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Abstract

Hierarchic document clustering has been applied to Information Retrieval (IR) for over three
decades. Its introduction to IR was based on the grounds of its potential to improve the
effectiveness of IR systems. Central to the issue of improved effectiveness is the Cluster
Hypothesis. The hypothesis states that relevant documents tend to be highly similar to each other,
and therefore tend to appear in the same clusters. However, previous research has been

inconclusive as to whether document clustering does bring improvements.

The main motivation for this work has been to investigate methods for the improvement of the
effectiveness of document clustering, by challenging some assumptions that implicitly
characterise its application. Such assumptions relate to the static manner in which document
clustering is typically performed, and include the static application of document clustering prior to

querying, and the static calculation of interdocument associations.

The type of clustering that is investigated in this thesis is query-based, that is, it incorporates
information from the query into the process of generating clusters of documents. Two approaches
for incorporating query information into the clustering process are examined: clustering
documents which are returned from an IR system in response to a user query (post-retrieval

clustering), and clustering documents by using query-sensitive similarity measures.

For the first approach, post-retrieval clustering, an analytical investigation into a number of issues
that relate to its retrieval effectiveness is presented in this thesis. This is in contrast to most of the
research which has employed post-retrieval clustering in the past, where it is mainly viewed as a
convenient and efficient means of presenting documents to users. In this thesis, post-retrieval
clustering is employed based on its potential to introduce effectiveness improvements compared

both to static clustering and best-match IR systems.

The motivation for the second approach, the use of query-sensitive measures, stems from the role
of interdocument similarities for the validity of the cluster hypothesis. In this thesis, an axiomatic
view of the hypothesis is proposed, by suggesting that documents relevant to the same query (co-
relevant documents) display an inherent similarity to each other which is dictated by the query
itself. Because of this inherent similarity, the cluster hypothesis should be valid for any document
collection. Past research has attributed failure to validate the hypothesis for a document collection

to characteristics of the collection. Contrary to this, the view proposed in this thesis suggests that



failure of a document set to adhere to the hypothesis is attributed to the assumptions made about

interdocument similarity.

This thesis argues that the query determines the context and the purpose for which the similarity
between documents is judged, and it should therefore be incorporated in the similarity
calculations. By taking the query into account when calculating interdocument similarities, co-
relevant documents can be “forced” to be more similar to each other. This view challenges the
typically static nature of interdocument relationships in IR. Specific formulas for the calculation

of query-sensitive similarity are proposed in this thesis.

Four hierarchic clustering methods and six document collections are used in the experiments.
Three main issues are investigated: the effectiveness of hierarchic post-retrieval clustering which
uses static similarity measures, the effectiveness of query-sensitive measures at increasing the
similarity of pairs of co-relevant documents, and the effectiveness of hierarchic clustering which

uses query-sensitive similarity measures.

The results demonstrate the effectiveness improvements that are introduced by the use of both
approaches of query-based clustering, compared both to the effectiveness of static clustering and
to the effectiveness of best-match IR systems. Query-sensitive similarity measures, in particular,
introduce significant improvements over the use of static similarity measures for document
clustering, and they also significantly improve the structure of the document space in terms of the

similarity of pairs of co-relevant documents.

The results provide evidence for the effectiveness of hierarchic query-based clustering of
documents, and also challenge findings of previous research which had dismissed the potential of

hierarchic document clustering as an effective method for information retrieval.
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Chapter 1

Introduction

1.1 Introduction

This thesis investigates the effectiveness of query-based hierarchic clustering of documents for
the purpose of Information Retrieval (IR). Incorporating information from the query into the
process of generating clusters of documents is not common practice in IR research. Moreover, the
effectiveness of document clustering that incorporates information from the query has not been
thoroughly investigated in the past. This work addresses these two issues. The main argument of
this thesis will be that the retrieval effectiveness of document clustering can be significantly

improved by taking into account the searcher’s subject of inquiry.

Document clustering has been applied to IR for over thirty years. Research in the field has
undergone a number of significant changes, from focusing on efficiency issues in the early years
(Rocchio, 1966; Salton, 1971), to postulating the potential of clustering to increase the
effectiveness of the IR process (Jardine & Van Rijsbergen, 1971; Croft, 1978). The literature
published in the field covers a number of diverse areas, such as for example the development of
efficient algorithms for document clustering (Silverstein & Pedersen, 1997; Larsen & Aone,
1999), the visualisation of clustered document spaces (Allen et al, 2001; Leuski, 2001), the
application of document clustering to browsing large document collections (Cutting et al., 1992;
Hearst & Pedersen, 1996), etc. This thesis focuses solely on the retrieval effectiveness of
document clustering, and examines a number of issues relating to the effectiveness of hierarchic

clustering methods in IR.

In the rest of this chapter I first outline the motivation that led to the undertaking of this research,

I then state its aims and achievements, and I outline the structure of the remainder of this thesis.
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1.2 Motivation

Jardine and Van Rijsbergen (1971) first provided some experimental evidence to suggest that the
retrieval effectiveness of an IR system can benefit from the use of document clustering. The
effectiveness of an IR system was expected to increase through the use of clustering, since the file
organisation, and any strategy to search it, take into account the relationships that hold between
documents in a collection (Croft, 1978). Relevant documents that might have otherwise been
ranked low in a best-match search, will be (through inter-document associations) grouped together

with other relevant documents, thus improving the effectiveness of an IR system.

The Cluster Hypothesis is fundamental to the issue of improved effectiveness; it states that
relevant documents tend to be more similar to each other than to non-relevant documents, and
therefore tend to appear in the same clusters (Jardine & Van Rijsbergen, 1971). If the cluster
hypothesis holds for a particular document collection, then relevant documents will be well
separated (i.e. grouped separately) from non-relevant ones. The actual effectiveness of hierarchic
clustering can be gauged by cluster-based searches that retrieve the cluster that best matches the
query (Croft, 1978; Voorhees, 1985a).

Clustering has typically been applied statically, over the whole document collection prior to
querying (static clustering). Document hierarchies are thus static, and do not reflect the user’s
interest, which is reflected through the query posed to the IR system. Research that has
investigated the effectiveness of static clustering has suggested some limitations, mainly in the
form of the poor comparative effectiveness of cluster-based and best-match searches (EI-
Hamdouchi & Willett, 1989).

Clustering has also been applied to the search results of an IR system (post-retrieval clustering)
(Willett, 1985; Allen et al., 1993; Hearst & Pedersen, 1996). This type of clustering takes into
account the query, since it only clusters those documents that have a high likelihood of being
relevant to the query. In contrast to static clustering, the behaviour and effectiveness of post-

retrieval clustering has not been extensively investigated.

The main motivation for this work has been to investigate possibilities for the improvement of the
effectiveness of document clustering by challenging its typically static nature. By doing so, I aim
to challenge previous findings which have demonstrated a number of limitations regarding the
effectiveness of cluster-based retrieval. This work also aims to demonstrate that, by challenging
some of the static assumptions that characterise document clustering, it is possible to enhance
cluster-based effectiveness. It is through incorporating aspects of the query into the clustering

process that this work attempts to move away from the static clustering paradigm.
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1.2.1 Query-based clustering

In this thesis I investigate query-based clustering, which incorporates aspects of the user’s query
into the clustering process. Two approaches for implementing query-based clustering are
investigated. The first one is post-retrieval clustering, for which I present an analytical
investigation into a number of issues that relate to its effectiveness. This is in contrast to most of
the research which has employed post-retrieval clustering, where it is viewed as a convenient
means of presenting documents to users (Allen et al., 1993; Eguchi et al., 2001; Leuski, 2001), or
as a method to improve the efficiency of the clustering process (since less documents are
clustered) (Kirriemuir & Willett, 1995).

The investigation of post-retrieval clustering demonstrated a number of positive results regarding
the effectiveness of cluster-based retrieval. However, it also demonstrated a number of
shortcomings. This led into investigating alternative ways to incorporate the query into the
clustering process, and more specifically, into proposing the use of query-sensitive measures for

the calculation of interdocument relationships.

The motivation for the use of query-sensitive measures stemmed from the cluster hypothesis, and
the role of interdocument similarities for the validity of the hypothesis. In this thesis I propose an
alternative, axiomatic view of the hypothesis, by suggesting that documents relevant to the same
query (co-relevant documents) display an inherent similarity to each other which is dictated by
the query itself. Because of this inherent similarity, the cluster hypothesis should be valid for any
document collection. Past research has attributed failure to validate the hypothesis for a document
collection to characteristics of the collection. Contrary to this, the view proposed in this thesis
suggests that failure of a document set to adhere to the hypothesis is attributed to the assumptions

made about interdocument similarity.

Motivated by studies in other fields that have demonstrated the dynamic nature of similarity
(Goodman, 1972; Tversky, 1977), I challenge its typically static use in IR. I argue that the query
determines the context and the purpose for which the similarity between documents is judged, and
it should therefore be incorporated in the similarity calculations. By taking the query into account
when calculating the similarity between pairs of documents, co-relevant documents can be
“forced” to be more similar to each other. If query-sensitive measures are effective in this respect,

then a clustering of documents generated by using such measures can be expected to be effective.

1.3 Thesis statement

The statement of this thesis is that by incorporating information from the query into the clustering

process, the effectiveness of the clustering process can be enhanced. I investigate the effectiveness
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of the two query-based clustering methods that I previously described: post-retrieval clustering,

and clustering using query-sensitive similarity measures.

I first study the effectiveness of post-retrieval clustering, and I compare it to that of static
clustering and to that of inverted file, best-match searches. The results from this study
demonstrate that the effectiveness of post-retrieval clustering is significantly higher than that of
static clustering, and that it also has the potential to significantly exceed inverted file search (IFS)
effectiveness. However, a number of shortcomings are also demonstrated, mainly in the form of
poor comparative effectiveness to IFS, and close-to-random effectiveness in a number of

experimental conditions.

Post-retrieval clustering can be seen as a first level of incorporating information from the query
into the clustering of documents. The use of query-sensitive similarity measures introduces a level
of query influence that can complement post-retrieval clustering. The effectiveness of this second
form of query-based clustering is also investigated, and is compared to that of post-retrieval

clustering using a static similarity measure, and to that of inverted file searches.

The results demonstrate that viewing similarity as a dynamic concept that depends on the query is
an effective approach which introduces a number of benefits for IR. This work demonstrates three
main benefits. The first benefit is that query-sensitive measures manage to increase the similarity
of pairs of co-relevant documents when compared to static similarity measures. The second
benefit is that query-sensitive measures generate document hierarchies whose effectiveness is
significantly higher than that of hierarchies generated using static measures. The third benefit, is
that the effectiveness of cluster-based IR when using query-sensitive measures has the potential to
significantly outperform the effectiveness of IFS more consistently and more significantly than

when using static similarity measures.

1.4 Thesis Outline

This thesis is organised into 9 Chapters (including the present chapter). An outline of the contents

of the remaining chapters follows.

Chapter 2: in this chapter I discuss some of the main concepts of information retrieval, focusing
on issues that are relevant to the experimental work reported in this thesis. The purpose is to

establish a basic terminology and coverage of issues that are used in the following chapters.

Chapter 3: this chapter provides a detailed review of past work on document clustering. The
review is organised around the main steps of the clustering process. The purpose of this chapter is

to provide the necessary background on the application of hierarchic document clustering to IR,
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and to discuss aspects of the clustering process that are important to the work that I describe in

later chapters.

Chapter 4: in this chapter I focus on the issue of cluster-based effectiveness, which is central to
this work. I review past work dealing with issues of cluster-based retrieval effectiveness, present
the methodology that is used to measure retrieval effectiveness, and I present the view taken in

this thesis regarding previous findings in this area.

In Chapters 3 and 4 I discuss aspects of research on document clustering in detail. The main
reason for doing so, is to give a thorough coverage of issues that relate to document clustering
research, and also to provide the necessary background to illustrate a number of decisions that I
implement later, when I report the experimental part of this work. One such decision is the use of
optimal cluster evaluation. In both chapters, through argument and review of previous work, I
demonstrate the appropriateness of this evaluation approach. Consequently, these two chapters are

central to the flow of the argument in this thesis.

Chapter 5: in this chapter I present the two specific methods of query-based clustering that are
pursued in this thesis. I examine the implications of post-retrieval clustering for cluster-based
effectiveness. A different view of the cluster hypothesis is proposed, and the use of query-
sensitive similarity measures is postulated. The motivation and the intuitions behind the proposed
approach are also outlined, and the research objectives of this thesis are stated. In this chapter I

also present details of the experimental environment used.

Chapter 6: in this chapter I investigate the effectiveness of the first form of query-based

clustering, post-retrieval clustering.

Chapter 7: I define specific formulas for the calculation of query-sensitive similarity between
documents, and I also present experimental evidence for the application of query-sensitive

measures to IR.

Chapter 8: I investigate the effectiveness and the characteristics of the second form of query-
based clustering which uses query-sensitive similarity measures for the calculation of

interdocument relationships.

Chapter 9: in Chapter 9 I report the main contributions that this work made, and I also point to

some issues for future work that follow from this thesis.
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Basic Concepts of Information Retrieval

2.1 Introduction

Information Retrieval (IR) is a discipline involved with the organisation, structuring, analysis,
storage, searching and dissemination of information. A compact definition of the basic function of

an information retrieval system (IRS) has been given by Lancaster, (1968):

“An information retrieval system does not inform (i.e. change the knowledge of) the
user on the subject of his enquiry. It merely informs on the existence (or non-existence)

and whereabouts of documents relating to his request.”

Within the few lines of the above definition, the three major parts of an IRS have already been
identified: a user with a request (query) for information, a collection of documents against which
this request is matched, and finally the response of the IR system in relation to the user’s request.
The task of an IRS is, through its response, to help a user locate those documents that have the

potential to satisfy his information need.

| I Document
Documents > representation
Query- ’FL’
document
A Ranked
Query P Query / matching documents

representation

T Relevance feedback €

Figure 2.1. A typical IR system

Figure 2.1 shows a diagram of a typical IR system. A set of documents (document collection) is

processed by the IRS in such a way that an internal representation of these documents is derived.
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This internal representation can then be further processed by the IRS. A user who wishes to
search this document collection expresses an information need in the form of a query that is posed
to the system. The IRS represents this query in an internal form that is suitable for further
processing. The IRS matches the user query against each document in the collection, and
produces a list of documents (that is usually ranked in some way) that is presented to the user.
The user can interact with this ranked list by indicating documents that relate to his information
need, or he can modify his initial query in the light of the documents returned in the ranked list.

Each of these steps is covered in more detail in the remainder of this chapter.

A number of IR models have been developed, which describe the way in which documents and
queries are represented, as well as the way in which the document-query matching process is
implemented. The most publicised IR models are the Boolean, the vector space (or vector
processing) (Salton, 1971; Salton et al., 1975), the probabilistic (Robertson, 1977), and the logical
(Van Rijsbergen, 1986). The vector space model has been the basis on which most of the
experimental work on document clustering has been based (see Chapter 3), and therefore is the

model that will be adopted for the experimental work reported in this thesis.

IR is a field that has existed since computers were first able to count words (Belew, 2000). The
first IR systems were developed in order to facilitate the automated searching of library material
by users. However, due to the advent of powerful computing facilities and the explosive growth
of the information available in an electronic form, IR systems gradually expanded their scope over
the last few decades. It is now not only research literature that is within the scope of IR systems,
but also a wide spectrum of heterogeneous types of information, including multimedia data (e.g.

images, audio, video, etc.).

The Internet, and more specifically the World Wide Web, has become the medium in which
increasing numbers of people search for information. IR systems that have been developed on the
Internet (search engines), aim to make the plethora of available data searchable and easily
accessible by users. This has resulted in the development of research efforts towards exploiting
features that characterise web pages (e.g. hyperlinked structures, Web page popularity, HTML
structure, etc.) (Bharat & Henzinger, 1998; Kleinberg, 1999; Belew, 2000). The research reported
in this thesis has been applied to textual information that is stored in the form of documents, the
set of which constitutes a collection, or a corpus. The document collection is not assumed to

possess a hyperlinked structure.

It is not the aim of this chapter to provide a thorough review of information retrieval research.
Readings that aim to do so include books by Van Rijsbergen (1979), Salton and McGill (1983),
Frakes and Baeza-Yates (1992), and Belew (2000). Sparck Jones and Willett (1997), have also
edited a selection of papers in the field of IR that span over five decades, and cover almost every

major aspect of research in the field.
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In this chapter, those concepts that are pertinent to the research reported later in this thesis are
elaborated, so as to provide the necessary background. In section 2.2 I discuss how documents
and queries are represented by IR systems, in section 2.3 I examine the mechanism for matching
queries against documents, and in section 2.4 I present issues pertaining to the evaluation of the
effectiveness of IR systems. Finally, in section 2.5 I briefly present document clustering and its

application to IR.

2.2 Representing documents and queries

Documents are traditionally processed by an IRS not in their original form, but in an internal
representation which is the outcome of what is called the indexing process. This internal
representation aims to model the original information content as accurately as possible. The
essence of the indexing process is to assign to each document a set of indexing features. At their
simplest form such features maybe a list of words, known as terms, extracted from the text of the
original documents. A more complicated approach might involve the extraction of phrasal units,
or the use of linguistic, semantic and knowledge-based methods (Lewis & Sparck-Jones, 1993) to
build a higher level representation. For the purposes of this overview, as well as for the purposes
of this thesis, it will be assumed that document representations are lists of words extracted from

the original texts.

Before such words become indexing features however, they usually go through some specific
form of lexical processing. For example, they will typically have their case normalised. Moreover,
certain high frequency function words (stop-words) will not be considered as indexing features
(Van Rijsbergen, 1979). Typical examples of stop-words are articles (e.g. ‘the’) and prepositions
(e.g. ‘in’, ‘at’). The benefit of this method is that without losing any significant information it is

possible to achieve a reduction of the text volume of up to 50 percent'.

Another typical lexical processing of the feature set is to remove the suffixes from the remaining
words of the input text. This can be achieved through the application of a stemming algorithm’
that will reduce words to a common root form (stem). For example, the words ‘manufacture’ and
‘manufacturing’ will be mapped to the same entity, ‘manufactur’ in the vocabulary of index
terms. A stemming algorithm that is widely used by IR researchers was developed by Porter
(1980).

Each word that is selected as an indexing feature for a particular document can be thought of as

discriminating (to a measurable degree at least) between that document and all the other

! See (Van Rijsbergen, 1979), pp. 17.
2 A comprehensive overview of stemming algorithms can be found in (Frakes & Baeza-Yates, 1992), pp 131-151.
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Chapter 2 Basic Concepts of IR

documents in the collection. In order to quantify the discriminating power of terms, methods that
assign numerical weights to terms have been used. Luhn (1958), associated the discriminating
power of an index term with its frequency of occurrence within a document (term frequency, tf).
Luhn postulated that the most discriminating terms are those that occur with medium frequency.
High frequency words are discarded as carrying little information, and low frequency words are

rejected as being unlikely candidates to appear in a query.

Later research (Sparck Jones, 1972) proposed that a more accurate quantification of term

importance can be achieved if one also makes use of information about term usage within the

entire document collection. The inverse document frequency (idf) captures this belief: for a

document collection comprising N documents, if term i occurs in n; documents, then the term’s idf

weight is given by log( nﬁ) .
i

A frequently used term weighting function is a combination of the #f and idf weights, typically
referred to as a #f-idf weight (Salton, 1971)*:

. = log(freg;; +1). o (ﬁ)
Y log(length i) & ’

i

w;; = tf-idf weight of term i in document j
freq;; = frequency of term i in document j
length; = length (in words) of document j
N = number of documents in the collection

n; = number of documents that term i is assigned to

It should be noted that term weighting methods have been extensively researched. As a
consequence, a large number of weighting schemes have been proposed in the IR literature.
Salton and Buckley, (1988), provide a comprehensive overview of various weighting schemes and
their comparative effect on retrieval effectiveness. Any of the classical IR textbooks, such as for
example (Van Rijsbergen, 1979; Salton & McGill, 1983), also provide further details on term

weighting methods.

A data structure that is typically used in IR systems to store information about term usage is an
inverted file structure (Van Rijsbergen, 1979; Frakes & Baeza-Yates, 1992). In this structure, for
each index term, the list of documents in which this term occurs is stored. For retrieval purposes
this means that given a search keyword, it is possible to immediately locate all the documents in

the database that contain this keyword (Van Rijsbergen, 1979). The inverted file structure can be

% Note that the ¢f component has been normalised by the length of the document (see Salton & Buckley, 1988).
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seen in contrast to the document vector, which contains for a given document all the terms that

occur in it.

2.2.1 Query operations

The goal of any IRS is to help a user locate those documents that have the potential to satisfy his
information need. An information need is expressed by a user in a form that is recognised by a
computer system, e.g. by means of keyboard input. Such a formulation of an information need is

usually called a query.

Some IR systems allow for the formulation of Boolean queries, through the use of Boolean
operators. An example of such a query would be: (Information AND Retrieval) NOT Evaluation.
Boolean systems have been criticised as not allowing non-experienced users to formulate
effective queries (Sparck Jones & Willett, 1997, p. 258). They have mostly been displaced by
systems in which query formulation can essentially be made in the form of natural language text,
with no need to use any specific operators (e.g. “I want to find out about civil aviation in
Greece”). Such systems are based on best-match, or similarity searching, where a measure of
query-document similarity is calculated for each document and for each query. The matching
between documents and queries is discussed in section 2.3. Boolean queries are not further

examined in the context of this thesis.

Once a query has been posed to an IRS, a similar processing to that for documents may take
place, i.e. lexical processing and term-weighting. A query may also be expanded before retrieval
is performed. A way to achieve this is by using a thesaurus to select terms that are semantically
related to the ones present in the query. Such terms can then be added to the original query
(Voorhees, 1994). A query can also be expanded after retrieval has taken place, by adding extra
terms that appear in documents relevant to the query, but which were not included in the original
query (Magennis & Van Rijsbergen, 1997). The expansion process can either be automatic,
whereby the IRS selects the added terms, or interactive, where the expansion process is controlled

by the user.

One form of automatic query expansion is relevance feedback (Figure 2.1). This is a technique
that allows the user to better specify his information need by augmenting his initial query with
information that appears in documents marked as relevant. In the relevance feedback process, the
user marks documents returned by the IRS that are relevant to his query. Based on these
assessments, the IRS selects terms to add to the query that would potentially retrieve more
documents like the ones marked relevant, and less like the rest of the collection. A number of
studies have examined the effect of relevance feedback methods on the effectiveness of IR

systems, often reporting favourable results (Harman, 1992). However, an often reported problem
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with both query expansion and relevance feedback is the unwillingness on behalf of the users to

engage in the process (Ruthven et al, 2001).

2.3 Matching between documents and queries

In Boolean matching, an IRS simply finds the subset of the document collection that satisfies the
logical requirements of the query expression, and presents it unranked to the user. Systems based
on best match searching, on the other hand, rely on some method of comparing the query to each
of the documents in the collection. The outcome of this comparison is a relevance score, that
quantifies the likelihood of a specific document to be relevant to the query. The user is
subsequently presented with a ranked list of documents, sorted in decreasing order of their
relevance scores. It should be noted that in this way any number of documents may be presented

to the user, by simply selecting that number of documents from the top of the retrieved list.

In the vector processing model (Salton & McGill, 1983), both documents and queries are
represented as vectors in a multidimensional space. The dimensions of the space correspond to the
indexing vocabulary of the document collection. Bollmann and Raghavan, (1993) questioned the
validity of modelling documents and queries as objects in the same space, by presenting a number
of examples that demonstrated potential problems of this modelling. However, it remains to be

seen whether the authors’ artificial examples may actually occur in realistic retrieval settings.

t

D
A 0
(41
2 D t
>

Figure 2.2. Document and query representations in the vector model

An example of document and query representation in this model is presented in Figure 2.2. In this
simplified example, the vector space is presented in two dimensions corresponding to the two
index terms #; and ,. Documents D; and D, are represented in this space using each document’s
term weights as coordinates. Weights are assumed to correspond to term frequency weights:
Di={t,, t;} and D,={t,}. The query Q is represented in the same way in this space: Q={t,, t;, t;}.
The angles between the vectors of D;-Q and D,-Q are also presented in this figure (p; and ¢,

respectively).
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In this space, one can define measures that quantify the similarity (or the distance) between points
(i.e. documents and queries). The answer to the question of which documents best match the
query, can then be given by those documents that are closest to the query according to a specific
similarity (or distance) measure. There is ample literature on specific formulas for similarity and
distance measures. A number of such formulas are presented in Appendix A, however, they are
modified for the purposes of interdocument relationship calculation. For the use of such measures
in IR, the books by Van Rijsbergen (1979), and Salton and McGill (1983), as well as the papers
published by Norreault et al. (1981), Jones and Furnas (1987), Ellis et al. (1993), and Rorvig
(1999) provide detailed information.

Perhaps the simplest way of comparing a document to a query is by counting the number of terms
they have in common. Assuming that both the query and the document representations are

expressed as vectors of length n (where 7 is the number of terms in the database), then:

Sim(D, Q) = Z D,0; 2.1)
i=1
This measure is called the coordination level matching function. Other measures, in contrast to
the coordination level function, allow for the similarity to be normalised by the length of
document and the query (e.g. Dice coefficient, Appendix A).

A measure that has been widely used in IR systems is the cosine coefficient. The reason for its
popularity is likely to be based on this measure’s consistency with a geometric interpretation of
the vector model (Belew, 2000). It should however be noted that Raghavan and Wong (1986)
suggested that the theoretical work on which Salton based the derivation of the vector model did
not rely on the representation of documents in a geometrical space in which index terms

correspond to its dimensions.

Y.pe,
i=1
Ji(b,»)’.i@,-)z

i=1 i=1

Sim(D,Q) =

(2.2)

The cosine measure (Equation 2.2) is a function of the angle between the document and the query
vectors, and its value ranges between O (angle of 90° unrelated vectors) and 1 (angle of 0°,
identical vectors). In the example of Figure 2.2 the similarity between documents D; and D; is

equal to zero, since the angle between the two vectors is 90° (they contain no terms in common).
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2.4 Evaluation of IR systems

Much effort has gone into the study of evaluation in IR, resulting in a number of methodologies
for measuring the usefulness of IR systems. The inherent complexity of the task of evaluation
makes it a challenging area. A reason for its complexity is that IRS evaluation combines issues
from a number of diverse areas such as cognition, statistics, experimental design, system design,
human computer interaction, etc. In this section I will present an outline of evaluation issues with

emphasis on those aspects that are central to the research reported in this thesis.

There are a number of aspects of the IR process that can be evaluated. Such aspects may be the
speed of an IRS, the level of user interaction it allows for, the style of presentation of information
to users, etc. However, the aspect that is mostly used in IR research, and the one that is also
central to this thesis, is the evaluation of the quantity of relevant documents an IRS system
retrieves in response to a user query. This is one aspect of the effectiveness of an IRS (Cleverdon
et al., 1966), for the computation of which numerous measures have been devised (Van

Rijsbergen (1974a, 1979) provides further details on this issue).

Documents | relevant not relevant
retrieved ANB -ANB B
not retrieved | AN-B -AN-B -B
A -A

Figure 2.3. Calculation of precision and recall

The most commonly used measures of effectiveness are precision and recall. Precision is defined
as the proportion of retrieved documents that are relevant, and recall as the proportion of relevant
documents that have been retrieved. Referring to Figure 2.3, precision and recall can formally be

defined as:

Precision=|AnB|, Recall=lAmB|

| B |a]

where |ANB| is the number of relevant and retrieved documents, |B| is the number of retrieved

documents, and |A| is the number of relevant documents.

It is apparent from these definitions that the total number of relevant documents in a collection
must be known in order for recall to be calculated. However, because of the amount of effort and
time required on behalf of users, this is not possible in most operative cases. To facilitate the
evaluation of IR systems, a number of test collections have been built for which this value (total
number of relevant documents) has been determined (Sparck Jones & Van Rijsbergen, 1976).
These are document collections that are accompanied by a set of queries, and a set of relevance

assessments for each query, i.e. lists of documents in the collection that are judged by domain
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experts to be relevant to each query. Test collections have given IR researchers the opportunity to
efficiently evaluate their experimental approaches, and furthermore, to compare the effectiveness

of their system to that of others.

In Figure 2.4 a typical recall-precision (R-P) graph is presented. Such graphs are typical of the
way retrieval effectiveness results are conveyed and publicised. In Chapter 7 of Van Rijsbergen’s
book, (1979), a number of issues pertaining to the derivation of such graphs are presented in
detail. The most typical method of deriving a R-P graph is to calculate precision values for certain
recall points, i.e. after certain numbers of relevant documents have been retrieved. The recall
points normally used are 0, 0.1, 0.2, 0.3, ..., 1. Recall and precision values are then typically
averaged over the set of queries of a test collection, and as such are also presented in Figure 2.4.
Although Figure 2.4 only presents the precision and recall values of a single IRS (or of a single IR
strategy), it is more typical to plot the effectiveness of multiple IR systems in one graph, so as to

be able to compare their effectiveness.

[ Precision

08
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0 T ——

0 01 02 03 04 05 08 07 08 09 1
Recall

Figure 2.4. A recall-precision graph

In Table 2.1 basic statistics for a number of IR test collections are presented. Initially test
collections comprised a few thousand documents, and therefore it was possible to consider
exhaustive relevance assessments (i.e. for each query, to scan all the retrieved documents to find
the relevant ones). However, with the advent of increasingly larger collections, especially since
the start of the Text Retrieval Conferences (TREC) (Harman, 1993), exhaustive judgements have
become an impossibility. The test collections used for TREC consist of hundreds of thousand
documents that occupy many gigabytes of disk space. For a comparison with smaller collections,
statistics for the collection used in the first TREC conference (TREC-1) are presented in Table
2.1.

A technique called pooling has been extensively used in these cases (Harman, 1993). The essence
of this technique is to submit a test collection query to a number of IR systems, to combine the
top-ranked documents of each of the systems, and to judge the relevance of this combined set.
This technique can be effective when the IR systems that are used retrieve relevant documents

that are representative of all relevant documents available (Harman, 1993).
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The type of evaluation described above depends on relevance judgements provided by some
expert judges, based on topical (or algorithmic) relevance (Saracevic, 1975). Topicality associates
relevance with the presence of query terms in documents. Recent research (Schamber et al., 1990;
Barry, 1994) has demonstrated that relevance is a multidimensional concept, and that topicality is
only one such dimension. Driven by this observation, researchers such as Borlund (Borlund &
Ingwersen, 1997), and Reid, (2000), have worked on the definition of evaluation methodologies
that judge the utility of IR systems on other dimensions of the concept of relevance. A special
track of TREC, the interactive track (Hersh & Over, 2001), has also been formed, in an attempt to

provide a framework for the evaluation of interactive IR systems.

Number of Number of

Collection documents queries
Cranfield 1400 225
CACM 3204 52
CISI 1460 35
Evans 2542 39
Harding 2472 65
INSPEC 12,684 84
Keen 800 63
LISA 6004 35
MEDLARS 1033 30
NPL 11,429 93
TIME 423 83
TREC-1 742,611 100
UKCIS 27,361 182

Table 2.1. IR test collections

It should finally be noted that the extraction of scientific conclusions based on the outcome of IR
experiments is an issue that involves a large number of complications, such as the choice of
appropriate measures of performance, the presentation of experimental comparisons, the statistical
testing of experimental results, etc. In order to address these issues, a number of published articles
provide researchers with a methodology on which to base the extraction of scientific inference

from IR experiments (Robertson, 1981; Keen, 1992).

2.5 Document clustering

According to best-match IR systems, if a document does not contain any of the query terms then
its similarity to the query will be zero, and this document will not be retrieved in response to the
query. Document clustering offers an alternative file organisation to that of best-match retrieval,

and it has the potential to address this issue (and therefore to increase the effectiveness of an IR
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system). Documents are organised in clusters based on their similarity, as defined in terms of their

content overlap.

The first suggestions that clustering could improve the effectiveness of an IR system were made
by Jardine and Van Rijsbergen (1971). The effectiveness of an IRS was expected to increase since
the file organisation, and any strategy to search it, takes into account relationships that hold
between the documents in a collection (Croft, 1980). For example, a relevant document may be
ranked low in a best-match search because it may lack some of the query terms. In a clustered
collection, this relevant document may be clustered together with other relevant items that do
have the required query terms, and could therefore be retrieved through a clustered search (Croft,
1978).

The Cluster Hypothesis is fundamental to the issue of improved effectiveness; it states that
relevant documents tend to be more similar to each other than to non-relevant documents, and
therefore tend to appear in the same clusters (Jardine & Van Rijsbergen, 1971). If the cluster
hypothesis holds for a particular document collection, then relevant documents will be well

separated (i.e. grouped separately) from non-relevant ones.

In the following chapter, I discuss the application of document clustering to IR in detail.
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Chapter 3

Document Clustering for IR: Background

3.1 Introduction

Cluster analysis is a multivariate statistical technique that allows the identification of groups, or
clusters, of similar objects in a space that is typically assumed to be multi-dimensional. Groups of
objects are formed in such a way that objects in the same cluster are similar to one another and
dissimilar to objects in other clusters (Gordon, 1987). Clustering is a task that has been practised
by humans for thousands of years (Willett, 1988; Kural, 1999), and it has been fully automated in
the last few decades due to the advancements in computing technology (Willett, 1988).

There is often a confusion regarding the usage of the terms cluster analysis and classification.
Watanabe (1969, p. 381) and Willett (1988), among others, have distinguished between the two.
A clustering task involves grouping objects, based on a defined set of properties, into classes
according to the strength of interobject relationships (i.e. the classes have to be discovered). For a
classification task, on the other hand, a sample set of objects are first placed in some classes
(typically manually, as part of a training stage), and then new samples are expected to be placed in
the existing classes imitating the classification demonstrated at the training stage. It should
however be noted that in the early literature, classification implied the task of assigning objects to
clusters, and diagnosis implied the task of assigning a new incoming object to one of the existing
clusters (Jardine & Sibson, 1971). The terminology has changed over the years, especially in the
field of IR. Therefore, the term classification will not be used as an alternative for clustering in

this thesis.

Cluster analysis techniques have long been applied to scientific fields such as life sciences
(biology, zoology), medical sciences (psychiatry, pathology), social sciences (archaeology,
sociology, criminology), earth sciences (geography, geology) and engineering sciences (pattern
recognition, cybernetics) (Anderberg, 1973). Specific applications of cluster analysis range from

clustering DNA structures for gene expression analysis (Hartuv et al., 1999) to clustering single-
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malt whiskies based on characteristics such as peatttiness, sweetness, etc. (Wishart, 1998).
Consequently, the literature on cluster analysis is both voluminous and diverse. A large number of
books and review articles, that cover almost any field of endeavour of cluster analysis, have been
published. Such readings include (Macnaughton-Smith, 1965; Cole, 1969; Cormack, 1971;
Jardine & Sibson, 1971; Anderberg, 1973; Sneath & Sokal, 1973; Hartigan, 1975; Van Ryzin,
1977; Gordon, 1987; Jain & Dubes, 1988; Everitt, 1993; Jain et al., 1999; Theodoridis &
Koutroumbas, 1999).

As far as its application to information retrieval is concerned, cluster analysis has been used both
for term (or keyword) clustering, and for document clustering. Term clustering (Doyle, 1964;
Sparck Jones, 1971; Lewis, 1992; Wulfekuhler & Punch, 1997) is performed on the basis of the
documents in which terms co-occur, and it allows each term in a document, or query, to be
replaced by the representation (i.e. collection of indexing terms) describing the cluster to which
this term belongs. Application areas for term clustering include query expansion (Sparck Jones,
1971; Minker et al., 1972; Van Rijsbergen et al., 1981), automatic thesaurus construction (Crouch
& Yang, 1992), and thesaurus linking (Amba et al., 1996). Peat and Willett (1991) have raised
questions regarding the effectiveness of the use of keyword co-occurrence data (of the type that
term clustering operates upon). Keyword clustering falls beyond the aims of this thesis, and
subsequent discussion on cluster analysis in the context of IR will be restricted to document

clustering.

Document clustering can be performed on the basis of terms shared between documents, or on the
basis of citations shared between documents. The latter form, which is typically referred to as co-
citation analysis (Small, 1999; Popescul et al., 2000), is used in order to provide insights into the
nature of the literature of a specific scientific field. In this chapter I will focus on the former type

of clustering.

Document clustering typically operates based on the notion of interdocument similarity. The set
of terms shared between a pair of documents is typically used as an indication of the pair’s
similarity. According to Van Rijsbergen (1979), one of the first researchers to suggest the use of
automatic clustering for IR was Good (1958). Document clustering has traditionally been applied
statically, to an entire document collection, before querying (static clustering). An alternative
application of clustering is to only cluster documents that have been retrieved by an IR system in
response to a query (post-retrieval clustering) (Preece, 1973). Under post-retrieval clustering the
resulting groups of documents are likely to be different for different queries. Two broad types of

document clustering have been mainly used in IR, partitioning and hierarchic.

Partitioning methods cluster a set of N documents into a single organisation of k mutually
exclusive clusters, where k is either specified a priori, or is determined as part of the clustering

method. The computational requirements of partitioning methods are low, typically in the order of
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O(N) to O(NlogN) for the clustering of N documents (Willett, 1988). This had as a consequence
that in the early period of research in document clustering, partitioning methods were favoured, as
they offered the potential to increase the efficiency of an IR system (Rocchio, 1966; Salton,
1971).

The central idea in most of the partitioning methods is to choose some initial partition of the
documents and then to alter cluster memberships so as to obtain a better partition* (Anderberg,
1973). The number of possible partitions of N documents in k clusters (especially for large values
of N) makes a complete enumeration hard (Willett, 1988) and an optimal solution impossible’,
and thus heuristic methods are employed in order to find an approximate solution. As a
consequence, partitioning methods suffer on a theoretical basis as they generally require a great
number of arbitrarily determined experimental parameters (e.g. cluster membership, number of
clusters, cluster size), and may depend on the order in which the documents are processed (Salton

& Wong, 1978; Willett, 1988).

Early experimentation showed that the effectiveness of searches based on document partitions is
significantly inferior to that based on searches of the unclustered file® (Salton, 1971). Most recent
applications of partitioning methods to IR (Cutting et al., 1992; Hearst & Pedersen, 1996;
Silverstein & Pedersen, 1997; Zamir & Etzioni, 1998) have also focused on efficiency aspects for
on-line browsing tasks, rather than on the effectiveness of the methods. Some partitioning type
algorithms that are much publicised in the IR literature are the C3M algorithm (Can & Ozkarahan,
1990), the Buckshot and Fractionation algorithms employed by the Scatter/Gather system
(Cutting et al., 1992; Silverstein & Pedersen, 1997) and the suffix tree clustering algorithm (STC)
proposed by Zamir and Etzioni (1998).

The type of clustering employed in this thesis is hierarchic, perhaps the most commonly used type
of clustering in IR (Willett, 1988). This is a choice based on the more sound theoretical basis of
hierarchic clustering. Jardine and Sibson (1971), Salton and Wong (1978) and Van Rijsbergen
(1979) have identified three strengths of hierarchic methods. Firstly, such methods are
theoretically attractive since they do not depend on the order in which documents are processed.
Secondly, they are well-formed, in the sense that a single classification will be derived from a
given set of documents. And finally, hierarchic methods are stable, since small changes in the

original document vectors will result in small changes in the resulting hierarchies. Although the

‘A typical way of deciding cluster membership is by minimising a cost function. For example, the popular k-means
method (Kaufman & Rousseeuw, 1990) is based on minimising the sum-of-squares function.

5 Garey and Johnson, (1979, p 281), have defined the problem as NP-hard.

6 Scheibler and Schneider (1985), and Milligan and Cooper (1987), report on some studies that compare partitioning
and hierarchic methods, though not specifically for IR. Larsen and Aone (1999) and Steinbach et al. (2000) do so for
the specific area of data mining.
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reported research can also be applied to other types of clustering, this thesis will concentrate on

hierarchic clustering alone.

3.1.1 Hierarchic clustering: an outline

Hierarchic clustering was introduced to IR by Jardine and Van Rijsbergen (1971), based on its
potential to increase the effectiveness of IR systems (section 2.5). The cluster hypothesis is
fundamental to the issue of improved effectiveness. A more thorough discussion of the cluster
hypothesis and its implications for clustering effectiveness is presented in Chapter 5. I also

discuss the cluster hypothesis is this chapter, in section 3.6.1.

The basic steps that characterise the clustering process (not only the hierarchic clustering process)

are the following (Rasmussen, 1992; Theodoridis & Koutroumbas, 1999) :

- Document representation: The attributes that will represent each document have to be

selected and appropriately weighted.

- Association measure: Such a measure defines how similar or dissimilar two documents

are. The choice of a particular type of measure may affect the clustering output.

- Clustering method: A specific method that will try to effectively structure the document

space needs to be selected and applied.

- Cluster representation: Clusters need to be represented, both for retrieval purposes, and

for purposes of succinctly presenting their contents to users.

- Validation of the results: Once a clustering structure has been obtained, its correctness

needs to be verified. This is usually done using appropriate tests.

The purpose of this chapter is to give an overview of issues that relate to each of these steps, and
to emphasise those aspects of the clustering process that are particularly related to the work
reported in this thesis. In section 3.2 the selection and weighting of document attributes for the
purpose of document clustering is discussed. Section 3.3 deals with the measurement of
interdocument relationships, followed by section 3.4 that presents the details of some hierarchic
clustering methods. Sections 3.5 and 3.6 discuss cluster representation and cluster validation
issues respectively, and section 3.7 presents some recent trends in document clustering. Section
3.8 provides some reflections on clustering research over the past thirty years, and outlines the
specific aspects of clustering research on which the work of this thesis focuses. Section 3.9

concludes the chapter by providing a summary of the main issues discussed.
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3.2 Document representation

The first step in the clustering process is to decide on the type and number of variables that
describe each document. Documents are typically represented by a vector in a n-dimensional
space, where n corresponds to the number of terms forming the indexing vocabulary of the
database’. Single terms have been used as indexing features for clustering in the majority of the
research reported in the literature. Recently, Hatzivassiloglou et al. (2000) and Maarek et al.
(2000), have augmented document representations with phrasal units by employing different
levels of linguistic analysis. Results obtained from these studies have demonstrated some small
benefits from the use of linguistically motivated features. In the context of this thesis however,

document representations for clustering will be restricted to single-term indexing units.

Assuming such a representation, two questions naturally arise, and will be discussed in this
section: which terms does one choose to represent a document, and how does one weight the

relative importance of these terms for the purposes of clustering.

3.2.1 Exhaustivity of document representations

Traditionally, before clustering is applied, documents in a collection undergo a form of lexical
processing similar to that described in section 2.2. Such processing usually involves case
normalisation, removal of terms that appear in a stop-list, and application of a stemming
algorithm. Typically each document X is then represented as a vector X = {x;, x2, ..., X,}, where n
is the number of terms that constitute the indexing vocabulary of the document collection. All
terms that belong to the indexing vocabulary of the entire document collection, and that occur
within a document, are typically used in that document’s indexing representation. This

representation is the most exhaustive representation of a document (Van Rijsbergen, 1979).

One of the studies that investigated the effect of indexing exhaustivity on clustering effectiveness
was carried out by Shaw (1990, 1991, 1993). Shaw clustered the Cystic Fibrosis database,
comprising 1239 documents and 100 queries, by using the single link method. He measured the
variation of optimal cluster effectiveness (see section 4.3.4) as a function of the exhaustivity of
document representations. Different levels of indexing exhaustivity were determined by setting a
term weight threshold (TW). A term is retained if its weight exceeds the threshold TW (term
weights were idf weights, normalised to vary in the range 0-999). Thus, for each representation, as

I'W is increased the representation becomes less exhaustive and more specific.

7 Barry (1994) noted a number of factors which affect relevance, and which could be included in document
representations (e.g. cost, obtainability, recency). However, such attributes are not commonly measured, and will not be
considered in this thesis.
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The main conclusion from Shaw's work was that clustering effectiveness, for the single link
method, varies significantly as a function of indexing exhaustivity. Retrieval effectiveness, in
general, increased as the exhaustivity of the representations decreased from the most exhaustive to
an optimal representation. Such optimal representations tended to appear at relatively low levels
of indexing exhaustivity, where only a fraction of the indexing terms are present in the
representations. The most exhaustive representations, which are commonly used in clustering,

displayed low levels of effectiveness.

Burgin, (1995), extended Shaw's work by including four other clustering methods (complete link,
group average link, Ward and weighted average methods) in addition to single link, and three new
document collections (Medlars, Cranfield, and Time, see Table 2.1). Burgin followed the same
experimental procedure as Shaw, aiming to test whether Shaw’s results would be applicable to
other experimental environments. The results of Burgin’s experiments confirmed Shaw’s
findings, in that the effectiveness of the single link method varies as a function of indexing
exhaustivity. However, the results failed to confirm similar patterns for the other four clustering
methods. The conclusion from these studies is that only the effectiveness of the single link

method varies significantly as a function of indexing exhaustivity.

3.2.2 The effect of term-weighting

Once the terms that represent each document have been selected, one must somehow weight their
relative importance. It is well established in IR research that weighting terms according to their
occurrence within documents and within the entire document collection increases effectiveness
(Salton & Buckley, 1988). Binary representations are often associated with poor retrieval
effectiveness. However, it has not been established equally clearly whether the advantages of term
weighting apply to cluster-based systems. Sneath and Sokal, (1973), advised for the use of binary
vectors for feature representation, mainly because of the simplicity of this approach. They did not
believe that additional weighting information could significantly affect the quality of the resulting

clustering.

Willett (1983) investigated this issue for the field of IR, by considering five term weighting
methods (including binary representations), and three document collections (Keen, Cranfield, and
Evans, Table 2.1) that were clustered by the single link method. Willett measured the retrieval
effectiveness of searches carried out on the resulting hierarchies. Based on the results of this
study, Willett concluded that there does not seem to be a consistent and significant improvement
in effectiveness introduced by the use of weighted term vectors over the use of binary vectors. It
should, however, be mentioned that Willett's study included only a single clustering method, and

three test collections of a small size (which is typical of research of that time). His results should
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therefore be viewed with caution, and not be extended beyond the specific experimental

environment in which they were generated.

Can and Ozkarahan (1990) also offer some insight into the effect of binary vs. weighted document
representations. Their study involved the C3M clustering method which is of a partitioning type.
In the first part of their study the authors used binary and weighted versions of document vectors.
The weighted version of vectors corresponded to term frequency data. The authors estimated the
number of clusters expected to be present in each of the two collections that they used in their
experiments (INSPEC and TODS214%). They noted that the clustered structure generated using
binary vectors had a smaller average deviation from the expected values. Based on this
observation, the authors conjectured that there is little to gain from the use of term frequency

information in document representations.

The second part of their experiments involved measuring the effectiveness of cluster-based
searches. A number of experimental parameters were varied (e.g. the term weighting functions for
documents, queries, and cluster representatives, the length of cluster representatives), and the
effect that the variation had on the effectiveness of the searches was examined. The term
weighting functions that were used were ones that had demonstrated the highest effectiveness in
non-cluster based retrieval experiments carried out by Salton and Buckley (1988). Binary
representations were not included. The results for both databases showed a considerable variation
in retrieval effectiveness that depended on the weighting functions. The limited scope of the
experiments (two databases), and the confounding effect of a number of experimental parameters

(e.g. cluster representatives, etc.) may have affected the reported results.

There does not seem to be substantial experimentally-founded evidence which recommends for,
or against, the use of a specific term-weighting function for document clustering. Sneath and
Sokal suggested the use of binary weights, on the grounds of simplicity, about thirty years ago.
The reasons that may have led them to attribute importance to simplicity for the efficient
implementation of clustering are most likely obsolete today - abundance of computing power and
time-efficient algorithms are the norm. In the absence of other evidence, there seems to be no
reason to reject term-weighting approaches that have proven themselves in non-cluster based
retrieval experiments, such as those reported by (Salton & Buckley, 1988). Such measures include
variants of the popular #f-idf function. This conclusion can only remain valid until future research

provides evidence that suggests otherwise.

8 The TODS214 database contains the papers published by the ACM in the journal Transactions on Database Systems
during March 1976 to September 1984. The database consists of 214 documents and 58 queries.
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3.3 Measuring interdocument relationships

Having established an appropriate representation for the document set to be clustered, one needs
to measure the degree of resemblance of all possible pairs of documents that belong to this set. To
this end, a large number of measures that quantify the resemblance between objects have been
devised. Sneath and Sokal (1973) categorise such measures in four main classes: association,
dissimilarity, probabilistic, and correlation coefficients. The use of probabilistic and correlation
coefficients in document clustering has been limited, and thus the majority of the literature refers

to the former two categories, namely association (or similarity) and dissimilarity coefficients.

A large number of these measures have been used in cluster analysis. Cormack (1971), Anderberg
(1973), Sneath and Sokal (1973), Hubdlek (1982), Kaufman and Rousseeuw (1990), among
others, provide detailed discussions on the use of such measures in cluster analysis. For the
particular context of document clustering, the most commonly used coefficients can be found in
(Van Rijsbergen, 1979; Salton & McGill, 1983; Willett, 1988; Ellis et al., 1993). Although not
specifically in the context of document clustering, Jones and Furnas (1987) give a geometric
interpretation of a number of measures that are commonly used in IR. In Appendix A some of the
most popular measures are presented. Before discussing the effect that the choice of a particular
measure may have on the effectiveness of document clustering, a formal definition of such

measures is appropriate.

3.3.1 Formal definitions

For all subsequent discussion in this section it will be assumed that documents are represented as
vectors in a n-dimensional space, where n is the size of the indexing vocabulary. Therefore, a
document x; is assumed to comprise n indexing terms that are represented either by binary
(absence / presence) or by real-valued weights: x; =(x;;, X;5,..., X;, ) . If X is the set of documents
to be clustered, then a distance coefficient is a function d : X x X — R, where R is the set of non-

negative real numbers. Such a function d, in general, satisfies the following axioms:

Reflexivity: d(x,x)=0

Symmetry: d(x,y)=d(y,x)

Triangular inequality: d(x, y)<d(x,z)+d(z,y),

where x, y, and z are all documents belonging to set X. A distance is a particular type of
dissimilarity function. A distance function that satisfies these three axioms is a metric function.

An ultrametric function & 1is one that satisfies the first two axioms and:

d(x,y) < max[d(x,z),8(z,y)] (Diday & Simon, 1976).
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A similarity measure s can also be defined as a function s : X x X — R. A similarity function s is

metric if it satisfies the reflexivity and symmetry axioms, and in addition:
s(x, v)s(y, 2) S[s(x, )+ 5(y, 2)] s(x, z) (Theodoridis & Koutroumbas, 1999)

Typically, similarity and distance functions are normalised so that their values fall within the
range of 1 and 0. Intuitively, for similarity functions the greater the similarity value the more
similar the two documents are. For distance functions the opposite holds, i.e. the smaller the value
of the function the more similar the two documents are. For the rest of this chapter I will only

consider similarity measures.

It must be noted that Tversky (1977) questioned the validity of the metric assumptions. He
presented experimental evidence to suggest that similarities between objects can be asymmetric,
ie. s(x,y) # s(y,x). Tversky argues that humans tend to select the most salient stimulus as a
referent and the less salient stimulus as an object when judging inter-stimuli similarities. Thus, we
are more likely to say that “the portrait resembles the person” rather than “the person resembles
the portrait”. To the best of my knowledge, the validity of Tversky’s assertions has not been

investigated in the context of IR.

X1 X2 X3 X4 X5
X1 1

x; | 0.6 1

x3 | 04 038 1

x4 | 01 05 07 1

xs | 0.1 02 02 03 1

Figure 3.1. A similarity matrix

If a document collection comprises N documents, then a NxN matrix S(X) is needed to store all
interdocument association values. This matrix is a triangular matrix, whose element s; is the
measure of association between documents x; and x;. The diagonal elements of the matrix are
equal to the maximum value that the used similarity measure can yield. Also, since similarity

. . . . c L. . Nx(N-1
functions are symmetric (s; = sj), the calculation of all pairs of associations requires Nx@-D

operations, which makes similarity calculation O(N?) dependent and consequently
computationally expensive for large datasets. Figure 3.1 shows an example of a 5x5 similarity
matrix. The elements above the diagonal have been purposefully left blank since the matrix is

symmetric.

In an attempt to make similarity calculations efficient for large document collections, Croft (1977)
proposed a method for the calculation of coefficients that was based on an inverted file structure

(section 2.2). The inverted file was used to determine documents that had no terms in common
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with a given document, and thus to avoid calculating the coefficients between such pairs of

documents (since the similarity value would be equal to zero).

_Willett (1981), introduced an improvement to Croft’s algorithm by proposing a method that is
able to identify all non-zero-valued coefficients for a given document simultaneously. The time-
efficiency of Croft’s algorithm is affected by increases in the indexing exhaustivity (i.e. the mean
number of terms per document), when a large number of non-zero-valued coefficients may have
to be calculated several times. Willett demonstrated that the performance of his algorithm does
not deteriorate as the mean number of terms per document increases, as each document

description is processed only once for the calculation of all the similarities that involve it.

3.3.2 Choice of a particular measure

Given the large number of measures available, the question naturally arises of the choice of the
most appropriate one(s) for the purpose of document clustering. Sneath and Sokal (1973),
suggested the use of the simplest type of measure possible, out of consideration for ease of
interpretation. In his book, Van Rijsbergen (1979) advised against the use of any measure that is
not normalised by the length of the document vectors under comparison. A further remark made
by Van Rijsbergen, and also by Sneath and Sokal (1973), is that the various association and
distance measures are monotone with respect to each other. Consequently, a clustering method
that depends only on the rank ordering of the resemblance values would give similar results for all

such measures.

The need to normalise resemblance measures by the length of the document vectors was
experimentally verified by Willett (1983)° in one of the few studies that attempt to establish the
relationship between clustering effectiveness and choice of similarity measure. In this study
Willett used the single link method, three document collections (Keen, Cranfield, and Evans),
four similarity measures (inner product, Tanimoto coefficient, cosine coefficient, and the overlap
coefficient) and five term weighting schemes. Experimental results confirmed the poor
effectiveness of non-normalised measures, and also showed little variation in the effectiveness of
hierarchies obtained with normalised measures. The cosine coefficient generated clusterings that

demonstrated a slightly better retrieval effectiveness than other measures.

Some further evidence for the inappropriateness of non-normalised resemblance measures was
offered (though not purposefully and explicitly, but rather accidentally) by Griffiths et al. (1984).
Griffiths and his colleagues used the Hamming distance and the Dice coefficient to measure

interdocument relationships. It should be noted that the former measure is not normalised by

® This study is part of the research reported in section 3.2.2 on the effect of term weighting on clustering effectiveness.
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document length, while the latter is. The quality of the structure of the resulting hierarchies, as
well as the effectiveness of cluster-based searches, were measured in a series of experiments. In
both cases, the results obtained with the Hamming distance proved to be significantly inferior to
those obtained with the Dice coefficient for all experimental conditions. Despite the nature of the

results, the authors did not significantly acknowledge the normalisation effect.

Kirriemuir and Willett, (1995), applied hierarchic clustering to the output of a database search
using four clustering methods and five similarity and distance measures, among which was the
cosine and Jaccard coefficients, and the normalised Euclidean distance. Measures of quality'® of
the resulting hierarchies revealed that the cosine and Jaccard coefficients led to the most effective
clusterings. One of the findings of this study was that merging of unrelated documents usually
occurred for short documents. This prompted the authors to raise questions about the effectiveness
of the normalising factors of the measures they used. However, they do not investigate this issue

further in their study.

Some further research that compared different measures for the calculation of interdocument
relationships was conducted by Rorvig (1999). Rorvig was mainly interested in investigating how
a set of similarity measures would perform as part of a visual information retrieval interface, i.e.
how successfully the measures would convey the known structure of the document space. Five
TREC topics were selected, and the document sets used for each topic comprised between 421
and 586 TREC documents. The measure of quality of the similarity measures was defined as the
visual separation of relevant and non-relevant documents for each topic. For visualisation
purposes, multidimensional scaling was employed, using three different scaling assumptions
(ordinal, interval, and maximum likelihood)'!. The study included five similarity measures (Dice,
Jaccard, cosine, overlap and asymmetric), and its results suggested that the cosine and overlap

coefficients were more successful in recovering structure.

The cosine coefficient and the Euclidean distance are two measures that have been commonly
used for the measurement of interdocument proximity in a document vector space. Furnas and
Jones (1987) analysed the properties of a large number of similarity measures, including the
cosine coefficient. They noted that the comparison of documents based on their angle in a vector
space approximates a comparison that is based on their topical content, as this is expressed

through within-document term relationships.

Dubin (1996) has noted that angular measures are more sensitive to relative attribute weights, as

opposed to distance measures that are more sensitive to absolute weights. The use of Euclidean

1 The measures were tailored to the specific application in which Kirriemuir and Willett were interested (identification
of duplicates in a news database), and will not be discussed here.
! The details of the MDS scaling assumptions will not be elicited here, as they fall outside the scope of this chapter.
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distance for clustering has been criticised by Willett (1988), who notes that according to this
measure two documents can be regarded as highly similar even if they do not have any terms in
common. Zhang and Rasmussen (2001) have recently developed a new similarity measure that
combines Euclidean distance and angular similarity (i.e. the cosine coefficient). This measure is
proposed for the matching of queries against documents, but it could as well be applied to the
calculation of interdocument similarities. Its effectiveness in either task remains to be

investigated.

Ellis et al. (1993) in their comprehensive article on the measurement of interdocument similarity
in textual databases, examined the theoretical properties of a large number of commonly used
measures. They concluded that the historical attachment to the association coefficients provided
by the Dice and cosine formulae seems to be in no need of revision. Given the evidence that the

research reviewed in this section has offered, this would seem a valid conclusion to make.

The issue of similarity is central to this thesis, since one of the main aims of this work is to
challenge the static use of similarity in IR, and to provide experimental evidence for the
applicability of query-sensitive similarity measures that take the query into account when
calculating interdocument relationships. In Chapter 5 I extensively discuss this issue (section 5.3),
by elaborating on the static nature of interdocument similarities, and by viewing the issue of

similarity in relation to the cluster hypothesis.

3.4 Hierarchic clustering methods

Hierarchic clustering methods result in tree-like classifications in which small clusters of objects
(i.e. documents) that are found to be strongly similar to each other are nested within larger

clusters that contain less similar objects.

Let us assume that X is the document set to be clustered, X = {x;, x5, ..., xy}. Each document x; is
a n-dimensional vector, where each dimension typically corresponds to an indexing term. In
section 3.2 I discussed issues pertaining to the selection of indexing terms, and the effect of term

weighting on clustering effectiveness.

A clustering of X in m sets can be defined as R = {C,, C, ..., C,}, so that the following conditions

are satisfied:

- Each cluster C; contains at least one document: C;# &, i=1, ..., m
- The union of all clusters is the set X: UL, C; = X

- No two clusters have documents in common: C,; 1 C i =90# i, j=.,m
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A clustering R, that contains k clusters is said to be nested in the clustering R,, which contains r <
k clusters, if each cluster in R; is a subset of a cluster in R, and at least one cluster of R; is a
proper subset of R, (Theodoridis & Koutroumbas, 1999). For example, the clustering R; = {{x,,
x3}, {x4}. {x2, x5}} is nested in R; = {{x;, x3, x4}, {x2, x5}}. On the other hand, R; is not nested
within R; = {{xy, x4}, {x3}, {X2, Xs}} (examples taken from Theodoridis and Koutroumbas (1999,
p- 403)).

Hierarchic methods are divided into two broad categories, agglomerative and divisive. An
agglomerative strategy proceeds through a series of (N-1) merges, for a collection of N
documents, and results in clusterings building from the bottom to the top of the structure. In a
divisive strategy, on the other hand, a single initial clustering is subdivided into progressively
smaller groups of documents (Van Rijsbergen, 1979). Divisive methods (Tanaka et al., 1999)
normally result in monothetic classifications, where documents in a given cluster must contain
certain terms in order to gain membership (Sneath & Sokal, 1973; Van Rijsbergen, 1979; Gordon,
1987). In polythetic clusterings, on the other hand, no specific terms are required for membership
in a cluster, and such structures are usually the result of agglomerative methods. For information
retrieval, polythetic clusterings are preferred (Van Rijsbergen, 1979; Willett, 1988), and
consequently hierarchic agglomerative clustering methods (HACM) have prevailed in the field
(Willett, 1988).

Agglomerative methods can be distinguished on the basis of whether they are founded on
concepts of matrix theory, or on concepts of graph theory (Anderberg, 1973; Theodoridis &
Koutroumbas, 1999). In this section I will concentrate on methods that are based on matrix
theory, as they are the ones most commonly used in IR (Willett, 1988). The input to an HACM of
this type is the similarity matrix S(X) that contains the values for all interdocument associations

(see section 3.3.1).

Hierarchic agglomerative methods usually follow the following generic procedure (Murtagh,
1983):

1. Determine all interdocument similarities
2. Form a cluster from the two closest objects or clusters

3. Redefine the similarities between the new cluster and all other objects or clusters, leaving

all other similarities unchanged
4. Repeat steps 2 and 3 until all objects are in one cluster

The various agglomerative methods available differ on the way that they implement step 3 of the
above procedure. At each step ¢ of the clustering process, the size of the similarity matrix S(X)

(which initially is NxN) becomes (N-£) x (N-£). The matrix S{X) of step ¢ of the process is derived
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from the matrix S,.;(X) by deleting the two rows and columns that correspond to the newly merged
documents (or clusters), and by adding a new row and column that contain the new similarities
between the newly formed cluster and all unaffected (from step ¢ of the process) documents or

clusters.

The output of a hierarchic clustering method can be presented in the form of a dendrogram
(Jardine & Sibson, 1971) (Figure 3.2). A dendrogram is usually represented as a tree with numeric
levels associated to its branches. The numeric values are the similarity levels at which clusters are
formed. At any similarity level, one can draw a line perpendicular to the similarity axis. In this
way, each branch of the tree that is cut by the line represents a cluster consisting of elements in
the subtree rooted at that branch. At the lowest level of similarity, all documents are in a single

cluster.
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Figure 3.2. A similarity dendrogram

Although the efficiency of the various clustering methods is not of primary importance in this
thesis, for reasons of completeness I will also refer to the efficiency of commonly used algorithms
that implement the various methods. Readings that offer significant amount of detail on aspects of
efficiency include (Hartigan, 1975; Croft, 1977; Murtagh, 1984a; Voorhees, 1985a, 1986; Willett,
1988). It should also be noted that efficiency is really a property of the algorithm that implements
the clustering method (Jardine & Sibson, 1971). Van Rijsbergen (1979) noted that it is sometimes
useful to distinguish the cluster method from its algorithm, but also acknowledged that in the
context of IR this distinction is less important since many cluster methods are defined by their

algorithms.

Most hierarchic agglomerative algorithms operate on the stored matrix approach (Hartigan, 1975),
where the similarity matrix is kept in memory. In section 3.3.1 I discussed issues relating to the
efficient calculation of interdocument relationships. Therefore, a typical algorithm that clusters N
documents by using the stored matrix approach has storage requirements of O(N?) (for the storage

of the similarity matrix), and time requirements of O(N°) since the matrix is searched N-1 times.

In the following paragraphs I will present four hierarchic clustering methods that have been
extensively used in IR research in the past, and that will also be used in the research reported in

this thesis. These are the single link, complete link, group average, and Ward’s methods. Jardine
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and Sibson (1971), Anderberg (1973), Hartigan (1975), and Spith (1980) offer a more in-depth
analysis of the various methods. Willett (1988) also presents a number of algorithms that are used

in IR to implement the various hierarchic methods.

