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Summary

Plasm a physics is rich in phenomena, occurrences and applications: m any instabilities 

exist due to the relatively long-range Coloumb forces th a t m ediate constituent particle 

dynamics, most of the visible universe is in the plasm a state , and plasm as have been used 

from lighting to com puter chip m anufacturing to  (attem pted) fusion power generation.

W ithin  plasm a fusion research, Thom son scattering is a commonly used diagnostic. It 

allows the tem perature and density of the plasm a electrons to be m easured w ithout dis

torting  the plasma. However, the scattering cross-section is small. Thom son scattering 

signals can be difficult to detect against the background emission of the plasma.

In this thesis, the Thom son scattering diagnostic d a ta  from the COMPASS-D exper

iment is analysed. Several aspects of the diagnostic are presented along w ith detailed 

explanation of the inference procedure for determ ining the p lasm a’s electron tem pera

ture.

This tem perature analysis was achieved by utilising a Bayesian inference model th a t 

allowed prior inform ation about likely values to be system atically included. This prior 

inform ation was found to remove the degeneracy present due to the  low signal-to-noise 

ratio  of the data.

A genetic algorithm  (GA) library, called ELGAR, was developed and used to solve 

the m inim isation problem resulting from the Bayesian inference. The GA proved to be 

a reliable m ethod of solving such problems. ELGAR was also used to  investigate certain 

characteristics of the GA such as optim al choice of key param eters. These were found 

to be in disagreement w ith theoretical results bu t the  difference was explained by the 

different mode of operation of ELGAR.

The Thom son scattering analysis was extended to include tw o-tem perature consider

ations. The set of observations consistent w ith an n -tem peratu re  d istribu tion  function 

was found to be bounded by a curve. Some da ta  from the COMPASS-D experim ent lay
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outside this boundary, bu t was bounded by a sim ilar curve. This suggested th a t some 

system atic error had occurred. Some explanations of possible causes of this bias were 

suggested.

C onstraints were found for interpretations of any observations. These indicated th a t, 

for some observations, a set of tem peratures is unavailable (as either to  ho tte r or colder 

component) for a distribution function which is consistent w ith th a t observation. For 

certain  observations, the least-squares tem perature  estim ate is contained w ith in  the 

set of impossible tem peratures. This indicates th a t the presence of a ho tter species of 

electrons can bias the observations towards higher tem peratures.

The thesis concludes w ith a sum m ary and a discussion of possible fu ture work.



Chapter 1

Introduction

This chapter gives an introduction to the various elements th a t are combined within the 

thesis proper. The topics are covered in greater depth  in later chapters b u t sufficient 

inform ation is presented in this chapter to appreciate the overall structu re  of the  research 

programme.

The first section of this chapter discusses diagnostics in general and presents the 

m otivation for Bayesian based analysis. Section two briefly introduces plasm as stating 

the relevance of plasm a research. Section three discusses Thom son scattering, although 

a more detailed description is presented in §4.1. Section four discusses optim isation and 

some of the problems within this field. The final section brings these concepts together 

to form the framework th a t the following chapters will build on.

1.1 Motivation

It is rare th a t an experim ent is conducted w ith  no knowledge of possible outcomes. 

Often experiments on some physical process are conducted in environm ents in which 

th a t physical process is carefully controlled. The experim entalist is try ing to tease 

out the difference between two or more different theorems. Therefore, it is im portant 

th a t experim ents and the analysis of results are conducted w ithout prejudice from any 

inform ation known to the investigator, such as ‘likely outcom es’ derived from previous 

results.

Physical processes can also be used to m easure underlying quantities such as pressure, 

tem perature, velocity, etc. Generally, when the physical process is used to  diagnose some
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param eter it is because the complexity of the  experim ent prevents precise control of th a t 

param eter. Often, this uncertainty arises from the natu re  of the  experim ent itself or 

from some uncertainty in calibration.

There is a subtle distinction between experim ental investigation of some phenomenon 

and using th a t phenomenon as a diagnostic of some physical property. In  the former the 

rigors of scientific investigation require an unbiased m easurem ent of the  phenomenon, 

as sta ted  above. For the diagnostic case, however, we require the  best estim ate of 

the physical property. This estim ate may include previous results or o ther ‘external’ 

knowledge. For example, if we are in the unlikely position of knowing, a priori, the exact 

s ta te  of the physical property the diagnostic is set to  measure, then  the best estim ate 

would be to  ignore the m easurem ents (which would be subject to  experim ental errors) 

and use our infallible information. Likewise, if we knew nothing about likely outcomes, 

then  our best estim ate of the physical property  would be based only on the observed 

phenomenon.

In general, some inform ation is known a priori bu t usually insufficient to adequately 

constrain the required physical property of the system. Bayesian inference provides a 

system atic framework w ithin which this knowledge can be introduced. In the  language 

of Bayes’ theorem, this knowledge represents ‘prior inform ation’. The inclusion of such 

prior inform ation biases the inference towards ‘more likely’ a t the expense of ‘less likely’ 

ones.

1.2 Plasmas

The archetypal plasm a is an ionised gas. Instead of the  usual gas-like short range 

collisional interactions, the charged particles move in response to  the  local electric and 

m agnetic fields. The local electric field only arises from Maxwell’s equations; the plasm a 

will move to oppose externally applied electric fields. The local m agnetic field arises 

from bo th  Maxwell’s equations and from any externally applied field. Thus any part of 

the  plasm a responds to all activity elsewhere in the plasma.

Plasm a physics encompasses the study of bo th  naturally  occurring and artificially 

created plasmas. Almost all of the mass of the visible universe, from stars to the sparse 

interstellar medium, is in a plasm a state. Laboratory plasm as are used in a diverse range 

of m anufacturing processes from com puter chip fabrication to  coating m etalised plastic
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crisp packets. The study of laboratory plasm as also includes the current a ttem pts to

achieve controllable nuclear fusion as the basis for power generation.

The simplest model of plasm a dynamics considers a  single particle which experiences 

some local electric and magnetic field. This model is sufficient to  explain dynamics for

tides. Key plasm a phenom ena are explained such as the gyro-rotation of the  particles. 

This is the ro tation  of an charged particle in a m agnetic field, w ith  charge e and mass 

m , about the magnetic field lines, of m agnitude B ,  w ith cyclotron frequency u c = e B / m  

and Larmor radius = v ± / u c, where vj_ is the component of velocity perpendicular to 

the m agnetic field lines.

A lthough this simple model reveals a  wealth of observed phenom ena it fails to  account 

for the inter-particle interactions. A full treatm ent would require accounting for six 

degrees of freedom (three spatial and three velocity) per particle. A typical tokamak 

plasm a density is 1019 m -3 rendering the exact approach untenable. Since the exact 

m ethod is unapproachable an approxim ation must be made. One simple approxim ation 

is to describe the plasm a by a statistical d istribu tion  function, / ,  where the value of 

/ ( r , u )  at some location r  describes the num ber of particles in the  infinitesim al volume 

element d3r  and some infinitesimal velocity element d 3u.

In common with the kinetic theory of gases, the evolution of the d istribu tion  function 

is given by the Boltzm ann equation:

the effect of collisions on the distribution function.

To form a more tractab le  approxim ation the acceleration is assum ed to  be from any 

local electric and m agnetic fields and collisions are ignored. Ignoring collisions is justified 

by the long-range nature of the electric and m agnetic fields. These allow particles to 

‘miss each o ther’ w ithout strong distortions in / .  Such fields are referred to  as the 

self-consistent fields and contain the long-range interaction effects. This form of the 

Boltzm ann equation is known as the  Vlasov equation:

If the collisional term  is replaced then some approxim ate value m ust be derived. If 

the distribution function is considered a small pertu rbation  of a M axwellian then the

sufficiently short time-scales th a t the particle does not interact strongly w ith other par-

( i . i )

where the left hand side is the  convective derivative of /  and the right hand side discusses

(1.2 )
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distribu tion  function can be expanded as a Taylor series. If the first term  of the Taylor 

series is retained then  this is the Krook collision term :

where r  is the time-scale for collisions.

A less crude approxim ation is the  basis for the  Fokker-Planck collisional term . This 

assumes some transitional probability function ^ ( u ,  A u) of some particle initially at 

velocity u  obtaining, through a collision, an increase in velocity of A u  in tim e A t.  The 

collision term  is derived by forming a Taylor series expansion of the expectation value 

of /  a t tim e t.

1.3 Thomson scattering

Thom son scattering is the non-quantum  scattering of light off a charged particle. The 

assum ption th a t the scattering can be described w ithout quantum  effects requires tha t 

the object suffers no recoil from the photon. This assum ption is valid provided the 

energy of the incident photon (Ephoton — ls much smaller th a t the ‘rest m ass’ energy 

of the scattering object (me2). In the case of a plasm a consisting of electrons and heavier 

positively charged ions the scattering is almost exclusively due to the electrons. This is 

because, under the classical viewpoint, the scattering object vibrates in response to the 

electric field of the incident light. The electrons, being far lighter th an  a typical ion, 

will v ibrate more easily than  the ions and so are responsible for most of the Thom son 

scattering.

Electrons have a rest mass of approxim ately 511 keV. Most Thom son scattering diag

nostics use optical or near optical frequency lasers as the light source due to availability 

of lasers in th a t frequency, the relative power of those lasers and, for the  near infrared, 

the relative lack of spectral lines. Infrared wavelengths are often used as there is typi

cally less line-emission in lower wavelengths. A typical near infrared photon energy is 

1 eV so any scattered radiation will be as a  result of Thom son scattering.

The m easured frequency of any scattered light will depend on the electron’s motion. 

The ensemble effect of m easuring many scattered photons from a m onochrom atic source 

will be a distribution of the scattered light’s frequency th a t will depend on the electron’s 

velocity distribution. By assuming a Maxwellian distribu tion  of electron velocities and

(1.3)
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Figure 1.1: Diagrammatical representation of one-dimensional optimisation.
Triplet (a, b, c) bracket the minimum. Point d then e were chosen 
to further constrain the minimum. This process proceeds until re
quire accuracy is achieved.

comparing the observed distribution w ith predicted scattering profiles, the electrons’ 

tem perature can be derived.

1.4 Optimisation

O ptim isation is the search for param eters th a t minimise (or equivalently maximise) a 

particu lar function. There are a num ber of techniques for finding a local minimum, 

i.e. a minimum in the neighbourhood of some initial point. W ith  one-dimensional 

optim isation of a function it is possible to bracket the  m inimum  w ith  three points. For 

example, a m inimum  in the function /  could be bracketed by the points a, b and c if 

f ( b ) < / ( a )  and f (b)  < f (c) .  A further point d can then  be selected, e.g. d =  (a + b)/2 . 

The minimum bracket (a,6,c) can be updated  to (a,d,6) or (d,6,c) depending on whether 

m  < f (b).  Since the interval is always smaller, this m ethod will always converge 

towards the minimum. This is shown diagram m atically in figure 1.1.

For m ulti-dim ensional minimisation, minimising a function w ith more th an  one pa

ram eter, it is impossible to bracket a minimum. Intuitively, th is is because there is 

always a direction along which the function could have a narrow valley b u t to  which 

the bracketing points (however many) are insensitive. Figure 1.2 dem onstrates an ex

ample of this problem. Instead of bracketing, m ulti-dim ensional optim isation methods 

work by taking a ‘good guess’ and hopefully improving upon it. Because of this, m ulti

dimensional m inim isation involves (usually many) iterations.
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Figure 1.2: Illustration of the futility of attempting to bracket a minimum in more 
than one dimension. Contour lines illustrate the function’s shape.
Five ‘bracketing’ points are located on a circle. The arrows point in 
the direction of steepest descent, which is toward the circle’s centre. 
However, the true extremum lies outside this circle.

As well as distinguishing between one-dimensional and m ulti-dim ensional optim isa

tion problems there is also a distinction between local and global optim isation. Local 

optim isation is finding the extrem um  of a  function usually in the  vicinity of a point. 

M ulti-dimensional local optim isation usually s ta rts  w ith this point and iteratively finds 

more optim al points until an extrem um  is found.

Global optim isation is searching for the extrem um  for all possible param eters, for 

example the smallest of the local minimum. In practice, the procedure is is usually 

lim ited to some given range of param eter space. Finding the global optim um  is a 

difficult task and guaranteeing th a t the discovered extrem um  is the global extremum  

is, in general, impossible. Various techniques exist for finding a reasonable estim ate 

of the  global extrem um  such as Simulated Annealing and Genetic Algorithms. These 

techniques are generally iterative in natu re  and not guaranteed to  work in all cases 

but usually provide a good estim ate of the  vicinity of the  global extrem um . A local 

optim isation finding routine can then  be employed to  locate the  true  global extremity.
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1.5 Overview of thesis

7

This thesis discusses the inclusion of prior inform ation and the analytical form for such 

analysis. This is used to improve results from diagnostic equipm ent in poor signal-to- 

noise conditions by system atically including prior information.

Genetic Algorithms are discussed. These are used as a  ‘work horse’ to solve the  m ulti

dimensional non-linear m inim isation problems. These problem s arise due to  the  extra, 

prior inform ation included in the analysis. Using Bayesian statistics to  solve non-linear 

problems has been considered in other fields: Aoki et al. [1999] details using a Genetic 

A lgorithm  to cluster documents based on a Baysian m easure of their similarity.

The thesis also presents analysis of da ta  from the Thom son Scattering Diagnostic used 

at COMPASS-D, the UKAEA Fusion Division’s test tokam ak reactor. The signal-to- 

noise ratio  for Thom son scattering makes it amenable to the Bayesian inference m ethod.

The Thom son scattering analysis is then  extended to consider results from a two- 

tem perature distribution. A lthough there is insufficient da ta  to  fully constrain the 

degrees of freedom some constraints can be placed on the available values of param eters.



Chapter 2

Properties of a Genetic Algorithm

This chapter discusses the Genetic Algorithm  and its relevance and im portance in opti

m isation problems. Chapter 4 will discuss a specific example of an optim isation problem 

th a t uses bo th  the algorithm  discussed in this chapter and the form alisation developed 

in chapter 3.

The first section of this chapter gives a general in troduction to Genetic Algorithms on 

which the following section expands giving more details on global optim isation. Section 

three discusses the effect of different m utation rates, an adjustable param eter of the 

GA, on the convergence rate. Section four details how the Genetic Algorithm  was 

constructed and section five illustrates some standard  problems th a t were tackled w ith 

a Genetic Algorithm. The key points are then  summ arised.

2.1 Introduction

Unlike a hum an, a com puter cannot take an overview of a problem. Heuristical prob

lems, such as spotting the global m axim um 1, are generally easy for a hum an if the da ta  

is suitably presented; bu t it is difficult to  describe the sequence of steps the  hum an 

observer uses to derive the answer.

W ith  vast collections of d a ta  it is im practical to require a hum an to sift through 

each dataset and locate the overall maximum. Such drudgery is to  be avoided and, in

1 Although throughout this chapter, the objective of the algorithms discussed will be to locate the 
maximum of a function, it should be remembered that the minimum of the function /  is the maximum 
of the function —
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any case, is prone to mistakes. For ‘complex’ data, where the m axim um  could be the 

subject of debate, an autom ated scheme would remove the possibility of unw arranted 

hum an bias. However, in such cases, a hum an observer can bring experience to bear and 

bias the answer towards more likely solutions. A m ethod for encoding experience, in 

the  form of ‘prior inform ation’, is discussed in chapter 3; bu t for the  moment, we shall 

consider the problem  of locating some extrem um  of the supplied da ta  w ithout being 

influenced by previous results.

Many routines exist for locating the m axim um  of a function in the  neighbourhood of 

some initial point in param eter space. For examples of such algorithm s see chapter 10 

of Press et al. [1996]. These routines are collectively referred to as ‘local m axim isation 

routines’. Perhaps the simplest local m axim isation routine is ‘hill clim bing’: an iterative 

algorithm  where the next point is selected by stepping in the  direction of steepest ascent.

Local m axim isation routines have the property  th a t they take a point in param eter 

space (or in the case of simplex optim isation, n  +  1 points for n  dim ensional param eter 

space) and conjure up a new point usually based on a variant of the hill climbing 

algorithm . This process is then  repeated forming an iterative scheme th a t is term inated 

once a suitable stopping criteria is reached. These routines use different m ethods to 

decide on the new, better point. Some use inform ation about the  function’s gradient 

whilst others rely upon only the evaluated function values. Some use a single m ethod 

whereas others are hybrids and tentatively try  a selection of different m ethods before 

com m itting to a new point and proceeding to the next iteration. However the iterative 

scheme proceeds one factor is common to  all local m axim isation routines: after finding 

a region where the function’s first derivative vanishes they will all stop.

It is possible to construct a global m aximum  searching algorithm  from the simpler 

local m axim isation routines. One m ethod of achieving th is is to create a  set of initial 

tria l solutions: points in param eter space where it is hoped th a t for one tria l solution 

the local maximum  is the global maximum. By finding the local m axim um  near each 

tria l solution and retaining the largest local m axim um  the global m axim um  may have 

been discovered. In many real-life problems there is no way to  know a priori the 

‘sm oothness’ of a given solution, i.e. how large a volume of param eter space is considered 

the neighbourhood of the global maximum. For most functions th is means th a t one of 

the starting  points must be ‘close enough’ to the global m axim um  th a t the  function is 

sm ooth and the maximum can be arrived upon.
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One m ethod of finding a point in an n  dimensional param eter space close enough to 

the  global maximum  is to try  a large num ber of points in different locations. These initial 

points can be selected randomly, sub-random ly such as a  H alton or Sobel sequence (see 

section 7.7 of Press et al. [1996]), or from a n  dimensional grid of m  x m  x m  x • • ■ =  m n 

points.

However the points are selected the m ultiple-point local m aximum  algorithm  is inef

fective. The probability of one random ly chosen point lying w ithin the neighbourhood 

of the  global maximum  is P i =  y  where v is the volume of the  neighbourhood and V  is 

the to ta l volume of the param eter space under investigation. For k  points, the proba

bility of a t least one lying within the neighbourhood is =  1 — ( l  — y ) k ~  k ^ 1 where 

I is the dimensionality of the param eter space and r  and R  are typical length-scales for 

the neighbourhood and the param eter space under investigation respectively. It is clear 

th a t an exponentially increasing num ber of points are required to  m aintain  the same 

probability of finding the global maximum for increasing dim ensionality of the problem.

Despite the inefficiency of the m ultiple-point local m axim isation routine it is impossi

ble to  guarantee th a t a  com puter will find the global m axim um  of a  function. Moreover, 

if the function we wish to optimise is in some sense ‘expensive’ to  calculate {e.g. in term s 

of com puter resources) then  a more efficient algorithm  is required. Such algorithm s are 

often inspired by natural phenomena. One such m ethod is sim ulated annealing, which 

gradually ‘cools’ towards a solution in an analogy to a m etal being annealed to  remove 

grain boundaries and achieve a minimum internal energy. For more inform ation about 

sim ulated annealing see §10.9 of Press et al. [1996], K irkpatrick et al. [1983], Wille 

and Vennik [1985b] and references therein. Another m ethod, deriving inspiration from 

natu ra l selection and evolution, is the Genetic Algorithm.

