of up to four stereoisomers is possible, eg the aldol reaction 

between cinnamaldehyde 300 and isopropylpropionate 301 would give rise to 

stereoisomers 302-305, Scheme 58.
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Scheme 58

O O
+ R

OR'
300 301

aldol

OH O OH O

Y  OR Ph 
R

302 syn enantiomers

Ph OR'
R

303

OH O OH O

OR' Ph OR'

R R

304 anti enantiomers 305

Two types of stereoselectivity are possible. Diastereoselectivity in which 

the relative 2,3-stereochemistry is controlled to be either syn or anti and 

enantioseiectivity in which the absolute stereochemistry at either C-2 or C-3 is 

controlled. Many methods have been developed for controlling both types of 

selectivity. We were interested in the AOC rearrangement of both syn and anti 

alcohols. For reasons discussed in the Chapter 1, we were particularly 

interested in syn aldol products. We therefore used an enantioselective reaction 

to obtain one enantiomer of a syn aldol and used an unselective aldol to obtain 

a mixture of racemic syn and anti aldols in the hope that these could be 

separated, and used for comparison with the enantiopure products.

Unselective aldol reaction

Aldol reaction of E-cinnamaldehyde and isopropyl propionate gave a 1:1 

mixture of syn and anti diastereomers 307. TES protection, followed by Takai 

alkylidenation using 1,1-dibromoethane gave enol ethers 309. (It is interesting 

to note that only the Z  enol ether was formed, see Section 2.3.) Deprotection 

gave substrate alcohols 310a and 310b in 33 % overall yield from 

cinnamaldehyde, Scheme 59.
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Scheme 59

O OR O

306
O'Pr

* 307 R=H
... 308 R= TES
in

O'Pr

O'Pr
IV

Ph O'Pr310a

OH

Ph CO'Pr

309

310b

Reagents and conditions i a) LDA, THF, -78 °C, 40 mins, b) E-cinnamaldehyde,

Enantioselective aldol reaction

The boron-mediated aldol reaction of chiral oxazolidinones 311, with 

aldehydes developed by Evans and coworkers gives excellent levels of 

diastereo- and enantioselectivity, and is widely used in synthesis. Scheme 60. 

We therefore chose to use this reaction as a route to enantiopure syn aldols. 

Scheme 60

The origin of the stereocontrol observed in the Evans aldol reaction is 

illustrated in Scheme 61. When acyl oxazolidinone 311 is treated with 

dibutylboron triflate in the presence of triethylamine, Z-enolate 313 is formed. 

(The formation of the corresponding E enolate is strongly disfavoured by allylic 

strain.) When the aldehyde is added it coordinates to the boron atom. This 

causes the release of the imide carbonyl, which in turn leads to rotation of the 

chiral auxiliary to minimise electrostatic repulsion between the oxygens

THF, -78 °C, 30 mins; ii TESCI, ‘Pr2EtN, DMF, rt, 17 h; iii TiCI4, TMEDA, Zn, 
PbCI2, (CH3)CHBr2, THF, 0 °C-rt; 4-17 h; iv TBAF, 4 A MS, THF, rt, 2-4 h.

Bu2BOTf
Et,N

R'CHO
Bn
312311
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(314->315). The bulky benzyl substituent on the oxazolidinone now blocks the 

bottom face of the enolate and fixes the facial selectivity. The aldol reaction 

then proceeds through a chelated chair-like transition state, with the hydrogen 

of the aldehyde adopting a pseudoaxial position (316) to give the 

enantiomerically pure syn aldol product 312.

Scheme 61

Bu. Bu

X
O O

R Bu2BOTf, Et3N

Z  enolate formed
BnBn

313
R’CHO

blocks bottom , * * *■
face of enolate Bu Bu H electrostatic Bu Bu H

I V  J repulsion b 1
^  Bn O ' " O ^ R '  O O '

rotation
O'

Bn
314

Bu- b :

pseudoequatorial O O OH

312

Our synthesis of enantiopure anionic oxy-Cope substrate 324, began 

with acylation of the commercially available oxazolidinone auxiliary 317 using 

propionyl chloride, to give 318 in 97 % yield, Scheme 62.eA
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Scheme 62

O
x

O NH 

Bn
317

Bn
318

OR

OR

Ph

Bn 319 R=H

VI

320 R= TBS

O OTBS

O OTBS

EtO

VII■C
323 R= TBS
324 R= H

322

Reagents and conditions i a) BuLi, THF, -78  °C, b) propionyl chloride; ii a) 
Bu2BOTf, Et3N, DCM b) E-cinnamaldehyde, -78 -  0 °C; iii TBSCI , Et'Pr2N, 
DMF, rt, 17 h; iv a) H20 2, LiOH, THF-H20, b) Na2S03; v PPh3, DEAD, EtOH, 
THF, -40  °C -  rt, 17 h; vi, vii as Scheme 47.

The boron-mediated reaction of 318 with E-cinnamaldehyde gave the 

known aldol product 319 as one diastereomer by 1H NMR spectroscopy, but in 

only 55 % yield. Attempts to improve the yield by using freshly prepared 

dibutylboron triflate met with no success. Protection of the hydroxyl group with 

TBSCI gave silyl ether 320 as a solid in 93 % yield. TES Protection was also 

used, but gave an oil which was less easy to isolate and purify than the 

corresponding TBS compound. Removal of the chiral auxiliary with 

hydroperoxide anion under standard conditions65 (5:1 THF-water, 0 °C) was 

unsuccessful, returning only unreacted starting material. After some 

experimentation, it was found that changing the ratio of THF-water to 10:1, and
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carrying out the reaction at rt gave the desired acid 321 in 83 % yield. The chiral 

auxiliary was not recovered - under these conditions, endocyclic attack of 

hydroperoxide anion on the oxazoline carbonyl group occurred.

The esterification of acid 321 without epimerisation at C-2 proved 

difficult. We initially attempted to form the isopropyl ester using 

carbonyldiimidazole (CDI) 325 and isopropanol in dimethylformamide (DMF).66 

This resulted in the formation of the imidazoamide 326 which was identified by 

its 1H NMR spectrum, Scheme 63. When 326 was treated with additional 

isopropanol and N,N-dimethylaminopyridine (DMAP) (without further 

characterisation), esterification with epimerisation occurred. Treatment of acid 

321 with dicyclohexylcarbodiimide (DCC) and DMAP in isopropanol also 

resulted in epimerisation.

Scheme 63

We abandoned attempts to form the isopropyl ester, and instead tried to 

form the ethyl ester. Esterification with CDI and ethanol in THF was successful, 

but proceeded in only 50 % yield. Finally, we found that Mitsunobu conditions67 

gave the desired ethyl ester 322 in 79 % yield.

Takai alkylidenation of ester 322 using 1,1-dibromoethane (81 %), 

followed by deprotection (63 %) gave the enantio-and diastereomerically pure 

AOC substrate 324.

O

HO

321
PrOH
DMF 326
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2.3 Selectivity in the Takai Reaction

2.3.1 Identification of isomers

The E and Zenol ethers formed in the Takai reaction could be identified 

by their 13C NMR spectra.77 E-enol ethers E-278, E-285 and E-299 gave signals 

for the carbon atom p to the alkoxy substituent in the enol ether functional group 

at -95 ppm, while Z-enol ethers Z-278, Z-285, Z-299, 310a/b and 324 gave 

corresponding signals at -110 ppm. Table 1 gives a full list of the diagnostic 

signals used. The enol ethers were separated after removal of the silyl 

protecting group. The 1H NMR spectrum of each pure isomer could then be 

used to assign the corresponding signals in the spectrum of the crude reaction 

product. Integration of the signals due to the enol ether vinylic protons of each 

isomer provided an easy and reliable way of determining the E:Z ratio, as the 

signals corresponding to these protons in all the enol ethers we synthesised did 

not overlap with each other, or other signals in the spectrum.

2.3.2 Comments

Table 1 shows the E:Z ratios in which the enol ethers were formed. The 

E:Z ratio is unaffected both by the type of silyl protecting group and by the type 

of ester used. A large increase in selectivity is only observed when there is a 

tertiary carbon atom a to the ester functionality, in which case the E-isomer is 

not observed in the 1H NMR spectrum.
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Table 1

Enol ethers 6C ppm

?v;V:Z^.; E

Ratio

Z:E

v f .  r v

278

110.6 94.8 85:15 from TBS ether 

85:15 from TES ether

x  X  x \
285

109.5 93.7 85:15 from TMS ether

110.3 94.2 88:12 from TES ether

299

T f .  x \ .

310a/b

108.0

107.3 —

>98:2 from TES ether

x X  x \OB OB
110.3 — >98:2 from TBS ether

324

2.4 Alternative routes to p-hydroxy enol ethers

Several alternative routes to p-hydroxy enol ethers have been reported. 

Preliminary results in this area were reported by Kuwajima and co-workers in 

1993.68 They described the dimethylaluminium chloride mediated ene reaction 

of enol ether 328 with cyclohexanecarboxaldehyde 327 to give hydroxy enol 

ether 329, Scheme 64.
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Scheme 64

OMe

O OH OMe
328

327
Me2AICI 
PhMe 
91 %

329
syn: anti 12:88

Also in 1993, Ciufolini reported the Ytterbium-catalysed ene reaction of 

aldehydes with vinyl ethers.69 Aldehydes 330 were reacted with excess 

methoxypropene 331 in the presence of 0.5 mol % Yb(fod)3 to give protected 

adducts 333, via the ene products 332. When a small amount of potassium 

carbonate was added to the reaction mixture, the intermediate alcohols could 

be isolated, Scheme 65.

Scheme 65

O

■a
330

OMe Yb(fod)3 
(0.5 mol %)

331
DCM
rt

OMe
OMe

►

332 333

When an a,p-unsaturated aldehyde is used, the alcohol products 332 

correspond exactly to the type of compounds that we use as the substrates for 

AOC rearrangement. Indeed, Ciufolini has made compound 276 by this 

method.70 We made a brief attempt to utilise this methodology for our own work, 

but were unable to reproduce the reported results.

Finally, Carreira has reported71 the use of chiral titanium complex 335, 

which catalyses the ene reaction of aldehydes with methoxypropene. For 

example, aldehyde 334 could be converted into ketone 337 in 99 % yield and 

91 % ee via the enol ether 336, Scheme 66.
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Scheme 66

Bu

Br

o 335
(2-10 mol %)

OH OMe

H OMe Ph 336PI
334 A Et20  

2M HCI(solvent)

OH O

P 337

99 %, 91 % ee

Enol ethers 336 can be isolated if the acidic work-up is avoided. Carreira 

reports that the reaction of a,|3-enals, which would give AOC substrates directly, 

do not proceed in good yield, although good enantioselectivity is achieved. In 

fact, the reason proposed for the low yields in these cases is oxy-Cope 

rearrangement of the hydroxy enol ethers and subsequent decomposition.

Although these routes offer an attractive method for the formation of 

substrates for AOC rearrangement, they lack the flexibility for the 

stereocontrolled introduction of substituents which our methodology possesses.

2.5 Summary

We have developed an efficient and versatile route to hydroxy enol 

ethers. The compounds that we have constructed using this route are 

summarised in Figure 15.
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Figure 15
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Ph p ^ O 'P r

I

Ph i^ T > E t

310a/b 324

OH OH OH
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^ ^ O 'P r

290

How we used these alcohols to develop our understanding of the AOC 

rearrangement of acyclic substrates is described in the next chapter.
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3
The anionic oxy-Cope rearrangement

3.1 Preliminary investigations
Preliminary experiments on the anionic oxy-Cope rearrangement were 

carried out using alcohol 276, Scheme 67. Attempted rearrangement of 276 

using previously published conditions, Table 2 , resulted in the formation of a 

complex mixture of products.

Scheme 67

OH O OH

or

Ph" ^ S c M e  Tab,e 2 P h ^ ^ ^ O M e  
276 conditions 338 339

We thought at first that this was due to the basic quench, which we 

hoped would allow the isolation of aldehyde 338. However, switching to an acid 

quench in an attempt to induce the intramolecular aldol reaction to give alcohol 

339 also failed to produce a clean reaction.

Table 2

Base Solvent Quench Result Reference

KH, 18-C-6 THF NaHC03 complex mixture 49

KH, 18-C-6 THF NH4CI complex mixture 49

Attempted rearrangement of the isopropyl enol ether Z-278 using the 

published methods shown in Table 3, also failed to produce a clean reaction, 

Scheme 68.
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Scheme 68

OH

Ph

278

— ^
Table 3 
conditions

OH

340 341

Table 3

Base Solvent Quench Result Reference

KH, 18-C-6 THF NaHC03 complex mixture 49

KH, 18-C-6 THF NH4CI complex mixture 49

KH, 18-C-6 DMSO NH4CI complex mixture 46b

KHMDS, 18-C-6 THF TMSCI TMS ether of SM 42

KDA THF NH4CI no reaction 72

After some experimentation, the key to the reaction was found to be a 

switch of solvent to dimethoxyethane (DME) and the use of a more strongly 

acidic quench, Scheme 69.

Scheme 69

O

O'Pr

277
H O ^ ^ - ^ P h

339

O

O'Pr

Z-278
H O ^ ^ ^ P h

341

Reagents and conditions i KH (2.5 equiv.), 18-crown-6 (2 equiv.), DME, rt, 3 h; 
ii 1 mol dm'3 aqueous HCI, 0 °C to rt, 30 min.

Enol ethers 277 and Z-278 were treated with 2.5 equivalents of 

potassium hydride and 2 equivalents of 18-crown-6. After 3 h at rt, the reaction 

was quenched by the addition of 1 mol dm'3 aqueous hydrochloric acid.

61



Gratifyingly, we observed the formation of the desired p- 

hydroxycyclohexanones 339 and 341 in 80 -  91 % w/w as essentially the only 

products after extraction into ether. Complete conversion from the 1,5-dienes 

277 and Z-278 was shown by the absence of signals in the region 8 5 - 6  ppm 

in the 1H NMR spectrum of the crude mixture.

The stereochemistry and isolation of the individual products resulting 

from this one-pot rearrangement/cyclisation reaction will be discussed in the 

next section.

3.1.2 Stereochemistry of the rearrangement/cyclisation reaction
The origins of the different stereochemical relationships generated during 

the reaction sequence are illustrated below, Scheme 70.

Scheme 70

intramolecular
aldol

OH OH

AOC

■Qp. rearrangement p OR'

342 343

rearrangement
344

The orientation of the hydroxyl group is determined solely by the 

stereochemistry of the intramolecular aldol reaction. The 5,6 relative 

stereochemistry is established during the AOC rearrangement and reflects 

whether the reacting conformation is chair-like 345, or boat-like 348 Scheme 71.
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Scheme 71

OR'

345
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O 0AOC

OH

AOC

R'O
348

syn
349 350

If the rearrangement proceeds through a chair-like transition state 

resulting from reacting conformation 345, the substituents at C-5 and C-6 in the 

product cyclohexanone 347 adopt an anti relationship. However, if the 

rearrangement proceeds through a boat-like transition state resulting from 

reacting conformation 348, the C-5 and C-6 substituents are formed with a syn 

relationship. The ratio of syn and anti isomers formed in the rearrangement 

therefore reflects the populations of the two transition states.

A more detailed picture of the stereochemical outcome of the reactions 

described in Scheme 69 is given in Scheme 72.

The ratios shown were obtained from the AOC rearrangement of 

geometrically pure enol ether substrates 278 and 351 and were determined by 

integration of the signals corresponding to the CHOH protons in the 1H NMR 

spectra of the crude reaction mixtures. The crude mixture of isomers was 

obtained as a solid in 80 -  100 % mass balance after extraction into ether and 

work-up. Pure samples of the major products of the rearrangement of 277 and 

278, ketones 352 and 354 were isolated in 43 % and 31 % yield by trituration 

with ether. Separation of the other isomers proved to be more difficult, as they 

were unstable to column chromatography on silica or basic alumina. Chapter 4 

describes in full how all these compounds were separated and characterised.
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Scheme 72

OH O O

+

Ph'' ^ 'O 'P r  H O " " \/ N 3h H O " ^ ^ N p h  
277 351 352

Ratio 95 5

OH O O O

Ph" p N D iP r HO' ^ ^ V h  HO,“' ^ ^ s Ph H O '^ - ^ P h

E .278 353 354 355
+ cyclohexenones 

Ratio 353:354:355:cyclohexenones = 78:11:10:1

OH

Z-278

O O o

° 'Pr HO'‘^ " 'SsPh no" ‘k̂ ^ p h  H O '^ / N 3h 
353 354 355, 355a

+ cyclohexenones

Ratio 353:354:355, 355a:cyclohexenones = 24:67:8:1

Reagents and conditions i KH (2.5 equiv.), 18-crown-6 (2 equiv.), DME, rt, 3h; ii 
1 mol dm'3 aqueous HCI, 0 °C to rt, 30 min.

3.1.3 Results 
3.1.3.1 Chair/ boat ratio

Rearrangement of Z-278 gave a ratio of 5,6-anti hydroxycyclohexanones 

353 and 355 to 5,6-syn hydroxycyclohexanone 354 of 88:11. Therefore there is 

an 88:11 bias in favour of a chair-like transition state. Similarly, compound E- 

278, rearranges predominantly through a chair-like transition state, as 354 is the 

major product, Scheme 73.
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Scheme 73

OH

A

O'Pr
Ph O

E- 278 354

Since C-6 is an epimerisable centre, it was essential to prove that the 

5,6-syn/5,6-anti ratio of the products was a true reflection of the populations of 

the chair and boat-like transition states, and not simply the result of post

rearrangement epimerisation. To rule out the latter possibility, we performed a 

deuterium labelling experiment, Scheme 74.

Scheme 74

When we quenched the AOC rearrangement reaction with a 1 mol dm'3 

solution of DCI, we found that deuterium was incorporated only at position 4 in 

the major isomer. This was evident from the loss of couplings to C/-/OH and 

CHPh, and a reduction in the size of the signal for the C-4 methylene in the 1H 

NMR spectrum of the product. The doublet due to the methyl group showed no 

trace of collapse to a singlet, and the C-2 protons were also unaffected, 

Scheme 75. The high resolution mass spectrum of 356 showed the 

incorporation of only one deuterium atom.

OH OH

Z-285 356

65



Scheme 75

OH
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Jd 3o '

OH

V©

Ph'

359

Ph'

356

ie no epimerisation

This result also highlights a contradiction in our results for the 

rearrangement of Z-278 and E-278. Since there is no epimerisation, the ratio of 

products 353:355 should be the same in both cases. However, in the 

rearrangement of Z-278 the ratio is -8:1, while for E-278 the ratio is 3:1. There 

are two possible explanations for this discrepancy.

1) The quench conditions for the two reactions were different

2) There is another signal under the CHOH of 355 in the 1H NMR 

spectrum of the crude reaction mixture, corresponding to 355a 

(Figure 16) and the true ratio of 353:354:355:355a is 24:67:3:5

The first possibility can be ruled out. The second is more likely, as the 

signal for CHOH of 355 is complicated and could be the result of two 

overlapping signals. There would be less than 1 % of 355a produced in the 

rearrangement of alcohols Z-278 and Z-285.

Figure 16

O

r V
H O '^ '^ P h

355a
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To investigate the effect of the size of the group attached to the enol 

ether oxygen, compounds Z-285 and E-285 were rearranged under the same 

conditions as above, Scheme 76.

Scheme 76 

OH

Ph"

O O

A -
O

A.
r " 0Et  HO""^-/ T 5h HO‘" ' ^ - ' ' T 5h HOX ^ / >>h 

353 354 355
Z-285

Ratio 353:355:356:cyclohexanones = 74:12:13:1 +cyclohexenones

OH o  O O

-  A -
OEtPh'

E- 278

HO‘" \ / ^ P h  H O ' ^ ^ V h  H O ^ ^ ^ P h  
353 354 355,355a

+cyclohexenones 
Ratio 353:354:355, 355a:cyclohexanones = 24:66:9:1

Reagents and conditions i KH (2.5 equiv.), 18-crown-6 (2 equiv.), DME, rt, 3h;

ii 1 mol dm'3 aqueous HCI, 0 °C to rt, 30 min.

Alcohol Z-285 rearranged to give a slightly poorer ratio of products to that 

given by alcohol Z-278, while alcohol E-285 rearranged to give an essentially 

identical ratio of compounds to that given by alcohol E-278. We conclude that 

the bulk of the alkoxy group does not significantly affect the populations of chair 

and boat transition states.

Elimination of the hydroxyl group to give a,p-unsaturated 

cyclohexanones was investigated. We initially thought that this would be a 

convenient way to measure the chair/boat ratios, as complication from the 

stereochemistry of the hydroxyl group would be eliminated. Unfortunately, we 

were unable to eliminate without also epimerising the C-6 centre, Scheme 77. 

Diastereomerically pure alcohol 353 gave an 87:13 mixture of cyclohexenones 

in 57 % yield.
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Scheme 77

O O
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When the crude reaction mixture of the rearrangement of 278 was 

subjected to the above conditions, 360 and 361 were isolated in 51 % yield over 

two steps, Scheme 78. This result shows that the rather poor yields obtained for 

the hydroxycyclohexanones are due to problems of isolation and are not a 

reflection on the efficiency of the transformation itself. Rearrangement, 

cyclisation and elimination of alcohol 277 gave cyclohexenone 362 in 61 % yield 

over two steps, again a higher yield than the corresponding alcohol 352 

Scheme 78.

Scheme 78

OH

Phr O Pr
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MsCI
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Et3N
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above HO
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A A ^ p h
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O
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362:363 87:13
OH

HOPh'
277

'Ph

O

61 % Ph
362

3.1.3.2 The intramolecular aldol reaction

The results show a remarkable preference for the formation of an axial 

hydroxyl group. This was contrary to the expected formation of an equatorial 

hydroxyl, which we assumed would be more stable and therefore 

thermodynamically favoured. There are several possible explanations for this
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result. Firstly, orbital interactions in the transition state of the aldol reaction 

could favour an axial over an equatorial hydroxyl group, Figure 17.

Figure 17

364363

An inspection of HOMO (7t) -  LUMO (71*) orbital interactions for the 

formation of an equatorial 363 and an axial 364 hydroxyl group does not reveal 

any obvious bias in favour of one over the other. Modelling studies would be 

required to determine if HOMO-LUMO interactions of this type are significant.

Alternatively, the aldol reaction may proceed through a kinetically 

favoured, chelated transition state 365 Figure 18.

Figure 18

Ph

„o®

365

However, other sources of hydrogen bonding were plentiful in the 

reaction mixture. Furthermore coordination of the proton with the lone pairs of 

the oxygen atom of the enol ether is unlikely to favour a reaction where a 

positive charge develops on that oxygen. We focused instead on the 

stabilisation that could be provided by an axial hydroxyl group to the oxonium 

ion formed as the first step in the aldol reaction, Figure 19. A 1,4-interaction 

between the electron-rich oxygen and the electron-deficient carbon of the 

oxonium ion is possible when the hydroxyl is axial 366. Such an interaction is 

impossible when the hydroxyl lies equatorial 367. Intermediate structure 366 

should therefore be favoured over 367.
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Figure 19

Ph Ph

366

OH

367
stabilised oxonium no stabilisation

To determine the validity of this explanation, modelling studies were 

carried out by Dr Jonathan Goodman of Cambridge University. The results of 

his calculations are shown below, Figure 20.