3.4.1 Single link

In the single link method the similarity between two clusters is the maximum of the similarities
between all pairs of documents such that one document is in one cluster and the other document is
in the other cluster (Voorhees, 1985a). For example, if at some stage clusters i and j have merged,
then the similarity between the new cluster (labelled p) and some other cluster r is determined as
follows: S,, = max(S;, S;;). In graph theoretical terms, the clusters at some similarity level are the

connected components of the graph.

The method is known as single linkage because clusters are joined at each stage by the single
strongest link between them (Anderberg, 1973). For any cluster produced by the single link
method, every member is more similar to some other member of the same cluster than to any
other object not in the cluster, and consequently each document must be in the same cluster with
its most similar document (or it nearest neighbour). However, the minimum similarity between

documents in the same cluster can be zero.

The single link method does not succeed in delineating poorly separated clusters, where
intermediates are present between clusters (Cormack, 1971). Another characteristic of this method
is its tendency to form elongated clusters with little internal cohesion, an effect that is called
chaining (Jardine & Sibson, 1968). Jardine and Sibson view this chaining effect not as a defect of
the method, but rather as a description of what the method does in graph-theoretic terms. The
clusters produced by the single link method are described by Hartigan (1975) as “famously strung
out in long sausage shapes, in which objects far apart are linked together by a chain of close
objects”. On the other hand, if clusters are long “sausage”-type with high densities of objects
within each cluster, then the single link method will be better than other hierarchic methods in

discovering such shapes.

Van Rijsbergen (1971) proposed an implementation of the single link method that has O(N?)
storage and space requirements. The SLINK algorithm (Sibson, 1973) is also commonly found in
the literature; it has time and space requirements of O(N?), and O(N) respectively and has been

shown to be an optimally efficient implementation for the single link method.

3.4.2 Complete link

The definition of the complete link method is the opposite of the single link: the similarity

between two clusters is the minimum of the similarities between all pairs of documents, such that
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one document of the pair is in one cluster and the other document in the other cluster. For
example, if at some stage of the method clusters i and j have merged, then the similarity between
the new cluster (labelled p) and some other cluster r is determined as follows: S,, = min(S;,, S;;). In
graph theoretical terms, complete linkage clustering corresponds to the identification of the

maximally complete subgraphs at some similarity threshold.

Because of the way they form, complete link clusters tend to be small and tightly bound, the exact
opposite of single link clusters (Voorhees, 1985a). The minimum similarity between documents in
the same cluster can never be as low as zero (as in the single link method); instead, it is the
similarity level at which the cluster forms. Also contrary to the single link method, the nearest
neighbour of a document may be in a different cluster, however mutual nearest neighbours will

always be in the same cluster (Voorhees, 1985a).

The main criticism of complete linkage is that it is a space-diluting method (Lance & Williams,
1967). The essence of this criticism lies at the heart of the complete link method. Since a
document can not join a cluster until it obtains a given similarity level with all members of a
cluster, the probability of a cluster obtaining a new member becomes smaller as the size of the
cluster increases. In terms of a multidimensional space, the method dilutes the space because the
larger a particular cluster becomes, the larger the distance between the cluster and some non-

member also becomes.

One of the most commonly used algorithms that implement the complete link method is the
CLINK algorithm (Defays, 1977) that was devised through a modification of Sibson's (1973)
SLINK method, and that has the same time and space complexities (O(N® and O(N)
respectively). However, document hierarchies produced with this algorithm have displayed poor
retrieval effectiveness (El-Hamdouchi, 1987; El-Hamdouchi & Willett, 1989) since it does not

generate an exact complete linkage hierarchy (Defays, 1977).

3.4.3 Group average link

The similarity between two clusters in the group average link method is the mean of the
similarities between all pairs of documents, such that one document of the pair is in one cluster

and the other document in the other cluster.

The group average link produces clusters that are neither as loose as the single link clusters, nor as
tight as the complete link clusters. In this method clusters are formed on the basis of average
similarities, and therefore nothing can be inferred about the minimum or maximum similarities
between documents in a cluster (Voorhees, 1985a). This method frequently gives results that are

little different from those obtained with the complete link method (Anderberg, 1973).
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Sneath and Sokal (1973), based on a number of comparative studies carried out by other
researchers, have asserted that average linkage is the most preferable of the hierarchic methods.
However, Williams and his co-workers (1971a) have criticised it as being more likely than other
methods to form 'non-conformist’ groups (i.e. groups whose members share only the property that

they are unlike everything else, including each other) as the sizes of clusters increase.

For the group average method, the only O(N?) time, and O(N) space algorithm known is the one
Voorhees (1985a, 1986) used in her Ph.D. thesis. Voorhees noted that for the inner product
similarity function, the similarity between a centroid'? of a cluster and a document is equal to the
mean similarity between the document and all the documents in the cluster. Thus, the centroids of

a cluster can be used to compute the similarities between the clusters, requiring O(N) space.

3.4.4 Ward's method

According to this method proposed by Ward (1963), the merges between clusters at any stage of
the method are chosen so as to minimise an objective function that reflects the investigator's
interest in the particular problem. Ward illustrated this method with an error sum of squares
objective function, and Wishart (1969) showed how Ward’s method can be implemented through

updating a matrix of squared Euclidean distances between cluster centroids.

Implicitly, Ward’s method defines a cluster as a group of documents such that the error sum of
squares of Euclidean distances between documents of each cluster is minimal. This method has
the tendency to produce clusters of approximately the same size (Milligan et al., 1983). Cormack
(1971) criticised Ward's method as being biased towards spherical clusters that may not

accurately represent the true shape of groups of data present in the original set.

3.4.5 An example

I will demonstrate the single link method by means of an example. The input similarity matrix
will be assumed to be the same as in Figure 3.1, and is presented again for ease of reference in

Figure 3.3a.

The pair of documents with the highest similarity in Figure 3.3a is {x;, x3}, with a similarity of
0.8. This pair is the first to merge, forming cluster x; ;. The similarity matrix in Figure 3.3b results
from the one in 3.3a through the deletion of the rows and columns that correspond to x; and x;3,
and through the insertion of a row and column that correspond to the newly formed cluster x;, ;.

Moreover, the similarity values in matrix 3.3b have been updated, so that the new similarity

12 yoorhees defined the centroid of a cluster as the mean of all the vectors in the cluster.
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between each of x;, x4, and x5 and the newly formed cluster x,,; is the maximum of the similarities

between the respective document and documents x, and x;.

X X2 X3 X4 Xs X X223 X4 X5 X1 X234 X5
X; 1 X; 1 X 1
X2 0.6 1 X23 0.6 1 X2,34 0.6 1
x3 | 04 08 1 xs | 0.1 07 1 X5 01 03 1
x |01 05 07 1 xs (01 02 03 1
xs [ 01 02 02 03 1
(3.3a) (3.3b) (3.3¢)

Figure 3.3. Transformation of the similarity matrix by the application of the single link method

The next stage of the method joins document x, with the cluster x; 3, since this pair displays the
largest similarity (0.7) in matrix 3.3b. In a similar way as before, matrix 3.3c can be derived from
3.3b, and the method continues merging the pair of documents, or clusters, with the highest
similarity value until only one cluster remains. The final form of the similarity matrix, where only

two objects remain in it (x; and x; 34 5), is not shown in Figure 3.3 as it is considered trivial.
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Figure 3.4. The similarity dendrogram for the example

In Figure 3.4 the similarity dendrogram that results from the application of the single link method
to the input similarity matrix is presented. Only the similarity levels at which clusters are formed
in the example are shown in Figure 3.4. At similarity level O there is only one cluster present, the
entire document set. The other three clustering methods can be applied through a different

updating strategy of the similarity matrix.

3.4.6 Other methods

Other hierarchic agglomerative methods (e.g. median, centroid, weighted average) have seldom
been used for IR applications, and this is the reason for not presenting them in more depth here.
Any of the readings that comprehensively cover hierarchic clustering methods (e.g. Anderberg,
1973; Hartigan, 1975; Spith, 1980) offer further details.
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3.4.7 Some remarks

Lance and Williams (1967) have shown that there exists a general combinatorial equation that can
be used to describe how the different agglomerative hierarchic methods update the similarity

matrix after a fusion of any two objects. The equation is:

Shi = Oy + O Sy + By + ¥ L s — sy |

In this equation, s; refers to the similarity between the objects i and j that have merged to form the
new cluster k. The new similarity between cluster k and any object 4 is given by su, and ¢, @, B,
and y are parameters whose values are specified by the hierarchic agglomerative procedure. In
Table 3.1, the values of the parameters for each of the four clustering methods previously
analysed are presented. For the formulas in this table, n, corresponds to the number of documents

contained in cluster r, where r = ¢, j, h.

It should be noted that Wishart (1969) suggested that Ward’s method is compatible with Lance
and Williams’ formula, and designed an efficient algorithm for its implementation. He then
suggested that all other agglomerative methods could be implemented through the same algorithm
by making use of the update formula given by Lance and Williams. A number of readings in
cluster analysis have since adopted this approach for the implementation of hierarchic clustering
methods (e.g. Spith, 1980).

o o B 4
Single Link 172 172 0 -1/2
Complete Link 172 172 0 172
n, n;
Group Average 0 0
n,- + nj n; + nj
n,t+n,; n,+n; -n;
Ward's Method — 0
n,+n,+n; ny+n;+n; Ry +n;+n;

Table 3.1. Values for the parameters of the Lance & Williams combinatorial equation

Of the four methods that were described in the previous paragraphs, single link was first applied
to IR by Jardine and Van Rijsbergen (1971). Further research in the 1970s and the early 1980s
also focused on the single link method (Van Rijsbergen, 1974b; Van Rijsbergen & Croft, 1975;
Croft, 1977, 1978, 1980; Willett, 1983, 1985). It was not until the mid-1980s that the application
of other hierarchic agglomerative methods was suggested, almost simultaneously, by Griffiths et
al. (1984, 1986), Voorhees (1985a), and El-Hamdouchi (1987). Most of the research reported in
the 1980s evaluated the comparative effectiveness of the various hierarchic methods (e.g.
Griffiths et al., 1984; Voorhees, 1985a; Griffiths et al., 1986; El-Hamdouchi, 1987). Such studies

are presented in detail in Chapter 4.
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3.5 Cluster representation

The issue of cluster representation is a central one in document clustering. I will divide cluster
representation into two forms: internal and external. Internal refers to the formation of cluster
representatives, or centroids, that attempt to summarise the contents of a cluster for the purposes
of cluster-based retrieval. Incoming queries are matched against representatives, and the cluster
whose representative is most similar to the query is retrieved (in Chapter 4 I provide more details
on cluster-based retrieval). External representation refers to textual or graphical presentations of
cluster contents in a manner such that they will support judgements by users on the utility (or
relevance) of the clusters. These two types of cluster representation are presented in the following

paragraphs.

3.5.1 Cluster representatives

Clusters of documents are traditionally represented by some kind of profile, typically called a
cluster representative, or a cluster centroid. Representatives are typically used in cluster-based
searches, when incoming queries are matched against them. Clusters whose representatives are
most similar to the query are subsequently retrieved. Two requirements that a representative
should meet are that it should sufficiently describe the contents of the cluster, and that it should
sufficiently discriminate between the cluster it describes and all the other clusters of the database.
This is because the representative essentially acts as a stand-in for the documents of the actual
cluster in the retrieval process. It should also be noted that representatives were initially
introduced for efficiency purposes, i.e. to reduce the number of comparisons between the query

and objects in the database (Rocchio, 1966).

One can find in the literature a large number of methods for deriving cluster representatives
(Croft, 1978; Van Rijsbergen, 1979). Sometimes, the cluster representative can be defined as a
document of the cluster itself. For example, clusters can be represented at some level of similarity
by a graph. A simple way of finding the representative in such a case is by finding the document
that is linked to the maximum number of other documents in the graph (maximally linked
document) (Jardine & Van Rijsbergen, 1971).

Typically however, the representative is not a document of the cluster itself. For example, Salton
(1971) defines the representative as the “centre of gravity” of the documents in the cluster by
averaging the descriptions of the members of the clusters. Jardine and Van Rijsbergen (1971)
represent clusters by a binary string in which a 1 in the i-th position can either indicate the
presence of the i-th term in more than 1 documents in the cluster, or the presence of the i-th term

in more than log,C documents, where C is the total number of documents in the cluster.
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Murray (1972) proposed a method for cluster representation that has subsequently been used by
other researchers (Van Rijsbergen & Croft, 1975; Voorhees, 1985a). In short, those terms with the
highest frequency within the cluster are included in the centroid, and are assigned weights based
on their rank order values of their frequency. The characteristic feature of this method is that it
adopts a deletion strategy, so that terms that do not occur frequently enough within the cluster are
removed from the list of representative terms. Murray demonstrated that such deletions can be

implemented without any loss in retrieval effectiveness.

For his Ph.D. thesis, Croft (1978) proposed a cluster representation model based on Gower’s
(1974) maximal predictor theory. A predictor for a cluster is a binary vector that predicts the
characteristics of any document that belongs to the cluster. A maximal predictor is one whose
correct predictions are as numerous as possible. In Gower’s original maximal predictor theory it is
assumed that both types of prediction error (i.e. a 1 in the predictor where there should be a 0, and
vice versa) are equally important. In the modified model, Croft suggested that predicting a 0
where there is a 1 in the original document is a more serious error than the reverse, since only few
of the vocabulary terms are assigned to a particular document. A relative weight to each type of

error can then be attributed by means of a parameter that is user-specified.

The impression that one obtains by reading through the related literature, is that the effect of
different representatives on cluster-based retrieval effectiveness has not been extensively
investigated (Croft’s work for example, investigated different centroid types using a single small
database, namely the Cranfield-1400 collection). Most researchers typically adopt a single
representation strategy, and calculate retrieval effectiveness based on that selection. Voorhees
(1985a) examined the effect of centroid length on retrieval effectiveness. The representative she
used in her experiments was the one proposed by Murray (1972). The effectiveness of the
searches obtained by varying the centroid’s length displayed considerable variability, something
- that prompted Voorhees to note that (p. 75): “The variability of the effectiveness of searches with
varying maximum centroid lengths underscores the necessity of further research into a theory of
centroid creation and weighting”. The challenge that was raised by Voorhees seventeen years ago

still stands unaddressed.

3.5.2 Representations of cluster contents

Effective ways by which the contents of a cluster can be summarised are also needed. Such
representations are particularly needed during a browsing session, where a number of clusters are
presented to a user. The user then has to select the cluster(s) of interest based on the cluster
representation that the system displays. One such example is the Scatter/Gather system (Hearst &

Pedersen, 1996).
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Typical cluster representations include the display of a number of terms that are most heavily
weighted within the cluster, or representative document titles from the cluster, as for example in
(Allen et al., 1993; Hearst & Pedersen, 1996; Neto & Santos, 2000; Roussinov & Chen, 2001).
Anick and Vaithyanathan (1997) used phrasal units to represent cluster contents, but do not report
any form of evaluation to test the effectiveness of their approach. The same lack of experimental
evidence is also noted for Maarek et al. (2000), who also focus on cluster representations that use
phrasal descriptions. It is typically the case that in the “Future Work™ sections of such research
articles the need for more effective cluster representations is emphasised, or the need to conduct

user experiments to validate specific approaches is put forward.

An exception to this is the work carried out by Kural (1999, 2001). In this study users were
presented with clusters containing the 50 top-ranked documents retrieved in response to a query
submitted to an IR system. Cluster representations consisted of the ten most discriminating terms
of the clusters and three document titles. The main goal of this research was to investigate
whether users would be able to select the ‘best’ cluster based on the cluster representation
provided. The experimental results led Kural to suggest that “clusters can not be relied upon to

consistently produce meaningful document groups that can easily be recognised by the users”.

However, Kural’s work does not escape criticism. She restricted the study to include only the
C3M clustering method (Can & Ozkarahan, 1990), one document collection, a fixed number of
top-ranked documents, and more importantly, a single cluster representation method.
Accordingly, one can argue that the reason for which users were not able to recognise useful
clusters was that the chosen clustering method was not effective, or that the chosen cluster
representation method was not informative enough, or that the number of top-ranked documents
was not large enough. Kural’s experimental methodology did not factor out any of these

parameters, and so the conclusions one can draw from it are limited.

Wu et al. (2001) report a smaller (in that it involved less users) scale study for the purposes of the
TREC interactive track. The effectiveness of cluster representations (10 highest weighted terms of
the cluster, 5 most frequent word pairs, and titles of the 3 documents most similar to the query) as
relevance clues was one of the many issues the authors were investigating. Users in this study did
not express their own information needs. The authors noted that in the majority of the cases users
managed to locate the cluster with the most relevant documents. However, a large number of
users expressed their dissatisfaction with the way clusters were represented. Again, different

methods of representation, or different clustering methods were not investigated.

The area of presenting relevance clues to users by means of different document representations
(e.g. abstracts, document titles, indexing terms, list of citations, automatically generated sentence
extracts) has been researched by a number of workers such as Rath et al. (1961), Saracevic
(1969), Janes (1991), and Barry (1998). Mizzaro (1997) in his review article on relevance
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summarises the findings of these and other studies over the course of the last forty years. The one
overall conclusion from these studies is that document representations significantly affect users’
judgements of the relevance of documents. While the comparative effectiveness of the various
representations in these studies does not seem to be uniform, a general trend seems to suggest that
abstracts are the most effective indicators of relevance, followed by automatically generated

extracts, titles, lists of citations, and indexing terms (Barry, 1998).

It should be noted that these studies were carried out in environments where users had to judge
the relevance of a single document in response to a query. The various representations can be seen
as a level of abstraction that reduces the amount of information contained in a single document, so
that a user can quickly and accurately judge the utility of the original text. In the case of cluster
representations the level of abstraction is even higher. Clusters themselves are an abstraction layer
on top of single documents. Representations of clusters must succinctly describe the contents of
clusters in such a way that users can correctly base their relevance judgements upon such
representations; they are a representation of representations (Kural et al., 2001). Doyle, as early as
1964, noted that a potential problem with document grouping methods is that “there is no obvious
clear-cut way to represent the groups of documents for perusal by literature searchers”. The effect
of the choice of cluster representation has not been fully acknowledged in the literature so far, and

with the exception of Kural’s research, the lack of user studies is notable.

In my opinion, more research towards this end is warranted, and such efforts are more likely to
originate from the automatic summarisation community. Multiple document summarisation (Mani
& Bloedorn, 1999; Radev et al., 2000) is an approach that may prove effective as a method of
cluster representation, especially query-biased summarisation. The effectiveness of query-biased
summaries as indicators of relevance of single documents has been demonstrated in previous
research both for textual (Tombros & Sanderson, 1998), and for spoken documents (Tombros &
Crestani, 2000).

Based on the current state of research in the area of cluster representation, one should not draw
conclusions regarding the ability of users to identify relevant clusters. Until future research
systematically investigates the comparative effectiveness of different types of cluster
representation, IR researchers should acknowledge the effect that the choice of a particular

representation has on users’ perception of relevance of document clusters.

3.6 Cluster validity

The process of cluster analysis on a set of data is structure seeking, i.e. it is attempting to discover
structure in the data set. However, the application of cluster analysis is said to be a structure

imposing process: a clustering method may impose structure on the data even if such structure is
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absent from the data itself (Theodoridis & Koutroumbas, 1999). Therefore, measures that can
quantitatively evaluate the clustering tendency of the original data, as well as the results of
clustering methods, are needed. Such measures have been widely used in cluster analysis. Almost
every book on cluster analysis dedicates a section on methods for measuring cluster validity (e.g.
Jardine & Sibson, 1971; Sneath & Sokal, 1973; Theodoridis & Koutroumbas, 1999). Dubes and
Jain (1979) compiled a comprehensive review of such methodologies that is still a point of

reference for cluster validity studies.

Three approaches have generally been followed for examining clustering validity: testing for
clustering tendency of the original data set, measuring the degree of distortion imposed by the
clustering method on the similarity matrix, and measuring the effectiveness of a clustering method

at recovering known structure that is present in the original data set.

One way to examine whether a data set exhibits any degree of clustering tendency is by means of
the Random Graph Hypothesis (RGH) (Ling & Killough, 1976; Dubes & Jain, 1979). Given a
dataset X comprising N objects and the Nx/N symmetric similarity matrix S(X) for this set, one can
create a NxN symmetric ordinal similarity matrix R(X) that contains the numbers 1,2, ..., N(V-
1)/2 in the lower triangle without ties; the most similar pair of items has rank 1. The RGH is that
all such [N(N -1)/2]!ordinal matrices are equally likely. Based on this hypothesis a number of

characteristics of random graphs can be studied. One such characteristic is the number of edges,
V, needed to connect a random graph. Knowing the distribution of this number of edges permits
one to judge how many edges must be observed before deciding that the data are random (Dubes
& Jain, 1979). Dubes and Jain explain in detail this process, and Ling and Killough (1976) have
calculated tables for the probability of observing specific values of the minimum number of V

under the RGH given a graph that contains N nodes.

Cormack (1971) and Gordon (1987) provide an extensive list of measures for the distortion
imposed on the similarity matrix by a clustering method. Such measures typically proceed by
comparing the values of interdocument similarities in the input matrix to the corresponding
similarity levels of the similarity dendrogram (Figure 3.2). One commonly used distortion
measure is the cophenetic correlation coefficient (CPCC) (Sokal & Rohlf, 1962). Given a
dendrogram whose level values are on the same scale as those in the NxN original similarity
matrix S(X), a NxN cophenetic matrix CP(X) can be defined. Each element c; of CP(X)
corresponds to the first level in the dendrogram that objects i and j merge to join the same cluster.
The CPCC is then defined as the product-moment correlation between the elements of S(X) and
CP(X):

/L)Y s;c5 = (5)(C)
J(l/L)Z s2-s J(l/L)Z c2-c ’
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where §=(1/ L)Zs,.j,z=(1/ L)Zc,.j,L=N(N —-1)/2. In general, the larger the values of the

CPCC are, the better the match between the similarity and the cophenetic matrices. The specific
CPCC value that could be deemed as sufficient to suggest that the output dendrogram has not
significantly distorted the input similarity matrix has been found to be at least 0.8. However, as
Dubes and Jain report (1979), even a value of 0.9 would not guarantee that the output dendrogram
is a sufficiently good summary of the original inter-object relationships. It has also been
suggested that the CPCC will always yield a high value for the group average method, because of
the clustering criterion employed by this method (Farris, 1969).

Another measure of distortion is given by a family of measures developed by Jardine and Sibson

(1968). The coefficient is given by:

u
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where s; and c; are the same as before (similarity between objects 7, j and their cophenetic value

respectively), and  is an arbitrary parameter, 0< # <1. By varying the value of the parameter y it
is possible to emphasise between smaller or greater differences between the similarities and the

cophenetic values.

Determining the ability of clustering methods to recover cluster configurations that are known to
exist in the original data, has also drawn attention from researchers as a method of evaluating
cluster validity. To this end, Monte Carlo simulation techniques have been used for generating
data sets with known structure (Cunningham & Ogilivie, 1972; Kuiper & Fisher, 1975;
Blashfield, 1976; Scheibler & Schneider, 1985; Milligan & Cooper, 1987). These artificial
datasets are then analysed by the clustering methods under investigation, and the level of
agreement between the actual structure of the dataset and the one discovered by the clustering
methods is compared. An advantage of such approaches is that there is no doubt as to the ‘ground
truth’, i.e. the true cluster structure. The main problem that is associated with this approach on the
other hand, is the limited degree of generalisation that can be applied to data distributions and
structures that are not included in the study (Milligan & Cooper, 1987).

If one attempts to locate similar validity studies in the IR literature, then one will notice that the
issue of cluster validity has been somewhat overlooked, or at least, has not been pursued with the
same vigour as it has in other fields. This is not to imply that IR researchers are not concerned
with the quality of clustering output. Instead, it is merely the case that evaluation of cluster

validity in IR has customarily been performed in a different manner. Before seeing what this
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manner is, I will report on some studies that have evaluated cluster validity in the terms of the
methods previously presented. Willett also presents an overview of such research up to the date of

1988.

W.M. Shaw and his colleagues (1997) tested the RGH in a cluster-based environment that
comprised 13 test collections. They constructed random graphs by the single link clustering
criterion, where the number of points of the graph corresponds to the number of documents of
each test collection. The number of edges was varied from one to a large number q. In the
resulting random graphs, effectiveness values (a function of precision and recall) were calculated
for each component containing two or more documents for each of the queries in the test
collection. In this way average effectiveness values were obtained for each test collection, and

these values represent expected values of random clustering performance.

Operational retrieval values were compiled by Shaw and his co-workers from a list of nine papers
published from 1971 to 1994 by other researchers. By comparing random performance values to
operational values, Shaw et al. concluded that operational cluster-based effectiveness is not
significantly different from that attained by random structures. This observation led the authors to
raise questions regarding the validity of the application of document clustering to IR. They
suggested that the structure imposed on a set of documents by topical relatedness may not reliably
associate documents relevant to the same query. Quoting the closing sentence from this article,
Shaw et al. postulate that: “If cluster-based retrieval is to play a role in IR, it is likely to be
demonstrated by adaptive clustering techniques and not by fixed clustering outcomes”. This
statement by Shaw et al. relates to the issues that this thesis challenges; I will return to this

statement at the end of Chapter 4.

Burgin (1995) compared the performance of random clustering to that of operational clustering by
following a different experimental procedure. He used four test collections and five hierarchic
clustering methods in his experiments (see section 3.2.1). For each test collection Burgin
generated 30 random similarity matrices that he subsequently clustered with each of the five
clustering methods. Optimal cluster-based retrieval results were obtained and averaged over the
30 iterations to derive random performance values. These were compared to optimal effectiveness
values that were obtained by the application of each clustering method to each test collection. The
results of Burgin’s experiments revealed that the single link method produced hierarchies whose
effectiveness was not significantly different to that of random clustering for a number of

experimental conditions. The same did not hold for the other clustering methods.

R.J. Shaw and Willett (1993) presented some evidence suggesting that a clustering based on
documents and their nearest neighbours (i.e. most similar documents), as the one proposed by
(Griffiths et al., 1986; El-Hamdouchi & Willett, 1989; Croft et al., 1989; Wilbur & Coffee, 1994),

does not exhibit random behaviour. Their experiments were conducted on four databases. For
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each relevant document in each database, they computed a list containing its N most similar
documents, and counted the number of relevant documents in this neighbourhood. They repeated
the process by randomly assigning nearest neighbours to relevant documents, and by means of
statistical analysis determined that the random behaviour was significantly worse than the one

achieved with the actual similarities.

The use of distortion measures for the evaluation of cluster validity is not common practice in IR.
Griffiths et al. (1984) conducted one of the few studies in which the cophenetic coefficient was
used to compare the distortion imposed on similarity matrices by the four hierarchic methods"
reviewed in section 3.4. The results of this study are further analysed in Chapter 4. However, it is
worth mentioning that the average link method, as suggested by (Dubes & Jain, 1979), gave the
best results, followed by the single link method. Complete link seemed to impose the largest

degree of distortion on the similarity matrix.

Willett (1988) justified the limited application of distortion measures to IR by the observation that
the method that imposes the least distortion is not necessarily the most effective one, as shown by
Griffiths et al. (1984). Willett also suggested that the distortion of the similarity matrix is not
necessarily to be avoided in IR applications: a clustering method should try to discover groupings
that are more intense than the ones present in the similarity matrix. Williams and Clifford (1971)
have also noted that “...the system is automatically distorted as classification proceeds, and the

original similarities are not, and are not intended to be, preserved”.

3.6.1 Clustering tendency and cluster-based effectiveness

With the exception of these studies, and the ones reported by Willett (1988), the majority of IR
researchers have assessed the clustering tendency of a document set by means of the cluster
hypothesis'* (Jardine & Van Rijsbergen, 1971), and the quality of the resulting clusterings by
means of cluster-based retrieval. Since both the cluster hypothesis and the evaluation of
effectiveness through cluster-based retrieval form focal points of the research reported in this
thesis, they are separately discussed in Chapter 4. In this section I will attempt to clarify the
reasons that have driven the IR community to adopt these two approaches for evaluating cluster

validity.

Van Rijsbergen and Croft in their early work on clustering postulated the potential effectiveness

gains that can be achieved by the application of hierarchic clustering to IR (see section 2.5).

13 No distortion results are reported for Ward’s method in the article.

14 Dubin (1996) proposed an alternative method for measuring clustering tendency based on skewness and elongation.
These measures are tailored for diagnosing document spaces for visualisation, and fall beyond the aim of this thesis.
Mather (2000) has also proposed a measure of cluster quality based on linear algebra.
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Through interdocument associations relevant documents should ‘pull’ closer to other relevant
documents, and away from non-relevant ones. This assumption has been formally expressed by

Jardine and Van Rijsbergen (1971) as the cluster hypothesis.

In brief, the hypothesis postulates that closely associated documents will tend to be relevant to the
same queries. Therefore, if for a specific database all relevant documents, on average across all
queries, are more similar to each other than to non-relevant ones, then it can be said that this
database adheres to the cluster hypothesis. The application of a clustering method to such a
document set can be expected to be highly effective, as such a collection is assumed to possess a
high degree of clustering tendency. Clustering methods that operate on the similarity matrix will
be likely to merge relevant documents first before all non-relevant ones, if the separation between

the two is clear.

The ultimate goal of a clustering system is to completely separate relevant from non-relevant
documents (Salton et al., 1975). This situation would fully support the cluster hypothesis. Figure
3.5 shows such an ideal scenario after the application of clustering to a data set. The resulting
dendrogram is shown here without the similarity levels at which the clusters are formed. The left
branch of the dendrogram contains all the relevant documents, whereas the right branch all the
non-relevant ones. In this ideal situation the left branch of the figure would be hierarchically
organised in such a way that it would reveal the topical structure of the relevant portion of the
database. For IR applications this is the ‘known structure’ that is present in the original dataset,

and which clustering methods should strive to discover.

Figure 3.5. An ideal scenario: total separation of relevant and non-relevant documents

The quality of the output of various clustering methods can then be measured on the basis of how
closely they resemble the ideal situation depicted in Figure 3.5. This measurement can be attained
by means of cluster-based searches that implement what is known as cluster-based retrieval
(Jardine & Van Rijsbergen, 1971). Cluster-based retrieval effectiveness is measured using a
function of precision and recall, and a number of ways for implementing cluster-based retrieval

are presented in Chapter 4. Here it suffices to say that the closer the hierarchic document structure
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matches the one of Figure 3.5, the higher the effectiveness will be. Effectiveness decreases as

clustering fails to reveal the correct structure of the document space.

Clustering in the context of IR is therefore goal-driven. Its application, as far as effectiveness is
concerned, is motivated by the aim to cluster relevant documents together. In the same way, the
evaluation of clustering tendency and validity in IR are also goal-driven. What is important for the
application of clustering to a document collection for the purposes of IR is different than what
may be of importance in any other application area of cluster analysis. However, consideration for
the quality of the output of cluster methods in terms of ‘meaningful structure’ is applicable to IR,
and evaluation of the non-randomness of generated structures should be pursued. The
methodology followed by Burgin (1995) and Shaw et al. (1997) provides efficient means towards
this end.

3.7 Recent trends

In this chapter so far I outlined the main aspects of document clustering for IR. The focus was
placed on hierarchic clustering methods, because these have been widely applied to IR, and
because they will also be applied to the work reported in this thesis. In this section I look into

some recent trends that have developed in the area of document clustering.

3.7.1 Hypertext and web clustering

With the ever growing popularity of the World Wide Web (WWW), it is not surprising that a
significant body of recent research has focused on clustering methods for the structuring and
organisation of web documents. Clustering of hypertext documents was advocated as early as
1989 by Crouch and his colleagues (Crouch et al., 1989). Botafogo (1993), Mukherjea et al.
(1994), Weiss et al. (1996), and Johnson and Fotouhi (1996) have also developed methods for
clustering hypertext and hypermedia structures. Some of these approaches rely solely on the
semantic information embedded in link structures between documents (link-based methods, e.g.
Botafogo, 1993). Others follow a hybrid approach that combines link and content information in

order to calculate interdocument similarities (Weiss et al., 1996).

Macskassy et al. (1998) conducted a small scale experiment to investigate the way that humans
cluster web documents. Their motivation was to appreciate whether web document clustering
implementations can create groupings that are useful and meaningful to users. Their main findings
were that users tended to create relatively small clusters, and that any two users had little
similarity in the clusters they created. The authors view their findings as “a sobering note on any

quest for a single clearly correct clustering method for web pages”.
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A clustering algorithm designed specifically for web documents has been developed by Zamir and
Etzioni (1998) (Suffix Tree Clustering, STC). This is a partitioning method that generates
overlapping clusters. STC clusters documents based on shared phrases, and also makes use of
proximity information between words by treating each document as a string. It uses a suffix tree

structure to efficiently organise the initial base clusters that the algorithm subsequently refines.

Modha and Spangler (2000) proposed a hybrid content and link-based algorithm that clusters
hypertext documents using words contained in the document, out-links from the document, and
in-links to the document. Modha and Spangler use these features to determine the similarities
between pairs of documents. The authors also report on a novel method of cluster annotation that
is tailored to web documents. They represent each cluster using different nuggets of information.
Amongst them are the highest weighted keywords of the cluster (keywords nugget), the title of the
document whose in-link profile is most similar to the in-link profile of the cluster (breakthrough
nugget), and the title of the document whose out-link profile is most similar to the out-link profile
of the cluster (review nugget). The highest weighted in and out-links are also used in the

representation. No evaluation of the effectiveness of such annotations was reported.

Kumar at al. (1999) describe a link-based clustering method called trawling, that combines co-
citation and graph analysis to identify clusters of related web documents. The interesting aspect of
this approach is its main objective: to automatically identify “emerging web communities”. These
are clusters of related web pages whose presence on the web is too new, or their topic too fine-
grained, to attract the interest of web directory services, such as Yahoo (e.g. the community

centred around plane-spotting in U.K. airfields, etc.).

Mukherjea (2000) also uses a hybrid approach in order to organise topic-specific information on
the web. He uses a crawler to gather web documents specific to a user-supplied topic. To do so, a
number of seed documents are chosen, either as selections designated by the user, or as top-
ranked documents retrieved from a search engine in response to the specific topic. For each seed
the crawler downloads pages that are referenced by the seed, and pages that reference it (these
pages are downloaded if their similarity to the seed profile is larger than a specified threshold).
The set of pages thus derived is then hierarchically organised into different levels of abstraction.
Mukherjea argues that the seeds and the downloaded set of documents constitute a topic-specific
set that may reveal useful documents to the user that would have otherwise been missed through a

conventional search engine.

Other approaches include a syntactic clustering method that is used to eliminate duplicate web
documents (Broder et al. 1997), and an algorithm for clustering XML documents that utilises the

mark-up language’s structured features (Guillaume & Murtagh, 2000).
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The WebCluster project (Mechkour et al., 1998; Harper et al., 1999), developed at the Robert
Gordon University in Scotland, has proposed a novel approach for document clustering on the
web: a mediated access to the web via a clustered collection. The user can initially explore a
small, pre-clustered collection that covers a certain, specialised domain of interest (source
collection). The clustering can be implemented by any of the hierarchic methods reviewed in
section 3.4. The topical structure of the source collection can be revealed to the user through the
use of clustering. The user can interact with the structured collection, select clusters and
documents of interest. The system subsequently proposes a query based on the selections made by
the user. This query is submitted to the target collection, which can be a sub-collection of the web
that is indexed by a search engine. This process is expected to assist users with vague information

needs, or users who seek information in a domain with which they are unfamiliar.

Comprehensive results from an evaluation of the system have not been published to date. A small
scale study that was reported in (Harper et al., 1999), revealed that users felt at ease with the idea
of mediated access, although users familiar with the source collection would rather be able to
formulate their own queries. The issue of cluster representation also came up in the study, as users
noted that they would like a more informative representation than the one provided by the system
(frequently occurring keywords in the cluster). A potential weakness of Web Cluster that has been
identified by Kural (1999), is that the underlying assumption that the small source collection will
be representative of a much larger heterogeneous collection, such as the web, is perhaps

unrealistic.
3.7.1.1 Other recent trends

Apart from clustering on the web, other emerging applications of clustering in the area of
information retrieval include image (Mukherjea et al., 1998) and video (Yeung & Yeo, 1998)
clustering. Topic detection and tracking is also an area that has attracted much attention recently,
and clustering methods have been applied to facilitate the topical and temporal grouping of
documents (Yang et al., 1998; Hatzivassiloglou et al., 2000).

Another body of research has applied clustering in order to detect usage patterns in web-based
information systems (Chen & Cooper, 2001). Such approaches cluster user-supplied queries by
analysing search engine logs (Beeferman & Berger, 2000; Wen et al., 2001), so that new queries
can be matched against similar clusters of past queries. In this way the effectiveness of searches is
expected to increase either by expanding user queries with other terms, or by retrieving

documents that were relevant to previous similar queries.

In recent years, the emergence of data mining has contributed to the introduction of efficient
methods for clustering large datasets. Data mining applications impose some special requirements

on clustering methods, such as high dimensionality of the feature space, scalability and non-
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presumption of canonical data distribution (Agrawal et al., 1998). To this end, both partitioning
and hierarchic methods have been used (Zhang et al., 1996; Guha et al., 1998, Karypis et al.,
1999). Moreover, density-based methods that can detect clusters of arbitrary shapes have also
been used (Ester et al., 1996; Hinneburg & Kleim, 1998), as well as grid-based methods that can

enhance clustering efficiency even further (Agrawal et al., 1998).

3.8 Reflections on document clustering research

I will conclude this chapter by reflecting on document clustering research over the past thirty
years. The aim of this section is to put forward those aspects of cluster research that are the focal

points of the research work in this thesis.

Research on hierarchic document clustering spans arguably for over three decades. During the
1970s research was dominated by the introduction of the cluster hypothesis, the application of the
single link method, and the development of search strategies that could potentially increase the
effectiveness of document clustering. Van Rijsbergen and Croft carried out most of the work
published during this period (Jardine & Van Rijsbergen, 1971; Van Rijsbergen & Sparck Jones,
1973; Van Rijsbergen, 1974b; Van Rijsbergen & Croft, 1975; Croft, 1977, 1978, 1980; Garland,
1982).

The application of other hierarchic methods to IR (e.g. group average, complete link and Ward’s
methods) was extensively investigated during the 1980s. The majority of the research work was
carried out at Cornell University by Ellen Voorhees (1985a), and at Sheffield University by
Griffiths et al. (1984, 1986), El-Hamdouchi (1987), El-Hamdouchi and Willett (1987, 1989).
Effectiveness was the major consideration in this body of research, and the comparative
effectiveness of various hierarchic methods, as well as the comparative effectiveness of clustering

and inverted file search, was extensively investigated.

The results of these studies were inconclusive as to whether cluster-based searches or inverted file
searches were more effective. Indeed some of the late work in the 1980s by El-Hamdouchi and
Willett (1989) suggested that non-clustered searches are to be preferred. In the majority of the
work published up to that point, clustering had been applied to entire document collections in a
static manner (i.e. once, before querying). Willett (1985) reported on some experiments on post-
retrieval clustering, where only documents of the database that match a specific query were
clustered. However, no other published research at the time investigated the effectiveness of post-

retrieval clustering.

Over the last decade, there has been a considerable shift of focus of clustering research.

Effectiveness issues became superseded by considerations for fast, efficient clustering methods
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(not necessarily hierarchic) that can support on-line user interaction for browsing document
collections (Cutting et al., 1992; Allen et al., 1993; Silverstein & Pedersen, 1997). Methods for
visualising document collections, and search results, and the inter-document relationships that
hold in such collections have also been investigated over this period (Dubin, 1996; Leuski &
Allan, 1998; Allan et al., 2001). Almost ten years after Willett’s first experiments on post-
retrieval clustering, Hearst and Pedersen (1996) performed some further experiments which
reviewed the cluster hypothesis under the light of post-retrieval clustering, and investigated its

applicability to a browsing task.

However, this latter period has been dominated by an “efficiency over effectiveness” approach. A
potential reason for this might be that no new research has focused on effectiveness issues since
perhaps the late 1980s (El-Hamdouchi, 1987). Some effectiveness-oriented research has been
published by Shaw (1991, 1993, 1997) and Burgin (1995). However, as I discussed in section 3.2,
this work has mainly investigated clustering effectiveness as a function of indexing exhaustivity,

and has not put forward a new approach that could enhance clustering effectiveness itself.

In this thesis, I investigate issues pertaining to the effectiveness of cluster-based IR systems.
Efficiency issues are not considered. The reasons for this approach are twofold. First, I believe
that effectiveness is of primary importance, whereas efficiency is a factor that is heavily
dependent on technological advances. Secondly, and more importantly, if one succeeds in
improving effectiveness, then one could potentially instigate further development in the field.
This development can be materialised in the form of more efficient algorithms and/or hardware
that would exploit the improved effectiveness. Alternatively, it can be materialised in the form of
new research in areas that are linked with effectiveness and that have been neglected due to the
lack of appropriate stimuli. For document clustering, such areas may include new models of

cluster-based searches, and new methods of cluster representation.

As mentioned previously in this chapter, the cluster hypothesis is paramount to the issue of
effectiveness in hierarchic clustering. In the following chapter I extensively discuss the cluster

hypothesis and its implications to cluster-based effectiveness.

3.9 Summary

In this chapter I examined the basic steps of the clustering process, and I discussed in detail issues
that relate to each of these steps (sections 3.2-3.6). I limited the discussion to hierarchic clustering
methods, as this type of clustering is used in this work. The steps of the clustering process which
were discussed in this chapter were: the indexing representation of documents, the calculation of

interdocument similarities, the application of hierarchic clustering methods, the representation of

49



Chapter 3 Document Clustering for IR: Background

cluster contents and the validation of the clustering results. In section 3.7 I also presented some

recent trends in document clustering research.

As this work focuses on the effectiveness of hierarchic clustering, I reviewed these issues, where
possible, from the perspective of the effect they may have on cluster-based effectiveness. By
reviewing previous work which has investigated these issues from an effectiveness point of view,
I aimed to justify some decisions that I make in later chapters regarding the implementation of the
clustering system used in this work. Such decisions, for example, include the use of the most
exhaustive indexing representations for documents (section 3.2.1), the use of f-idf weights for
document terms (section 3.2.2) and the use of the cosine coefficient as a measure of

interdocument similarity (section 3.3.2).

In section 3.5 I presented a number of issues which relate to the representation of cluster contents
(either for cluster-based retrieval, or for the presentation of cluster contents to users). I described
the effect that these issues have on the clustering process. I also explained why, based on the
current state of research, IR researchers should be cautious when dealing with these issues, and
appreciate the effect that these may have on the effectiveness of the clustering process. The
discussion in this section relates to the choice of optimal cluster evaluation that is used in this

thesis. I further discuss optimal cluster searches in Chapter 4, section 4.3.4.

In section 3.6 I outlined a number of methods for validating the output of clustering methods, and
I particularly focused on the way this is performed in IR. In section 3.6.1, I put forward the view
that document clustering in IR is a purpose-driven purpose that is characterised by the cluster
hypothesis: relevant document should be grouped together, separately from non-relevant ones.
Validity studies in IR have therefore been replaced by studies of retrieval effectiveness, since this

is a measure of how well a cluster-based system performs at achieving the clustering goal.

I closed this chapter by presenting a short overview of document clustering research, focused on
effectiveness issues, that has been carried out over the past three decades (section 3.8). In that
section, I emphasised the recent tendency of IR research to not deal with effectiveness issues. In
the next chapter, I discuss in detail issues relating to cluster-based effectiveness, and I aim to
demonstrate the reasons for which IR researchers seem to have been driven away from pursuing

effectiveness-oriented work.
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Chapter 4

On the Effectiveness of Cluster-Based

Information Retrieval

4.1 Introduction

In the previous chapter I discussed a number of issues relating to the generation of document
hierarchies by means of clustering methods. The issue of effectiveness was mentioned in passing
in a number of sections in Chapter 3, and especially in section 3.6.1 where it was related to
measuring the goodness of document hierarchies in IR applications. In that chapter the cluster
hypothesis was also repeatedly mentioned, as it is upon the hypothesis that the introduction of
hierarchic clustering to IR was based. In section 3.6.1 the hypothesis was presented as a measure

of the clustering tendency of document collections.

The aim of this chapter is to further expand on issues relating to the cluster hypothesis and the
effectiveness of cluster-based IR systems, and through this discussion to bring out the motivation
for the experimental work reported in this thesis. First, in section 4.2, I present ways through
which the validity of the cluster hypothesis and the clustering tendency of document collections
can be measured. The tests that are typically employed in the IR literature are reviewed, and past
research that has used these tests is reported. In section 4.3, I discuss methods by which the
retrieval of documents from document hierarchies can be implemented. Details of methods for
searching document hierarchies are presented, and studies that have investigated the comparative

effectiveness of such methods are reviewed.

Hierarchic document clustering was introduced to IR on the grounds of its potential to improve
the effectiveness of the IR process. In section 4.4 I examine, based on results that have been
published in the literature over the past thirty years, whether clustering has indeed realised this
potential. These results mainly reveal a negative picture regarding the success of clustering as a

means of effective retrieval. In section 4.5 I outline some reasons for which I think clustering has
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failed to fulfil this potential, and I relate these reasons to the motivation behind the work reported

in this thesis. Finally, section 4.6 summarises the issues presented in this chapter.

4.2 Testing for the validity of the cluster hypothesis

The cluster hypothesis has been used as an indication of the clustering tendency of document
collections. Tests for the validity of the cluster hypothesis have been developed as a means of
predicting whether the application of clustering to a specific collection would be likely to yield
effective retrieval results. To this end, two different tests have been proposed in the document
clustering literature. A third test is also presented in this section. Although this third test does not
test the validity of the cluster hypothesis, it has been used as a measure of the clustering tendency

of document collections and as such it is presented here.

4.2.1 Separation of frequency distributions

Van Rijsbergen and his colleagues (Jardine & Van Rijsbergen, 1971; Van Rijsbergen & Sparck
Jones, 1973) proposed the overlap test that is a natural following of the cluster hypothesis. This
test is based on the extent to which documents relevant to the same query are more similar to each
other than to non-relevant ones. The procedure for the overlap test is as follows. The associations
between all pairs of documents both of which are relevant to the same query, and one of which is
relevant and one non-relevant, are first computed. Summing these association values over all the
queries of a test collection gives the relative distributions of relevant-relevant (R-R) and relevant-
non relevant (R-NR) associations for a test collection. The two distributions can be plotted in the
same graph, against the actual association values. If a specific document collection is
characterised by the cluster hypothesis, then the separation of the two distributions should be

sufficient, and vice versa.

0.25
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Figure 4.1. Separation of frequency distributions

For example, in Figure 4.1 a pair of such distributions is plotted for a hypothetical collection.

From this plot, one can note that the collection possesses a reasonably good separation of the two
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distributions. Therefore, based on what is postulated by the cluster hypothesis, the application of
clustering to the collection of the example is likely to be highly effective.

Griffiths et al. (1986) report a method for obtaining a single numerical value that quantifies the
degree of overlap between the two distributions. This measure is defined as the fraction of the two
distributions that is common to both, i.e. the extent to which the two distributions overlap each

other.

Voorhees (1985a, 1985b) has elicited a problem with the overlap test. She noted that because
there are always more R-NR than R-R pairs in a collection, the relative frequency of highly
similar R-NR pairs will always be much less than that of highly similar R-R pairs. Voorhees also
argued that whether or not the cluster hypothesis holds for a particular collection depends on the
absolute number of highly similar R-NR pairs; the overlap test does not provide information at

this level of detail.

4.2.2 The nearest neighbour test

The nearest neighbour (NN) test was proposed by Voorhees (1985a, 1985b) in order to address
the aforementioned limitation of the overlap test. The n nearest neighbours of a given document d
are the n documents that are most similar to d using a specific association measure. The NN test
examines each of the relevant documents for a specific query in turn, and identifies the number of
its n nearest neighbours that are also relevant. A single numeric value for the NN test can be
obtained for a test collection by calculating the average number of relevant documents that are
contained within the n-document nearest neighbourhood, when averaged over all the relevant
documents for all the queries of a test collection. The higher the average number of relevant
documents in the n-neighbourhood, the higher the probability that the cluster hypothesis holds for

that specific collection.

Voorhees chose to calculate the number of relevant documents contained within a five-document
nearest neighbourhood, and she examined the percentage of relevant documents that had 0, 1, 2,
3, 4, and 5 relevant documents in this neighbourhood. El-Hamdouchi and Willett (1987) noted
that depending on the chosen size of the nearest neighbourhood different results may be obtained
for this test. They also point towards another potential caveat of the NN test: its implicit
assumption that the proportion of relevant documents is the same for different test collections.
This assumption implies that there is an equal probability of having another relevant document as
the nearest neighbour of any specific document for any test collection. Although this may not be
an overly realistic assumption, it allows the comparison of the results of the NN test across

different test collections.
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4.2.3 The density test

A third test was proposed by El-Hamdouchi and Willett (1987), and is referred to in the literature
as the density test. The density test yields a single numeric value for a test collection. This value
corresponds to the total number of postings in the collection divided by the product of the number
of documents in the collection and the number of terms that have been used for the indexing of
those documents. The density of a collection comprising N documents, an indexing vocabulary of
size V, and / terms per document on average, is given by NI/NV, i.e. l/V. The density, as defined
by El-Hamdouchi and Willett, is the inverse of the number of clusters resulting from the use of

the C3M clustering procedure of Can and Ozkarahan (1990).

The density test associates clustering tendency with the density of the term by document matrix of
a document collection. If the matrix is sparse, and each document has only a few terms selected
from a large number of possible terms, then most pairs of documents in the collection will have
few terms in common, and therefore low association values. If the data matrix is more dense,
documents will share a large number of terms in common, and therefore when calculating
interdocument associations it will be possible to differentiate between documents that are highly
similar to each other and those that are not closely related. El-Hamdouchi and Willett assume that
the resulting clustering in the latter case will display the interdocument relationships more
accurately than in the former case, where the range of possible similarities is limited. Therefore, a

high density value is associated with potentially effective clustering.

It should be noted that the density test does not address the issue of whether the cluster hypothesis
holds for a specific document collection. However, it is a measure of clustering tendency, such as
tests for the validity of the cluster hypothesis are meant to be. It was therefore presented in the
same section with the overlap and NN tests since these three are the most commonly used
clustering tendency tests in IR. Other authors have similarly presented these three tests together
(El-Hamdouchi & Willett, 1987; Willett, 1988; Rasmussen, 1992). It should also be mentioned
that contrary to the other two tests, the density test does not require the existence of relevance

assessments for the datasets to which it is applied.

4.2.4 Some notes on the tests

Results for the previous three tests, using various IR test collections, have been reported in the
literature. Some of the earlier work had focused on the overlap test (Jardine & Van Rijsbergen,
1971; Van Rijsbergen & Sparck Jones, 1973; Van Rijsbergen & Croft, 1975; Croft, 1980;
Griffiths et al., 1986). These researchers report results of this test using the Cranfield-200 and —
1400 collections, as well as the Evans, Harding, Inspec, Keen, LISA, and UKCIS collections.
Voorhees (1985a, 1985b) reports results for the overlap and NN tests using the CACM, CISI,
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Inspec, and Medline collections. It should be noted that all these collections are of a small size

(Table 2.1).

El-Hamdouchi and Willett (1987) provide an extensive list of results for all three tests using the
Cranfield-1400, Evans, Harding, Inspec, Keen, LISA, and UKCIS collections by repeating
previously published results for the overlap test, and by calculating results for the NN and density
tests. The main contribution of this research is that it provided El-Hamdouchi and Willett with the
opportunity to compare the success of the three tests in predicting clustering effectiveness. To do
so, they used results for the effectiveness of nearest neighbour clusters (NNC) that were published
by Griffiths et al. (1986) (a NNC contains just two documents: a document d and its nearest
neighbour). Based on these results they ranked the seven test collections in decreasing order of
effectiveness. They also calculated rankings for each test collection by applying the three
tendency tests (i.e. collections were ranked for each test based on its outcome). The authors then
calculated the correlation between the rankings obtained by the actual clustering effectiveness
(NNC clusters) and the tendency tests. The results demonstrated that the rankings produced by the
density test correlated best with the effectiveness rankings, followed by the NN test, and by the

overlap test.

It should be mentioned that none of the tests provide an indication of what numerical value is
associated with “good clustering tendency” for a specific document collection. For example, what
can one infer by the fact that for the overlap test using the LISA collection a value of 0.58 is
derived? Does this value imply that clustering the LISA collection is likely to be highly effective,
moderately effective, or perhaps not effective at all? Unfortunately, it implies none of the above.
The three tests are of value to researchers only as tools for the comparison of the clustering
tendency across document collections, and not as indicators of clustering tendency for a single

collection, and in this fashion they have been used in the literature.

As a final remark for this section, it is worth noting that both the overlap and the NN tests depend
solely on the outcome of the association measure that is used (keeping all other things constant).
This outcome can be made to vary if, for example, different levels of indexing exhaustivity,
different term-weighting schemes, or different types of association measures are used. If a
researcher is interested in measuring the effect of such experimental parameters on the structure
of the document collection, then these tests are a useful tool. The NN test in particular, seems to
be better suited to such tasks. It provides immediate feedback, in the sense that the researcher can
see how the n nearest neighbourhood of a relevant document changes in relation to variations in
these experimental parameters. R.J. Shaw and Willett (1993) have used this test in this fashion, in
order to determine whether actual interdocument associations and randomly generated

associations are significantly different to each other.
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4.3 Cluster-based retrieval

Cluster-based retrieval (CBR) was initially proposed by Jardine and Van Rijsbergen (1971) as an
alternative to linear associative retrieval. According to CBR, a single cluster is retrieved in
response to a query; the documents within the retrieved cluster are not ranked in relation to the
query, but rather, the whole cluster is retrieved as an entity. Cluster-based retrieval has as its
foundation the cluster hypothesis, since if relevant documents are placed in the same cluster (as
the hypothesis postulates), then the effectiveness of a CBR strategy that succeeds in retrieving this
specific cluster can be expected to be high. Cluster-based retrieval can be implemented by means
of cluster-based searches. Before introducing the way that document hierarchies can be searched,

I will demonstrate how the effectiveness of CBR can be gauged.

Standard IR evaluation is performed in terms of precision and recall graphs that are calculated
based on a ranked document list produced by an IR system (see section 2.4). Cluster-based
retrieval strategies, on the other hand, perform a ranking of clusters, instead of individual
documents, in response to each request. Even in the case where a ranking of individual documents
is performed within the clusters (as for example in (Voorhees, 1985a)), relatively few documents
are actually ranked, and therefore different results may be obtained depending on the method that
the researcher chooses to generate the precision-recall graphs (Croft, 1978). The generation of
precision-recall graphs is thus not possible in such systems, and in order to derive an evaluation
measure for clustering systems, the E effectiveness function was proposed by Van Rijsbergen

(Jardine & Van Rijsbergen, 1971; Van Rijsbergen, 1974a).

The formula for the measure is given by: 1_(ﬂ_22+L)1_)£, where P and R correspond to the standard
B*P+R

definitions of precision and recall (section 2.4, over the set of documents of a specific cluster),
and S is a parameter whose values range from O to oo; it reflects the relative importance attached

to precision and recall. Three values of this parameter are typically used:

p=1 attributes equal importance to precision and recall
p=0.5 attributes half as much importance to recall as to precision

pf=2  attributes twice as much importance to recall as to precision

It should be noted that low values of the E measure are associated with higher effectiveness. I will
now proceed by presenting the three different types of cluster-based searches that have been

proposed in the literature.
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4.3.1 Top-down search

The difference between the first two types of search lies in the ’direction’ in which the document
hierarchy is searched for the cluster that best matches the query. A top-down strategy enters the
hierarchy at the top (roof), and proceeds in a downward fashion towards the bottom of the tree
(Jardine & Van Rijsbergen, 1971). That path is chosen for the downward movement that displays
the greater similarity between the query and the cluster centroids. The search then continues
moving down the tree until a retrieval criterion is satisfied. Two such criteria have been typically
used: either a minimum number of documents needs to be retrieved, or the query-cluster
similarity is required to stay sufficiently high. In the former case the search is terminated when a
cluster containing the required number of documents is retrieved. In the latter case the search is
terminated when the query-document similarity at a specific comparison falls below the similarity
attained at the preceding comparison (Jardine & Van Rijsbergen, 1971; Van Rijsbergen, 1974b),
or when the similarity falls beyond a user-specified threshold (Willett, 1988; El-Hamdouchi &
Willett, 1989).

Figure 4.2. A sample broad top-down search

The top-down searches can be further distinguished in broad and narrow (Van Rijsbergen &
Croft, 1975). A narrow search proceeds as mentioned previously, that is, by selecting the highest
matching cluster at each level, and by expanding it until the stopping criterion is satisfied. It is
narrow in the sense that once the decision on the path to be followed has been made it can not be
reversed. A broad search, on the other hand, may abandon a path down the tree once the
similarities fall below a specific threshold. In such a case the search may backtrack to the cluster

that is more similar to the query and that has not been visited before.

In Figure 4.2 an example of a broad top-down search is given. The arrows represent the path that
the search follows down the hierarchy, starting from the root of the tree. The numbers on the
arrows show the order in which the different paths are followed, depending on the outcome of the
query-centroid comparisons. For this example it is assumed that the search will terminate once at
least three documents have been retrieved. The search commences by comparing the centroids of

clusters cs and c¢ to the query. Cluster cg is found to be more similar, and hence this path down the
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tree is chosen. Since this cluster contains more than three documents, the centroids of clusters c;
and c, are also compared to the query. Cluster c; is found to be more similar, and its two
documents are retrieved. Since the stopping criterion has not been satisfied, the search backtracks
and follows the path down the other branch of the tree towards cluster cs. The search will

terminate once the two documents of cluster c; are retrieved.

A problem with top-down searches is that at the early stage of the search, when the query is
matched against the centroids of large clusters close to the root of the hierarchy, it is fairly easy to
misdirect the search down the wrong path (clusters ¢s and c¢ in the previous example). This may
happen because of the inherent difficulty with effectively representing large clusters (Willett,
1988). Therefore, the first few cluster-query comparisons can be deemed as arbitrary (Croft,
1978). A remedy to this problem is to start the top-down search not at the root of the hierarchy,
but rather at a partition of the hierarchy that can be obtained by applying some similarity
thresholding procedure (Van Rijsbergen, 1979; Willett, 1988).

4.3.2 Bottom-up search

Bottom-up searches proceed through a document hierarchy in the opposite direction, i.e. the
search commences at a document, or cluster, residing at the bottom of the hierarchy, and then
moves up towards the root until a retrieval criterion is satisfied (typically until a specified number
of documents is retrieved). The issue that has attracted much interest regarding this type of search

is the selection of the starting point for the search.

Van Rijsbergen and Croft (1975), in their work on bottom-up searching, suggested that an
appropriate starting point is an already known relevant document. If a relevant document is not
somehow known a priori, then one can rank the documents in decreasing order of similarity to the
query, and select the top-ranking document as the starting point (El-Hamdouchi & Willett, 1989).
A third alternative, is to utilise the bottom-level clusters of the hierarchy (Croft, 1978, 1980). A
bottom-level cluster is the cluster that a specific document is assigned to when it first joins the
hierarchy (for example, clusters c;, ¢, 3, and ¢4 in Figure 4.3). Croft has demonstrated that it is
possible to efficiently access the bottom-level clusters of a document hierarchy by generating an
inverted index of these clusters. A starting point for a bottom-up search can then be obtained if the
bottom-level clusters are ranked in decreasing order of similarity to the query (similarity is
calculated between the centroid of a cluster and the query); the top-ranked cluster is the starting
point. If the cluster hypothesis characterises the document collection, then other relevant
documents should be located in that same cluster, and hence the search proceeds upwards in this

branch of the hierarchy until the stopping criterion is satisfied.
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In Figure 4.3 a sample bottom-up search is shown. For this example it is assumed that the search
will terminate once at least three documents have been retrieved. The arrows represent the path
that the search follows towards the root of the tree. In this example it is also assumed that the
starting point of the search is determined by comparing the query against the centroids of the
bottom level clusters ¢, 5 3 4. The highest similarity is achieved for cluster c;, and hence the search
enters the hierarchy through this cluster. This cluster contains only two documents (less than the
stopping criterion requires), and therefore the search proceeds upwards and reaches cluster c,.
This cluster contains the desired number of documents, and the search terminates by retrieving

cluster c4.

Figure 4.3. A sample bottom-up search

It should be noted that the bottom-up search is narrow (Croft, 1978), in the sense that only one
path up the tree is pursued. Also, since this type of search commences at the bottom of the
hierarchyj, it tends to be more efficient than a top-down search in terms of the number of cluster-

query comparisons (Croft, 1978).

4.3.3 Comparative performance of the two searches

A number of researchers have compared the effectiveness of top-down and bottom-up searches in
a variety of experimental settings. In some of the early work (Van Rijsbergen & Croft, 1975;
Croft, 1978, 1980) it was suggested that bottom-up searches result in higher retrieval
effectiveness. It was also shown that narrow top-down searches are precision-oriented (i.e. result
in higher effectiveness values when the parameter £ of the E measure is set to 0.5), in contrast to
broad top-down searches that are recall-oriented (Van Rijsbergen, 1974b; Croft & Van
Rijsbergen, 1975). This result is intuitively reasonable, since the former type of search proceeds
down only one path of the hierarchy, whereas the latter type pursues many different paths and

hence has a better chance of retrieving more relevant documents.

Another result from this early research is that highly effective retrieval can be achieved if one

considers only the bottom level clusters of the hierarchy, and ranks those in decreasing order of
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similarity to the query (Croft, 1978, 1980). In this case, the best matching bottom level clusters
are retrieved until the desired number of documents is reached. As mentioned previously, efficient
access to the bottom-level clusters can be obtained by means of an inverted index of these
clusters; queries are matched against the cluster centroids. Griffiths et al. (1986) used this type of
search to compare the effectiveness of different hierarchic clustering methods, and El-Hamdouchi
and Willett (1989) found this type of bottom-up search to be more effective than two other types
mentioned in section 4.3.2 (starting with the highest-ranked document of a similarity search, and
proceeding upwards from the bottom-level cluster most similar to the query), and almost as

effective as a search that commences at a known relevant document.

Based on Croft’s work, Griffiths et al. (1986) advocated the use of nearest neighbour clusters
(NNC). They noted that since small bottom level clusters seem to result in high effectiveness,
then NN clusters (which are the smallest clusters possible, containing only a document and its
nearest neighbour) should also result in high effectiveness. They also noted that complete link,
group average link, and Ward’s methods all produce large numbers of small clusters containing
just pairs of documents, most of which contain a single document and its most similar neighbour.
Griffiths and his co-workers demonstrated the high effectiveness of NNCs through experiments
where NNC effectiveness was superior to that attained using the bottom-level clusters of
hierarchies. This result led El-Hamdouchi (1987), El-Hamdouchi and Willett (1989), Croft et al.
(1989), and Wilbur and Coffee (1994) to also adopt NNCs in cluster-based retrieval experiments.

Voorhees (1985a) compared a number of different cluster-based searches using the single,
complete and group average link methods. Voorhees compared the effectiveness of two different
types of top-down and bottom-up searches: those that retrieve entire clusters (as is the case in
traditional cluster-based retrieval), and those that retrieve individual documents from each cluster
(based on their similarity to the query). The experimental results obtained by Voorhees, in the
majority of the cases, indicated that between these two types of search the latter type results in

more effective retrieval.