A Genetic Algorithm  (GA) uses concepts borrowed from genetics and D arw in’s theory 

of evolution. As an algorithm  classification the GA is quite broad. In the  most abstract 

sense a GA consists of a collection (tens or hundreds) of points in param eter space and 

a collection of operators th a t are applied iteratively to  the collection. The effect is to 

create an environment in which m ultiple entities (the points in param eter space) vie 

w ith each other to  include their ‘genetic inform ation’ as part of the  ‘gene pool’ of the 

next iteration.

Each entity  can be considered analogous to a single creature forming p a rt of a  partic

ular species. Therefore, the collection of such entities used by a GA at some particu lar
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F igure  2.1: The DNA base-pairs that encode amino acids.

ite ra tio n  is analogous to th e  bio-diversity  of th e  species a t th a t  p a rtic u la r  tim e.

In a fu rth e r analogy to  n a tu ra l system s, th e  term s geno type and  p heno type are used to 

describe the process of evaluating  th e  en tity ’s fitness. In biological system s, the  genotype 

refers to the  sequence of DNA base-pairs th a t  ‘code u p 1 the  en tity  (see figure 2.1) 

w hilst th e  pheno type refers to  the  physical resu lt of th e  coding, w hich includes any 

environm ental effects. T he c rea tu re ’s pheno type has to  survive u n til m a tu rity  so it can 

p ropagate  i t ’s p a rticu la r genetic code onto the  next generation .

In hum ans, the  com plete genotype is presen t in m ost cells as 23 pairs of chromosom es. 

A pair of chrom osom es contain  the sam e num ber of DNA base-pairs, w hich are nearly 

identical. Each chrom osom e consists of two connected choinatids th a t  con ta in  the genes. 

A gene is the region of DNA responsible for a p a r ticu la r tra i t  (e.g. h a ir colour). T his 

h ierarchy of s tru c tu re  is shown in figure 2.2.
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Figure 2.2: The hierarchy of structure within a cell’s nucleus from chromosome 
to the base pairs.

A gene typically  consisting of m any codons w hich are groups of th ree  base-pairs th a t  

code a p articu la r am ino acid. P a rt of the  cell’s m anufac tu ring  process involves copying 

a  section of DNA to RNA (called m essenger RNA or rnRN A). T h e  m ultip le  codons in 

a  gene specify the  sequence of am ino acids th a t jo in  to  form  a p a r tic u la r  p ro te in  th a t 

th en  causes th e  p articu la r tra it. An exam ple set of codons is show n in figure 2.3.

T he  gene’s location w ith in  its chrom osom e is referred  to  as th e  gene’s locus. Some 

genes’ loci are not fixed and  can change from  ind iv idual to  ind iv idual. T h is  is achieved 

because the  vast m ajority  of genetic m ateria l w ith in  a chrom osom e is insignificant. 

As th e  chrom osom e is ‘re ad ’ (i.e. copied to  m RN A ) specific codons tu rn  on the cell’s 

m anufactu ring  process enabling  la te r codons to  be ‘decoded’ into p ro te in . T he  different 

expressions of the  gene’s tra it  are referred to as the  allele of th a t  gene. For exam ple, the 

gene for the  eye colour tra it  resu lts in different p ro te ins being p roduced  due to  different 

codons w ith in  the  gene. Blue eye colour is an  exam ple of th e  eye colour gene’s alleles.

T he  pairing  of chrom osom es allows com plex behav iou r such as d om inan t and  recessive 

genes. At a p a rticu la r locus, the  gene from  one chrom osom e m ight take precedence 

over the  o ther resu lting  in th e  pheno type only developing the  tra i t  associa ted  w ith 

th e  dom inan t gene. However, a recessive gene th a t  is not been expressed (due to the 

presence of a dom inan t gene) can be passed on to  an  offspring w here it can be expressed
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Figure  2.3: Codons within mRNA copied from DNA (with U instead of T).

if no equivalent dom inan t gene is present. It is w orth  no ting  th a t  the  phenotype also 

includes environm ental effects so th a t  two different pheno types can derive from the sam e 

genotype. T his level of ind irection  (pheno type is used for fitness evaluation  whilst only 

genotype is passed on) prom otes hard iness by encouraging genotypes th a t  are fiexible 

enough to cope w ith  different environm ents.

W ith  genetic a lgorithm s the  genotype usually  consists of a  fixed length  s tring  from 

an  a lp h ab e t. T h e  a lp h ab e t is usually  a  fixed set of sym bols (such as b inary  or decim al 

digits) b u t some GAs work w ith  a  genotype consisting of floating po in t num bers. T he 

‘m ean ing ’ a ttr ib u te d  to  each elem ent (the alleles) of th e  genotype string  is usually 

fixed a lthough  some work (B ethera  and N an ju n d iah  [1997]) suggests som e benefits from 

allowing some varia tion  in gene alleles.

To illu s tra te  th e  definitions discussed above in the  contex t of o p tim isa tio n  consider the 

following curve-fitting  problem . D a ta  di is supplied  w ith  estim ates of the  uncertain ties 

<jl assum ing the  errors are norm ally  d is trib u ted . T he  m odel is two independen t G aussian 

curves and  a constan t offset as shown in (2.1).

x r (* ~  Ai)21 , [ ( i ~  A2)2] , ,0 n
f i  =  a x e x p  — 2—  + a 2 exp -  -—̂ 2—  + l  t2 '1*

If we take x 2 — Y l i i f i  ~  as our likelihood m easure one m eth o d  of solving th is
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F igure 2.4: Representations and information pertaining to a single entity of a 
GA.

problem  is to guess a set of initial values for the seven param eters {<2 1 , / ii, w\\a,2 , ^ 2 ; 0

and to use some m ulti-dim ensional optim isation m ethod to  iteratively improve this so

lution. As stated  earlier, this will work only if the initial guess is close enough to the 

true minimum. Figure 2.17 on page 35 dem onstrates th a t for a sim ilar fitting problem, 

even in the absence of noise, the fraction of the to ta l param eter space ‘close enough’ to 

the global minimum can be small.

An alternative m ethod of solving this curve fitting problem  is via a  GA. For this 

example, the GA ’s genotype consists of five genes: one for each param eter. W hilst the 

GA is running each entity in the GA’s current population will have specific numbers 

allocated to each gene. The phenotype is the function we wish to  fit, so a specific entity’s 

phenotype is a curve given by the values of the genes th a t describes (to a greater or 

lesser extent) the data. The fitness function is taken to  be — x 2- This is illustrated in 

figure 2.4.

The genetic operators are used to generate new entities which then  form the next 

iteration of the algorithm. Although im plem entations of GAs differ in their choice of 

which operator to implement they will generally include selection, cross-over, m utation 

and some form of survival operators. The selection and cross-over operators are used to 

generated the required num ber of entities: a  user supplied param eter of the algorithm.
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The m utation operator is then applied to the set of child solutions. The survival oper

ato r is analogous to D arw in’s survival of the fittest and ensures the  algorithm  ‘evolves’ 

towards the global maximum.

The selection operator finds two entities from which new entities are formed. The 

three common selection operators are ‘unbiased’, ‘rou le tte’ and ‘tournam ent’. Unbi

ased is the simplest and selects two entities from the collection of available (without 

replacem ent). The roulette operator differs from unbiased in th a t it weights the selec

tion towards more optim al solutions. The weighting is usually taken to  be the fitness 

function, requiring it to be positive definite. Tournam ent selection works in two stages: 

it first random ly selects two pairs of entities then  the fittest of each pair then  proceeds 

to the  breeding stage.

The cross-over operator takes two selected entities (‘paren ts’) and combines them  

to produce two variants (‘children’) so th a t each contain some inform ation from one 

parent and some from the other. There are three variants on the cross-over operator: 

single-point, two-point and n-point. Single-point cross-over operator duplicates the two 

parent entities’ chromosomes and chooses some ‘splice po in t’ along the length of the 

chromosome between two genes. The fragment of genetic m aterial after the splice point 

are swapped between the child entities to form distinct entities. An example of this is 

shown in figure 2.5. Two-point cross-over is sim ilar to one-point bu t two splice points 

are selected. The genetic m aterial between the two splice points in the child solutions 

are then  swapped. The n-point cross-over considers each point along the chromosome in 

tu rn  and allocates the position a splice point w ith probability pSpiice- Genetic m aterial 

between alternate sections is copied.

Parents Children
54 1 6790 ( 54 1 6|8 1 8

+ =  < 1
1

6 5 2 7 8  18 ( 6 5 2 7[7 9 0

Splice
point

Figure 2.5: An example of a 1-point cross-over operator for a 7 gene problem.

Once all the children have been bred the m utation operator is applied. This alters a 

random ly chosen genes to new, random  values. This serves two purposes. F irst it gives 

the GA a m ethod of escaping a local m aximum  and second it allows fine adjustm ent to
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Figure 2.6: Steps in progressing from one generation to the next.

a solutions close to a  local (perhaps global) maximum.

After m utation, a m erit or fitness function is used to assign a num erical ‘fitness’ to 

each new solution and the survival operator is applied. One survival operator is: rank 

entities (parents and children together) based on their fitness function and select the 

top fraction to proceed to become the potential parents for the next generation. This is 

illustrated  diagram m atically in figure 2.6. A nother common survival operator is to have 

the num ber of children equal the num ber of parents and replace all parents w ith their 

children. In this case, evolution is encouraged by using roulette or tournam ent selection 

and cross-over is altered to no longer be autom atic bu t to operate w ith probability pcr.

It is v ital to  note th a t all the problem  specific inform ation is contained w ithin the 

fitness function and th a t the only assum ption the algorithm  makes is th a t this function 

is single valued. This is a weak assum ption. It suggests th a t GAs are robust: the 

algorithm  will still converge on the global m aximum  if the fitness function varies sharply 

or is discontinuous — provided a lim iting value of the function can be defined.

The following list illustrates some advantages gained from using a Genetic Algorithm:

• A genetic algorithm  is self-organising. It requires no problem  specific strategy or 

length-scale information. A generic GA should solve most problem s eventually. 

For discussion on minimum conditions for a  GA to converge on the  global minimum 

see Eiben et al. [1991].

• Genetic algorithm s are a robust m ethod. For example, in the arena of d a ta  re

duction ‘ex tra  inform ation’, such as ex tra  peaks and noise in spectral data , does 

not confuse a GA. It will still arrive at a ‘reasonable answ er’, i.e. w ithin the
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neighbourhood of the global minimum.

• GAs are very fast algorithm s for finding approxim ately the global minimum: a 

solution th a t is nearly correct.

Despite these advantages listed above there are disadvantages and unresolved issues 

related to  Genetic Algorithms.

The improvement in successive generations’ best solution decays exponentially. Even

tually  it become ineffective to  continue w ith a GA. The best solution from the GA could 

then  be further improved by some local maximum  finding procedure, provided the true 

global m aximum  has been located.

If the fitness function is noisy then  this can disrupt the progress of a GA. This has 

been dem onstrated for a binary GA using roulette wheel selection (Fogel and Ghozeil 

[2000]). O ther forms of GAs may be tte r deal w ith such problems.

A genetic algorithm  will improve a good solution via m utations. B ut th is m ethod is 

ineffective if the ‘ridge’ of the maximum  lies diagonally (i.e. off-axis) in param eter space. 

Diagonal m axim a require m ultiple m utations of the same solution for any improvement. 

This is increasingly unlikely as the dimensionality of the valley increases.

It is unclear how to implement a genetic algorithm  th a t uses floating-point numbers. 

The floating-point analogue of cross-over and m utation is not obvious. For example, 

if the  numbers are encoded as decimal digits then there is a problem  associated with 

rounding: 0.999 would require four co-incident m utations to become 1.000, where as

0.998 would require only one to become 0.999. The result of this effect is floating-point 

GAs tends to get stuck at rounding points.

Most numerical optim isation problems use a rectangular region of param eter space. 

For the operators discussed, m utation  and cross-over will always produce children whose 

param eters lie w ithin this region of param eter space. If the  bounded region of param eter 

space is irregular, or if param eter space is, in some sense, non-orientable, cross-over may 

produce invalid solutions. Invalid solutions may be rejected autom atically, which greatly 

hinders the genetic algorithm , or could be penalised w ith a  decrease in the solution’s 

fitness. See Goldberg [1989] for specific examples.

For non-continuous, com binatory problems, such as scheduling a series of order- 

dependent tasks to take the minimum tim e on a parallel com puter as in Correa et al.
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[1999], the param eter space is non-Euclidean and no distance-m etric can be applied as 

there is no direction which is ‘uphill’. For the purpose of developing suitable genotypes 

such spaces can be embedded w ithin a ‘larger’ space th a t also includes invalid solutions. 

For example, a  scheduling problem could be expressed as an ordered list of tasks bu t this 

would then  perm it possibilities th a t are invalid. Simple operators, such as cross-over, 

cannot be used as they might generate an invalid point in param eter space, such as a 

schedule th a t does not include all the required tasks. Care m ust be taken in develop

ing new operators th a t have similar properties to the simpler versions. New operators 

should perm it only correct solutions th a t do not d isrupt the  operation of the  GA, apply 

some m inimum  fix-up operation to  invalid solutions or use a penalty  system  such as 

described above.

Perhaps a surprising result from W olpert and M acready [1997] is the No Free Lunch 

(NFL) theorems for optim isation. These sta te  th a t the average perform ance of an 

algorithm , when considering all possible problems (i.e. over all ‘algorithm  space’), is 

independent of the algorithm: all algorithm s average out the  same. If, for two algorithm s 

ai  and 0 2 ? &i out performs 0 2  for some subset of all problem s then  it m ust, on average, 

under perform  0 2  for all other problems.

The GA ’s robustness can be viewed under this context. GAs have a broad peak in 

algorithm  space. For any given narrow problem -set of interest, o ther algorithm s may 

exist th a t are faster. However, because of the b read th  of the G A ’s peak the GA will 

still work when, for example due to  noise, the specific problem  has wandered outside 

the region in which the fast algorithm  works.

There are a num ber of m ethods of improving GAs. A GA can be restarted  after some 

criteria such as lack of progress or after a specific tim e (see Fukunaga [1998]). The 

m utation rate  (and cross-over probability) can be altered to reflex the GAs progress 

as described in Sriniva and Patnaik  [1994] or N eubauer [1997]. M utations can also 

be ‘d irected’ towards the (hopefully global) m inim um  at hand (see B handari et al. 

[1994]). However, the effectiveness of these techniques generally have been shown on a 

few problem-sets. Accelerating convergence through one of these techniques increases 

the  risk of prem ature convergence of the population (lack of bio-diversity) around some 

non-global minimum. This goes back to the  NFL theorems. N othing is free!
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2.2 Global convergence and Schemata

19

Most of the analysis on how Genetic Algorithm s work is based on the concept of 

schemata. A schema is a string w ith the same length as the GA’s genotype and popu

lated w ith entries from either the GA’s alphabet or an ex tra  ‘wild card ’ character. For 

example, if the GA ’s alphabet was the b inary digits, 0  and 1 , then  schem ata could be 

w ritten  using the symbols 0 , 1 and # where # is the wild card character.

A particu lar genome is consistent w ith a  schema if it m atches all non-wild card entries. 

For example, the genotype 0 1 0 1 1  matches the schema 0 1 # # 1  whereas the genotype 

0 0 0 1 1  does not. In general, a schema w ith k  # symbols can be thought of as a d — k 

hyper-plane w ithin the d dimensional param eter space.

According to schema theory, any string in a  GA contains partia l inform ation about 

m any schem ata simply by replacing an element of the genotype w ith the wild-card 

symbol #. For example in a binary GA, the function value or ‘fitness’ of the string 

0 1 0 1 1  contains information about the schem ata 0 1 0 1 #, 0 1 0 # 1 , 0 1 0 ##, 0 1 # 1 1 , and so 

on, where # represents the ex tra ‘wild card ’ character. In  tu rn , each schema matches 

m any other possible strings, for example 0 1 0 ## m atches 0 1 0 0 0 , 0 1 0 0 1  and 0 1 0 1 0 . In 

this way, the function evaluation of 0 1 0 1 1 1  provides inform ation about many other 

strings. This is called implicit parallelisation.

Breeding, especially the cross-over operation, on average will preserve short-order 

schem ata. This effect can be shown (see Goldberg [1989]) to improve the average fit

ness of the population by increasing the num ber of genotypes th a t have good-looking 

schem ata. This works well for certain class of problems: one where the problem  can be 

split into two or more mostly orthogonal sub-problems.

Recently, there has been some debate as to the effectiveness of schema theory for best 

describing the dynamics of genetic algorithm s. A lternative m ethods have been proposed 

including statistical mechanics (R attray  and Shapiro [1996]) and Markov chain analy

sis. Markov chain analysis is a powerful description allowing expressions for minimum 

conditions for convergence (in the sense of tending towards the optim al solution). Eiben 

et al. [1991], Agapie [1998] and Schm itt et al. [1998] discuss these findings.
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2.3 Mutation rate

20

One of the m ajor benefits of GAs is their speed in finding an answer close to the global 

maximum. This convergence relies on the  choice of the  various elements th a t make up 

the genetic algorithm. One of these elements required by a GA is an operator th a t 

m utates solutions. Typically, this operator changes solution genes and operates a t a 

fixed probability p m - This is equivalent to m utating a fixed num ber m  = (Ml)pw  (for 

small values of pm) of genes. The genes to be m utated  are selected random ly (with 

replacem ent) from a population of M  solutions each having I genes. The m utation  

ra te  is usually kept constant throughout the optim isation process although adaptive 

m utation rates have been successfully applied (see Neubauer [1997]).

The m utation rate  m  is a key variable in determ ining the convergence rate  of a  GA. 

If it is set too high then  too much of the inform ation learned from previous generations 

is lost. Taken to extreme enough m utations would occurred th a t all child genes were 

overwritten. This would reduce the m ethod to a simple h it or miss w ith the current 

best solution retained.

If the m utation rate  is too low then  the algorithm ’s exploration of param eter space is 

hindered. If the m utation is tu rned  off then  the best solution of all perm utations of the 

initial genes would be found. As this is likely to be a sub-optim al maximum , the GA 

would not be able to find the global maximum.

The expected value of the optim um  m utation  ra te  for a simple test problem  ( OneMax ) 

are presented in Hesser and M anner [1991]. This states th a t the  optim um  m utation  ra te  

is one w ith probability p ^  given by (2 .2 ).