Figure 20

OH

15.38
-106.50
+7.59

105.40
22.84

-78.54
21.16

-77.78

82.07

MM2* (kJmol'1) 
AM1 (kcalmor1) 

RHF/3-21G (kJmol'1) 
79.87 'PrO+ AM1 (kcalmor1

OH

28.17
-81.41
79.22

OH

O Ph

41.19
-80.31
79.94

26.35
-80.68
76.57

39.55 MM2* (kJmor1)
-78.89 AM1 (kcalmol*1)
77.53 'PrO+ AM1 (kcalmol'1)

The first row of results were obtained using MM2*. These show that there 

is a modest bias in favour of an axial hydroxyl group. (1.2 kJmol'1 corresponds 

to ratio of approximately 2:1 at room temperature.) The reason for this, 

according to the force field, is an electrostatic interaction between the lone pairs 

of the hydroxyl group and the carbon of the carbonyl group, as illustrated in 

Figure 19. Interestingly, the results in the second row, obtained from the semi- 

empirical AM1 method favour an equatorial hydroxyl group. Dr Goodman 

believes this is the wrong answer, as this method is unreliable for interactions at 

approximately van der Waals separation. The highest level of theory used was 

the ab initio RHF/3-21 G. This method again favours an axial hydroxyl group.
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The most interesting results are given in the third row. These refer to structures 

bearing an oxonium ion with an isopropyl group (eg 366 and 367). AM1 now 

favours an axial hydroxyl group, which strongly suggests that these are the 

preferred conformations, as the errors in the AM1 method work against this 

result.

The mechanism can be summarised as follows, Scheme 79.

Scheme 79

O

Ph'

340 368

Ph

366

OH

367

Ph

V
Ph

A
353

A
""OH

355

Aldehyde 340 is protonated to give 368. Intramolecular aldol reaction 

then gives 366 or 367. These two intermediates can then rapidly interconvert 

via a retro aldol/aldol process in favour of 366. If interconversion is slow, then 

the preference for 366 is kinetic, and results from stabilisation of the transition 

state leading to 366 by the developing electrostatic interaction shown. 

Hydrolysis of the oxonium ions then leads to the product 

hydroxycyclohexanones 353 and 355. In order to investigate whether the final 

ratio of products obtained in the reaction was thermodynamic or kinetic, alcohol 

353 was treated with 1 equivalent of LDA at -78 °C and allowed to warm to
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room temperature. The ratio of isomers obtained was different to that produced 

in the reaction, Scheme 80. This result suggests that the ratio is kinetic, 

although the ratio obtained in this experiment is due to equilibration of 

oxyanions, not alcohols.

Scheme 80

O O

LDA

O

HO' \ / k p h -78 °C to rt H O " " " \ ^ ^ P h  H O '^ ^ ^ P h
THF 353 354
3 h

353:354 -3:2

other
isomers

353

3.1.4 Summary
Our initial studies have shown that although the AOC rearrangement of 

acyclic substrates containing an enol ether proceeds predominantly through a 

chair-like transition state, a boat-like transition state also operates to some 

extent. We have also demonstrated that the intramolecular aldol reaction 

exhibits a strong preference for the formation of an axial hydroxyl group. This 

preference is explained in terms of an electrostatic interaction in the transition 

state leading to oxonium ion 366.
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3.2 Formation of decalins

3.2.1 Introduction

One of the initial aims of this research was to produce analogues of the 

powerful antimalarial drug Artemesinin73 369, and other highly functionalised 

rings, such as Forskolin74 370, which affects cardiovascular functions and 

intracellular transport, Figure 21.

Figure 21

HO "•in

OAc
OH

370

We aimed to produce simple analogues of these highly complex natural 

products using our methodology, Scheme 81.

Scheme 81

1) AOC

I^ ^ O R ' 2) aldo1 
FT

371 v 1) AOC
2) 0 2 quench

R" Forskolin 
372 analogues

H+

OR' OR'

R" Artemesinin 
374 analogues

Substrates of type 371 could lead to analogues of both natural products. 

Straightforward AOC rearrangement/aldol cyclisation would give analogues of 

Forskolin, while the more ambitious AOC rearrangement with oxygen quench 

could install the unusual peroxy bridge found in Artemesinin.
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3.2.2 Results

Armed with the conditions developed in our initial studies, we were 

confident that the rearrangement of substrates 298 and 299, which were 

synthesised as described in Chapter 2, would present no problems. However, 

when subjected to the conditions that we found were successful for the 

rearrangement of the previous set of substrates, no reaction took place, 

Scheme 82.

Scheme 82

OH
1. KH, (2.5 eq.)

18-C-6 (2 eq.)
-------------------------- ► hydrolysis

O'Pr DME, rt, 5h
2. 1 mol dm'3 HCI

298 R=H
299 R=Me

We were at first puzzled by this result. However, the stereoelectronic 

properties of 298 and 299 are very different to those of substrates with only a 

phenyl group at C-1. We tried several different sets of conditions, all of which 

resulted in failure, Table 4.

Table 4

Substrate Conditions Result

298 KH, 18-C-6, DME, 50 °C, 1h complex mixture

298 KH, 18-C-6, DME, rt, 2 h, 50 °C, 3 h no reaction

299 KH, 18-C-6, THF, rt, 17 h no reaction

299 KH, 18-C-6, DMSO, rt, 50 °C, 5 h complex mixture

We therefore turned our attention to the rearrangement of 290, which 

was more readily available than 298 and 299, and which we thought would 

possess similar electronic properties to these compounds. Again rearrangement 

of was attempted under several different conditions, Table 5.
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Table 5

Conditions Result

KH, 18-C-6, DME, rt, 17 h, then reflux 8 h 

KH, 18-C-6, THF, rt, 17 h, then reflux 8 h 

KH, 18-C-6, THF, reflux, 4 h

complex mixture

complex mixture

some rearranged product, some

decomposition

Finally, the best conditions were found to be long reaction times at 

ambient temperature. (An extra 0.5 equivalents of KH and 18-C-6 were also 

used.) These conditions avoided decomposition, but allowed rearrangement to 

take place, Scheme 83.

Scheme 83

1. KH (3 eq.) 
18-C-6 (2 eq.)

THF, rt, 5 days
2. 1 mol dm'3 HCI 

69%

O

HO
375

anti:syn 90:10

The (3-hydroxycyclohexanone 375 was formed in good yield and with an 

axiakequatorial hydroxyl ratio of 90:10. With these conditions in hand, we 

returned to the rearrangement of 298 and 299, Scheme 84.

Scheme 84

299

1. KH (3 eq.) 
18-C-6 (2 eq.)

r ^ O ' P r  ™ F’ rt’ 2 days
2. 1 mol dm'3 HCI 

74 % w/w

OH

376

O

Enol ether 299 rearranged after 2 days at room temperature to give 376 

in a crude yield of 74 % as a mixture of several isomers. The stereochemistry of 

the different isomers was not determined rigorously, although characteristic 

narrow signals in the 1H NMR spectrum at 8 4-4.5 ppm for axial hydroxyl groups 

were observed. The reaction was repeated using both 298 and 299 as 

substrates. However, the reliable formation of the target p- 

hydroxycyclohexanones was not achieved. Rearrangement appeared to have
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taken place by TLC analysis, but when the reaction was worked-up as above, 

no product was isolated. In an attempt to separate the rearrangement and 

cyclisation reactions, we decided to quench the reaction with TBSCI, and so 

trap the enolate as its silyl enol ether, Scheme 85.

Scheme 85

OH . -------------  r OTBS

Pr
298

1. KH (3 eq.)
18-C-6 (2 eq.)

 »
THF, rt, 48 h

2. TBSCI (1.1 eq.)
-78 °C to rt, 2.5 h

377

OH

378

When 298 was treated with KH and 18-C-6 as before, TLC showed that 

rearrangement had taken place after 48 h at rt. The reaction was then 

quenched at -78 °C by the addition of TBSCI. After work-up, the 1H NMR 

spectrum of the crude material showed no evidence for the formation of the 

desired silyl enol ether 377. However, evaporation of the NMR solvent and 

addition of hexane to the residue resulted in the formation of a white solid, 

which was identified as the cyclohexanone 378. The isolated yield of this 

compound was < 10 %. Another attempt to isolate a silyl enol ether was made 

using compound 299 and TBSOTf as the silylating agent, Scheme 86.

Scheme 86

OH

299

1. KH, 18-C-6 
THF, rt, 3 days

3. alumina

OTBS OTBS

379 380
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The rearrangement of 299 took place over 3 days at room temperature, 

and was quenched by the addition of TBSOTf at -78 °C. Gratifyingly, the 1H 

NMR spectrum of the crude reaction product showed evidence for the formation 

of the desired silyl enol ether 379. [Singlet at 8 5.97 ppm corresponding to 

C/-/(OTBS).] Subsequent chromatography on neutral alumina gave a mixture of 

379 and the hydrolysed product 380, in 43 % combined yield. It is interesting to 

note that in compounds 379 and 380, the substituent on the cyclohexane ring 

adopts an axial orientation, Figure 22.

Figure 22

O'Pr

OTBSOTBS

380379

This effect is due to 1,3-allylic strain75 as illustrated in Figure 23. When 

the subsituent lies in an axial orientation, this interaction is minimised. However, 

when the substituent lies in an equatorial position 381, the interaction shown 

becomes very large, and so this conformation is disfavoured.

Figure 23

OTBS
OTBS

380

1,3-allylic 
strain strain

The enol ether in compound 379 is more susceptible to hydrolysis than 

the silyl enol ether. This is probably because the quaternary carbon of the silyl 

enol ether double bond, which has to be protonated during hydrolysis, is 

extremely hindered and therefore resistant to attack by electrophiles. This is 

useful, as it allows the two enol ether systems to be differentiated chemically.
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This reaction was repeated, again with 299, and also with 298 as the 

substrate. However, as with the simple acidic quench, the results obtained were 

not reliable. The reasons for this are unclear, but further work in this area 

should solve these problems.

3.2.3 Discussion

These results show that aliphatic substitution at C-1 significantly retards 

the rate of rearrangement when compared with phenyl substitution at the same 

position. This effect can perhaps be attributed to stabilisation of the transition

state by the phenyl group through p-7t interactions. An aliphatic group could 

only participate through weaker inductive effects. When the C-1 -  C-2 double 

bond is contained within a cyclohexene ring, the rate of rearrangement is again 

significantly reduced. This is probably the result of electronic effects, although 

the ring also places additional steric demands on the system. Our substrates 

are similar to those used by Paquette (see Scheme 40), who showed that there 

was a preference for the formation of an axial bond during rearrangement. This 

may inhibit the reaction if the substituent is large, as in our examples.

3.2.4 Summary

Rearrangement of substrate 290 containing aliphatic substutution at C-1 

was found to be significantly slower than the corresponding phenyl substituted 

compounds. The rearrangement of substrates 298 and 299 was attempted in an 

effort to gain access to interesting decalin compounds, but the results achieved 

are not yet satisfactory, in terms of yield and reproducibility.
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3.3 Rearrangement of enantiomerically enriched substrates -  

substitution at C-4
3.3.1 Introduction

Finally, we turned our attention to the rearrangement of substrates with 

substituents at C-4. As mentioned previously, we hoped that syn aldol products 

would provide excellent levels of chiral transfer, see Chapter 1.

3.3.2 Results

We initially studied the rearrangement of a readily accessible 1:1 

mixture of racemic syn and anti substrates 310a and 310b, to find conditions for 

rearrangement, and to provide samples of racemic products for comparison with 

the enantiomerically enriched compounds we hoped to produce. When a 

mixture of 310a and 310b, obtained as described previously, was treated with 3 

equivalents of KH and 2 equivalents of 18-C-6 in THF, we were delighted to find 

that rearrangement took place after only 3 h at rt. The reaction was quenched 

by the addition of 1.1 mol dm'3 aqueous hydrochloric acid solution. After work

up several cyclohexanones were obtained in the ratio shown and in ~ 100 % 

crude yield, Scheme 87. These compounds, unlike those prepared previously, 

were found to be relatively stable to column chromatography on neutral 

alumina, and were obtained free from other contaminants in a combined yield of 

56 %.

Scheme 87

O o

+ minor isomer
310b

384

382:383:384:minor isomer 8:3:7:1
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Although the compounds could be chromatographed, some isomerisation 

took place and it was not possible to obtain a sample of each isomer free from 

the others even using preparative TLC. However, it was possible to assign the 

stereochemistry of each of the isomers shown using the 1H NMR spectra of the 

mixtures obtained from chromatography, see Chapter 4.

We were unconcerned that the reaction gave a mixture of isomers, the 

anti and syn substrates 310a and 310b were expected to give rise to different 

2,6 relative stereochemistry. We then turned our attention to the rearrangement 

of the enantiomerically enriched, diastereomerically pure substrate 324, 

obtained as described in Chapter 2. When 324 was treated with KH and 18-C-6 

then quenched with hydrochloric acid as before, we found to our dismay that a 

mixture of isomers was produced in the reaction, Scheme 88.

Scheme 88

o o
1. 3 eq. KH, 2eq18-C-6 

THF, 3 h, rt 
OEt  

2. 1 mol dm'3 HCI HO'"
324 64 % crude 385 386

+ a minor isomer
ratio of 385:386:minor isomer 8:3:1

There were several extremely puzzling questions raised by this result. 

Although the chair:boat ratio was 11:1, poor 2,3-diastereoselectivity was 

achieved. In addition, the major isomer produced contained an equatorial 

hydroxyl group at C-3 and an axial methyl group at C-2. This result was entirely 

inconsistent with the one we had predicted using the model shown, Scheme 89. 

A radical alteration to our model for the rearrangement/ cyclisation process 

which was consistent with both these results, and those obtained previously 

was required.
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Scheme 89

expected result

equatorial C-2LU I I d l

Ph )

OH

Ph
© AOC

O
rearrangement

OEt

388

k©

acidic quench

390

aldol
----------

reaction 

axial C-3

Ph

OEt

389

We first addressed the preferential formation of an axial methyl group. 

We ruled out the possibility of epimerisation by quenching the rearrangement 

with 1.1 mol dm'3 solution of DCI as described previously. Again, the deuterium 

was incorporated only at C-4. The only way we could explain the formation of 

an axial methyl at C-2 was to assume that the rearrangement proceeded 

through a chair-like transition state with the oxyanion axial, and not equatorial 

as had been previously assumed, Scheme 90.
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Scheme 90

actual result

AOC
EtO O

rearrangement

chair with 
axial oxyanion

392

acidic quench

equatorial C-3

aldolOH

reaction

385 axial C-2

EtO

393

At first, this explanation seems unlikely, as there should be a strong 

repulsive electrostatic and steric interaction between the oxyanion and the enol 

ether oxygen. However, we propose that the potassium cation is chelated 

between the two oxygen atoms during rearrangement, which proceeds through 

TS 397 as shown, Figure 24.

Figure 24

.0 o®
394

repulsive 
electrostatic 
and steric 
interaction

r
395

chelated K+ 
ion

The fact that the methyl group is axial does not raise the energy of the 

TS by a large amount, as it is highly dissociated.24 In addition, the methyl group 

lies in an equatorial position in the six-membered ring formed by the chelated
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potassium ion. Examination of the ratios of the cyclohexanones obtained by the 

rearrangement of the 1:1 mixture of syn and anti substrates shows that one of 

the major products 384 must have arisen from the anti substrate. The 

preference for the 2,3 syn cyclohexanone when the anti alcohol 310b is 

rearranged and cyclised is also consistent with the chelated model, Scheme 91. 

Scheme 91

Examination of the products obtained from the rearrangement of the syn 

aldol substrate 324 (Scheme 88) shows that 385 and 386 are both produced via 

a chair-like TS, with an axially oriented oxyanion. The minor isomer, whose 

stereochemistry could not be determined, showed a characteristic signal at 5 

4.36 ppm (quartet with J 2 A  Hz), for an axial hydroxyl group. Since the 1H NMR 

spectrum does not resemble that of racemic alcohol 384, we can assign a 5,6- 

syn relative configuration to the minor isomer. Hence, the chair:boat ratio for the 

rearrangement of the syn aldol product is 11:1. The enantiomeric ratio of the 

rearrangement was determined to be -96:4 by 1H NMR spectroscopy. This 

determination is discussed in Chapter 4. The chelated TS model raises some 

interesting questions, and some experiments that could be carried out to 

answer them. The model predicts that the rearrangement should in theory 

proceed without the presence of 18-C-6, and indeed should occur with better 

selectivity. However, the rate of reaction without 18-C-6 may be retarded to 

such an extent that no reaction takes place. Also, the model predicts that the 

rearrangement of anti substrates should proceed with greater selectivity than 

observed in other systems. The rearrangement of the 1:1 mixture goes some 

way to proving this, but the reaction of diastereomerically pure substrates needs 

to be investigated. Work in this area is ongoing in our group.

Since the chair/boat ratio is 11:1, the relatively poor diastereoselectivity 

obtained in the rearrangement/cyclisation process is due to the intramolecular 

aldol reaction. We searched for an explanation as to why the stabilisation

Ph Ph

396
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provided by an axial hydroxyl group, Figure 25, which we used to explain the 

selectivity in the previous examples was not as effective in this case.

Figure 25

Ph

x  ©

397

The full mechanism of the intramolecular aldol reaction is given in 

Scheme 92. The aldehyde 398 is protonated, to give oxonium ion 399, which 

undergoes intramolecular aldol reaction to give oxonium ions 397 or 400. These 

intermediates then undergo hydrolysis to give the product (3- 

hydroxycyclohexanones 386 and 385 respectively. Intermediates 397 and 400 

can equilibrate via 399 by an aldol/retroaldol process. Our previous reasoning 

would suggest that formation of an axial hydroxyl group should be favoured by 

stabilisation in oxonium ion 397 or in the transition state leading to 397. In this 

case, this equilibrium is obviously not biased in favour of 397. We propose that 

oxonium ion 400 is hydrolysed faster than oxonium ion 397, as the carbonyl of 

397 is considerably more hindered than that of 400. A nucleophile (e.g. water) 

approaching the carbonyl of 397 along the Burgi-Dunitz angle of approach76 

would encounter steric hindrance on both faces of the cyclohexane ring. The 

top face is blocked by the methyl group and the bottom face is blocked by the 

hydroxyl group. The top face of oxonium ion 400 is also blocked by the methyl 

group. However, the bottom face is accessible to nucleophilic attack. A fast 

equilibrium between 397 and 400 would then explain the preference for an 

equatorial hydroxyl group.
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Scheme 92
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397

hydrolysis
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Ph

HO.

385

It is interesting at this point to mention some other work carried out in our 

group. The rearrangement of compound 401 is shown in Scheme 93. The major 

product of this reaction is the cyclohexanone 404, as predicted by our original 

model. This result is consistent with our revised mechanism. A chelated TS 

requires a pseudoaxially oriented isopropyl group 405. The barrier to such a 

conformation is simply too large, and the isopropyl group forces the 

rearrangement to proceed through conformation 402 as shown.460
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Scheme 93

T

OH
403

402

OH

404

405

An axial hydroxyl group is formed preferentially. This means that the 

aldol reaction proceeds predominantly through oxonium ion intermediate 403. 

This ion is not sterically hindered on the upper face.

3.3.3 Summary

An unexpected result for the rearrangement of substrates with 

substituents at C-4 of the 1,5-headiene-3-ol framework lead us to revise our 

model for the rearrangement. We proposed that the rearrangement proceeds 

through a chelated transition state,78 with the potassium counterion bonded to 

the oxyanion and the enol ether oxygen. This model gives the enol ether 

oxygen atom a much more interesting role in the rearrangement than we first 

postulated, and more work is being carried out in our group to further 

investigate our proposed mechanism.

3.4 Alternative routes to p-hydroxycyclohexanaones

The conjugate addition of an organocuprate to an a,p-unsaturated 

cyclohexenone followed by quench with an electrophile is a commonly used 

method for the construction of substituted cyclohexanones of type 408, Scheme 

94™
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Scheme 94
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The introduction of a p-hydroxyl group is commonly achieved by the 

reductive opening of an a,p-epoxycyclohexanone 409, Scheme 95.

Scheme 95

O O

409
H e r ' '

410

Several methods have been developed for this transformation, including 

the use of samarium diiodide,80 lithium/ammonia,81 and sodium 

phenylselenide82. The selectivity of these processes is variable, and 

epimerisation at the a-position usually occurs.

Alternatively, a masked form of the hydroxyl group can be introduced by 

a conjugate addition mechanism. Extensive work in this area has been carried 

out by Fleming and coworkers,83 Scheme 96. For example, conjugate addition 

of the phenyldimethylsilylcuprate 412 to enone 411 yields ketone 413. 

Treatment of 413 with tetrafluoroboric acid followed by oxidation with meta- 

chloroperbenzoic acid (mCPBA) gives the hydroxycyclohexanone 351.

Scheme 96

O O
(PhMe2Si)2CuLi 
 ►

412
89%

i HBF4

411 413

i mCPBA, EtsN 

'SiMeaPh Ph'

Ox
351
56%

"OH

These methods offer straightforward access to the type of compound that 

we synthesise using our methodology, but ultimately lack the brevity and 

flexibility that our route provides for the introduction of different substituents in a 

stereoselective manner.
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3.5 Applications for our methodology

In 1997, Kimura and co-workers reported that metabolites, e.g. 

Penihydrone 414, isolated from Penicilium sp. No 13 possessed interesting 

activity as plant growth regulators,84 Figure 26. The stereochemistry of these 

compounds corresponds exactly to that produced in our methodology. In 

addition, our route should prove flexible enough to produce analogues of the 

natural product.

Figure 26
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4
Stereochemical assignments for 

p-hydroxycyclohexanones
4.1 Introduction

The correct assignment of the stereochemistry of the cyclohexanone 

compounds produced in the rearrangement/cyclisation reaction is essential, as 

this forms the basis for the determination of the chair/boat ratios in the 

rearrangement. As described previously, these assignments were made on the 

basis of the 1H NMR spectra of these compounds. This chapter gives details of 

these spectra, and the other NMR experiments used to identify them.

4.2 Compounds in section 3.1.2

The compounds produced in the rearrangement of Z-278 and Z-285 are 

shown in Scheme 97.

Scheme 97

OH O O O
1  .  U .

AOC

Ph
+

HO Ph
355

f ^ O R  cyclisation H O " " '^ ^ s*Ph H O '" '^ ^ SkPh
353 354

Z-278 R = ‘Pr 
Z-285 R = Et

The major product of the rearrangement was 353, obtained as an 

amorphous solid. Full NMR data for this compound is given in the experimental 

section, however, it is useful to tabulate the assignments and key coupling 

constants, Table 4.
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Table 6

O

HQ""
353

8 assignment H1
LI 2 ■ ■ H3 H4 «_|5

I

H6
7

H7 Me

2.77 H1 14.1 3.0 - - - -

2.62 H* .....14 . 1 ★ - - - - -

4.59 H3 2.9 2.9 * 2.9 2.9 - - -

2.19-2.13 H4 - - * * * - -

2.19-2.13 Hb - - * ★ * - -

3.13 Hb - - 9.1 7.5
118

-

2.64 H/ - - - - - 11.9 6.6

0.84 Me - - - - - - 6.5

* = coupling constant could not be determined

- = no coupling

Key features are:

• CHOH 4.59 ppm, quintet J=  2.9 Hz; this establishes that the hydroxyl 

group is axial, as no large axial-axial couplings for this proton are 

observed

• protons H6 and H7 show a large axial-axial coupling to each other, 

proving that the stereochemistry of the substituents at C-5 and C-6 is 

anti as shown

The other diastereomers in this reaction were not amenable to 

chromatography, as mentioned previously. We overcame this problem after 

some experimentation, by converting the alcohols into their TBS ethers, 

Scheme 98. A mixture of the alcohols 353, 354 and 355 was treated with TBSCI 

and Et'Pr2N in DMF. After 3 days at rt the TBS ethers 415, 416 and 417 were 

formed. Only a small amount of 417 was formed, as alcohol 353 proved
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resistant to silylation. The other isomers were subjected to extensive 

chromatography, and were eventually separated by preparative TLC.