The results also demonstrated that the most effective of all the searches was a top-down search
that selects individual documents from a complete link hierarchy. In all other types of hierarchies
a bottom-up search was more effective. This led Voorhees to postulate that top-down searches are
more affected by hierarchy characteristics than bottom-up ones. This, Voorhees explained, is due
to the small size of bottom-level clusters on which bottom-up searches operate. Top-down
searches, on the other hand, commence near the root of the hierarchy, were the sizes of clusters
are large, and hence the probability of making an erroneous branch selection is high. Regarding
the high effectiveness of top-down searches using the complete link hierarchies, Voorhees noted
that this method results in a shallow hierarchy where the top-level clusters are smaller compared

to those of other hierarchy types. Croft (1978, 1980) had first made the observation that bottom-
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up searches involve significantly less amount of uncertainty than top-down ones, and hence are

likely to be more effective.

As 1 already discussed in section 3.5.1, Voorhees also investigated the effect of different cluster
centroid lengths on the effectiveness of cluster-based searches, and noted considerable variability
in the results. The same variability was noted in measuring retrieval effectiveness for
combinations of different clustering methods and different search strategies: for example, a top-
down search was more effective than bottom-up searches only for complete link hierarchies. One
can therefore note a great degree of variability when actual search strategies are used to compare
the effectiveness of different clustering methods, or different clustering strategies. A different
type of cluster-based search that rids itself of most of such complications is the optimal cluster

search, and is presented in the next section.

4.3.4 Optimal cluster search

Optimal cluster searches differ from the other two types in that no actual matching between the
query and cluster centroids takes place, and hence no actual need to compute cluster centroids
exists. Cluster-based effectiveness is calculated by finding the optimal cluster of a hierarchy, i.e.
that cluster, for any given query, that yields the least E value (i.e. highest effectiveness) for that
query. Therefore, optimal cluster-based effectiveness represents the maximum effectiveness that

is attainable by a cluster-based search strategy that selects a single cluster in response to each

query.

Optimal cluster evaluation has been widely employed in the past (Jardine & Van Rijsbergen,
1971; Croft, 1978; Griffiths et al., 1984; Shaw, 1991; Burgin, 1995; Aslam et al., 1998). The
main advantage of optimal cluster search is that it “allows an evaluation of the different
hierarchies to be made without the distorting effects of the particular search mechanism adopted”
(Griffiths et al., 1984, p. 196). Rasmussen (1992) has also noted some inherent problems of
making scientific inferences based on the results of actual (i.e. top-down or bottom-up) searches
(p. 437): “... there are several ways in which retrieval from a clustered document collection can
be performed, making comparisons difficult when using retrieval as an evaluative tool for

clustering methods”.

Optimal measures, on the other hand, eliminate any bias that may be introduced from sources
external to the document hierarchy (Shaw, 1991). External sources include the choice of a
particular cluster-based search strategy that matches queries to clusters, and the ability of a user

during an interactive session to choose the cluster which is most relevant to his information need.

In the case of a cluster-based search strategy, its effectiveness will be determined by a number of

parameters that are alien to the document hierarchies. Such parameters have been mentioned in
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sections 3.5.1 and 4.3.3, and include the type of search, e.g. bottom-up, top-down, narrow, wide,
(Jardine & Van Rijsbergen, 1971; Croft 1980; Voorhees, 1985a; El-Hamdouchi & Willett, 1989),
the type and length of the cluster centroid against which queries are matched (Croft, 1978;
Voorhees, 1985a), the entry point in the hierarchy in the case of a bottom-up search (Croft, 1978,
1980; El-Hamdouchi & Willett, 1989), etc.

In the case of a user browsing a clustered document collection (e.g. Cutting et al., 1992), the
cluster considered useful will be influenced by parameters such as the graphical or textual
presentation of the clustered space (Hearst & Pedersen, 1996; Leuski & Allan 1998), the way that
cluster contents are summarised and displayed (Hearst & Pedersen, 1996; Radev et al., 2000;
Kural et al., 2001), etc. In section 3.5.2 I discussed issues that relate to the effect of cluster
representation on the user’s perception of relevance of document clusters, and I pinpointed some

limitations of the current state of research in this area.

By eliminating such external parameters from the experimental design, one can infer that the
variation in effectiveness across experimental conditions is attributed to the different conditions
themselves (internal parameters, e.g. different similarity measures, clustering methods, etc.), and
not to any form of bias that may have been introduced by any of the external parameters. For this
reason, I deem optimal cluster evaluation as highly appropriate for cases where the experimenter
wishes to vary some parameters of the clustering system and study the effect of this variation on
clustering effectiveness. Optimal cluster evaluation is used in this thesis; I will return to this issue

in section 5.5.4 where I outline the experimental environment used in this work.

4.3.5 On optimal effectiveness measurements

As mentioned previously, the optimal cluster of a hierarchy, for any given query, is the cluster
that yields the highest effectiveness for that query, and it may be located at any depth in the
document hierarchy. Jardine and Van Rijsbergen (1971) named the effectiveness measure
attainable in this way MKI. This measure can be used when comparing across different clustering
methods, or different clustering strategies. By observing the variation in the effectiveness of the
optimal cluster of the hierarchy, a researcher can appreciate the effect that the various
experimental conditions have on the effectiveness of the resulting hierarchies, without the

confounding effect of parameters external to the hierarchies.

Optimal cluster-based effectiveness can also be compared to non-cluster-based effectiveness. In
order to do so, one needs to find appropriate measures to gauge inverted file search (IFS)
effectiveness. A first such measure can stem from the MK 1 measure: the system finds the optimal
cluster in a hierarchy, looks at the size of the cluster (let us assume it contains k documents), and
uses this number of top-ranked documents (i.e. k) to measure the effectiveness of the ranking R

that is produced by the IFS. I will call this measure MKI-k. Intuitively, this measure captures the
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degree at which IFS effectiveness matches cluster-based effectiveness for the number of
documents for which cluster effectiveness is optimal. It should be reminded that, like MK1, the
effectiveness of the IFS will also be calculated in terms of the E measure. Hearst and Pedersen
(1996), among other researchers, have used MK1-k as a measure of comparison against optimal

cluster-based effectiveness.

This comparison of cluster-based and IFS effectiveness, based on MK1 and MK1-k respectively,
can be thought of as being unfair on IFS. This is because MK1-k does not take into account IFS
optimality, i.e. the rank position for each query for which the set of documents retrieved gives the
least value of E. Thus, a second measure for comparing optimal cluster-based effectiveness to IFS
effectiveness can be based on the above, i.e. the optimal IFS effectiveness. Jardine and Van
Rijsbergen (1971) used this measure, and called it MK3. It represents a measurement of the
maximum effectiveness that is attainable using an IFS strategy. The effectiveness calculated by
MK3 will always be at least as high as that calculated by MK1-k, since the portion of the initial
ranking R that MK1-k corresponds to is always considered when calculating MK3.

MK3 implicitly assumes that the optimal segment of the initial ranking R that is produced by the
IFS will always have as its starting point the highest ranked document. However, this may not
always be the case. Therefore, a third measure can be used to gauge optimal IFS effectiveness.
This measure seeks for that subset of the original ranking R that gives the least value of the
effectiveness measure E (i.e. the highest effectiveness). Unlike MK3, the starting point of this
subset is not required to be the highest ranked document. I will call this new measure MK4. It
represents the optimal IFS effectiveness that is attainable from any possible segment of the
original ranking R. MK4 will always yield a highest effectiveness value than MK3 (or, at least, a
value equal to MK3), since the portion of R that MK3 corresponds to is always considered when
calculating MK4. Therefore, MK4 can be seen as a more favourable approximation of optimal

IFS effectiveness.

I will illustrate through an example the different effectiveness values obtained, for a specific
query and for a specific ranking R, by the three different measures MK1-k, MK3 and MK4. For
this example I will assume that a document hierarchy yields an optimal value for a cluster that
contains six documents, and that the collection to be clustered contains ten documents. Figure 4.4
shows the ranking that is obtained by an inverted file search for this scenario. The first column
displays the rank position of the retrieved documents, and the second column shows whether a
document is relevant (R) or not relevant (NR) to the query. The total number of relevant

documents in this example is assumed to be six.

Since the optimal cluster contains six documents, MK1-k will be calculated for the first six
retrieved documents in the example (i.e. k = 6). By using the standard definitions for recall (4

relevant documents out of possible 6) and precision (four relevant documents in the six
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documents of the set), and by also using the E measure as defined in section 4.3 for =1, we

derive MK 1-k = 0.33.

In order to calculate MK3, the optimal E value that can be obtained from this ranked list by
keeping the starting point fixed at rank position one needs to be found. In this way it can be found
that the optimal E value can be obtained for the first seven documents of the list, yielding MK3 =
0.23 (recall=5/6 and precision=5/7). Lower E values correspond to higher effectiveness; in this

example, MK3 is a much better approximation of optimal IFS effectiveness than MK1-k.

MKA4 offers an even more favourable, for the ranked list, effectiveness measurement. In the above
example, the most effective segment of the ranking R is between rank positions four and seven,
yielding a value of 0.2 for measure MK4 (recall=4/6, precision=4/4). It is apparent that, at least in
this specific example, MK4 offers a higher effectiveness value for IFS than MK3 does.

.. Relevant /
Rank Position Not Relevant
1 R
2 NR
MK1-k 3 NR
4 R MK3
5 R
6 Mk4| R
7 R
8 NR
9 NR
10 R

Figure 4.4. Example of calculation of optimal effectiveness measures

If the initial retrieval that produces the ranking R is highly effective, one can expect the most
effective portion of the retrieved list to be located near the top of R. Therefore, in this case MK3 is
likely to accurately represent the optimal effectiveness attainable by R. However, in case of less
effective initial retrieval, it is more likely for a large number of relevant documents to be
concentrated further away from the top-ranked positions of R. In such a scenario MK3 would not
give an accurate estimation of optimal IFS effectiveness, since the most effective part of R is
likely to be located within a segment that does not have rank position one as its starting point.
Consequently, one can view MK4 as an attempt to counterbalance the effect of the effectiveness
of the initial retrieval when comparing the effectiveness of optimal cluster-based to that of IFS-
based retrieval. It can also be argued that the further away from rank position one the optimal
MKH4 segment of R is located, the poorer the initial retrieval has been.

It can furthermore be argued that MK4 is also a more conceptually appropriate measure for
comparing optimal IFS effectiveness to optimal cluster-based effectiveness. There is no guarantee
that a searcher, or an IR system, will be able to correctly identify the best cluster in a document

hierarchy for every query. Similarly, there is no guarantee that a searcher will be able to navigate
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his way towards the most effective segment of a ranked list when that segment is located in a
lower section of the initial ranking R. Therefore, if a comparison between MK1 and MK4 is in
favour of the former, one can conjecture that cluster-based effectiveness has indeed the potential

to exceed IFS effectiveness.

4.4 The effectiveness of hierarchic clustering in IR

Once a document hierarchy has been generated, and once a set of documents has been retrieved
from the set of clusters of the hierarchy, the effectiveness of the retrieval can be gauged by means
of the E measure presented in section 4.3. In this way, the comparative effectiveness of different
clustering strategies can be measured, and also, the comparative effectiveness of cluster-based and
non cluster-based strategies can be investigated. In this section I review these two issues: the
comparative performance of hierarchic clustering methods is presented in section 4.4.1, and the
comparative effectiveness of cluster-based and non cluster-based retrieval is discussed in section

442

4.4.1 Comparisons of hierarchic methods

The hierarchic methods that I focus on in this section are the ones I presented in section 3.4,
namely the single link, complete link, group average link and Ward’s methods. Apart from the
retrieval effectiveness attainable when using each of these four methods, I will also briefly present

a comparison of the methods based on their theoretical properties.
4.4.1.1 Theoretical properties

Jardine and Sibson (1968) suggested seven conditions to which any clustering method that
transforms a dissimilarity coefficient into a hierarchic dendrogram should adhere. Out of the
seven conditions, the authors noted that only three are usually adhered to by most known
hierarchic methods. The four conditions that are not adhered to by all methods, state the

following:
- A unique result should be obtained from given data
- Small changes in the data should produce small changes in the hierarchy
- The ultrametric similarity coefficient should remain unchanged by the transformation

- The result obtained by the method should impose the minimum distortion upon the

similarity coefficient

Jardine and Sibson also noted that the only method to satisfy all seven conditions is the single link

method. They placed particular emphasis on the fact that this method preserves the ultrametric
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inequality. However, Williams et al. (1971b) noted that although preserving the ultrametric
inequality is interesting from a theoretical point of view, there is no known practical utility for

such a feature.

Fisher and Van Ness (1971) borrowed the concept of admissibility from decision theory, and
presented nine properties which one might expect ‘reasonable’ clustering procedures, or the groups
obtained by these, to possess. A method that satisfies all such properties is called admissible; a
method that satisfies a specific property A is called A-admissible. In accordance to Jardine and
Sibson's findings, they concluded that the method that displayed a theoretically sound definition,
by possessing most (but not all) of the nine properties, was single link. The complete link method
was a close second. Whether the theoretical supremacy of the single link method translates to

superior effectiveness is examined in the next section.
4.4.1.2 Effectiveness

In the context of IR the single link method was extensively used in early document clustering
experiments (Jardine & Van Rijsbergen, 1971; Van Rijsbergen, 1974b; Van Rijsbergen & Croft,
1975; Croft, 1978; Croft, 1980; Garland, 1982). The basis of its application to IR research was its
theoretical soundness, as this was outlined in (Jardine & Sibson, 1968), and its computationally

attractive implementation (Van Rijsbergen, 1971; Sibson, 1973).

However, a number of studies that were conducted in fields other than IR, mainly in the 1970s
and early 1980s, comparing a number of hierarchic methods in their ability to recover true cluster
structure (Cunningham & Ogilivie, 1972; Kuiper & Fisher, 1975; Blashfield, 1976; Milligan et
al., 1983) suggested that the single linkage method displayed consistently poor performance,
rating below the other three hierarchic methods. It should be noted that these were simulation
studies that involved the generation of an artificial set whose true clustering structure was known

(see section 3.6).

As to the question of which method showed the best performance in these studies, different
methods behaved differently under different experimental conditions'’. Cunningham and Ogilivie
(1972) investigated seven agglomerative methods. Their results suggested that the group average
was the most effective method, often closely followed by complete link. Blashfield (1976) found
that Ward's method formed the solutions that had the greatest accuracy in retrieving true
clustering structure, followed by complete linkage. Kuiper and Fisher (1975) examined six
hierarchic methods and concluded that Ward's method was better when clusters were of equal

size, but that the group average method was superior when cluster sizes varied. Milligan et al.

15 Griffiths et al. (1984) suggested that there are severe methodological problems with the analyses of simulation
studies.
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(1983) reached conclusions similar to that of Kuiper and Fisher, adding the remark that the

complete linkage method was the one most similar to Ward's in terms of the hierarchies produced.

Motivated by the observation that in a number of other fields single link did not seem to be more
effective than other methods, a number of researchers applied the complete link, group average
link, and Ward's methods, as well as the single link method, to IR laboratory experiments
(Griffiths et al., 1984; Voorhees, 1985a; Griffiths et al., 1986; El-Hamdouchi, 1987; El-
Hamdouchi & Willett, 1989, Burgin, 1995). The results of these studies suggested that single link
consistently displayed poor performance, confirming results from other disciplines. Explanations
for its poor performance were given on the basis of the inherent characteristics of the method (i.e.
the chaining effect, section 3.4.1) (Willett, 1988). In a retrieval environment, the single link
method leads to a small number of large and loosely defined clusters that seem to perform poorly

at recovering the relevance structure of the data (Burgin, 1995).

Stud Clustering Document Cluster-based
Y methods collections searches used
Griffiths at al., SL, CL, GA, W Keen, Cranfield optimal, bottom-
1984 up
Voorhees, 1985a  SL,CL,Ga ~ Medline, CACM, 5,1 bottom-up, top-
CISI, Inspec down
Keen, Cranfield,
Griffiths et al., Evans, Harding, -
1986 SL, CL, GA, W LISA, Inspec, bottom-up
UKCIS
El-Hamdouchi, Keen, Cranfield,

1987; El- Evans, Harding, i
Hamdouchi & SL,CL,GA, W LISA, Inspec, GA>W>SL>CL bottom-up
Willett, 1989 UKCIS
Willett, 1988 SL,CL,GA, W - -
Burgin, 1995  SL,CL,GA,w  CF»Medline, Time, ) vo oy g optimal

Cranfield

Table 4.1. Studies comparing hierarchic agglomerative methods in IR (CL: complete link, GA: group
average, SL: single link, W: Ward)

In Table 4.1 some of the most influential studies that have looked into the comparative
effectiveness of different agglomerative methods in the context of IR are summarised. Willett's
review article (1988) is included in the table despite that no experimental work was explicitly
carried out. However, Willett expressed his personal opinion in that article regarding the most
appropriate method for IR applications (p. 592), and it is this opinion that is reported in Table 4.1.
In the fourth column of this table, the outcome of the corresponding study as to which of the
examined methods was more effective is displayed. In the last column of the table, the type of

cluster-based search(es) used in each of the studies is also reported.
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There are a few comments regarding the studies mentioned above. In the experiments reported by
(El-Hamdouchi, 1987; El-Hamdouchi & Willett, 1989) the CLINK algorithm (Defays, 1977) was
used to implement the complete link method. As was mentioned in section 3.4.2, this method does
not produce an exact complete link hierarchy. This is attributable for the poor performance of the
complete link method in these experiments, something acknowledged by Willett (1988). In their
1989 study, El-Hamdouchi and Willett used the complete link algorithm implemented by
Voorhees (1985a, 1986), and repeated their experiments for three collections (Keen, Cranfield,

and Evans). The new results suggested that the complete link hierarchies were the most effective.

Griffiths et al. (1984, 1986) used Ward's method with a similarity coefficient (the Dice
coefficient). It is known that Ward's method is fully defined only when used with squared
Euclidean distances (Willett, 1988). Therefore, the results of Griffiths and his colleagues should
be examined with caution. Burgin's study, (1995), aimed mainly at studying the effectiveness of
hierarchic clustering methods as a function of indexing exhaustivity (see section 3.2.1). Since in
all other experiments reported here complete indexing representations were used, the results of

this study should be viewed under the light of Burgin’s main experimental aim.

Most experimental studies used either a bottom-up or a top-down search strategy, with the
exception of the studies by Griffiths et al. (1984) and Burgin (1995), who employed optimal
cluster searches. The reader's attention should be drawn to that, when comparing across clustering
methods, the use of actual search strategies introduces a number of factors that may affect the
experimental results. This was evident in (Griffiths, et al., 1984) where optimal and actual search
results were generated for the same methods and collections, and the researchers reached different
conclusions for different types of searches. In section 4.3.4 I outlined a number of reasons for

which optimal searches are best suited for the comparison of different clustering strategies.

Murtagh (1984b) carried out a comparative study of six hierarchic methods'® not from an
effectiveness point of view, but rather from the perspective of the structure of the clusterings that
each of the methods produced. Murtagh defined three different coefficients that quantify the
“quality” of hierarchic structures (e.g. how balanced the resulting dendrograms were), and applied
these coefficients to the structures generated by the six methods for the Cranfield-200 test
collection. The major conclusion of this study was that methods other than the single link should
be favoured, and that Ward's and complete linkage methods displayed the most balanced

clustering behaviour.

Two of the coefficients that Murtagh (1984b) introduced, were used in the study by Griffiths et al.
(1984). Their results confirmed Murtagh's findings, in that the single link method produces a

16 The methods were singe link, complete link, group average link, Ward's, median, and centroid.
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small number of large, unbalanced clusters that suffer from the chaining effect mentioned in
section 3.4.1. Complete link and Ward's methods seemed to produce the most balanced
hierarchies, again in agreement to Murtagh's findings. However, when Griffiths and his
colleagues measured the degree of distortion (see section 3.6 for a discussion on distortion
measures) that each of the methods'’ imposed on the initial inter-document similarity matrix, their
findings revealed a different picture: the single and the group average link methods seemed to
summarise the inter-document similarities more accurately than the complete link method. This
led the authors to suggest that methods that impose a small degree of distortion to the similarity
matrix may be capable of identifying more natural clusters than methods that result in a cluster

structure that is not evident in the original data.

Based on the results presented in the last few pages, what could one conclude, or even
hypothesise, on the issue of the most effective clustering method for IR? Not much, it would
certainly seem to be the case. Even the inadequacy of the single link method for IR applications
seems to be challenged by Griffiths et al.’s (1984) finding that this method is successful at
recovering true clustering structure, therefore having potential to effectively recover structure
where it is evident. This potential has not been confirmed by the experimental results discussed in
this section. As far as the other three methods are concerned, there seems to be little, if any,
difference between them. Based on the data of Table 4.1, it would be justifiable to assert that

complete link and group average have proved to be the most effective methods so far.

As a closing note for this section, I will quote the following from Cormack (1971): “Some -I am
tempted to say most- data are just not classifiable”. This note is meant to put the difficulty of the
clustering task in perspective, and to serve as a prelude to the next section that compares the

effectiveness of cluster-based and non cluster-based retrieval.

4.4.2 Cluster-based vs. non cluster-based retrieval

Hierarchic clustering was introduced to IR based on its potential to increase the effectiveness of
the IR process. Consequently, a lot of effort has been expanded by researchers in order to

investigate whether this potential can indeed be realised by cluster-based retrieval.

The initial studies that were carried out in the 1970s included the use of only the single link
method, which, as seen in the previous section, typically displays the lowest retrieval
effectiveness amongst the hierarchic methods. Van Rijsbergen and Croft carried out the majority
of the work during this period (Jardine & Van Rijsbergen, 1971; Van Rijsbergen, 1974b; Van
Rijsbergen & Croft, 1975; Croft, 1978, 1980). When optimal cluster-based retrieval effectiveness

7 Ward's method was not included in this part of the study.
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was compared to IFS effectiveness, the potential of clustering to yield performance improvements
was confirmed: in most of the results reported, optimal single link effectiveness was higher than
IFS effectiveness. Top-down and bottom-up searches, however, did not often manage to exceed
IFS effectiveness. The exception to this was the effectiveness attained by the bottom-up searches
reported by Croft (1978, 1980) that searched only the bottom-level clusters of the hierarchy (see
section 4.3.2). It also became evident that cluster-based searches compare more favourable to IFS
effectiveness when precision is favoured over recall (i.e. when B = 0.5 in the E measure). It should
also be noted that with the exception of Croft’s work (1978), the document collections that were
used in experiments at that time were of a relatively small size (typically in the order of 1,000-
2,000 documents).

Voorhees (1985a) was one of the first researchers to compare the effectiveness of other hierarchic
methods to that of IFS. As reported in section 4.3.3, apart from the single link method, Voorhees
also used the group average and complete link methods. These two methods often outperformed
IFS for certain types of top-down and bottom—up searches (where individual documents were
retrieved). Single link, on the contrary, rarely outperformed IFS effectiveness. Other researchers
reached similar conclusions regarding the single link method (Griffiths et al, 1986; El-
Hamdouchi, 1987; El-Hamdouchi & Willett, 1989). In these studies all four hierarchic methods
were investigated (i.e. group average, Ward, complete link and single link methods). The other
major conclusion from these last three studies was that nearest neighbour clusters (section 4.3.3)
proved to be the most effective type of clustering, and the only strategy used in these studies that
consistently yielded higher effectiveness than IFS. The other bottom-up strategies that were
investigated failed to exceed IFS effectiveness. In agreement to the early research by Van
Rijsbergen and Croft, precision-oriented searches yielded higher effectiveness than recall-oriented

ones.

These results led Willett and his co-workers to dismiss the potential of clustering as a means of
improving the effectiveness of IR systems. Instead, they proposed that high effectiveness is likely
to be achieved through the use of NNCs. This has led a number of other researchers to investigate
the effectiveness of NNCs under different experimental environments. Croft and his colleagues
(1989), and Wilbur and Coffee (1994) report favourable results from the use of NNCs compared
to those obtained from the use of IFS. It should be noted that NNCs had previously been proposed
as a method of effective retrieval, for example, Goffman (1969) had advocated the use of chains
of NNC:s to this end.

As I discussed in section 3.8, research on more effective means of performing clustering seems to
have subsided during the past ten years. One reason for this is that the research community seems
to have accepted the limitations of clustering, as these were exhibited through the experimental

results that I previously mentioned. It is the aim of this thesis to establish a case for the opposite.
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4.5 What this thesis addresses

The problem that this thesis addresses is that of improving the effectiveness of cluster-based
information retrieval. The long standing motivation behind the work reported in this thesis has
been the relative failure of cluster-based retrieval to succeed as an effective retrieval mechanism,
as this was exhibited by reviewing the research that has been carried out in this area. The belief
that CBR effectiveness can indeed be improved, has been based on the view that, because of its
intuitively appealing and theoretically sound basis, clustering should indeed be a highly effective
information retrieval mechanism. The fact that it has not served as such so far, can be interpreted

as a limitation of the way that clustering has been performed to date.

A question that naturally arises, is why has clustering not fulfilled its potential as an effective
mechanism for information retrieval. Researchers whose work has demonstrated results not in
favour of clustering (e.g. EI-Hamdouchi & Willett, 1989), have not offered sufficient insight to
the reasons of such failure. Methods for improving the effectiveness of CBR effectiveness, in
most cases, are suggested in such studies. For example, Voorhees (1985a) called for more
systematic research in cluster representation schemes, El-Hamdouchi and Willett (1989) offer the

use of NN clusters as an effective alternative to a clustered file structure, etc.

All the above suggestions are perfectly valid, and indeed, one may also highlight a number of
other issues whose addressing may improve CBR effectiveness. However, all these issues are
external to the clustering process itself. For example, a cluster representation scheme is put in
effect once a document hierarchy has been generated. Different schemes may combine
information from documents within clusters in different ways, and it is highly likely that
effectiveness improvements can be achieved by researching new representation schemes. The
same can be argued for devising more effective cluster-based search strategies, or for using only
bottom-level clusters, or NN clusters. The problem with such approaches is that, whatever the
representation scheme or the search method, the resulting effectiveness will be constrained by the
limitations imposed by the quality of the document hierarchy. Therefore, the view taken in this
thesis is that it is in the heart of the clustering process that one has to focus if the effectiveness of
the resulting hierarchies is to be improved. To do so, one may need to reconsider some

assumptions and practices that implicitly underlie the clustering process.

Shaw and his colleagues (1997) carried out one of the last studies that investigated the
effectiveness of CBR. Their findings suggested that the effectiveness attainable by hierarchic
clustering methods does not significantly differ from that attainable by random procedures. In an
attempt to explain these negative results, Shaw and his co-workers suggested, along with two
other possible reasons, the view that “clustering criteria employed to date have failed to reveal the

inherent tendency of documents relevant to the same query to be grouped together”. Furthermore,
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Shaw et al. also postulated that "clustering strategies capable of adapting to relevance information

may succeed where static clustering techniques have failed”.

This latter comment by Shaw et al. highlights one of the implicit assumptions that underlie the
document clustering process: the user is typically left outside the clustering “loop”, i.e. he has no
direct input in the way that clustering methods structure the document space. Clustering is thus
static, devoid of the ability to adapt to relevance information. I view this as a limitation of
document clustering, one that is most likely of the main factors that have contributed to the

negative results reported in the literature.

It is this area that the experimental work reported in this thesis addresses: the improvement of the
effectiveness of cluster-based retrieval through the generation of document hierarchies that take
the user’s search interest into account. The next chapter presents in detail the approaches that are

employed in this thesis for enhancing the effectiveness of a cluster-based IR system.

4.6 Summary

In this chapter I focused on the effectiveness of cluster-based IR. More specifically, I presented
tests for the validity of the cluster hypothesis which are typically used in IR (section 4.2), I
discussed the comparative effectiveness of the four hierarchic methods which are used in this
thesis (section 4.4.1), and I discussed issues relating to the effectiveness of cluster-based retrieval.

The discussion on cluster-based effectiveness had two focal points.

First, the different types of searches which are typically used to search a document hierarchy were
presented (top-down, bottom-up and optimal searches), and their comparative effectiveness was
examined. I provided justification for the use of optimal cluster searches in this thesis (section
4.3.4), and I also illustrated a number of measures which can be used to measure optimal cluster-

based and best-match retrieval effectiveness (section 4.3.5).

The second focal point was the comparative effectiveness of cluster-based and best-match
retrieval (section 4.4.2). Studies which have looked into this issue seem to have suggested that
document clustering can not act as an effective retrieval mechanism. This in turn has affected IR
research, which, as I discussed in Chapter 3 (section 3.8), has not focused on effectiveness issues

for a considerable amount of time.

I concluded the chapter in section 4.5, by stating that it is the aim of this thesis to challenge some
of the implicit assumptions that characterise the application of document clustering to IR. By
doing so, I aim to demonstrate that clustering can indeed act as an effective method for

information retrieval, and its failure to do so up to date is attributed to the manner of its
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application. The assumptions that this thesis aims to challenge relate to the static manner in which

document clustering is applied, and I discuss them in detail in the following chapter.
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Query-Based Document Clustering

5.1 Introduction

In all the research that I have reviewed so far, clustering has been applied statically, over an entire
document collection, prior to querying (i.e. static clustering). Therefore, under static clustering the
user has no direct input in the outcome of the clustering process: the generated hierarchies remain
the same regardless of what the user’s search interest might be. This can be seen as a limitation of
document clustering, since a static clustering may not effectively reflect the user’s interest
(Ottaviani, 1994), especially in large heterogeneous document collections, such as the Internet,
with which increasingly larger numbers of users are interacting. If clustering is to act as an
effective means of retrieval, it is more likely to do so by adapting to the user’s interests. In
relation to this issue Ottaviani (1994) argued that static clustering methods “leave the true arbiter
of relevance, the searcher, out of the cluster-forming loop... These features result in poor service

to the interactive searcher.”

The main motivation behind the work reported in this thesis is to investigate the potential
effectiveness gains that can be obtained by generating document hierarchies that are based on the
user’s search request. In this way, document clustering is no longer a static process that does not
take the user’s information need into account. Instead, clustering is transformed into a dynamic
process that adjusts to the user’s subject of inquiry. This thesis takes the view that such dynamic
methods are more likely to yield effective document structures than a static, a priori clustering of

the entire document collection. I will call this class of clustering methods query-based.

In this chapter I put forward two approaches by which a query can influence document hierarchies
generated by clustering methods, and I outline some issues that pertain to the effectiveness of
such approaches. I examine the various issues that relate to clustering effectiveness under the
view that clustering in IR is a goal-driven process. As I discussed in section 3.6.1, if for each

query there exists a perfect separation between relevant and non-relevant documents, then the
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effectiveness thereby attained will be the highest possible. This situation represents an ideal case
that defines the goal of any cluster-based system: for each search request, to group documents
relevant to the request separately from those non-relevant to the request. This goal also holds a
strong relation to the cluster hypothesis, since the separation of relevant from non-relevant

documents is explicitly postulated in the definition of the hypothesis.

The first way by which the query can influence the output of a hierarchic clustering method, is by
clustering documents which have first been retrieved in response to a query (post-retrieval
clustering). It should be noted that a number of other terms have been used in the literature as an
alternative to post-retrieval clustering, as for example query-specific clustering (Willett, 1983),
dynamic clustering (Hearst & Pedersen, 1996; Anick & Vaithyanathan, 1997), ephemeral
clustering (Maarek et al., 2000), etc. The term post-retrieval clustering is used in the rest of this
thesis. In section 5.2 I examine issues relating to the effectiveness of post-retrieval clustering, and
I also discuss previous research that has looked into this issue. Through the discussion of this past

work, limitations of the state of the research in this area are highlighted.

The second approach for influencing document hierarchies towards the user’s query is outlined in
section 5.3. To elicit this second method, I review the role of the cluster hypothesis in document
clustering, and I also challenge the way that interdocument associations are calculated in IR.

Previous research that shares similar goals to this proposed approach will also be reviewed.

Having elaborated on the two methods of generating query-based document hierarchies, in section
5.4 I state what the research aims of the experimental work that I report in the following chapters
are. Then, in section 5.5 I describe the methodology and the specific details of the environment
under which this experimental work is carried out. Section 5.6 summarises the main issues

discussed in this chapter.

5.2 Post-retrieval clustering

One way of entering the user “in the loop” of the clustering process is by performing post-
retrieval clustering, i.e. by clustering documents that have first been retrieved by an IR system in
response to a query. In this way a new document hierarchy is generated every time a user inputs a
query to an IR system. The generated hierarchies will contain documents that have a greater
likelihood of being relevant to the specific query, since they have been highly ranked by the IR
system in response to this query. As a consequence, by generating a different hierarchy for each
query there seems to be a greater likelihood of reaching the clustering goal than with static
clustering, i.e. for each query to achieve a higher degree of separation between relevant and non-

relevant documents.
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The investigation of post-retrieval clustering, as opposed to that of static clustering, has not been
as systematic. Although there can be many viewpoints from which one may examine post-
retrieval clustering, I will focus on its effect on the effectiveness of the clustering process, and on
its relation to the cluster hypothesis. Preece (1973), Willett (1985) and Hearst and Pedersen
(1996) are some of the few researchers who have investigated post-retrieval clustering from

similar viewpoints in the context of IR.

S.E. Preece, in 1973, was one of the first researchers to suggest that clustering could be applied as
an “output option”, to the results of a Boolean or best-match IR system. Preece provides some
insight into the potential advantages of post-retrieval clustering, and into its relation to helping
achieve the clustering goal. Preece states that (p. 189) “...post-retrieval clustering offers a
possible alternative (to inverted file search), since the false drops are likely to be closer to each
other than to the relevant documents”. This directly relates to the validity of the cluster hypothesis
for post-retrieval clustering: by clustering search outputs it will be more likely to capture the
relationships between relevant documents, and therefore more likely to cluster relevant documents

together, apart from non-relevant ones (false-drops in Preece’s terminology).

Preece also argued that “...with pre-retrieval (i.e. static) clustering, each document is attached at
full strength to only one cluster. This may mean that documents relevant to a request can not be
retrieved by that request”. This is a major limitation of static clustering, since the “hard”
assignment of documents to clusters for all incoming queries may be problematic in terms of
retrieval effectiveness. Documents relevant to a specific query are likely to be dispersed across a
few clusters in the static clustering scenario. A cluster-based search strategy is likely to miss such
documents that may be placed in clusters with other similar, but irrelevant to the query,
documents. In relation to this issue, Preece further adds that post-retrieval clustering can
potentially increase retrieval effectiveness, since the initial inverted file search is likely to “filter
out” many non-relevant documents that could have otherwise mixed with relevant ones to form

clusters.

Given Preece’s speculations in 1973, I find surprising that no actual investigation of the
effectiveness of post-retrieval clustering took place until 1985'® (Willett, 1985). The motivation
behind Willett’s research was not the potential to improve the effectiveness of cluster-based IR
systems. Instead, he was motivated by the potential of post-retrieval clustering to address two

other limitations of static clustering: efficiency, and updating strategies.

Since small numbers of documents are clustered under post-retrieval clustering, it is possible to

avoid the large computational overhead of operating on large data files that is imposed under

18 Attar and Fracknel (1977) describe experiments employing post-retrieval keyword, rather than document, clustering.
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static clustering (section 3.4). Moreover, post-retrieval clustering alleviates the need to employ
any updating mechanisms. Under static clustering, as the composition of the document collection
changes over time, methods for updating the static hierarchy, and thus avoiding the need to re-
compute the hierarchy, are important. On the other hand, post-retrieval clustering generates a
hierarchy that is automatically derived from the current state of the document collection.
Documents may be added or deleted from the collection, but the hierarchy is generated based
upon the most recent image of the document collection when a query is presented to the system.
This advantage could be of great importance if one were to apply clustering to data collections

that are highly dynamic by nature (e.g. a collection of web documents stored in an intranet).

Willett experimentally examined whether these two advantages of post-retrieval clustering come
at the cost of reduced retrieval effectiveness. He used three test collections (Keen, Evans, and
Cranfield) and the single link clustering method. In order to determine the set of documents to be
clustered for each query he used a coordination level search, with a level of 0 corresponding to
the entire collection (static clustering), a level of 1 corresponding to documents that have at least 1
term in common with the query, and so on; levels of 0, 1, 2 and 3 were used. Willett measured the
retrieval effectiveness for each of the three levels using a search strategy developed by Croft
(1980). The comparison of the results demonstrated that the effectiveness of the dynamic method

was inferior to that of static clustering, albeit not substantially inferior.

Willett also examined the effect of variations in the coordination level on the validity of the
cluster hypothesis. He used the overlap test (Jardine & Van Rijsbergen, 1971) for all three
collections and coordination levels. The degree of the overlap of the frequency distributions (see
section 4.2.1) seemed to increase as the coordination level increased, confirming the previous
finding that effectiveness deteriorated as the coordination level increased. Willett attributed this
behaviour to the increased similarity that documents (both relevant and non-relevant) exhibit
amongst each other at higher coordination levels. The similarity, Willett argued, is expected to be
higher since documents at high coordination levels will at least share certain terms that

characterise the query.

A limitation of Willett’s work, that might have affected his experimental results, was the
coordination level search that he used, mainly because of the varying indexing exhaustivity of the
test collections employed in his experiments. Acknowledging this, Willett reports (p. 30) that “...
it would probably be better to rank a document collection in decreasing order of similarity with
the query on the basis of some matching function... so as to obtain the desired number of
documents”. A further limitation of this approach can be found in the use of only one clustering
method, namely the single link method, and in the use of only three relatively small test

collections.
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5.2.1 Re-examining the cluster hypothesis for Scatter/Gather

Perhaps the most widely publicised piece of research on post-retrieval clustering is the one
reported by Hearst and Pedersen (1996). Hearst and Pedersen re-examined the cluster hypothesis
under post-retrieval clustering, by suggesting that, if two documents D; and D, are relevant for
query O, then they need not necessarily be relevant for a different query Qp. In other words,
Hearst and Pedersen view the cluster hypothesis on a per-query basis. This is in contrast to the
“on-average, across-all queries” basis that Jardine and Van Rijsbergen (1971) originally proposed

and viewed the hypothesis.

This dynamic view of the cluster hypothesis is a direct consequence of the clustering of retrieval
results, and is similar to the original postulations by Preece (1973). According to the original view
of the hypothesis, on average, across all queries, relevant documents tend to be more similar to
each other than to non-relevant ones. One can argue that this is a strict assumption that may not be
ubiquitously met in realistic retrieval environments. By performing post-retrieval clustering, one
relaxes this assumption and reduces it to one that requires, for each query, relevant documents to
be more similar to each other than to non-relevant ones. Hearst and Pedersen also postulated that,
by clustering retrieval results, clusters have the potential to be more tailored to the characteristics

of a specific query than clusters generated by a static clustering.

The authors then tried to experimentally test the validity of their argument using the
Scatter/Gather system (Cutting et al., 1992; Pirolli et al., 1996). Scatter/Gather employs
partitioning clustering, inheriting from this class of clustering methods the problems mentioned in
section 3.1. For example, Scatter/Gather requires the number of clusters to be determined
beforehand. One can see this requirement as limiting, especially in the case of dynamic cluster
generation, where no prior knowledge of the topical structure of the document set to be clustered

is available.

Hearst and Pedersen performed a series of experiments in which they clustered the top-n
documents (100, 250, 500, 1000) returned from an inverted file search. In their experiments they
used over 2 Gbytes of text from the standard TREC collection (Harman, 1993), as well as 49
queries from TREC-4. For each of the four values of n, and for each query, the top-n retrieved
documents were clustered into 5 partitions, a value that is arbitrarily chosen. By observing the
distribution of the percentage of relevant documents in each of the five partitions, Hearst and
Pedersen conjectured that the cluster hypothesis must hold for the Scatter/Gather clustering
system, since the best partition (i.e. the one containing the highest percentage of relevant

documents) always contains at least 50% of the relevant documents retrieved.

However, their experimental analysis does not provide any information on the varying degree to

which the cluster hypothesis may be valid when considering different numbers of top-ranked
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documents. Neither does it provide any information on the effect that the transition from static to
post-retrieval clustering has on the validity of the cluster hypothesis or on retrieval effectiveness.
Moreover, the authors do not provide information about statistics of the partitions generated (e.g.
size), and the effect that partition size may have on the number of relevant documents found in the
best partition. For example, for large values of n one expects the mean size of each partition to
increase'® (since there are always 5 partitions), increasing at the same time the probability to have

more relevant documents placed in the same partition.

Given that the main motivation of Hearst and Pedersen’s work was to examine the cluster
hypothesis under post-retrieval clustering, it may be argued that their experiments do not provide
enough evidence towards that end. Therefore, their conclusion (p. 81) that “... clustering (i.e.
Scatter/Gather type clustering) does in fact group together the relevant documents, as would

follow from the cluster hypothesis” does not appear to be fully supported.

Hearst and Pedersen also compared a ranking of documents in a best cluster, for each of the four
values of n, to an equivalent cut-off in the original top-ranked documents. It should be noted that
this type of evaluation is equivalent to an optimal cluster search (see section 4.3.4), since a best
partition is the one that would display the highest effectiveness. Therefore, referring to the
evaluation measures reported in section 4.3.5, cluster effectiveness is gauged using the MK1
measure, and IFS effectiveness is gauged using the MK1-k measure. Their results showed that if
for every query a user was to select the best cluster, then the effectiveness of the clustering would
be higher than that of the inverted search for all values of n. As I discussed in section 4.3.5, this
type of comparison is not fair on inverted search, since it compares a theoretical maximum
effectiveness (MK is attained if a user was to infallibly select the best partition) against a value
that is not optimal (MK1-k; there is no guarantee that IFS effectiveness reaches optimality at the

cut-off point k of the best partition).

Finally, Hearst and Pedersen provide some evidence about the effect of varying numbers of top-
ranked documents on clustering effectiveness, however, they do so implicitly when comparing the
effectiveness of cluster-based and inverted file searches (p. 82). Their results are obscured by the
fact that documents within the best cluster are ranked based on two different methods. When
documents are ranked based on their closeness to the query, clustering effectiveness increases as
the number of top-ranked documents increases. When, on the other hand, documents are ranked
based on their similarity to cluster centroids, then the highest effectiveness seems to be attained
when clustering between 250 and 500 top-ranked documents. It should also be noted that Hearst
and Pedersen did not test the statistical significance of these results, as this research direction did

not fall within their experimental aims.

19 In fact, the authors mention this in passing in page 81 when referring to a different matter.
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5.2.2 Some notes on post-retrieval clustering

Despite the limitations of the experimental methodology of Willett (1985), and Hearst and
Pedersen (1996), the relation of post-retrieval clustering to retrieval effectiveness has not been
examined by other researchers. Most of the reported research that adopts clustering of retrieval
results seems to do so rather casually, without consideration for effectiveness issues. For example,
(Allen et al., 1993; Kirriemuir & Willett, 1995; Leuski & Allan, 1998; Zamir & Etzioni, 1998;
Carey et al., 2000; Eguchi et al., 2001) all arbitrarily select a number # of top-ranked documents
to cluster, without any investigation into the effect that the choice of n may have on retrieval

effectiveness.

Kirriemuir and Willett (1995), for example, were interested in examining the effect of hierarchic
clustering methods and similarity coefficients on the ability of an IR system to detect duplicate, or
near-duplicate, full-text records in a newspaper archive. They did not investigate clustering
effectiveness across different numbers of retrieved documents, or the comparative effectiveness of
cluster-based and IFS retrieval. Leuski and Allan (1998) examined two and three dimensional
visualisations of the top-50 retrieved documents returned from a similarity search. They did not
cluster the retrieved document sets, instead they investigated how the visualisation strategies that
they proposed affected the spatial proximity of relevant documents (i.e. whether the visualisations
placed relevant documents close to each other). Their results demonstrated that relevant
documents were visually placed close to each other, providing evidence that the cluster hypothesis

holds both for two and three dimensional representations of the document sets.

Similar to the post-retrieval organisation of search results by means of hierarchic clustering is the
organisation by means of hierarchic classification, or categorisation, to pre-defined categories
(Pratt et al., 1999; Chen & Dumais, 2000). This can be an effective and intuitive way to allow
users to navigate through retrieved documents, but as I discussed in section 3.1 classification is

viewed as a process distinct to that of clustering.

From the discussion of post-retrieval clustering that was presented in the previous paragraphs,
three issues need to be further considered. The first issue is the effect that varying numbers of top-
ranked documents have on the validity of the cluster hypothesis, and on cluster-based
effectiveness. As I previously discussed, Hearst and Pedersen (1996) partially address the effect
of varying top-ranked documents on clustering effectiveness, with results depending on the
method used to rank the documents within the best clusters, and with no testing for the
significance of the results. As far as the effect on the validity of the cluster hypothesis is
concerned, Willett (1985) suggested that for static clustering relevant and non-relevant documents
seem to be better separated than for post-retrieval clustering. However, his approach was limited

by the use of the coordination level search.
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The second issue relates to the comparison of the effectiveness of post-retrieval clustering to that
of static clustering. Addressing this issue would provide insight into whether it is worthwhile,
from an effectiveness point of view, to pursue post-retrieval clustering. Anick and Vaithyanathan
(1997) have suggested that by clustering top-ranked documents, one may potentially miss some
relevant documents that may have been ranked low by an inverted file search. Such documents
might have been picked up by static clusters through interdocument associations, thus enhancing
the recall of the system. Post-retrieval clustering simply disregards documents that have been
ranked below rank position n. The issue of the comparative effectiveness of static and post-
retrieval clustering has been left unaddressed by Hearst and Pedersen. Willett (1985) indicated
that the effectiveness of static clustering is higher, but this result should be seen tentatively

because of the use of the coordination level search.

The third issue pertains to the investigation of the comparative effectiveness of post-retrieval
clustering and inverted file search. Willett’s study did not address this issue. Hearst and
Pedersen’s research suggested that, for the Scatter/Gather system, the best cluster was always
more effective than an equivalent cut-off of the ranking produced by an inverted file search.
However, the use of inappropriate means of comparing effectiveness prohibits the extraction of
any definite conclusions. An issue that needs to be emphasised here is that the result of any

comparison will depend on the quality of the initial retrieval.

5.3 Reviewing the role of the cluster hypothesis

The cluster hypothesis conceptually lies in the heart of the clustering process. If relevant
documents are indeed more similar to each other than to non-relevant ones, then the effectiveness
of CBR should indeed be high as the likelihood of placing documents relevant to the same

requests (co-relevant documents) in the same clusters will also be high.

From the definition of the cluster hypothesis it becomes evident that the concept of similarity is
central to it: “closely associated documents tend to be relevant to the same requests” (Van
Rijsbergen, 1979; p. 45). The tests that are typically used to quantify the degree at which test
collections adhere to the cluster hypothesis (see section 4.2) take as input the set of interdocument
associations for each collection, and output a numerical value that is treated as an indication of the
comparative clustering tendency of these collections (Jardine & Van Rijsbergen, 1971; Voorhees,
1985a, 1985b; El-Hamdouchi & Willett, 1987).

Here I propose an alternative view of the cluster hypothesis. According to this view, the
hypothesis should not be seen as a test for an individual collection’s clustering tendency. Instead,
I argue that the hypothesis should be valid for every collection, and should therefore be seen as an

axiom of cluster-based retrieval. I postulate that, for any given query, pairs of relevant documents
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will exhibit an inherent similarity which is dictated by the query itself. Under this view, and
contrary to the traditional treatment of the hypothesis in the literature so far, failure to validate the
hypothesis is not caused by properties of the test collection(s) under examination. Instead, it is
caused by failure to structure the document space in such a way that the inherent similarity of

documents that are jointly relevant to the same queries can be detected.

Gordon (1991) has also proposed the axiomatic view of the cluster hypothesis. He pursued the
clustering of co-relevant documents through altering their indexing representations based on the
way that documents are accessed by users®. Shaw and his colleagues (1997) have also suggested
that the way the cluster hypothesis has so far been treated may be a reason for the failure of
cluster-based retrieval to be highly effective. To the best of my knowledge, there is no

experimental evidence reported to validate such claims.

The structuring of the document space prior to clustering is implemented through the calculation
of the interdocument associations between pairs of documents that are considered for clustering.
The outcome of the association calculations dictates the positions of documents relative to each

other, and also constitutes the input to a clustering method that may be applied to the database.

5.3.1 The static nature of interdocument relationships

Let us consider, for illustration, the cosine coefficient. The formula for it is given by Equation 5.1.
Let us assume that a document D; is a vector of length n comprising binary or weighted entries,
and that each entry corresponds to an indexing term: D; = {d;;, dp, ..., di»}. The similarity of any

two documents D; and D; belonging to a document collection X is then given by Equation 5.1.

In a typical document clustering application, interdocument relationships are calculated statically.
This means that for any two documents D; and D; in a document collection, their similarity
Sim(D;, D;) will have a value that will be the same under all queries that a user may pose to the IR
system. This is clearly demonstrated by Equation 5.1: the similarity between the two objects
depends only on the weights of their constituent terms (di and dj). Therefore, for a particular

document collection Sim(D;, D;) will be the same across all requests.

Z":d,k-d,k

Sim(D, D)) = - (.D
‘/zd.-z-zd,a
k=1 k=1

Document clustering has also typically been applied statically over an entire collection prior to

querying (static clustering). Hence, there has been no practical reason to reconsider static

20 More information on this class of clustering approaches is given in section 5.3.2.
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similarity calculations for a clustering that is itself static. However, even under post-retrieval

clustering interdocument similarity is defined in the same static way.

As seen in section 5.2, under post-retrieval clustering a different set of documents is clustered for
each query. A consequence of this is that the similarity between any two documents D; and Dj,
assuming that they are both included in the document sets to be clustered for different queries,
will be different under each query. This difference is introduced implicitly, and is not explicitly
defined by the similarity measure used (e.g. Equation 5.1 is typically used for post-retrieval
clustering). It is implicitly introduced due to the different documents retrieved in the top-n ranks
in response to different queries. Similarity in this case will vary because the term weights of
documents (diand dj, in Equation 5.1) will also vary depending on other documents that are in the
same neighbourhood. However, it should be noted that if binary (presence/absence) term

representations are used then similarity will remain static.

Both in the static and in the implicitly variable use of similarity under post-retrieval clustering,
interdocument associations are defined through enumeration of common terms, and a
mathematical formulation that quantifies this enumeration (e.g. Equation 5.1). According to this
view, all dimensions (i.e. terms) are deemed equally relevant at contributing towards the
similarity value, and furthermore, the importance of dimensions does not change depending on
the query. The use of term weighting schemes for document vectors does not address this issue,
firstly because such schemes are not always applied when calculating interobject similarities -
binary repreéentations are often used — (Van Rijsbergen, 1979; Willett, 1983; Ellis et al., 1993),
and secondly because such schemes weight terms according to their indexing importance within a
document collection (Van Rijsbergen, 1979), and not according to their value as salient features

for the purpose of clustering relevant objects together.

The static calculation of interdocument similarity seems to neglect some potentially important
information: the context under which the similarity of the two documents is judged. Evidence by a
number of researchers in fields such as those of philosophy, cognition, experimental psychology,
and memory based reasoning (MBR) (Goodman, 1972; Tversky, 1977; Nosofsky, 1986; Stanfill
& Waltz, 1986) suggest that similarity is a highly dynamic concept that is highly influenced by

purpose.

Goodman, (1972), for example, ‘accused’ similarity of being an insidious and highly volatile
concept. He suggested that one can “tie the concept of similarity down” by selecting some
important features on which to judge similarity. Tversky, (1977), for the specific task of
classification, argued that the salience of features is determined, in part, by their classificatory
significance, or diagnostic value. A feature may acquire diagnostic value, and hence become more
salient in a particular context, if it serves as a basis for classification in that particular context.

Each class should then contain objects that are similar to each other in the sense that they are
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similar in respect to these important features. Nosofsky, (1986), for assessing similarity in a
psychological space, and (Stanfill & Waltz, 1986) for determining similarity of cases for MBR,

have adopted similar views.

The IR community, on the other hand, has adopted, in a rather casual way, the static nature of
interdocument similarity. This seems surprising if one considers that document clustering is a
highly goal-driven process: relevant documents should be grouped together, and separately from
non-relevant ones. Therefore, a static similarity is unlikely to be able to structure the document

space in such a way that the proximity of co-relevant documents is promoted on a per-query basis.

One of the aims of the research that is reported in this thesis, is to devise means by which the
document space can be structured in a way suitable to detect the inherent similarity of co-relevant
documents. To this end, I propose the use of query-sensitive similarity measures (QSSM) that bias
interdocument relationships towards pairs of documents that jointly possess attributes (i.e. terms)
that are expressed in a query. I consider the query terms to be the salient features that define the
context under which the similarity of any two documents is judged. This is a novel approach to
calculating interdocument relationships, and is motivated by the belief that similarity is a dynamic
concept that is highly influenced by purpose. In the context of IR, purpose can be defined as a
per-query adherence to the cluster hypothesis as explained in section 5.3. It is this goal that

clustering through query-sensitive similarity measures aims to accomplish.

A hierarchic clustering method, like any of the four reviewed in section 3.4, takes the similarity
matrix containing all interdocument associations as an input, performs a specific transformation
on the matrix, and generates a hierarchic structure. By altering the way that interdocument
associations are calculated, one changes the input to the clustering method, and consequently also
changes the generated hierarchic structures. The study of hierarchic clustering methods that
employ query-sensitive similarity measures for the calculation of interdocument relationships is

one of the main aims of this thesis.

5.3.2 Related work

The use of query-sensitive similarity measures aims at increasing the similarity of co-relevant
documents on a per-query basis, so that the probability that such documents are placed in the
same clusters is also increased. A number of approaches that try to ‘force’ co-relevant documents
in the same clusters have been developed in the past under the name of user-oriented, or adaptive
clustering. In general, these methods rely on user-supplied feedback in order to determine the
degree of association between documents rather than on statistical interpretation of their contents

(Gordon, 1991).
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The work carried out by Ivie (1966) was pioneering in this field, and it made the first suggestions
for the use of an adaptive clustering system. Ivie mentions that (p. 29) "the purpose of each
interaction of a user with the system is ... a partitioning of the total collection into two disjoint
subsets - one containing all documents that are of interest to the user and the other containing
those not of interest". Clearly, what Ivie proposes is a per-query adherence to the cluster
hypothesis by employing user feedback. He also puts forward the idea of monitoring co-usage
patterns of documents in order to determine interdocument similarity (p. 29): "a measure of the
relatedness between any two documents based on their usage and co-usage patterns ... is to be

utilised to facilitate the request-to-answer transformation".

The concepts that Ivie put forward were picked up, almost twenty years later, by a number of
other researchers that pursued the adaptive clustering of documents (Yu et al., 1985; Deogun &
Raghavan, 1986; Gordon, 1991; Bhatia & Deogun, 1993). Typically, such approaches involve the
monitoring of the way that users access documents over a period of time. If two documents are
jointly accessed by a number of users, then it can be argued that these documents are similar to
each other and should be placed in the same clusters. Yu et al. (1985), for example, suggested the
formation of clusters by adaptively repositioning documents on a real number line that represents
the distance between documents. The position on the line is based on user feedback (i.e. jointly
relevant documents are pulled closer together), and documents that lie close in this line are
assigned to the same clusters. Deogun and Raghavan (1986), developed a method of user-based
clustering by partitioning the original document set in such a way that only documents relevant to
the same queries are placed in the same clusters. Since this strategy results in many small clusters
(even as small as one document), heuristics have to be applied to merge such clusters in larger

ones.

Gordon (1991) proposed an adaptive clustering method by redescribing documents (i.e. changing
their indexing representations) by means of a genetic algorithm. Each document in a collection is
assigned multiple descriptions. The descriptions for a single document compete with each other,
with fitter descriptions being those that match relevant queries and do not match non-relevant
ones (user-supplied relevance assessments are required). The genetic algorithm causes the set of
descriptions associated with a specific document to move over time towards those queries to
which they are relevant, and away from those to which they are not. In this way, documents that
tend to be relevant to the same requests will have descriptions that move closer to each other.
Documents are then clustered based on these descriptions. The goal of Gordon’s algorithm is for
documents to eventually have closely associated descriptions because they are relevant to the

same queries, and consequently, for the validity of the cluster hypothesis to be enforced.

Gordon’ s approach is characterised by two rather strong hypotheses. First, it is assumed that

queries that are relevant to a specific document will be descriptively similar. If this is not the case,
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then the descriptions of documents that are redescribed by the algorithm to match these queries
will not group tightly together. The second hypothesis is that documents will be co-relevant to the
same queries. If this hypothesis does not hold, then the similarity in the documents’ descriptions
brought about by their co-relevance to one query, will be reduced as each document separately is
relevant to different sets of queries (Gordon, 1991). It must be noted that, to date, there is no
experimental evidence to suggest the validity of either of these two hypotheses. Therefore, it can
be argued that the applicability of this method is restricted to those environments for which these

hypotheses are valid.

Adaptive clustering methods implicitly assume that there are means of monitoring user activities,
collecting usage information, and incorporating this information in the clustering system.
Moreover, in most of the adaptive approaches it is assumed that the user will perform his searches
on the same document collection, since user behaviour over time is monitored to optimise
clustering on a specific collection. Most of these assumptions might not be realistic in an
operational environment where user searches can be performed on a number of different
databases, or where users may not be willing to provide feedback or document usage information.
These requirements imposed by such methods have most likely contributed to the limited use of

adaptive clustering in widely used IR systems, such as for example web-based search engines.

In contrast to adaptive clustering methods, clustering through the use of query-sensitive similarity
measures does not require any form of user feedback, nor does it rely on the user interacting with
a single database. Query-sensitive similarity measures assume that the only information available,
apart from the collection of documents, is the query posed by the user. In this way it can be
argued that the applicability and the utility of the proposed approach is greater than that of the

adaptive clustering methods.

Apart from adaptive clustering methods, other approaches that conceptually share the same goal
with clustering based on QSSM (i.e. forcing co-relevant documents in the same clusters) can be
found in the literature. EI-Hamdouchi (1987), for example, proposed a (static) clustering approach
that aims at generating clusters with a high probability of containing co-relevant documents. El-
Hamdouchi’s method uses a probabilistic function that ranks documents, or sets of documents, in

relation to a query, and does not challenge the use of static interdocument similarity.

Bartell et al. (1995) propose a method for creating indexing representations of documents based
on modelling target (static) interdocument similarity values. The authors partitioned three test
collections into a training set and a test set. They used the relevance information contained in the
training test to construct the target interdocument similarities (with the similarity of co-relevant
documents artificially augmented), and the test set to attempt to model the target similarities. The
authors concluded that their method succeeds in enforcing the validity of the cluster hypothesis,

as this was demonstrated by results of the overlap test (section 4.2.1). However, the use of the
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target similarity matrix is a major limitation of this approach, something that the authors
themselves acknowledge. Moreover, the static calculation of interdocument similarity is not

addressed in this research.

Wen et al. (2001) applied the idea of usage-based clustering not to documents, but rather to
queries issued to a web-based search engine. The authors argue that if two queries result in the
user viewing the same documents, then such queries are similar and should be accordingly
grouped together. The similarity of two queries is then calculated as a function of their content
overlap, and of the sets of documents to which the queries jointly provide access. This work
assumes that when a user views a document during a web search session, he implicitly indicates
that the document is relevant to the query (implicit relevance feedback). This is a rather strong

assumption that has not been fully supported in experiments reported so far (White et al., 2002).

5.4 Research objectives

In the last two sections (5.2 and 5.3), I outlined two methods through which a user-supplied query
can influence the output of hierarchic clustering methods. The main aim of this thesis is to

investigate the effectiveness of such query-based document hierarchies.

Through investigating the effectiveness of query-based hierarchic clustering, I also aim to
challenge previous findings in the field that have argued for the inappropriateness of clustering as
an effective retrieval mechanism, and to argue that such failure can be attributed to the way that
clustering has typically been performed. In sections 5.4.1 and 5.4.2 I outline the specific research

issues that I will attempt to address through the experimental work that is reported in this thesis.

5.4.1 The effectiveness of post-retrieval hierarchic clustering in IR

In section 5.2.2 I raised a number of issues regarding post-retrieval clustering that have been left
unaddressed so far. This gap in the state of research is the main motivation for the experimental
work that I report in Chapter 6. I believe that the area of post-retrieval clustering merits greater
interest than it has received by IR researchers. Also, in contrast to other researchers (e.g. Allen et
al., 1993; Leuski & Allan, 1998; Allan et al., 2001), I do not view post-retrieval clustering merely
as a convenient means of presenting and visualising retrieval results to users. Instead, I aim to
analytically investigate the viability of post-retrieval clustering based on the grounds of its

retrieval effectiveness.
The issues that I aim to investigate are the following:

1. The effect that varying numbers of top-ranked documents that are considered for

clustering have on clustering effectiveness. The motivation for pursuing this research
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direction is to gain an understanding of the behaviour of post-retrieval clustering under

different experimental conditions (e.g. different test collections, clustering methods, etc.)

2. The comparative effectiveness of static and post-retrieval clustering. By comparing the
retrieval effectiveness attainable by static clustering to that attainable by clustering
variable numbers of top-ranked documents, it should be possible to appreciate whether

incorporating query information into the clustering process is worthwhile

3. The effect that different numbers of top-ranked documents have on the validity of the
cluster hypothesis. This research direction aims to investigate whether there is a variation
in the degree to which the cluster hypothesis is valid, caused by the consideration of

different numbers of top-ranked documents

4. The comparative effectiveness of cluster-based (both static and post-retrieval) and IFS
retrieval. The primary aim is to examine whether post-retrieval clustering has the
potential to act as an effective retrieval mechanism, one that could improve the

effectiveness of conventional similarity ranking systems.

It is worth noting that the effectiveness of post-retrieval clustering can also be investigated for
other types of clustering methods apart from hierarchic ones. It is not the aim of this thesis to
examine such issues. Hierarchic methods form the focus of the work reported here, for reasons

that I outlined in section 3.1.

5.4.2 Query-sensitive similarity measures for the calculation of
interdocument relationships

In section 5.3 I proposed an axiomatic view of the cluster hypothesis that stems from the intuition
that documents relevant to the same query exhibit an inherent similarity that constitutes them
more similar to each other than to non-relevant documents. In the same section, I also introduced
the notion of query-sensitive similarity measures that can be used to detect this inherent
similarity. In Chapters 7 and 8 I examine the applicability and effectiveness of QSSM in the

context of document clustering.
The main experimental aims of these two chapters are:

1. To propose specific formulas by which QSSM can be defined. In the present chapter I
have merely proposed the use of QSSM on a conceptual level. In Chapter 7 I propose
specific formulas that can incorporate the query influence in the calculation of

interdocument associations
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2. To investigate whether the use of QSSM for measuring interdocument relationships
succeeds in enforcing the validity of the cluster hypothesis when compared against
conventional similarity measures. This issue is also examined in Chapter 7, and is

viewed as a test for the applicability of QSSM to IR

3. To investigate whether the application of QSSM to document clustering can improve
retrieval effectiveness when compared both to the effectiveness attained by conventional
clustering methods (i.e. using a conventional similarity measure), and to the

effectiveness obtained by IFS. This issue is examined in Chapter 8.

In addition to these aims that form the focal points of this research, the opportunity to study the
comparative effectiveness of four hierarchic clustering methods (those reported in section 3.4)
lends itself. Despite that these four methods have been extensively compared in the context of IR
(Griffiths et al., 1984; Voorhees, 1985a; El-Hamdouchi & Willett, 1989), this has occurred only
for static clustering. The comparative effectiveness of these methods under post-retrieval
clustering has not been investigated, and neither has their comparative effectiveness using query-

sensitive similarity measures.

It should be noted that it is not only hierarchic clustering methods that can employ query-sensitive
similarity measures. Other types of clustering methods can also use such measures, since the
majority of clustering methods known rely on some form of interdocument association measure.
As with post-retrieval clustering, it is not the aim of this thesis to examine the effectiveness of

clustering methods other than hierarchic ones.

