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Abstract

Parallel processing is a key area of high-performance computing, providing the processing power to 
meet the needs of computation-intensive problems. Much research effort has therefore been invested 
in this area and it is growing. However, there are still several challenges th a t hinder its widespread 
use. In particular, parallel programs can be difficult to write because of the increase in the number 
of details to keep track of and design decisions to be made. Portability is also an im portant issue 
because the efficiency of a program depends heavily on the target machine. Another challenge arises 
when the issue of correctness is considered as the increased complexity and nondeterminism of parallel 
systems makes reasoning about them hard and renders traditional methods of testing unreliable.

This thesis presents a methodology for developing parallel programs th a t addresses these issues. In 
it, executable parallel programs are derived incrementally from high-level specifications. A specifica­
tion is given initially in mathematical notation and changed into an abstract functional specification. 
This is then transformed through a series of stages, during which additional information is given 
about the program, the target architecture and the parallelism. Finally it is transformed into the 
target language to produce an executable parallel program. This thesis uses C +M PI as an example 
target language, but many languages are possible.

This methodology addresses several of the challenges of parallel programming. In particular, its 
incremental framework allows decisions about the program and its parallelism to be made one at 
a time, instead of all at once, easing the burden on the programmer and simplifying the decisions. 
Reasoning about the program is also made possible through the use of a pure functional language, 
such as Haskell, for intermediate versions of the program, as the program can then be transformed 
using equational reasoning, a correctness-preserving technique.

The methodology is based on previous work on Abstract Parallel Machines and program deriva­
tion, which this thesis develops. It presents the basic infrastructure needed in the methodology, and 
therefore investigates how parallel systems can be modelled and m anipulated in Haskell, and how 
the resultant programs can be transformed. It augments the basic methodology with the ability to 
introduce and reason about some key parallel programming features, including data  distributions and 
program optimisations. The work is supported and demonstrated through two case studies.
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Chapter 1

Introduction

A key challenge in computer science today is the provision of sufficient processing power to meet 
the users’ needs. Many areas of computing require high levels of performance to cope with large 
quantities of data, produce results within a restricted time scale and increase productivity.

One way this performance can be achieved is through the use of parallel processing, in which 
multiple processors cooperate on a single problem. When combined with the increases in speed in 
sequential machines, parallel processing allows levels of performance which would otherwise not be 
possible.

Much research effort has therefore been invested in this area and it is growing. However, there 
are still several challenges th a t hinder its widespread use. Firstly, parallel programs can be very 
difficult to write. As several tasks can be executed at the same time, often with communication 
between them, there are many extra details to keep track of. Not only does this increase a program’s 
complexity, but it introduces many design decisions th a t need to be made. Among others, the 
placement and movement of tasks and data  must be decided. These decisions must made correctly 
to obtain maximum efficiency, and each affects the others. The efficiency of a program also depends 
heavily on the target machine, and it may need to be rewritten to run efficiently on other machines, 
or, in many cases, even to run on them at all. Another challenge arises when the issue of correctness 
is considered. The increased complexity and nondeterminism of parallel systems makes reasoning 
about them hard and renders traditional methods of testing unreliable.

Various solutions to these challenges have been suggested and implemented, and several are dis­
cussed in detail in Chapter 8. However, in the main, these tackle one or more of the challenges 
without the others. This thesis therefore combines ideas from several different areas.

In particular, parallel combinators, or higher-order functions, increase the level of abstraction in a 
program, allowing the programmer to focus on the algorithmic aspects of the program, rather than on 
the parallel details. This makes it easier to write parallel programs, but prevents the manipulation of 
parallel details necessary to obtain high efficiency. Libraries of standard functions, such as skeletons, 
help with portability, through the availability of multiple versions for different machines. Incremental 
derivation approaches also ease the writing process by separating design decisions from each other, 
and considering them one at a time, and formal program transformation techniques help to maintain 
the correctness of the program. All of these areas are described in more detail later in the thesis.

This thesis presents a methodology based on these areas. It is based on an incremental derivation 
approach th a t allows formal program transformation techniques to convert a program from one version 
to the next. W ithin each version of the program, parallel combinators encapsulate the parallelism. 
These exist in many forms, at different levels of abstraction and for different target machines. The 
level of abstraction decreases during a derivation, allowing early stages of the derivation to be reused

1
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for other targets.
This chapter firstly presents some of the key ideas behind the methodology in more detail, setting 

the work in the thesis in context, before presenting the contributions of the thesis itself. It then 
makes several general comments about the research, before describing the structure of the remainder 
of the thesis.

1.1 Background

The methodology is based on ideas from several fields. Some of these key fields are introduced here, 
together with the basic ideas in the methodology itself. These and other relevant fields are discussed 
in greater depth in Chapter 8.

1.1.1 Increm ental programming

It is common practice to  write a program directly in its final form, as a program in, for example, C 
augmented with MPI, a library of message-passing functions. However this process can be difficult as 
all of the design decisions are mixed up together. This is a particular problem in parallel programming 
since there is a large number of decisions to be made, such as the placement of data  and tasks and 
the introduction of optimisations.

This thesis uses a different approach, incremental programming, in which the decisions are made 
and introduced into the program one at a time, in a logical sequence. The programming process is 
therefore divided into a sequence of simpler steps, and the program goes through a series of versions 
before it arrives a t its final form. Both these versions and the transformations between them are 
well-defined.

Incremental programming has many advantages, the main one of which is its separation of the 
decisions. They no longer need to be made all at once: each can be considered and made separately, 
thus simplifying the decision-making process. In addition, the well-defined transformations help the 
programmer to incorporate the results of decisions; they also help with the programming process 
itself. In this aspect, incremental programming bears similarities with structured programming and 
software engineering.

There are various existing incremental systems for parallel programming, some of which are de­
scribed in Section 8.2.

1.1.2 Program  transform ation

Incremental programming requires some method to  transform the program between its different ver­
sions, keeping its “meaning” , the results it produces, the same, while changing its parallel behaviour 
and performance.

There is a variety of such program transformation methods available. Such methods are usually 
based on sets of rules, which, when applied to a program, transform it in the required ways. These 
can be of varying degrees of formality, may be applied by hand or automatically, and may or may 
not be proved correct.

This thesis uses a standard program transformation technique in functional programming called 
equational reasoning. It preserves the meaning of a program, and so allows the transformation rules 
to be proved correct. However, it does not insist on proving every detail. Some properties, such as 
arithm etic identities, can be assumed to be true. This allows greater flexibility in a derivation.

Equational reasoning works by replacing expressions with other expressions of equal value. For 
example, function calls can be replaced by the instantiated function’s body and vice-versa, and
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arithmetic properties can be used. Previously proved lemmas can also be used to transform the 
program. In the proofs of such lemmas, additional techniques such as structural induction can be 
combined with equational reasoning. More about equational reasoning can be found in introductory 
books such as [Bir98].

1.1.3 Previous work on the m ethodology

The methodology described in this thesis was first proposed in 1997 by John O ’Donnell and Gudula 
Riinger in [OR97], and its basic structure is also described in [OROO].

It is a derivation methodology for parallel programs, based on the incremental programming 
approach described above. Each step in a derivation is expressed using an appropriate model of 
parallelism and can be proved equivalent to the previous step using equational reasoning. The mod­
els of parallelism are defined using abstract parallel machines (APMs). These specify some global 
properties of the model, such as the number of sites and the state type for each site, along with a set 
of parallel operations on the model. Due to the key role of these APMs, the methodology is often 
known as the A P M  methodology.

A derivation starts off with an abstract version of the program which is gradually made more 
and more concrete by the addition of parallel details. The intermediate versions could be written in 
a range of languages, but Haskell has always been used because it has several features particularly 
suited to such a methodology (see Section 1.3.3). Finally, a version is reached which contains all of 
the needed parallel details. This is then transformed into the target language.

However, there are often several ways to transform each version of the program, and several 
options when a decision is to  be made. Different choices may lead to different final programs. The 
methodology therefore has a  branching structure of possible derivations as shown in Figure 1.1.

Ct, a m  x An APM used within a prograVersions of the program APMs   v

CD O

O '

Derivation

CD----O
Refinement of APMs

O ----< 3
O

Figure 1.1: The basic structure of the methodology

Connected to each stage in the methodology is an APM, which encapsulates the parallelism used 
in the program at th a t stage. These APMs therefore separate the parallel from the algorithmic 
aspects of a  program. Figure 1.1 shows how these APMs form a tree in which APMs lower down in 
the tree are more concrete about parallel details than those further up it.

Programs are transformed from one stage to the next by equational reasoning. The transforma­
tions can be divided into two main categories. In horizontal transformations, both stages use the 
same APM, and the transformation changes the algorithm by manipulating the functions at the cur­
rent level of abstraction. Such transformations can be used to improve the program ’s efficiency or to 
prepare the way for other transformations. In vertical transformations, on the other hand, the stages 
use different APMs, but the algorithm essentially stays the same. These transformations bring the 
program closer to the target, reducing its level of abstraction.
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ParO ps

The initial APM paper [OR97] introduces the ParOp form. This is a canonical form for the operations 
in an APM. It is capable of expressing many types of computation, and specifies the parallelism in a 
program explicitly, while remaining more abstract than many other models. It views the system as 
a set of sites, each of which may be a processor, a thread in a processor, a  location in the memory 
of a sequential processor, or an abstract location which could be any of these. The nature of a site 
depends on the current level of abstraction in the derivation. The level of abstraction may be implicit 
or may be indicated in the APM.

The ParOp definition makes the initial and final states of the sites and the communication between 
them explicit. It is a generalised relation which can represent a  m ultitude of parallel operations and 
is parametrised by functions f i  and gi which describe what the processors do to their states, what 
they output to the other processors and which other processors they accept inputs from.

This is illustrated in Figure 1.2. Pi to Pn are the sites, which can communicate with each other 
using an interconnection network. At the start of the computation, some input values, aq , . . .  , x r , 
may be fed into the system. Each processor then chooses some of these values and some of the values 
calculated by other processors using its function, The processor uses them  and any values already 
in its state with its other function f i  to calculate a new state  value and a value A{ which is returned 
to the network so th a t other processors can access it. Some of these values may be chosen to be 
outputs, 2/1 , . . .  , 2/t, from the system.

The system can deadlock if there is a cyclic dependency between the values needed and calculated 
by the processors, but this is acceptable because such systems exist in real life.

Interconnection network

g.m /V A , gi(V)

o .

Sites

Figure 1.2: Operation of ParO p

The ParOp definition can be specified as follows, where cr» and a[ are the initial and final states 
in site i, and gout selects the output values from the system.

ParOp ( < t i  , . . . ,  < r n )  ( z i ,  •  •  • ,  x r )  =  ( ( c r ' , . . . ,  o r ^ ) ,  ( 2 / 1 , . . . ,  y t )) 

where (cr'^Ai) =  f i f a ,  g i (1V ))

( ? / l  2 /o u t  V
V  ( ( ® 1 , • • • , Xr) , A\  , . . . , An)

These details are given for the sake of interest and comparison, but the ParOp form is not used 
explicitly in this thesis. Instead APM functions are given as Haskell definitions. However this Haskell 
method is closely related to the ParOp method, and, in fact, the Haskell definitions can be viewed as 
ParOps because the ParOp form can be written in Haskell, as shown, by example, in [ELG99]. By then
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inlining the /  and g functions and further manipulating the definition with equational reasoning, other 
Haskell definitions can be obtained. See Section 2.3.5 for an example of this and for more information 
about the role of ParOps in this thesis.

O ther work

The APM model resulted from the analysis of two case studies in deriving parallel programs [OR94, 
OR95]. However, because the APM methodology is a relatively recent idea, this thesis presents the 
first case studies done using the methodology itself.

For the same reason, other work on the methodology is preliminary, but there are several research 
projects in the area.

The PolyAPM project, based a t Passau University, stands for “Abstract Parallel Machines for 
the Polytope Model” , and uses APMs as a tool to investigate the order of code generation steps in 
the polytope model. This model is a mathematical execution model on which static parallelisation 
methods for scientific computing can be based. PolyAPM uses APMs as targets for the code gen­
eration at each step of such a method. So far, only fairly high level APMs have been used, but, 
in future, the group hopes to design more APMs at lower levels of abstraction, down to C, and 
perform the transformations automatically in a parallelising compiler. Existing work is described in 
[EGL98, ELG99],

Noel Winstanley has also worked on APMs. His prototype system, PEDL (Parallel Embedded 
Derivation Languages) [WinOl, Win99], is based on the APM approach in a restricted context, the 
derivation of SPMD array based numerical programs. This work bears many similarities to this 
thesis—the derivations are structured in a similar way, and the intermediate stages are written in 
Haskell. However, these stages are written in specialised sub-languages of Haskell, rather than using 
APMs as such. The restricted context also allows a higher degree of automation, but much less 
flexibility. The work tends towards a Haskell-oriented derivation approach, and is less clearly related 
to the APM methodology.

O’Donnell, Rauber and Riinger have been working on an extension of the APM methodology 
with a hierarchy of cost models [ORROl]. I have also caxried out work with John O ’Donnell on 
incorporating the ability to express nondeterminism into the methodology [G099].

Some of the work in this thesis has been previously published. The structure of the methodology 
was introduced in [Goo98]. P art of the first case study in Chapter 5 was published in [GOR98], 
and the introduction of load balancing to this study in [GOOlj. [GooOlb] shows how some of the 
pipelining optimisations in Chapter 6 are introduced to the Gaussian Elimination case study.

1.2 Contributions of the thesis

This thesis describes in detail the Abstract Parallel Machine (APM) methodology for deriving parallel 
programs, focusing especially on its use for general SPMD programs. This is a style of programming 
common on distributed memory MIMD machines, and in wide-spread use today. It is described in 
Section 2.10.1. In particular the thesis:

• clarifies the essence of the methodology, with explanations as to why things are done the way 
they are, and discussion of im portant issues,

• gives a detailed structure for the methodology and identifies its key stages with details of the 
APMs and their implementations for these stages and sample other stages,
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• shows how parallel systems can be modelled in Haskell a t different levels of abstraction, pro­
viding different amounts of information about the parallelism,

• dem onstrates how this can be used to support transformations, including the introduction of 
optimisations, to a parallel program,

• gives the transformation rules and lemmas needed to perform a range of simple derivations from 
start to  finish, including rules for transforming a m athem atical specification into Haskell, per­
forming various optimisations, dealing with monads, and introducing input and output details,

•  divides these transformations into logical and manageably-sized steps, which deal with a single 
feature or decision at a time,

•  extends the basic methodology with ability to  introduce and reason about data  distributions 
and program optimisations, such as load balancing and communication-specific optimisations,

• describes how decisions can be made in the context of the methodology, illustrating this with 
examples including the choice of data  distributions and static load balancing, and

• demonstrates the methodology in practice through two case studies. The second, in particular, 
shows how detailed communication-specific optimisations can be introduced into a program.

In summary, this thesis:

• investigates how parallel systems can be modelled and manipulated in Haskell, and how the 
resultant programs can be transformed.

• brings the methodology significantly closer to a usable state, providing the support needed for 
the derivation of basic C +M PI programs, and augmenting this to cope with some additional 
features.

• critically assesses APMs expressed in Haskell after carrying out detailed work on them.

1.3 General com ments about the research

It is worth-while making some general comments about the research and this thesis before the pre­
sentation of more specific material. These comments concern both the scope of the thesis and the 
nature of the APM methodology.

1.3.1 C om pleteness

Although the methodology can, in principle, be used for a wide range of parallel programs and 
languages, this thesis is limited in length and time, and therefore restricts its scope to general SPMD 
programs, which are described in Section 2.10.1. It targets C +M PI as an example to allow the entire 
derivation process to be demonstrated. C +M PI is used because it is common, widely-available and 
implemented on multiple machines including networks of workstations. This thesis also focuses on 
programs involving finite sequences, such as arrays, rather than other d ata  structures, because these 
are common in parallel programming, relatively simple and illustrate the key ideas.

Not all possible APMs and transformation rules are given, either for general programs or for 
C +M PI programs. This is because there is an enormous number of possible techniques and optimi­
sations which can be employed, more than can be discussed in this thesis, and new techniques and 
insights can still be produced.
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Therefore, the methodology is designed to be expandable. The stages and transformations in the 
thesis are included as much to give examples of how new stages and transformations can be written 
and included as to provide implementations which can be used to derive programs.

1.3.2 F lexibility

The methodology was designed with flexibility in mind. This is manifest in several ways:

• As mentioned above, the APM methodology is extensible. A programmer can add new APMs to 
model different situations and targets, along with corresponding transformation rules for these 
APMs. The APMs and transformation rules in this thesis can serve as examples to demonstrate 
this process.

• Individual APMs are also extensible, particularly the high level APMs near the start of a 
derivation. These allow any parallel operation to be encapsulated in a new APM function. 
Lower level APMs are less extensible because they model the specific operations provided by a 
particular language or machine. However they may still be extended by the programmer to be 
more realistic and extra functions can be added th a t are implemented in terms of the standard 
function set.

• The order of steps in the methodology is not fixed. Although the APMs are arranged in order 
of decreasing abstraction, and movement between them is only possible in this direction, there 
is a large degree of flexibility in the transformations. They don’t have to be carried out on the 
whole program at once—it is possible to have parts of the program using different APMs. The 
same transformation can also be carried out multiple times. Several transformations, such as 
load balancing, don’t change the APM, and can be done a t various points in the derivation.

• Some stages may be skipped altogether. In the methodology the formal steps are kept small to 
simplify the transformations, but such small steps can be tedious to do by hand. It is possible 
to  skip some of these, or to combine several of them into a larger transformation.

• While it is possible to do the transformations formally, it is also possible to do some or all of 
them informally, if so desired. Some transformations are sufficiently simple or commonplace 
th a t the programmer may feel capable of carrying them out correctly without the need for 
formalism. This speeds up and simplifies the transformation process, but produces a proof with 
a coarse degree of precision, or, in some cases, no proof a t all. If a more detailed proof is later 
required, these steps can be redone formally.

These points are discussed further in the body of the thesis.

1.3.3 Language

The methodology uses a pure non-strict functional programming language throughout. Other lan­
guages are possible, but there are various advantages of such a language, some of which are given in 
[OR94]:

• Functional languages are useful for specification because they allow programs to be written 
in an abstract w’ay which is close to the mathematics, encapsulating common operations in 
higher-order functions. They also do not introduce any extraneous d ata  dependencies. This is 
examined further in Section 2.4.2.
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• While functional programs can be abstract and high-level, they can also be low-level, and 
express low-level technical details. For example, Section 2.10 describes a low-level Haskell 
model of a parallel system with M PI functions. This ability is im portant because it allows the 
same language to be used for all the levels in the methodology.

• Pure non-strict functional programs can be transformed using equational reasoning, which re­
tains their meaning, as described in Section 1.1.2. It is therefore possible to transform a high- 
level functional program into a low-level one which fulfils the same specification, as shown in 
Chapter 3.

• Functional programs are actually programs and hence can be executed. This allows the pro­
grams at intermediate stages in a derivation to be tested, catching mistakes early on.

In principal, any such language would do, but in practice Haskell [Bir98, PJea99] is used because 
it is well-supported and the most widely used of these languages today.

1.3.4 Execution targets

This thesis focuses on the derivation of SPMD programs, especially C +M PI programs, as discussed 
above. However, in principle, if the methodology were equipped with the appropriate APMs and 
corresponding transformation rules and lemmas, it could be used for a much wider range of targets. 
In particular, the SIMD, MIMD and SPMD programming models all fit with the concept of APMs. 
Different kinds of programming language style, such as implicit and explicit parallelism, and message- 
passing and shared-memory style, are also expressible. Outlines of APMs for a variety of models 
are given in the literature—O ’Donnell et al give the outline of a PRAM APM in [ORROl], and 
[OROO] includes APMs for a MIMD machine, a specialised scan machine, and a digital circuit. These 
machines are very different from each other, and illustrate the power of the APM methodology and 
ParOp framework.

Nevertheless there are similarities between the targets, and it is therefore possible to use the 
abstract versions of a program for more than  one target, so th a t the derivation paths for these targets 
share several initial stages.

1.3.5 Practicality

If all of the steps in the methodology are carried out by hand, the derivation process can be compli­
cated, difficult and time-consuming. It may seem th a t writing parallel programs has been made more 
difficult instead of easier. However, this is not the only way to  use the methodology. It is possible 
to omit several of the transformations and stages and skip fiddly details. Alternatively many of the 
stages could be autom ated or given a high level of tool support, as discussed in Section 3.2.3.

1.4 Thesis structure and organisation

1.4.1 Lemmas and transform ation rules - im portant note

Many lemmas and transformation rules for the methodology are given in this thesis. They are 
collected together in Appendix A where they are categorised by topic and numbered consecutively. 
When they are given or referred to  in the body of the thesis, these numbers are used. However it is 
often necessary to introduce the lemmas and rules in the main part of the thesis in a different order 
to th a t in the appendix. Therefore they often appear with non-consecutive numbers in the thesis 
body.
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1.4.2 Thesis structure

The remainder of this thesis examines various issues in greater depth, presents the details of the APM 
methodology, and illustrates these with case studies.

The next three chapters give the details of the APM methodology. In particular, C h a p te r  2 
describes the structure of the methodology, focusing on the key stages in the derivation of a C +M PI 
program. The chapter shows how parallelism is represented and modelled at each stage, and describes 
the parallel functions in each APM and how they can be implemented and applied. In addition to 
the basic stages necessary for a C +M PI program, stages supporting d ata  distributions are presented. 
C h a p te r  3 then focuses on the transformations within and between these stages. Lemmas and 
transformation rules are given and discussed, as well as their derivation, proofs and application. 
C h a p te r  4 describes how design decisions can be made and incorporated in the context of the 
methodology. It illustrates the general guidelines with three examples of decisions.

This is followed by three chapters th a t present case studies in the methodology. These illustrate 
and expand on the information in the previous chapters. C h a p te r  5 presents a simple case study 
which is carried out in detail from its mathematical specification to its implementation in C+M PI. 
C h a p te r  6 looks at one particular APM function, and takes it through its stages from specification 
to implementation. This involves the choice and incorporation of data  distributions and detailed 
communication optimisations. This function is then used in C h a p te r  7 which presents the derivation 
of a Gaussian Elimination program. This is an example of a larger derivation, and shows how the 
necessary extra details and problems can be dealt with.

C h a p te r  8 then examines various issues relevant to the work in this thesis, and discusses how 
previous work tackles these issues and is related to this thesis.

Finally C h a p te r  9 concludes and describes some possibilities for future work.



Chapter 2

The Stages of the M ethodology

2.1 Introduction

An im portant part of the methodology presented in this thesis is the sequence of stages through which 
a  derivation passes, together with the APMs (Abstract Parallel Machines) or models of parallelism 
used a t each stage.

Therefore this chapter discusses each of the basic stages and APMs of the methodology, explaining 
what they do, how they work and how they can be used. Not all of these stages are relevant to all 
programs or to all target languages. In particular, this thesis and therefore this chapter focus on 
the target language C+M PI, and some of the later stages are specific to  a message-passing style of 
programming or to C +M PI itself. Most of the stages have been chosen to be applicable to a wide 
range of programs of this type.

Another im portant part of the methodology is the transformations within and between the stages 
presented here. These are given and discussed in the following chapter (Chapter 3).

2.1.1 Layout of this chapter

This chapter starts by examining some of the issues relevant to  all of the stages and to the derivation 
as a whole. Then, in Sections 2.4 to 2.11, it examines some of the particular stages in the derivation 
of a C +M PI program, in order of decreasing abstraction. Sections 2.7 and 2.12 then examine the 
changes that using explicit data distributions make to some of these stages. In particular, Section 2.7 
deals with the introduction of data distributions and their incorporation into the more abstract stages, 
while Section 2.12 presents the changes to the monadic stages. Finally, Section 2.13 summarises.

2.2 Layout of the stages

2.2.1 General layout

The stages in the methodology can be divided into three main types, specification, intermediate and 
target stages, as shown in Figure 2.1. The rectangles represent types of stages in the methodology 
and the arrows between them show their arrangement in a derivation. Specification stages come 
first, followed by intermediate stages, where details of the problem and target are introduced, and 
finally the target stages where extra language-specific details are added, and the program is finally 
transformed into the target language itself.

As a derivation progresses, the stages become more and more concrete. This is especially true 
of the intermediate stages, in which parallel details are introduced, and the program is transformed

10



C H APTER 2. THE STA G E S OF TH E M ETH O D O LO G Y  11

More language- 
specific

Target

Specification

Intermediate Stages

General

Figure 2.1: Key types of stages

from a  general form appropriate for a wide range of targets to one geared towards a specific target 
or small range of target languages.

2.2.2 Layout o f the individual stages

Figure 2.1 shows the types of the stages in the methodology. Individual stages fall into these three 
categories, and are related in a similar way. However their layout is not so linear since there are many 
possible derivations, not all of which use the same set of stages. The derivation is structured like a 
tree, branching a t each stage, depending on the next step.

These stages are related to the APMs (Abstract Parallel Machines), described in Chapter 1. Each 
stage has one or more APMs connected to it which provide the model of the parallel system and the 
parallel operations used in th a t stage’s programs. Basically each stage corresponds to a single APM, 
but in order to allow different types of parallelism to be expressed in a single program, more than 
one APM is allowed.

Figure 2.2 shows the structure of one possible set of APMs, presented in this chapter, along with 
the type of stage a t which each APM is used. The arrows show the relationships between APMs, 
and indicate whether functions from one may be transformed into functions from another. Neither 
all possible APMs nor all possible connections between APMs are given.

The specification stages, which are discussed further in Section 2.4, are split into several parts. 
The specification is given initially in mathematics, first abstractly, then with an algorithm or method. 
It is then transformed into Haskell.

The intermediate stages are described in Sections 2.5 to 2.8 and Section 2.12.1. Due to time and 
space constraints, only a selection of the possible intermediate stages are presented, and in practice 
there can be many more, modelling different aspects of a program and targeting different models 
and languages. Monads are used in the later intermediate stages in this chapter, because they model 
imperative features of C, such as state and 10. For other targets, they may not be necessary.

This thesis uses C +M PI as a target language, and so the target stages, described in Sections 2.9 to 
2.12, are geared towards this language. Again, in general, many other languages are possible. There 
is more than one target stage, modelling C +M PI with differing levels of detail. For example, the basic 
MPI APM views the whole system at once, on the collective level, while C +M PI uses an individual 
level viewpoint. Therefore there is an extra individual level stage a t the end of the derivation. Such 
a stage is only necessary for languages with an individual level viewpoint. More on this can be found
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in Section 2.11.
These stages are presented and discussed in depth later in this chapter, and the transformations 

within and between them are presented in the next chapter (Chapter 3). An example of a complete 
transformation, together with the actual sequence of steps performed is given in Figure 5.6 in Chapter 
5, and provides an interesting comparison.

2.2.3 Other com m ents

There is a fair degree of flexibility in the methodology and its layout. For example, programs can use 
functions from more than one APM. This allows different parts of a program to be transformed at 
different times. This is useful, for example, when the same optimisation can be applied to different 
parts of a program but there is, as yet, only enough information to carry it out on one part, and not 
on another. Nested data may lead to a similar situation when the parallelism of outer layers of data 
is known, but th a t of inner layers is not yet decided.

It is also not necessary to carry out the operations in a fixed order. There are a variety of 
intermediate stages given in this chapter, and, although they are presented in a fixed order, they 
don’t have to be carried out in this way. For example, in some cases it may be advantageous to 
specify the data  distributions before introducing monads, whereas, in other cases, it is better to do 
it the other way round. The basic structure of the methodology is general enough to allow this 
flexibility.

Multiple target languages and models are also possible (see Section 1.3.4). These vary widely, and 
it is useful to  model their characteristics in the final few Haskell stages. An example of this is the 
individual level stage in the C +M PI derivation. Such extra stages can simplify the final conversion 
to the target language. It is usually best to keep this conversion as simple as possible because i t ’s 
the only step in the derivation which cannot be proven. Therefore as much detail as possible is put 
into the previous (Haskell) stage.

2.3 A PM s in general

As indicated above, different stages in the methodology correspond to different APMs. These provide 
the model of the parallel system and the parallel operations used within the main program at that 
stage [OR97].

2.3.1 Advantages of A PM s

The use of APMs brings several advantages, including the following:

• The APMs separate parallel and algorithmic aspects by restricting the parallelism to APM 
functions. This simplifies the programs and gives them a higher level of abstraction. The 
parallel and algorithmic aspects can also now be dealt with separately.

• APMs structure the programs and the derivations by associating a particular model of paral­
lelism with each part of a  derivation.

•  They make it easier to add in and change parallel details because of the clear relationships 
between different APMs and their functions. A function or set of functions from one APM can 
transform into a fixed combination of functions from another.

• They also allow us to include extra information about functions formally and concisely. For 
example, it is important to  know whether a function is to  be executed in parallel or not. This
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information can be given by using an APM whose functions are to be executed in parallel, and 
another whose functions are all sequential. These APMs are given in Section 2.6.

2.3.2 The use of m ultiple A PM s w ithin  a single stage

The original concept of APMs, presented in [OR97] and [OROO], linked a single APM with each stage 
in the methodology. Each version of the program used parallel functions from its associated APM. 
In contrast, this thesis allows each version of a program to use functions from multiple APMs. This 
was done for two main reasons.

Firstly, it simplifies vertical transformations. When only one APM is linked with each version of 
a program, a vertical transformation from one APM to another must convert the whole program in 
a single step. No functions from the old APM can remain in the new version of the program. The 
resulting transformations can be complicated and difficult. It is simpler and easier if they can be 
broken down into several smaller steps. To do this, the program must pass through intermediate 
versions involving functions from both APMs. There are two main ways of doing this. The first is to 
create a new intermediate APM between each pair of APMs. This new APM would provide all the 
operations of the pair. Another way is to allow operations from different APMs to be used within a 
single program. The latter option was chosen in this thesis because it allows the originating APM of 
each function to be easily identified. It also gives greater flexibility as it can be easily extended to 
allow functions from more than two APMs at once. This allows more gradual transformations.

The second reason concerns the nature of an APM. An APM corresponds to a model of the 
parallel system, but there axe different levels of complexity possible in such a model. It is common 
for the model to refer to processors and communications, but it is often useful for it to provide more 
abstract information, for example, about the distribution of data  used between these processors. 
This gives the programmer more information about parallelism without having to give details of data 
placement and communication within the program. This thesis therefore takes this view of APMs. 
It provides, for example, different APMs for different data  distributions, even though they all use the 
same model of the processors and communications. However a single program may involve different 
data  distributions or different values of such abstract information. Therefore taking this view of 
APMs necessitated th a t multiple APMs be used within a single version of the program.

2.3.3 Im plem entation o f A PM s

Since an A P M  is a collection of functions th a t operate on a model of a parallel system, it can 
be implemented as a module which exports the operations provided by the APM. The operations 
themselves are simply Haskell functions.

Each APM has one model of the parallel system on which its functions work. This model must be 
sufficiently detailed to  allow the characteristics of the APM to be represented, and therefore is very 
closely connected to the nature of the APM itself.

Such a model can be implemented in Haskell using data structures. It must contain some items 
that represent sites, which are processors, threads, or locations of potential parallelism depending on 
the level of abstraction of the APM. They are implemented in this thesis as single data values or 
tuples of values, and the whole system as a sequence (or list) of these items. However, this is only 
one of many possible ways of modelling the parallel systems in Haskell.

The APM functions can then operate on this model. Some operate monadically, updating the 
system representation, while others take one picture of the system and return a new and separate 
one.
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Figure 2.3: Different versions of map

2.3.4 Different versions o f the same function

Different APMs often provide functions with the same name, and more than  one APM may be used 
in a single program during a derivation. However the functions from these APMs may have differing 
operational behaviours. Some method is needed to tell them apart.

This thesis does this by adding a subscript to each function, indicating the function’s APM. It 
may be the name of the APM, an abbreviation of this, or some other easily identifiable tag. In this 
thesis, functions from all APMs except the most abstract are annotated in this way. Functions from 
the most abstract APM are left unannotated, but since this is the only APM with this property, the 
functions can still be easily identified. In addition, in order to simplify the presentation in this thesis, 
annotations may dropped if it is clear which version of the function is being used.

For example, the function map  occurs in many APMs. It has, among others, a version which 
operates on binary trees of type BTreea , and one which operates on lists, [a]. The former is written 
mapb Tree and the latter mapq. Both of these have the same semantics as the standard map but on 
their own datatype (see Figure 2.3). The structure of the data  operated on and returned varies with 
the particular version of map which is used, as does the time complexity of the operation, map[] 
on a linked list is sequential, while mapBTree may be done in parallel, map with no annotation is 
the most abstract function th a t applies its first argument to each element of its second. It is shown 
on the left in Figure 2.3. No operational details are specified and a type is not given. A type is 
used for the implementation of the function, but this is only for the implementation and does not 
represent anything. Both the structure of the data  and the time complexity of the operation are left 
unspecified.

2.3.5 ParOps

As explained in Section 1.1.3, the ParOp form is a set form which can express the parallelism in a 
program. It is especially useful for specifying the parallel details of APM functions. However, the 
APM functions are given in this thesis as Haskell functions, and ParOps don’t  seem to appear.

Actually, ParOps are still being used in the thesis, even though they are hidden. A Haskell 
definition of an APM function is equivalent to its ParOp definition, if the syntactic sugar is removed 
and the function tidied up. As mentioned in [OROO], a ParOp function can be implemented in Haskell 
if some restrictions on its form are accepted, such as restricting the type and number of values that
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can be stored in the sites. The APM ’s functional model of the parallel system can be used as the 
im plementation’s basis. The f i  and gi functions that parametrise the ParOp form can then be inlined, 
and equational reasoning applied to the result to give an ordinary Haskell definition of the function.

E x am p le  For example, take the ParOp of mapp (the parallel version of map). This function applies 
a function, h , to the values in each processor. Its f i  and gi functions are as follows (the details are 
not im portant):

f i  (<?i, 9i (V))  = { h a i,  ()) 
f t  V  = ()

These are particularly simple because there is no communication, and the only thing processor i 
does is apply h to  its value.

This can be written in pseudo-Haskell as follows. This is made simpler because there is no input 
to or output from the system as a whole.

ParOp oldsta te  = new sta te
w here (new s ta te \\( i — 1), At) =  fi(o ld sta te \\(i — 1), gi(V))

V  =  ( A   A n)

Inlining the f i  and gi functions gives:

ParOp oldsta te  =  new sta te
w here (new sta te\\(i — 1), Ai) = (h o ldsta te \\(i — 1), ())

V = (Au  . . . ,  An)

which is equivalent to

new sta te \\(i — 1) =  h o ldsta te \\(i — 1)

If this is written in actual Haskell, using, for example, a list comprehension, it can be proved 
equivalent to the ordinary definition of map p.

U se o f  ParO ps

Using ParOps, we can therefore produce Haskell definitions of APM functions, using a standard 
translation of the ParOp format into Haskell.

However they are designed mostly as a specification format, since they are capable of expressing the 
operational semantics of a function. Although the Haskell definition is so closely linked to the ParOp 
definition, it is sometimes not so clear about operational details. It may incorporate assumptions and 
implicit information about such things as the representation of parallel sites by data  structures, and 
may obscure the function’s communication. These assumptions have to be made explicit before the 
reader can understand the operational semantics.

The ParOps can therefore be used to  make things clearer, e.g., to make the implicit assumptions 
explicit, although it may be more useful for the reader if such assumptions are also stated in words.

2.3.6 The use of parallel Haskell

As described above, the stages are all implemented in sequential Haskell—the parallelism is merely 
modelled rather than actually executed. This has advantages for simplicity and prototyping. Pro­
grams can be developed and tested quickly and without access to a parallel machine. However it also 
has disadvantages. Although intermediate programs can be run, and their correctness can be checked, 
their parallel operational behaviour cannot really be observed, although it can be reasoned about and
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simulated to a limited extent. This is a drawback because of the importance of this behaviour in a 
parallel program. Many of the transformations, such as load balancing, deal mainly or solely with 
such behaviour. It would therefore be useful if these intermediate stages could actually be executed 
in parallel.

This can be done using GpH [THLPJ98], a parallel version of Haskell, for the implementation of 
the APMs. GpH is described in more detail on the following page. It is possible to run GpH both 
on a real machine using GUM ([THMJP96]) or to use the GranSim simulator ([Loi96]) to simulate 
its behaviour accurately on a variety of machines with different speeds and characteristics. It also 
comes with a set of profiling tools which allow one to visualise different aspects of the processors’ 
behaviour and load [Loi96], and thus observe the operational behaviour of a program. These facilities 
are employed in this thesis in Section 5.4 to  visualise the effect of a decision and to see if it has the 
expected effect.

GpH is most suitable for use a t fairly abstract levels when basic parallelism (what is and isn’t 
executed in parallel) has been specified but not more concrete parallel details. In the more abstract 
levels when parallelism hasn’t yet been specified, GpH can still be useful. It can help to investigate 
initial parallelism and data  dependencies to help to determine which things i t ’s best to make parallel 
and which sequential. In these cases, its simulator, GranSim, can model an idealised machine. 
However at these levels, GpH often complicates the code. At more concrete levels, it isn’t always 
suitable either because its model of parallelism doesn’t  completely match with th a t provided by some 
of the target languages. In particular, it is not location-aware—it does not specify which processor 
has which data  or does which task. C+M PI, on the other hand, is location-aware, and several parallel 
techniques, such as data distribution and explicit static load balancing, depend on location awareness.

Therefore it is useful to be able to use both GpH and sequential Haskell. This can be done 
by providing two versions of an APM, one implemented in each language. As both languages are 
versions of Haskell, functions from both APMs can be used in the main programs without difficulties. 
The sequential Haskell version can be used the m ajority of the time, and the GpH version when the 
programmer wants to check operational behaviour. An example of this is given in Section 5.5.

It can also be used later on to check operational behaviour, or to help the programmer to make 
difficult choices. Sometimes it is difficult to make such choices using algebra, and it can be helpful 
to run some of the options to see what happens. This method is not used in this thesis, but GpH is 
used to check the result of a decision made using algebra and cost models (Section 5.5). This is not 
necessary but provides reassurance about the choice.

However, due to  the characteristics of GpH, such as its location independence, the parallel be­
haviour in such situations may not be a completely accurate representation. Nevertheless it can 
still provide valuable information. For example, static load balancing is location aware—tasks are 
explicitly moved from particular processors to other specified ones. The location of the tasks cannot 
be observed in a GpH implementation, but the total load on the system can be. This situation is 
examined in a particular case in Section 5.5.

Naturally, GpH is of greater use when targeting a language which is similar to it than when 
targeting languages such as C+M PI. It is also possible to use GpH as the target language itself. The 
effects of parallel transformations on the programs could then be seen immediately. An example of 
such a transformation can be found in [LTB01].

D eta ils  o f  G pH

GpH(Glasgow Parallel Haskell) [THLPJ98] is an extension of GHC [GHC] (an implementation of 
Haskell [Bir98, PJea99]) in which the parallel annotations, £par£ and £seq£, advise the compiler as 
to what can and can’t be done in parallel. Expressions annotated with £seq‘ have to be evaluated
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sequentially, one after the other. This is often used to force evaluation, ensuring the right amount 
of strictness for parallelism. In contrast, those annotated with ‘par‘ don’t have to be evaluated in 
parallel. The annotation just indicates th a t this is a possibility.

For example, in the expression, a ‘par1 6 , a spark for a is generated, and then the current processor 
continues by evaluating b. The spark indicates th a t a could be evaluated in parallel, and when there 
is a free processor, it can pick up the spark for a, tu rn  it into a thread and start to evaluate it. If b 
requires the value of a, it waits until a is finished evaluating and then gets its value. If, however, b 
needs the value of a before a is turned into a thread, then the current processor just starts to evaluate 
a and a ’s spark is abandoned.

Programming in GpH can be a bit fiddly, as the parallel details are mixed up with the basic 
algorithm. However a method called strategies can be used to increase abstraction. A strategy is a 
function which controls the dynamic behaviour of an expression (e.g., its evaluation degree or the 
extent of its parallelism). It is also written in GpH, and is attached to  the corresponding expression 
as an annotation, with the Haskell function ‘using*. The main expression then need not contain the 
parallel details.

E xam ple For example, the quicksort function, 

quicksort Q =  0

quicksort (x : xs) = lowsort 44- [rr] 44- highsort 
w here

lowsort = quicksort (filter (<  x) xs) 
highsort =  quicksort (filter (>  x) xs)

can be parallelised by introducing ‘par's and ‘seq‘s into the code directly or by using a strategy 
in the last pattern:

quicksort(x : xs) = lowsort 44- [a:] 44- highsort ‘using1 strategy 
This has the advantages th a t the main code need not be changed and th a t the parallel behaviour can 
be changed simply by replacing strategy with a different strategy.

An example strategy which might be used with this example is
parstrategy result = lowsort ‘par1 highsort ‘seq‘ result ‘seq‘ ().

This says th a t the two main parts of the calculation can be done in parallel.

In GpH parallelism must be identified by the programmer. Therefore the programmer can control 
features such as the size of the tasks which are sparked off in parallel (granularity) and which pieces 
of data  are operated on in the same processor (data clustering). However the programmer has no say 
in schedule or allocation—there is no way to specify which processor should execute which piece of 
code. The decisions of data  and task placement, load balancing, etc. are up to the run-time system.

GpH uses a dynamic load balancing strategy: when a processor is idle, and has no work in its 
local spark pool, it tries to get a spark or a thread from other processors. Thread migration and 
other such communication strategies can be turned on or off by the programmer as a run-time system 
(RTS) option.

2.4 Specification stages

At the beginning of a derivation the problem to be solved must be specified. This specification takes 
up the initial few stages of the methodology. In principle, any programming problem can be specified, 
but this thesis focuses on mathematical and scientific problems.
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It is im portant th a t the initial specification is correct and clear. An incorrect specification will 
lead to an incorrect program which will not give the right results. An unclear specification may lead 
to a program which does different things from those originally intended, thus not giving any useful 
results.

For example, the specification might say “the program should sort a sequence of integers” , but 
not say what ordering should be used. Both the specifier and the programmer may think they know 
which ordering is meant, but they might have different ideas about it. For example, the original 
intention may be decreasing order, but the programmer assumes increasing order. This leads to a 
program which produces a different list from that intended (see Figure 2.4). This is, of course, rather 
an extreme case in which a large part of the problem is left unspecified. Usually it is smaller, but 
still significant, details which are ambiguous. These still lead to incorrect or useless programs.

intention program

Figure 2.4: An unclear specification of a sort

Therefore it is im portant to specify the problem clearly and without ambiguity. This doesn’t mean 
that there must only be one possible solution or one way of obtaining a solution, but that, given a set 
of inputs, it is clear what possible value or values the output can have. For example, x 1 + 2x -t- 8 =  0 
specifies the possible values of x  clearly, but there is more than one value of x  which solves it and 
more than one way of finding these values.

A natural language specification does not usually fulfil this role because a natural language such 
as English is full of ambiguities and multiple meanings. For example, consider the sentence earlier 
in this section, “the program should sort a set of integers” . The problem above arose because of the 
ambiguity of the word “sort” . This and other problems are common in natural language [Inc88], and 
hence a more precise method of writing the specifications is needed.

There are several possible methods which could be used. M athematics, pseudo-code, an imperative 
or declarative programming language, and the ParOps mentioned earlier in this chapter are just some 
of the possibilities. These have varying levels of abstraction and explicitness about parallel and other 
details. In the APM methodology, mathematics is used initially because of its high level of abstraction 
and its wide-spread use.

2 .4 .1  M a th e m a tic a l sp ec ifica tio n

Mathematics is often used as a specification method (see, for example, [Inc88]). It is clear, precise
and unambiguous. It can also be abstract, unlike many programming languages, avoiding details,
such how a solution is obtained, although these can be given if necessary. It can be used to specify 
only what must be done, without saying how.

For example, the above specification, “the program should sort a sequence of integers” can be 
written using mathematics, without any information as to how to do it, as:

Given a sequence, < s i , . . . ,  sn >,  of integers, 
find a permutation < t i , . . . ,  tn >  of < 1 , . . . ,  n  > such that 

sti <  s tj for 1 < i < j  < n.
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It can also avoid operational details, such as locations of values and communication, which are 
given in other forms such as ParOps. It can be useful to be able to specify such things, but that 
doesn’t belong in the most abstract stage of the methodology.

The things which it must specify are the essentials, such as the result value or values in terms of 
the input values and the range of input values for which this must hold.

A lgorith m  specification

However, even though these details don’t have to be included, it can be helpful to include some of 
them. A totally abstract specification is a good starting point, as it allows multiple implementations, 
but it often cannot be easily transformed into a programming language such as Haskell. The specifi­
cation can therefore be refined, still within the m athematical framework, to give some indication of 
how to solve it, such as an algorithm.

For example, the abstract specification above says clearly what the resultant set should look like, 
but it doesn’t give the programmer much help with actually calculating this set. There are many 
sorting algorithms which can actually be used (see, for example, [CLR90]) and one of these can be 
chosen and given as a refinement of the specification. Later transformations in the derivation can 
also modify and improve this algorithm.

For example, here is one algorithmic specification for the problem, using the quicksort algorithm, 
which is given in many textbooks including [BW8 8 ].

Given a sequence, < s i , . . . ,  s„ >,  of integers, partition the sequence of indices, < 1, . . .  , n  > into 
three sequences:

Ti = <  i\si < s i >
T2 = <  =  Si >

T3 =<  i|s j > si >
If Ti or T3 have more than one element, then sort them using this same algorithm to give T[ and T3 . 
The result < t i , . . . , t n >= T{ -H-T2 -H-Tg.

In this case there are two separate specifications, an abstract one and an algorithmic one. Both 
of these can be given within the methodology, but the programmer has the responsibility of proving 
th a t the latter specification fulfils the first.

L im its im posed  by th e  m athem atica l n otation

Despite the power and advantages of maths notation, it has its limits. For example, it cannot express 
subjective qualities. One can express in mathematics the structural properties required of a bridge, 
but not that it should be aesthetically pleasing.

It is im portant to  be aware of such limitations so th a t undue time is not spent trying to formulate 
specifications in mathematics th a t cannot be written in this form. The APM methodology does not 
deal with such specifications. If desired, however, such specifications can sometimes be reconsidered 
and changed so th a t they can be written in mathematical notation.

These limitations are acceptable because of the connection between mathematics and program­
ming languages. A specification which cannot be w ritten in m aths cannot be written in a programming 
language either, at least a t present. Mathematics is a t least as expressive as programming languages.
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L im its  im p o sed  b y  th e  ta rg e t  lan g u ag e

In fact, mathematics is more expressive than most programming languages. By using the full power 
of mathematics, problems are allowed th a t can be programmed in only a few or not even any pro­
gramming languages. This is done to allow the derivation of programs for a wide range of languages 
and of the full range of programs in those languages. However, since Haskell is used in the majority 
of derivation stages, some restrictions are introduced when Haskell is introduced (see Section 2.4.2). 
But even Haskell contains many features not present in some of the target languages.

Therefore, there are problem specifications that cannot be solved in the target language. An 
example of this occurs with a target language such as C which does not have polymorphism—functions 
have to operate on data  of specified types, not on general data. But a program specification can say 
th a t it should work for multiple types, e.g., any numerical type.

In such a case, we could say that the specification is not solvable in the target language. This is 
strictly true, but not very helpful to the programmer. He or she may prefer to have a program which 
only works on Integers rather than no program at all.

The methodology deals with this as follows: As well as introducing details, the derivation tree can 
narrow down the specification, for example, by only insisting th a t it works for certain types of values, 
or for values with a certain property. The resulting program will then fulfil this special case of the 
specification rather than the specification itself. It is im portant to  keep note of these modifications 
to the specification so that the user doesn’t think th a t the program fulfils the initial specification, 
and try  to use the program for data for which it does not work.

The map-triangle case study in Chapter 5 contains two examples of this. In it, the specification 
is narrowed twice, first in Section 5.3 and then in Section 5.7.

2.4.2 Haskell specification

While mathematics is very useful for the specification, it is not best suited for the intermediate stages 
in the methodology. Haskell is chosen instead for the reasons given in Section 1.3.3. In order to use 
Haskell for these stages, the initial specification must first be written in Haskell.

D ifficu lties

However, although functional languages such as Haskell are closely related to mathematics, the trans­
formation from one to the other is not trivial. This is because there are some substantive differences 
between mathematics and Haskell in terms of their expressiveness. Some of these are discussed below.

R e la tio n s  Haskell is a functional language and is therefore based on functions, which map values 
in the domain to single values in the codomain. However, m athem atical specifications are 
often relational, mapping values in the domain to possibly many values in the codomain. A 
relational language [CBS97], such as Libra [Dwy95] could therefore be used here with greater 
expressiveness. Occasionally this power is very useful, but usually it is not necessary because 
most programming languages are based around functions.

Relational specifications are therefore usually only used in the methodology to  specify sets 
of acceptable results from the program, i.e., to  express nondeterministic results. The Haskell 
specification can, however, express this using methods such as nondeterministic sets [H089, 
G099]. Alternatively the specification may be refined a t this point to specify which of the 
alternative values will be produced. The resultant programs will still satisfy the specification, 
but this will rule out several possible solution programs.
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A lg o rith m ic  d e ta ils  If a m aths specification is given only in its abstract form, it can be very hard 
or even impossible to transform it into Haskell. As explained in Section 2.4.1 above, this can 
be overcome by giving a more concrete maths specification involving algorithmic details.

Another solution is to allow algorithmic details in the implementation of functions in Haskell, 
but to hide them from the main program using the module system. This way the functions seem 
abstract to the programmer and any transformations of them depend only on their specified 
properties not on their implementation.

T y p es  Although Haskell has a powerful type system, including, among other features, polymorphism 
and type classes, the type system is limited and does not provide totally general types and type 
m anipulation mechanisms. For example, existential types are missing. There are extensions 
available to Haskell and also research going on all the time, but current standard versions of 
Haskell [PJea99] are limited. Therefore, in order to transform a m athematical specification into 
Haskell, it may sometimes be necessary to either restrict the specification or simulate the type 
features using other features available.

Despite these reasons, Haskell is used in the methodology. The problems can be overcome as 
discussed above, and I feel th a t the advantages of Haskell, as listed in Section 1.3.3 outweigh the 
disadvantages.

2.4.3 An A P M  for the specification level

The Haskell specification is a stage in the derivation and therefore needs an APM (see Section 2.2). 
However a t this stage it is undesirable to specify any operational details, such as whether an operation 
is parallel or sequential. Giving such details at this stage will restrict the choices available further on 
and thus may lead to sub-optimal solutions. Therefore the APM should be as abstract as possible.

In general, APM functions a t this level should say what the final results are given the initial 
values, but not anything about the distribution of the data  or what is parallel and what sequential. 
Their implementations may assume some of these things, such as a particular distribution of the data, 
but these are hidden from the programmer.

F in i te  seq u en ces

In common with other stages in this thesis, the Haskell specification uses finite sequences as the basic 
datatypes for representing ordered data such as matrices and arrays. Other datatypes can be used for 
other types of data, such as unordered data  (e.g., sets) and structured data  (e.g., graphs). The user 
can also use other datatypes or create his own. However, for the purposes of this thesis, it suffices to 
focus on ordered data  represented by finite sequences.

An abstract finite sequence (abbreviated to FinSeq) is a finite ordered sequence of values of the 
same type, such as finite lists and arrays. It is an abstract data  type and says nothing about the 
storage or location of the data. Such information belongs later in the methodology.

The implementation of finite sequences is hidden from the user, and properties of the implemen­
tation should not be confused with properties of the sequences themselves. They can be implemented 
in various ways, for example using arrays or specialised structures, but standard Haskell lists have 
been used in this thesis for ease of implementation. Lists are well-supported in Haskell and many 
of the desired higher-order functions are already provided on them. List manipulation functions can 
also be used to construct and manipulate sequences.
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Function Operation
map
fold
fold variants 
(e.g., foldr, fo ld ll) 
scan and variants 
accumscan  
and variants 
filter

take

reverse
speciaLsum

Applies a function to every element of a sequence.
Sums the elements of a sequence using a given function. 
Similar to  fold but may have specified evaluation 
orders and starting values.
Return the partial sums of a sequence.
Versions of scan in which one result depends on all 
previously generated results.
Returns those elements of a sequence satisfying a given 
property.
Returns the specified number of elements of a sequence, 
starting from the front of the sequence.
Reverses a sequence.
An example of a user-defined function.
Returns a sequence in which each location contains the 
sum of its neighbours’ values in the original sequence.

Table 2.1: Outline of the specification APM

T he A P M  for th e  specification  level

The APM is based on finite sequences, and contains a number of functions which can be added to. 
These functions specify the final result given the initial values, but their implementations are hidden 
from the user.

For example, map can be specified as follows, using list notation for the sequences, and . . .  to 
denote intermediate elements in the sequence:

map :: (a —> 0) —> FinSeq a  —> FinSeq 0 
map f [ x i , . . . ,  zn] =  [f xi, . . . ,  /  xn\

This indicates th a t map applies /  to each element in the sequence but not how the data is stored 
or the order in which /  is applied to the elements.

The APM is outlined below and in Table 2.1 with some examples of the type of functions which 
are in it. It is outlined and not given fully because we expect and encourage the programmer to 
expand on it in order to tailor it for her particular applications and problems. It is not fixed, and is 
meant to be flexible. The examples should aid the programmer in writing her own functions.

A P M  function  exam ples

This section presents some further examples of functions from the specification APM with their 
specifications and English descriptions. The first two are standard Haskell higher-order functions, 
and their implementations can be found in the standard Prelude. The third function, accum scanrl, 
was specially written. It is discussed in detail in Chapter 6  and its implementation can be found in 
Section 6.2.2. Finally, specialsum  is an example of a user-defined function and its implementation 
is given here. 

fo ld l:

foldl :: (a  —> a  —> a) —» a  —» FinSeq a  —>• a
foldl (©) a [xi, X2 , . . . ,  xn] =  (((a © Xi) ® X2 ) © . . . ) ©  xn

foldl sums the elements of a  sequence from its left-hand end, starting the calculation with a and 
using ©. foldl and foldr (which sums the elements from the right) are included in the APM, not just
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fold, because fold does not specify an evaluation order, leading to nondeterministic values when © is 
not associative.

foldl and foldr don’t actually have to  be evaluated in the specified order, as long as the specified 
result is obtained. In particular, if © is associative, then they can be evaluated in a parallel fashion.

take:

take :: In t -+ FinSeq a  —> FinSeq a  
take 771 \xi, . . . , £n] — \X\ , . . . , 2rnin{m,n}]

take returns the first m  elements of a sequence, or all the elements if the sequence is shorter than 
m. This may be used as a mask so th a t only certain parallel elements are operated on, or done
sequentially to remove some values. However this version of take does not specify such details.

a ccu m sca n rl-.

accum scanrl :: (a -+ FinSeq /? -+ (3) -+ FinSeq a  -+ FinSeq (3 
accum scanrl f  [xi, . . . ,  rrn]
= \f xi [res2, • • •, resn], f  x2 [res3, . . . ,  resn], . . . ,  /  xn- i  [resn], /  xn 0 ]
=  [resi, . . . ,  resn]

accum scanrl is one of a family of accumulating scan functions in which the ith  value of the result 
may depend on all the previously calculated values, not just the immediately previously calculated 
one. This particular version of the function starts its calculations a t the right-hand end of the 
sequence, and has no initial value.

This family of functions is useful for implementing certain kinds of for loops as explained in Section 
7.2.3. The functions can be written in terms of ordinary scans, but are defined separately so that they 
can be used and manipulated more easily. More information about them  may be found in Chapter 
6  in which accum scanrl is implemented in a variety of APMs, right down to an implementation in 
C+M PI.

A similar accumulating scan function is given in [Pep93], although its relation to scan and to for 
loops is not identified, the author focusing instead on a recursive definition involving map and on its 
systolic dataflow implementation.

special su m :

special s u m  :: (a -+ a  -+ a) -+ o: -+ a  -+ FinSeq a  -+ FinSeq a  
specialsum  (©) I r [x i,. . .  ,x n] = [Z © x2, x\ © x3, . . . ,  r n_ i © r]

specialsum  returns a sequence in which the value of each location depends on its neighbours’ 
values in the original sequence. I and r  are boundary values. This expresses a pattern  of computation 
common in numerical analysis.

This is an example of a function which the user can define and add to the APM. It can be written 
in Haskell using list comprehensions as follows:

specialsum  f  I r xs = \f x y \ x  +- I : (init xs), y +- (tail xs) -H- [rj]

2.5 Interm ediate stages

After the specification stages come the intermediate stages, as shown in Figures 2.1 and 2.2. They
all introduce details to  the program, but, within this, vary in purpose and type. Some of these stages
only occur in particular derivations, while some of them occur in all. For example, it is im portant 
to specify what is parallel and what sequential in any program, while static load balancing is only of 
use to  a limited subset of programs.
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There are two main kinds of intermediate stages. At some the program is brought closer to its 
target language or machine. Examples include the specification of parallelism and data distribu­
tions. The transformations a t these stages are known as vertical transformations. At other stages, 
such as load balancing and restrictions of the specification, the algorithm itself is modified. The 
transformations at these stages are called horizontal transformations. Both vertical and horizontal 
transformations are discussed in more detail in the following chapter in Sections 3.4 and 3.5.

The two different kinds of stages are characterised in the methodology by their use of APMs. 
When the program is brought closer to the target, the program usually uses a different APM after 
the transformation than before. Algorithm modifications, on the other hand, usually use the same 
APM. This is because algorithm modifications aren’t more specific about the parallelism, they just 
m anipulate it in different ways. However, when a program is brought closer to the target, new parallel 
and system details often need to be modelled. These two different types of stages correspond to two 
types of transformations, horizontal and vertical ones as described in Section 3.2.

Most of the intermediate stages involve making decisions. These may be about the characteristics 
of the target language or machine, the particular implementation to be used, or details of optimisa­
tions. The first kind are determined by the target which is often known in advance. The others usually 
involve efficiency considerations. How such decisions can be made in the context of the methodology 
is considered in Chapter 4.

The following sections (2.6 to 2.8) look in detail a t a few intermediate stages which use separate 
APMs. An example of an algorithmic modification, load balancing, is given separately in Section 4.4.

2.6 Expressing parallelism

The specification so far is fairly abstract; it does not say anything about where the data is stored, 
not even which calculations are done sequentially and which in parallel. We may have an intuitive 
understanding of what is going on, but so far we haven’t limited the program to execute in any 
particular fashion. Before intermediate stages such as load balancing and the specification of data 
distributions can be carried out, it is necessary to decide on this basic parallel behaviour. More 
complicated parallel behaviours are specified later in the derivation.

It is also possible to  leave the parallelism of some computations unspecified, and to use the trans­
formation to  this stage again later in the derivation to specify them. This may be done multiple times. 
This is allowed because some transformations, such as certain types of load balancing, only require 
the parallelism of the outermost nesting levels to be specified. T hat of more deeply nested levels 
doesn’t need to be. It may be advantageous to leave the specification as late as possible because some 
functions benefit from being executed in parallel only under certain restrictions. It is best to intro­
duce these restrictions as late as possible in order to keep the top levels in the methodology general, 
so th a t the first part of the derivation can be shared among the maximum number of programs.

2.6.1 R epresentation o f parallel behaviours

As indicated in Section 2.3.4, properties such as parallel behaviours can be indicated by annotating 
functions with subscripts. These act as indicators to further levels in the derivation of the role of the 
d ata  and the operation of the functions, and help in future derivation (e.g., when calculating data 
distributions or introducing load balancing). These functions operate over d ata  structures that are 
variants of the FinSeq d a ta  type introduced earlier.

Parallel functions have subscript P  and operate on data  of type ParFinSeq. This is a version 
of FinSeq carrying the assumption th a t its elements will be stored in several processors. Sequen­
tial functions have subscript S  and use data  of type SeqFinSeq. The SeqFinSeq type carries the



C H APTER 2. TH E STAG ES OF THE M ETH O D O LO G Y 26

assumption th a t its elements will all be stored in a single processor. The implementations of these 
functions are also affected—S  functions must be implemented sequentially, while P  functions may 
or may not be executed in parallel. This uncertainty arises because data  may have to be dealt with 
sequentially even if i t ’s stored in different processors due to data  dependencies. This usually causes 
extra communication.

These data  types are implemented by lists in a similar way to FinSeq, but again they should be 
viewed simply as finite sequences of data  without thinking about their implementation. They are 
implemented sequentially using a particular data  structure, but their denotational meaning carries 
information about their parallelism, and abstracts away from the sequentiality of lists. This denota­
tional meaning is not given formally but is attached informally to the data  type as part of the APM. 
The programmer should think in terms of it, although the implementations may be useful for proofs.

2.6.2 The m odels of the system

A parallel function uses ParFinSeq a  as the model of the parallel system where a  is the type of values 
in a processor. If there are multiple values of type fi in a processor then these form a sequential 
sequence and a  = SeqFinSeq fi. Instead of individual processors, the values can be distributed over 
clusters of processors, each with a value in it. In this case the type becomes ParFinSeq (ParFinSeq fi).

E x a m p le  For example, a sequence of sequences, [[1,2], [3,4,5,6], [7,8 ]], may be stored in parallel 
with one sub-sequence in each processor. [1,2] could be stored in the first processor, [3 ,4 ,5 ,6 ] in the 
second, and so on. Such a sequence would have type ParFinSeq(SeqFinSeq Int). Alternatively the 
sub-sequences can be distributed over the processors in a cluster, the value 1  in one processor and 2  

in another. This would have type Par FinSeq (ParFinSeq Int).