Scheme 98

o o  o  o

TBSCI

Ph EtiPr2N HO"" \ ^ ^ P h  T B S O ^ ^ ^ P h  T B S O " " '^ ^ P h  
DMF 353 415 416
rt, 3 days

TBSO"' v  "Ph 
417

415 gave the following data 

Table 8

.4o

A * ''''

H
teIs o  h

,H

H

T B S O ^ - ^ P h
415

H2

l o \  ^
H3 Me O

5 assignment

= coupling constant could not be determined 

- = no coupling

Key points:

• H3 shows large axial-axial couplings to H1 and H4, and smaller axial- 

equatorial couplings to H2 and H5
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• H/ shows a large axial-axial coupling to H6

The rather poor matches in this table are due to the averaging of two or 

more similar couplings. We performed an additional NMR experiment on this 

compound. When the methyl group was irradiated, the signal corresponding to 

H7 collapsed to a doublet, from which we were able to obtain an accurate value 

for the H6-H7 coupling constant.

416 gave the following data, Table 5. 

Table 7

H4O

X s  H i Me 2r t h5Tv
H'

TBSO" v  "Ph 
416

Pb^VrV-V
|O T B ^ > 0
H H

5 as .signment H1 H2 H3 H4 H5 H6 H7 Me

2.74 H1 14.5 3.7 - - - - -

2.38 H2 14.5 4.6 - 1.6 - 1.6 -

4.40 H3 * * - ,
1 *, •

★ * - - -

2.29 H4■, - - - 2.5
.....

K- 1 13.4 11.0 - -

1.96 Hb - * 5.3 13.4 5.3 - -

3.71 Hb - - - 10.4 4.7 4.7 -

2.70 H/ - * - - - 6.0 7.2

0.88 Me - - - - - - 7.2

* = coupling constant could not be determined 

- = no coupling 

Key features:

• H3 is a narrow multiplet (range 16 Hz), so the silyloxy group is axial

• H7 shows no large axial-axial couplings - the methyl group is 

therefore axial

To obtain the H6-H7 coupling constant, we again irradiated the methyl

group.
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We attempted to remove the silyl groups to obtain the 

hydroxycyclohexanones themselves. However, when 415 and 416 were treated 

with TBAF, a mixture of isomers was obtained, presumably via a fluoride- 

induced retro-aldol process.

We were confident, however, that from the assignments made of the silyl 

ethers we could identify the corresponding alcohols in the spectra of the crude 

material obtained after rearrangement. This confidence was based on the fact 

that the signals corresponding to the CHOH and CHOTBS protons had the 

same shape and almost the same chemical shift.

4.3 Compounds in Section 3.2.1

Rearrangement/cyclisation of 290 lead to the formation of 375, see 

Scheme 83.

Because of the large number of multiplets in the 1H NMR spectrum of 

375, the data cannot be displayed in a table as above. The key stereochemical 

feature of the spectrum is:

• the CHOH signal is a narrow multiplet, range 14 Hz, showing the 

hydroxyl is axial

The signal for the CHPr signal is very broad, and individual couplings are 

not resolved. However, it is highly unlikely that the Pr group is also axial.

Decalone 378

The only hydroxydecalone characterised, 378, gave the following data, 

Table 9
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Table 9

OH H7

A' ;j
116U5rl

2.57 H

1.91-1.81 H

* = coupling constant could not be determined 

- = no coupling

The key features of the spectrum are

• H3 is a broad singlet-no large couplings are observed

• H4 shows an axial-axial coupling to H5

Our assignment is supported by the work of Fleming and coworkers, who 

have synthesised the C-5 epimer (equatorial hydroxyl group).83b

4.4 Compounds in Section 3.3

The rearrangement of a 1:1 mixture of syn and anti substrates gave rise 

to four compounds as previously described, see Scheme 87.

The three major isomers could not be separated completely, but 

assignment of their stereochemistry was possible from the mixtures obtained 

after preparative TLC.

382 gave the following data, Table 10.
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Table 10

* = coupling constant could not be determined 

- = no coupling

Key features:

• H2 shows a large axial-axial coupling, and two smaller axial-equatorial 

couplings. The hydroxyl group is therefore equatorial, and Me1 must 

lie in an axial position (if it were equatorial H2 would have two large 

couplings and one smaller one)

• H5 and H6 show a large axial-axial coupling to each other
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383 gives the following data, Table 11. 

Table 11

Me

HO"" OH 'Me2 O
383

* = coupling constant could not be determined 

- = no coupling

Key features:

• H2 shows no large couplings - the hydroxyl group must therefore be 

axial

• H1 shows a small equatorial - equatorial coupling to H2, 

characteristically 1 Hz smaller than the corresponding axial-equatorial 

coupling (see Table 12)

• H5 and H6 show a large diaxial coupling
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384 gives the following data, Table 12:

issignmei

* = coupling constant could not be determined 

- = no coupling 

Key features:

• H2 is a narrow multiplet, therefore the hydroxyl group is axial

• H1 shows a coupling to H2 1 Hz larger than that found in 384 (Table 

11 )

• H5 and H6 again show a diaxial coupling

Although the stereochemical assignment of H-1 as equatorial in 383 and 

axial in 384 is not absolutely definitive based on coupling constants alone, we 

are certain from the mechanistic reasons discussed in Chapter 3 that these 

assignments are correct.

Finally, the enantiomeric ratio of the rearrangement of the enantiopure 

syn substrate 324, was determined by the addition of the chiral shift reagent 

418,85 Figure 27.
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Figure 27

OH

418

The addition of -10 mg of this compound to an NMR sample containing 

-10 mg of a mixture of racemic hydroxycyclohexanones resulted in a splitting of 

the signal for H-2 of compound 382. The splitting of the signal was not 

complete. However, when the experiment was repeated with a mixture of non- 

racemic alcohols, an estimation of the enantiomeric ratio could be obtained from 

the splitting of H-2 in alcohol 385. This was found to be approximately 96:4.
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5
Experimental
General
All reactions were carried out under an atmosphere of nitrogen, using oven- 

dried glassware. All solutions were added via syringe unless otherwise stated. 

THF, ether and DME were freshly distilled from sodium/benzophenone. DCM, 

hexane and all amines were distilled from CaH2 prior to use. DMF was distilled 

from BaO and stored over 4A MS. Cinnamaldehyde was distilled. Ethanol was 

distilled from magnesium. 18-crown-6 was dried by azeotrope with toluene. 

Reagents were obtained from commercial suppliers and used without further 

purification unless otherwise stated. Purification by column chromatography 

was carried out using Fisher Matrex™ silica gel, mesh size 35-70 pm, Fluka 

basic alumina Brockmann grade III or Aldrich neutral alumina Brockmann 

grade III mesh size -150 as the stationary phase. Thin layer chromatography 

was carried out using Merck silica gel 60 F254 foil-backed plates, (0.25mm layer 

thickness), or Merck aluminium oxide 60 F254 neutral (type E) foil-backed plates 

(0.2mm layer thickness). The plates were visualised by illumination with UV 

light, iodine vapour or vanillin solution.

Melting points are uncorrected. IR spectra were recorded using a Nicolet Impact 

410 FTIR spectrometer. NMR spectra were recorded using Bruker AM-200SY, 

AM-360 and DPX-400 spectrometers. Chemical shifts are given relative to 

tetramethylsilane using residual CHCI3 as an internal standard (7.26 ppm). The 

multiplicities of 13C nuclei were determined using the DEPT pulse sequence. 

Mass spectra were recorded on a Jeol JMS700 spectrometer. Combustion 

analysis was carried out using a Carlo-Erba 1106 elemental analyser and 

optical rotations were obtained using an Optical Activity PolAAr 2000 

polarimeter.
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General Procedures
The following general procedures were used.

A. Intermolecular aldol reaction

OH O
O

OR2

R O
OR2

R

A solution of the ester (1 equivalent) in THF is added to a stirred solution of 

lithium diisopropylamide [made from bultyllithium (1 equivalent) and 

diisopropylamine (1 equivalent)] in THF under nitrogen at -78 °C. The resulting 

mixture is stirred for 40 min, whereupon the aldehyde (1 equivalent) is added. 

Stirring is continued for a further 20 min, then the mixture is poured into 

aqueous hydrochloric acid solution (1.1 mol dm'3). The layers are separated 

and the aqueous phase extracted with ether. The combined organic extracts are 

washed with aqueous hydrochloric acid solution and saturated aqueous sodium 

bicarbonate solution, then dried and concentrated under reduced pressure to 

give the aldol product.

B. Silyl protection reaction

The alcohol (1 equivalent) is dissolved in dry DMF under nitrogen with stirring. 

The solution is cooled on an ice bath. The silyl chloride (2 equivalents) then 

diisopropylethylamine (3 equivalents) are added and the mixture allowed to 

warm to room temperature. Stirring is continued for 17 h, then the reaction 

mixture is poured into saturated aqueous sodium bicarbonate solution. Ether is 

added and the layers separated. The aqueous phase is extracted with ether, 

and the combined organic extracts washed with hydrochloric acid (1.1 mol dm'3) 

and brine, then dried and concentrated under reduced pressure to give the silyl 

ether.

OH O RsSiO O
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C. Modified Takai alkylidenation reaction

OR'OR'

Titanium tetrachloride (4 equivalents) is added slowly to THF under nitrogen at 

0 °C. To the resulting bright yellow suspension is added TMEDA (8 equivalents) 

to give an orange/brown suspension. The mixture is stirred at 0 °C for 20 min, 

then zinc powder (9 equivalents) (activated by sequential washing with 5 % 

aqueous hydrochloric acid, water, acetone and ether) mixed with a small 

amount of lead (II) chloride (-10-20 mg) is added. An exotherm occurs and the 

mixture turns a grey/blue colour. The ice bath is removed and the suspension 

stirred for 40 min, over which time a dark green colour develops. The mixture is 

then re-cooled in an ice bath and a solution of the ester (1 equivalent) and the

1,1-dibromoalkane (2.2 equivalents) in THF is added dropwise. After addition is 

complete the ice bath is removed and the reaction mixture stirred for 4-17 h. 

(The suspension turns dark brown/black after -20 min at rt.) The reaction 

mixture is then re-cooled with an ice bath, and saturated potassium carbonate 

solution added via syringe. The resulting thick black slurry is stirred for a further 

15 min, then poured into ether. The reaction vessel is washed repeatedly with 

ether and the combined washings are then passed through a short column of 

basic alumina to filter off the solid formed during the quench. After washing the 

filtrate with additional ether, the combined washings are dried and concentrated 

under reduced pressure. The residue is treated with hexane, and the insoluble 

white precipitate formed on concentration is filtered off by passing the hexane 

solution through a short column of basic alumina. The precipitate is washed with 

additional hexane and the combined washings concentrated under reduced 

pressure to give the enol ether.
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D. The silyl deprotection reaction

RsSiO

OR'

OH

OR'

To the silyl ether (1 equivalent) is added TBAF (2-3 equivalents of a 1.0 mol dm' 

3 solution in THF) at rt under nitrogen. The mixture is stirred for 5 min to 

dissolve the silyl ether, then 4 A MS (1.3 wt equivalents) are added. The 

resulting dark orange suspension is stirred for 1-4 h, then poured through filter 

paper into saturated aqueous sodium bicarbonate solution. Ether is added and 

the layers separated. The aqueous phase is extracted with ether and the 

combined organic extracts dried. Concentration under reduced pressure gives 

the crude alcohol.
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OH O

OMe

266

Methyl (E)-3-Hydroxy-5-phenyl-4-pentenoate. 86

Following general procedure A, methyl acetate (2.15 cm3, 27.0 mmol) in dry 

THF (50 cm3) was added to a stirred solution of LDA [made from butyllithium 

(1.2 mol dm"3 solution in THF, 22.7 cm3, 27.0 mmol) and diisopropylamine (3.5 

cm3, 27.0 mmol)]. After 40 min, E-cinnamaldehyde (3.4 cm3, 27.0 mmol) was 

added and stirring continued for 20 min, whereupon the mixture was poured into 

aqueous hydrochloric acid solution (100 cm3, 1 mol dm"3). The layers were 

separated and the aqueous phase extracted with ether (2 x 100 cm3). The 

combined organic extracts were washed with aqueous hydrochloric acid (100 

cm3) and saturated aqueous sodium bicarbonate solution (100 cm3). The 

organic phase was dried (MgS04) and the solvent removed under reduced 

pressure to give a yellow oil (6.02 g, 108 %). The crude product was purified by 

column chromatography (silica, eluent 10:1 pet ether 40/60-ether) to yield the 

aldol 266 as a pale yellow oil (4.33 g, 78 %); 8h (200 MHz, CDCI3) 7.44-7.19 

(5H, m, Ph), 6.65 (1H, dd, J  16.0 and 0.8, PhCH=), 6.21 (1H, dd, J  16.0 and

6.0, PhCH=CH), 4.73 (1H, m, CHOH), 3.71 (3H, s, OMe), 3.03 (1H, br s, OH) 

and 2.66-2.62 (2H, m, C/-/4HeC02Me), in agreement with data given in 

reference 86.

Isopropyl (E)-3-Hydroxy-5-phenyl-4-pentenoate. 87

Following general procedure A, isopropyl acetate (11.5 cm3, 97.9 mmol) was 

added to LDA [ex butyllithium (1.6 mol dm"3 solution in THF, 61.2 cm3, 97.9 

mmol) and diisopropylamine (9.9 g, 12.8 cm3, 97.9 mmol)]. E-cinnamaldehyde 

(12.3 cm3, 97.9 mmol) was then added, and the procedure followed as above to 

yield the aldol (23.63 g, 103 %) as a pale yellow oil, sufficiently pure for the silyl

OH O

267
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protection reaction; Rf(alumina, 1:1 ether-hexane) 0.21; vmax(thin film)/cm'1 3449 

br s (OH), 2981 m, 2935 w, 1726 s (C=0), 1495 m, 1374 w, 1107 m, 966 m, 

818 m and 751 s; 8H (400 MHz, CDCI3) 7.37-7.21 (5H, m, Ph), 6.64 (1H, d, J

16.0, PhCH=), 6.21 (1H, dd, J  16.0 and 6.0, PhCH=CH), 5.06 (1H, sep, J6.4, 

OCHMe2), 4.74-4.68 (1H, brm, CHOH), 3.26 (1H, d, J 4.2, OH), 2.63 [1H, dd, J

16.0 and 4.8, CH(OH)C//Hb], 2.58 [1H, dd, J 16.0 and 7.4, CHfOHJC^H®] and

1.24 (6H, d, J 6.4, OCHMeg); 8C(100 MHz, CDCI3) 171.7 (C), 136.5 (C), 130.6 

(CH), 130.1 (CH), 128.6 (CH), 127.8 (CH), 126.5 (CH), 68.9 (CH), 67.9 (CH),

41.9 (CH2) and 21.8 (CH3); nVz (EI+) 234.1 (M+, 25 %), 174.1 (40), 133.1 (100); 

HRMS (EI+) found 234.1256, C i4Hi80 3 requires 234.1256.

TBSO O

P lr ^ ^ ^ -^ ^ O M e

268 

Methyl (E)-3-(fe/?-Butyldimethylsilyloxy)-5-phenyl-4-pentenoate.

Following general procedure B, alcohol 266 (1.0 g, 4.9 mmol) was dissolved in 

dry DMF (20 cm3). Diisopropylethylamine (2.5 cm3, 14.9 mmol) then tert- 

butyldimethylsilylchloride (1.5 g, 9.7 mmol) were added. After 17 h, the mixture 

was poured into saturated aqueous sodium bicarbonate solution (200 cm3). The 

aqueous phase was separated and extracted with ether (2 x 100 cm3). The 

combined organic extracts were washed with aqueous hydrochloric acid (2 x 

100 cm3, 1 mol dm'3 solution) then brine (50 cm3) and dried (MgS04). 

Concentration under reduced pressure and purification by column 

chromatography (silica, eluent 20:1 pet ether 40/60-ether), gave the silyl ether 

268 as a pale yellow oil (1.5 g, 97 %); Rf (alumina, 1:1 ether-hexane) 0.62; 

Vmax(thin film)/cm'1 2954 m, 2929 m, 2855 m, 1742 s (C=0), 1437m, 1362 m, 

1166 m, 838 m and 778 m; 6H (400 MHz, CDCI3) 7.32-7.17 (5H, m, Ph), 6.57 

(1H, d, J  16.0, PhCH=), 6.19 (1H, dd, J 16.0 and 6 .8 , PhCH=CH), 4.79- 4.74 

(1H, m, CHOSi), 3.57 (3H, s, OMe), 2.63 [1H, dd, J 14.4 and 8.4, 

CH(OSi)C//HB], 2.53 [1H, dd, J 14.4 and 4.8, CH(OSi)CHAHe|, 0.78 (9H, s, 

SiCMe3), -0.03 (3H, s, Si/WeAMeB) and -0.06 (3H, s, SiMeAMee); 6C(100 MHz, 

CDCI3) 171.5 (C), 136.6 (C), 131.5 (CH), 129.9 (CH), 128.6 (CH), 127.6 (CH),
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126.5 (CH), 70.7 (CH), 51.6 (CH3), 43.8 (CH2), 25.7 (CH3), 18.1 (C), -4.2 (CH3)

and -5.1 (CH3); m/z (CI+) 338.2 [(M+NH4) \  10 %], 263.1 (15), 206.1 (100); 

HRMS (CI+) found 338.2167, C i8H32N03Si [(M+NH4)+] requires 338.2151.

TBSO O

Isopropyl (E)-3-(ferf-Butyldimethylsilyloxy)-5-phenyl-4-pentenoate

Following general procedure B, the ester 267 (8.90 g, 38.31 mmol) was 

dissolved in dry DMF (80 cm3) and diisopropylethylamine (20.0 cm3, 114.9 

mmol), then TBSCI (11.55 g, 76.6 mmol) were added. After 17 h the mixture 

was poured into saturated aqueous sodium bicarbonate solution (100 cm3) and 

extracted with ether (2 x 100 cm3). The combined ethereal extracts were 

washed with aqueous hydrochloric acid solution (2 x 100 cm3, 1.1 moldm'3) then 

brine (100 cm3) and dried over magnesium sulfate. The solvent was removed 

under reduced pressure to give, after chromatography on silica gel using 10:1 

hexane-ether as eluent, the silyl ether 269 as a pale yellow oil (12.95 g, 97 %); 

Rt (alumina, 1:1 ether-hexane) 0.76; vmax(thin film)/cm'1 2930 s, 2886 s, 1736 s 

(C=0), 1495 m, 1472 m, 1374 m, 1257 w, 965 m, 840 m, 777 m, 746 m and 

693 m; 6H(400 MHz, CDCI3) 7.38-7.24 (5H, m, Ph), 6.58 (1H, d, J 16.0, PhCH=),

6.21 (1H, dd, J  16.0 and 6 .8 , PhCH=CH), 5.02 (1H, sep, J 6.4, ChMe2), 4.78 

(1H, dd, J 12.8 and 6 .8, CHOSi), 2.61 [1H, dd, J 14.4 and 7.6, CH(OSi)Ctf4HB], 

2.50 [1H, dd, J 14.4 and 5.2, CH(OS\)CH* H8], 1.26 (3H, d, J6.4, CHMeAMeB),

1.23 (3H, d, J 6.4, CHMeAMeB), 0.75 (9H, s, SiCMe3), -0.08 (3H, s, S\MeAMeB) 

and -0.10 (3H, s, SiMeAMee); 5C(100 MHz, CDCI3) 170.5 (C), 136.6 (C), 131.7 

(CH), 129.8 (CH), 128.5 (CH), 127.6 (CH), 126.4 (CH), 70.7 (CH), 67.8 (CH),

44.2 (CH2), 25.8 (CH3), 21.87 (CH3), 21.82 (CH3), 18.1 (C), -4.2 (CH3) and -5.0 

(CH3); m/z (Cl, NH3) 366 [(M+NH4)+], 234 (100); HRMS found 366.2459, 

C20H36NO3Si [(M+NH4)+] requires 366.2464.

269
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TESO O

O'Pr

270

Isopropyl (£)-3-(Triethylsilyloxy)-5-phenyl-4-pentenoate.

In the same way as above for 269, the ester 267 (5.0 g, 21.4 mmol), 

diisopropylamine (11.2 cm3, 64.1 mmol) and triethylsilylchloride (7.2 cm3, 42.7 

mmol) gave the silyl ether 270 as a pale yellow oil after work-up and 

purification by column chromatography (on silica using 10:1 hexane-ether as 

eluent), (6.0 g, 81 %); Rf (alumina, 1:1 ether-hexane) 0 .86; vmax(thin film)/cm'1 

2955 s, 2877 s, 1732 s (C=0), 1496 m, 1467 m, 961 w, 742 m, 693 m; 8h(360 

MHz, CDCI3) 7.38-7.22 (5H, m, Ph), 6.57 (1H, d, J 15.8, PhCH=), 6.21 (1H, dd, 

J 15.8 and 6.9, PhCH=CH), 5.02 (1H, sep, J  6.3, CHMe2), 4.77 (1H, brq, J 6 .8 , 

CHOSi), 2.62 [1H, dd, u/14.6 and 7.7, CH(OSi)CHVlB], 2.50 [1H, dd, J  14.6 and 

5.7, CH(OSi)CH*hF], 1.24 (3H, d, J  6.3, CH/We^Me8), 1.22 (3H, d, J  6.4, 

CHMeA/WeB), 0.96 (9H, q, J  8 .0 , SiCH2CH3) and 0.63 (6H, q, J  8.0, SiCZ-feCHs); 

6C(90 MHz, CDCI3) 170.5 (C), 136.6 (C), 131.6 (CH), 129.9 (CH), 128.5 (CH),

127.6 (CH), 126.4 (CH), 70.6 (CH), 67.8 (CH), 44.2 (CH2), 21.83 (CH3), 21.80 

(CH3), 6.8 (CH3) and 4.8 (CH2); m/z (EI+) 348.3 (M \ 12 %), 319.2 (35), 277.2 

(100); HRMS (EI+) found 348.2122, C2oH3203Si requires 348.2121.

(1E)-4-(ferf-Butyldimethylsilyloxy)-2-methoxy-6-phenyl-1,5-hexadiene.

Following general procedure C, a solution of ester 268 (3.0 g, 9.4 mmol) and 

dibromomethane (1.5 cm3, 20.7 mmol) in THF (10 cm3) was added to the 

mixture formed from titanium tetrachloride (1 mol dm'3 solution in DCM, 37.6 

cm3, 37.6 mmol), TMEDA (11.3 cm3, 75.1 mmol), zinc (5.52 g, 84.5 mmol) and 

lead (II) chloride (-10 mg) in THF (20 cm3). The resulting mixture was stirred for 

4 h, then saturated aqueous potassium carbonate solution (20 cm3) was added

TBSO

271
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at 0 °C. After work-up the enol ether 271 was isolated as a colourless oil (1.75 

g, 59 %); Rf (alumina, hexane) 0.61; 5H (200 MHz, CDCI3) 7.39-7.16 (5H, m, 

Ph), 6.40 (1H, d, J 15.8, PhCH=), 6.23 (1H, dd, J 15.8 and 6.0, PhCH=CH), 

4.47 (1H, br dd, J12.6 and 6.0, CHOSi), 3.94 (1H, br s, =CA/Hb), 3.88 (1H, br 

s, =CHa/̂ ®), 3.44 (3H, s, OCH3), 2.50-2.46 (2H, m, CHAHBC 02Me), 0.84 (9H, s, 

SiCMe3), 0.00 (3H, s, Si/WeAMeB) and -0.02 (3H, s, SMeAMeB). This material 

was then subjected to deprotection conditions following general procedure D 

without further characterisation.