5.5 The experimental environment

In this section I describe the various components that form the experimental environment in
which the research objectives of this thesis are investigated. The main components of the
experimental system are presented in Figure 5.1. It must be noted that variations in this baseline
environment will be made in the following chapters, and specifically in Chapters 7 and 8§ where
the query-sensitive similarity measures will be investigated. Where such variations occur I will
explicitly make appropriate reference to the component of the baseline system in Figure 5.1 that

they correspond to.

Documents and queries are taken from standard IR test collections, the details of which are
presented in section 5.5.1. Documents and queries are processed, indexed and matched against
each other by means of an IR system; the details of this process are outlined in section 5.5.2.
Section 5.5.3 presents details of the clustering system that is used, and section 5.5.4 outlines the

method used for obtaining measurements of retrieval effectiveness.
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5.5.1 Test collections

Six document collections are used in the experimental work. Four of them (CACM, CISI, LISA,
and Medline) have been used by other researchers for experimentation with hierarchic clustering
methods (Voorhees, 1985a; Griffiths et al., 1986; El Hamdouchi & Willett, 1989; Burgin, 1995),
and the remaining two are part of the TREC standard collections (Harman, 1993).

Evaluation 4_‘

Documents

top-n docs

Q-D —
matching —

Query Ranked st

Clustering system
Figure 5.1. The experimental system

The part of the Medline database that is used in the experiments is widely known as Medlars. This
database is atypical as Bartell et al. (1995) note, in the sense that the 30 queries of this collection
partition it into disjoint sets. This means that each document is relevant to either one or none of
the 30 queries. There are therefore 31 disjoint classes of documents: one class of relevant
documents per query, and one “garbage” class that contains documents that are relevant to no
query. One can therefore argue that Medlars displays a structure that is well suited to clustering. If
a clustering method succeeds at grouping relevant documents separately from non-relevant ones,
then this structure may be sufficient for all queries of this test collection, i.e. a static clustering of
this collection may be as effective as a dynamic one. Voorhees (1985a) showed that documents
relevant to a query can be distinguished from other documents in the dataset because they appear

in a (static) cluster of topically-related documents associated with the query.

Statistics for the six document collections are presented in Table 5.1. It should be noted that the
four smallest collections (CACM, CISI, LISA, and Medline) are homogeneous, treating one major
subject area (e.g. Library and Information Science, Biomedicine, etc.), and such topical
homogeneity may effect the experimental results. The AP and WSJ collections, on the other hand,
cover in their documents a wide variety of topics, providing two collections with different
characteristics. For these two collections, TREC topics (i.e. queries) 1-50 were randomly chosen

and used in the experiments.
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<num> Number: 003

<dom> Domain: International Economics

<title> Topic: Joint Ventures

<desc> Description:

Document will announce a new joint venture involving a Japanese
company.

<narr> Narrative:

A relevant document will announce a new joint venture and will
identify the partners ...

<con> Concept(s):

1. joint venture, tie up

2. partner, cooperation, joint management, ...

</top>

Figure 5.2. A sample TREC topic

TREC topics comprise many fields, and can be long and detailed (Figure 5.2). This raises the
issue of what part of the topic to use for retrieval purposes. The 'title’ section of the topics is felt to
be typical of the queries that users might enter in an actual IR system, while the other sections are
regarded as a much more detailed description of the information need that is unlikely to be used
by an actual user. The ‘title’ sections of the 50 topics that were used contain on average 3.2 terms.
Since this average is rather low, and given that no special consideration is taken to cater for very
short queries in this experimental environment, it was felt that the effectiveness of the initial

retrieval may consequently suffer for these two collections.

To this end, a number of manually selected terms from the ‘concepts’ field are added to the terms
of the ‘title’ section of the topics. The ‘concepts’ field usually lists terms and phrases that the
creator of the query thinks are related to it (Harman, 1993). On average 4.4 terms per query are
added from the concepts field, yielding an average of 7.6 terms per query for the AP and WSJ
collections (Table 5.1).

AP CACM CISI LISA MED WsJ
Number of docs. 79,919 3204 1460 6004 1033 74,520

Mean terms per doc. 370 225 439 39.7 51.6 377
Number of queries 50 52 35 35 30 50
Mean terms per query 7.6 13 76 194 9.9 7.6

Mean relevant docs per query 424 153 49.8 10.8 23.2 71.4
Total relevant docs. 2122 796 1742 379 696 3572

Table 5.1. Collection statistics

Apart from the topical differences among the six test collections, one can also note a significant
degree of variability in their statistics. For example, CACM and LISA both have few relevant
documents per query, whereas AP, CISI, and especially WSJ have a large number of relevant
documents per query. The average length of the documents belonging to the various collections is

also considerably variable. The two TREC collections, for example, have a much larger average
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number of terms per document compared to any of the other four collections. CACM stands at the

other end of the spectrum, with the smallest number of index terms assigned per document.

The variability in the characteristics of the test collections used is a desirable property of the
experimental environment. It allows a researcher to investigate the research aims in a variety of

settings, and hence to demonstrate that any results obtained are generally valid (Voorhees, 1985a).

5.56.2 IR system

In order to cluster a set of documents that have been retrieved in response to a query, one needs to
define the environment under which the initial retrieval takes place. The SMART experimental
information retrieval system (Salton, 1971) is used to this end. Documents and queries in SMART

are represented as vectors in a multidimensional space (sections 2.2, 2.3).

(ln(m,)+1)-log%
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A tf-idf weighting scheme (section 2.2) is used in the experiments, both for document and query
terms, that involves cosine length normalisation - SMART's ltc scheme (Salton & Buckley, 1988).
According to this scheme, the weight wy of term k in document d (or query g) is given by
Equation 5.2, where tf; is the term frequency of the term in document d (or query g), N is the total
number of documents of the collection, and n the number of documents in which term k occurs.
The default SMART stoplist and stemming algorithm are used for processing the documents and

queries of all test collections.

SMART performs comparisons between documents and queries, and outputs a ranking of
documents in decreasing order of their computed similarity to the queries. The matching function
employed by SMART is given by the cosine formula in Equation 5.3 (assuming that length-
normalised term weights are used) (Salton & Buckley, 1988). In this formula wg and wg

represent the weights of terms that belong to the query Q and the document D respectively.
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Table 5.2 gives the average precision values for 11 recall points, and 3 recall points (0.2, 0.5, 0.8)
for the initial retrieval for all six collections. As I mentioned in section 5.5.1, the documents of the
two TREC collections (AP and WSJ) are much longer than those of the other four collections.
Singhal et al. (1996) have suggested that the cosine coefficient, used by the SMART system to
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match documents and queries, can be affected by document length. Regarding this issue, I feel
that the retrieval effectiveness for these two collections is sufficient for the aims of the

experimental work.

AP CACM CISI LISA MED WSJ
11pt. Avg. 0.2568 03778 0.1945 03115 0.5699 0.2546
3pt. Avg. 0.2361 0.365 0.1678 0.2991 0.5836 0.2259

Table 5.2. Initial retrieval evaluation

After the initial retrieval, and for each query of each test collection, the top-n ranked documents
are used to create the collections that are clustered. Seven different values of n are used: 100, 200,
350, 500, 750, 1000, and full collection size (n = collection size). The value of 1000 is not used in
the CISI and Medline collections because their sizes are 1460 and 1033 documents respectively.
The full AP and WSJ collections (79,919 and 74,520 documents respectively) are not clustered

for practical reasons.

5.5.3 Clustering methods

Four hierarchic methods are used in the experiments, namely the single link, complete link, group
average, and Ward's methods. The main reason behind the choice of these four methods is that
they have been extensively used and examined in the context of IR (e.g. Van Rijsbergen & Croft,
1975, Griffiths et al., 1984; Voorhees, 1985a; El Hamdouchi & Willett, 1989). The methods are
implemented in ANSI C based on the algorithms that are given in (Spéth, 1980).

Apart from Ward's method which requires a specific form of distance measure that minimises the
within group variance (Wishart, 1969), the association measure used for the other three methods
is the cosine coefficient. Experiments with the normalised Euclidean distance and the Dice
coefficient did not produce significantly different results, something which is in agreement with
previous suggestions and findings (Van Rijsbergen, 1979; Willett, 1983; Ellis et al., 1993; also

see section 3.3.2).

The document sets to be clustered comprise either all the documents of a test collection, or the n
top-ranked documents of a test collection (n = 100, 200, 350, 500, 750, 1000). Document terms
belonging to these sets are weighted using the same weighting scheme as for the initial retrieval
(ltc). After initial experimentation with different vector weighting schemes (binary, term
frequency weights) for clustering, no significant differences were found — again in agreement with

previous findings (Willett, 1983; also see section 3.2.2).

Document terms are weighted locally within the retrieved sets prior to clustering, as opposed to

globally over an entire data set. Korpimies and Ukkonen (1998) suggested that local term
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weighting for the purpose of document clustering is more beneficial than global weighting.
Whether there are effectiveness gains by local document term weighting was not investigated in
this thesis. Also, the most exhaustive indexing representations are used for documents, as the
variation of indexing exhaustivity was not considered to be a relevant experimental parameter in

the present study (see section 3.2.1).

AP wsJ

Grou Complete Single Grou Complete Single

Average War Liﬁk Lifk Avera,IgJe Ward Lifzk Lif:k
100 11.7 10.1 8 24.8 12.6 8.8 8 28.3
200 15.4 12.3 9.3 46.9 16.7 10.4 9.4 54.1
350 18.6 13.9 10.5 79.3 21 11.9 10.6 91.2
500 21.4 15 11.2 112 243 12.7 11.6 129.7
750 24.6 16.2 12.6 167.4 28.6 13.6 13 196.7
1000  26.6 17 13.6 2214 31.8 14.5 14.5 263.4

Table 5.3. Average cluster sizes for the four methods using the AP and WSJ collections

In Table 5.3 the average cluster sizes for the two TREC collections (AP and WSJ) are presented,
using the hierarchies generated by the four clustering methods. From the data presented one can
note that the only method for which average cluster size significantly increases as the number n of
top-ranked documents increases, is single link. The other three methods produce hierarchies that
are little affected by the increase in the number of documents clustered. This is especially true for
the complete link and Ward’s methods, which tend to produce small, compact clusters whose size
does not significantly vary based on the number of documents clustered (Milligan et al., 1983).
This behaviour is typical of the four methods used (Murtagh, 1984b), and is consistent across the

six document collections.

Hierarchic agglomerative methods usually have a time complexity of O(N°), something that
makes them an inefficient solution for the clustering of large data sets. A dynamic, post-retrieval
clustering method should have efficiency as a high priority (Zamir & Etzioni, 1998). However,
efficiency issues are not tackled in this thesis for a number of reasons. I provided two such
reasons in section 3.8. A further reason is that for dynamic, post-retrieval clustering small
numbers of documents are clustered (Willett, 1985). For small values of n (e.g. 100, 200)
hierarchic methods have acceptable performance for on-line clustering. Moreover, improvements
in the time efficiency of the hierarchic methods can be achieved by using efficient algorithms for
their implementation, such as the ones by (Van Rijsbergen, 1971; Sibson, 1973; Defays, 1977;
Voorhees, 1985a, 1986). Further improvements can be achieved by using efficient methods for
the calculation of the similarity matrix, such as the ones proposed by Croft (1977) and Willett
(1981). Such improvements are not considered in this thesis, since the present research is focused

solely on issues of effectiveness.
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5.5.4 Measuring retrieval effectiveness

Two separate issues need to be considered with regard to the evaluation of retrieval effectiveness.
First, how cluster-based effectiveness is to be measured, and secondly, how IFS effectiveness is to

be gauged and compared to cluster-based effectiveness.

Regarding the first issue, optimal cluster-based searches are used to gauge the effectiveness of the
various clustering strategies used. In Chapters 3 and 4 (sections 3.5.1, 3.5.2, 4.3.4) I argued on the
appropriateness of optimal cluster searches when a researcher is comparing the effectiveness of
different clustering strategies. This type of comparison is in agreement with the research
objectives of this thesis, which mainly involve measuring cluster-based effectiveness using
different strategies. Comparisons are primarily made across static clustering, post-retrieval
clustering that considers varying numbers of top-ranked documents, and clustering that employs
query-sensitive similarity measures. In addition, comparisons are also made among the
effectiveness obtained by different clustering methods. For the reasons that I have mentioned in
Chapters 3 and 4, I consider optimal cluster search to be better suited to these experimental aims
than other cluster-based searches. Consequently, the MK1 measure (section 4.3.5) is used to

quantify cluster-based effectiveness.

As far as the issue of the comparison of cluster-based and IFS effectiveness is concerned, the
three measures that were presented in section 4.3.5 are used to gauge IFS effectiveness (MK1-k,
MK3, MK4), and to compare it to cluster-based effectiveness (MK1). The benefit of using three
distinct measures is that one can examine the degree at which cluster-based effectiveness exceeds
(f at all) IFS effectiveness. For example, a clustering strategy C; may fail to exceed IFS
effectiveness at the MK4 level, but it may succeed to do so at the MK3 level. By noting how
optimal cluster effectiveness compares to different levels of IFS effectiveness, one may be able to

extract useful conclusions about the potential of the former to exceed the latter.

The comparison of optimal cluster effectiveness to IFS effectiveness may raise some criticism,
since the former does not correspond to actual effectiveness values obtained by an operational
search strategy. Regarding this issue, I feel that given the research objectives of this thesis, the use
of optimal cluster effectiveness is warranted. It is the aim of this thesis to examine the
effectiveness improvements that can be introduced in the clustering process by utilising
information from the query. By using optimal searches, one demonstrates that clustering has the
potential to achieve a certain level of effectiveness. Whether this level will actually be achieved,
is an issue that should concern researchers interested in the development of, for example, more

effective search strategies or more effective cluster representation schemes.

Moreover, a specific search strategy may favour a certain hierarchy type, or may be more

effective when a certain cluster representation scheme is used as Voorhees (1985a) suggested.
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Given that it is not within the objectives of this thesis to study such behaviour, I feel that the
choice of optimal cluster searching is justified. The dependence of cluster-based effectiveness on
cluster-based search strategies and representation schemes are separate research topics in their
own right, and not ones that I aim to address in this thesis. It may also be the case that the
research and the results reported here will instigate further research towards addressing such

issues.

I also view the use of variable effectiveness measures for gauging IFS effectiveness, and
especially measure MK4, as providing further credibility to the experimental results. One can
argue that measure MK4 is as optimal as MK1 is, since there is no guarantee in either case that
the calculated effectiveness value will be reached in an operational environment by a search or a
user. Therefore, if a cluster-based strategy exceeds an IFS strategy at the MK4 level, it can be

argued that the former has the potential to exceed the latter in an operational environment.

A final issue that needs to be examined is that of the statistical comparison of sets of experimental
results. To this end, the Wilcoxon signed-ranks test (Siegel & Castellan, 1988) is used in this
thesis. This test utilises information about the direction of differences between pairs of values, as
well as the relative magnitude of the difference. The Wilcoxon test has been employed in a similar
experimental environment in the past by Croft (1978) and El-Hamdouchi (1987). These
researchers considered it as a powerful statistical tool that makes reasonable assumptions about
the distributions of the values it is comparing. In the experiments reported in this thesis the sets of
values that the test compares are values of the E measure, and the only assumption made by the

Wilcoxon test is that such values come from the same family of distributions.
The procedure for the Wilcoxon signed ranks test is as follows (Siegel & Castellan, 1988):

- For any matched pair of E values let d; be the signed difference between the values. Ignore

pairs where d; = 0.

- Rank these d; values without respect to sign, i.e. give rank 1 to the smallest d;, etc. When a

tie occurs, assign the average of the tied ranks.
- To each rank affix the sign of the difference that the corresponding d; represents.

- Determine T as the smaller of the sums of the like-signed ranks, and N as the total number

of d; having a sign.

T—N(N+1)/4
N(N+1)2N+1) /24

- Calculate z =

- Calculate the probability p of the value z under the null hypothesis H, (i.e. that the

difference in the E values is not significant). If p is equal to, or less than, some level of
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significance (typically .05), then reject the null hypothesis (i.e. the difference in the E

values is significant).

5.6 Summary

In this chapter I outlined two methods by which a query can influence the output of hierarchic
clustering methods. I called the class of clustering approaches that utilise query information
query-based, and I established that the main aim of this thesis is to investigate the effectiveness of
this type of clustering in the context of IR. I examined the two proposed methods under the view
that clustering is a goal-driven process that aims, for each query, to group relevant documents

together and separately from non-relevant ones.

Post-retrieval clustering was presented as one way of generating query-based hierarchies. Related
work in this area was reviewed, and through this process it was established that there are a
number of issues regarding the effectiveness of post-retrieval clustering that have been left
unaddressed. These issues are experimentally investigated in Chapter 6, where I aim to

systematically study the effectiveness of post-retrieval clustering.

The second approach for generating query-based document hierarchies uses query-sensitive
similarity measures. To illustrate the motivation of this approach, the role of the cluster
hypothesis was challenged in section 5.3, and an axiomatic view of the hypothesis was proposed.
This view was based on the argument that co-relevant documents exhibit, on a per-query basis, an
inherent similarity that is influenced by the context under which similarity is judged. By placing
the calculation of interdocument associations in the context of the cluster hypothesis, I criticised
their traditionally static nature. I proposed a different class of similarity measures, query-sensitive

similarity measures (QSSM) which aim to detect the inherent similarity of co-relevant documents.

In this chapter I merely proposed the use of QSSM in document clustering based on their potential
to increase the similarity of co-relevant documents. In Chapter 7 I propose specific formulas that
can define this class of measures, and in Chapter 8 I examine the effectiveness of clustering
methods that employ query-sensitive similarity measures for the calculation of interdocument

relationships.
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Chapter 6

The Effectiveness of Hierarchic Post-

Retrieval Clustering

6.1 Introduction

This chapter aims to investigate the effectiveness of hierarchic post-retrieval document clustering.
In the previous chapter (section 5.4.1) I outlined the research objectives that are pursued in this
chapter, and I also described the experimental environment under which the research is carried out

(section 5.5).

Under post-retrieval clustering varying numbers of documents may be considered as an input to
the clustering system. The effect that the number of top-ranked documents has on the
effectiveness of the clustering process is examined from two perspectives. First, in section 6.2, I
examine the effect of the number of top-ranked documents on the structure of the document space
in terms of the proximity of co-relevant documents. In this way it is possible to appreciate how
effectively similarities between documents are calculated; the closer co-relevant documents are
placed, the more likely cluster-based retrieval is to be effective. Subsequently, in section 6.3.1, I
investigate the effect of the varying number of top-ranked documents on the optimal effectiveness
of the document hierarchies. The comparative effectiveness of static and post-retrieval clustering

is also examined in this same section.

Post-retrieval clustering challenges one of the implicit assumptions that have long determined the
application of document clustering to IR: its static nature. The static nature of document
clustering was criticised in sections 4.5 and 5.2 as being responsible for the relative failure of
clustering to act as an effective alternative to conventional similarity search. In order to examine
whether post-retrieval clustering can act as such an effective alternative, in section 6.3.2 I

compare its effectiveness to that attained by inverted file search.
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A by-product of the experimental procedure, since four clustering methods are employed, is a
comparison of the effectiveness of these methods (section 6.4). This is in addition to the main
focus of this chapter, since the comparative effectiveness of these four hierarchic methods has
been extensively studied in the past (e.g. Griffiths et al., 1984; Voorhees, 1985a; El-Hamdouchi
& Willett, 1989; Burgin, 1995), albeit under different experimental settings (i.e. static clustering).

Finally, in section 6.5 a summary of the aims and findings of this chapter is presented.

6.2 Clustering tendency

The experiments reported in this section aim to examine the degree at which the clustering
tendency of the six document collections is affected by the different values of n used for the
clustering of the top-n ranked documents. The clustering tendency of the resulting collections is
examined in relation to the validity of the cluster hypothesis. By examining whether co-relevant
documents are more similar to each other than to non-relevant ones, it is also possible to see how
the structure of the document space changes in terms of the proximity of co-relevant documents.
Variations in this structure can therefore be examined when considering different numbers of top-
ranked documents, and when considering all the documents in a collection. The closer pairs of co-
relevant documents are within a document collection, the higher the likelihood that clustering will

be effective when using this collection.

In section 4.2 I presented two methods that are typically used to test the validity of the cluster
hypothesis in IR test collections. These were the test proposed by Jardine and Van Rijsbergen for
the separation of the distributions of pairs of relevant-relevant and relevant-non relevant
documents (section 4.2.1), and the nearest neighbour (NN) test proposed by Voorhees (1985a,
1985b). The nearest neighbour test (section 4.2.2), is used here. This test consists of finding the N
nearest neighbours (i.e. most similar documents) for each relevant document for a specific query,
and of counting the number of relevant documents in this neighbourhood. The size of the NN
neighbourhood used in the experiments is 5, the same as Voorhees used in her study. The higher
the number of relevant documents in the NN neighbourhood, the higher the probability that the
cluster hypothesis holds for the collection. For each of the six collections used, and for each value
of n, a single value is calculated that corresponds to the number of relevant documents contained

in the NN set when averaged over all of the relevant documents for all the queries in a collection.

The reason for using the NN test is that it fits better with the specific experimental objective of
this section, which is to examine how the structure of the document space changes with regard to
the proximity of pairs of co-relevant documents (section 4.2.4). The results of the NN test provide

a direct measure of the extent to which pairs of co-relevant documents are close to each other in
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terms of their corresponding content similarity, and also provide an opportunity to study

variations of the results as the number of top-ranked documents changes.

The results for the NN test are displayed in Table 6.1, where the highest value in each column is
displayed in bold. These results suggest that the number of highly similar co-relevant documents
for each collection tends to decrease for increasing values of n. Statistical analysis of the results
showed significant differences for the AP (all combinations of n, except 100-200, 100-350, 500-
750), CACM (all combinations between n=100 and the rest, and n=200 and the rest), Medline
(between n=100 and the rest), CISI (all combinations of »n), and WSIJ (all combinations of n)
collections. No significance was found using the LISA dataset.

It should also be noted that the results when using the Medline collection display comparatively
the smallest degradation as » increases, and also the highest values for the NN test among the six
collections used. This can be attributed to the atypical nature of this database (section 5.5.1): each
document of this collection is relevant to at most one query. Because of the way this dataset is
constructed, subject descriptions of documents associated with one query are not likely to be
related to the representations of documents associated with other queries (Shaw et al., 1997). It
may therefore be easier to detect the similarity of co-relevant documents for this dataset, since

there is already a “relevance” structure imposed on its constituent documents.

n AP CACM  CISI LISA MED wsJ
100 2447 1.621 1.53 0.896 3143 2122
200 2.184  1.511 1.37 0.845 3.022 2.0s1
350 2.111 1415 1253 0.784 3.023 1909
500 2085 1393 1203 0783 3.003 1.863
750 - 2.041 1.376 1.14 0.776  3.004 1.734

1000  2.010 1.35 - 0.768 - 1.711
full - 1.366 1.119 0.859 3.016 -

Table 6.1. Results of the NN test. Highest values in bold

One explanation for the results presented in Table 6.1, is that by increasing the number of top-
ranked documents, larger numbers of non-relevant than relevant documents are introduced. As the
number of top-ranked documents increases, the number of non-relevant documents increases as
well, and so does the probability of a relevant document having a non-relevant one in its N-

document neighbourhood.

Moreover, for increasing values of n, the new relevant documents that are introduced in the sets
are more likely to either have fewer query terms, less of the important terms, or less agreement on
the relevance of the documents (e.g. in the TREC collections). These documents can therefore be
seen as more “fuzzy” in respect to relevance, and may introduce a confounding effect. This

behaviour (i.e. the results of the NN test to decrease as n increases) is also more evident for
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smaller values of n (e.g. 100 or 200), something which is also displayed by the statistical
significance of the results presented. In Table 6.2 the average number of relevant documents for
each number n of top-ranked documents is presented. The figures in this table demonstrate that as

n increases larger numbers of non-relevant than relevant documents are introduced in the datasets.

In Table 6.1, for the four test collections that data for the full number of documents are available
(CACM, CIS], LISA, Medline), only in one (CISI) the results for the full collection are the lowest
among all values of n. For CACM, the results obtained when using all the documents in the
collection are better than the ones for n=1000, for LISA they are better than the ones for n=200,
350, 500, 750 and 1000, and for the Medline collection they are better than n=500, 750. However,
no statistical significance is obtained for these results. On the other hand, the results obtained
when using the full collections are significantly lower than those obtained using n=100 and 200
for the CACM collection, all other values of »n using the CISI collection, and n=100 using the

Medline collection.

n AP CACM CISI LISA MED  WSJ
100 1435 1046 1631 7.2 1897 16.63
200 1944 1162 2471 862 2037 24.02
350 2421 1269 3231 917 2103 3188
500 2767 1321 3706 983 2113 37
750 315 1358 4234 102 213 4354
1000 3425 13.83 - 10.34 - 4175
full - 1531 4977 1083 232 -

Table 6.2. Average number of relevant documents for different numbers of top-ranked documents

An interpretation of the results presented in this section is that post-retrieval clustering does not
effectively manage to re-structure the document space for each query. When one considers only
the top 100 ranked documents, the probability of co-relevant documents being in the same NN
neighbourhood is relatively large, especially for test collections with a large number of relevant
document per query such as AP, CISI and WSJ. As the number n of top-ranked documents
increases, one can view the increasing numbers of non-relevant documents introduced in the sets

as noise, and the relevant documents as the ones we wish to separate from the noise.

The results in Table 6.1 suggest that noise is not effectively filtered out as »n increases, and
consequently for larger numbers of top-ranked documents the average number of highly similar
co-relevant documents significantly decreases. Therefore, it can be argued that for larger numbers
of top-ranked documents, pairs of co-relevant documents are not effectively placed in close
proximity to each other. If the document space was effectively structured, one would expect

similar, or at least not significantly less, numbers of pairs of co-relevant documents in close
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proximity to each other for increasing numbers of n. This is not supported by the data of Table
6.1.

The pattern of the results of the NN test prompted some further investigation. Intuitively, the
results presented in Table 6.1 seem to display patterns of the kind that could be obtained by
chance. This is not to suggest that the actual interdocument similarities are not significantly
different to ones generated randomly — R.J. Shaw and Willett (1993) have provided experimental
evidence to support the non-randomness of interdocument associations. Instead, what I aim to
investigate next is whether the pattern of the results of Table 6.1 is similar to randomly generated

results. To do so, the procedure followed is similar to the one described by Burgin (1995):

— Random interdocument associations are produced by means of a random number generator
(Matsumoto & Nishimura, 1998)

— Thirty matrices per query per test collection are generated for each number n of top-ranked

documents

— The NN test is then performed for each of the randomly generated matrices, generating thirty
results per query; a single value is then calculated per query by averaging these thirty results.

The random number generator used in the experiments generates pseudorandom real numbers that
are uniformly distributed on the [0,1] interval. Although it could be the case that random numbers
generated by means of any automatic procedure may not exhibit a perfectly random behaviour, it
is felt that the use of this procedure to approximate randomly generated similarity values is
sufficient. The use of random number generators in similar experimental conditions has also been
used by other IR researchers in the past (Shaw & Willett, 1993; Burgin, 1995; Shaw et al., 1997).

n AP CACM  CISI LISA MED wsJ
100 0775 0515 0824 0522  1.002 0.79
200 0.56 0291 0626 0202 0639 0.571
350 0431 0.184 0459 0.134 0496 0.443
500 0351 0125 0374 0.105 0452 0.36
750 0274 0097 0286 0.069 0434 0.285

1000 0.228 0.071 - 0.052 0.234

Table 6.3. Results for the NN test generated by random similarity values

The outcome of this process is displayed in Table 6.3. Random values for the full collection size
of the CACM, CISI], LISA and Medline collections are not generated, as the aim is to study the
pattern of results for other values of n. It should also be noted that for all experimental conditions
the results obtained with actual interdocument association values are significantly higher than the
ones obtained by random means. By observing the results in Table 6.3 it becomes apparent that,

as expected, fewer relevant documents are in the neighbourhood of a given relevant document for
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increasing numbers n of top-ranked documents. To gain an understanding of how the patterns of
the results obtained by actual and random interdocument similarities compare, for each collection

the results obtained by each method were plotted against each other.

In Figure 6.1 such a plot is displayed for the WSIJ collection. The horizontal axis represents the
various numbers n of top-ranked documents, and the vertical axis represents values corresponding
to the result of the NN test. The dotted line corresponds to the results obtained by random
similarity values. Comparing the two plots in Figure 6.1, one can see that the behaviour (and not
the absolute values) of the plot corresponding to the results using actual association values is
highly similar to the one using random values. In fact, this is the case for five out of the six

collections used in the experiments, LISA being the only exception.
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Figure 6.1. Random vs. actual values for the NN test using the WSJ collection

This specific observation raises questions regarding the effective structuring of the document
space prior to clustering. The proximity of co-relevant documents seems to be affected by the
irrelevant documents that are introduced in the datasets as the number of top-ranked documents
increases. The numbers of highly similar co-relevant documents seems to decrease in a way that
resembles the behaviour of randomly generated interdocument similarities. In the next section, I
examine how the effectiveness of hierarchic document clustering is affected by variations in the

numbers of top-ranked documents clustered.

6.3 Cluster-based effectiveness

Optimal effectiveness values based on the MK1 measure for cluster-based effectiveness, and
MK1-k, MK3 and MK4 measures for IFS effectiveness, are presented in this section. These
results allow the examination of the behaviour of optimal cluster effectiveness when the number
of top-ranked documents varies, and the examination of how optimal cluster effectiveness
compares to IFS effectiveness. Table 6.4 presents the results (E values) for the group average

method using all six document collections, for #=0.5 and 2. The full results for all four clustering
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methods are presented in Appendix B (Tables B1-B4). Full results for the MK4 measure are
presented in Appendix B, Tables B5-B7.

B=0.5 B=2

AP MK1I MKI1-k MK3 MK4 MK1I MKI-k MK3 MK4
top100 0.511 0.752 0.663 0550 0619 0.749 0.667 0.628
top200 0514  0.778 0.685 0.543 0.604  0.741 0.663  0.613
top350 0507 0.790 0.695 0552 0576  0.739 0.663  0.611
top500 0508  0.792 0.692 0552 0560  0.735 0.652 0.614
top750 0.488 0.785 0.699 0548 0.562 0.745 0.657 0.605
topl000 0482 0.798 0.699 0548 0.550 0.736 0.656  0.604
CACM MK]1 MKI1-k MK3 MK4 MK1 MKI1-k MK3 MK4
top100 0438 0.660 0.503 0.448 0.502  0.642 0.503  0.500
top200 0476  0.646 0498 0448 0512  0.651 0.501  0.497
top350 0.469 0.647 0.503 0444 0.520 0.667 0.501 0.492
top500 0.461 0.660 0.503 0444 0540 0.667 0.501 0.492
top750 0.465 0.658 0.503 0444  0.537 0.667 0.501 0.492
top1000 0.463 0.652 0503 0.444 0.537 0.662 0.501 0.492

full 0.641 0.713 0503 0444 0.782 0.806 0.501 0.492

CISI MK1 MKI-k MK3 MK4 MKI1 MKI-k MK3 MK4
topl00  0.630 0.827 0.727 0.651 0702 0.777 0.738  0.717
top200  0.609  0.820 0.729 0.651 0.658  0.741 0.699 0.674
top350  0.589  0.811 0.726 0.639 0.655  0.753 0.680  0.653
top500 0.593 0.815 0.726 0.639  0.656 0.765 0.676 0.649
top750 0.567 0.818 0.726 0.638 0.649 0.776 0.676 0.648

full 0.790 0.873 0.726 0.638  0.798 0.824 0.676 0.648
LISA MK1 MKI-k MK3 MK4 MK1 MKI1-k MK3 MK4
top100 0.517 0.699 0.577 0438 0.576 0.677 0.584 0.570
top200 0.504 0.695 0.577 0420 0.559 0.672 0.580 0.549
top350 0.493 0.693 0.577 0400 0.553 0.698 0.580 0.529
top500 0.487 0.717 0.577 0400 0.568 0.721 0.580 0.529
top750 0.489 0.700 0.577 0400 0.571 0.705 0.580 0.529
top1000 0.475 0.707 0.577 0400 0.549 0.725 0.580 0.529

full 0643 0736 0.577 0400 0716 0.739 0.580  0.529
MED MKI MKI-k MK3 MK4 MK1 MKI1-k MK3 MK4
topl00 0300 0456 0.354 0327 0308 0399 0333 0331
top200  0.281 0468 0.354 0327 0294 0413 0333  0.331
top350 0.281 0.462 0.354 0.327 0.271 0.404 0.333 0.331
topS00 0.279 0.471 0354 0327 0.273 0.399 0.333 0.331
top750 0276 0462 0354 0327 0272 0400 0333  0.331

full 0.682 0.596 0.354 0327 0711 0.403 0.333 0.331

wsJ MKl MKI-k MK3 MK4 MKI MKIk MK3 MK4
top100 0.608 0.767 0.693 0.645 0.696 0.779 0.719 0.712
top200 0.604 0.762 0.69 0.640 0.661 0.741 0.686 0.679
top350 0603 0.760 0.689 0638  0.65 0.742  0.666  0.659
top500 0585 0.774 0.689 0.636 0.642 0.731 0.659  0.651
top750  0.585  0.775 0.689 0.633  0.64 0729  0.655  0.647
topl000 0586 0776  0.689 0.633  0.641 0.732  0.654  0.646

Table 6.4. Results using the group average method. Highest effectiveness (lowest E value) for each column

appears in bold

The values in Table 6.4 have been calculated based on the total number of relevant documents for

each query, and not on the number of relevant and retrieved documents. Initially, evaluation was

104



Chapter 6 The Effectiveness of Hierarchic Post-Retrieval Clustering

performed using the relevant and retrieved documents to calculate recall, and results showed a

consistent and significant drop in effectiveness for increasing values of ».

However, as it was demonstrated in section 5.5.3 (Table 5.3), average cluster size does not always
increase in proportion to the number of documents clustered. Therefore, if recall is defined by
using the relevant and retrieved documents, the comparison is not fair for collections resulting
from large values of n: the number of relevant and retrieved documents increases, but the average
cluster size does not always increase in proportion for increasing values of n, resulting in a
decrease in recall which in turn translates into lower effectiveness. For example, in Table 6.5, the
effectiveness values obtained when using the relevant and retrieved documents are displayed.
These results have been generated by the four clustering methods using the WSJ collection and
F=0.5. From these results it can be seen that effectiveness decreases as the number of top-ranked
documents increases, and it does so in a significant way: the difference between the effectiveness
at 100 retrieved documents and 350 retrieved documents is approximately 25-30% in favour of

the former.

Grou Complete  Single

Average Ward Liﬁk Lifk
100 0.368 0.388 0.37 0.417
200 0.424 0.437 0.439 0.479
350 0.469 048 0.485 0.527
500 0.472 0.505 0.507 0.555
750 0.495 0.521 0.53 0.57
1000 0.51 0.535 0.548 0.579

Table 6.5. Results obtained using the relevant and retrieved documents to calculate recall, for the WSJ
collection and $=0.5. Highest values in bold

The data in Table 6.5, as well as the rest of the results calculated in the same way, are in
agreement with the results presented in Table 6.1 regarding the clustering tendency of the
collections resulting by considering different numbers of top-ranked documents. The results of
Table 6.1 can be interpreted as indicative of the clustering tendency of the various collections
(Voorhees, 1985a, 1985b; Griffiths et al., 1986; El-Hamdouchi and Willett 1987). These results
suggest that the clustering tendency of the collections decreases as the number of top-ranked
documents considered increases. The data in Table 6.5 verify this tendency in terms of the optimal

effectiveness of the generated hierarchies.

Single link is the only of the four clustering methods whose average cluster size significantly
increases with the increase of the number of top-ranked documents (see Table 5.3). Consequently,
one may argue that by basing the evaluation process on a specific characteristic of the other three
methods, the effectiveness of the single link method may suffer comparatively to these other

methods. The experimental data, however, do not support this view, as this is exhibited in Table
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6.5. As I will further discuss in section 6.4, and as is evident from the data in Tables B1-B4,
single link is the least effective of the four methods; this result is not affected by the way
effectiveness values are calculated. By comparing across the rows of Table 6.5 it is evident that
the single link method is the least effective. This is the case in all other experimental conditions as

well.

Moreover, clustering that uses large numbers of top-ranked documents (and especially static
clustering) can be seen as favoured by taking into account all relevant documents for a query
when evaluating the effectiveness of the various hierarchies. This is especially evident when one
compares the effectiveness of static clustering to that obtained by considering relatively small
numbers of top-ranked documents, e.g. 100 or 200. For example, from the data of Table 6.2 one
can note that for the CISI collection when n=200 there are approximately 25 relevant documents
per query “available” to be clustered, whereas for the full collection there are almost twice as
many relevant documents per query. Effectiveness for n=200 will be calculated taking into
account relevant documents that are not “available” for clustering, whereas for the full collection
all relevant documents are available. Therefore, by considering all relevant documents per query
to calculate recall, the evaluation can be seen as being favourable for static clustering (when

n=full), and more strict on clusterings generated by other values of n.

Based on these observations, all subsequent discussion is based on effectiveness values that are
calculated by taking into account the total number of relevant documents per query. This type of
evaluation can be viewed as an attempt to normalise the results over the various experimental

conditions.

In the remainder of this section, I examine various aspects of the effectiveness of post-retrieval
clustering More specifically, in section 6.3.1 I examine the cluster-based effectiveness obtained
for different numbers of top-ranked documents, in section 6.3.2 I compare the effectiveness of
cluster-based to IFS retrieval and in section 6.3.3 I compare the effectiveness of actual and
random cluster-based retrieval. In sections 6.3.4 and 6.3.5 I also examine some characteristics of

optimal clusters.

6.3.1 Effectiveness for different numbers of top-ranked documents

One of the research objectives of this thesis, is to investigate how clustering effectiveness varies
when different numbers of top-ranked documents are clustered by different clustering methods,
and how this effectiveness compares to that attainable by static clustering. This issue is examined

in this section.

Based on the data in Table 6.4 and in Tables B1-B4 in Appendix B, there seems to be a small

degradation of effectiveness for decreasing values of n. Also, static clustering effectiveness (i.e.
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n=full) seems to be significantly lower than that obtained at any other value of n. Statistical
analysis of these results leads to two conclusions: first that for the majority of experimental
conditions there is no significant degradation of effectiveness for decreasing values of n, and

secondly that static clustering is significantly inferior to any level of post-retrieval clustering.

The effectiveness for different values of n (across rows for the MK1 column of Table 6.4) appears
to increase as n increases, but the gains in effectiveness do not always prove to be statistically
significant. In fact, the majority of the statistically significant differences are noted when MK1 at
n=100 is compared against MK1 at other values of n. Few statistically significant differences exist
for other combinations of values of n (for example, for n=200 and 350 when using the AP
collection). Table 6.6 gives a summary of the cases in which significance is achieved when using
the group average method for B=1 (values represent one-tailed probabilities for the Wilcoxon
signed-ranks test). It should be noted that for the CACM collection the values showed improved

effectiveness for n=100 against n=200, 500, and 750. Also, no statistical significance is observed

when using LISA.
n AP CACM CISI MED wsJ
100 - 200 - 0.05 - - <0.0001
100 - 350 0.03 - 0.03 0.001 <0.0001
100 - 500 - 0.05 - 0.002 0.0002
100 - 750 - 0.04 0.009 0.003 0.0003
100 - 1000 0.03 - N/A N/A 0.001

Table 6.6. Significance levels for comparisons across values of n. Results are for the group average method
and f=1
These results suggest that, with the exception of the smallest value of »n (i.e. 100), there is no
significant increase in effectiveness when considering larger numbers of top-ranked documents.
This is further strengthened by the fact that the effectiveness values are based on the total number
of relevant documents for each query: one would expect hierarchies generated from larger
numbers of documents to display significantly higher effectiveness. Based on these results, if one
were to choose a unique value for n, one would also have to consider practical issues. It may be
advantageous, from an efficiency point of view, to cluster the top-200 or top-350 documents
returned from a search rather than, for example, the top-1000 documents. Moreover, it can be
argued that if the resulting cluster structure is to be presented to a user in an interactive task
environment, then a reduced document space may be advantageous (e.g. allowing the user to
easily and quickly find a few relevant documents which could start a relevance feedback iteration

or satisfy the user’s information need).

As far as the second conclusion of this section is concerned, the effectiveness of static clustering

is significantly lower than any level of post-retrieval clustering, for all clustering methods, all
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collections and all values of 8. In fact, statistical tests gave significance at level < 0.0001 for all
experimental conditions. This is despite that the effectiveness values have been calculated based
on the total number of relevant documents for each query, something that, as I explained in the

previous section, should have favoured static clustering effectiveness.

It should be noted that the poor effectiveness of static clustering is not in agreement with the data
that was presented in Table 6.1 regarding the clustering tendency of the collections resulting from
various numbers of top-ranked documents. Those results had demonstrated that, when using the
CACM, LISA and Medline collections, considering all the documents in the set can lead to higher
clustering tendency than considering other numbers 7 of top-ranked documents. However, these

differences were not statistically significant.

The results in this section have demonstrated that the effectiveness of post-retrieval clustering is
significantly higher to that of static clustering for all experimental conditions studied. It seems
that dynamically re-arranging the document space on a per-query basis customises the document
space to the request, increasing the chance of relevant documents being placed in the same
clusters (Hearst & Pedersen, 1996). Although the results reported in Table 6.1 demonstrated that
there may be some problems with the structuring of the document space under post-retrieval
clustering, the results presented in this section leave little doubt as to whether post-retrieval

clustering is an affective means of performing clustering.

In the next section I examine the comparative effectiveness of both static and post-retrieval

clustering effectiveness to that attained by an inverted file search.

6.3.2 Cluster-based vs. inverted file search effectiveness

Document clustering has been criticised in the past by IR researchers on the grounds of its failure
to provide an effective alternative to conventional similarity search (El-Hamdouchi & Willett,
1989). In this section I examine whether post-retrieval clustering can act as such an effective
alternative. The data in Table 6.4, and in Tables B1-B7 in Appendix B, allow a comparison of
cluster-based and IFS effectiveness by considering effectiveness values across the rows of the

MK1, MK1-k, MK3, and MK4 columns.

By observing the data in Table 6.4, where the group average method is used, for cases other than
static clustering, one can see that the general trend of the results is for MK1 to outperform IFS at
the MK4 level for the majority of the experimental conditions. Exceptions to this are noted when
using the CACM and LISA datasets, where MK1 outperforms IFS at the MK3 level, and when
performing recall-oriented searches on the CISI collection where again MK1 exceeds IFS

effectiveness at the MK3 level (for n=350, 500, 750).
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For static clustering, on the other hand, the picture is quite different. For the four collections that
data for static clustering are available (CACM, CISI, LISA, Medline), cluster-based effectiveness
manages to outperform IFS effectiveness only at the MK1-k level. Exception to this is noted when
using the Medline collection, where static cluster-based effectiveness is lower than all levels of
IFS effectiveness. This latter result is rather surprising taking into account the properties of the
documents of the Medline database that were mentioned earlier (also, see section 5.5.1).
Conventional similarity search seems to be successful at separating relevant from non-relevant
documents (hence the high effectiveness values for MK4), but static clustering performs poorly at

the same task.

£=0.5 B=2

AP MKI IFS MKI IFS
topl00 0511  0.550 (MK4) 0619  0.667 (MK3)
top200  0.514  0.543(MK4)  0.604  0.663 (MK3)
top350 0507  0.552(MK4) 0576  0.611 (MK4)
topS00  0.508  0.552(MK4)  0.560  0.614 (MK4)
top750 0488  0.548 (MK4)  0.562  0.605 (MK4)
topl000 0482  0.548 (MK4)  0.550 0604 (MK4)
CACM  MKI IFS MK IFS
topl00  0.438  0.503(MK3)  0.502  0.642 (MKI-K)
top200 0476  0.646 (MKI-k) 0512  0.651 (MKI-K)
top350 0469 0467 (MKI-k) 0520  0.667 (MKI-K)
topS00 0461  0.66 (MKI-k)  0.540  0.667 (MKI-k)
top750 0465 0.658 (MKI-k) 0537  0.667 (MKI-K)

topl000 0463  0.652 (MKI-k) 0537  0.662 (MKI-K)
full 0641 0713 (MKI-k)  0.782 -

WS/ MKI IFS MKI IFS
topl00  0.608  0.645(MK4)  0.696  0.719 (MK3)
top200  0.604  0.64(MK4)  0.661  0.686 (MK3)
top350  0.603  0.638 (MK4)  0.650  0.742 (MKI-k)
topS00  0.585  0.636 (MK4)  0.642  0.731 (MKI-K)
top750  0.585  0.633(MK4)  0.640  0.729 (MKI-K)

topl000  0.586  0.633 (MK4)  0.641  0.732 (MKI-K)

Table 6.7. Comparative effectiveness of cluster-based and inverted file searches using the group average
method for =0.5 and 2

As far as the effectiveness of the other three hierarchic methods is concerned, from the data in
Tables B2-B4 one can note that Ward’s and complete link methods manage to outperform IFS
effectiveness at the MK4 level for a large number of experimental conditions. In fact, the results
obtained when using Ward’s method follow highly similar patterns to the ones obtained when
using the group average method. The effectiveness of the complete linkage hierarchies on the

other hand, seems to be less successful at competing with IFS effectiveness. The effectiveness of

109



Chapter 6 The Effectiveness of Hierarchic Post-Retrieval Clustering

single link hierarchies does not manage to exceed IFS effectiveness at the MK4 level in any
experimental condition. In fact, in most cases single link effectiveness outperforms IFS

effectiveness only at the MK 1-k level.

In Table 6.7 a view of the data in Table 6.4 focused on the comparative effectiveness of the two
searches is presented (using the group average method for £=0.5 and 2). Data for three test
collections are presented in this table (AP, CACM, and WSJ). The first column displays the
number n of documents clustered for each test collection. The second column shows the optimal
cluster-based effectiveness as calculated by the MK1 measure for §=0.5. In the next column, the
effectiveness value of the IFS measure that the corresponding cluster-based effectiveness
significantly outperforms (as calculated by the Wilcoxon signed-ranks test, for significance level
p<0.05) is displayed, along with the name of the IFS measure in brackets. For example, when
using the CACM collection for #=0.5, the MK1 measure is significantly higher than the MK3
measure for n=100, and higher than the MK1-k measure for n=200, 350, 500, 750, 1000, and for
n=full (i.e. static clustering). Columns four and five display similar information for recall-oriented

searches (i.e. f=2).

It should be noted that there are cases where in Table 6.4 the numeric value of MK1 is higher than
the corresponding value of MK4, but for which the respective cell in Table 6.7 does not display
this result. For example, when using the AP collection for f=2, from Table 6.4 it follows that
MK1 (0.619) is more effective than MK4 (0.628). However, in the corresponding cell of Table
6.7 this result is not displayed, simply because the difference between MK4 and MK1 in this case
is not statistically significant.

The results in Tables 6.4, 6.7 and B1-B7 display some interesting patterns. The first such pattern
is that precision-oriented searches (§=0.5), in general, compare favourably to IFS effectiveness,
and do so more than recall-oriented searches (§=2). An example of this behaviour can be seen in
Table 6.7 for the WSJ collection. Cluster-based effectiveness for precision-oriented searches
outperforms IFS effectiveness at the MK4 level for all values of »n, whereas for recall-oriented
searches it manages to exceed IFS effectiveness either at the MK3 or Mkl-k level. The better
performance of precision-oriented searches is in general agreement with findings of previous
research in document clustering (Croft, 1978; Voorhees, 1985a; Griffiths et al., 1986) that have

suggested that clustering can be used as a precision-enhancing retrieval method.

Another observation is that for certain collections (e.g. CACM, LISA) cluster-based effectiveness
does not compare well to IFS effectiveness. For example, when using the CACM collection and
the group average method, cluster-based effectiveness manages to exceed IFS effectiveness only
at the MK1-k level for the majority of the experimental conditions (Table 6.7). Apart from these
two collections, when using CISI for recall-oriented searches, MK1 is significantly more effective

than IFS only at the MK3 level.
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If one looks at the effectiveness of the initial retrieval for these collections (section 5.5.2, Table
5.2), then one will note that the average precision for LISA and CACM is high compared to that
of the other test collections. Consequently, it may be argued that the reason for the poor
comparative effectiveness of cluster-based searches is the high effectiveness of the initial
similarity search for these collections. Such a suggestion, however, is challenged by the results
obtained when using the Medline collection. From Table 5.2 it follows that the average precision
for the similarity search of the Medline collection is the highest amongst the six test collections
used. It would therefore be reasonable to expect IFS effectiveness to compare well to cluster-

based effectiveness for this collection.

However, the data in Table 6.4 provide evidence for the contrary: cluster-based effectiveness
significantly outperforms IFS effectiveness at the MK4 level for the majority of the experimental
conditions. Despite the atypical nature of this database (section 5.5.1), the case of the Medline
collection demonstrates that although the effectiveness of the initial retrieval is a major issue
when comparing IFS to cluster-based effectiveness, it is not the issue that will determine the
outcome of the comparison. The use of the MK4 measure to gauge IFS effectiveness can further
be seen as counterbalancing the effect of the initial retrieval on optimal IFS effectiveness (section

4.3.5).

The results reported in this section also demonstrate that using MK1-k to gauge IFS effectiveness
is not as fair an approximation as when using other measures that take IFS optimality into
account. If MKI1-k is used to gauge IFS effectiveness, then all four clustering methods
significantly outperform conventional similarity search, for all values of 3, and for all values of n
(including static clustering, although not always significantly). A comparison based on MK1-k
can thus lead researchers to conclusions that may not hold as strongly when comparisons are
made using more favourable, for IFS effectiveness, measures. However, MK1-k should not be
completely dismissed, since it offers a comparison demonstrating that IFS does not do as well as

optimal clusters under the conditions that ‘define’ cluster optimality.

AP MED
n p=1 p=2 p=05 p=1 p=2 p=05
100 128 10 214 1 05 29

200 258 228 334 1 0.5 29
350 379 337 535 1 0.5 29
500 379 337 567 1 0.5 29
750 59 46.8 769 1 0.5 29
1000 59 46.8 769 - - -

full - - - 1 0.5 29

Table 6.8. Average offsets for the MK4 measure, for the AP and MED collections
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Regarding the use of measures MK3 and MK4, from the data of Table 6.4 it follows that for
precision-oriented searches MK4 tends to yield significantly higher effectiveness values than
MK3 does, something which indicates that in most cases the most effective portion of the ranked
list may be located at a starting point other than the top of the list. For recall-oriented searches the
difference between the two measures tends to be much smaller. For the Medline collection, for
which the effectiveness of the initial retrieval is particularly high, one can note in Table 6.4 that
the difference between the two measures is, in most cases, negligible. This behaviour for the
Medline collection is displayed in Table 6.8, where the average offsets (from rank position 1) of
the optimal portions of the ranked list, as calculated by the MK4 measure for each of the # values,

are presented in columns 5-7.

If one compares these results to the ones displayed in columns 2-4 of the same table for the AP
collection, the differences are remarkable. First, the offsets for the AP collection are much larger
than the ones for Medline, suggesting that the optimal segments of the ranked list for the AP
collection are located significantly lower than rank position one. Moreover, the offsets for AP
stabilise only at n=750, whereas for Medline the initial optimal segment at n=100 does not
improve as the number of top-ranked documents increases. By comparing the results for the two
collections one can therefore conclude that initial IFS retrieval for Medline is much higher than
for AP. A consequence of the extremely high IFS retrieval effectiveness for Medline, is that the
difference between the MK3 and MK4 measures is insignificant, since both measures practically

locate the same segment of the ranked list.

It should be noted that for the results reported in this section, different effectiveness values can be
obtained depending on the definition of recall used. Over the two possible definitions of recall
that can be used (section 6.3), the results obtained when using all relevant documents for a query
(i.e. the ones reported in this section) are the strictest on cluster-based effectiveness, and therefore
represent a “pessimistic” form of evaluation. When recall is defined over only relevant and
retrieved documents, results mainly follow the same patterns as the ones presented here. In this
case however, and especially for recall-oriented searches, cluster-based effectiveness compares
more favourably to IFS effectiveness. By presenting results in this section using the more strict
evaluation scenario for cluster-based effectiveness, the aim is to further strengthen the validity of

any conclusions that may be drawn based on these results.

For example, in Table 6.9 the effect of the way that effectiveness values are calculated is
presented. In the second and third columns of this table the values for the MK1 and MK4
measures are displayed (using the WSJ collection, the group average method, and f=2) when
recall is calculated over relevant and retrieved documents, and in the next column the percentile
difference between the two measures is displayed. Columns 5-7 display similar information when

recall is calculated using all relevant documents for a query. By observing the percentile
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differences in columns 4 and 7, one can note that when recall is defined over only relevant and
retrieved documents MK 1 compares more favourably to MK4. Moreover, the difference between
MK1 and MK4 in columns 2 and 3 is statistically significant (except when n=1000), something

which is not the case when recall is calculated over all relevant documents (Table 6.7).

Recall over relevant & retrieved Recall over all relevant
n MK]1 MK4 % difference  MKI MK4 % difference
100 0.36 0.413 14.7 0.696 0.712 23
200 0.425 0.49 154 0.661  0.679 2.6
350 0.465 0.538 15.5 0.65 0.659 1.3
500 0.505 0.564 11.8 0.642 0.651 14
750 0.538 0.584 8.5 0.64 0.647 1.1
1000 0.563 0.597 6.2 0.641 0.646 0.7

Table 6.9. Comparative MK1 and MK4 effectiveness when using the two different definitions of recall

From the results presented in this section, it follows that in the experimental environment used in
this thesis, optimal post-retrieval cluster-based effectiveness significantly outperforms optimal
IFS effectiveness for a large number of combinations of clustering methods (especially when
using the group average method), numbers n of top-ranked documents, and values of S, the
exceptions being recall-oriented searches and the single link method. Precision-oriented searches
tend to show much better results, something which has been suggested in previous research (e.g.
Croft, 1978; Griffiths et al., 1986).

Regarding the issue of selecting a specific number of top-ranked documents to cluster, the results
in Table 6.4, 6.7 and Tables B1-B4 in Appendix B, suggest that considering small numbers of
top-ranked documents (i.e. 100-350) is an effective option if one considers how cluster-based
effectiveness compares to IFS effectiveness at various values of n. If this result is seen in
conjunction with the suggestions made in section 6.3.1 regarding the issue of the choice of a
specific value of »n, then a number of documents in the order of 200-350 should be considered,
since section 6.3.1 suggested significant effectiveness losses when effectiveness at n=100 is

compared to effectiveness at other values of n.

Moreover, the results demonstrate that static clustering effectiveness only manages to exceed IFS
effectiveness for a few experimental conditions, only at the MK1-k level, and mainly for
precision-oriented searches. Viewing this result in addition to the findings of section 6.3.1, which
suggested that static clustering effectiveness is significantly lower than that attained by any level
of post-retrieval clustering, it seems justifiable to conclude that static clustering is not an effective
means of organising a document collection. This also leads to the suggestion that the use of static
clustering in previous research has been a major reason for the failure of clustering to act as an

effective retrieval mechanism.
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However, there are some negative results regarding the effectiveness of post-retrieval clustering.
These results come in the form of the poor comparative effectiveness against conventional
similarity search in three document collections (CACM, CISI and LISA), where cluster-based
effectiveness does not generally manage to exceed IFS effectiveness at the MK4 level. These
results suggest that although post-retrieval clustering is a major improvement over static
clustering, it still fails to consistently act as an effective alternative to conventional inverted file

searches.

Based on these results, it can be concluded that for most of the experimental conditions there
exists an optimal cluster in a document hierarchy that is more effective than an optimal document
set retrieved by an IFS. Highly effective clusters can prove useful in an operational environment
by, for example, triggering a relevance feedback process (Buckley et al., 2000; Iwayama, 2000),
or by providing a selection of browsing points for path-based ostensive browsing (Campbell,
2000).

The optimal cluster in a document hierarchy is determined by the clustering scheme used. The
issue of whether this optimal cluster will be retrieved by a search strategy, or chosen by a user in a
browsing session, depends on a number of parameters that I mentioned in sections 3.6.1 and 3.6.2
(e.g. type of search strategy, cluster visualisation, cluster summarisation method, etc.). These
parameters are external to the document hierarchies, and form separate research issues in their
own right. The same can be said on whether a user using an IFS system will be able to benefit
from its optimal MK4 effectiveness in an operational environment. The way that document
contents are presented to the user as relevance clues, for example, highly determines the actual

effectiveness of the IR process (Tombros & Sanderson, 1998).

I believe that this study, as well as that of other researchers that investigate effectiveness issues,
can motivate research into areas that are related to such external parameters. Two such areas, that
have long been neglected in IR, are cluster-based search strategies and cluster representation
schemes. It has also been acknowledged by Kural et al. (2001) that users have difficulty in
recognising ‘good’ clusters based on conventional representations of cluster contents. Therefore,
as I mentioned in section 4.6, more research is warranted in these areas in order to investigate

more effective cluster representations.

As 1 shall point out in section 6.4, the group average method proved to be the most effective of
the four clustering methods. The pattern of the results is similar for Ward’s and the complete link
methods: optimal cluster-based effectiveness is generally significantly higher than IFS at the MK4
level, except when using the CACM and LISA collections where significance is mostly reported
at the MK1-k level. Single link, on the other hand, rarely outperforms IFS in levels other than
MK1-k. Finally, for these three methods precision-oriented searches, in general, compare more

favourably to IFS effectiveness than recall-oriented searches.
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6.3.3 Random cluster-based effectiveness

It has been suggested in the past that the effectiveness obtained by static hierarchic clustering does
not significantly differ from that obtained by random structures (Shaw et al., 1997). A number of
other studies have also investigated whether cluster-based effectiveness is significantly higher
than random effectiveness (Shaw & Willett, 1993; Burgin, 1995). In order to investigate this issue
when post-retrieval clustering is used, the effectiveness obtained by random means was studied,

and the results obtained are reported in this section.

The procedure used to generate the random hierarchies is similar to the one reported by Burgin

(1995), and stems from the procedure used in section 6.2:

— Random interdocument associations are produced by means of a random number generator
(Matsumoto & Nishimura, 1998). The values produced are the same ones used for the

experiments reported in section 6.2

— When static clustering is used, thirty random similarity matrices per test collection are
produced. When post-retrieval clustering is considered, thirty matrices per query per test

collection are generated
— The randomly generated matrices are clustered by each of the four clustering methods

— Retrieval is then performed on the random hierarchies in the same way as for non-random
clustering (i.e. the optimal cluster is retrieved). The reported random effectiveness values are

obtained by averaging the results over the thirty iterations.

The results that are obtained by this procedure, using each of the four clustering methods, are
presented in Appendix B, Tables B8-B11. For ease of reference, actual cluster-based effectiveness
values (MK1) are presented next to the randomly obtained values in these tables. By comparing
the values of the MK1 and random columns, one can notice that for post-retrieval clustering, in
general, actual optimal effectiveness is much higher than random effectiveness. Statistical testing

confirms the significance of these results in the vast majority of the experimental conditions.

There are two exceptions to this. First, when using the CISI collection for recall-oriented searches
with any of the four clustering methods, the difference in the effectiveness of random and actual
hierarchies is small, and in one case (single link method, f=2, n=100, Table 6.10) it is in favour of
random cluster-based effectiveness. Few of the differences between actual and random
effectiveness are statistically significant when using this collection with f=2, especially for small
values of n (100 or 200). The other exception is noted when using the LISA collection and the
single link method for recall-oriented searches (Table B8). In this case the difference in
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effectiveness between actual and random effectiveness is small and not statistically significant. In

Table 6.10 the results using the CISI collection and the single link method are presented.

Another observation that can be made from the results in Tables B8-B11 is that random cluster-
based effectiveness consistently decreases as the number n of top-ranked documents increases.
This behaviour is in agreement with the data presented in Table 6.3 of section 6.2 about the
results of the NN test when randomly generated similarities are used. The only exceptions to this
behaviour are when using the CISI and LISA collections, and comparing effectiveness between
small values of n (i.e. 100-200 in CISI and 200-350 in LISA). An example of this behaviour can
be seen in Table 6.10. As mentioned previously, it is in these cases that random cluster-based

effectiveness is closer to actual effectiveness.

p=1 p=0.5 p=2
n MK1 Random MK1 Random MKI1 Random
100 0.749 0.762 0.677 0.740 0.733 0.723
200 0.719 0.764 0.657 0.751 0.669 0.692
350 0.723 0.789 0.661 0.769 0.666 0.700
500 0.728 0.809 0.660 0.780 0.677 0.720
750 0.735 0.832 0.659 0.795 0.685 0.753
full 0.876 0.884 0.821 0.843 0.825 0.831

Table 6.10. Random vs. actual effectiveness values for the CISI collection using single link

Based on these results, it follows that post-retrieval clustering is significantly more effective than
random clustering for most clustering methods and document collections. To the best of my
knowledge, there is no previous research that has investigated this issue, and therefore the results
obtained here can not be compared to that of other researchers. However, the fact that in a number
of cases, mostly when using the CISI and LISA collections, random and actual effectiveness
values are close should raise some questions about the effectiveness of all clustering methods in

these conditions.

When comparing random and actual cluster-based effectiveness for static clustering, the former is
always lower than the latter. However, in most of the experimental conditions, the difference
between the two is small. Statistical testing mostly confirms the significance of these results for
precision-oriented searches. Similar to the results for post-retrieval clustering, when using the
CISI collection with any of the four clustering methods, the difference between actual and random
static cluster-based effectiveness is much smaller comparatively to other collections. It should be
reminded that CISI is one of the databases that display poor cluster-based effectiveness when

compared to that of IFS (section 6.3.2).

It should also be noted that the random cluster-based effectiveness that is obtained when using the
single link method (either post-retrieval or static) is, in the majority of the cases, lower than the

random effectiveness obtained by the other three methods (typically in the order of 8-12%). No
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statistical testing was performed to examine the significance of these differences as this was not
within the aims of this chapter. This behaviour of random structures for the single link method is

in agreement with previous findings that have been reported by Burgin (1995).

From the results presented about static clustering it follows that optimal static clustering
effectiveness is higher than optimal random effectiveness, but not always statistically significant.
This result seems to be in general agreement with Shaw et al.’s study (1997) that concluded that
cluster-based effectiveness can mostly be explained on the basis of chance. In that study
operational cluster-based effectiveness was compared against optimal random effectiveness, and
in many cases the latter was higher than the former. In the study reported here, optimal static
cluster-based effectiveness is always higher than random effectiveness, however, not always
significantly higher. In addition, the percentile differences between the two are not material
(Keen, 1992), i.e. they do not exceed 10%, which suggests that the differences may not be
important enough. However, actual effectiveness consistently outperforms random effectiveness,

and the consistency of this behaviour may well be important (Keen, 1992).

6.3.4 Optimal cluster characteristics

This section aims to provide details about characteristics of optimal clusters. In Table 6.11,
columns 3-6, the average number of documents and the average number of relevant documents
that are contained in optimal clusters for the LISA and WSJ collections (MK1 measure) are
presented. The optimal clusters in Table 6.11 have been generated by the group average method
for #=0.5 and =2. Column 2 of the table contains the average number of relevant documents per
query for each value of n for each of the two collections. Columns 7-10 contain the average
number of documents and the average number of relevant documents that comprise the optimal
set (for the same values of § as for the optimal clusters) returned by a conventional similarity
search (MK4 measure). The optimal clusters and IFS sets in Table 6.11 correspond to the E values

presented in Table 6.4.