2.6.3 The A PM s

Together the annotated functions and the representations of the parallel system form two APMs: 
Parallel and Sequential APMs. These APMs are closely related to each other and to the abstract 
APM from Section 2.4. They provide essentially the same functions, just with different annotations. 
Their implementations are also very similar, and in some cases are identical.

For example, in the most abstract APM there is a function, map. Corresponding to this, there 
are functions mapp and maps in the APMs here. A few of the functions from these APMs are given 
in Table 2.2 with an explanation of their meanings.

Function Meaning
mapp

maps
filterp

filters

A function, / ,  can be applied to all the elements in 
the given sequence at the same time.
The function is applied to  each element in turn.
A sequence is filtered by examining each element to see 
whether it satisfies the given predicate.
Each element of the sequence is examined a t the same time. 
Each element is examined in turn.

Table 2.2: Brief outline of the parallel and sequential APMs (See Table 2 . 1  for general meanings of 
these functions.)

Functions are also provided to convert between these data  formats. These correspond to data 
redistribution operations on the target, and hence are usually expensive functions to implement. 
They are:
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seqtopar :: SeqFinSeq a  -» ParFinSeq a  and 
partoseq :: ParFinSeq a  -> SeqFinSeq a.

As with the abstract APM, the provided functions form the foundations of a set which the user 
can build up rather than a definitive set. In addition, this is not the only way of representing the 
state a t this level, and different APMs can be produced by the programmer as necessary.

These two APMs can be used together. A program at an intermediate stage will usually contain
functions from both of these APMs, since all of the functions in a program are unlikely to have the
same parallel behaviour. This is a slight modification of the original idea presented in [OR97] but 
allows greater flexibility.

2.7 D ata distributions

The specification of data  distributions in a program is an intermediate stage in the methodology. 
The use of d ata  distributions affects the model of the parallel system and so new APMs are used. 
One APM is provided for each distribution to make it easier to m anipulate and reason about the 
distributions.

Data distributions describe the way in which the data  is stored across the processors; they say 
which data  is in which processor. It is im portant to know this in order to  create an efficient and 
correct program.

D ata distributions, other than the simplest naive ones, are usually used when there is more data 
than the number of processors. More than one piece of data  must then be allocated to each processor. 
Particular distributions can also be used to  facilitate the use of particular programming techniques 
(e.g., tree-like distributions are useful for divide-and-conquer methods), or to give a program a good 
load balance.

D ata distributions can be assigned statically before run-time, or dynamically at run-time. The 
latter carries (sometimes substantial) runtime overheads, but can result in distributions better suited 
to the actual data. This thesis focuses on the former, because run-time optimisations provide less 
scope for the investigation of APMs at this stage, being more concerned with detailed algorithms 
than with the representation of parallelism.

2.7.1 Exam ples o f data distributions  

Som e standard d istributions

There are various standard data  distributions, and it is worth looking a t some of these in a little 
detail just now to illustrate what follows and embed it in reality. Other such distributions exist and 
are similar.

Figure 2.5 illustrates these distributions. The large rectangles represent the memory of the pro­
cessors, and the notation, xi, represents the ith  element in a sequence.

The sequential distribution, corresponding to the sequential APM introduced previously, is not 
really a distribution in the strictest sense of the word, as all of the data  is in a single processor, rather 
then being distributed. However it does represent one way of arranging the data.

The naive distribution is the simplest way of distributing the data  across multiple processors. It 
assigns one value to each processor. This assumes at least as many processors as there are pieces of 
data, thus limiting the number of data elements the program can deal with. However most parallel 
programs operate on large data  sets, and therefore this distribution is often unrealistic in practice. 
The parallel APM can be used for this distribution.
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Sequential x l x2 x3 x l 8

Naive
(Parallel)

x3 x l 8

(4 processors)

Cyclic 
(4 processors)

Block-cyclic 
(4 processors, 

blocksize = 2)

xl | x2 x3 x4 x5

xl x5 x9 xl3 xl7

x6 x7 x8 x9 xlO

x2 x6 xlO xl4 x l 8

x l l x l2 xl3 xl4 xl5 x l 6 xl7 x l 8

xl x2 x9 xlO xl7 x l 8 x3 x4 x l l  x l2

x3 x7 x l l xl5

x5 x6 xl3 xl4

x4 x8 x l 2 x l 6

x7 x8 xl5 x l 6

Figure 2.5: Some standard data  distributions

The blockwise, cyclic and block-cyclic distributions, on the other hand, can handle large amounts 
of input on a fixed size machine, by assigning multiple values to each processor.

The blockwise data distribution assigns the data  in blocks of size 6 , one block to each processor, 
until it arrives a t the last processor which gets all the remaining data  items. The block size, 6 , is 
usually calculated from the total size of the input d ata  in such a way th a t the last processor gets 
less than  b items. If there are n  pieces of data  and p  processors, b is often \n /p \.  In some situations 
consecutive data  is used together, and in these, this distribution reduces communication costs by 
placing such data  together in the same processor.

The basic cyclic distribution assigns one piece of data  to each processor and when it runs out of 
processors it goes back to the first processor and continues assigning data  as before. The values can 
also be indexed in this cyclic fashion, so th a t element x l  in Figure 2.5 has index 1, x2 2, and so on. 
This cyclic indexing is used later in this chapter.

In general, cyclic distributions don’t have to assign individual items. They can use blocks of a set 
size as in the blockwise distribution. Such as distribution is known as block-cyclic. An example with 
block-size 2  is shown in Figure 2.5.

As indicated in [To95] (pl51), cyclic distributions often give a better load balance than blockwise 
ones, but may have higher communication costs. This tends to be true when the size of individual 
pieces of data and tasks is variable and consecutive data  is not used together.

Specialised  d istributions

As well as the standard distributions, specialised ones can be created for particular situations. This 
may be to balance the load on the processors, or to keep data  which is accessed together in the same 
processor. APMs for these distributions can be created in similar ways to  those for standard ones, 
but the standard ones are sufficient to demonstrate the ideas.

H igher d im ensional data

The distributions described above deal only with 1-dimensional data, but they can be easily ex­
tended to work with higher dimensions. A common example of such higher-dimensional data is a 
2 -dimensional matrix.

In such cases, there are various possibilities. Each dimension of the d ata  can be distributed 
separately using a 1 -dimensional distribution or some of the dimensions can be treated as single 
value, reducing the number of dimensions under consideration, as shown in the examples in Figure 
2.6, which uses similar notation to Figure 2.5. The first example shows the original matrix, and
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the subsequent ones show its distribution over four processors. The rows are distributed first in a 
blockwise fashion, and then the columns are distributed in three different ways. Alternatively, a 
specialised multi-dimensional distribution can be used.

xl x2 x3 x4

x5 x6 x7 x8

x9 xlO x ll x!2

x!3 x!4 x!5 x!6

xl x2 x3 x4

x5 x6 x7 x8

x9 xlO x llx l2

x!3 x!4 xl5 xl6

xl x2 x3 x4

x5 x6 x7 x8

x9 xlO x ll xl2

xl3 xl4 xl5 xl6

xl x3 x2 x4

x5 x l x6 x8

x9 x ll xlO xl2

xl3 xl5 xl4 xl6

Original matrix (Block, Block) (Block, Cyclic) (Block,
Collapsed 2nd dimension)

Figure 2.6: Some distributions of two-dimensional data  on four processors

The target architecture also needs to be considered. Architectures such as n-dimensional hy­
percubes can deal directly with multidimensional data, but they are rare and expensive. 2D (and 
sometimes 3D) matrices of processors are more common. Higher-dimensional data distributions can 
be mapped onto such architectures, but there will no longer be direct connections between processors 
which are adjacent in the distribution, increasing communication time.

2.7.2 D ata distributions in the m ethodology

It is useful to express data distributions explicitly and provide operations th a t manipulate explicitly 
distributed data. These operations can then be used without worrying about how they are imple­
mented, and what communications they require. This is especially useful during stages which are 
abstract about such details.

However, many target languages, including C+M PI, don’t provide data  distributions—the nec­
essary communications and other details must all be given in the program. Therefore, if such a 
language is targeted, we cannot leave the explicit data  distribution functions in the program. Later 
in the methodology, as the program is brought closer to  the target language, they must be replaced 
with combinations of ordinary functions which produce the same results.

When introducing data  distributions to  a program, it is not necessary to introduce them every­
where all at once. They can be given for some parts of the program and not for others. The parts for 
which specific distributions are not given continue to use the ParFinSeq APM, and so are assumed 
to use the generic abstract or naive distribution with one data  element per processor. These parts 
can be refined later to use a more specific distribution.

It is also possible to use different data  distributions within one program. If different distributions 
are given for the same piece of data a t different points, then a data  redistribution operation must be 
included between those points. Different pieces of data  within the same program can also use different 
data  distributions. Therefore there may be more than one d ata  distribution APM associated with a 
program.

2.7.3 D ata distribution A PM s

One APM can be produced for each possible data  distribution, leading to a set of possible data 
distribution APMs. The functions from different APMs are clearly annotated to indicate which APM
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they come from and which data  distribution they are associated with, and the datatypes for the 
APMs are similarly named. Therefore it is made clear which APM applies to  which part of the code.

We have already seen two of these APMs: the Parallel APM for the naive distribution and the 
sequential APM for the sequential distribution (Section 2.6). The other distributions’ APMs provide 
similar operations to these, but with added detail about the parallel distribution of the data. The 
implementation must ensure that any properties required of the distribution used hold. For example, 
the cyclic APM provides operations such as m a p c yciic and sc a n c ycUc and indicates that the data on 
which these operate is distributed in a cyclic manner. The implementation must ensure th a t the data 
returned from such operations is still in a cyclic format.

The model of the parallel system also changes. Because a data  distribution APM assigns more 
than one piece of data  to each processor, modelling the parallel system requires a more complicated 
data  type than it did previously.

The data  distribution APMs are related to  the previous APMs in other ways as well. The data 
in a distribution is usually spread over more than one processor. Therefore only functions and data 
previously marked as parallel (P) can be converted into distributed data.

Later in the derivation, in the cases of many languages, including C+M PI, the explicit data 
distribution functions and types must be removed because the target language does not support them. 
This is not true of all languages, e.g., HPF [MC97] provides explicit data  distributions. However, 
in many cases, functions from the data  distribution APMs must be transformed into combinations 
of lower-level functions th a t do not explicitly deal with distributions. For example, Cyclic APM 
functions can be transformed into Cyclic MPI APM functions and from there into combinations of 
ordinary MPI APM functions, as described in Section 3.10.

2.7.4 Example: Cyclic A PM

The cyclic A P M  represents the basic cyclic distribution as described in Figure 2.5. It is based on 
the parallel APM in Section 2.6, and provides essentially the same operations as th a t APM, but 
annotated with the subscript Cyclic. It also uses a different model of the parallel system in order to 
cope with the extra complexity of multiple data  elements in each processor.

This model is encapsulated in a type, Cyclic a , which models the parallel system as a set of 
processors each of which contains multiple elements of type a, i.e., a sequence of type SeqFinSeq a. 
Therefore the model can be implemented as follows: 

ty p e  Cyclic a  =  ParFinSeq (SeqFinSeq a)
The APM functions operate as before, but on data  of this type. For example, a function such as 

reversep :: ParFinSeq a  —» ParFinSeq a  now becomes 
reversecydic Cyclic a  —► Cyclic a
with essentially the same semantics, but being careful to  maintain the cyclic distribution of data. In 
the case of reverse, this means that all values must be moved, including those within each processor, 
and not just blocks of values.

As well as versions of functions from the ParFinSeq APM, the cyclic APM provides functions for 
converting data between the cyclic representation and other representations. These are im portant for 
expressing redistribution operations and also for constructing and m anipulating cyclic data manually. 
Some of these are summarised in Table 2.3.

2.8 M odelling im perative features

If the target of the derivation is an imperative language, as it is in this case, there are various 
imperative features of th a t language th a t aren’t  usually present in Haskell. Introducing these to the
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Function Operation
makecyclic p xs Converts a list, xs, into a Cyclic 

data structure over p  processors.
The elements are distributed cyclicly.

toCyclic ::
ParFinSeq{SeqFinSeq a) —» 
Cyclic a

Converts the representation of a Cyclic 
data  structure into the structure itself.

fromCyclic :: Cyclic a  —> 
ParFinSeq(SeqFinSeq a)

Opposite of toCyclic.

COnSCycli c Adds a value onto the front of the first site 
in the system. Variants may redistribute 
the values to m aintain the cyclic distribution.

cyc2block Redistributes cyclic d ata  in a blockwise 
manner over the same system.

Table 2.3: Some Cyclic APM construction functions

Haskell program prepares the way for the language-specific stages later in the derivation (see Section 
2.9). They bring the Haskell program closer to the target, and allow the language to be modelled 
more accurately.

The most common imperative features involve side-effects such as state and 10 (input/output). 
These are usually manipulated explicitly in an imperative program. Variables are stored explicitly 
in the state, although the retrieval of their values is often hidden by syntax. For example, in C an 
occurrence of a variable, x , represents its value retrieved from th a t variable. Similarly 10 is usually 
done through specialised input and output functions, such as p r i n t f  and s c a n f .

These can be modelled in Haskell using monads as described below. This section only deals with 
data  using the naive distribution with one element per processor. Other distributions are considered 
in Section 2.12.

2.8.1 M onads

A monad is a concept from mathematics which has been adapted to  express and encapsulate side- 
effects, such as state and 10, in pure functional programming languages, noticeably Haskell [Wad92]. 
It has the big advantage of being sound under equational reasoning, and thus monads can be used 
within the APM methodology and still allow correctness-preserving program transformations.

This soundness is achieved because monadic programs, in themselves, are simply Haskell pro­
grams. They only model side-effects - these side-effects are not actually carried out. However, Haskell 
compilers are free to  implement the programs in any way th a t is “safe” . Safe implementations are 
possible because the monadic way of modelling side-effects restricts the ways in which the state can 
be manipulated. It only allows the current version of the state to be accessed at any time.

Monadic code can be reasoned about in a  similar way to  non-monadic code, using equational 
reasoning. In addition, an enhanced proof notation, giving the environment and state explicitly, is 
often useful. An example of such notation is given in Appendix A . 6  where it is used to prove a 
sample lemma. There are also some standard properties of monads, given in Appendix A.4, but they 
are rarely used directly as they are very basic and simple. All of these can be combined to prove 
more complicated and useful lemmas about monadic programs. These are often specific to particular 
monads rather than of generic use. Some examples axe given in Appendix A.4.

Monads do have some disadvantages. In particular, when dealing with state, every store and re­
trieve must be given explicitly, whereas in many imperative languages retrieves are implicit. However,
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the safety of monads under equational reasoning and their wide-spread use in Haskell, outweigh their 
disadvantages for use in the APM methodology.

This is not the place to explain how monads work in detail. All th a t is needed here is a basic 
understanding of how they are used. Interested parties can find a fuller introduction to them in 
[Wad92] and [PJ01].

H ow  m o n ad s  a re  u sed  in  H askell

A Haskell expression that uses monads is called a monadic expression. This may be a function or a 
value. Most monads provide a selection of basic monadic functions. For example, 10, the standard 
Haskell monad for input/ou tput provides functions th a t write characters and strings to the output and 
receive them from the input. In addition, all monads can use the standard function, return, which 
converts an ordinary non-monadic value into a monadic one. For example, return 5 is a monadic 
expression with the value 5.

Monadic expressions can be combined using Haskell do  notation as follows:

do Ei
E<i

This program carries out the computation expressed by the monadic expression, E \ , finishes it, 
and then carries out the computation expressed in E 2 .

If the intermediate expressions return values, for example, a number th a t was entered on the 
input, these values can be given names in much the same way as in a le t expression:

do  x <- Ei 
E i

In this piece of code, E i returns a value which is then bound to x. This value can then be used 
in Ei and further pieces of code by referring to  x. Although this looks similax to an assignment 
statem ent in an imperative language such as C, x  is not a variable in the imperative sense and is not 
stored in the state. It is just a label or name. Stores in the state axe carried out by explicitly calling 
store functions.

A monad has a name and type M . For example, 10  is a standard Haskell monad for expressing 
input/ou tput. Monadic expressions and values have type M  a. The first part, M , says what monad 
it uses, and the second part, a  says what type of value it returns. For example, the function that 
takes an integer from the input has type 10 Int. It is part of the 10  monad and returns an integer. 
If no value is returned the type is M (). In general, monadic functions also have parameters, so their 
types look more like: Ti —> Ti —> . . .  -» Tn —> M  T. For example, a simple monadic function 
th a t sends its integer param eter to the output has type, In t —► I0 ( ) .

There are a variety of different monads, which encapsulate different side-effects. In particular, 
two standard Haskell monads, S T  and 10 , allow state to be m anipulated and input/ou tput to be 
carried out, respectively [LPJ95, PJW93]. There are also other standard monads which encapsulate 
other common features.

However the standard state monad, S T , uses a fairly simple model of the state. To model a parallel 
system a more complicated model is needed. A user can write his own monads in several ways. He 
can write them from scratch or by modifying an existing implementation, and can combine monads 
to  allow multiple characteristics to be expressed [PJL94]. This section uses all of these methods to 
create a monad, IO P ST  (Input/O utput Parallel S tate Transformer), to allow the manipulation of 
a  model of the parallel state as well as providing inpu t/ou tpu t. The next few pages consider these 
aspects separately, and the implementations of the monad and its functions can be found in [GooOla].
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2.8.2 State and variables

P art of the job of the IOPST monad is manipulating the model of the system state.
This state, called GlobalState, contains the variables used in the program. It is represented by 

this collection of variables, each containing a sequence of values, one for each processor. These values 
come from a restricted set of types, which includes arrays, but excludes user-defined data-types, as 
is the case in C+M PI. The set as present does not contain all possible target types, but it can be 
extended.

The data is represented within the state in a special form, as an enumerated data type, in order 
to allow data of different types to be stored together, but the user need not worry about this rep­
resentation. The IOPST operations perform automatic type conversions, so th a t the user only sees 
standard Haskell types.

The following types are used:

G lo b a lS ta te  The type of the whole system state.

V a rF n  a  The type of variables of type a:.

D y n  a  The type class of types which can be stored in the state.

I te m T y p e  An enumerated type which describes the types which can be stored in the state.

This is not the only possible structure for the state. Other representations were considered, 
including a sequence of processor states, each of which contains a set of variables. The current 
method was chosen because it eases the transformation to  the individual level on which MPI is based, 
by referring primarily to variables instead of processors. It also corresponds to the structure used 
within the ST monad in which the state is viewed as a set of pairs of variables and values.

IO P S T  s ta te  fu n c tio n s

The monad IO P ST  manipulates this representation of the state in a similar way to the standard 
monad S T , on which it was modelled. It is also augmented with some functions for managing 
multiple processors, some of which are described briefly in Table 2.4. In this table proc is used as an 
abbreviation for processor.

A few of these functions are described in a  bit more detail below as examples to help the reader 
to  understand the case study and to  write his or her own programs.

create-var :: (Dyn a) =+ ParFinSeq a  -+ IO P ST  (VarFn a ) 
create-var values

This creates a variable with one element of values in each processor and returns a name for it. It is 
designed to be used with a sequence of identical values as a param eter, such as th a t obtained using the 
repeatp function. This ensures th a t the variable is initialised with the same value in each processor 
which is what happens in C+M PI. These initial values often need to be given a type annotation in 
order to remove type ambiguity over numerical values.

store :: (Dyn a) =+ VarFn a  —> ParFinSeq a  -* IO P S T () 
store var values

This updates var with values, a sequence with one element for each processor, var must exist before 
this function is called.

retrieve :: (Dyn a ) =$■ VarFn a  —> IO P ST  (ParFinSeq a) 
retrieve var
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Function Type Operation
start In t -> IO P S T () Produces a new global state 

with the given number of procs 
and a dummy variable in it.

g ets ize IO P ST  Int Returns the number of procs 
in the state.

get.pid IO P ST (ParFinSeq Int) Returns a sequence containing 
the id numbers of the procs.

create-var (Dyn a) => ParFinSeq a Creates a variable initialised
IO P ST  ( VarFn a) with the given values. The 

variable can be given a name 
by assigning the result of the 
function to an identifier. See 
Section 2.8.4 for more details.

store (Dyn a) => VarFn a  -» Updates the given variable with
ParFinSeq a  -» IO PSTQ the given values.

retrieve (Dyn a) => VarFn a  —> Returns the values th a t are in
IO P ST  (ParFinSeq a) the given variable.

storeindiv (Dyn a ) => In t —> Stores a single value in the
VarFn at a  IOPSTQ variable in the given proc, 

leaving the other procs alone.
runlO PST IO P ST  a  ->

10  (a, GlobalState)
Runs an IOPST program.

Table 2.4: IOPST state functions

This returns the values stored in var in a sequence form. The ParFinSeq type emphasises that they 
represent values stored in different processors. Each element of the sequence corresponds to the value 
stored in one processor.

D ea lin g  w ith  in d iv id u a l p ro cesso rs

It is also sometimes helpful to be able to access values in a single processor rather than all the values 
in all the processors, storeindiv and retrieveindiv do this. They both take the processor id of the 
appropriate processor as well as their more ordinary parameters. The store or retrieve now only 
affects the variable in the given processor.

2.8.3 Input/O utput

As well as being modelled on the S T  monad, IO SP T  is built on top of the 10  monad. Its type, 
therefore, follows the same pattern  as the ST type, but involves 10:

n ew ty p e  IO P ST  a  = IO P ST  (GlobalState —>• 10  (a, GlobalState))
Its 10 functions are defined simply by converting the standard 10 functions to the IOPST type, 

using a lifting function,
liftlO PST  :: 10 a  —► IO P ST  a.

The IO P ST  version of putStr which prints out a string, is then:
pst-putStr xs =  liftlO P ST  (putStr xs).

A brief description of the key 10 functions is given in Table 2.5.
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Function Type Operation
pst.pu tS tr

pst.getChar
pst.getLine

String —»• IO P ST  ()

IO P ST  Char 
IO P ST  String

Displays a given string on 
the output.
Gets a character from the input. 
Gets a line from the input.

Table 2.5: IOPST 10 functions 

2.8.4 The form of an IO PST program

IO P ST  is the basis for most of the remaining stages in the methodology, and so many of the programs 
will have a similar form. It is im portant to understand how to interpret this form in order to 
understand many of the programs in this thesis.

Throughout the examples in this thesis, the following convention is used: a variable’s name is 
usually suffixed with u.v n, for example, x .v . The value extracted from such a variable usually takes 
the same name, but without this H.v ”. For example x  is the name of the value extracted from x .v . 
This difference and this connection between a variable and its value are key in understanding much 
of the code in this thesis.

This difference leads to an abundance of retrieves in a program because a value must be retrieved 
from its variable before it can used. In other languages, such as C, this is not always necessary. C 
deals with a variable and its value as a single entity. This is a disadvantage of using monads to model 
the state in Haskell, but their ability to deal with side-effects outweighs this. The reader may find 
it helpful, therefore, to ignore all instances of retrieve in a program, and simply view x  as the value 
obtained from x .v  in the remainder of the code.

The only exceptions to this rule occur with standard global variables such as n .v  and p .v , and in 
the function retrievein(nv. In the former, n  can be assumed to be the size of the input matrix and p 
the number of processors, without worrying about the code used to set these values. The latter case 
will be dealt with at the end of this section.

Another piece of code which can safely be ignored is a create.var expression. Although these are 
needed in the program for the sake of correctness, and can provide information to the reader about 
initialisation and the types of variables, they rarely add to the substance of the algorithm.

E x am p le  The following simple example illustrates how the IO PST state functions can be used 
together. Bigger examples can be found in Chapters 5 to 7.

main :: IO P S T ()
main = do  a.v <- create.var (repeat (0 :: Int)) 

store a.v xss 
a <r- retrieve a.v  
store a.v ( f  a)

Ignoring the create .var and retrieve, this reads:

main =  do  store a.v  xss 
store a .v  ( /  a)

So xss is stored in a.v, then /  is applied to the value in a.v. The extra code in the first version 
is necessary to make this work, bu t not necessary when reading it.

D ea lin g  w ith  in d iv id u a l p ro cesso rs

The introduction of storein<nv and retrieveindiv (and later functions such as retrievecydicindiv—see 
Section 2.12) into a program makes things slightly more complicated. These functions deal with
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single values from one processor in the system and must be looked at a bit more carefully.
However, they often occur within code which deals specifically with one particular processor i. In 

this case it is fairly safe to assume th a t values are being extracted from th a t processor.
This situation often occurs in this thesis with the Haskell function, /o r, which simulates a C fo r  

loop. It is used in the following form: for xs (X i —> E  i). In this, i takes each value from xs in turn, 
and E , a monadic expression, is executed with th a t value, xs is often [a..b], so th a t i takes each value 
from a to b. Sometimes it is [b, b — 1, a], which is the reverse of the first case.

In Chapter 6 , this function is used to step through the processors in a pipeline. Each time through 
the loop, the value i refers to  the current processor.

E x am p le  In the following (rather contrived) example, each processor from 0 to p  — 1 is dealt with 
in turn. Even though rttrieveindiv and storein<nv are used, they both refer to the current processor i, 
and so do not add much complexity to the program.

for [0..p — 1 ]
(A i —> do  — do calculation for proc i 

x <— retrieveindiv * x~v 
new-vals +- /  x  
storeindiv i new-vals-v new-vals)

2.9 Target stages

The target stages lie a t the end of a  derivation and are specific to the target language. They allow 
transformations and optimisations of the code th a t are specific to  the target. For example, different 
languages allow different communication operations and therefore detailed communication optimi­
sations are often language-specific. These stages also simplify the transformation into the target 
language at the end of the derivation.

The stages model the language using an APM or APMs in Haskell. A language-oriented APM 
models the target by providing Haskell functions and data types which correspond to and model the 
main parallel constructs in the language or typical ones in the language model. The APM depends a 
lot on the characteristics of the target language, and for more abstract languages, such as GpH, may 
be similar to the non-language specific stages above.

There may be more than  one APM at this stage, to allow the language to be modelled at varying 
degrees of accuracy. Each APM is more detailed and closer to the target than the last. For example, 
when targeting C+M PI, the initial APM functions view the system on a collective level (see the next 
section 2.10). However C +M PI takes an individual processor’s point of view. This is modelled at a 
later stage in the derivation, as shown in Section 2.11.

Finally the program is transformed from Haskell into the target language. It may not be possible 
to prove this transformation correct as the target language often does not have any formal semantics. 
Therefore the final Haskell version should use a  model as close to the target as possible in order to 
make this final transformation as simple as possible.

In principle, many target languages can be modelled. However the size of this thesis allows only 
one to  be examined. The following sections therefore focus on C +M PI [MPI97], a commonly-used 
extension of C with a library of message-passing functions. The APMs not only allow C +M PI to be 
used as the target in derivations, but also provide insight into modelling a target language in Haskell 
in general.
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2.10 M odelling M PI

M PI [MPI97] is a library of message-passing functions th a t can be used with C or Fortran to write 
parallel programs. It is described in greater detail below. This section then goes on to describe an 
initial APM for modelling MPI in Haskell as an example and illustration of a language-oriented APM.

This initial APM continues to use the collective view of the parallel system used in the intermediate 
stages. In this view, the program operates over the whole system and changes the state of multiple 
processors. This is in contrast to  the individual view th a t M PI uses, in which a program describes 
the action of a single processor and modifies the state of only th a t processor. It is instantiated several 
times, once for each processor. O’Donnell further discusses the difference between these individual and 
collective views in [O’DOl]. The collective view is used here in order to simplify the transformation at 
this point and because a collective level view is more natural in Haskell. Implementing an individual 
level view involves some extra complexities as described in Section 2.11. Therefore this extra level of 
detail is introduced later in the derivation.

The MPI APM in its current form does not represent a final polished version, but rather a 
prototype in which the key features are implemented while some of the less central points are omitted. 
In particular, M PI’s communicator system is not implemented, and the type of d ata  that can be stored 
is simplified, as is the structure of the parallel system. This is sufficient for the derivation of many 
parallel programs and for the illustration of the key points.

This APM can be seen in use in the case studies in various sections including Sections 5.8 and
7.5.

2.10.1 M PI

M PI [DOSW96, MPI97] provides a set of message-passing functions, th a t deal primarily with com­
munication and process topologies. An M PI programmer must specify the communication which 
takes place, and the placement of data. Both point-to-point and collective communication functions 
are available to help him with this.

Point-to-point communications involve passing data  between a single pair of processors. They are 
given by sending and receiving functions, MPI_Send and MPIJlecv, and their variants which specify 
the type of communication, e.g., asynchronous, synchronous, buffered or blocking. An operation 
must give various information including the id of the other processor in the pair, although a receiving 
processor can receive from any other processor. MPI is explicit about the location of data.

Collective communications involve a pattern  of communication between a group of processors. All 
the processors in the group must call the collective function before it executes. For example, 

M PI_B cast(buffer, co u n t, d a ta ty p e , r o o t ,  comm) 
is the collective function for a broadcast. When all the processors in the group called comm execute 
this operation, then count values from buffer in the root processor are communicated to all of these 
processors.

M PI uses the SPMD style of programming. SPMD  stands for Single Program Multiple Data, 
and is commonly used to mean two different but related models of computing. The more specific 
definition of SPMD is described in Section 8.2.3, but here its more general sense is used. A C +M PI or 
Fortran+M PI program is written from the viewpoint of a single processor, and specifies th a t proces­
sor’s actions. The program is copied to all the processors in the system, which run it simultaneously. 
This does not mean th a t all the processors do the same thing a t the same time as in the SIMD or 
data-parallel styles of programming. The processors may operate a t different speeds, and the code 
may branch on processor id, so th a t different processors execute different parts of the code. For more 
about SPMD and SIMD programming see, for example, [WA99].
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Function Operation
m p isp t2 p t

m pi.jointpt2pt

mpi-bcast
m p isca tter

m piscatterv

mpi.gather 
mpi.reduce

This simulates a pair of functions—a synchronised 
send and receive in MPI.
One processor sends a value to  another processor. 
This simulates a set of send/receive pairs in MPI. 
Each processor sends a value to one other processor. 
A root processor sends a value to all the processors. 
Values from a root processor are scattered to all the 
processors, a different value or values going to 
each processor.
Same as m pisca tter  except th a t it allows a different 
amount of data to be sent to different processors. 
Each processor sends values to a root processor. 
Each processor sends values, these are reduced to a 
single value using some operation and this is stored 
in a root processor. This is similar to  fold.

Table 2.6: Outline of the M PI APM

2.10.2 The basics o f the M PI A PM

The M PI A PM  is based on the IOPST monad introduced in Section 2.8. It operates on GlobalState, 
the same model of the parallel system as IO P ST, via IO P ST  functions. These functions may occur 
in programs a t this stage, and they are also used to implement the APM operations themselves. The 
APM operations are therefore also monadic and return monadic values of type IO P ST a  for some 
type a.

2.10.3 A P M  functions

The M PI APM contains simplified Haskell versions of the functions provided by MPI. These functions 
specify and simulate the behaviour of message-passing functions in a parallel system. Here we focus 
on two of the MPI APM functions as representative examples. A fuller set is summarised in Table
2.6. Their implementations are discussed in Section 2.10.4.

m p i_ jo in tp t2 p t is a function th a t doesn’t  correspond directly to  a single M PI function, but rather 
to a pattern  of individual send and receive function calls in various processors. Such send and receive 
functions in M PI are described in Section 2.10.1.

m pi.jointpt2pt :: (Dyn a ) => VarFn a  —»• VarFn a  —» ItemType —>
(In t -» In t) (In t -> In i) —> IO P ST  () 

mpi.jointpt2pt s e n d s  recv-V datatype sendfn recvfn = . . .

The two function parameters specify the pattern  of communication. If a processor has rank or 
id pid, then it sends data to the processor with rank (sendfn pid). At this stage these processor ids 
are hidden inside the function implementation. Later they are accessed using the standard function, 
get.pid, described in Table 2.4. Receives correspond to the sends, and therefore recvfn must be the 
inverse of sendfn. Both are specified in order to allow this function to be transformed into C+M PI 
in which both functions need to be known.

The parameters s e n d s  and rec v s  are the variables from which the data  is sent and into which 
it is received respectively. The parameter datatype indicates the type of this data, and is included 
because it is used as a param eter in the MPI functions.
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This function allows the user to simulate an M PI program in which every processor engages in a 
send and receive, without writing out all of the individual sends and receives for every processor in 
the communicator. An example of its use is given in the function requestrev below in Section 2.10.5.

m p iJb cas t is a more typical example. It corresponds directly to the M PI function of the same 
name, and is a collective communication function, i.e., it specifies communication between multiple 
processors. Such functions, and MPI_Bcast in particular, are described in Section 2.10.1.

mpi.bcast :: (Dyn a) => VarFn a  —>• ItemType —» In t -> IO P ST  () 
mpi.bcast var.v datatype root = . . .

As the M PI function does, this broadcasts or sends a value from var.v  in the processor root to 
var.v  in all the processors. The param eter datatype again gives the type of this data.

2.10.4 Function im plem entation

These functions manipulate the state of the system, and so can be implemented using the IO P ST  
monadic functions.

For example, mpiJbcast can be implemented as follows. The other implementations are similar.

mpi.bcast :: (Dyn a) => VarFn a  —> ItemType —̂ In t —>■ IO P ST  () 
mpi.bcast var.v datatype root = 

do  n <- get-size
bcast.vals •<— retrieve buffer
bcast.vals' <— return (distfstoList bcast.vals)
store buffer (toDistFinSeq (replicate n (bcast.vals1!!root)))
return ()

The state manipulation function retrieve is used to obtain the value to be broadcast. However 
this gives the values, bcast.vals, in all the processors in the system. Sequence and list manipulation 
functions are used to pick the value from the root processor out of this. This is then duplicated 
so th a t there is one element per processor, before store is used to store th a t value in each of the 
processors.

2.10.5 Extra com m unication functions

Sometimes it is useful to  have extra functions which perform communication but aren’t provided by 
the M PI library. Often these functions are used frequently enough th a t it is sensible to define them 
in advance and include them in the MPI APM. Alternatively they can be given as local functions in 
the program. In the case-study in Chapter 5 such a function is required. T hat function performs a 
reverse—data from variable send.v  in processor i is swapped with d ata  from the reverse processor 
n — i — 1. The received data  is stored in recv.v. This can be implemented using a set of send/receive 
pairings, and hence using mpi.jointpt2pt from the M PI APM, as follows:

requestrev :: (Dyn a) => VarFn a  —> VarFn a  —> ItemType 
-» IO P S T () 

requestrev send.v recv.v datatype = 
do  n getsize

mpi.jointpt2pt sendbuf recvbuf datatype 
(A i —> (n — 1 — i)) (A i -» (n — 1 — i))

This is discussed further in Section 3.8.1.
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2.10.6 ParOps

As with any APM, the behaviour of these functions can be expressed using ParOps (see Section 1.1.3). 
For example, here are the ParOp param etrisation functions for mpi.jointpt2pt:

ParOp : fi(sendvar, recvar) = (recvar, sendvar)
9 i ( A {) ,  • • • ,  A n _ i )  — ■^■recvfn(i)

The g functions specify th a t each processor i takes in the value output by processor recvfn(i). fi  
then says th a t this is the value kept by the processor, and th a t the processor outputs its old value.

In addition, the MPI APM functions themselves form ParOps, as discussed in Section 2.3.5. 
However this is harder to  see in the MPI APM case than with previous cases, because of the increased 
complexity of the model of the parallel system and because of the introduction of monads. It can be 
seen if the monads are viewed as simply syntactic sugar for functions th a t take one copy of the state 
and return another.

The difficulty is also increased because GlobalState is a set of variables, not a set of processors, 
which is what the ParOp form uses. Despite this difference in viewpoint it is still possible to identify the 
elements in an entity of type GlobalState which come from a particular processor, and hence possible 
to  show the equivalence between a function of this type and the equivalent P a rO p  definition.

2.11 Individual level

As mentioned above and described in Section 2.10.1, M PI uses an individual level view of the parallel 
system: it describes the actions of a single processor. Previous stages in the methodology have used 
instead a collective view, describing the actions of the whole system. This section shows how the 
individual view can be represented in Haskell.

Not all languages need to have a stage such as this in the derivation of their programs. Many 
languages, such as HPF and GpH, use collective views of the system which match those of the previous 
stages.

2.11.1 Im plem entation

An implementation of the individual level is not actually necessary, and this thesis, because of time 
constraints, simply gives the individual level functions without an implementation. The individual 
level stage can be viewed as simply part of the final transition to the target language. Programs at 
this stage can be written, and the derivation can proceed without an implementation. However, if 
the program is to be run at this level (e.g., for prototyping purposes), an implementation must be 
provided.

It is not trivial to do this because the standard Haskell semantics assume a collective viewpoint. 
A Haskell function needs to be provided with all the data  on which it operates. Therefore, in order 
to affect the entire system, a function must have access to d ata  representing the whole system. This 
is in contrast with the individual viewpoint in which a function only has access to the data  in a single 
processor and th a t received by communication. However, there are ways to get around this.

O ’Donnell in [O’DOl] has proposed a collective semantics th a t gives the “real” (i.e., collective) 
meaning of an individual level expression. This allows programs at the collective and individual levels 
to be proved equivalent.

It is also possible to write a program, or wrapper function , based on the collective semantics, 
which takes an individual level program and simulates its execution on multiple processors. Such a 
wrapper function would also have to handle the communication between these processors. It would 
play the role of the run-time system, and be quite separate from the program itself. It is only the
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Function Operation
store var value 
retrieve var

create.var {V  :: T)

m pi.send var T  dest

mpi.recv var T  source

mpi.bcast var offset 
count datatype root

The processor stores value in var. 
Returns the value (s) stored in var 
in the current processor.
Creates a variable of type T 
initialised to V.
The processor sends var’s value 
(of type T) to processor dest.
The processor receives a value from 
processor source and stores it in var. 
When called by all the processors, this 
initiates a broadcast of count elements 
from var in processor root.

Table 2.7: Some standard individual level functions

main individual level program which would correspond to the program in the target language, and 
therefore only this program which the programmer need be concerned with.

2.11.2 A P M  functions

The individual level APM models the same system as the M PI APM in the previous section, and 
so provides mostly the same functions. However these functions now operate on a single processor 
instead of on the whole system.

For example, storage manipulation functions, store, retrieve and create.var are provided as before, 
except th a t now they just deal with the state in a single processor. The type of retrieve changes from

{Dyn a ) => VarFn a  -> IO P ST  {ParFinSeq o:) to 
{Dyn a ) =>• VarFn a  -» IO P ST  a.

It returns the single value stored in the current processor instead of the sequence of values stored in 
the whole system.

Collective communication functions operate in a similar way to their M PI counterparts. Each 
processor must call the function with the appropriate parameters. T hat processor then waits until all 
the other processors also call that function with appropriate param eters, and then the whole system 
carries out the operation.

For example, if mpi.bcast is called with the same type and root by all the processors, then the 
broadcast is carried out. If only one processor calls this function, then th a t processor waits until the 
other processors also call mpi.bcast before it does anything. If this doesn’t happen then the processor 
hangs.

The necessary parameters for the call of one of these functions by an individual processor are the 
same as those in the collective call in the ordinary MPI APM. Therefore a call of these functions is 
the same as in the MPI APM.

Unlike these functions, individual communication functions, m pi.spt2pt and m pi.jointpt2pt, don’t 
have counterparts with the same names in the individual level world. They can be replaced by 
combinations of the functions mpi.send  and mpi.recv which model individual sends and receives in 
MPI.

Some of the standard individual level functions are summarised in Table 2.7, and the transforma­
tions from the ordinary MPI APM to this level are described in Section 3.9.
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Function Type Operation
create-var Cyc l ic  

store C yc lic  

retrieve C yc lic

S to r e C y c l i c i n d i v

retrieve C yc l ic in d iv

(Dyn a) => (Cyclic a)
->• IO P ST  ( VarFncydic ol)

(Dyn a ) => VarFncydic a  ->■ 
Cyclic a  —> IO P S T ()
(Dyn a) => VarFncydic ol ->• 
IO P ST  (Cyclic a)
(Dyn a) =>• In t —» VarFncydic ol 
-> a  -» IO P S T ()

(Dyn a) => In t -* VarFncydic ol 
-> IO P ST  a

Creates and initialises a cyclic variable.

Updates the given cyclic variable 
with the given values.
Returns the values from a cyclic 
variable.
Stores a single value in position i of 
a cyclic variable (counting from 0 ). 
Returns the ith  value (using cyclic 
indexing) from a cyclic variable.

Table 2.8: Some Cyclic state functions

2.12 D ata distributions in monadic stages

D ata distributions can be introduced into a program in the methodology as described in Section 2.7. 
However, they aren’t  included in only th a t one stage in a derivation, but in several other stages as 
well. This section examines their effect on the monadic stages in a derivation targeting C+M PI, 
focusing on the cyclic distribution as an example.

2.12.1 Basic m onadic stage

Monads can be introduced into a program to model imperative features as explained in Section 2.8. 
T hat section introduces a monadic type IO P ST  which operates on a model of a parallel system, 
GlobalState. The operations given in th a t section don’t explicitly deal with data  distributions, but 
they can be extended to do so.

First of all, a  type is used to represent a variable with a particular data  distribution. In such 
a variable, multiple values are stored in each processor, so, for example, a Cyclic variable can be 
implemented using the type:

ty p e  VarFncydic ol = VarFn (SeqFinSeq a)
Such variables can be manipulated in a similar way to  ordinary variables, except th a t they deal 

with Cyclic data. Some storage manipulation functions on cyclic variables are given in Table 2.8.
Note the similarity of the first three functions in the table to their non-cyclic counterparts in 

Table 2.4. These functions use the whole of the cyclic data  structure, but, just as it was sometimes 
useful to  deal with data from a particular processor in Section 2.8.2, it is sometimes useful to access 
particular pieces of data  in a cyclic structure. The last two functions in the table, annotated with 
Cyclicindiv, are provided for this purpose. They use cyclic indexing as mentioned in Section 2.7 to 
identify the element being dealt with.

2.12.2 M PI A PM

D ata distributions can be represented in the MPI APM as variables containing SeqFinSeq data. 
These can then be manipulated using ordinary MPI APM functions, making sure that you remember 
the extra values in each processor. However data distributions can also be dealt with explicitly, 
using variants of M PI APM functions dealing with the distribution, even though the target, MPI, 
doesn’t provide operations to do so. This simplifies the introduction of M PI APM operations as the 
data  distribution details don’t have to be dealt with by the programmer yet. Later on the explicit 
data  distribution functions will be removed and replaced by the combinations of ordinary MPI APM
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functions before the final transformation to C +M PI (see Section 3.10.4).
A data  distributed MPI APM is based on the modifications to the GlobalState above, and the 

functions in this APM are implemented using combinations of ordinary MPI APM functions and the 
state manipulation functions given above.

E xam ple For example, here is a cyclic version of m pi.spt2pt, which sends and receives a single value 
in a cyclic structure. To simplify its use, source and dest indicate positions in the cyclic structure 
(using cyclic indexing) rather than processor ids.

m pi-spt2ptcyciicindiv (Dyn a) => VarFncydic a  -> ItemType -¥ In t 
—>• VarFncydic a  —> ItemType —> In t —>■ IO PSTQ  

mpi.spt2ptCyclicindiv send.v sendtype source recv.v recvtype dest = 
do  message <- retrievecydidndiv source send.v  

store Cyclicindiv dest recv.v message

Collective functions don’t access individual values in the same way. They manipulate the state of 
the whole system, being careful to maintain the data  distribution of the values.

E xam ple Here, for example, is a version of mpi.scatter for cyclic data. It scatters the values in 
processor root in send .v , which is an ordinary sequence variable, and stores them in all the processors 
in recv.v. However, instead of sending one value to each processor, it distributes them in a cyclic 
manner. Therefore i t ’s useful for distributing the values initially. However i t ’s still called mpi.scatter 
to emphasise its link with the ordinary form of mpi.scatter.

mpi.scatter Cyclic (Dyn a ) => VarFn (SeqFinSeq a) —> ItemType 
—>• VarFncydic & —> ItemType —>• In t —> IO PSTQ  

mpi.scatter Cyclic send.v sendtype recv.v recvtype root = . . .

This function can be implemented using the makecyclic function from the Cyclic APM (see Table 
2.3) to convert a list into a Cyclic data  structure. It can also be implemented using ordinary MPI 
APM functions but this is more complicated. The values must be reordered using makecyclic within 
the root processor, and then appropriate size and displacement variables set up before an ordinary 
scatter function is used.

2.12.3 Individual level

D ata distributions can also be used in the individual level, although the functions here are closer 
to the ordinary APM functions since the program only sees the d ata  in a single processor. Section
3.10.3 shows how collective Cyclic MPI APM functions can be transformed into these individual level 
functions.

Table 2.9 gives some individual level functions which can be used to  m anipulate cyclic data more 
easily. They operate on the sequence of values belonging to the given variable in the current processor. 
The length of this sequence, length, may need to  be known. If so, it can be easily calculated by:

length = if  (pid > n lmodlp) th en  {nldivlp) else (n ‘divlp) + 1  

w here
pid =  processor id
p =  total number of processors
n = total number of elements in the variable

For communication, two basic functions, m pi.send1 and m pi.recv', are provided. These are vari­
ants of the standard send and receive M PI functions, but access particular elements of sequences.
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Function Operation

create.var Cyclic 

retrieve cyclic

retrieveindiv

storeindiv

Creates a Cyclic variable.
Takes length values to initialise it.
Operates on a VarFncydic and 
returns the sequence of values stored in 
the processor.
Returns the ith  value which is stored 
in the variable in the current processor. 
Stores a value in the ith  position 
of the sequence associated with the variable 
in the current processor.

Table 2.9: Some individual level Cyclic state functions

This can be done in the target, C+M PI, using offsets from the base address of the variable. They 
can be implemented using store, retrieve and the standard functions.

m p i_ sen d ’ For example, mpi.send' sends the value in location offset of var.v  to processor dest and 
can be implemented as follows. It stores the value to be sent in a tem porary variable, tm p .v , before 
it sends it.

m pi.send' var.v T  dest offset =
do  tm p.v  <— create.var {V  :: T) 

var +- retrieve var.v 
store tm p.v  (var Ms offset) 
m pi.send tm p.v T  (dest1 mod1 p)

Other communication functions can be created, based on these.

2.13 Summary

This chapter has presented and discussed key stages in the APM methodology for a derivation ta r­
geting C+M PI, as well as discussing stages in the methodology in general. The stages use APMs 
(Abstract Parallel Machines) to encapsulate the parallelism, and these, their functions and their 
implementations have also been described.

However the stages only allow the program to be given a t each stage. An im portant question is 
how one can move between stages. Given a program at an abstract, specification stage, how is an 
implementation derived? This is the topic of the next chapter.



Chapter 3

The Transformations in the  
M ethodology

3.1 Introduction

Although the stages through which a derivation passes are very im portant, it is equally as im portant 
to know how the derivation progresses from one stage to  the next. This is the topic of this chapter. 
It discusses various key transformation steps in the methodology, relating them to the stages and 
APMs in the previous chapter and giving transformation lemmas and rules for them. The transfor­
mations given are those necessary for the production of a basic C +M PI program that involves data 
distributions. The transformations and their techniques are also discussed in general.

This chapter focuses on how the transformations are carried out, although it does also mention 
how to  choose which transformations should be done. However this latter is considered in greater 
detail in the next chapter (Chapter 4).

3.1.1 Layout of th is chapter

After examining some of the general issues surrounding the transformations in Section 3.2, this chapter 
examines several different transformations in turn, starting with the generation of specifications 
(Section 3.3) and finishing with the transformation into the target language, in this case, C +M PI 
(Section 3.11). While these are, in general, ordered as they would be in a derivation, some of the 
vertical and horizontal transformations are considered together because of the similarity between 
them.

3.2 General discussion

The remainder of this chapter looks at individual transformations in detail, but first of all it is useful 
to consider more general aspects of the transformation process. This section examines the layout of 
th a t process, and some features and issues which are common to all or most of the transformations.

3.2.1 Layout of the transform ations

The specific transformations only really make sense in context, when one can see how they are 
arranged and related to each other, and what types of program they are applied to.

45
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Abstract M aths Specification

Pick a method for solving
the problem  | |

Convert to Haskell

Specify parallelism

Use Cyclic data distribution

Optimisew

M ake monadic

U se a Haskell model o f MPI

Go to individual level

Optimise! ,

Convert to C+M PI

C+MPI

Figure 3.1: The layout of the transformations in a possible derivation
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possible
methods

Convert to Haskell

Specify parallelism

make language- 
 specific

data distribution 1 
on data 1

’’distribution 2 
on data 1 .add monads

Abstract
Maths 

Specification

Haskell

'  go to 
individual 

level
individual

optimise

•  •  •

C+MPI C+MPI
with different 

final 
optimisations

HPF C+MPI with 
different data 

distributions, etc

Target
Language

Figure 3.2: The structure of possible program derivations

Therefore Figure 3.1 sketches out the layout of one possible derivation, using the transformations 
presented in this chapter. Although this is just one possible layout, it illustrates several key points. 
The program starts off as an abstract m aths specification, and then gradually details are introduced 
to derive a concrete C +M PI program. Each transformation operates on the program to increase the 
concreteness in a specific identifiable way. Some transformations bring the program closer to  the 
target, while others introduce optimisations.

This layout is related to  the layout of the stages, illustrated in Figure 2.2 in the previous chapter. 
Many of the transformations convert the program from using one APM or combination of APMs 
to another, keeping within the structured APM layout, so th a t more abstract APMs are replaced 
by more concrete ones. Such transformations are called vertical transformations because they move 
vertically in the APM structure. Others, known as horizontal transformations, keep the same APM, 
and manipulate the functions and data within the program.

However, this is only one of many possible derivations, as shown in Figure 3.2, which illustrates 
several derivations starting with the same specification. The key points above apply to all of the 
derivations, but they are different from each other. A particular derivation forms one possible path 
through this tree of possible derivations.

At many of the stages, the user has a choice of transformations to  apply. Different choices produce 
different derivation paths and may lead to different resultant programs. Some transformations are 
necessary for certain programs or target languages, but not for others. For example, the change to an 
individual level viewpoint, near the end of a derivation, is only needed for target languages which view 
the parallel system from this viewpoint (mostly SPMD and SIMD programs). Other transformations, 
such as load balancing, are completely optional, or can be applied in different ways depending on the 
program.
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Transformations also don’t have to be applied in a fixed order. As Section 2.2 emphasises, the 
derivation paths are flexible. The order of steps can be changed and a transformation can be carried 
out more than once. This may lead to different target programs but the same target program can 
also be produced in more than one way. This typically occurs when the order of certain steps is 
immaterial. In such a case, applying transformation 1 before transform ation 2 may have same result 
as applying transformation 2 first. This is not shown in the diagram as it would obscure its structure.

3.2.2 Transformation rules and lemmas

As described in Section 1 .1 .2 , equational reasoning, a standard technique from functional program­
ming, is used in the methodology to carry out the transformations. It can be used to prove lemmas 
and rules th a t encapsulate key transformation and reasoning steps. These can then be applied to a 
program to carry out those steps.

The rules and lemmas in this thesis use a specific notation. A lemma has the general form 
E i == E i. This notation indicates th a t expressions are equivalent and avoids ambiguity with the 
symbol =  as the latter is often used inside programs themselves. A lemma can be applied in either 
direction, replacing instances of E \ with E 2 and vice-versa. A transform ation rule has the general form 
E i => Ei- It is uni-directional and indicates th a t the left hand side of the rule can be transformed 
into the right hand side, rather than asserting th a t the two sides are equivalent. Both rules and 
lemmas may have associated conditions and they describe the type and use of the variables within 
them.

Im p o r ta n t  N o te : The lemmas and rules are gathered together in Appendix A for ease of 
reference. There they are organised into topics and numbered consecutively. These numbers 
are also used to refer to them in this and other chapters. However, it is often necessary 
to introduce the lemmas and rules in a different order in the thesis body to th a t in the 
appendix, and so they often appear with non-consecutive numbers.

L ib ra r ie s  o f lem m as  a n d  ru le s

It is often useful to gather the lemmas and rules into libraries to structure and organise the collection, 
making it easier to locate a particular rule. These libraries also prevent the search space from 
becoming crowded because we can allow access to  only the relevant libraries and hence lemmas at 
each step in the transformation.

This is useful because not all of the lemmas are applicable to all the stages in the methodology. 
Some of them, the rules for transforming between APMs in particular, are only applicable to one 
step in the transformation. This is because these rules explicitly mention functions from particular 
APMs, and thus can only be applied when those functions occur in the program. Other lemmas 
apply to a larger subset of the transformations. For example, the monadic lemmas in Appendix A.4 
can be applied to monadic programs. They are not applicable to the whole derivation since monads 
are only introduced part-way through it (see Figure 3.1). However, after they are introduced, there 
are several stages involving them, for which such a set of lemmas is useful. There are also lemmas 
th a t apply to the whole of the derivation, such as the general lemmas for tidying up the program in 
Section 3.5.1 and Appendices A .l and A.2 .

This thesis organises the lemmas in Appendix A into several sections, each of which can be 
considered to be a library of lemmas. In addition, this chapter presents several transformation rules. 
Those in the same section can be considered to form a library.

However, these libraries are far from complete. In some cases, only example lemmas and rules 
are given. O ther lemmas in the same libraries can be written along the same lines. In addition, this
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maP[] (+10) xs = 

[11, 14, 16, 15]

14 16

Figure 3.3: Example of a vertical transformation

thesis focuses on the derivation of C +M PI programs, and therefore libraries for other target languages 
are not considered, although they could be produced using similar methods. In a way, the libraries 
will never be truly complete, because a user may add his own APMs and corresponding lemmas for 
transformation within and between them.

P roofs

Since the transformation lemmas state equivalence between different Haskell expressions they can 
usually be proved using equational reasoning, perhaps with techniques such as structural induction 
and co-induction [Gor94]. However, vertical transformations present extra challenges. As mentioned 
previously, such transformations convert functions from one APM or APMs to another. If both APMs 
use the same model of the parallel system, this is fine, but if not, there can be problems.

For example, Figure 3.3 shows two data  structures, or models of a system, which contain the same 
data. The corresponding APMs provide functions, mapg and mapsTree, which both map a function 
over the given structure, as shown. In a vertical transformation between these APMs, the code on 
the left is converted into th a t on the right. However, these pieces of code are obviously not equal 
because their results, despite containing the same values, have different data  structures. Therefore, 
rather than proving the desired rule, map[] f  xs => mapsTree f  t when xs =>■ t , directly, an associated 
lemma is proved.

An observation function converts values between the two types. In this case, the function 
flatten  :: BTree a  —> [a] can be used. The rule becomes: map^ f  (flatten t) = flatten (mapBTree f  t) 
which is an ordinary lemma and can be proved using equational reasoning.

In general, proofs of vertical transformation rules are done in this way, using observation functions 
and associated lemmas. However, for the sake of simplicity the rules themselves are given without 
the observation functions. This allows the production of programs without observation functions all 
over the place.

3.2.3 Sim plification of the derivation

There are many transformation steps, some of which are very detailed, and it is unlikely that a 
programmer would want to apply them all by hand.

Therefore the derivation process can be shortened by skipping some steps in the derivation, if the 
programmer feels th a t they are sufficiently simple or commonplace. Alternatively some versions of 
the program can be written by hand without formally applying the transformation, although this is
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often likely to prove harder than using the transformation rules. If a formal proof of the program is 
later required, the missing steps can be filled in.

An alternative is to use machine support and automation. This may be particularly useful in the 
later stages when the transformations are very detailed. Many of these transformations involve little 
intelligence, and could possibly be automated, by a compiler.

This is, however, not always desirable as many of the transformations involve difficult choices. 
These can be made using cost models, but the automation of this process is difficult and not entirely 
satisfactory. We also want to leave room in the methodology for intuition and insights on the part of 
the programmer. Nevertheless tool support is still possible for such stages, helping the programmer 
with the fiddly details, but without restricting the choices available. This could be done using a 
reasoning assistant or theorem prover for Haskell, such as E ra (Equational Reasoning Assistant) 
[Win]. It could help prove the lemmas, and apply them to transform  the program.

However, this remains for future work as it lies outside the scope of this thesis.

3.3 Specifications

As mentioned in Chapter 2, a derivation starts with a specification of the problem to be solved. There 
are several specification stages in the methodology: the programmer starts with an abstract m ath­
ematical specification, for which she may produce an algorithmic m aths specification. This is more 
concrete and a Haskell specification can be produced from it. The production of such specifications 
and their modifications are dealt with in this section.

3.3.1 M athem atical specifications

The use of mathematics to specify the problem is discussed in Section 2.4.1 where two different types 
of m aths specification are introduced. The original abstract specification simply gives the essentials 
of the problem, while the algorithmic specification gives a method for solving it. There are various 
ways to  produce both of these specifications, but this is not the topic of this section because it is the 
transformations in Haskell which are really of interest, and because much previous work has been 
done on this in other fields of research. More information on producing the initial specification can 
be found in books such as [Inc8 8 ], and books such as [CLR90] and [AHU74] provide an introduction 
to and examples of algorithms.

3.3.2 Producing a Haskell specification

As mentioned in Section 2.4.2, the specification is then written in Haskell, so th a t further transforma­
tions can be done within this language. The process of translating a  m athematical specification into 
Haskell can be complex because of the wide range of programs which can be specified using maths. 
This thesis does not attem pt to  comprehensively cover all possibilities, but focuses on some common 
basic expressions as examples. Section 7.2 discusses how transformations of other maths expressions 
can be produced.

Table 3.1 gives some transformation guidelines, focusing on finite sequences as these form the 
key d ata  structure used within this thesis. The table is broken down into several sections, with 
several rules in each. These axe not meant to be exhaustive or to show the only possible way of 
transforming an expression, but rather demonstrate how certain types of mathematical constructs 
can be transformed. Further examples, involving incremental loops, can be found in Section 7.2.

The guidelines make heavy use of Haskell higher-order functions, such as map , foldl 1 and take to 
encapsulate common mathematical operations and structures such as loops. This helps to clarify the
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No. Mathematics Haskell
Specific mathematical loops 

These hold for all ® :: a  —> a  -* a  for any type a
©
£n

foldl 1  © 
sum (= foldl (+ ) 0 ) 

product (=  foldl (*) 1 )
Some for loops with independent iterations 

(see Table 7.1 for incremental loops)
The first holds for any f  :: at 0, S  :: [a] 

The second holds for any /  :: a  -» /? —)■ 7 , X  :: [a], Y a
for each x € S. f x  

for (x , y) € zip X  Y . f  x y
map f  S  

map2 f  X  Y  
(= zip With f  X  Y )

Loops th a t only affect certain elements 
These hold for any /  :: a  -* /?, p  :: a  -> B ool, 5 a
for each x  G S  s.t. px  holds, 

calculate f x  
for each x  € 5. 

if px then / x  else px 
(i.e., same as 6  but using 

g if p doesn’t  hold) 
for elements i = j  +  l . .n . /  
Same as 8  but returning 

the whole set,5

(map f).(filter  p) 

map f
where f  x  =  if  p x then f  x 

else g x

(map f).(drop j )
(take j  S) +H 

(map f).(drop j ) S
Some examples of other functions 

These hold for any /  :: a  —> a, xq :: a , p :: a  —» B ool, 0 , b :: Float
1 0 iterate /  on xo until p holds until p f  xo
1 1 fa  f ( x )dx integrate f a b

for an appropriate definition
of integrate

Table 3.1: Some guidelines for producing Haskell specifications. In these © ,/ ,  g are functions, p is a 
predicate, S , X ,Y  are sequences, z ,j are floating point numbers, and xq is a value of / ’s domain.
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structure of the program, and the nesting levels of the data. It is also useful in future transformations 
and because it lets the Haskell specification stay fairly close to the mathematics.

Most of these functions are APM functions, and are discussed in more detail in Section 2.4.2 where 
the APM for the Haskell specification is described. The programmer may also define new functions to 
be included in th a t APM and for use in the Haskell specification. The function integrate in guideline 
1 1  is an example.

However, sometimes such functions cannot be implemented accurately. This is the case with the 
function integrate. Approximation algorithms can then be used for the implementation to approxi­
m ate results rather than evaluate them accurately. These should, however, be hidden from the main 
program, and only the function name and an appropriate specification of the function given. How­
ever, these situations are awkward as the subsequent program may be difficult to transform. It is 
preferable to  use an algorithmic mathematical specification which can be transformed more easily 
into Haskell.

Care should also be taken to ensure th a t the new Haskell specification actually specifies the same 
thing as the old m aths one. If necessary, this can be done formally. As all the sequences are of finite 
length, induction can often be used for these proofs, as in the example below.

E x am p le  p ro o f  o f  a  t ra n s fo rm a tio n  ru le  Transformation rule 1 from Table 7.1 in Chapter 7 is 
used as an example, as it is less trivial than most of the examples here, and yet still simple enough 
to  demonstrate a proof.