TBSO

Ph/ ^ ^ \ / ^ o iPr

272 

(1 E)-3-(ferf-Butyldimethylsilyloxy)-5-isopropoxy-1 -phenyl-1,5-hexadiene.

Following general procedure C, a solution of the ester 269 (13.0 g, 37.3 mmol) 

and dibromomethane (5.8 cm3, 82.1 mmol) in THF (5 cm3) was added to the 

mixture formed from titanium tetrachloride (16.4 cm3, 149.2 mmol), TMEDA 

(45.0 cm3, 298.4 mmol), zinc powder (21.9 g, 335.7 mmol) and lead (II) chloride 

(-20 mg) in THF (150 cm3). Stirring was continued for 17 h, whereupon the 

reaction mixture was cooled in an ice bath. Saturated potassium carbonate 

solution (40 cm3) was added and the resulting thick black slurry stirred for 15 

mins. The contents of the reaction flask were poured into ether (200 cm3) and 

worked up as described to give a pale yellow oil (9.35 g) which was subjected 

immediately to deprotection conditions without purification or characterisation.

TESO

P h ^ ^ ^ ^ o ’Pr

273 

(1 E)-3-(Triethylsilyloxy)-5-isopropoxy-1-phenyl-1,5-hexadiene.

In the same way as above for 272, a solution of the ester 270 (20 g, 57.7 mmol) 

and dibromomethane (6.6 cm3, 94.6 mmol) in THF (5 cm3), was added to the 

mixture formed from titanium tetrachloride (18.9 cm3, 172.1 mmol), TMEDA

107



(51.9 cm3, 344.0 mmol), activated zinc (25.3 g, 387.0 mmol) and catalytic lead 

(II) chloride (-10 mg) in THF (200 cm3). The reaction mixture was stirred for 17 

h, and worked-up as above to give the enol e th e rilZ  as a pale yellow oil (14.66 

g, 74 %), which was used in the deprotection reaction without further 

purification. A small sample was purified by chromatography on alumina using 

hexane as eluent (60 % yield); Rf (alumina, hexane) 0.45; vmax(thin film)/cm '1 

2955 vs, 2876 vs, 1727 w, 1645 m, 1370 m, 1118 m, 1005 m, 965 m, 799 m 

and 745 m; 8H(400 MHz, CDCI3) 7.46-7.25 (5H, m, Ph), 6.55 (1H, d, J  16.0, 

PhCH=), 6.26 (1H, dd, J 16.0 and 6.4, PhCH=CH), 4.57 (1H, br q, J  6.4, 

CHOSi), 4.25 (1H, sep, J 6.0, CHMe2), 3.99 (1H, d, J 1.6, = 0 ^ ® ) ,  3.91 (1H, d, 

J 1.6, =CHaHs), 2.46 [1H, dd, J 13.6 and 6 .8 , CH(OSi)CH4HB], 2.30 [1H, dd, J

13.6 and 6 .8 , CH(OSi)CHAHs], 1.27 (3H, d, J  6.4, C H /W eW ), 1.26 (3H, d, J

6.4, CHMeAMes), 1.02 (9H, t, J 8 .0 , SiCH2CH3) and 0.68 (6H, q, J  8.0, 

SiCHsCHa); 8C(100 MHz, CDCI3) 157.6 (C), 137.2 (C), 132.8 (CH), 128.8 (CH),

128.5 (CH), 127.2 (CH), 126.3 (CH), 83.6 (CH2), 71.3 (CH), 68.2 (CH), 45.3 

(CH2), 21.8 (CHS), 21.4 (CH3), 6.8 (CH3) and 4.9 (CH2); m/z (E\+) 346.3 (M+, 5 

%), 247.2 (100); HRMS (EI+) found 346.2328, C2iH340 2Si requires 346.2328.

274

(1E,5Z)-3-(ferf-Butyldimethylsilyloxy)-5-isopropoxy-1-phenyl-1,5-

heptadiene.

In the same way as above for 273, a solution of the ester 269 (4.0 g, 11.5 

mmol) and 1,1-dibromoethane (2.3 cm3, 25.2 mmol) in THF (3 cm3) was added 

to the suspension formed from titanium tetrachloride (5.0 cm3, 8.7 mmol), 

TMEDA (13.9 cm3, 91.8 mmol), activated zinc powder (6.75 g, 103.3 mmol) and 

lead (II) chloride (-10 mg) in THF (15 cm3). The reaction was stirred for 4h, 

then worked-up as above to give the enol ether as a pale yellow oil (3.37 g, 81 

%). A pure sample (2.449 g, 60 %) was obtained after chromatography on basic 

alumina using hexane as eluent. It should be noted that in the reaction a 15:85 

mixture of E:Z enol ethers is formed. The NMR data given is for the major Z
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isomer, Rf (alumina, hexane) 0.71; vmax(thin film)/cm'1 2956 m, 2929 m, 2857 m, 

1679 w, 1494 m, 1369 m, 1254 m, 1196 m, 1115 m and 838 m; 8h(360 MHz, 

CDCI3) 7.38-7.22 (5H, m, Ph), 6.53 (1H, d, J15.9, PhCH=), 6.26 (1H, dd, J15.9 

and 5.8, PhCH=CH), 4.73 (1H, q, J 6.7, =CHMe), 4.42 (1H, br q, J  6.6 , CHOSi), 

4.10 (1H, sep, J 6.1, CHMe2), 2.36 [1H, br dd, J14.2 and 6.7, CH(OSi)CA/HB],

2.28 [1H, dd, J14.6 and 6.6 , CH(OS\)CHA H8], 1.57 (3H, d, J 6.7, =CHMe), 1.21 

(3H, d, J 6.1, CHMeAMeB), 1.20 (3H, d, J  6.1, CHMeAMeB), 0.92 (9H, s, 

SiCMe3) 0.08 (3H, s, SiMe^Me8) and 0.07 (3H, s, SiMeAMee); 8c(90 MHz, 

CDCI3) 149.3 (C), 137.2 (C), 132.9 (CH), 128.43 (CH), 127.1 (CH), 126.31 

(CH), 126.26 (CH), 109.5 (CH), 71.1 (CH), 68.8 (CH), 41.8 (CH2), 25.8 (CH3), 

22.5 (CH3), 22.3 (CH3), 18.2 (C), 10.6 (CH3), -4.6 (CH3) and -5.0 (CH3); m/z 

(EI+) 360.2 (M+, 2 %), 247.2 (100); HRMS (EI+) found 360.2487, C22H360 2Si 

requires 360.2485.

TESO

PYT "O'Pr

275

(1  E,52)-3-(triethylsilyloxy)-5-isopropoxy-1 -phenyl-1,5-heptadiene.

In the same way as above for 274, a solution of the ester 270 (6.0 g, 17.2 

mmol) and 1,1-dibromoethane (3.4 cm3, 37.8 mmol) in THF (5 cm3) was added 

to the suspension formed from titanium tetrachloride (7.5 cm3, 68.8 mmol), 

TMEDA (20.8 cm3, 137.6 mmol), activated zinc powder (10.12 g, 154.8 mmol) 

and lead (II) chloride (-10 mg) in THF (60 cm3). The reaction was stirred for 4 h, 

then worked-up as above to give the enol ether as a pale yellow oil (4.76 g, 77 

%). A pure sample was obtained after chromatography on basic alumina using 

hexane as eluent. As above a 15:85 mixture of E:Z isomers is formed. The data 

given is for the major isomer; Rf (alumina, hexane) 0.70; vmax(thin film)/cm'1 

2955 vs, 2913 vs, 2876 vs, 1670 m, 1494 m, 1369 m, 1117 m and 744 m; 

5h(400 MHz, CDCI3) 7.40-7.23 (5H, m, Ph), 6.54 (1H, d, J 16.0, PhCH=), 6.27 

(1H, dd, J 16.0 and 6 .0, PhCH=CH), 4.74 (1H, q, J6.4, =CHMe), 4.45 (1H, br q, 

J 6 .8 , CHOSi), 4.13 (1H, sep, J 6.0, CHMe2), 2.41 [1H, br dd, J 14.4 and 7.2, 

CH(OSi)Ctf/*HB], 2.30 [1H, dd, J 14.4 and 7.2, CHfOSiJCH*/^, 1.58 (3H, d, J
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6.4, =CHMe), 1.22 (3H, d, J 6 .0 , CH/We^Me8), 1.21 (3H, d, J 6 .0 , CHMeA/Wes), 

0.98 (9H, t, J 8.0, SiCH2/We) and 0.64 (6H, q, J 8.0, SiCHyVIe); 6C(100 MHz, 

CDCIa) 149.4 (C), 137.2 (C), 132.8 (CH), 128.6 (CH), 128.5 (CH), 127.2 (CH),

126.4 (CH), 109.5 (CH), 71.0 (CH), 68.9 (CH), 41.9 (CH2), 22.43 (CH3), 22.38 

(CH3), 10.6 (CH3), 6.8 (CH3) and 4.8 (CH2); m /z(EI+) 360 (M+, 2 %), 247 (100); 

HRMS (EI+) found 360.2484, C22H3602Si requires 360.2485.

OH

P h ^ ^ ^ ^ ^ O M e

276 

(1 E)-1 -Phenyl-5-methoxy-1,5-hexadiene-3-ol.

Following general procedure D, TBAF (1.1 mol dm'3 solution in THF, 1.22 cm3, 

1.34 mmol) and 4 A MS (185 mg) were added to silyl ether 271 (142 mg, 0.48 

mmol). The mixture was stirred for 2 h then poured through filter paper into 

saturated aqueous sodium bicarbonate solution (3 cm3). The layers were 

separated and the aqueous phase extracted with ether ( 3 x 5  cm3). The organic 

extracts were combined, and dried (Na2S04). Solvent removal under reduced 

pressure gave a brown oil. 1H NMR spectroscopy revealed this contained large 

amounts of tert-butyldimethylsilanol, which is produced in the reaction. 

Repeated column chromatography [alumina (8 % water), eluent 20:1 pet ether 

40/60-ether] failed to rid the product of silanol. The silanol was finally removed 

by distillation (Kugelrohr) to give the alcohol 276 as an oil (yield < 10 %), 

Rf(alumina, 1:1 ether-hexane) 0.65; vmax(thin film)/cm'1 3340 br m (OH), 2955 w, 

1656 m, 1495 m, 1449 m, 1294 m, 966 m, 806 m, 749 m and 694 m; 5h (360 

MHz, CDCI3) 7.40-7.21 (5H, m, Ph), 6.64 (1H, d, J 15.9, PhCH=), 6.23 (1H, dd, 

J 15.9 and 6 .2 , PhCH=CH), 4.54-4.48 (1H, m, CHOH), 4.04 (1H, d, J 2.2, 

= C //H b), 4.02 (1H, d, J 2 .2 , = 0 ^ ^ ) ,  3.58 (3H, s, OMe), 2.48 [2H, br s 

obscured by dd, J 14.1 and 4.0, C^OHJCHYi6] and 2.37 [1H, dd, J  14.1 and

8.4, CH(OH)CHAhf]\ 5C(90 MHz, CDCI3) 160.5 (C), 136.8 (C), 131.3 (CH),

130.0 (CH), 128.5 (CH), 127.5 (CH), 126.4 (CH), 83.6 (CH2), 70.6 (CH), 55.0 

(CH3) and 43.2 (CH2); m/z (EI+) 204.1 (M+, 9 %), 133.06 (100); HRMS (EI+) 

found 204.1153, C i3H160 2 requires 204.1150.
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( 7E)-5-lsopropoxy-1 -phenyl-1,5-hexadiene-3-ol.

Following general procedure D, tetrabutylammonium fluoride (67.5 cm3 of a 1.0 

moldm'3 solution in THF) and 4A MS (12.2 g) were added to the enol ether 272 

(9.35 g, 27.0 mmol). After stirring for 2.5 h, the reaction mixture was poured 

through filter paper into saturated sodium bicarbonate solution (50 cm3). The 

layers were separated and the aqueous phase extracted with ether (2 x 50 

cm3). The combined organic extracts were dried over magnesium sulfate and 

the solvent removed under reduced pressure to give a dark brown oil. The 

alcohol was obtained as a pale yellow oil (3.52 g, 56 %) after column 

chromatography on alumina, using 1:1 ether-hexane as eluent; Rf (alumina 1:1 

ether-hexane) 0.46; vmax(thin film)/cm'1 3415 br s (OH), 2976 s, 2922 sm, 1653 

s (enol ether C=C), 1619 m, 1495 m, 1291 m, 1001 m, 965 m, 801 m, 749 s and 

693 m; 6H(400 MHz, CDCI3) 7.39 (2H, d, J 7.2, o-Ph), 7.32 (2H, t, J 7.2, m-Ph),

7.24 (1H, t, J  7.2, p-Ph), 6.65 (1H, d, J  16.0, PhCH=), 6.26 (1H, dd, J 16.0 and

6.4, PhCH=CH), 4.54-4.51 (1H, m, CHOH), 4.29 (1H, sep, J  6.0, CHMe2), 4.05 

(1H, d, J 2 .0 , =CW*H8), 3.99 (1H, d, J 2.0, =CHAH®), 2.87 (1H, d, J  3.6, OH),

2.45 [1H, dd, J  14.0 and 4.4, CH(OH)CHAHB], 2.36 [1H, dd, J  14.0 and 8.0, 

CH(OH)CHA/ A  1.28 (3H, d, J 6.0, CH/W^Me8) and 1.27 (3H, d, J 6.0, 

CHMeA/Wes); 8C(100 MHz, CDCI3) 157.7 (C), 136.8 (C), 131.3 (CH), 129.6 (CH),

128.6 (CH), 127.3 (CH), 126.3 (CH), 84.1 (CH2), 70.6 (CH), 68.7 (CH), 43.5 

(CH2), 21.44 (CH3) and 21.37 (CH3); m/z (CI+) 233.2 [(M+H)+, 15 %), 215.2 

(40), 173.1 (100); HRMS (CI+) found 233.1541, C i5H210 2 [(M+H)+] requires 

233.1542.

In the same way as above, 273 (14.5 g, 41.8 mmol) was treated with TBAF 

(62.7 cm3 of a 1 mol dm'3 solution in THF). The mixture was stirred for 1 h 50 

min, then worked-up and purified as above to give enol ether 277 (5.16 g, 53

%).
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In the same way as above for 277, silyl ether 274 (2.4 g, 6.65 mmol) was 

dissolved in a solution of TBAF in THF (18.1 cm3, 1.1 mol dm'3). 4 A MS were 

added and the mixture stirred for 2 h. Work-up as above gave a yellow oil which 

was chromatographed on basic alumina using 1:1 hexane-ether as eluent to 

give the alcohols as a pale yellow oil (1.446 g, 88 %). Repeated 

chromatography was required to obtain a sample of each isomer free from the 

other.

In the same way as above, silyl ether 275 (4.76 g, 13.2 mmol) was treated with 

TBAF (40 cm3 of a 1 mol dm'3 solution in THF) and 4 A MS (6.2 g) to give after 

work-up and extensive chromatography the alcohol Z-278 (550 mg, 17%).

(1  E,5Z)-5-lsopropoxy-1 -phenyl-1,5-heptadiene-3-ol, Z-278.

Rf (alumina, 2:1 pet ether 40/60-ether) 0.61, vmax(thin film)/cm'1 3425 br m, 

(OH), 2974 m, 1678 m, 1494 m, 1449 m, 1196 m, 1113 m, 965 m, 747 m and 

693 m; 5H(360 MHz, CDCI3) 7.39 (2H, d, J  7.2 o-Ph), 7.31 (2H, t, J7.2, m-Ph),

7.24 (1H, t, J 7.2, p-Ph), 6.63 (1H, d, J15.9, PhCH=), 6.26 (1H, dd, J15.9 and

6.1, PhCH=CH), 4.87 (1H, q, J 6.7, =CHMe), 4.49-4.41 (1H, m, CHOH), 4.17 

(1H, sep, J 6.1, CHMe2), 2.57 (1H, br d, J 2.5, OH), 2.45 [1H, dd, J 14.4 and

4.1, CH(OH)CH4Hb], 2.29 [1H, dd, J14.4 and 8.5, CH(OH)CHA/-/B], 1.63 (3H, d, 

J 6.7, =CHMe), 1.25 (3H, d, J 6.1, CH/WeAMeB) and 1.22 (3H, d, J  6.1, 

CHMeAMee); 8C(90 MHz, CDCI3) 149.7 (C), 136.8 (C), 131.4 (CH), 129.7 (CH),

128.4 (CH), 127.4 (CH), 126.4 (CH), 110.6 (CH), 70.5 (CH), 69.8 (CH), 40.6 

(CH2), 22.4 (CH3), 22.2 (CH3) and 10.7 (CH3); m/z (CI+) 247.2 [(M+H)+, 9 %],

229.2 (90), 187.2 (100); HRMS (CI+) found 247.1697, C i6H230 2 [(M+H)+] 

requires 247.1698.
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(1 E,5E)-5-lsopropoxy-1 -phenyl-1,5-heptadiene-3-ol, E-278.

Rf (alumina, 2:1 pet ether 40/60-ether) 0.69; 8h(400 MHz, CDCb) 7.38 (2H, d, J

CHMeAW\eB) and 1.22 (3H, d, J 6.0, CHMeAMeB); 8C(90 MHz, CDCI3) 151.1 (C),

(CH), 71.3 (CH), 67.7 (CH), 37.5 (CH2), 21.9 (CH3), 21.8 (CH3) and 11.9 (CH3).

Ethyl (E)-3-Hydroxy-5-phenyl-4-pentenoate. 88

Following general procedure A, ethyl acetate (11.1 cm3, 113.5 mmol) in dry THF 

(230 cm3) was added to a stirred solution of LDA [made from butyllithium (1.0 

mol dm'3 solution in THF, 113.5 cm3, 113.5 mmol) and diisopropylamine (14.9 

cm3, 113.5 mmol)]. After 40 min E-cinnamaldehyde (14.3 cm3, 113.5 mmol) was 

added. Stirring continued for 20 min, then the mixture was poured into aqueous 

hydrochloric acid (200 cm3, 1 mol dm'3). The layers were separated and the 

aqueous phase extracted with ether (2 x 200 cm3). The combined organic 

extracts were washed with aqueous hydrochloric acid (100 cm3) and saturated 

aqueous sodium bicarbonate solution (100 cm3). The organic phase was dried 

(MgS04) and the solvent removed under reduced pressure to give a yellow oil 

(23.43 g, 101 %), sufficiently pure for the silyl protection reaction; 8h(200 MHz, 

CDCI3) 7.40-7.19 (5H, m, Ph), 6.65 (1H, dd, J 16.0 and 1.2, PhCH=), 6.21 (1H,

7.2 o-Ph), 7.26 (2H, t, J 7.2, m-Ph), 7.23 (1H, t, J 7.2, p-Ph), 6.63 (1H, d, J15.9, 

PhCH=), 6.24 (1H, dd, J 15.9 and 6.1, PhCH=CH), 4.58 (1H, q, J6.8, =CHMe), 

4.53-4.48 (1H, m, CHOH), 4.25 (1H, sep, J 6.0, CHMe2), 2.88 (1H, d, J  3.7, 

OH), 2.48 [1H, dd, J 14.3 and 4.6, CH(OH)CHVlB], 2.43 [1H, dd, J 14.4 and

7.4, C H ( O H ) C 1.62 (3H, d, J 6.8, =CHMe), 1.23 (3H, d, J  6.0,

137.0 (C), 131.7 (CH), 129.6 (CH), 128.4 (CH), 127.4 (CH), 126.4 (CH), 94.8

OH O

280
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dd, J 16.0 and 6.0, PhCH=CH), 4.89-4.64 (1H, brm, CHOH), 4.18 (2H, q, J 6.0, 

OCH2CH3), 2.62-2.59 [2H, m, CH(OH)ChthP) and 1.26 (3H, d, J  6.0, 

OCH2CH3), in agreement with data given in reference 88.

TMSO O

OEt

281

Ethyl (E)-3-(trimethylsilyloxy)-5-phenyl-4-pentenoate.

The aldol 280 (23.43 g, 114.7 mmol) was dissolved in THF (100 cm3). TMSCI 

(16.0 cm3, 125.4 mmol) and diisopropylethylamine (19.8 cm3, 125.4 mmol) were 

added and the reaction stirred at rt for 17 h. The bulk of the amine hydrochloride 

salt formed during the reaction was filtered off and the precipitate washed with 

hexane. The combined washings were concentrated under reduced pressure, 

and the process repeated to remove the remaining salt. The silyl ether was 

obtained as a yellow oil which was subjected, without purification or 

characterisation, to Takai conditions.

( 1E)-3-(T rimethylsilyloxy)-5-ethoxy-1 -phenyl-1,5-hexadiene.

Following general procedure C, a solution of the ester 281 (5.0 g, 17.2 mmol) 

and dibromomethane (2.6 cm3, 37.7 mmol) in THF (2 cm3) was added to the 

mixture formed from titanium tetrachloride (7.5 cm3, 68.6 mmol), TMEDA (20.7 

cm3, 137.2 mmol), zinc powder (10.09 g, 154.4 mmol) and lead (II) chloride 

(-20 mg) in THF (50 cm3). Stirring was continued for 4 h, whereupon the 

reaction mixture was cooled in an ice bath. Saturated potassium carbonate 

solution (20 cm3) was added and the resulting thick black slurry stirred for 15 

min. After work-up as described, a pale yellow oil (2.57 g) was isolated which 

was subjected immediately to deprotection conditions without purification or 

characterisation.

TMSO

282
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(1 E,52)-3-(T rimethylsilyloxy)-5-ethoxy-1 -phenyl-1,5-heptadiene.

In the same way as above, a solution of the ester 282 (7.54 g, 25.8 mmol) and

1,1-dibromoethane (5.7 cm3, 62.7 mmol) in THF (5 cm3) was added to the 

suspension formed from titanium tetrachloride (12.5 cm3, 114.0 mmol), TMEDA 

(34.4 cm3, 228.0 mmol), activated zinc powder (16.8 g, 256.5 mmol) and lead

(II) chloride (-10 mg) in THF (50 cm3). The reaction was stirred for 4h, then 

worked-up as above to give the enol ether as a yellow oil (5.25 g) which was 

deprotected without purification or characterisation.

( 7E)-5- Ethoxy-1 -phenyl-1,5-hexadiene-3-ol.

Following general procedure D, tetrabutylammonium fluoride (9.0 cm3 of a 1.0 

moldm'3 solution in THF) was added to the enol ether 282 (2.57 g, 8.8 mmol) 

under nitrogen at rt. The mixture was stirred for 1 h, then poured into saturated 

sodium bicarbonate solution (25 cm3). The layers were separated and the 

aqueous phase extracted with ether (2 x 25 cm3). The combined organic 

extracts were dried over magnesium sulfate and the solvent removed under 

reduced pressure to give a dark brown oil. The alcohol was obtained as a 

yellow oil (350 mg, 18 %) after column chromatography on basic alumina using 

1:1 ether-hexane as eluent; Rf (alumina, 1:1 ether-hexane) 0.44; vmax(thin 

film)/cm'1 3421 br s (OH), 2979 m, 2903 m, 2878 m, 1655 s (enol ether C=C), 

1618 m, 1495 m, 1293 m, 1173 m, 966 m, 804 m, 748 m and 694 m; 6h(400 

MHz, CDCIg) 7.39 (2H, d, J7.2  o-Ph), 7.33 (2H, t, J 7.2, m-Ph), 7.23 (1H, t, J

7.2, p-Ph), 6.64 (1H, dd, J15.9 and 0.8, PhCH=), 6.24 (1H, dd, J15.9 and 6.1,

OH

284
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PhCH=CH), 4.55-4.50 (1H, m, CWOH), 4.01 (1H, d, J 1.9, =CH*HB), 3.99 (1H, 

d, J 1.9, =CHaHs), 3.88-3.76 (2H, m, OCH2CH3), 2.64 (1H, d, J 3.4, OH), 2.47

[1H, dd, J 14.0 and 3.9, CH(OH)CH/|Hb], 2.37 [1H, dd, J  14.0 and 8.4, 

CH(OH)CHaH®] and 1.23 (3H, t, J 7.0, OCH2CH3)\ 6o(100 MHz, CDCI3) 159.6

83.9 (CH2), 70.6 (CH), 63.0 (CH2), 43.3 (CH2) and 14.4 (CH3); m/z (EI+) 218.2 

(M+, 7 %), 133.1 (100); HRMS (EI+) found 218.1305, C i4H180 2 requires 

218.1307.