Data for these two collections (LISA & WSJ) are chosen so as to better demonstrate the
dependence of optimal cluster size on the average number of relevant documents per query. The
WSIJ collection has the largest number of relevant documents per query between the six

collections used, whereas LISA the least.

By definition, an optimal cluster (or an optimal set returned by an IFS) is the one which best
combines precision and recall. For a collection with a small number of relevant documents per
query (such as LISA) one expects the average size of optimal clusters to be small. On the other
hand, for a collection with a large number of relevant documents per query (such as WSJ), the
size of optimal clusters is expected to be large. This is confirmed by the data presented in Table

6.11. For the LISA collection, for all numbers of top-ranked documents, optimal cluster and
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optimal IFS sizes are significantly smaller than for the WSIJ collection. What is also apparent from
Table 6.11, is that optimal cluster and optimal IFS size depends on the value of the parameter S
that are investigated. Precision-oriented searches (£4=0.5) lead to smaller sizes, both for clusters

and IFS sets, than recall-oriented (#=2) searches.

MK1 MK1 MK4 MK4

ﬁ:O. 5 ﬂ: 2 ﬁ:o 5 ﬁ—_—z
Meanrel. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg
per query size rel. size rel  size rel  size  rel

100 7.1 4.7 29 235 53 43 31 282 63
200 8.6 4 26 307 5.8 4.4 32 323 69
350 9.2 43 27 274 52 3.7 3.1 371 74
500 9.8 35 24 377 54 3.7 3.1 371 74
750 10.2 39 27 383 53 3.7 31 371 74
1000 10.3 4.1 28 203 47 3.7 31 371 74
full 10.8 2.2 1.2 177 19 3.7 31 371 74

LISA

WSJ MK! MKI MK4 MK4
p=0.5 p=2 p=0.5 p=2
n Meanrel. Avg. Avg. Avg. Avg. Avg. Avg Avg. Avg

per query size  rel. size rel.  size  rel size  rel.
100 16.6 25.1 123 558 161 248 11.2 655 16

200 24 325 151 983 225 312 134 119 226
350 31.9 482 191 1293 281 355 143 1785 289
500 37 372 156 165.1 321 363 144 2155 325
750 43.5 25 135 2245 363 404 148 2506 354
1000 477 226 125 2454 379 385 147 2663 36.6

Table 6.11. Average size and average number of relevant documents for optimal clusters using the group
average method (MK1), and for optimal IFS sets (MK4)

Regarding the comparative characteristics of optimal clusters retrieved by the four clustering
methods, in general, the size of the clusters retrieved by the group average, Ward and complete
link methods is comparable. Single link, on the other hand, tends to retrieve much larger clusters
in the majority of the experimental conditions. This is illustrated in Figure 6.2, where the sizes of
optimal clusters are plotted for the LISA collection and #=2. The horizontal axis represents the
number n of top-ranked documents, and the vertical axis the average size, in documents, of
optimal clusters. This figure displays the highly similar average size of optimal clusters produced
by the other three methods, and the consistent increase of the average size of optimal single link

clusters.

Burgin (1995) listed a number of factors imposed by experimental test collections that may affect
the level of performance of cluster-based systems. Such factors include the number of relevant
documents per query, the mean number of index terms assigned per document, etc. The results

presented in this section support this view, since optimal characteristics vary depending on the
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characteristics of test collections. This in turn indicates that experimental results should be

examined in the context of the specific environment that generated them.

180 -
150 +
120 4

60
30

100 200 350 500 750 1000  full
Figure 6.2. Average size of optimal clusters for the LISA collection and =2

6.3.5 Bottom-level optimal clusters

In the results presented in the previous sections no restrictions have been imposed on the
characteristics of optimal clusters. Croft (1978, 1980), Griffiths et al. (1986), and El Hamdouchi
and Willett (1989), among others, suggested that if a bottom-up search considers only the bottom-
level clusters of a document hierarchy, then its effectiveness exceeds all other types of cluster

searches (see section 4.4.3).

Table 6.12 presents some statistics about the size of the bottom-level clusters of the full LISA
hierarchy (6003 clusters in total) that were generated by the four clustering methods. The second
and third columns of this table display the total number of bottom level clusters available in the
hierarchy, and their average size respectively. Columns 4-9 display the percentage of the bottom-
level clusters whose size falls within a specified limit, e.g. 73.85% of the group average bottom-
level clusters have a size between 2 and 3 documents. It should be noted that for the group
average, Ward, and complete link methods, the average size of bottom-level clusters remains
fairly constant for all values of n used. These three methods tend to produce a large number of
small bottom-level clusters (Murtagh, 1984b, Voorhees, 1985a). Results for the other 5

collections are similar and not presented for brevity.

L;S; b level g sice 2.3 4-10 11-20 21-30 31-40 >40
Group average 3989 3.6 73.85 2259 2.6l 0.83 0.08 0.05
Ward 3561 24 9231 769 0 0 0 0
Completelink 3722 26 8726 1244 030 0 0 0

Single link 4915 20762 3097 1068 222 118 039 5457

Table 6.12. Bottom-level cluster size statistics for LISA hierarchies
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Based on the suggestions by Croft (1978, 1980), Griffiths et al. (1986), and El Hamdouchi and
Willett (1989), I considered limiting the definition of an optimal-cluster to a bottom-level cluster.
However, a study into the characteristics of optimal clusters suggested that such a constraint

would not be beneficial for effectiveness.

Table 6.13 presents the percentage of optimal clusters that are bottom-level for the WSJ and LISA
collections. Results for two values of 3 (0.5, 2) are presented. When using the WSJ collection, the
percentage of optimal bottom-level clusters is low for the group average, Ward, and complete link
methods. This can be explained by the large number of relevant documents per query: the optimal
cluster is the one that best combines precision and recall (given the different values of f). For
these three methods, bottom-level clusters have a consistently small size (Table 6.12), so for a
collection with a large number of relevant documents per query, such as WSJ, they would not be
ideal candidates for optimality. In the case where they are chosen as optimal clusters, it happens
for queries that have a small number of relevant documents. For LISA, on the other hand,

percentages are significantly higher due to the small number of relevant documents per query.

LISA Group Average Ward Complete Link Single Link
n 2 05 (2 p05 (=2 p05 p=2 p=05
100 323 67.7 333 80 29 71 552 897
200 25.8 77.4 29 80.6 387 903 71 93.5
350 333 767 35.5 71 419 677 839 968
500 36.7 76.7 29 677 484 839 774 100
750 67.7 67.7 29 742 387 742 774 935
1000 419 774 355 774 484 71 80.6 96.8
full 100 100 100 100 100 100 100 100
wsJ Group Average Ward Complete Link Single Link
n 2 05 p=2 B=05 p=2 (05 p=2 p05
100 20.8 354 6.3 313 8.3 208 625 729
200 6.3 25 0 229 2.1 208 646 625
350 12.5 25 2.1 25 4.2 25 604 583
500 104 25 2.1 20.8 8.3 25 66.7 542
750 14.6 354 4.2 229 104 313 583 56.3
1000 12.5 39.6 6.3 20.8 6.3 292 542 542

Table 6.13. Percentage of optimal bottom-level clusters

The most notable result from Table 6.13 is that for the full (static) LISA hierarchy all optimal
clusters are bottom-level (the same happens for the other 3 collections for which the full number
of documents is clustered). From these results it follows that optimal clusters for static clustering
are always bottom level, and for non-recall oriented searches (i.e. /#2) have an average size that
significantly deviates from that obtained by other values of n. The size of optimal static clusters is

generally either much larger or much smaller than that at various post-retrieval levels. Therefore,

120



Chapter 6 The Effectiveness of Hierarchic Post-Retrieval Clustering

optimality for static clustering is reached only in extreme cases where too many or too few
documents are contained in clusters. This happens because the quality of the clustering is not
good enough to allow a different behaviour. For example, average sizes of optimal clusters for the
CACM collection (f=1) range from 8 to 27 documents for all four methods and values of =,
whereas static optimal clusters have an average size of 3.6, 7.2, 3.7 and 3.3 documents for group

average, complete link, single link and Ward methods respectively.

It therefore seems that previous research that suggested the benefits of bottom-level clusters for
retrieval is restricted to the case of static clustering. Post-retrieval clustering, on the other hand,

tends to reach optimality in much more practical settings.

6.4 Comparative effectiveness of the four clustering

methods

In addition to the main objective of this chapter, which is to study the effectiveness of post-
retrieval clustering under different experimental conditions, the opportunity to study the
comparative effectiveness of the four clustering methods used also presents itself. As I discussed
in Chapter 4 (section 4.4.1), the effectiveness of these four methods has been extensively
investigated in the past, albeit under static clustering. The results presented in the previous
sections offer a pool of data through which one can examine whether the conclusions of past
research regarding the effectiveness of these methods (Griffiths ef al., 1984, 1986; Voorhees,
1985a; El-Hamdouchi & Willett, 1989) are valid under post-retrieval clustering. The opportunity

to study the optimal behaviour of these four methods under static clustering also lends itself.

In the next paragraphs, I first examine the comparative effectiveness of the four methods under

post-retrieval clustering (section 6.4.1) and then under static clustering (section 6.4.2).

6.4.1 Effectiveness under post-retrieval clustering

Out of the four hierarchic methods used, the group average method proved to be the most
effective in the majority of the experimental conditions. Ward’s method ranked second in most of
the cases, followed closely by the complete link method. The single link method, in the majority

of the conditions, is the least effective of the four.

More specifically, the group average method outperforms the other three methods in the vast
majority of the experimental conditions investigated. Group average is almost always
significantly more effective than the single link method, in many conditions significantly more
effective than complete link, and in comparatively fewer cases significantly more effective than

Ward’s method. No method is significantly more effective than group average.
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Ward’s method is more effective than the complete link method in a large number of experimental
conditions. The differences between Ward and complete link methods are rarely statistically
significant. In fact, out of the 102 total experimental conditions (for each collection: 3 values of f
x number of values of ), only in 19 cases Ward’s method is significantly more effective than the

complete link method.
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Figure 6.3. Comparative effectiveness of the four methods using the Medline collection for p=0.5

In agreement with findings of previous research (Griffiths et al., 1984,1986; Voorhees, 1985a; El-
Hamdouchi & Willett, 1989; Burgin, 1995), the single link method is the least effective of the
four methods used in the experiments. As mentioned previously, group average is almost always
significantly more effective than single link, and so is Ward’s method (for 62 out of possible 102
conditions), whereas complete link is significantly more effective than single link in 32 out of 102
conditions. It should be noted that when using the CACM and Medline collections, complete link
is never significantly more effective than the single link method. In fact, when using Medline
single link outperforms complete link and Ward’s methods in a number of experimental
conditions, but never significantly. Figure 6.3 displays the comparative effectiveness of the four

methods when using Medline, for #=0.5 (the horizontal axis corresponds to the number » of top-

ranked documents).
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Figure 6.4. Comparative effectiveness of the four methods using the WSJ collection for p=1

122



Chapter 6 The Effectiveness of Hierarchic Post-Retrieval Clustering

Although not much can be inferred from the behaviour of the four clustering methods in one small
and topically homogeneous collection such as Medline, this collection offers an interesting
environment from a clustering perspective because of the property of its documents to be relevant
to at most one query (section 5.5.1). This property can be seen as denoting an a-priori structure
that clustering methods are asked to recover. The experimental results suggest that the group
average and single link methods are the ones that most successfully recover this structure. Given
that for the single link method Medline is the only collection for which it outperforms the other
two methods (complete link and Ward), it may be suggested that single link is successful at
recovering clustering structure where this is evident. However, this suggestion should be seen
tentatively, especially given the poor effectiveness of the method in the other experimental

conditions.

This generally poor effectiveness of the single link method is attributed to its tendency to generate
large clusters which are characterised by the chaining effect mentioned in section 3.4.1 (Griffiths
et al., 1984; Voorhees, 1985a). The complete link and Ward’s methods tend to generate
hierarchies which display comparable characteristics: their average size is small and relatively
unaffected by the increase in the numbers of documents clustered, and their bottom-level clusters
are small, typically containing a pair of documents (Murtagh, 1984b; Voorhees, 1985a). These
similar characteristics can explain their comparable behaviour in terms of optimal cluster-based

effectiveness.

The group average method, generates clusters whose characteristics are similar to those of the two
other methods (Ward and complete link). However, the average size of clusters of this method
tends to be slightly larger than complete link and Ward clusters, and also tends to slightly increase
as the number of documents clustered increases (Table 5.3, section 5.5.3). Burgin (1995)
suggested that clustering methods for which the mean cluster size is closest to the mean number
of relevant documents per query are likely to display good retrieval performance. This can explain
the higher effectiveness of the group-average method, especially for increasing values of n: its
mean cluster size increases slightly for increasing n, and in this way it better adapts to the

increasing average number of relevant documents per query for increasing values of n.

Recently, Leuski (2001) examined the comparative effectiveness of hierarchic methods under
post-retrieval clustering. Leuski did not study the effectiveness at different numbers of top-ranked
documents, instead he only used the top 50 retrieved documents to compare the effectiveness of
the methods. Leuski’s results are in agreement with the findings of this section, in that the group
average method was the most effective, followed by Ward’s and the complete link methods. The
single link method was the least effective. Leuski also suggested that the differences between the
group average and Ward’s methods are generally insignificant, something which is not the case in

this experimental environment.
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6.4.2 Effectiveness under static clustering

Previous research has suggested that, under static clustering, the complete link and group average
are the most effective methods (Voorhees, 1985a; Willett, 1988; El-Hamdouchi & Willett, 1989).
The results reported in this chapter however do not fully support these findings, at least as far as
the optimal effectiveness of these methods is concerned. Complete link, group average and

Ward’s methods, under different conditions, all outperform each other.

There are 12 total static clustering conditions in the experimental environment, defined by the 4
collections for which static clustering is performed (CACM, CISI, LISA, Medline) and by the 3
values of f used. Out of these 12 conditions, complete link is the most effective method in 7 of
them, and Ward’s and group average methods in 3 and 2 conditions respectively. Moreover,
results seem to vary within the same test collection for different values of S. For example, when
using the Medline collection, group average is the most effective method for recall-oriented
searches (f=2), whereas Ward’s method is the most effective for precision-oriented searches
(8=0.5). However, the statistical significance of these results is rarely confirmed. For example, the
complete link method is significantly more effective than the other two methods only when using
the LISA collection for £=0.5, and when using the CACM collection for f=2.

On the other hand, the differences between these three methods and single link are, in most cases,
statistically significant. This result suggests that the single link method is the least effective of the
four in terms of optimal static clustering effectiveness, and is in agreement with previous research
(Voorhees, 1985a; Griffiths er al., 1984,1986; El-Hamdouchi & Willett, 1989).

Although the results seem inconclusive, it is possible to obtain a ranking of the four methods
under static clustering based on the results presented here. This can be achieved by assigning a
number (1-4) to each method, for each of the 12 experimental conditions, corresponding to the
relative rank of the method (1 being the most effective, etc.). By averaging the ranks over the 12
experimental conditions, it follows that complete link is the most effective method (average rank
1.58), followed by Ward’s method (2), and group average (2.42). Single link has a rank of 4 for
all experimental conditions. It should again be emphasised that statistical significance rarely
confirms the differences between the three most effective methods, and hence any conclusions

drawn regarding their comparative effectiveness can only be tentative.

Another interesting finding under static clustering is that for precision-oriented searches (i.e.
p=0.5), the differences between the three most effective methods seem to become smaller, and
with the exception of the LISA collection, statistically insignificant. An explanation for this result
can be given in terms of the characteristics of optimal clusters under static clustering. As it was
mentioned in section 6.3.5 and displayed in Table 6.13, optimal clusters for static clustering are

bottom level clusters that typically contain few documents (2 or 3). This is especially so when
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precision is more important than recall. In such cases it is more likely for effectiveness across

methods to display less variation.

6.5 Summary

The research reported in this chapter investigated the effectiveness of hierarchic post-retrieval
document clustering. Four hierarchic clustering methods and six document collections were used

in the experiments. Four main research objectives were pursued in this chapter.

The first objective was to investigate the structure of document spaces that result by considering
varying numbers of top-ranked documents. The structure of document spaces was examined under
the specific focus of the proximity of documents which are relevant to the same query (co-
relevant documents) (section 6.2). Second, the comparative effectiveness of document hierarchies
generated by varying numbers of top-ranked documents was examined in section 6.3.1. The third
objective was to compare the effectiveness of post-retrieval clustering to that of static clustering;
this issue was also examined in section 6.3.1. The fourth issue was that of the comparative
effectiveness of document clustering (both post-retrieval and static) and conventional similarity

search (section 6.3.2).

In addition to these objectives, a number of other issues were also investigated in this chapter.
Such issues include the comparative effectiveness of actual and randomly generated hierarchies
(section 6.3.3), the study of characteristics of the optimal clusters of document hierarchies
(sections 6.3.4 and 6.3.5), and the examination of the comparative effectiveness of the four

clustering methods used (section 6.4).
The main finding of this chapter can be summarised as follows:

- The number of highly similar co-relevant documents seem to significantly decrease as the
number of documents considered increased. This behaviour was consistent across the six
document collections, and resembled the behaviour of documents whose similarities have

been randomly generated.

- Optimal cluster-based effectiveness did not generally significantly decrease as the number of
documents clustered increased. An exception to this was noted when comparing the

effectiveness at n=100 to that obtained at other values of n.

- Optimal post-retrieval cluster-based effectiveness was always significantly more effective

than optimal static cluster-based effectiveness.

- Post-retrieval effectiveness exceeds IFS effectiveness at the MK4 level for a large number of

experimental conditions. This is mainly noted when using the group average method, and
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when performing precision-oriented searches. However, for certain document collections
(CISI, CACM, LISA) cluster-based effectiveness only manages to exceed IFS effectiveness at
the MK 1-k level. Static cluster-based effectiveness only manages to exceed IFS effectiveness

at the MK1-k level.

- Post-retrieval effectiveness is generally significantly higher than the effectiveness obtained by
random means. An exception to this is when using the LISA and CISI collections with small
numbers of top-ranked documents. Static effectiveness is consistently higher than random

effectiveness, however not significantly higher.

- The group average method was the most effective of the four methods used for post-retrieval
clustering. Ward’s method ranked second. Single link was the least effective of the four, apart
from when using the Medline collection. For static clustering, results were not as clear, but
there are indications to suggest that, in agreement with previous research, the complete link
method is the most effective, followed by Ward’s method. Single link was again the least

effective.

The main implication of the results obtained in this chapter, is that they provide evidence that
static clustering is not an effective means of organising a document collection. Its effectiveness is
significantly lower than that of any level of post-retrieval clustering, and also does not compare
well to IFS effectiveness. Moreover, the results provide evidence that the application of post-
retrieval clustering to IR bears significant effectiveness improvements compared both to static
clustering and to best-match searches. These results also provide evidence to support the view that
the static application of document clustering has been a major reason for its failure to act as an

effective mechanism for IR.

However, there were also a number of shortcomings noted, mainly regarding the almost random
patterns noted at the structure of document spaces resulting from increasing numbers of top-
ranked documents (section 6.2), and the consistently poor comparative effectiveness of cluster-
based to IFS retrieval when using the CACM and LISA collections, and to a lesser extent the CISI
collection. Also, the close-to-random behaviour in a number of experimental conditions when
using the CISI and LISA collections provides further evidence to suggest that, although post-
retrieval clustering is a significant improvement over static clustering, it is not acting as an ideal

solution for organising document collections.

In the next two chapters, I demonstrate how the effectiveness of post-retrieval clustering can be
enhanced by challenging an assumption which has traditionally characterised the way document
clustering has been applied: the static nature of interdocument similarity calculations. This
experimental work expands on the issues that I discussed in Chapter 5 (section 5.3) regarding the

use of query-sensitive similarity measures.
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Chapter 7

Query-Sensitive Similarity Measures

7.1 Introduction

The results presented in the previous chapter demonstrated some shortcomings regarding the
effective structuring of the document space prior to clustering. In section 6.2 specifically, by
isolating the effect of interdocument associations, I showed that the number of highly similar co-
relevant documents tends to decrease as the number of retrieved documents increases, and it does
so in a pattern that is highly similar to that displayed by random similarity values. This result
should be seen in relation to the argument that was made in section 5.3 regarding the static nature
of interdocument relationships. In that section I had argued that this static nature is a limitation of
the way that document clustering is applied to IR, since it does not take into account the context

(i.e. the query) under which the similarity of any two documents is judged.

This chapter aims to build upon the argument made in section 5.3 for the application of query-
sensitive similarity measures to the calculation of interdocument relationships. It aims to do so by
specifying means of implementing query-sensitive measures, and by investigating their
effectiveness at structuring the document space prior to clustering. The study of query-sensitive
measures in this chapter will be performed under the view that document clustering in IR is a
goal-driven process that aims to group relevant documents together on a per-query basis.
Consequently, if the document space is structured effectively (with regards to the proximity of co-
relevant documents), then the effectiveness of the clustering process may also increase. It should
also be mentioned that although there are other perspectives through which query-sensitive
measures could be investigated (e.g. their applicability to visualising the interdocument
relationships in a dataset), it is only in relation to document clustering that they will be examined

in this thesis.
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This chapter is structured as follows. First, in section 7.2 I propose specific formulas that can
incorporate the influence of the query in the calculation of similarity measures, mention some of
their limitations, and review some related work. Subsequently, in section 7.3 I describe some
modifications to the basic experimental environment that was outlined in section 5.5. The results
of the evaluation of the effectiveness of the query-sensitive measures are reported in section 7.4,

and in section 7.5 I conclude this chapter by summarising its main findings.

7.2 Query-sensitive similarity measures

In section 3.3 I discussed a number of issues pertaining to the use of association measures in
document clustering, and in Appendix A I present a number of such measures that are commonly
used in IR. Regarding the use of a single measure for document clustering, through the discussion
in section 3.3.2, it transpired that the only evidence offered by previous research so far is that
measures should be normalised by the length of the documents which they compare. No other
significant evidence exists to suggest that the use of one measure instead of another may

significantly influence the effectiveness of the clustering process.

Zd‘k .d]'k

Sim(D;, D) = =S (7.0
]/Zdi 2
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In this section I present means by which query-sensitive similarity measures can be defined.
Taking the previous suggestions into account, any discussion about query-sensitive similarity
measures (QSSM) hereafter will be based on the cosine coefficient, which is presented again in
Equation 7.1 for ease of reference. However, any formulas and arguments can easily be applied to
other measures that are typically used for document clustering, such as the Dice coefficient, or
Euclidean distances. The choice of the cosine coefficient in this chapter is based on this measure’s
widespread application to document clustering. As Ellis et al. (1993) noted, there does not seem to
be any reason for the IR community to revise the historical attachment to association coefficients

provided by (among others) the cosine formula.

In this section I first define formulas for the calculation of query-sensitive measures in section
7.2.1, present an example to illustrate their use in section 7.2.2, mention some limitations in

section 7.2.3, and discuss related work in section 7.2.4.

7.2.1 Defining query-sensitive similarity measures

Before proceeding with the definition of QSSM, it is worth reiterating that documents and queries

in this thesis are represnted as vectors in a n-dimensional space (section 2.2), where n is the size
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of the indexing vocabulary. In this space it is assumed that a document D, can be represented as:

Dj ={diXdi2,...,din}, where dy is the weight assigned to thej-th term of p,.

The rationale behind query-sensitive measures is that similarity is a dynamic, purpose (and
context)-sensitive concept. In the specific case of interdocument similarity calculations in IR,
purpose is defined by the query under which the associations of documents are examined.
According to this view, documents that are jointly relevant to a query display an inherent
similarity that is dictated by the query itself. Query-sensitive similarity measures aim to detect
this inherent similarity. This can be achieved by viewing the query terms as salient features that

define the context under which similarity is examined.

Query-sensitive measures can be defined as a function of two components. The first one
corresponds to the conventional similarity between two documents D, and Dj, and is given by
Equation 7.1. The second component corresponds to the common similarity of all three objects:
the pair of documents D,, Dj and the query O, and I will represent this component by Sim(Dj, Dj
,0). This is the variable component of the similarity measure. The query-sensitive similarity

Sim(D,, Dj | Q) can therefore be defined as:

SirrKD,,Dj \Q) =f( Sim(D,,Dj),Sirr"Dj,D},0)) (7.2)

The similarity given by the variable component Sim(Di, Dj ,Q) can be defined by finding all
common terms between documents D, and Dj, and seeing which of these common terms are also
terms that appear in the query Q. The similarity between pairs of documents that have a large
number of common terms that are query terms should then be accordingly augmented. This idea
can be defined in terms of the cosine coefficient in Equation 7.3. In this equation Q={qi, g2, °°°,
gn} is the query vector, D, and Dj are the two document vectors, and C = Z),n Dj= [¢j, ¢2 ..., Q,

.., cn}is a vector which contains the common terms of documents D, and Dj.

Du D2, Q

Figure 7.1. The variable similarity Sim(Dj, D2,0)

In order to visualise the concept of the common similarity between the documents and the query,
an example is presented in Figure 7.1. Documents D] and D2, and query Q, are represented as sets
of their constituent terms, and therefore overlaps between the sets denote common terms. The set
of terms that is common to the two documents and to query Q corresponds to the area that is

common to all three sets, and is the one that defines the similarity Sim{Dh D2 ,0). When a
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different query Q’ is posed to the IR system, the area of overlap between the two documents and
the query will accordingly change, and so will the similarity between documents D; and D,. It
should be noted that if the two documents do not share any terms at all (i.e. Equation 7.1 gives a

similarity value of zero), then the variable similarity Sim(D; D;,Q) will also equal zero.

The terms of the common vector C can be represented by ¢, = (dj, + dj,) / 2, where dj,, and dj, are
the weights of each of the common terms in D; and D, respectively. Vector C then contains the set
of common terms of the two documents, and each term of C is weighted by the average of the
weights of the common terms. Other representations of ¢, were also investigated (min(d, dj),
max(dio, djp), (dis - dj)), but no significant differences were found. I report this specific form which

proved to be consistently the most effective.

n
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dei-d g

k=1 k=1

Having established ways to define the two components of Equation 7.2, what remains is to define

the function that combines these two sources of evidence. One way to do so is by using a linear
combination of the two sources: Sim(D; D; | Q) = hSim(D;D;) + $28im(D;D;Q), where

31+92=1. By substituting Equations 7.1 and 7.3 in the above, we derive Equation 7.4 which gives

the query-sensitive similarity between D; and D;. I will call this measure M3. It should be noted
that a linear combination of sources of evidence is commonly used in IR applications. For
example, Weiss et al. (1996) use a linear combination of hyperlink and content evidence to define
the similarity between hypertext documents, and Wen et al. (2001) follow a similar approach in

order to define the similarity between queries posed to a search engine.
Zdik'djk ch"h
k=1
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Intuitively, if one bases the calculation of interdocument similarities on measure M3, then for a

Sim(D,,D;|Q)="4, (7.4)

specific query, pairs of documents that have more terms in common with the query than other
pairs will be assigned higher similarity values (assuming that they have the same number of non-
query terms in common). This reflects the belief that under the context defined by the query,
query terms possess greater salience when determining interdocument relationships. The relative

importance of each of the two components of Equation 7.4 can be determined by assigning

appropriate values to the two parameters 31 and 9».
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More specifically, the first parameter (%)) determines the importance assigned to the

conventional, static similarity of the documents under comparison, while the other parameter

determines the importance assigned to the varying component of Equation 7.4. If 92 is set equal

to zero, then the similarity given by Equation 7.4 is simply the cosine coefficient between the two

documents D; and D; adjusted by the parameter $. The same effect can be achieved when none of

the common terms between the two documents is a query term,; in this case Equation 7.3 will give

a similarity value of zero.

On the other hand, if parameter 9, is set equal to zero, then the query-sensitive similarity between

the two documents becomes equivalent to the one given by Equation 7.3. In this case, the effect of
the static similarity is totally ignored, and the resulting formula can be seen as the most extreme
form of query-biasing. I will call this measure M2. Measure M2 only takes into account common
terms between the two documents that are also query terms. Unlike the measure defined by
Equation 7.4, M2 will equal zero if none of the common terms between the documents is a query
term. Also unlike Equation 7.4, the overall similarity between D; and D; does not take into
account the co-occurrence of other terms (apart from query terms) in the two documents. The
effectiveness attained with M2 can be seen as a lower limit of the effectiveness of query-sensitive

measures.

A note that should be made regarding the value of these two parameters is that their absolute
value is of no practical significance. Instead, it is the ratio of one parameter over the other that is
of importance. The reason for this, is that it is not the absolute value of interdocument similarities

that affects the clustering process, but rather the relative ranking of these similarities (Van
Rijsbergen, 1979). For example, setting 31=0.5 and 3>=0.5 is equivalent to setting 3;=2 and
9,=2, since the actual similarity values in the latter case will be four times larger than in the
former case, but the relative ranking of the similarity values will remain the same. The constraint

set earlier ($h+932=1) reflects this.

To summarise, so far two measures have been proposed for the calculation of query-sensitive
similarities. These are the measures given by Equation 7.4 (measure M3), and by Equation 7.3

(measure M2). Moreover, varying forms of M3 can be obtained by varying the relative ratio of
parameters $ and 3.

One more measure will be defined in this section, its definition being highly similar to the one of
M3. This third measure differs in the way that it combines the two sources of evidence given by

Equations 7.1 and 7.3. Instead of a linear combination of the two components (Equation 7.4), the

new measure is defined as the product of the two sources of information. This is presented in
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Equation 7.5; I will call this measure M. The rationale behind measure M1 is exactly the same as
for M3, i.e. for a specific query, pairs of documents that have more terms in common with the

query than other pairs will be assigned higher similarity values.

Zdik'djk ;Ck'Qk

Sim(D,,D, | Q) = —=2.
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(7.5)

However, there is one significant difference between the two measures. When using M1, if none
of the common terms between the two documents is a query term (i.e. Sim(D; D; Q) = 0), then
the overall similarity Sim(D; D; | Q) will equal zero. This is in contrast to when using M3, where

Sim(D;, D; | Q) will be equal to the conventional similarity of the two documents (adjusted by the

parameter $1). The aim of query-sensitive measures is to increase, on a per-query basis, the

similarity of documents that are likely to be co-relevant. Measure M1 attempts to do so in a rather
“greedy” way, by setting the similarity of pairs of documents that do not possess any query terms
in common to zero. This choice for M1 reflects the assumption that the presence of query terms is

required for a document to be relevant.

This is verified by the behaviour of the test collections used in this experimental environment.
Table 7.1 presents in the first row the percentage of relevant documents which contain at least one
query term for each of the six collections®, and in the second row the average number of query
terms contained in a relevant document. The figures in the first row of this table all exceed 91%,
an exceptionally high value that verifies the highly topical and algorithmic nature of relevance
that is employed in standard IR evaluation (Ingwersen, 1994). The implication of this for the
query-sensitive measures presented here, and especially for M1, is that the likelihood for pairs of

co-relevant documents to contain at least one query term in common is high.

AP CACM CISI LISA MED wsJ

% 96.32 9322 92.31 100 91.81 97.06
Avg. q.terms perdoc. 3.2 3 24 4.5 2.8 35

Table 7.1. Query term statistics for the six test collections

Therefore, by disregarding pairs of documents that contain no query terms in common (and hence
have a low likelihood of being jointly relevant to a query), M1 can be seen as adapting to the

topical nature of relevance in typical IR test collections. However, it may cause the similarity

2! For the AP and WSJ collections the figures have been calculated using 7.6 terms on average per query. The procedure
for deriving these terms was explained in section 5.5.1. Also, calculations are based on the stemmed forms of terms that
the SMART IR system uses to match documents and queries and to calculate interdocument similarities.
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between documents that share a large number of (non-query) terms to equal zero. In the specific
case where one of these documents is relevant and contains a number of query terms, it is likely to
“miss” a relevant document which contains no query terms, but is highly associated to that
relevant document. It should be reminded that this exact potential of document clustering (to
discover relevant documents by association with other relevant ones) has been put forward in the
past for the application of document clustering to IR (Jardine & Van Rijsbergen, 1971; Croft,

1978).

It should also be mentioned that if the pair of documents under comparison contains non-
overlapping sets of query terms, this will not be taken into account as an indication of co-
relevance by any of the similarity measures presented here. Although the presence of query terms
in both documents can be seen as a source of evidence of their co-relevance, this is not
incorporated by the query-sensitive similarity measures. The main reason for this decision is that
if two documents contain non-overlapping sets of query terms, this may be an indication that the

documents are discussing these terms under different topics.

Consider for example the query: “aviation accident reports in the United Kingdom”. If two
documents D; and D, contain the query terms “United Kingdom aviation” and “Accident reports”
respectively, it is highly likely that each document discusses the query terms in different contexts.
The first document is more likely to discuss general issues concerning aviation in the UK,
whereas the second document may be focused on accident reports. If we assume that the second
document is relevant, it would not seem appropriate to associate the first document with it through

the set of non-overlapping query terms, since these terms discuss a different topic.

For measures M1 and M2, 0 < Sim(D;, D; | @) < 1. For measure M3 this property can be retained

by appropriate selection of parameters 31 and 32 (e.g. by constraining the parameters so that

31+92=1). To preserve the reflexivity of the measures defined by M1, M2 and M3 (i.e. Sim (D,
D;)=1), the similarity of a document with itself is defined to be equal to 1. This does not follow as
a result of either Equations 7.3, 7.4, or 7.5, but can be introduced by definition. Finally, for all
three measures Sim(D;, D; | Q) = Sim(D;, D; | Q) (i.e. query-sensitive similarity is symmetric).
These properties are in accordance with those of conventional similarity measures (Van

Rijsbergen, 1979).

7.2.2 An example

To better illustrate the concept of query-sensitive similarity, and to demonstrate the way that this
is calculated by the three measures introduced, I present a specific example in this section. I will
consider a sample query posed to an IR system by a user interested in finding out information

about engine specifications for aircraft manufactured by Boeing. The terms input to the IR system
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in this scenario are assumed to be: “Boeing aircraft engine specification”. I will also assume that
in this simplified example only four documents are retrieved in response to this query. These four
documents are displayed below, and are represented by sets of their alphabetically sorted terms
(query terms are displayed in italics). No lexical processing is assumed to have been performed on
document terms (e.g. stemming). Although many aspects of this specific example are not realistic,

it is sufficient to illustrate the application of query-sensitive measures.
D;: {aircraft, boeing, commercial, company, engine, model, specification}
D,: {boeing, company, employment, management, products, sales}
Dj: {aircraft, commercial, company, leasing, model, products, sales, services}
D,: {engine, model, general-electric, products, rolls-royce, specification}

In this example, documents D; and D, are assumed to be relevant to the query. The other two
documents discuss issues relating to the management section of the Boeing company (D), and to

products and services offered by a commercial aircraft leasing company (Dj).

It is possible to construct a (symmetric) similarity matrix for these four documents. The matrix is
given in Figure 7.2, where instead of displaying a numeric value in each cell of the matrix
corresponding to the similarity between pairs of documents, the set of common terms between
pairs of documents is presented (query terms are displayed in italics). For example, documents D,
and Dj; have four terms in common: aircraft, commercial, company, and model; the first of these

is also a query term.

D, D, Dy,
D, boeing i i
company
aircraﬂ company
commercial
D; products -
company
model sales
engine
model
D, mode] . products products
specification

Figure 7.2. The similarity matrix for the example

Let us now examine a given relevant document, D;, in relation to the other documents in this
dataset. If one ranks the other three documents in decreasing order of the number of terms in
common with D;, then the ranking would be (the number of common terms is given in brackets):
D; (4), Dy (3), D, (2). For simplicity, document vectors are assumed to have a binary
representation (presence/absence of index terms), interdocument similarity is calculated using the

simple matching coefficient (Appendix A), and therefore similarity values correspond to the
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number of terms in common between documents. Consequently, the static similarity of D; to the
rest of the documents is given by the values in brackets in the above ranking. Based on this

ranking, the most similar document to D; is D3, a document that is not relevant to the query.

By using the query-sensitive measures, a re-ranking of the rest of the documents based on their
similarities to D; will occur. For this specific example, the variable component of the similarity
(Equation 7.3) for each of the other three documents to D; corresponds to the number of common
terms between the pair of documents and the query, and therefore Sim(D;D,Q)=1,

Sim(D;,D3,0)=1, Sim(D;,D4,0)=2.

From this it becomes apparent that if measure M2 (Equation 7.3) is used to gauge similarity, then
the most similar document to D; is Dy, a document that is also relevant to the query. If M1 is used

(Equation 7.5), then:
Sim(D;,D;| Q)=2-1, Sim(D,Ds| Q)= 41, Sim(D;,D4| Q)=3-2

This will also give Dy as the nearest neighbour of D;. If M3 is used (Equation 7.4), then:
Sim(D;,.D;| Q)= %12 + 32-1, Sim(D;,Ds| @)= -4 + %21, Sim(D;,Ds| @)= 31-3 + F2:2

In the above, Dy will become the most similar document to D; for any ratio 9:3; that assigns at

least twice as much importance to 32 as to 9.

7.2.3 Limitations

The assumption that query terms are sufficient indicators of document relevance is made for all
three measures defined in the previous section, and especially for measures M1 and M2.
Therefore, implicitly the notion of topicality (Saracevic, 1970) is adopted for relevance. It is well
established in IR research that relevance is a multidimensional concept, and that topicality is only
one such aspect (Schamber et al., 1990). Research into the concept of relevance has indicated that
topicality plays a significant role in the determination of relevance (Saracevic, 1975), although it

does not automatically result in relevance for users (Barry, 1994).

Apart from the topical view of relevance taken, query-sensitive measures only take one instance
of the user’s information need into account (i.e. the set of query terms posed by the user to the IR
system). Due to this treatment, contextual and temporal factors that may affect the user’s

perception of relevance are not incorporated.

Ottaviani (1994) and Ingwersen (1994), for example, argue that information needs evolve and
develop during the course of a search session. Campbell (2000) also suggested that there is a

temporal aspect to the notion of relevance, and this temporal aspect should be incorporated in the
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retrieval model. In the same way, one can argue that the similarity between two objects may
change over time due to new evidence presented, or due to the contextual effect of other objects
(Tversky, 1977). Contextual factors are not considered by the measures presented in the previous
section. In other words, the system decides, based on the query, how the similarity between
objects in the retrieved set should change, but it does not take into account other factors that may

influence interobject similarities.

As far as the temporal aspects are concerned, these are not explicitly incorporated into the query-
sensitive measures. These measures take into account the current instance of the user’s query. If
the user’s information need (and thus the query) changes during the course of a search session,
then the modified query will be incorporated into the calculation of interdocument similarity by
the query-sensitive measures. Therefore, it can be argued that dealing with temporal aspects of
information needs follows logically from this work. However, this is not examined experimentally

in this thesis.

These limitations are not unique to the approach proposed in this thesis. The majority of IR
research to date has focused on the topical aspect of relevance, taking the view that query terms
offer the only evidence about the user’s information need. As far as this thesis is concerned, the
choice not to consider factors such as the ones mentioned previously was taken on the basis that
in a non-interactive laboratory-based environment it is difficult to model such factors. The
importance of such factors in IR research is fully acknowledged; however, it is not within the

aims of this thesis to investigate them.

A further limitation relates to the problem of short queries, the type usually encountered in web
search engines, averaging about 2-3 terms per query (Jansen et al., 2000). The three measures
defined previously, regard query terms as the dimensions that acquire significant discriminatory
power. If only 2 or 3 such terms are supplied by the user, it is doubtful whether these measures
(especially M2) will have enough information to effectively bias similarity. This is a well-known
research problem in IR, and methods that have been used to tackle it previously (Van Rijsbergen
et al., 1981; Voorhees, 1994; Xu & Croft, 1996) could also be applied here. The effect of query

length on the effectiveness of these measures is investigated in section 7.4.5.

7.2.4 Related work

In section 5.3.2 I presented research work that is conceptually similar to the ideas put forward by
the axiomatic view of the cluster hypothesis, and to the use of QSSM as an attempt to increase the
similarity of co-relevant documents on a per-query basis. In this section, I discuss research work
that has attempted to generate clusterings of documents focused on the query. I first summarise
such research work, and then discuss the differences between such approaches and the research

reported in this thesis.
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Iwayama (2000) defined query-biased clusters by modifying a probabilistic clustering algorithm
that assigns documents d to clusters ¢ based on the probability P(c | d). The modified probability
takes the query ¢ into account, and hence becomes P(c | d,q). The conditional part is calculated by
adding the term weights for g to the term weights for d. According to Iwayama, this modified
conditional probability “raises the importance of terms occurring in a query” when forming the

clusters.

Chang and Hsu (1997) suggested an approach which incorporates the information learnt from a
series of queries into the computation of interdocument similarities. For a new query g, the

similarity measure between clusters (or documents) c(i) and c(j) is given by:

N . . . DF(t,q)
R(c(@),c(f) = TF(,t) - TF(j, ) ————,
2 57 )

where TFE(,¢) is the relative frequency of term ¢ in cluster c(i), DF(t,q) is the document frequency
of term ¢ in the whole collection of query ¢, and QF(?) is the frequency of term ¢ in queries that
have appeared so far. The values of DF(z,q) and QF(f) are updated after user feedback so as to
increase the weights of terms that are in topics selected by the user. It should be noted that the

effectiveness of this method was not evaluated by the authors.

Eguchi et al. (2001) proposed a query-biased similarity measure which takes into account a series
of incrementally expanded queries. His main research focus was the investigation of incremental

query expansion, and the effectiveness of the expanded query as a viewpoint for clustering. The

weight w of a term ¢ in document d; that matches a query term is modified by adding a quantity

equal to &-w] to it, where ¢ is a coefficient that has a positive value, and w{is the weight of the

same term ¢ belonging to query g. In this approach, if =0, then a conventional (static) similarity

measure is derived.

Eguchi reported an evaluation of this method using 10,000 HTML documents in Japanese and 10
queries. The clustering method used was of a partitioning type, and the top-200 documents
retrieved by an initial similarity search were clustered. As mentioned previously, the main aim of
Eguchi’s research was to investigate the effectiveness of clustering based on the similarity
calculated by incrementally expanded queries (as opposed to the initial query posed by the user).

Consequently, most of the results reported investigate expanded forms of the initial query.

However, Eguchi also reports some comparisons of cluster-based effectiveness using a
conventional similarity measure (i.e. when ¢=0) to that using only the initial unexpanded query

posed by the user. The results reported by Eguchi demonstrate an improvement in the average
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precision of the best cluster”, when using the query-biased similarity measure, that is in the order
of 2%-4%. However, the results also displayed a decrease in the percentage of relevant documents
which were included in the best cluster when only the initial query is used (pp. 71-72), compared
to the percentage observed when the query is not taken into account (i.e. when ¢=0). For

unexpanded queries, the results demonstrated that the best value of the parameter ¢ is 0.5.

Regarding the relationship of these approaches to the query-sensitive measures defined in this

chapter, the following should be noted:

- The focus of all these approaches is different to the one pursued in this thesis. Cluster-based
effectiveness is not the main focus per se of these approaches, but rather the investigation of
other issues, like incremental query expansion (Eguchi et al., 2001), or the effect of few
relevance judgements on retrieval performance (Iwayama, 2000). As a consequence, these
methods do not focus on the issue of the static nature of interdocument associations, nor do
they focus on the implications of the similarity measures on the structure of the document

space in terms of the proximity of co-relevant documents

- Limited experimental results are presented by these researchers (or, in the case of Chang and
Hsu, no results at all). Also, in cases where results that compare the effectiveness of the
modified similarity measure to that of conventional measures (Eguchi et al., 2001) are
available, the differences seem insignificant, and in some cases in favour of conventional
measures. The results obtained by using the QSSM proposed in this thesis, although applied

to different sets of documents, introduce significant effectiveness improvements

- The formulas presented by these authors are of different forms from the ones presented in this

thesis

- Finally, the research reported in this thesis has been developed independently from these

approaches, and its contributions to the field are significantly different.

7.3 Experimental environment

The use of QSSM is advocated in this thesis based on the premise that they can “force”, on a per
query basis, documents that are likely to be co-relevant to be highly similar to each other. This in
turn relates to the axiomatic view of the cluster hypothesis that I proposed in section 5.3: QSSM
aim to capture the inherent similarity that co-relevant documents exhibit, a similarity that is
dictated by the query itself. Moreover, if query-sensitive measures are effective in placing co-

relevant documents close to each other, then their application to document clustering can also be

22 Documents within clusters are ranked in decreasing order of their similarity to the query.

138



Chapter 7 Query-Sensitive Similarity Measures

expected to prove effective. In the remainder of this chapter I examine whether the use of QSSM
introduces improvements compared to the use of conventional, static similarity measures with

regards to the proximity of co-relevant documents.

A slightly modified version of the experimental environment that was defined in section 5.5 is
used in the rest of this chapter. The modification relates to the use of QSSM instead of a
conventional similarity measure (cosine coefficient). The effectiveness of QSSM with regards to
increasing the similarity of co-relevant documents is measured by using the NN test, i.e. by using
the same experimental procedure as in section 6.2. Following the same experimental procedure
will also facilitate an immediate comparison of the results obtained when using QSSM to those
obtained when using a conventional similarity measure (section 6.2). The comparison of the
results will indicate whether the use of QSSM increases the similarity of co-relevant documents,
and consequently, whether query-sensitive measures succeed at achieving a greater degree of

adherence to the cluster hypothesis.

It should be clarified that when using any of the query-sensitive measures and all the documents
in a test collection (i.e. when n=full), then the interdocument associations are dynamic, i.e. the
relationships between all the documents in the dataset to each other change on a per-query basis
as a result of the use of QSSM. Recall from Chapter 6 that using n=full was associated with a
static organisation of the document space (either in terms of interdocument similarities, or in the

case of hierarchic clustering).

The three query-sensitive measures defined in section 7.2.1 are studied. Their effectiveness is

compared both to that of the cosine coefficient, and to that of each other. Moreover, for measure

M3 varying results can be attained depending on the values assigned to parameters 31 and 32. The

issue of the effect of the ratio of these parameters on the effectiveness of M3 is also examined.

In section 7.2.3, when discussing the potential limitations of QSSM, I highlighted the issue of
short queries, and the effect that query length may have on the effectiveness of QSSM. This issue
is also investigated, and the modification of query length for these purposes is another alteration

to the basic experimental environment of section 5.5.

The NN test used in section 6.2 does not give information about the relevance status of the
immediate NN (i.e. most similar) document of a relevant document. A number of researchers have
suggested that, for the purposes of clustering, it may be worth considering clusters containing
only a document along with its nearest neighbour (e.g. Griffiths ez al., 1986; El-Hamdouchi,
1987). Therefore, in addition to the NN test proposed by Voorhees, the percentage of relevant
documents whose most similar neighbour is also relevant will be calculated. In order to

distinguish the two tests, in the remaining of this chapter Voorhees’s test will be called SNN
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(since it is a 5 document neighbourhood it is using), and the test examining only the nearest

neighbour will be called 1NN.

As a final note, it should be mentioned that document and query terms are weighted based on the
formula given by Equation 5.2 in section 5.5.2. When considering varying numbers of top-ranked
documents, document-term weighting is performed locally, that is, by using evidence from within
the retrieved document set only. This approach to document term weighting has been known to
produce effective results when calculating interdocument relationships (Korpimies and Ukkonen,
1998) (see section 5.5.3). However, query-sensitive measures, apart from document terms, also
employ query terms (and consequently their weights) in the calculation of similarities. The effect
that global or local query-term weighting has on the effectiveness of the query-sensitive measures

1s examined in section 7.4.1.

7.4 Experimental results

In this section I report and analyse experimental results that are obtained for the query-sensitive
measures presented in this chapter. The presentation of the results consists of five parts. First, in
section 7.4.1 I examine the effect of local and global query-term weighting on the effectiveness of

query-sensitive measures. Then, in section 7.4.2 I examine how the effectiveness of measure M3

varies as a function of the two parameters (31 and 92). Subsequently, in section 7.4.3 I investigate
the comparative effectiveness of the QSSM and the cosine coefficient, in section 7.4.4 I study the
comparative effectiveness of the three query-sensitive measures, and in section 7.4.5 I consider

the effect of the query length on M1, M2 and M3.

7.4.1 Global vs. local query-term weighting

The weighting formula which is used to assign weights to query terms (Equation 5.2, section
5.5.2) is based on the tf-idf measure. Consequently, query terms that appear frequently in the
document set are assigned lower weights than terms that do not appear as frequently (given that
most query terms appear once in a query). In the local document sets, query terms will be of the
most frequently occurring terms: all documents in the top-n set will contain some of the query
terms, otherwise these documents would not have been retrieved in the first place. If, on the other
hand, information from the whole dataset is used (global weighting), then the weights assigned to
query terms will depend upon their pattern of occurrence across the entire collection, and not

within a localised set that has been retrieved in response to these terms.

Previous research has demonstrated the benefits of local information for tasks such as automatic
thesaurus construction (Attar & Fraeknel, 1977) and query expansion (Xu & Croft, 1996). The

use of local evidence has been suggested as effective, since the information contained in local sets
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is more focused on the query (Attar & Fraeknel, 1977). Croft and Harper (1979), used information
from the top-ranked documents returned from a query to re-estimate the probabilities of term
occurrence within the relevant set for a query. In this work, Croft and Harper used the local
information to modify the weights of query terms, and not to select candidate terms for query

expansion.

These findings suggest that the use of local information for weighting the evidence offered by
query terms is likely to be more effective than the use of global information. To examine whether
this suggestion is valid in the experimental environment used, the SNN test was performed using
the AP, Medline, and WSJ collections and all three QSSM. A ratio of 1:4 was selected for the two

parameters of M3 for AP and WSJ (i.e. 32 is weighted four times more heavily than 31), and a

ratio of 1:7 for Medline. Document terms are weighted using local information in all conditions

(i.e. even when query terms are weighted using global evidence).

The rationale behind this experiment is not to investigate factors that may influence the
effectiveness of local or global information. Instead, the purpose of this experiment is to examine
whether, in this specific environment, there is a difference in the effectiveness of the query-

sensitive measures depending on the method of query-term weighting.

The results of the SNN test are presented in Table 7.2 for the WSJ collection (highest value in
each column appears in bold). The results obtained for the other collections display similar
patterns, and are not presented for brevity. The results clearly indicate that local query-term
weighting is more effective than global weighting. Local query-term weighting results in
significantly higher values for the SNN test for all experimental conditions. All differences are
significant at levels <0.001.

n M1 global M1 local M2 global M2 local M3 global M3 local

100 1.741 2.357 1.113 1.872 2.172 2.354
200 1.698 2.446 1.018 1.827 2.081 2.443
350 1.699 2.468 0.904 1.832 2.021 2.389
500 1.682 2.463 0.897 1.856 1.966 2.377
750 1.587 2.421 0.874 1.838 1.867 2.300

1000 1.576 2.416 0.865 1.799 1.895 2.269

Table 7.2. Global vs. local query-term weighting for WSJ

The results of Table 7.2 do not reveal different behaviour for any of the three QSSM, i.e. all three
measures significantly benefit from the use of local weighting. M3 is less (but still significantly)
affected by the use of local weighting than M1 and M2. This can be explained on the basis that
M3 uses a linear combination of common terms and common query terms between documents,

and it is therefore less reliant on query terms. The other two measures, and especially M2, rely
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more heavily on characteristics of query terms. Confirming this, the decrease in effectiveness for

M2 is the largest among the three measures.

Query-sensitive measures, especially measure M2, use query terms as discriminators between
relevant and non-relevant documents. From this point of view, it seems logical that local
weighting of the evidence is more effective, as previous research has suggested the effectiveness
of this approach in other environments. Local weighting is dependent on the set of documents that
is retrieved in response to the query, and can reflect the relationships that hold between terms in
this environment more effectively than when using global weighting (Xu & Croft, 1996). Global
weighting, on the other hand, is independent of the query, and reflects the relationships that hold

between terms in a static manner.

As mentioned previously, it is not the aim of this section to examine the factors that may
influence the comparative effect of local and global weighting on the effectiveness of query-
sensitive measures. Based on the results presented here however, the use of local query-term
weighting is warranted in this specific experimental environment. This method of weighting for
query terms is used in the remainder of this chapter, as well as in the experiments reported in

Chapter 8.
7.4.2 Selecting parameters for M3

In this section I examine the selection of appropriate values for the parameters & and 32 of M3

(section 7.2.1, Equation 7.4). As I explained in that section, it is not the absolute values of these
parameters that is of interest, but rather, their ratio. By varying the ratio of these parameters, one

can investigate the effect of assigning different importance to the two components of Equation

7.4. More specifically, 31 determines how much importance is associated to the static similarity
of the two documents, whereas 32 how much importance is associated to the common similarity
of the two documents and the query. It should also be reminded that for 3;=1 and 92=0 M3

becomes equivalent to the cosine coefficient (Equation 7.1), and also that for $1=0 and 3>=1 M3

becomes equivalent to M2 (Equation 7.3). The former case will not be dealt with in this section,
as the comparative effectiveness of query-sensitive measures and the cosine coefficient is

presented in section 7.4.3.

Intuitively, one would expect the results of the SNN test to resemble those attained by the cosine

coefficient when the values of the parameter 31 are much higher than those of 3. Then, by

decreasing the difference in the values of the two parameters (and hence their ratio), the results
should start to differ to those obtained by the cosine. This is evident in Table 7.3, where the

results of the SNN test are presented for four different ratios of the two parameters (9:1, 4:1, 2:1,
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1:1) when using LISA (highest value for each ratio is in bold). The results presented in Table 7.3
are representative of the results obtained using the other five test collections. Full results for all
six collections for varying ratios of the two parameters are presented in Appendix C, Tables C1-
C6. For comparison, the results for this collection using the cosine coefficient are reported in
Table 7.6.

n 9:1 4:1 2:1 1:1
100 0.946 0.99 1.055 1.206
200 0.926 0.972 1.027 1.195
350 0.821 0.93 1.029 1.199
500 0.849 0.938 1.037 1.237
750 0.859 0.94 1.041 1.208
1000 0.83 0.91 1.076 1.204
full 0.913 0.946 1.028 1.177

Table 7.3. Results of the 5NN test for the LISA collection by varying the 91: 92 ratio in favour of $

By observing the results, it becomes evident that significant improvements are introduced by

reducing the importance of the component of Equation 7.4 that corresponds to the static similarity

between the two documents and the query terms (i.e. by increasing the importance of 92). If one

compares, for instance, the results obtained when the static component of Equation 7.4 is nine

times more important than the variable component (i.e. $1:92=9:1) to the results obtained when

both components are weighted equally, the differences range between 27.5 and 46% in favour of

the latter ratio. The differences in the majority of cases are statistically significant, especially as

the relative importance assigned to 31 is reduced.

Having established that the results obtained by the SNN test significantly increase when the ratio

of the two parameters increases in favour of 92, what remains to be established is whether there is
a specific ratio for each collection that displays the highest effectiveness. In Table 7.4, the results

of the SNN test are presented when using the LISA collection, and when the ratio of the two

parameters is varied in favour of 9,. The last column of this table contains the results obtained

when using 31=0 and %>=1; as I mentioned earlier this corresponds to the M2 measure (Equation

7.3). The results of this table demonstrate that, in general, the effectiveness of M3 tends to

increase as the weight assigned to 9 increases. When M3 becomes equivalent to M2 (last column

of the table), there seems to be a rather significant drop in the effectiveness of the measure®. For

the specific case of the LISA collection, the peak in effectiveness seems to occur between the

23 The comparative effectiveness of QSSM is examined in section 7.4.4.
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ratios of 1:7 and 1:10. However, the differences in effectiveness at this region are not statistically

significant.

n 1:2 1:4 1:7 1:9 1:10 M2
100 1.352 1.383 1.402 1.392 1.404 1.395
200 1.311 1.327 1.390 1.391 1.389 1.269
350 1.335 1.418 1.429 1.42 1.428 1.315
500 1.374 1415 1.423 1.403 1.406 1.317
750 1.358 1.395 1.421 1413 1.392 1.287

1000 1.341 1.384 1.393 1.385 1.380 1.303
full 1.303 1.332 1.376 1.354 1.341 1.269

Table 7.4. Results of the SNN test for the LISA collection by varying the 3:: 3 ratio in favour of 32

It should also be noted that the behaviour when using LISA with increasing importance assigned

to 32 is not typical of the two larger collections (AP and WSJ). In general, when using LISA, as

the data in Table 7.4 demonstrate, when the importance attributed to the common similarity
between the documents and the query increases it does not seem to significantly impair the
effectiveness of the measure, at least not until M3 becomes equivalent to M2 (i.e. the difference in
effectiveness when using ratios 1:7, 1:9, 1:10 are small). This is especially evident for small
values of n (i.e. 100, 200, 350).

2.5 -
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2.2 1
Z 2.1 1

5
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1.7 T T T T T T — T
4:1 2:1 11 1:2 1:4 1:5 1.7 19 M2
01:6; ratio

Figure 7.3. The effectiveness of M3 as a function of & and 9> for the WSJ collection

Figure 7.3 demonstrates the variation in the effectiveness of M3 for varying ratios of the two
parameters for n=100, 200, 350 and 500 when using the WSIJ collection. The pattern of the results
for the WSJ collection is for the effectiveness of M3 to peak when the ratio between the two

parameters is in the region of 1:4. The results display a consistent decrease past this point as the

weight assigned to 92 increases (i.e. ratios 1:7, 1:9 yield lower results).
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A reason for the rather different behaviour of the two databases can be given in terms of their
characteristics. Documents of the LISA collection are rather short, with 39.7 terms on average per
document. The length of the queries for this collection is large (almost 20 terms per query on
average, Table 5.1), almost half the average document size. Moreover, as it was mentioned in
section 7.2.1, relevant documents in this collection contain on average 4.5 query terms (Table
7.1). Taking these characteristics into account, it can be appreciated why query influence in this
database is strong: the combination of short documents, long queries and relatively large number
of query terms per relevant document increases the likelihood of pairs of co-relevant documents

to be assigned high similarity by M3.

The WSIJ collection on the other hand, is characterised by long documents (377 terms on average
per document), and shorter queries than LISA (7.6 terms on average). In this collection, as the
weight assigned to the static similarity of documents is decreased and calculations are
increasingly biased towards common query terms between documents, the effectiveness of the
measure seems to be obscured by the length of the documents and the relatively few query terms
(especially comparatively to document length). In addition, documents of the WSJ collection are
more topically diverse than those of the smaller collections, and therefore query terms can be used
under a varying number of contexts in the bodies of such documents. M3, in such an environment,
is more likely to reach a higher effectiveness when the importance assigned to common query
terms and common “content” terms is more balanced (but still in favour of the former) than in
more topically homogeneous collections. The other TREC collection (AP) displays a similar
behaviour (Appendix C, Table C1).

As far as the other three collections are concerned (CACM, CISI and Medline), the effectiveness
of M3 seems to peak when the ratio of the two parameters is set to around 1:7 (Appendix C,
Tables C2, C3 and CS5). This behaviour is similar to the one noted for LISA. These four
collections are topically homogeneous, treating mainly a single subject area (e.g. library and

information science for LISA).

Another interesting finding from the study of the variation of the effectiveness of M3 by adjusting
the two parameters, is that especially when using CISI, Medline and LISA, as the number n of

top-ranked documents increases, the effectiveness of M3 tends to be higher when less weight is

attributed to 92. For example, when using CISI (Table C3), for =100 and 200 the most effective

ratio of the two parameters is 1:7, for n=350 and 500 the most effective ratio becomes 1:5, and for
n=750 the most effective ratio is 1:4. Also, when using LISA (Table 7.3), for n=100, 200 and 350
the highest effectiveness is noted for ratios 1:9 and 1:10, and for the remaining values of n the

highest effectiveness is noted for a ratio of 1:7.
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An explanation for this behaviour can be given in terms of what happens when #n increases. As the
number of top-ranked documents increases, so does the number of non-relevant documents.
However, non-relevant documents will also contain some of the query terms, otherwise they
would not have been retrieved in the top-n set in the first place. This has as a consequence that
some of the relevant documents share a number of query terms with non-relevant documents.
Therefore, in order to counterbalance this effect to retain high effectiveness, the importance
assigned to the variable part of the similarity defined by M3 seems to decrease for increasing
values of n. In other words, more weight needs to be assigned to the other common terms between

documents, so as to define the context under which the query terms are used for larger values of z.

As a conclusion regarding the selection of parameters for M3, the data obtained support the view
that this is heavily dependent on the characteristics of the test collection under investigation. What

was noted for all six collections was that the effectiveness of M3 for the SNN test increases as the

relative importance of 3, over 3 increases, and it reaches its peak when the ratio between the two
parameters is considerably in favour of 92. The effectiveness of the measure then tends to drop

past this point, and when 31 becomes equal to zero M3 generally displays its lowest effectiveness.

It should also be emphasised that as the ratio of the two parameters increases in favour of 32, the
differences in the effectiveness of M3 are generally not statistically significant. For example, in
Table 7.3 all the differences across the various ratios are significant (apart from n=100 when
comparing ratios 4:1 and 2:1), whereas in Table 7.4 there are few statistically significant
differences between the results for ratios 1:4, 1:7, 1:9, 1:10. For the two TREC collections there
are significant differences as the ratios of the values move past the peak point (1:4), i.e. the

differences between the ratios of 1:4 and 1:7, 1:9 are significant in favour of the former.

In the next section I examine how the effectiveness of the three QSSM compares to that of a static

measure - the cosine coefficient.

7.4.3 Comparative effectiveness of the query-sensitive measures
and the cosine coefficient

In this section I examine three issues. First I compare the effectiveness of M1, M2 and M3 to the
cosine coefficient for the SNN test, then in section 7.4.3.1 I examine the effectiveness for different

numbers of top-ranked documents, and in section 7.4.3.2 I present results for the INN test.
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In Tables 7.5-7.7 the results of the SNN test for each of the six test collections and each of the
three QSSM are presented. Each table comprises five columns®. In the first column the different
values of n are given for which results are calculated. Columns 2-5 contain the results obtained for
the SNN test with the cosine coefficient, and measures M1, M2 and M3 respectively. In columns
3-5 the percentage difference between the results for M1-cosine, M2-cosine and M3-cosine,
respectively, are also calculated. The differences are displayed in brackets. For each of the four

columns (2-5), the highest value for the SNN test across all values of » is displayed in bold.

AP Cosine Ml M2 M3 T Cosine Ml M2 M3
SNN SNN SNN SNN 5NN 5NN SNN SNN
2.619 2.079 2.652 2.357 1.872 2.354

topl00  2.447 topl00  2.122

(1.02%) (-15.06%) (8.35%)
2406 1834 2404 2446 1827 2443
(10.18%) (1602%) (10.07%) | P20 2051 [go0m) (-1088%) (19.15%)
239 1671 2349 2468 1832 2389
(13.22%) (2084%) (1126%) | ©°P30 1909 5920%) (4.01%) (25.15%)

(11.1%) (-11.74%) (10.95%)
top200  2.184

top350  2.111

2442 1663 2387 2463 1856 2377
p300 2085 171%) (2025%) (14.49%)| ©PO0 1863 3100 (039%) (27.61%)

2457 1605 2431 2421 1838 23
0p730 211 e ate) (23.93%) (15.18%) | P70 1T3¥ 960w (6.01%) (32.63%)
opl000 201 237 Ls17 2337 | o 2416 L1799 2269

(17.95%) (-24.52%) (16.28%) (41.23%) (5.17%) (32.6%)

Table 7.5. AP and WSJ results

Document terms are weighted locally within the top-n document sets. This is applied to both
experimental conditions, i.e. both when the cosine and the query-sensitive measures are used. In
addition, as I mentioned in section 7.4.1, query terms are also weighted using local evidence from

within the top-n document sets.