* 1.76 .
Pm = H 7 i (2'2)

To investigate the effect of different m utation  ra te  of the  efficiency of the  GA, and 

compare the results w ith (2 .2 ), the charges on a disk problem  (see §2 .6 .1 ) was considered 

w ith different values of m utation rate. This problem  was chosen as it is close to a ‘real- 

life’ optim isation problem but the dim ensionality can be altered easily.

The analytical solution of the m inim um  energy problem  for n  charges (n < 12) can

be calculated as discussed in §2.6.1. For each value of the m utation  ra te  10 parents were

used to generate 2 0  children and the process was stopped when the best solution is less
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F igu re  2.7: The convergence rate for the Charges on a Disc problem with different 
mutations per generation for the 8 gene problem (4 charges).

th a n  1% g rea ter th an  the  tru e  m inim um  or m ore th an  10000 generations had  occurred. 

T h is process was rep eated  2000 tim es and  the  resu lts  b inned  based on th e  num ber of 

generations before achieving the  1% to lerance required . A selection o f resu lts  are  shown 

in figures 2.7, 2.8 and  2.9.

T hese figures show th ree  dim ensional rep resen ta tions of the  log of th e  p robab ility  

d is trib u tio n  function  as es tim ated  by the  M onte C arlo  sim ula tion  along w ith  contour 

lines. For very sm all values of m u ta tio n  ra te , m , th ere  is a  w ide range of convergence 

ra tes. T h is  is consisten t w ith  the  GA being largely d om inated  by in itia l p o p u la tio n  w ith 

th e  lack of m u ta tio n  h indering  th e  effective search of p a ram ete r space. As rn increases 

th e  m iddle an d  w id th  of th e  d is trib u tio n  of convergence ra tes decreases to  a m inim um  

before increasing again. T hese increases are sy m p to m atic  of over-m uta ting  and  the 

resu lting  loss of in form ation  reducing the  GA to  a  random  hit-or-m iss m eth o d  whilst 

re ta in in g  the best solution.

For each value of m u ta tio n s ra te  a  G aussion fit was conducted  using th e  Levenberg- 

M arq u ard t m ethod  (see §15.5 P ress et al. [1996]). To overcom e th e  prob lem  of choosing 

in itia l conditions the  m in im isation  was rep ea ted  w ith  each d a tap o in t as th e  in itia l centre 

of th e  G aussian . T he  best resu lting  m in im isation  was re ta ined . F igures 2.10, 2.11 and 

2.12 show sam ple resu lts from  th is fitting  procedure.

F igure 2.13 shows th e  resu lting  G au ssian ’s cen tre as a  function  of m u ta tio n s  ra te  

for different d im ensioned problem s. For some of th e  d a ta  the  1000 g eneration  cut-off 

tru n ca ted  the  d is trib u tio n  too  g reatly  to  recover the  G aussian  curve. T hese p o in ts  have
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F igu re  2.8: The convergence rate for the Charges on a Disc problem with different 
mutations per generation for the 12 gene problem (6 charges).
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F igu re 2.9: The convergence rate for the Charges on a Disc problem with different 
mutations per generation for the 16 gene problem (8 charges).
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Figure 2.10: Fitting of a Gaussian to the convergence rate curve for the 8  gene 
(four charges) problem with 62 mutations per generation.
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F igure 2.11: Fitting of a Gaussian to the convergence rate curve for the 8  gene 
(four charges) problem with 63 mutations per generation.
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Figure 2.12: Fitting of a Gaussian to the convergence rate curve for the 8 gene 
(four charges) problem with 64 mutations per generation.

been removed.

To establish the optim um  m utation rate  a simple function (2.3) was fitted to each 

dimensionality where x  is the m utation ra te  and a, (3, 7 , S and (  are fitting param eters.

This allows an objective measure of the optim um  m utation  ra te  for some specified 

problem. This procedure was used to calculate the observed optim um  for the  3, 4, 5, 6 , 7

from Hesser and M anner [1991] stated  in (2.2).

The observed values of optim um  fitness are higher th an  the predicted value. This is 

not too surprising as the binary GA described in Hesser and M anner [1991] allows the 

splice point to occur w ithin the binary coding for the param eters. This has an effect 

sim ilar to m utating as there is no guarantee th a t, say, the lower 4 b its of a  floating point 

num ber will reta in  the same meaning when swapped from one num ber to  another. This 

implicit m utation could account for the  discrepancy.

(2.3)

The minimum, £mjn, is shown in (2.4).

mm (2.4)

and 8  charge problems. The results are p lotted  in figure 2.14 along w ith the predictions
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13: Summary of the convergence rate for the Charges on a Disc problem 
by fitting Gaussians to each m utation rate.

25
Observed optimum mutation rate 

Expected mutation rate

20

15

10

5

0
164 6 8 10 12 14

Number of genes in genome

F igu re 2.14: Comparison between observed best and predicted m utation rate.
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It is also possible th a t the geometry of the global m inim um  changes in a problem- 

specific way. This is unlikely as the solution for the problems considered were of the 

same form.

2.4 Core functionality of the ELGAR library

In order to  study various problems associated w ith a genetic algorithm s a GA was 

w ritten  using the C com puter language. It was designed as a set of library routines. 

These routines could be embedded w ith the problem-specific code a t the linking stage. 

This allows the code to be reused for different problem s w ithout recompiling. The set 

of GA routines was called Em bedded Library Genetic A lgorithm  Resource (ELGAR).

ELGAR was w ritten  for the Unix operating system  model and ran  under bo th  the 

G N U /Linux and Sun Solaris operating systems bu t should run  w ithout m ajor alterations 

on any platform  w ith an ANSI-C compiler. ELGAR was designed to  be an experim ental 

library. In addition to the problem-specific fitness function the two genetic operators 

(cross-over and m utation) could be altered by replacing the existing default code with 

routines designed w ith a particular problem  in mind.

The da ta  structure  Entity within ELGAR holds inform ation abou t each of the points 

in param eter space. These are, in tu rn , used to evolve into a  new potential solutions. 

The structure  is defined as:

File: GA/Elgar/elgar.h

typedef struct {
float ent_Error;
uns igned ent _Age;
GeneSequence ent_Genes;

}  Entity;

The collection of entities th a t ELGAR m anipulates is an array of Entities as defined 

above. It is the responsibility of the error function to  assign a num erical value to the 

ent_Error element when it is presented w ith a  Entity structure.

The ent _ Age is included so th a t more advanced evolutionary schemes could be in

cluded such as autom atically culling entities th a t have become too old. This feature 

would allow ELGAR to mimic the behaviour of some other GAs in which all parent 

solutions are replaced by their children.
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The en t_ G en es stores an array of genes. These are defined as u n s ig n e d  c h a rs , 

which allows each gene to take an integer value between 0 and 255 inclusively.

File: GA/Elgar/elgar.h 

44 typedef unsigned char * GeneSequence;

The key da ta  element in ELGAR is the GenePool structure. This holds all the 

problem  specific inform ation about a particu lar problem  so several problem s can be 

solved sim ultaneously or hierarchically: a GA to optim ise GA param eters. The structure 

is displayed in Appendex A.I.

To optim ise a function, a GenePool structu re  m ust be allocated and initialised with 

the required param eters (all those before “AU TOIN ITIALISE” above). After the values 

have been set, the function GimiGenePool completes the  in itialisation process, including 

the generation of a random  initial population. Thereafter, a call to  FindMinimum will 

s ta rt the m inim isation proper.

The key element of the structure  is g p _ C a lc u la te E r ro r . This contains a pointer 

to the error function, which m ust be defined to  take an E n t i ty  pointer as its single 

argum ent and retu rn  an integer value.

The error function should take the values of the en t_ G en es  array and use these 

values to obtain  some floating point num ber, placed in e n t_ E r r o r ,  th a t ELG A R tries 

to minimise. Note th a t although all functions described herein divide each element of 

en t_ G en es  by 256 to obtain a num ber in [0,1), there is no requirem ent to use the 

u n s ig n e d  chars  in this fashion: any encoding of the problem  is valid but consideration 

should be given to prevent invalid encodings and to facilitate preservation of schem ata 

when breeding.

The re tu rn  value is used to  indicate the  success or failure of the  error calculating 

routines; for example, if the error function required some equipm ent external to  the 

com puter th a t became unavailable during the m inim isation process the error function 

could indicate this by returning a non-zero value.

This library was further extended by the Genetic A lgorithm  M onitoring Extension 

(GAM E), which graphically displayed the current progress of the  GA. This was used to 

assess the progress of the GA when choosing a m utation ra te  and also to gives a quick 

visual indication of any problems w ith the GA. GAME was designed to  run under the X
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G enetic A lgorithm  M onitor Extension: ch a rg es  on a disc.
Generation 14 

21.5 Parents

12 -

89 -

S9-

3-

d

Evolution ot best and median average solutions

Mutated genes l'34'l

Generation Number

Figure 2.15: A sample of GAME’S output.

w indow ing system  b u t is m odu lar so th a t  if E L G A R  was com piled for an o th er com pu ter 

a rch itec tu re  it would be easier to im plem ent a  new version of G A M E.

A typical view of the  o u tp u t from  G A M E is shown in figure 2.15. T h e  top  left of 

the G A M E o u tp u t shows th e  cu rren t generation  num ber and  a  p lo t of th e  en titie s ’ 

fitness functions. Below th is is a  g raph  showing th e  evolution of th e  best an d  m edian  

average fitness functions as th e  system  evolves. T h e  two boxes to  th e  righ t of the 

o u tp u t show represen ta tions of th e  s ta tis tica l d is trib u tio n  of splice p o in ts  an d  selected 

genes for m utation ; the  num bers in brackets ind icates th e  num ber o f random  calls per 

generation . T he  black bars ind ication  th is  g en e ra tio n ’s selected values w hereas the 

ligh ter colour ind icates the  average values so far. T h is  checks th a t  the  cross-over and  

m u ta tio n  o p era to rs  are not biased tow ards certa in  values.

O ne requ irem ent of the problem  specific code is th a t  it con tained  th e  function  C a lc E r r .  

T h is  function  contains all the  problem  specific in form ation  E L G A R  requires an d  is called 

w ith  an  en tity  as a param eter. T h e  function  m ust ca lcu la te  th e  fitness of th is  en tity  

an d  sto re th e  resu lt in the  en tity  stru c tu re .

E L G A R  used u n s ig n e d  c h a rs  to  store th e  gene inform ation . Each by te  takes a 

num erical value betw een 0 an d  255. A typ ical C a lc E r r  function  first divides each gene 

by 256 to  o b ta in  a  num ber in [0,1) and  th en  m ultip ly  th a t num ber by som e scaling 

factor. T his would then  be used as the  p aram eters  for the  fitness function .

T h e  erro r function  for the  charges on a  disc problem  discussed in §2.6.1 is a  useful
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illustration of these concepts. The functions used w ithin the algorithm  are presented 

w ithout explanation at this stage bu t are descriptively nam ed and comm ented so should 

be readily understood.

File: GA/Disc/disc.c

int CalcErr( Entity *myentity)

Charges *soln;

/* Convert byte-string into something meaningful */ 
soln = CharToCharges( myentity->ent_Genes);

/* if soln is NULL, then an error has occured. */ 
if( soln == NULL) 

return 1;

/* Calculate the corresponding error */ 
myentity->ent_Error = WorkOutEnergy( soln, charges);

/* All ok */ 
return 0;

> /* CalcErr */

Instead of searching for the maximum  of the function, the ELG A R library found the 

solution with the minimum of the function as this is more often required in d a ta  reduc

tion problems. However, as sta ted  earlier, any m axim isation problem  can be rew ritten 

as a  m inim isation problem.

2.5 Genetic Algorithms and NP-completeness

Binary decision problems (i.e. problems where the solution is either ‘yes’ or ‘no’) can 

be classified based on the complexity of the best algorithm  th a t can solve them . The 

complexity of an algorithm  describes how the com putational burden (measured by the 

tim e taken to find the answer) increases w ith more difficult problems; for example, a 

problem  th a t has a complexity of order N 2, usually w ritten  simply as 0 ( N 2), will take 

four tim es longer to complete if the problem  is twice as ‘big’. The variable N  measures 

the size of the problem  in usually an intuitive b u t problem -dependent fashion.

Problem s th a t can be solved by algorithm s th a t have a complexity described by a 

polynomial function of N  are in the class P. Also included in P  are problems solved 

by algorithm s th a t have complexities th a t are not polynom ial bu t grow at a slower rate
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th an  an exponential, such as 0 ( N  log N) .  Problem s th a t allow the answer to be verified 

in polynomial tim e are in the class NP. All problems in P  are in N P but it is believed 

th a t not all problems in NP are in P  or N P ^ P . Perhaps surprising, it can be shown th a t 

certain  NP problems can encode all other NP problems through some polynom ial tim e 

algorithm . All problems w ith this property are called NP-com plete. The im portance 

of this is th a t if a polynomial tim e algorithm  were found for any of the NP-com plete 

problem s then  all NP problems would be solvable in polynom ial time. In  some sense 

the NP-com plete problems are the most difficult problem s in NP.

Problem s th a t are not binary decision, such as optim isation, bu t th a t can encode an 

NP-com plete problem  through a polynom ial tim e algorithm  are called N P-hard. These 

have the same property th a t they can be reduced to  each other through some polynom ial 

algorithm  so th a t being able to solve one in polynomial tim e would imply being able to 

solve all.

At present, no algorithm  exists th a t can solve any NP-com plete problem  in polynom ial 

time. It is believed (see Garey and Johnson [1979] for more details) th a t N P-hard  

problems (and the complementary problem-set: NP-complete) are somehow intrinsically 

difficult and th a t no algorithm  can exist th a t solves these problem s in polynomial time. 

It is, therefore, unfortunate and ironic th a t proving the in tractab ility  of N P-hard  and 

NP-com plete problems at present seems to be as in tractable as the problem s themselves.

Various people have a ttem pted  various NP-com plete and N P-hard  problem s using 

genetic algorithm s. The satisfiability problem  (SAT) and travelling salesman problem  

(TSP) are perhaps the two most common. Due to the com binatorial na tu re  of the 

param eter space, the simple genetic algorithm  described above generally is inefficient. 

Different m ethods have been attem pted , such as adding a fixing-up stage to m end broken 

solutions (see W atson et al. [1998], Ulder et al. [1991] and G ottlieb and Voss [1998] for 

examples) w ith excellent results, or by introducing redundancy in the  genotype (as in 

G errits and Hogeweg [1991]), bu t this continues to be an area of ongoing research.

2.6 Examples of simple problems solved by a GA

This section discusses some problems w ith which ELGAR was used. These were used 

as either a test problem  to check ELGAR was working correctly or to  investigate how 

well ELGAR performs. They are included here as they illustrate  some of the  benefits
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and difficulties associated w ith a GA. They also give practical examples of how to solve 

a problem  w ith ELGAR.

Also used w ith some of the program s is a small (approxim ately 1700 lines of code) 

library called ReadData. Various projects were required to read user supplied data  

in a variety of formats. This library unifies the reading procedure to  completing a 

‘request’ s tructu re  D ataR equest and a single function call: P ro c essD a ta R e q u e stO . 

The resulting structure (D a taL is t)  contains details about the Num berO fSeries series 

each containing Number Of E n t r ie s  elements.

2.6.1 Charges on a disc

The problem of minimising the electrostatic energy of n  discrete charges embedded 

w ithin some conducting medium was first posed by Berezin [1985]. For the  three di

m ensional spherical case the form of the m inimum  energy configuration is independent 

of the num ber of charges and has all charges confined to  the sphere’s surface. However, 

for the two dimensional circular case the m inimum  energy configuration is dependent 

on the num ber of charges. For cases where the num ber of charges is less than  12 the 

minimum  energy is w ith the charged particles located a t the vertices of a regular n- 

sided polygon inscribed within the disc. For n = 12 to  15 charges the minimum energy 

configuration is n  — 1 charges forming a regular polygon as previously and the last 

charge in the centre. Figure 2.16 illustrates these different configurations. For the en

ergy m inim isation problem w ith n  greater than  15 the ground sta te  has a more complex 

pattern .

The problem  of determ ining the ground-state of an atom ic cluster, which is related to 

the  charges on a disk problem, has been shown in W ille and Vennik [1985a] to be NP- 

hard. And, whilst the 2 dimensional charges on a disc problem  has not be shown to be 

N P-hard  it is still difficult due to  the small neighbourhood in which solutions converge 

on the global minimum. This is seen clearly by considering the case for m oderate n, 

say 10, where the global m inim um  configuration is a  regular decagon. If the charges 

are placed on the circumference (the global m inimum  configuration) and one charge 

is displaced slightly then  a local optim isation m ethod would expel th a t charge to the 

centre resulting in a sub-optim al minimum.

ELGAR defaults to 10 parents breeding 20 children each generation. W ith  these 

values the correct configurations for up to 8  charged particles was found. However, the
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F igure 2.16: Minimum energy configurations for the Charges on a disc problem.
Diagram shows n =  10 to 15.

configuration found for 9 particles was a local minimum: a regular octagon with the 

n in th  charge in the centre.

Increasing the num ber of parents and children improves the performance of a GA. 

W ith  20 parents and 50 children the GA found the correct configuration for 9 charges. 

50 parents and 200 children were required before ELG AR found the correct configura

tion for 10 charges and 500 parents and 1000 children were required before the correct 

configuration of 1 1  charges was found.

The increasingly large resources required to solve these problem s are sym ptom atic of 

off-axis valleys in param eter space. W hereas in §2 .6 . 2  the off-axis valley hinders further 

improvement after the neighbourhood of the m inim um  is found in this problem  a local 

m inimum  is present th a t is far easier for the GA to fall into: the  global minimum is 

off-axis whereas the local m inimum  is not. Consider the  case of 9 charges arranged at 

the circumference of the disc bu t w ith one charge offset towards the centre. Moving the 

offset charge towards the centre reduces the energy, and requires ju s t one m utation, but 

to move it back to the correct position on the circumference would require moving all the 

charges by the correct amount: nine coincident m utations all of the  correct magnitude.

The efficiency of the GA in solving this problem  is adequate compared to  existing 

m ethods (such as sim ulated annealing discussed in W ille and Vennik [1985b]) but im

provements are likely to be possible. The coding scheme for the genotype and the 

genotype to phenotype conversion could be improved and alternative forms of genetic
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operators could be investigated.

2.6.2 Fitting a sinusoidal signal

A nother problem  attem pted  with ELGAR was extracting an arb itra ry  sinusoidal signal 

from noisy sampled data. The sinusoidal signal was taken to  be the sine function w ith 

a rb itra ry  am plitude, phase offset and frequency. It was assum ed th a t there may be some 

DC offset. Although this problem  is trivially solved (for example, the Fourier transform  

of the da ta  reveals this information) it could be any non-linear function sam pled at 

a rb itrary  intervals.

One consideration was deciding the lim its for each param eter. Both frequency and 

phase offset have natu ra l boundaries. For the DC offset and am plitude realistic lim its 

can be imposed without overly increasing the search space.