In the same way as above, silyl ether 283 (5.25 g) was dissolved in a solution of 

TBAF in THF (18.0 cm3, 1.0 mol dm'3) and the mixture stirred for 1 h. Work-up 

as above gave a yellow oil which was chromatographed on basic alumina using 

1:1 hexane-ether as eluent to give the alcohols as a pale yellow oil (2.06 g, 31 

% over 4 steps). Repeated chromatography was required to obtain a sample of 

each isomer free from the other.

(1 E,5Z)-5-Ethoxy-1-phenyl-1,5-heptadiene-3-ol, E-285.

Rf (alumina, 1:1 hexane-ether) 0.57; vmax(thin film)/cm*1 3409 br m (OH), 2977 

m, 2915 m, 2863 m, 1670 m (enol ether C=C), 1494 m, 1448 m, 1193 m, 966

14.4 and 4.0, CHfOHJCfAH6], 2.30 [1H, dd, J 14.4 and 8.4, CH(OH)CHAHs], 

1.64 (3H, d, J 6.8, =CHMe) and 1.29 (3H, t, J 7.0, OCH2CH3)\ 8c(100 MHz,

(C), 136.8 (C), 131.3 (CH), 129.8 (CH), 128.5 (CH), 127.4 (CH), 126.4 (CH),

285

m, 743 m and 694 m; 8h(400 MHz, CDCI3) 7.38 (2H, d, J  7.2 o-Ph), 7.31 (2H, t, 

J 7.2, m-Ph), 7.23 (1H, t, J  7.2, p-Ph), 6.65 (1H, d, J 16.0, PhCH=), 6.26 (1H, 

dd, J 16.0 and 4.4, PhCH=CH), 4.81 (1H, q, J6.4, =CHMe), 4.48-4.43 (1H, m, 

CHOH), 3.87-3.75 (2H, m, OCH2CH3), 2.56 (1H, d, J  2.8, OH), 2.46 [1H, dd, J
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CDCI3) 151.4 (C), 136.8 (C), 131.4 (CH), 129.8 (CH), 128.5 (CH), 127.5 (CH),

126.4 (CH), 109.5 (CH), 70.5 (CH), 68.5 (CH2), 40.5 (CH2), 15.4 (CH3) and 10.5 

(CH3); m/z (EI+) 232.2 (M+, 5 %), 133.1 (100); HRMS (EI+) found 232.1463, 

C15H20O2 requires 232.1463.

HO v' j

(1 E,5E)-5-Ethoxy-1 -phenyl-1,5-heptadiene-3-ol, E-285.

Rf (alumina, 1:1 hexane-ether) 0.60; vmax(thin film) 3458 br s (OH), 2861 w, 

1668 m (enol ether C=C), 1495 w, 1226 w, 1103 w, 963 w and 748 w; 5h(360 

MHz, CDCI3) 7.37 (2H, d, J 7.2 o-Ph), 7.31 (2H, t, J7.2, m-Ph), 7.23 (1H, t, J

7.2, p-Ph), 6.63 (1H, d, J 15.9, PhCH=), 6.26 (1H, dd, J  15.9 and 6.1, 

PhCH=CH), 4.58 (1H, q, J 6 .8, =CHMe), 4.55-4.48 (1H, partly obscured m, 

CHOH), 3.74-3.66 (2H, m, OCH^Hs), 2.75 (1H, br d, J  3.0, OH), 2.48 [2H, m, 

CH(OH)CI-fhf], 1.62 (3H, d, J  6 .8 , =CHMe) and 1.29 (3H, t, J 7.0, OCH2CH3); 

6c(90 MHz, CDCIs) 153.0 (C), 137.0 (C), 131.7 (CH), 129.6 (CH), 128.5 (CH),

127.4 (CH), 126.4 (CH), 93.7 (CH), 71.2 (CH), 62.0 (CH), 37.5 (CH2), 14.7 

(CH3) and 11.8 (CH3); m/z (EI+) 232 (M+, 7 %), 133 (100); HRMS (EI+) found 

232.1464, C15H20O2 requires 232.1463.

OH O

287

(E)-lsopropyl-3-hydroxy-4-octenoate.

Following general procedure A, isopropyl acetate (7.2 cm3, 61.1 mmol) was 

added to a stirred solution of lithium diisopropylamide [ex. 38.2 cm3 of a 1.6 

moldm'3 solution of butyllithium in hexane and 8.0 cm3, 61.1 mmol of 

diisopropylamine] in THF (150 cm3). After 50 mins E-Hexenal (7.1 cm3, 61.1 

mmol) was added and the mixture stirred for a further 25 mins. The reaction 

mixture was then poured into aqueous hydrochloric acid (220 cm3, 1.1 mol dm*3)
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and extracted with ether (2 x 100 cm3). The combined organic extracts were 

washed with aqueous hydrochloric acid (100 cm3, 1.1 moldm'3) then saturated 

aqueous sodium bicarbonate solution (100 cm3) and dried over magnesium 

sulfate. The solvent was removed in vacuo to give the aldol as a pale yellow oil 

(12.68 g, 103 %) sufficiently pure for the silyl protection reaction. A pure sample 

was obtained by column chromatography on silica using 1:1 ether-hexane as 

eluent to give a colourless oil (89 %), Rf (silica, 1:1 ether-hexane) 0.42; vmax 

(thin film) 3448 s br (OH), 2961 s, 2932 s, 1732 s (C=0), 1468 m, 1108 m and 

966 m; 5H(400 MHz, CDCI3) 5.68 (1H, dt, J 15.2 and 6.8, CH2CH=), 5.45 (1H, 

dd, J 15.2 and 6.8, CH2CH=CH), 5.02 (1H, sep, J 6.4, CHMe2), 4.45 (1H, m, 

CHOH), 2.51-2.45[2H, m, CH(OH)CW*H®|, 1.97 (2H, dt, J  7.4 and 6.8, 

CH£H=), 1.36 (2H, sex, J  7.2, CH3CH2), 1.22 (6H, d, J6.4, CHMe2) and 0.86 

(3H, t, J 7.2, CH^CHs); 8o(100 MHz, CDCI3) 172.3 (C), 132.8 (CH), 131.1 (CH),

69.4 (CH), 68.5 (CH), 42.3 (CH2), 34.6 (CH2), 22.6 (CH2), 22.2 (CH3) and 14.0 

(CH3); m/z (CI+) 218.2 [(M+NH4)+, 45 %], 200.0 (52), 183.1 (100); HRMS (EI+) 

found 200.1413, CnH20O3 requires 200.1412.

TESO O

(E)-lsopropyl-3-triethylsilyloxy-4-octenoate.

Following general procedure B, the ester 287 (11.0 g, 55.0 mmol) was dissolved 

in dry DMF (110 cm3) and diisopropylethylamine (28.7 cm3, 165.0 mmol), then 

TESCI (18.4 cm3, 110.0 mmol) were added. The mixture was stirred at rt for 17 

h, then poured into saturated aqueous sodium bicarbonate solution (200 cm3) 

and extracted with ether (2 x 150 cm3). The combined ethereal extracts were 

washed with aqueous hydrochloric acid solution (2 x 100 cm3, 1.1 moldm'3) then 

brine (100 cm3) and dried over magnesium sulfate. The solvent was removed 

under reduced pressure to give the silyl ether as a pale yellow oil (23.27 g) 

which was used in the Takai reaction without further purification. A pure sample 

(88 % yield) was obtained by column chromatography on silica gel using 10:1 

hexane-ether as eluent to give a colourless oil; vmax(thin film) 2956 s, 2877 s,

O'Pr
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1735 s (C=0), 1466 w, 1374 m, 968 m and 744 m; 8H(400 MHz, CDCI3) 5.57 

(1H, dt, J 15.3 and 6 .8, CH2CH=), 5.39 (1H, ddt, J  15.3 ,7.2 and 1.2 , 

CH2CH=CH), 4.94 (1H, sep, J 6.4, CHMe2), 4.49 (1H, br dt, J  7.2 and 6.4, 

CHOSi), 2.46 [1H, dd, J 14.4 and 7.6, CHfOSQCWYl8], 2.33 [1H, dd, J  14.4 

and 6.0, CH(OSi)CHAH®], 1.93 (2H, brq, J 7.2, CH^CH=), 1.34 (2H, sex, J  7 .2 , 

CH3CH2), 1.18 (3H, d, J 6.4, CH/We^Me0), 1.17 (3H, d, J6.4, CHMeA/Wes), 0.89 

(9H, t, J 8 .0 , SiCH2CH3), 0.84 (3H, t, J 7 .2 , C H £H 2) and 0.54 (6H, q, J 8 .0 , 

SiCH^CHa); 8C(100 MHz, CDCI3) 171.0 (C), 132.6 (CH), 131.7 (CH), 71.1 (CH),

67.9 (CH), 44.7 (CH2), 34.5 (CH2), 22.6 (CH2), 22.2 (CH3), 22.1 (CH3), 14.0 

(CH3), 7.1 (CH3) and 5.2 (CH2); m/z (CI+) 315.3 [(M+H)+, 7 %], 285.2 (20),

183.2 (100); HRMS (CI+) found 315.2352, C i7H3403Si requires 315.2355.

TESO

OPr

289

(5E)-2-lsopropoxy-4-triethylsilyloxy-1,5-nonadiene.

Following general procedure C, a solution of the ester 288 (9.98 g, 31.8 mmol) 

and dibromomethane (4.9 cm3, 70.0 mmol) in THF (5 cm3) was added to the 

mixture formed from titanium tetrachloride (13.9 cm3, 127.2 mmol), TMEDA 

(38.4 cm3, 254.4 mmol), zinc powder (18.7 g, 286.2 mmol) and lead (II) chloride 

(-20 mg) in THF (100 cm3). Stirring was continued for 17 h, whereupon the 

reaction mixture was cooled in an ice bath. Saturated potassium carbonate 

solution (40 cm3) was added and the resulting thick black slurry stirred for 15 

mins. The contents of the reaction flask were poured into ether (200 cm3) and 

worked-up as before to give a pale yellow oil (8.46 g, 85 %) containing the enol 

ether and a small amount of TMEDA. This was used without further purification 

in the deprotection reaction. A pure sample was obtained as a colourless oil by 

chromatography on basic alumina using hexane as eluent, Rf (alumina, hexane) 

0.63; vmax(thin film) 2956 s, 2876 s, 1655 m, 1459 m, 1370 m, 1005 m and 741 

m; 5h(400 MHz, CDCI3) 5.53 (1H, dt, J 15.2 and 6.4, CH2CH=), 5.40 (1H, ddt, J

15.2 ,6.8 and 1.2, CH2CH=CH), 4.28 (1H, q, J 6 .8, CHOSi), 4.17 (1H, sep, J

6.0 , CHMe2), 3.88 (1H, d, J 1.6 , =CH*HB), 3.81 (1H, d, J 1.6 , =CHAH®), 2.29 [1H,
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dd, J 13.6 and 6.8, CHfOSiJCH^H6], 2.12 [1H, dd, J 13.6 and 6.4, 

CH(OSi)CHAH®], 2.03-1.89 (2H, m, CH£H=), 1.37 (2H, sex, J  7.2, CH3CH2),

1.22 (3H, d, J 6.0, CHA/fcA/le8), 1.19 (3H, d, J 6.0, CHMeA/Wes), 0.94 (9H, t, J

8.0, SiCH2CH3), 0.88 (3H, t, J  7.2, C H £H Z) and 0.58 (6H, q, J  8.0, SiCHaCH3); 

8C(100 MHz, CDCI3) 158.5 (C), 133.4 (CH), 130.6 (CH), 83.6 (CH2), 71.8 (CH),

68.5 (CH), 45.7 (CH2), 34.6 (CH2), 22.8 (CH2), 22.2 (CH3), 21.7 (CH3), 14.1 

(CH3), 7.2 (CH3) and 5.3 (CH2); m/z (EI+) 312.2 (M+, 11 %), 213 (100); HRMS 

(El) found 312.2487, C i8H360 2Si requires 312.2485.

OH

290 

(5E)-2-lsopropoxy-1,5-nonadiene-4-ol.

Following general procedure D, tetrabutylammonium fluoride (52 cm3 of a 1.0 

moldm'3 solution in THF) and 4 A MS (10 g) were added to the enol ether 289 

(8.02 g, 25.7 mmol). The orange solution was stirred for 2.5 h, then poured 

through filter paper into saturated sodium bicarbonate solution (50 cm3), 

washing the sieves with ether. The layers were separated and the aqueous 

phase extracted with ether (2 x 50 cm3). The combined organic extracts were 

dried over magnesium sulfate and the solvent removed under reduced pressure 

to give a dark brown oil. The alcohol was obtained as a pale yellow oil (1.91 g, 

38 %) after column chromatography on alumina, using 1:1 ether:hexane as 

eluent, Rf (alumina, 1:1 ether-hexane) 0.61; vmax(thin film) 3399 br s (OH), 2560 

s, 2929 s, 1654 m, 1294 m, 1121 m and 799 m; 6h(400 MHz, CDCI3) 5.67 (1H, 

dtd, J 15.2, 6.8 and 0.8, CH2CH=), 5.44 (1H, ddt, J 15.2 ,6.8 and 1.2, 

CH2CH=CH), 4.25 (1H, sep, J 6.0, CHMe2), 4.25-4.20 (1H, m, CHOH), 3.96 

(1H, d, J 1.6, =CH*HB), 3.92 (1H, d, J 1.6, =CH*hf), 2.49 (1H, d, J  3.2, OH),

2.29 [1H, dd, J 14.0 and 3.8, CHfOHJCH^H8], 2.20 [1H, dd, J 14.0 and 8.4, 

CH(OH)CHaH®], 1.99 (2H, brq, J 7.2, CH^CH=), 1.38 (2H, sex, J  7.2, CH3CH2),

1.23 (3H, d, J 6.0, CHMe^Me8), 1.22 (3H, d, J  6.0, CHMeA/WeB) and 0.88 (3H, t, 

J 7.2, CHsCH2); 8c(100 MHz, CDCI3) 158.6 (C), 132.2 (CH), 131.9 (CH), 84.3 

(CH2), 71.3 (CH), 69.2 (CH), 44.2 (CH2), 37.4 (CH2), 22.7 (CH2), 22.0 (CH3),
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21.9 (CH3) and 14.1 (CH3); m/z(C\+) 199.2 [(M+H)+, 95 %], 101.1 (100); HRMS 

(EI+) found 198.1617, C12H22O2 requires 198.1620.

H
I

292

(p-Toluenesulfonyl)-cyclohexylhydrazone.89

Tosyl hydrazine (50.12 g, 0.27 mol), was placed in a 1 L three-neck flask 

equipped with a stirrer and condenser. Absolute ethanol (440 cm3) was added 

and the flask flushed with nitrogen. Cyclohexanone (27.0 cm3, 0.27 mol) was 

added dropwise via syringe. Catalytic TsOH (0.50 g) was then added to the 

reaction mixture, which was stirred for 17 h at rt. The resulting solid was filtered, 

washed with cold ethanol and dried under high vacuum to give the tosyl 

hydrazone as a white crystalline solid (18.9 g, 76 %); 8h(400 MHz, CDCI3) 7.84 

(2H, d, J 8.3, protons ortho to Me), 7.46 (1H, brs, NH), 7.30 (2H, J 8.3, protons 

meta to Me), 2.44 (3H, s, Me), 2.21 (4H, m, CH£(=N)CH2) and 1.66-1.54 (6H, 

m, 3 x CH2), in agreement with data given in reference 89.

O

293

1-Cyclohexhene-carboxaldehyde.90

Tosyl hydrazone 292 (31.58 g, 119 mmol) was suspended in TMEDA (400 cm3) 

under nitrogen and cooled to -78 °C. Butyllithium (340 cm3 of 1.4 mol dm'3, 476 

mmol), was then added via syringe over 15 min. The resulting red suspension 

was allowed to warm to rt over 1 h. Nitrogen gas evolution occurred over 1 h. 

DMF (37.0 cm3, 476 mmol) was added dropwise to the reaction mixture at 0 °C.
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After stirring for a further hour at 0 °C, the reaction mixture was poured into 

brine (400 cm3) and the layers separated. The aqueous phase was extracted 

with ether (3 x 200 cm3) and the combined extracts dried over magnesium 

sulfate. The solvent was removed under reduced pressure and the residue 

distilled. The aldehyde was obtained as a pale yellow liquid (bp 70-75 °C at -18 

mmHg), (5.482 g, 48 %), 8H(400 MHz, CDCI3) 9.38 (1H, s, CHO), 6.81-6.78 (1H, 

m, =CH), 2.34-2.29 (2H, m, CH2CH=CCHO), 2.19-2.17 [2H, m, CH2C(CHO)=C], 

1.70-1.61 (4H, m, cy-CH2CH2), in agreement with data given in reference 90.

OH O

O'Pr

294

Isopropyl 3-Hydroxy-3-(1 -cyclohexenyl)-propanoate.

Following general procedure A, isopropyl acetate (4.5 cm3, 38.0 mmol) was 

added to a stirred solution of lithium diisopropylamide [ex. 27.1 cm3 of a 1.4 

moldm'3 solution of butyllithium in hexane and 5.0 cm3, 38.0 mmol of 

diisopropylamine] in THF (80 cm3). After 50 min 293 (74.19 g, 38.0 mmol) was 

added and the mixture stirred for a further 45 min. The reaction mixture was 

then poured into aqueous hydrochloric acid solution (200 cm3, 1.1 moldm'3) and 

extracted with ether (2 x 100 cm3). The combined organic extracts were washed 

with aqueous hydrochloric acid solution (100 cm3, 1.1 moldm'3) then saturated 

aqueous sodium bicarbonate solution (100 cm3) and dried over magnesium 

sulfate. The solvent was removed in vacuo to give the aldol as a pale yellow oil 

(7.44 g, 92 %) sufficiently pure for the silyl protection reaction. A pure sample 

(81 %) was obtained as a colourless oil by chromatography on silica, using 1:1 

hexane-ether as eluent, Rf (silica, 1:1 ether-hexane) 0.31; vmax(thin film) 3604 br 

s (OH), 2928 s, 1751 vs (0=0), 1374 s, 1181 s, 964 m, and 820 m; 5H (400 

MHz, CDCI3) 5.69 (1H, brs, =CH), 5.03 (1H, sep, J6.4, CHMe2), 4.34 ( 1H, m, 

CHOH), 2.92 (1H, d, J 3.2, OH), 2.52 [1H, dd, J15.6 and 8.0, CH(OH)C//Hb],

2.46 [1H, dd, J 15.6 and 4.8, CHfOHJC^H8], 2.08-1.83 (4H, m, cy- 

CH2C=CCH2), 1.68-1.48 (4H, m, cy-CH2CH2) and 1.23 (6H, d, J  6.4, CHMe2)\
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5C(100 MHz, CDCI3) 172.6 (C), 138.5 (C), 123.6 (CH), 72.6 (CH), 68.5 (CH),

40.7 (CH2), 25.2 (CH2), 24.4 (CH2), 22.9 (CH2), 22.8 (CH2) and 22.1 (CH3); m/z 

(EI+) 212.1 (M+, 5 %), 194.1 (40), 152.1 (98), 110.1(100); HRMS (EI+) found 

212.1414, C i2H20O3 requires 212.1412.

TESO O

295

Isopropyl 3-Triethylsilyloxy-3-(1 -cyclohexenyl)-propanoate.

Following general procedure B, the ester 294 (7.28 g, 34.3 mmol) was dissolved 

in dry DMF (70 cm3) and diisopropylethylamine (17.9 cm3, 102.9 mmol), then 

TESCI (11.5 cm3, 68.6 mmol) were added. The mixture was stirred at rt for 17 h, 

then poured into saturated aqueous sodium bicarbonate solution (100 cm3) and 

extracted with ether (2 x 100 cm3). The combined ethereal extracts were 

washed with aqueous hydrochloric acid solution (100 cm3, 1.1 moldm'3) then 

brine (100 cm3) and dried over magnesium sulfate. The solvent was removed 

under reduced pressure to give the silyl ether as a pale yellow oil (11.96 g) 

which was used in the Takai reaction without further purification. A pure sample 

(85 %) was obtained as a colourless oil by chromatography on silica gel, using 

2:1 hexane-ether as eluent, Rf (silica, 1:1 ether-hexane) 0.80; vmax(thin film) 

2953 s, 2876 s, 1756 s (C=0), 1459 m, 844 m and 741 m; 8H(360 MHz, CDCI3) 

5.62 (1H, brs, =CH), 4.97 (1H, sep, J 6.3, CHMe2), 4.45 (1H, dd, J8.1 and 5.5, 

CHOSi), 2.52 [1H, dd, J 14.1 and 8.3, CH(OSi)CH*H8], 2.38 [1H, dd, J 14.1 and

5.5, CHfOSOC^H8], 2.15-1.83 (4H, m, cy-CH2C=CCH2), 1.72-1.35 (4H, m, cy- 

CH2CH2), 1.21 (3H, d, J  6.3, CH/We^Me8) 1.20 (3H, d, J6.3, CHMeA/Wes), 0.92 

(9H, t, J 8.0, SiCH2CH3) and 0.56 (6H, q, J 8.0, SiCH£H3); 8c(90 MHz, CDCI3) 

171.1 (C), 139.1 (C), 123.3 (CH), 74.4 (CH), 67.5 (CH), 42.6 (CH2), 24.9 (CH2),

22.7 (CH2), 22.6 (CH2), 22.5 (CH2), 21.9 (CH3), 21.8 (CH3), 6.8 (CH3) and 4.7 

(CH2); m/z (EI+) 326.2 (M+, 7 %), 297.2 (32), 255.2 (100); HRMS (EI+) found

326.2276, C i8H340 3Si requires 326.2277.
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TESO

O'Pr

296

2-lsopropoxy-4-triethylsilyloxy-4-(1 -cyclohexenyl)-1 -butene.