As far as measure M3 is concerned, the values presented here are the ones resulting from a single

setting of the ratio of the two parameters &1 and 9> for each test collection. The ratio selected is
the one that displayed the highest effectiveness for each collection across values of n based on the
results reported in the previous section. For the four smaller collections (CACM, CISI, LISA and
Medline) the ratio selected is that of 1:7, whereas the ratio selected for the two TREC collections
is 1:4. In cases where there is not a clear best ratio for all values of n, the ratio that displays the

best average rank among all ratios is selected.

An alternative procedure for reporting results for M3 would have been to select, for each value of
n, that ratio that gives the highest effectiveness. This strategy would have resulted in the best
possible values for M3. However, it was deemed as more realistic to select values from a single

ratio for all values of n, rather than to do so selectively from the best ratio for each value of n.

24 Each table contains results for two collections, so in fact each table contains ten columns. In each table I consider the
data corresponding to each collection as a separate table. The arrangement of Tables 7.4-7.6 in this way is purely for
organisational reasons.
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Moreover, it was mentioned in the previous section that the differences in the effectiveness of M3
for the ratios that give the highest values are not significantly different. Consequently, there

should not be any distortion of the results by presenting the single best ratio for each test

collection.
pl00 L2 ey @am arosm | PO 0% (sigsey (ssum 65w
09200 LSIL 10 osmom asoam | PR OB (@i 013w (6453%
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Table 7.6. CACM and LISA results

The results obtained for the SNN test across all test collections show that query-sensitive
measures, in the vast majority of experimental conditions, are more effective than the cosine
coefficient at placing co-relevant documents in the same “neighbourhood”. The only exception to
this is noted when using the M2 measure in the two TREC collections (AP and WSJ), where M2
is less effective than the cosine for all values of n when using the AP collection, and for <500
when using the WSJ (Table 7.5).

P00 183 (O arsm asim | PO MO (550 oy a3mom
0200 L3 iR aeam Gogim | 0 392 7T (iam asaen
930 123 Sl aaiam asosm | 0 3B (ihay  esm aasen
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Table 7.7. CISI and Medline results

Statistical tests of the results reveal significant improvements of M1 and M3 over the cosine
(significance level <0.001 for the majority of cases) for all experimental conditions except for the
CISI collection when n=100. Measure M2 is significantly more effective than the cosine for the
CACM (except for n=100), LISA (all values of n), and Medline (except for n=100, 750, full)

collections. It is also significantly more effective than the cosine when using the WSJ collection
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for n=750, 1000. Significance levels for M2 are not as low as the ones for M1 and M3, but they

are still lower than 0.04 for all significant cases.

The gains in effectiveness introduced by using QSSM are in most cases “material”, i.e. over 10%,
which confirms the significance of the results (Keen, 1992). The largest differences occur when
using the LISA collection, where all three query-sensitive measures are over 50% more effective
than the cosine in all experimental conditions. Even M2, which relies only on common terms
between documents that are query terms, introduces improvements of that magnitude. This
behaviour for LISA can be explained on the basis of its characteristics: on average, queries
contain as much as half the number of terms that documents do, and also relevant documents for
this collection are strongly characterised by the presence of query terms. CACM, that possesses

similar properties, also displays high effectiveness gains for all three QSSM.

Regarding the two TREC collections, it is perhaps not surprising that the use of M2 does not
introduce effectiveness gains. The documents of the two TREC collections are large (370 and 377
terms on average per document for AP and WSJ respectively), and the queries relatively short (7.6
terms per query). Moreover, as mentioned previously, these two collections are topically diverse,
and therefore terms that appear in queries are likely to be used in documents under many different
contexts, not necessarily under the ones dictated»by the query. M2 does not use any further
contextual information (i.e. the rest of the content overlap between documents), and hence the
topical diversity of these collections may mislead the similarity calculations. For example, a
relevant document can be deemed as highly similar to another document with which it shares
some query terms, but which treats these query terms under a context that is unrelated to the one
dictated by the query. By not combining content and query-term overlap, M2 will not capture that
these two documents are in fact discussing the query terms under totally different contexts. In
such a setting it would seem unlikely that the use of only common query terms between

documents can improve the effectiveness of the cosine coefficient.

As far as the AP collection is concerned, this is verified: the use of M2 is always significantly
lower than that of the cosine. However, when using the WSJ collection, for n=750 and 1000, M2
is significantly more effective than the cosine coefficient (although the differences in
effectiveness are not material). Despite that relevant documents of the WSJ collection are strongly
characterised by the presence of query terms (Table 7.1), this result is rather surprising. This is
especially so, given that for large numbers of top-ranked documents one would expect the
confounding effect of non-relevant documents that contain query terms to be stronger on the
effectiveness of M2. As this result is not confirmed when using the other TREC collection, it
should be seen with caution since it is more likely to be attributed to particular characteristics of

the WSJ documents rather than to the actual effectiveness of M2.
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7.4.3.1 Effectiveness for different numbers of top-ranked documents

In section 6.2, when examining the results of the SNN test using the cosine coefficient, I
demonstrated how, for the majority of the experimental conditions, the cosine coefficient displays
the highest result for n=100. It was also noted that values past n=100 follow a decreasing pattern
for increasing values of n, a decrease that for a large number of cases is also statistically
significant. In section 6.2 I also demonstrated how this behaviour of the cosine coefficient is

similar to the one displayed when interdocument associations are calculated randomly.

By observing the data in Tables 7.5-7.7, it seems that measures M1, M2 and M3 (across rows of
the tables for columns 3-5) seem to be less affected by the increasing numbers of non-relevant,
and “not-as-clearly” relevant, documents (see section 6.2) that are introduced as the value of »
increases. M1 for the CACM, LISA and WSJ collections shows the highest scores for n=750, 350,
and 350 respectively. M2 for the CACM, CISI and Medline collections displays the highest scores
for n=200. M3 displays the highest effectiveness when using CISI and WSJ for n=200, and when
using CACM and LISA for n=350.

Another observation that can be made from the data in these three tables, is that values for M1,
M2 and M3, in the majority of the cases, are more “balanced” across different numbers of top-
ranked documents. In fact, the only cases where the effectiveness of a QSSM consistently drops
as n increases is noted for the M2 measure using the AP collection (Table 7.5), and for the M1
and M3 measures using the Medline collection (Table 7.7). Moreover, for all experimental
conditions using query-sensitive measures, the results obtained using the full document collection
are the lowest among all values of n; recall that this was not the case when using the cosine

coefficient (section 6.2).
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Figure 7.4. Random vs. actual values for the SNN test using the WSJ collection

The statistical significance of the results confirms these observations. As reported in section 6.2,
when using the cosine coefficient, the effectiveness at n=100 was significantly higher than that at
other values of n for the majority of experimental conditions, and also the results were

significantly decreasing across values of n. This behaviour is not noted when using QSSM. The
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only cases where such a behaviour is evident is when using Medline and measures M1 and M3,
and when using CISI and M2. In these cases the effectiveness at n=100, 200 and 350 is
significantly higher than that attained at larger values of n. It should also be noted that the
effectiveness when using the full number of documents for the CACM, CISI, LISA, and Medline

collections is significantly lower than that attained at most other values of n.

Figure 7.4 displays the results of the SNN test (vertical axis) across different values of top-ranked
documents (horizontal axis) when using the WSJ collection. The results have been obtained by
the three QSSM, the cosine coefficient, and the randomly generated values reported in section 6.2.
This figure visually demonstrates that the patterns of results obtained by the QSSM do not follow

the patterns noted using the cosine coefficient and the randomly generated similarity values.

Based on the results obtained by the cosine coefficient and the QSSM for varying numbers of top-
ranked documents, it seems that the latter cope better with the increasing numbers of non-relevant
and “not-as-clearly relevant” documents (section 6.2) introduced in the sets for increasing values
of n. The pattern of consistently decreasing results for increasing values of » is not noted when
using measures M1, M2 and M3, and consequently, numbers of highly similar co-relevant

documents do not significantly decrease.

Query-sensitive measures, as opposed to the cosine coefficient, are influenced by the presence of
query-terms, and consequently they are likely to be more effective at dealing with the not-as-
clearly relevant documents introduced at higher values of n. Such documents may only have few
query terms, or some of the not important or not common query terms. By biasing the similarity
towards query terms, QSSM may be more effective than the cosine coefficient at increasing the
similarity of such documents to other relevant documents. Moreover, the use of local query-term
weighting (section 7.4.1), may also contribute to this. Not common query terms will likely have
high weights when weighted locally within the retrieved sets, as such terms are likely to be
infrequent within the retrieved sets. The “not-as-clearly” relevant documents will contain query
terms of this type, and the high weight attributed to such terms by the QSSM may contribute to

increasing the similarity between such documents and other relevant ones.

The results presented for the query-sensitive measures support this view to an extent. In general,
there are no statistical differences between results for the smaller values of n (i.e. between n=100,
200 and 350). In fact, most of the differences occur between these values and those of much larger
n (e.g. 750, 1000, and full). At that point, the influence of non-relevant documents (or the
influence of the “not-as-clearly relevant documents”) seems to increase so much as to
significantly decrease the effectiveness of the similarity measures in a number of cases. This is
especially so for M2, since this measure is more susceptible to erroneous similarity judgements

based only on query terms that may be used in different contexts within documents.
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7.4.3.2 Co-relevant nearest neighbours

In section 7.3 I mentioned that the SNN test does not provide any information on the number of
immediate co-relevant nearest neighbours. To provide information at this level of detail, a
variation of the SNN test (the INN test) is performed. The results for this test using the CISI and
WSJ collections are presented in Table 7.8. In columns 2-5 (7-10 for WSJ) the percentage of

documents whose nearest neighbour is also relevant is displayed when using the cosine

coefficient, and when using each of the three QSSM. For M3 the same best ratio $1:9> for each

collection is used as for the calculations in Tables 7.5-7.7. The results of these two collections are
representative of the results obtained using the other four collections. The results for all six test

collections are presented in Appendix C, Tables C7-C9.

These results reveal a similar pattern to those obtained for the SNN test. M1 and M3 are
significantly more effective than the cosine coefficient for all test collections and values of n (all
significance levels < 0.02). M2 is significantly more effective than the cosine for the CACM
(except for n=100), LISA, and Medline (except for n=full) collections (significance levels < 0.03).
It is worth noting that similar to the SNN test, for the two TREC collections measure M2 performs

significantly worse than the cosine for most values of n.

CISI WsJ
Cosine Ml M2 M3 Cosine M1 M2 M3

NN (%) NN (%) NN(%) NN(%)| " NN(%) NN(%) NN(%) NN (%)
100 4544 5211 5579 5579 | 100 6441 6742 5602 65.16
200 3998 4925 562 5539 | 200 5724 621 497  61.67
350 3575 47.88 5434 5292 | 350 5405 6373 50  60.72
500 3387 4653 50.85 51.08 | 500 5265 629 48.64 58.83
750 3282 451 4477 4821 | 750 49.19 61.82 4818 57.32
1000 - - - - 1000 476 6043 4773 5576
full 3285 413 37.05 4279 | full - - - -

Table 7.8. Results of the INN test when using CISI and WSJ

n

Based on the results for the 1NN test, it seems that all three QSSM (and especially M1 and M3)
manage to increase the proportion of co-relevant nearest neighbours for all test collections.
Consequently, such measures are likely to increase the effectiveness of a clustering system that
employs nearest neighbour clusters (NNC), such as those proposed by Griffiths and his colleagues
(1986) (also see section 4.3.3).

The results of both the SNN and INN tests suggest that measures M1 and M3 are significantly
more effective than the cosine at placing co-relevant documents closer to each other. In this way,
the likelihood of a more effective clustering of the document space is increased. Augmenting term
co-occurrence similarity with query-term co-occurrence information in a pair of documents, is

shown to be an effective way of detecting the similarity of co-relevant documents.
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The results obtained with measure M2, as I discussed in section 7.2.1, can be seen as a lower limit
for the effectiveness of query-sensitive measures. However, despite the extreme form of query
biasing that M2 employs, it manages to introduce significant improvements over the cosine in a
large number of cases. This result can be seen as providing further evidence for the applicability

of query-sensitive measures to IR.

In the following section I examine the comparative effectiveness of the three query-sensitive

measures M1, M2 and M3.

7.4.4 Comparative effectiveness of M1, M2 and M3

The results of the SNN test in Tables 7.5-7.7 (columns 3-5) show that measures M1 and M3
achieve higher scores than M2 for the majority of experimental conditions. The only two
exceptions are noted when using CISI for n=200, and when using LISA for n=100; in both cases
M2 is more effective than M1 (though not significantly more effective). Statistical testing showed
that M1 and M3 are significantly more effective than M2 for all values of ##200 when using
CACM, for n>200 when using CISI, and only for n=750 and full when using LISA. For the two
TREC collections and Medline, all differences are significant.

The results regarding the comparatively lower effectiveness of M2 are not surprising, given that
this measure uses less information than the other two measures. Especially when using the
topically diverse TREC collections, the lower effectiveness of M2 compared to M1 and M3 is
attributed to its reliance only on common query terms between documents. M2 ignores other
common terms between documents that may define the context under which query terms are used

within documents.

The other issue to be examined here is the comparative effectiveness of M1 and M3. The results
in Tables 7.5-7.7 reveal that the effectiveness of these measures is comparable in most
experimental conditions. When using CACM, CISI, LISA or Medline, the differences between the
two measures are generally negligible, and never statistically significant. Moreover, none of the
two measures consistently outperforms the other in these collections so as to offer an indication of
superior effectiveness. For example, when using CACM M3 is more effective than M1 in 4 out of
7 possible values of n; there is no pattern to relate smaller values of » with superior effectiveness
of one measure over the other. The only consistent behaviour noted is when using CISI where M3
is always more effective than M1, and when using Medline where M1 is always more effective

than M3.

The only indication of superior performance comes when using the two TREC collections. When
using AP, M1 is more effective than M3 for all but one (n=100) values of n, and when using WSJ

it is more effective than M3 for all values of n. Significant differences occur for n=750 when

153



Chapter 7 Query-Sensitive Similarity Measures

using AP, and for n>200 when using WSJ. These differences are confirmed even when the best

ratio 91:9; is selected for M3 for each value of n for these two collections. This occurs only once

in each collection: for n=500 when using AP the result for a ratio of 1:5 is better than the one used
(1:4), and when using WSJ for n=350 a ratio of 1:2 gives a value higher than the one of the ratio
used (1:4).

To appreciate why any significant differences in performance occur between these two measures,
one has to look at the way they use information from the query to augment interdocument
similarity values. Both measures use information from the content overlap and from the query-
term overlap between documents. Consequently, when query terms are common between
documents, both measures will augment the content similarity value between those documents by
a factor that is incorporated differently for each measure (product for M1, linear combination for

M3).

More important than the way similarity values are augmented, is the behaviour of the two
measures when no common terms between the two documents are query terms (i.e. when
Equation 7.3 outputs zero): M1 sets the similarity of the two documents to zero, whereas M3 sets

it equal to a value corresponding to the static similarity between the two documents, adjusted by

the parameter .

Let us consider the case of a relevant document D; that contains a few query terms. According to
the static component of the similarity, this document will be similar to other documents with
which it shares a large number of content terms (not necessarily including query terms). M1 and
M3 will re-order this initial similarity ranking in such a way so as to promote documents that
share a large number of content terms and query terms with document D; The re-ordering
generated by M1 will remove documents with no query-term overlap with D; from the top of the
list in a rather crude way, by setting their similarities to D; to zero. The reordering generated by
M3 will promote documents with query-term overlap with D;, but may not promote such
documents sufficiently to “force” them to obtain a similarity to D; higher than documents with no
query-term overlap (but significant content term overlap) may have. This is also more likely to
occur for TREC documents because of their length: it is more likely to have documents with a
strong (non-query term) content overlap than it is for documents of shorter lengths, as those of the

other four collections.

The results for the INN test (Table 7.8 and Tables C7-C9) offer a slightly different view

regarding the comparative effectiveness of these three measures. The main results of this test are

25 Whether the returned similarity value is adjusted by S1 or not makes no difference to the results of the tests. This was
proven experimentally when using the SNN test. These results are not considered significant enough to be reported.
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first that M1 is always more effective than M3 for the two TREC collections (and in most cases
significantly so), second that M3 is always more effective than M1 when using the other four
collections (and in the majority of these cases significantly), and third that M2 is more effective
than the other two measures (especially than M1) in a large number of experimental conditions
when using CACM, CISI, LISA or Medline.

More specifically, M2 is the most effective measure when using CISI for n=100, 200 and 350,
when using LISA for n=100, and when using Medline for n=200, 350 and 500. In addition to
these cases, it also exceeds M1 when using CACM for n=200,350 and 500, when using CISI for
n=500, when using LISA for n=750 and 1000, and when using Medline for n=750. The
differences when using CISI, LISA and Medline are statistically significant. As far as the two
TREC collections are concerned, in agreement with the results of the SNN test, M2 is
significantly less effective than both M1 and M3.

It is worth noting from Table C8, where results of the 1NN test are presented when using LISA,
that, for all values of n and all similarity measures used, less than half the relevant documents
have another relevant as their most similar neighbour. This result is especially surprising given
the success of the three query-sensitive measures when using this collection (as the results of
Table 7.6 demonstrated). This result demonstrates that there are aspects of the similarity of co-
relevant documents that are not captured by these measures. However, it should be emphasised
that all three query-sensitive measures introduce significant effectiveness improvements in this

collection compared to the cosine coefficient.

Based on the results presented in this section, it is valid to state that M1 and M3 are both more
effective than M2 at placing co-relevant documents at close proximity to each other. This is
especially evident when using short queries, since M2 relies only on the information supplied by
the query terms. In the following section the effect that query length has on query sensitive

measures is examined.

7.4.5 Effect of query length on the query-sensitive measures

In the results for the SNN test in Tables 7.5-7.7 (columns 3-5), M2 was more effective than the
cosine for the CACM, LISA and Medline collections, where the average query length is relatively
large (on average, 13 terms for CACM, 19.4 for LISA, and 10 for Medline, compared to 7.6 for
AP, CISI and WSJ). This is a consequence of the strong dependence of M2 on query terms.

In order to investigate the effect of query length on the effectiveness of all three measures, an
expanded and a shorter version of the 50 TREC topics for the AP and WSIJ collections were used.
For the expanded version, terms from the Title, Description, and Concepts fields of each topic

were used (see section 5.5.1), yielding on average 23.4 terms per query (compared to 7.6 terms
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initially). For the shorter version of the queries only the Title field was used, with an average of

3.2 terms per query.

In relation to the data presented in Table 7.1, when using short queries in the WSJ collection
89.7% of relevant documents contain at least one query term, with an average of 2.9 query terms
per relevant document. When using the AP collection and short queries 88.6% of relevant
documents contain at least one query term, with an average of 3 query terms per relevant
document. Not surprisingly, when the longer form of the topics is used, all relevant documents for
both collections contain at least one query term, with an average of 8.5 query terms for AP, and 8

terms for WSJ.

The expansion terms for the TREC topics are not generated algorithmically, and this can perhaps
be seen as a point of criticism. For example, a query expansion algorithm might have selected
terms that are better discriminators than the ones selected manually, by analysing distribution
patterns over an entire document corpus, or locally over a set of retrieved documents (Xu & Croft,
1996). However, it is felt that the experimental procedure followed in this section is sufficient to
demonstrate the behaviour of the query-sensitive measures when variations in query length occur,

as any research relating to query-expansion issues is not pursued in this thesis.

M1 M2 M3 Ml M2 M3

" expanded expanded expanded short short short

100 2.67 2.364 2.687 2459 1.616 2.541
(1.95%) (13.75%) (1.34%) (-6.45%) (-22.25%) (-4.18%%)

200 2.39 2.128 2.402 2.095 1.313 2.254
(-0.67%) (16.05%) (-0.05%)  (-12.92%) (-28.39%) (-6.23%%)

350 2.408 2.1 2.384 2.081 1.21 2.216
(0.75%) (25.65%) (1.5%) (-12.92%) (-27.59%) (-5.66%)

500 2.422 2.124 2.401 2.08 1.199 2.228
(-0.83%) (27.71%) 0.57%) (-14.81%) (-27.88%) (-6.68%)

750 2.494 2.191 2.464 2.137 1.192 2.237
(1.52%) (36.5%) (1.38%) (-13%) (-25.72%) (-7.95%)

1000 2.428 2.129 2.387 2.05 1.127 2.167

(2.41%) (40.39%) (2.14%) (-13.51%) (-25.7%) (-7.25%)
Table 7.9. The effect of query length for AP: results of the 5NN test

The 5NN test was repeated for both the expanded and shorter versions of the queries, on the same

sets of documents as for the original queries®, for each value of n. For measure M3 the best ratio

(1:4) of parameters 1 and 9> was used for both collections so as to allow these results to be
compared to the results reported in Table 7.5. Other ratios were tried in order to examine whether
query length would change the most effective ratio for these collections, but there were no
significant deviations from the pattern of the results presented in Tables C1 and C6. The results

using the modified queries for the AP and WSJ collections are presented in Tables 7.9 and 7.10

%6 This choice was made so as to be able to compare the results between the modified and the original queries.
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respectively, where the highest values for each column are displayed in bold. For columns 2-7 the
percentage differences between the reported values and those obtained with the standard queries

(Table 7.5, columns 3-5) are displayed in brackets.

The results in Tables 7.9 and 7.10 confirm the strong dependence of M2 on query length. M2 with
the expanded queries (column 3) is significantly more effective than using the initial queries for
all values of n (significance levels <0.001). Moreover, when using WSJ, M2 is significantly more
effective than the cosine coefficient for all values of n (significance levels <0.03), and is not
significantly worse than M1 or M3 (either with expanded or initial queries). It is also more

effective that M3 for n=750 and 1000, but not significantly so.

Ml M2 M3 Ml M2 M3

expanded expanded expanded short short short

top 100 2.457 2.372 2414 232 1.672 2.295
(4.22%) (26.67%) (2.54%) (-1.59%) (-12%)  (-2.52%)

top 200 2.535 2.37 2474 2.271 1.631 2.236
(3.63%) (29.69%) (1.25%) (-7.7%) (-12.04%) (-8.49%)

top 350 2.54 2.415 2.448 2.241 1.536 2.159
(2.91%) (31.82%) (2.46%) (-10.14%) (-19.31%) (-9.52%)

top 500 2.54 2425 2.44 2.195 1.525 2.173
(3.14%) (30.71%) (2.65%) (-12.22%) (-21.67%) (-8.59%)

top 750 2.441 2.407 2.344 2.101 1.434 2.05
(0.83%) (30.93%) (1.9%) (-15.24%) (-28.17%) (-10.88%)

top 1000 2.437 2.399 2.325 2.064 1.435 2.022
(0.85%) (33.35%) (2.47%) (-17.09%) (-25.36%) (-10.88%)

Table 7.10. The effect of query length for WSJ: results of the SNN test

When using the AP collection, M2 exceeds the cosine for some values of n (500, 750 and 1000)
but not significantly, and it is also not significantly worse than the cosine for the other values of n.
In contrast to when using WSJ, M2 with the expanded queries is still significantly worse than
both M1 and M3 for all values of n.

The behaviour of M2 for expanded queries can be explained on the basis of the role that the added
query terms play for this measure. Because M2 relies only on common query terms between
documents, it lacks the contextual information provided by other common terms between
documents. The addition of terms to the query provides more information to M2 to effectively
assess the likelihood of two documents to be jointly relevant to the same query. When using WSJ,
this addition of extra terms seems to be enough for M2 to be almost as effective as the other two
query-sensitive measures (that use more information to assess similarity), and more effective than
the cosine. In practical terms, this implies that these extra terms that M2 uses are almost as good a
source of information as all the common terms between documents. When using the AP collection

however, this does not seem to be the case.

Column 6 of Tables 7.9 and 7.10 shows a significant decrease in effectiveness for M2 when

average query length is decreased to 3.2 terms. The decrease in effectiveness is sizeable if one
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considers that the difference in query length between the initial and the short queries is on average
just 4.4, terms. This result, in combination with the result for M2 when using expanded queries,
indicates that there is a range in the number of query terms within which M2 can perform
reasonably effectively. The addition of more query terms past the upper limit of this range, for
example, is unlikely to prove more effective for M2, whereas the removal of query terms, as

demonstrated here, has significantly negative effects on the measure’s performance.

Measures M1 and M3, on the other hand, are less affected by the increase in query length from
7.6 terms per query (initial queries) to 23.4 (expanded). None of the differences in effectiveness
reported in Tables 7.9 and 7.10 (columns 2 and 4) between the expanded and the initial form of
the queries are significant. In some cases when using AP, there is even a minor decrease in the
effectiveness of the measure when expanded queries are used (n=200 and 500 for M1 and n=200
for M3).

When short queries are used (columns 5 and 7 of Tables 7.9 and 7.10), both measures (M1 and
M3) display a significant decrease in effectiveness. The decrease is smaller in scale than that
reported for M2, but significant (significance levels <0.03) for both collections and all values of n,
except for n=100. Despite this decrease, M1 and M3 using the short queries are still significantly
more effective than the cosine when using the WSJ collection (Table 7.5, column 2, significance
levels <0.003). When using AP, M1 is more effective than the cosine for n=100, 750 and 1000,
and more effective than M3 for all values of n. However, no significant differences between these

measures and the cosine are noted.

Comparing the effectiveness of M1 and M3 when expanded queries are used for the WSJ
collection (columns 2 and 4 of Table 7.10), the effectiveness of the former is always higher than
that of the latter, and for n>100 the differences are statistically significant (significance levels
<0.02). The comparative effectiveness of the two measures does not seem to change when queries
are augmented (recall from section 7.4.4 that M1 was more effective than M3 for all values of n
when using WSJ). When using AP a similar behaviour is noted (for n>200 M1 is more effective

than M3). However, any differences noted between the two measures are not significant.

When short queries are used, (columns 5 and 7 of Tables 7.9 and 7.10), the comparative
performance of M1 and M3 differs in the two collections (i.e. when using AP M3 is more
effective than M1, and vice versa when using WSJ). However none of the differences between the
two measures are significant. These results suggests that the comparative effectiveness of the two
measures does not significantly change depending on the length of the query, something that is
not surprising given that both measures take the same amount of information into account when

assessing interdocument similarities.

158



Chapter 7 Query-Sensitive Similarity Measures

A further observation from the results presented in Tables 7.9 and 7.10 is that M1 seems to be
more affected by the reduction of query length than M3. By observing the decrease in the
performance of the two measures when short queries are used (columns 5 and 7 of Tables 7.9 and
7.10), it follows that the relative differences are in general much larger when using M1 (i.e. the
effectiveness using short queries compared to that using the standard queries decreases more

when using M1 than M3, but the absolute effectiveness of the two measures is comparable).

The results presented here suggest that M2 is highly affected by query length, and it would
therefore not seem suitable to be applied to environments where very short queries are usually
input by users, unless effective ways to expand the query could be used. Assessing the likelihood
of two documents to be jointly relevant to a query based on the amount of information provided

by approximately 3 terms on average is not likely to be effective.

The other two measures, perhaps not surprisingly, do not seem that much affected by variations in
query length. This is due to that they combine contextual information (the whole set of terms
between documents) with increased weight assigned to query information. In this way, M1 and
M3 are more likely to cope well when query length is decreased: the contextual information may
be a good indicator of whether the few query terms are used in the same topic between
documents. It is for this same reason that the effectiveness of the two measures does not

significantly benefit from the addition of terms to the query.

This behaviour of measures M1 and M3 might appear useful in an operational environment, like a
web search engine for example, where user queries comprise only few terms (Jansen et al., 2000).
In the specific experimental environment used in this thesis, M1 and M3 outperformed the cosine
coefficient in a large number of cases when short queries were used. It remains to be seen whether

such improvements would occur in operational environments.

It should also be mentioned that the results reported in this section regarding the effect of query
length, may have been affected by the way that the expanded forms of the queries were obtained.
If the expanded terms were chosen in a different way, then a different picture regarding the
effectiveness of the measures for varying query lengths might have been obtained. If, for example,
expansion terms were obtained algorithmically, then the effectiveness of M2 compared to M1 and
M3 may improve. Query terms added algorithmically may be better at discriminating between

relevant and non-relevant documents than the ones used here.

If one assumes that the retrieval effectiveness of query terms is an indication of their effectiveness
at discriminating between relevant and non-relevant documents, then some useful insight is
provided from a per-query analysis of the results of the SNN test. An analysis of the queries for
which M2 is consistently more effective than the other measures (M1, M3 and cosine) for the

WSJ collection, demonstrated that a large number of these queries display high retrieval
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effectiveness. For example, three of the topics for which (in their original, unexpanded form) M2
is consistently more effective are TREC topics 31, 32 and 34. The 11-point average precision for
these three topics is 0.31, 0.47 and 0.39 respectively, which is significantly higher than the
average for the WSJ collection which is 0.25 (Table 5.2, section 5.5.2). The length of these three
topics in their original form is 7, 7 and 10 terms respectively, near the 7.6 average of the
collection. It should however be noted that this correlation is not general, i.e. not all of the most
effective queries, in terms of retrieval, are also the ones for which M2 is the most effective

measure.

The observation, however, that there is some correlation between the effectiveness of measure M2
and the retrieval effectiveness of the queries, suggests that further research would be needed to
appreciate the dependence of query-sensitive measures on query length, as well as on the

“quality” of the terms that the query contains.

The way that the expanded forms of queries were obtained may also be a contributing factor for
the different effect of query length when using the two TREC collections. Tables 7.9 and 7.10
show that the results of the SNN test in each of the two collections are differently affected by
variations in query length. The discriminating power of the query terms in each query form
examined is likely to be different for each collection, and therefore likely to have a different effect

on the effectiveness of the query-sensitive measures.

The way that TREC relevance assessments are constructed may also be a factor contributing to
the results reported in this section. In Chapter 2 (section 2.4) I mentioned the pooling technique
which is used to generate the relevance assessments for the TREC collections (Harman, 1993). In
brief, the top 200 documents retrieved in response to each topic by each of the IR systems
participating in TREC were retrieved (25 systems in total), and it was only for these documents
that relevance assessments were made. Any documents not retrieved in the top 200 were assumed
to be non-relevant. Each of the systems which participated in TREC used different fields of the
TREC topics to retrieve documents (e.g. title, concepts, etc). This naturally affects the type of
documents which were retrieved by these systems, and consequently, the type of documents for
which relevance assessments were made. For the expanded version of the queries used here, the
title, description and concepts fields were used. The discriminating power of query terms
contained in these fields may be influenced by the method that has been used to assess the

relevance of the TREC documents.

7.5 Summary

In this chapter I introduced means by which query-sensitive similarity measures can be defined.

Query-sensitive measures bias similarity towards pairs of documents that jointly possess terms
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that are expressed in a query. This is based on the view that similarity is a dynamic and purpose-
sensitive notion, and that query-sensitive measures have the potential to capture the dynamics of

similarity for the calculation of interdocument relationships.

I presented three such measures. Two of them take into account all common terms between a pair
of documents, but bias the similarity measure towards those common terms that are also query
terms (measures M1 and M3). Each of these two measures uses a different function to combine
static and variable similarity (M1 uses a product of the two sources, where M3 uses a linear
combination). The third measure only takes into account common terms between documents that

are query terms (measure M2).

Four main issues were experimentally investigated in this chapter. The first issue was the
effectiveness of the query-sensitive measure M3 as a function of the ratio of two parameters that
assign importance to the static and variable similarity between two documents. The results across
the six document collections were consistent, in that significantly higher effectiveness occurred
when the ratio of the parameters was set so as to assign greater importance to the variable part of
the similarity. The actual setting depends on the characteristics of the test collection under
investigation. For the test collections that are examined in this thesis, a setting between 1:4 and

1:7 proved to be the most effective.

The second issue was the comparative effectiveness of the three QSSM and the cosine coefficient.
The results demonstrated that measures M1 and M3 are always significantly more effective than
the cosine at placing co-relevant documents close to each other. M2 outperformed the cosine for a
large number of experimental conditions, mainly for small homogeneous collections. It was also
demonstrated that the effectiveness of query-sensitive measures does not follow the same pattern
of the cosine coefficient, and of randomly generated similarities, i.e. to consistently decrease as

the number of documents increases.

The third issue related to the comparative effectiveness of the three query sensitive measures. M2
was less effective than the other two for the vast majority of experimental conditions, and
especially for long, topically diverse documents. Measures M1 and M3, in general, performed
comparably, with M1 proving more effective at adjusting to the topical nature of relevance

typically employed in IR research.

The fourth issue investigated in this chapter, was the effect of query length on the effectiveness of
the three measures. Again, M1 and M3 displayed a similar behaviour, and although influenced by
short query length still managed to outperform the cosine coefficient for a large number of

experimental conditions. Measure M2, on the other hand, proved highly sensitive to variations of

query length.
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The main conclusion from this chapter is that the use of query-sensitive measures for the
calculation of interdocument relationships is highly effective. Regarding the motivation behind
the introduction of QSSM to IR, the per-query adherence to the cluster hypothesis (section 5.3),
the results presented in this chapter demonstrate that, compared to static measures, query-sensitive
measures achieve a significantly higher adherence to the hypothesis. A perfect per-query
adherence is not achieved, and it would seem unlikely that considering only topical aspects of

relevance would achieve this.

The results presented in this chapter demonstrate the applicability of query-sensitive measures to
IR. A more thorough evaluation of such measures can be performed if one integrates them in a
wider application area. This is the aim of the following chapter, where query-sensitive measures

are applied to hierarchic document clustering.
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Chapter 8

Hierarchic Document Clustering Using

Query-Sensitive Similarity Measures

8.1 Introduction

In this chapter I investigate the effectiveness of the second form of query-based clustering that is
considered in this thesis: the generation of document hierarchies by using query-sensitive

similarity measures.

In Chapter 6 I examined the effectiveness of query-based clustering in the form of post-retrieval
clustering. The results that I presented in Chapter 6 suggested significant improvements compared
to static clustering. The results also demonstrated that post-retrieval clustering has the potential to
exceed the effectiveness of inverted file searches. However, a number of shortcomings regarding
the effectiveness of post-retrieval clustering were noted in that chapter. These mainly involved the
unfavourable comparative effectiveness to inverted file searches at the MK4 level for a large
number of cases (section 6.3.2), and the close-to-random effectiveness for a number of cases

when using the LISA and CISI databases (section 6.3.3).

The form of hierarchic clustering that is investigated in this chapter can be seen as introducing a
further level of query influence on top of post-retrieval clustering. In addition to clustering
retrieval results, the query is also taken into account when calculating interdocument associations.
This is done by using the query-sensitive measures proposed in Chapter 7 (section 7.2.1). The
effectiveness of these measures in structuring the document space in terms of the proximity of co-

relevant documents was demonstrated in Chapter 7.

I investigate the effectiveness of query-based clustering which uses query-sensitive similarity

measures by comparing its effectiveness to that of clustering which uses conventional static
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similarity measures. Using query-sensitive similarity measures with any clustering method that
makes use of a similarity matrix (such as for example the four hierarchic methods used in Chapter
6) is a straightforward process: the only step of the clustering process that is affected is that of the

generation of the interdocument similarity matrix (section 3.3.1).

This in turn means that the comparison of the effectiveness of document clustering using query-
sensitive measures to document clustering using static measures is feasible. Keeping all other
experimental settings constant (i.e. indexing exhaustivity, term weighting schemes, etc.) and
varying only a single experimental parameter (i.e. the similarity measure), it is possible to
attribute any variations in retrieval effectiveness to that single parameter that is varied. In this
chapter, the two different “values” of the experimental parameter under consideration are defined
by the use of different types of similarity measures, i.e. static (cosine coefficient), and query-

sensitive (measures M1, M2 and M3 as defined in section 7.2.1).

Moreover, by employing optimal evaluation to measure cluster-based retrieval effectiveness, it is
possible to attribute any differences in effectiveness across experimental conditions to the
variation of the experimental conditions themselves (internal factors), and not to other (external)
factors that may influence the outcome of the evaluation. Such external factors were outlined in

previous chapters (mainly in sections 3.5.1, 3.5.2 and 4.3.3).

The study of the effectiveness of the application of query-sensitive measures to hierarchic
document clustering is organised in four parts, each part presented in a section of this chapter. At

the end of each section I also present a discussion that summarises the main findings of each part.

In the first part, in section 8.2, I examine the effectiveness of hierarchic clustering using query-
sensitive similarity measures, and I compare it to three aspects of the effectiveness of clustering
using static similarity measures presented in Chapter 6. More specifically, in section 8.2.1 I
compare the effectiveness of hierarchic clustering using a conventional static similarity measure
(i.e. the cosine coefficient), to the effectiveness using the three QSSM defined in the previous
chapter. In section 8.2.2 I then examine how the effectiveness attained with query-sensitive
measures compares to that obtained by an inverted file search, and in section 8.2.3 I compare the

query-sensitive effectiveness to that of random clustering.

The second part of the study, in section 8.3, involves the investigation of the characteristics of
hierarchies generated by using QSSM. In section 8.3.1 I examine whether the use of QSSM to
generate document hierarchies alters the behaviour of the clustering methods in terms of the
characteristics of the hierarchies that they generate. Then, in section 8.3.2 I present statistics about
the optimal clusters generated using the QSSM, in terms of average size and number of relevant

documents they contain (section 8.3.2.1), and in terms of the levels of the hierarchy in which
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optimal clusters occur (section 8.3.2.2). I also compare these data to when using static measures

(i.e. the data presented in Chapter 6).

The third part of the study involves the comparison of the effectiveness of hierarchies generated
by each of the three query-sensitive measures (section 8.4). The aim of this comparison is to
examine whether there is a single measure that tends to consistently yield the highest
effectiveness in the experimental environment used. In this section, I also examine the effect that
query length has on the effectiveness of the query-sensitive measures (section 8.4.2), and the

effectiveness of the QSSM across different numbers of top-ranked documents (section 8.4.3).

The last part of the study looks into the comparative effectiveness of the four clustering methods.
In Chapter 6 (section 6.4) I examined the comparative effectiveness of these methods under post-
retrieval clustering (and also under static clustering). In section 8.5 I present results that compare
these methods when QSSM are used for the calculation of interdocument relationships. I finish

this chapter by summarising its main findings in section 8.6.

8.2 The effectiveness of hierarchic clustering using

query-sensitive similarity measures

In this section I report on results that are obtained by the application of query-sensitive measures
to hierarchic clustering methods. The results are generated by applying each of the three query-
sensitive measures defined in Chapter 7 (section 7.2.1) to the four clustering methods used (group
average, Ward, complete link and single link). As mentioned previously, the effectiveness of the
hierarchies is evaluated by using optimal cluster evaluation, and by calculating effectiveness for

the three values of the parameter £ (0.5, 1, 2) of the E measure (section 4.3).

Evaluation in this chapter is performed in the same way as in Chapter 6, that is, by considering all
relevant documents for a query for all numbers of top-ranked documents. As I discussed in
section 6.3, this type of evaluation does not distort the results presented and the conclusions
extracted. However, this type of evaluation can explain some of the results that are reported in this
section, as well as in later sections of this chapter. When this happens, I explicitly report this

effect in the respective section.

The results in this section are examined under three different viewpoints. First, in section 8.2.1,
the results are examined in comparison to the results reported in section 6.3 (Table 6.4) and in
Appendix B (Tables B1-B4). These results correspond to cluster-based retrieval effectiveness
obtained by the use of a static similarity measure (the cosine coefficient). Then, in section 8.2.2,
the results are examined in comparison to the effectiveness obtained by an inverted file search

(IFS). Results for the effectiveness of IFS are reported in Appendix B (Tables B1-B7), and were
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also reported in section 6.3 (Table 6.4). In section 8.2.3, the results are viewed in comparison to
cluster-based effectiveness obtained from random structures. Results for random cluster-based

effectiveness were reported in section 6.3.3, and are presented in Appendix B (Tables B8-B11).

8.2.1 Comparatively to clustering using static similarity measures

In Table 8.1 optimal cluster-based retrieval results are presented for the six test collections used.
The results are obtained from document hierarchies generated by the group average method. The
results in this table correspond to E values, and therefore the lower the values the higher the
retrieval effectiveness. The E values presented in this table are calculated for f=0.5 (precision-
oriented searches) and for f=2 (recall-oriented searches). The measure used to gauge optimal
cluster effectiveness is the MK1 measure (section 4.3.5), i.e. the same that was used in Chapter 6.

The results for all four clustering methods are presented in Appendix D, Tables D1-D4.

For each value of g there are four columns in Table 8.1. Each column corresponds to the E value
obtained when using a different similarity measure. The values under the “Standard” column
correspond to the ones obtained when using the cosine coefficient, and they are the ones reported
in Chapter 6 (Table 6.4); they are also presented here for ease of reference. The other three values
correspond to E values obtained with each of the three QSSM: M1, M2 and M3. Throughout this
chapter I mostly refer to cluster-based retrieval effectiveness obtained using the cosine coefficient
as “standard effectiveness”, and to effectiveness obtained using any of the query-sensitive

measures as “query-sensitive effectiveness”.

The results using measure M3 are obtained by the ratio that proved to be the most effective in the

previous chapter (section 7.4.2). Experiments were carried out using other ratios of the two

parameters in the calculation of M3 (3, 32), however no significant deviations from the results

presented in 7.4.2 were noted in relation to the comparative effectiveness obtained by the various
ratios. These data do not alter the pattern of the results presented in this chapter. Therefore, for the
remaining of this chapter, all results reported for measure M3 have been obtained by using the

single most effective setting of the two parameters that was described in section 7.4.2.

The results presented in Table 8.1, and those presented in Tables D1-D4, demonstrate that, in the
majority of the experimental conditions, the use of query-sensitive measures in document
clustering is more effective than the use of a static measure. Effectiveness improvements are
consistent and significant. The extent of the improvements that each of the query-sensitive
measures introduces depends on the number of top-ranked documents clustered, on the clustering
method used, on the type of search performed (i.e. recall or precision-oriented), and on the

document collection clustered. I discuss each of these issues in the following paragraphs.
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p=0.5 p=2
AP Standard Ml M2 M3  Standard Ml M2 M3
top100 0.511 0.527 0573 0520 0.619 0.613 0.643 0.618
top200 0.514 0509 0.567 0.511 0604 0576 0.603 0.580
top350 0.507 0494 0.557 0497 0576 0545 0580 0.551
topS00 0.508 0477 0.562 048 0560 0522 0575 0.536
top750 0.488 0452 0.564 0477 0562 0505 0569 0518
topl000  0.482 0448 0.561 0.467 0550 0513 0.565 0.512
CACM Standard Ml M2 M3  Standard Ml M2 M3
top100 0438 0435 0468 0438 0.502 0472 0.509 0490
top200 0476 0426 0417 0418 0512 0476 0480 0484
top350 0469 0412 0423 0408 0520 0450 0480 0475
top500 0.461 0404 0412 0417 0540 0440 0478 0.468
top750 0465 0400 0427 0407 0537 0442 0483 0470
top1000  0.463 0405 0417 0412 0537 0445 0479 0462
full 0.641 0.639 0642 0.641 0.782 0.787 0.788 0.787
CISI  Standard Ml M2 M3  Standard Ml M2 M3
top100 0.630 0.635 0.667 0642 0702 0702 0.710 0.708
top200 0.609 0592 0.648 0604 0658 0649 0.671 0.649
top350 0.589 0578 0.641 0598 0.655 0614 0.642 0.623
top500 0.593 0.570 0.648 0.593 0.656 0.615 0.639 0.615
top750 0.567 0.561 0.643 0577 0649 0.609 0.642 0615
full 0790 0787 0.787 0787 0798 0.797 0.796 0.797
LISA  Standard Ml M2 M3  Standard Ml M2 M3
top100 0.517 0463 0.524 0492 0576 0.524 0.584 0.550
top200 0.504 0423 0478 0438 0559 0503 0550 0.507
top350 0493 0411 0451 0432 0553 0490 0496 0477
top500 0487 0425 0.465 0458 0568 0497 0.503 0.507
top750 0489 0446 0475 0449 0571 0490 0.523 0.500
topl000 0475 0450 0.466 0444 0549 0496 0.520 0.490
full 0.643 0641 0.644 0642 0716 0713 0716 0714
MED  Standard Ml M2 M3  Standard Ml M2 M3
top100 0300 0264 0324 0294 0308 0.296 0335 0.319
top200 0.281 0.264 0300 0.287 0294 0277 0319 0.300
top350 0.281 0.254 0.288 0.274 0271 0.269 0321 0.294
top500 0279 0258 0291 0.275 0273 0270 0322 0.291
top750 0.276 0259 0.292 0278 0272 0271 0324 0295
full 0.682 0.682 0.687 0684 0711 0.734 0.740 0.736
WSJ  Standard Ml M2 M3 Standard Ml M2 M3
top100 0.608 0.585 0.609 0586 0696 0.679 0.682 0.682
top200 0.604 0560 0.594 0.558 0.661 0.620 0.633 0.629
top350 0.603 0541 0.591 0546 0650 0.582 0.590 0.583
top500 0.585 0.534 0581 0535 0642 0568 0575 0574
top750 0.585 0537 0.569 0537 0.640 0563 0.573 0.567
topl000 0.586 0.541 0.572 0.536 0.641 0.559 0.569 0.557

Table 8.1. Optimal cluster-based effectiveness using the group average method. Highest effectiveness

(lowest E value) for each column appears in bold
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The study of retrieval effectiveness using each of the three query-sensitive measures when
different numbers of top-ranked documents are clustered is presented in section 8.4.3. Instead,
what is of interest here, is that there seems to be a general pattern across experimental conditions
for query-sensitive effectiveness to increase its improvement over standard effectiveness as the

number of top-ranked documents increases.

For example, in Table 8.1, when using the CISI collection and measure M1, the effectiveness
obtained at n=100 is slightly lower than that obtained using the cosine coefficient (though not
significantly so). When more documents are clustered, query-sensitive effectiveness with M1
becomes higher than the standard effectiveness, and for n>350 for recall-oriented searches it
becomes significantly more effective. Another such example can be found by looking at the
results for the WSJ collection. When using M1 and recall-oriented searches (#=2), the difference
in effectiveness between the M1 (column 7) and Standard (column 6) columns of the table range
from 5.6% for n=100, to 23% for n=1000 in favour of M1, with the differences consistently

increasing in between.

The only deviation from this general trend is noted when comparing query-sensitive and standard
effectiveness for n=full. It should be reminded that n=full corresponds to a static clustering when
using the cosine coefficient, whereas it corresponds to a dynamic clustering which changes on a
per-query basis when using any of the query-sensitive measures. The data presented in Table 8.1,
and in Tables D2-D4 in Appendix D, show that there are no significant changes between the
effectiveness of standard and query-sensitive clustering. This is the case for all four test
collections (CACM, CISI, LISA, and Medline), all values of £, and all query-sensitive measures.

Regarding the effectiveness gains across different clustering methods, the application of query-
sensitive measures introduces significant improvements to all four methods, but to a different
extent. Of the four clustering methods used, Ward’s method (Table D2) in general displays the
smallest difference between query-sensitive and standard effectiveness. This difference is
statistically significant in many of the experimental conditions, and especially for values of

n>100. An explanation for this behaviour of the Ward method is presented in section 8.5.4.

The single link method, on the other hand, generally displays the largest improvement when
comparing query-sensitive and standard effectiveness. Recall from section 6.4 that single link was
the least effective of the four methods in all experimental conditions (with the exception of the
Medline collection). The comparative effectiveness of the four methods when query-sensitive

measures are used is investigated in section 8.5.

Another observation from the results, is that recall-oriented searches generally introduce larger
improvements than precision-oriented searches. The significance of the results in favour of query-

sensitive effectiveness using recall-oriented searches is much more consistent than that of
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precision-oriented searches. In fact, there are a number of cases where query-sensitive
effectiveness significantly outperforms standard effectiveness for §=2 but fails to do so for =0.5.
Such an example in Table 8.1 is found when using the CISI collection: for n>350 query-sensitive
recall-oriented effectiveness is significantly more effective than standard effectiveness, but

precision-oriented effectiveness is not.

It should however be emphasised that the results for precision-oriented searches are also, in the
majority of the experimental conditions, improving the effectiveness of standard-based retrieval.
It is just that they do not achieve statistical significance in as many cases as recall-oriented
searches. However, the consistency of the improvements should be taken in consideration (Keen,
1992).

When examining the results on a per-collection basis, the trends seen in Table 8.1, using the
group average method, are representative of the behaviour of the other three clustering methods.
More specifically, for three test collections (CACM, LISA, and WSJ) the use of any query-
sensitive measure improves the effectiveness of standard cluster-based retrieval. These three
collections also show the largest differences when comparing query-sensitive and standard
effectiveness. Most of the differences in these cases are material (i.e. over 10%), and in some
cases they exceed 20%. The significance of the results varies for M1, M2 and M3, but in general
for these three collections it is justifiable to say that all three QSSM improve standard cluster-

based effectiveness.

When using AP and Medline, the use of measures M1 and M3 introduces improvements over the
use of the cosine coefficient for the majority of clustering methods and types of searches. In most
cases the improvement in effectiveness is significant, and in many cases the difference in
effectiveness exceeds 30% (e.g. single link method, Medline collection, recall-oriented searches,
measures M1, M2 and M3 in Table D4). There are some exceptions to this behaviour that are
mainly noted when using Ward’s method with either of these two collections and either of M1 or
M3. When using this method, query-sensitive effectiveness is not consistently higher than
standard effectiveness, and in some cases (recall-oriented searches using Medline and M1) it is

consistently worse.

When applying measure M2 to the AP collection effectiveness also generally decreases. The
decrease in effectiveness is significantly higher for precision-oriented searches than for recall-
oriented ones. In the case of recall-oriented searches, the decrease in effectiveness is generally not
statistically significant. The only case where the use of M2 consistently introduces improvements
over the use of the cosine coefficient for this collection, is for recall-oriented searches using the
single link method (Table D4). When using this measure (M2) with Medline, improvements occur

for the other three clustering methods, but not for the group average method.
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The database that displays the most variable behaviour is CISI. Measures M1 and M3 display a
comparable behaviour in this database, with mainly significant improvements for larger values of
n (typically >350), except for precision-oriented searches with the single link method where
effectiveness consistently (but not significantly) decreases. The use of M2 has generally a
significant negative effect on precision-oriented searches, and an insignificant effect on recall-
oriented searches where differences in effectiveness occur in favour of either query-sensitive or

standard clustering,.

To sum up the findings of this section, the use of query-sensitive measures in hierarchic clustering
introduces significant effectiveness improvements compared to using a static similarity measure.
The improvements in effectiveness vary depending on the clustering method used, the number of
documents clustered, and the type of search performed. The only cases where the use query-
sensitive measures consistently results in lower effectiveness than standard clustering are noted

when using the M2 measure with the AP and CISI databases.

In the following section I examine how the effectiveness of query-based clustering using query-

sensitive measures compares to that of a conventional inverted file search.

8.2.2 Comparatively to IFS effectiveness

In this section, the effectiveness of cluster-based retrieval using query-sensitive measures is
compared to the effectiveness of inverted file searches (IFS). Results for IFS effectiveness
calculated through measures MK3 and MK4 (section 4.3.5) for the six collections are presented in
full in Appendix B (Tables B1-B7). These measures do not depend on the outcome of the
clustering process, and therefore the values that were calculated using these two measures in
Chapter 6 apply here as well. Measure MK 1-k depends on the outcome of the clustering process,
since it calculates effectiveness based on the number of documents that are contained within an
optimal cluster. Therefore, the values that were presented for this measure in Chapter 6 do not
apply here. However, IFS results at the MK1-k level are not presented since they do not compare

well with query-based effectiveness and do not form part of the discussion in this section.

In section 6.3.2, when I examined the comparative effectiveness of post-retrieval clustering to that
of IFS, it was demonstrated that cluster-based effectiveness significantly outperformed IFS
effectiveness for a large number of experimental conditions, and especially using the group
average method. It was also demonstrated that precision-oriented searches compared more
favourably to IFS effectiveness than recall-oriented searches, and that the single link method only
managed to outperform IFS effectiveness at the MK1-k level for most experimental conditions.
Moreover, the effectiveness obtained by static clustering (i.e. n=full when using a static similarity
measure) did not compare favourably to IFS effectiveness, which it only managed to exceed at the

MK1-k level for a small number of experimental conditions.
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In the previous section (8.2.1) I demonstrated how the use of query-sensitive measures for the
calculation of interdocument relationships improves the effectiveness of hierarchic clustering
methods for the majority of cases that were investigated. In the remaining of this section, I
examine whether these improvements translate into more favourable cluster-based effectiveness

comparatively to IFS effectiveness.

p=0.5 p=2

AP Ml IFS Ml IFS
top100 0.527 0.550 (MK4) 0.613 0.628 (MK4)
top200 0.509 0.543 (MK4) 0.576 0.613 (MK4)
top350 0.494 0.552 (MK4) 0.545 0.611 (MK4)
top500 0.477 0.552 (MK4) 0.522 0.614 (MK4)
top750 0.452 0.548 (MK4) 0.505 0.605 (MK4)

top1000  0.448 0.548 (MK4) 0.513 0604 (MK4)
CACM MI IFS M1 IFS

top100 0.435 0.503 (MK3) 0.472 0.503 (MK3)
top200 0.426 0.498 (MK3) 0.476 0.501(MK3)
top350 0.412 0.444 (MK4) 0.450 0.492 (MK4)
top500 0.404 0.444 (MK4) 0.440 0.492 (MK4)
top750 0.400 0.444 (MK4) 0.442 0.492 (MK4)
topl000  0.405 0.444 (MK4) 0.445 0.492 (MK4)

full 0.639 0.713 (MKI-k) 0.787 -

WSJ Mi IFS MI IFS
top100 0.585 0.645 (MK4) 0.679 0.712 (MK4)
top200 0.560 0.640 (MK4) 0.620 0.679 (MK4)
top350 0.541 0.638 (MK4) 0.582 0.659 (MK4)
top500 0.534 0.636 (MK4) 0.568 0.651 (MK4)
top750 0.537 0.633 (MK4) 0.563 0.647 (MK4)

topl000  0.541 0.633 (MK4) 0.559 0.646 (MK4)

Table 8.2. Comparative effectiveness of cluster-based and inverted-file searches using the group average

method

In Table 8.2, a view of the data in Table 8.1 focused on the comparative effectiveness of the two
searches is presented (using the group average method for f=0.5 and 2). Data for three test
collections are presented in this table (AP, CACM, and WSJ). These are the same collections that
were presented in Table 6.7 comparing standard cluster-based effectiveness to IFS effectiveness.
The first column of this table displays the number n of documents clustered for each test
collection. The second column shows the optimal cluster-based effectiveness as calculated by the
MKI1 measure for §=0.5. This column contains values obtained when the M1 measure is used to
calculate similarities. In the next column, the effectiveness of the IFS measure that the
corresponding cluster-based effectiveness significantly outperforms (as calculated by the
Wilcoxon signed-ranks test, for significance level p<0.05) is displayed, along with the name of

the IFS measure in brackets. It should be reminded that the “ranking” in decreasing order of

171



Chapter 8 Hierarchic Document Clustering Using QSSM

importance of the three measures which are used to calculate IFS effectiveness is MK4, MK3 and
MK1-k.

For example, when using the CACM collection for f=0.5, cluster-based effectiveness is
significantly higher than the MK3 measure for n=100 and 200, and higher than the MK4 measure
for n=200, 350, 500, 750, 1000. Columns four and five display similar information for recall-

oriented searches (i.e. f=2).

It should also be noted that the results for query-sensitive effectiveness in Table 8.2 have been
calculated using the M1 measure. Comparatively to IFS effectiveness, measures M1 and M3
displayed comparable effectiveness in the majority of cases (Tables D1-D4). As a consequence,
by presenting the results based on M1 here there is no major distortion of the experimental results.

The comparative effectiveness of the three query-sensitive measures is presented in section 8.4.

By comparing the levels at which cluster-based effectiveness is significantly higher than IFS
effectiveness between Table 8.2 (query-sensitive effectiveness) and Table 6.7 (standard
effectiveness), one can note that when QSSM are used (Table 8.2) the levels improve. For
example, when the M1 measure is applied to WSJ, the resulting effectiveness is significantly
higher than IFS effectiveness at the MK4 level for all values of n and both types of searches. In
Table 6.7 recall-oriented searches managed to significantly outperform IFS effectiveness only at
the MK3 (for n=100 and 200), and MK1-k levels (for the rest values of #).

This observation is not only valid for the data presented in Table 8.2, but for the majority of the
experimental conditions. As I mentioned in the previous section, in general, the improvements
introduced by the QSSM are greater for recall-oriented searches. This has as a consequence for
recall-oriented searches to perform more favourably when compared to IFS effectiveness, and
indeed to manage to exceed it significantly at the MK4 level (especially for n>100). The only
cases where cluster-based effectiveness using QSSM fails to exceed IFS effectiveness at the MK4
level for recall-oriented searches, is when using CACM and Medline and the complete link
method, CISI and the single link method, and Medline and Ward’s method.

Precision-oriented searches are also improved, and this translates into even higher effectiveness
compared to that of IFS. This is also displayed in the data of Table 8.2 in the case of the CACM
collection. In Table 6.7 it was shown that the standard effectiveness of the group average method
significantly outperforms IFS at the MK3 level for n=100, and at the MK1-k level for the rest
values of n. In Table 8.2, however, cluster-based effectiveness (using QSSM) exceeds IFS
effectiveness at the MK3 level for n=100, 200 and full, and at the MK4 level for all other values

of n. This behaviour is typical for the other collections and clustering methods.

The case of the single link method should also be emphasised. The results of section 6.3.2 had

demonstrated that the effectiveness of this method did not compare favourably to IFS
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effectiveness for most experimental conditions. However, when using QSSM (and especially
measures M1 and M3), the effectiveness of the single link method significantly increases, and this

results into a much better comparative performance to IFS.
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0.63 4
0.62 4
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top100  top200  top350  top500  top750  top1000

Figure 8.1. Precision-oriented effectiveness using the single link method and the WSIJ collection

For example, in Figures 8.1 and 8.2 the precision and recall-oriented effectiveness obtained using
the single link method and the WSJ collection is displayed. In these two figures the effectiveness
(vertical axis) obtained under three different conditions is displayed: standard (using the cosine
coefficient), query-sensitive (using M1, M2 and M3) and IFS (calculated by measure MK4).

Effectiveness values are plotted against the number » of top-ranked documents (horizontal axis).

In both these figures, the effectiveness using the cosine coefficient is lower (and for n>350
significantly lower) than IFS effectiveness at the MK4 level. When using QSSM however,
cluster-based effectiveness becomes significantly higher than IFS effectiveness. For recall-
oriented searches (Figure 8.2) all three QSSM consistently outperform IFS (and also significantly
for n>100). For precision-oriented searches (Figure 8.1), measures M1 and M3 result in
significantly more effective retrieval than IFS for all values of . Clustering based on M2 is more

effective than IFS for n>100, and significantly more effective for n=500 and 750.

The only test collection for which cluster-based effectiveness still does not compare favourably to
IFS effectiveness is LISA. Despite that the use of all three QSSM introduces significant
improvements over standard effectiveness for this collection (section 8.2.1), this is not enough for
cluster-based effectiveness to consistently exceed IFS effectiveness at the MK4 level. More
specifically, no precision-oriented search using the group average, complete link and Ward’s
methods, and no search of either type using the single link method, manage to exceed IFS at the
MK4 level.
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However, in all other cases using LISA, query-sensitive measures improve the levels at which
cluster-based effectiveness exceeds IFS effectiveness. For example, when using the complete link
method to perform recall-oriented searches in this collection, standard cluster-based effectiveness
is significantly worse than IFS effectiveness at the MK4 level for most values of n (Table B3).
When using query-sensitive measures, measures M1 and M3 consistently outperform IFS at the

MK4 level (and significantly for many cases).
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Figure 8.2. Recall-oriented effectiveness using the single link method and the WSJ collection

The results presented in this section further strengthen the findings of the previous section in
relation to the effectiveness of hierarchic clustering using QSSM. Not only does the use of QSSM
improve effectiveness compared to standard clustering, it also improves the effectiveness of
cluster-based retrieval comparatively to IFS. As I demonstrated, it does so in a consistent and
significant way, so that in the majority of the cases cluster-based effectiveness exceeds IFS

effectiveness at the MK4 level.

8.2.3 Comparatively to random cluster-based effectiveness

The last issue that I examine in section 8.2 is the comparative effectiveness of hierarchies
constructed by using similarity matrices generated by query-sensitive measures, and by using

similarity matrices generated by random means.

In Chapter 6 (section 6.3.3), I examined the comparative effectiveness of standard and random
document hierarchies for post-retrieval and static (i.e. n=full when using a static similarity
measure) clustering. The main conclusion of that section was that post-retrieval clustering
effectiveness is significantly higher than random effectiveness, with the exception of the CISI and
LISA databases. More specifically, when using CISI all four clustering methods for recall-
oriented searches and small values of n displayed close-to-random effectiveness, and in the

specific case of the single link method, random effectiveness was slightly higher than actual
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effectiveness for n=100. When using LISA, it was only the single link method for recall-oriented
searches that displayed effectiveness values not significantly higher than that of random

structures.

The comparative investigation of query-sensitive and random effectiveness is limited to these two
cases. In all other cases, query-sensitive cluster-based effectiveness is significantly higher than
random effectiveness (since query-sensitive effectiveness is in general higher than standard
effectiveness). Even in cases where the use of QSSM results in lower effectiveness than that of
standard clustering (e.g. the use of measure M2 with the AP collection), it is still significantly

higher than that of random clustering.

The data in Table 8.1 and Tables D2-D4 demonstrate that, when using the LISA collection, all
three QSSM result in effectiveness that is significantly higher than standard effectiveness. Query-
sensitive effectiveness is much higher than standard effectiveness when using this database,
especially for recall-oriented searches of all clustering methods (section 8.2.1). This has as a
consequence that query-sensitive cluster-based effectiveness is significantly higher than random
effectiveness (Tables B8-B11) in all cases using this database, including the “problematic”, under

standard clustering, case of the single link method for recall-oriented searches.

When using the CISI collection and the group average, complete link and Ward’s methods, in
general, the use of M1 and M3 improves cluster-based effectiveness (for the case of recall-
oriented searches for n=100, 200) comparatively to random effectiveness, but not always in a
statistically significant manner. The use of M2 with these three clustering methods does not
significantly differ from standard and random effectiveness for these cases, and therefore does not

change the comparative effectiveness of actual and random clustering.

n Standard Random Ml M2 M3
100 0.733 0.723 0.725 0.719 0.704
200 0.669 0.692 0.676 0.691 0.679
350 0.666 0.700 0.663 0.676 0.659
500 0.677 0.720 0.656 0.668 0.652
750 0.685 0.753 0.646 0.662 0.646
full 0.825 0.831 0.824 0.824 0.823

Table 8.3. Random vs. actual effectiveness for the CISI collection using the single link method for f=2

When using the single link method, recall-oriented effectiveness for small values of n remains
problematic. Table 8.3 displays the effectiveness for this method using the cosine coefficient
(standard), random similarities and the three query-sensitive measures. By observing the results
for small values of n, one can note that for n=100 and 200 all actual cluster-based effectiveness
values (i.e. standard, M1, M2 and M3) are close to random values. Any significant differences in

favour of actual clustering occur for n>350.
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Therefore, as a general comment for the behaviour of CISI with any of the clustering methods
used, for small numbers of top-ranked documents (i.e. 100 and 200) and recall-oriented searches,
it is valid to conclude that cluster-based effectiveness does not significantly differ from that of
random clustering. The only indication of superior performance of query-sensitive clustering is
that it consistently outperforms random effectiveness for all values of # (e.g. in Table 8.3, M2 and

M3 are always more effective than random clustering).