Sample theory limits the  m aximum  frequency of reconstructible signals to the Nyquist 

frequency, which is half the  sampling frequency: r^am- The non-dimensional variable 

used, v  =  ^sig/^samj varied between 0 and 0.5.

The phase offset can have any value in [0, 2 -7t). The non-dim ensional variable used, 

$ , varied between 0  and 1 .

The am plitude, a, is taken to lie between 0 and the range of the d a ta  (the difference 

between the da ta  m aximum  and minimum). The DC offset, 6 , was constrained to lie 

between the largest and smallest da ta  values.

The phenotype for the problem  is:

f i  (a, b, sin [27t (ui +  $)] +  b (2.5)

The code section to implement this is:

File: GA/Sines/fitsine2.c

1 12 void CharsToSolution( unsigned char *byte, Solution *mySoln)
113 ■[

116

117

115

mySoln->Frequency = MAX_FREQ * byte[0]/256.0; 
mySoln->0ffset = byte[l]/256.0;
mySoln->Amplitude = Globals.Max_Amplitude*byte[2]/256.0; 
mySoln->DC_Level = Globals.Min_DC +\

118 byte[3]*(Globals.Max.DC-Globals.Min.DC)/256.0;
119 y  / *  CharsToFloats * /
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where the S o lu tio n  structure  is defined as:

File: GA/Sines/fitsine2.c 

18 typedef struct ■[
19 float Amplitude;
20 float Offset;
21 float DC_Level;
22 float Frequency;
23 } Solution;

The function ELGAR minimised (i.e. the negative fitness) was the equal error x 2 

function as sta ted  in (2.6). yi is the data, each w ith uncertainty cr. However, it is trivial 

to adapt the m ethod to  deal w ith da ta  w ith uneven uncertainties.

x2 = i t ~Ji] (2-6>
i= 1

This is implem ented by the following section of code:

File: GA/Sines/fitsine2.c

122 int ErrFn( Entity *Ent)
123 {
124 Solution mySoln;
1 25 float X, Y, diff, chi_s=0.0;
1 26 unsigned n;
127

128  / *  Convert byte sequence into meaningful floats * /

129 CharsToSolution( Ent->ent_Genes, fcmySoln);
130

131 / *  For each data point * /

132 for( n=0; n < theData.Entries; n++) {
133

134 X = theData.X [n] ;
135 Y = mySoln.DC_Level + mySoln.Amplitude*sin( TW0_PI *\
136 (mySoln.Frequency*X + mySoln.Offset));
1 3 7 diff = (theData.Y [n] - Y)/Globals.Error;
138 chi_s += diff*diff;
139 >
140

141 Ent->ent_Error = chi_s/n;
142

143 /* Everything ok * /

144 return 0;
145 }  / * ErrFn * /
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F ig u re  2.17: Grey-scaled contour plots of y 2(a=1.0, iq $ , b =  0.0) for a noiseless 
sample, (a) shows the full range of $  and v, (b) shows detail of central 
region.
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F igu re 2.18: Grey-scaled contour plots of X 2 {a  =  1.0, r/, <£) for the noisy data
((7= 1.0).

P erhaps surprisingly, the x 2 function  shows de ta il for sam pled  d a ta  w ith  no noise. 

F igure 2.17 show a x 2 p lot for offset and  frequency for a signal sin27r(^a: +  ^). P lo t (a) 

shows x 2 f°r th e  whole range of v  and  $  w hereas p lo t (b) shows th e  deta il closer to the 

global m inim um  a t u =  0.25, <F =  0.5. N ote the  num ber of local m in im a close to the 

global m inim um . Any local m in im isation  rou tine  w ith  in itia l p aram ete rs  too  far away 

from  the  global m inim um  would ‘get s tu ck ’ in these regions.

A rtificial noise was generated  using th e  G aussian  d is tr ib u tio n  function  gasdev  (see 

ch ap te r 7 of P ress et al. [1996] for deta ils). F igure 2.18 shows th e  sam e x 2 p lo ts b u t for 

th e  noisy d a ta . T he noise has a — 1.0.

E L G A R  found the region of the  global m inim um  w ith in  100 generations using very 

m odest resources: 10 paren ts  breeding  40 children each generation . However, th e  global 

m in im u m ’s valley is off-axis. Once a so lu tion  close to  th e  original signal is found, fu rther 

im provem ent is slow. F igure 2.19 shows th e  orig inal signal, th e  noisy sam pled  d a ta  and
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Figure 2.19: Plot of the original signal, the sampled data and the reconstructed 
signal.

the reconstructed signal.

Further improvements to the algorithm  could be achieved by rephrasing the problem 

so the global minimum appears on-axis. Alternatively, a local optim isation routine (such 

as Powell’s m ethod in §10.5 of Press et al. [1996]) could be employed once the GA has 

found the global minimum.

2.7 Summary

The Genetic Algorithm  is a technique for solving a wide range of difficult optim isation 

problems. Difficult may mean th a t the  param eter space has lots of local extrem a (such 

as fitting to noisy data) or th a t it cannot easily be searched (such as combinatory 

optim isation).

GAs track and use many points in param eter space ra ther th an  try ing to  improve one 

point. These many points are iteratively subjected to  several operators which mimic 

some of the processes th a t a biological species undergoes. The effect is to encourage the 

points to ‘evolve’ to  increase their fitness thus solving the optim isation problem.

Problem s with off-axis valleys around the global m inim um  prove to  be a difficulty for 

GAs but the effect can be reduced by constructing a hybrid m ethod th a t uses a local 

m inim isation routine after the GA has finished, by using more com puter power, or by 

rephrasing the problem  so th a t the m inimum  valley is aligned w ith  the axis.



Chapter 3

Bayesian Statistics in signal analysis

This chapter describes the m ethod used to introduce ‘prior inform ation’ using abstract 

inform ation known a priori  to analysing da ta  th a t then  biases the  inference procedure 

(see Kendall and S tuart [1963] and Hoel and Craig [1978] for indepth  discussion). This 

is useful when analysing noisy data: the prior inform ation biases the analysis towards 

more likely values. This is achieved via Bayesian Inference: using Bayes’ equation to 

choose between different possible hypotheses.

The first section of this chapter introduces Bayes’ equation and discusses the basic 

premise of Bayesian Inference which the following section illustrates w ith a simple ex

ample w ithout any prior information. Section three form ulates the Bayesian concept of 

prior inform ation in a useful form for the next chapter. An abstract example of this 

form ulation is given in section four. Section five discusses m ethods of estim ating the 

uncertainties and section six summaries the key points.

3.1 Bayesian Methodology

M any da ta  reduction problems involve fitting a model described by a set of param eters, 

A, to some experim ental data, D. Typically, this is done by m aximising a statistical 

measure of likelihood: a measure of how likely the d a ta  is for a  given value of A. One 

commonly used likelihood is the x 2 statistic: x 2 — Y l i i f i  ~  di)2/erf where fa is the 

model, di (which depends on A) is the da ta  and o f  is the  variance of the noise. The 

m ethod of maximising this likelihood (by minimising x 2) is called the ‘least squares’

37
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m ethod and, in the  case when A is a set of linearly independent param eters, can be 

solved analytically.

The Bayesian model for inference works on the concept th a t each value of A has some 

‘acceptability’ assigned to  it. This acceptability is expressed by a num ber between 0 

and 1 where 0 indicates the value of A is not acceptable and 1 indicates th a t the value is 

certainly the correct one. The acceptability of a particu lar value of A is denoted P{ A) 

so the most likely value of A is the one w ith the m axim um  P { A).

This is sim ilar to the concept of probability in ‘norm al’ or ‘frequentist’ statistics 

where P ( a ) is the probability of event a  occurring. The usual in terp reta tion  of P(a)  

in the frequentist approach is th a t for an infinite num ber of trials the fraction of trials 

consistent w ith event a  occurring is P(ct) or th a t P (a )  is the lim iting value for the 

fraction of event a  occurring for increasing num ber of trials. This is in contrast to the 

Bayesian in terpretation  which trea ts  P ( A) as the  plausibility of the  particular set of 

values A. This is a significant difference as P(A ) does not appear as a lim iting value 

for an increasing num ber of trials bu t ra ther as an estim ate of plausibility based on the 

available data.

Each value of A has some a priori acceptability before any m easurem ents are made. 

Once da ta  has been observed it can be employed to update  the plausibility of each 

hypothesis. The m ethod of doing this is described in Bayes’ equation:

p ( x ,d , .  m  m

This gives us a m ethod of calculating P (A |D ), the posterior distribution, which is 

the probability th a t a set of param eters explains the  data . P (D |A ) is the likelihood 

function detailing how likely the observed d a ta  values are for a given set of param eters 

A and P(  A) is our prior assum ptions about the likelihood of any given set of param eters. 

P (D ), the probability of observing a given set of data, is a constant for those da ta  and 

so can be ignored in our optim isation problem s— in this context it is a norm alisation 

constant.

3.2 Simple example

In this section, we will consider a simple inference problem  to illustrate  the different 

approach taken by a ‘Bayesian’ sta tistic ian  when com pared to  the approach taken by a
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4 6 8

12 20

Figure 3.1: The five platonic solids.

‘frequentist’ statistician. The approach adopted by the im aginary frequentist statistician 

should be considered pedagogical and not a recommended m ethod. The purpose is to 

illustrate  the  differences between the process of inference for the two m ethods which, in 

this case, leads to a sub-optim al choice of frequentist statistic.

The problem  is to ascertain the num ber of sides of a die when only given the results 

of several throws of the die. Assuming the die is fair and has regular polygon sides of 

equal area, there are geometric constraints th a t restrict the num ber of sides of the die 

to be from the set {4, 6 , 8 ,12,20}: the platonic solids (see figure 3.1). For the purposes 

of this illustration, the da ta  is taken to be D = { 4 ,1 ,2 ,7 ,3 ,8 }.

3.2.1 ‘Frequentist’ approach

The process of inferring a hypothesis from a selection of hypotheses takes the following 

steps:

1 . Given the problem, we choose a sta tistic  th a t will differentiate between the con

tending hypotheses. In this example, the sta tistic  can be defined: let s be the 

frequency of the num ber ‘1 ’ in the data.

2. For each hypothesis, the expected value of the sta tistic  is calculated, based on 

some theoretical (usually infinite) dataset. For example, a four sided die would 

have the statistic  s =
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3. For the observed data, calculate the  value of the  statistic. For th is example: 

SD =  g

4. Com pare each model against the da ta  by comparing each m odel’s expected sta tis

tic value w ith the d a ta ’s sta tistic  value. This is typically achieved by disproving 

some ‘null hypothesis’. Hopefully, this will rejecting all bu t one hypothesis. For 

this example, the most likely solution is a six-sided die.

3.2.2 Bayesian approach

T he Bayesian approach starts  w ith a statem ent of how likely each model is before any 

d a ta  is known. This is expressed by the prior probability  d istribu tion  P ( A). A flat 

d istribu tion  implies no prior bias towards any one solution (H n).

The steps in the inference are as follows:

1 . Calculate the prior information. Dice w ith six sides are more common th an  dice 

w ith other num ber of sides and this inform ation could be included in the analysis 

(e.g. we could take P ( H n ) oc A n where A n is the sales of n  sided dice). However, we 

shall assume no such prior inform ation so th a t we simply take P ( H 4 ) =  P ( H q) =

. . .  = P ( H 2q) = ip In fact, in this example, the inclusion of such prior inform ation 

would not make much difference to the outcome of the  inference.

2. The likelihood function, P(d\X),  is considered for each hypothesis. If we assume 

th a t the die is fair then  the following likelihoods are appropriate.

P(d\Hi) = -  ( d < i )
I

P(d\Hi)  = 0  (d > i)

3. For each element of available data, update  the  probability of each hypothesis ac

cording to  Bayes’ theorem. Note th a t under Bayes’ equation, d a ta  can be analysed 

either all a t once or datum  by datum  w ithout any consequence. Here we analyse 

the d a ta  roll-by-roll using the likelihood function described above.
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D P ( H A\D) P ( H 6\D) P ( H 8\D) P ( H U \D) P ( H to\D)

0 0 . 2 0 0 . 2 0 0 . 2 0 0 . 2 0 0 . 2 0

{4} 0.37 0.25 0.19 0 . 1 2 0.07

{4,1} 0.54 0.24 0.14 0.06 0 . 0 2

{4,1,2} 0 . 6 8 0 . 2 0 0.09 0.025 0.005

{4,1,2,7} 0 0 0.83 0.15 0 . 0 2

{4,1,2,7,3} 0 0 0.89 0 . 1 1 0 . 0 1

{4,1,2,7,3,8 } 0 0 0.9903 0.0093 0.0004

From the above table it is clear th a t the  the die cannot be either four or six sided as 

there is a t least one roll th a t cannot be generated by either sided die (the ‘7’ for example). 

There are two interesting points to note. Firstly, this deduction was not imposed from 

ad hoc modeling of the system: we did not have to explicitly sta te  th a t  because there 

was a ‘7’ th a t four and six sided dies were impossible. Instead, it arose naturally  because 

if one datum  excludes a hypothesis (P(H4\7) = 0 ) then  any d a ta  including th a t datum  

m ust equally be impossible {P{H^\A) x P ( H 4 \1 ) x P ( H 4 \2 ) x 0  x . . .  = 0 ) .  Secondly, 

th is effect is not lim ited to restricting impossible hypotheses: a  collection of da ta  th a t is 

unlikely but not impossible under one model can effect the overall inference procedure 

towards more likely models.

After completing the Bayesian analysis we see th a t a be tte r frequentist statistic  would 

be: smallest n  6  {4 ,6 , 8 ,12, 20} such th a t Vd G D  n  ^  d.

3.3 Prior information in signal analysis

We shall develop some terminology using the following example. In doing this, we shall 

place more restrictions on the class of problems th a t can be dealt w ith. However, despite 

these restrictions, the methodology is still applicable to  a large class of problems and is 

likely to be of use in physically realistic analysis.

We will consider a set of I  d istinct problems which are labelled i =  1, • • • , / .  These 

problems are unrelated except for any constraints created by prior information. Each 

problem  i involves fitting J  pieces of da ta  d* =  {dij} (where j  = 1, • • • , J)  to a model 

gi(A) =  (A)}. Although each problem  could have a different num ber of da ta  (Jj)

we shall restrict our a ttention to problems th a t have the same num ber of data.
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For each problem  z, the model is described by the set of param eters {k = 1, • • • , K).  

The overall task is to find the value of the param eters, A, th a t ‘best describe’ the data  

D  =  {di} where A =  {A^}.

For ease of notation, A will sometimes be w ritten  indexed by a single index: Am. The 

translation  between this notation and the two-index form is simply A =  {A^} =  {Am} 

where m  = i + I ( k  — 1) =  1, • • • , M  and M  =  I K .

If the da ta  is assumed to be produced from the models g;(A) (for some A) obscured 

by Gaussian noise w ith a standard  deviation of <td then  the probability  of any given set 

of da ta  is:

P (D |A ) =  (27ro£>) 7,7/2 exp < - E [dij ~2gf x)r \ <3'2)
z = l j = l  D

= (27rcr|,) 7,7/2 exp {—xi>/2} (3.3)

where

x l =  E (3-4)
i=l,j=l ^  D

If we have no prior knowledge of the param eters (tha t is, P(A ) is constant) our task 

is to maximise equation (3.3). More usually, we th ink of th is as minimising:

- ln [P (D |A )]  (3.5)

which is equivalent to minimising xjj-  Thus, we have a Bayesian justification for the 

‘least squares’ method.

However, if we do have some prior inform ation about the param eters we must include 

the P ( A) term  in our analysis. We would then have to  minimise:

- ln [ P ( D |A ) ] - ln [ P ( A ) ]  (3.6)

which would am ount to adding an ex tra  x 2 term  to represent the prior information.

3.4 Example of prior information

Consider in each problem  z, one of the param eters (Aji, say) may be most likely to lie 

around some value A* with a standard  deviation cr\: th a t is,

P W  — (2 ttct5 ) 7 / 2  exp -E
i= 1

=  (2™ a)~ / /2 <»P [ -X a/2]

(Aii -  A*)* \ 2
(3.7)

(3.8)
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where

(3.9)

The optim isation problem of equation (3.6) becomes simply the m inim isation of:

2 , 2 
X d  +  Xa- (3.10)

Therefore equation (3.10) is the full m inim isation problem  including the prior infor

m ation for this example.

In general, the probability d istribution of the param eters will be more complicated 

th an  in the above example and may well involve cross term s between the different sets 

of d a ta  (dj). W hen this happens the num ber of dependent param eters, and hence the 

complexity, of the individual optim isation problems rises dram atically. Often w hat we 

are left w ith is a  multi-dim ensional nonlinear m inim isation problem. Such problems 

are notoriously difficult to solve numerically due to problem s of convergence and the 

existence of m any local minima.

3.5 Errors

Confidence intervals are the correct way of dealing w ith uncertainty. For one-dimen

sional distributions, the relationship between error-bars and confidence intervals is th a t 

a  1 x a  error-bar corresponds to a  6 8 % confidence interval for norm ally d istribu ted  

errors, 2 x a  errors bracket a 95.4% confidence interval and so on.

W ith  non-normally d istributed errors, there will be a 6 8 % confidence interval, a 95.4% 

confidence interval and so on, bu t they may be asym m etric w ith respect to the d istri

b u tion ’s centre. Moreover, the extent of the 95.4% confidence interval may be different 

th an  twice the 6 8 % confidence interval. Usually an error bar can be draw n but in general 

the in terpretation  of this interval will be different th an  for norm al error bars.

To find an interval for a particular variable the full param eter space m ust be bracketed 

using some chosen shape (such as a ellipsoid). This region then  contains the correct 

solution to the required probability. For the uncertainty in a single variable this re

gion can be projected onto the required axis to produce the confidence interval in th a t 

variable.
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This m ethod of estim ating the uncertainty in some variable requires knowledge of 

the  d istribution function around the solution (or a t least around the best-fit point). In 

general th is is difficult to obtain analytically and m ethods such a M onte Carlo simu

lation are required. However, a Monte Carlo sim ulation requires repeating the fitting 

procedure m any tim es to obtain an estim ate of the d istribu tion  function. Although 

Genetic Algorithms are an efficient global optim isation m ethod they generally impose 

a non-trivial com putational burden. The Monte Carlo sim ulation would be required for 

each recovered signal, which, for an acceptable uncertainty in the d istribu tion  function, 

would require solving a t least 1 0 0  further fitting problems.

As the com putational burden for the full uncertainty m ethod is too great, the errors 

are estim ated by com puting the inform ation m atrix  (see Kendall and S tuart [1963]). 