For /  :: a  —»■ a, a :: a ,x s  :: [a],n  :: In t.
res = a =  res = foldl f  a xs
for i = 1 , . . . ,  n.res = f  res Xi w h e re  xs = [x\ , . . . ,  xn]

This can be proved using induction:
B ase  case: n  =  0 =>• xs =  [|

res =  a = res = a = foldl f  a\\
for i = 1 , . . . ,  0 . res = f  res Xi

In d u c tiv e  case: n  =  n - f  1

res = a
_  for i = 1 , . . . ,  n +  1 . res = f  res Xi

res = a 
res = f  res xi 

_  for i = 2 , . . . ,  n +  1 . res = f  res Xi

res = f  a x\
for i =  2 , . . . ,  n +  1 . res = f  res Xi 

= {by induction hypothesis}
res =  foldl f  ( /  a xi) [x^ , . . . ,  xn+1]

=  foldl f  a (xi : [ 2̂ , . . . ,  2V1+ 1 ]) {by definition of foldl}
= foldl f  a xs

Therefore the result holds by induction.

E x am p le  o f a  ru le  in  a c tio n  The following simple example shows how these guidelines can 
be applied to a mathematical specification. In this, Xij are elements of a matrix x. Xij,S{ :: a , 
© :: a  —>■ a  -» a , and n  :: I n t+.

n—1

Si = X i j , for 0  <  i < n
3= 0
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becomes (using guideline 1 ):
Si = fo ld ll ® Xi, for 0  <  * < n

and therefore (by 4):
s = map{foldll®)x 

Further examples can be found in Section 7.2.

3.3.3 R estricting the specification

It can be useful to keep the original mathematical and hence Haskell specifications general. They can 
then be used to derive a wide range of programs for a wide range of targets and situations. However 
too much generality has problems because, as mentioned above, abstract specifications are often hard 
to manipulate. The extra algorithmic m aths specification was introduced to help with this.

Early in the derivation, it is better not to give too much detail or the possible targets will be too 
restricted. Therefore, it is often useful to restrict the specification or make it more concrete later in 
the derivation. This can be used to allow particular techniques which only apply in special cases, or 
to optimise the program for one particular form of input. It can also make the program easier to 
manipulate or reason about.

Restricting the specification may involve adding assumptions, for example, about the input data. 
It may therefore restrict the situations in which the program can be used correctly. It is important 
to keep track of these changes to the specification so th a t the final program is not used in situations 
for which it was not intended and in which it may not produce the right results.

E xam ples from  m ap-triangle

The map-triangle case study in Chapter 5 gives some examples of this, especially in the introduction 
of load balancing in Sections 5.3 and 5.4. Load balancing can only be applied if some restrictions are 
fulfilled - the method used to split the tasks up only works if the function, / ,  is associative and has 
unit a. Otherwise, it does not produce the correct results. This can be seen in the conditions on the 
lemma involved (Lemma 15).

Load balancing also illustrates another point. Sometimes the program is especially inefficient 
for particular inputs or sets of inputs, and so it is worth-while considering them separately from the 
general case. In the case study, this occurs when the input m atrix is triangular, because this produces 
a particularly bad load balance.

Instantia ting  typ es

Another example is the instantiation of data  types. The original specification usually does not say 
which particular type each input or output should have. It may work for many different types of 
data. This can be expressed in Haskell using polymorphism, but many target languages require 
specific types. For example, the M PI library requires the types of values sent and received to be 
given explicitly. In addition, some of the later Haskell stages also use specific types (see, for example, 
Section 2.8.2). The use of specific types may also allow particular techniques to be used as described 
above.

Therefore it is often useful to  instantiate the general, polymorphic types at some point in the 
derivation. This is another restriction of the specification. Once the types are instantiated, the 
program no longer has to  work for a range of types, but only for the given one.

This can take place at various points during the derivation, but it must occur before APMs 
which don’t support polymorphism are used. In the examples in this thesis, this must happen before 
variables are stored in the state because of the implementation of the state used in the IO P ST  monad.
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This transformation does not produce an equivalent program, but it does produce one which gives 
the same results on data of the given types. The code remains the same as before, and only the types 
are changed. The transformation can therefore be summed up by the following lemma.

R u le  2 ( In s ta n tia te  ty p es)
For all /  :: T (a i, . . . ,  a n), g  :: T ( 7 i , . . . ,  T„), x* :: T{ such th a t 
/  xi . . .  x„, =  g  xi . . .  xn for Xi :: T;.

f  X 1 . . .  X n  =» g  X i  . . .  X n  

Where a* represents a polymorphic type, and Tj any specified type, which makes cti more concrete.

3.3.4 M odifying the data format

It may also be useful to modify the specification in other ways throughout a derivation. In particular, 
the data  format used may be changed. This format is not a characteristic of the original maths 
specification, which assumes no particular format for the data. However the Haskell specification 
must use some format for the data, and the one chosen is not always the best one. It may be useful
to  change it, either at the start of the derivation or later on when the best format becomes more
apparent, due to additional information about the parallelism and the target.

This can be illustrated with an example. The key data  structures used in this thesis are matrices 
and arrays, and matrices can have multiple data formats. Although in the m aths specification they are 
simply grids of elements, in this thesis they are usually represented as sequences of rows of elements. 
This is abstract in several ways, but affects the ease with which different parallel distributions can 
be expressed. Because matrices are given row-wise, as sequences of rows, it is easy to express the 
distribution of rows across the parallel system, but not the distribution of columns. Therefore it 
can be useful to change the data format to  a column-wise implementation, in which the matrix is 
represented as a sequence of columns rather than a sequence of rows.

This can be done using the standard function, transpose, which transposes the rows and columns 
of a nested list of type [[a]]. A standard implementation on which the FinSeq implementations and 
proofs can be based is:

transpose :: [[a]] —y [[a]]
transpose [] =(]
transpose ([] : xss) =[]
transpose ((x : xs) : xss) = (x : [h \ (h : t) <- xss]) :

transpose (xs : [ 1 1 (h : t) <- xss]) 
or(x  : map head xss) :

transpose (xs : map tail xss)

However the d ata  cannot be transposed without changing the functions th a t act on it to take this 
into account. The necessary changes can be encapsulated in a set of lemmas dealing with transpose. 
These are based around the basic property th a t transpose is its own inverse:

L em m a 27 (In v erse  o f  tra n sp o se )
For all xss  :: [[a]] such that #(xss!!i) =  # (xss\\j)  V i , j .

transpose(transpose xss) == xss 
The condition simply states th a t xss is a matrix. The lemma can be proved by structural induction, 

as shown in Appendix A.6 .
O ther lemmas describe the effect th a t introducing transpose has on other functions. For example, 

the effect on map is very simple as shown in the following lemma.
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Lem m a 31 (T ranspose and m ap)
For all /  :: a  —>• (3.

map{map f )  = =  transpose • (map(map / ) )  • transpose
Other lemmas are more complicated, but are also based on the basic properties of transpose. They 

can be proved using these properties and structural induction.
Applying these lemmas produces a program with instances of transpose in it. However it is not 

always necessary to  include these explicitly. If the new data  format is to be used for the duration 
of the program, then the data  can be transposed before the program is called and transposed back 
again afterwards. If the program is to be self-contained, then the assumptions about the format in 
which the data  is input can be changed. In this example, the data  can be entered column by column 
instead of row by row. The transposes are removed from the program after the above lemmas are 
applied, but one must keep track of the assumptions about the data  format.

3.4 Basic vertical transformations

As explained in Section 1.1.3, a vertical transformation transforms the program from using one APM 
or set of APMs to another. Due to the implementations of APMs, this usually involves a change in 
the Haskell types on which the APM functions operate. Observation or conversion functions convert 
between the old and new types in the proofs of the transformation rules. However the rules themselves 
don’t mention the observation functions to keep them from cluttering up the code. The observation 
functions can also be used to change the types of data in a program.

This section examines some of the vertical transformations in the first half of a derivation. In 
these the parallelism is made concrete and data distributions are specified. Some of the later trans­
formations are also vertical, but they are considered separately in Sections 3.6 and 3.8 because they 
involve many stage-specific details.

3.4.1 M aking parallelism  explicit

One of the key vertical transformations makes the parallelism in the program explicit. This is impor­
tan t for many, though not all, target languages because many of them, including C+M PI, the target 
language in this thesis, are explicit about what is to be executed in parallel and what not, even if 
about nothing else. Knowledge about this basic parallel property is also im portant when introducing 
optimisations and data distributions later in the derivation.

Because of its wide applicability and relatively high level of abstraction, this stage usually occurs 
near the start of a derivation, as shown in the case studies. However, it can occur later in the 
derivation. It is also not necessary to  carry it out on all parts of a program at the same time. The 
parallelism of one piece of data  or nesting level can be given early in the derivation, but th a t of 
another may be left until later.

The parallelism of a program is made explicit using the annotations and data  types introduced 
in Section 2.6. The data  type SeqFinSeq a  is a finite sequence type, but also indicates th a t all of 
its d a ta  is stored in a single processor; its corresponding functions are annotated with S. Similarly, 
ParFinSeqa and P  indicate data  stored in multiple processors.

This transformation therefore has two distinct parts—d ata  can be made either sequential or 
parallel. The next two sections look a t these two cases separately, but first of all, this section 
considers several of the aspects th a t they have in common.
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Lem m as

The sets of lemmas and transformation rules for these transformations replace functions from the 
abstract specification APM with ones from the sequential and parallel APMs. These APMs are very 
similar, and so a function from the abstract APM is usually replaced by a single function of the same 
name from the new APM. Therefore the lemmas have the general form, f  = f r  where T  is S  in the 
sequential case and P  in the parallel.

However, these transformations cannot be applied to a function in isolation. When a function 
changes, the data  on which it operates changes and therefore other functions on th a t same data must 
also change. In addition, making one piece of data sequential or parallel has impact on other related 
data.

Therefore, the transformations are combined using larger lemmas which transform the whole 
program, not just a single function. These lemmas are different for the sequential and parallel cases 
and are therefore considered separately in the following sections.

P roofs

The lemmas in this section are vertical lemmas, and so are proved using observation functions, 
as described in Section 3.2.2. For these basic vertical transformations, the initial APM is the ab­
stract APM. This uses the type FinSeq a  to model the parallel system. The sequential and parallel 
APMs use SeqFinSeq a  and ParFinSeq a  respectively. Therefore the observation functions have types 
FinSeq a  —> SeqFinSeq a  and FinSeq a  -> ParFinSeq a.

The details of the observation functions depend on the particular implementations of FinSeq, 
SeqFinSeq and ParFinSeq. In this thesis, they are all implemented in the same way, using lists, and 
therefore the observation functions are particularly simple. Using the current implementations, the 
observation functions just apply renaming functions to convert between the types. For example, in 
the sequential case, the observation function, o s, is list2seqfs (fromFinSeq s). This converts a finite 
sequence, s, into a list and then into an item of type SeqFinSeq. Because the implementations all use 
lists, both of these conversions are trivial.

E xam ple A proof has the following form:
To prove V / :: a  -* f3, a : a, s :: FinSeq a.foldl f  a => foldls f  a, we prove

foldl f  a s = foldls f  a (o s) = foldls f  a (Ust2seqfs (fromFinSeq s))

This can be done as following, using the implementations of foldl and fo ld ls , in terms of foldl^ 
and the fact th a t fromSeqFinSeq is an inverse of list2seqfs:

foldl f  a s = foldlfl f  a (fromFinSeq s )
=  foldl[] /  a (fromSeqFinSeq (list2seqfs (fromFinSeq s)))
= foldl[] /  a (fromSeqFinSeq (o s ))
=  foldls f  a (o s)

3.4.2 Sequential case

All of the above comments apply when making data and functions explicitly sequential. In addition 
there is a main lemma th a t converts functions, making sure the types m atch up. It is specific to this 
sequential case.

In particular, nested data  must make sense. If a data  structure has type SeqFinSeq a, then all 
of its elements are stored in the same processor, and therefore any data  nested in it must also be 
sequential— a  cannot be ParFinSeq (3.
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This is reflected in the main lemma for the sequential case. It uses a function changeseq which 
makes functions and expressions sequential. In the following part of this function (written in a kind 
of pseudo-code), the second and fourth lines deal with nested data.

changeseq x  \ x scalar = x
changeseq xs \ xs :: FinSeq a  = fstoseqfs (map changeseq xs)
changeseq f  \ f  is a FinSeq A P M  function = fs
changeseq ( f  ps) \ f  is a FinSeq A P M  function = fs  (map changeseq p s )

w here
ps = the list of parameters of f

The operation of different functions on the same data should also be taken into consideration. 
If one function is made sequential, then either all functions acting on the same data must be made 
sequential or the data  must be redistributed between the functions. The latter may cost a lot in 
communication time, but may be worth it if the advantage of executing the function in parallel is 
sufficiently great. Alternatively, the other functions can be left abstract just now and dealt with later. 
This option may lead to extra redistribution functions, but these can often be removed after all of 
the functions are transformed.

Therefore changeseq can be extended as follows. Each expression can be transformed in three 
ways, corresponding to the three options above. In the first, both functions are made sequential. In 
the second, there is a redistribution and, in the third, the second function is left abstract.

changeseq (fs • g) = fs  ' (changeseq g)
or fs  • partoseq • (changepar g) 
or fs  • fstoseq ■ g 

changeseq ( f  • gs) =  (changeseq f )  • gs
or (changepar f )  ■ seqtopar • gs 
or f  ■ seqtofs • gs

This definition uses the function changepar which is described in the next section. It is similar 
to changeseq, but makes functions parallel. The other functions, for example, partoseq and seqtopar, 
are data  redistribution functions, described in Section 2.6.

The function, changeseq, is neither complete nor designed to be applied automatically, but it 
illustrates some key situations and can be applied by hand.

The main lemma then reads:

R u le 42 (M ake functions sequential)
For any expression e.

e =>• changeseq e
The =>• sign indicates th a t this is a vertical transformation. The two expressions aren’t  equal 

in the usual sense. However, if an appropriate observation function is applied to them as described 
above, then it can be seen th a t they carry the same meaning.

This lemma can be applied to code th a t uses the specification APM, once the decisions about 
what is to be sequential and what not have been made.

3.4.3 Parallel case

The parallel case is very similar to the sequential one. Again, the main difference lies in the trans­
formation lemma which uses a different function, changepar, th a t makes expressions parallel instead 
of sequential. Unlike sequential data, parallel data  can have either parallel or sequential data nested 
inside it, so inner nesting levels remain abstract. In addition parallel data  cannot be nested inside 
sequential data. To avoid this, the function must not be applied to inner nesting levels when the
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outer levels are still abstract. The outer levels should be made concrete first. The function itself is 
very similar to changeseq:

changepar x \ x scalar = x
changepar xs \ xs :: FinSeq a  = fstoparfs xs

— Unlike the sequential case, xs is left abstract 
changepar f  | f  is a FinSeq A P M  function  =  fp
changepar ( /  ps) \ f  is a FinSeq A P M  function = fp  (map1 changepar ps)

w h ere
ps = the list of parameters of f
map' only applies its function to arguments at the
same nesting level

As before, when functions are composed, other functions acting on the same data must also 
change. They can be made parallel or the data  can be redistributed between the functions. This can 
be expressed using similar extensions to those used for changeseq.

Then the lemma reads:

R u le  43 (M ake fu n c tio n s  p a ra lle l)
For any expression e such th a t e does not involve any data  nested inside items of type FinSeq a.

e =$■ changepar e

3.4.4 Introducing data distributions

The introduction of an explicit data distribution as described in Section 2.7 is another example of a 
vertical transformation. As such it bears many similarities to the transformations just described. In 
fact, these can be seen as special cases of this transformation because both placing all of the data in 
a single processor and placing one piece of data in each processor are ways of distributing it.

As before, the data  distribution is indicated using data  types and annotations. The functions 
provided by the APMs are similar to those in the abstract, sequential and parallel APMs and have 
similar names, such as mapcydic, but different behaviours, in order to  m aintain the data distribution.

In common with other vertical transformations, the lemmas replace functions from the old APM 
with ones from the new. This time the old APM is not the abstract one, but the parallel APM 
because a specific data distribution provides more concrete information about data which is already 
known to be parallel. The lemmas, therefore, have the general form, f p  — f r , where T  indicates the 
distribution, e.g., T  = Cyclic. An example lemma, therefore, is m a p p  =  m a p c y c i i c -

As before, it may be necessary to give a large lemma th a t transforms the whole program and 
applies these individual lemmas. Such a lemma would introduce data  distribution and redistribution 
where necessary. However, this is really only needed when several different distributions are used in 
the same program. If the same distribution is used throughout, then no redistribution is needed.

The lemmas and the rule are proved using an observation function, as was done in the sequential 
and parallel cases. However this function is more complicated than  the previous observation functions 
because the types and functions used in the data  distribution APMs are not implemented in the same 
way as those in the parallel APM (see Section 2.7). For example, the observation function for the 
Cyclic distribution needs to convert a two-dimensional Cyclic structure into the one-dimensional 
ParFinSeq used in the previous stage. Items from a single “processor” have to be moved to non- 
consecutive locations in the finite sequence.

Again, there is a decision to be made. There are a variety of standard data  distributions available, 
and the programmer can also design more. The choice of distribution has an impact on the efficiency 
of the program, and should be made with care. This choice is considered in Section 4.5.
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3.5 Horizontal transformations

Horizontal transformations, unlike vertical ones, use the same APM before and after the transforma­
tion. They manipulate functions from this APM, perhaps replacing combinations of functions with 
other combinations from the same APM. As with vertical transformations, they do this using lem­
mas and transformation rules. However, as these don’t change the model of the parallel system used, 
observation functions are not needed and they can be proved using ordinary equational reasoning.

This section looks at some of the horizontal transformations in the methodology. It looks firstly 
at transformations th a t tidy the code. These are useful but fairly straight forward. Another type of 
horizontal transformation is optimisation, discussed later in this section.

3.5.1 Tidying up

One of the most common types of horizontal transformation tidies up the program. It is a good 
idea to do this a t various points throughout the derivation, especially after and within particularly 
complicated steps.

Such transformations simplify and standardise programs so th a t they are easier both to read and 
to reason about. For example, some transformation rules expect the program to be in a certain form, 
(e.g., with only one APM function per line), and tidying up transformations can be used to  get it 
into this form. In fact, in certain cases, a  transformation rule may actually require particular tidying 
up steps to be performed before it is applied (see Section 3.6.1). Tidying up may also remove excess 
and unnecessary code, thus shortening the program as well as making it simpler.

The actual tidying up process is accomplished, as elsewhere in the methodology, via extensible 
sets of lemmas. There are many such lemmas, some of which are applicable to general Haskell code 
and others of which only apply at certain points in a derivation. Several of these lemmas are given in 
Appendix A, along with some sample proofs. This section considers just a few examples to illustrate 
the general points.

G e n e ra l tid y in g -u p  lem m as

Many of the lemmas involve the use of le t  expressions. These are common in Haskell and limit the 
scope of function and variable definitions. It is often useful to  be able to manipulate such expressions 
to get them into forms to which other lemmas can be applied.

For example, the following lemma allows the programmer to  rearrange the equations in a le t 
expression. This lemma is very simple and arises from the basic properties of le t, but it can still be 
useful. Used repeatedly, it can place two equations next to  each other so th a t they can be combined.

P ro p  5 (R e a rra n g e  e q u a tio n s  in  a  le t ex p ressio n )
For all Fs let equations, x ,E  :: a ,y ,E 2  :: /3 (any a,/3), E3 an expression.

le t Fs = =  le t Fs
x = E  y = E2
y =  E2 x = E

in  in
E3 E3

Other lemmas involving le t are given in Appendix A.2.

M o n ad ic  lem m as

In the later stages of the derivation, monads are often introduced to model side-effects (see Section 
2.8). Although the general lemmas can still be used to tidy up such programs, monads introduce new
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notation and complexities, and therefore lemmas which explicitly deal with them can manipulate the 
programs more directly. There are very useful, even though they can only be used in part of the 
methodology.

P art of the complexity when dealing with monadic code is th a t the side-effects may not be imme­
diately obvious. Therefore new notation may need to be introduced, if not for the monadic lemmas 
themselves, for reasoning about them and proving them. An example of such a proof and the asso­
ciated notation is given in Section A.6 .

A set of monadic lemmas is given in Appendix A.4. Although nowhere near exhaustive, this gives 
a fair number of lemmas, on which others could be based. The basic properties of monads are also 
described there, although these are rarely used directly as they are very basic and simple. They are 
described in further detail in papers such as [Wad92] and some examples of monadic lemmas occur 
in case studies such as [BF94].

Of particular use in this methodology are the lemmas in Appendix A th a t manipulate state 
monads. These allow one to  remove or move expressions in state monads provided that certain 
conditions hold. They can also be extended to deal with other kinds of monads.

E x am p le  lem m a  For example, Lemma 39 tidies up a stateful monadic program by removing 
unnecessary lines:
For all •  M  monadic expression

• x  variable such th a t x  does not appear in M  before another (x «— F) expression
• E  monadic expression such th a t E  does not change any variables in the state 
which are used by M  or any following code.

do x E  = =  M
M

This can used with the monad IO P ST  (see Section 2.8), if, in addition, E  does not affect either 
the input or the output.

E x am p le  lem m a  ap p lic a tio n  This lemma can be applied as in the following example:

do  x <- pst.getChar =>• do  x  <— pst-getChar
y return x y -f- pst.getChar
y «- pst-getChar pst.pu tS tr  ([x] -H- [i/])
pst.pu tS tr  ([a:] -H- [j/])

since return x  does not affect the state, the input or the output, and the value of y is reassigned 
before i t’s used.

E x am p le  o f p ro b le m s  in  lem m a  ap p lic a tio n  The following example illustrates a situation in 
which the lemma cannot be applied because the conditions do not hold. Here pst.getChar does affect 
the input.

do  x <- pst-getChar 
y <r- pst.getChar 
y <- pst.getChar 
pst-putStr  ([&] -1+  [y])

As well as lemmas which can be used for many functions, it is often useful to have ones written
for particular cases, especially if they are common. These are often instantiations of more general
lemmas, in which some of the side-conditions have already been checked. They therefore save the 
programmer from having to perform some of the side-condition checks, and they also clarify the 
operations which can be performed.
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E x am p le  For example, the following rule is a special case of Lemma 40 for reordering stateful 
monadic programs. It allows us to move a create.var to an earlier position in a program without 
changing the program’s meaning, and is commonly used to group all of the create.vars together at 
the top of the program, as is done in a language such as C. This is particularly useful because most 
IO P ST  programs contain create.vars.

R u le  41 (M ove create.vars to  th e  to p )
For all M l, M2 IOPST expressions and x .v  a variable name such th a t x j v  does not occur in M l.

do = =  do
M l x .v  <- create.var X
x .v  <- create.var X  M l
M2 M2

The condition on this is simpler and easier to check than the conditions in the general case, 
and therefore this is easier to apply. The lemma holds because the only variable which create.var 
modifies is the one whose name it returns, i.e., x .v .  Therefore the second condition in Lemma 40 is 
automatically satisfied.

3.5.2 A lgorithm ic changes

Other types of horizontal transformations can be used to  change the program ’s algorithm, for example, 
to introduce optimisations to a program. While some optimisations specify more parallel details, 
many do not need an extra degree of concreteness. They simply rearrange the data or functions at 
the current level of abstraction, and so are horizontal. They can occur at all levels of the methodology.

No detailed examples of such transformations are given in this section because the transformations 
are often complicated and require a lot of explanation. Instead a few examples are discussed in detail 
elsewhere in this thesis. For instance, load balancing is an algorithmic horizontal transformation 
which is examined in Section 4.4. In addition, Sections 6.5, 6 . 6  and 6 . 8  describe an example of such 
transformations later in a derivation, the manipulations of the communication to  optimise a pipelined 
calculation.

Some optimisations are relatively straight-forward to introduce to  a program, but most require 
a degree of thought. While optimisations axe used to  speed up programs, in certain cases program 
changes meant to do this actually slow the program down. For example, load balancing can slow down 
a program if communication costs are very high. E xtra  care must be taken in such cases. Further 
difficulties occur because a single optimisation has several different instances th a t can be introduced. 
For example, different data  can be clustered together or different tasks moved to different processors. 
Which instance is best depends on the particular program. Therefore there are choices which need 
to be made, and Chapter 4 explains how this can be done.

Such algorithmic transformations can be carried out in the same way as other horizontal transfor­
mations. Lemmas transform the program from one version to the next, perhaps replacing a function 
by a combination of other functions. For example, Lemma 15, when applied to a program, breaks a 
task, fo ld l, down into two smaller parts. This reduces the granularity size and may, in some cases, 
improve or allow an improvement in the load balance.

The lemmas for the algorithmic transformations may be parametrised by variables, different values 
of which express different instances of the optimisation. For example, the load balancing lemmas can 
be param etrised by the size of the task to  be moved to  another processor and the processor to move 
it to. These lemmas are given and discussed in Section 4.4.
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3.6 Introducing monads

As described in Section 2.8, monads are frequently used in a program in order to model imperative 
features such as side-effects on the state and 10. When targeting C+M PI, this thesis uses the designed 
monad, IO P S T , described in Section 2.8. It manipulates a model of the state of a parallel system, 
GlobalState, and also provides 10 functions.

This section and the following section describe how monads can be introduced into a program. 
This is a complicated transformation with many details and therefore it is split into two main parts. 
This section describes the initial introduction of monads, and the addition of 10 if necessary, while 
the following section (3.7) describes how variables and state are introduced to a program.

3.6.1 Preparation

Before monads are introduced various modifications need to be made to the program. These are 
basically just tidying-up steps, as in Section 3.5.1, but may be more specialised. Some of them put 
the program into a form to which standard lemmas can be applied, and others make subsequent 
transformations easier.

First of all, each function should be written as a le t expression, instead of one involving w heres, 
because such expressions are easier to transform into monadic code using Lemmas 36 and 38. This 
can be achieved using Lemma 4 in Appendix A.

There should also be only one APM function per line. This is not absolutely necessary at this 
stage as code with more than one APM function per line can still be transformed. However this is 
often needed later on in the derivation, for example, in the conversion to the M PI APM (Section 3.8), 
and i t ’s easier to do this transformation while still in the non-monadic world as side-effects don’t 
have to be considered. This can be done by separating out nested APM functions and tuples, using, 
for example, Lemmas 8  and 13.

We also need to alter code containing APM functions, such as takep, dropp and takesitesp , that 
partition the set of processors. Such functions do not reflect the parallel nature of further operations 
very well. However they can usually be transformed into code which does. This is considered for one 
particular case in the Gaussian Elimination case study in Section 7.4.2.

3.6.2 G etting started

Once this preparation has been done, monads can be introduced to the program. This is initially 
done a t the highest level only, as expressed in the following lemma:

R u le  36 ( In tro d u c e  m o n ad s)
For any expression E .

E  =>■ return E
The program remains essentially the same, but it is now monadic. The change of type necessary 

means th a t this is a  vertical transformation. This lemma may seem rather boring and of limited use 
to the programmer, bu t the program is now in the monadic world, and can be manipulated using 
only horizontal transformations.

First of all, the monads are pushed into lower layers of the program, using the following lemma:

L em m a  38 (le t in to  do)
For any x , E l  :: a ,E 2  :: (3 (any a,/3) such 
th a t
• E l  does not depend on E 2
• x  has no param eters
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return ( le t x = E l  = =  do  x return E l
in  return E2
E2)

By applying this lemma several times to different expressions and nesting levels, it is possible 
to remove all let expressions from the program. It is not, however, always necessary to  do this, 
especially for small let expressions which only define tem porary intermediate values which do no use 
APM functions and do not need to be stored in the state, passed to the world or use values from the 
outside world. In addition, let expressions th a t define functions are a special case and are dealt with 
separately, as described in the following section.

When Lemma 38 has been applied multiple times, the program may contain nested d o ’s. This 
can be untidy, but the program can be easily converted to an un-nested form using Law 35.

3.6.3 A uxiliary functions

When monads are introduced to a program, they affect not only the main function, but also any 
local auxiliary functions. These may be defined within the main program in le t expressions or given 
separately a t the top level of the program. They cannot be treated in the same way as the constant 
let expressions in the last section: more care needs to be taken because functions have parameters 
whose types may also change.

Not all such functions need to  be made monadic. However, functions which use APM functions, 
do input or output or manipulate the state will need to be monadic. It is not always yet clear which 
functions this will affect, and therefore some functions may be left until variables are introduced to the 
program before they are converted. This is not a problem as monadic programs can call non-monadic 
functions.

The way in which a function is used affects how it is converted.

In the simple general case, a function, local-fn :: T\ —> Ti —> . . .  ->■ Tn , with param eters ps, is 
called directly by the rest of the code, using, for example,

x  «- retum(local-fn ps).
It itself is not used as a param eter to any higher-order functions.

This can be transformed relatively simply. The local function becomes: 
locaLfn1 :: T\ —̂ T2 —̂ . . .  —► Tn—\ —̂ IO P ST  Tn 

locaLfn1 ps = retum(locaLfn ps) 
which can then be transformed as described above (in Section 3.6.2).

The code which calls locaLfn also changes. The function can now be called directly instead of via 
a return function. For example, the above call becomes

x  «— locaLfn1 ps.

However, there are more complicated cases, when the function’s param eters also become monadic. 
This occurs most frequently when the function is used as a param eter to  a higher-order function 
(h.o.f.) such as foldl. The h.o.f. may impose constraints on the types of the function, its parameters 
and the other param eters involved, so th a t making the function monadic requires th a t some or all of 
these other variables also become monadic.

E xam ple For example, foldlp , a typical h.o.f., has the type,
(a  —> (3 —»• a ) —> a  ->■ ParFinSeq (3 a.

This imposes some constraints on the types of values it can be used with. If the function parameter,
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/ ,  returns a monadic value, a  becomes monadic, and all the parameters with type a  must therefore 
also become monadic.

Consider the following piece of code (in which s :: ParFinSeq (3):

f  :: a  —»■ (3 —»• a  
a :: a
x 4— return(foldlp f a s )

Although part of a monadic program, the calculation is non-monadic. The result is simply con­
verted into a monadic value using return. However, it may be useful to make /  return a monadic 
value, for example, if /  uses any variables or alters the state. Its return type would then be monadic, 
for example, IO P ST  a ' . In order for the types to match up, everything else th a t used to be of type 
a  must now have type IO P ST  a' and therefore become monadic, as shown below:

/ '  :: IO P ST  a ' -> /3 -> IO P ST  a ' 
a' :: IO P ST  a ' 
x 4- foldlp f  a 's

This affects both / ’s param eters and a, a separate param eter of foldlp. Care must therefore be 
taken in other places where /  and a are used, and in the definition of /  itself. The modified version 
of /  accesses its monadic param eters before it continues as before:

f  x y =  do xval 4- x
retum (f xval y)

The second line of / '  can now be transformed as in Section 3.6.2.
This change in / ’s param eter also affects the use of /  elsewhere in the program. For example, 
a <— retum (f x y) becomes a 4- f ' x ' y  where x' is the monadic version of x.

These various changes can be carried out in any order, but it is recommended th a t a consistent 
order is used to prevent confusion and omission of any of the changes. In the case studies in this 
thesis, the changes started  with the modification of a function to allow it to access the state. The 
places in which this function was used were then noted, especially places where it was used as a 
param eter, for example to foldlp as above. Each of these was taken in turn, and the other functions 
and expressions th a t must change were discovered by examining the types as in the example above. 
Each of them  was then transformed.

3.6.4 A dding IO

If the program is going to be used as a function, called by another program, then it does not need to 
use IO to obtain values or display its results—this is dealt with by the other program. However, if 
it will be run in isolation, either in its final version or in intermediate versions for testing purposes, 
then a main program, which deals with IO, needs to be given. This program takes values from the 
input, calls the function with these values as its parameters, and outputs the result.

Input functions

The main function can make use of specific input functions to read in the data  in the correct formats. 
This reduces the amount of detail needed in the main function itself.

These input functions prom pt the user for input, receive the data, convert it to the required 
parallel datatype, and then pass it on to the rest of the program. The prom pt is not always needed— 
this depends on whether the data  is to come from the keyboard or from a file. The data  is often
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initially a  list or sequential finite sequence, and is then converted to the parallel type. This mimics 
the way input is dealt with in C +M PI in which the data  is read in to  a single processor and then 
distributed across the parallel system. It is easy to modify this to cope with specific data distribution 
formats (see Section 3.10).

There are many variations in the input functions. D ata of different types is read in in slightly 
different ways, and may be distributed across the system in more than  one way. If user prompts are 
used, these are also dependent, not only on the type, but also on the program ’s context. Therefore 
the input functions are often program-specific. However, they do not usually have to be written from 
scratch. Example functions or templates for data of particular types can be modified with different 
prompts and details for each situation.

These input functions are usually based on the IO P ST  functions, pst.getChar and pst.getLine , 
which obtain characters and strings from the input, as described in Section 2.8.3. These input values 
can then be converted into the required types using the standard function, read, provided by the 
Prelude. This works for most standard types, although it may insist on particular input formats. For 
example, it insists th a t the character is used to  separate the num erator and denominator of a 
rational number. Conversion functions for other types and formats can be written based on these.

E xam ple This can be illustrated with a simple example. The function enter J n t  fetches an integer 
from the input, using pst.getLine  and read:

enter J n t  :: IO P ST  In t 
enter J n t  = do pst.pu tS tr  “ Enter a : " 

aChs 4- pst.getLine  
return (read aChs)

M ore com plicated  exam ple Functions for obtaining more complicated data  structures can be 
written in a similar way. They can use recursion to obtain multiple values. For example, enter.vector 
uses a subsidiary recursive function, enter , to obtain a list of Floats, which it then converts into a 
parallel finite sequence. It takes one param eter n which describes the length of the input sequence. 
This can either be built into the program or obtained from the input using enter Jn t.

enter.vector :: In t —Y IO P ST  (ParFinSeq Float)
— Reads in the elements for a  vector of length n,
— then distributes them across the processors 

enter.vector n =  do xs 4— enter 1
return (list2parfs xs)

w here
enter :: In t -4 IO P ST  [Float]

— subsidiary function—takes in values i to n 
enter i \ i >  n =  return []

| * <  n = do
pst.pu tS tr (“Enter 6 ["-H- (show i) 44- “]" :) 
xChs 4 -  pst.getLine  
x  4 -  return (read xChs) 
xs 4 -  enter (i 4-1) 
return (x : xs)

T ransform ation rule

The addition of these input functions and a main function, which calls them, can be encapsulated in 
a transform ation rule as follows:
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R ule 44 (Introduce m ain)
F or all prog :: T\ —y T2 . . .  —>■ Tn T 1, pi :: Tj (i =  1 , . . .  ,n ), F  :: T ' .

pst.putStr  (show (prog p\ . . .  pn ))  
where  

pro<7 x\ . . .  xn = F

main p =  do  le t enter\ =  . . .

entern =  . . .  
le t  pro# x\ . . .  xn = F
qi <— enteri

qn <- entern
result <— prog qi . . .  qn
pst.pu tS tr (show result)

w h ere
enteri = the appropriate input function for p i.

I t  may have parameters.

The first program produces the same output as the second, when it is given as input a sequence 
of values, p i , . . .  ,pn - The param eter, p, to m ain , represents the number of processors in the system 
and can be any positive integer.

3.7 Introducing variables

Variables can be used in the Haskell program as explained in Section 2.8.2. But, before they are 
introduced, the model of the parallel system must be set up with the required number of processors. 
This is the first thing to be done.

This can be done in the IO P ST  monad using the function start a t the beginning of main. The 
number of processors, p , is one of m ain’s parameters and can therefore be easily passed to start, as 
follows:

R u le  45 (S e t u p  th e  p a ra lle l sy s tem )
For all IOPST expressions E.

main p — E  => main p = do  start p
E

The remainder of this section shows how variables can be introduced once the system has been 
set up. It is split into several sections which discuss different aspects of the transformation.

3.7.1 Local variables

Local variables usually occur frequently in a program. They are located within main and the lo­
cal functions, including the core function itself, and are used to  hold intermediate values during a 
calculation. They can be introduced as follows:

R u le  46 (N ew  v a riab le )
For all x ,E  :: ParFinSeq T  for some type T,
there exists TO :: T  which can be used for initialisation and x .v  :: VarFn T  such that
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x <- return E  x .v  create-var E
x <- retrieve x .v  

or =>• x .v  create.var {repeatp {T 0 :: T))
store x .v  E  
x f -  retrieve x .v

A variable with a similar name to the intermediate value is created and initialised. It may be 
initialised with its value straight-away, if this does not involve much calculation. Otherwise, a dummy 
value can be used, followed by an explicit store. Its value must then be retrieved before any reference 
to it is made. For simplicity the rule above retrieves values directly after they are stored, but the 
retrieval code can often be moved later in the program using Lemma 40. The creation of the variable 
can also be moved to the start of the function, using Lemma 41.

The above lemma only applies if x  has type ParFinSeq T , but it is possible to use variables for 
scalar quantities as well, as discussed in Section 3.7.3.

The use of this lemma often creates many variables, more than are actually needed, as each 
is assigned to only once. This is useful if targeting a single-assignment language, such as SAC 
[GSSW98], but otherwise can be inefficient, especially if there is no garbage-collector. Some of these 
extra variables can be removed, using, for example, Rule 47 below.

R ule 47 (R em ove an extra  variable)
For all x j v , y .v  :: VarFn T, V , V2 :: ParFinSeq T  (for some type T), F s, Gs IOPST expressions 
such th a t • x  and x j v  don’t occur in Gs,

• x ,y  refer to  the values obtained from x jv ,y jv  respectively.

x .v  «— create.var V  =£• y .v  <- create.var V  
Fs F s[y.v / x .v , y/x]
y .v  «— create.var V2 Gs
Gs

3.7.2 Global variables

Global variables are also im portant. They lie at the outer-most level of a program, and so can 
be accessed by any function. Some global variables, especially those holding information about 
the system state, occur in many programs. For C+M PI, such variables include p, the number of 
processors, and pid, the processor ids. Their values can be set using the special functions get.size 
and get.pid, described in Section 2.8.2. Many other global variables are program-dependent. The 
programmer may know which variables should be global at this stage, but in some cases, this doesn’t 
become obvious until later. In these cases, they can be introduced in a similar way later in the 
derivation.

Global variables are modelled in Haskell in the same way as local variables, as described in 
Section 2.8.2. However, they are created before the local function definitions, so th a t these local 
functions, including the core function, can access them. They are also initialised at this point, but 
any calculations involving their values lie in the functions themselves or in main after all the local 
function definitions. This separates global variable declarations from the main code, following the 
pattern  in C.

A global variable, x .v , of type T , whose value is initially set using E  at the outermost nesting 
level, can therefore be introduced using the following rule:

R ule 48 (A dd  a global variable)
For all x ,E ,T 0  :: T  (for any type T), p  :: I n t+, F ,F 2  IO PST expressions and Fs local function 
definitions.
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x =  E
main p =  do F

let Fs — local function definitions 
F2

=>

main p = do F
x .v  «- create.var (repeatp (TO :: T))
let Fs — local function definitions
x <— return E
store x .v  x
x <r- retrieve x .v
F2

If E  returns only a single value, then this value must be replicated across the processors so that 
they can all access it, as discussed in the next section (3.7.3).

It is sometimes the case th a t the value of a global variable, such as x .v ’s is set instead in one of 
the local functions. In this case the extra code after Fs is moved into the appropriate function.

3.7.3 D uplicating values across the processors

There is some difficulty when a variable’s value is scalar because store expects a parallel finite sequence 
of values, one for each processor in the system. This difficulty can be overcome by replicating the 
scalar value to give p  copies of it, one for each processor:

R u le 49 (D uplicate a value across th e processors)
For T  ^  D a  for D = ParFinSeq or any data  distribution type.
For all E , x  :: T  (on the left hand side)

x — E  => x — repeatp E
and
For all E  :: IO P ST  T, x ,x '  :: T  (on the left hand side).

X i— E  =r> X1 4— E
x 4- return (repeatp x')

This transform ation changes the type of x , and so, to  m aintain correctness, any references to x  in 
the rest of the code must also change. There are two main ways in which this can be done.

N orm al case A parallel finite sequence representation is usually used because it expresses that 
there is a sequence of values, one in each processor and allows different values to  be stored in different 
processors. Therefore, when x  occurs in an expression, each of x ’s values should be operated on 
separately. This can be done using variants of the standard function mapp, which apply the given 
function to  each element of the sequence, as follows:

L em m a 25 ( repeat and map)
For all x :: T , f  :: T  —> V  (for any T, V ) .

repeat(f x) == mapp f  (repeatp x)
And therefore

/  x =$■ mapp f  (repeatp x)
A more general version of this lemma is Lemma 24 in Appendix A.
Alternatively, instead of using mapp , the definition and type of /  itself may change to take a 

parallel sequence of values.
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E xceptions Sometimes, however, the parallel finite sequence representation gets in the way. When 
x is always constant across all the processors, it can be inconvenient and inefficient to use a sequence 
instead of this single value. This is the case with the standard M PI global variable, p.

This can be dealt with by selecting a single representative value from the sequence, using !!p or 
headp. This value is then used in the program. The following lemma states th a t this can be done 
without changing the meaning of the program:

L em m a 26 ( repeat and head)
For all x.

x == headp (repeatp x)
However, this method should not be used if x ’s variable, x-v, is ever modified so th a t it is no 

longer constant across the system.
A similar situation may occur later in the derivation if, a t any point, the program deals with a 

single processor instead of the whole system. Then only one of x ’s values is needed. This commonly 
occurs after the introduction of communications, especially during input and output and point-to- 
point communications.

This situation can be dealt with in a similar way to the above by selecting a single value from the 
sequence. If processor i is used, x ’s *th value must be selected,using !!p (i -  1).

3.7.4 Variables as param eters

Although variables have now been introduced, they haven’t  been often used directly in expressions. 
Their values, obtained using retrieve, are used in their stead. However, it can be useful to use the 
variables themselves as parameters to  functions. If this is so, the variable is said to be passed by 
reference, whereas, if only the variable’s value is given, it is passed by value.

Reference parameters allow the function to modify the variable’s value. They also model the 
situation in C more closely, where reference parameters axe also used for array parameters—otherwise 
the C ’s axray representation would prevent all the array elements from being accessed. It is also often 
more efficient to pass records (structures) by reference.

In Haskell, reference parameters have type VarFn a . For example, the following IOPST function 
takes one value Integer param eter and one reference Integer param eter and returns an Integer:

/  :: ParFinSeq In t —► VarFn In t —»■ IO P ST  In t 
At this point in the derivation, we may know some of the param eters which it is useful to pass by 
reference. For example, all values of type SeqFinSeq a  should be passed by reference. However, some 
cases (e.g., scalar values) may still be unclear. If the variable is to be changed by the function then 
it needs to be passed by reference, but this will usually not become obvious until the program has 
been tidied up. In these cases, the code can be changed later in the derivation.

If a param eter becomes a reference parameter, then the type of the function, the function’s code 
and any calls to the function must change as follows:

R u le 50 (R eference param eters)
For all / ,  x, y, T  of appropriate types.

/  :: . . .  —y ParFinSeq T  —> . . .  =>■ VarFn T  —> . . .
f  . . .  x . ..  = / • • •  x.v . . .  —

do . . .  d o x  f -  retrieve x .v
...

E \ f  . . .  y . v  . . . ]

A value passed by reference is now accessed using retrieve at the s ta rt of the function. Transfor­
mations can then further manipulate the variable and its value within the function.
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Variables for function  results

Variables can be used for a value returned by a function, as well as for values passed to a function. 
If this is the case, the variable to be used should be passed as a param eter to the function. Then, 
instead of returning the value directly, the function should store it in the variable.

R ule 51 (R eturn ing  a value from  a function)
For all x  :: T, f ,p s ,  E  of appropriate types and x .v  :: VarFn T  such th a t x .v  is either a new variable 
(create it using create.var before /  is called) or the variable corresponding to x.

x <- f  ps =$■ f  ps x .v
x <— retrieve x .v

and
f  ps = do . . .  => f  ps x .v  =  do . . .

return E  store x .v  E

Sequential functions

Some functions only operate on data  which is local to one processor. They are passed local values 
with scalar or SeqFinSeq a  types. For example, sequential functions, annotated with 5 , operate on 
data  stored in a single processor. These are often called by mapp which applies a sequential function 
to each processor’s data.

It is useful to be able to easily identify such functions by noting th a t they only have scalar or 
sequential parameters. However if they are passed reference parameters, these have types such as 
VarFn (SeqFinSeq a ) , and contain data for the whole parallel system. This therefore makes it harder 
to identify the functions that are sequential.

Therefore, it may be useful to wait before modifying such parameters. Once the program is at an 
individual level (see Section 3.9), the local nature of the functions is obvious, and the transformation 
can be carried out without causing these problems.

3.8 M oving to the M PI A PM

After the introduction of monads, a language-specific APM can be used. As this is highly language- 
dependent, this section focuses on just one example, an APM for MPI. This allows real programs to 
be produced, in particular the examples in the case studies, and provides insight into this stage of 
the methodology in general.

The transformation to a language-specific APM is a vertical transformation, as discussed in Section 
3.4, because it uses a different APM after the transformation than before. However this APM uses 
the same model of the parallel system so an observation function is not needed.

The current section firstly presents some transformation rules used when moving to the MPI 
APM, and then discusses some special cases.

3.8.1 Transformation rules

A set of rules can be used to transform a program th a t uses the previous general monadic APM 
to one th a t uses the MPI APM. However before they are used, the program should be tidied up as
described in Section 3.5.1. The rules should then be applied to all occurrences of the APM functions.

This section looks a t some representative examples of these rules to show their form, demonstrate 
their operation and support the case studies. Other rules are similar.

The following is an example of a rule for a basic M PI APM function:
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R ule 52 (m pi.com m .size)
For all x .v  :: VarFn a , xs :: ParFinSeq a  (any a) such th a t
xs hasn’t been shortened using, for example, take or filter (the initial data  structure on which the 
program operates is a good choice for xs).

store x .v  (sizep xs) =>■ mpi.com m .size x .v  
This rule can be proved using the lemmas from Appendix A.4 and the definition of m pi. comm .size.

The rules for collective communication functions are similar to the following:

R u le 53 (rep eat/b road cast)
For all val :: a, var.v :: VarFn a.

store var.v  (repeatp val) => do storeindiv 0 var.v val
mpi .beast.simple var.v T  0

Here repeatp signals th a t a value is broadcast across the system. Unless otherwise indicated the 
root processor is assumed to be 0 , and so val is initially only stored in processor 0 , before it is 
broadcast using mpi.beast.simple. This function is a simplified broadcast function that sends one 
value from var.v  to  each processor. Such broadcasts are often used in input functions.

R u le 54 (scatter)
For all xs :: [a], var.v :: VarFn a .

store var.v  (Ust2parfs xs) => tm p.v +- create.var (repeatp (TO :: T))
storeindiv * tm p.v (list2seqfs xs) 
mpi.scatter tm p.v  1 T  tm p.v T  i 
tmp <— retrieve tm p.v  
new.vals «— return (mapp heads tmp) 
store var.v new.vals

where • T  = SeqFinSeqa
• TO is any value of type T 

Here Ust2parfs stores one value of xs in each processor, effectively scattering xs. Processor i 
is used as the root, although, as before, i is commonly 0. The rule contains extra code because 
m pi.scatter can be used to  place multiple values in each processor, and so the receiving variable must 
have type VarFn(SeqFinSeq a), var.v  doesn’t have this type, and so a new, temporary variable, 
tm p.v, is created for this purpose.

A related function, mpi.scatterv is often also used to scatter values. It can send different numbers 
of elements to different processors, and needs extra variables displs.v and sizes.v  to indicate which 
values should be sent. It can therefore be used to distribute d ata  with more complicated distributions. 
For example, in the Gaussian Elimination case study in Chapter 7 it is used to implement a scatter 
with a cyclic data  distribution.

Less standard  A P M  functions

Other APM functions, including user-defined functions, don’t  correspond to any single MPI APM 
function, and so need to be implemented with a set of communication functions. The MPI APM 
functions m pi.spt2pt and m pi.jointpt2pt are particularly useful because they can express specialised 
individual and collective patterns of communication. The former is used when the communication 
is extremely limited, typically between only 2 sites, and the latter when it is larger scale, involving 
most or all of the processors. These functions are described in Section 2.10.

The transformation of these less standard APM functions is highly dependent on the Haskell 
function being transformed, because each function may use a different pattern  of communication.
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The function reverse is given as an example of such a function, together with a description of how 
the transformation rule was produced. This is followed by a discussion of more general cases.

E xam ple: reverse The APM function reversep expresses a specialised pattern  of communication 
in which each processor sends and receives exactly one value. It doesn’t  translate directly to a fixed 
M PI APM function, but rather to mpi.jointpt2pt which models a combination of point-to-point MPI 
sends and receives. It can be converted into an instance of m pi.jointpt2pt. Alternatively a new 
function, corresponding to reversep can be defined a t the M PI APM level and implemented using 
mpi-jointpt2pt. The latter option is described in Section 2.10.5 where the function requestrev is 
defined.

However, no m atter which option is chosen, it is necessary to calculate the combination of sends 
and receives needed to implement reversep, i.e., the param eters th a t mpi-jointpt2pt takes. These 
param eters are calculated by the programmer, or, when a new function is implemented at the MPI 
APM level, by the implementor of th a t function.

In the case of reverse, the parameters can be determined by calculating the processor to  which 
processor i (for any i) sends its values and th a t from which it receives other values. These can be 
calculated using Lemma 23 as follows, where p  is the number of processors:
:rs!!p i = xs !!p (p — (p — i — 1 ) — 1 ) =  (reversep a;s)!!p (p — i — 1 )
And so processor i sends to processor p — i — 1.

=> sendfn i = p — i — 1
Similarly, recvfn i =  p — i — 1.

Therefore reversep can be transformed as follows:

R u le 55 (reverse)
For all xs :: ParFinSeq a, xs-v  :: VarFn a  (any a).

xs <r- retrieve xsjv =>• mpi.jointpt2pt xs-v x .v  T  (A i —> (p — 1 — i)) (A i —> (p — 1 — i)) 
store x .v  (reversep xs)

where • p  is the number of processors. It can be set using: do p «— retrieve p .v
p «— return (headp p)

• T  is the ItemType corresponding to a  (ItemType is an enumerated Haskell type
described in Section 2.8.2.)

This can be written as a specialised M PI APM function, requestrev, which is described in Section
2.10.5.

G eneral com m ents In a similar way, a function, fp ,  which involves one send and receive per
processor can be expressed using mpi-jointpt2pt with functions sendfn and recvfn as follows:

mpi-jointpt2pt xs-v x-v  T  sendfn recvfn
where • xs !!p i = (fp xs) !!p (sendfn i) and

• (fp xs) !!p i = xs !!p (recvfn i).
Functions which involve only one send/receive pairing are similar but use mpi.spt2pt. Other

functions may however require several communications per processor. These can be transformed by
splitting them into several parts, each of which corresponds to a sequential calculation, or a standard
M PI APM function, such as m pi.jointpt2pt or m p isp t2 p t.

3.8.2 Special cases in the use o f the M PI A P M  

Input functions

As described in Sections 3.6 and 3.7, the input functions distribute the input data using repeatp 
or type conversion. In the MPI APM, these become broadcast and scatter M PI APM operations
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respectively, using the rules given above.

N ested  parallelism

In M PI nested parallelism can be implemented using communicators to cluster the processors into 
groups. Each group is then assigned a subset of the task, often in the form of a subset of the data, 
such as a row or column of a matrix. The groups can work on their subsets in parallel with each 
other, and the processors within an individual group can work on items of data  from its subset in 
parallel. However communicators are not yet implemented in the M PI APM, so nested parallelism 
cannot at present be implemented in this stage of the methodology.

Im plicit com m unication

The rules in Section 3.8.1 apply when the communication in the program at the stage prior to the MPI 
APM is given by APM functions. However, sometimes there is implicit communication in a function. 
For example, a sequential function may use a value from another processor directly, without the value 
being explicitly moved between the processors.

It is im portant to discover such implicit communication in a program and make it explicit as 
attem pts to access remote data  directly will fail. Section 7.5.4 gives an example of this process.

In general, it involves several steps:

• Examine the sequential function to see if it uses data  from another processor. For example, a 
function with param eter i (the current processor id) uses remote data  if it accesses xs Up j ,  for

j  #  * •

Sometimes the function does not have a param eter giving the current processor. In this case, 
the processor id can often be calculated. The example in Section 7.5.4 has a parameter rowno 
which can be used to calculate the processor id.

In addition, the parameters, which should provide local data, should be examined. If any of 
them give data  from another processor or if any global data  is used in the function, this should 
be noted.

• Store the implicitly communicated data  in a local variable in the current processor using 
storeindiv before the sequential function is called.

• Send it to  the processors in which it is used. This can be done using m pi.sp t2pt, or, if it is 
used in many processors, mpi.bcast.

• Access the value and pass it as a param eter to the function. In certain cases, if the sequential 
function is run in many or all of the processors, this can be done concisely by mapping the 
function over the distributed values of the variable.

3.9 The individual level

M PI views the parallel system from the viewpoint of an individual processor, whereas the Haskell 
programs so fax have viewed it from a collective level, describing the actions of the whole system. 
This individual level viewpoint and how it can be modelled in Haskell are described in more detail 
in Section 2.11. The transformation from the collective viewpoint to  the individual is very language- 
specific, and so this section focuses on C+M PI, although some of the principles can also apply to 
other languages.
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3.9.1 Transformation to  the individual level

The transformation is guided by a set of guidelines and rules as follows. In these, pid is the processor 
id. It is assumed to have been set at the beginning of the program using get.pid  or mpi .comm .rank.

R u le  56 (T ra n s fo rm a tio n  to  th e  in d iv id u a l level)

• The system initialisation no longer needs the number of processors as a parameter, so:
m pi.in it p =>• m pi.in it (for any p  :: I n t+)

• MPI functions can be used to obtain the size and processor ids:
g ets ize  => m pi.com m .size  
getjpid => m pi.com m.rank

• create.var, the function which creates a parallel variable, needs only the data  for the current 
processor as an initialisation parameter:
For all x .v  :: VarFn T , v :: T.

x .v  <r- create.var (repeatp v :: ParFinSeq T) => x .v  4- create.var (v :: T)

• Individual stores and retrieves using storeindiv and retrieveindiv are replaced by if  expressions 
on the processor id, e.g.,
For all proc, var, value of appropriate types. 

storeindiv P^oc var value =£• if  (pid = =  proc) th e n  store var value else return ()

This is used in the input functions, among other places, since input is usually done in only one 
processor.

•  Collective communication functions are not changed. This works because the MPI APM func­
tions were specifically designed to ease the conversion to  the individual level. Their imple­
mentation changes a t this level, but their names and param eters remain the same. For other 
languages, there may be modifications which need to be made.

•  Individual communication functions, m pi.jointpt2pt and m pi.spt2pt, are separated out into 
calls to sends and receives. This may be different in other languages depending on their indi­
vidual communication mechanisms.

The separation can be done using the following rules:
For all s .v , r .v  :: VarFn T  (any type T), sendfn, recvfn :: In t+ -> In t+, source, dest :: In t+.

m pi.jointpt2pt s .v  r .v  T  sendfn recvfn => do  m pi.send s .v  T  (sendfn pid)
mpi.recv r .v  T  (recvfn pid)

and

m pi.spt2pt s .v  T  source r .v  T  dest => i f  (pid == source) th e n  m pi.send s .v  T  dest
else if  (pid = =  dest) th e n  mpi.recv r .v  T  source 
else return ()

• Parallel maps (e.g., in storage functions) tu rn  into single function applications:
For all Xi :: T{, f  :: Tx . . .  Tn ~~t T .
mapnp f  xi . . .  xn ^  f  xi . . .  xn
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3.9.2 Transformation w ithin the individual level

Individual level code can be transformed as can code a t other levels in the methodology. It can tidied 
up, optimised, and brought closer to the target language. However, due to the present lack of a 
proper semantics for the individual level (see Section 2.11), these transformations cannot at present 
be proved correct, although this is possible in principle. Despite this problem, it is sometimes better 
to perform transformations at the individual level instead of a t the collective level.

Individual level code is often simpler and cleaner as it does not have to contain details for ma­
nipulating the whole system. This makes certain types of code clearer to  understand and manipulate 
and makes it easier to transform the program. For example, when different processors do different 
things, it may be clearer to deal with each processor separately. It is also easier to express and 
manipulate overlapping communications at the individual level. This can be done at the collective 
level using collective communication functions or m pi.jo in tpt2pt, but in these cases the overlaps must 
be calculated and then combined into the right functions. Sometimes this is useful, but it is often 
easier to manipulate the communications at the individual level, and leave it up to the semantics 
and run-time system to work out exactly which ones are done a t the same time and the pattern of 
communication used. An example of this occurs later in this thesis in Sections 6.5.2 and 6 .6 .

It is also useful to  bring the program closer to the target language while a t the individual level. 
These transformations axe very language-specific and therefore make more sense when close to the 
target, at the individual level rather than the collective. Some examples of such transformations were 
developed for one of the case studies in this thesis. They are fairly specific to th a t case study, although 
they can be easily extended to apply to other programs as well. Therefore they are described fully 
in Section 7.6.5 and only a few examples are given here.

Some of the transformations concern the replacement of implicit loops, e.g., in maps, by explicit
loops, using Haskell functions, such as for, to mimic loops in C. For example, code containing maps
can be transformed as shown in Figure 3.4.

For all r e s ,f ,x s , var.v  of appropriate types, and new names elt and var.

do res retum (m aps f  xs) => for  [0 ..{length xs — 1 )]
store var.v res (Ai -> do  elt «— return (f(xs\\i))

var <- retrieve var.v
store var.v  (replace var i elt))

=S> fo r  ( i= 0 ; i < n ; i + + )
v a r [ i ]  = f  ( x s [ i ] ) ;

Figure 3.4: Transformation of map to a for loop, replace xs i v returns xs with its ith  element replaced 
by v. List notation is used for simplicity.

Recursive functions can also sometimes be implemented using the function for. For example, 
functions th a t recurse, or can be rewritten to recurse, on an integer param eter can often be written 
as a loop through the values of this integer. The transformation of such functions is situation-specific, 
and an example is given in Section 7.6.5. This is useful as it often improves a program, although 
recursive functions can also be written directly in C.

There are also places in which the functions provided by the M PI APM are not as close as possible 
to actual MPI functions. This has been done for a variety of reasons, partly to simplify code and 
allow greater abstraction at earlier levels. However, a t this point, they should be replaced by more 
concrete versions. Section 7.6.5 considers one such situation, the communication of arrays.
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3.10 D ata distributions in the monadic levels

Explicit data  distributions can be introduced to a program during the non-monadic levels, as described 
in Section 3.4.4. They can be manipulated using specific data  distribution APMs, which make it much 
easier to deal with them. They can also be used in the monadic levels, and Section 2.12 describes 
functions which deal with distributed data  a t the general monadic, M PI APM and individual levels. 
However, the use of specific functions and APMs affects the transformations used within and between 
these levels. This section looks at these effects on each of these levels in turn, and lastly at how the 
explicit data  distributions are removed from the program.

3.10.1 Introducing monads

The introduction of monads to a program in general was considered in Sections 3.6 and 3.7. The 
addition of data  distributions doesn’t  change this very much, in fact, the initial introduction of 
monads, described in Section 3.6, remains the same.

There are some changes when variables are introduced, but again these are mostly minor. They 
involve distributed variables, e.g., Cyclic variables, as described in Section 2.12.1. The transforma­
tion proceeds as before except that data with type Cyclic a  is now stored in a cyclic variable of 
type VarFncydicol. Such variables can be manipulated using the cyclic counterparts of the variable 
manipulation functions, and can be passed as parameters to  functions in the same way as other 
variables.

Duplicated values, discussed in Section 3.7.3, still have to  be duplicated across the system. How­
ever, there are now two possibilities. One value may be stored in each processor, or several can be 
stored in each processor, one corresponding to each d ata  element. The former saves space, and is 
frequently used in target programs, but is less intuitive a t this stage.

One place where there must be a change is in the input, since the initial distribution of values across 
the system determines the data  distribution in the program. Input functions can use distribution- 
specific functions instead of Ust2parfs to convert the d ata  from a list into the form to be used in the 
program. For example, input data  can be distributed cyclicly using makecyclic.

E x am p le  This is illustrated in the following variant of enter .vector:

enter.vector Cyclic In t -» In t —> IO P ST  (Cyclic Float)
— Reads in the elements for a vector of length n,
— distributing them cyclicly on p processors 

enter .vector Cyclic n p = do  xs <— enter 1

return (makecyclic p xs)

As in the non-cyclic version, enter is used to take in the vector’s values. The only change is the 
use of makecyclic instead of Ust2parfs.

3.10.2 The M PI A PM

The MPI APM, described in Sections 2.10 and 3.8, provides data  distributed versions of communica­
tion functions (see Section 2.12.2), which maintain the distribution. For example, m pi.scattercyciic 
scatters values from a root processor to  all of the processors, distributing them in a cyclic fashion. 
The existence of such functions means th a t the transformation to the MPI APM is much the same
whether or not data  distributions are involved. The complexities of the distribution are hidden within
the provided functions. There may, however, be some details which differ.



C H APTER 3. THE TRAN SFO RM ATIO N S IN  THE M ETH O D O LO G Y 77

E xam ple For example, mpi .scatter Cyclic, mentioned above, has the following type:

mpi.scatter Cyclic ::{Dyna) =>■ VarFn (SeqFinSeq a) —>
ItemType —> VarFncycuc & —>
ItemType —>• In t —> IO P S T ()

instead of :
mpi.scatter ::(Dyn a) => VarFn (SeqFinSeq a) —> In t —>

ItemType —>• VarFn (SeqFinSeq a) -»
ItemType -> In t —»■ IO P ST  ()

Care must be taken as the former involves a change in the type of the variables used, while the 
latter does not. It also lacks the integer param eter specifying the number of values to send.