In section 8.2.1 I mentioned that when an entire document collection (i.e. n=full) is considered for
clustering with any of the query-sensitive measures, there are no significant differences in
effectiveness compared to standard clustering (Tables D1-D4). Consequently, the behaviour of
query-sensitive actual clustering comparatively to random clustering does not change, and
therefore any conclusions that were drawn in section 6.3.3 also apply here. In brief, the results in
that section had suggested that when clustering an entire collection, the resulting effectiveness is

consistently higher than random effectiveness, but not significantly so.

8.2.4 Discussion

The results that I presented in this section demonstrate that the use of query-sensitive measures in
hierarchic document clustering significantly improves the effectiveness of hierarchic clustering
that uses static similarity measures. The improvements are in general large, consistent and
significant. All clustering methods benefit from the use of query-sensitive measures, albeit each to
a different extent. Providing further evidence for the utility of query-sensitive measures, is that
their use significantly improves optimal cluster-based effectiveness when using the two topically
heterogeneous TREC databases (AP and WSJ). The only significant exception is noted when
using measure M2 with the AP collection. The effectiveness of QSSM using the TREC databases
is emphasised, as topically diverse datasets are more likely to be used in actual, operational

environments.

Query-sensitive measures further improve cluster-based effectiveness comparatively to inverted
file search effectiveness. The results presented in section 8.2.2 demonstrate that query-sensitive
hierarchic clustering significantly outperforms IFS effectiveness at the MK4 level for the majority
of cases. In this way, it significantly improves the comparative effectiveness of cluster-based to
IFS effectiveness. Moreover, the use of query-sensitive measures improves the comparative
effectiveness of actual to random clustering, by removing a number of cases where static

similarity measures resulted in close-to-random effectiveness.

The results presented in this section further strengthen the findings of Chapter 7 regarding the
effectiveness of query-sensitive measures in IR. By measuring the similarity between documents
in a way that takes the query into account, document hierarchies are more influenced by the

information contained in the query, and relevant documents are grouped more effectively than
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using a static similarity measure. These results also suggest that the use of static similarity

measures in document clustering has been a limiting factor for cluster-based effectiveness.

8.3 Hierarchy characteristics

In this section I examine some characteristics of hierarchies that are generated by using query-
sensitive similarity measures, and I compare them to characteristics of hierarchies generated by
the cosine coefficient. I first examine the variation of the average size of clusters when using
different similarity measures in section 8.3.1. I then focus on the characteristics of optimal
clusters (section 8.3.2) in terms of their size and number of relevant documents they contain, and

also in terms of the levels in the document hierarchies in which they occur.

8.3.1 Size of clusters

In section 5.5.3 (Table 5.3) I had presented the average size of clusters generated by the four
clustering methods for the AP and WSJ collections. These statistics were calculated when the

hierarchies were generated by the cosine coefficient as a measure of interdocument similarity.

It was then demonstrated that the complete link and Ward’s methods produce clusters of a small
size that does not significantly increase as the number n of top-ranked documents increases. This
is a consequence of the way that these methods operate, employing a stringent clustering criterion
that leads to the formation of small, tightly bound clusters (Milligan et al., 1983; Murtagh, 1984b;
Voorhees, 1985a). Moreover, the behaviour of these methods is consistent across all test

collections.

The single link method, on the other hand, tends to produce clusters whose average size increases
consistently as the number n of top-ranked documents increases. The clustering criterion
employed by the single link method is not as stringent as that employed by the other two methods,
leading in large clusters that are characterised by the chaining effect (section 3.4.1) (Jardine &
Sibson, 1971).

The group average method lies somewhere in between the cases defined by the extremes of the
single link method on one hand, and the complete link and Ward’s methods on the other hand.
The size of clusters generated by this method increase as the number # of top-ranked documents

increases, but do not do so in a significant manner.

The output of these four clustering methods depends on the composition of the similarity matrix,
since the clustering criterion which they employ performs a transformation on the matrix.
Keeping all other parameters that may affect similarity calculations constant (e.g. indexing

exhaustivity), the characteristics of document hierarchies will be determined by the properties of
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the similarity matrix generated by the measure in use. In this chapter, the three query-sensitive
measures have been used to calculate interdocument associations. Whereas measures M1 and M3
result in structures of comparable characteristics, measure M2 generates structures that in some

cases differ from those generated by the other two measures.

Group Average Ward Complete Link Single Link
n Cosine M2 Cosine M2 Cosine M2 Cosine M2
100 12.6 16.3 8.8 11.4 8 119 28.4 45.6
200 16.7 259 10.4 17.2 94 17.8 54.1 914
350 21 38.6 11.9 237 10.6 249 91.1 163.2
500 243 50.9 12.7 30.6 11.6 31.8 129.7 234.7
750 28.6 69.9 13.6 41.2 13 42.6 196.7 353.6
1000 31.8 90.6 14.5 52 14.5 53.3 263.4 4749

Table 8.4. Average size of clusters generated using the cosine coefficient and measure M2 for the WSJ

collection

More specifically, the average size of clusters generated using the M2 measure, in some test
collections, is significantly larger compared to that of clusters generated using the cosine
coefficient. Moreover, in these cases for all clustering methods using measure M2, the average
size of clusters increases as n (number of documents) increases. This happens even for Ward’s
and the complete link methods, which as mentioned previously are typically characterised by
small variations in size across different numbers of documents. Table 8.4 displays this for the
WSIJ collection, where the average size of clusters generated using the cosine coefficient and

measure M2 are presented for all four clustering methods.

Ward Complete Link
n Cosine Ml M3 Cosine Ml M3
100 8.8 9 8.2 8 8.2 8

200 10.4 10.8 9.7 9.4 9.6 9.5
350 11.9 12.3 10.9 10.6 10.8 10.6
500 12.7 132 11.7 11.6 11.4 114
750 13.6 14.3 12.8 13 12.3 125
1000 14.5 15.2 13.5 14.5 12.8 134

Table 8.5. Average size of clusters generated using the cosine coefficient and measures M1 and M3 for the

WSIJ collection (Ward and complete link methods)

This increase in size does not occur when using measure M1 or M3. In these cases, the clustering
methods display their typical behaviour, approximating the characteristics of the hierarchies
generated using the cosine coefficient. This is demonstrated in Table 8.5, where the average size
of Ward and complete link hierarchies are presented using the WSJ collection and measures M1
and M3. Data using the cosine are also presented for comparison. The data in the table clearly
present that when using these two measures, the average cluster size remains similar to when

using the cosine coefficient.
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An explanation for this behaviour of hierarchies generated using M2 can be given in terms of the
definition of M2 itself. More specifically, when measure M2 is used to calculate interdocument
similarities, only common query terms between documents contribute towards the calculation of
similarity values (section 7.2.1). Especially in cases where queries are short, the evidence used to
calculate similarity values is limited, and as a consequence, the range of the generated similarity

values will also be limited.

Another way to view this behaviour is in terms of the reduction of the dimensions of the space
based on which the similarity of two documents is judged. M2 collapses the space in which
documents are represented in such a way that only the dimensions corresponding to query terms
are used to represent (and therefore discriminate between) documents. When fewer dimensions
are used, poorer discrimination between documents occurs, a direct consequence of the reduction
of the dimensionality of the document space. The range of the similarity values of interdocument
associations will be limited because only a limited number of terms (document and query terms)
will determine the outcome of the calculations. The lack of any other evidence (i.e. other common

terms between documents) also contributes to this.

This in turn, forces the clustering methods to increase the cluster size so as to accommodate the
poorer separation between documents. As far as these method are concerned, more documents
seem to be (almost) equally similar to each other. As a consequence, the stage of the clustering
process where pairs of documents (or clusters) are joined will be affected. In order to reflect the
limited range of similarity values, documents will be more likely to join other clusters of
documents, creating in this way larger bottom level clusters (the cluster that a document joins

when it enters the hierarchy for a first time).

This effect will become more pronounced as more documents are clustered. The range in the
similarity values will not change, since the dimensions based on which similarity is calculated
remain constant, but the number of documents that are likely to be poorly discriminated increases
(because n increases). This explains the atypical increasing cluster size for increasing values of n

for clustering methods such as Ward’s and the complete link.

The large difference in the composition of the bottom level clusters in the hierarchies can be seen
in Table 8.6. Hierarchies of the WSJ collection using the complete link method are used in this
example, generated by using the cosine coefficient and measure M2. The first column of this table
contains the number n of documents clustered, and the second column the average size of the
bottom level clusters. Columns 3-8 display the number of bottom level clusters which contain a
number of documents that falls within the range of its corresponding heading (e.g. using the
cosine coefficient and #n=100, there are 9.7 bottom level clusters on average whose size is between

4 and 10 documents).
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Cosine

n Avg.size 1-3 4-10 11-20 21-30 31-40 >40
100 2.8 53.5 9.7 0.3 0.1 0 0
200 2.8 106.4 18.5 0.7 0.1 0.1 0
350 2.8 186.1 323 1.5 0.2 0.1 0
500 2.8 266.6 45.8 1.9 0.3 0 0.1
750 2.8 399.9 71.0 2.6 0.4 0.1 0.3
1000 2.8 534.5 93.2 3.8 0.3 0.2 04

M2

n Avg. size 1-3 4-10 11-20 21-30 31-40 >40
100 8.7 26.7 34.8 14.5 4.7 2.5 12
200 14.2 41.1 59.5 354 16.7 8.5 14.7
350 209 60.7 90.2 59.4 34.6 19.4 50.1
500 27.8 75.1 115.3 80.3 49 333 103.1
750 38.6 95.5 14996 1119 71.1 51.6 2144

1000 49.3 1153 1785 136.8 91.6 64.7 345

Table 8.6. Composition of bottom-level clusters for the complete link method using the WSJ collection

The difference in the data of Table 8.6 is quite remarkable. The typical behaviour of the complete
link method is to create a large number of small bottom level clusters, which are mainly formed
either by pairs of documents or by a document that joins a single cluster consisting of a pair of
documents (Voorhees, 1985a). However, when using measure M2 the number of large bottom
level clusters increases significantly compared to using the cosine coefficient, and as a result the
average size of the bottom level clusters increases accordingly. This is a direct consequence of the
effect that was mentioned previously, and is also noted for all other clustering methods. M1 and

M3, on the other hand, generate hierarchies which are much like those of the cosine coefficient in

this respect.

Group Average Ward Complete Link Single Link
n Cosine M2 Cosine M2 Cosine M2 Cosine M2
100 10.7 10.4 8.5 8.3 8.3 9.3 32.7 40

200 13.5 132 10.1 10 11.6 11.8 63.8 81.6
350 16.3 16.8 11.4 11.7 13.1 139 1122 1475
500 19.4 20.3 12.1 13.6 14.2 15.5 160 216.5
750 222 26.4 13.2 16.3 154 17.9 246 339.7
1000 25.3 33.1 14.2 19.3 16 20.7 3289  465.8

Table 8.7. Average size of clusters generated using the cosine coefficient and measure M2 for the LISA

collection

The larger size of clusters generated when using measure M2 in the previous example was
demonstrated by using the WSJ collection, which is characterised by short queries. I mentioned
that the increase in average cluster size is attributed to the limited range of similarities that is a
consequence of the few terms upon which M2 is based. It would therefore seem reasonable to
expect a more “typical” behaviour of the clustering methods (in terms of the size of the clusters

that they produce), when using test collections with larger query length (e.g. CACM, LISA).
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This is verified by the data presented in Table 8.7 using the LISA collection, which has, on
average, almost 20 terms per query. The difference in size between clusters generated using the
cosine coefficient and using measure M2 is much smaller than that in Table 8.4. In fact, for the
group average, Ward and complete link methods, cluster size is not significantly larger when
using M2. The single link method is more sensitive to such effects, and there is an increase in the

size of the clusters, however, the increase is much smaller than that displayed in Table 8.4.

8.3.2 Optimal cluster characteristics

The study of the characteristics of optimal clusters is divided into two parts. First, in section
8.3.2.1 I examine the composition of optimal clusters in terms of documents and relevant
documents contained within optimal clusters. The second part is reported in section 8.3.2.2, where

I examine the hierarchy levels at which optimal clusters occur.
8.3.2.1 Average size and numbers of relevant documents

In section 6.3.4 I had presented details about characteristics of optimal clusters using the cosine
coefficient as a measure of similarity. The variation of optimal cluster size as a function of test
collection characteristics, and especially as a function of the average number of relevant
documents per query, was demonstrated in that section. Also, the effect of the type of search
performed was also emphasised, i.e. optimal clusters for recall-oriented searches tend to be of

much larger size.

In this section I examine the composition of optimal clusters of hierarchies generated using the
query-sensitive measures. I will not focus on the same issues as in section 6.3.4 (i.e. parameters
that affect optimal cluster size), as such issues do not depend on the use of different types of
measures (i.e. the findings of 6.3.4 apply to the case of optimal clusters generated using query-
sensitive measures). Instead, I will focus on the composition of optimal clusters in terms of the
number of relevant documents they contain, and in terms of their size. The aim is to investigate
whether optimal clusters generated by query-sensitive measures result in more “useful” clusters,

in terms of their composition, compared to those generated by the cosine coefficient.

In section 8.2.1 I demonstrated that query-sensitive cluster-based effectiveness is, in general,
significantly higher than standard effectiveness. An interpretation of this, is that the hierarchies
generated using query-sensitive measures contain an optimal cluster which yields a higher
effectiveness (E) value than hierarchies generated using the cosine coefficient. This behaviour, as
it was explained in section 8.2.1, is consistent across clustering methods and test collections, and
although variations are noted, in general query-sensitive effectiveness is higher than standard

effectiveness.
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B=2 p=0.5
n Cosine Ml M2 M3  Cosine Ml M2 M3

100 9547 98.44 96.03 96.21 6878 71.56 7249 71.93
200 92.10 9335 93.10 94.73 56.09 61.10 59.35 62.74
350 90.81 91.88 94.12 91.01 5046 48.81 5445 52.79
500 88.33 89.93 90.77 88.08 46.61 44.84 38.02 48.46
750 84.25 8755 8747 88.13 4212 3890 3597 42.86
1000 79.84 86.73 79.77 8497 3458 3749 3539 4195

Table 8.8. Percentage of relevant and retrieved documents contained in an optimal cluster using the group

average method and the AP collection

By examining the characteristics of optimal clusters generated by each of the similarity measures,
the findings of section 8.2.1 are further strengthened. Not only do query-sensitive measures result
in higher effectiveness, but they also tend to generate more compact optimal clusters, that contain

a higher proportion of relevant documents.

In Table 8.8 I present the percentage of relevant and retrieved documents that are contained
within optimal clusters that are generated using each of the similarity measures (cosine, M1, M2
and M3). Results are presented for recall and precision-oriented searches, using the group average
method and the AP collection. It should be noted that the use of measure M2 in this case results in
lower effectiveness than the use of the cosine coefficient (Table 8.1). The other two measures
improve standard effectiveness with the exception of n=100 for precision-oriented searches,

where there is an insignificant decrease in effectiveness.

By observing the data in Table 8.8 it follows that, in general, optimal clusters generated using
query-sensitive measures contain higher percentages of all the relevant documents “available” at
each value of n. It should however be noted that a higher percentage of relevant and retrieved
documents contained within an optimal cluster does not necessarily imply higher effectiveness.
For example, using measure M2 in Table 8.8, the percentage of relevant and retrieved documents
contained within an optimal cluster is higher than using the cosine, but the effectiveness achieved
by measure M2 in this case is much lower than standard effectiveness. This can be explained on

the basis of the average size of the optimal clusters generated.

In Figure 8.3, the average size (in documents, vertical axis) of optimal clusters is plotted against
the number n of top-ranked documents (horizontal axis) for recall-oriented searches of the AP
collection using the group average method. The average size of optimal clusters using M2 is much
larger than that using the other measures, and this can explain the poor effectiveness of the
measure in this case. As I mentioned in section 8.3.1, average cluster size using this measure
tends to be much larger than that using the other three measures, and this characteristic can have a

negative effect on the effectiveness attainable with this measure.
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Figure 8.3. Average size of optimal clusters using the group average method and the AP collection

for recall-oriented searches

Measures M1 and M3, on the other hand, tend to produce optimal clusters of much smaller sizes
than M2, and in most cases of smaller sizes than using the cosine coefficient. This is noted in the
majority of experimental conditions, and is in agreement with the higher effectiveness that these
two measures display compared to standard effectiveness. This characteristic of M1 and M3, in
combination with their higher effectiveness and their better composition in terms of relevant
documents than the cosine, further strengthens the utility of such measures in hierarchic document

clustering.

Regarding the comparison of characteristics of optimal clusters to optimal sets of a best-match
search, query-sensitive measures generate optimal sets that display better characteristics. Query-
sensitive effectiveness is, in general, higher than IFS effectiveness at the MK4 level (section
8.2.2), and this translates into better characteristics of the optimal sets returned by clustering

which uses query-sensitive measures.

MK4 MI M2 M3
n #docs #rel #Hdocs #rel #docs  #rel #docs  #rel
100 2475 1121 2256 1235 2371 1192 2281 12.08
200 3123 1340 3513 1658 34.10 1571 31.52 15.69
350 3546 1431 4379 1940 3935 17.08 38.13 18.00
500 3625 1444 33,00 18.13 2981 1510 3390 18.13
750 4038 14.83 38.00 2031 3440 17.88 36.71 18.58
1000 38.54 1471 35.67 19.79 39.00 19.08 3338 18.69

Table 8.9. Average size and average number of relevant documents in optimal sets, using the WSJ

collection for precision-oriented searches

In Table 8.9, the average number of documents and relevant documents contained within optimal
sets returned by an IFS (MK4) and by cluster-based searches using each of the QSSM (M1, M2
and M3) are presented. The clustering method used in this case is the group average method.

Results are generated using the WSJ collection and precision-oriented searches. M1 and M3 in

183



Chapter 8 Hierarchic Document Clustering Using QSSM

this case tend to generate optimal clusters that are smaller and that contain more relevant
documents than the sets returned by an optimal IFS search. M2 in some cases tends to generate
larger clusters due to its tendency to generate large clusters using this dataset (section 8.3.1). The
difference in the characteristics of the optimal sets is more pronounced (in favour of clustering)
for recall-oriented searches. The results presented here are representative of the other

experimental conditions.
8.3.2.2 Hierarchy levels

An additional source of experimental evidence which confirms the potentially higher utility of
optimal clusters generated by query-sensitive measures, comes from examining the levels within
the document hierarchies in which such clusters occur. Before examining this issue, it is worth
restating the notion of levels within document hierarchies. I also discussed this issue in section
3.4.

X1 X X3 X¢ Xs

Figure 8.4. An example document hierarchy

In Figure 8.4 an example of a document hierarchy is presented. In this example only the levels at
which pairs of documents (or clusters) merge are shown in the vertical axis, and not the actual
similarity values at which the merges occur. For a hierarchy comprising n documents there will be
n-1 levels in the hierarchy. The actual number of documents contained within clusters at each
level is a characteristic of a particular clustering method. For example, the complete link method
produces a large number of small clusters, and therefore at each level of the hierarchy few
documents (usually a pair) typically merge. The single link method displays an opposite

behaviour.

If two hierarchies are of comparable types (e.g. are generated by the same clustering method by
varying the similarity measure used), then it can be argued that the lower the level at which
optimal clusters are formed, the more useful these clusters may be. Lower levels in the hierarchy
are usually associated with more cohesive clusters (since lower levels also represent higher
similarities at which the merge occurs). If the hierarchies are different to each other in terms of

their characteristics, then such a comparison does not allow the extraction of useful conclusions.
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In section 8.3.1 I demonstrated that the use of measures M1 and M3 with each of the four
clustering methods used, results in hierarchies which display characteristics similar to the
hierarchies generated by the cosine coefficient. The use of measure M2 on the other hand, results
in hierarchies whose characteristics differ widely to those generated by the cosine coefficient (and
by measures M1 and M3), especially for test collections for which query length is short.
Therefore, a comparison of the levels at which optimal clusters are formed between hierarchies
generated using the cosine coefficient, and measures M1 and M3, can lead to useful conclusions

regarding the utility of the hierarchies.

Such a comparison is presented in Table 8.10, where the average levels at which optimal clusters
are formed for the WSIJ collection are presented. The results have been compiled using the group
average, complete link and single link methods. The cosine coefficient, and measures M1, M2 and
M3 have also been used. Optimal clusters in this table are based on precision-oriented searches.

The results for Ward’s method are similar to those for the complete link method.

Group Average Complete Link Single Link

n Cosine Ml M2 M3 Cosine Ml M2 M3  Cosine M1 M2 M3
100 68 48 43 55 72 58 48 63 54 37 36 43
200 138 88 70 99 143 116 80 116 103 58 53 62
350 250 150 104 180 242 192 116 186 184 82 78 100
500 339 190 112 237 338 260 145 259 239 87 94 121
750, 476 268 140 321 483 340 204 352 335 105 101 146
1000 611 339 158 387 647 438 233 465 410 130 123 181

Table 8.10. Hierarchy levels at which optimal clusters are formed. Using the WSJ collection and precision-

oriented searches

For each of the three clustering methods presented in this table, a simple comparison of the levels
at which optimal clusters are formed reveals that when using query-sensitive measures, optimal
clusters tend to form at significantly lower levels in the hierarchy. The data displayed here for the
WSJ collection are also typical of the other test collections. As it was explained previously,
comparisons between the data for hierarchies generated using the cosine coefficient on one hand,
and measures M1 and M3 on the other, are appropriate since such hierarchies have similar

characteristics.

The outcome of this comparison can be interpreted as indicating that when using measures M1
and M3, relevant documents tend to merge into clusters earlier than when using the cosine
coefficient. In fact, in most cases more relevant documents tend to merge into clusters of smaller
(or approximately equal) size at an earlier stage using these two measures than when using the
cosine coefficient. That optimal clusters generated by query-sensitive measures typically contain
more relevant documents, and are of the same or smaller size than those generated by using the

cosine coefficient, was demonstrated in section 8.3.2.
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Measure M2, for reasons that were illustrated in section 8.3.1, tends to from large bottom-level
clusters in a number of cases. Optimal clusters using this measure tend to occur lower in the
hierarchies than when using any other measure, but this comes at the cost of a chaining effect that

can also lead to poor effectiveness (e.g. when using the AP collection).

8.3.3 Discussion

In this section I examined some characteristics of hierarchies generated by the query-sensitive
measures, and I also compared such characteristics to those of hierarchies generated using the
cosine coefficient. It was demonstrated that hierarchies generated using measures M1 and M3
tend to have characteristics that are highly similar to those of hierarchies generated by the cosine
coefficient. M2, on the other hand, tends to differ significantly, especially when using collections

with short queries.

More specifically, it was demonstrated that the average size of clusters generated by measure M2
increases significantly compared to the size of clusters generated by the other similarity measures.
This increase is mainly attributed to the increase in the size of the bottom level clusters of the
hierarchies. Croft (1978), Voorhees (1985a), Griffiths et al. (1986) and El-Hamdouchi (1987),
among others, have suggested that it is beneficial for a clustering method to produce a hierarchy
which is characterised by small bottom level clusters. This is because if a bottom-up search
strategy (section 4.3.2) is used to search the hierarchy, it is more effective to produce cluster
representatives for small rather than for large bottom-level clusters. The hierarchy can then be
searched by using an inverted file structure of the bottom level clusters (section 4.3.3) (Croft,
1978, 1980). Therefore, the characteristic of hierarchies produced by measure M2 can be seen as a
shortcoming that may cause actual cluster-based searches not to achieve effectiveness close to that

of the optimal clusters of the hierarchies.

The other point of investigation of this section involved the characteristics of optimal clusters
produced by using different similarity measures. In the majority of cases, the use of query-
sensitive measures results in more effective optimal clusters than using the cosine coefficient, and
consequently the “query-sensitive” optimal clusters tend to contain a higher proportion of relevant
documents than the “standard” ones. Moreover, in section 8.3.2.2 I demonstrated that query-

sensitive optimal clusters tend to occur in lower levels of the hierarchies.

The combination of these three results (higher effectiveness, higher proportion of relevant
documents and lower levels in the hierarchy), suggests that query-sensitive measures tend to
produce optimal clusters that may be of higher utility in an interactive environment. The
characteristics of such optimal clusters may prove beneficial to users in a browsing task for
example, where the concentration of more relevant documents in a smaller part of the hierarchy

may lead users to useful information easier and quicker. Moreover, the characteristic of optimal
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clusters to form at lower levels may also have consequences on efficiency aspects of clustering.
By exploiting this characteristic, it is possible to disregard clusters that join at higher levels of the

hierarchy, or even, to stop the clustering process at an appropriately low level.

The interpretation of the findings of this chapter for interactive cluster-based retrieval can be
highly subjective. Since I do not tackle such issues experimentally, the validity of the claims that I
make in this section are not proven in this thesis. It should however be an interesting subject for
further work to investigate what criteria users would attribute greater importance to in an
interactive cluster-based environment, and what compromises regarding these criteria users would
be willing to make. Such criteria would include the effectiveness of the clusters, the size of the
clusters, the proportion of relevant documents they contain, the levels at which useful clusters

merge, etc.

8.4 Comparison of the query-sensitive measures

The data collected during the experiments reported in this chapter offer the opportunity to
compare the effectiveness of the three query-sensitive measures. This study is reported in this
section. First I compare the optimal effectiveness of the three measures in section 8.4.1, then I
examine the effect of query length on each of the three measures (section 8.4.2), and in section
8.4.3 I examine the effectiveness of the three measures for different numbers of top-ranked

documents.

8.4.1 Comparative effectiveness of M1, M2 and M3

The results obtained in this chapter suggest that there is a difference in the comparative
effectiveness of the three QSSM depending on the clustering method that is used. More
specifically, when using the group average and the single link methods the rank order of the three
measures based on their effectiveness is, in the majority of cases, M1, M3 and M2. When using
the other two methods however, M1 does not perform as well, and measure M3 produces the most

effective clusterings in the majority of cases.

It should however be noted that the differences between measures M1 and M3 do not tend to be
statistically significant. There are relatively few experimental conditions in which one of the two
measures significantly outperforms the other. These tend to occur more when using the group
average and single link methods, where measure M1 is more effective than measure M3. More
specifically, M1 is significantly more effective than M3 for a greater variety of clustering methods
(group average, single link, and once using the complete link method), types of searches and test

collections (in total, in 23 experimental conditions). M3, on the other hand, significantly
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outperforms M1 only using Ward’s method for various values of n when using the CACM,

Medline and WSIJ collections (in total, in 11 experimental conditions).

Furthermore, when M1 outperforms M3 it does so in a more consistent fashion across all (or
most) values of n for a specific test collection and type of search. This is evident, for example,
when using the CACM (=1, 2, 0.5), Medline (f=1, 2, 0.5) and WSJ (#=1, 2) collections with the
group average and single link methods. This more consistent behaviour, in combination with the
relatively larger number of cases in which M1 significantly outperforms M3, suggest that in the
experimental environment used in this thesis, measure M1 results in more effective clusterings

than M3.

M2 is, in the majority of experimental conditions, the measure that produces the least effective
clusterings. The hierarchies produced by the other two measures are in the majority of cases
consistently more effective than the ones produced by M2. They are also significantly more
effective for a large number of experimental conditions, and especially for precision-oriented
searches and for collections with short queries. The only case where M2 manages to generate
significantly more effective hierarchies than any of the other two measures is when using the
Medline collection and Ward’s method for recall-oriented searches. There are also a number of
cases where M2 produces the most effective clustering. Such cases only occur when using either

the complete link or Ward’s methods.

The comparatively poorer effectiveness of M2 in relation to that of M1 and M3 seems to correlate
to the results presented in section 7.4.4 when comparing the effectiveness of the three measures
using the 5NN test. The results in that section had demonstrated that, in general, M2 was less
effective than the other two methods at placing co-relevant documents close to each other. This
was more strongly evident when using the two TREC collections (AP and WSJ), and especially

when using AP. This is also the case for the optimal cluster-based effectiveness of this measure.

8.4.2 The effect of query length

A number of experiments were also conducted to determine the effect of the query length on the
effectiveness of the resulting hierarchies. The experimental procedure is similar to the one
reported in section 7.4.5. More specifically, the two TREC collections are used (AP and WSJ)
with the standard queries (7.6 terms per query), short queries (3.2 terms per query) and expanded
queries (23.4 terms per query). The four clustering methods are applied to each set of queries
using each of the three query-sensitive measures. The effectiveness of the resulting hierarchies is

gauged using the MK1 measure for optimal cluster-based evaluation.

When expanded queries are used, in general there are consistent but not significant improvements

(compared to using the standard queries) using measures M1 and M3 in either collection.
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Improvements tend to be slightly larger when using the AP collection. When using measure M2,
the improvements are larger in both collections, however they are rarely statistically significant.
Precision-oriented searches tend to benefit more. When significant differences occur, they mainly

do using either the group average or the single link method.

The larger improvements using the expanded form of the queries with measure M2 can be
explained by viewing the added terms as added dimensions (or evidence) based on which to
discriminate between the documents. M2 does not take into account any other information when
measuring similarities, apart from common query terms between documents. A consequence of
the better discrimination between documents is that the average cluster size reduces, and the
behaviour of the clustering methods tends to resemble more that using the cosine coefficient (and
also M1 and M3) (section 8.3.1). The reduction in the average size of the clusters produced has as
a consequence that optimal clusters are more positively affected for precision-oriented than for

recall-oriented searches.

n Cosine M2 M2 expanded

100 8.8 114 9.2
200 10.4 17.2 11.7
350 11.9 239 14.1
500 12.7 30.6 16.6
750 13.6 41.2 20.7
1000 14.5 52 24.7

Table 8.11. Average cluster size for Ward’s method, using expanded queries and the WSJ collection

Table 8.11 displays this reduction in size for Ward’s method, using the WSJ collection. Measure
M2 using the expanded queries generates clusters whose average size is significantly smaller than
using the shorter queries. The average size using the expanded queries however, is still larger than

the cosine, especially for larger values of n.

When the length of the queries is reduced to 3.2 terms on average, the effectiveness of all
clustering methods in both collections is negatively influenced. When using the AP collection
effectiveness always decreases compared to the original queries, and it does so to a greater extent
than when using WSJ. When using this collection (WSJ), in few cases the effectiveness improves
slightly when using short queries (Table 8.12). The query-sensitive measure that is more strongly
influenced is M2. Another observation is that precision-oriented searches are more affected by the
reduction of query length, yielding effectiveness that is typically significantly lower than using

the original queries.

The data in Table 8.1 and in Tables D2-D4, showed that when using the WSJ collection and
measure M2 (with the original queries), query-sensitive effectiveness is higher than standard

effectiveness for all but two experimental conditions (r=100, precision-oriented searches using
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the group average and single link methods). Also, in most cases it is significantly more effective.
When using short queries, the effectiveness of M2, as discussed previously, is negatively affected.
However, despite this decrease in effectiveness, it is still higher than standard effectiveness in the

majority of experimental conditions (but not significantly so).

Group Average Ward Complete Link Single Link
n p=2 p=0.5 p=2 p=05 p=2 p=05 p=2 p=05
100 -0.4 -1.4 0.7 -1.2 0.2 -1 0.1 1.3

200 -1.1 -3.2 04 2.4 -0.6 -34 -1.3 -2

350 -3.3 -7.4 -1.3 -6.1 -0.8 -1.9 -2.8 -54
500 -4.3 -104 -14 -13 -2 -8.3 -5.8 -14
750 -4.9 -13 -0.4 -10 -1 -11.2 7.5 -14
1000 -3.9 -114 -07 -108 -03 -11.6 -6.6 -7.1

Table 8.12. Percentage difference in effectiveness between short and original queries using the WSJ

collection and measure M2

In general, the effect of variations in query length on cluster-based effectiveness reported here, is
in agreement with the effect of query length on the effectiveness of the three query-sensitive
measures reported in Chapter 7 (section 7.4.5). Also, the same limitations that were reported in
that section regarding the expanded form of the queries used apply here as well. Further research
is warranted to investigate the comparative effectiveness of the measures when algorithmically

selected terms are added to the queries.

8.4.3 Effectiveness for different numbers of top-ranked documents

In section 6.3.1 I examined the variation of standard cluster-based effectiveness for different
numbers of top-ranked documents. The results had demonstrated that cluster-based effectiveness
tends to increase as the number of documents increases, but it does not always do so in a
significant manner. In the majority of cases, the only significant variations occurred when
comparing the effectiveness at n=100 to that at other values of n. Also, it was demonstrated that
the effectiveness of static clustering (i.e. n=full when using the cosine coefficient) was always
significantly inferior to that attained by considering any number of top-ranked documents. In the

present section I examine these issues when query-sensitive measures are used.

The data in Table 8.1 and Tables D2-D4 in Appendix D show that query-sensitive cluster-based
effectiveness increases as the number n of top-ranked documents increases. The data also show
that the effectiveness for n=full is always lower than that at any other value of n. A closer look at
the results, also reveals that the increase in effectiveness for increasing values of n is, in general,
more evident for recall-oriented searches. Also, all three query-sensitive measures display similar

patterns in their effectiveness across numbers of top-ranked documents. The effectiveness of
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clusters generated by M2 tends to increase in some cases more as a function of » than using either
M1 or M3.

In the majority of cases, the decrease when comparing the effectiveness at n=100 and 200 to that
at other values of 7 is statistically significant. Exceptions to this are noted when using the Medline
collection. Effectiveness for the Medline collection does not normally vary significantly as a
function of the number of documents (especially when using measure M1), and when it does so, it

is only the effectiveness at n=100 that is significantly lower than that at other values of n.

Effectiveness for values of n>350 is rarely significantly lower than that at higher values of n. The
only test collection that consistently displays such a behaviour is the AP collection. This is
displayed in Figure 8.5, where effectiveness is plotted against the number of top-ranked
documents using measure M3, the AP collection and precision-oriented searches. This behaviour
of AP was also evident when examining standard effectiveness (Tables B1-B4), although to a

lesser extent.
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Figure 8.5. Effectiveness across numbers of top-ranked documents using the AP collection, M3 and

precision-oriented searches

As it was mentioned previously, the effectiveness of recall-oriented searches seems to vary more
with the increase in the number of documents than precision-oriented searches. It also tends to
vary more compared to the effectiveness of recall-oriented searches using the cosine coefficient.
This can be explained by recalling that evaluation of effectiveness is performed by taking into
account the total number of relevant documents per query (as opposed to the retrieved and
relevant). As the number n of documents increases, more relevant documents are available to be
clustered. Therefore, optimal clusters at larger values of n have a better chance of achieving
higher effectiveness since there are more actual relevant documents to be clustered together. This
is especially so for recall-oriented searches, where the number of relevant documents contained

within optimal clusters is more important. That this behaviour is more evident when using the
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query-sensitive measures is attributed to the higher effectiveness achieved with these measures:
optimal clusters contain more relevant documents, and this leads to an increase in the

effectiveness of recall-oriented searches, especially for larger values of n.

The same explanation can be given for the tendency of M2 in some cases to produce optimal
clusters whose effectiveness increases more with the increase in the value of n. As I discussed in
section 8.3.1, the average size of clusters generated by M2 is much larger than that using either
M1 or M3, and therefore when the number of documents to be clustered increases, there are more
relevant documents available to be placed in the clusters. The increasing cluster size for
increasing values of n, increases the likelihood of more relevant documents to be contained within
optimal clusters generated using the M2 measure. This is especially so given the way that recall is

calculated in this experimental environment.

Based on the results presented in this section, if one were to select a single number of documents
to be clustered, then a number in the order of 350 documents is likely to prove effective when
using query-sensitive measures. The effectiveness past this number does not increase significantly
in general. Moreover, as I discussed in section 8.2.1, query-sensitive effectiveness generally
becomes significantly higher than standard effectiveness for values of n>350. It should however
be noted that the choice of a single number of documents to cluster depends on the way that
effectiveness is evaluated. The results that I report here have been generated using all relevant
documents for a query. If only relevant and retrieved documents are used, then the highest query-
sensitive effectiveness is attained for n=100, and at this value of n differences between query-

sensitive and standard effectiveness are also, in general, statistically significant.

8.4.4 Discussion

The results presented in this section suggest that, in the experimental environment used in this
thesis, measure M1 is the most effective of the three QSSM used in terms of optimal cluster-based
effectiveness. Measure M3 displays an effectiveness that is comparable to that of M1 for a large
number of experimental condition. Moreover, these two measures seem to be equally affected by
the variations in query length that were investigated in section 8.4.2, and in general there seems to
be little reason not to prefer M3. However, as I mentioned in section 8.4.1, M1 tends to be
significantly more effective than M3 in a larger and more varied number of experimental
conditions. Moreover, measure M1 displays significantly and consistently higher effectiveness
than M3 when using the group average method, which as I discuss in the next section, is the most

effective clustering method.

Measure M2 does comparatively poorer than these other two measures, but not always
significantly so. M2 manages to outperform M1 and M3 in a number of cases, mainly when using

Ward and the complete link methods (section 8.4.1). Also, as I discussed in section 8.2.1, query-
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sensitive effectiveness using M2 manages to significantly outperform standard effectiveness for a
large number of experimental conditions. This success of M2 can be seen as surprising if one
considers the limited evidence this measure uses to measure the similarity between any two

documents.

The effectiveness improvements that M2 introduces compared to standard effectiveness are
largely attributed to how this measure treats pairs of documents that do not have any query terms
in common. Such documents, in the experimental environment used in this thesis, are not likely to
be both relevant to the same query. M2 sets the similarity of such pairs of documents to zero.
Consequently, documents that have zero similarity to most others documents in the set will be
filtered out from the low levels of the generated hierarchies (i.e. will not merge with other
documents at high similarity values). Such documents are more likely to join the hierarchy at a
high level (low similarity), separately from documents that have a higher likelihood of being
relevant to the query. It should be noted that the same applies to M1, with the difference that M1

uses additional information to judge the similarity between documents.

For the two TREC collections, in which only few dimensions (query terms) are used to
discriminate between documents, M2 is highly effective using the WSJ collection (significantly
more effective than standard clustering for the majority of cases), and ineffective when using the
AP collection (less effective than standard clustering for all cases except recall-oriented searches
of the single link hierarchies). One potential reason for the different behaviour of M2 with these
two collections may be the relative effectiveness of query terms to discriminate between relevant
and non-relevant documents in each collection. All experimental evidence collected in this
chapter, and in Chapter 7 for the effectiveness of M2 when using the two TREC collections at the
SNN and INN tests, demonstrate that M2 displays a more effective behaviour when using the
WSIJ collection. The two TREC collections are highly comparable in their characteristics (Table
5.1), and in the way relevance judgements have been constructed (Harman, 1993). The different
behaviour of M2 can then be attributed to the different discriminating power of query terms for

these two collections.

Measure M2 also tends to produce much larger clusters than the other measures in experimental
conditions where there are limited dimensions on which to discriminate between documents (e.g.
the two TREC collections). Moreover, it is more affected by variations in query length as it was
demonstrated in section 8.4.2. By combining all the experimental evidence for M2, it is justifiable
to conclude that the use of this measure seems appropriate in cases where longer than typical
queries are expected, or in cases where highly discriminating query terms are provided either by

the user himself, or by means of a query expansion procedure.
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8.5 Comparative effectiveness of the four clustering

methods

The data obtained in this chapter allow the comparison of the effectiveness of each of the four
hierarchic clustering methods used in the experiments. In section 6.4 I presented a comparison of
the four methods when the cosine coefficient was used to measure interdocument similarities. The
comparative effectiveness of the four methods was studied under both post-retrieval and static

clustering (i.e. n=full when using a static similarity measure).

Regarding the comparative performance under post-retrieval clustering, the group-average was
the most effective of the methods, followed by Ward’s method, the complete link method, and
finally the single link method. The superiority of the group average method was consistent, and in
most of the cases statistically significant. The poor effectiveness of the single link method was
equally consistent and significant. The only exception was noted when using the Medline
collection, where the single link method outperformed both the Ward and the complete link

methods.

The effectiveness of the four methods under static clustering, on the other hand, revealed few and
not consistent differences between the three methods (group average, Ward’s and complete link).

Single link was again the least effective of the four methods.

Taking into account that there are no significant variations in cluster-based effectiveness using the
query-sensitive measures and using the cosine coefficient for n=full, there does not seem to be a
significant reason to re-examine the effectiveness of the four methods for n=full. This is further
supported by the finding of section 6.4 that suggested that, with the exception of the poor
performance of the single link method, few differences existed among the other three methods.
Consequently, in the rest of this section I consider the comparative effectiveness of the four

clustering methods for other values of 7.

In the next paragraphs, I discuss the effectiveness of the group average method in section 8.5.1,
the effectiveness of the Ward and complete link methods in section 8.5.2, and the effectiveness of

the single link method in section 8.5.3. In section 8.5.4 I discuss the findings of this section.

8.5.1 The group average method

The group average method is the most effective method in the majority of the experimental
conditions, using any of the query-sensitive measures. This result is in agreement with the
behaviour of this method using the cosine coefficient (section 6.4). The differences between the

other three methods and group average are in a large number of conditions statistically significant.
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On the other hand, none of the other methods manage to significantly outperform the group

average method.

The differences in favour of the group average method are generally less pronounced for
precision-oriented searches, where the behaviour of all four methods becomes more comparable.
Small differences between group average, and Ward’s and complete link methods also occur for
small values of » using the CISI collection. Recall that at small values of n using this collection,
the effectiveness of all clustering methods is similar to that of random clustering (section 8.2.3).
Figure 8.6 displays the superior effectiveness of the group average method over the other three

methods using measure M1, the AP collection and f=1.

8.5.2 Complete link and Ward’s methods

Complete link and Ward’s methods display comparable effectiveness in most experimental
conditions, and the statistical significance of any differences between these two methods are few
and inconsistent. In section 6.4 it was demonstrated Ward’s method was significantly more
effective than the complete link mefhod in a large number of experimental conditions. This is not
the case in the results presented in this chapter. Complete link, using any of the query-sensitive
measures, performs more comparably to Ward’s method, and manages to significantly outperform
it in a few experimental conditions (e.g. using CACM, measure M2, and recall-oriented searches
for n>500).
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Figure 8.6. Comparative effectiveness of the four methods using M1, the AP collection and f=1

However, in the majority of the cases, the pattern displayed in Figure 8.6 is characteristic of the
comparative effectiveness of the two methods. The differences in effectiveness are small, and the
comparative effectiveness of the two methods varies across values of n for the same test
collection, same similarity measure and same type of search. The highly comparable effectiveness

of these two methods is not surprising, given their tendency to produce hierarchies with similar
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properties (Murtagh, 1984b; Voorhees, 1985a). Therefore, in contrast to section 6.4 where I
concluded that Ward’s method was more effective than the complete link method using the cosine
coefficient, there seems no significant reason to prefer one method over another when using

query-sensitive measures.

8.5.3 The single link method

Figure 8.6 displays another interesting result, which is perhaps the most important finding of the
comparison of the four methods when using query-sensitive measures. This is that the
comparative effectiveness of the single-link method improves significantly in a large number of
experimental conditions. In fact, it improves in such a manner as to significantly outperform
Ward’s and complete link methods in a large number of conditions, and to outperform the group
average method (though not significantly) when using the CACM and (especially) Medline
collections. In the experimental condition that corresponds to Figure 8.6, when using the cosine
coefficient in Chapter 6, the single link method was significantly less effective than all other
methods for all values of n. When using M1 however (Figure 8.6) there are no differences

between single link, complete link and Ward’s methods.
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Figure 8.7. Comparative effectiveness of the four methods using M2, the Medline collection and =2

In Figure 8.7 the comparative effectiveness of the three methods when using the Medline
collection, measure M2 and recall-oriented searches is presented. In this case single link is
significantly more effective than both the complete link and Ward’s methods, and outperforms
(though not significantly) the group average method. In fact, when using this collection the single
link method is significantly more effective than the complete link and Ward’s methods for all
experimental conditions using measure M1, and all conditions using measures M2 and M3 except

for precision-oriented searches for n=100, and 200.
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Apart from when using the Medline collection, the single link method outperforms the complete
link and Ward’s methods using the CACM collection (most conditions using measures M1, M3),
and for the majority of conditions using the WSIJ collection. Furthermore, it is not significantly
worse than these two methods using the AP collection and measures M1 and M3. The only two
collections for which single link is consistently and significantly outperformed by all three

methods are CISI and LISA.

The effectiveness of the single link method generally compares better to the other methods for
non-precision oriented searches (exceptions are noted as discussed previously, especially in the
case of the Medline collection). This can be attributed to the characteristics of the hierarchies that
this method produces. In general, single link produces clusters whose size is considerably larger
than that of the other three methods. Especially when using collections with a relatively small
average number of relevant documents per query (e.g. LISA, CACM), the effectiveness of this
method for precision-oriented searches is likely to be affected by the large average size of the
clusters. It is therefore more likely for this type of hierarchies to display high recall-oriented
effectiveness, especially given the way that recall is calculated in this experimental environment

(i.e. over all relevant documents for a query).

The comparative effectiveness of precision-oriented searches of the single link hierarchies to
those of the other three clustering methods becomes worse using measure M2 than when using
measures M1 or M3. This has as a consequence that even in cases where precision-oriented
searches of single link hierarchies are more effective than other methods using M1 or M3, they
are significantly inferior to these other methods when using M2. For example, using the CACM
collection and measure M1, precision-oriented searches using the single link method are more
effective than those using either the Ward or the complete link methods (except for n=500). When
using M2 however, the effectiveness of single link becomes significantly worse than that of all
other three methods for all values of .

As I discussed in section 8.3.1, the average size of single link clusters using measure M2 tends to
significantly increase compared to that using either of the other two query-sensitive measures.
This significant increase in cluster size has as a consequence that precision-oriented searches of
the single link hierarchies are more affected by the large size of the clusters generated by this
method.

It should also be mentioned that the better comparative performance of the single link method
does not depend on the definition of recall (over all relevant documents for a query) used in the
experiments. Results obtained by calculating the E measure over the retrieved and relevant
documents for the two TREC collections (AP and WSJ) and for the LISA collection,

demonstrated the same pattern of results as the ones reported here.
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8.5.4 Discussion

Based on the results presented in the previous sections about the comparative effectiveness of the
four clustering methods, it is justifiable to conclude that in the experimental environment used in
this thesis, the group average method is the method to be preferred. It consistently and
significantly outperforms the other three methods using any of the three query-sensitive measures.
Moreover, the group average method is the most effective also when using the cosine coefficient
(section 6.4). The group average method was not significantly outperformed by any of the other

three methods in any experimental condition.

Regarding the use of the other three methods, there does not seem to be a significant reason to
prefer Ward’s method over the complete link method, and vice versa. Single link, manages to
significantly improve its comparative effectiveness to the other three methods when using the
query-sensitive similarity measures. In a large number of cases, this method significantly
outperforms Ward’s and the complete link methods, and is also more effective than the group
average method. However, the effectiveness of this method seems to be hampered by the large
size of the clusters that it produces, and therefore for precision-oriented searches it would not

seem an effective choice.

An interpretation of the behaviour of the group-average and singe link methods using query-
sensitive measures, can be given by noting that these two methods generally preserve the
relationships defined in the similarity matrix when generating the hierarchies. Griffiths et al.
(1984) had noted that these two methods introduce the smallest amount of distortion on the
similarity matrix when generating document hierarchies. Other researchers (e.g. Farris, 1969;
Jardine & Sibson, 1971) have suggested the same for fields other than information retrieval. In
Chapter 3 (section 3.6) I discussed issues relating to the measurement of distortion introduced by

clustering methods.

If one views the results of Chapter 7 as suggesting that the application of query-sensitive
measures results in the generation of a similarity matrix that more closely approximates the
relevance structure of the document space than using the cosine coefficient, then one can also
suggest that it is a desirable property for a clustering method not to introduce a large degree of
distortion on this similarity matrix. The group average and single link methods have the tendency

to do so more than the complete link and Ward’s methods.

It should be mentioned that the results obtained using Ward’s method in this chapter should be
viewed with caution. This method has been explicitly defined when squared Euclidean distances
are used (Lance & Williams, 1967; Wishart, 1969). Griffiths et al. (1984, 1986) implemented this
method using the Dice coefficient, something which prompted Willett (1988) to note that the
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method resulting is not Ward’s method per se. When implementing this method using query-
sensitive measures, squared Euclidean distances were not used. This consequently means that the
results obtained by Ward’s method in this chapter may not be the results of an actual

implementation of the algorithm given by Wishart (1969).

The comparison of the “query-sensitive” results for Ward’s method to the “standard” results for
this method (using squared Euclidean distances, Chapter 5, section 5.5.3) is permissible. This is
because experiments had demonstrated no significant differences in the effectiveness of the
clustering methods using the cosine coefficient, squared Euclidean distances and the Dice
coefficient (section 5.5.3). In those experiments Ward’s method was also implemented using the
cosine and Dice coefficients, and the effectiveness of the method was not affected compared to
using Euclidean distances. This suggests that there may not be a significant difference between
the results reported in this chapter using Ward’s method, and an actual implementation based on
squared Euclidean distances. This however, was not examined in this work, and therefore the

results for Ward’s method in this chapter should examined with caution.

8.6 Summary

In this chapter I investigated the effectiveness of the application of query-sensitive measures to
hierarchic document clustering. I presented experimental evidence which suggests that the use of
such measures results in higher optimal cluster-based effectiveness than the use of conventional
static similarity measures (section 8.2.1). The results presented in this chapter complement, and
further strengthen, the results presented in Chapter 7 regarding the effectiveness of query-
sensitive measures in IR. This method of query-based clustering proves to be more effective than
post-retrieval clustering using a static similarity measure, and it also shows greater potential to

offer an effective alternative to conventional best-match retrieval (section 8.2.2).

All three query-sensitive measures improve the effectiveness of standard clustering. I provided
evidence to support the view that measure M1 is to be preferred, on the grounds of its more
consistently high effectiveness (section 8.4.1). I also showed how the characteristics of hierarchies
generated using measure M2 tend to differ from those generated by other similarity measures
(section 8.3.1). This was especially evident in cases where few query terms were used as the only

evidence to gauge the similarity between documents.

The characteristics of optimal clusters generated by the query-sensitive measures were also
examined. Optimal clusters generated by query-sensitive measures tend to contain a higher
proportion of relevant documents than those generated using static similarity measures (section
8.3.2.1), and also tend to form at lower levels of the hierarchies (section 8.3.2.2). These

characteristics provide further evidence towards the utility of hierarchic clustering based on
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query-sensitive measures, as they may have significant extensions to issues relating to the
efficiency of the clustering process, and to the utility of QSSM for cluster-based interactive

retrieval.

The experimental evidence presented in this chapter suggests that the traditional use of static
similarity measures for document clustering has been a limiting factor to cluster-based
effectiveness. It was demonstrated that by incorporating information from the query into the
calculation of interdocument similarities, the generated hierarchies are more effectively tailored to

the query.

The findings of previous research which have dismissed the potential of clustering as an effective
alternative to best-match search, (El-Hamdouchi & Willett, 1989) for example, should be re-
examined. In this chapter I showed that query-sensitive cluster-based effectiveness has the
potential to significantly outperform best-match effectiveness. Whether this potential will be
materialised remains to be investigated. It is one of the aims of this thesis to instigate further
research in issues that have long been neglected in cluster-based research. Such issues relate to the
development of effective cluster-based strategies to search query-based document hierarchies, and
to the development of novel models of cluster summarisation for the presentation of the improved

clustering structure to users in an interactive environment.
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Contributions and Future Work

9.1 Contributions and conclusions

In this section I list the contributions that this thesis has made, and outline its main conclusions.

9.1.1 Contributions

This thesis investigated the effectiveness of query-based hierarchic clustering of documents for
the purpose of information retrieval. I outlined and investigated two approaches for query-based
clustering from the perspective of retrieval effectiveness. In the following paragraphs I list the
contributions that this work has made. I first present the overall contribution that I believe has
been achieved, when the work of this thesis is taken as a whole. I then list in more detail some of

the individual contributions that this work has made.
9.1.1.1 Document clustering can be effective

It has been the long standing motivation for this work to challenge the assumptions that have
characterised clustering research in IR. Such assumptions include the static application of
document clustering prior to querying, and the static calculation of interdocument associations. A
further motivation has been to challenge the results of previous research which had dismissed
clustering as an effective method for information retrieval. This was based on the view that
document clustering has the potential to act as an effective retrieval mechanism if its static
application is reviewed. The experimental evidence that was presented in this thesis demonstrated

that clustering can indeed act as a highly effective method for information retrieval.

This work focused purely on effectiveness issues. This is in contrast to recent work on document
clustering, which, having accepted limitations in the effectiveness of the clustering process, has

focused on other aspects (e.g. efficiency). I believe that the work reported in this thesis provides
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leverage for the further advancement of research in the area of cluster-based retrieval

effectiveness, and I outline some possible areas for future research in section 9.2.

In the following paragraphs I outline specific contributions that this work made regarding the

effectiveness of document clustering.
9.1.1.2 Investigating the effectiveness of post-retrieval hierarchic clustering

In Chapter 5 I described post-retrieval clustering as the first approach for generating query-based
document hierarchies. I also outlined the implications of post-retrieval clustering for the
effectiveness of cluster-based retrieval. By reviewing previous work on the effectiveness of post-
retrieval clustering, I presented a number of issues that had not been addressed. I investigated

these issues in Chapter 6 in a study that consisted of three parts.

In the first part of the investigation I examined the effect that different numbers of top-ranked
documents have on the structure of the document space, in terms of the proximity of pairs of
documents which are relevant to the same query (co-relevant documents). In the second part I
examined the effectiveness of four hierarchic clu‘stering methods (group average, Ward, complete
link and single link) under four different viewpoints: the variation of effectiveness across different
numbers of top-ranked documents, the comparative effectiveness of post-retrieval and static
clustering, the comparative effectiveness of cluster-based and best-match retrieval, and the
comparative effectiveness of actual and random clustering. In the third part of this study I
investigated the comparative effectiveness of the four clustering methods under both post-retrieval

and static clustering.

The results demonstrated that the effectiveness of post-retrieval clustering is significantly higher
than that of static clustering. It was also demonstrated that cluster-based retrieval through post-
retrieval clustering has the potential to exceed the effectiveness of a best-match IR system.
However, the experiments also demonstrated a number of shortcomings regarding the
effectiveness of post-retrieval clustering. These shortcomings mainly came in the form of poor
comparative effectiveness to best-match retrieval for some experimental conditions, and also in
the form of close-to-random effectiveness in a number of cases. The use of query-sensitive

measures for document clustering aimed to address these shortcomings.
9.1.1.3 Challenging the static nature of interdocument similarity

In Chapter 5 I proposed an axiomatic view of the cluster hypothesis. In agreement with the
hypothesis, I argued that co-relevant documents are more similar to each other than to other
documents. However, in contrast to the traditional treatment of the hypothesis, I argued that this
similarity is inherent, and is dictated by the query itself (i.e. all pairs of documents which are

relevant to the same query should exhibit this inherent similarity). According to this view, if
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documents fail to display this inherent similarity, then this is attributed to the way the similarity
between documents is measured, and not to the properties of the document collection to which
these documents belong. As part of the same argument, I viewed document clustering for
information retrieval as a goal-driven process. I argued that the purpose of document clustering

for IR is to group relevant documents together, separately from non-relevant ones.

Based on these arguments, I proposed the use of query-sensitive similarity measures (QSSM).
These measures view the similarity between documents as a dynamic concept which changes
depending on the purpose for which it is measured. By accepting purpose to be the separation
between relevant and non-relevant documents, and by accepting that in the context of IR
relevance is dictated, among other factors, by the presence of query terms in documents, I
postulated that query terms should acquire greater salience in defining the inherent similarity

between co-relevant documents.
9.1.1.4 Proposing measures for the calculation of query-sensitive similarity

In Chapter 7 I expanded on the notion of query-sensitive similarity, and I proposed specific
measures for its calculation. I proposed three query-sensitive measures, and I illustrated the way

that they incorporate information from the query into the calculation of interdocument similarity.

The working of these measures is dictated by the view of query-sensitive similarity that was
proposed in Chapter 5. These measures assign higher similarity values to pairs of documents that
possess a larger number of query terms in common than other pairs, with the aim to force co-
relevant documents to become more similar to each other, and therefore to achieve a greater per-

query adherence to the cluster hypothesis.

9.1.1.5 Investigating the effectiveness of QSSM at structuring the document

space

In Chapter 7 I experimentally investigated the effectiveness of query-sensitive measures at
structuring the document space. I evaluated the measures based on their effectiveness at “forcing”
documents relevant to the same query to be more similar to each other. I did so by examining how
many relevant documents are contained within a five-document neighbourhood of any given
relevant document. The investigation consisted of three parts. First I examined the comparative
effectiveness of query-sensitive measures and static measures (I used the cosine coefficient as a
static measure). I then studied the comparative effectiveness of the three measures to each other,
and I also investigated the effect that query length has on the effectiveness of each of the three

query-sensitive measures.

The experiments demonstrated that query-sensitive measures are significantly more effective than

static measures at increasing the similarity of pairs of co-relevant documents. In this way, query-
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sensitive measures achieve a greater per-query adherence to the cluster hypothesis, and are

therefore more likely to result in high cluster-based retrieval effectiveness.

9.1.1.6 Investigating the effectiveness of hierarchic document clustering
using QSSM

In Chapter 8 I investigated the second form of query-based clustering, which uses query-sensitive
measures for the calculation of interdocument similarities. The investigation consisted of four

parts.

In the first part I examined the comparative effectiveness of clustering using query-sensitive
measures and of clustering using static measures, and I also considered whether the use of query-
sensitive measures improves the effectiveness of cluster-based retrieval compared to best-match
retrieval. The second part included the study of the characteristics of hierarchies generated using
query-sensitive measures, the study of the characteristics of optimal clusters generated by query-
sensitive measures, and the comparison of these characteristics to those of hierarchies and optimal
clusters generated using static similarity measures. The third part of the study looked into the
comparative effectiveness of the three query-sensitive measures. The effect that query length has
on the effectiveness of each of the three measures was also investigated in this part, together with
the effectiveness of the three measures across different numbers of top-ranked documents. In the
last part of the study I examined the comparative effectiveness of the four clustering methods

under document clustering which uses query-sensitive measures.

The experiments demonstrated that hierarchic document clustering which uses query-sensitive
similarity measures is significantly more effective than clustering which uses static measures. The
significant effectiveness improvements also translated into more favourable comparison to the
effectiveness of best-match retrieval. Moreover, the characteristics of clusters generated using the
query-sensitive measures proved more useful than those of clusters generated using static
measures. Such characteristics include the average size, average number of relevant documents,

and the levels of the document hierarchies in which they occur.

9.1.2 Conclusions

The results of this thesis demonstrated that by incorporating information from the query into the
clustering process (query-based clustering), the effectiveness of the clustering process is
enhanced. The experiments investigated two approaches for query-based clustering, and

demonstrated that:

- Hierarchic post-retrieval clustering using static similarity measures is significantly more
effective than static clustering, and also has the potential to significantly exceed the

effectiveness of best-match retrieval.
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- Query-sensitive similarity measures are significantly more effective than static measures at
increasing the similarity of pairs of co-relevant documents. In this way, query-sensitive

measures achieve a better per-query adherence to the cluster hypothesis.

- Hierarchic clustering using query-sensitive similarity measures is significantly more
effective than hierarchic clustering using static measures. It also significantly increases the

potential of cluster-based retrieval to be more effective than best-match retrieval.

9.2 Future Work

In the following paragraphs I outline a number of areas for possible future work. These areas
either describe aspects of the work of this thesis that might be worthy of further investigation, or

that stem as a consequence of the findings of this thesis.

9.2.1 Cluster-based search strategies

The results presented in this thesis demonstrated that using query-sensitive measures for the
calculation of interdocument similarity enhances the effectiveness of the clustering process. An
area of cluster-based research that is directly affected by this finding is that of cluster-based

searches.

Research into models of cluster-based searches, and also into models of cluster representatives,
has been rather limited over the past fifteen years. One reason for this is that IR researchers seem
to have accepted the limitations of the effectiveness of document clustering, demonstrated by
research carried out at that time (El-Hamdouchi & Willett, 1989). The results presented in this
work provided evidence that the effectiveness of document clustering can be enhanced. Therefore,
further work would be needed to investigate whether the effective characteristics of query-based
hierarchies can be exploited by cluster-based search models. A particular type of cluster-based
search that may benefit from the use of query-sensitive similarity measures is that of nearest-
neighbour clusters (NNC) (Griffiths et al., 1986, El-Hamdouchi, 1987).

9.2.2 Summarisation of cluster contents

The results presented in Chapter 8 suggested that, compared to using a static similarity measure,
optimal clusters generated using query-sensitive measures contain a higher proportion of relevant
documents, are more compact in size, and tend to occur at significantly lower levels in the

hierarchy.

An important, yet relatively unexplored problem of cluster-based information retrieval, is the

representation of the contents of document clusters for the specific purpose of providing relevance
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clues to users. It would be worthwhile to investigate models of cluster summarisation that would
exploit these characteristics of query-sensitive clusters. I would expect query-biased
summarisation models (Tombros & Sanderson, 1998) to be better suited to this task. It may prove
to be the case that specific characteristics of clusters generated using query-sensitive measures are
better tailored to summarisation models. One such characteristic is the distribution of query terms
in clusters. The issue of cluster summarisation is closely related (and yet distinct at the same time)
to that of the development of models of cluster representatives for the purpose of cluster-based

searches that was discussed in the previous section.

9.2.3 Interactive retrieval

Following naturally from the previous point, it is possible to investigate implications of this work

that may lead to further experimentation in interactive IR.

One point for future work is to examine whether the effectiveness improvements presented in this
work would also translate into effectiveness improvements in an interactive, task-based retrieval
environment. It may be the case that the improved structure of document hierarchies generated by
query-sensitive measures, in terms of the characteristics that I mentioned in 9.2.2, could
eventually lead into document hierarchies which are more useful for users in an interactive
environment. By increasing the concentration of useful (i.e. relevant) information into a smaller
part of the hierarchy, it would be easier and quicker for users to identify this useful part of the

hierarchy.

Another issue to be examined further, is the application of query-sensitive measures to the
visualisation of the relationships between documents in a collection. The results in Chapter 7
demonstrated the effectiveness of query-sensitive measures at placing more relevant documents in
the neighbourhood of any given relevant document than a conventional static measure. It would
therefore be worthwhile to investigate how these measures fit into methods for the visualisation of
interdocument relationships, such as for example the ones stemming from Leuski’s work (Allan et
al., 2001; Leuski, 2001).

Query-based clusters can also provide a starting point for a path-based ostensive browsing of the
document space (Campbell, 2000). Assuming an initial query creates a set of clusters, the user
could gain an overview of the document space by browsing the clusters. At any point the user
could select any of the clusters, and the centroid (or any other representation) of the cluster may
then be used as a starting point for the path-based browsing. A similar extension would involve

investigating the use of query-based clusters for relevance feedback.
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9.2.4 Other sources of evidence as an indication of the user’s

information need

In section 7.2.2 I mentioned some limitations of query-sensitive measures. These mainly focused
on the use of only query terms as an indication of the user’s information need, and also as an
indication of a document’s relevance. In that section I also mentioned temporal and contextual
factors that may affect the user’s information need. Consequently, further research to address

these issues should be pursued.

A possibility for future work is to investigate semantically enriching the context of the query by
employing methods such as Latent Semantic Analysis (LSA) (Landauer & Dumais, 1997) and the
Hyperspace Analog to Language (HAL) (Burgess et al., 1998). Such methods generate semantic
contexts for terms based on patterns of term co-occurrence in text units. Semantic contexts for
query terms could enhance query representations. I believe that investigating the efficacy of such

approaches would be worthwhile pursuing.