This compromise is equivalent to approxim ating the  errors to  being normally dis

tribu ted . Sufficiently close to the solution, this approxim ation will be valid. A normal 

d istribu tion  is more compact than  other distributions. This implies th a t a normal esti

m ate of errors will over- ra ther than  under-estim ate the  w idth of a confidence interval.

3.6 Summary

Bayesian Statistics allows system atic including of prior inform ation. This prior infor

m ation is introduced through Bayes’ equation. W ith  the more general understanding of 

probability as a measure of plausibility for some non-repeatable event, Bayes’ equation 

can be viewed as a m ethod of inference.

For the problem  of model fitting, there is an increased com putational burden as a 

result of this prior information. This is because the h itherto  separate inference problems 

have been linked by a statistical constraint.



Chapter 4

Case study: Thomson scattering

In this chapter the problem of analysing the da ta  produced by the Thom son Scattering 

Diagnostic at the COMPASS-D test reactor is discussed. This topic forms a case study 

of how the Genetic Algorithm  with Bayesian Statistics m ethod described in the previous 

chapter can be implemented.

There are several aspects of this problem  th a t are specific to this case study and th a t 

simplify the analysis (such as the linear dependency of certain  param eters), bu t the main 

concept, prior inform ation resulting in improved param eter estim ation, is applicable to 

a wide range of problems.

The first section of this chapter describes the physical arrangem ent of the  experimen

tal rig a t the COMPASS-D test reactor. These details are expanded in section two, 

which describes the practicalities of how d a ta  is acquired a t the  reactor. Section three 

discusses the nature  of the noise and section four describes how the signal to  noise ratio 

can be estim ated. This estim ate is used in later statistical analysis of the signal. Section 

five describes a m ethod of obtaining reference signals, which are used later for deducing 

the tem perature.

The theory described in the previous chapter is applied to the scattering problem 

in section six and section seven discusses how the errors are quantified. Section eight 

outlines the m ethod of converting between m easured am plitudes and the inferred tem p

erature  and section nine describes how the errors in the signal-fitting am plitudes can be 

m apped into an error in the final tem perature. Section ten  contains recovered electron 

distributions.

45
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4.1 Characteristics of Thomson Scattering

46

Thom son scattering is the scattering of light off mobile charged particles such as elec

trons. Classically, this scattering process takes into account no quantum  or relativistic 

effects. Thus, for the treatm ent to  be valid, the scattering particle must be moving 

slowly and the light m ust have a long wavelength. The condition for ‘moving slowly’ is 

! ) « c ,  where v is particle’s speed and c is the speed of light in vacuum  and the condition 

for long wavelength is h u  <C m e 2 where h is P lanck’s constant and m  is the mass of the 

particle.

In  the following sections, only the electrons of the  plasm a are considered. The electron 

will be far less massive th an  the plasm a’s ion species. Classically, the scattering process 

can be considered in term s of an incident oscillating electric field (from the incident 

light) causing the electron to oscillate. An oscillating charge will radiate, implying the 

electron oscillating as a result of the  incident light will, by virtue of th a t oscillation, 

emit light. This is the scattered radiation. Since the electron’s motion will have to 

overcome the effect of inertia, the  more massive ions will oscillate to  a far lesser extent. 

This results in an insignificant scattering off ions.

Although little light is scattered off the ions directly they may have an indirect effect 

on scattered radiation. A cloud of increased electron density, a Debye sphere with 

typical radius A£>, surrounds each positive ion. These ‘shield’ the positive ion from the 

rest of the plasm a resulting in a stable equilibrium  configuration.

If the wavelength is comparable to the length-scale of these spheres then the fluctu

ations in electron density will result in scattering and the ions will affect the resulting 

spectrum . However, if A^A# 1, where ki is the m agnitude of the incident wave vector, 

then  each Debye sphere will experience m any wavelengths of the incident light and the 

scattering can be approxim ated by considering no ion correlation effects: the scattering 

is incoherent.

The scattering geometry is shown in Figure 4.1. The vectors kj and k s are the wave 

vectors of the incident and scattered light respectively. It is useful to  define k  =  k s — k^. 

The scalar values ki , ks and k  are the m agnitudes of kj, k s and k  respectively.

The to ta l Thom son scattering cross-section (e.g. see H utchinson [1987]) integrated 

over all solid angles is:
8?r 2
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Incident light electron

Scattered
light

F igure  4.1: Overview of the scattering geometry in Thomson scattering.

where re is the classic electron radius re = e2 / (An m e 2).

The oscillating electron behaves analogously to  a dipole and the non-relativistic limit 

is referred to as the dipole approxim ation. The to ta l scattered  power from this approxi

m ation is given by (4.2), where (Si) is the mean incident Poynting vector, which can be 

taken as the to ta l beam  power divided by the beam ’s cross-section area. Eo is the unit 

vector for the incident electric field indicating the plane of polarisation. f k(vk ) is the 

projection of the distribution function onto the vector k, i.e. f k { v k )  — f  f ( v ± i vk)dv±.  

The projected distribution function for a (non-relativistic) Maxwellian distribu tion  is 

given by (4.3).

Pechacek and TYivelpiece [1967] was the first correct relativistic treatm ent of inho- 

mogeneous Thom son scattering. In th is extension of the  classic Thom son scattering 

process, the electrons are no longer required to be travelling slowly w ith respect to  the 

speed of light. The power spectrum  of scattered radiation is given by (4.4) where (3 is 

the electron velocity as a fraction of the speed of light, N  is the num ber of scattering 

electrons and 7  =  (1 — /32)-1 / 2. The tensor I is the identity tensor whilst M  and N  are 

given by (4.5) and (4.6) respectively.

(4.2)

(4.3)
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d2P(u)  crl  / - j 3a x ^ J M . N . E o ]2
d u d f t  87r /  (4-4)

M  =  I  -  k sk , -  Ik ,./3  +  /3ks (4.5)

N  =  7 - ' ( I  -  f t3 )  • [1(1 -  /9 ■ k .) +  k i(3] (4.6)

In (4.4), f(/3)  is the d istribu tion  function for the electrons in the scattering region. 

For therm ally relaxed electrons moving a t relativistic speeds, th is distribution function 

is given by (4.7) where a  =  m e 2/2 ^ b T  and K 2 (x) is the modified Bessel function.

f(/3) = [2irK2(2a)\ cry exp(—2 0 :7 ) (4.7)

An approxim ate analytical solution to (4.4) w ith a electron d istribution function given 

by (4.7) is derived in Zhuravlev and Petrov [1979]. The resulting form is given by (4.8).

da r%u2a  l K 2 (2a) I
■ n sn  =  — 5------------  „ 1 exP ) ~ 2aa u d i t  2(1 — 2u cos 6 + u 2) 2 I

1 +
(u -  1 )

4u  sin (0 / 2 ) _
(4.8)

The approxim ation used by Zhuravlev and Petrov [1979] is th a t the ‘depolarisation 

te rm ’ is taken as constant over the velocity-space integration. This may be corrected 

for by introducing a scattering angle dependent correction faction q(0). This correction 

can be calculated exactly for specific angles (as illustrated  in Selden [1980]), bu t a more 

convenient form is the rational approxim ation discussed in Naito et al. [1993].

Several approxim ations are discussed in Naito et al. [1993]. The lowest order is:

q = 1 -  477^ +  0 ( r f )  (4.9)

where 77 -- ( 2 a ) ~ l y, (  =  xy,  y  =  (x2 +  u 2) 2 , u  =  s in 0 / ( l  — cos0 ), x 2 = 1 +  e2/ (2 ( 1  — 

cos# )(l +  e) and e =  As/A i — 1.

The (1,1) approxim ation is:

9  =  1 - 4 ^ # f # f S + 0 ( , ,4 )  (410)



Chapter 4. Case study: Thomson scattering 49

and the (2 ,2 ) approxim ation is:

where

1 „ +  P l V  +  P2V , 6̂  ( a n \
q = 1 -  4r/C—  ------   j  +  ° \ n  ) i4 -11)

90  +  qip +  q2T

Po =  90 =  4 +  30C2 -  55C4 

Pi =  - C ( 2 4 -  545C2 +  720C4) 

p 2 -  2(33 -  165C2 +  240C4 +  100C6)

91 =  25C3(29 — 42C2)

92 =  5(18 -  6 6 C2 +  630C4 -  805Ce)

(4.12)

The resulting approxim ation, consisting of (4.8) m ultiplied by a correction term , 9 , 

was com pared to results from numerically integrating (4.4) in Naito et al. [1993]. The 

relative errors for the (2 ,2 ) approxim ation w ith 180° scattering is less th an  1 0 -5 % at 

10 keV, 10_3% at 20 keV and less than  0.1% at 100 keV. The (1,1) approxim ation gives 

poorer results w ith relative errors of 10~3% at 10 keV, 0.1% at 20 keV and «  1% at 

100 keV.

The (2,2) approxim ation has excellent agreement w ith numerical work for all rea

sonable tem peratures. However, for the 90° scattering configuration, the (2,2) rational 

approxim ation has a pole. This is illustrated  in figure 4.2. The (1,1) approxim ation 

does not have a pole at this location (also indicated in figure 4.2). To alleviate this 

problem, the (2,2) solution is used unless the correction term  9  is starting  to  diverge. If 

it does, then  the (1 ,1 ) approxim ation is used instead.

Figure 4.3 shows the spectrum  of the Thom son scattered light for several electron 

tem peratures for monochrom atic incident light. As the  tem perature  is increased the 

scattered light’s distribution is bo th  broadened and the centre of the d istribu tion  is 

shifted towards higher frequencies. This blue shift is a  result of the relativistic beam ing 

effect, where light is scattered preferentially towards the observer when the electron is 

moving relativistically.
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Figure 4.2: Theoretical Thomson scattering spectrum. (2,2) rational approxima
tion contains a pole for 9 = 90° whereas the (1,1) approximation does 
not.
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Figure 4.3: Theoretical spectra of Thomson scattered light for different electron 
temperatures.
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COMPASS-D is an experim ental fusion reactor th a t contains plasm a by the applied 

m agnetic field configuration. The vacuum vessel is toroidal in shape and the magnetic 

field is set to have a strong, directly induced toroidal component with a secondary, 

current-generated poloidal component. This design is typical of tokam ak devices.

At COMPASS-D, a  neodymium  doped y ttrium  alum inum  garnet (Nd:YAG) laser is 

employed to produce the incident light (w ith a wavelength of 1064 nm) for Thom son 

scattering. This is used as a diagnostic th a t measures electron tem perature. Nd:YAG 

lasers are preferable for performing Thom son scattering as they can be repeatedly fired 

a t a high enough frequency th a t the evolution of the plasm a can be studied. In  addition 

there are fewer im purity lines around the 1064 nm  wavelength th an  at the 694.3 nm 

regime at which ruby lasers operate; for example the  Ha line is 656 nm and there are 

He lines at 587.6 nm  and 656.3 nm  (see B arth  et al. [1997] and page 258 of Hutchinson 

[1987]). As discussed in §4.3, the laser is set to pulse w ith a pulse w idth of approxim ately 

10 ns. This is repeated at 50 ms intervals allowing the laser to produce a typical to tal 

pulse energy of 1 J.

The laser pulses produce ‘snap-shots’ of inform ation about the electron tem perature 

d istribu tion  along the laser beam  pa th  w ithin the tokam ak. Each snap-shot is hereafter 

referred to as a segment. In each plasm a shot, the  laser fires test pulses before the 

plasm a has formed. Segment 91 (counting the first segment as segment 0) is typically 

the first segment w ith useful results. The plasm a typically lasts for several hundred 

milliseconds so th a t the plasm a normally quenches before segment 99: the last recorded 

segment.

The physical setup of the laser is shown in Figure 4.4. The laser beam  passes vertically 

through the plasm a’s centre and onto a beam  dum p, which absorbs the m ajority of any 

unscattered light. The laser beam  p a th  is imaged onto an array of 16 optical fibre ends 

via a lens w ithin a view port in the vacuum  vessel. Each fibre optic images a section of 

the laser beam  approxim ately 24 mm in length and is hereafter referred to as a view.

The fibre-optics of selected views are connected to  polychrom ators. These are located 

outside the im m ediate vicinity of the toroidal coils to  reduce interference. Each poly- 

chrom ator consists of three detector channels, each of which has a filter th a t transm its 

a narrow spectrum  of light and reflects the rem ainder. W ith  each channel, the  trans-
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F igure 4.4: Schematics of the Thomson Scattering Diagnostics at COMPASS-D.
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Figure 4.5: The construction of a polychromator.

m itted  light is focused onto photodetector-am plifier assembly. The light reflected from 

one channel is directed towards the next channel. Figure 4.5 illustrates the construction 

of a polychrom ator.

The three channels of each polychrom ator produces three independent signals th a t 

are proportional to the integrated intensity over th a t channel’s filter response curve. A 

typical frequency response of three channel filters is shown in Figure 4.6. Note th a t the 

filters transm it light to the  shorter wavelength (‘blue-shifted’) side of the laser ligh t’s 

wavelength, which is m arked “Nd:YAG” on the ordinance axis.

The scattered light’s d istribution, as illustrated  in Figure 4.3, will pass through the
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Figure 4.6: The spectral response of typical polychromator filters.

set of three filters of a polychrom ator. The theoretical ou tpu t from these filters, as 

a function of electron tem perature, can be computed. For filters w ith the spectral 

response shown in Figure 4.6, Figure 4.7 shows the expected form of the output from 

each channel as a function of electron tem perature.

4.3 Data acquisition and triggering

The ou tpu t from each channel will rise and fall over the  tem poral extent of the laser’s 

pulse. In addition to recording any scattered light the detectors will also measure a 

background ‘noise’ consisting mainly of Brem sstrahlung rad iation  and line emission 

from the plasma. To make best use of the available inform ation, the ou tpu t from each 

channel is connected to  a  channel of a  fast, digitising oscilloscope. Each laser pulse 

triggers the oscilloscope data-acquisition system  which is operated  in sequence mode 

w ith memory segmented and triggered to capture individual scattering pulses. The 

oscilloscopes sample every 2 ns for 504 ns each segment and are triggered slightly before 

the laser pulse. The triggering is to  ensure the m easured pulse activity in the  channel’s 

ou tpu t occurs approxim ately in the middle of the segm ent’s data.

The triggering of the  oscilloscope is not exact. There is some ‘j i t te r ’ in the exact 

position of the pulse. In order to analyse the d istribu tion  of ‘j i t te r ’ we considered only 

d a ta  w ith a high signal to  noise ratio  and assumed the profile of the  laser’s pulse is 

approxim ately Gaussian. D ata  typical of this criterion is shown in Figure 4.8 along
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Figure  4.7: Theoretical channel output as a function of electron temperature.

w ith a  Gaussian best fit. For sufficiently high signal-to-noise ratio, the  position of the 

pulse can be found by fitting a Gaussian model described by (4.13) where A  is the 

am plitude of the Gaussian, B  is the offset to the da ta  due to, for example, a constant 

DC current, zq is the centre of the d istribu tion  and cq is a m easure of the signal’s width.

f i  = A  exp -  (i -  ioY
2  a 2

+ B (4.13)

For some dataset gi, the x 2 s ta tistic  (4.14) is used to  m easure the extent particular 

values of A, B , z'o and a  are inconsistent w ith the data: a smaller x 2 indicates a model 

which is more consistent w ith the data.

x 2 =  E  ( / ‘ J i)2 (4-14)
1= 1

To find the values of A, B , zo and a  th a t best describe the da ta  the x 2 function is 

minimised. This m inim isation problem  is complicated by the fact th a t the Gaussian 

model is non-linear. The m ethod used to  achieve this m inim isation is the Levenberg- 

M arquardt (LM) m ethod. This m ethod for solving non-linear m inim isation problems is 

discussed in chapter 15 of Press et al. [1996].

The LM m ethod returns the param eters th a t minimise x 2 an(i an estim ate of the 

uncertainty of each param eter. The m inimum  value of x 2 1S used to estim ate the ‘good

ness of fit’, i.e. to ascertain a t what probability a value of x 2 as poor as the recovered
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Figure 4.8: Shot 26921 Polychromator 9 Channel 1 Segment 93 and best fit Gaus
sian.

m inim um  might occurred by chance. This probability is given by the incomplete gamma 

function where N  is the num ber of data-points, v  is the num ber of degrees

of freedom and Q(a,x)  is given by (4.15) where T(a) is the gam m a function.

1 f ° °
Q{a,x)  = — ~-  e~Ha~ l dt  (4.15)

Ma) Jx

The LM m ethod returns only the local minimum, so the in itial value of the param eters 

m ust be sufficiently close to  the  correct answer for the algorithm  to succeed. The initial 

values for A  and B,  as defined in (4.13), are the difference between the minimum 

and m aximum  da ta  values and the m inim um  d a ta  value respectively. The w idth is 

estim ated by considering the first and last points where the graph crosses the  value 

halfway between the m aximum  and m inim um  da ta  values. If the distance between 

these two points is less th an  half the to ta l ordinance length of the da ta  then it is used 

as the estim ate of the w idth. If the distance between the two points is greater then 

the w idth defaults to a  th ird  of the ordinance length of the  data. The m ethod depends 

somewhat critically on the initial value of the G aussian’s centre. An initial value of the 

d a ta ’s ordinance centre is the  logical choice; however, in the  presence of noise, there 

may be a local minimum in th a t vicinity. To alleviate this problem, each datapoin t in 

tu rn  is tried  as the initial value of the G aussian’s centre. The Gaussian fit w ith  the 

lowest x 2 is used.

The m ethod of estim ating signal-to-noise ratio  described in §4.5 was used to select
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Figure 4.9: The distribution of <Ji measuring the width of the laser’s temporal 
profile for the 3000 segments (of all polychromator channels) that 
have the highest signal-to-noise ratio. The best-fit Gaussian has width
0.52 ns and centre 9.7 ns.

the 3000 segment datasets w ith the highest signal-to-noise ratio  from all polychrom ator 

channels. These segments were taken from d a ta  collected between 24 November 1997 

(shot 25659) and 4 June 1998 (shot 27490). For each segment, the values of cq and io 

th a t minimised the x 2 sta tistic  were calculated.

The d istribu tion  of laser widths (cr; above) is shown in figure 4.9 and has been mod

elled by a Gaussian w ith centre of 4.867 and w idth of 0.2651. These values correspond 

to a laser w idth of 9.73 ±  0.53 ns.

For the offsets the situation is more complicated. The d istribu tion  of offsets is clearly 

non-Gaussian as can be seen from figure 4.10. Instead of fitting a Gaussian, the  model 

fitted was a convolution of square pulse and a Gaussian. The norm alised convolved 

distribu tion  is:

f (y- ,a ,b ,a)  = i ( 6 - a ) _ 1

where is the E rror Function given by:

9 r x
<fr(x) =  —=  /  e~t2 d t  (4-17)

Vtt Jo

Scaling to  reflect the integrated area of the da ta  and solving a, b and a  using the LM 

m ethod the best-fit values are a = 118.9, b = 127.2 and a  =  0.91.