3.10.3 Individual level

It is also useful to  represent and manipulate data  distributions explicitly in individual level code. 
Section 2.12.3 describes how this can be done, and presents some cyclic state functions for the 
individual level. These functions are lower-level than their collective counterparts and so ease the 
removal of data  distributions later. However, because they are lower level, the transformation from 
the collective level is rather more complicated than the non-data-distribution version. Extra code 
may have to be added.

This section gives some transformation rules, focusing on the cyclic data  distribution as an ex­
ample. The code a t the start of each rule is at the collective level, and the code at the end is at the 
individual level. This latter code may contain references to p, the number of processors, and pid, the 
processor identification number, usually set at the start of the program using mpi.com m.size  and 
mpi.comm .rank. Counting starts at 0 as does the indexing of values within processors.

Cyclic variables, with type VarFncycUc ot, are now seen from the viewpoint of one processor only. 
Each processor has a sequence of values from the variable stored in it, and so the variable is equivalent 
to one with type VarFn (SeqFinSeq a).

Function application is a key operation, given at the collective level using map Distribution f  • This 
does not transform to /  directly as it does in the SeqFinSeq case. There are several values stored in 
each processor and /  must be applied to each of them. This can be done using maps f  for the cyclic 
distribution, or variants on this if the distribution is more complicated. It is also possible to provide 
an individual level version of mapcyciic, but this adds little to the APM and so is not done here.

The collective versions of cyclic state functions change to individual level cyclic and non-cyclic 
functions, retrievecyciic and sto recycUc are simply transformed into individual level functions of 
the same name. However, retrieveCyciidndiv and storecyd idn d iv , which access single values in the 
state, transform differently. As they deal with only a single processor, the standard individual level 
functions, retrieveindiv and storeindiv, can be used:

R ule 57 (Individual level cyclic s ta te  functions)
For all j  :: In t+, pid  containing the processor id and p  the number of processors.

retrieve Cyciidndiv j

if  (pid = =  j  lmodl p) th en  retrieveindiv (j ldivl p) 
else return ()

Store C y c i id n d iv  j  
=>

if  (pid = =  j  lmod< p) th en  storeindiv (j ‘div‘ p) 
else return ()
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The relevant processor is identified using j  ‘mod1, p and then j ldiv‘ p gives the location of the 
element in the local sequence.

Communication functions behave in basically the same way as their non-data-distributed coun­
terparts, except th a t they use new functions, m pi.send' and m pi.recv', described in more detail in 
Section 2.12.3. These functions take an additional integer param eter, specifying the offset of the value 
to be sent. They are also used to access values in arrays.

R ule 58 (C yclic point to  point send)
For all var.v :: VarFn 7T, var2.v :: VarFn T 2, source, dest :: In t+ (for some types 7T, T2).

mpi.spt2ptcyciicindiv var.v T 1 source var2.v T 2 dest 
=>

if  (pid == sourcelmodlp)
th en  mpi.send' var.v T 1 (dest1 mod1 p) (source1 divlp) 

else if  (pid = =  dest‘mod‘p)
th en  mpi.recv' var2.v T 2 (source1 mod1 p) (destldivlp) 

else return ()

The related function, m pi.jo in tpt2pt, transforms in a similar way but involves several communi­
cations per processor.

3.10.4 R em oving data distributions

Although some languages, such as HPF [MH95], provide support for explicit data  distributions, the 
majority, including C+M PI, the focus of this thesis, don’t. Therefore functions which explicitly ma­
nipulate data  distributions usually have to  be removed and replaced by combinations of the ordinary 
state manipulation and communication functions provided by the language.

This does not have to be done at this point in the derivation. It can be done earlier, at the collective 
level, or even in non-monadic stages. There are advantages to  doing it there. The transformations 
are easier to prove correct a t the collective level because this level is easier to  reason about than the 
individual level. In addition, at present, programs at the individual level cannot be run and so the 
new versions of the program cannot be checked by running them. However there are also advantages 
to leaving the removal of data  distributions until the end of the methodology. In particular, it makes 
it easier to deal with and reason about d ata  distributions in the rest of a derivation.

The conversion to the individual level has in some ways prepared the way for the removal of data 
distributions, because some of the explicit distributed functions, such m p i . s p t 2 p t c y c U c in d iv , have been 
replaced by more standard operations. However, there are still various changes to be made. This 
section presents some of these rules for the cyclic distribution.

First of all, any remaining cyclic state functions can be changed into ordinary state functions, as 
follows.

R ule 59 (R eplacem ent o f  cyclic s ta te  functions)
For any a, s, val, vals, i, var.v  of appropriate types and new name old.vals.

• VarFncydic & =>• VarFn(SeqFinSeq a)

• create.var Cyclic s => create.var s

• val 4- retrieveindiv * var.v

old.vals 4- retrieve var.v  
val 4- return (vals !!s i)



C H APTER 3. THE TRAN SFO RM ATIO N S IN  THE M ETH O D O LO G Y 79

• storeindiv i var.v val
=>

old.vals 4- retrieve var.v 
store var.v  (replaces old.vals i val)
where replaces xs i x returns xs with its ith  element set to x and its other elements as before

•  val 4- retrievecydic var.v => val 4- retrieve var.v

• storecydic var.v vals =£► store var.v vals

As mentioned above, the point-to-point communication functions already no longer use explicit 
data  distributions. However, the collective functions still do. These have to  be converted and may 
require a fair amount of complex code. Therefore each function should have a transformation rule so 
th a t the programmer doesn’t  need to work out this code for himself. One example is outlined in the 
following rule.

R u le  60 (R ep lac em en t o f  m p i. scatter Cyclic)
For any sendbuf :: VarFn T , recvbuf, sendtype, recvtype, root of appropriate types 
and new names, p ,n ,p id , tm p .v , etc.
p .v  storing the number of processors, m atrixsize .v  the m atrix size and pid .v  the processor id.

mpi.scatter Cyclic sendbuf sendtype recvbuf recvtype root 
=>

— access global variables 
p 4— retrieve p .v
n 4- retrieve m atrix.size.v 
pid 4- retrieve p id .v

— create new variables 
tm p.v 4- create.var (X  :: T)
sizes.v 4- create.var (repeats (0 :: Int)) 
displs.v 4- create.var (repeats (0 :: Int))

— set up variables for sending the values 
i f  (pid == root) th e n

do  — set up tm p.v with the cyclic layout 
scattervals' 4- retrieve sendbuf
scattervals 4- return (makecyclic p(seqfstoList scattervals')) 
store tm p.v  (concats scattervals)

— set up size and displs
— the first few procs may have one more item than the others 

store sizes.v (cats (replicates (n lmodlp ) (n ldivlp +  1 ))
(replicates (P — (nlmodlp)) ( nldivlp ) ) )  

sizes 4- retrieve sizes.v
le t displvals = ( 0  : [displvals !!s i + (sizes Ms i)

J i 4- [0..n — 2]]) 
store displs.v (toSeqFinSeq displvals) 

e lse  return ()
— send the values

mpi.scatterv tm p.v sizes.v displs.v sendtype recvbuf recvtype root

mpi.scatter.cyclic can be implemented using m pi.scatterv. Different numbers of values are sent 
to different processors, as processors near the start of the system may receive one more value than
processors at the end. This requires two additional variables, sizes.v  and displs.v , to specify how
many values are to be sent and from where. The values of these variables must be calculated using 
index modulo arithmetic. In addition, the variable from which the results are to be scattered must 
be set up so th a t values to go to processor i are all next to  each other. Therefore an extra variable, 
tm p.v, is created and the values stored in it using makecyclic.
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3.11 Target code

Finally, the code must be transformed into the target language so th a t it can be run in parallel on 
the target machine. By its nature, this transformation is very dependent on the target, so that little 
can be said about it in general. Nevertheless, this section makes a few general comments before 
examining one particular target, C+M PI, which is used throughout this thesis.

3.11.1 General com m ents

It isn’t, in general, possible to prove the final transformation to the target correct because many 
target languages, including C+M PI, lack a formal semantics, and it is outside the scope of this thesis 
to provide one. However, for some target languages, such as GpH, such semantics do exist, and such 
proofs can be given.

To lessen the effect of this general “unprovability” , the final transform ation is kept as simple and 
straightforward as possible. This helps to convince programmers of the correctness of this transfor­
m ation even if it cannot be proved correct. This is achieved by introducing more detail to the final 
Haskell level of the methodology, thus bringing this level close to the target language. If this final 
Haskell stage gets too complicated, an extra stage in the methodology can be introduced, as suggested 
in Section 2 .2 .

Sometimes, however, it is not possible to remove all of the non-trivial transformations. In such 
cases, great care should be taken to ensure the correctness of the transformations even if they cannot 
be proved formally.

It is also sometimes useful to further optimise the program within the target language even though 
such optimisations cannot usually be reasoned about formally. For example, some optimisations only 
become apparent a t the target level, and others cannot be expressed in the Haskell code as it stands. 
The system is still in its preliminary stages, and the Haskell models are not as expressive as they 
could be. In these cases, transformation rules can be specified, though not proven, within the target 
language.

3.11.2 C + M P I

C +M PI [KR8 8 , MPI97] is the target language used in this thesis, and the transformations and stages 
presented in this chapter and in Chapter 2 are geared towards it. In particular, the structure of the 
Haskell program in its final stages mostly follows th a t of a C +M PI program. However, there are some 
differences which are necessary to allow some features to be modelled. The main difference is that 
the Haskell program contains local function definitions within main whereas C does not allow nested 
functions. This was done in the Haskell to allow local functions to m anipulate the state monad, but
this is not necessary in C. When the program is transformed to  C, these functions are moved out of
main and then treated in the same way as ordinary C functions.

Other parts of the Haskell code correspond to  set parts of the C program. For example, variables 
and constants declared and defined in Haskell before the local function definitions correspond to 
global variables in C. The declaration for a Haskell function,

/  " T\ —> X2 -+ ■ • • Tn -» T, with f  p\ . . .  pn =  . . . ,
transforms to the form, T f  (T1 p i ,  . . . , Tn pn)

where Ti is the C type corresponding to the Haskell type T*.
The Haskell main function becomes the C main function once these declarations and functions 

have been removed.
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This can be expressed in the following rule which converts the structure of a program. Individual 
lines can then be transformed using the rules and guidelines in the next section.

R u le  61 (C + M P I  to p  level)

main =  do  start
variable declarations 
local function definitions 
code

_ variable declarations
local function declarations

main(int arc, char *argv[])
{

int errcode;

errcode = MPI_Init (&argc, ftargv); 
code
errcode = MPI_Finalize ();

>
local function definitions

3.11.3 C + M P I individual transform ation rules

Table 3.2 summarises a selection of the transformation rules for different kinds of Haskell and C+M PI 
expressions. It is not complete, but gives a flavour of the transformations. They can be seen in practice 
in the case studies in Section 5.10 and (to a lesser extent) in Section 7.7.

Some of these rules involve a change from Haskell types to their C or M PI equivalents. These are 
indicated in the table by adding the letters C or MPI respectively to the type variable.

Many of the functions also involve reference parameters. In these cases, the address of a variable 
should be passed to the function instead of the variable itself. This is indicated in the table by 
attaching an apostrophe or prime to the variable, with the following meaning:

•  x ’ =  &x (the address of x) if x  is a scalar value 
=  x if i t ’s an array.

V ariab les

In C, variables are created when their types are declared. If required, they can also be initialised 
a t this point. In addition, array variables must be given a length or size after their name. This is 
expressed using an extra variable, Y, in rule 4 in the table. Variables need not be retrieved explicitly, 
so Haskell code which does this produces no C code. Variable names can also be changed. There 
is no longer any need to use two names for each variable, one for the variable and one for its value, 
because C makes no distinction between these in its code. In Haskell, x .v  was used for the variable, 
and x  for its variable. These can now both be replaced by x.

A rra y s

Arrays, or finite sequences, are manipulated in Haskell using APM functions such as maps and indexs, 
and values are stored in them using auxiliary functions replaces and replaceslices. replaces xs i x 
replaces the ith  value of xs with x  and leaves the rest of the array the same, replaceslices is similar 
but it replaces a whole subsection or slice of xs starting a t the ith  location with another (usually 
shorter) array. The same behaviour is expressed in C using direct array indexing and fo r  loops.
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Haskell expression C +M PI version
G eneral expressions

1 x  +- return E x = E;
2 return x .v return x;
3 . . .  /  parameters . . . . . .f(param eters) . . .

Variables
4 x .v  +- create.var ( X  :: T) TC xY = X;

where Y = [SIZE], if T  = SeqFinSeq a  
= *nothing*, otherwise

5 x  +- retrieve x .v *nothing*
6 store x .v  E x = E;

Arrays
7 retum (xs Ms *) xs [ i]
8 xs +- retrieve xs.v  

store xs.v  (replaces xs i x)

xiii—
i 

•H
1—

1
01X

9 xs <— retrieve xs.v
store xs.v  (replaceslices xs i ys)

fo r  ( j= 0 ;j< s iz e  of ys;j+ + )  
xs [ i+ j]  := ys [ j ] ;

M P I functions
10 m pi.comm .size n .v MPI_Comm_size(MPI_COMM_WORLD, &n);
11 mpi.com m.rank p id .v MPI_Comm_rank(MPI_COMM_WORLD, fepid);
12 mpi.bcast x .v  T  root MPI_BcastCx’ , s i z e ,  TMPI, ro o t, 

MPI_C0MM_W0RLD); 
where s iz e  is a variable giving the number 
of elements in x .v .  Its value should be 
updated every time this number changes.

13 mpi.scatterv x .v  sizes displs 
T  y .v  T2 root

M PI_Scatterv(x’ , s i z e s ,  d is p ls ,  
TMPI, y \  SIZE, T2MPI, ro o t , 
MPI_C0MM_W0RLD) ;

14 m pi.send x .v  T  dest MPI_Send(x’ , count, TMPI, d e s t , 
ta g , MPI_C0MM_W0RLD)

Standard H askell functions
15 store x .v  (foldls f  a xs) x_v = f o l d l ( f  ,a ,x s  ,x s_ size ) ;

In p u t/o u tp u t functions
16 a <— enter.int a = en te r in t;
17 xss +- enter.dmatrix n 0 en terd m a tr ix (x ss ,n );

Loops
18 for [a..b]

(A i M )
fo r  ( i= a ; i  < b; i++) 

M»

Table 3.2: Transformation rules for converting expressions from individual level Haskell code using 
the M PI APM into C+M PI. These hold for all values of the appropriate types.
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M P I functions

M PI APM functions model M PI ones with similar names, and use similar parameters. However, the 
M PI APM simulation is not complete, and there may be extra param eters in the C+M PI version. 
For example, the Haskell version does not as yet model communicators. These are used in MPI to 
divide the set of processors into subunits th a t can carry out operations independently of each other. 
At present, instead, all the MPI APM operations are transformed to use the standard communicator, 
MPI_C0MM_W0RLD th a t represents the set of all the processors.

Other parameters th a t aren’t  given explicitly in the Haskell version include count which tells 
the system how large the value being sent is. This can be calculated using sizes var if var is a 
sequence. Another param eter is the integer ta g  which can be used to ensure th a t the right sends and 
receives match up. Each send/receive pairing can be given a distinct generated integer. This could 
be modelled in later versions of the Haskell MPI APM.

The individual send and receive M PI functions actually have many variants corresponding to 
buffered, synchronous and ready communication. However, this thesis only considers the standard 
send. Future work may consider how the other variants can be modelled in Haskell.

O ther functions

Many sequential Haskell functions, both standard and user-defined do not correspond to standard 
C +M PI functions. They can be defined locally in Haskell and then transformed into C functions 
using the techniques in this chapter. Common functions can be written in advance and kept in a 
library.

For example, Haskell Prelude functions, such as fo ld ls , takes and drops, are common in Haskell 
programs. C +M PI versions of these can be written and called as illustrated in rule 15 in Table 3.2, 
although array iterations are often used instead of the recursion and pattern-m atching common for 
list functions, as discussed in Section 3.9.2. Such functions will usually need to know the size of the 
array in addition to the other parameters. This can be done by introducing an extra size variable, 
x s s iz e , for each array, xs. This is updated every time the number of elements in the array changes.

Input and output functions also need to change. C +M PI versions of them can be written using 
the standard C IO functions, scanf and prin tf, and can be called as in the table.

In addition, some C versions of standard functions don’t  work in exactly the same way as the 
Haskell versions. For example, some have a smaller domain, or produce different results on non­
standard input. This initially caused problems in the Gaussian elimination case study when ‘/.(mod) 
did not work as expected for negative numbers. A new mod function was needed th a t called the 
standard function for positive numbers, but was implemented in a different way for negative ones.

Loops

Standard C loops, such as f o r  and w h ile  can be simulated in Haskell as in Rule 18 in the table, in 
which M’ is the C +M PI transformation of M . Section 3.9.2 gives an example of the use of the Haskell 
function for  to simulate a C fo r  loop. It can be implemented using recursion and pattern-matching 
on its list argument.

3.11.4 O ptim isations

As mentioned above (in Section 3.11.1), it is possible to further transform the code even after i t ’s in the 
target language, both to optimise the code and to tidy it up. Section 5.10 gives two examples of such 
transform ations for a particular case study. As an additional example, here is the rule for removing
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unnecessary initialisations. Such initialisation may occur because the Haskell function create.var 
assumes that an initial value is given for each new variable, but this is not always necessary in C.

R ule 62 (R em ove in itia lisations)
For all types T , variables x  and values y of type T.

T x = y; =► T x;
Provided • the value of x is updated before the first time it is used.

3.12 Summary

This chapter has presented and discussed key transformations in the methodology for a derivation 
targeting C+M PI. As well as the basic transformations needed for deriving any program, it has con­
sidered the use of explicit data  distributions in programs. Many of the transformations are detailed, 
and it is unlikely that a programmer would want to apply them all by hand, but tool support or 
autom ation could be added in the future.

This chapter has focused on how the transformations are carried out, ra ther than on the choice 
of which transformations should be done. This is the topic of the next chapter.



Chapter 4

M aking Decisions

4.1 Introduction

There are many decisions to be made in the course of deriving a parallel program: the placement 
of the data, the division of the tasks, and the choice of optimisations to use, to name but a few. 
Some of these decisions are fairly straightforward and may be determined by the target language and 
architecture, but many are not so easy to make.

This chapter describes how such decisions fit into the framework of the APM methodology, de­
scribed in Chapters 2 and 3, and examines how they are made, using a mixture of methods, including 
cost models. This is supported by the examination of three decisions in detail: the choice of what to 
do in parallel and what sequentially; static load balancing, a parallel optimisation; and the choice of 
data  distributions. Key methods by which these decisions are made, the criteria to take into account, 
and the incorporation of the results of the decisions are discussed. All three decisions are illustrated 
in the case studies th a t follow in Chapters 5 to 7.

4.2 Decisions in the m ethodology

When transforming a program from one stage to  the next, decisions have to be made. One has 
to decide which APM to go to and which instance of the transform ation to apply. Some of these 
decisions are determined easily, using key factors such as the target. For example, when the target 
language is C+M PI, the language-specific APM to be used must be the M PI APM. Other choices are 
more difficult, and there may be several relevant factors to consider. For example, the distribution 
of the data  affects the placement of the tasks, the communications needed, and the cost of global 
communications.

For such decisions, the transformation contains three main parts. F irst of all the decision must 
be specified clearly so th a t we know precisely what we’re talking about. Once this is done, the 
decision can be considered and made. Finally the result of this decision must be incorporated into 
the program. The remainder of this section considers each of these parts separately.

4.2.1 Specifying a decision

The specification of a decision depends, among other factors, on the type of the decision. Decisions 
can be categorised into two main types, corresponding to the two main types of transformations.

85
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H orizontal transform ations

Horizontal transformations use the same APM before and after the transformation, and manipulate 
functions belonging to th a t APM. Decisions in such situations correspond to a choice of possible 
program modifications, each of which can be expressed in a transformation lemma or set of lemmas. 
The decision can be specified by giving the set of possible lemmas.

Sometimes it is useful to express a range of different possibilities in a single lemma. To do this, 
the lemma can be parametrised, different values of the param eters representing different possibilities.

For example, in load balancing, one must decide where to move excess work from heavily-loaded 
processors to. This data movement can be described by a function, / ,  using the convention that data 
in processor i is sent to processor f i .  By using /  as a param eter in the load-balancing lemmas, they 
represent a variety of possible redistributions of the data.

Such lemmas can be applied to the program before the decisions are made to  produce a generalised 
program th a t includes variables. This program can be used in a variety of situations, but it cannot yet 
be run, as it includes free variables. The values of these variables need to be chosen and substituted 
into the program for it to run. Alternatively the param eter values can be decided first, and substituted 
into the lemmas which are then applied to  the program.

V ertical transform ations

The other main kind of transformation is the vertical transformation, which replaces the APMs used 
by the program. The decision in this case determines which APM or APMs are used in their place. 
For example, Section 4.3 discusses the replacement of the abstract APM with either the parallel or 
sequential APM. The decision can be specified by listing the set of possible new APMs.

Such decisions are closely related to the horizontal ones. Although they concern a choice of APMs, 
each APM has a set of transformation rules and lemmas from the old APM to the new. The decision 
therefore corresponds to a choice of a set of lemmas and rules to  apply, as in the horizontal case.

Variables can also sometimes be used to represent the choices in this situation, by encapsulating 
the properties of new APMs. For example, a block-cyclic d ata  distribution (see Section 2.7) can be 
used with a variety of block sizes. W ith certain sizes, it represents the ordinary cyclic and blockwise 
distributions. A variable can be used for this block size in the lemmas and program.

4.2.2 M aking a decision

Once the decision is precisely specified, it can be made. There are many possible methods of doing 
this and many criteria to be taken into account.

One common method is the use of cost models, which are used directly within this thesis in Sections
6.3.2 and 7.3. This thesis also uses a more unusual method involving the specification of a set of 
constraints. Although related to other work, this contains some novel aspects. Both of these methods 
are described in more detail later in this section, along with some factors apart from cost which should 
be taken into account. Their use in and relation to other work is described in Section 8.1.4 of Chapter 
8  later in this thesis. T hat section also describes some of the other methods th a t are commonly used 
to make decisions in parallel programming. These include general guidelines, profiling, and the use 
of prewritten packages. The section also discusses the advantages and disadvantages of each method 
and the situations in which it works well.

This thesis allows different methods to be used in different situations, a t the discretion of the 
programmer. For example, a cost model can be used when its formalism and increased accuracy are 
useful, and more ad-hoc methods when they are not.
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C ost m od els

A cost model gives estimates of the cost of a program. Usually this is the time that it takes, but 
sometimes other measures are used. For example, Nesl’s cost model calculates the work (total number 
of operations executed) and depth (longest chain of sequential dependencies) in a computation [Ble96]. 
To calculate the cost, a cost model takes a set of parameters. These usually describe key costs on 
the target machine and other relevant factors, such as the number of data  elements and the number 
of processors. However in some cases it is also possible to parametrise the model with descriptions 
of the decision which is to be made.

A cost model can be employed to help make decisions by estimating the cost of the program under 
different choices. These costs can then be compared to determine the best choice.

There are a variety of cost models available. Skillicorn in [Ski99] explains some of the difficulties 
involved and some of the approaches taken in these models. A cost model suitable for the methodology 
is given in Section 6.3.1, and a family of cost models corresponding to the APMs has also been 
considered in [ORROl]. There are different levels of abstraction at different stages of the methodology, 
and so it can be useful to use a variety of cost models within a derivation.

Cost models are considered in more detail in Section 8.1.4 of Chapter 8 , which also discusses how 
particular cost models could be used within the methodology.

C ost constraints

As well as being used directly to compare the costs of different alternatives, cost models can be used 
in more oblique ways. It is sometimes possible to make decisions by identifying properties which 
one wants satisfied, perhaps because they will produce a correct program, give good performance 
or will be useful in other ways. Rather than using cost estimates directly, these properties can be 
manipulated algebraically or in some other way, perhaps using cost models.

Section 8.1.4 describes ways in which this method is used in related work, and the method is 
discussed further in Section 4.4. The latter considers an example, the choice of some load balancing 
details. In some cases, the best possible speed-up of the program can be achieved by a perfect load 
balance without excess communication. This is therefore chosen as the constraint to be satisfied.

As in th a t case, the constraints can often be written algebraically, involving the parameters whose 
values are to  be found. By manipulating these equations and inequations, values for them can be 
obtained.

Sometimes a mixture of cost models and constraints is used, especially if the constraints by 
themselves are not restrictive enough. Explicit cost concerns can be used to  pick a value from the 
set of possibilities allowed by the constraints, or, if their costs are not too different, a value can be 
picked at random from this set.

Although cost models use details from the target machine, this doesn’t mean that all the details 
of the target need to be known whenever a decision is made. If this were so, then the target would 
be fixed right from the very first decision, and the approach wouldn’t be very portable. Instead the 
information available about the target increases as the derivation progresses so th a t early stages can 
be shared by many targets.

Therefore, decisions in the early stages only use information about a few aspects of the target. 
They may partition targets broadly into classes of machines with param eters within certain ranges, 
instead of using exact param eter values. For example, Section 4.3 examines the order of magnitude 
of p, the number of processors, rather than its exact value.
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O ther factors

Although cost is an extremely im portant factor in the design of parallel programs, it is not the only 
one. There are other criteria which should be taken into account when making a decision.

In particular, the target of the derivation should be considered. This will affect the cost, and 
indeed most cost models are parametrised with details of the target machine. However, it also affects 
the ease with which certain parallel features can be incorporated into the final program, and, in some 
cases, whether they can be incorporated a t all. For example, few languages provide explicit support 
for nested parallelism.

Other factors th a t may be taken into consideration include the ease of maintaining the final code, 
the initial and final layout of the data  and the data  dependencies. Section 4.3.2 discusses some of the 
factors in one example decision.

4.2.3 Incorporating the result o f a decision

Once the decisions have been made, the chosen lemmas are applied to the program to transform it 
as in Chapter 3. If these lemmas are parametrised, then the chosen values of the parameters can be 
substituted into the lemmas, and the modified lemmas then applied to the program. Alternatively 
the program can be transformed using the parametrised lemmas, perhaps before the decisions are 
completely made. The values of the parameters are substituted into the program itself afterwards.

4.3 Parallel and sequential im plem entations

This section presents a common example of a decision in the methodology—the choice of whether to 
make a function parallel or sequential (see Section 3.4.1). This is connected to the distribution of the 
d ata  on which the function operates. The function can be executed in parallel if the data is spread 
over more than  one processor, but must be done sequentially if the data  is all in a single processor. 
Therefore this decision can be viewed as a more abstract version of the choice of data  distributions 
in Section 4.5. It is made first and simplifies the choice of distributions later.

The transformation is vertical, and therefore the decision is a choice between new APMs, the 
sequential and parallel APMs, both described in Section 2.6. Each APM has a corresponding set of 
lemmas, described in Section 3.4.1. These can be applied to the program to carry out the transfor­
mation.

The choice can be made by considering several criteria, one of which is, as usual, cost. As in 
the general case, a cost model can be used to help make this decision. However it can be hard to 
find a useful model because this decision usually occurs near the start of a derivation before much 
information about the target has been given. It is more useful to  consider other related criteria that 
have a  large impact on the cost, and don’t  require precise details of the target system. Some may, 
however, require general information about the target, and some decisions about it may have to be 
made a t this point.

4.3.1 D ata dependencies

D ata dependencies occur when one piece of code requires results from another piece. The two pieces 
cannot be executed in parallel, even if they are placed on different processors. The later code must wait 
until the first finishes its calculation, making the required results available. Thus data  dependencies 
force a sequential order of execution between the two pieces of code. The code and their data 
can still be stored in different processors, but this produces no direct parallel benefit and incurs
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communication costs. This might suggest that such code and data  be placed in the same processor, 
and this is sometimes true.

However if the same data or the results of these calculations are used by another function, it 
may not be true. If the new function can be executed in parallel, then storing the relevant pieces 
of data  in separate processors may speed up its execution. This data  distribution can be achieved 
by redistributing the data between the parts of the program, or by using the latter distribution 
throughout, despite the resultant suboptimal performance of the first function. This situation is 
similar to th a t in general data distributions (see Section 4.5.1) when deciding which data distribution 
to use for each part of a program.

The decision can be made using cost models as in Section 4.5, although, as mentioned above, 
these are often too concrete to be used at this stage in the derivation. It may be better to  examine 
the program in more general terms, noting the parallelism of each part of the program, and its size 
in relation to  the other parts, in order to determine the relative benefits and costs of placing the data 
in separate processors.

To do this, and to determine where decisions need to be made, it is im portant to  know the 
program ’s data  dependencies. Some work has been done in this area in fields such as compilation 
(e.g., [AK87]), and similar methods can be used. Section 7.2.6 uses a simpler, more ad-hoc method— 
it observes the data  dependencies between APM functions. These functions are standard and so their 
individual d ata  dependencies can be analysed in advance, as shown in the examples in Table 4.1.

Function D ata dependencies
foldl f

map
take

In general, linear 
If /  is associative, tree-structured 

None 
None

Table 4.1: Examples of data  dependencies in abstract APM functions

For user-defined APM functions, including application-specific functions, it may be necessary to 
go back to  the mathematics or the application area underlying the problem in order to determine 
data  dependencies and uncover the parallelism.

As shown in Table 4.1, the data dependencies may depend on the param eters to functions in the 
program. For example, when the function parameter /  is associative, the data  dependencies in foldl 
reduce from linear to tree-structured, allowing a limited parallel execution. Otherwise each part of 
foldl must be executed before the next in a sequential fashion. This introduces further branching into 
a program ’s derivation. If the program fulfils the necessary conditions, the derivation may proceed 
in one way, but otherwise it has to go another way. One should keep note of such conditions that 
have been introduced for purposes like this.

4.3.2 O ther criteria

Other criteria, noticeably key features of the target architecture and the program context, also affect 
the cost of the program.

For example, the communication/calculation cost ratio affects the best grain size of parallelism, 
and thus the number and size of parallel tasks. This ratio need not be known exactly, but can be 
broadly estim ated from the type of the target machine. Tightly-coupled machines have low ratios 
and therefore can implement fine-grained parallelism efficiently, while networks of workstations and 
Beowulf clusters have high communication costs, and work best with large-grain parallelism.
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The number of available processors is also im portant, because it determines how much of the 
specified parallelism can actually be implemented in parallel. Although the exact number of processors 
is often not known, the type of target machine can give a rough idea of it, or at least, of its order of 
magnitude.

If there are less processors than there are tasks in the outer nesting levels, implementing further 
nested parallelism can be a bad idea. It reduces the degree of parallelism which can be implemented 
a t the outer levels, and although it is possible for the parallelism in the inner levels to make up for 
this loss, it often does not. The benefit and cost of communication a t each level needs to be examined.

The initial and final data layouts also affect the decision. If the function is used as part of a larger 
program, and sometimes if i t ’s a stand-alone program, these may be specified. They affect the choice 
of data  distributions (see Section 4.5), and also the current decision as they specify which data is 
stored in different processors. Different data  layouts can be used within the program but this requires 
a redistribution after the input or before the output. This is often expensive but may be worth-while 
if the increase in efficiency within the program is sufficiently high.

However, cost is not the only factor to  be considered, and in fact, it is not always the most 
im portant factor. The complexity and readability of the final code may be im portant, for example, 
for maintenance purposes. A drop in efficiency may be acceptable to avoid an overly confusing 
program.

For the current decision, this primarily concerns nested parallelism. Nested parallelism increases 
the complexity of a program, often by a significant amount, unless a language, such as Nesl [Ble95] or 
Nepal [CKLP01], is used that supports it. It may therefore be desirable to avoid nested parallelism 
even if its use will increase the efficiency of the program. If so, only one level of parallelism is allowed 
in the program, and the remaining levels must be sequential.

4.4 Static load balancing

Static load balancing is an example of an optimisation th a t can be introduced to a program. It 
requires decisions to be made about how the tasks are split into smaller pieces and how these pieces 
are moved around. It can be expressed in lemmas th a t transform the program and are parametrised 
by the functions for splitting and moving the tasks. These functions can be simplified for particular 
programs. A full length example of this decision is given in Section 5.4 in the map-triangle case study.

4.4.1 Load balancing in general

Load balancing is a  well-known technique designed to improve the efficiency of a program in cases in 
which the amount of work done by different processors varies widely. In such cases, processors with 
a small amount of work or load have to  wait for those with a large load, thus wasting processing 
power. Load balancing transfers work from processors with a large load to those with a small one, 
so th a t the load on the processors is better balanced, as illustrated in Figure 4.1. Sometimes, before 
this can be done, large tasks have to be split into smaller pieces th a t can be executed separately. A 
more comprehensive description of load balancing can be found in [WA99].

There axe two main kinds of load balancing—dynamic and static. This thesis focuses on static load 
balancing in which the movement of the tasks is determined before run-time. Static load balancing is 
effective when the program has a regular structure and predictable task sizes and the relative speeds 
of the processors are known in advance. In other cases, a better solution is dynamic load balancing 
which reorganises the tasks at run-time. This is usually supported by the run-time system rather 
than the program itself, and so is not so immediately relevant to this thesis.
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Time(s) Time(s)

1 0 - 10 -

Tasks Tasks
Time taken = 9 s Time taken = 5 s

Before load-balancing After load-balancing

Figure 4.1: An example of load balancing

R elated  work

Load balancing is an active research field. There has been a lot of work on the design of algorithms 
for balancing tasks between processors. However much of this has focused on dynamic load balancing 
rather than  static (see, for example, the load balancing papers in [SKGF01]).

Static load balancing determines the movement of tasks before run-time, but the actual movement 
can occur a t different times. The tasks can be moved a t the beginning of the program when the data 
is first distributed, or part-way through the program. The latter is better if the load distribution 
changes between parts of the program. Much of the work on static load balancing has been on the 
initial distribution of work, rather than redistribution in the middle of a program. The choice of a 
good d ata  distribution, if there is one th a t fits the load pattern, can often help here. For example, 
cyclic and block-cyclic distributions work fairly well for triangular load patterns.

Alternatively, algorithms can be used. These vary and are usually restricted to a particular class 
of programs or architectures. They are often related to  other algorithms, such as graph partitioning 
ones, since the program can be modelled by a  directed acyclic graph (see, for example, [GY92]). These 
algorithms use measures of load from a cost model. In many of the algorithms th a t deal with initial 
distribution, the additional costs of communication to obtain the load balance are not very high, and 
using one particular distribution over another may not affect communication costs by a significant 
amount. Therefore some algorithms (e.g., [GAOO]) don’t take communication into account.

4.4.2 Specifying the decision

Load balancing is not concerned with changing the level of abstraction, but rather with the details of 
the algorithm. It performs extra operations on the data  within the same abstraction level. Therefore 
the same APM is used before and after the transformation and this is a horizontal transformation.

It is expressed by a set of lemmas th a t can be used to change the program. It is possible to have 
a different such set for each possible load balancing algorithm, but it is simpler and the lemmas axe 
easier to m anipulate if fewer parametrised sets are used, as described in Section 4.2.1. Each set applies 
in a different situation, for example, with certain classes of problems. Each of its lemmas captures a 
key part of the transform ation, and different values of its param eters give different instances of the 
transform ation.

To identify what these lemmas should be, we need to  examine the main actions performed in load 
balancing. Firstly the tasks are split into smaller pieces. If there are enough suitably sized tasks in 
the program already, this need not be done. Then some of these pieces axe moved from the heavily 
loaded processors to the lightly loaded ones. All of the tasks are then carried out, and the results are
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finally moved back to their original processors, where they are combined with the results from the 
other pieces of the task to give the final results.

There are two key actions here—the splitting up of the tasks and their movement. One lemma 
can be written for each of these, as is considered below.

D ivision  o f  th e  tasks

If there are several tasks in each processor, some of these can be moved to other processors to help 
balance the load. However, if there’s only a few tasks in each processor, it may be necessary to divide 
them into smaller pieces which can be calculated separately, on different processors.

This process can be expressed in a parametrised lemma. This lemma varies according to the 
problem, although it may be possible to  combine different cases into a single (probably rather com­
plicated) lemma. For the sake of simplicity, this section examines one fairly general instance of the 
lemma, and shows how it can be made more concrete to apply to  a particular program.

In some instances, the task can be divided by dividing up the data. If we want to divide the task 
in two, the lemma would therefore have the following form:

L em m a Form 1 (D iv ision  o f a task and data into tw o parts)

F X  = G (F I  (fst(divide X)))  (F2 (snd(divide X) ) )

Here F T  is the original task—the function F  operates on data  X.  This data  is split into two 
parts using divide, and these parts accessed separately using fs t  and snd as above. These can then 
be operated on independently by the functions F I  and F 2, which are related to F , and the results 
combined by G to give the same result as before.

This lemma form can be instantiated for the particular tasks in the program, taking care that 
the resultant lemma holds. For example, in the map-triangle case study in Chapter 5, the task is 
foldl f  a xs, for xs a column of a matrix. This can be split up using the following instance of Lemma 
Form 1. The lemma is a combination of Lemmas 15 and 17.

L em m a 16 (Split foldl using take and drop)
For any /  :: a  —> a  -> a  an associative function, a :: a  a unit of / ,  xs :: [/?], m  :: In t+.

foldl f  a xs == f  (foldl f  a (take m xs)) (foldl f  a (drop m  xs)).

This sets G =  f ,  F I  =  F 2 =  foldl f  a ( =  F ), and divide ys = (take m ys, drop m ys) in the 
Lemma Form 1. It can be proved using structural induction.

The lemma is now parametrised by a single variable, m, which determines the relative sizes of the 
new tasks.

M ovem ent o f  th e  data

Once there are sufficient tasks th a t can be executed independently, some of them can be moved to 
other processors. In some cases, this can be done using a standard redistribution, but often less 
standard data distributions are needed.

As before, this process can be expressed using lemmas, with different lemmas for different situ­
ations. If the task is divided up by a division of the data, as above, the lemma for moving a set of
tasks P-op on the set of processors has the following form:
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L em m a F o rm  2 (M o v em en t o f a  ta sk )

P-op X S  = (move1. P.op2. move) X S

Where • X S  :: ParFinSeq a  or uses a parallel distribution type, such as Cyclic a.
• move'p o movep = id.

This rearranges the data  X S  on the set of processors using move , performs a task P.op2  (related 
to P .o p ) on it, and then moves the results back to  the original processors using move'.

P .op  and P.op2  are often mapp F , which executes F  on each processor. Therefore an example 
instance of Lemma Form 2 is Lemma 18. This lemma works for map , maps and mapp, but here we 
are only interested in mapp:

L em m a 18b (M ove d a ta  in  mapp)
For any function F  :: a  -> /3 (any a , (3) and list permutations movep and move'p such that 
move'p o movep = id.

mapp F == move'p o (mapp F) o movep

This is parametrised by the related variables movep and move'p, which describe the movement of 
the data.

4.4.3 M aking the decision

Once the relevant lemmas for the program have been chosen, the decision involves finding the best 
values of their parameters. For the example lemmas above, these param eters are m  and movep—once 
movep is known, move'p can be calculated.

It is tempting to choose these parameters to give a perfect load balance, but this is not always a 
good idea because the communication time entailed by the load balancing must also be considered. 
If this is high, then the time taken to rearrange the data  may be higher than the time saved by the 
improved load balance, so load balancing is not a good idea. On the other hand, if the tasks are 
expensive enough, then the load balanced program is also the cost optimised one. In general, there 
are also cases between these two extremes, when moving a few elements can produce a sufficiently 
good load redistribution to improve the program, but achieving a perfect load balance would require 
a prohibitively large amount of communication.

Param eter values can be calculated in each situation. This can be done by analysing the costs 
explicitly using a cost model. However, in some situations, this is not necessary. For example, if the 
task costs are known to be much higher than the communication costs, then the extra communication 
will be worth it and a perfect load balance will give good performance. In this case, we can use the 
load balance as a cost constraint as described in Section 4.2.2. We specify th a t the program must 
have a perfect load balance, and use no more communication than is absolutely needed to achieve 
this.

These properties can then be written algebraically, and used to  manipulate the number of elements 
in each processor as shown in the map-triangle case study in Section 5.4.

4.5 D ata distributions

As described in Section 2.7, data  distributions specify the way in which the data  is stored across the 
set of processors. Different distributions produce different amounts of parallelism and communication 
in the program, thus affecting its efficiency and complexity. Certain distributions may also balance
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the load on the system, as mentioned in Section 4.4. It is therefore im portant to make the choice 
of distribution correctly. This section looks at how this choice can be made and incorporated into a 
program. Examples of choosing data distributions are given in Sections 6.3.2 and 7.3.3.

4.5.1 Choosing data distributions

Difficulty in the choice of data  distributions arises because this choice cannot be made in isolation for 
each part of the program. The efficiency of the whole program depends not only on the times taken 
by its individual parts but also on the connections between them. If consecutive parts use different 
d ata  distributions, a redistribution of the data is needed between them. Depending on the amount 
of communication this requires and the communication speed, this can be significant.

Therefore, when choosing the data  distributions for a program these redistributions need to be 
taken into consideration. The distributions th a t optimise each individual part may require an exces­
sive amount of redistribution between them, and therefore not produce an efficient program.

The different possible combinations should be considered. In general, for a pair of program parts, 
these are:

1. Use the optimal distribution for each part and redistribute the data  between the parts.

2. Pick one of the optimal distributions and use it for both parts.

3. Pick one sub-optimal distribution and use it for both parts. This may achieve decent, although 
suboptimal performance for each part and avoids a redistribution.

4. Use different sub-optimal distributions for each part. This is only useful if the redistribution 
required is cheaper than th a t necessary for the optimal distributions.

For a large program with many parts and many possible distributions, this produces a very large 
number of possibilities to consider.

As the aim of this thesis is not to produce novel methods for choosing data  distributions, this 
section considers only how existing methods, some of which are mentioned below, can be incorporated 
into the methodology, and illustrates this in simple situations.

R ela ted  work

There has been a fair amount of research on choosing data  distributions.
Some of this has been algorithm-specific. For a particular algorithm running on a particular 

machine or type of machine, certain data  distributions are better than others. For example, [Rob90] 
gives a d a ta  partitioning technique for Gaussian Elimination in systolic computing. These data 
distributions can be worked out by examining the structure of the problem and its relationship to 
the architecture, or by using cost models or profiling different possibilities.

This has produced good implementations of functions and modules, but doesn’t address the 
difficulties when these parts of the program are put together, as described above.

To cope with this difficulty, some work has used constraints on the distributions as mentioned in 
Section 8.1.4. However most work has focused on the use of cost models to model the costs of different 
parts of the program for the different possible data  distributions. These can then be combined to 
determine which data  distribution to use for each part. This could, of course, be done by a brute-force 
technique considering every possible combination, but this is rather inefficient. There are several more 
sophisticated algorithms. A few of these from systems related to this thesis are mentioned below.

To [To95] and Fradet and Mallet [FMOO] work in the context of skeletons. Skeletons are fixed 
sets of higher-order functions or program “templates” for expressing the parallelism in a program, as
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described in Section 8.1.3. To gives a formalised algorithm for choosing from a small fixed number of 
possible distributions. Each skeleton has an implementation for each distribution. Fradet and Mallet 
use complexity analysis and symbolic cost analysis and comparison to choose from a wider range. 
However this involves fairly lengthy symbolic calculations, and they suggest the use of a symbolic 
m aths package such as Maple [Kam99] to support them.

Determining data  distributions is also a key step in TwoL (see Section 8.2.3). It uses an algorithm 
based on dynamic programming, as described in [RROO]. This is designed to work in a programming 
language in which computation is separated into modules. Runtime functions are again used to 
calculate the costs of each module.

A standard cost model such as BSP can also be used as shown in [SDPZ98], which gives an 
algorithm based on the shortest paths algorithm.

There are many methods for calculating data  distributions, and any of them could be used with 
the methodology on this thesis. The case study given in Chapter 7 uses the costs of the parts of 
the program to determine the distributions. However it side-steps the issue of which algorithm to 
use to combine the costs by considering a simple case with only two main program parts, so that 
the brute-force method is effective. The aim of this study is to illustrate how such methods can be 
incorporated into the methodology and how the resultant data  distributions can be expressed and 
reasoned about, and so a more complicated example is not necessary.

M odules

Because global and local optimality can be at odds with each other, it is usually im portant to consider 
the whole program at once. This makes it difficult to develop functions and subprograms in isolation, 
for example, in reusable modules.

One option is to  develop these functions only up to a certain stage in the derivation. The data 
distributions are then incorporated when the context is known. This can be useful when the function 
is only to be used a  few times, but this negates, to some extent, the advantage of using a module as 
the programmer must do an additional, fairly large amount of work each time the module is used.

An alternative is to produce a set of related modules, one for each data  distribution. This requires 
more initial work, but aids reuse.

4.5.2 Specifying the decision

Introducing a data  distribution changes the level of abstraction in a program. It makes the details of 
the parallelism more concrete. This is therefore a vertical transformation, and can be encapsulated 
in a change of APM.

The new APMs provide functions th a t manipulate data  with specific d ata  distributions, as de­
scribed in Section 2.7. Section 3.4.4 shows how the program can be transformed to use these APMs, 
and provides the appropriate transformation rules. These rules are particularly simple because the 
APMs provide the same functions as the more general parallel APM.

The decision can therefore be specified by listing the possible target APMs. In some cases, 
these APMs and their corresponding functions and transform ation lemmas can be parametrised. 
For example, the block-cyclic APM may be parametrised by its block size. Then values for these 
parameters must also be chosen.

4.5.3 M aking the decision

As suggested in Section 4.2.2, it may be possible to  choose the d ata  distributions using desired 
properties or constraints on the final program such th a t satisfying these produces efficient code.
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For example, placing data  th a t is used in a single task on a single processor often reduces the 
communication required, and may be a  suitable constraint. However there are many interacting 
factors and most existing methods use algorithms th a t compare the costs directly.

To do this, a cost model is needed. There are a variety of these available, several of which are dis­
cussed in Section 8.1.4. Different models are suitable depending on the target system and the current 
stage in the derivation. In early stages, not many target details are known, and general cost models 
should be used, while machine-specific models can be used late in the derivation. Alternatively, some 
methods for choosing distributions use their own specialised cost calculation methods (e.g., [RROO]). 
This thesis uses a version of the cost model proposed by Rauber and Riinger in [RR95], which is 
described in Section 6.3.1. It works for general message-passing systems.

Using such a model, the cost of each part of the program with each possible data distribution 
and the costs of redistributions can be estimated. These can then be combined using a method such 
as those described in Section 4.5.1 above. The result may depend on machine parameters, as in the 
example in Section 7.3, and so it may be necessary to introduce more details about the target machine 
a t this stage. Specific values are not needed since ranges of values can be used in their place.

4.6 Summary

This chapter has described how decisions about a program can be made in the course of deriving 
th a t program using the methodology presented in this thesis. Decisions are made when the relevant 
transformations are applied to  the program, and can be made using various methods, some of which 
were described in this chapter.

The chapters of this thesis so far have considered the methodology as a whole. The following 
chapters illustrate this methodology in action in some case studies.



Chapter 5

Case Study: M ap-triangle

5.1 Introduction

This section presents a simple case study using the methodology given in the previous chapters. In 
this study the derivation is worked through from the initial m athem atical specification to the final 
target program, giving the details of all the stages and transformations in between. This case study 
was used to motivate many of the points in the previous chapters, and it allowed them to be tried 
out in practice, a process which often led to changes and refinements in the methodology. It also 
elaborates, illustrates and clarifies the more general explanation given in the previous chapters.

This particular case study is a preliminary one and is therefore fairly simple in order to allow the 
basic mechanics of the methodology to be investigated. In particular, it does not use specific data 
distributions, but assumes th a t there are as many processors as is necessary. A case study involving 
d ata  distributions can be found in Chapter 7.

The example used is the summation of the columns of a matrix, focusing on the case in which 
the m atrix is triangular and the summation operation (which need not be addition) is associative 
and has a unit, so th a t the process can be speeded up by applying load balancing. The choice of 
an appropriate data  distribution would have helped here, but an explicit load balancing was used 
instead to illustrate some decision-making methods. This example is chosen to be simple enough to 
keep the programs readable while still illustrating the key issues. The target language, as in the rest 
of this thesis, is C+M PI.

The main stages of the derivation are given in Sections 5.2 to  5.10, some timing results are 
discussed in Section 5.11, and the general layout of the case study and other general observations are 
given in Section 5.12.

N o ta t io n  In this chapter, successive versions of the program are given together with notes about 
the rules or lemmas are used to  derive them. These rules and lemmas can be found in Appendix A. 
Some of the versions of the program may contain the notation “ . . . ” . This indicates th a t the code in 
th a t place is the same as or similar to  th a t in the previous version.

5.2 Initial stages

5.2.1 Specification o f the problem

The case study used in this chapter is the reduction of the columns of a m atrix X ,  using an operator 
©, which is assumed to be a relatively expensive computation. The m atrix contains a sequence of n

97



C H APTER 5. CASE STUDY: M AP-TRIAN G LE 98

columns X i = [rro.i, • • •, x n- i,t] for 0 < i < n, where column i contains i + 1 non-zero elements. The 
aim is to compute the vector of column sums: Si = ® ”To Xj^ for 0  <  i < n.

This mathematical specification can then be transformed into Haskell using the techniques in 
Section 3.3.2, by representing the m atrix as a finite sequence of columns. Each column is a finite 
sequence of data  values of type a. The reduction of the columns using ®  translates into foldl 1 ©, 
and the fo r , which says th a t the sum is done for each column, translates into map. Writing /  instead 
of ©, the function is:

Version 1

maptri :: (a: —> a  —> a ) —> FinSeq(FinSeq a) —> FinSeq a  
maptri f  = map (foldl 1  / )

5.2.2 Specification of parallelism

This Haskell specification is abstract: it doesn’t say what is done in parallel and what sequentially. 
In order to produce an implementation from it, and to  enable the application of efficiency techniques, 
we specify what things are parallel and what have to  be sequential in the program. This can also be 
done later in the study (see Section 2.6).

As described in that chapter, the annotation, P , indicates th a t the corresponding data is stored 
in several processors and the annotation, 5, indicates th a t it is stored in a single processor. The
lemmas discussed in Section 3.4.1 show th a t functions with these annotations on the appropriately
typed sequences are equivalent to functions without them  on the general FinSeq type.

The decision of what is parallel and what sequential can be made by examining various factors as 
explained in Section 3.4.1.

We are interested in exploring load balancing in a program. This can only be carried out on 
parallel data, not on sequential data. Therefore the columns of the m atrix must be stored in different 
processors. This is also efficient since there are no data  dependencies between the operations on 
the columns, and therefore each operation can be carried out completely independently. This can 
be expressed using the ParFinSeq APM and P  annotations, as explained in Section 2.6. Using the 
transformation rules in Section 3.4.1, the program is now:

maptri :: (a  —»■ a  -> a) —>■ ParFinSeq(FinSeq a )  —>■ ParFinSeq a  
maptri f  =  m app(foldl\ f )

W ithin each column, the data  elements can either be stored in a single processor or spread 
across several processors. Load balancing can be carried out in either situation. Therefore it is 
possible to remain abstract about the parallelism of this level, continuing to  use the FinSeq data type. 
However, this makes the necessary cost calculations for load balancing much harder, and achieves 
little. Deciding on the parallelism of this level now does not significantly restrict the derivation.

Since there is only one level of parallelism involved and only a few functions, the choice of whether 
to make this level parallel or sequential can be made non-formally, using the suggested criteria in 
Section 3.4.1.

Some of these criteria require knowledge of the language or architecture model aimed for. This is 
not yet known, so we focus on the other criteria here.

If this level is parallel, then the folds will have to execute in parallel. Due to the data dependencies 
involved, this requires a lot of communication, and is not as efficient as the parallel implementation 
of map in the outer level of parallelism. Therefore available processors should be used for the outer 
level map in preference to this level. This indicates th a t it may be a good idea to make the second 
level sequential.
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Figure 5.1: Map-triangle matrix (a) Initial triangular matrix; (b) partitioning; (c) load-balanced 
computations

Therefore, applying Lemmas 43 and 42 from Section 3.4, the program becomes:

Version 2

maptri :: (a: —> a  —» a) —> ParFinSeq(SeqFinSeq a ) —>
ParFinSeq a  

maptri f  = mapp (fo ld lls  f )

5.3 Preparation for load balancing: Special case

If the matrix, xss , is triangular, as in Figure 5.1(a), the program can be improved. In this case, 
Version 2 is inefficient because it has a bad load balance. This can be clearly seen using a simple cost 
analysis th a t takes account of both the computation and communication costs. Let T/ be the time 
needed for a processor to apply /  to an argument stored in the local memory, assuming th a t T f does 
not depend on the value of the argument. Let Tcom =  T0 +  k • Tc be the time required by a total 
exchange operation, where k is the size of the largest message.

In the maptri program, processor i requires time T  (foldls f  a . . . ,  a^j]) = i ■ Tf. The poor
load balance can be clearly seen, since the processors’ computation times vary from 0 to (n — 1) • T /, 
and the time for the whole program depends on the maximum time required by a processor. By 
spreading the work evenly, the computation time could be cut in half, although we must also consider 
the costs of the communications introduced to balance the load.

The first step in load balancing (see Section 4.4) is to divide the tasks up into smaller pieces, 
and a natural idea is to split the folds over a long list into separate folds over shorter pieces (Figure 
5.1(b)). The partial folds can then be rearranged so th a t each processor has about the same amount 
of work (Figure 5.1(c)). This can be done using Lemma 15 in Section 5.4, but only if /  is associative 
and has a unit.

It is not strictly necessary for /  to have a unit, but if it doesn’t  then it is awkward to  express the 
computation in SPMD-style. Some of the processors would have to send data  while other processors 
do nothing, and some processors would sum two columns while others sum only one. Therefore this 
chapter assumes th a t /  has a unit, a.

This is an example of a point at which the derivation may branch depending on the conditions 
under which we axe working. If the m atrix was not triangular, then this load redistribution could 
still be carried out and produce a correct program, but possibly a t a reduced speed. If /  was 
not associative, then the optimisation could not be used, and if it didn’t have a unit, then extra 
complications would have to be introduced. However, in the following, we assume that /  is associative 
and has unit, a.
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However, before the load balancing is introduced, the unit, a, needs to be introduced to the 
program:

maptri f  xss = m app(foldl\s f )  xss 
(Lemma 14)

=  mapp(foldls f  a) xss 
where a is a unit of /

(Lemma 1)

V ersion 3

maptri :: (a  -> a  -» a) ->■ a  -¥ ParFinSeq(SeqFinSeq a ) —>
ParFinSeq a  

maptri f  a xss = mapp (foldls f  a) xss

5.4 Load balancing

Now the program is in an appropriate form to introduce load balancing, as described in Section 4.4. 
Firstly the program is written with a general load balance. This introduces some parameters into 
the program, th a t represent details of the load balance, such as the number of elements to move 
and where to move them to. The program can then be analysed to  determine good values for these 
parameters. This can be done using cost models, either by analysing the program directly or by 
picking out desired properties and determining how they can be satisfied.

5.4.1 A general load balance

As mentioned before, the first step in load balancing is to  divide the tasks up into smaller pieces, 
which can then be rearranged. In many cases the tasks are already small enough, but in this case 
study, there is only one task per processor, so it has to be divided.

Lemma 15 permits the splitting of fo ld l, since /  is associative. This lemma works for foldl, foldls 
and foldlp, but in this example we need the foldls version, as follows:

L em m a 15b (Sp lit fo ld ls)
For any /  :: a —» a  —> a  an associative function, a:: a  a unit of / ,  and xs, ys :: SeqFinSeq a. 

foldls f  o, (xs -H-s ys) == f  (foldls f  a xs) (foldls f  o, ys).

To apply this, we have to divide up each of the columns. This can be done using the version of 
Lemma 17 for SeqFinSeq.

L em m a 17b (D iv id e up a list)
For all xs :: SeqFinSeq a, m  :: I n t+.

xs == takes m xs + fs  drops m xs

Each processor splits its data, and hence computation, into two parts, workl = takes m xs and 
work2 = drops m xs. The param eter m can be calculated so as to  minimise the total time; by leaving 
m  as a variable, we are describing a family of related algorithms.
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The program becomes:

maptri f  a xss = mapp (split.fold f  a) xss
w here split.fold f  a xs = f  (foldls f  a (takes m xs))

(foldls f  a (drops m xs))
=  (Lemma 20)

let workl = mapp (takes m) xss
work2 = mapp (drops m) xss
resl =  mapp (foldls f  a) work 1 

res2  =  mapp (foldls f  a) work2
in
map2p f  res 1 res2

The excess work work2 can be offloaded from processors with too much work. In other processors, 
work2 = [|. This is done using a communication operation movep with an inverse move'p which can
be used later to return the partial fold results to the right processor. This is expressed in the
ParFinSeq version of Lemma 18:

L em m a 18b (M ove data in mapp)
For any function F  :: a  -> /? (any a ,0 )  and any permutations movep and move'p such that 
move'p o  movep =  i d .

mapp F  = =  move'p o (mapp F) o movep

The following program moves the excess work, work2, to processors th a t have room for it. Each 
processor then computes two fold results, and sends the second, res2 , back to its original processor, 
where it is combined with the first result, resl.

maptri f  a xss = let workl = mapp (takes m) xss 
work2 = mapp (drops m) xss 
res 1 =  mapp (foldls f  a) workl 
res2 = move'P (mapp (foldls f  o>) (movep work2))

in
zip Withp f  res 1 res 2

This program contains parameters, m, movep and move'p (which is the inverse of movep). Their 
values now need to be determined.

5.4.2 Analysis

The next step is to calculate values for m and movep so as to  to minimise the to tal time. As explained 
in Section 4.4.3, in general, the best performance may not result from an optimal load balance. It 
depends on the costs of calculation and communication.

Values for m  and movep can be calculated for each situation, but one calculation suffices to 
demonstrate the techniques. We assume th a t T f Tcom on the target architecture for all message
sizes k, such th a t 0 <  k < n + 1. Then the total cost is minimised by achieving a perfect load balance,
i.e. a distribution satisfying the following two sub-goals:

1. Since a processor’s work load is proportional to  the number of elements it holds, and the total 
number of elements is | n ( n + l )  «  n ^ ,  each processor should have about j  elements in a perfect 
load balance.

2. A perfect load balance avoids unnecessary communication. Therefore overloaded processors 
should only send data, under-loaded processors should only receive, and no processor should do 
both.
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Together these form a set of desired properties, which can be written in equation form and 
manipulated to determine good values for the parameters as indicated in Section 4.4.3.

In the following, p  is the index permutation function of m ovep , i.e. (movep as)!!* =  xs \\ p i. It 
is used to calculated movep. The other variable is m, the number of values kept in a processor. 
The symbol n  is the number of columns in the m atrix and also, since one column is stored in each 
processor, the number of processors. Processor and data  element indices are counted from 0. In 
addition, the symbol #  is used as a short-hand for the length function.

A p p roxim ate calculation

If a totally optimal solution is not needed, then one can be approximated as follows:
By Property 2, over-loaded processors don’t receive any data. Therefore in order to satisfy Prop­

erty 1 , and have about ^ elements, they must keep about ^  elements. An over-loaded processor 
i keeps # (m ap  ( take m) xs) = min (m, #rrs) =  m  elements, where xs is the processor’s contents. 
Therefore m «  j .

An under-loaded processor, on the other hand, sends 0 values, by Property 2. The final number of 
elements in an under-loaded processor i is therefore approximately * -I- the number of received values 
«  i +  the number of elements sent from processor p i using move 
«  * +  (p i — m).

This is also about j  by Property 1.
=> p i «  j  -  i + m  «  § — ® +  § “  n — i

So movep is roughly a reverse, and move'p = inverse reverse =  reverse.

A ccurate calcu lation

For an accurate calculation, the number of elements remaining in processor i after load balancing is 
w ritten in terms of m  and p  as follows:

task size i = # ((mapP (takes m )xss)\\i) + #((m ovep(m apP (drops  m)xss)yM )
= (By the definition of p)

#((m apP (takes m)xss)!!i) -I- # ((m a p P (drops  m )xss)\\(p  i ))
=  (By the definition of map)

# (takes m (xss\\i)) + #(drops  m (xss\\p  i ))
=  (By Lemmas 21 and 22

standard size properties of take and drop) 
min(m, #(xss!!i)) -1- max(0 , # {xss\\p  i ) — m)

=  (The m atrix is triangular, so #(xss\\i) = i + 1)
m in(m ,i +  1) 4 - m ax(0,p i + 1 — m) (5.1)

The first term  in this expression corresponds to data  kept and the second to data received. The 
expression can be simplified further by considering the sending and receiving processors separately.