Some other indications of the user’s information need could also stem from sources such as user
profiles (Bhatia, 1992), and the user interaction with various aspects of the documents and their
contents (e.g. type of documents accessed, time spent on documents, etc.) (Villa & Chalmers,
2001). This type of information may also provide means towards addressing temporal aspects of

information needs.

Furthermore, a more systematic analysis of the dependence of such measures on query length
would be appropriate. In the experiments carried out in Chapters 7 and 8, I did not employ
algorithmic methods of query-expansion. This issue should be further investigated, as the choice
of highly discriminating expansion terms may alter the comparative effectiveness of the query-

sensitive measures proposed in this work.

9.2.5 Efficiency issues

Efficiency issues were deliberately not examined in this thesis. As was explained, this was
because I view efficiency issues as more likely to develop in the light of improved effectiveness
rather than vice versa. Hierarchic document clustering is a resource-demanding process. If the
effectiveness benefits noted in the laboratory experiments in this thesis are to be transferred to

operational environments, then efficiency issues should be considered.

One direction for further research is the development of efficient algorithms for the calculation of
similarity matrices resulting from query-sensitive measures. Croft (1977) and Willett (1981) have
proposed efficient algorithms for the calculation of similarity matrices resulting from static

measures. Query-sensitive measures (especially measures M1 and M2) result in sparse matrices
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that contain a large number of zero similarities between pairs of documents which have no query
terms in common. Investigating the applicability of Croft’s and Willett’s algorithms for the case
of query-sensitive measures, or developing algorithms tailored to query-sensitive measures, is an

issue for further development.

A further direction for future research is also related to the finding of Chapter 8, that optimal
clusters in query-sensitive hierarchies tend to occur in significantly lower levels of the hierarchy
than when using static measures. The implications of this finding for the improvement of time and
space efficiency of hierarchic document clustering should be further investigated. For example,
the time-efficiency of clustering may improve by terminating the clustering process at an

appropriately low level of the generated hierarchy.
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Appendix A

In this Appendix I present similarity and distance coefficients that are typically used in document

clustering.
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Appendix A

The formulas in this Appendix calculate the similarity between two documents X=(x;, x5, ..., x,)
and Y=(y;, y2 ..., y.). For each measure two formulas are given where available: one
corresponding to the 2x2 contingency table given below, and one corresponding to the vector

representation of the two documents. The formulas have been adapted from (Ellis et al., 1993).

y=1_y=0
x=1 a b a+b
x=0 c d c+d
atc  b+d n
The 2x2 contingency table
2a 22 (WxiWyi )
Dice: 2atbt - = -
a+ c
Wxi + W i
2t 2 W,
Z Wxi Wyi
a i=1
Jaccard: P -~ - "
a+ [
ZWxi + ZWyi - Z (WxiWyi )
i=1 i=1 i=l
> W.W,)
a i=1
Overlap: n@+h ) " -
min(a+b,a+c .
’ min() W,;,) W.)
22 W,
Z min(W ;, Wyi )
. a i=1
Asymmetric b -
a+ Z
Wxi

i=1
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n
z Wxi Wyi
i=1

. a -
Cosine: .\/( B ) =
a+t a+c 1 L
dSwi D wi
k=1 j=1
Euclidean Distance: btc
norm
+d
Rogers & Tanimoto: a -
(a+d)+2(b+c)
Matching: —L -
a+b+c+d
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Appendix B

In this Appendix I present results from Chapter 6: “The Effectiveness of Hierarchic Post-Retrieval

Clustering”.
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Group Average

AP B=1 p=0.5 B=2
MK1 | MK1-k| MK3 MK1 | MK1-k| MK3 MK1 |MKl1-k| MK3
top100 0.601 | 0.769 | 0.692 0.511 0.752 | 0.663 0.619 0.749 | 0.667
top200 0.606 | 0.787 | 0.701 0.514 0.778 | 0.685 0.604 0.741 0.663
top350 0.583 | 0.786 | 0.708 0.507 0.790 | 0.695 0.576 0.739 | 0.663
top500 0.583 | 0.790 | 0.703 0.508 0.792 | 0.692 0.560 0.735 | 0.652
top750 0.576 | 0.785 | 0.710 0.488 0.785 | 0.699 0.562 0.745 | 0.657
top1000 0.566 | 0.780 | 0.710 0.482 0.798 | 0.699 0.550 0.736 | 0.656
CACM B=1 B=0.5 p=2
MK1 | MK1-k| MK3 MK1 |MK1-k| MK3 MK1 |MK1-k| MK3
top100 0.523 | 0.688 | 0.550 0.438 0.660 | 0.503 0.502 0.642 | 0.503
top200 0.540 | 0.695 | 0.550 0.476 0.646 | 0.498 0.512 0.651 0.501
top350 0.543 | 0.681 0.550 0.469 0.647 | 0.503 0.52 0.667 0.501
top500 0.548 | 0.686 | 0.550 0.461 0.660 | 0.503 0.54 0.667 0.501
top750 0.553 | 0.692 | 0.550 0.465 0.658 | 0.503 0.537 0.667 | 0.501
top1000 0.546 | 0.680 | 0.550 0.463 0.652 | 0.503 0.537 0.662 | 0.501
full 0.748 | 0.794 | 0.550 0.641 0.713 | 0.503 0.782 0.806 | 0.501
CISI =1 p=05 g=2
MK1 | MK1-k| MK3 MK1 | MKl1-k| MK3 MK1 |MKi1-k| MK3
top100 0.715 | 0.817 | 0.762 0.630 0.827 | 0.727 0.702 0.777 0.738
top200 0.697 | 0.827 | 0.750 0.609 0.820 | 0.729 0.658 0.741 0.699
top350 0.683 | 0.822 | 0.748 0.589 0.811 | 0.726 0.655 0.753 0.68
top500 0.681 | 0.819 | 0.748 0.593 0.815 | 0.726 0.656 0.765 0.676
top750 0.667 | 0.823 | 0.748 0.567 0.818 | 0.726 0.649 0.776 0.676
full 0.842 | 0.840 | 0.748 0.790 0.873 | 0.726 0.798 0.824 | 0.676
LISA p=1 B=0.5 p=2
MK1 | MK1-k| MK3 MK1 |MKl1-k| MK3 MK1 |MKi1-k| MK3
top100 0.589 | 0.723 | 0.627 0.517 0.699 | 0.577 0.576 0.677 | 0.584
top200 0.587 | 0.734 | 0.626 0.504 0.695 | 0577 0.559 0.672 | 0.580
top350 0.566 | 0.744 | 0.626 0.493 0.693 | 0.577 0.553 0.698 | 0.580
top500 0.58 0.746 | 0.626 0.487 0.717 | 0.577 0.568 0.721 0.580
top750 0.575 | 0.738 | 0.626 0.489 0.700 | 0.577 0.571 0.705 | 0.580
top1000 0.553 | 0.744 | 0.626 0.475 0.707 | 0.577 0.549 0.725 | 0.580
full 0.713 | 0.792 | 0.626 0.643 0.736 | 0.577 0.716 0.739 | 0.580
MED B=1 B=0.5 B=2
MK1 |MKi-k| MK3 MK1 |MK1-k| MK3 MK1 |MK1-k{ MK3
top100 0.349 | 0.450 | 0.387 0.300 0.456 | 0.354 0.308 0.399 | 0.333
top200 0.326 | 0.455 | 0.387 0.281 0.468 | 0.354 0.294 0.413 0.333
top350 0.309 | 0.437 | 0.387 0.281 0462 | 0.354 0.271 0.404 | 0.333
top500 0.311 | 0.443 | 0.387 0.279 0.471 0.354 0.273 0.399 0.333
top750 0.311 | 0446 | 0.387 0.276 0462 | 0.354 0.272 0.400 | 0.333
full 0.744 | 0494 | 0.387 0.682 0.596 | 0.354 0.711 0.403 | 0.333
WSJ B=1 =05 p=2
MK1 |MK1-k| MK3 MK1 |MK1-k| MK3 MK1 |MK1l-k| MK3
top100 0.692 | 0.791 | 0.734 0.608 0.767 | 0.693 0.696 0.779 | 0.719
top200 0.670 | 0.782 | 0.721 0.604 0.762 | 0.690 0.661 0.741 0.686
top350 0.671 | 0.784 | 0.716 0.603 0.760 | 0.689 0.650 0.742 | 0.666
top500 0.668 | 0.795 | 0.715 0.585 0.774 | 0.689 0.642 0.731 0.659
top750 0.667 | 0.791 | 0.714 0.585 0.775 | 0.689 0.64 0.729 | 0.655
top1000 0.676 | 0.793 | 0.714 0.586 0.776 | 0.689 0.641 0.732 0.654

Table B1. Results using the group average method. Highest effectiveness for each column appears in bold.
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Ward

AP p=1 £=0.5 p=2
MK1 | MK1-k | MK3 MK1 | MK1-k (| MK3 MK1 | MK1-k | MK3
top100 0.626 0.760 0.692 0.537 0.763 0.663 0.637 0.742 0.667
top200 0.611 0.777 0.701 0.533 0.789 0.685 0.607 0.738 0.663
top350 0.600 0.794 0.708 0.515 0.789 0.695 0.591 0.747 0.663
top500 0.607 0.794 0.703 0.527 0.805 0.692 0.588 0.752 0.652
top750 0.603 0.801 0.710 0.508 0.795 0.699 0.598 0.760 0.657
top1000 0.592 0.796 0.710 0.502 0.804 0.699 0.577 0.749 0.656

CACM B=1 B=0.5 B=2
MK1 | MK1-k | MK3 MK1 | MK1-k| MK3 MK1 | MK1-k | MK3
top100 0.556 0.710 0.550 0.462 0.665 0.503 0.530 0.655 0.503
top200 0.564 0.674 0.550 0.488 0.656 0.498 0.546 0.643 0.501
top350 0.571 0.686 0.550 0.485 0.645 0.503 0.558 0.669 0.501
top500 0.554 0.707 0.550 0.460 0.648 0.503 0.548 0.669 0.501
top750 0.560 0.693 0.550 0.476 0.663 0.503 0.546 0.685 0.501
top1000 0.572 0.692 0.550 0.479 0.665 0.503 0.570 0.685 0.501
full 0.742 0.786 0.550 0.641 0.695 0.503 0.773 0.760 0.501

CISI p=1 p=0.5 p=2
MK1 | MK1-k | MK3 MK1 | MK1-k | MK3 MK1 | MKi1-k | MK3
top100 0.727 0.824 0.762 0.645 0.825 0.727 0.711 0.766 0.738
top200 0.701 0.809 0.750 0.621 0.816 0.729 0.663 0.745 0.699
top350 0.695 0.823 0.748 0.596 0.811 0.726 0.651 0.752 0.680
top500 0.694 0.830 0.748 0.597 0.814 0.726 0.655 0.762 0.676
top750 0.688 0.835 0.748 0.601 0.827 0.726 0.659 0.763 0.676
full 0.844 0.869 0.748 0.785 0.877 0.726 0.796 0.817 0.676

LISA p=1 p£=0.5 =2
MK1 | MK1-k | MK3 MK1 | MK1-k | MK3 MK1 | MK1-k | MK3
top100 0.598 0.740 0.627 0.520 0.709 0.577 0.585 0.700 0.584
top200 0.604 0.740 0.626 0.513 0.705 0.577 0.581 0.688 0.580
top350 0.582 0.731 0.626 0.506 0.715 0.577 0.574 0.708 0.580
top500 0.568 0.728 0.626 0.490 0.699 0.577 0.559 0.695 0.580
top750 0.568 0.744 0.626 0.491 0.723 0.577 0.555 0.703 0.580
top1000 0.574 0.745 0.626 0.500 0.702 0.577 0.568 0.716 0.580
full 0.715 0.797 0.626 0.643 0.738 0.577 0.726 0.780 0.580

MED p=1 B£=0.5 B=2
MK1 | MK1-k | MK3 MK1 | MK1l-k | MX3 MK1 | MK1l-k | MK3
top100 0.439 0.525 0.387 0.352 0.480 0.354 0.394 0.448 0.333
top200 0.391 0.462 0.387 0.330 0.484 0.354 0.367 0.422 0.333
top350 0.376 0.453 0.387 0.322 0.445 0.354 0.360 0.425 0.333
top500 0.373 0.454 0.387 0.314 0.445 0.354 0.351 0.424 0.333
top750 0.375 0.453 0.387 0.319 0.448 0.354 0.359 0.428 0.333
full 0.765 0.531 0.387 0.681 0.615 0.354 0.753 0.431 0.333

R p=1 B=0.5 =2
MK1 | MK1-k | MK3 MK1 | MK1-k| MK3 MK1 | MK1-k | MK3
top100 0.701 0.795 0.734 0.629 0.774 0.693 0.705 0.775 0.719
top200 0.689 0.777 0.721 0.614 0.770 0.690 0.676 0.734 0.686
top350 0.685 0.778 0.716 0.616 0.769 0.689 0.661 0.726 0.666
top500 0.679 0.781 0.715 0.614 0.775 0.689 0.656 0.722 0.659
top750 0.685 0.784 0.714 0.608 0.774 0.689 0.652 0.730 0.655
top1000 0.681 0.780 0.714 0.606 0.775 0.689 0.656 0.736 0.654

Table B2. Results using Ward's method. Highest effectiveness for each column appears in bold.
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Complete Link
AP B=1 B=0.5 p=2
MK1 | MK1-K| MK3 MK1 | MK1-K| MK3 MK1 | MK1-K| MK3
top100 0.622 0.761 0.692 0.534 0.741 0.663 0.630 0.751 0.667
top200 0.614 0.792 0.701 0.527 0.701 0.685 0.603 0.747 0.663
top350 0.618 0.785 0.708 0.536 0.702 0.695 0.603 0.743 0.663
top500 0.620 0.795 0.703 0.536 0.697 0.692 0.598 0.746 0.652
top750 0.610 0.791 0.710 0.521 0.679 0.699 0.589 0.735 0.657
top1000 0.599 0.795 0.710 0.505 0.687 0.699 0.580 0.741 0.656
CACM B=1 B=0.5 p=2
MK1 | MKI1-K| MK3 MK1 | MK1-K| MK3 MK1 | MK1-K| MK3
top100 0.560 0.710 0.550 0.461 0.650 0.503 0.542 0.665 0.503
top200 0.588 0.696 0.550 0.490 0.662 0.498 0.577 0.665 0.501
top350 0.596 0.697 0.550 0.487 0.659 0.503 0.601 0.682 0.501
top500 0.573 0.700 0.550 0.466 0.632 0.503 0.594 0.686 0.501
top750 0.601 0.704 0.550 0.495 0.654 0.503 0.624 0.700 0.501
top1000 0.604 0.713 0.550 0.492 0.655 0.503 0.628 0.706 0.501
full 0.743 0.774 0.550 0.640 0.699 0.503 0.761 0.745 0.501
CISI p=1 B=0.5 B=2
MK1 | MK1-K| MK3 MK1 | MK1-K| MK3 MK1 | MK1-K| MK3
top100 0.723 0.819 0.762 0.640 0.808 0.727 0.714 0.771 0.738
top200 0.708 0.822 0.750 0.623 0.820 0.729 0.667 0.738 0.699
top350 0.705 0.808 0.748 0.619 0.834 0.726 0.656 0.736 0.680
top500 0.716 0.839 0.748 0.612 0.826 0.726 0.671 0.754 0.676
top750 0.718 0.838 0.748 0.609 0.844 0.726 0.691 0.784 0.676
full 0.841 0.890 0.748 0.786 0.874 0.726 0.796 0.843 0.676
LISA B=1 B=0.5 p=2
MK1 | MK1-K | MK3 MK1 |MKI1-K{ MK3 MK1 | MKI1-K | MK3
top100 0.616 0.733 0.627 0.532 0.697 0.577 0.605 0.686 0.584
top200 0.589 0.726 0.626 0.493 0.706 0.577 0.600 0.699 0.580
top350 0.589 0.749 0.626 0.501 0.697 0.577 0.596 0.723 0.580
top500 0.588 0.755 0.626 0.482 0.716 0.577 0.604 0.750 0.580
top750 0.577 0.753 0.626 0.491 0.706 0.577 0.582 0.735 0.580
top1000 0.584 0.758 0.626 0.489 0.700 0.577 0.606 0.769 0.580
full 0.699 0.773 0.626 0.630 0.718 0.577 0.715 0.796 0.580
MED B=1 B=0.5 p=2
MK1 | MK1-K| MK3 MK1 | MK1-K| MK3 MK1 | MK1-K| MK3
top100 0.428 0.505 0.387 0.345 0.514 0.354 0.395 0.413 0.333
top200 0.416 0.485 0.387 0.331 0.489 0.354 0.405 0.440 0.333
top350 0.411 0.481 0.387 0.331 0.464 0.354 0.413 0.442 0.333
top500 0.411 0.499 0.387 0.331 0.467 0.354 0.401 0.443 0.333
top750 0.413 0.490 0.387 0.335 0.465 0.354 0.399 0.433 0.333
full 0.786 0.623 0.387 0.681 0.610 0.354 0.783 0.526 0.333
WSJ B=1 B=0.5 p=2
MK1 | MK1-K| MK3 MK1 |[MKI1-K| MK3 MK1 | MK1-K| MK3
top100 0.704 0.788 0.734 0.619 0.778 0.693 0.709 0.769 0.719
top200 0.696 0.783 0.721 0.620 0.770 0.690 0.686 0.733 0.686
top350 0.690 0.782 0.716 0.614 0.769 0.689 0.670 0.739 0.666
top500 0.699 0.791 0.715 0.616 0.777 0.689 0.675 0.732 0.659
top750 0.703 0.791 0.714 0.609 0.773 0.689 0.677 0.732 0.655
top1000 0.713 0.804 0.714 0.621 0.774 0.689 0.694 0.729 0.654

Table B3. Results using the complete link method. Highest effectiveness for each column appears in bold.
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Single Link
AP p=1 p=0.5 p=2
MK1 | MK1-K |[MK3 MK1 | MK1-K| MK3 MK1 |MKI1-K | MK3

top100 0.656 0.778 0.692 0.581 0.784 0.663 0.658 0.739 0.667
top200 0.647 0.784 0.701 0.566 0.796 0.685 0.640 0.735 0.663
top350 0.635 0.799 0.708 0.546 0.804 0.695 0.630 0.759 0.663
top500 0.653 0.815 0.703 0.567 0.813 0.692 0.649 0.771 0.652
top750 0.647 0.826 0.710 0.549 0.810 0.699 0.646 0.777 0.657
top1000 0.647 0.822 0.710 0.540 0.827 0.699 0.652 0.783 0.656
CACM B=1 p=0.5 p=2
MK1 | MK1-K | MK3 MK1 | MK1-K| MK3 MK1 | MK1-K| MK3
top100 0.565 0.710 0.550 0.480 0.656 0.503 0.543 0.659 0.503
top200 0.585 0.709 0.550 0.510 0.662 0.498 0.571 0.693 0.501
top350 0.604 0.718 0.550 0.514 0.666 0.503 0.600 0.688 0.501
topS00 0.597 0.714 0.550 0.496 0.667 0.503 0.611 0.708 0.501
top750 0.608 0.718 0.550 0.514 0.670 0.503 0.626 0.708 0.501
top1000 0.612 0.711 0.550 0.522 0.678 0.503 0.627 0.706 0.501
full 0.760 0.795 0.550 0.660 0.725 0.503 0.790 0.816 0.501
CISI p=1 £=0.5 f=2
MK1 | MK1-K| MK3 MK1 | MK1-K| MK3 MK1 | MK1-K| MK3
top100 0.749 0.814 0.762 0.677 0.818 0.727 0.733 0.772 0.738
top200 0.719 0.820 0.750 0.657 0.830 0.729 0.669 0.745 0.699
top350 0.723 0.827 0.748 0.661 0.825 0.726 0.666 0.748 0.680
top500 0.728 0.835 0.748 0.661 0.833 0.726 0.677 0.755 0.676
top750 0.735 0.837 0.748 0.659 0.832 0.726 0.685 0.766 0.676
full 0.876 0.898 0.748 0.822 0.884 0.726 0.825 0.842 0.676
B=1 £=0.5 p=2
MK1 | MK1-K| MK3 MK1 | MK1-K| MK3 MK1 | MK1-K| MK3
top100 0.664 0.766 0.627 0.587 0.753 0.577 0.647 0.709 0.584
top200 0.674 0.790 0.626 0.590 0.758 0.577 0.666 0.764 0.580
top350 0.686 0.780 0.626 0.598 0.756 0.577 0.684 0.766 0.580
top500 0.684 0.758 0.626 0.591 0.739 0.577 0.697 0.760 0.580
top750 0.706 0.789 0.626 0.603 0.741 0.577 0.732 0.777 0.580
top1000 0.696 0.774 0.626 0.595 0.729 0.577 0.722 0.765 0.580
full 0.746 0.804 0.626 0.670 0.734 0.577 0.766 0.814 0.580
MED B=1 B=0.5 p=2
MK1 | MK1-K| MK3 MK1 | MK1-K| MK3 MK1 | MK1-K | MK3
top100 0.395 0.476 0.387 0.323 0.460 0.354 0.376 0.420 0.333
top200 0.410 0.498 0.387 0.317 0.455 0.354 0417 0.454 0.333
top350 0.397 0.482 0.387 0.305 0.447 0.354 0.414 0.454 0.333
top500 0.401 0.487 0.387 0.309 0.452 0.354 0.416 0.456 0.333
top750 0.408 0.493 0.387 0.312 0.451 0.354 0417 0.451 0.333
full 0.791 0.572 0.387 0.704 0.646 0.354 0.776 0.484 0.333
wSJ B=1 p=0.5 =2
MK1 | MK1-K| MK3 MK1 | MK1-K| MK3 MK1 | MK1-K| MK3
top100 0.733 0.796 0.734 0.654 0.777 0.693 0.724 0.772 0.719
top200 0.733 0.795 0.721 0.653 0.776 0.690 0.709 0.740 0.686
top350 0.725 0.794 0.716 0.656 0.766 0.689 0.701 0.747 0.666
top500 0.724 0.796 0.715 0.654 0.775 0.689 0.693 0.744 0.659
top750 0.736 0.803 0.714 0.655 0.796 0.689 0.704 0.746 0.655
top1000 0.736 0.807 0.714 0.653 0.807 0.689 0.715 0.756 0.654

LISA

Table B4. Results using the single link method. Highest effectiveness for each column appears in bold.
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AP WSJ

n p=1 p=2 p=0.5 n p=1 p=2 p=0.5
100 0.633 0.628 0.550 100 0.715 0.712 0.645
200 0.626 0.613 0.543 200 0.701 0.679 0.640
350 0.631 0.611 0.552 350 0.696 0.659 0.638
500 0.629 0.605 0.552 500 0.694 0.651 0.636
750 0.629 0.605 0.548 750 0.693 0.647 0.633
1000 0.629 0.604 0.548 1000 0.693 0.646 0.633

Table BS. Results for the MK4 measure using AP and WSJ. Highest effectiveness for each column appears

in bold.
CACM LISA

n p=1 p=2 p=0.5 n p=1 p=2 p=0.5
100 0.537 0.500 0.448 100 0.575 0.570 0.438
200 0.540 0.497 0.448 200 0.559 0.549 0.420
350 0.535 0.492 0.444 350 0.541 0.529 0.400
500 0.535 0.492 0.444 500 0.540 0.529 0.400
750 0.535 0.492 0.444 750 0.540 0.529 0.400
1000 0.535 0.492 0.444 1000 0.540 0.529 0.400
full 0.535 0.492 0.444 full 0.540 0.529 0.400

Table B6. Results for the MK$ measure using CACM and LISA. Highest effectiveness for each column

appears in bold.

CISI MED

n p=1 p=2 B=0.5 n p=1 p=2 B=0.5
100 | 0726 | 0717 | 0651 | toplo0 | 0.381 0.331 0.327
200 | 0710 | 0.674 | 0.651 | top200 | 0.381 0.331 0.327
350 | 0.704 | 0653 | 0639 | top350 | 0.381 0331 0.327
500 | 0704 | 0649 | 0639 | top500 | 0.381 0.331 0.327
750 | 0.704 | 0.648 | 0.638 | top750 | 0.381 0331 0.327
full | 0704 | 0.648 | 0.638 full 0.381 0.331 0.327

Table B7. Results for the MK4 measure using CISI and MED. Highest effectiveness for each column

appears in bold.
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AP B=1 B£=0.5 B=2
MK1 | Random | MK1 |Random| MK1 | Random
top100 0.601 0.704 0.511 0.731 0.619 0.744
top200 0.606 0.727 0.514 0.76 0.604 0.763
top350 0.583 0.739 0.507 0.771 0.576 0.769
top500 0.583 0.755 0.508 0.788 0.560 0.793
top750 0.576 0.778 0.488 0.804 0.562 0.807
top1000 0.566 0.803 0.482 0.818 0.550 0.826
CACM B=1 B=0.5 p=2
MK1 |Random| MK1 |Random| MK1 | Random
top100 0.523 0.671 0.438 0.619 0.502 0.608
top200 0.54 0.718 0.476 0.651 0.512 0.672
top350 0.543 0.739 0.469 0.666 0.52 0.712
top500 0.548 0.749 0.461 0.674 0.54 0.736
top750 0.553 0.759 0.465 0.682 0.537 0.757
top1000 0.546 0.765 0.463 0.690 0.537 0.767
full 0.748 0.828 0.641 0.757 0.782 0.831
CISI =1 p=0.5 p=2
MK1 | Random| MK1 |Random| MKI1 | Random
top100 0.715 0.755 0.63 0.727 0.702 0.722
top200 0.697 0.753 0.609 0.732 0.658 0.685
top350 0.683 0.775 0.589 0.748 0.655 0.691
top500 0.681 0.795 0.593 0.761 0.656 0.712
top750 0.667 0.814 0.567 0.772 0.649 0.741
full 0.842 0.869 0.79 0.821 0.798 0.815
LISA p=1 p=05 =2
MK1 | Random| MK1 |Random| MK1 { Random
top100 0.589 0.690 0.517 0.633 0.576 0.650
top200 0.587 0.694 0.504 0.631 0.559 0.664
top350 0.566 0.686 0.493 0.625 0.553 0.667
top500 0.58 0.696 0.487 0.636 0.568 0.681
top750 0.575 0.701 0.489 0.642 0.571 0.695
top1000 0.553 0.707 0.475 0.646 0.549 0.704
full 0.713 0.758 0.643 0.711 0.716 0.751
MED B=1 p=0.5 p=2
MK1 |Random| MK1 |Random| MK1 | Random
top100 0.349 0.652 0.3 0.609 0.308 0.506
top200 0.326 0.732 0.281 0.661 0.294 0.619
top350 0.309 0.768 0.281 0.687 0.271 0.688
topS00 0.311 0.777 0.279 0.692 0.273 0.711
top750 0.311 0.781 0.276 0.701 0.272 0.719
full 0.744 0.816 0.682 0.748 0.711 0.767
wsJ B=1 p=0.5 p=2
MK1 | Random| MK1 |Random| MK1 | Random
top100 0.692 0.776 0.608 0.735 0.696 0.748
top200 0.67 0.790 0.604 0.758 0.661 0.744
top350 0.671 0.802 0.603 0.770 0.650 0.748
top500 0.668 0.818 0.585 0.783 0.642 0.759
top750 0.667 0.837 0.585 0.799 0.640 0.780
top1000 0.676 0.849 0.586 0.808 0.641 0.797

Table B8. Random and actual effectiveness values using the group average method
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AP B=1 B=0.5 p=2
MK1 | Random| MK1 |Random| MK1 | Random
top100 0.626 0.704 0.537 0.731 0.637 0.745
top200 0.611 0.727 0.533 0.761 0.607 0.763
top350 0.600 0.738 0.515 0.770 0.591 0.770
top500 0.607 0.756 0.527 0.786 0.588 0.794
top750 0.603 0.776 0.508 0.805 0.598 0.807
top1000 0.592 0.803 0.502 0.819 0.577 0.825
CACM B=1 p=0.5 p=2
MK1 | Random| MK1 |Random| MK1 | Random
top100 0.556 0.671 0.462 0.618 0.530 0.608
top200 0.564 0.717 0.488 0.650 0.546 0.672
top350 0.571 0.738 0.485 0.665 0.558 0.711
top500 0.554 0.749 0.460 0.673 0.548 0.735
top750 0.560 0.759 0.476 0.682 0.546 0.756
top1000 0.572 0.765 0.479 0.690 0.570 0.767
full 0.742 0.828 0.641 0.758 0.773 0.832
CISsI =1 p=05 g=2
MK1 | Random| MK1 |Random| MK1 | Random
top100 0.727 0.756 0.645 0.728 0.711 0.722
top200 0.701 0.753 0.621 0.731 0.663 0.685
top350 0.695 0.775 0.596 0.748 0.651 0.692
top500 0.694 0.795 0.597 0.762 0.655 0.711
top750 0.688 0.814 0.601 0.772 0.659 0.740
full 0.844 0.870 0.785 0.821 0.796 0.815
LISA p=1 B=05 p=2
MK1 |Random| MK1 |Random| MK1 | Random
top100 0.598 0.691 0.520 0.633 0.585 0.652
top200 0.604 0.692 0.513 0.629 0.581 0.663
top350 0.582 0.686 0.506 0.626 0.574 0.667
top500 0.569 0.695 0.490 0.635 0.559 0.681
top750 0.568 0.702 0.491 0.642 0.555 0.695
top1000 0.574 0.707 0.500 0.646 0.568 0.705
full 0.715 0.756 0.643 0.712 0.726 0.751
MED B=1 B=0.5 p=2
MK1 | Random| MK1 |Random| MK1 | Random
top100 0.439 0.652 0.352 0.606 0.394 0.507
top200 0.391 0.733 0.330 0.662 0.367 0.619
top350 0.376 0.768 0.322 0.685 0.360 0.688
top500 0.373 0.776 0.314 0.692 0.351 0.710
top750 0.375 0.781 0.319 0.700 0.359 0.719
full 0.765 0.814 0.681 0.747 0.753 0.766
WSJ p=1 B=0.5 p=2
MK1 | Random| MK1 |Random| MK1 |Random
top100 0.701 0.775 0.629 0.734 0.705 0.748
top200 0.689 0.790 0.614 0.758 0.676 0.744
top350 0.685 0.803 0.616 0.770 0.661 0.748
top500 0.679 0.816 0.614 0.783 0.656 0.758
top750 0.685 0.837 0.608 0.799 0.652 0.780
top1000 0.681 0.849 0.606 0.808 0.656 0.797

Table B9. Random and actual effectiveness values using Ward's method
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AP p=1 B=0.5 p=2
MK1 | Random| MK1 |Random| MK1 | Random
top100 0.622 0.705 0.534 0.731 0.630 0.744
top200 0.614 0.729 0.527 0.761 0.603 0.764
top350 0.618 0.738 0.536 0.772 0.603 0.770
top500 0.620 0.758 0.536 0.787 0.598 0.795
top750 0.610 0.777 0.521 0.804 0.589 0.806
top1000 0.599 0.804 0.505 0.820 0.580 0.825
CACM B=1 p=0.5 p=2
MK1 | Random|{ MK1 |Random| MK1 | Random
top100 0.560 0.671 0.461 0.620 0.542 0.607
top200 0.588 0.715 0.490 0.650 0.577 0.671
top350 0.596 0.738 0.487 0.665 0.601 0.712
top500 0.573 0.749 0.466 0.674 0.594 0.736
top750 0.601 0.759 0.495 0.682 0.624 0.756
top1000 0.604 0.765 0.492 0.690 0.628 0.767
full 0.743 0.828 0.640 0.759 0.761 0.833
CISI =1 p=05 B=2
MK1 | Random| MK1 |Random| MK1 | Random
top100 0.723 0.756 0.640 0.729 0.714 0.722
top200 0.708 0.753 0.623 0.731 0.667 0.685
top350 0.705 0.775 0.619 0.749 0.656 0.692
top500 0.716 0.794 0.612 0.762 0.671 0.712
top750 0.718 0.815 0.609 0.772 0.691 0.741
full 0.841 0.870 0.786 0.822 0.796 0.814
LISA p=1 B=0.5 p=2
MK1 | Random| MK1 |Random| MKI1 | Random
top100 0.616 0.691 0.532 0.633 0.605 0.651
top200 0.589 0.691 0.493 0.630 0.600 0.659
top350 0.589 0.686 0.501 0.625 0.596 0.666
top500 0.588 0.695 0.482 0.635 0.604 0.680
top750 0.577 0.702 0.491 0.642 0.582 0.696
top1000 0.584 0.707 0.489 0.646 0.606 0.705
full 0.699 0.755 0.630 0.713 0.715 0.751
MED B=1 B£=0.5 B=2
MK1 | Random| MK1 |Random| MK1 | Random
top100 0.428 0.651 0.345 0.612 0.395 0.506
top200 0.416 0.734 0.331 0.662 0.405 0.620
top350 0.411 0.768 0.331 0.685 0.413 0.690
top500 0.410 0.776 0.330 0.692 0.401 0.711
top750 0.413 0.782 0.335 0.699 0.399 0.719
full 0.786 0.814 0.681 0.746 0.783 0.765
WSJ p=1 p=0.5 p=2
MK1 { Random| MK1 |Random| MK1 |Random
top100 0.704 0.776 0.619 0.735 0.709 0.749
top200 0.696 0.790 0.620 0.758 0.686 0.744
top350 0.690 0.803 0.614 0.770 0.670 0.748
top500 0.699 0.817 0.616 0.782 0.675 0.758
top750 0.703 0.836 0.609 0.799 0.677 0.779
top1000 0.713 0.849 0.621 0.806 0.694 0.798

Table B10. Random and actual effectiveness using the complete link method.
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AP p=1 B=0.5 B=2
MK1 |Random| MK1 |Random| MK1 | Random
top100 0.656 0.707 0.581 0.740 0.658 0.744
top200 0.647 0.732 0.566 0.774 0.640 0.766
top350 0.635 0.741 0.546 0.786 0.630 0.773
top500 0.653 0.759 0.567 0.802 0.649 0.799
top750 0.647 0.783 0.549 0.815 0.646 0.808
top1000 0.647 0.808 0.540 0.833 0.652 0.826
CACM pB=1 B£=0.5 B=2
MK1 | Random| MKI1 |Random| MK1 | Random
top100 0.565 0.698 0.480 0.655 0.543 0.625
top200 0.585 0.743 0.510 0.681 0.571 0.691
top350 0.604 0.767 0.514 0.696 0.600 0.735
top500 0.597 0.778 0.496 0.704 0.611 0.762
top750 0.608 0.787 0.514 0.709 0.626 0.785
top1000 0.612 0.793 0.522 0.716 0.627 0.797
full 0.760 0.837 0.660 0.776 0.790 0.849
CISI p=1 £=0.5 B=2
MK1 | Random| MK1 {Random| MKI1 | Random
top100 0.749 0.762 0.677 0.740 0.733 0.723
top200 0.719 0.764 0.657 0.751 0.669 0.692
top350 0.723 0.789 0.661 0.769 0.666 0.700
top500 0.728 0.809 0.66 0.780 0.677 0.720
top750 0.735 0.832 0.659 0.795 0.685 0.753
full 0.876 0.884 0.821 0.843 0.825 0.831
LISA B=1 p=0.5 B=2
MK1 |Random{ MK1 |Random| MK1 | Random
top100 0.664 0.725 0.587 0.672 0.647 0.676
top200 0.674 0.735 0.590 0.675 0.666 0.698
top350 0.686 0.736 0.598 0.676 0.684 0.715
top500 0.684 0.737 0.591 0.676 0.697 0.725
top750 0.706 0.747 0.603 0.684 0.732 0.745
top1000 0.696 0.755 0.595 0.692 0.722 0.759
full 0.746 0.782 0.670 0.739 0.766 0.794
MED p=1 £=0.5 =2
MK1 | Random| MKI1 |[Random| MK1 | Random
top100 0.395 0.650 0.323 0.633 0.376 0.495
top200 0.410 0.742 0.317 0.690 0417 0.611
top350 0.397 0.780 0.305 0.709 0.414 0.685
top500 0.401 0.790 0.309 0.714 0.416 0.711
top750 0.408 0.795 0.312 0.720 0.417 0.720
full 0.791 0.827 0.704 0.769 0.776 0.788
WSJ B=1 p=0.5 B=2
MK1 | Random| MK1 |Random| MK1 | Random
top100 0.733 0.780 0.654 0.746 0.724 0.748
top200 0.733 0.795 0.653 0.769 0.709 0.745
top350 0.725 0.810 0.656 0.785 0.701 0.750
top500 0.724 0.823 0.654 0.797 0.693 0.761
top750 0.736 0.844 0.655 0.813 0.704 0.784
top1000 0.736 0.855 0.650 0.819 0.715 0.801

Table B11. Random and actual effectiveness using the single link method.
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In this Appendix I present results from Chapter 7: “Query Sensitive Similarity Measures”.
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I. The effectiveness of M3 as a function of the ratio 9;:9;

n 4:1 1:1 1:2 1:4 1:5 1:7 1:9 M2
100 2.440 2.561 2.633 2.652 2.640 2.574 2.566 2.079
200 2.218 2.321 2.354 2.404 2.377 2.354 2.316 1.834
350 2.155 2.244 2.339 2.359 2.351 2.313 2.298 1.671
500 2.143 2.263 2.353 2.387 2.398 2.393 2.319 1.663
750 2.167 2.293 2.372 2431 2.412 2.390 2.333 1.605
1000 2.070 2.209 2.290 2.337 2.334 2.270 2.232 1.517

Table C1. Effectiveness of M3 as a function of the ratio 91:9 for AP

n 4:1 1:1 1:2 1:4 1:5 1:7 1:9 M2
100 1.706 1.840 1.890 1.923 1.934 1.911 1.899 1.754
200 1.578 1.739 1.922 1.995 2.036 2.040 2.045 1.902
350 1.531 1.766 1.987 2.058 2.070 2.073 2.074 1.875
500 1.540 1.757 2.007 2.049 2.037 2.051 2.040 1.850
750 1.520 1.768 1.987 2.022 2.019 2.006 2.001 1.761

1000 1.506 1.772 1.971 1.998 2.003 1.987 1.966 1.731
full 1.443 1.534 1.687 1.850 1.868 1.873 1.78 1.655
Table C2. Effectiveness of M3 as a function of the ratio 91:92 for CACM

n 4:1 1:1 1:2 1:4 1:5 1:7 1:9 M2
100 1.578 1.698 1.722 1.746 1.744 1.761 1.757 1.703
200 1.456 1.574 1.631 1.724 1.744 1.789 1.719 1.733
350 1.334 1.494 1.626 1.674 1.703 1.692 1.697 1.555
500 1.284 1.476 1.593 1.651 1.669 1.652 1.636 1.436
750 1.227 1.442 1.538 1.599 1.593 1.575 1.555 1.357
full 1.224 1.315 1.321 1.330 1.338 1.442 1.391 1.328

Table C3. Effectiveness of M3 as a function of the ratio 31:9> for CISI

n 4:1 1:1 1:2 1:4 1:5 1:7 1:9 M2
100 0.990 1.206 1.352 1.383 1.384 1.402 1.392 1.395
200 0.972 1.195 1.311 1.327 1.372 1.390 1.391 1.269
350 0.930 1.199 1.335 1418 1.430 1.429 1.420 1.315
500 0.938 1.237 1.374 1.415 1.446 1.423 1.403 1.317
750 0.940 1.208 1.358 1.395 1.405 1.421 1.413 1.287

1000 0.910 1.204 1.341 1.384 1.388 1.393 1.385 1.303
full 0.946 1.177 1.303 1.332 1.346 1.388 1.341 1.289

Table C4. Effectiveness of M3 as a function of the ratio $1:9> for LISA
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n 4:1 1:1 1:2 1:4 1:5 1:7 1:9 M2
100 3.255 3.463 3.550 3.566 3.564 3.576 3.537 3.361
200 3.198 3.405 3.507 3.525 3.525 3.532 3.528 3.367
350 3.190 3.352 3.470 3.482 3.478 3.476 3.461 3.310
500 3.187 3.340 3.456 3.442 3.450 3.436 3.424 3.305
750 3.190 3.346 3.452 3.429 3.440 3.431 3.421 3.285
full 3.111 3.116 3.201 3.204 3.210 3.216 3.213 3.124

Table C5. Effectiveness of M3 as a function of the ratio $1:$2 for Medline

n 4:1 1:1 1:2 1:4 1:5 1:7 1:9 M2
100 2.177 2.314 2.344 2.354 2.348 2.317 2.249 1.872
200 2.123 2.306 2431 2.443 2.390 2.328 2.280 1.827
350 1.989 2.226 2.391 2.389 2.370 2.318 2.255 1.832
500 1.958 2.190 2.351 2.377 2.355 2.329 2.252 1.856
750 1.840 2.087 2.262 2.300 2.299 2.257 2.204 1.838
1000 1.790 2.046 2.218 2.269 2.267 2222 2.162 1.799

Table C6. Effectiveness of M3 as a function of the ratio 91:3> for WSJ
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I1. Results for the 1NN test
AP CISI
n Cosine M1 M2 M3 n Cosine M1 M2 M3
100 | 68.98% |71.53% | 50.18% | 71.17% | 100 |45.44% |52.11% | 55.79% | 55.79%
200 |66.29% | 71.72% | 45.33% | 70.33% 200 |39.98% | 49.25% | 56.20% | 55.39%
350 |64.16% | 69.40% | 44.14% | 68.16% 350 |35.75% | 47.88% | 54.34% | 52.92%
500 |64.06% | 70.07% | 43.78% | 68.43% 500 |33.87% | 46.53% | 50.85% | 51.08%
750 ]62.39% | 67.86% | 42.88% | 65.47% 750 |32.82% | 45.10% | 44.77% | 48.21%
1000 | 62.12% | 66.97% | 42.15% | 64.25% full 32.85% | 41.30% | 37.05% | 42.79%
Table C7. Results for the 1NN test using AP and CISI
CACM LISA
n Cosine | M1 M2 M3 n Cosine | M1 M2 M3
100 |51.94% | 58.78% | 55.82% | 60.26% 100 }30.30% | 46.32% | 49.35% | 47.62%
200 |45.92% | 58.74% | 59.90% | 63.56% | 200 |27.68% | 43.60% | 44.64% | 48.79%
350 |45.97% | 59.36% | 60.58% | 65.60% 350 |26.27% | 45.89% | 45.89% | 49.05%
500 |46.35% | 58.48% | 59.65% | 65.20% 500 |27.43% |47.20% | 45.13% | 47.20%
750 |44.95% | 60.17% | 57.75% | 64.44% 750 |27.20% | 44.76% | 46.18% | 48.44%
1000 | 43.30% | 59.36% | 55.59% | 62.15% | 1000 |28.21% | 43.85% | 46.65% | 47.77%
full 43.76% | 54.48% | 50.95% | 56.22% full 28.27% | 44.53% | 43.47% | 46.19%
Table C8. Results for the 1NN test using CACM and LISA
Medline WSJ
n Cosine M1 M2 M3 n Cosine M1 M2 M3
100 |{71.88% | 80.49% | 79.44% | 80.84 % 100 |64.41% |67.42% | 56.02% | 65.16%
200 {67.43% |76.76% | 80.20% | 79.87% 200 |57.24% 1 62.10% | 49.70% | 61.67%
350 168.78% | 76.39% | 78.92% | 78.76% 350 |54.05% | 63.73% | 50.00% | 60.72%
500 |68.35% | 76.06% | 78.58% | 78.58% § 500 |52.65% | 62.90% | 48.64% | 58.83%
750 |68.23% | 76.06% | 78.09% | 78.56% | 750 |49.19% | 61.82% | 48.18% | 57.32%
full 68.39% | 72.41% | 69.83% | 73.62% | 1000 | 47.60% | 60.43% | 47.73% | 55.76%

Table C9. Results for the 1NN test using Medline and WSJ
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Appendix D

In this Appendix I present results from Chapter 8: “Hierarchic Document Clustering Using

Query-Sensitive Similarity Measures”.
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Group Average

AP B= p=0.5 B=
M1 M2 M3 M1 M2 M3 M1 M2 M3
top100 0.605 | 0.645 { 0.601 0.527 0.573 | 0.520 0.613 0.643 | 0.618
top200 0.583 | 0.620 | 0.589 0.509 0.567 | 0.511 0.576 0.603 | 0.580
top350 0.560 | 0.611 | 0.564 0.494 0.557 | 0.497 0.545 0.580 | 0.551
top500 0.552 | 0.611 | 0.560 0.477 0.562 | 0.486 0.522 0.575 | 0.536
top750 0.530 | 0.610 | 0.543 0.452 0.564 | 0.477 0.505 0.569 | 0.518
top1000 0.531 | 0.606 | 0.532 0.448 0.561 | 0.467 0.513 0.565 | 0.512
B= B=0.5 p=2
M1 M2 M3 M1 M2 M3 M1 M2 M3
top100 0.506 | 0.545 | 0.521 0.435 0.468 | 0.438 0472 0.509 | 0.490
top200 0.500 | 0.505 | 0.503 0.426 0.417 | 0.418 0476 0.480 | 0.484
top350 0482 | 0495 | 0.488 0412 0423 | 0.408 0.450 0.480 | 0.475
top500 0478 | 0493 | 0.484 | 0404 0412 | 0417 0.440 0478 | 0.468
top750 0474 | 0.505 | 0.488 0.400 0427 | 0407 0.442 0.483 | 0.470
top1000 0.484 | 0498 | 0.488 0.405 0417 | 0412 0.445 0479 | 0.462

full 0.747 | 0.749 | 0.747 0.639 0.642 | 0.641 0.787 0.788 | 0.787

CIsI =1 p=05 B=
M1 M2 M3 M1 M2 M3 M1 M2 M3
top100 0.712 | 0.721 | 0.711 0.635 0.667 | 0.642 0.702 0.710 | 0.708
top200 0.667 | 0.707 | 0.673 0.592 0.648 | 0.604 0.649 0.671 0.649
top350 0.649 | 0.694 | 0.662 0.578 0.641 | 0.598 0.614 0.642 | 0.623
top500 0.650 | 0.697 | 0.655 0.570 0.648 | 0.593 0.615 0.639 | 0.615
top750 0.648 | 0.699 | 0.655 0.561 0.643 | 0.577 0.609 0.642 | 0.615

full 0.844 | 0.846 | 0.845 0.787 0.787 | 0.787 0.797 0.796 | 0.797
LISA A= £=05 B=
M1 M2 M3 Mi M2 M3 M1 M2 M3
top100 0.538 | 0.605 | 0.570 | 0.463 0.524 | 0.492 0.524 0.584 | 0.550
top200 0.510 | 0.566 | 0.517 0.423 0478 | 0.438 0.503 0.550 | 0.507
top350 0493 | 0.529 | 0.500 | 0.411 0451 | 0.432 0.490 0.496 | 0.477
top500 0.506 | 0.539 | 0.533 0.425 0.465 | 0.458 0.497 0.503 | 0.507
top750 0.513 | 0.553 | 0.526 | 0.446 0475 | 0.449 0.490 0.523 | 0.500
top1000 0.518 | 0.545 | 0.516 | 0.450 0.466 | 0.444 0.496 0.520 | 0.490

full 0.716 | 0.715 | 0.717 0.641 0.644 | 0.642 0.713 0.716 | 0.714
MED B= B=0.5 p=2
M1 M2 M3 M1 M2 M3 M1 M2 M3
top100 0.320 | 0.381 | 0.358 0.264 0.324 | 0.294 0.296 0.335 | 0.319
top200 0.313 | 0.353 | 0.333 0.264 0.300 | 0.287 0.277 0.319 | 0.300
top350 0.305 | 0345 | 0.321 0.254 0.288 | 0.274 0.269 0.321 0.294
topS00 0.306 | 0.345 | 0.316 | 0.258 0.291 | 0.275 0.270 0.322 | 0.291
top750 0.306 | 0.346 | 0.320 | 0.259 0.292 | 0.278 0.271 0.324 | 0.295

full 0.750 | 0.752 | 0.748 0.682 0.687 | 0.684 0.734 0.740 | 0.736
p=1 p=0.5 B=2
M1 M2 M3 M1 M2 M3 M1 M2 M3
top100 0.686 | 0.694 | 0.690 | 0.585 0.609 | 0.586 0.679 0.682 | 0.682
top200 0.655 | 0.662 | 0.658 | 0.560 0.594 | 0.558 0.620 0.633 | 0.629
top350 0.637 | 0.648 | 0.648 | 0.541 0.591 | 0.546 0.582 0.590 | 0.583
top500 0.629 | 0.635 | 0.637 0.534 0.581 | 0.535 0.568 0575 | 0574
top750 0.631 | 0.633 | 0.644 | 0.537 0.569 | 0.537 0.563 0.573 | 0.567
top1000 0.631 | 0.640 | 0.636 | 0.541 0.572 | 0.536 0.559 0.569 | 0.557

CACM

WSJ

Table D1. Results using the group average method. Highest effectiveness for each column appears in bold.
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Ward

AP B=1 p=0.5 B=2
M1 M2 M3 M1 M2 M3 M1 M2 M3
topl00 | 0.631 | 0653 | 0630 | 0552 | 0583 | 0551 | 0.638 | 0.655 | 0.634
top200 | 0.612 | 0.634 | 0598 | 0527 | 0563 | 0.520 | 0.613 | 0.619 | 0.597
top350 | 0.603 | 0.623 | 059 | 0524 | 0564 | 0510 | 0.588 | 0.606 | 0.571
top500 | 0.603 | 0.620 | 0589 | 0506 | 0.561 | 0.499 | 0587 | 0.595 [ 0.570
top750 | 0.586 | 0.619 | 0573 | 0490 | 0558 | 0.502 | 0.573 | 0.594 | 0.555
top1000 | 0.580 | 0.619 | 0.568 | 0481 | 0.550 | 0.492 | 0.565 | 0.591 | 0.547

CACM B= p=05 B=2
M1 M2 M3 M1 M2 M3 M1 M2 M3
topl00 | 0.535 | 0522 | 0524 | 0460 | 0438 | 0432 | 0520 | 0.503 | 0.503
top200 | 0540 | 0522 | 0530 | 0447 | 0424 | 0435 [ 0529 | o501 | 0515
top350 | 0518 | 0.517 | 0521 | 0421 | 0426 | 0430 | 0.520 | 0.510 | 0513
top500 | 0514 | 0517 | 0514 | 0417 | 0422 | 0419 | 0511 | 0517 | 0.504
top750 | 0.510 | 0.506 | 0510 | 0417 | 0.418 | 0.416 | 0.504 | 0.504 | 0.498
top1000 | 0.505 | 0.506 | 0.506 | 0.416 | 0418 | 0.416 | 0495 | 0.503 | 0.497
full 0741 | 0.745 | 0743 | 0.638 | 0639 | 0.640 | 0.773 | 0.772 | 0.773

CISI B=1 B=0.5 B=
M1 M2 M3 M1 M2 M3 M1 M2 M3
topl00 | 0.714 | 0723 | 0713 | 0.639 | 0.664 | 0645 | 0.706 | 0.710 | 0.708
top200 | 0.681 | 0.708 | 0.684 | 0.606 | 0.640 | 0.602 | 0.653 | 0.671 | 0.654
top350 | 0.673 | 0.711 | 0.676 | 0.596 | 0.653 | 0.594 | 0.636 | 0.660 | 0.632
top500 | 0.673 | 0.703 | 0.679 | 0.602 | 0.649 | 0.600 | 0.638 | 0.652 [ 0.639
top750 | 0.682 | 0.709 | 0.673 | 0.607 | 0.653 | 0592 | 0.643 | 0.664 | 0.642
full 0.844 | 0848 | 0844 | 0.789 | 0.789 | 0.788 | 0.801 | 0.803 | 0.799

LISA B= B=0.5 B=2
M1 M2 M3 M1 M2 M3 M1 M2 M3
top100 | 0577 | 0.609 | 0575 | 0488 | 0517 | 0490 | 0570 | 0.602 | 0.570
top200 | 0.535 | 0561 | 0.532 | 0442 | 0471 | 0450 | 0531 | 0.548 | 0.520
top350 | 0.519 | 0550 | 0.522 | 0435 | 0464 | 0442 | 0522 | 0536 | 0514
top500 | 0.504 | 0537 | 0526 | 0.412 | 0457 | 0439 | 0502 [ 0.531 | o.511
top750 | 0.538 | 0.553 | 0.520 | 0451 | 0473 | 0434 | 0537 | 0538 | 0514
topl000 | 0.525 | 0.553 | 0.533 | 0449 | 0467 | 0439 | 0534 | 0537 | 0.525
full 0713 | 0715 | 0712 | 0.640 | 0645 | 0.644 | 0729 | 0.731 | 0.727

MED ﬂ =1 ﬁ =0.5 p =,
M1 M2 M3 M1 M2 M3 M1 M2 M3
topl00 | 0.421 | 0420 | 0403 | 0334 | 0355 | 0335 | 0.404 | 0378 | 0372
top200 | 0381 | 0378 | 0368 | 0.298 | 0335 | 0320 | 0391 | 0.344 | 0342
top350 | 0386 | 0371 | 0359 | 0312 | 0326 | 0311 | 0387 | 0344 | 0.328
top500 | 0385 | 0371 | 0361 | 0309 | 0325 | 0317 | 038 | 0348 | 0.333
top750 | 0386 | 0372 | 0368 | 0309 | 0325 | 0320 | 039 | 0345 [ 0.350
full 0769 | 0.767 | 0767 | 0.679 | 0.683 | 0.679 | 0.753 | 0.758 | 0.752

wSJ B=1 B=0.5 p=2
M1 M2 M3 M1 M2 M3 M1 M2 M3
topl00 | 0.695 | 0.690 | 0.681 | 0.609 | 0.618 | 0.594 | 0.702 | 0.696 | 0.692
top200 | 0.669 | 0.661 | 0.656 | 0.590 | 0.597 | 0578 | 0.656 | 0.649 | 0.645
top350 | 0.648 | 0.643 | 0635 | 0567 | 0585 | 0559 | 0.621 | 0612 | 0.620
topS00 | 0.649 | 0.641 | 0.613 | 0580 | 0579 | 0550 | 0.620 | 0.600 | 0.59
top750 | 0.637 | 0633 | 0623 | 0565 | 0.564 | 0.544 | 0.613 | 0598 | 0.594
top1000 | 0.645 | 0.628 | 0620 | 0.563 | 0.564 | 0.546 | 0.604 | 0.593 | 0.588

Table D2. Results using Ward's method. Highest effectiveness for each column appears in bold.
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Complete Link
AP ﬂ =1 ﬂ =0.5 ﬂ =
M1 M2 M3 M1 M2 M3 M1 M2 M3

topl00 | 0632 | 0650 | 0630 | 0539 | 0577 | 0537 | 0634 | 0.652 | 0629
t0p200 | 0618 | 0627 | 0614 | 0521 | 0562 | 0532 | 0608 | 0619 | 0602
top350 | 0601 | 0614 | 0597 | 0508 | 0557 | 0512 | 0588 | 0604 | 0.582
top500 | 0594 | 0621 | 0601 | 0505 | 0562 | 0517 | 0578 | 0.602 | 0583
top750 | 0.580 | 0.618 | 0.580 | 0480 | 0562 | 0495 | 0569 | 0.595 | 0.569
t0pl000 | 0577 | 0620 | 0580 | 0491 | 0.552 | 0486 | 0.568 | 0.594 | 0.574
CACM B= B=05 =2
M1 | M2z | M3 | M1 | M2 | M3 | M1 | Mz | M3
topl00 | 0536 | 0530 | 0526 | 0456 | 0446 | 0435 | 0503 | 0502 | 0515
tp200 | 0537 | 0510 | 0521 | 0449 | 0414 | 0428 | 0516 | 0497 | 0516
top350 | 0516 | 0522 | 0516 | 0427 | 0434 | 0424 | 0.500 | 0505 | 0506
t0p500 | 0509 | 0513 | 0516 | 0417 | 0422 | 0427 | 0509 | 0500 | 0502
tp750 | 0520 | 0500 | 0.506 | 0423 | 0418 | 0412 | 0508 | 0.486 | 0.485
t0p1000 | 0513 | 0494 | 0509 | 0414 | 0406 | 0414 | 0506 | 0490 | 0.49

full 0743 | 0745 | 0.743 | 0636 | 0642 | 0639 | 0759 | 0.760 | 0.758
CISI £=1 p=05 B=
M1 M2 M3 M1 M2 M3 M1 M2 M3

top100 0.717 0.722 0.715 0.639 0.660 0.644 0.704 0.708 0.706
top200 0.681 0.702 0.683 0.600 0.637 0.602 0.655 0.663 0.652
top350 0.672 0.709 0.685 0.591 0.649 0.609 0.632 0.654 0.642
topS00 0.668 0.700 0.672 0.580 0.639 0.603 0.626 0.647 0.624
top750 0.671 0.703 0.681 0.597 0.648 0.596 0.630 0.643 0.632

full | 0844 | 0845 | 0842 | 0.788 | 0792 | 0786 | 0.799 | 0.803 | 0.797
LISA B= p=05 p=
Mi | M2 | M3 | Mi | M2 | M3 | M1 | M2 | M3

top100 0.575 0.610 0.581 0.496 0.522 0.497 0.558 0.595 0.568
top200 0.534 0.550 0.543 0.445 0.461 0.445 0.535 0.550 0.536
top350 0.522 0.545 0.516 0.443 0.463 0.432 0.516 0.523 0.505
top500 0.506 0.546 0.515 0.424 0.462 0.432 0.506 0.538 0.489
top750 0.502 0.547 0.535 0.429 0.463 0.446 0.501 0.523 0.522
top1000 0.513 0.549 0.526 0.437 0.467 0.437 0.506 0.528 0.515

full 0.702 0.704 0.700 0.629 0.633 0.627 0.719 0.718 0.715
MED p=1 B=0.5 B=2
M1 M2 M3 M1 M2 M3 M1 M2 M3

top100 0.415 0.420 0.416 0.327 0.352 0.342 0.370 0.378 0.375
top200 0.392 0.392 0.381 0.317 0.319 0.310 0.367 0.367 0.371
top350 0.388 0.374 0.385 0.315 0.313 0.311 0.362 0.354 0.361
top5S00 0.385 0.373 0.383 0.315 0.316 0.315 0.363 0.353 0.368
top750 0.386 0.373 0.389 0.318 0.317 0.315 0.363 0.353 0.375

full 0.789 0.793 0.787 | 0.688 0.688 0.683 0.778 0.779 | 0.780
WwSJ A=1 B=0.5 B=2
M1 M2 M3 M1 M2 M3 M1 M2 M3

top100 0.679 0.696 0.689 0.599 0.616 0.599 0.687 0.693 0.698
top200 0.660 0.660 0.657 0.591 0.597 0.576 0.647 0.645 0.646
top350 0.636 0.642 0.642 0.563 0.580 0.566 0.616 0.617 0.618
top500 0.637 0.639 0.643 0.557 0.575 0.568 0.611 0.605 0.622
top750 0.642 0.630 0.656 0.564 0.558 0.573 0.612 0.599 0.628
top1000 0.638 0.626 0.637 0.559 0.559 0.547 0.614 0.599 0.614

Table D3. Results using the complete link method. Highest effectiveness for each column appears in bold.
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Single Link
AP ﬂ = ﬂ =0'5 ﬂ =
M1 M2 M3 M1 M2 M3 M1 M2 M3

top100 0.632 0.661 0.643 0.558 0.608 0.566 0.638 0.650 0.647
top200 0.622 0.663 0.618 0.553 0.631 0.547 0.613 0.630 0.600
top350 0.606 0.661 0.614 0.551 0.635 0.544 0.590 0.612 0.581
top500 0.598 0.662 0.606 0.535 0.638 0.538 0.576 0.605 0.572
top750 0.598 0.662 0.588 0.531 0.637 0.524 0.568 0.609 0.558
topl000 | 0.589 | 0.656 | 0573 | 0521 | 0.629 | 0502 | 0.560 | 0.609 | 0.546
B=1 p=0.5 B=
M1 M2 M3 M1 M2 M3 M1 M2 M3

top100 0.513 0.587 0.542 0.442 0.519 0.469 0.482 0.549 0.512
top200 0.493 0.568 0.522 0.423 0.502 0.443 0.469 0.534 0.499
top350 0.487 0.536 0.503 0.416 0.484 0434 0.452 0.500 0.469
top500 0.498 0.533 0.499 0.422 0.485 0.433 0.461 0.492 0.463
top750 0.485 0.526 0.499 0.411 0.464 0.435 0.450 0.491 0.465
top1000 0.479 0.527 0.498 0.412 0.462 0.433 0.446 0.492 0.469

CACM

full 0.759 0.764 0.763 0.664 0.663 0.663 0.787 0.788 0.788
CISI B= p=0.5 p=2
M1 M2 M3 M1 M2 M3 M1 M2 M3

top100 0.750 0.746 0.726 0.707 0.714 0.691 0.725 0.719 0.704
top200 0.723 0.752 0.727 0.676 0.718 0.678 0.676 0.691 0.679
top350 0.714 0.744 0.720 0.665 0.701 0.672 0.663 0.676 0.659
topS00 0.717 0.741 0.719 0.676 0.703 0.669 0.656 0.668 0.652
top750 0.702 0.738 0.713 0.651 0.709 0.661 0.646 0.662 0.646

full 0879 | 0882 | 0878 | 0823 | 0.824 | 0.823 | 0824 | 0824 | 0823
LISA B=1 B=0.5 B=
M1 M2 M3 M1 M2 M3 M1 M2 M3

top100 0.597 0.653 0.602 0.522 0.580 0.539 0.560 0.622 0.578
top200 0.578 0.653 0.586 0.497 0.567 0.496 0.568 0.631 0.577
top350 0.561 0.653 0.628 0473 0.571 0.531 0.550 0.625 0.612
top500 0.613 0.654 0.607 0.516 0.583 0.524 0.607 0.620 0.581
top750 0.601 0.665 0.613 0.509 0.594 0.530 0.585 0.620 0.593
top1000 0.596 0.642 0.608 0.515 0.572 0.529 0.575 0.609 0.593

full 0.744 0.746 0.741 0.665 0.672 0.669 0.763 0.766 0.764
MED B= B=0.5 B=2
M1 M2 M3 M1 M2 M3 M1 M2 M3

top100 0.330 0.400 0.366 0.268 0.368 0.330 0.302 0.341 0.319
top200 0.316 0.352 0.328 0.267 0.318 0.292 0.274 0.307 0.284
top350 0.314 0.334 0.323 0.269 0.305 0.287 0.272 0.296 0.281
top500 0.315 0.335 0.325 0.275 0.304 0.289 0.272 0.301 0.285
top750 0.316 0.336 0.325 0.271 0.304 0.288 0.274 0.302 0.286

full 0790 | 0795 | 0792 | 0700 | 0702 [ 0700 | 0.773 | 0.778 | 0.773
wsJ B=1 B=0.5 =2
M1 M2 M3 M1 M2 M3 M1 M2 M3

top100 0.686 0.694 0.690 0.611 0.656 0.619 0.684 0.683 0.688
top200 0.655 0.662 0.658 0.595 0.635 0.591 0.635 0.632 0.636
top350 0.637 0.648 0.648 0.584 0.627 0.593 0.605 0.599 0.609
top500 0.629 0.635 0.637 0.576 0.618 0.586 0.588 0.578 0.595
top750 0.631 0.633 0.644 0.584 0.618 0.595 0.580 0.566 0.589
top1000 0.631 0.640 0.636 0.582 0.622 0.580 0.577 0.570 0.584

Table D4, Results using the single link method. Highest effectiveness for each column appears in bold.