Following general procedure C, a solution of the ester 295 (8.0 g, 24.5 mmol) 

and dibromomethane (3.8 cm3, 53.9 mmol) in THF (3 cm3) was added to the 

mixture formed from titanium tetrachloride (10.7 cm3, 98.0 mmol), TMEDA (29.6 

cm3, 196.0 mmol), zinc powder (14.4 g, 220.5 mmol) and lead (II) chloride (-10 

mg) in THF (40 cm3). Stirring was continued for 6h, whereupon the reaction 

mixture was cooled in an ice bath. Saturated potassium carbonate solution (40 

cm3) was added and the resulting thick black slurry stirred for 15 mins. The 

contents of the reaction flask were poured into ether (100 cm3) and worked up 

as described to give a pale yellow oil which was chromatographed on basic 

alumina using hexane as eluent, giving the enol ether as a colourless oil (4.07 

g, 51 %), Rf (alumina, hexane) 0.68; vmax(thin film) 2934 s, 1635 m (C=C), 1067 

s, 1007 s, 946 m, 797 m and 742 s; 5H(400 MHz, CDCI3) 5.53 (1H, brs, cy- 

=CH), 4.19-4.13 (2H, m, CHMe2 and CHOSi), 3.86 (1H, d, J 1.6, =CH*HB), 3.80 

(1H, d, J 1.6, =CHAH®), 2.28 [1H, dd, J 13.6 and 7.2, CH(OSi)CH*HB], 2.21 [1H, 

dd, J 13.6 and 6.4, CHfOSiJC^H6], 2.15-2.06 (1H, brd, J  -14, one of cy- 

CHaxHec/C=C), 2.00-1.86 (3H, m, cy-CHaxHeqC=CCH2)i 1,69-1.47 (4H, m, cy- 

CH2CH2), 1.22 (3H, d, J  6.0, CHMeAMeB) 1.19 (3H, d, J  6.0, CHMeAMee), 0.92 

(9H, t, J 8.0, SiCH2CH3) and 0.52 (6H, q, J8.0, SiCH^CHg); 8C(100 MHz, CDCI3)

159.0 (C), 140.1 (C), 123.0 (CH), 83.2 (CH2), 76.0 (CH), 68.5 (CH), 43.5 (CH2),

25.3 (CH2), 23.2 (CH2), 23.0 (2 x CH2), 22.2 (CH3), 21.8 (CH3), 7.3 (CH3) and

5.2 (CH2); m/z (EI+) 324.2 (M+, 2 %), 225.1 (100), 193.1 (7), 132.1 (42); HRMS 

(EI+) found 324.2483, C-i9H360 2Si requires 324.2485.



TESO

O'Pr

297

(22)-3-lsopropoxy-5-triethylsilyloxy-5-(1-cyclohexenyl)-2-pentene.

In the same way as above, a solution of the ester 295 (3.0 g, 9.2 mmol) and

1,1-dibromoethane (1.8 cm3, 20.2 mmol) in THF (3 cm3) was added to the 

reaction mixture formed from titanium tetrachloride (4.0 cm3, 36.8 mmol), 

TMEDA (11.1 cm3, 73.6 mmol), Zn powder (5.4 g, 82.2 mmol) and lead (II) 

chloride (-10 mg) in THF (15 cm3). The mixture was stirred for 5.5 h, and then 

quenched by the addition of saturated potassium carbonate solution (20 cm3). 

The product was isolated as above, and obtained as a yellow oil (2.53 g) which 

was used in the deprotection reaction without further purification. 1H NMR 

showed the formation of a 7:1 mixture of Z  and E enol ethers. A pure sample of 

the 7:1 mixture was obtained by chromatography on basic alumina, using 

hexane as eluent. Data given is for the major Z  isomer, Rf (alumina, hexane) 

0.71; vmax(thin film) 2953 s, 2877 s, 1680 w, 1459 w, 1005 w and 741 w; 5h(400 

MHz CDCI3) 5.55 (1H, brs, cy-=CH), 4.64 (1H, q, J6.4, =CHMe), 4.09 (1H, brt, 

J 6.0, CHOSi), 4.05 (1H, sep, J 6.0, CHMe2), 2.25-2.18 [2H, m, 

C H ( O S i ) C 2.15-2.05 (1H, m, one of cy-CH^CCH^), 2.02-1.94 (2H, m, 2 

of cy-CH^C=CCHs), 1.93-1.82 (1H, m, one of cy-CHs=CCH2), 1.70-1.45 (4H, m, 

cy-CH2CH2), 1.53 (3H, d, J6.4, =CHMe), 1.19 (3H, d, J  6.0, CH/We^Me8), 1.17 

(3H, d, J  6.0, CHMeA/Wes), 0.92 (9H, 1, J 8.0, SiCH2CH3) and 0.55 (6H, q, J8.0, 

SiCtfaCHs); 80(100 MHz, CDCI3) 150.5 (C), 140.3 (C), 122.9 (CH), 108.8 (CH),

75.4 (CH), 68.9 (CH), 40.0 (CH2), 25.4 (CH2), 23.24 (CH2), 23.16 (CH2), 23.1 

(CH2), 22.9 (CH3), 22.7 (CH3), 10.9 (CH3), 7.2 (CH3) and 5.1 (CH2); m/z (EI+)

338.5 (M+, 5 %), 267.2 (7), 225.2 (100); HRMS (EI+) found 338.2641, 

C2oH3802Si requires 338.2641.
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298

3-lsopropoxy-1 -(1 -cyclohexenyl)-3-buten-1 -ol.

Following general procedure D, tetrabutylammonium fluoride (37.6 cm3 of a 1.0 

moldm'3 solution in THF) and 4 A MS (5.3 g) were added to the enol ether 296 

(8.02 g, 25.7 mmol). The orange solution was stirred for 1.5 h, then poured 

through filter paper into saturated sodium bicarbonate solution (50 cm3), 

washing the sieves with ether. The layers were separated and the aqueous 

phase extracted with ether (2 x 50 cm3). The combined organic extracts were 

dried over magnesium sulfate and the solvent removed under reduced pressure 

to give a dark brown oil. The alcohol was obtained as a pale yellow oil (1.58 g, 

60 %) after column chromatography on basic alumina, using 3:2 hexane-ether 

as eluent, Rf (alumina, 2:1 ether-hexane) 0.62; vmax(thin film)/cm'1 3536 br (OH), 

2927 s, 1654 m (C=C), 1620 m and 995 s; 6H(400 MHz, CDCI3) 5.69 (1H, brs, 

cy-=CH), 4.24 (1H, sep, J 6.0, CHMe2) 4.12 (1H, m, CHOH), 3.96 (1H, d, J 1.7, 

=CA/Hb), 3.91 (1H, d, J 1.6, =CHAHe), 2.41 (1H, brs, OH), 2.30 [1H, dd, J  13.9 

and 4.0, CH(OH)C//Hb], 2.24 [1H, dd, J 13.6 and 8.3, C H (O H )C H ^ , 1.99- 

1.88 (4H, m, cy-CH2C=CCH2), 1.68-1.48 (4H, m, cy-CH2CH2), 1.23 (3H, d, J

6.0, CHMeAMeB) and 1.22 (3H, d, J 6.0, CHMeAMee); 6C(100 MHz, CDCI3)

159.2 (C), 139.3 (C), 122.9 (CH), 84.0 (CH2), 74.7 (CH), 69.2 (CH), 42.3 (CH2), 

25.3 (CH2), 24.4 (CH2), 23.02 (CH2), 23.01 (CH2), 22.0 (CH3) and 21.9 (CH3); 

m/z (CI+) 211.1 [(M+H)+, 45 %], 193.1 (100); HRMS (CI+) found 211.1697, 

C i3H230 2 [(M+HH requires 2-11.1698.
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299

(3Z)-3-lsopropoxy-1 -(1 -cyclohexenyl)-3-penten-1 -ol.

In the same way as above, TBAF (22.4 cm3 of a 1.0 moldm'3 solution in THF) 

was added to enol ether 297 (2.53 g, 7.46 mmol). 4 A MS (3.3 g) were also 

added and the mixture stirred for 2 h. The reaction mixture was poured through 

filter paper and worked up as above to give the product as a dark brown oil. A 

mixture of E and Z  alcohols was isolated as a pale yellow oil (840 mg, 58 %) 

after column chromatography on basic alumina, using 3:2 hexane-ether as 

eluent. A geometrically pure sample of the Z  alcohol (269 mg) was obtained 

after further chromatography, Rf (alumina, 2:1 ether-hexane) 0.73 (E), 0.68 (Z); 

Vmax(thin film) 3423 br (OH), 2973 s, 2928 s, 1678 m (C=C), 1449 w, 1114 m 

and 919 w; 8H(400 MHz CDCI3) 5.71 (1H, brs, cy-=CH), 4.79 (1H, q, J  6.7, 

=CHMe), 4.10 (1H, sep, J6.1, CHMe2), 4.10-4.08 (1H, m, CHOH), 2.34 [1H, 

ddd, J 14.5, 2.2 and 1.1, CH(OH)CWYlB], 2.25 (1H, d, J 2.4, OH), 2.17 [1H, dd, 

J  14.5 and 9.4, CH(OH)CHAH®], 2.13-1.88 (4H, m, cy-CH£=CCH2), 1.68-1.48 

(4H, m, cy-CH2CH2), 1.58 (3H, d, J  6.7, =CHMe), 1.22 (3H, d, J  6.1, 

CH/WeAMeB) and 1.18 (3H, d, J6.1 , CHMeA/Wes); 8C(100 MHz, CDCI3) 150.8 

(C), 139.5 (C), 123.0 (CH), 110.3 (CH), 74.2 (CH), 70.0 (CH), 39.3 (CH2), 25.3 

(CH2), 24.3 (CH2), 23.0 (CH2), 22.99 (CH2), 22.94 (CH3), 22.6 (CH3) and 11.1 

(CH3); m/z (CI+) 225.2 [(M+H)+, 5 %), 207.2 (99), 115.2 (100); HRMS (CI+) 

found 225.1854, C14H25O2 [(M+H)+] requires 225.1855.

OH O

P h ^ ^ ^ ^ O 'P r

307

Isopropyl (E)-2-Methyl-3-hydroxy-5-phenyl-4-pentenoate.

Following general procedure A, isopropyl propionate (11.5 cm3, 86.1 mmol) was 

added to a stirred solution of lithium diisopropylamide [ex. 34.4 cm3 of a 2.5

127



moldm'3 solution of butyllithium in hexane and 12.1 cm3, 86.1 mmol of 

diisopropylamine] in THF (170 cm3). After 45 min, E-Cinnamaldehyde (10.9 

cm3, 86.1 mmol) was added and the mixture stirred for a further 50 min. The 

reaction mixture was then poured into aqueous hydrochloric acid solution (220 

cm3, 1.1 moldm'3) and extracted with ether (2 x 100 cm3). The combined 

organic extracts were washed with aqueous hydrochloric acid solution (100 

cm3, 1.1 moldm'3), then saturated aqueous sodium bicarbonate solution (100 

cm3) and dried over magnesium sulfate. The solvent was removed in vacuo to 

give a 1:1 mixture of diastereomeric aldols as a pale yellow oil (18.54 g, 87 %) 

sufficiently pure for the silyl protection reaction. A pure sample was obtained by 

chromatography on silica using 1:1 ether-hexane as eluent, to give the aldols as 

a colourless oil (-80 %), Rf (alumina, 1:1 ether-hexane) 0.39; vmax(thin film)/cm'1 

3449 brs (OH), 2980 s, 2937 m, 1726 vs (0=0), 1451 m, 1375 m, 1182 s, 1108 

s, 750 s and 694 s; 5H(360 MHz, CDCI3) 7.39-7.22 (10H, m, PhA and PhB), 6.65 

(1H, d, J 15.9, PhCHA=), 6.64 (1H, d, J15.9, PhCHB=), 6.19 (2H, dd, J15.9 and

6.5, PhCH=CA^ and PhCH=CAA), 5.11-5.00 (2H, m, CAA\/le2 and CAAMe2), 

4.56 (1H, q with poorly resolved smaller couplings, J4.6, CA/OH), 4.37 (1H br 

dd, J12.6 and 5.8, CAAOH), 2.92 (1H, brs, OHA), 2.90 (1H, brs, OH8), 2.71-2.58 

[2H, m, CH(OH)CA/(Me) and CH(OH)CAA(Me)] and 1.26-1.21 (18H, doublets, 

Me groups); 6C(90 MHz, CDCI3) 175.0 (C), 174.9 (C), 136.5 (C), 136.4 (C),

132.0 (CH), 131.4 (CH), 129.3 (CH), 128.6 (CH), 128.54 (CH), 128.53 (CH), 

127.8 (CH), 127.7 (CH), 126.51 (CH), 126.46 (CH), 74.6 (CH), 73.0 (CH), 68.2 

(CH), 68.1 (CH), 45.6 (CH), 45.1 (CH), 21.79 (CH3), 21.78 (CH3), 21.70 (CH3), 

14.14 (CH3) and 11.55 (CH3); m/z (EI+) 248.1 (M+, 20 %), 206.1 (10), 133.1 

(100); HRMS (EI+) found 248.1411, C i5H2o03 requires 248.1412.

TESO O

308

Isopropyl (£)-2-Methyl-3-triethylsilyloxy-5-phenyl-4-pentenoate.

Following general procedure B, the ester 307 (17.6 g, 71.0 mmol) was dissolved 

in dry DMF (140 cm3), and diisopropylethylamine (37.0 cm3, 213.0 mmol), then
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TESCI (24.0 cm3, 142.0 mmol) were added. The mixture was stirred at rt for 23 

h, then poured into saturated aqueous sodium bicarbonate solution (200 cm3) 

and extracted with ether (3 x 200 cm3). The combined ethereal extracts were 

washed with aqueous hydrochloric acid solution (2 x 100 cm3, 1.1 mol dm'3) 

then brine (100 cm3) and dried over magnesium sulfate. The solvent was 

removed under reduced pressure to give a yellow oil. The silyl ethers (1:1 

mixture of diastereomers) were obtained as a pale yellow oil sufficiently pure for 

the Takai reaction (27.46 g) after passing the crude material through a short 

column of alumina, using gradient elution (10:1 hexane-ether to ether). A pure 

sample (-70 %) was obtained by column chromatography on alumina using 

10:1 hexane:ether as eluent to give a very pale yellow oil, vmax(thin film)/cm'1 

2956 s, 2877 s, 1731 vs (C=0), 1458 m, 1374 s, 1236 s, 1110 vs, 1064 s and 

746 vs; §h(400 MHz, CDCI3) 7.45-7.21 (10H, m, PhA and PhB), 6.53 (1H, d, J  

15.6, PhCHA=), 6.50 (1H, d, J 14.0, PhCHB=), 6.19 (1H, dd, J  16.0 and 7 .2 , 

PhCH=C/A 6.09 (1H, dd, J  15.6 and 7.6, P h C H ^H 6), 5.03 (1H, sep, J  6 .0 , 

C W \le2), 4.95 (1H, sep, J 6 .0 , CfA/lea), 4.44 (2H, dd, J  16.7 and 7.9, CHAOSi 

and CHBOSi), 2.59 [1H, qn, J  7.6, CHfOSiJCW^Me)], 2.56 [1H, qn, J  6 .8 , 

CHfOSOCH^Me)], 1.26 (3H, d, J  6 .0 , CHMeAMeA), 1.24 (3H, d, J  6.0, 

C H M e 'W ), 1.21 (3H, d, J 6 .0 , CH/WeBMeB'), 1.20 (3H, d, J 6.0, CHMeB/WeB'), 

1.13 [3H, d, J  6.4, CH(OSi)CH(/WeA)], 1.06 [3H, d, J  6.4, CH(OSi)CH(/We®)], 

0.99-0.92 (18H, m, OSiCH2MeA and OSiCH2MeB) and 0.64-0.55 (12H, m, 

OSiCH2A and OSiCH2B); 8c(100 MHz, CDCI3) 174.4 (C), 173.9 (C), 136.7 (C),

136.6 (C), 131.7 (CH), 130.9 (CH), 130.7 (CH), 130.1 (CH), 128.6 (CH), 128.5 

(CH), 127.7 (CH), 127.5 (CH), 126.4 (CH), 75.8 (CH), 75.3 (CH), 67.51 (CH), 

67.48 (CH), 47.5 (CH), 47.4 (CH), 21.9 (CH3), 21.8 (CH3), 13.1 (CH3), 12.9 

(CH3), 6.8 (CH3), 4.94 (CH2) and 4.91 (CH2); m/z (EI+) 362.2 (M+, 3 %), 333.2

(12), 291.1 (30), 247.2 (100); HRMS (EI+) found 362.2278, C21H340 3Si requires

362.2277.
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TESO

O'PrPh-

309

(2Z,6E)-3-lsopropoxy-4-methyl-5-triethylsilyloxy-7-phenyl-2,6-heptadiene.

Following general procedure C, a solution of the ester 308 (10.0 g, 27.6 mmol) 

and 1,1-dibromoethane (5.5 cm3, 60.7 mmol) in THF (5 cm3) was added to the 

mixture formed from titanium tetrachloride (12.1 cm3, 110.4 mmol), TMEDA 

(33.3 cm3, 220.8 mmol), zinc powder (16.24 g, 248.4 mmol) and lead (II) 

chloride (-20 mg) in THF (90 cm3). Stirring was continued for 17 h, whereupon 

the reaction mixture was cooled in an ice bath. Saturated potassium carbonate 

solution (40 cm3) was added and the resulting thick black slurry stirred for 15 

min. The contents of the reaction flask were poured into ether (200 cm3) and 

worked-up as previously described to give a pale yellow oil (7.59 g, 75 %) 

containing the enol ethers and a small amount of TMEDA. 1H NMR 

Spectroscopy showed the formation of only the Z  isomer of each diastereomer. 

This material was used without further purification in the deprotection reaction; 

8h(400 MHz, CDCI3) 7.39-7.19 (10H, m, PhA and PhB), 6.53 (1H, d, J  15.9, 

PhCHA=), 6.52 (1H, dd, J15.9 and 1.0, PhCHB=), 6.27 (1H, dd, J15.9 and 6.0, 

PhCH=Ctf*), 6.09 (1H, dd, J 15.9 and 5.5, PhCH=0-?), 4.79 (1H, q, J 6 .8 , 

=C//M e), 4.78 (1H, q, J 6 .8 , =OHPMe), 4.59-4.56 (1H, m, CHAOSi), 4.44-4.41 

(1H, m, CHBOSi), 4.19 (1H, sep, J6.1, Ctf*Me2), 4.10 (1H, sep, J6.1, ChfsMe2), 

2.60-2.54 [1H, m, CHJOSiJC^Me)], 2.37-2.33 [1H, m, CH(OSi)CH®(Me)], 1.62 

(3H, d, J 6 .8 , =CHMeA), 1.60 (3H, d, J  6 .8 , =CHMe8), 1.32 (3H, d, J 6.1, 

CHMeAMeA), 1.25 (3H, d, J6.1, CHMe*MeA), 1.18 (3H, d, J6.1, CHMeBMeB),

1.15 (3H, d, J6.1, C H M e ^e 8), 1.07 [3H, d, J 6.9, CH(OSi)CH(/\4eA)], 1.00-0.93 

[21H, m, CH(OSi)CH(/Wes), SiCH2MeA and S\CH2MeB] and 0.64-0.58 (12H, m, 

OSiCH2A and OSiCH2B); 5C(100 MHz, CDCI3) 155.0 (C), 154.7 (C), 137.5 (C),

137.4 (C), 133.2 (CH), 130.0 (CH), 129.8 (CH), 128.9 (CH), 128.5 (CH), 128.4 

(CH), 127.1 (CH), 127.0 (CH), 126.34 (CH), 126.31 (CH), 107.3 (CH), 106.8 

(CH), 74.4 (CH), 73.5 (CH), 69.7 (CH), 69.3 (CH), 42.1 (CH), 42.4 (CH), 23.08
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(CH3), 23.06 (CH3), 22.1 (CH3), 22.0 (CH3), 13.0 (CH3), 12.1 (CH3), 10.9 (CH3),

6.9 (CH3), 6.8 (CH3) 6.4 (CH3), 5.1 (CH2) and 4.9 (CH2).

OH

O'PrPh'

310a/b

( 7E,52)-5-lsopropoxy-4-methyl-1 -phenyl-1,5-heptadiene-3-ol.

Following general procedure D, tetrabutylammonium fluoride (40 cm3 of a 1.0 

moldm’3 solution in THF) and 4 A MS (10 g) were added to the enol ether 309 

(7.59 g, 20.3 mmol). The orange solution was stirred for 1.5 h, then poured 

through filter paper into saturated sodium bicarbonate solution (100 cm3), 

washing the sieves with ether. The layers were separated and the aqueous 

phase extracted with ether (3 x 100 cm3). The combined organic extracts were 

dried over magnesium sulfate and the solvent removed under reduced pressure 

to give a dark brown oil. The alcohols (1:1 mixture of diastereomers) were 

obtained as a pale yellow oil (2.172 g, 41 %) after column chromatography on 

alumina using gradient elution (pet ether 40/60 to ether); Rf (alumina, 1:1 

hexane-ether) 0.62; vmax(thin film)/cm'1 3448 br s (OH), 2973 s, 2916 s, 1672 s, 

1450, s, 1370 s, 1187 s, 1112 s, 1043 s, 967 s, 748 m and 694 m; 5h(400 MHz, 

CDCI3) 7.39 (4H, d, J 7.9, o-PhA and o-PhB), 7.31 (4H, d, J 7.8, m-PhA and m- 

PhB), 7.23 (2H, t, J 7.8, p-PhA and p-PhB), 6.61 (1H, d, J 15.9, PhCtf*=), 6.60 

(1H, d, J 15.9, PhChf=), 6.22 (1H, dd, J 15.9 and 6 .0 , PhCH=CH4), 6.21 (1H, 

dd, J 15.9 and 7.0, PhCH =Chf*)t 4.90 (1H, q, J 6 .8 , =CH*Me), 4.87 (1H, q, J

6.8, =CHsMe), 4.44-4.40 (1H, m, CH*OH), 4.28-4.16 (3H, m, CA^OH, CAA/le2 

and CHeMe2), 2.86 (1H, d, J 3.4, OHA), 2.62-2.59 [1H, m, CH(OH)Ctf> le)],

2.54 (1H, d, J 4.8, OH6), 2.45 [1H, br qn, J 7.0, CHfOHJCH^Me)], 1.66 (6H, d, J

6 .8 , =CHMeA and =CHMeB), 1.31 (3H, d, J6.1, CHMeAMeA'), 1.29 (3H, d, J

6.1, CHMeAMeA), 1.20 (3H, d, J 6.1, CH/WeeMeB'), 1.19 (3H, d, J 6.1, 

CHMeBMeB'), 1.05 [3H, d, J 7.1, CH(OH)CH(/WeA)] and 1.03 [3H, d, J 6.4, 

CH(OH)CH(Mes)], 6H(100 MHz, CDCI3) 155.2 (C), 154.7 (C), 137.1 (C), 136.9 

(C), 131.2 (CH), 130.5 (CH), 130.3 (CH), 130.2 (CH), 128.4 (CH), 127.4 (CH),
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127.3 (CH), 126. 44 (CH), 126.36 (CH), 108.0 (CH), 107.3 (CH), 76.7 (CH),

73.8 (CH), 70.6 (CH), 42.5 (CH), 41.4 (CH), 23.0 (CH3), 22.9 (CH3), 22.1 (CH3),

22.0 (CH3), 15.0 (CH3), 12.3 (CH3), 11.04 (CH3) and 10.97 (CH3); m/z (EI+)

260.2 (M+, 5 %), 205 2 (12), 133.1 (100); HRMS (EI+) found 260.1779 C17H24O2 

requires 260.1776.

Bn

318

(S)-3-(1-Oxopropyl)-4-(phenylmethyl)-2-oxazolidinone. 64

(S)-4-Benzyl-2-oxazolininone (5.426 g, 29.60 mmol) was reacted with propionyl 

chloride (2.7 cm3, 31.02 mmol) according to the method of Evans64 to give the 

acylated oxazolidinone as a white crystalline solid (6.727 g, 97 %), [a]o +79.9 (c 

0.118 in CHCI3) literature value91 +77.5

Dibutylborontriflate

Tributylborane (9.75 cm3, 40.0 mmol) was reacted with triflic acid (3.5 cm3, 40.0 

mmol) according to the method of Evans,92 to give dibutylboron triflate (8.976 g, 

82 %) after distillation.