A  processor i sends values iff

# (drop  m(xss\H)) >  0  m a x(0 ,i + 1  — m) > 0  

<=> i + l > m < $ i > m  — 1 (5.2)
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By Sub-goal 2, a sending processor does not receive any values, so equation (5.1) becomes:

task size i =  min(m, i + 1) +  0 =  m, when i > m  — 1 (5.3)

Similarly, a receiving processor i doesn’t  send any values. Therefore b y 5 . 2 , i < m  — 1, and, if the 
processor receives values from processor, p i , then p i > m  — 1. Using these properties, equation 5.1 
becomes:

task size i = m in(m ,i +  1 ) +  max(0 ,p  i + 1 — m),

=  i + l + p i + 1 —m

=  p i  + i + 2 — m  (5.4)

Property 1 can now be applied to the first expression (5.3), to give: 
f  — 1  <  m  < f  +  1  where m  is an integer.
Both n ldivl 2 and n 2 -I- 1 solve this. However, larger values of m  cause less values to be 
communicated, so all else being equal, m = n ldivt 2  -1- 1  is chosen.

Property 1 can also be applied to expression 5.4 to give:

n n
— — 1 < p i  + i + 2 — m  < — +  1

n n ^  ̂n .=$■ — + m  — i — 3 <  p i  < — + m  — i — I
Z i z

^  +  (n ld iv(2) —i — 2 < p i  < ^  +  (n ldivl2 ) — i
z z

For n  odd. n ld ivl2 =  f  — |  (and m  =  n ldivl2 + 1 = ^  — I  + \  = 21|^ ) ,  so

. 5 ^  . . 1n — i — -  < p i  < n — i — -
2 -  2

=+ n — i — 2 < p i  < n  — i — 1 since i ,p  i are integers.

This leaves two possibilities for p. These can be checked to  see which of them are permutation
functions. Checking boundary conditions, we have:

n — i — 2 i = n  — 1 =+ n — i — 2 =  —1 X
n  — i — 1  i =  0  => n — i — 1 = n — 1 y/

i = n — 1 =+ n — i — 1 =  0  y/

A similar calculation for n  even produces similar results.
Therefore p i  = n  — i — 1, and p  is the index permutation function of movep, so:
(movep xs)\\i = a:«!!(p i) = xs!!(n — * — 1 ) =  (reversep xs)\\i 
using Lemma 23.

So movep = reversep 
=>• move'p = inverse reversep = reversep
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5.4.3 Program  transform ation

The values of the parameters can now be substituted into the program to give the following version 
of the program.

V ersion 4

maptri f  a xss =
let m  =  (sizep xss)ldivl2 4 - 1 

workl = mapp (takes m) xss 
work2 =  mapp (drops m) xss) 
res 1  =  mapp (foldls f  a) work 1  

res2 = reversep (mapp (foldls f  a) (reversep work2))
in
map2p f  resl res2

5.5 Profiling

The previous calculations should produce a well-balanced program. However it is often useful to check 
if this has indeed happened by running or simulating the resulting program. This is not necessary and 
may be expensive, but it is reassuring and helps to  find any errors which may have occurred in the 
calculations. These can then be corrected before time and effort are wasted in future development.

Profiles are often particularly useful because they give more information than  just the function’s 
run-time. For example, GpH’s profiling tools display the number and state of tasks in the parallel 
system. This is useful for load balancing because one can see how much parallelism is being employed 
at each point in time.

In this case study, it was assumed th a t /  is expensive compared to  communication. To keep the 
example simple, this was achieved by forcing the function to do an expensive computation before 
doing an addition. In practice, an expensive summation function would be used in the first place.

In the methodology GpH is a good candidate for profiling because of its similarity to Haskell. 
The APM functions can simply be implemented using GpH instead of sequential Haskell, and the 
remainder of the code remains as before, as mentioned in Section 2.3.6.

E xam ple For example, mapp can be implemented in GpH as:

mapp :: NFData (3 =4- (a  —> (3) -4 ParFinSeq a  —> ParFinSeq (3 
mapp f  fs = toParFinSeq (parMap m f  f  (fromParFinSeq fs ))

where parMap is defined using the standard strategy parList as follows:

parMap strut f  xs = map f  xs 1 using1 parList strut

parList executes each element of its list in parallel using the given strategy. In the above example, 
the given strategy is m f,  which reduces its argument to normal form. See [THLPJ98] for more details 
about GpH and strategies.

Profiles were then generated for the maptri function on 8 * 8  matrices both before and after load 
balancing, using GUM [THMJP96], a parallel implementation of GpH, on 8  processors of a 32- 
processor Beowulf cluster. These profiles are shown in Figures 5.2 and 5.3. It should be noted that
GpH is not location aware, as previously mentioned in Section 2.3.6. So this is not a totally accurate
representation. The threads are not allocated to specific processors as in SPMD, but to any available
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Average Parallelism = 2.7)( GrAnSim maptril +RTS -qP

_k_________ 40 0 k_________ 45 0  k

Runtime = 45335 cycles ]runnable ■  fetching ■  blocked migratingrunning

Figure 5.2: Activity profile of maptri before load balancing

processor. However, the idea of the load balance can be obtained by examining the total amount of 
parallelism in the system at each point in time. This is given by the mid-grey shade in the figures.

In Figure 5.2, the bad load balance can be clearly seen: the load on the processors rapidly 
decreases. Although 8 processors are initially used, several of the processors quickly fall idle as the 
computation progresses. In Figure 5.3, on the other hand, the load is balanced more evenly between 
the processors. It should be noted that the scales are different in the diagrams, so that 8 processors 
are used for a large part of the computation, and at least 4 for most of it. The average parallelism 
has risen from 2.7 to 6.2. This has the desired effect of decreasing the run-time. It has decreased 
from 45335 to 19753 cycles.

5.6 T idying the  code

The next stage is the introduction of monads, but before this can be done the code should be tidied 
up so that the monadic transformation rules can be applied. In this case these tidying up steps are 
very simple:

Firstly the variables are renamed, by alpha conversion, so that their names reflect their function. 
This is not a necessary step but it aids the user and leads to a better style in the final code:

maptri f  a xss =
le t m = (sizep xss)ldiv‘2 +  1

kept-work = mapp (takes m) xss
sent-work — mapp (drops m) xss
sum-kept = mapp (foldls f  a,) kept-work
sum.rec = reversep (mapp (foldls f  a) (reversep sent-work))

in
map2p f  sum-kept sum.rec 

In preparation for the MPI APM step (Section 5.8), there should also be only one APM function 
per line. This can be done later, but now is a convenient time to do it since the program is being
tidied up anyway. Lemma 8 can be used to introduce the extra le t expressions, and Lemma 5 to
rearrange the equations into a more sensible order.
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(GrAnSim maptri2 +RTS -qP Average Parallelism = 6.2]

0__________ 2.0 k_________ 4.0 k_________ 8 0 k _________ 8 0 k _________10 0 k_______ 12.0 k_________ 14.0 k________ 16 0 k________ 16.0 k__________

■  running_______ runnable M fetching U blocked migrating Runtime = 19753 cycles ]

Figure 5.3: Activity profile of m aptri after load balancing

V ersion  5

maptri f  a xss =
le t m =  (sizep xss)ldiv‘2 +  1

kept^work = mapp (takes m) xss 
sent .work = mapp (drops m ) xss 
rec-work = reversep sent .work 
sum-kept — mapp (foldls f  a) kept-work 
sum-offload = mapp (foldls f  a) rec-work 
sum-rec = reversep sum-offload

in
map2p f  sum-kept sum-rec

There may also be other changes to the program which are necessary at this stage in the derivation. 
For example, the left-hand sides of the le t expressions should be single variables. Any tuples should 
be separated out at this point. Any le t bindings which define functions should also be moved out 
of the le t expression. Such changes are discussed in Section 3.5.1. However such changes are not 
needed in the current case study.

5.7 M onads

Because the target language is C+M PI, an imperative language, it can be useful to introduce monads 
into the program to model side-effects. Section 3.6 describes how to do this. The programs from now 
on become more complicated, and it may be helpful to refer to Section 2.8.4 which describes how 
such a program can be read.

5 .7 .1  In tro d u c in g  m on ad s to  th e  program

First of all, the whole program is encapsulated in a monad, using return (Lemma 36):

maptri :: (a —> a  —»• a) —> a  -* ParFinSeq(SeqFinSeq a) —>■
IO P ST  (ParFinSeq a)
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maptri f  a xss = return ( l e t  m = ...

in
...)

Now we recursively apply Lemma 38 to move the le t expressions out of the le t and into the do. 
This lemma can be applied because of the nature of the data  dependencies in the le t expression—each 
equation depends only on previous equations and not on future ones. After this, Law 35 can be used 
to tidy up the program as shown below:

maptri f  a xss =
d o m  f -  return ((sizep xss)1 div‘2 +  1)

kept-work <- return (mapp (takes m) xss)
sent.work return (mapp (drops m) xss)
rec.work return (reversep sent.work) 
sum-kept return (mapp (foldls f  a) kept-work) 
sum.offload return (mapp (foldls f  a) rec.work) 
sum-rec <— return (reversep sum.offload) 
return (map2p f  sum-kept sum-rec)

At the moment, maptri is a single function in isolation, but if it is to be run in a traditional 
language such as C, it needs to be contained within an entire program. Therefore a main function is 
introduced using Rule 44 from Section 3.6.4. This obtains the param eter values from the input, calls 
the maptri function with them, and prints the results, as described in Section 3.6.4.

This main function uses other functions to get data from the input. In this particular case study, 
enter J n t  and enter-tm atrix are used to obtain a and xss  from the input, enter J n t  takes an integer 
from the input, and enter-tm atrix n takes a triangular m atrix with n  columns from the input. Input 
functions are discussed in greater detail in Section 3.6.4. The other param eter, / ,  is built into the 
program instead of being input into it because it is hard to input functions and because a program 
such as maptri is likely to  be used extensively with a single fixed operator.

In this case, /  is instantiated to (+),  which is an associative operation with unit 0. The parameter 
a should therefore be 0 in order for the program to be correct. This function is used because it is
simple, and yet sufficient for the purposes of this case study. However it doesn’t  fulfill the assumption
in Section 5.4 th a t communication costs are low compared to  calculation costs. This can be altered 
for testing purposes by forcing the function to do an expensive computation before the addition as 
was done for the profiling in Section 5.5. See Section 5.11 for more details.

These changes modify the program as follows:

V ersio n  6

main :: In t —V IO PSTQ  
main p =

do  le t enter J n t  =  . . .
enter-tmatrix n = . . .  

le t  maptri f  a xss =
do . . .

a 4- en terJn t 
xss <— enter-tm atrix p 
result maptri (+) a xss 
pst-putStr(show result)
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5.7.2 Variables

The target language, C+M PI, uses variables to store values. This can be simulated in Haskell as 
shown in Section 2.8.2. The variables need to be created, values for them need to  be stored and their 
values also need to be retrieved. In addition the distribution of variables across the parallel system 
needs to be considered as some variables need to be replicated and others, which contain more than 
one piece of data, need to be distributed across the system. Other factors also need to be considered 
such as the effect on parameters and duplicated values. In order to keep track of all these things, the 
transformation is divided up into smaller steps using the suggestions and rules given in Section 3.7.

In stantia te th e  typ es

At the moment the program is polymorphic—it works for param eters of multiple types. These types 
now need to be restricted to particular types as described in Section 3.5.1. In this case study, we 
examine the case when the input values are integers, and so the types are instantiated to Int. This 
is done using Lemma 2 to give:

maptri :: (Int —> Int —» Int) —> Int —> ParFinSeq (SeqFinSeq Int) —»■
IOPST  (ParFinSeq Int) 

maptri f  a x s s j v  =  . . .

G lobal Variables

As indicated in Section 3.7.2, global variables need to be created a t the beginning of the program. 
Commonly global variables are used for the number of processors in the system, p, the processor ids, 
pid, and the number of data  elements, n. There may also be global variables specific to the program. 
In this case study, the number of processors was assumed to  be equal to the number of rows in the 
matrix, so only the variables pid  and n are needed.

The global variables are created after the system is started (using start provided by IOPST), 
but before the local function definitions. Again, this follows the pattern  in C. Their values are then 
set after the local definitions but before any of the other code, and these variables must be accessed 
before their use. In this case study, the value of n is used instead of sizep xss within maptri, in the 
calculation of m, because they have the same value. Therefore it is retrieved from n_u at the start of 
maptri and the calculation of m modified accordingly.

Although n is scalar, it is required in all the processors and so must be replicated over the system, 
using repeatp.

These actions are encapsulated in Rules 45 and 48 in Section 3.7, the application of which results 
in the following version of the program.
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main p =
do start p

— create global variables
n-v 4- create.var (repeatp(0  :: Int)) 
pid-v 4- create-var (repeatp(0  :: Int)) 
let . . .
le t maptri f  a xss =

do n 4- retrieve n-V
m 4- return (n 1 div1 2 +  1)

— set the values of global vars 
n 4- getsize
store n.v (repeatp n) 
pid 4- get-pid 
store pid-V pid

As the reader may have noticed, there is a mistake in the above code in the calculation of m. n is 
a sequence of values, because it was replicated over the system to make it accessible to all processors. 
In contrast sizep xss, which was previously used to calculate m, returns a single value. Therefore the 
calculation of m  produces a type error when the program is run.

In general, the expressions in which duplicated values (such as th a t stored in n) are used should 
be modified using Lemma 25 from Section 3.7.3, thus avoiding this problem. In maptri, n  is only 
used in the call to  enter-tmatrix  and in the calculation of m. These pieces of code therefore become 
the following:

m 4- return (mapp (A i -» *‘d*V2 +  1 ) n)
and

xss 4- enter-tmatrix (headp n)

Input values

Variables are also needed to store the values entered by the user. This can be achieved by changing 
the implementation of the input functions, and calling them with an additional variable parameter as 
described in Section 3.7. This has the additional effect of changing a from a single value to a sequence 
of values spread across the parallel system. The way a is accessed must also change in a similar way 
to the code involving n above.

The code calling the input functions becomes:

a.v 4- create-var (repeatp(0 :: Int)) 
enterJnt a-v 
a 4- retrieve a-v
xss-v 4- create-var (repeatp (emptys " SeqFinSeq Int)) 
enter-tmatrix  (headp n) xss.v 
xss 4 -  retrieve x s s j v

The input functions themselves also change in similar ways. The function enter-tmatrix  is based 
on enter-vector, which is described in Section 3.6.4:

enter-tmatrix  :: Int ->  VarFn (SeqFinSeq Int) —> IOPST  () 
enter-tmatrix n var.v =  

do xss 4- enter n 0
store var.v  ( Ust2parfs (map list2seqfs xss))

In this function, enter :: Int -» Int -» IOPST [[Int]] requests and returns the values in the 
triangular matrix. These values are then converted to the appropriate parallel and sequential types, 
using list2parfs and list2seqfs, and stored in var.v.
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P aram eters

Because of these changes, the parameters of maptri also have to change. For example, as mentioned 
above, the param eter a is no longer a single value, but rather a parallel sequence of values. We also 
have to consider which variables should be passed by reference and which by value, as discussed in 
Section 3.7.4.

In C, the target language for this case study, arrays are always passed by reference. This is 
modelled in the program by passing xss, a parallel array variable, by reference. In contrast, a is a 
parallel integer variable—it only has one value in each processor—and therefore does not have to be 
passed by reference. In addition, its value is fixed and maptri does not alter it. Therefore it is fine 
to pass it by value.

Therefore xss.v  rather than xss itself, and a, which is now a sequence of values (one for each 
processor), are passed to  maptri. The type of maptri changes accordingly, as does the way in which 
its parameters are accessed, xss is accessed from xss.v  straight away, using retrieve, and a is referred 
to as a sequence instead of as a single value.

This is shown below:

maptri :: (Int —>■ Int —> Int) —» (ParFinSeq Int) —>
VarFn(SeqFinSeq Int) —» IOPST  (ParFinSeq In t) 

maptri f  a xss.v =
do xss <— retrieve xss.v

sum-kept «— return (map2p (foldls f )  a kept.work) 
sum.offload <— return (map2p  (foldls f ) a rec.work) . . .

result •<— (maptri ( + )  a xss.v)

O ther variables

A few other variables need to  be added. The result at the end of main can be stored in a variable, 
as can the intermediate values in maptri. This is done using the rules in Section 3.7.1.

5.7.3 The resultant program

After all these changes, the program is now as follows:

V ersion 7

maptri :: (Int —> Int ->  Int) —> (ParFinSeq Int) —»
VarFn(SeqFinSeq Int) —► IOPST  (ParFinSeq Int) 

maptri f  a xss.v =
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do  n 4- retrieve n.v  
xss 4- retrieve xss.v 
m .v 4- create-var (repeatp (0 :: Int)) 
m 4- return (mapp (A * —> i ‘div‘2 +  1) n) 
m 4- retrieve m .v
kept.work.v 4- create.var (repeatp(emptys :: SeqFinSeq Int)) 
store kept.work.v  ( map2p takes m xss) 
kept.work 4- retrieve kept.work.v
sent.work.v 4- create.var (repeatp(emptys :: SeqFinSeq Int)) 
store sent.work.v (map2p drops fn xss) 
sent.work 4- retrieve sent.work.v
rec.work.v 4- create.var (repeatp(emptys :: SeqFinSeq Int))
store rec.work.v (reversep sent.work)
rec.work 4- retrieve rec.work.v
sum.kept.v 4- create.var (repeatp (0 :: Int))
store sum.kept.v (map2p (foldls f )  a kept.work)
sum-kept 4- retrieve sumJcept.v
sum.offload.v 4- create.var (repeatp (0 :: Int))
store sum.offload.v (map2p (foldls f )  o, rec.work)
sum.offload 4- retrieve sum.offload.v
sum.rec.v 4- create.var (repeatp (0 :: Int))
store sum.rec.v (reversep sum.offload)
sum.rec 4- retrieve sum.rec.v
return (map2p f  sum.kept sum.rec)

result.v 4- create.var (repeatp (0 :: Int)) 
result 4- (maptri ( + )  a xss.v) 
store result.v result

5.8 M PI A PM

The next stage is to  transform the program to use a different APM, the M PI APM. This provides 
Haskell simulations of M PI functions, as described in Section 2.10. When using this APM, all transfers 
of d a ta  from one processor to another should be expressed using functions from the APM.

D ata transfers can usually be easily identified because they are encapsulated in functions from 
particular APMs, such as the ParFinSeq APM. Sometimes they occur implicitly, but not in this case 
study. See Chapter 7 for an example in which such communication occurs.

In the maptri case study, the d ata  transfers occur within the maptri function and the input 
functions which broadcast or scatter their data. The changes to  the input functions are described 
in Section 3.8.2, and we do not need to go into them  here. The main function, maptri, changes 
in a similar way, using the rules described in Section 3.8.1 to transform the calls to standard APM 
functions into calls to MPI APM functions. In fact all the communication here is encapsulated in the 
reverse function which can be transformed to  an M PI APM version, requestrev, described in Sections 
2.10.5 and 3.8.1.

After the application of these rules, the program can be tidied up somewhat by removing redundant 
equations (e.g., instances of the retrieve functions), and by moving the create.vars to the top of the 
function. This can be done using monadic manipulation rules from Section 3.5.1.
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This gives:

V ersio n  8

maptri f  a xss.v =
do  m .v  4- create.var (repeatp(0 :: Int))

kept.w ork.v 4- create.var (repeatp (emptys :: SeqFinSeq Int))
sent.work.v  4— create.var (repeatp (emptys SeqFinSeq Int))
rec.work.v 4- create.var (repeatp (emptys SeqFinSeq Int))
sum .kept.v 4- create.var (repeatp (0 :: In t))
sum.offload.v 4- create.var (repeatp (0 :: Int))
sum .rec.v 4- create.var (repeatp (0 :: Int))
n 4- retrieve n.v
xss 4- retrieve xss.v
store m .v  (mapp (A i —> (ildivl2 4 - 1)) n)
m 4- retrieve m .v
store kept.work.v (map2p takes m xss)
kept.work 4- retrieve kept.work.v
store sent.work.v (map2p drops m xss)
requestrev sent.work.v rec.work.v (A R R A Y  IN T )
rec.work 4- retrieve rec.work.v
store sum .kept.v (map2p (foldls f )  a kept.work)
sum-kept 4- retrieve sum.kept.v
store sum.offload.v (map2p (foldls f )  a rec.work)
requestrev sum.offload.v sum.rec.v IN T
sum.rec 4- retrieve sum.rec.v
return (map2p f  sum .kept sum.rec)

5.9 Individual level

C +M PI views the parallel world from an individual viewpoint: the program specifies what a single 
processor does. However, up to this point the Haskell programs have viewed the world from a global 
or collective viewpoint, specifying what the whole system does. These individual and collective levels 
are explained in more detail in Section 2.11.

To bring the program closer to the target language, an individual level viewpoint should therefore 
be used instead of a collective one. Such a program cannot be immediately run in Haskell, but can 
be with an appropriate wrapper function, as explained in Section 2 .1 1 .

The changes which need to be made to the code are outlined in Section 3.9. The calls to the MPI 
APM functions remain essentially the same. Variable m anipulation functions such as create.var deal 
with single values rather than sequences of values. The input functions only take in values if the 
processor’s id is 0 , and then distribute them from th a t processor, as only one processor reads in the 
input in a real parallel system. Finally parallel maps change to direct function applications.

Making these changes, then tidying the code, we get the following code.
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main :: IO PSTQ  
main =

do  start
— create global variables 

n .v  +- create.var ( 0  :: Int) 
pid-v  +- create.var (0 :: Int)

— local input functions 
le t enter.int var.v = . . .  
le t enter.tm atrix n var.v =

do  . . .
i f  (pid ==  0 ) th e n  
do  xss <- enter n 0

store tm p.v  (Ust2segfs (concat xss)) 
else return Q

— set up variables for scattering

— scatter
mpi.scatterv tm p.v sizes displs IN T  xs.v  IN T  0

— other local function definitions
le t requestrev :: (Dyn a) => VarFn a  -» VarFn a  -» ItemType IO P STQ  

requestrev sendbuf recvbuf datatype = 
do

— do reverse
m pi.send sendbuf datatype (n — 1 — pid) 
mpi.recv recvbuf datatype (n — 1 — pid)

— main program 
le t maptri :: (In t -+ In t —> Int) -+ In t —>

VarFn(SeqFinSeq In t) —> IO P ST  In t 
maptri f  a xs.v  = 
do

m .v  4- create.var (0 :: In t)
kept.w ork.v  «— create.var (emptys :: SeqFinSeq Int)
sent.work.v create.var (emptys :: SeqFinSeq Int)
rec.work.v 4- create.var (emptys -  SeqFinSeq Int)
sum .kept.v  4- create.var (0 :: Int)
sum.offload.v «- create.var (0 :: Int)
sum .rec.v  «- create.var (0 :: Int)
xs <— retrieve xs.v
n «- retrieve n .v
store m .v  (n ldivl 2 + 1 )
m <— retrieve m .v
store kept.work.v  (takes m %s)
kept.work +- retrieve kept.work.v
store sent.w ork.v  (drops m xs)
requestrev sent.work.v rec.work.v (A R R A Y  IN T )
rec.work retrieve rec.work.v
store sum -kept.v  (foldls f  a kept.work)
sum-kept <- retrieve sum .kept.v
store sum.offload.v (foldls f  a rec.work)
requestrev sum.offload.v sum .rec.v IN T
sum.rec +- retrieve sum .rec.v
return ( f  sum .kept sum.rec)
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a.v  + -  create-var (0  :: Int)
xs.v 4- create.var {emptys :: SeqFinSeq Int)

— set the values of the global variables 
n 4- get.size
store n .v n 
n 4- retrieve n .v  
pid 4- get.pid 
store p id .v  pid 
pid 4- retrieve p id .v

— Input and broadcast a 
enter.int a.v

— Input and scatter xss, storing it in xs.v 
enter.tmatrix  ( head.p n) xs.v

— call maptri
result 4- maptri( + ) a xs.v 
putStr(show result)

5.10 C + M P I

5.10.1 Transformation to C + M P I

The program can now be transformed into C +M PI using the rules given in Section 3.11. APM 
functions transform in fixed ways into M PI operations or combinations of C and MPI operations. An 
example of this is the requestrev function. The main function in Haskell is transformed into the main 
procedure in C+M PI. This initialises MPI, sets the values of global variables, n, m and p id , and calls 
the input functions and maptri. It also closes MPI at the end. The input functions are transformed 
into predefined C +M PI functions.

This transformation is accomplished using Rule 61 from Section 3.11.2 to change the structure 
of the program, together with a set of other rules, given in Table 3.2 to change individual function 
calls and variable manipulation functions. It also adds in necessary parts of the code such as function 
declarations, and a  function, o u tp u t, which prints out the results in the correct order.

Note th a t reverse is transformed into predefined functions r e q u e s t r e v a r r  and re q u e s tre v in t ,  
which implement requestrev for arrays of integers and single integers respectively, depending on the 
type of the values used, and th a t main is written according to a set pattern.

int n,pid,m;

main (int argc, char *argv[])
{

int a = 0;
int xss [SIZE*SIZE] = [] ; 
int result [SIZE] = [] ; 
int xs[SIZE] = [] ; 
int sizes [SIZE] = [] ; 
int displs[SIZE] = [] ;

/* mpi_init */ 
errcode = MPI_Init (&argc, ftargv);

/* set the values of global variables */
MPI_Comm_size (MPI_C0MM_W0RLD, &n);
MPI_Comm_rank (MPI_C0MM_W0RLD, &pid);
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/* enter and broadcast/scatter input values */ 
enterint(&a); 
entertmatrix(n, xs);

/* call maptri */ 
result = maptri(&add, a, xs);

output(result);

/♦finish MPI*/ 
errcode = MPI_Finalize ();

}

int maptri (int (*f)(int,int), int a, int xs[])
{

/* The convention about variables is that x corresponds to 
/* x and x_v */ 

int kept.work[SIZE], sent.work[SIZE], rec.work[SIZE] = []; 
int sum.kept, sum.offload, sum.rec = 0; 
int kept.work.size, sent.work.size, rec.work.size = 0;

m = n/2 + 1;

take(xs,size xs,m,kept.work,ftkept.work.size); 
drop(xs,size xs,m,sent.work,fesent.work.size);

requestrevarr(sent.work, sent.work.size, rec.work, &rec_work_size); 
/♦We pick the array version of reverse because of the 
/* (ARRAY INT) parameter */

sum.kept = foldl(f, a, kept.work, kept.work.size); 
sum.offload = foldl(f, a, rec.work, rec.work.size);

sum.rec = requestrevint(sum.offload);

return ((*f)(sum.kept, sum.rec));
>

void requestrevarr(int xs[], int size, int *res, int *res_size) 

int requestrevint(int x) 

void enterint(int *var)

void enterdmatrix(int n, int xs[])

void output(int result)

Unnecessary initialisations can now be removed, using Rule 62 in Section 3.11.4, the size variables 
renamed, and size xs replaced by pid + 1 , where pid is the current processor’s id, since these are
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equal. This produces the following code: 

i n t  n ,p id ;

main (int argc, char *argv[])
{

int errcode; 
int result,a,i; 
int sizes[SIZE]; 
int displs[SIZE]; 
int xss[SIZE*SIZE]; 
int xs [SIZE];

>

int maptri (int (*f) (int ,int), int a, int xs[])
{

int kept.work [SIZE], sent_work[SIZE], rec.work[SIZE]; 
int sum.kept, sum.offload, sum.rec; 
int m, kept.size, sent.size, rec.size;

ta k e ( x s ,p id + l ,m ,k e p t.w o rk ,fek e p t.s iz e ); 
d ro p (x s , p id + 1 ,m, se n t.w o rk , f e s e n t .s iz e ) ;

re q u e s tre v a r r (s e n t.w o rk , s e n t . s i z e ,  rec .w o rk , & re c _ s iz e ) ;

sum .kept = f o l d l ( f ,  a , kep t.w o rk , k e p t . s iz e ) ;  
su m .o fflo ad  = f o l d l ( f ,  a , rec .w o rk , r e c . s i z e ) ;

>

5.10.2 O ptim isations

After the basic transformation, it is still possible to apply extra rules to tidy up the code and perform 
some optimisations, but it isn’t  as easy and correctness can no longer be proven. As much reasoning 
as possible should be done in the Haskell versions higher up in the derivation.

In this case study, the above version is executable but isn’t very efficient because it creates 
unnecessary arrays during the tak es  and drops. Instead of calculating and storing kept.w ork and 
se n t .work separately, C can manipulate them as slices of the main array, xs. This optimisation 
could be included in the Haskell stages, possibly by replacing takes and drops a t those stages with 
the function slice which transforms more naturally into C slices. However the rest of this section 
shows how the optimisation can be carried out a t this point for demonstration purposes.

The replacement of tak es  and drops by slices of arrays in C can be expressed more formally in 
Rules as follows. Note however that these cannot be proved correct due to a lack of formal semantics 
in C.

R u le 63 (take rule)
For any arrays x s , re s , positive integers m, re s_ s iz e  and C statem ents Fs such that
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• s iz e  is the number of elements in xs and
• Fs never accesses r e s [ i ] ,  i  >  re s_ s iz e .

t a k e ( x s ,s i z e ,m ,r e s ,& r e s _ s iz e ) ; =>• re s_ s iz e  = m in (m ,s ize );
Fs; F s [ x s / r e s ] ;

R ule 64 (drop rule)
For any arrays x s , re s ,  positive integers s i z e ,  m, re s_ s iz e  and C statem ents Fs such that

•  s iz e  is the number of elements in xs and
• Fs never accesses r e s f i ] ,  i  >  re s_ size .

d r o p ( x s ,s iz e ,m ,r e s ,& r e s _ s iz e ) ; re s_ s iz e  = s iz e  -  m in (m ,s ize );
Fs; F s [x s + m in (m ,s iz e ) /re s ] ;

In order for these rules to be applied, the sizes of each of the arrays need to be known. They can 
be calculated using the size properties of take and drop (Lemmas 21 and 22).

Size of kept.w ork =  k ep t_ size  =  m in(m ,xs_size) =  m in (m ,p id + l).
Size of sent_work =  sent_size =  xs_size - min(m,xs_size) =  (pid+l)-keptjsize. 
where pid is the processor number.
The application of these rules then leads to the final version of the program, as follows:

Version 9 

i n t  m ,n ,p id ;

main ( i n t  a rg c , char * a rg v [])
{

}

i n t  m ap tri ( i n t  ( * f ) ( i n t , i n t ) , i n t  a , i n t  x s [ ] )
{

i n t  re c .w o rk[SIZE], k e p t . s iz e ,  s e n t . s i z e ,  r e c . s i z e ;  
i n t  m, sum .kep t, su m .o fflo ad , sum .rec;

m = n/2 + 1;

k e p t . s iz e  = m in (m ,p id + l); 
s e n t . s i z e  = (p id+ 1 ) - k e p t .s i z e ;

re q u e s tre v a r r (x s + k e p t_ s iz e , s e n t . s i z e ,  re c .w o rk , f e r e c .s iz e ) ;

sum .kept = f o l d l ( f ,  a , x s , k e p t . s iz e ) ;  
su m .o fflo ad  = f o l d l ( f ,  a , re c .w o rk , r e c . s i z e ) ;

sum .rec = r e q u e s tr e v in t( s u m .o f f lo a d ) ;

r e tu r n  ( (* f ) (s u m .k e p t, su m .rec )) ;
>

5.10.3 D iscussion of the C version

The M PI APM functions are implemented by predefined M PI operations or combinations of C and 
MPI operations. See Section 3.11.2 for a general look at this. This section examines a specific example,
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requestrev, which occurred in the case study. This function expresses a pattern  of communication in 
which elements from processor i are swapped with those from processor n — i — 1 , when the processors 
are numbered 0 to  n  — 1. This is the communication pattern  encapsulated in the function, reversep 
from the ParFinSeq APM.

This function has two forms, depending on the type with which it is used. The user of the 
methodology can work out which version to  transform to by looking a t the type parameter in the 
requestrev function.

The code for one form of the requestrev function is given below. There is no MPI function which 
carries out this pattern  of communication, and so it must be implemented using M PI functions which 
are available, in this case, individual sends and receives.

void requestrevarr (int xs[], int size, int res[], int *res_size)
/* Implements reverse for arrays of integers.

The 2nd parameter gives the number of elements of the array to send; 
res holds the received array */

{
MPI_Request rev_handle;
MPI_Status status,status2;

/* send and receive data in a reverse pattern*/
/* data should be sent to and received from processor (n-l-pid)*/
MPI_Issend(xs,size,MPI_INT,n-l-pid,0,MPI_COMM_WORLD,&rev_handle);
MPI_Recv(res,SIZE,MPI_INT,n-l-pid,O,MPI_C0MM_W0RLD,&status);
MPI_Wait(&rev_handle,&status2);
MPI_Get_count(&status, MPI_INT, res_size);

>

C +M PI versions of such functions can be created in advance and stored in a library in a similar
way to the APMs themselves. They can then be used without having to be re-implemented each
time.

5.11 Timings

This program was compared to C +M PI code written by hand without using load balancing, on a 
32-processor Beowulf cluster. The timings use standard input matrices for xss , and a = 0, with a 
computationally intensive function for / .  The timings are given in Table 5.1. Figure 5.4 compares 
them  with each other graphically. Notice how the load balanced version performs consistently better 
than  the one without load balancing.

However the peculiarities of the communication system and varying processors can skew the 
results. In this case, the times jump between 28 and 32 processors. This is probably caused by 
slowness in one of the intermediate processors or connections. If the processors are allocated to 
m atrix rows in a different way, the timings also come out differently.

The speedup graph (Figure 5.5) also shows the superior performance of the load-balanced version, 
but it shows some odd behaviour. The load-balanced version exhibits super-linear speedup. This can 
probably be explained by a sub-optimal sequential version. Note the dip at 32 processors, as before.

5.12 Discussion

After looking at the case study in detail, examining each transform ation and stage of the derivation 
in detail, it is time to step back and look a t it as a whole, observing its structure and comparing it
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n Sequential Naive Parallel Load balanced 
Parallel

4 33 1 0 1 0

8 117 19 14
1 2 253 28 19
16 442 38 24
2 0 683 47 29
24 975 56 33
28 1319 6 6 38
32 1716 141 85

Table 5.1: M aptri program timings in seconds

Timeu 
(secs) |

-x -  Not load balanced 
-©- Load balanced

Figure 5.4: Comparison of m aptri timings

to the general information which was given in Chapter 2.
First of all, let us look a t the layout of the derivation. This is given in Figure 5.6. The reader 

may find it interesting to  compare it with the diagrams of more general derivation layouts in Figure 
2.2 of Chapter 2 and Figure 3.1 of Chapter 3.

There are several interesting points to note. First of all, the case study is sufficiently simple th a t 
only a single m aths specification is needed. The abstract specification is detailed enough to also act 
as the m ethod specification. The latter is only really needed in more complicated situations in which 
the abstract maths specification does not give sufficient details to  allow one to calculate a result.

After the specification stage, the case study proceeds through the sequence of steps mentioned 
in the general case (Chapter 2). First of all, the m aths specification is transformed into Haskell and 
then parallelism is identified. The program then proceeds through a sequence of intermediate stages 
before being transformed to  an individual viewpoint style program, and then to the target language, 
C+M PI. Note th a t the intermediate stages form the body of the derivation, and that, despite the 
relative simplicity of the case study, there are a significant number of them.

In the description of the general derivation (Section 2.2), it is not specified which intermediate 
transformations are actually carried out, how many times or in what order. This is left up to the 
programmer and the particular case study. In the case study just carried out, however, we can see a 
particular sequence of these stages. The reader may also have noted th a t each of the stages is only 
carried out once. This is due to  the simplicity of the case study, which does not require the full power
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Speedup
—•— Linear speedup 

Not load balanced 
-e -  Load balanced

4 0 -

36-

32-

28-

24-

20 -

16-

12-

4 -

Figure 5.5: Speedups of m aptri programs

of the methodology. See Chapter 7 for a more complicated case study.
Since C +M PI is targeted, monads are used to model the imperative features of 10 and mutable 

state. C +M PI is also SPMD (see Section 2.10.1), and so uses an individual level semantics. Since 
the Haskell model is collective, a transform ation to an individual level viewpoint is required. Note 
th a t all the transformations are carried out formally using equational reasoning in Haskell. Only at 
the last step is the program written in another language - the target language, C+M PI.

However, this is only one possible derivation of many. Figure 5.7 shows the branching structure 
of the possible derivations, with the one carried out in this chapter shown in detail. Only a few of the 
possible choices a t each stage and a few of the target programs are shown for the sake of simplicity. 
However it can be seen th a t programs in different languages and using different efficiency techniques 
can be targeted. Some of these lie more closely together than others in the tree structure and share 
many common derivation steps while others share only the first few steps.

5.13 Summary

This chapter has presented a simple case study which was carried out using the methodology described 
in the previous chapters. This has illustrated and clarified many of the points in those chapters, and 
demonstrated the methodology in action. However this study was fairly simple, and did not cover 
many areas. The following chapters present a further, more complicated case study. First of all, a 
specific part of this further study is examined in some detail.
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Figure 5.6: The layout of the m aptri derivation
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Figure 5.7: The tree of alternative possible derivations in this case study



Chapter 6

Pipelining in A ccum ulating Scan

6.1 Introduction

This chapter concerns the development of an APM function from start to finish. It follows this 
function through a series of APMs and observes how it develops, focusing especially on detailed 
communication-specific optimisations.

The function used is an accumulating scan which is a  version of the standard higher-order function 
scan. It can use all of the previously calculated results in calculating the next one, and can be written 
as an APM function in its own right.

The development of accumulating scan gives us insight into the relationship between APMs, and 
into the development of an APM function. Accumulating scan is particularly interesting because 
it can be implemented using a pipelining technique, thus providing a chance to see how a common 
parallel technique can be used within the context of the methodology. The pipelining technique can 
be optimised in several communication-specific ways, some of which are dealt with in this chapter. 
The chapter therefore demonstrates how detailed, low-level optimisations which manipulate commu­
nication operations can be introduced within the APM framework.

Due to the communication-specific optimisations involved, many of the programs in this chapter 
use the monadic and MPI APMs described in Sections 2.8 and 2.10. Section 2.8.4 provides a brief 
description of the form th a t such programs take, and information on how to interpret them. This 
work was developed as part of the Gaussian elimination case study (Chapter 7), and the accumulating 
scan functions are used there to implement the back substitution phase of the algorithm.

6.1.1 The layout o f th is chapter

Figure 6.1 describes the sequence of transformations which the accumulating scan function goes 
through. The rectangles represent the APMs, and the arrows show how they are related. Functions 
from one APM can be transformed into those from the next. The labels in each rectangle describe that 
APM. In particular they describe the way in which the accumulating scan function is implemented 
in th a t APM. The dots and other arrows represent other possible transformations and APMs, and 
the dashed line shows the path  taken by this chapter through this family of APMs.

First of all, this chapter describes the general scan function and shows how it can be transformed 
through the family of APMs. Successive sections focus on the accumulating scan function. They 
follow it through the sequence of APMs, describing and explaining each APM and the function’s 
transformation from its previous version.

123
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other
\  transformations

.other

other

Abstract

C+MPI

Cyclic
monadic

Blockwise
monadic

SeqFinSeq

Incremental
version

Optimised 
for Cyclic

ParFinSeq
monadic

Cyclic

Pipelined

ParFinSeq

Blockwise

Figure 6.1: The accumulating scan APM hierarchy

6.2 The functions scan and accum_scan

6.2.1 The general scan function

The scan functions are standard higher-order functions (h.o.f.’s). They apply a function argument 
to a list or sequence, and produce a list of its partial sums. For example, scanr, a version of scan 
which sums the elements starting at the right-hand end of the list, can be specified as follows:

scanr :: (a  -+ (5 -» 0) -+ (3 -» [a] -+ [0\
scanr f  a [xi, . . . ,  xn] = [/ xi ( /  x^ /  xn_i ( /  xn a), /  xn a, a]

Or the following, if the results of the scan are named res\ , . . . ,  resn+1 :

scanr f  a [xi , . . . ,  xn]
=  [f xi res2, . . . ,  /  xn- i  resn , /  xn resn+u a]
= [resi, . . . ,  resn+i]

Other variants of scan sum from the left, or don’t use an initial value, a. For parallel programming 
i t ’s often better to use a variant which discards the leftmost or rightmost value so that the returned 
list is the same length as the initial one. These scan functions can be easily modified to operate over 
finite sequences of various types, as are used in the methodology, instead of over lists.

scan functions commonly occur in APMs as they express a pattern  of communication when the 
elements of the sequence are in different processors. Sometimes, for example, when /  is associative, 
they can be implemented in special ways, such as with tree structures (see [0 ’D94] for a description of
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how this is done). But sometimes, even when the sequence elements are in different processors, they 
have to be implemented sequentially, as shown in Figure 6.2. Each processor calculates the partial 
sum so far and then passes it on to the next processor.

res 2 = 
fx, res

res„ - r
fxn_,res

•  • •  < --------

res =
res

n-l

res res res

Figure 6.2: Sequential implementation of scanr

This is a form of pipelining. Every processor receives a value, does some standard thing to it, and 
then passes on the result to the next processor. In this example, processor i receives value resi+i 
from processor i +  1 , then it applies /  to it and the value of x  in the processor.

As this stands, it is performed for only one sequence of values, and this is not very efficient. 
However it can be made more efficient by using the pipeline for several sequences a t once. The earlier 
processors calculate values for new sequences while the later processors are still calculating values for 
older sequences. It is also possible, in certain situations, to optimise the pipeline so th a t it works 
more efficiently even for only one sequence. This situation is what this chapter is interested in. In 
particular, it focuses on the special case of accumulating scan and how it works when the data  is 
distributed using a standard distribution such as a blockwise or cyclic distribution.

The function scanr can be transformed from its specification to a pipelined version in C+M PI 
with a cyclic distribution using standard transformation techniques as described in Chapter 3.

A non-cyclic version of scanr, which discards the rightmost value, is given below in its MPI APM 
form. It can be used as the basis for an optimised pipelined implementation of special cases such 
as accumulating scan, as is shown later in this chapter. The cyclic version could also be used as 
this basis, but th a t is left until later in this chapter so th a t the data  distributions can be discussed 
separately (see Section 6.3).

In the following code, n .v  is a global variable which contains the length of the sequence, init is 
the starting value for the summation, and /  is the function used for the summation. local.vaLv holds 
the original values of the sequence, and the result is distributed across the processors and stored in 
the variable new.val.v.

pipelinep :: (Float -+ IO P ST  Float —> IO P ST  Float) —)• IO P ST  Float 
-> VarFn Float -+ VarFn Float -+ IO PSTQ  

pipelinep f  init local.val.v new .val.v =
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d o  n' 4— retrieve n.v  
n 4- return (headp n')

— set up processor (n-1 )
locaLval 4- retrieveindiv (n — 1) locaLvaLv 
new-val 4- f  locaLval init 
storeindiv (n — 1) new-vaLv new.val

— pipeline
for [n — 2, n — 3..0]

— deal with each processor in turn  starting from the right
(A i —> d o  m p isp t2p t new.vaLv FLO AT (i -f- 1) newjvaLv FLO AT i 

— do calculation for relevant processor 
new-val 4- retrieveindiv i n ew sa L v  
locaLval 4— retrieveindiv i locaLvaLv 
new-val 4- f  locaLval (return new-val) 
storeindiv i n ew saL v new.val)

6.2.2 The accum_scanr function

Accumulating scans are a sub-family of scan functions which make use of all the previously calculated 
values in calculating the next one. This can be best illustrated by looking a t one particular example 
of an accumulating scan, accumscanr 1 , which will be used extensively throughout this chapter.

[res 3,..., resj[res res res res
n - l

res, = res2 =
fx, [res2,..., resj fx2 [res3,..., resj

res =

Figure 6.3: Accumulating scanr 1

As with the standard higher-order function, scanr 1 , this sums its elements from the right-hand 
side of its list and doesn’t use a specific starting value, a. It is illustrated in Figure 6.3, and can be 
specified as follows.

accum scanrl :: (a  [/?] —> (3) —>■ [a] —>• [0\ 
accum scanrl f  [xi, . . . ,  xn]

= \f xi \res2 , resn], . . . ,  /  xn- i  [resn], /  xn Q]
=  [resi, . . . ,  resn]

At each point, this function knows [res;+i, . . . ,  resn], the list of results produced so far, and uses 
this to generate the next result, resi, using / .

This can be implemented using recursion, in the normal way for higher-order functions on lists:

accum scanrl / 0 = D 
accum scanrl f  (z : zs) =  ( /  z ys) : ys 

w h e re
ys = accum scanrl f  zs

This can also be written using a scanr, thus showing its connection to the scan family more 
clearly. A new function, g , is written which does the same as / ,  except th a t it returns the whole set
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of results produced so far and not just the last one. This function can then be used in an ordinary 
scanr to produce a sequence of all the results produced at each point in the calculation. As not all 
of these values are needed, this list is then pruned using head and init, as shown in Figure 6.4.

accum scanr 1  f  zs = map head (init (scanr g [| zs)) 
w h ere

g x ys = ( /  x y s )  : ys

scanr g [] zs ^ _____f A1 2 n-1 n

! 1 I 1 I
[resj V” , r e s j  [res2 ,..., r e s j  [res r e s j  • • • [«*„ 1 []

init (..) I ♦
[res! V*, r e s j  [res2 ,..., r e s j  [res 3 v> re s j  • • • [res„ ]

map head (..) | ♦ I j
res! res 2 res 3 • • • resn

where reSj = f  Xj[resi+] ,...,resj

Figure 6.4: An implementation of accum_scanrl in terms of scanr

However this is not efficient because each processor must wait for the one before it to pass all 
of the results before it starts its calculation. The following sections show how this function can be 
optimised as i t ’s transformed into C +M PI code.

6.3 Different data distributions

A d ata  distribution is a  method of distributing the data  across the processors of the parallel system. 
Different data distributions are described and discussed in Section 2.7. They can be introduced into 
a program as described in Section 3.4.4 using special APMs th a t model specific data distributions, 
as in Section 2.7.

But before the data distribution can be incorporated, a key decision has to  be made. Which 
data  distribution should be used? As shown previously in Figure 6.1, this decision contributes to the 
branching structure of the derivation. Different data  distributions lead to different resultant programs 
and different optimisations which can be applied.

The data distributions need not be chosen this early in the derivation. Actually there are some 
advantages to doing it later. For example, more of the derivation can be shared when deriving the 
same program for different data  distributions. However the decision is considered at this point in this 
chapter because i t ’s simpler a t this stage - both to derive and to  explain to  the reader. At this stage 
the code isn’t  yet complicated with monads and MPI functions.

This section restricts the choice to blockwise and cyclic distributions because they are common 
and sufficient to illustrate the principles. These distributions are described in Section 2.7. The naive 
parallel and sequential distributions are also considered for comparison purposes. The choice is made 
by comparing the costs of the function with each distribution.
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Operation Cost
point-to-point communication t  + m  • t c
point-to-point communication 

between neighbouring processors
t  +  m - t cn

single-node broadcast (1 +  log p ) ( m t c + T )
single-node scatter (p -  1 )m tc + (p +  logp)r

total exchange (p — 1 ) log p m t c + p  log p r

Table 6 .1 : Cost formulae for some communication primitives, m  is the maximum number of elements 
in the messages transm itted

6.3.1 The cost m odel

A cost model is needed if cost calculations are to be carried out. The cost model used is a slightly 
modified version of th a t used by Rauber and Riinger when deriving structured parallel programs 
[RR95]. The machine is described by the set of parameters,

p = the number of processors

t c =  element transfer time for point-to-point messages

t cn = element transfer time for point-to-point messages

between neighbouring processors 

r  =  startup time for point-to-point messages

In order to simplify the calculations and since we only use the costs for comparison purposes, 
an arithmetic operation is assumed to take unit time. Transfer times, t c and t cn, are expressed as 
multiples of this. The latter, £cn, is introduced because pipelining makes heavy use of communication 
between neighbouring processors. Each communication involves an element, typically a floating-point 
number, th a t takes up a fixed number of bytes. Since all of these are the same size, t c and t cn axe 
the times for the communication of one of these elements rather than  of a single byte.

Rauber and Riinger also give the costs of various communication operations in terms of these 
parameters. Table 6.1 summarises the relevant ones for the cost calculations in this chapter. Total 
exchange is sometimes called all-to-all scatter.

As described by Rauber and Riinger [RR95], this is a m ajor simplification of real machines and 
ignores many practical issues such as overlapping communication and computation, network con­
tention and cache effects. However they have shown th a t the resulting predictions axe close enough 
to timings on real machines to give sufficiently accurate results for their purposes. For us, they are 
accurate enough to highlight large differences between efficiencies, and hence accurate enough for 
making choices about such things as data distributions. There is work on improving the cost models 
used with APMs [ORROl].

6.3.2 Cost calculations

In order to  calculate the cost of the function, we need to look a t how it can be implemented with 
each data  distribution. Some implementation details have to be known. However these details 
are not introduced until later in the derivation, although they can still be referred to now. This 
section therefore describes some possible implementations, including optimisations which can be 
made, focusing on pipelining implementations, as described in Section 6.4.

This section also assumes th a t the pipelined function can be done incrementally, as explained in
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Section 6 .6 , so th a t it can start before all of the needed results are available. It is assumed that 
part of the calculation can be done for each value which is available, and th a t these parts are of 
approximately the same size.

These cost calculations are actually done for accum.scanl, which starts from the left-hand end of 
the list, rather than  for accum.scanr which is the version used in the rest of this chapter and in Chap­
ter 7. This simplifies the presentation and calculation, and the costs apply equally to accum.scanr.

The cost analyses use diagrams (Figures 6.5 to 6.10) to help the reader to understand what is 
going on in the algorithms. These diagrams represent the time used within a processor as a rectangle. 
Each processor calculates several values, and therefore these large rectangles are divided into smaller 
rectangles, one for each value calculated. These may again be subdivided, and either shaded in or 
annotated with a number. Shaded areas indicate th a t the processor is idle and not engaged in any 
computation - perhaps the computation is blocked, waiting for some needed value. An annotation, 
on the other hand, indicates that the processor is busy calculating a value. The number indicates 
which value it is computing. In accum.scan these values can be numbered from 1 to n, where n  is 
the to tal number of values in the pipeline, and the annotations indicate which of these values is being 
calculated at the moment.

There are also arrows in these diagrams. These represent communication. Sometimes they are 
annotated with a number to indicate which value is being communicated, but sometimes these an­
notations are removed to simplify the diagram. The communication arrows are shown vertically, 
even though in reality communication takes up time. This is done to  simplify the diagrams. Arrows 
going from the top processor in a diagram wrap round to the bottom  processor, as in Figure 6 .8 . All 
numbers in the diagrams refer to values calculated by the processors, not input values.

The cost of calculating element i is dependent on the particular pipelining functions used. However 
this calculation needs i values and therefore is commonly 0 (i) .  For example, in back substitution, 
i additions/subtractions and i multiplications/divisions are needed. For the sake of simplicity, this 
cost will be written as i in the following. The loss of a (usually small) constant factor makes little 
difference in the approximated calculations which follow.

Sequential and naive parallel d istributions

The sequential distribution is perhaps the simplest. In it, all of the elements are stored in a single 
processor, and therefore the computation is the same as the equivalent sequential computation. This 
has the advantage th a t no communication is needed, but, of course, the disadvantage that no part of 
the computation can be proceed in parallel.

The cost of the function in this case is:
E ?= i(cost of computing element j )  m 3 — n in  +  l ) / 2  «  n 2 / 2 .

The naive parallel distribution is a simple parallel distribution, which allocates one element to each 
processor. This is not usually realistic since large numbers of processors are needed. Nevertheless, 
calculations with this distribution can be found in textbooks such as [WA99], which calculates the 
optimised cost for back substitution, a common example of an incremental pipelined calculation (see 
Chapter 7), to be 0 (n ) .

B lockw ise

This cost analysis can be easily modified for a general pipeline with the blockwise data  distribution 
as follows.

The behaviour of the processors is described in Figure 6.5. In the blockwise distribution, consec­
utive values are stored and calculated in the same processor, and so each processor can be seen to be
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working on consecutively numbered computations. For example, Processor Pq works on elements 1, 
2, 3 and 4.

These numbers represent values th a t are being calculated, using accum scanl 1, the left-hand 
version of a ccum scanrl, specified in Section 6.2.2. For accum scanll f  [rri, . . . ,  2 4 2 ], these values 
are:

Result 1 = resi = f Xi 0

2  = res2 =  / [resi]
3 = res3 =  / X3 [resi, res2\

1 2  = resi2 =  / XU! [ re s i , . . . , re sn ]

Processors

Time

Figure 6.5: An unoptimised blockwise pipeline

Consider, for example, calculation 5. This requires result values 1, 2, 3 and 4 from processor 0. 
As we’re assuming th a t the calculation can be done incrementally, it can start its calculation when 
it receives result 1. While it is doing this it receives result 2, and so can continue with the next part 
of the calculation. However, when it has finished dealing with result 2, 3 has not yet arrived. The 
processor lies idle for a little while, indicated in the diagram by a shaded area, until result 3 arrives. 
The same happens later as it waits for result 4.

This leads to some overlap between the calculations in different processors, but also to wasted 
time, waiting for values to arrive. The next subsection considers an optimisation to improve this.

This mixture of idle time and calculation only occurs for the first calculation in each processor 
as it waits for the results from the previous processor. Later calculations already know all necessary 
values: some were communicated from the previous processor for the previous calculation and some 
were calculated by the current processor.

The cost of this blockwise method can be calculated as the sum of all the calculation times and 
communication times minus the overlap when processor 1  and processor 2  s tart calculating their first 
results early. This overlap can be estimated generously as the to tal time for these values.

Communications are all done separately and each contains only one element, which is assumed to 
have unit size. Therefore the costs, in general, are (approximately):

n
^  (cost of computing element j )  — X!f=i (cost of the first element in Pi) 
j = 1

+ communication cost

»  £ " =  1 j  -  £ ? = 1  (n /p  *» +  !) +  E iJ o  (n /P  * (* +  !)) *
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n(n  +  l)/2 — n(p  — l)/2 — (p — 1) 4- n(p  — l)/2 * t c 

n 2 / 2  — np/2  — p + np/2  * t cn

O p t i m i s e d  b l o c k w i s e

The first version of the blockwise pipeline has quite a lot of wasted processor time, as shown by the 
shaded rectangles in Figure 6.5. The m ajority of the computation in each processor is done after 
all the computation in the previous processor. For example, the calculation of results 10 to 12 in 
processor 2  waits until the last value, 8 , from processor 1  is received, even though processor 2  lies 
idle for much of the time before this.

However, as we have assumed th a t results can be calculated incrementally (see Section 6 .6 ), this 
behaviour can be improved. The wasted time can be spent doing calculations for several elements in 
advance, not just for the first element. This is illustrated in Figure 6 .6 . Areas which were previously 
shaded are now annotated with calculations for further elements in the processor. This speeds up the 
calculation, but a t the expense of space and the complexity of the program.

Processors

1011 1110 1011 10 11

1

9 1C 9 9 1 0 9 11 9 12 9 12

i ' n3 V 5 '6  ' 7 1̂ 8

5 6 5 57 5 6 7 8

t A2 1

1 2 3 4
----------------------------------------------

Time

Figure 6 .6 : An optimised blockwise pipeline

This reduces the calculation time considerably, especially for processors later in the pipeline, so 
th a t now much less time is wasted. In most instances, a negligible amount of time is still wasted 
although it does depend on the number of elements in a block and on the particular calculations being 
done. Some calculations can be made incremental, but not very well, so th a t the non-incremental 
part still dominates.

For a well-behaved incremental function, such as th a t used in Gaussian elimination, the calculation 
cost is now approximately the same as th a t in an ideal case in which there is no idle time. Each 
calculation i takes the time its sequential implementation would take, given all necessary values, 
i.e., 0 (i) .  This ideal case is illustrated in Figure 6.7.

Processors
A

10 11 12

2 3

Time

Figure 6.7: A blockwise pipeline with no idle time
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Since the last processor in the pipeline has the largest amount of computation, the calculation 
cost is the time this processor spends in calculation, plus the initial cost of the first element. This 
latter is negligible, and the last processor in the pipeline can be assumed to be processor p — 1 with 
n /p  elements. Therefore the computation cost is approximately

of element (n — i ))

=  n 2/p  — n 2/2p2 +  n /2p

Therefore the total cost is now approximately n 2/p  — n 2/2p2 + n /2 p  + np /2  * fcn.

C yclic

A cost analysis can also be done for the cyclic distribution. The behaviour of this pipeline is described 
in Figure 6 .8 , in which the communication arrows from P 2 wrap around to Po-

As before, each stage in the pipeline receives the previously calculated results and passes them 
on to the next stage. However, this time consecutive stages aren’t  stored in the same processor. For 
example, stage 5 is done in processor 1. It receives results 1, 2, 3 and 4 from processor 0 and passes 
them onto processor 2, before calculating result 5 and passing th a t on too. But stage 2 has already 
passed results 1 and 2 to processor 2. There is much more communication than is necessary. The 
next subsection considers an optimisation which improves this.

Processors

n u t t h h  a

Time

Figure 6 .8 : An unoptimised cyclic pipeline

The time spent in the communication is

volume of communication * t cn

~  E i=1 ® * t e n

»  n(n  -  l)/2 * t cn

There are very few shaded rectangles in the figure, and then only at the start, therefore most of the 
processor computation time is being used for calculation, and the calculation time can be estimated 
by assuming zero idle time as was done for the optimised blockwise version in Section 6.3.2. This is 
illustrated in Figure 6.9.

The cost calculation is fairly similar to th a t done in the previous section. The computation cost 
is approximately the cost of computation in the last processor in the pipeline which can be assumed



C H APTER 6. PIPELINING IN  ACCUMULATING SC A N  133

Processors

p2 3 6 9 1 2

p, 2 5 8 1 1

Po 1 4 7 1 0

----
Time

Figure 6.9: A cyclic pipeline with no idle time 

to be processor p — 1 . This is

Y17= i (cost element i * p )

=  p * (I + n /p ) * (n /p )/2  

= n 2/2p + n /2

Therefore the total cost is (approximately) as follows:

Calculation cost +  Communication cost 

fa n 2/2p  +  n /2  +  n (n  — l ) / 2  * t cn

fa n 2/2p  +  n /2  + n 2/2  * t cn

O p tim ise d  cyclic

The first version of the cyclic pipeline has an excessive amount of communication, as can be seen by 
the large number of arrows in Figure 6 .8 . This is because all of the previously calculated values are 
passed on to the next processor at each step, even though the next processor has often seen several 
of these values before. This communication can be reduced by only sending values which have not 
already been seen as described in Section 6 .8 , and illustrated in Figure 6.10.

Processors

Time

Figure 6.10: An optimised cyclic pipeline

At stage 5, processor 1 now receives results 3 and 4 from processor 0, but only passes on 4 and 
the value it calculates itself—result 5. Processor 2 has already seen results 1 to 3, and so 3 doesn’t
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Type of Pipeline Approximate Cost
Sequential n 2/2

One element per processor 0{n)
Basic Blockwise n 2/ 2 — np/2  — p + np/2  * t cn

Basic Cyclic n 2/2p + n /2  n 2/2  * tcn
Optimised Blockwise n 2/p  — n 2/2p2 + n /2 p  + np/2  * t cn

Optimised Cyclic n /2  -(- n 2/2p  +  (np — n) * tcn

Table 6.2: Approximate costs for some different types of pipelines

have to be passed on.
This reduces the quantity of communication to about (n — n /p )  *p, and hence the approximate 

total cost to n 2/2p  + n / 2  4 - (np — n) * tcn.

6.3.3 Cost comparison

The costs of the different distributions can now be compared in order to determine which data dis­
tribution should be used. These costs, which were calculated in the previous section, are summarised 
in Table 6.2. The variable n  is the number of data elements, and the other variables were described 
in Section 6.3.1.

In order to see which distribution leads to the most efficient program, we need to compare the 
best versions available. Therefore the optimised times are used. W ith both data  distributions, the 
optimised program includes a communication cost, which involves a factor of t cn, and a calculation 
cost, which is the rest of the cost.

The table shows that the blockwise version usually has a smaller communication cost, as np/2  is 
usually smaller than np — n. However its calculation cost is higher by a factor depending on n/p .

When the communication cost, t cn, is high compared with n /p , it can outweigh the calculation 
cost, so th a t the blockwise implementation is more efficient. However, in other cases, the cyclic 
distribution is better.

The rest of this chapter focuses on the cyclic implementation. This is because when pipelining is 
put in combination with other parts of a program, it may be better to use the cyclic distribution not 
only when communication is cheap but when i t ’s more expensive. This turns out to often be the case 
for Gaussian elimination (see Chapter 7).

6.3.4 A cyclic version

Based on the cost comparison, the cyclic distribution is used in the outer level of parallelism. The 
parallelism in the inner level is restricted to be sequential for the sake of simplicity and in order to fit 
with the Gaussian elimination study. All this requires in the program is a change to the annotations 
used on the functions, giving the following version of accumscanrl'.

accum scanrlcycS  " (c* —> SeqFinSeq (I ->• /3) -> Cyclic a  ->•
Cyclic /3 

accum scanrl CycS f  =
map Cyclic heads (Initcyciic {.scanr Cyclic 9 D̂ 1 z>s))

w here
g x y s  =  ( f x y s )  :s ys
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6.4 Pipelining

As mentioned in Section 6.2, pipelining is a method which can be used to speed up the parallel 
implementation of functions such as scans and folds. Each processor receives a value, does some 
calculation to it, usually involving its local memory, and then passes the resultant value on to the 
next processor in the pipeline, as illustrated in Figure 6.11. This speeds up calculations when results 
for several sets of data  need to be calculated, as values can be fed into the pipeline one after the 
other. In special cases this technique can also be used to improve the performance when only one set 
of results is needed.

res^res^resg,..
n-1

Figure 6.11: A general pipeline

There are special pipelining architectures, but pipelines can also be implemented efficiently on 
many general-purpose architectures. In particular, Cole shows how a pipeline can be implemented 
on grids of processors using only communications between neighbouring processors [Col89].