(4.16)
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Figure 4.10: The distribution of sample number containing the laser’s peak power 
for the 3000 segments (of all polychromator channels) that have the 
highest signal-to-noise ratio along with model fit.

The m ethod described above analyses the three channel offsets independently: each 

channel’s offset is w ith respect to the s ta rt of the segment. This is an optim al analysis 

if there is one source of the jitte r  th a t (by virtue of different channels having different 

tem poral offsets) occurs after the beam  passes through the polychrom ator. If there is 

some source of j it te r  before the polychrom ator (for example, some uncertainty about 

when the laser fires) then all three channels would be offset by the same amount. In this 

case the offsets would be d istribu ted  about some tim e /z* (jitter after the polychromator) 

and /z* is d istribu ted  about some point /zo (jitter before the polychrom ator).

The two sources of jitte r  can be illustrated  by plotting  the offset of channel 1 peak’s 

centre against the offset of channel 2 peak’s centre as shown in figure 4.11. The strong 

trend  along the line y = x  is consistent w ith variability in the laser’s firing time. The 

uncorrelated scatter around this trend  is consistent w ith uncertainty due to oscilloscope 

tim ing and also in the Gaussian fitting procedure. In addition to  the central trend  data  

(species 1 ), there is a large num ber of ‘outliers’ (species 2 ): points th a t are sufficiently 

far away from the central trend  th a t they constitu te a subset of the  to ta l da ta  with 

different origins.

The m ean of the three offsets (Jl =  (/zi + /z 2 +  7̂ 3 )/3) is an  estim ator of /z*: the laser’s 

true  tem poral offset. As there are only three data-points, th is estim ate will, in general, 

be poor. If /z is a good estim ate of /z* then  the offsets relative to /z would become
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Figure  4.11: Scatter plot showing correlation between the pulse’s offset in Chan
nel 1 and its offset in Channel 2 .

uncorrelated. Figure 4.12 shows a similar plot to figure 4.11, bu t using only species 1 

data.

For each polychrom ator and segment, the sum of the signal-to-noise ratios for the 

three channels was used as a quality measure for th a t segment. The 3000 best overall 

signals were used to  build the d istribution of the relative offsets. This d istribution is 

shown in Figure 4.13

The da ta  was largely Gaussian, w ith small ‘bum ps’ a t relative offset values 3 and —2. 

Figure 4.14 shows the same da ta  is in figure 4.13 bu t split into separate channels.

The peak at relative offset 2 is clearly evident in channel 1 only whilst the peak at 

relative offset -2 is from offsets derived from channel 2 only. D ata  lying within 1.5 of line 

y = x  in figure 4.11 are considered species 1. By selecting only this subset of d a ta  the 

ex tra  channel-dependent bum ps of figure 4.14 are elim inated, as shown in figure 4.15.

Recombining the three channels gives our prior: th a t the  three channel offsets, rel

ative to the m ean offset of the three channels, are norm ally d istribu ted  w ith standard  

deviation of 0.6099 samples or 1.220 ns. This is illustrated  in figure 4.16.
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.12: Scatter plot showing correlation between the pulse’s offset in Chan
nel 1 and its offset in Channel 2. Species are separated for clarity.
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F igu re  4 .13: The distribution of /i* — // (where i E {1,2,3}) for the 3000 best 
polychromator segments.
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Figure 4.14: The distribution of — /z (where i G {1,2,3}) for the 3000 best 
polychromator segments, split into the three channels.
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Figure 4.15: The distribution of /z, — JL (where i G {1,2,3}) for ‘species 1’ data 
selected from the 3000 best polychromator segments, split into the 
three channels.
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Figure 4.16: The distribution of fii — Ji (where i G {1,2,3}) for ‘species 1’ data 
selected from the 3000 best polychromator segments along with best 
fit Gaussian curve.

4.4 The noise

W ith  all data , there is some noise th a t contributes to uncertainty in the measurements. 

The analysis of this noise is im portant as it allows the uncertainty in the  recovered 

am plitudes to be estim ated, either analytically or via a  Monte Carlo sim ulation.

From typical low signal-to-noise ratio  d a ta  (see figure 4.17), it is clear th a t the noise 

is derived from a non-Gaussian d istribution since the noise varies sm oothly from point 

to  point. To discover the nature of the d istribution, an estim ate of the Power Density 

Spectrum  (PDS) of the da ta  was obtained. The PDS of a  dataset describes to what 

extent the da ta  is a result of various frequencies. A pure sinusoidal signal would have 

a sharp spike at the relevant frequency in its PDS whereas random  noise appears as a 

flat PDS spectrum .

To obtain  the PDS estim ate, the datasets were windowed using a Welsh window, 

(4.18). The ,7th datapoin t is m ultiplied by the weighting given by (4.18), where N  is 

the num ber of datapoints to be considered. W indowing reduces the ‘leakage’ from far 

away frequency bins at the expense of (slightly) broadening the central response. The 

Discrete Fourier Transform (DFT) is then taken using the Fast Fourier Transform  (FFT) 

m ethod (see chapter 13 of Press et al. [1996] for further details). This was repeated for 

several segments of low signal-to-noise ratio  d a ta  and the results were averaged. The 

resulting PDS is shown in Figure 4.18.
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Figure  4.17: Typical medium to low signal-to-noise ratio data. Data from shot 
26521 spectrometer 7 channel 3 segment 96.

W hite noise is an uncorrelated random  signal w ith a  Gaussian probability density 

function: (27t<t2 ) - 2 exp[—x 2/ 2 o 2}. The PDS of this is a flat level w ith am plitude of a. 

W hen a signal passes through some bandw idth  lim iting device (such as an amplifier), 

higher frequency components of the signal are increasingly a ttenuated .

The overall PDS shown in figure 4.18 is not flat. This would imply a correlation 

between successive data-points. To test this hypothesis, the  sta tistic  described by (4.19) 

was calculated for sample data.

D  =  2  V _=.° ‘------— i  (4.1.9)

The expectation value of D for Gaussian based noise is 1. A value of D greater than  

1 is consistent w ith noise in which each da ta  point places a  constraint on the successive 

d a ta  point. The value of D was calculated for some d a ta  and the values of D were drawn 

from a d istribu tion  where D  =  17.8 ±  6 .8 .

The following subsections discuss various aspects of the PDS which together form a 

model th a t can be used to generate ‘fake’ da ta  by adding noise generated by the model 

to  a reference signal.
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Figure 4.18: Power Density Spectrum estimate for the ‘noise’ in poor signal-to- 
noise data.

4.4.1 High frequency region

Figure 4.18 shows a flat region (except for the sharp features discussed in §4.4.2) beyond 

100 MHz. This response is characteristic of uncorrelated or white noise. It is remarkable 

th a t the signal is flat up to the Nyquist frequency (î n ) of 250 MHz.

The most likely cause of this flat response is ‘quantisation noise’. The oscilloscope 

takes samples w ith 8 -bit (binary digits) detail level, thus the signal is stored as an 

integer between 0 and 255. By imposing this constraint an error is introduced into 

the signal. This error is effectively uncorrelated as successive segments (i.e. sampling 

different signals) will have different quantisation error signature.

Provided the signal’s dynamic range (difference between m axim um  and minimum 

values) is spread over sufficiently large num ber of sample bins, the error introduced 

by quantisation should be small. However, the  dynamic range for many segments is 

sam pled by few data-bins leading to the visible quantisation signal.

4.4.2 High frequency spikes

T here are peaks at around 190 MHz, 125 MHz and 60 MHz. To establish if these are 

artifacts from the experiment several ‘d a rk ’ segments were taken. A ‘dark ’ segment is a 

dataset taken where there is no plasm a and w ith no laser pulse. The peaks were present
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in these segments. This then  eliminates the plasm a and laser as possible origins of the 

peaks.

For the  special case of a flat spectrum  w ith a single elevated data-point (i.e. an 

additional sinusoidal signal) adding a windowing function will sm ooth out th a t signal 

whereas the F F T  w ithout any window (effectively a top-hat window function) will pre

serve the signal (see chapter 13 of Press et al. [1996] for more in dep th  discussion on 

windowing functions). For the above spectrum , a non-windowed F F T  reveals the spikes 

as having a w idth of a single frequency bin. The spikes are located at |z/n, and

i^N-

It seems highly likely th a t these peaks are artifacts introduced into the signals by the 

oscilloscopes. The effects of these peaks are largely negligible as the power in the peaks 

is small and their frequency is much higher th an  the typical frequencies contained in 

the reference signal.

4.4 .3  Low frequency region

It is clear th a t the m ajority of the signal’s power occurs below 60 MHz. This is con

sistent w ith some noisy source’s signal th a t passed through a system  th a t has a limited 

bandw idth. Suspicion imm ediately falls on the amplifiers th a t increase the signal level 

from the photodiodes. However, for this analysis, the source of the bandw idth lim itation 

is im m aterial.

The first Fourier channel contains the mean of the signal. As each shot has an 

arb itra ry  DC voltage offset, this channel is large. In order to prevent leakage from 

this channel into nearby channels, an estim ate of the  DC offset level (the median) was 

sub tracted  from each segment. The small signal th a t persists is indicative of a skewed 

d istribu tion  in the data. One possible cause of skew is the presence of a small (but 

non-zero) signal.

Ignoring the first two data-points (from signal contam ination and window related 

leakage), the lower frequency response can be modeled as a  Gaussian centred on zero 

w ith w idth ad. This is equivalent to white noise sm oothed by a window w ith Gaussian 

weights.
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4.4 .4  Noise model

65

The ideas in the preceding subsections can be combined to  form a model for the noise. 

If the quantisation noise and the spikes are ignored, the  noise can be modeled by 

(4.20).

g * N { a ) = r - l [ g ^ [ N ( c ) ] )  (4.20)

where * is the  convolution operator, T  and T ~ l represent the  Fourier and inverse Fourier 

transform s, a  is a measure of the intensity of noise before passing through the amplifiers 

and g is the  amplifier response which, for simplicity, is taken to  be a Gaussian centred 

at v = 0  and w ith width

4.5 Estimating signal-to-noise ratio

A useful and intuitive sta tistic  when dealing w ith signal analysis is the signal-to-noise 

ratio  (SNR). The SNR is a measure of how much of the  da ta  contains inform ation about 

the signal and is some measure of the uncertainties in m easuring the signal. A typical 

high SNR dataset is shown in Figure 4.8. The d a ta  consists of a central peak w ith noise 

superim posed.

The m ethod used to estim ate the signal-to-noise ratio  is to  simply estim ate the signal 

level and the noise level and to then take ratio  of the two. The two estim ates are 

discussed in the following two sections.

4.5.1 Estimating the signal level

The difficulty associated w ith estim ating the signal level is due to the  presence and 

natu re  of the noise w ithin the m easured signal.

M ethods exist for removing noise whilst leaving some quantities of the  signal intact. 

W hilst sources indicate th a t this is a dubious activity (for discussion see chapter 14 of 

Press et al. [1996]), the ability to emphasise any signal present suggests th a t th a t signal 

can, in principle, be measured. A prim itive example of em phasising a signal in noisy 

da ta  is the  moving average: replacing each value w ith the average value of the four 

neighboring values. The moving average preserves the  signal’s zeroth order moment
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and, if the signal is symm etric about some tim e, the  first order moment; however, it 

d istorts higher order moments. There are more sophisticated techniques (e.g. Savitzky- 

Golay sm oothing filters and various K alm an filters) th a t preserve higher order features 

of the  signal. However, these techniques work on the  premise th a t the signal is slowly 

varying whilst the noise is random  and rapidly changing. This is not the case w ith these 

datasets.

Clearly then, it is impossible to  remove the noise from the  signal; the estim ate must 

work w ith the raw data. This becomes a problem  for low SNR d a ta  where any slight 

signal is swamped by the similar noise and becomes indistinguishable.

Two m ethods for estim ating the signal level are described below. Both make assum p

tions about the signal’s form, but the first m ethod is more general. The two m ethods 

are:

1. Find the maximum  value of the dataset. Let the  difference between the maximum 

value and the m edian value be the  signal’s strength . The m edian is a ‘robust’ 

estim ator of a  d istribu tion’s centre (see §15.7 of Press et al. [1996]). Is is less 

sensitive to outliers and differences in overall d istribu tion  shape th an  the mean 

and it is used to estim ate the DC offset. This m ethod assumes the signal is, at 

some point, greater than  zero.

2 . Assume the signal is of the form described in (4.13) where A  is the am plitude 

of the signal, B  is the DC offset, i is the  tim e of the  zth d a ta  point, z'o is the 

centre of the  peak and is the w idth  of the  peak. This assumes a specific form 

of the distribution but provided the assum ptions are valid, linear least squares is 

applicable to  finding values of A  and B.  The analysis is sim ilar to above. However, 

the value of Oi is assumed constant and each data-point is tried  as the centre of 

the Gaussian. This simplifies the m inim isation and reduces the com putational 

effort involved.

B oth m ethods were tested using a M onte Carlo calculation of sim ulated d a ta  using 

the model described in §4.4. The results are p lo tted  in Figure 4.19.

As bo th  estim ators will overestim ate the  signal level in the presence of noise, the 

m inim um  of both  m ethods was taken as the estim ate of the  signal level.
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Figure 4.19: Comparison between two different methods of estim ating signal 
level.

4.5.2 Estimating the noise level

Noise is usually  taken  to  be derived from  a G aussian  d is trib u tio n , often  w ith  no form al 

ju s tifica tio n  th a t  noise is tru ly  from  such a  d is trib u tio n . In general, as s ta ted  by the  

C en tra l L im it theorem , large qu an titie s  of sm all random  events ten d  tow ards a G aussian  

d is trib u tio n . In  th e  case of d a ta  from the  Thom son S catte rin g  D iagnostic a t CO M PASS- 

D, th e  noise is clearly non-G aussian . However, we shall take the  noise as G aussian . T his 

has th e  effect of biasing th e  d is trib u tio n  w id th  es tim ato r of th e  noise tow ards higher 

values, b u t, as we are in terested  in the  SN R  m ainly  for rank ing  d a ta , th is  does not 

m a tte r.

W ith  d a ta  from  the  COM PASS-D reactor, th e  segm ents typically  will have som e signal 

w hich is positive w ith  respect to the  noise (see F igure 4.8 for a  sam ple segm ent). T he 

presence of th e  signal will in troduce a  d is to rted  ‘ta i l ’ in th e  d a ta ’s d is tr ib u tio n  in the  

positive half. T h is  will bias the  norm al es tim ato r of d is tr ib u tio n  w id th  (the  variance) 

tow ards larger values by an  am ount dependen t on the  signal s tren g th .

W ith  th a t in m ind, six m ethods of es tim atin g  the  n o ise -d is trib u tio n ’s w id th  were 

tested :

1. Using the  S tan d a rd  D eviation . T his is th e  s ta tis tic  o  w here a 1 — Y l j L i  (x j  ~  

x)  2 for the  N  d a ta  Xj.  T his is the  m axim al unbiased e s tim a to r of th e  d is tr ib u tio n ’s 

w id th , provided the  d is trib u tio n  is G aussian . T h e  presence of th e  ta il in th e  

positive h a lf of the  d is trib u tio n  will, therefore, be m ost no ticeable to  th is  estim ate .
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2. Using the Average Deviation. This is the  sta tistic  Yl jL i  Ix j ~  ^1 f°r the  N  d a ta  

Xj . The m edian £ med was substitu ted  for x  as it is a more robust estim ator of the 

d istribu tion’s centre. The average deviation is a more robust estim ate th an  the 

standard  deviation as it weights more im portance to points near the  centre of the 

distribution.

3. Using the m edian as an estim ator of the d istribu tion ’s centre, the standard  devia

tion of da ta  less than  the m edian is calculated, i.e. a'  where a '2 =  -^7 Y^j=\{x 'j ~  

^med) 2 where x'j is the N ' d a ta  less than  the m edian 2;med- If a signal is present in 

the da ta  as additional values of zero or greater, then  the da ta  w ith value of less 

th an  the d istribu tion’s centre should be unaffected by the signal.

4. Removing the middle section of d a ta  points. The signal generally occurs in the 

m iddle of the segment. By simply removing the 30 middle data-points (those 

m ost likely to  have some signal content) the standard  deviation should yield a 

more accurate estim ate a t the expense of uncertainty due to  the fewer data-points 

present.

5. Adaptively removing the middle section of da ta  points. This is sim ilar to the 

previous m ethod, bu t with two steps. F irst the middle 30 data-points are removed 

and the m aximum  value of the rem aining noise found, then  all d a ta  points greater 

th an  this value are removed and the standard  deviation calculated. This is to  try  

and reduce the num ber of data-points removed from the segment.

6 . Minimising the Kolmogorov-Smirnov (K-S) sta tistic  to  fit a  Gaussian to the sig

n a l’s distribution. The K-S statistic  measures the ‘difference’ between two dis

tributions and is defined as D  = m ax_ 0 0 < x < 0 0  |5/Vi (x) — S ^ 2 (x)| where S n i and 

S n 2 are the cumulative frequency distributions for the  two d istributions to  be 

compared, i.e. S n x = P ( N i )d x .  For this case, the cum ulative frequency of 

the d a ta  is calculated and compared against th a t of a Gaussian. The variance 

of the Gaussian is altered so th a t the sta tistic  is minimised. The m inim isation 

was done via an algorithm  due to Brent; see chapter 10 of Press et al. [1996] for 

im plem entation discussion.

The results of a Monte Carlo sim ulation are shown in figure 4.5.2. The model of 

the noise described in §4.4 was used to generate the noise a t a prescribed level and a 

reference signal was used to construct the signal element.
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The S tandard  Deviation deviates by the greatest am ount, as expected. The Average 

Deviation is recommended as a robust estim ator of the d istribu tion ’s w idth  when the 

d istribu tion  has interference in its tails. However, other m ethods provided a better 

estim ate of the noise level in this case.

The m inim um  of m ethods 3 and 4 was taken as the estim ate of noise level.

4.6 Obtaining reference signals

W hen first analysing the da ta  from the oscilloscopes, reference signals for each channel 

of each polychrom ator were supplied. These reference signals were either one ‘good’ 

dataset or the average of a few such segments.

Reference signals were used for fitting instead of using an analytical function. This 

was to allow for any instrum entation effects in the electronics or optics of the diagnostic 

w ithout having to model the to ta l system.

There were several problems w ith the reference signals as supplied. The reference 

signals were ‘hand m ade’. This may have lead to  bias in the reference signal (for example, 

w hat makes a signal ‘good’?). Also, for certain  channels of particu lar polychrom ator, 

no discernible signal was present in the reference signal! Because of these lim itations, 

reference signals were produced via the GA driven Bayesian S tatistics m ethod.