O O
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K  1
Bn

319

[3(2S,3/?,4£),4S]-3-(3-Hydroxy-2-methyl-1-oxo-5-phenyl-4-pentenyl)-4-

(phenylmethyl)-2 -oxazolidinone. 93

The oxazolidinone 318 (4.008 g, 17.15 mmol) was dissolved in dry DCM (43 

cm3) under nitrogen and cooled to -78 °C. Triethylamine (2.90 cm3, 20.52 

mmol) was added, followed by freshly distilled dibutylboron triflate (4.70 cm3, 

18.87 mmol). The solution was stirred at -78 °C for 1 h and at 0 °C for 15 min. 

The reaction mixture was recooled to -78 °C and cinnamaldehyde (2.27 cm3,

18.01 mmol) added in one portion. The pale yellow solution was stirred at -78 

°C for 30 min, 15 min at -78 to 0 °C and a further 30 min at 0 °C. The reaction 

was quenched by the addition of sodium acetate (40 cm3, 1 moldm'3 solution in 

90 % methanol/water). After 10 min 30 % w/w aqueous hydrogen peroxide (9 

cm3) was added dropwise and the mixture stirred for an additional 15 min at IQ- 

15 °C. The mixture was then partitioned between water (400 cm3) and hexane 

(250 cm3) and the layers separated. The organic phase was washed with 

saturated sodium bicarbonate solution (100 cm3), then brine (100 cm3). [Note: 

on pouring the reaction mixture into the hexane/water mixture, a solid 

precipitated in the hexane phase. This was redissolved by the addition of DCM]. 

The organic phase was dried over sodium sulfate, and concentrated under 

reduced pressure to give the crude aldol as a sticky yellow solid (6.36 g). 1H 

NMR spectroscopy showed this to be a 2:1 mixture of the aldol and unreacted 

cinnamaldehyde. Trituration with hexane gave the aldol as a white solid pure 

enough for the protection reaction (one diastereomer), (3.446 g, 55 %); 8h(400 

MHz, CDCI3) 7.46-7.22 (10H, m, ArH), 6.71 (1H, dd, J  16.0 and 1.0, 

PhCH=CH), 6.24 (1H dd, J 16.0 and 5.9, PhCH=), 4.76-4.70 (2H, m, CHOH 

and NCH), 4.25-4.19 (2H, m, OCH2), 4.02 (1H, dq, J7.0  and 3.9, CHMe), 3.28 

(1H, dd, J 13.4 and 3.8, PhCtf*HB), 2.96 (1H, d, J 2.6, OH), 2.83 (1H, dd, J 13.4 

and 9.4, PhCHAHS) and 1.33 (3H, d, J7.0, Me).
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OTBS

Ph

Bn

320

[3(2S,3/?,4f),4S]-3-[3-(fe/t-Butyldimethylsilyloxy)-2-methyl-1-oxo-5-phenyl-

4-pentenyl]-4-(phenylmethyl)-2-oxazolidinone.

The aldol 319 (3.446 g, 9.40 mmol) was dissolved in dry DMF (23.5 cm3) under 

nitrogen and diisopropylethylamine (4.9 cm3, 28.40 mmol), then TBSCI (12.83 

g, 18.80 mmol) were added with cooling on an ice bath. The ice bath was 

removed and the mixture stirred at rt for 17 h, then poured into saturated 

aqueous sodium bicarbonate solution (50 cm3) and extracted with ether (2 x 50 

cm3). The combined ethereal extracts were washed with aqueous hydrochloric 

acid solution (50 cm3, 1.1 moldm'3) then brine (50 cm3) and dried over sodium 

sulfate. The solvent was removed under reduced pressure to give the 

diastereomerically pure silyl ether as a sticky white solid (5.29 g). A sample 

pure enough for the next reaction (4.19 g, 93 %) was obtained as a white solid 

by column chromatography on neutral alumina, using 1:1 ether-pet ether 40/60 

as eluent. An analytically pure sample gave the following data, Rf (alumina, 1:1 

ether:hexane) 0.64; (Found C 70.0; H 7.6; N 2.8, C28H37N04Si requires C 70.1; 

H 7.8; N 2.9); mp 81-82°C; [<x]D +74.59° (c=0.089 in CHCI3); vmax(KBr) 2931 w, 

2856 w, 1764 vs [0(C=0)N], 1693 s, (NC=0), 1389 m, 1200 m, 1074 s, 835 m 

and 773 m; 6H(360 MHz, CDCI3) 7.38-7.19 (10H, m, Ar), 6.50 (1H, d, J 16.0, 

PhCH=), 6.22 (1H, dd, J16.0 and 7.2, PhCH=CH), 4.54 (1H, ddt, J 7.6, 3.2 and

2.2, NCH), 4.46 (1H, brt, J 6.79, CHOSi), 4.10 (1H, qn, J6.8, CHMe), 4.08 (1H, 

dd, J 9.1 and 2.1, OCH*HB), 3.92 (1H, t, 8.0, OCHAH®), 3.26 (1H, dd, J 13.4 and

3.2, CH*HBPh), 2.76 (1H, dd, J 13.4 and 9.7, C H ^ P h ) , 1.27 (3H, d, J  6.8, 

Me), 0.90 (9H, s, SiCMe3), 0.06 (3H, s, Si/We^Me8) and 0.02 (3H, s, 

SiMeA/Wes); 8C(90 MHz, CDCI3) 174.7 (C), 153.2 (C), 136.6 (C), 135.3 (C),

130.7 (CH), 129.4 (CH), 128.9 (CH), 128.6 (CH), 127.7 (CH), 127.3 (CH), 126.4 

(CH), 75.5 (CH), 65.9 (CH2), 55.6 (CH), 44.5 (CH), 37.8 (CH2), 25.7 (CH3), 18.1 

(C), 12.9 (CH3), -4.1 (CH3) and -5.0 (CH3); m/z (EI+) 479 (M \ 0.1 %), 422 [(M-
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tBu)+, 50], 290 (100); HRMS (CI+, NH3) found 497.2842, C28H4iN204Si 

[(M+NH4)1 requires 497.2836.

O OTBS

H O ^ Y ^ ^ ^ P h

321

(2S,3/?,4£)-2-Methyl-3-(ferf-butyldimethylsilyloxy)-5-phenyl-4-pentenoic

acid.

The oxazolidinone 320 (4.19 g, 8.73 mmol) was dissolved in aqueous THF (30 

cm3, 10:1 THF-H20) and cooled on an ice bath. Hydrogen peroxide (3.97 cm3 of 

a 30 % w/w aqueous solution, 34.92 mmol) was added dropwise over 5 min, 

followed by a solution of lithium hydroxide (586 mg LiOH.H20, 13.97 mmol) in 

water (17 cm3) in one portion. The resulting white emulsion was stirred at 0 °C 

for 2 h, then allowed to warm to rt. After a further 2 h, TLC analysis of the 

reaction mixture showed the absence of starting material. The mixture was 

diluted with DCM (25 cm3) and the layers separated. The aqueous phase was 

extracted with DCM (3 x 25 cm3), and the combined extracts dried over 

magnesium sulfate. Concentration under reduced pressure gave a pale yellow 

oil which was chromatographed on silica using 1:1 EtOAc-hexane containing 2 

% AcOH as eluent, to give the acid as a very pale yellow viscous oil containing 

one diastereomer (2.33 g, 83 %). An analytically pure sample gave the following 

data; [a]o -15.9° (c=0.07 in CHCb); Rf (silica, EtOAc) 0.93; vmax(thin film) 2958 

vbr vs (OH), 1713 vs (C=0), 1472 s, 1254 m, 1023 m and 776 s; 6H(400 MHz, 

CDCI3) 7.38-7.16 (5H, m, Ph), 6.56 (1H, d, J15.8, PhCH=), 6.13 (1H, dd, J15.8 

and 7.2, PhCH=CH), 4.57 (1H, dd, J 6.8 and 5.2, CHOSi), 2.71 (1H, dq, J  7.2 

and 4.8, CHMe), 1.18 (3H, d, J 7.2, Me), 0.91 (9H, s, SiCMe3), 0.10 (3H, s, 

Si/We^Me8) and 0.06 (3H, s, SiMeA/Wee); 8C(90 MHz, CDCI3) 177.2 (C), 136.3 

(C), 132.1 (CH), 128.7 (CH), 128.6 (CH), 127.9 (CH), 126.6 (CH), 75.2 (CH),

46.2 (CH), 25.7 (CH3), 18.1 (C), 11.8 (CH3), -4.2 (CH3) and-5.1 (CH3); m/z (Cl, 

NH3) 338.3 [(M+NH4)+, 60 %], 206.2 (100); HRMS (Cl, NH3) found 338.2158, 

C i8H32N03Si [(M+NH4)1 requires 338.2151.
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O OTBS

EtO Ph

322

Ethyl (2S,3f?,4E)-2-Methyl-3-(ferf-butyldimethylsilyloxy)-5-phenyl-4- 

pentenoate.

The acid 321 (2.33 g, 7.27 mmol) and triphenylphosphine (2.10 g, 8.00 mmol) 

were dissolved in dry THF (25 cm3) under nitrogen. Anyhdrous ethanol (0.47 

cm3, 8.00 mmol) was added and the clear, colurless solution immersed in a dry 

ice bath at -40 °C. Diethylazodicarboxylate (1.26 cm3, 8.00 mmol) was then 

added dropwise to the reaction mixture. The resulting pale orange solution was 

allowed to warm slowly to ambient temperature and stirred for 17 h. The 

reaction mixture was then concentrated under reduced pressure, and 100 cm3 

1:1 ether-hexane added to the residue. The precipitate (triphenylphosphine 

oxide) was pulverised and filtered off through a short plug of neutral alumina. 

The filtrate was washed with an additional 100 cm3 1:1 ether-hexane and the 

combined washings dried over sodium sulfate. Concentration in vacuo gave the 

ester as a yellow oil (2.18 g, 86 %) containing one diastereomer. A pure sample 

was obtained by washing the oil through a short column of neutral alumina with 

hexane to give a colourless oil (1.872 g, 74 %); [a]o -26.39° (c=0.036 in CHCI3); 

Vmax(thin film) 2956 m, 2930 m, 1735 s (C=0), 1252 m, 1062 m and 836 m; 

§h(400 MHz, CDCI3) 7.38-7.22 (5H, m, Ph), 6.52 (1H, d, J  16.0, PhCH=), 6.19 

(1H, dd, J 16.0 and 7.2, PhCH=CH), 4.55 (1H, t, J 6.8, CHOSi), 4.14-4.06 (2H, 

m, OCH2), 2.60 (1H, qn, J6.8, CHMe), 1.22 (3H, t, J 7.2, CH2Me), 1.21 (3H, d, J

7.2, CHMe), 0.91 (9H, s, SiCMe3), 0.07 (3H, s, SiMe^Me8) and 0.03 (3H, s, 

SiMeA/Wes); 8C(100 MHz, CDCI3) 174.8 (C), 137.2 (C), 131.3 (CH), 131.0 (CH),

129.0 (CH), 127.0 (CH), 126.9 (CH), 75.4 (CH), 60.7 (CH2), 47.6 (CH), 26.2 

(CH3), 18.5 (C), 14.6 (CH3), 12.4 (CH3), -3 .6 (CH3) and -4.6 (CH3); m/z (Cl, 

NH3) 366.2 [(M+NH4)+, 6 %], 234.1 (100); HRMS (Cl, NH3) found 366.2459, 

C2oH36N03Si [(M+NH4)+] requires 366.2464.

136



323

(1 E,3A?,4S,5Z) 4-Methyl-3-(ferf-butyldimethylsilyloxy)-5-ethoxy-1 -phenyl-

I ,5-heptadiene.

Following general procedure C, a solution of the ester 322 (1.817 g, 5.21 mmol) 

and 1,1-dibromoethane (1.04 cm3, 11.46 mmol) in THF (5 cm3) was added to 

the mixture formed from titanium tetrachloride (2.29 cm3, 20.84 mmol), TMEDA 

(6.29 cm3, 41.68 mmol), zinc powder (3.07 g, 46.89 mmol) and lead (II) chloride 

(-10 mg) in THF (7 cm3). Stirring was continued for 14 h, whereupon the 

reaction mixture was cooled in an ice bath. Saturated potassium carbonate 

solution (10 cm3) was added and the resulting thick black slurry stirred for 15 

min. The contents of the reaction flask were poured into ether (50 cm3) and 

worked-up as previuosly to give a pale yellow oil, which was chromatographed 

on neutral alumina using hexane as eluent to give the diastereomerically pure 

enol ether (Z isomer only by 1H NMR spectroscopy) as a colourless oil (1.521 g, 

81 %); [oc]D -10.85 (c=0.0357 in CHCI3); vmax(thin film) 2956 s, 2857 s, 1677 m, 

1252 m, 110 m and 692 m; 8H(400 MHz, CDCI3) 7.37 (2H, d, J7 .6, o-Ph), 7.32 

(2H, t, J 7.2, m-Ph), 7.23 (1H, d, J 7.2, p-Ph), 6.53 (1H, d, J15.6, PhCA*=), 6.24 

(1H, dd, J 15.6 and 6.0, PhCH=CH), 4.72 (1H, q, J 6.7, =CHMe), 4.41 (1H, brt, 

J  5.2, CHOSi), 3.84 (1H, dq, J 9.6 and 6.8, C H V ) ,  3.71 (1H, dq, J 9.6 and 6.8, 

C ^ H 8), 2.35 (1H, br qn, J6.0, CHMe), 1.60 (3H, d, J6.4, =CHMe), 1.27 (3H, t, 

J 7.0, CHzMe), 1.06 (3H, d, J 6.8, CHMe), 0.93 (9H, s, SiCMe3), 0.04 (3H, s, 

S\MeAN\eB) and 0.02 (3H, s, SiMeAMee); 6C(100 MHz, CDCI3) 157.2 (C), 137.8 

(C), 133.6 (CH), 129.4 (CH), 128.9 (CH), 127.5 (CH), 126.7 (CH), 106.8 (CH),

74.3 (CH), 65.7 (CH2), 43.8 (CH), 26.3 (CH3), 18.7 (C), 16.1 (CH3), 13.3 (CH3),

I I .2  (CH3), -3.9 (CH3) and -4.6 (CH3); m/z (EI+) 360.3 (M+, 0.1 %), 247.2 

(100); HRMS (EI+) found 360.2481, C22H360 2Si requires 360.2485.
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324

(1 E,3R,4S,5Z) 4-Methyl-5-ethoxy-1 -phenyl-1,5-heptadiene-3-ol.

Following general procedure D, tetrabutylammonium fluoride (12.7 cm3 of a 1.0 

moldm'3 solution in THF) and 4 A MS (2 g) were added to the enol ether 323 

(1.521 g, 4.22 mmol). The orange solution was stirred for 1 h, then poured 

through filter paper into saturated sodium bicarbonate solution (50 cm3). The 

layers were separated and the aqueous phase extracted with ether (2 x 50 

cm3). The combined organic extracts were dried over sodium sulfate and the 

solvent removed under reduced pressure to give a brown oil. Column 

chromatography on neutral alumina using 2:1 hexane-ether as eluent gave the 

alcohol (799 mg, 77 %) as a pale yellow viscous oil. Surprisingly, some 

equilibration of the enol ether geometry took place during chromatography, and 

several columns were required to give the pure Z  isomer (659 mg, 63 %), Rf 

(alumina, 1:1 ether-hexane) 0.54; [cc]d +44.6° (c=0.034 in CHCI3); vmax(thin film) 

3448 br s (OH), 2976 s, 1672 s (C=CHMe), 1495 m, 1180 m, 965 s, 748 s and 

694 s; 5h(400 MHz, CDCI3) 7.38 (2H, d, J7.6, o-Ph), 7.31 (2H, t, J 7.2, m-Ph), 

7.23 (1H, d, J 7.2, p-Ph), 6.61 (1H, d, J16.0, PhCH=), 6.22 (1H, dd, J16.0 and

6.0, PhCH=CH), 4.82 (1H, q, J 6.7, =CHMe), 4.45-4.40 (1H, m, CHOSi), 3.94 

(1H, dq, J  9,6 and 7.2, CWV)6), 3.74 (1H, dq, J  9.6 and 7.2, C ^ H 8), 2.65 (1H, 

d, J 4.8, OH), 2.59-2.57 (1H, m, CHMe), 1.65 (3H, d, J  6 .8 , =CHMe), 1.31 (3H, 

t, J 7.2, CH2Me) and 1.04 (3H, d, J 7.2, CHMe); 8c(100 MHz, CDCI3) 157.6 (C),

137.5 (C), 130.8 (CH), 130.7 (CH), 128.9 (CH), 127.8 (CH), 126.8 (CH), 107.9 

(CH), 74.6 (CH), 69.9 (CH2), 42.7 (CH), 16.1 (CH3), 12.8 (CH3) and 11.2 (CH3); 

m/z (EI+) 246.2 (M+, 3 %), 133.1 (100); HRMS (EI+) found 246.1621, C16H220 2 

requires 246.1620.
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351

(3Sf?,5Sf?)-3-Hydroxy-5-phenylcyclohexanone.

In the same way as for the synthesis of cyclohexanone 353, alcohol 277 (500 

mg, 2.15 mmol) and 18-C-6 (1.14 g, 4.30 mmol) in DME (4 cm3) were added 

with stirring to a suspension of potassium hydride (617 mg of 35 % suspension 

in mineral oil, 5.38 mmol) in DME (6 cm3). After stirring for 4 h, the mixture was 

poured into cold aqueous hydrochloric acid (25 cm3, 1 mol dm'3) and worked up 

as before to yield a yellow solid (402 mg, 80 % w/w). Purification by trituration 

with ether gave the cyclohexanone833 351 as a white solid (215 mg, 43 %); 

6h(360 MHz, CDCI3) 7.35-7.19 (5H, m, Ph), 4.60 [1H, qn, J  3.0, CH(OH)], 3.57 

[1H, tt, J 12.2 and 4.1, CH(Ph)], 2.69-2.51 [4H, m, C H £(0)C H 2], 2.35-2.19 (1H, 

br s, OH), 2.21 (1H, m with large doublet splitting, J 14.0, CH(Ph)CH(eq)H(ax)] 

and 2.06 [1H, distorted ddd, J 14.1, 12.2 and 2.4, CH(Ph)CH(eq)H(ax)].

New data: 6C(100 MHz, CDCI3) 209.7 (C), 143.7 (C), 128.7 (CH), 126.7 (2 x 

CH), 68.3 (CH), 48.7 (2 x CH2), 39.2 (CH2) and 38.2 (CH).

(3S/?,5S/?,6/?S)-3-Hydroxy-6-methyl-5-phenylcyclohexanone.

Potassium hydride (1.16 g of 35 % suspension in mineral oil, 10.15 mmol), was 

washed with hexane ( 3 x 2  cm3) to remove oil and then suspended in dry 

dimethoxyethane (DME) (15 cm3) under nitrogen. To the suspension was added 

a solution of alcohol 278 (1 g, 4.06 mmol) and 18-crown-6 (2.15 g, 8.12 mmol), 

in DME (5 cm3) with stirring at rt. The resulting dark brown mixture was stirred 

for 3 h, whereupon it was poured into cold (ice bath) aqueous hydrochloric acid

O

353
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(50 cm3, 1 mol dm"3) with vigorous stirring. The mixture was stirred for 15 min 

at 0 °C, then allowed to warm to room temperature over 15 min. After an 

additional 15 min at rt, ether (50 cm3) was added and the layers separated. The 

aqueous phase was extracted with ether (10 cm3) and the combined organic 

extracts were washed with hydrochloric acid (10 cm3), water (10 cm3) and brine 

(10 cm3). Solvent removal under reduced pressure yielded a brown solid (757 

mg, 91 % w/w). Purification was achieved by trituration with cold ether to give 

cyclohexanone 353 as a white solid (150 mg, 31 %); mp 156-157°C; (Found C 

76.4; H 7.9, C i3Hi60 2 requires C 76.4; H 7.9%); vmax(KBr)/cm"1 3369 br (OH), 

1713 vs (C=0), 1492 m, 1452 m, 1230 m, 1015 m, 753 m and 700 s; 5h(360 

MHz, CDCI3) 7.36-7.22 (5H, m, Ph), 4.59 [1H, qn, J 2.9, CH(OH)], 3.13 [1H, 

ddd, J 11.8, 9.1 and 7.5, CH(Ph)], 2.77 [1H, dd, J  14.1 and 3.0, 

C(0)CH(eq)H(ax)], 2.64 [1H, partly obscured dq, J 11.9 (by irradiation of Me) 

and 6.6, CHMe], 2.62 (1H, d with poorly resolved smaller couplings, J 14.1, 

C(0)CH(eqJH(ax)], 2.19-2.13 (2H, m, CH(Ph)CH2), 1.94 (1H, br s, OH), 0.84 

(3H, d, J 6.5, Me); 6C(90 MHz, CDCI3) 210.92 (C), 143.15 (C), 128.70 (CH), 

127.43 (CH), 126.75 (CH), 68.92 (CH), 50.63 (CH), 49.05 (CH2), 46.50 (CH), 

40.58 (CH2) and 11.99 (CH3); m/z204 (M+, 62 %), 186 (M+- H20, 29), 91 (100), 

77 (Ph, 49); HRMS (EI+) found 204.1151, C-i3Hi60 2 requires 204.1150.

D

356

(3SR,4SR,5SR,6RS) and (3Sfl,4/?S,5S/?,6/?S)-4-Deutero-3-hydroxy-6- 

methyl-5-phenylcyclohexanone.

In the same way as above, alcohol 285 (100 mg, 0.43 mmol) and 18-C-6 (227 

mg, 0.86 mmol) were added to a stirring suspension of KH (123 mg of a 35 % 

suspension in mineral oil, 1.08 mmol) in DME (2 cm3). After 3 h, the reaction 

was quenched by the addition of 1 mol dm'3 DCI (2 cm3). Work-up and 

trituration with ether gave a mixture of 353 and 356 as a white solid. Because a 

mixture of undeuterated and deuterated alcohols was formed, the 1H NMR 

spectrum of the product was difficult to interpret. However, some key data were

O
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obtained: 8H (360 MHz, CDCI3) 4.58 (1H, q, J  3.0, CHOH), 0.83 (3H, d, J 6 .5 , 

Me). No collapse of this signal to a singlet was observed. HRMS (EI+) found 

205.1213, C13H15DO2 requires 205.1213.

O

360

(5S/?,6S/?)-6-Methyl-5-phenyl-2-cyclohexenone.