Section 6.2 discussed how a pipeline can be implemented for the general form of scanr. Since 
accum scanrl can be implemented using scanr, it can also use this form of a pipeline. It simply 
passes whole sequences of values between the processors instead of single values. However, it is 
worth-while writing accum scanrl as a separate function because its pipeline can be optimised in 
ways specific to it. These will be discussed later in Sections 6.5, 6 . 6  and 6 .8 .

6.4.1 D ata distributions and pipelines

When we use a d ata  distribution, there are several values in each processor, and therefore several 
calculations to be done in each processor. It is also often necessary for values to be communicated 
between the processors.

W ith a blockwise distribution, the calculations in a processor can be done one directly after the 
other since the values are in their original order. This is illustrated in Figure 6.12. The long arrows 
represent communication between processors and the short ones represent data  dependencies within 
a processor. A more accurate description can be found in Section 6.3.2 and Figure 6.5.

Figure 6 .1 2 : A blockwise pipeline

In cyclic pipelining, each processor also has to do several calculations. However, this time, the 
values in one processor aren’t consecutive. A processor may have to wait for another processor to 
pass it a result before it can perform its next calculation. The pattern  of communication in this case 
is shown in Figure 6.13.

As can be seen from these diagrams, the cyclic pipeline requires much more communication than 
the blockwise one. However, accum scanrl is a special case, and optimisations can be applied to
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Figure 6.13: A cyclic pipeline

both pipelines which reduce the difference between them. This was discussed in the previous section 
(Section 6.3), when the decision about the data  distributions was made.

6.4.2 A cyclic pipeline

A cyclic pipelined version of accum.scanr 1 uses MPI APM functions to make the communications 
in the pipeline explicit. The code for this can be based on the code for scanr since accum.scanrl 
can be written in terms of scanr. Standard transformation techniques (such as those in Chapter 3) 
can also be applied to aid the transformation from the fairly abstract version of the function in the 
previous section to this new version.

First of all, le t’s look at scanr. The code for this with no d ata  distributions is given in Section 6.2. 
This can be modified to work with a cyclic distribution by simply replacing the M PI APM and variable 
manipulation functions with cyclic equivalents. For example, retrieveindiv becomes retrieveCyciidndiv 

and m p i .s p t2 p t  becomes m p i . s p t2 p tc yciicindiv These functions are specially designed to  calculate 
the correct processor addresses and variable locations given the index of the value which we’re using. 
They are described in greater detail in Chapter 2 in Sections 2.12.1 and 2.12.2. They can be easily 
modified to communicate sequences of values instead of single values.

Once this code is produced, it can be inlined into the code for accum.scanr 1 . After also introducing 
variables to hold intermediate values, the program is:

accum.scanrl Cycs " (SeqFinSeq Float —>• IOPST(SeqFinSeq Float) —> IO P ST  Float) —>■ 
VarFn.Cyclic(SeqFinSeq Float) -» VarFn.Cyclic Float —> IO PSTQ

— local_vals_v holds the initial sequence.
— The result is returned in res_v. 

accum.scanrlcycS f  local.vals.v res.v =
do  p' <— retrieve p .v

p <- return (headp p') — allows p to be used as an integer
n' «— retrieve m atrix.size.v  
n •<— return (headp n')
new.vals.v create.varcycuc (repeatcyciic P (emptys " SeqFinSeq Float))
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le t g x ys = do  old.vals <- ys
new-val <- f  x ys 
return {new-val :s old sa ls )

— set up start of pipeline
locaLvals «— re tr iev ec y cU d n d iv  {n — 1) locaLvals s  
new-vals <- g locaLvals (return emptys) 
storeCyciidndiv (n — 1 ) new s a ls  s  new sa ls

— pipeline
for [n — 2, n — 3..0]

— for each value i, do its calculation in processor (i‘m od‘p)
(A i —»

do  mpispt2ptcyciicindiv new s a l s  s  (A R R A Y  FLOAT)
(i + 1) new sals s  (A R R A Y  FLO AT) i 

new-vals «— retrievecycUdndiv * new-vals-v 
locaLvals <— retrievecycUdndiv * locaLvals-v 
new-vals «— g locaLvals (return new-vals) 
storecyciidndiv i new-vals-v new-vals)

— the results are now stored cyclicly in new_vals_v but
— with extra values.

new-vals retrievecydic new-vals-v  
storecydic res.v  (m apcycUc heads new-vals)

6.5 Some accum_scan optim isations

Some scans have special features which can be made use of to  improve their implementations. The 
branching structure of the methodology supports this. It allows the general scan implementations to 
be used for the early levels of the derivation, and then later it allows the derivation to split, taking 
different paths for functions with different features.

In particular, accum scanrl can be improved. It sends whole sequences between processors, but 
only one of these values is new. The rest can be forwarded as soon as they are received.

This has the advantage th a t some of the communication is overlapped as shown in Figure 6.14, 
in which the rectangles represent the time spent in communication between the specified processors. 
This optimisation also means th a t early results propagate more quickly through the pipeline than 
before. This will be useful later when the calculations are done incrementally in Section 6 .6 .

Communication between Communication between
processors processors

A A

Time Time
Before optimisation After optimisation

Figure 6.14: Optimisation of accumulating scan by overlapping communication
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6.5.1 Individual level

The program is, first of all, transformed to use an individual level semantics as described in Section 
2.11 of Chapter 2. This is done using the guidelines given in Section 3.9 of Chapter 3. This makes the 
introduction of the optimisation and further transformations easier because it simplifies the program 
and makes the communications easier to see.

At the individual level, the program contains many individual variable manipulations and send 
and receive pairings which only take place in one or two processors. It can be manipulated to  place 
code for each processor together, since this makes it easier to see w hat’s going on.

The main part of the code now deals with the start, end and main parts of the pipeline separately. 
In the body of the pipeline, it uses startelt and endelt to identify the items which the current processor 
has to  process. It looks like this:

— set up start of pipeline (in the last processor =  (n - l)‘m od‘p) 
i f  (pid = =  (n — 1  ) lmodlp) th e n

do locaLvals <- retrieveindiv ((n — 1 )ldivlp) local.vals.v 
new.vals g locaLvals (return em ptys) 
storeindiv ((n — 1 ) ldivlp) new.vals.v new.vals 
m pi.send1 new.vals-v (A R R A Y  F LO A T) ((pid — 1 ) ‘mod‘p)

((n — 1 )ldivlp)
else return ()

— pipeline (elements [n-2,n-3..0])
— set up which elements to deal with in the current processor 

le t startelt = if  (pid > (n lmodlp ) — 2 ) then n ldivlp — 1

else (n ldivlp) 
endelt =  if  (pid > 0 ) th e n  0  else 1

— Run through those elements 
for  [startelt, startelt — 1  ..endelt\
(A x  —̂

do  — receive elements from the previous processor in the pipeline 
mpi.recv' new.vals.v (A R R A Y  F LO AT) ((pid +  1 )lmodlp) x

— access values; calculate and store new value 
new.vals «— retrieveindiv x new.vals-V 
locaLvals <- retrieveindiv x locaLvals.v 
new.vals •<— g locaLvals (return new.vals) 
storeindiv x new.vals.v new.vals

— send on received values and new value to the next processor 
m pi.send' new.vals.v (A R R A Y  FLOAT) ((pid — 1 Ym odlp) x)

— end of pipeline 
if  (pid = =  0 ) th e n

do  mpi.recv' new.vals.v (A R R A Y  F LO AT ) 1 0 
new.vals «— retrieveindiv 0  new.vals.v 
locaLvals <- retrieveindiv 0 local.vals.v 
new.vals g locaLvals (return new.vals) 
storeindiv 0  new.vals.v new.vals 

else  return ()

m pi.send1 and mpi.recv1 are versions of the individual level M PI functions m pi.send  and mpi.recv. 
They take an extra parameter describing the given variable’s location in the sequence stored in the 
processor.
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Initial version 
Each processor does the following:

Receive previous values 
Calculate new value 
Attach new value to previous values 
Send all values

Using split communications 
Each processor does the following:

For each previous value 
Receive it 

Calculate new value 
For each previous value 

Send it 
Send new value

Figure 6.15: Pseudo-code for one stage in a pipeline, without and with split communications

6.5.2 O ptim isation

The program can now be improved by overlapping the communication as mentioned a t the start of 
this section. This can be done in two main stages.

First of all, the communicated sequences are split into their individual values which are sent and 
received one at a time instead of all at once as described in the pseudo-code in Figure 6.15. This 
transformation does not actually improve the program. It simply slows it down by introducing more 
communication messages. However, it paves the way for a second transformation that rearranges the 
communication so th a t values are sent on as soon as they are received, as described in the pseudo-code 
in Figure 6.16.

Each processor does the following:
Initialise accumulating variable, new.vals.v  
For each previous value 

Receive it 
Send it
Add it to new.vals.v 

Calculate new value using new .vals.v  
Send new value

Figure 6.16: Pseudo-code for one stage in a pipeline after communications have been moved

The previous version of the program received all of the values, calculated the new one and then 
sent on all of the old values plus the new one. Instead the new version receives each of the old values 
and sends it on immediately. It also accumulates these values in a new variable, new .vals.v , which 
can be used later to calculate the new value. Lastly the newly calculated value is sent on to the next 
processor in the pipeline.

This overlaps communication, and therefore often speeds up the program. However, it increases 
the number of messages sent (although not the volume of d a ta). If the communication start-up cost 
is sufficiently high, this may still slow the program down. Nevertheless, even in this situation, the 
transformation is still useful as it prepares the way for later transformations.
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6.5.3 R esultant code

The code for the main part of the pipeline after these transformations have been carried out is given 
below. In it the current processor only deals with one value, indicated by x. This code is contained 
in a loop which iterates through several values of x  as indicated in Section 6.5.1. Note th a t to ensure
correctness at this stage g must be altered to attach new values to the end of the sequence instead of
to the start.

— receive and send values one at a time 
l e t  no-to.receive = (n — 1 ) — {pid + p * x) 
for  [0 ..no-to.receive — 1 ]
(A j  ->

do  mpi.recv tm p.v FLO AT {{pid +  1 )lmodlp) 
m pi.send tm p.v FLO AT {{pid — 1 ) lmodlp) 
tmp 4 -  retrieve tm p.v  
new.vals 4 -  retrieveindiv x new.vals.v  
storeindiv x new.vals.v {new.vals 4 + 5  {tmp :s em ptys)))

— do calculations
new.vals 4 -  retrieveindiv x new.vals.v 
locaLvals 4- retrieveindiv x local.vals.v 
new.vals 4 -  g locaLvals {return new.vals) 
storeindiv x new .vals.v new.vals 
store tm p.v {lasts new.vals)

— send final value
mpi.send tm p.v FLO AT {{pid — 1 )lmod‘p)

6.6 Incremental calculations

Sometimes there are optimisations which can only be applied to functions in certain circumstances, 
and this is true for accum.scanr. Sometimes its function param eter, / ,  has properties which allow 
some optimisations to be applied.

In other circumstances, the part of the derivation to do with those optimisations can be skipped, 
and the other transformations applied as usual. There might also be other transformations which 
could be applied. In pipelining, if /  doesn’t have the properties we’re interested in, we can skip this 
section, and go straight to the transformations described in Sections 6.7 to 6.9.

Both versions of the function could actually be produced, resulting in 2 different sets of APMs. 
For a particular use of accum.scanr 1, /  would be tested to see whether it satisfies the properties, 
and thence the appropriate implementation chosen.

W hat is interesting here is this branching structure and the ability to  perform detailed low-level 
optimisations, rather than  the actual transformation. However the following details give a flavour of 
what is going on.

6.6.1 W hat is an increm ental calculation?

There is an optimisation which can be applied if /  can be split into several smaller parts, each of 
which needs only the current value in the sequence, i.e., if /  can be calculated incrementally. This 
is useful because it allows the calculation and communication to be overlapped to a greater extent. 
In the blockwise distribution, it also allows the optimisation described in Section 6.3.2. This can be 
expressed formally if we modify /  slightly.

We introduce a summation variable, su m .v , to store the current running value. This gives the 
incremental calculation somewhere to store the intermediate values. /  should also expect a sequence



CH APTER 6. PIPELINING IN  ACCUM ULATING SC A N 141

with the newest values a t the end instead of at the beginning, as this is the order in which values are 
received from the previous processor in the pipeline.

Given this, /  can be split up into 3 parts, init which initialises sum .v, g which performs the 
incremental part of the calculation, and h which finishes the calculation off. Each of these can use 
some local values, row, in the processor, and g also has access to  the current value, current, of the 
sequence of previously calculated values, and the index, j ,  of this value. There may also be other 
local values which the functions need to know. For example, h may need to know the index of the 
current data  value.

init :: VarFn Float —> SeqFinSeq Float —> IO P ST  () 
init sum .v row =  . . .

g :: In t —>■ VarFn Float —»■ SeqFinSeq Float —> Float —> IO P ST  () 
g j  sum .v row current = . . .

— current is the value in the previously calculated values which
— is currently being worked on
— j is its index, starting from 1

h :: In t —>■ VarFn Float —> SeqFinSeq Float —> IO P ST  () 
h rowno sum .v row =  . . .

These functions can be combined to form /  as follows:

/  :: SeqFinSeq Float —> IO P ST  (SeqFinSeq Float) —> IO P S T  Float 
f  row old.vals.m —

do  sum .v  <— create.var (repeatp (0 :: Float)) 
old.vals <— old-vals-Tn 
n <— retum ((sizes row) — 1 ) 
i «— retum (n  — sizes old-vals) 
init sum .v row 
for  [1  ..sizes old-vals]

— These indices are increasing because
— values are appended onto old.vals from the right.

( ^ j  ~~*9 3 sum .v row (old.vals !!s (j  — 1 )))
h (i — 1 ) sum .v row 
sum retrieve sum .v  
return sum

All this may seem rather contrived, but it arose out of considering a practical and common 
example, the Gaussian elimination algorithm in Chapter 7. The second part of this algorithm, back 
substitution, uses accum.scanr 1 with a  function which can be divided up as described above. This 
is shown in Section 7.6.2.

6.6.2 Interleaving calculation and com m unication

If the pipelined function is divided up into different parts like this, then each stage of the pipeline can 
proceed slightly differently. Previously the calculation waited until all the values had been received 
(and sent on). Now the calculation can start before any of these values are received and some of the 
calculation can take place while the processor is waiting to  receive the next value. This can be seen 
in the pseudo-code in Figure 6.17.

6.6.3 Code

The code for each stage of the pipeline needs to change as indicated in the pseudo-code in Figure 
6.17. This can be done in three main steps. First of all, the code for /  changes to use init, g and
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Before interleaving calculations and communications 
For each value 

Receive it 
Send it
Add it to new.vals.v 

Calculate new value using new.vals.v 
Send new value

After interleaving calculations and communications 
Initialise sum.v 
For each value 

Receive it 
Send it
Update sum.v using value and function g 

Finish calculating sum.v using function h 
Send its value

Figure 6.17: Pseudo-code for one stage in a pipeline th a t uses incremental calculations, before and 
after the calculations and communications are interleaved

h. This transformation can be proved correct for each particular instance of / .  This code is then 
inlined into the program. Lastly, the different parts of /  are moved around. According to various 
monadic laws, a selection of which are given in Appendix A.4, they can be moved as long as data 
dependencies are maintained. Therefore init can move before the communication as it doesn’t use 
any of the communicated values, g’s f o r  loop matches the communication fo r  loop, and its data 
dependencies match the values received in this loop. Therefore it can be moved inside th a t loop, h 
is the only part which has to remain after the loop.

Therefore the code for a stage in the pipeline now looks like this:

init sum .v locaLvals 
for  [0 ..no.to.receive — 1 ]
(A j  -► do

mpi.recv tm p.v FLO AT ((pid -I- l ) ‘mod‘p) 
m pi.send tm p.v FLOAT ((pid — T)lmodlp) 
tmp <- retrieve tm p.v  
g (j + 1) sum .v locaLvals tmp) 

h (pid +  p * x) sum .v locaLvals 
sum  «— retrieve sum .v  
storein(nv x res.v sum  
store tm p.v sum  

— send final value 
m pi.send tm p.v FLO AT ((pid — 1 )lmod‘p))

6.7 Removal of explicit cyclic functions

At this point, the program can be transformed to use ordinary M PI and variable manipulation func­
tions instead of cyclic ones. Doing this achieves two main things. It brings the program closer to the 
target language which, in this case, doesn’t  contain any functions for manipulating data distributions 
directly. It also makes it easier to get inside the distributions and perform optimisations which involve 
individual elements. It is possible to perform such optimisations with the cyclic structures in place, 
as the previous transformation showed. However, removing them often makes it easier.
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The transformation itself is fairly straight-forward, following the standard rules given in Section 
3.10.4. Many of the explicit cyclic references have already been removed, in the transformation to 
the individual level, and when the calculations were grouped together by stage in Section 6.5. The 
remainder are variable manipulation functions.

E x am p le  For example, in the main part of the pipeline, storeindiv x res.v new.val is used to deal 
with just one of the many values stored in res.v. This can be changed to a sequence of operations, 
in which the old value of res.v is accessed, updated (using the sequence function, replace) and then 
re-stored.

res 4— retrieve res.v
store res.v (replaces res x new.val)

In C this could be implemented using standard array m anipulation code, 

re s  [x] := new _val;

This is also a good point a t which to make sure th a t all sequence parameters are passed by 
reference, and to  tidy up the code as in Section 3.5.1 in Chapter 3.

6.8 Optim isation of the cyclic pipeline

So far, both the cyclic and blockwise pipelines work in similar ways. However, their efficiencies are 
very different as shown in Section 6.3.2. At the moment, neither of the pipelines are optimised and the 
calculations show th a t the blockwise version wastes quite a bit of calculation time while it waits for 
values, but th a t the cyclic version is even worse. It communicates an enormous number of values - far 
more than is actually needed. Since communication is often much more expensive than calculation, 
this is serious.

Both of these pipelines can be improved. Since we’ve already chosen to  use a cyclic distribution, 
the blockwise improvement isn’t relevant at the moment. It is outlined in Section 6.3.2.

The first step in improving the cyclic version is to  examine the expensive part of the program 
in more detail. As already observed, the program uses a lot of communication, far more than the 
blockwise version. But why?

Figures 6.12 and 6.13 from earlier in the chapter reveal part of the answer. In these diagrams each 
stage and its communications are shown separately and labelled to indicate which ones are which. In 
the cyclic case, in Figure 6.13, each stage receives all of the values from previous stages. A processor 
deals with several stages, and so it receives all of the required values for each of these stages separately, 
even though many of these values are repeated. In contrast to  this, the blockwise distribution (shown 
in Figure 6.12), receives all of the required values together so th a t none are repeated.

Therefore one way to improve the performance of the program is to  remove the unnecessary 
communications. This can be done by keeping hold of values which a processor has already seen, in 
previous stages, and only sending it new values.

6.8.1 P u ttin g  the idea into practice

The first step towards putting this idea into practice is the introduction of variables, accum .v , which 
keeps track of all the values seen so far, and no.seen, which keeps track of how many values are in 
accum.v. They can be introduced and modified without affecting the correctness of the program by 
Lemma 39.
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accum.v 4 -  create.var emptys 
no.seen.v 4 -  create-var (0 :: In t)

The communications need to change to  take this into account. Figure 6.18 shows which commu­
nications are now necessary. The numbers in the boxes indicate values which the processor knows 
because it has calculated them itself. A processor knows these values plus those which it has been 
sent.

Figure 6.18: Communications in the optimised cyclic pipeline

Therefore the first pass through the processors remains the same as in the previous version, but 
on future passes things change. A processor sends on the values which it receives, except for the first 
of these values, plus the value i t ’s just calculated. The first value is not needed because the next 
processor has already seen it. I t ’s important to make sure th a t this first value received is not removed 
on the first pass through the processors, only on subsequent passes.

In order to maintain the correctness of the program once these communications are removed, the 
g calculations with the removed values must still be performed. They can be done before the first 
values are received using the values from accum.v. In order to prove th a t this transformation is 
correct, i t’s necessary to  show th a t the values in accum.v are indeed the values which were received 
in the previous pipeline. This is relatively easy as each value of accum.v is set only once and not 
changed.

A stage in the pipeline now looks like the following. . . .  represents code which is either straight­
forward or the same as before. The initial pass through the pipeline is indicated by no.seen = 0.

— initialise and do g for values already seen 
init sum .v tmp.local.vals.v
accum 4- retrieve accum.v 
for  [0 ..no.seen — 1]
(A * -» g (i + 1) sum .v tmp.local.vals.v (accum Ms *))

— receive and send values one at a time, doing the rest of g
— first the number of values to receive is calculated

i f  (no.seen = =  0 ) t h e n  store no .to .receive .v  ((n — pid — 1 ) ‘modlp) 
e l s e  store no.to.receive.v (p — 1 ) 
no.to.receive 4 -  retrieve no .to .receive.v 
for  [0 ..no.to.receive — 1 ]
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do mpi.recv tm p.v FLOAT ({pid +  1 )lmodlp)
— only send on the first val on the first pass 

if  (j ==  0 )Szk((no.seen  >  0 )||
((no.seen ==  0)SzSz(pid == n lmodlp))) t h e n  return () 

e l s e  mpi.send tm p.v FLO AT ((pid — 1 ) lmodlp)
— set accum and no_seen

tmp +- retrieve tm p.v
store accum.v (accum -H-s (tmp :s Os))

— g
g no.seen sum .v tmp.local.vals.v tmp)

— final calculation

— send final value
m pi.send sum .v FLO AT ((pid — 1 )‘mod‘p)

— store value in accum

store accum.v (cats accum (conss new.val em ptys))

6.9 C + M P I implementation

All that now remains is to convert this version of the program into C+M PI. This can be done using 
the transformation rules given in Section 3.11.2.

Many of the explicit stores and retrieves can be removed or tidied up, especially when using index 
arithmetic on arrays. For example, 
store accum.v (accum + [ - 5  (new.val :s Os)) becomes 
accum [no_seen-l] = sum;

We also need a user-defined version of mod. C does provide % but it doesn’t work properly for 
negative numbers.

The C +M PI program can be found a t http://w w w .dcs.gla.ac.uk/~joy/reseaxch/thesis where it is 
used as part of the Gaussian elimination program.

6.10 Summary

One of the scan family of functions, accum.scanr 1, can be implemented using a pipeline. However, 
as it stands, th a t pipeline is often not very efficient. Using the methodology it is possible to introduce 
a series of optimisations to the function, including optimisations which are detailed, low-level and 
involve the manipulation of communication operations.

Different versions of the function can be incorporated into different APMs and used in different 
situations. Some optimisations can also only be applied when certain conditions hold. This leads to 
a branching structure of versions of the function, matching and refining the branching structure of 
the APMs.

This function, accum.scanr 1, is an APM function, and demonstrates part of the usefulness of 
APMs. They separate out computation, and can later be used without worrying about the functions’ 
parallel details, or about how to transform or optimise them. The version in one APM simply 
transforms into its version in the next. This is demonstrated in the case study in the following 
chapter.

http://www.dcs.gla.ac.uk/~joy/reseaxch/thesis


Chapter 7

Case Study: Gaussian Elim ination

7.1 Introduction

The previous case study (Chapter 5) looked a t the basics of the methodology, and a little a t the issue 
of load-balancing. The case study presented in this chapter, Gaussian elimination, investigates some 
further aspects of the methodology. In particular, this case study:

• places the methodology under a bit more stress with a larger and more complicated example, 
and demonstrates th a t it can work on practical examples.

• investigates data  distributions in practice. In particular, it looks at how they can be used to help 
load-balancing, and at techniques for dealing with the situation when the optimal data distri­
butions in different parts of the program vary. The use of explicit data  distributions also affects 
the way in which variables and M PI APM functions are handled, and this case study enabled 
the development of methods for dealing with this, as well as of ways to  transform programs with 
explicit d ata  distributions into programs which use ordinary operations to manipulate them. 
These methods are described generally in Chapter 3.

• examines parallel folds and scans in more detail. In particular, it looks at pipelining for a 
particular form of scan. This work is described in Chapter 6 , and used in this chapter.

• deals with an example in which subsidiary functions are used extensively. When such functions 
are used as parameters to  higher-order functions, the situation becomes more complicated. The 
use of a specific example helped to work out the details. (See Section 7.4.)

• tries out some optimisations th a t deal with imperative features such as the efficient use of 
variables.

7.1.1 The study

Gaussian elimination is a numerical mathematical method for solving a system of n  linear equations 
in n variables. Such a system of equations looks like:

a n x i  d* Ui2#2 +  • • • +  a in x n — bi

a 21^'l d- a22x 2 d" " ' ' +  0>2n^n =  &2

d” fln2^2 d- * ’ * d"

146
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where the a{S and frjS are constants, and the XiS are variables. The values of these variables are 
unknown, and the purpose of the algorithm is to discover them.

The system of equations can also be written as a m atrix equation, A x  = b where A =  (a^), 
x  =  (x i ), and b =  (bi).

In most cases1, there is a unique value of x  which satisfies these n  equations. Gaussian elimination 
is one method of discovering this value. It converts the set of equations using linear transformations,
multiplying equations and adding them together. This results in another set of equations which is in
upper triangular form, i.e., it looks like:

a'xlx  i +  a'12X2 + • • • +  a'lnx n = b[

a'22 x 2 +  • • • +  a '2 n x n  =  &2

a ' x n =  b'n n 7* n

This can be easily solved by starting with equation n  and using it to calculate the value of xn , and 
then using this value in equation n — 1  to calculate the value of x n- i  and so on for all the equations.

The first part of this process is often called forward elimination and the second part back substitu­
tion. This method is described formally and in more detail in the following section. More information 
about it can be found in many algorithms textbooks such as [CLR90]. Some of these describe variants 
of it, such as “LU Decomposition” . These vary slightly from the method used in this chapter, but 
they are very closely related. There are also techniques, such as partial pivoting, which can be used 
to improve the algorithm. However, these are not considered here, as they add little to the main 
aims of this chapter. The parallelisation of Gaussian elimination is discussed in books on parallel 
algorithms such as [WA99] or [Rob90].

7.1.2 Layout of this chapter

This chapter presents the case study by examining each of the key transformation steps in turn. It 
does not go into the same level of detail as the map-triangle case study in Chapter 5, as to do so 
would be to add little that the previous study has not already shown. Instead, at each stage, the 
interesting parts are highlighted. These are parts which have not been previously demonstrated, and 
which illustrate key or intellectually interesting or challenging things. The code for each of the main 
stages can be found at h ttp://w w w .dcs.gla.ac.uk/~joy/research/thesis.

7.2 Creating a Haskell specification

The first part of the derivation is the specification of the problem and its transformation into Haskell. 
This chapter aims to give some insight into this process. First of all, the m aths specification is given 
and then we examine various facets of the conversion process. The process is described in general in 
Section 3.3.

7.2.1 M aths specification

The mathematics specification for Gaussian elimination takes as input a m atrix A  =  (aij) and a 
vector b = (bi), as described above, and returns the vector x  which solves the system of equations.

It is first described fairly abstractly in terms of row operations, and then refined to deal with 
operations on individual elements of the m atrix and vector.

1i.e . ,  w h e n  th e  e q u a t io n s  axe l in e a r ly  in d e p e n d e n t

http://www.dcs.gla.ac.uk/~joy/research/thesis
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R ow  o p e ra tio n s  v ers io n

1. Forward elimination:
For j  = 1 to n  — 1

Place 0 in columns k < j  of rows below row j :
For i = j  +  1 to n

P u t 0 in column j  in row i : 
row i —> row j  +  row iajj
(row of both A  and b)

2. Back substitution:
For i = n  to 1

Calculate the value of Xi using the values of X i + i , x n :
X i  =  ( b {  * X i + \  *b . . . +  d i n  * ^ n ) ) /

In d iv id u a l e lem e n ts  vers io n

1. Forward elimination:
For j  = 1 to n — 1

For i =  j  +  1 to n 
For k = 1 to n

Calculate the new value of element k of row i :
d ik  —  *  d,jk d ik

b i  =  * b j  +  b ia,}] j

2. Back substitution:
For i = n  to 1

Xi =  (bi (^i(i4-l) * 2-t+l "b "b din * •En))/Oii

This could be further modified if we note th a t a/m is set to zero for / > j  — 1, m  < j  — 1 by the 
j  — 1th iteration of the outermost loop. Therefore on the j th  iteration, djk and dik are already zero for 
* ^  J) k < j- This means th a t for these values of i and k the calculation is not necessary—it merely 
sets dik to a value it already has. We can therefore restrict the loops so th a t they don’t calculate 
these values. This does not affect the i loop, but the innermost loop becomes, “For k = j  to n ” .

7.2.2 Practicalities

When converting the specification into Haskell, there are some practicalities to be taken care of. First 
of all, types must be chosen for the data. As in Section 2.4, finite sequences are used to represent the 
vector and m atrix data. In the following, however, we use lists for simplicity of presentation. These 
lists should be assumed to work in the same way as finite sequences.

ty p e  Vector a  = [a]
ty p e  Matrix a  =  [[a]] — list of rows

It is also useful to  deal with A  and b as a single unit because the same operations are carried out
on the ith  element of & as on the ith  row of A. This element is therefore attached to the end of this
row as follows:

mdtrix =  zip With join a b = map2 join a b :: Matrix a  
w h e re

join xs y =  xs 4+  [y]
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7.2.3 Standard conversions to Haskell

Haskell specifications can be produced from maths specifications using the techniques given in Section
3.3 of Chapter 3, especially by referring to Table 3.1. However, this table is not complete. This section 
focuses on one missing aspect of this table, namely incremental f o r  loops.

This is done in order to extend the transformations provided so th a t the basic building blocks for 
numerical algorithms are in place. In particular, this allows the Gaussian elimination case study in 
this chapter to be carried through.

It also demonstrates the techniques used when working out such transformations. Sometimes it 
is necessary to convert a non-standard maths specification, and it may be necessary to work out the 
transformations for oneself.

Incremental f o r  loops were chosen because such loops are commonly used in maths specifications, 
when one calculation depends on previous ones.

P roducing a new  conversion - E xam ple

A very simple and common example of a loop involves the generation of a single value, which depends 
at each iteration on its previous value. This is often expressed as follows: 

res = a
For i = 1 to n

res =  /  res other-parameters 
where res is a variable holding the result, a and n  are constants, other-parameters is commonly 

the ith  value from a list, and xs = [zsi, . . . ,  zsn]: 
res = a
For i = 1 to n

res =  /  res xsi 
Unwinding this, we get: 

res = f  {previous res) xsn
— f  i f  (previous res) xsn- 1 ) xsn

=  / ( / ( • • •  i f  O’ XSi)) xsn- 1 ) XSn 
We can then look through the set of standard Haskell functions to see if there are any which

produce this output given this input, foldl looks promising; on xs it gives:
foldl f  a xs = / ( / ( . . .  { fa  xsi)) xsn- 1 ) xsn
Therefore this particular form of a f o r  loop can be converted into an application of foldl.

N ew  functions

However, sometimes no standard Haskell function captures the required pattern  of computation. 
Then one needs to define a new function which does.

At other times it is possible to express the pattern  of com putation using existing functions, but 
only by manipulating the parameters and obscuring w hat’s actually going on. This also often leads to 
the same Haskell function being used for multiple patterns of computation, but it is often preferable 
to keep to  one function per pattern of computation. This makes the program clearer and more 
understandable. It also makes it easier to  develop specialised implementations of functions if they 
are focussed on a  single communication pattern.

An example of this is given in row 4 of Table 7.1. The loop produces a list of results as in scanr 1 
(row 3, Table 7.1), but this time each result depends not just on the latest result, but on all the 
previously generated results.
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No. Mathematics Haskell
For loops in which iterations depend on previous iterations 

These hold for any xs = [xsi, . . . ,  xsn], constant a, variables res, resi (i = 1 , . . . ,  n)

1

ith  iteration depends on (i — l) th  
res = a 

for i =  l..n . res = f  res xsi
res = foldl f  a xs

2

ith  value depends on (i — l) th  
resi =  rsi 

for i =  2 ..n. resi =  /  xsi resi-i
res = scanll f  xs

3
ith  value depends on (i +  l) th  

resn = xsn 
for i = {n — l ) . .l .  resi =  /  xsi resi+ 1

res = scanr 1  /  xs

4

«th value depends on 
j th  value (j > i) 

resn = xsn 
for i = (n — l ) . .l .

resi =  /  xsi [resi+i, . . . ,  resn]

res = accum.scanrl f  xs

Table 7.1: Transformation guidelines for specifications with incremental loops

The similarity between these 2 specifications is obvious simply by examining the table. If they 
can be made to match, then scanr can be used to implement row 4 as it is with row 3. However, it is 
still better to encapsulate the implementation for this pattern  of computation in a separate function. 
A specific pattern  of communication can be used later in the derivation because this function passes 
several result values between processing sites.

Let us call this new function accum.scanrl to indicate its accumulative nature. It can be defined 
in 2 main ways, either directly, for example by recursion, or by using the similarity of row 3 and row 
4 to  define it in terms of scanr.

A recursive implementation notes th a t the result of the function, the list of all calculated values, is 
the value of the most recent result (calculated using / )  attached to the list of all previously calculated 
values. Therefore it can be written using pattern-m atching as follows:

accum.scanrl :: (a  -»• [/3] —> ft) —> [a] —> [(3\ 
accum.scanrl f  0  =  Q 
accum.scanr 1 f  (z : zs) =  ( /  z ys) : ys 

w h e re
ys = accum.scanrl f  zs

A version of this function written using scanr is given in Section 6 .2 . These versions can be proved 
equivalent. This then allows standard properties of scan to be used in the derivation.

T h e  re s t  o f  th e  fo r loop  conversions

Transformations for other kinds of f o r  loops can be produced in a similar way. Some of these are 
summarised in Table 7.1.

7.2.4 A pplying the standard conversions

Once such standard transformations are available, they need to  be applied. However specifications 
may use nested loops and combinations of functions which make these applications non-obvious. It 
helps to separate out disjoint parts of the specification and to  separate out the insides of loops into 
new functions as shown for the case study below.
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In this study, a t the algorithm divides naturally into two main parts, forward elimination and 
back substitution, as described in Section 7.1. It simplifies the conversion to consider these parts 
separately.

F o r w a r d  e l i m i n a t i o n

The conversion of the matrix to upper triangular form consists of several nested loops. Each loop 
can be examined in turn, and encapsulated in a Haskell function as follows.

I n n e r m o s t  l o o p

The innermost loop normalises one row of A  and b (i.e., of the combined matrix), by placing 0 in 
its j th  position as shown in Figure 7.1.

position j position j

a) Before b) After

Figure 7.1: The effect of Gaussian elimination’s innermost loop on one row of a matrix

The Haskell function for this loop must, therefore, take the relevant row as a parameter, and can 
be called putJ)Jn .jth -pos. It is specified as follows:

putD Jn-jth-pos row 

For

bi =

For k  =  1 to n +  1
m ik =  * rrijk +  m ik

where M  =  (rriij) is the combined m atrix of A  and b.

For (x , y ) zip row (row j)
x  =  pivot * y + x 

where pivot =  — and row — row *, row j  are rows of M .

Each iteration is independent of the others, so we can now apply transformation 5 in Table 3.1. 
Notes that index j  becomes j  — I, because Haskell list indices s ta rt from 0.

map2 join row (m \\(j — 1 )) 
w h e re  join x y = pivot * y + x

pivot = —(row\\(j — 1 )/m \\(j — l)!!(j — 1 ))

In n e r  loop  : put-OJn-jth.pos is nested inside another f o r  loop which places 0 in columns k < j  
of rows below row j .  This is done by changing values in the j t h  column to 0, as shown in Figure 7.2.

This loop needs to know at least the values of the rows it changes, i.e., rows (j + 1) to n of M . 
This can be achieved by passing it the whole of M  which it then modifies and returns. It also needs 
to know j ,  the index of the current row.

k = 1 to n
Calculate new value of : 
&ik = * Q>jk “h Q*ika33 J
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colj n-j+1 
i columns

non-zero 
v valuesrow j

row 1

a) Before

colj

non-zero
valuesrow j

row i

b) After

Figure 7.2: The effect of Gaussian elimination’s inner loop on a matrix 

deal-with-jth-row m j

For i =  j  +  1 to  n
put-O-in-jth-pos (row i of M )

As before, each iteration is independent of the others, so this can be converted into a combination 
of map and drop, using transformation 9 in Table 3.1.

(take j  m ) -H- (mapput-OJri-jth-pos (drop j  m))

O u te r  loop  : deal-with-jth-row  is nested inside yet another f o r  loop. This loop is passed the 
combined m atrix, and converts it to upper triangular form. It forms the whole of the first part of the 
algorithm, and has the following form:

For j  = 1 to n  — 1
deal-with-jth-row m j

This loop is incremental, each iteration depending on the result of the last. Therefore transforma­
tion 1 in Table 7.1 applies to it, converting it into a foldl loop with /  =  deal-with-jth.row, a = m 
and xs = [l..n  — 1], the list of row indices.

foldl deal-with-jth-row m  [l..n  — 1]

B ack  S u b s ti tu t io n

The second part of the Gaussian elimination algorithm uses back substitution on the upper triangular 
m atrix to calculate the solution to the system of equations. It also consists of a f o r  loop:

For i = n  to 1
Xi —  (bi * Xi+1 +  . . . 4" f l in  * ^ n ))/Uj*

=  1-1) 1-1) * 3>i+ 1 “I" • • • “t" rHin * 3?n)) JTflu
In this loop, the «th value depends on the j th  values for j  > i. Therefore, transformation 4 in

Table 7.1 can be applied to it, to produce a program using accum scanr.
The function param eter of accum scanr uses the previously calculated values, Xj+i , . . .  ,x„, and

the current row (row i) of the matrix to calculate the next value of x. This function has type,
row of M -> sequence of previous values of x —> a new x  value,
i.e., solve-ith-eqn :: Vector a  -4 [a] ->• a .

It can be written in Haskell as follows:
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solve.ith.eqn row previous
= Xi
= (ra»(n+i) -  (w*t(i+i)*Xi+i  +  . . .  4- mi n * x n))/mii  

w h ere  row = [mu, . . . ,  mi(n+1)] 
previous =  [ ^ + 1 , . . . ,  xn]

= (rown + 1 — (rowi+i * previousi 4- . . .  4- rown * previousn- i) )  /  rowi 
= (rowWn 4- (—row\\i* previous !!0) +  . . .  +

(—row\\(n — 1) * previous\\(n — i — 1)))/ row\\(i — 1)
=  (foldl (+) (rowWn) (map2 f  (drop i row) previous))/ row\\{i — 1) 

w h e r e  f x y  =  —x * y
i = n — (n — i) = n — length previous

7.2.5 Haskell specification

Putting all this together, the Gaussian elimination specification looks like this:

gauss ::N u m a  => [[a]] —> [a] - 4  [a] 
gauss a b =

l e t  m  =  join a b
w h e r e  join xs y = xs +1- [j/] 
n =  length b
m2 = foldl deaLwith-jth.row m  [l..n  — 1] 
x  =  accum.scanrl solve.ith.eqn m2

i n
x

deal.with.jth.row  :: Num a => [[a:]] -» In t -¥ [[a]] 
deal.with.jth.row m j  —first.j.row s  44-

(map put.O .in.jth.pos other.rows)
— makes rows below row j have 0 in columns i < j 

w h e r e  first.j.row s  =  take j  m 
other.rows =  drop j  m
put.O .in.jth.pos row = map2 join row (m \\(j — 1)) 
w h e r e  join x y = multiplier * y + x

multiplier = —((row !! (j — 1 ) ) / ( (m  !!(j — l))!!(j — 1)))

solve.ith.eqn :: Num a  => [a] -» [a] -4 a  
solve.ith.eqn row previous =

(foldl (+) (row\\n)(map2 f  (drop i row) previous)) j(row \\(i — 1)) 
w h e r e  n = length row — 1

i = n — length previous 
f  x y  = - ( x  * y)

7.2.6 Some notes about parallelism

Although all of the data  can be manipulated in parallel, whether this is actually done or not depends 
on how good a parallel implementation can be obtained for the functions which operate on it. This is 
fairly straightforward for functions like map2, but more complicated for those like foldl. As mentioned 
in Section 3.4.1, foldl is usually only parallelisable when its function is associative. There are various 
transformation techniques for converting folds to use associative functions (see [0 ’D94]), but these 
do not belong within the scope of this thesis, and foldl will be implemented sequentially in this case 
study.

Therefore, in forward elimination, the outer loop is sequential, but the inner and innermost loops 
can be parallel, because they use map and map2. The first operates over the rows of the matrix, 
and therefore these rows are stored in different processors. However the innermost loop operates on
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individual rows. These can still be stored in different processors, but this does not achieve much 
compared with the benefit gained in the outer level of parallelism, and increases the complexity of 
the program and the cost of communication.

In back substitution, at first glance, the data dependencies involved in accum.scanrl mean that 
a parallel implementation is overly expensive. However, this function can be optimised, as shown in 
Chapter 6, so th a t parallel versions are faster provided communication isn’t too expensive. Therefore 
the rows of the matrix are also stored in different processors for back substitution.

This choice of parallelism can be reflected in the d a ta  types used: 
gauss :: Num a  => ParFinSeq(SeqFinSeq a) —>■ ParFinSeq a  —> ParFinSeq a

The next question concerns the particular way in which the rows are distributed across the pro­
cessors.

7.3 Choosing the data distributions

D ata distributions are used for a variety of purposes (see Section 2.7). Principally, they enable larger 
quantities of data  to be dealt with than would otherwise be the case, and they can help to balance 
the load of data  across the system. A good load balance is very handy because it helps to speed up 
the program (see Section 4.4), often by a significant amount.

7.3.1 Load balancing

In Gaussian elimination, there is a bad load balance in the first part of the algorithm, the forward 
elimination phase. This is because deal.with .row .j only involves row j  and the rows below it. Nothing 
happens to the rows above it, and so any processors which operate solely on these rows have nothing 
to do. This row number j  also increases during the program, and so the number of processors with 
nothing to do also increases.

However deal.with.row.j is a simple function which only uses simple arithm etic operations, ad­
dition and multiplication. Therefore forward elimination is not computationally intensive unless n  is 
high. The load balance is not very bad for low values of n, but in general parallel programming is 
used when n is high, and therefore when the load balance is indeed bad.

L o a d  b a l a n c i n g  u s i n g  a  d a t a  d i s t r i b u t i o n

There are two main reasons for using d ata  distributions for this algorithm. Firstly, Gaussian elim­
ination is usually performed on large systems of equations and therefore it is likely th a t there are 
less processors than  data, and so multiple pieces of data  in the same processor. This means that 
some kind of data  distribution will be needed. Secondly, the load imbalance is very regular. Data 
distributions are often used in situations like this to  balance the load (See Section 4.4).

In order to decide which particular data  distributions will be best, it is necessary to examine the 
pattern  of the load imbalance in more detail. Figure 7.3 shows the usage on each row. There is a 
triangular load imbalance. This is because row i is used once for each j  < i. This suggests th a t a 
cyclic or block-cyclic distribution would work best (see Section 4.4).

A s i d e  o n  d i r e c t  l o a d  b a l a n c i n g

If we assume th a t the parallel machine is sufficiently large, then only one row will be dealt with in 
each processor. In this unusual case, it is necessary to divide tasks up in order to balance the load 
(see Section 4.4).
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Figure 7.3: The load imbalance in forward elimination

A task deals with a single row:
put-O-in^jth-possrow = map2s join row (m \\(j — 1))

This can be split up since the parts of map2 are independent and can be evaluated in parallel. 
However there are also other factors to take into consideration, as the value of the pivotal element, 
row j-i needs to  be known by all parts of the row, necessitating extra communication. Also the load 
balance changes in each iteration of the loop, so using the same load balance each time through 
the loop is likely to make the load balance worse in some iterations, especially the early ones. We 
need to be careful to  outweigh this imbalance by either creating a large enough improvement in later 
iterations, or by moving data between processors in each iteration.

This can be calculated using similar methods to the map-triangle example (Chapter 5), but it is 
more complicated. As the case is not common, it is not considered here.

7.3.2 Interaction of distributions

There are two main parts to the Gaussian elimination algorithm. As mentioned previously, forward 
elimination can be load balanced using a cyclic data  distribution. Back substitution is usually op­
timised using pipelining techniques as shown in Section 7.5.3. These tend to work more efficiently 
with blockwise distributions, as shown in Section 6.3.

This produces a conflict between global and local optimality. Such conflicts are common when 
choosing data  distributions and ways of solving them are presented and discussed in Section 4.5. 
They can be applied to this problem.

To make the situation simpler, let us restrict our attention to  blockwise and cyclic distribu­
tions. Block-cyclic distributions, in which blocks of values are distributed cyclicly, are also common. 
Checkerboard distributions have also been used for Gaussian Elimination (see, for example, [WA99]). 
In these the m atrix is partitioned into rectangular sections, with parts of several rows and columns 
but no complete rows or columns. However, two distributions is enough to illustrate the principles 
behind the decision-making.

There are three main possibilities. A distribution which is best for one of the parts of the algorithm 
can be used for all of it. Alternatively, cyclic can be used for the first part, and blockwise for the 
second with a data  redistribution between the parts. In general, it would also be possible to use a 
different distribution for all of it, avoiding any redistributions and large inefficiencies, although not 
achieving optimal performance in either part of the algorithm.

The next step is to  examine the efficiencies of these distributions for the two parts and the cost 
of the redistribution.
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7.3.3 Cost calculations

A cost model is needed if we are going to calculate costs. This section uses a simple cost model which 
is described in Section 6.3.1. n  is the number of rows, and p  is the number of processors. So in both 
data  distributions there are about n /p  rows and hence about n 2/ p  elements in each processor. Other 
variables are given in Section 6.3.1.

Forward E lim ination

The forward elimination process consists of multiple calls to  deal .with-.jth-row, which transforms the 
m atrix as shown in Figure 7.4. It is used repeatedly, for j  =  1 , . . .  , n  — 1, until an upper-triangular 
m atrix is produced.

colj n-j+1 
i columns

non-zero 
v valuesrow j

row i

a) Before

non-zero
valuesrow j

row i

Figure 7.4: The effect of deal_with_jth_row on a matrix.

deal-with-jth-row works as follows:
• It performs row operations on each of the rows i =  j  . . .  n. As shown in Figure 7.4, each of these 

rows has n — j  + 1 non-zero elements. Therefore a row operation on each of them takes n — j  + 1 
time.

• Each of these rows must know the value of row j  in order to perform this row operation. This 
will involve communication. It can be done with point-to-point communications, but a single-node 
broadcast is usually cheaper. This would cost (1 -I- logp)((n +  l ) t c +  r) .

So far this is the same for all data  distributions, but now le t’s look at the different possibilities.

B lockw ise

P:

1 T
row

0
another

row

■
row
j

r p-i

• • iiiijji * * •""Jim
■ p  \

another row
row n-1

Figure 7.5: The blockwise distribution of rows.

• deal-with-jth-row: The active rows ( j .. .n ) are stored in the last few processors as shown in 
Figure 7.5, where the active rows axe shaded. They aren’t  spread throughout all the processors.
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Therefore only a few rows can be processed at once, and the problem with the load balance described 
earlier remains.

There are n —j+ 1  active rows and about n /p  rows per processor, so (n —j + l ) / ( n / p ) =  (n—j + l ) p / n  
processors are used, and only this number of elements can be processed at once.

Therefore the total length of time for deal-with.jth .row is approximately

(number of rows)/(no. which can be processed at once) * 

cost to process one row +  broadcast 

=  { n - j  + 1 ) / ( (n  -  j  + 1 )p /n ) * {n -  j  + 1)

+  (1 +  log p)((n +  1 ) t c +  r )

«  n(n  — j ) / p  + (logp)(ntc +  r)

• This process is repeated n  — 1 times until an upper-triangular m atrix is produced.
Therefore the total time is

£ i = i  (n (n  ~  l ) / P  +  (logp)(ntc +  r))

= n / p  * n(n  — l ) / 2  +  (n — l)(logp)(n ic -I- r)

«  n 3/2p  + n  log p (n tc + r)

C yclic

other
rows

row another
j row

p- i

other
rows

Figure 7.6: The cyclic distribution of rows

• deal.with.jth.row : The active rows (j  .. .n ) are stored evenly throughout p  processors as illus­
trated  in Figure 7.6. Again, the active rows are indicated by shaded boxes. This allows p  rows to be 
processed at once.

Therefore the to tal length of time for deal .with .jth  .row is approximately 

(n -  j  + 1 ) /p  * (n -  j  + 1) +  (1 +  logp)((n +  1 )tc + r)

•  This is repeated for j  = 1 ..  .n  — 1. So the total time is approximately

£"= 1 ((n “ j ) /P *( n ~ j)  + U + loSP)((n + !)*c + r))

~  \  YTjZl (n -  j ) 2 + (n -  1) logp(n tc + r)

= i  * \n (n  -  l)(2n  -  1) +  (n -  1) logp (n tc +  r)  

w n 3/3p  + n  log p (n tc + r)

For t c small or n  sufficiently large, the first term  dominates. Therefore we can see th a t in these
situations, the cyclic distribution is faster than the blockwise one.
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Back S u b stitu tion

Due to the data  dependencies involved in back substitution, it is most commonly implemented in 
parallel as a pipeline (see Section 6.4). Section 6.3.2 gives a cost analysis for both data distributions: 

Blockwise: n 2/ p  — n 2/2p2 + n /2p + np/2  * c\
Cyclic: n 2/2p  +  n /2  +  (np  — n) * ci
The blockwise uses less communication but doesn’t  overlap the calculation so well.

R edistr ibution  

Cyclic to  blockw ise

A data redistribution from a cyclic to a blockwise distribution involves a lot of communication. Every 
processor has to send multiple values to other processors, possibly even sending every value it has. 
An example case is shown in Figure 7.7, in which the communication is shown as arrows, and the 
data elements are labelled with numbers to  identify them.

Cyclic

Figure 7.7: A cyclic to blockwise d ata  redistribution

The number of elements which must be sent varies with the number of elements in each processor, 
n/p,  and the number of processors, p. In general, each processor sends about n / p  elements in total, 
or about (n / p ) / p  =  n /p 2 elements to a specific other processor.

In a total exchange, each processor sends 1 element to  each other processor. Therefore we can 
implement this redistribution with about n /p 2 to tal exchanges, each of which involves the communi­
cation of rows, which have size < n + 1.

Therefore the cost of a total exchange from Table 6.1 can be used to estimate the cost of the 
redistribution to be

(p -  1) logp(n +  l ) t c +  p lo g p r 
«  p  log p n tc/ 2 + p  log p r

7.3.4 Cost com parison

These costs are summarised in Table 7.2. Based on them, some observations can be made about the 
relative merits of the different distributions. These observations are summarised in Table 7.3.

For forward elimination the cyclic implementation is faster then the blockwise. The benefit of 
using cyclic increases as the ratio n /p  increases.

On the other hand, the blockwise implementation is often more efficient for back substitution. 
However this varies depending on the communication cost, t cn, and on n  and p. It is more efficient for 
the communication part but not for the computation part, and hence is better when t cn is expensive 
relative to n, but the cyclic distribution is often more efficient when communication is cheap.
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Stage D ata Distribution Approximate Cost
Forward Elimination Blockwise n 3/2p + n  log p (n tc + t )

Cyclic n 3 /Zp  +  n  log p (n tc +  r)
Back Substitution Blockwise n 2/ p  — n 2/2p2 + n/2p  

+ np/2  * t cn
Cyclic n /2  +  n 2/2p  +  (np -  n) * t cn

Redistribution Cyclic to Blockwise p \o g p n tc/2  +  p lo g p r

Table 7.2: The costs of the stages of Gaussian elimination with different data  distributions

Stage D ata
Distribution

Advantage Applies when

Forward Elimination Cyclic n 3/6p Always
Back Substitution Blockwise np/2  * t cn ten high

compared to n / p
Cyclic £ ( * > - *  +  ! - p ) t cn low 

compared to n / p

Table 7.3: A comparison of the benefits of different data  distribution in Gaussian elimination

The cost of the redistribution must also be taken into consideration. This is proportional to 
p  log p n tc and hence tends to outweigh the advantage gained by using the blockwise distribution in the 
back substitution. It also tends to outweigh the advantage of using the Cyclic distribution in forward 
elimination unless t c is small compared to n/p.  However, in these situations, the cyclic distribution 
is also better for back substitution and no redistribution is needed. Therefore the redistribution is 
only cheap enough to be used when i t ’s not needed and we can ignore it.

This leaves us with basically two possibilities - using the blockwise distribution throughout or the 
cyclic distribution throughout. The first tends to be better when communication costs, expressed in 
tc and tcn, are high compared with n, and the latter when they are low. Therefore, if we want to 
produce an optimal program, we have to know some things about the target axchitecture and target 
problem size. The derivation may branch depending on the target.

For this presentation, we choose to use the cyclic distribution throughout, as n  is likely to be high.

7.3.5 Incorporating the distribution

The cyclic data  distribution can be incorporated as shown in Section 3.4.4. Using these techniques, 
and strangling the 2nd level of parallelism, we get the following. The extra parameter, p , is the 
number of processors, and scanr' used in the implementation of accum.scanrl is a form of scanr 
which returns the same number of results as the size of the initial list. I t misses out the initial value. 
This is useful for parallelism since there is a fixed number of processors. It is implemented as 
scanr'Cyclic f  a xs = in itcyciic(scanrcyciic f  a xs).

gauss :: Fractional a  =$■ In t —> Cyclic(SeqFinSeq a) —► Cyclic a  
—> Cyclic a:
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gauss p a b =
le t 771 — map2(Syclic JOtn a b

where join x s y  = xs -H-5 (list2seqfs [y]) 
n — sizecydic b
m2 =  foldls deal-with-jth.rowcydicS m (Hst2seqfs [1 ..n — 1]) 
x = accum scanrlcycS solve-ith.eqns m2

i n
x

deal .with-jth .row CydicS Fractional a  => Cyclic(SeqFinSeq a) —>
In t —» Cyclic(SeqFinSeq a)

— makes rows below row j  have 0 in columns i  < j  
deal-with-jth-rowcyciicS m j  =

first-j .rows 4+ C y c i i c  (mapcydic put-OJn-jth-poss other .rows) 
where

first-j-rows = takecyciic j  m 
other .rows = dropcycUc j  rn
put-OJn-jth-poss row =  map2s join row (m  !!Cyclic (j  — 1)) 

where
join x y = multiplier * y + x 
multiplier = —((row Us (j — I ) ) /

( (m UCyclic (j ~  1)) !!s (j ~  1)))

solve-ith-eqns :: Fractional a  => SeqFinSeq a  -4 SeqFinSeq a  -> a
— calculates the value of Xi, using the ith  equation.
— row is the ith  eqn, and zs  are previously calculated x  values 

solve-ith.eqns row zs =
(foldls (+) (row !!s n) (map2s f  (drops * row)zs))/
(row !!$ (i — 1)) 

w here
n = (sizes row) — 1 
i = n — sizes zs 
f  x y  = - ( x  * y)

accum scanrlcycS  " (a  ->■ SeqFinSeq (5 -> (3) -4 Cyclic a  
-4 Cyclic (3

accum scanrlcycS  f  zs = mapcyciic heads (scanr'Cyclic g empty s  zs) 

w here
— g :: a  -4 SeqFinSeq (3 -» SeqFinSeq (3 

g x y s  = ( f x y s )  :s ys

7.4 More about monads

The next step is the conversion of the program to use monads. In other programs there may be other 
steps which can or should be done at the non-monadic level, but not here. This conversion is quite a 
complicated step and is discussed in general in Sections 3.6 and 3.7 in Chapter 3. The transformation 
is split into several parts to make it easier, with versions of the program written after each part. 
There is no point in giving all the intermediate versions here, but it is interesting to note the things 
which needed to be done.

Introducing monads makes the program quite a lot more complicated, and there is little additional 
benefit from giving the code for this stage here. It can be found, if required, a t the following URL: 
http: /  /  www.dcs.gla.ac.uk/~joy/research/thesis.

http://www.dcs.gla.ac.uk/~joy/research/thesis


CHAPTER 7. CASE STUDY: GAUSSIAN ELIM INATIO N 161

7.4.1 Basic transformation

The transformations involved a lot of uninteresting steps, which are described for a general program 
in Sections 3.6 and 3.7. This section lists some of these steps to show the form th a t the transformation 
took, and the modifications that are necessary for a real program. There were a few places where 
more interesting points had to be considered. These are given in the next section (7.4.2).

The first step involved the preliminary introduction of monads and input functions as described 
in Section 3.6:

• The IOPST monad was introduced to gauss by changing the l e t  into a do  as in Lemma 38.

• Appropriate input functions allowing the user to enter the size of the m atrix and the matrix 
and vector were written. These are called enter.in t, enter.m atrixcycUc and enter.vectorcydie 
respectively.

• A main function was added which called these input functions and then gauss with the appro­
priate parameters.

Next the parallel system was set up and variables were introduced, as described in Section 3.7:

• The model of the parallel system was set up using start p.

• The types were instantiated to Floats.

• Global variables (p, m atrixsize  and pid) were added, p  is the number of processors, pid the 
processors’ ids, and n was renamed to matrix.size to  avoid confusion.

• Even though p  and matrix.size are now global, they’re still passed to the input functions as 
parameters so that they can be accessed directly instead of through retrieve with the appropriate 
variables. This also gives the functions local to the input functions easier access to them.

• The values of these global variables were set using get.size  and get .pid.

• The input data  was stored in variables.

• The parameters to gauss were passed by reference instead of by value, by making the variables 
themselves and not their values the parameters (see Section 3.7.4 for more details). This was 
done to mimic the situation in C, where compound types such as matrices and vectors are 
passed by reference.

• gauss was also given an extra parameter, x .v , to return the result in, instead of just returning 
a value.

• retrieve and retrievecydic must now be used to access the values of the parameters and global 
variables.

• Intermediate results in gauss were stored in variables.

At this point monads have been introduced to the main gauss function but not to its subsidiary 
functions, so th a t is the next thing to do. This process is similar to the introduction of monads to 
the main function, but there are a few slightly more interesting things here. These are discussed in 
the next section (7.4.2). Some of the routine changes were:

• A new global variable row.nos was introduced to keep track of which rows were stored in each 
processor.
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• The subsidiary functions (deal.with-jth.row  and solve.ith.eqn) were made local and monadic.

• This meant th a t the places where they were used also had to change. They were used in folds 
and scans which expected non-monadic results, and thus needed to be modified.

• They were then written with only one APM function per line to help with the conversion to 
the M PI APM later (see Section 7.5).

• Operations which only took place on certain rows were previously written using takes and 
drops over the parallel system. They were changed to use maps with a function parameter 
whose behaviour depends on row.nos. More on this can be found in the next section.

At this point the subsidiary functions were monadic, but did not contain variables, so the next 
step was to introduce variables to them. This created a bit of difficulty because these functions 
were being used in foldl and accum scanr and their param eters had to  m atch up properly. This is 
discussed more in the next Section. Basic changes were:

•  Their m atrix and vector parameters were passed by reference.

• They had to  return variables because they were being used in foldl and accum.scanr.

7.4.2 Som e interesting points

The previous section demonstrates th a t most of the steps in converting a program to monadic form 
are fairly straight-forward and boring, even if detailed and fiddly. They can potentially be automated 
as discussed in 9.5, so that the user doesn’t have to deal with them.

However there are a couple of interesting points which haven’t been previously discussed. They 
are, however, still fairly straight-forward to apply to the program or incorporate into the program, 
once the basics of them have been set up.

C y c l i c  V a r i a b l e s  In the previous case study all of the variables used the straightforward naive data 
distribution, with one value in each processor (see Section 5.7). This is the default type of variable. 
However this case study involves data  with a particular data  distribution, the cyclic one. Therefore 
cyclic variables are needed. These are discussed in Section 2.12.1.

It was nice to  see th a t such variables could be introduced into a  program easily, in a very similar 
way to the data  with the naive distribution, as indicated in Section 3.7. These variables encapsulate 
the data distributions so that the program remains fairly clear. For example, here is a fragment 
of code from the program. The only parts specific to the cyclic distribution are hidden inside the 
relevant functions.

row.nos 4 -  retrievecycUc row .nos.v  
matrix  4— retrievecycUc m atrix .v
result 4- return (map2Cyclic put-O-in.jth.poss matrix row.nos) 
storecyciic m atrix.v result

M o n a d i c  s u b s i d i a r y  f u n c t i o n s  It might seem fairly straight-forward to make all the subsidiary 
functions monadic, but introducing variables to them changes their param eters and their types. Some 
of them are called by higher-order functions such as fo ld , and therefore it is im portant that their types 
should match up properly.
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For example, in this case study, the matrix variable had to be threaded through the fold. It was 
passed to the subsidiary function and returned from this function in a modified form every time the 
function was used by the fold.

However, once this was done once, it could be easily generalised to  a simple form which can be 
applied every time. Figure 7.8 shows the transformation for the fold example in Gaussian elimination, 
together with a general version for foldl. Note that introducing monads changes the type of the result 
of the fold as well as the types of its parameters. This is reflected in its use and in the type of the 
result of the fold. This is explained in Section 3.6.3.