The problem  associated w ith extracting the reference signal is th a t the  signals occur 

at different times: they are not aligned. The problem  of finding a reference curve can 

therefore be split into two parts: aligning the datasets and ex tracting  the reference 

signal.

If the datasets were aligned then  intuitively, averaging the d a ta  would produce an 

estim ate of the reference signal provided the d istribu tion  the noise is taken from is 

sym m etric about zero. This can easily be seen by imagining some collection of datasets 

(d j) th a t contain the reference signal w ith an a rb itrary  am plitudes, an a rb itrary  offset 

and some noise (a^r +  1 (6  ̂ +  ej)). Averaging these signals gives X)[aj r  +  (bj H- e j) l]/Z  

which is r  aj / I  +  1 ]C b j / I  +  1 £j/I -  W ith  a sym m etrical d istribu tion  about zero,

we would expect ^  ej to be less th a t 1(e) in general.

More rigorously, the optim al I -point reference signal (r^) derived from a set of J  noisy 

datasets (dij) can be derived via the  linear least squares m ethod. Considering all fitting
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problems together, (4.21) describes the simple model for the  reference fitting in term s 

of a set of J  am plitudes and offsets, a,j and bj respectively.

dij = djTi +  bj (4-21)

The to ta l x 2 f°r this fitting problem  is defined in (4.22) where <r| is the variance of 

the j th d a tase t’s noise.

X2 = ~  ai ri ~  bj ) 2/ aj  (4-22)
ij

Requiring the reference signal to have m ean zero and unit variance and assuming the 

datasets have had their means subtracted , the values of dj and bj are given by (4.23) 

and (4.24) respectively.

a 3 =  d l3r% (4 -2 3 )
i

h  = Y .  <4 2 4 >
i

Substitu ting  (4.23) and (4.24) into (4.22) and solving -£rX2 — 0 gives (4.25). This 

indicates th a t a weighted average (using the signal-to-noise ratio  as the weight) yields 

the optim um  estim ate of the reference signal, provided the noise is norm ally distributed. 

As sta ted  in §4.4, the noise is not drawn from a norm al d istribution. Therefore, (4.25) 

is not the optim um  estim ator for the reference signal. However, it will be an estim ator 

and probably not too bad.

< = E  E  i  <4-25)• a i a i3 3 3 3

The problem  of aligning the datasets can be tackled by Bayesian analysis. Using the 

norm al Bayesian formulation, we see that:

P(l t \D )  = P ( D \ n ) P M / P ( D )  (4.26)

where /z is the set of alignment offsets for the da ta  and D  is the set of datasets. P(f i \D)  

is the posterior probability, i.e. how likely the value of fi is correct. P(/z) is the prior
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inform ation, in this case th a t the  offsets should be from some Gaussian d istribution (see 

Figure 4.10). P(D\ f i )  is the  likelihood function. This can be estim ated by first deriving 

the reference curve for the  value of n,  then calculating some sta tis tic  th a t measures

‘goodness of fit,’ e.g. the  x 2 statistic. P ( D ) is a  constant w ith respect to  the offsets and

therefore can be ignored.

The problem  was split into the two parts described above. The non-linear part (align

ing the datasets) was solved by a GA whilst Linear Least Squares was employed to fit 

the resulting reference curve to each dataset so the value of P ( D \ jj,) could be calculated.

After the GA has chosen some set of offsets and the corresponding reference signal 

was found, an estim ate of the  likelihood of this set of offsets is evaluated by fitting 

the reference signal to all the  aligned signals, as described above. Any uncertainty in 

the  reference signal will be m anifest in the  d istribution of the residuals after fitting the 

reference signal as described by:

=  {dij -  [a jn  +  bj) : j  G [1, J]} (4.27)

where a,j and bj are defined above.

Consider one point, z, along the reference curve. If the reference curve fits each 

equivalent point exactly then  the set of residuals, {<5̂ }, will contain J  zeros. This implies 

th a t ri is exact. However, if the values in {<5} are scattered in some distribu tion  then 

the w idth of this d istribu tion  is an estim ate of the error of r^  the  standard  deviation 

of {<^} measures the uncertain ty  of the reference point.

4.7  Analytic technique of fitting the signals

Using the terminology of section §3.1, we identify the num ber of problem s (I)  w ith the 

num ber of channels. The num ber of da ta  (J )  in each channel is 252 so the  set of da ta  

for a  given segment and polychrom ator is dij where z =  1 ,2 ,3  and j  = 1, • • • , 252. For 

each channel we have a reference signal f* =  { f i j }  derived from previous shots (see §4.6). 

The received signal in channel z (d*) has the same shape as the  reference signal bu t with 

an am plitude a DC bias bj, and a tim e offset /i^: hence our m odel has the form:

9y ( A ) = <  a' f i ^ + h  (428)
bj otherwise.
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Figure 4.22: An example reference signal.

For a  given set of d a ta  dj we have three curves, gi(A), to fit, described by 9 param eters 

(the three dimensional vectors: a =  {a*}, b =  {6j} and fi =  {/ii}). Assuming Gaussian 

noise w ith standard  deviation cr#, the overall task becomes the m inim isation of the 

Least Squares function of (3.1), where:

A = b

\ t *  /

(4.29)

W ithout prior information, the analysis is simply to minimise (3.4), w ith gij{A) given 

by (4.28), i.e. the standard  Least Squares m ethod.

This m inim isation can be achieved whilst treating  the three channels separately so 

the problem  reduces to three separate ones, each w ith only three param eters. Of these 

three param eters, ai and b{ appear linearly in (4.28) and so may be m inimised by m atrix 

inversion (see Mood and Graybrel [1974]). Only Hi appears nonlinearly so we are left 

w ith a ra ther trivial one dimensional m inim isation problem.

However, this m ethod fails badly when the signals am plitude becomes comparable to 

the background noise. To produce a be tte r fit for the d a ta  given, we include prior infor

m ation in the problem using the Bayesian form ulation of section 3.1. In the Thomson 

Scattering Diagnostic, for a given segment, the  pulse should appear in the three channels 

of the da ta  a t the same time. However, there is a spread in arrival tim es as discussed 

in §4.3. Our prior inform ation is th a t the relative spread of the three peak offsets will
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Figure 4.23: Comparison of the performance of Genetic Algorithms against a 
simple Linear Least Squares. The line y = x  is included for reference.

be normally d istribu ted  about the mean offset of the three peaks (/I =  [fii +  +  M3 ] / 3 )

w ith standard  deviation = 3.0 ms:

P(  A) =  (2 » r4 ) - 3 / 2 e x p | - 5 3 ^ = ^ |  (4.30)

=  (2 ?rcr2)_3/2exp { - x ^ / 2} (4-31)

where

x l  = i  lĵ t -  (4.32)
i = 1 ^

This is a precise statem ent of our prior inform ation, based on physical observation, 

bu t w ithout over constraining the solution: the pulse m ust occur ‘near-sim ultaneously’ 

in each channel bu t not necessarily a t the same time.

Applying the Bayesian m ethod of §3.1, (3.1) gives us a x 2 ° f ;

x 2 =  x l  +  x %  (4.33)

The inclusion of the prior inform ation gives a significant improvement in d a ta  analysis,

especially when signal to noise ratio  is low. To illustrate  this, figure 4.23 shows the

performance of the complete analysis (minimising +  x ^ ) by the Genetic Algorithm 

technique compared to th a t of Least Squares (minimising ju st x % )-  At all points, noise 

was generated at a constant level using the model discussed in §4.4. A reference signal 

was added with the required am plitude to achieve the signal to  noise ratio. Three sets
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of such da ta  were generated which the Genetic A lgorithm  technique (full analysis) and 

a simple Linear Least Squares technique were required to  fit. The average of the three 

am plitude was recorded and the process was repeated 1 0 0  tim es to obtain  a reasonable 

estim ate of this value. The line y = x  is included in the graph to  show the actual signal 

level. The Linear Least Squares curve deviates markedly from this line for low signal to 

noise ratios whereas the  complete analysis deviates by a lesser extent.

The resulting increase in complexity from including the prior inform ation is manifest 

in th a t x 2 is no longer separable into the x\> ° f  the three separate channels. The overall 

task is now to minimise a nonlinear function of nine variables, which is readily handled 

by our Genetic Algorithm  technique.

4.8 Quantifying the errors in fits

Errors were calculated using the inform ation m atrix: the inverse of the covariance ma

trix. The inform ation m atrix, a , is given by (4.34).

Oim.n —
d X m d X r

(4.34)

Considering the inform ation m atrix  am ounts to assum ing th a t d a ta  points are taken 

from a norm al distribution centred on some ‘correct value’ A0, thus:

P ( A) =  (n) 2 d e t ( a )2 exp
9,9

-  £  (A™ -  A» )  (A" -  A°)
m = l,n = l

(4.35)

The inform ation m atrix  a  represents a  set of correlated errors for the nine param eters 

of the  m inim isation task. We then  m arginalise th is m atrix  to  one for only the three 

am plitudes, by integrating over the other six param eters. The result is a 3 x 3 

inform ation m atrix, th a t describes the correlated errors for the am plitudes alone. 

For uncorrelated errors in the  three am plitudes has the form:

1/2 < 0 0

0 1/2 a2a2 0

0 0 1/2 g \

where a a i , cra2 and aaz are the standard  deviations of the  three m easured amplitudes. 

Thus the Probability  Density Function is reduced to:

<*<*> =

ri

(4.36)

P ( a) =  (7r) 2 det(cn^ ) 2  exp
3,3

^  I (<2m a m )  ®rnn (p n  a n)  
m = l,n = l

(4.37)
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For da ta  w ith norm al errors, the uncertainty aaj in the am plitude a,j is given by:

• i - f t f f e V  (4-38>
i = l  ^

where o f is the variance of the 2th da ta-poin ts’ norm al error, yi is the 2th data-point and 

N  is the num ber of data-points.

For this fitting problem  and assuming constant norm al errors across each segment of 

<jj, the estim ate is given by:
2

<  =  7 ^ 7 5  (4-39)
2-a=i Ji

4.8.1 The effects of non Gaussian noise on uncertainty in amplitudes

As discussed in §4.4, the noise was found to  be non-Gaussian. The ‘correct’ m ethod 

of dealing w ith non-Gaussian errors is to  conduct a Monte Carlo sim ulation. For each 

set of recovered am plitudes, a statistically  large num ber of synthetic da ta  would be 

generated: for example, by using the recovered am plitudes, the  reference signals and 

the model described in §4.4. The fitting procedure would be run  against each set of 

‘fake’ data. By looking at the statistical behaviour of the recovered am plitudes (for 

example) the nature of the errors of the recovered am plitude is gleaned.

If the Monte Carlo sim ulation contains too few fake datasets then the resulting dis

tribu tion  of recovered am plitudes will be highly and random ly distorted: the measure 

of uncertainty would be unreliable. Therefore, the Monte Carlo process requires a  large 

num ber of datasets which, in tu rn , requires a large num ber of GA runs to  fit each fake 

dataset. The GA fitting procedure is expensive (in term s of processing time) compared 

to simple local m inim isation routines and, in general, M onte Carlo sim ulation cannot 

be used because it would take too long.

Instead of using the Monte Carlo m ethod for each GA fit one can assume that, for 

sufficiently large signal-to-noise ratios, the recovered fit will have approxim ately normal 

errors. There are two points to note. F irst, these errors will, in general, be different 

from the linear estim ate given in (4.39). Second, as the signal-to-noise ratio  decreases 

the signal would eventually become ‘lost in the noise’ and (4.39) will cease to give any 

meaningful inform ation about the uncertainty in the signals’ am plitudes.

To analyse this approxim ation, a Monte Carlo sim ulation of the error in recovered 

am plitude was conducted. For each of the 41 selected data-sets the  am plitude of the
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noise.

signal was determ ined using the GA technique and the uncertain ty  in the am plitude was 

estim ated (assuming uncorrelated Gaussian noise). Once the am plitude was determined, 

consistent noise was constructed using the lim ited band-w idth  model (see §4.4) and the 

reference curve (scaled to m atch the determ ined am plitude) was added. The am plitude 

of the GA fit to the resulting d a ta  was noted. This was repeated 1000 times and the 

standard  deviation of the distribution of am plitudes was taken. Figure 4.24 shows the 

correlation between the Monte Carlo estim ate of the uncertainty and the uncorrelated 

estim ate.

The results suggest a simple numerical correction allows the correlated, non-Gaussian 

noise to be treated  as uncorrelated Gaussian noise.

The cut-off after which the linear estim ate gives no inform ation about the signal 

(when the signal is lost in the noise) is less of a problem. This occurs when a signal 

is faint. By considering figure 4.25, th is is most likely a problem  for channel 3 for 

electron tem peratures of less th an  0.3 keV. However, the actual value of channel 3’s 

signal am plitude does not m atter much as the graph is relatively fiat for th a t region. 

Thus any error in channel 3 (including an incorrectly estim ated uncertainty) will not 

effect the  final value of the electron tem perature.
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F igure  4.25: Theoretical spectral density function, calculated for incident wave
length of 1064 nrn scattered through 87.7°.

4 .9  Calculating the  tem perature

To derive the  electron tem p era tu re  the am plitudes of the th ree  channels of the  polychro

m ato r, ftj, are fitted  to  the theoretical sca tte rin g  functions, S L(Te), for a given electron 

tem p era tu re  (Te), assum ing a M axw ellian velocity d is tr ib u tio n  for the  electrons. T he 

ana ly tica l form  of S t (Te) is discussed in Selden [1980].

F ind ing  the correct tem p era tu re  for a given set of am plitudes, a ,  is equivalent (see 

B indslev [1999]) to m inim ising the  function:

XtS a , 0 =  £  ( a , - $ S , ) T « ! ? ( “ . ' (4 -4°)
i=l,i' = l

w ith,

< - ( * ■ )  (4,41) 

w here $  is a pa ram ete r th a t  is p ro p o rtio n al to  the  p la sm a’s electron  num ber density.

T he  m in im isation  problem  discussed in (4.40) is linear in <f>. T he  linear least squares

m ethod  can be em ployed to  determ ine the  op tim um  value of for a given electron

tem p era tu re :
y '_ '

<Kmin (Te) =  ^  M ^
S i C r j c t f S t

For uncorre la ted  errors in am plitudes, is given by th e  d iagonal m atrix :

a (a) =  d ia g ( l /2 a ^ 1, l/2cr^2, l/2cr^3)
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For this case (4.42) reduces to:

mm (4.43)

Substitu ting this into (4.40) reduces the problem  to a one-dimensional m inim isation

This was solved using the one-dimensional m inim isation routine due to Brent (see 

C hapter 10 of Press et al. [1996] for details).

4.10 Uncertainty in the tem perature

To calculate the uncertainty in the tem perature, the uncertainty in £ (see (4.41)) is 

calculated from the underlying distribution. If we assume th a t m easured value of £ 

(tha t is, £°) is drawn from some norm al d istribution, then  estim ating the uncertainty 

in £ involves converting the trivariant norm al d istribution described in (4.37) into some 

bivariant norm al distribution:

where M T denotes the transpose of m atrix  M .  Consider the  Taylor series of /(a , £) =  

Xre(a , £) expanded to second order, i.e.

problem:

Xre(^>-^e) — ^   ̂ (ai ip'i' (4.44)

(4.45)

where is the inform ation m atrix  for the £ distribution, ££ =  £ —£° and £° =  {Te°, 4>0} 

is the centre of the  distribution: the values th a t minimise (4.44).

In general, if there exists some linear transform ation, i.e.

<5£ =  MSa. (4.46)

then  the inform ation m atrices transform  as in:

oj(a) =  M Ta ^ M (4.47)
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Considering an a rb itrary  shift in origin, £ =  5£ +  C , the Taylor series expansion 

becomes:

3 2/ , _  , l y r  & f

(4.49)
2 C T ^ / C +  c

0 /
da*
l ^ T  d2f  +  - C  J

da.d£ d v l

If C  is chosen to  be ^ g g then the Taylor series expansion of /  has no

linear term s in £, i.e. £ =  0 for all values of 5a. From a direct comparison w ith (4.46),

the value of M  is:

M = d 2f \ _1 d 2f (4.50)
d£2J  d£da

Substitu ting  (4.50) into (4.47) and rearranging leads to  = T Ta^T^  where T  is:

d2f  (  d2f  d 2f  \  _ 1  d 2f
T =

dad£ \ d £ d a d a d € j
(4.51)

|q(£) I 2
P(Te) =  I — J -e x p

7r

The uncertainty in the recovered electron tem peratu re  &Te is found by marginalising 

the m atrix  Consider the probability density function for T e:

- (^ T e)2^  J  d4> exp - { 6 $ ) 2o $  - 2 6 $ 6 T eo $  (4.52)

where 6Te = Te — Te°, =  4> — 4>° and TJ? and 4>° are the recovered electron tem perature 

and electron num ber density respectively.

By the change of coordinate y = <3? +  ai 2̂ e ; (4 .5 3 ) is obtained.

|q/(£) I 2 
P(Te ) -  ^ ^ e x p

7r
~(STe)

a «)
22 / dy exp -y2^

\a«)i

ira ( 0
22

exp ~(STe)‘
|a ^ ) |

a ( 0
22

Therefore, the uncertainty in Te is:

a
crTe -

(O I 2
22 I

2 |a«)|

(4.53)

4.11 Sample results

To illustrate  the recovery of da ta  in poor signal-to-noise conditions, figure 4.26 shows the 

reconstructed plasm a electron tem perature d istribu tion  as a function of height above 

the torus mid-plane for part of shot 26522.
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Figure 4.26: Recovered electron tem perature distributions for segment 91 of shot 
26522. GA is distribution recovered using techniques described in 
this chapter, Linear uses a pre-existing method.



Chapter 5

Two-temperature Thomson 

scattering diagnostic analysis

This chapter extends the concepts and methodology of the  previous chapter to a more 

complicated model: a two electron tem perature  plasma. As the available da ta  consists 

of three channel responses a t each segment it is insufficient to  fully constrain the two 

tem peratures. However, some constraints can be placed on the model param eters.

In this chapter, the first section gives an overview of the model stating  the motivation 

for adopting a tw o-tem perature d istribu tion  function. Section two illustrates the effect 

of the second tem perature on the channel responses. The significance of normalising 

the channel ou tputs is discussed in section three. Section four in terprets the degeneracy 

in the solution. Section five illustrates da ta  taken from COMPASS-D whilst section six 

discusses observed da ta  in term s of the degeneracy. Section seven discusses the effects 

of observational errors.

5.1 Two-tem perature scattering characteristics

W henever something is described as having a specific tem perature  there is a tacit as

sum ption th a t the distribution function (the num ber of particles w ith a particu lar ve

locity a t a particular location) is Maxwellian. As the d istribu tion  function of the gas 

will, over time, evolve towards a Maxwellian distribu tion  most objects will be close to 

this distribution.