The crude alcohols 353-355 (241 mg, 1.18 mmol) were dissolved in DCM (10 

cm3) under nitrogen and cooled in an ice bath. Methanesulfonylchloride (0.1 

cm3, 1.18 mmol) was added in one portion, then triethylamine (0.7 cm3, 4.72 

mmol) was added dropwise. The resulting solution was stirred for 15 mins then 

poured into water (10 cm3) and the layers separated. The organic phase was 

washed with hydrochloric acid (10 cm3, 1.1 moldm"3) then brine (10 cm3) and 

dried over magnesium sulfate. Concentration under reduced pressure followed 

by column chromatography on silica using DCM as eluent gave the 

cyclohexenone as a pale yellow oil (125 mg, 57 %), containing a 13:87 mixture 

of syn and anti isomers; data for anti isomer: Rf (silica, DCM) 0.79; vmax(thin 

film)/cm'1 3029 w, 2970 w, 2929 w, 2877 w, 1676 vs (C=0), 1494 m, 1454 m, 

1388 m, 1232 m, 769 m, 748 m and 702 s; 6H(400 MHz, CDCI3) 7.30-7.10 (5H, 

m, Ph), 6.97 [1H, ddd, J 10.0, 4.8 and 2.8, CH=CHC(0)], 6.12 [1H, brd, J  10.0, 

CH=CHC(0)], 2.97 (1H, ddd, J  12.8, 9.6 and 6 .0 , CHPh), 2.69 (1H, dq, J  12.8 

and 6 .8 , CHMe), 2.65-2.55 (2H, m, CH2) and 0.94 (3H d, J  6 .8 , Me); 6C(100 

MHz, CDCI3) 201.3 (C), 148.2 (CH), 142.8 (C), 129.3 (CH), 128.7 (CH), 127.4 

(CH), 126.9 (CH), 48.6 (CH), 46,8 (CH), 34,9 (CH2) and 12.5 (CH3); m/z (EI+)

186.1 (M+, 40 %), 118.1 (100); HRMS (EI+) found 186.1044, Cl3H140  requires 

186.1045.
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362

5-phenyl-2-cyclohexenone. 94

In the same way, crude alcohol 351 (211 mg, 1.11 mmol) was disolved in DCM 

(10 cm3) and treated with methanesulfonylchloride (0.1 cm3, 1.2 mmol) and 

triethylamine (0.62 cm3, 4.44 mmol). Work-up as before gave the 

cyclohexenone as a yellow oil (117 mg, 61 %). A pure sample was obtained as 

a solid in 34 % yield after further chromatography using DCM as eluent; 8h(400 

MHz, CDCI3) 7.40-7.24 (5H, m, Ph), 7.06 [1H, ddd, J 10.0, 6.0 and 2.8, 

Ctf=CHC(0)], 6.13 [1H, d br d, J 10.0 and 2.8, CH=CHC(0)], 3.36 (1H, ddt, J  

12.4, 10.4 and 5.2, CHPh), 2.72-2.61 [3H, m, C(0)CH2 and =CHCHeqHax) and

2.54 (1H, ddt, J 18.8, 10.8 and 2.4, =CHCHeqHax), in agreement with data given 

in reference 94.

O

375

(3S/?,5/?S)-3-Hydroxy-5-(n-propyl)-cyclohexanone.

Potassium hydride (173 mg of a 35 % suspension in mineral oil, 1.50 mmol), 

was washed with hexane ( 3 x 4  cm3) to remove oil and then suspended in dry 

THF (1.5 cm3) under nitrogen. To the suspension was added a solution of 

alcohol 290 (100 mg, 0.50 mmol) and 18-crown-6 (269 mg, 1.00 mmol), in THF 

(1 cm3) with stirring at rt. The resulting dark brown mixture was stirred for 5 

days, whereupon it was poured into cold (ice bath) aqueous hydrochloric acid (5 

cm3, 1 mol dm'3) with vigorous stirring. The mixture was stirred at 0°C for 10 

mins, then the ice bath was removed and stirring continued for an additional 15 

min. Ether (10 cm3) was then added and the layers separated. The aqueous



phase was extracted with ether ( 2x10  cm3) and the combined organic extracts 

were dried over magnesium sulfate. Solvent removal under reduced pressure 

yielded the alcohol 376 (54 mg, 69 %) as a brown oil. This was washed quickly 

through a short column of neutral alumina with ether to give a pure sample of a 

90:10 anti'.syn mixture of isomers as a yellow oil (40 mg, 51 %); data for the 

major isomer: vmax(thin film)/cm'1 3423 brs (OH), 2958 s, 2928 s, 1708 s (C=0), 

1413 m, 1292 m, 1236 m, 1095 m, 1062 m, 1037 m and 970 m; 8h(360 MHz, 

CDCI3) 4.50-4.44 (1H, m, CHOH), 2.54 [1H, dd, J  14.2 and 3.7, 

CH(OH)CHaxHeqC(0)], 2.50-2.40 [2 H, m, CH(OH)CHaxHeQC(0)CHaxHeQ], 2.30- 

2.21 (1H, m, CHPr), 2.03-1.96 [2 H, m, CH(Pr)CHaxHeqC(0) and

CH(OH)CHaxHeqCH(Pr)], 1.89 (1H, brs, OH), 1.56 [1H, ddd, J 13.9, 11.4 and 

2.5, CH(OH)CHeqHa*CH(Pr)], 1.40-1.25 (4H, m, MeCH^CH*) and 0.91-0.88 (3H, 

m, Me); 8C(90 MHz, CDCI3) 210.4 (C), 68.4 (CH), 49.1 (CH2), 47.7 (CH2), 38.5 

(CH2), 38.0 (CH2), 32.4 (CH), 19.7 (CH2) and 14.0 (CH3); m/z (EI+) 156 (M+, 45 

%), 113 (52), 96 (90), 69 (100); HRMS (EI+) found 156.1150, C9H160 2 requires 

156.1150.

376
5-Hydroxy-2-methylbicyclo[4.4.0]decan-3-one.

In the same way as for the synthesis of 378, alcohol 299 (150 mg, 0.67 mmol) 

and 18-C-6 (354 mg, 1.34 mmol) in degassed THF (2 cm3) were added with 

stirring to a suspension of potassium hydride (267 mg of a 35 % suspension in 

mineral oil, 2.00 mmol) in degassed THF (2 cm3). After stirring for 48 hours, the 

mixture was poured into of aqueous hydrochloric acid (5 cm3, 1.1 mol dm'3) at 0 

°C. After work-up as above, the cyclohexanone was obtained as a pale yellow 

oil containing several isomers. The major isomer gave a characteristic CHOH 

signal at 8 4.60 ppm (q, J4.0 Hz)

In a separate experiment, a solution of alcohol 299 (100 mg, 0.45 mmol) and 

18-crown-6 (238 mg, 0.89 mmol) in degassed THF (1 cm3) was added to a
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stirring suspension of potassium hydride (155 mg of a 35 % suspension in oil,

1.34 mmol) in degassed THF (1.25 cm3). After 48 h, the mixture was cooled to -  

78 °C, and te/t-butyldimethylsilyltriflate (0.1 cm3, 0.45 mmol) added in one 

portion. The mixture was stirred for 30 min at -78 °C, then after 30 min at rt 

was poured into brine (10 cm3). The aqueous phase was extracted with ether (2 

x 10 cm3) and dried over sodium sulfate to give a brown oil (184 mg) after 

concentration under reduced pressure. The oil was dissolved in ether and 

passed quickly through a short column of neutral alumina to give a sticky white 

solid containing a mixture of isomers different from that obtained above. (Two 

overlapping CHOH signals at 8 4.30 ppm and a broad septet (J 4.4 Hz) at 8 

3.80 ppm.)

378

(1 /?S,5/?S,6S/7)-5-Hydroxybicyclo[4.4.0]decan-3-one.

Potassium hydride (101 mg of a 35 % suspension in mineral oil, 0.88 mmol), 

was washed with hexane ( 3 x 4  cm3) to remove oil and then suspended in dry, 

degassed THF (1.4 cm3) under nitrogen. To the suspension was added a 

solution of alcohol 298 (100 mg, 0.48 mmol) and 18-crown-6 (256 mg, 0.96 

mmol), in degassed THF (1 cm3) with stirring at rt. The resulting green mixture 

gradually turned black and was stirred for 48 h. TLC showed the absence of 

starting material. The mixture was cooled to -78  °C and a solution of TBSCI (87 

mg, 0.58 mmol) in THF (1 cm3) was added in one portion. The dry ice bath was 

removed and the mixture stirrred for 2.5 h, whereupon it was poured into 

saturated aqueuos sodium bicarbonate solution (5 cm3). The aqueous phase 

was extracted with ether ( 3 x 5  cm3). The combined organic extracts were 

washed with brine then dried over magnesium sulfate. Solvent removal under 

reduced pressure yielded a brown oil. 1H NMR of this material showed no 

evidence for the formation of the TBS enol. However, evaporation of the CDCI3

OH H
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under reduced pressure lead to the formation of the alcohol 378 as a white solid 

(<10 mg) mp 139-140 °C; vmax(KBr)/cm'1 3399 br s (OH), 2932 s, 2852 m, 1692 

vs (C=0), 1453 m, 1412 m, 1314 m, 1244 m, 1126 m, 1041 m, 981 w, 931 w, 

875 w and 808 w; 6H(400 MHz, CDCI3) 4.17 (1H, brs, CHOH), 2.57 [1H, dd, J 

14.8 and 3.2, CH(OH)CHaxHeqC(0)], 2.52 [1H, ddd, J 14.8, 2.8 and 2.0, 

CH(OH)CHaxHe£7C(0)], 2.35 [1H, ddd, J 14.0, 4.0 and 2.0,

CH(0H)CH2C(0)CHe£7Hax], 2.05 [1H, dd, J  13.6 and 12.8,

CH(OH)CH2C(0)CHeqHax], 1.93 [1H, tt, J 11.2 and 4.0, CHaxCH(OH)CH2 C (0)]f 

1.91-1.81 [1H, m, CHaxCH2 C(0)], 1.80-1.64 (4H, m, -CH^CH2CH2CH2-) and 

1.52-1.05 (4H, m, -CHgCH^CH^CH;,-); 6C(100 MHz, CDCI3) 210.1 (C), 73.2 

(CH), 49.9 (CH2), 48.6 (CH2), 45.8 (CH), 35.7 (CH), 34.2 (CH2), 28.6 (CH2),

26.1 (CH2) and 25.3 (CH2); m/z (EI+) 168.1 (M+, 25 %), 107.8 (100); HRMS 

(EI+) found 168.1151, C i0Hi6O2 requires 168.1150.

OTBS OTBS

OPr

380

In the same way as above, a solution of alcohol 299 (100 mg, 0.45 mmol) and 

18-crown-6 (238 mg, 0.89 mmol) in degassed THF (1 cm3) was added to a 

stirring suspension of potassium hydride (155 mg of a 35 % suspension in oil,

1.34 mmol) in degassed THF (1.25 cm3). After 48 h, the mixture was cooled to -  

78 °C, and te/t-butyldimethylsilyltriflate (0.1 cm3, 0.45 mmol) added in one 

portion. The mixture was stirred for 30 min at -78 °C, 15 min at -78 °C to rt then 

for a further 10 min at rt, whereupon it was poured into brine (10 cm3) and 

worked-up as above to give the silyl enol ether 379 as a brown oil. The crude 

product was dissolved in ether and passed through a short column of neutral 

alumina to give the silyl enol ether 379 (43 mg) and the enol ether 380 (20 mg) 

as pale yellow oils (43 % combined yield).
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379

[2/?S,2(2f?S)]-1-(1-ferf-Butyldimethylsilyloxy-methylene)-2-(3-isopropoxy-3-

buten-2-yl)-cyclohexane.

5h(400 MHz, CDCI3) 5.98 [1H, brd, J 1.2, =CH(OTBS)], 4.13 (1H, sep, J  6.0, 

CHMe2), 3.76 (1H, d, J1.6, =CA/Hb), 3.66 (1H, d, J 1.6, = 0 ^ / /* ) ,  2.51 [1H, dt, 

J 13.6 and 4.0, CHaxHeqC(=C)], 2.45 [1H, dq, J 10.8 and 6.8, CHMe(C=CH2)],

2.07 [1H, dbrt, J 10.8 and 4.0, CHeqCH(Me)], 1.82-1.35 (7H, m, remaining ring 

protons), 1.20 (3H, d, J 6.0, OCHMeAN\eB), 1.18 (3H, d, J  6.0, OCHMeAMeB),

1.03 (3H, d, J 6.8, CH Me), 0.90 (9H, s, SiCMe3), 0.08 (3H, s, SiMe^Me6) and 

0.07 (3H, s, SiMeAMee); 6C(100 MHz, CDCI3) 164.7 (C), 132.1 (CH), 122.6 (C),

80.0 (CH2), 67.6 (CH), 41.7 (CH), 39.3 (CH), 29.3 (CH2), 27.1 (CH2), 25.8 

(CH3), 22.0 (CH3), 21.93 (CH2), 21.91 (CH2), 21.2 (CH3), 18.3 (C), 17.1 (CH3), -

5.3 (CH3) and -5.4 (CH3).

O

OTBS

380

[2/?S,2(2/?S)]-1-(1-ferf-Butyldimethylsilyloxy-methylene)-2-(3-oxobut-2-yl)-

cyclohexane.

Rt (alumina, ether) 0.90; vmax(thin film)/cm'1 2929 s, 2857 s, 1713 s (C=0), 1666 

(C=C), 1471 m, 1448 m, 1256 m, 1169 m, 873 m, 846 m, 778 m and 675 m; 

5h(400 MHz, CDCI3) 5.97 (1H br s, =CH), 2.92 [1H, dq, J  10.8 and 6.8, 

AcCH(Me)], 2.51 (1H, dt, J 13.6 and 4.4, CHa*HeqC=), 2.17 [1H, ddd, J  10.8,

4.4 and 3.6, CHegCH(Me)Ac], 2.04 (3H, s, COMe), 1.92 (1H, dddd, J13.6, 12.0,
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4.8 and 1.6, CHaxHeqC=), 1.75-1.24 (6H, m, 3 x CH2), 1.03 (3H, d, J 7.2, CH/We),

0.88 (9H, s, SiCMe3), 0.07 (3H, s, S\MeAMeB) and 0.06 (3H, s, SiMeA/Wes); 

8C(100 MHz, CDCIs) 213.3 (C), 133.0 (CH), 121.4 (C), 46.6 (CH), 41.6 (CH),

29.6 (CH3), 29.5 (CH2), 27.3 (CH2), 26.1 (CH3), 22.6 (CH2), 22.5 (CH2), 18.7 

(C), 15.1 (CH3), -4.9 (CH3) and -5.0 (CH3); m/z (CI+) 297.3 [(M+H)+, 100 %]; 

HRMS (CI+) found 297.2251, C i7H330 2Si [(M+H)+] requires 297.2250.

O

H O - ^ ^ P h

382-384

2,6-Dimethyl-3-hydroxy-5-phenylcyclohexanone.

Potassium hydride (1.32 g of a 35 % suspension in mineral oil, 11.52 mmol), 

was washed with hexane ( 3x10  cm3) to remove oil and then suspended in dry 

THF (10.2 cm3) under nitrogen. To the suspension was added a solution of 

alcohol 310a/b (1.00 g, 3.84 mmol) and 18-crown-6 (2.03 g, 7.68 mmol), in THF 

(9 cm3) with stirring at rt. The resulting dark brown mixture was stirred for 3 h, 

whereupon it was poured into cold (ice bath) aqueous hydrochloric acid (100 

cm3, 1.1 mol dm'3) with vigorous stirring. The mixture was stirred at 0 °C for 15 

mins, then for an additional 20 min at rt. Ether (100 cm3) was then added and 

the layers separated. The aqueous phase was extracted with ether (2 x 100 

cm3) and the combined organic extracts were dried over sodium sulfate. Solvent 

removal under reduced pressure yielded the alcohols 382-384 (867 mg, 100 % 

w/w) as a 8:3:7:1 mixture of 4 diastereoisomers. Column chromatography on 

neutral alumina using 1:1 ether-hexane as eluent gave the isomers as a 

colourless oil (470 mg, 56 %). Preparatory TLC on alumina (ether-hexane 

mixtures) failed to separate the isomers completely, but allowed the 

unambigous determination of the relative stereochemistry in the three major 

compounds.
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(2HS,3flS,5S/?,6/?S)-2,6-Dimethyl-3-hydroxy-5-phenylcyclohexanone.

Vmax(thin film)/cm'1 [crude mixture of isomers] 3449 br s (OH), 2974 s, 2935 s, 

2876 s, 1708 vs (C=0), 1496 m, 1454 s, 1377 m, 1062 m, 1038 m, 910 s, 735 s 

and 701 s; 6H(400 MHz, CDCI3) 7.36-7.19 (5H, m, Ph), 4.12 (1H, dq, J 10.0 and

5.0, CHOH), 2.90 [1H, brqn, J6.8, CH(OH)CHe£7(Me)CO], 2.76 [1H, dq, J  12.4 

and 6.4, CH(Ph)CHax(Me)], 2.44 (1H, td, J 12.0 and 4.8, CHPh), 2.17 (1H, 

distorted ddd, J 13.2, 11.6 and 10.4, CHa*Heq), 2.10 (1H, dbrt, J 13.2 and 4.8, 

CHaxHe£7), 1.86 (1H, d, J 4.4, OH), 1.30 [3H, d, J 7.2, CH(OH)CHMe] and 0.79 

[3H, d, J 6.8, CH(Ph)CHMe]; 6C(100, MHz, CDCI3) 214.0 (C), 143.0 (C), 128.7 

(CH), 127.3 (CH), 126.8 (CH), 70.3 (CH), 51.0 (CH), 46.1 (CH), 44.9 (CH), 37.5 

(CH2), 12.2 (CH3) and 10.8 (CH3); m/z [crude mixture of isomers] (EI+) 218.2 

(M+, 75 %), 144.0 (100); HRMS (EI+) found 218.1306, C i4Hi80 2 requires 

218.1307.

O

PI
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383

(2/7S,3S/:?,5Sf7J6/7S)-2,6-Dimethyl-3-hydroxy-5-phenylcyclohexanone.

8h(400 MHz, CDCI3) 7.36-7.19 (5H, m, Ph), 4.33 (1H, qn, J 2.8, CHOH), 3.06 

(1H, td, J11.6 and 5.2, CHPh), 2.80 [1H, qbrd, J6.8 and 2.0, CH(OH)CHeqMe], 

2.64 [1H, dq, J 12.0 and 6.4, CH(Ph)CHa*Me], 2.25-2.13 (2H, m, CH2), 1.17 

[3H, d, J 6.8, CH(OH)CHMe] and 0.82 [3H, d, J 6.4 CH(Ph)CH/We]; 8C(100, 

MHz, CDCI3) 211.6 (C), 143.2 (C), 128.7 (CH), 127.4 (CH), 126.7 (CH), 74.1 

(CH), 51.4 (CH), 49.4 (CH), 47.1 (CH), 41.4 (CH2), 12.1 (CH3) and 11.1 (CH3).
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384

(2S/?,3S/?,5S/?,6/?S)-2,6-Dimethyl-3-hydroxy-5-phenylcyclohexanone.

5h(400 MHz, CDCI3) 7.36-7.19 (5H, m, Ph), 4.17-4.13 (1H, m, CHOH), 3.09 (1H, 

td, J 11.8 and 4.0, CHPh), 2.83 [1H, dq, J 11.6 and 6.4, CH(Ph)CHMe], 2.68 

[1H, qdd, J 7.6, 3.2 and 1.6, CH(OH)CHMe], 2.30 (1H, ddd, J  13.5, 12.4 and

2.0, CHaxHeq), 2.01 (1H, dtd, J 14.4, 4.0 and 1.6, CHeQHax), 1.94 (1H, m, OH),

1.32 [3H, d, J 7.6, CH(OH)CHMe], 0.85 [3H, d, J 6.4, CH(Ph)CHMe]; 5C(100 

MHz, CDCI3) 215.1 (C), 143.3 (C), 128.7 (CH), 127.4 (CH), 126.7 (CH), 73.7 

(CH), 52.3 (CH), 46.1 (CH), 45.8 (CH), 36.1 (CH2), 15.6 (CH3) and 12.5 (CH3).

O O

H Q "" '\^ '" " "P h  H O ' ^ ^ ’""-Ph

385 386

(2S,3S,5ft,6S)-2,6-Dimethyl-3-hydroxy-5-phenylcyclohexanone, 385 

(2S,3/?,5fl,6S)-2,6-Dimethyl-3-hydroxy-5-phenylcyclohexanone, 386.

In the same way as above, alcohol 324 (201 mg, 0.81 mmol) and 18-C-6 (428 

mg, 1.62 mmol) were added to a suspension of potassium hydride (285 mg of a 

35% suspension in oil, 2.44 mmol) in THF (4 cm3). After 3 h, the reaction was 

quenched at 0°C by the addition of aqueous hydrochloric acid (8 cm3, 1.1 mol 

dm-3). Work-up as above gave alcohols 385 and 386 as a brown oil (114 mg, 65 

% w/w).
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(3RS,5SR,6SR)- and (3RS,5SR,6RS)-3-ferf-Butyldimethylsilyloxy-6-methyl-

5-phenylcyclohexanone, 415 and 416.

A mixture of alcohols 353, 354 and 355 (776 mg, 3.7 mmol) was dissolved in 

dry DMF (10 cm3) under nitrogen. Diisopropylethylamine (1.2 cm3, 6.7 mmol) 

then te/t-butyldimethylsilyl chloride (468 mg, 3.1 mmol) were added at 0 °C. The 

reaction mixture was allowed to warm to room temperature and then left to stir 

over three days (-60 h). The mixture was then poured into saturated aqueous 

sodium bicarbonate solution (20 cm3). The aqueous phase was separated and 

extracted with ether ( 2x10  cm3). The combined organic extracts were washed 

with aqueous hydrochloric acid ( 2x10  cm3, 1 mol dm'3 solution) then brine (10 

cm3) and dried (MgS04). Concentration under reduced pressure gave a mixture 

of the unprotected alcohol 353, its TBS ether, and silyl ethers 415 and 416. 

Separation of the two diastereoisomers was achieved by column 

chromatography followed by preparative TLC.

O

T B S O ^ ^ ^ 'P h

415

(3/?S,5Sfl,6/?S)-3-ferf-Butyldimethylsilyloxy-6-methyl-5-

phenylcyclohexanone.

Spectral data for 415: vmax(thin film) 2956 m, 2856 m, 1715 vs (C=0), 1376 m, 

1254 m, 1095 s, 777 m and 700 m; 6H (360 MHz, CDCI3) 7.40-7.15 (5H, m, Ph), 

3.95 [1H, tt, J 10.9 and 4.7, CH(OTBS)], 2.76 [1 H, ddd, J  1 2 .8 , 3.8 and 2.4, 

C(0)CHeqHax], 2.58 [1 H, t, J 1 2 .0 , C(0)CHaxHeq], 2.52 [1 H, dq, J  1 1 . 0  (by 

irradiation of Me) and 6.4, CHMe], 2.38 [1H, td, J 12.2 and 3.2, CH(Ph)], 2.20 

[1 H, doublet with poorly-resolved smaller couplings, J 13.0, CH(Ph)CHax/"M ,



2.04 [1H, td, J 13.0 and 10.7, CH(Ph)CHa*H6q], 0.87 (9H, s, Si'Bu), 0.78 (3H, d, 

J 6.4, CH Me), 0.06 (3H, s, Si/We^Me6), 0.05 (3H, s, SiMeAMeB); m/z (EI+) 261 

(M-'Bu+, 7 %) 157 (38), 31 (100); HRMS (CI+) found 319.2090, C i9H310 2Si 

[(M+H)+] requires 319.2093.

O

TBSO"""V ^ s Ph

416

(SRSjSSRjeSRJ-S-ferf-Butyldimethylsilyloxy-e-methyl-S-
phenylcyclohexanone.

Spectral data for 416: vmax(thin film) 8h (360 MHz, CDCI3) 7.37-7.13 (5H, m, 

Ph), 4.40 [1H, m, XJ -16, CH(OTBS)], 3.71 [1H, dt, J 10.4 and 4.7, CH(Ph)], 

2.74 [1H, dd, J 14.5 and 3.7, C(0)CHa*Heq], 2.70 [1H, qd, J  7.2 and 6.0 (by 

irradiation of Me), CHMe], 2.38 [1H, ddt, J 14.5, 4.6 and 1.6, C(0)CHeqHax], 2.29 

[1H, ddd, J 13.4, 11.0 and 2.5, CH(Ph)CHaxHeq], 1.96 [1 H,d br t, J 13.4 and 5.3, 

CH(Ph)CHaxHe(j], 0.88 (3H, d, J 7.2, CH Me), 0.84 (9H, s, Si'Bu), 0.03 (3H, s, 

SiMe^Me8), -0.01 (3H, s, SiMeAMes); m/z (EI+) 261 (M-'Bu+, 20 %) 157 (100); 

HRMS (CI+) found 336.2345, C19H34N02Si [(M+NH3)+] requires 336.2359.
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