General version 
For any f  :: a  (3 a, a :: a, xs :: [(3\.

There exists f  :: IO PST(VarFn a) —>■ (3 —> IO PST(V arF n a) related to /  
and a variable a-v such that.

foldl f  a xs :: a

I
foldl f  (return a.v) xs :: IO P ST(V arF n a)

Example
foldls deal-with-jth-rowCyclic m [l..n  — 1] :: Cyclic(SFSFloat)

where
deal-with-jth-rowCyclic Cyclic(SFS Float) —> In t —> Cyclic(SFS Float)

;
foldls deaLwith-jth-row'Cyclic (return m-v) [l..n  — 1] :: IO PST(VarFn-C yclic(SFS Float))

where
deaLwith-jth-row'Cyclic :: IO PST(VarFn-Cyclic(SFS Float)) —> In t 

-* IO PST(VarFn-Cyclic(SFS Float))

Figure 7.8: Transformation of a subsidiary function to be monadic. Some annotations are removed 
for simplicity, and SeqFinSeq is abbreviated to SFS.

ta k e s  a n d  d ro p s  In forward elimination row operations are only performed on the last few rows. 
This was previously achieved in the program using take and drop to select the needed rows.

This is fine for early abstract stages in the derivation, but the monadic stages are more concrete, 
and it would be better to reflect the parallel nature of the operation. The same thing is happening 
in several processors, even if only in a few of them, and therefore it would be best if this could be 
expressed using a map over the whole matrix. The function to  this map depends, however, on the 
row number, so th a t it can tell whether it is working on a row which should be changed or not.

This can be done using a global param eter which gives the row numbers of the rows stored in 
each processor, counting from 0. These could be calculated from the processor id and the position of 
the row within the processor whenever they are needed, but it greatly simplifies things to store them 
separately.

The transform ation can then be written in a standard way as shown in Figure 7.9. Basically, this 
is a modification of the code for a loop th a t only affects elements satisfying a given property (see 
rules 6 and 7 in Table 3.1 in Section 3.3).

Similar rules can be written for functions which only operate on other sets of processors.
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For any sequence xs and function /  of appropriate types, i :: I n t+. 

(take i xs) +t- (map f  (drop i xs))

i
map2 f  xs row-nos 

where f  x rowno = if x > rowno then f  x else x

Figure 7.9: Transformation of take

7.5 More about M PI

The introduction of variables brings the program closer to  C. However it is not much closer to MPI. 
This can be achieved by using the MPI APM, to be more specific, the Cyclic MPI APM, because the 
program uses a cyclic data distribution. This APM provides M PI functions which operate on cyclic 
distributions, but it hides the details of the cyclic implementation, keeping things as high-level as 
possible for just now. This also makes it easier to add in or change the data  distributions at this late 
stage rather than earlier in the methodology, if so desired.

The Cyclic MPI APM is described in Section 2.12.2, and the necessary program transformations 
are described in Section 3.8, which explains how the ordinary M PI APM functions can be introduced, 
and Section 3.10, which describes the changes necessary for cyclic functions.

7.5.1 Com m unication in Gaussian elim ination

As M PI is concerned with communication within a program, the first stage in introducing the MPI 
APM is the identification of this communication.

In Gaussian elimination communication occurs, as with most parallel programs, in the initial 
distribution of input values. It also occurs in forward elimination when processors must know the 
value of the pivotal row in order to do the row operations, and in back substitution when each 
processor must know the values previously calculated by other processors.

7.5.2 Input values

There are standard ways of distributing input values, as described in Section 3.10. Single values such 
as the size of the m atrix axe broadcast to  all the processors. Compound values such as matrices and 
vectors, on the other hand, may be scattered, since each processor only needs to know a few values.

Each input function can therefore be implemented in a standard way for its type, with only slight 
modifications for the message which is to appear on the screen, if one is necessary.

E x am p le  For example, enter.m atrixcyciic n P var.v reads in the elements of an n  * n  matrix and 
distributes its rows in a cyclic fashion across p  processors. These rows are stored in each processor 
in var.v. Its implementation is as follows. It uses a subsidiary function, enter , which is not shown. 
enter prompts for and accepts the values of an n * n  matrix, and returns them in a 2-dimensional list.

enter.matrixcydie In t —► In t —> VarFncyciic (SeqFinSeq Float) —>
IO P ST  ()
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enter.matrix Cyclic n P var.v =
do pst.pu tS tr  ” Enter the elements of the m atrix .” 

xss 4- enter n
tm p.v 4- create.var (repeatp (list2seqfs[emptys])) 
storein<nv 0 tm p.v (list2segfs (map list2seqfs xss)) 
mpi.scatterCyclic tm p.v  (A R R A Y  FLO AT) var.v  

( A R R A Y  FLOAT)  0

Note th a t the input value is stored in a tem porary variable, tm p.v  within a single processor, the 
root processor. From here it is then scattered to the whole system in such a way as to produce a 
Cyclic distribution.

7.5.3 Back substitution and increm ental pipelining

Although back substitution comes after forward elimination in the algorithm, here it is considered 
first, because the communication in it is expressed in a clearer manner. It is encapsulated in the 
APM function accum.scanr 1, whose implementation is considered in Chapter 6.

As discussed in th a t chapter, it can be implemented using pipelining. The implementation in that 
chapter was tailored to work for the special case when the function param eter to accum.scanr 1 can be 
calculated incrementally (see Section 6.6 for details). Therefore, in order to use that implementation 
here, we need to show th a t the function solve.ith.eqn can be calculated incrementally. We also need 
to work out the appropriate incremental functions for it before we can use all the code from that 
chapter.

Firstly, solve.ith.eqn has to be modified to expect a sequence with the newest values on the end, 
not on the front. The only parts that need to be changed are those which identify the elements to be 
operated on.

solve.ith.eqn's row zs.m  = 
do  . . .

rev.row 4- return (takes i (reverses row)) 
inter.vals 4- return (map2s f  rev.row zs)

We can prove that

solve-ith.eqn'g x Vs =  do  vals 4- ys
solve.ith.eqns x (return (reverse vals))

as required, using the following properties (which can be proved by induction if necessary):

reverse(drop i xs) =  take i (reverse xs)
map2 f  xs (reverse ys) = reverse (map2 f  (reverse xs) ys)
foldl (+) a xs =  foldl (+) a (reverse xs),
since (+) is associative and commutative

The function then needs to be written using an intermediate summation variable, sum .v, as 
follows, so th a t i t ’s in a similar form to th a t given in Section 6.6.
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solve .ith.eqn's  row zs.m  =
do  sum .v <- create-var (repeatp (0 :: Float)) 

zs zs .m
n 4-  retum ((sizes row) — 1 )
* return(n — sizes zs) 
store sum .v  (row M5  n) — init 
for  [1 ..sizes zs] — the interior of this loop is g 

(A j  -»■ do  sum  4- retrieve sum-v
store sum .v  (sum + (—(2 s !!s (j — 1 )) *

(row !!s (n - ; ') ) ) )
— the n-j index is due to the reversal of the seq) 

sum  «— retrieve sum jv
store sum .v (sum/(row !!  ̂ (i — 1))) — final division - h
sum  «— retrieve sumjv  
return sum

The various parts of solve.ith.eqn can be identified as shown above: init which initialises sum .v, 
g which updates it incrementally, and h which finishes off its calculation. These parts can then be 
separated out as described in Section 6.6.

Now the APM function, accum.scanr 1, from Chapter 6, with all its optimisations can be used. 
We can simply include the function from the appropriate APM at each stage. Here the collective 
level M PI APM code can be used.

I t ’s also im portant to note th a t the incremental property isn’t  used yet in the derivation. The 
code from Chapter 6 could be used even if the property didn’t hold until the property is used— part 
way through the transformations at the individual level. However, by establishing that we can use 
it a t this stage, we can use all of the code from Chapter 6 without worrying about whether it will 
apply.

7.5.4 Im plicit com m unication in forward elim ination

Although much of the communication in a program is encapsulated in APM functions, as in back 
substitution, there may be other sources of communication. For example, calculations done in one 
processor may use values from another processor without explicit communication. Such instances of 
implicit communication need to be identified now, because when using an M PI APM, all communi­
cations should be made explicit through the use of MPI functions.

Implicit communication takes place in the Gaussian elimination study in deal.with.jth.row  in the 
forward elimination phase. Here several rows have to do row operations combining their values with 
values from row j .  Row j  may not actually be in these processors, so it must be communicated to 
them. However in the current program the values axe simply referred to without being explicitly 
communicated, as can be seen in the following code for the row operation. Here row j  is simply 
referred to as matrix  !! ( j  — 1).

put.O .in.jth.poss row rowno | rowno > j  =
map2s join row (matrix 11 Cyc l ic  (j — 1))

The communication must now be made explicit. Row j  must be communicated to the processors 
which have rows j  + 1, . . .  ,n.  Since the rows are distributed cyclicly, this is usually all the processors 
in the system (see Figure 7.6). The easiest and quickest way to  communicate a single piece of data 
like this to all the processors is via a broadcast, as shown in Figure 7.10.

Row j  is originally stored in processor (j — 1) mod p , and so a variable is set up in this processor 
with row j  in it. This processor is also used as the root of the broadcast.
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rowj.v «— create-var (repeatp empty5 )
— Store row j  in processor (j — 1) mod p 

rowj •<— retrievecydicindiv (j — 1 ) m atrix.v  
storeindiv ((j — 1 ) lmodlp) rowj.v rowj

— Now do the broadcast
mpi.beast.simple rowj.v ( A R R A Y  FLOAT)  ((j — 1 ) lmodlp)

Figure 7.10: The code for broadcasting row j

Now th a t each processor has the value of row j ,  stored in a variable, the row operation function 
can be passed an extra parameter giving the value of row j :

put-O .in.jth.poss rowj row rowno | rowno > j  = 
map2s join row rowj

Making implicit communication explicit is discussed in general in Section 3.8.

7.6 Individual Level

Now the program looks a lot more like C+M PI, but there is a m ajor hurdle still to be overcome. 
C +M PI operates on the individual level— it says what a single processor does— whereas the Haskell 
program works on the collective level—it says what the whole system does. We need to change the 
Haskell program to work on the individual level if we’re going to make the transition to C as easy as 
possible. More information about this can be found in Sections 2.11 and 3.9.

Individual level code cannot at the moment be run and the functions are not implemented. This 
is because an individual level semantics has not yet clearly been developed. This is work in progress 
(see [O’DOl]).

7.6.1 Transformation to the individual level

Changing the Gaussian elimination program to individual level is fairly straight-forward. The basic 
transformation can be done by applying the set of guidelines given in Section 3.9. However, the use 
of the cyclic data  distribution causes a few changes as indicated in Section 3.10. Some fragments of 
the code help to demonstrate what happens.

One of the first things the program does is combine the m atrix and vector. This is done by 
mapping a join  function across the matrix and vector as shown in Figure 7.11.

For any matrix a, vector 6, m atrix variable m .v.
For p = number of processors.

m .v  +- create.varcyciic(repeatcyciic P emptys) 
storecydic m .v  (map2cyciic join a b)

4-
m .v  +- create.varCyciic(repeats emptys) 

storecydic m .v  (map2s join a b)

Figure 7.11: Transformation of the m atrix and vector join code to the individual level
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At the individual level, it is im portant to remember th a t there are multiple rows in each processor 
because of the data  distribution. Therefore the mapcycUc can’t  translate directly into a function 
application as it did in the maptri case study (Section 5.9) which didn’t use data distributions. 
Instead a sequential map over the values stored in the processor is used.

The transform ation is made simpler by individual level cyclic functions such as create.varcydie 
(see Section 2.12.3 for a full set of these functions). These manipulate the multiple values for the 
user, so th a t he doesn’t have to do so explicitly himself.

This might seem a bit tricky and rather detailed. However, in practice, i t ’s much easier, because 
there are sets of transform ation rules (Sections 3.9 and 3.10) which encapsulate these details. In fact, 
this is an example of a transform ation which could be autom ated in future.

This example involved only computation, but communication is similar. M PI collective-level func­
tions transform  into set M PI individual-level functions. Collective ones, such as broadcast, transform 
into functions with the same name, and so no change to this code is needed. This can be seen in the 
code for broadcasting row j  in forward elimination, which is given in Figure 7.12.

For the specific variable row j.v , associated integer j  
and p  the number of processors.

mpi.beast .simple rowj.v (A R R A Y  F L O A T ) ((j — l ) ‘mod‘p)

I
mpi.beast.simple rowj.v (A R R A Y  FLO AT) ((j  — 1 ) ‘modlp)

Figure 7.12: Transformation of the broadcast of row j to  the individual level

After the applying these transformations, the code looks a bit different. It can be found at 
http://w w w .dcs.gla.ac.uk/~ joy/research/thesis.

7.6.2 P ipelin ing

One reason for dealing with the individual level is th a t it brings the program closer to C+M PI, and 
therefore makes the final transform ation to C +M PI easier. However this is not the only reason. There 
are also optimisations which can be done more easily a t the individual level, as explained in Section 
3.9.2.

In the current case study some such optimisations can be applied to the back substitution phase 
of the program. It uses pipelining, a technique described in detail in Chapter 6 , and which can be 
optimised a t the individual level through several steps.

First of all the values received by a processor, i.e., the previously calculated values, are passed 
on to  the next processor as soon as they are received, overlapping the communication time of one 
processor with th a t of another. This is described in Section 6.5. Then the subsidiary function that 
calculates one of the result values is split up into its incremental parts. Section 7.5.3 shows how this 
is done for the subsidiary function in back substitution, solve.ith.eqn. These parts are then moved 
around so th a t their calculation time overlaps the communication time, as described in Section 6 .6 .

Although these optimisations could be done at the collective level, it is easier to  describe details 
such as one processor passing on a value as soon as i t ’s received than to calculate and express the 
resultant pattern  of communication for the whole parallel system.

It is also useful to introduce other optimisations, not involving communication, a t this point. One 
such optimisation involves joining the matrix, a, and vector, 6 , to  form a combined matrix m. It 
would be more efficient to store the input values directly into the appropriate places in m rather

http://www.dcs.gla.ac.uk/~joy/research/thesis
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than  storing them  somewhere else and then copying their values. This optimisation could have been 
performed earlier, but i t ’s useful to be able to do it now without having to  change the previous code.

This optimisation focuses on the input functions, enter.m atrixcycuc and enter .vector cy die, al­
though there are also minor modifications to gauss so th a t it takes the combined m atrix as a parameter 
instead of a separate m atrix and vector.

The vector elements are now attached to the ends of rows of the m atrix instead of being stored 
in a separate vector:

xs +- enter.vector 1  

— for each row, store the appropriate vector value 
for [0.. matrix .size — 1 ]

(At  -+
do  input +- retrieve input.v  

store input.v (replaces input i
((input Ms i) -H-s (cons (xs !!s i) em ptys))))

The size and displacement arrays which are used to indicate the indices of the rows for scattering 
must also be changed to reflect this change in the length of the rows.

7.6.3 Profiling

It would be useful to profile the program before and after parallel optimisations, such as pipelining, 
have been introduced. This was done using GpH in Section 5.5 when static load balancing was 
introduced to the map-triangle case study.

However, th a t was earlier in the derivation when the transform ation was more abstract. At the 
present stage, the parallel optimisations deal with details of communication and message-passing, 
and rely heavily on location-awareness as messages pass between specified processors. GpH is not 
location-aware, and therefore it is usually not possible to observe the effect of the optimisations on 
GpH programs.

In addition, GpH is a collective level language, observing the whole system at once. A program 
at the individual level must be converted to the collective level if it is to  be run and profiled using 
GpH. This can be done either by producing an implementation of the individual level, as described 
in Section 2.11.1, or by rewriting it by hand. The former is outside the scope of this thesis, and 
the latter involves much effort on the part of the programmer. It also reintroduces the difficulties 
discussed above with performing these communication optimisations a t the collective level.

7.6.4 Rem oval of cyclic functions and more optim isations

Before the final transition can be made, there are more details th a t need to be sorted out. In 
particular, the cyclic functions need to be replaced with ordinary functions since C +M PI doesn’t 
provide cyclic variants of its operations. This can be done using a set of transformation rules, which 
are given in Section 3.10.

In the Gaussian elimination case study these rules don’t cause any problems. They are only used 
to transform variable manipulation functions and a few communication functions which are only in 
the input functions. The other communications already use non-cyclic functions.

This paves the way for more optimisations on the program. In particular the back substitution 
phase can be optimised further as described in Section 6 .8 . This optimisation is specific to the cyclic 
distribution, yet it is easier to do it once the cyclic communications have been removed, because then 
the individual communications become visible and can be manipulated.
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7.6.5 D etails to  get close to  C + M P I

There are other more detailed transformations which need to be done to make the program more like 
C+M PI. Any remaining maps need to be replaced with loops, and there may be details of arrays or 
types which need to be dealt with. Such transformations are discussed in general in Section 3.9.2.

m aps: Let us first look a t the map function. This can commonly be implemented in C using a fo r
loop, as shown in Figure 3.4 and discussed in Section 3.9.2. This case study uses a related function, 
map2, in forward elimination, in the function deal.with.jth-row , as follows:

result return (map2s (put.O .in.jth.poss rowj j ) matrix row.nos) 
store m atrix.v result

This transforms in a similar way to map to  give the following:

for  [ 0 ..no.in.proc]
(A * —>

do new .row  «— return {put.O .in.jth.poss rowj j  {matrix !! i)
{row.nos !! *)) 

matrix «— retrieve m atrix.v  
store m atrix.v {replaces matrix i new.row ))

R ecursive functions: The program also contains recursive functions, enter and enter.line , used
to input the values of the m atrix and of one row respectively. In general, recursive local computation 
functions may appear elsewhere in the program. These can be implemented in C using recursion, 
although it is often more efficient to use fo r  loops. They can therefore be transformed in a similar 
way to map.

For example, enter is transformed as follows:

enter :: In t —> IOPST[[Float]]
— Reads in m rows each of length n 

enter m \ m ==  0  =  return |]
| m /  =  0  =  do zs <— enter.line {n — m  +  1 ) 1  

xss «— enter (m — 1 ) 
return {xs : xss)

xss +- enter n
store input.v {Ust2seqfs {map Ust2seqfs xss)) 

becomes

for  [l..n]
(A i —>• do xs <- enter.line i 1

input <r- retrieve input.v
store input.v {replace input (* — 1) {Ust2seqfs xs)))

The code for the enter function is inlined into the main code, so th a t the variable, input.v, can 
be modified each time a new row is entered instead of once a t the end.

C om m unicating arrays: So far in Haskell arrays have been communicated in collective commu­
nication functions using a special type, A R R A Y . For example, row j  is broadcast using: 

mpi.beast.simple rowj.v {A R R A Y  FLOAT) {{j — 1 )‘modlp)
However, M PI doesn’t  provide this special type. Instead arrays are communicated by specifying 

their starting address, the number of bytes to transfer, and the element type. For example, the
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following code also broadcasts row j :
MPI_Bcast(rowj , matrixsize+1, MPI_FL0AT, mod(j-l,p), MPI_C0MM_W0RLD);
This gives the starting address of the row, rowj, its length, m a tr ix s iz e + 1 , and its element type, 

MPI_FL0AT.
This can be reflected in Haskell by introducing a new version of mpi-bcast which takes similar 

parameters to the C version as follows:
mpi-bcast' rowj.v (matrix.size +  1) FLO AT  ((j  — 1 )<‘modip).

M atric e s : Nested sequences, such as SeqFinSeq (SeqFinSeq Float), are used to implement matrices 
in the Haskell programs. They should translate into C with no difficulty. However, in practice, 
2 -dimensional arrays are hard to deal with in C, especially when they are being passed between 
functions as parameters. Index arithmetic may cause problems, and my version of C wouldn’t  let 
index arithmetic be performed at all on such arrays passed as parameters. This can be dealt with 
by representing a m atrix as a 1 -dimensional array with the rows stored one after the other, and by 
doing index arithm etic on it accordingly. This is not ideal but serves the purposes of this case study. 
The necessary transformations of the program can be encapsulated in transformation rules, as shown 
in Figure 7.13.

In this figure, the annotations on the indexing function, !!, are removed so th a t i t ’s easier to see 
w hat’s going on. The rules also use the function slice to extract one row from a matrix, a. slice 
works as follows:

slice i j  [mi, . . . , mn] =  [xmax i l, . . • , Xmin j n]
=  {usually} [xi, . . . ,  Xj]

For any m atrix a, positive integers i , j .
A single element of a matrix, a, transforms as follows:

(a\\i)\\j

I
a\\{i * row length +  j)

A row of a matrix, a, transforms as follows:

slices{i * row length) {(i -I-1 ) * row length) a

Figure 7.13: Transformation rules when representing a m atrix as a 1 -dimensional array

The whole program after all these transformations can be found on the internet at URL 
h ttp : /  /  w ww .dcs .gla. ac .uk /  ~joy/research /  thesis.

7.7 C + M P I

The previous stage is very close to C +M PI code, and can be translated using the transformation 
rules given in Section 3.11. As before, the resultant program can be found on the internet at 
h ttp : /  /  www. dcs.gla.ac.uk/~joy/research/ thesis.

Scattering the cyclic data  requires the use of a tem porary variable th a t holds a version of the 
m atrix with its rows in the order they would be when distributed cyclicly. This isn’t hard, but i t ’s 
also not very elegant.
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I originally thought of using a derived datatype for the scattering. M PI derived datatypes allow 
one to communicate regular sections of arrays made up of blocks of elements of a set length separated 
by a set number of other elements. More information about how they do this can be found in the 
M PI manual [MPI97].

A derived datatype can be set up to represent a row of the matrix. This would make the com­
munication operations involving the rows (their initial scattering and the broadcast of row j ) easier. 
However, this doesn’t  work because MPI_Scatter assumes th a t items to be sent to processor i + 1 all 
lie after those to be sent to processor i. On the contrary, to obtain a Cyclic distribution some rows 
to be sent to later processors occur before some to be sent to early ones. Therefore derived datatypes 
were not used for this, although they could be used in other situations.

7.7.1 Tim ings

This code can be compared with code written by hand without certain of the optimisations, to see 
the effect that different choices had on the performance.

C yclic versions - w ith  and w ith ou t p ipelin ing

The derived C +M PI program was compared with a similar program, also using the Cyclic data 
distribution, but without the pipelining optimisations, to see their effect. Timings were taken on 
a Beowulf cluster, and the cost of the calculations was increased by introducing busy work before 
arithm etic operations in back substitution. This was necessary to allow the times to be observed, but 
alters the communication/calculation cost ratio significantly. This is considered below.

Timings were taken for matrix sizes, n =  8,16,24 and 32 as well as intermediate values 1 0  and 
20, to ensure th a t patterns in the times weren’t caused by the n  being a multiple of p. The times are 
shown in Figure 7.14.
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Unoptimised p=4 — h- 
Unoptimised p= 8  - -X- 

Unoptimised p= 16 ----Eh 
Optimised p=4 —+ -  
Optimised p= 8  + -X— 

Optimised p=16/—B-
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Figure 7.14: Gaussian Elimination timings with and without pipelining optimisations

The unoptimised version takes the same amount of time for a fixed m atrix size regardless of the 
number of processors used. This is very inefficient, and shows no speedup. The optimised version 
works much faster and shows an improvement with an increased number of processors, if n > p.
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D ecreased  com m u n ication /ca lcu la tion  cost ratio

The long calculation time in the previous case reduces the communication/calculation ratio, simu­
lating a parallel machine with much faster communication. The calculation time can be changed to 
simulate other machines. Figure 7.15 gives some times for the expensive calculations of the previous 
section, and also for calculations many times faster, but still slower than the ordinary arithmetic 
calculations.

The same difference between the optimised and unoptimised versions of the program can be seen.

Unoptimised with standard calculations — I—  
Optimised with standard calculations —X— 
Unoptimised with faster calculations — I—  

Optimised with faster calculations - -X - - -
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Matrix size, n

Figure 7.15: Gaussian elimination timings for p = 8  with different calculation costs

7.8 Summary

This chapter has described a longer case study carried out using the APM methodology. This case 
study stretched the methodology in many ways. Simply by being larger and more complex than the 
previous study, it forced me to  make the lemmas and transformation rules more general, and made 
me look a t areas which I hadn’t  examined before. In particular, this study involved data distributions 
and detailed optimisations of an imperative nature. P art of the work on this study is given separately 
in Chapter 6 , which discusses a particular form of pipelining used within Gaussian elimination.

The study took quite a long time to do, but most of this time was spent dealing with the new 
issues which arose and refining the methodology accordingly. Some of these changes are outlined in 
this chapter, although others are simply incorporated into the information given in previous chapters, 
for the sake of clear presentation. Doing the study was interesting, and brought up many unexpected 
points and problems. This was useful because it allowed the methodology to be refined.



Chapter 8

R elated Work

This chapter has two main aims. Firstly, it gives a critical review of the main approaches to several 
aspects of parallel programming th a t are closely connected to this thesis. Secondly, it investigates 
how these approaches are related to the work in the thesis.

The chapter is organised according to various issues in parallel programming, but there are occa­
sional interludes to discuss a parallel system or language in more detail.

8.1 Decision making in parallel programming

Parallel programming involves making many decisions about a variety of aspects of the program. For 
example, tasks must be assigned to processors, and data  must be allocated and communicated. These 
decisions may be made by the programmer or automatically. This section discusses several parallel 
programming languages and systems and the ways in which they support such decisions.

8.1.1 Parallelising com pilers

At one end of the spectrum of programming languages lie those which are implicitly parallel. A 
program in these looks basically the same as a sequential program. It is fed into a compiler which 
makes all the decisions about the parallelism, and produces a program which can then be run on a 
parallel computer.

This is especially suited to functional programming languages, because they don’t enforce an order 
of execution or any unnecessary data dependencies. Different parts of a program can be executed in 
parallel without producing incorrect results [Bac78]. For more information about parallel functional 
programming see, for example, [Ham94].

In the 1980’s there was research into novel parallel architectures such as GRIP [PJCSH87] which 
were specifically designed to run such languages. However these were rapidly overtaken by develop­
ments in stock hardware. Now standard parallel machines are used, because these machines improve 
a t such a rate th a t they render investment in specialised hardware unproductive. This, however, 
raises a problem with small grain parallelism. If one executes all potentially parallel parts of a pro­
gram in parallel, this generates an incredibly large quantity of very small grain parallelism. Standard 
machines don’t  cope well with this because it requires more time in communication than is gained in 
computation time. One must choose which operations are worth carrying out in parallel and which 
not. This research has therefore to a large extent given way to research based on user annotations to 
guide the compiler [PJL92], and hence to languages such as GpH (described in Section 2.3.6. However 
implicitly parallel functional languages still exist, e.g., pH [NAH+95].

174
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A similar idea can be applied to logic languages since the resolution of a logic query involves many 
activities th a t can be performed in parallel. Examples of such languages can be found in [Tal94].

Parallelising compilers, however, still exist. For example, there are parallelising Fortran compilers 
[BGA90], which parallelise parts of Fortran 90 code, such as loops. The interest in such compilers 
has arisen partly due to the large amount of legacy Fortran code in existence. Such compilers use 
a variety of program transformations. For example, [AK87] discusses how data dependencies can be 
determined in a Fortran program in order to figure out which parts of the program can be executed in 
parallel. This is also an issue in the methodology described in this thesis, as data  dependencies play 
a large part in deciding on parallelism (Section 4.3). This could be done using similar techniques.

ZPL [LS93] is another implicitly parallel language which is still in use. It is focused on data- 
parallel programs, and is based on arrays. As with other implicitly parallel languages, the compiler 
makes the decisions about the parallelism.

Such programs are easy for the programmer to write, but they often have the disadvantage of 
sub-optimal performance. Parallelising compilers cannot make intuitive decisions, so-called “Eureka” 
steps. They aren’t as good at parallelising as humans, and may not make such good decisions. They 
also cannot, as yet, apply some of the more formal methods, such as the use of cost models (see 
Sections 4.2.2 and 8.1.4), which require algebraic analysis of costs. However much work has and is 
being done on such compilers and they have undergone much improvement.

Nevertheless parallelising compilers fail to take advantage of many features of the target machine, 
and still fail to produce code as fast as th a t hand-written in explicitly parallel languages.

C o m p i l e r  d i r e c t i v e s

As previously mentioned, parallelising compilers sometimes have problems in making basic decisions, 
for example about what should be in parallel and what not. One way to handle this is to let the 
programmer supply hints or directives to the compiler. The program is still implicitly parallel because 
these are only hints: the compiler doesn’t  have to obey them. However they can prove very useful in 
helping the compiler to make more effective decisions. Although the burden for the decisions is still 
on the compiler’s shoulders, the programmer can choose to  share it.

Examples of languages with such hints include GpH, which is discussed in more detail below and 
Caliban [CHK+93, KT99]. The latter uses annotations to allow the programmer to specify data 
partitioning and placement.

G pH

In GpH (see Section 2.3.6) parallelism is identified by the programmer, but not schedule, allocation or 
load balancing strategy. Some details can, however, be controlled through the use of run-time system 
(RTS) options. The programmer must therefore make decisions both when writing the program, and 
when setting the RTS options. Usually these are made on the basis of simulations, profiling and 
sample timings using visualisation tools. An example of how such profiling can improve the decisions 
m ade about a program can be found in [LTB01]. The profiles can be used to identify bad load 
balances, bottle necks, and other problems in the program ’s execution.

8.1.2 Explicit and sem i-explicit languages

It is more common for parallel languages to be explicit about some of the parallel details. The 
programmer has to  specify these himself, while the remainder are still decided by the compiler. 
Skillicorn and Talia [ST98] survey many of these languages, dividing them up by the details supplied 
by the programmer. There are many such languages, and here is not the place to discuss them all.
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Instead this section presents a representative sample, and discusses how the programmer makes his 
decisions.

At one end of the spectrum lie languages which are only explicit about w hat’s executed in parallel 
and what not, not about any other details such as where these things are executed or what commu­
nication is needed. These include languages such as HPF (described and discussed below), Strand 
[FK94] and NESL [Ble95, Ble96].

Somewhat more explicit is BSP [SHM97, Val90]. This is a programming model with an associ­
ated cost model, which estimates the costs of a BSP program. In the BSP model the program is 
structured as a set of computation steps separated by collective communication steps in which all 
the communication takes place, although this structure has, in some cases, been relaxed. This is an 
instance of the restricted SPMD programming model described in Section 8.2.3.

There are various BSP languages. They provide a fixed library of BSP functions, such as BSPLib 
[HMS+ 97]. Decisions about programs are usually made by hand using the associated cost model, but 
some are made by the compiler, such as the placement of data.

Eden [BLOMPM96, BL97], a parallel functional language based on Haskell, is also semi-explicit. 
Processes are explicitly created and connected, and communication and synchronisation is also given 
explicitly, but it remains abstract about the placement of these processes.

At the other end of the spectrum lie languages which are explicit about everything. These include 
the message-passing libraries, MPI (described in Section 2.10.1 and discussed further on the following 
page) and PVM [Sun90]. These are widely used, and have a degree of portability. However the 
programmer has to make all the decisions herself. Programs in these languages can achieve a high 
degree of efficiency because they can be hand-crafted, and can make use of details of the parallel 
computer.

There is a connection between the degree to which a language is explicit, the difficulty in pro­
gramming in th a t language and the speed achievable. Fully explicit languages allow programmers to 
make full use of parallel optimisations by hand-tuning their programs. This can produce very efficient 
programs, but requires a high degree of programmer effort and can be difficult. Implicit languages, on 
the other hand, hide these details from the programmer, making programming easier, but disallowing 
hand-crafted optimisations. Another issue is portability, as many of the optimisations are specific 
to a particular target, and including them means th a t the program will run fast on that target, but 
possibly slowly on other ones.

The approach in this thesis uses a mixture of the implicit and explicit approaches, employing 
the technique of incremental programming, described in Section 8.2. At the start of a derivation 
the program is implicit, but as the derivation proceeds the parallelism becomes more and more 
explicit. This gives the methodology the benefits of implicit programming in the early stages when 
optimisations are not necessary, while allowing the benefits of explicit languages in the final program. 
In particular, explicit languages allow us to give a lot of parallel details and use detailed optimisations. 
This thesis targets one such language, C+M PI, for this reason, although the methods described are 
applicable to the whole range of parallel languages. The approach is also designed to help alleviate 
the problems with explicitly parallel programming such as the difficulty of the programming and the 
lack of portability.

H P F

It is worth mentioning the semi-explicit language, HPF(High Performance Fortran) [MH95, MC97] 
in more detail because it provides an example of the way in which such languages deal with data 
distributions, one aspect dealt with in this thesis.

H PF is an informal standard for extensions to  Fortran 90 [BGA90]. These extensions include
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compiler directives for expressing data  distribution and a few constructs for parallel assignment 
loops. Directives s ta rt with ! HPF$ to distinguish them from the code.

For example, consider the code:
!HPF$ DISTRIBUTE a (BLOCK, BLOCK) ONTO procs.

This specifies th a t both dimensions of the matrix a should be distributed in a blockwise fashion 
over the corresponding dimension of the set of processors, procs. Each dimension can be specified 
separately, and distribution formats include * as well as the more standard ones. The * indicates that 
the corresponding dimension is collapsed, i.e., each entire “row” is considered as a single indivisible 
element, to be stored in a single processor.

Alternatively the programmer can align pieces of data  with other pieces of data, so th a t corre­
sponding elements are stored in the same processors. For example,

!HPF$ ALIGN b(:,:) WITHa(:,:) 
means th a t each element of b must be mapped to the same processor as the corresponding element 
of a. Again extra array dimensions can be collapsed using *.

It is the compiler’s job to generate a data  distribution for each piece of data  so that it satisfies all 
of these constraints.

M P I

M PI (see Section 2.10.1), in contrast to many of the languages discussed so far, is explicit about most 
areas of parallelism. This allows very fast programs to be written through coding the communica­
tions and data  placement by hand. Therefore it has gained a fair degree of popularity, both as a 
programming language, and as the target of derivation and compilation systems. Another key factor 
is its portability. MPI is implemented on a range of tightly-coupled, massively-parallel processing 
machines and networks of workstations. Although this doesn’t  cover all parallel systems, these are 
the key systems in use today.

P artly  for these reasons, C +M PI was used as the target for the methodology in this thesis. In 
principle the methodology can target a wide range of parallel systems and languages, but M PI provides 
us with a widely-used and efficient representative target.

However M PI also has some disadvantages. In particular, because it is so explicit about the 
parallelism, the programmer is responsible for many of the parallel decisions. The compiler provides 
little support for this. These decisions are also intertwined so it is hard to  introduce them one at 
a time. Therefore many programmers try  to write the final code straight away, making all of the 
decisions at once, using methods such as those given in Section 8.1.4. These disadvantages can, 
however, be overcome by altering the normal method of writing programs. Such a technique is used 
in this thesis.

8.1.3 Parallel combinators

Parallel combinators are an idea th a t arose from work in functional programming on expressing 
programs through a set of combining forms or functions [Bac78]. The parallelism is encapsulated in a 
set of higher-order functions, such as map and scan, which capture a specific communication pattern. 
This set may or may not be fixed.

This idea was picked up and modified for algorithmic skeletons [Col89, DFH+93], which provide 
the user with a fixed set of higher-order functions or program “tem plates” for expressing the paral­
lelism. They were originally designed as a portable library for imperative languages, but were quickly 
integrated into functional languages. Each skeleton can be implemented for multiple target machines,
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one implementation being given for each target. A skeletal compiler, such as P 3L [BDO+95] translates 
the programmer’s calls to skeletons into their implementations on the appropriate architecture.

Skeletons have the advantage th a t their implementations can be made very efficient by writing 
them by hand. Considerable effort can be invested in their development because there’s only a 
limited number of such implementations which need to be written. But the programmer herself still 
doesn’t have to deal with such details, and is thereby enabled to  write her programs at a high level 
of abstraction.

There has been a lot of work in the skeletons community and on parallel combinators in a more 
general sense. In fact, some of the work on skeletons broadens the definition of a skeleton. In 
particular, people have realised that single implementations for each skeleton/machine pair aren’t 
always a good idea, because an efficient implementation in one instance might not be efficient in 
another. Sometimes i t ’s better to allow a choice of implementations.

P 3L [BDO+ 95] does this by parametrising the implementations with the costs of the low-level 
operations on the target, and finds good values of these param eters using cost formulae.

Bratvold [Bra92] looks at the choice between parallel and sequential implementation of a combina- 
tor, and considers how to allocate tasks so th a t a good load balance is achieved. These decisions are 
made by hand, although they could in theory be done automatically. Performance models estimate 
the performance of different alternatives.

Performance models can also be used for other decisions. Darlington [DGT93, DFH+93] describes 
how they can be associated with each skeleton/machine pair to  help one choose between different 
implementations of skeletons.

As well as standard performance models, specialised ones for skeletons have therefore also been 
developed [HCOO].

FAN [GP99] extends work on skeletons to allow higher-level decisions. It automatically applies 
transform ation rules to give a set of alternatives with cost estimates, on the basis of which choices 
can be made. Choices are made by hand, but the estimates are generated automatically.

8.1.4 D ecision making m ethods used

As previously mentioned there axe many decisions to be made in parallel programming: the place­
ment of the data, the scheduling of the tasks, the choice of communications, and many others. The 
languages and systems described above show th a t there are many techniques and methods for making 
such decisions. These vary widely in formality and style, and in the ways in which they are applied. 
Programmers commonly use informal techniques, sometimes even just relying on programmer intu­
ition and experience. Compilers, on the other hand, use precisely-defined algorithms. Sometimes 
such algorithms are too complex and detailed to be applied by hand, but this is not always the case.

G eneral gu idelines

Programmers often use guidelines to help them make decisions. Such guidelines come in many 
forms. Although some are merely intuitive, others are taught in courses on parallel programming 
or given in introductory textbooks. For example, the textbook [Akl89] describes basic techniques in 
designing parallel algorithms. Others, such as [WA99], give strategies for parallel programming, such 
as methods of partitioning data or pipelining, illustrating them with examples of when and how they 
can be applied.

Other, more detailed guidelines also exist. For example, much work has been invested in deter­
mining the best ways to parallelise particular problems. Textbooks, such as those mentioned above, 
give standard algorithms with appropriate data  distributions for some common problems. In partic­
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ular, [Rob90] focuses on Gaussian Elimination and shows how it can be coded for a variety of parallel 
systems. These techniques can also be applied, with some imagination, to  other algorithms.

Other research has focussed on classes of problems. This has often been in the context of particular 
systems, noticeably skeletons (e.g., divide-and-conquer [GL95]), but often the insights gained can also 
be applied to other situations.

Profiling and Sim ulations

Several languages and systems, such as GpH, have profilers which can pass run-time information to 
the system or the programmer about the execution of a program. This includes the time the execution 
takes, but often also other information, such as the load on the processors and the status of the tasks. 
Such profilers may be specialised for particular versions of a language or for a particular system. For 
example, in the Digital Parallel Software Environment, HPF can be profiled using the p p re f utility 
[HPF97].

Such information can be used to determine where the hotspots, in a program are. These are the 
places in the program where the parallel behaviour is particularly bad. These parts can then be 
further examined and improved. The profiler might also help to identify the type of problem, for 
example, many idle processors are symptomatic of a bad load balance or lack of parallelism. An 
example of this is given in [LTB01] for GpH.

Even without detailed profile information, run-times can be used to compare alternative imple­
mentations to determine which is better.

However profiling requires an executable, final-version program to be written, and run on the 
target architecture. Even worse, when comparing implementations, more than one program must be 
written. In many situations, the time to write a final program is high, as may be the execution time. 
This can be a costly exercise. Therefore, if possible, if is useful to time just one module or part of 
the program instead of the whole.

An alternative approach is to use a simulator, which simulates the program ’s execution rather 
than actually running it on a parallel machine. This is particularly useful if the target machine is 
not available during the development process. Some simulators therefore model specific machines. 
[HGL+93] gives one of many examples—a simulation of the data  diffusion machine. Other simulators, 
such as GpH’s GranSim [Loi96], are designed to model a variety of machines. These have the addi­
tional advantage of letting the programmer easily see the program ’s operation on a range of machines. 
It is also sometimes possible to simulate the operation of a program which is not complete—perhaps 
without all of its parallel details decided. This is particularly useful because one doesn’t have to write 
the entire program in its final form, a time consuming task especially if several versions are to be 
tested.

A simulator doesn’t  give such accurate timings, but it is simpler and quicker. If the program 
isn’t in its final form, the simulator may have to  make some assumptions about it. These are kept 
as reasonable as possible, but in many cases they cannot be made usefully. The different decisions in 
a program all interact with each other, and sometimes all of them  have to be made before sensible 
timings can be obtained.

P rew ritten  packages

Many programmers make use of packages written and optimised by others, which has the advantage 
th a t the programmer himself need not make the decisions. Skeletons take this approach, by providing 
standard implementations of a fixed set of combinators. Collective M PI library functions can also be 
viewed in this way, although on a much lower level of abstraction. These functions are implemented
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in an efficient way which is hidden from the user. The programmer need not worry about what 
individual communications are needed to obtain the collective communication.

There are also many higher-level prewritten packages or libraries of functions, which implement 
whole algorithms efficiently, especially for certain areas of programming, such as numerical analysis. 
An example is ScaLAPACK [BCC+97] which is a library of linear algebra routines for distributed 
memory MIMD machines and networks of workstations. It supports both MPI and PVM.

This method frequently produces very good code for the provided functions. However, when 
dealing with a situation outside the scope of the packages, it is of little help. In some cases, it can 
also be restrictive, discouraging or forbidding the programmer from expressing parallelism in other 
ways. In other cases, such as in MPI, the functions provided are still fairly low-level, and their use 
still involves much decision-making.

C ost m odels

Cost models, described in Section 4.2.2, are frequently used to  make decisions because they provide 
a quantitative analysis. They are applied, for example, in work on skeletons [DGT93, GP99], and in 
the derivation approach, TwoL (see Section 8.2.3).

Cost models are often used to model the cost of a whole program, different alternatives for which 
can then be compared. However it is also possible to produce costs for each part of the program and 
then work out the best combination of these with an algorithm. This method is used, for example, 
in [To95]. It serves to simplify the cost calculations involved.

In some cases it is possible to parametrise the model with descriptions of the decision which is to 
be made. The costs can then be manipulated to determine what the best values of the parameters 
would be. For example, TwoL [RR96] uses parameters to  describe the d ata  distribution. This thesis 
makes use of a similar idea (see Chapter 4).

There are a variety of cost models available. Skillicorn in [Ski99] explains some of the difficulties 
involved and some of the approaches taken in these models.

Many people have made up cost models suited to  their particular needs—for a particular machine 
or class of problems. There are also more general cost models available which apply to a range of 
machines and languages. However they do not have the accuracy of a model th a t deals with the 
specific concrete details of a particular machine. These general models abstract away from these 
details by parametrising the cost measures. For example, BSP, described in Section 8.1.2, uses a 
general cost model for SPMD programs. Parameters represent the number of processors, the cost of 
barrier synchronisation and the cost per word of delivering a message. LogP [CKP+93] is another 
general model, related to  BSP, but it can be used for less structured programs.

Since machine-specific models can only be used for particular machines, late in the methodology, 
they get in the way of using the derivation for multiple targets. However, some decisions are very 
tied to  the target machine, and different decisions need to be made for different targets. In such cases 
these models are useful.

However, other decisions aren’t so dependent on the target, and for these, i t ’s better to use a more 
general cost model. In principle any cost model could be used in the methodology described in this 
thesis, and different cost models could be used in different places. O ’Donnell and Riinger [ORROl] 
have proposed formalising this as a set of different cost models for the methodology.

For illustration purposes, this thesis uses the cost model used by TwoL (Section 8.2.3). It is 
described in this thesis in Section 6.3.1. This is a simplification of the LogP cost model which is 
designed to give simple, general but fairly accurate cost approximations for use in making decisions 
about programs.
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In general, cost models allow us to  reason about the program clearly and mathematically, us­
ing established techniques. However they can produce complicated equations which are difficult to 
manipulate.

S olving constraints

As well as being used directly to  compare the costs of different alternatives, cost models can be used 
in more oblique ways. Section 4.2.2 describes how a set of constraints on the program can be specified 
and then manipulated (perhaps using cost models) to determine good values for parameters.

For example, in HPF (see Section 8.1.2) the programmer specifies a set of constraints on the 
placement of data. Certain pieces of data  have to be placed in the same processors as certain other 
pieces, and some of the distributions can also be specified. The algorithm produces a set of data 
placements which solves this set of constraints.

There may also be constraints on the functions available from a library. For example, a blockwise 
distribution might be more efficient for a procedure in the context of a particular program, but the 
library may only provide a cyclic implementation. In such cases, the programmer has a choice between 
using sub-optimal distributions, or taking the extra effort of re-implementing library functions with 
different distributions.

An example in this thesis of making decisions by satisfying a set of constraints is given in Section 
5.4. It involves static load balancing. A good load balance often (although not always) improves a 
program ’s performance. Rather than examining the performance directly, it is therefore possible to 
speed up the program by considering only the load balance. This could be expressed in equations 
which can be manipulated.

C om bination

In most informal systems, a mixture of decision-making methods is used. Programmers commonly 
use a  mixture of intuition, guidelines and profiling when programming directly in the target lan­
guage. Some of the more formal approaches also allow a choice between decision-making methods, 
for example, TwoL gives a choice between automatic decision-making and user choice.

Different methods are suited to different circumstances. Sometimes a decision is easy to make, 
especially for an experienced programmer, and formal approaches are not necessary. For example, 
one d a ta  distribution may place all the data  which is used together in the same processor and so 
requires no communication while another requires a lot of d ata  to  be communicated constantly. The 
difference in the cost of these two choices is clear without formal calculation. However other decisions 
are harder to  make, and mathematical methods, both those based on cost models and key properties, 
may be able to  help in such cases.

This thesis attem pts to maintain a balance by allowing different methods to be used in different 
situations. A cost model can be used when its formalism and increased accuracy are needed. However 
more ad-hoc methods can also be used when they can give good results or when non-optimal programs 
are acceptable. This is discussed in Chapter 4.

8.2 Incremental programming

The previous section discussed methods for making decisions during parallel programming, but sep­
arate from the methods used, there is another question to be addressed. Should all of the decisions 
be incorporated into the program at once, or one at a time?
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It is common practice to write programs directly in their final form. These programs can be 
modified if profiling shows problems, but in many programming languages it is hard to isolate separate 
decisions—they all affect multiple parts of the code. In essence the programmer deals with multiple 
decisions at the same time.

A more effective approach is incremental programming, in which the decisions are made and 
introduced into the program one at a time. The program goes through a series of well-defined versions 
before it arrives a t its final form, and the transformations between them are also well-defined. The 
term  “incremental programming” is also sometimes used more generally to mean that programs are 
modified incrementally, but here I focus on the more specific definition.

Incremental programming is especially useful for parallel programming because of the large number 
of decisions which must be made.

8.2.1 C om pilation by transform ation

One of the most common uses of incremental programming is in source-to-source transforming com­
pilers. Compilers commonly have fixed stages or phases which transform a program ’s representation. 
Examples of such stages are the lexical analyser, the intermediate code generator and the code opti- 
miser [ASU8 6 ].

Each stage has its purpose, though probably the one most closely related to  incremental decision­
making is the optimisation phase, since decisions axe usually made in order to optimise a program. 
This phase may or may not be incremental, with one optimisation applied after another, and may 
not even be included in a compiler.

Several compilers use an idea called compilation by transformation. In this, the compilation 
process is expressed as a sequence of correctness-preserving transformations, each of which modifies 
the program in a way th a t makes it more efficient or brings it closer to the target. This is the idea 
used in GHC [PJS94], and the parallel functional language Eden, as discussed in [PPRSOO], and is 
closely related to the transformation process often used in incremental parallel approaches.

8.2.2 Increm ental parallel approaches

Incremental parallel programming is often used informally, w ithout a fixed structure or stages. The 
programmer writes a program, analyses its performance, and then rewrites it to make it more efficient. 
An example of this is given in [LTB01] in the parallel functional language, GpH. Such languages have 
the advantage th a t the program can be transformed formally using equational reasoning, in the same 
way as the transformations in this thesis. However, the framework is still informal.

There are a number of formalised incremental approaches. Gorlatch in [GL95] presents an incre­
mental system based on BMF. Clint, Fitzpatrick et al. [CFH+ 94, FHB94, FCHK96] have developed a 
method for deriving imperative data-parallel implementations from non-explicitly parallel functional 
specifications, by automatically applying a series of rewrite rules. Loyens and Van de Vorst [LV90] 
m anipulate functional specifications using invariants to  derive parallel programs.

The following sections examine a few incremental parallel approaches in more detail.

8.2.3 TwoL

TwoL [RR96, RR95] is an incremental parallel approach, introducing decisions one at a time. It is 
focussed on the group-SPMD (GSPMD) style of programming, allowing the expression of both task 
and d a ta  parallelism.

In the restricted SPMD  model, programs are structured in a series of stages or macrosteps. Each 
macrostep is made up of a computation step in which each processor only performs local computations,
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followed by a communication step when processors can communicate with each other. Group SPMD 
divides a program up into modules, each of which executes according to  the SPMD programming 
model. Modules may be executed one after the other or concurrently, in which case each module is 
executed by an independent group of processors in parallel.

Such a program structure means th a t the main decisions to be made are scheduling or allocation, 
in which modules are assigned to processor groups, load balancing, in which these groups are allocated 
to processors so th a t the load on each processor is more evenly distributed, and data distribution, 
when the internal data  distributions of the modules are determined.

TwoL uses a fixed derivation structure. The program starts off as a parallel specification including 
notes of all potential parallelism. Then each of the decisions is made for the program, one after the 
other, in the order given above. The decisions can be specified by the programmer, or alternatively 
can be worked out by the compiler using algorithms as in Section 8.1. In order to aid this, TwoL 
provides a simple cost analysis model for modular programs.

TwoL uses an imperative language in which information about potential parallelism and the 
decisions can be expressed using directives or annotations, and calls to library redistribution functions. 
The language is specialised to TwoL, but the derivation process targets standard languages, basically 
C with communication operations, either ones specific to a particular machine, or ones from the 
message-passing libraries MPI or PVM.

8.2.4 Com binator m ethods

Combinator programs have been produced and implemented in a variety of ways, some of which are 
incremental. A standard such skeletal derivation involves transformations from a specification to 
a program using skeletons or from one skeleton or set of skeletons to another in order to improve 
efficiency [DGT93, BGP93].

For example, Fradet and Mallet [FMOO] present an incremental derivation process for skeletons. 
The program is formally transformed from one version to another through a fixed series of stages 
within a  functional language, before it is transformed to its implementation in C+M PI. FAN [GP99] 
and SAT [Gor96] are other general transformational frameworks for skeletons, operating in a similar 
way, and Pepper [Pep93] gives another step-wise skeletal derivation process, this time for systolic 
algorithms.

This work is similar in several ways to  the work in this thesis. Programs are transformed formally, 
through a series of stages during which the program is optimised. These transformations may take 
place within a functional language, before being finally transformed into a language such as C+M PI.

However this work still restricts the combinators to a fixed set with fixed implementations. Skele­
tons are only transformed into other skeletons at a similar level of abstraction, whereas, in this thesis, 
multiple levels of abstraction are used, so th a t the penultimate program can be quite similar to the 
final implementation, making the final transformation particularly simple. In contrast to this, the 
skeletal methods tend to have a sizable jump in this final transformation.

Incremental methods have also been applied to other parts of skeleton derivation, such as the 
compilation of a skeletal program, as was mentioned in Section 8 .2 .1 . An example of this is the 
compilation of individual skeleton functions. HDC (Higher-order Divide and Conquer) [HerOO, HLOO, 
HLG+ 99] is a skeletal functional language, originally aimed at divide-and-conquer algorithms. It is 
syntactically a subset of Haskell but is strict. In HDC, incremental methods are used to derive skeleton 
implementations manually, which can then be linked with HDC code. This is more closely related to 
the work in this thesis than the previous methods, because a sequence of equational transformations 
are applied to the body of each skeleton to bring it closer to C+M PI, before it is finally transformed 
into C +M PI itself.
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This skeletal compilation process is not an instance of compilation by transformation, as the actual 
compilation process uses the implementations which have previously been derived by hand, as in this 
thesis.

8.2.5 Summ ary

Despite its usefulness, incremental programming also has some disadvantages. It can sometimes 
increase program development time, for example, if the program only involves a few simple decisions. 
In such cases it may be quicker to make all of the decisions a t once and write the program directly 
in its final form. Another disadvantage is the time and energy needed to set up the framework of 
an incremental approach in the first place. For example, there are often transformation rules which 
need to  be given or a specialised language or subset of a language to specify. Lastly some, though not 
all, incremental approaches have a fixed structure, requiring decisions about aspects of the program 
or communication which are not relevant to or im portant in the current situation. They may also 
ham per one from making other decisions and optimisations which ( are) relevant.

However, incremental methods can produce many benefits, particularly for large problems or 
problems involving many decisions. In these cases they help to separate out the concerns, making 
the decisions easier and the program development process clearer. They can also clarify and simplify 
options, which has a side-effect th a t cost models are easier to  apply to the decision-making process.

Incremental methods also have the advantage th a t earlier stages of the derivation are applicable 
in a variety of situations. During these stages, several decisions about the algorithm to be used or the 
system to be targeted haven’t yet been made. Therefore, if one wanted to derive the same program 
for a different situation, such as a different target architecture, it wouldn’t be necessary to do the 
whole derivation all over again—the initial stages could be reused.

8.3 Abstraction

Incremental methods start with programs th a t are fairly abstract— there are aspects that are not 
specified, decisions still to be made and details to be introduced. As these decisions and details are 
specified during a derivation the programs become more concrete.

This raises two questions. Firstly, how can we write a parallel program and still be abstract about 
the parallel details? And secondly, how can we cope with the different levels of abstraction in a single 
methodology?

This section considers various answers to both of these questions, some of which are used in 
existing methods.

8.3.1 M ethods in existing increm ental approaches

Parallel combinator methods such as those described in Section 8.2.4 rely on higher-order functions, 
such as skeletons, to  abstract away from the parallel details. These combinators usually represent 
whole patterns of communication and computation, and the program merely calls the combinators 
without knowing how they are implemented.

Combinator derivations usually replace combinators by other ones from the same set, especially 
in traditional skeletal methods. Since the combinators in most methods are all at a fairly high level 
of abstraction, the level of abstraction in the program doesn’t  change drastically. However there may 
be minor changes in abstraction level as some combinators may be a bit more specific than others.

However, some methods use combinators which aren’t  so abstract. For example, Fradet and 
Mallet [FMOO] use combinators which model particular communications operations, even single point-
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to-point communications. These combinators are much more explicit about the parallelism and 
hence much less abstract than traditional skeletons. However, as with other methods, most of the 
combinators provided are on a similar level of abstraction, even though this level is different from 
usual. As before, programs at different stages have similar levels of abstraction.

HDC (see Section 8.2.4) is another skeletal method th a t uses incremental programming. Initially 
the parallelism is encapsulated in these skeletons, but later on list comprehensions are used to express 
data-parallelism in the derivation. Operations on elements of a list are assumed to be executed in 
parallel.

Clint, Fitzpatrick et al. [FCHK96] also use functional languages, although they use a version of 
lambda calculus instead of Haskell. They focus on m atrix algorithms which map easily to array and 
vector processors, so th a t arrays and array functions can be used to represent the data structure and 
the set of processors.

O ther methods, as well as functional languages, are possible. Loyens and Van de Vost [LV90] use 
predicate calculus to express constraints such as data distributions. These then modify the program 
so that it is specialised to these constraints. Another example is BMF, on which the incremental 
system proposed by Gorlatch and Lengauer in [GLOO] is based.

TwoL abstracts away from parallel details by using a non-executable form of program called a 
parallel frame program. As it isn’t executable, there is no need for it to deal with all the parallel details. 
The program can be made more concrete by adding specialised pieces of code which give particular 
information. For example, the annotation [on p] specifies th a t the given module is executed on p 
processors. This is clear and simple, but has the disadvantage of not being executable, which limits 
the ability to check the correctness of intermediate stages and to profile the initial program.

8.3.2 Other abstraction m ethods

Any programming language is in a sense an abstraction mechanism, abstracting away from the details 
of the registers and machine code instructions. However some are more abstract than others, and 
parallel programming is one area in which this is clearly true.

I have already discussed languages which are explicit about the parallelism to varying degrees. 
The more implicit a language, the more it abstracts away from the details of the parallelism.

MPI, an example of an explicit language, encapsulates the communication in pre-defined func­
tions. Although these are explicit about the parallelism, they still abstract away from the details 
of the network and routing. Collective communication functions, furthermore, implement patterns 
of communication across the whole system. The programmer can use them without knowing what 
individual communications are needed to  implement them.

Alternatively one can specify the parallel details separately from an executable program. This 
approach is taken in TwoL as previously discussed. This has the advantage th a t there is no need to 
give all the details in a specification—it’s not going to be run.

It is also possible to write programs which simulate a parallel machine’s execution on a single 
processor, rather than actually running on a parallel machine. This can be done by setting up a 
model of the parallel machine which is then modified as the program executes. As it is only a model 
and not a real machine, only as many details as required need be given. Such models can also be later 
mapped to  real machines during a compilation stage and run. This method is often used in compilers 
and interpreters for sequential machines to represent the state of different parts of the computer, and 
is used in this thesis.

It is fairly common in parallel programming to use arrays or sequences to model parallel machines, 
especially data-parallel ones. Each element of the array is assumed to lie in a different processor. ZPL
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[LS93] uses this method, as does NESL [Ble95, Ble96], which also models data-parallel operations by 
single operations applied to whole sequences.

8.3.3 Separating coordination and com putation

Another way to  increase abstraction is to  separate the parallel aspects from the algorithmic ones.
Implicit languages do this by leaving all of the parallel aspects to the compiler, so that only 

the functional aspects are given in the program (see Section 8.1.1). Other approaches specify both 
coordination and computation aspects within the program, but do so separately.

Some languages, such as GpH and HPF, use compiler directives or functions to specify the paral­
lelism, isolating the parallelism to these directives. However these can sometimes be fairly low-level, 
and therefore occur in the program so frequently th a t the parallelism aspects end up being intermin­
gled with the program code anyway.

Strategies, as described in Section 2.3.6, aim to improve this situation in GpH. They encapsulate 
the dynamic behaviour (e.g., evaluation degree and extent of parallelism) of a data  structure in a 
function or strategy. This can then be attached to an expression to control how its value is evaluated. 
The main expression then need not contain the details of the dynamic behaviour. Although this is 
a good way of separating the concerns and achieving greater abstraction, it is limited. It can only 
specify the behaviour of distinct parts of a data  structure. If an expression evaluates to a single value, 
it cannot control how the evaluation proceeds.

The method used in this thesis, APM functions [OR97], described in Section 1.1.3, is related to 
this as it also encapsulates the parallelism within specialised functions. However, unlike strategies, 
APM functions may also include algorithmic content, and are used in the same way as ordinary 
functions. This allows greater flexibility and greater compatibility with target languages such as 
C+M PI, at the cost of possibly less separation between algorithm and parallelism. If a language such 
as GpH itself were used as the target, then the APM functions could be more like strategies.

APM functions are a form of parallel combinators which isolate the parallelism by restricting 
it to sets of higher-order functions. A program can be built up from combinators, without the 
programmer having to include the details explicitly. In general, parallel combinators may have to 
belong to a fixed set, as in the skeleton approach, or they can be distinguished in some other way, 
e.g., using annotations.

SAT [Gor96, GLOO] is one combinator approach which uses BMF [Bir89] to  express and transform 
the programs, and is based on a higher-order function called a list homomorphism. This is a general 
combinator capturing many different patterns of communication and computation. For example, map 
and fold are both list homomorphisms. This means th a t the set of parallel combinators is very small, 
and th a t transformation rules can be reduced mainly to those involving this homomorphism function, 
thus simplifying matters. This is at the cost of a loss in generality.

Another approach is to use a coordination language [GC92]. This can be closely related to the 
computation language, which is the approach taken in the functional coordination language Caliban 
(see Section 8.1). Alternatively, it can be a completely separate language, such as Linda [CG89], 
which can then be used with a variety of computation languages. In these, computation is separated 
from communication allowing each to be dealt with separately. For example, Caliban uses annotations 
on functional expressions to specify task placement (and hence communication).

8.3.4 Summary

There are many methods of abstracting away from the parallel details. This thesis picks up on some 
of the ideas which have been described in this section. It models the parallel system using a functional
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language. Due to  the nature of such models, different models can be used for different stages, allowing 
different levels of abstraction. Parallel combinators are also used, and they allow the separation to 
some extent of parallel and algorithmic concerns. Parallel operations are encapsulated in combinators 
which are annotated to identify them as such. This is closely related to the strategy approach, but 
there isn’t such a clean separation as in Linda, for example, because we want the retain the ability 
to model languages such as C +M PI where the communication is closely coupled with the program.

8.4 Formality in parallel programming

Formality is a word which is often used in computer science. It forms an im portant part of the 
methodology in this thesis. Webster’s dictionary [Porl3] defines “formal” as

Devoted to, or done in accordance with, forms or rules; punctilious; regular; orderly; 
methodical; of a prescribed form; exact; prim; stiff; ceremonious.

Clearly, the definition of the word itself is fax from exact. Many people use “formal” to mean 
different things, even in the restricted area of computer science.

8.4.1 Formality in expression

When some people say something is formal, they mean th a t it is w ritten down in a precise or prescribed 
form and not just a fuzzy idea in one’s head. However this is still general and vague. For example, 
both a contract and a programming language are formal in this sense, but the semantics of a program 
is much more precise than the semantics of an English description.

However, for many people this is not precise enough. If the semantics of a programming language 
isn’t clearly defined then the one cannot be sure what the program does. The same program can 
behave in different ways on different machines or a t different times. For example, among many other 
things, the C language doesn’t specify what the result of division by zero is [HSJ95]. The effects are 
unpredictable.

W ithout a clear correspondence between a program and its meaning it is hard to transform 
a program so th a t its meaning is retained, and these transformations cannot be proved correct. 
Nevertheless this rather vague description of a program ’s meaning is the predominant method of 
dealing with programs as most people are satisfied with running the program and observing its 
behaviour in a variety of situations.

More precise descriptions of a program ’s meaning, or semantics, have been produced for several 
languages because of the problems above. These can be used to reason about and transform programs. 
For example, BSP [SHM97] has a formal semantics for which algebraic laws have been given [JMC96] 
which could be used to develop programs. Formality can also be used to prove operational properties. 
GpH has a formal operational semantics [BKTOO]. This allows us to  apply equational reasoning to 
the parallel behaviour of GpH, and reason about properties such as number of processors, space and 
time used. NESL is another example with an operational semantics, and time and space bounds have 
been proved for its implementation on various machine models [BG96].

Sometimes the “prescribed form” definition of formal is taken further. For something to be formal, 
it must be written down in a very particular way, often involving many m athematical symbols. This is 
the approach taken by BMF [Bir89]. This method has many useful features. M athematical notation 
is usually concise, and this makes it easier to  manipulate and transform. It also has the potential to 
be precise, although simply using mathematical notation doesn’t give it th a t property.
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8.4.2 Formality in proofs

Other uses of the word “formal” refer to proofs of correctness rather than  to programs themselves. 
Proofs may be formal since they use set forms or rules and are regular and orderly. They can also be 
formal in other ways.

Many members of the formal methods community want everything done formally from first prin­
ciples. Nothing should be assumed, even basic arithm etic laws, without proof th a t they hold in the 
current language or system. Indeed they do not always hold. This leads to robust proofs. But the 
proofs tend to be long, tedious and complicated. It is difficult to prove non-trivial things in this 
way. Therefore there are various mechanical and computer-aided systems to  help with this. They 
sta rt from first principles and build up theorems. Examples include HOL [HOL], which is a theorem 
prover for higher-order logic, and Isabelle [NipOl], another theorem prover based on HOL, but which 
uses functional programming syntax and can be used to prove theorems about functional programs. 
These can be helpful but are often still fairly restricted.

It is possible to take the opposite tack and transform programs without proving the soundness 
of the transformations at all. This approach is often taken in compilers, especially in imperative 
languages where there is often no semantics which could be used to prove the rules sound. For ex­
ample, Allen and Kennedy [AK87] give some transformation rules for parallelising Fortran programs. 
Although they prove properties of dependence graphs, and in view of these the rules intuitively make 
sense, they don’t actually prove th a t the rules maintain the meaning of the program. It is, in fact, 
not possible to prove the rules correct as there is no formal semantics for Fortran, yet their approach 
is useful and can help a lot in parallelising programs.

Equational reasoning is one technique th a t combines the advantages of both of these methods. 
It uses techniques th a t have been shown to be sound, bu t without insisting on proving every detail. 
Some people complain that equational reasoning is not sound as Haskell has no standard semantics. 
However, a semantics has been given for the core subset of Haskell [PJW91] and for various extensions 
of it. In addition Haskell’s relationship to the lambda-calculus [Rev8 8 , Mic89] makes its meaning 
clearer than th a t of many programming languages. Extensions to Haskell are often defined using 
rewrite rules which convert them to core Haskell, therefore all th a t is needed in these cases is to prove 
th a t these rewrite rules are sound.

8.4.3 Formality in increm ental system s

Proofs are closely related to incremental programming, which derives a program by taking it through 
a series of stages, as described in Section 8.2. One of the key parts of this process is the transformation 
between stages, which can be done in a variety of ways. The sequence of transformations can, if they 
have been done formally enough, be viewed as a proof th a t the resultant program produces the same 
results as the initial one. Therefore the issue of formality is again an issue here.

As mentioned above, some systems, especially compilation systems, simply apply transformations 
without proving them correct at all. These are formal in the sense th a t they are precisely defined 
but they do not form a proof of correctness.

Clint and Fitzpatrick in [FCHK96] define a set of rewrite rules using a formal grammar for their 
incremental approach. Although these are not proved correct, they are based on similar principles to 
equational reasoning and such proofs are possible.

Skeleton derivation systems have a good potential for formality, especially those which use a 
functional language. Transformation rules are often applied to  a program to transform it from one 
version to the next, and in a functional language these can often be proved to preserve semantics 
[DGT93]. FAN [GP99] and HDC [HLOO] are examples of systems which use this method.
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Other skeletal systems, such as SAT [Gor96, GLOO], use BMF to prove correctness. The method 
in [LV90] uses predicate calculus.

In these systems, proofs are possible in principle, although not all the details may have been 
carried through. For example, BMF has no formal semantics, although such a semantics is possible. 
The authors of the systems feel th a t there are more im portant things to do than fill in the details.

In the APM methodology, described in this thesis, equational reasoning can be used to prove 
transformation rules which are then used to derive programs. This is formal. However the method­
ology is also flexible and doesn’t  insist th a t such a degree of formality is always used. In proofs, it is 
possible to leave proof obligations to be filled in later when a more formal derivation is needed. It is 
especially useful to leave proof obligations of obvious facts such as arithm etic properties.

8.4.4 A utom ation

It is possible to  autom ate both proof and derivation processes. Transformational compilers are, in 
one sense, simply autom ated program derivation systems.

Completely autom ated systems starting from an abstract specification have the advantage that 
the programmer need not worry about any of the parallel details. However, as mentioned in Section 
8.1, these parallel details are often difficult to  determine, and may involve “Eureka” steps which 
require human insight, as least at the moment.

The approach taken in most computer languages, such as C-fM PI, is to allow the programmer to 
specify these details in the initial program and then the autom ation (compilation) process takes over 
and produces the final program.

Incremental systems sometimes involve automation by asking the programmer to make decisions 
during the earlier phases in the process, and then carrying out the remaining stages automatically. 
An example is the system proposed by Fradet and Mallet [FMOO] in which the final compilation stage
contains the fiddly but straightforward details of the transform ation to C. This is a characteristic
of several skeleton systems because the programmer produces a skeletal program incrementally but 
isn’t involved with its implementation on the target, e.g., [DGT93].

Other systems, such as TwoL, allow autom atic decision-making, but also give the user the choice 
of making the decisions by hand, and then feeding the results in to  the compiler.

The work in this thesis is still at an early stage so th a t all the transformations must be done by 
hand. However, many of the stages, in particular, the tedious detailed stages, could be autom ated— 
it doesn’t really m atter whether a person or the computer does these stages. Other stages require 
decisions, so th a t human input may be useful. A choice could be offered in these cases between human 
and autom atic transformation.

There are also other machine tools which can be used to ease the transformation process. Era 
(Equational Reasoning Assistant) [Win] is designed to aid equational reasoning and so is particularly 
relevant for this thesis. It offers a half-way house between autom ation and a completely manual 
transformation. The programmer can give the initial program or expression and choose which rules 
axe to  be applied to which parts of it. E ra also supports induction, and lets one build up a library 
of already-proven theorems. However, it is not currently being developed, and further work on it is 
required before it can be used in the methodology.

8.5 Flexibility and portability

Flexibility is a useful property for a programming approach to have. It can be applied to many facets 
of th a t approach, from the way it expresses the parallelism to the systems on which it can run. This 
section examines some of these facets in more detail.
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8.5.1 F lexibility  in expressing parallelism

Many systems use a fixed set of operations or functions to express the parallelism. This is not 
necessarily a bad thing. If the fixed set is chosen carefully it can be used to express a large number 
of problems, and express them well. A fixed set, particularly of small size, can lead to simplicity in 
programs, and it makes the implementation easier.

Some systems, for example, skeletons and BSP, use a fixed set of fairly high-level functions to 
express the parallelism. This has the advantage th a t each of these operators can be carefully written 
and optimised to  run efficiently. However this also reduces the expressiveness of the language. It is 
still Turing-complete, but as the functions encapsulate whole patterns of communication it can be 
difficult or even impossible to use different patterns.

In other cases, the fixed set of operations is much lower-level, for example, in MPI or even GpH. 
In such cases the set may need to be fixed, as allowing the user to add to  it would create many 
implementation difficulties. There may also be a fixed set of operations which the underlying system 
is capable of performing. However, as the operations are low-level, the user can use them to create 
many patterns of communication. This makes them more flexible than higher-level systems.

However in such methods, the parallel details get mixed up with the algorithmic details as de­
scribed in Section 8.3, making the programming process difficult. In GpH, strategies [THLPJ98] have 
provided one successful way of dealing with this, keeping parallel details separate while at the same 
time letting the programmer write new parallel strategies and patterns of parallelism.

APM functions in this thesis aim to provide a similar possibility, separating out parallel details 
and aiding reuse, while letting a programmer write his own functions.

8.5.2 F lexibility  in the m ethodology

Flexibility is a useful property for a methodology to have. If i t ’s possible to do something in multiple 
ways, instead of in only one way, then i t’s more likely th a t one of these ways will fit a given situation. 
It is also helpful for a methodology to allow new methods to be developed if new, and possibly 
unexpected, situations may arise. In a general methodology, not all of its stages are relevant to all 
programs, or a t least not always in the same order. Sometimes it would be useful to delay a decision 
until more information is known, or to  apply known information to one part of the program, but 
leave another part until later. These are all ways in which a methodology may be flexible.

If one writes a program without using a methodology, then, of course, there is great flexibility. 
You can write your programs in any way you like. But this flexibility is unstructured. At the other
end of the spectrum lie systems such as compilers, which usually have a fixed, inflexible structure
[ASU8 6 ].

However occasionally compilers obtain a slightly greater degree of flexibility by allowing program­
mer input. For example, Fradet and Mallet in [FM00] describe a compiler in which the programmer 
can help to make the decisions about data  distributions. This is useful in situations when it is difficult 
for the computer to make the decision well.

Programming methodologies tend to be more flexible because human interaction is allowed. De­
spite this, there is often a fixed set of stages in a fixed order, e.g., TwoL and, to a lesser extent, FAN 
[GP99]. Using a fixed set of stages like this has many advantages. Sets of transformation rules only 
need to be developed between stages th a t axe next to each other in the fixed order. The programmer 
is clearer about what needs to be done a t each point, and cost models are easier to apply and the 
possibility of automation more feasible.

In general there is a tradeoff between flexibility and structure. A structured approach organises 
the process, making sure that the key stages are carried out and aiding the process. However this
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reduces the flexibility of the approach—program development must be fitted into the given structure 
which might not be applicable to any given situation. On the other hand extremely flexible approaches 
often do not organise or guide the process at all. However, there are approaches that lie between 
the two extremes. They are structured but that structure is flexible and can be changed. TwoL is 
an example of such an approach. It allows the programmer a t each stage the choice of deferring a 
decision to the compiler. This method still uses a fixed set and order of stages, just hiding some of 
them  from the programmer. In many systems, trivial decisions can also be made for stages which 
aren’t im portant in the current situation.

This thesis uses a similar idea to TwoL, but tends more towards the flexible than  the structured 
approach. It chooses to give up some of the advantages of fixed stages for the advantages which 
flexibility brings.

8.5.3 Flexibility in languages

Sometimes it is useful to be able to target a particular language. This may be to produce compatibility 
with legacy code. If the existing system is written in Fortran, say, then it may be necessary to write 
the new code also in Fortran, or at least to have the ability to call Fortran subroutines. Programmers 
may also prefer to program in languages they are familiar with rather than  having to use a new 
language.

Linda (see Section 8.3.3), for example, is a coordination language which can be used with a variety 
of computation languages. This eases the parallelisation of legacy code, and allows the programs on 
different processors to be written in different languages. A programmer still has to learn a new 
language, Linda, but much of the code remains in a familiar language.

Similar points apply to other languages and systems. For example, the message-passing library, 
MPI, works with C or Fortran.

The methodology in this thesis can target a variety of languages, although the structure is not yet 
in place to do so. This can help with legacy issues. However much of the derivation involves Haskell, 
and the programmer would therefore have to learn at least the basics of this language. Nevertheless 
Haskell is used because of its various suitable qualities (see Section 1.3.3).

8.5.4 Flexibility in target system s

Portability is also a facet of flexibility. A portable program is flexible in th a t it can be run on more than 
one machine or type of machine. Portability is an im portant issue in parallel programming, because of 
the wide range of machines available and the rate at which these machines become obsolete. However 
it has also proven problematic, in part due to  this wide range of machines. There is no unifying model 
for parallel machines in the same way th a t there is for sequential ones. Many programs written to run 
on one machine simply cannot run on another. Different machines also have different features, and 
so programs for them have different optimisation techniques. A program optimised for one machine 
will often have terrible performance on another one.

Many languages nowadays are designed to run on more than  one machine, therefore attaining a 
degree of portability. It is common to focus on one type of machine or architecture. For example, MPI 
is designed for distributed-memory message-passing MIMD machines. It is therefore implemented 
on a range of tightly-coupled, massively-parallel processing machines and networks of workstations. 
Although this misses out a lot of parallel systems, these are the key systems in use today, and therefore 
MPI remains popular.

HPF is designed to be largely architecture-independent, so th a t it can work with a large spectrum 
of multi-processor models, SIMD as well as MIMD, shared as well as distributed memory. Coordina-
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tion systems [GC92], such as Linda, can also in principle be used to coordinate all kinds of parallel
systems, and, in fact, all kinds of ensembles of processing items.

Portability is also an im portant issue for skeletons. In order to gain portability, multiple imple­
mentations for a single skeleton can be developed, one for each machine or architecture [DFH+ 93]. 
When a skeletal program is compiled the appropriate implementations of its skeletons are chosen.

Some systems take an alternative approach by targeting a portable language. For example, HDC 
(Section 8.2.4) and TwoL target C+M PI. In this thesis, we use this approach to target C+M PI, but 
(in common with systems such els T w o L )  the ideas behind the methodology are more general than 
this and can target multiple languages.

The methodology also achieves a degree of portability by virtue of its nature as an incremen­
tal methodology. As details are introduced the program becomes more concrete and more tailored 
towards implementation on a particular machine. The transform ations and decisions in the method­
ology are ordered so th a t the ones most closely linked to the machine come late in the derivation. 
This means that the earlier stages may be applicable to a variety of machines, and can therefore be
reused in a derivation of the same program for a different machine.



Chapter 9

Conclusions

This chapter summarises the content and contributions of the thesis, before discussing the feasibility 
of the methodology and its effect on several areas of parallel computing. Finally some suggestions 
for further work are presented.

9.1 Summary

This thesis has presented a methodology for developing parallel programs, in which executable paral­
lel programs are derived incrementally from high-level specifications. A specification is given initially 
in m athem atical notation and transformed into an abstract functional specification. This is then 
transformed through a series of stages, during which additional information is given about the pro­
gram, the target architecture and the parallelism. Finally the program is transformed into the target 
language, which may or may not be functional.

In particular, this thesis has developed and extended earlier ideas and preliminary work. It 
has presented the basic infrastructure needed in the methodology, in the process of which it has 
investigated how parallel systems can be modelled and m anipulated in Haskell, and how the resultant 
programs can be transformed. The basic methodology has been augmented with the ability to 
introduce and reason about some key parallel programming features, including data  distributions 
and program optimisations. This work was supported and dem onstrated using case studies.

9.2 Contributions

The goals of the thesis were set out in Section 1.2 at the s ta rt of this thesis. They have now been 
fulfilled as described below:

• The thesis has clarified the essence of the methodology, explaining and discussing important 
issues throughout the thesis, but particularly in Chapters 2 to 4.

• Chapter 2 presented a detailed structure for the methodology. It identified the methodology’s 
key stages, and gave details of the APMs and their implementations for these stages and sample 
other stages.

•  This chapter also showed how parallel systems can be modelled in Haskell at different levels of 
abstraction, providing different amounts of information about the parallelism.

• Chapter 3 focused on the transformations in the methodology, and demonstrated how the 
Haskell models and APMs can be used to support these transformations.
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• It then gave the transformation rules and lemmas needed to perform a range of simple deriva­
tions of C +M PI programs from start to  finish. These included rules for transforming mathe­
matical specifications into Haskell, performing various optimisations, dealing with monads, and 
introducing input and output details.

•  The chapter also divided these transformations into logical and manageably-sized steps, which 
dealt with a single feature or decision at a time. Some of these introduced optimisations, such as 
load balancing, while others increased the level of parallelism detail. Particularly complicated 
steps were divided into smaller, more manageable ones. For example, the introduction of monads 
was split into two main parts. Firstly the basic monad was introduced, and then variables were 
used to store intermediate values.

• Chapters 2  and 3 also considered data  distributions and various program optimisations within 
the context of the methodology. They extended the basic methodology with the ability to 
introduce and reason about these features.

• Chapter 4 described how decisions can be made in the context of the methodology, and illus­
trated  this with the choice of parallel or sequential implementation of a function, the choice of 
data distributions and static load balancing.

• The last few chapters, 5 to 7, then demonstrated the methodology in practice through two case 
studies. The first, in Chapter 5, was simple: it dem onstrated and motivated the main points of 
the basic methodology. The second, Gaussian Elimination, described in Chapter 7, was larger 
and hence placed the methodology under greater stress. In particular it demonstrated the use 
of data distributions. In addition, Chapter 6  focused on part of this case study, demonstrating 
how detailed communication-specific optimisations can be introduced into a program.

In summary, this thesis has:

• investigated how parallel systems can be modelled and manipulated in Haskell, and how the 
resultant programs can be transformed.

• brought the methodology significantly closer to a usable state, providing the support needed for 
the derivation of basic C +M PI programs, and augmenting this to cope with some additional 
features.

• critically assessed APMs after carrying out detailed work on them. This assessment continues 
below.

9.3 Feasibility

Even though this thesis has demonstrated the APM methodology on case studies, it is important to 
ask if it is feasible in practice for real-world programs. Even in the small case studies presented in 
this thesis, it is obvious th a t the derivation process is not easy. Several of the transformation rules 
and lemmas axe complicated and some familiarity with program transform ation is needed in order to 
apply them accurately. In addition, the APMs and code in the later stages use a complicated model 
of the system, and can therefore be hard to manipulate and use, at least a t first.

Nevertheless, there are situations in which this difficulty is worth it. A complete formal derivation 
constitutes a proof th a t the final program meets the initial specification. Such proofs can otherwise 
often be difficult to produce.
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However, in general, it is not reasonable to expect a programmer to use the methodology in 
the same way as in the case studies, carrying out every transform ation formally and by hand. The 
complicated transformations increase programming difficulty, rather than decreasing it, unless the 
programmer has a high degree of familiarity with program transform ation and functional program­
ming. However, this is not the only way in which the methodology can be used.

One alternative is a large-step derivation, in which some of the steps are combined, carried out 
informally or skipped altogether. The transformations presented in this thesis have been kept small to 
simplify them, but this is not necessary. Such small steps can be tedious to do by hand, and so it may 
be preferable to  skip some of them, or to combine several into a larger transformation. Alternatively, 
steps can be performed informally if the programmer feels capable of doing so correctly.

This decreases the time needed to  carry out a derivation, and removes some of the complex 
program transformation. Although a formal proof of correctness no longer exists, it is possible to 
obtain it later on, if necessary, by redoing the missing steps formally. This method also allows more 
rapid prototyping, as intermediate versions of the program are obtained more quickly. Running these 
can help the programmer to  catch mistakes and to be convinced of the program ’s correctness.

However, even this method requires detailed program manipulation and transformation, and it 
seems that, for the methodology to be really useful in practice, something more is required.

This can be provided in the form of tool support for the transformations, especially the more 
complex ones. For example, tools can apply transformation rules chosen by the programmer, and 
can keep track of the current state of the program. In addition, those transformations which don’t 
involve user decisions can be automated. This reduces the amount of work the user has to do, and the 
amount of detail he has to keep track of. Such support has not yet been provided, but is described 
further in Section 9.5 as a possibility for future work.

9.4 Conclusions

The methodology presented in this thesis helps with parallel programming by addressing four key 
challenges mentioned in the introduction. Firstly, parallel programs can be very difficult to write 
because of the increase in the number of details to keep track of. This is exacerbated by an increase 
in the number of design decisions, such as the choices about the placement and movement of data. 
Portability is also a challenge because the efficiency of a program depends heavily on the target 
machine. Finally, there is the challenge of proving a program correct.

This section discusses how well the methodology handles each of these challenges.

P r o g r a m m i n g  d i f f i c u l t y

The APM methodology addresses parallel programming difficulty in two main ways. Firstly, it makes 
it easier to keep track of the parallel details by introducing them  gradually within a structured frame­
work instead of all a t once. Secondly, it eases the introduction of these details by encapsulating them 
in APMs when they are first introduced. This was demonstrated in particular for data distributions. 
In later stages these details are moved from the APMs into the main program. Sets of program 
transform ation rules ease this movement.

However, as mentioned above, the programming process is still not easy. Several of the trans­
formation rules and lemmas are complicated and require familiarity with program transformation. 
The code in later stages can also be complicated. It is, however, possible to simplify this process as 
discussed above.
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D e c i s i o n  m a k i n g

The methodology uses an incremental derivation approach th a t allows decisions about the program 
and its parallelism to be made one a t a time, instead of all a t once. This simplifies the decision 
making process because only those issues relevant to the current decision need to be considered at 
each stage.

The methodology is also flexible, allowing multiple decision making techniques to be employed, 
depending on the situation. More complex, formal methods can be used when required, while simpler, 
informal methods can be used if they are adequate and applicable. This can simplify the programming 
process, and allows advances in decision making techniques from other areas of programming to 
improve the decision making in the methodology.

Although the methodology makes decision making easier, it is still not always easy. The choice 
of data  distributions in Chapter 6  reveals th a t the separation of decisions is not always as clear-cut 
as might be desired. The possible future optimisations for each distribution had to be taken into 
account when making the decision. This example also demonstrates th a t the cost analysis can be 
complicated and lengthy.

Nevertheless, without the degree of separation provided by the methodology the decision would 
have been appreciably harder. It may also be possible to reduce the complexity of the decision­
making process through the use of work in areas such as cost models. Some research on combining 
cost models more closely with APMs has already been carried out [ORROl].

P o r t a b i l i t y

It is desirable to  have programs th a t can be run efficiently without alteration on different target ma­
chines, and this area has been the subject of some research, especially in implicitly parallel languages 
and skeletons, both of which are described in Chapter 8 . Some of the work in this area can be reused 
in the methodology by targeting the appropriate programming languages and systems.

However, the methodology’s general approach to portability is slightly different. Rather than 
trying to produce programs th a t run efficiently without alteration, it aims to  reduce the amount of 
alteration required. This allows a larger range of machines and languages to be targeted.

This aim is achieved through the methodology’s incremental structure, which orders the trans­
formations and decisions so th a t those more closely linked to the target machine come later in the 
derivation. Early stages apply to a variety of machines and languages, and can therefore be reused 
when deriving the same program for a different target. The more closely related two machines or 
languages are, the more stages their derivations can share, and the less extra work is needed.

P r o o f s  o f  c o r r e c t n e s s

The methodology is designed to  allow proofs of program correctness to be produced if required. This 
increases the reliability of and the users’ confidence in a  piece of software. All of the intermediate 
programs are written in Haskell, a pure functional language, thus allowing equational reasoning 
to  transform them  from one stage to  the next. This technique preserves correctness, and so the 
transformations can be proved correct—the final Haskell version can be proved to give the specified 
results.

However, it is often the case th a t the target language does not have a formal semantics, and the 
final transformation to the target cannot be proved correct. The methodology attem pts to overcome 
this problem by bringing the final Haskell version as close as possible to the target. This decreases 
the user’s uncertainty in the program’s correctness, but does not remove it completely.
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Another problem arises because correctness proofs can be a t odds with the methodology’s program 
development role, as explained in Section 9.3. If all of the steps are done formally to produce a 
correctness proof, the program development process is lengthened and complicated.

The methodology can therefore be used in more than one way. If proofs are needed, each step 
can be carried out in detail, but otherwise, steps can be skipped and simplified as mentioned above. 
It is likely that, in general, proofs will only be produced for individual, particularly complex steps in 
a derivation, and th a t complete proofs will only be needed in special circumstances.

9.5 Further work

As a whole the methodology shows promise, tackling the four areas of weakness identified above. 
However, there are still many difficulties and weaknesses to  be addressed, providing much scope for 
future work.

• A natural continuation of the work in this thesis is to develop the methodology to cope with a 
greater range of parallel features and target languages. As yet, the infrastructure is only in place 
for simple, numerical programs in C+M PI. If the methodology is to  be useful for real-world 
programs, this must be extended.

In particular, more program optimisations need to  be made available, and the existing ones 
need to be extended. For example, static load balancing is, at present, limited to a small range 
of programs, but it could be adapted to many more.

This necessitates a greater range of APMs and transformation rules. They can be built using 
the principles in this thesis, but the greater the range of features, the greater the number of 
challenges which axe likely to be involved.

• There are also many specialised parallel features whose investigation should prove interesting. 
For example, nested parallelism is mentioned in this thesis only briefly, and yet the set-up of 
the APMs fits well with its expression. More difficult is its implementation in languages, such 
as C+M PI, which don’t provide (explicit) support for it. It should be interesting to see how 
previous work on languages which do support nested parallelism, such as Nepal [CKLP01], can 
be used within the methodology.

• Some parts of the derivation are not supported very well a t present. In particular, individual 
level programs are not runnable. It would be useful to incorporate the ability to run them 
to allow greater prototyping ability. Further investigation of the individual level semantics 
suggested in [O’DOl] may also prove interesting.

• Further case studies would be valuable for further evaluation of the methodology and identifica­
tion of weaknesses and areas for future work. The case studies in this thesis were instrumental 
in the development of the methodology to its current state. In particular, they highlighted data 
distributions and program optimisations as areas for detailed work, and provided test-beds for 
these features. Other case studies could serve a similar role in other areas. It would be partic­
ularly interesting to try  the methodology out on larger programs, and investigate the separate 
development of different parts of a program.

• The methodology’s claim to portability is particularly weak due to a lack of case studies. It 
would be useful to investigate this area in practice, and see how well the initial stages stand 
up to reuse. The infrastructure needed for a different kind of target language, for example, 
HPF [MC97], could be developed and the derivation of a program in th a t language could be
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compared to th a t of the same program in C+M PI. This may lead to alterations to the initial 
stages to make them more widely applicable.

• The possibility of tool support and automation to ease the program development process has 
been previously mentioned in this thesis. Many of the stages, especially the latter ones, are de­
tailed and require little human “intelligence” . Such steps could be autom ated, as in a compiler. 
However, it is not useful to autom ate all of the stages, as many require decisions that are diffi­
cult to make with autom atic methods, and it is also useful to retain the ability to incorporate 
human insight, or “Eureka” , steps. A choice could be offered a t each stage in the methodology 
between human and autom atic transformation.

The non-automated steps do not have to be carried out solely by hand. They can be supported 
by a reasoning assistant such as Era [Win] to ease transform ation and help make decisions. To 
do this, further work on reasoning assistants may be needed. Work on improving automatic 
decision making may also prove useful.

Although there are problems and difficulties with the methodology, few of these are inherent in 
the nature of the methodology itself, and ways of overcoming these problems have been suggested. 
The methodology itself, although still in its preliminary stages, shows promise, and goes some way 
towards removing several of the key problems with parallel programming.



A ppendix A

Lemmas and Rules

This appendix contains the Haskell definitions, properties, lemmas and rules which are given and 
used in this thesis along with some other associated ones which may be useful in the methodology.

The lemmas can be proved using equational reasoning, sometimes using associated techniques 
such as structural induction. As only finite sequences are used, induction is usually sufficient and 
techniques such as co-induction are not necessary. In the interests of space, and in order not to 
bore the reader, only a selection of such proofs are given. These are in Section A.6 , and others are 
similar. The rules are vertical transformations, as discussed in Section 3.4, and can be proved using 
observation functions together with equational reasoning, as discussed in th a t section.

The following notation is used in this appendix and throughout the thesis. A lemma has the 
general form E \ = =  JE72 and can be applied in either direction. In fact, the symbol = =  indicates 
the equivalence of expressions in general. It is used instead of =  to avoid ambiguity with the =  in 
programs. A transformation rule, on the other hand, has the general form E \ =>• E 2 , and is uni­
directional. In addition, the notation E[] stands for an arbitrary expression with zero or more holes. 
E[e] is this same expression with the holes filled in with e, while E [x/y \ is the expression E  with 
every free occurrence of y replaced by x. Fs is a finite sequence of expressions, usually equations in 
le t expressions or monad bindings in do  expressions. All lemmas and rules assume that renaming is 
performed to avoid name capture problems.

The lemmas and rules are divided into a few categories to order the presentation.

A .l  Lemmas dealing with general function manipulation

There are various transformations which can be done on Haskell programs in general. Most basically, 
alpha, beta and eta  conversion can be performed to rename variables, apply functions to parameters 
and extend functions. Equational reasoning is built on this basis.

In particular, inlining is a common name used for equational reasoning when it is used to replace 
a function call with the function definition in an expression.

Here are some more lemmas:

L em m a  1  (P a ra m e tr is e  fu n c tio n )

For any function / ,  expressions E ,a  of appropriate types, and equations Fs.

f  = E[a] == f x  = E[x]
Fs F s\f a /f]

This introduces an extra parameter, x, to / ,  making /  more general. This is useful when restricting 
specifications (see Section 5.3).
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R u le 2 (In stan tiate typ es)

For any /  :: T (a  i , . . . ,  a n), :: Ti, g :: T (T i, Tn) 
where ai are polymorphic types and Ti specific types such th a t 
f  X\ . . .  xn =  g xi . . .  xn .

f  XI . . .  X n  =► g XI . . .  xn 
This is rather a trivial lemma, but it means th a t a call to a function, / ,  which uses specific types, 

can be replaced by a call to  a function, g , which only has to work for those particular types.

A Haskell program is composed of multiple function definitions. Therefore it can be considered to 
be a big implicit let expression in which the result of the let is whatever is typed into the interpreter 
in hugs or is given in main. Therefore all of the lemmas in the next section also apply to it.

A .2 Lemmas for let expressions

Haskell let expressions limit the scope of function and variable definitions. They can be defined as 
follows:

D efin ition  3 (Let expression)

For any variable x  such that x  does not appear in E 2.

let = =  E2[E/x]
x  =  E

in
E2

This binds the value of a fresh variable x  to E  in E2. This is similar to the definition of where 
and so the following lemma holds:

L em m a 4 (Equivalence o f  let and w here)

le t = =  E2
x =  E  w here x  =  E

in
E2

In this section, 
let

p s means that x = e occurs somewhere in the set
_  of let equations, and Fs are the remaining

111 equations.
E

P rop erty  5 (R earrange equations in a let expression)

For all Fs let equations, x, E  :: a, y , E2  :: /?, E 3 an expression of any type.

let Fs ==  le t Fs
x = E  y = E2
y = E2 x  =  E

in  in
EZ EZ

As the equations in a let expression are simply bindings in an environment, it doesn’t m atter 
what order they are given in.
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This can be applied multiple times to rearrange the order of equations however one likes. So all 
the following lemmas are given with the relevant equations are the end, but can be applied wherever 
they occur.

L em m a 6 (N ested  lets)

For any expressions E l,  E 2, F3, equations Fs and variables x ,y  of appropriate types such that 
x  only occurs in E 2 .

le t Fs — =  let Fs
y =  let x = E l  x = E l

in y = E2
E2  in

in  E 3

F3
Since x  only occurs in E 2, it is new for Fs and E 3 and therefore it doesn’t  m atter if i t ’s bound 

to a value.

L em m a 7 (R em ove redundant equation)

For any expressions E, E 2, equations Fs, variable x  of appropriate types such that 
x  does not occur in Fs or E2.

let Fs = =  le t Fs
x = E  in

in
E2

E2

L em m a 8 (Sp lit let expression)

For any expressions E, E2, function f ,  variables x, y of appropriate types such that 
y is fresh.

let Fs = =  let Fs
x = f  E  y = E

in  x = f y
E2  in

E2
This is a simple consequence of Definition 3 and Lemmas 6 , and is proved in Section A . 6  

L em m a 9 (M ove a function  in a let expression)

For any expressions E ,E 2 ,  equations Fs, functions f ,g  and variables x ,y  of appropriate types 
such th a t x  does not occur elsewhere in Fs or E2.

le t Fs = =  le t Fs
x  =  E  x = g E
y =  f ( 9 x )  y =  f  X

in  in
E2 E2

L em m a 10 (M ove a function  in a let expression  2)

For any expressions E ,E 2 ,  equations Fs, function /  and variable x  of appropriate types.

let Fs = =  let F s\f x /x]
x = f  E  x — E

in  in
E2 E2[f x /x]

This is based on Lemmas 8  and 7 and alpha conversion.
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L em m a 11 (M ove re s u lt  o f  le t ex p ress io n  in to  le t)

For any expression E , questions Fs and fresh variable res.

le t Fs = =  le t Fs
in  res =  E
E  in

res

This is obvious (by Definition 3), but i t ’s given explicitly because it can be useful when tidying 
up le t expressions.

L em m a  1 2  (M ove le t ex p ressio n )

For any expressions E, E2, function /  and variable x  of appropriate types such that 
x  does not occur in /  separately from E2.

/ ( l et  x = E  ==  le t
in  x = E
E2) in

f  E2

This is useful for moving le ts  around so th a t they encapsulate more or less of the program. It is
used in Section A . 6  to prove Lemma 38. It itself is proved simply using the definition of let.

L em m a  13 (S e p a ra te  tu p le s  in  a  le t ex p ressio n )

For any expressions E l,  E 2 , E 3 and variables x ,y  of appropriate types.

le t  (x, y) =  (E l, E2) ==  le t
in  x = E l
E3 y = E2

in
E3

This can be used to help simplify complicated le t expressions so th a t only one APM function is 
on each line.

A .3 Lemmas dealing w ith specific functions

Specific functions have specific properties which it can be useful to use in transforming a program. 
This section looks a t some standard functions, most of which are used in this thesis. These are valid 
only for finite lists or sequences, and many of them can be proved by induction on the list structure. 
Many of them are standard and have been proved many times before. Example proofs are given in 
Section A.6 .

These lemmas axe stated in terms of functions without annotations but because of the equality 
between the APM functions on FinSeq, SeqFinSeq and ParFinSeq (see Section 3.4), they apply also 
to those annotated with S  and P.

L em m a 14 (C h an g e  fo ld ll to  foldl)

For any /  :: a —y a  —> a, a :: a  a left unit of /  and xs :: [a] such th a t 
> 1.

fo ld ll f  xs == foldl f  a xs
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Lem m a 15 (Sp lit foldl)

For any /  :: a  —»• a  —» a  associative, a :, a  a unit of /  and xs, ys :: [a].
foldl f  a (xs + 1- ys) == f  (foldl f  a xs) (foldl f  a ys).

Lem m a 16 (Sp lit foldl using take and drop)

For any /  :: a  -»■ a  -» a  an associative function, a :: a  a unit of / ,  xs :: [j3\, m :: In t+.
foldl f  a xs = =  /  (foldl f  a (take m xs)) (foldl f  a (drop m xs)).

This is a more specific version of Lemma 15 above.

L em m a 17 (D iv id e up a list)

For any xs :: [a], m :: In t+.
xs == take m xs -H- drop m xs 

L em m a 18 (M ove data in map)

For any function F  and list permutations move and move' such that 
move' o move =  id.

map F == move' o (map F) o move 
This lemma is often used to move data  around between processors. In this case the version of 

map used is map p .

L em m a 19 (F unction  com position  in  map)

For any g :: a  —>• (3, f  :: (3 -> 7 , xs :: [a].
map ( f  o g) xs = =  map f  (map g xs)

L em m a 20 (Function  com position  in map 2)

For any functions f ,g i ,g 2 , fists xs, ys\, j/s2 of appropriate types, function F  
such th a t •  F x  =  f(g ix )(g 2 x)

• ys i  and ys 2 are fresh

map F  xs ==  let
ysi =  map g\ xs 
ys2 — map g2  xs

in
map2 f  ysi ys2

where map2 = zip With
This is an extension of the last lemma. It may seem a bit obscure, but is given because it is used 

in the map-triangle case study in Section 5.4.

L em m a 21 ( length and take)

For any list xs, m  :: In t+.
length (take m xs) ==  min(m, length xs).

L em m a 22 ( length and drop)

For any fist xs, m :: In t+.
length (drop m xs) ==  max(length xs — m, 0 ).

L em m a 23 (Indices in reverse)

For any list xs, i ,n  :: In t+ 
such th a t •  n = length xs

•  0  < i < n
rs!!(n — * — 1 ) = =  (reverse xs)!!i
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L em m a 24 ( repeat and map)

For any x  :: a, f  :: a —> f3, n :: In t+.
mapn ( f x ) = =  map(n +  1 ) /  (repeat x)

Where • mapO =  repeat
• mapn is map with n  list parameters.

L em m a 25 ( repeat and map - Special case)
A special case of the above lemma for ParFinSeq is:

For all x :: T, f  :: T  -> T ' (for any T ,T ') .
repeat(f x) == mapp f  (repeatp x) 

which can also be phrased as a vertical transformation rule:
/  x =$> mapp f  (repeatp x)

L em m a 26 ( repeat and head)

For all x.
x == head (repeat x)

L em m a 27 (Inverse o f  transpose)

For the standard function transpose described below, and any xss :: [[a]] such that 
# (xssl\i)  =  # (xss\\j)  V *, j  :: In t+.

transpose{transpose xss) == xss.
The function transpose is a standard Haskell function used to swap the rows and columns in a 

matrix. Its implementation and use in the methodology are described in Section 3.3.4. The condition 
on the lemma simply states th a t xss is a matrix. The proof of this lemma (in Section A.6 ) needs 
three subsidiary lemmas below:

Subsidiary L em m a 28 (transpose xss)

For any xss :: [[<*]] such that
# (x 5 5 !!i) = =  # (xss\\j) > 0  V i , j  :: In t+ and # xss  > 0 .

transpose xss = (map head xss) : transpose (map tail xss)

Subsidiary L em m a 29 (M ap head over transpose)

For any xs :: [a], xss : [[a]] such that 
#(xss!!i) =  # (xss\\j) = # x s V  i , j  :: In t+.

map head ( transpose(xs : xss)) = =  xs

Subsidiary L em m a 30 (M ap ta il over transpose)

For any xs :: [a], xss :: [[a]] such that 
#(xss!!i) =  # (xss\\j) = # x s V  i , j  :: In t+.

map tail (transpose(xs : rrss)) = =  transpose xss 
Another transpose lemma is:

L em m a 31 (T ranspose and m ap)

For all f  :: a  0.
map(map f )  == transpose • (map(map / ) )  • transpose
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A .4 M onadic lemmas

Monads are used in Haskell to express and encapsulate side-effects. They are used for this purpose in 
this thesis as shown in Section 2.8. This appendix is not meant to describe monads—some description 
is given in Section 2.8.1 and fuller details can be found in [Wad92].

Monads in Haskell are characterised by two functions. 
unitM  :: a  —> M  a, often called return , puts a value into the monad.
bindM  :: M  a  —> (a  ->• M  P) -» M  (3 joins together two monads, passing a value from the first to 
the second.

However, this second one is not usually given explicitly in Haskell programs. Syntactic sugar is 
used in its place.

D e fin itio n  32 (M o n ad ic  sy n ta c tic  su g ar)

For any monadic expressions mi, m2 , variable x.

do mi = =  bindM m\ m2

m2

do  x  «— mi = =  bindM  mi (A x -» m2)
m2

There are a few standard monad laws th a t must hold for a construct to qualify as a monad. They 
hold for all the standard monads. These are given below using the do  syntax, but are rarely used 
directly:

R u le  33 (L eft u n it  o f a  m o n ad )

return x is a left unit of bindM:

do  return x == m x
m

R u le  34 (R ig h t u n i t  o f  a  m o n ad )

return () is a right unit of bindM

do  m = =  m
return ()

R u le  35 (A sso c ia tiv ity  o f m o n ad s)

do  mi = =  do  do  mi
x  «— do  m2 x <- m2

y <- m3

This means th a t the do  notation can be written without parenthesis and in an unnested form. 
Monadic lemmas can be derived from these. Some are given in the literature, for example in 

[BF94]. This section lists some lemmas th a t are of particular use in this thesis.



A PPEN D IX A. LEM M AS AND  RULES 206

L em m a 36 (Introduce m onads)

For any expression E.
E  =>■ return E

This is an example of a vertical transformation (see Section 3.4). The symbol => indicates equality 
using an appropriate monadic observation function, o(x) = return x, rendering the above equivalence 
trivial. The left hand side of the lemma can be transformed into the right a t the appropriate place 
in the derivation but not vice-versa.

P rop erty  37 (let into do 1)

For any variable x , expression e and monadic expression M .

let x = e = =  do x return e
in  M
M

This is another basic property, resulting from the definitions of let, do and the monad laws.

L em m a 38 (let into do 2)

For any variable x  and expressions E l,  E2 
such th a t •  E l  does not depend on E2

• x  has no parameters.

return ( let x — E l  = =  do x  «— return E l
in  return E 2
E2)

This is a simple consequence of Property 37, as shown in Section A.6 , but in a form which is more 
useful for this thesis. It can be applied multiple times to convert a let expression into a monadic do 
expression.

Various other lemmas allow one to move equations around or remove them  if conditions on their 
side-effects are fulfilled. These are more useful if they are specialised to particular types of monad. In 
this thesis, monads are used for 1 0  and state manipulation, and most of the lemmas needed involve 
state.

State monads have types of the form:
State -» (value, State)

or, in this thesis,
State -> 1 0 (value, State) 

where the state pairs variables with values.
In the following lemmas, M , M l  and M 2  represent state monadic expressions. Property 35 lets 

the lemmas be used with multiple monadic expressions. These lemmas do not guarantee the same 
side-effects on the state, in the same order, just th a t the result is the same.

L em m a 39 (S ta te  M onads— R em ove redundant equations)

For any variable v and monadic expressions E, M
such th a t • x  does not appear in M  before another (x <- F ) clause

• E  does not change any variables in the state which are used 
by M .

do x < -  E  = =  M
M
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L em m a 40 (S ta te  M o n ad s— M ove in d e p e n d e n t e q u a tio n s)

For any variable x  and monadic expressions E , M l, M2 
such th a t • x  does not occur in M l

• E  and M l do not change any variables in the state which the 
other uses.

do  M l do  x <- E
x <r- E  M l
M2 M2

Such lemmas can be specialised for particular monads and monadic functions, as in the following 
example for the IO P ST  monad.

R u le  41 (M ove create.vars to  th e  to p )

For all M l, M2 IOPST expressions and x j u  a variable name such th a t x . v  does not occur in M l.

do  M l = =  d o  X-V <- create.var X
X-V 4- create.var X  M l
M 2 M2

A .5 Transformation rules for particular A PM s

Many of the transformation rules given in this thesis are specific to particular APMs and can only 
be used to transform within or between those given APMs. This section collects these together for 
ease of reference. Most of these were initially given in Chapter 3.

A .5.1 Parallel and sequential A PM s

The following two rules can be used to  transform programs to  use the parallel and sequential APMs. 
They use the functions changeseq and changepar given in Section 3.4.

R u le  42 (M ake fu n c tio n s  seq u en tia l)

For any expression e.
e =>• changeseq e

R u le  43 (M ake fu n c tio n s  p a ra lle l)

For any expression e such th a t e does not involve any data  nested inside items of type FinSeq a.
e =>• changepar e

A .5.2 A PM s based on IO PST

IO P ST  is a specialised monad used to model and m anipulate the state of a parallel system. It is 
described in Section 2.8. Several of the APMs in this thesis use this monad and Section 3.6 shows how 
various aspects of it can be introduced into and manipulated within a program, using the following 
rules. Other lemmas and rules, such as Lemma 41 above, also deal with the IO P ST  monad.
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R u le  44 ( In tro d u c e  m ain )

For all prog :: T\ —̂ T2 —̂ . . .  —t Tn T 1, pi :: T{ (i — 1 , . . . ,  n), F  :: T ' .

p st.pu tS tr (show (prog pi . . .  pn)) 
w h ere

prog xi . . .  Xn = F

main p = do  le t enter\ = . . .

entern = . . .  
le t prog x\ . . .  xn = F
qi <- enteri

qn <- entern
result <r- prog q\ . . .  qn
pst-putStr (show result)

w h e re
enteri =  the appropriate input function for p i .

I t may have parameters.

This rule introduces the key function, m ain, to  an IO P ST  program.

R u le  45 (S e t u p  th e  p a ra lle l sy s tem )

For all IOPST expressions E.
main p =  E  => main p = do  start p

E

If variables are to be used in an IO P ST  program, the model of the parallel system must be set 
up using start as in this rule.

R u le  46 (N ew  v ariab le)

For all x, E  :: ParFinSeq T  for some type T,
there exists TO :: T  which can be used for initialisation and x .v  :: VarFn T  such that

x <- return E  => x .v  «— create.var E
x <- retrieve x .v  

or =*► x .v  <- create-var (repeatp (TO T))
store x .v  E  
x retrieve x .v

This rule allows new variables to be created and then used within an IO P ST  program.

R u le  47 (R em ove a n  e x tr a  v ariab le )

For all x .v , y .v  :: VarFn T, V , V2 :: ParFinSeq T  (for some type T), Fs, Gs IOPST expressions
such th a t •  x  and x .v  don’t occur in Gs,

• x ,y  refer to the values obtained from x .v ,y .v  respectively.

x .v  4- create.var V  =$■ y .v  <— create.var V  
Fs F s[y .v /x .v , y/x]
y .v  create.var V2 Gs
Gs

This rule doesn’t  introduce a new feature to a program, but allows the existing code to be ma­
nipulated, removing a variable which isn’t necessary.
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R u l e  4 8  ( A d d  a  g l o b a l  v a r ia b le )

For all x ,E ,T 0  :: T  (for any type T), p :: I n t+, F ,F 2  IOPST expressions and Fs local function 
definitions.

x = E
main p = d o  F

l e t  Fs — local function definitions 
F2

main p — do F
x .v  <- create.var (repeatp (TO :: T ))
le t Fs — local function definitions
x  «— return E
store x .v  x
x  f -  retrieve x .v
F2

Sometimes it is useful to have global variables in an IO P ST  program. This rule introduces such 
a variable, declaring it before the main code, F 2 , so th a t it can be used within th a t code.

R u le  4 9  (D u p lica te  a  value  across th e  p ro cesso rs)

For T  7  ̂D a  for D = ParFinSeq or any data distribution type.
For all E , x  :: T  (on the left hand side)

x — E  =£■ x = repeatp E
and
For all E  :: IO P ST  T, x , x ’ :: T  (on the left hand side).

X i— E  =£>■ x ' i— E
x <- return (repeatp x')

As described in Section 3.7.3, it is sometimes necessary to have a copy of a variable in each 
processor. This rule accomplishes this.

R u le  50 (R efe ren ce  p a ra m e te rs )

For all / ,  x ,y ,T  of appropriate types.

/  :: . . .  -* ParFinSeq T —> . . .  =>• VarFn T  —> . . .
f  . . .  x . . .  = / • • •  x .v  . . .  =

do . . .  do  x <r- retrieve x .v
E \ } . . . y . . . \  . . .

B \f  . . .  y .v  . ..]

This rule is used to change a param eter to be passed by reference instead of by value.

R u le  51 (R e tu rn in g  a  v alue  fro m  a  fu n c tio n )

For all a; :: T, f , p s ,E  of appropriate types and x .v  :: VarFn T  such th a t x .v  is either a new variable 
(create it using create.var before /  is called) or the variable corresponding to x.

x <- f  ps =>■ f  ps x .v
x  «— retrieve x .v

and
/  ps = do  . . .  => f  ps x .v  = d o  . . .

return E  store x .v  E
This returns a value from a function by storing it in a reference param eter instead of returning it 

directly.
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A .5.3 The M PI A PM

The M PI APM is described in Section 2.10 and the rules and lemmas th a t manipulate programs 
using it are described in Section 3.8. These are also given below for ease of reference.

R u le  52 (mpi _comm s iz e  )

For all x .v  :: VarFn a, xs :: ParFinSeq a  (any a) such th a t
xs hasn’t  been shortened using, for example, take or filter (the initial d ata  structure on which the 
program operates is a good choice for xs).

store x .v  (sizep xs) =$■ m pi.com m .size x .v

R u le  53 ( r e p e a t/b ro a d c a s t)

For all val :: a , var.v  :: VarFn a.

store var.v  (repeatp val) => do  storey™  0  var.v val
mpi .beast .simple var.v T  0

R u le  54 (sc a tte r )

For all xs :: [a], var.v  :: VarFn a.

store var.v (Ust2parfs xs) =£• tm p.v  «— create.var (repeatp (TO :: T))
storeindiv i tm p.v (list2seqfs xs) 
m pi.scatter tm p.v  1 T tm p.v T  i 
tmp -f- retrieve tm p.v  
new.vals return (mapp heads tmp) 
store var.v new.vals

where • T = SeqFinSeqa
• TO is any value of type T

R u le  55 (rev erse )

For all xs :: ParFinSeq a, xs.v  :: VarFn a  (any a).

xs retrieve xs.v  => m pi.jointpt2pt xs.v  x .v  T  (A * —> (p — 1 — *)) (A i -» (p — 1 — *)) 
store x .v  (reversep xs)

where •  p  is the number of processors. It can be set using: do p <- retrieve p .v
p «— return (headp p)

• T is the ItemType corresponding to a  (ItemType is an enumerated Haskell type 
described in Section 2 .8 .2 .)

A .5.4 Individual level

Some of the later stages in the methodology view the parallel system from the viewpoint of a single 
individual processor, rather than of the whole system. Rules and lemmas dealing with these stages 
are given in Sections 3.9 and 3.10.3, and are also collected below.
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R u l e  5 6  ( T r a n s f o r m a t i o n  t o  t h e  i n d i v i d u a l  l e v e l )

This rule is really a set of rules th a t can be applied to different fragments of program. They are 
explained in more depth in Section 3.9

• m p iJ n itp  => m pi-init (for any p  :: I n t+)

• g e ts ize  =>■ m pi-com m size  
get-pid =$■ mpi .comm .rank

• For all x .v  :: VarFn T, v :: T.
x .v  «— create-var (repeatp v :: ParFinSeq T ) =>• x-v  <— create-var (v :: T )

• Individual stores and retrieves using storeindiv and retrieveindiv are replaced by i f  expressions 
on the processor id.

• Collective communication functions are not changed.

• For all S - V , r .v  :: VarFn T  (any type T), sendfn, recvfn :: In t+ —> In t+ , source, dest :: In t+.
m pi-jointpt2pt S - V  r .v  T  sendfn recvfn => d o  m p isen d  s-v T  (sendfn pid)

mpi-recv r - V  T  (recvfn pid)

•  and
m p isp t2 p t S - V  T source r .v  T  dest => i f  (pid == source) t h e n  m p isen d  s-v T  dest

e l s e  i f  (pid == dest) t h e n  mpi-recv r .v  T  source
e l s e  return ()

• For all X{ " T f  x T\ —̂ . . .  —̂ Tn —̂ T .
mapnp f  x± . . .  xn =>■ /  x\ . . .  xn

The following rules manipulate functions and data th a t use the Cyclic distribution.

R u l e  5 7  ( I n d i v i d u a l  l e v e l  c y c l i c  s t a t e  f u n c t i o n s )

For all j  :: In t+, pid  containing the processor id and p  the number of processors.

retrieveQyciicindiv j  
=>

\i(p id  == j  ‘mod1 p) t h e n  retrieveindiv (j ‘div‘ p) 
e l s e  return ()

StoreCyclidndiv j  
=>

i f  (pid = =  j  ‘mod1 p) t h e n  store^div (j ldiv‘ p) 
e l s e  return ()
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R u le 58 (C yclic poin t to  point send)

For all var.v  :: VarFn TI, var2.v  :: VarFn T 2, source, dest :: Int+ (for some types T 1, T 2).

m pi-spt2ptcydicindiv v a r .v  TI source v a r 2 .v  T 2 dest 
=>•

if  (pid = =  source1 mod1 p)
th en  mpi.send' var.v T 1 ( destlmodlp ) (source1 div1 p) 

else if  (pid = =  destlmodlp)
th en  mpi-recv' var2.v T 2 (source1 mod1 p) (dest1 div1 p) 

else return ()

R u le 59 (R eplacem ent o f cyclic sta te  functions)

For any a, s, val, vals, i, var.v  of appropriate types and new name old.vals.

•  VarFncydic a  => VarFn(SeqFinSeq a)

• create.var Cyclic s =>• create.var s

• val 4- retrieveindiv i var.v
=>

old.vals 4— retrieve var.v  
val 4- return (vals Ms *)

•  storeindiv i var.v val
=>

old.vals 4- retrieve var.v  
store var.v (replaces old.vals i val)
where replaces xs i x returns xs with its ith  element set to x and its other elements as before

•  val 4- retrievecydic var.v  => val 4- retrieve var.v

•  storecyciic v a r .v  vals => store v a r .v  vals 

R u le 60 (R eplacem ent o f m pi.sca tter Cyclic)

For any sendbuf :: VarFn T, recvbuf, sendtype, recvtype, root of appropriate types 
and new names, p, n ,pid, tm p.v, etc.
p .v  storing the number of processors, m atrix.size.v  the m atrix size and p id .v  the processor id. 

mpi .scatter Cyclic sendbuf sendtype recvbuf recvtype root
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— access global variables 
p 4- retrieve p-v
n 4- retrieve m atrixsize-v  
pid  + -  retrieve pid-v

— create new variables 
tm p.v 4- create-var (X  :: T)
s ize s-v  4- crea te .var  ( repeats (0 -  Int)) 
displs-V 4- crea te-var  ( repeats (0 :: Int))

— set up variables for sending the values 
if  (pid = =  root) th en

do — set up tmp_v with the cyclic layout 
scattervals' 4- retrieve sendbuf
scattervals 4- return ( makecyclic p(seqfstoList scattervals')) 
store tm p.v  (concats scattervals)

— set up size and displs
— the first few procs may have one more item than  the others 

store sizes-v (cats (replicates (rtm od^)  ( nldivlp +  1 ))
(replicates (P — ( nlmod‘p )) (n ldivlp))) 

sizes 4— retrieve sizes-v
let displvals =  (0  : [displvals Ms i +  ( sizes Ms *)

| i 4- [0..n — 2]]) 
store displs-V (toSeqFinSeq displvals) 

else return ()
— send the values

mpi.scatterv tmpjv sizes-v displs-V sendtype recvbuf recvtype root

A .5.5 C + M P I

Section 3.11.2 discusses how the program can be finally transformed into C+M PI. It gives the following 
main transformation rule. Several smaller transformation rules are also given in Table 3.2.

R ule 61 (C + M P I top  level)

main =  do start
variable declarations 
local function definitions 
code

=> variable declarations
local function declarations

main(int arc, char *argv[])
{

int errcode;

errcode = MPI_Init (&argc, &argv); 
code
errcode = MPI_Finalize ();

>

local function definitions

Once the program is in C+M PI, some transformations can still be done. The following are a few 
examples:
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R ule 62 (R em ove in itia lisations)

F or a ll ty p e s  T ,  v a r ia b le s  x a n d  v a lu e s  y  o f  t y p e  T.
T x = y; T x;

Provided • the value of x is updated before the first time it is used.

R ule 63 (take rule)

For any arrays xs, res, positive integers m, res_size and C statem ents Fs such that
• size is the number of elements in xs and
• Fs never accesses resfi], i > res_size.

take(xs,size,m,res,& res_size); => res_size = min(m,size);
Fs; Fs[xs/res];

R ule 64 (drop rule)

For any arrays xs, res, positive integers size, m, res_size and C statem ents Fs such that
• size is the number of elements in xs and
• Fs never accesses resfi], i > res_size.

drop(xs,size,m,res,& res_size) ; =>• res_size = size - min(m,size);
Fs; Fs[xs+min(m,size)/res] ;

A .6 Proofs of selected lemmas

This section presents a few representative examples of proofs of lemmas in this thesis. 
L em m a 8

let Fs
x = f E

{by A.3 as y is fresh} 
let Fs

let y = E
m in
E2 x = f y 

in E2

{by A.5 as y is fresh} 
let Fs

y = E
X = f  y

in E2

L em m a 14
# x s  >  1 =>• xs =  y : ys for  so m e  ys

foldll f xs = foldll f (y:ys)
= {definition of foldll}

foldl f y ys 
= {a is a left unit of f}

foldl f ( f a y )  ys 
= {definition of foldl}

foldl f a (y:ys) 
= foldl f a xs
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L em m a 21
This is an example a proof by structural induction. 

xs = □
length (take m []) = length □  = 0 = min(0,m)
xs =  (x : xs)
This has two cases, depending on m :  

m  =  0

length (take m (x:xs)) = length [] = 0
= m indength  ( x : x s ) ,  0)
= min(length (x:xs), m)

m  > 0

len gth  (take m (x :x s ) )  = len gth  (x: take (m-1) xs)
= 1 + len gth  (take (m-1) xs)
= {by induction hyp}

1 + min (length xs, m-1)
= min (length (x:xs), m)

Hence, the result holds, by structural induction.

L em m a  27
This proof th a t transpose is its own inverse uses three subsidiary lemmas 28 to 30. These lemmas 
were produced for use in this proof although it is also likely th a t they would be useful for other proofs 
involving transpose. This proof illustrates the use of subsidiary lemmas and structural induction.

L em m a 28 is proved as follows:
As # xss  > 0 and #(zss!!0) > 0, xss can be written as (y : ys) : yss. Then:

transpose xss = {By the definition of transpose}
(y:map head yss): transpose (ys: map tail yss)

= {As (y:ys) = head xss, y = head(head xss), 
ys = tail(head xss) and yss = tail xss}
(head(head xss):map head (tail xss)):

transpose(tail(head xss): map tail(tail xss))
= {By definition of map}

(map head (head xss: tail xss)):
transpose(map tail (head xss: tail xss))

= {As (head xs:tail xs) = xs}
(map head xss): transpose(map tail xss)

L em m as 29 a n d  30 are proved by structural induction on xs, and the latter proof also uses 
Lemma 28.

T h e  m a in  le m m a  27 can then be proved by structural induction, with three cases, since the 
definition of transpose (in Section 3.3.4) has three cases. In the following transpose is sometimes 
w ritten t r  for conciseness. 

xss =  []

transpose(transpose []) =  transpose Q =  Q 

xss =  ([] : yss)
#(xss\\i) = # (rss!!0 ) =  #[] =  0  => xss =  []
So this is the same as the previous case.
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xss =  ((x : xs) : xss)

transpose(transpose ((x:xs):xss))
= {apply definition of transpose to inner function} 

tr((x:map head xss): tr(xs: map tail xss))
= {apply def of transpose to outer function}

(x:map head (tr(xs: map tail xss))): 
tr((map head xss): map tail (tr(xs:map tail xss))) 

= {By Lemma A.25 applied to the first term
and Lemma A.26 applied to the last term}
(x:xs): tr((map head xss): tr(map tail xss))

= {By Lemma A.24 applied right to left
to the second term}
(x:xs): tr(tr xss)

= {By induction hypothesis}
(x:xs):xss

H e n c e , t h e  r e s u lt  h o ld s , b y  in d u c tio n .

L em m a 38
T h is  is  a n  e x a m p le  o f  a  b a s ic  m o n a d ic  p ro o f.

{by Lemma A.11} 
return (let x  = El == let x  = El

in in
E2) return E2

== {by Lemma A.30}
d o  x  < -  return El 

return E2

L em m a 39
T h is  is  a n  e x a m p le  o f  a  s t a t e  m o n a d  p r o o f. T o  d o  i t ,  m o r e  n o ta t io n  is  h e lp fu l. M[ E] pS  g iv e s  th e  

m e a n in g  o f  th e  e x p r e s s io n  E  in  a n  e n v ir o n m e n t  p, w h ic h  g iv e s  t h e  v a lu e s  o f  v a r ia b le s  b o u n d  u s in g  

fu n c t io n s  a n d  A n o ta t io n .

F or e x a m p le ,  a fte r  d o  x «— return 1, p =  { <  x ,  1 > ,  <  y ,  2 > }

y return 2
In  a d d it io n , S  g iv e s  th e  v a lu e  o f  th e  S ta te  t o  b e  in p u t  t o  E.
T h e  n o t a t io n  p[x : =  E] m e a n s  p w ith  th e  v a lu e  o f  x b o u n d  t o  E.
T h e n  th e  p r o o f  lo o k s  lik e  th is:

.A d[do x <— E] p S  =  {since E does not affect S }
M M[M]p[x  : =  M[ E ] p S ] S

=  {since M does not use x until its value is reset}
M[ M] p  S

T h e r e fo r e  t h e  m e a n in g  o f  th e  tw o  e x p r e s s io n s  is  th e  sa m e , a n d  t h e y  a re  e q u iv a le n t .
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