82
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Often an ensemble under investigation will have a non-M axwellian d istribu tion  func

tion. For example, there might be some process th a t excites a subset of the  particles 

resulting in a  fast-moving species. In order to model these subspecies, perturbations to 

the Maxwellian distribution must be considered.

Non-therm al distribution functions have been observed a t the Alcator tokam ak (Coppi 

et al. [1976] and Pieroni and Segre [1975]), at the TO R TU R  tokam ak (Kluiver et al. 

[1988] and van Lam meren et al. [1992]), the L-2 stellarator (Blokh and Larionova [1981]) 

and the Rijnhuizen Tokamak Project (RTP) (Box [1999]). N on-therm al signatures in 

the Thom son scattered spectrum  can occur due to neutral beam  injection, electron- 

cyclotron resonance heating (ECRH) or deuterium  pellet injection (Box [1999]), electron 

stream s travelling at the Alfven speed (as described in Kluiver et al. [1988]) or from a 

trapped  electron population (Blokh and Larionova [1981]).

The simplest natural generalisation of the  single-tem perature Maxwellian is to add 

another Maxwellian distribution of a smaller am plitude. This corresponds to the m ajor

ity of electrons existing at one tem perature  whilst a smaller subsection of the  electron 

population exists a t some hotter tem perature. Thom son scattering spectra consistent 

w ith a tw o-tem perature electron d istribution have been observed at the RTP (Box 

[1999]) and Alcator tokam ak (Coppi et al. [1976] and Pieroni and Segre [1975]). It 

is worth emphasising th a t, although a tw o-tem perature d istribu tion  will be discussed 

throughout this chapter, w ithout two ex tra  m easurem ents no quantitative analysis of 

the validity of this model can be undertaken. Moreover, non tw o-tem perature deviations 

from a Maxwellian distribution have been observed at tokam aks such as TO R TU R  (van 

Lam meren et al. [1992]).

If the two species are considered separate and non-interacting over the duration of 

observation (approximately 10 ns) then the combined Thom son scattering is the linear 

sum of the light scattered from each separate species given by

/ i  =  * i$ (T i)  +  $ 2# (T 2) * =  1,2,3 (5.1)

where f i  is the  combined scattered intensity from the two species, 4>i and $ 2  are pro

portional to  the plasm a electron densities for the two species and Si{T\ ) and Si(T2 ) 

are the  two spectral density functions for the  2th filter (see §4.2 for more details) with 

electron tem peratures T\  and T2 for the two species respectively.

There are four degrees of freedom for the tw o-tem perature model: $ 1 , $ 2 , T\  and T2 .
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However, as only three filter responses f i  are available an observation is only sufficient 

to constrain the solution to lie on some line. Therefore, there will be a  1-parameter 

family of tw o-tem perature solutions consistent w ith  each set of filter responses. All of 

these solutions are possible in the absence of further inform ation.

5.2 Channel responses

In order to get an idea of the effect of a second tem perature, we investigate how the 

filter responses change w ith the presence of a second tem peratu re  species.

5.2.1 Response curve graphs

The response to tw o-tem perature distributions for the channels of spectrom eter 5 are 

shown in figures 5.1-5.3. For figure 5.1, the plasm a densities are equal and the corre

sponding response curves are sym m etric about the plane T\ — T^. In the sequence of 

figures 5.1-5.3 the electron density becomes increasingly dom inated by the first species, 

which has a tem perature of T\. This can be clearly seen in figure 5.3 where the curve 

becomes stretched along the T2 axis: at any point on the surface the response is roughly 

constant along the T2 axis whereas it varies markedly along the T\ axis.

5.2.2 Recovering the single-temperature distribution function as limiting 

case

The single-tem perature response function appears from the tw o-tem perature d istribu

tion function as several variables are taken to lim iting values. Irrespective of the m ethod 

of m easuring the scattered spectra, the response of a  tw o-tem perature distribution will 

tend to th a t of a single-tem perature d istribution as the electron density of one of the 

two species tends to  zero.

The m ethod of Thom son-scattered-spectrum  analysis used a t COMPASS-D involves 

m easuring the response at three spectral channels. As can be seen in figure 4.6, these 

channels do not cover all frequencies. For example, channel 1 (measuring the longest 

wavelengths) does not measure wavelengths very close to the laser’s wavelength. If the 

electron tem perature is sufficiently low then the filters will detect none of the scattered 

light. Likewise, if the tem perature is sufficiently high, then  although the detectors
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F ig u re  5.1: Response of the three channels to a two-temperature distribution 
function. The electrons have densities ni =  n -2 =  102Om -3 ; the ratio 
n\ : ri2 is 50 : 50.
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Figure 5.4: Various mappings from {Ti, T2 , $ 1 , $ 2 } space into observation space 
{ / i ) / 2 j / 3 } are shown. Solid curves in {Ti,T2 , $ 1 , $ 2 } space are iso
response curves. Certain iso-response curves are equivalent when the 
channel responses are normalised by projection onto the plane.

pick up some scattered light, the  m ajority is scattered a t too high a frequency for 

the  spectrom eter channels to  detect. A lthough these tem peratu re  lim its exist they are 

unlikely to be encountered in practice.

A one-tem perature response curve is recovered in the lim it as 712 tends to zero, as T2 

tends to zero or as T2 tends to 0 0 .

5.3 Normalised outputs

In order to present and understand the data, it is convenient to  reduce the num ber of 

degrees of freedom. One can observe th a t there is a degree of freedom th a t corresponds 

simply to scaling the overall density of the plasma, which can be expressed by m ultiply

ing (5.1) by some arb itrary  number. This gives a different m easured trip le t, { / 1 , / 2 , /a}, 

bu t the two tem peratures rem ain unaltered. Geometrically, th is degree of freedom is 

manifest as straight lines em anating from the origin in ( / i , / 2 , / 3 ) space. Each point 

along these lines is identified w ith exactly the same tw o-tem perature d istribution. This 

is shown in figure 5.4.

In order to remove this ‘uninteresting’ degree of freedom, the responses were nor

malised by dividing the ith observed channel response fa by the sum of all three chan

nels. The resulting normalised channel responses, fa, are described by (5.2). This places 

the constraint on the trip le t {fa, fa, fa}  th a t fa -f fa +  fa =  1. This norm alisation can 

be viewed as projecting all points in {fa, fa, fa}  space onto the plane th a t  intercepts the
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three axes at 1 as shown in figure 5.4.

- f i  =  $ 15 i (Ta) +  $ 2 Si (T2)
J* o (rr \ i ^  aE ; U  $1 E j  S j iT i )  +  $2 E j S j (T 2)

(5.2)

If the responses from the three channels are / i ,  f 2 and as defined in (5.1), then we 

can define a normalised spectral density function for the 2th channel, S'i(T), as in (5.3).

(5.3)

This leads to an alternative definition of the overall filter response, analogous to  (5.1) 

bu t using the normalised spectral density function as in (5.4).

/ i  =  S i$ ( T i)  +  <&2 Si(T2 ) (5.4)

4>i is again proportional to the plasm a electron density n\  bu t now also takes into 

account the norm alisation factor Si(T) .

We can express (5.2) in term s of this normalised spectral density function (5.3) as in 

(5.4), so th a t (5.2) becomes:

This form of the normalised da ta  depends on three variables: T i, T2 and a  where a  is 

the relative density of the first species compared to  the  second species.

It will be useful later to define a vector of normalised observed responses as defined 

in (5.6). The th ird  normalised channel response is not included as it is not independent 

of the first two normalised channel responses.

=  a S ^ )  + (1 -  a) S 2(T2) (5.5)

f  =
a 5 i(T 1) +  ( l - a ) 5 1 (T2) 

a § 2(Tl ) + (1 -  a)  5 2 (T2)
(5.6)

5.3.1 Single-temperature distributions

A single-tem perature electron d istribution has a unique set of observed channel resp

onses and so has a unique set of normalised channel responses. Figure 5.5 shows the
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Figure 5.5: Plot showing the pairs of normalised channel responses for single
temperature distribution functions. The scattering angle is 90°. Se
lected points have their temperature in electron volts labeled.

set of normalised channel responses consistent w ith a single-tem perature distribution 

function. This curve was generated using the m easured spectral responses for spec

trom eter 5 (see figure 4.6). For a given tem perature, the theoretical Thom son scattered 

signal was integrated over each channel’s spectral response in tu rn . The resulting three 

signals were then  normalised and plotted.

It is the nature of experim ental error th a t the m easured response from each channel 

will have an element of noise. This means th a t observations from a plasm a precisely 

described by a single-tem perature d istribu tion  will not, in general, lie exactly on the 

curve shown in figure 5.5. Instead, there will some scatter about th is curve. To assign 

a best-fit tem perature to such deviant d a ta  we find the point on the  single-tem perature 

curve (figure 5.5 for the normalised case) th a t is ‘closest’ to  the observed data. Under 

§4.9, th is closeness is taken to be the least-squares measure. This is usual, as x 2 is 

the m inimum  variance unbiased estim ator or the m aximum  likelihood estim ator for 

Gaussian errors. The likelihood function for estim ating the tem peratu re  of a single

tem perature  d istribution in the presence of noise is given by (4.40) on page 78.

For any given tem perature, T , there will be a curve, fiiS0 -T , consisting of the set of 

points (i.e. the  set of observations) for which the best m easure of tem perature is T.  

These curves will be referred to as iso-tem perature curves hereafter. This degeneracy 

arises from forcing da ta  to fit a model, which in this case is a single-tem perature dis

tribu tion  function. The distance from the single-tem perature curve to the observation 

along the iso-tem perature curve is a measure of how inconsistent the  observation is w ith
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a true single-tem perature distribution.

The ‘closeness’ is m easured w ith the observed signals before they are normalised. 

Under the full set of observations the iso-tem perature curve will be norm al to the single

tem perature surface: this is from our least-squares definition of ‘closest’ or ‘best’. The 

norm alisation has the geometric in terpretation of a projection on the plane / i  + / 2  +  / 3  =  

1. This projection will introduce apparent distortions to  the  iso-tem perature curves: 

they will no longer appear norm al to the single-tem perature surface.

To analyse these iso-ture curves, the normalised responses for a  single-tem perature 

d istribu tion  were considered. For such a distribution, norm alising the three channel 

responses is equivalent to removing any $  [i.e. plasm a electron density) dependency, 

w ith f i (T )  = Si(T) .  Therefore, the ‘best fit’ procedure described in §4.9 assigns a tem p

erature  to each set of normalised observations: T (f) . This m apping was then  expanded 

into a Taylor series as shown in (5.7), where A  is the 1 x 2  m atrix  ( d T /d / i  d T /d / 2 ).

T ( f ) =  T0 +  A  d f  +  0 (  d p )  (5.7)

Iso-tem perature curves in f  are those curves along which the tem perature does not 

vary, i.e. V f € so- T  T(f )  =  To. This must be true for an arb itra ry  point along the 

line, requiring (5.8) to hold along Cliso-T-

A d f  =  0 (5.8)

Single value decomposition (SVD) of m atrix  A  (an N  x M  m atrix) finds the three 

m atrices U  (N  x M ) ,  W  (M  x M)  and V  (M  x M ) for which A  =  U - W • V T . The three 

m atrices also have the property th a t W  is diagonal, V  is orthogonal and, if M  ^  IV, 

U T  • U  =  1. If M < N  then  U T  • U  will still be diagonal bu t N  — M  elements will be 

zero instead of one. The diagonal elements in U  th a t are zero will have corresponding 

elements in W  th a t are also zero. Columns of V  (or rows of V T ) corresponding to zero 

diagonal elements of W  are the null-vectors of A . For the  above problem  there is one 

null-vector. This vector is unbounded by 5.8, so it is tangential to the iso-tem perature 

curve.

Following the null-vector (as given by SVD) to  form the complete iso-tem perature 

curve is a problem  in integrating an O rdinary Differential Equation (ODE). By using 

the boundary condition th a t the integration have an in itial value for f \  and this
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Figure 5.6: A selection of iso-temperature curves are shown along with the exact 
single-temperature curve as in figure 5.5. All points along an iso
temperature curve have the sample ‘best estimate’ temperature. The 
lines are not normal to the single-temperature curve because of the 
projection due to the normalisation.

ODE can be classified as an initial value problem  (IVP). Various m ethods are available 

for solving IVPs. A commonly used robust m ethod is the  fourth-order Runge-K utta 

m ethod (see chapter 16 of Press et al. [1996]). The step size can be either fixed or 

adaptive. Because of the flexibility associated w ith the adaptive step-size, this m ethod 

was used for the integration. The routines used were taken from Press et al. [1996].

The results from the R unge-K utta m ethod is shown in figure 5.6 along with the 

single-tem perature curve. The iso-tem perature curves are straight lines crossing the 

single-tem perature curve at the relevant tem perature. As can be seen clearly for the 

low tem perature  cases, the iso-tem perature curves are generally not norm al to the single- 

tem perature  curve.

5.3.2 Two-temperature considerations

Prom (5.5), a tw o-tem perature distribution is a linear superposition of two single

tem peratu re  distributions. In this simple model, the electron density of each species 

cannot be negative. This positivity constraint implies th a t a  line connecting two points 

on the single-tem perature curve in figure 5.5 contains all points consistent with a two- 

tem peratu re  distribution function, as shown in figure 5.7. T\  and T2 for this two- 

tem perature  d istribution function are given by the two intercepts between the line and 

the single-tem perature curve.
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The scattering angle is 90°. The single-temperature response curve 
of figure 5.5 is shown for reference.

The positivity constraint on plasm a electron density requires th a t all observations 

must lie underneath  the curve for tw o-tem perature d istribu tion  functions. This is ob

vious as the observation m ust lie on the line connecting some T\  and some other T2 . If 

the model is relaxed to allow an n-tem perature  d istribu tion  function and those n  tem 

peratures are known a priori then the observation m ust lie w ithin the n  sided polygon 

w ith vertices touching the single-tem perature curve a t T i, T2 , . . . ,  Tn . Irrespective of 

the values of T i, T2 , . . . ,  Tn , again positivity requires th a t the observation lie beneath 

the single-tem perature curve.

There is a natural, geometric in terpreta tion  of the degree of freedom in the two 

tem peratures. Consider a point on the line connecting T\  and T2 . This point corresponds 

to a specific observation: a set of three observed channel responses th a t have been 

normalised (by dividing by their sum) to produce the two norm alised channel responses. 

By ro tating  the line about th a t point the  da ta  rem ains consistent w ith the observation 

whilst the values of T i, T2 and a  are altered. Any line th a t passes through th a t point 

gives rise to  a valid tw o-tem perature in terpreta tion  where T\  and T 2 are the intercepts 

w ith the single-tem perature response curve and a  is the length of the  line from T 2 to 

the observation point as a fraction of the  to ta l line’s length.

Requiring T\  >  0 places a lower bound (T™111) on T2 whilst stipu lating  T2 < 00 places 

an upper bound (T™3*) on T\.  For all points th a t lie off the  single-tem perature curve, 

there is a range of tem peratures T ™111 > T  >  T™3* th a t the electron d istribution cannot
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Figure 5.8: Graph showing the single-temperature response curve (solid) and 
three two-temperature lines consistent with Ti =  lOOeV, T2 =  IkeV 
and a = 2/3. Two of the lines represent the limiting cases; Timax and 
T2min are labelled.

contain. The two lim its are shown in figure 5.8 along w ith a th ird  interm ediate case.

It is worth emphasising th a t the best fit single-tem perature d istribu tion  may have 

a tem perature th a t is inconsistent w ith the tw o-tem perature model. By comparing 

figures 5.6 and 5.8 it is easy to find points (i.e. observations) th a t have a best fit 

single-tem perature distribution, w ith a tem perature T  say, and have a two-tem perature 

d istribution w ith T™n > T  > T\max. This inconsistency is not surprising as any non- 

therm al component will distort the best fit single-tem perature away from the underlying 

Maxwellian distribution.

In addition to the lim its placed on T\  and T2 , there are constraints on the value of a. 

For the case where T\ = 0 and I 2 =  T ™111 a  then  has a m inim um  value: a mm. There is 

a  corresponding maximum value of a , a max, appearing as the lim it as T\  tends to T™3* 

whilst T2 tends to 0 0 . Therefore the value of a  m ust lie between a mm and o:max.

5.4  Iso-response curves

As illustrated  in the previous section, each observed m easurem ent corresponds to a 

family of solutions. It is impossible to find the correct value w ithout further information 

bu t the family of solutions may be plotted  and external inform ation, such as the likely 

fraction of the m inority hot component, can be used to constrain this family of solutions.
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5.4.1 Theoretical treatm ent
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We defined f  in (5.6) as the vector of normalised observed responses. Also, we define g 

as the vector of model param eters of the  normalised d istribu tion  function as:

g =

I  Ti  ^  

T2

\  a  j

(5.9)

By considering a Taylor series expansion of f(g)  and retaining the first-order term , 

the gradient of the normalised responses, the m atrix  A, is defined as:

d f  =  A dg (5.10)

The iso-response curves are lines in g along which the norm alised response, f, does 

not change. A tangent to the  iso-response curve is the direction in which the gradient 

of the response is zero:

d f  =  A d g  =  0 (5.11)

dg thus lies in the null space of A, i.e. it is an eigenvector of A  w ith eigenvalue of zero. 

This null vector, described by (5.11), was obtained using a m ethod similar to §5.3.1. 

SVD was used to find the three m atrices U, W  and V. The null vector is the column of 

V  corresponding to the zero singular value in W . These vectors were integrated using 

an adaptive step-size fourth-order R unge-K utta m ethod.

5.4.2 Figures

This methodology was used to produce the iso-response curves illustrated. It is crucial to 

appreciate th a t in the following graphs the th ird  axis, a:, has been suppressed. Because 

of this projection, the curves may appear to cross where in the  full 3-space, they do not.

In figure 5.9, several iso-response curves are p lo tted  on the same graph. The initial 

points chosen from which to build the curves are T\ = lOeV, a  =  0.001 and T2 selected 

from 250eV to 4keV in 250eV steps.
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F igure 5.9: Iso-response curves (a  axis suppressed) for initial points with differing 
values of T2 , where T2 > Ti.

The initial points of T\ are ‘close’ to the axis bu t not a t zero. This is because the 

solutions become degenerate if T\  is exactly zero. A com plem entary set of curves can be 

generated th a t are the m irror image through the line T\ = T2 . This simply corresponds 

to swapping T\  and T2 and taking 1 — ao instead of ao as the  in itial value of a.

The value of a  increases along the curve as Ti increase. For the  tight curves with low 

initial T\  the value of a  increase slowly up to  the sharp corner. At th is point, the value 

of a  rapidly increases until a value close to one is achieved and the curve has turned 

the corner. After this, a  increases slowly as T2 increase.

The lim iting case is an iso-response curve w ith an in itial value of a  of zero. As such 

an iso-response curve is followed, the initial direction will be a straight line from T\ = 0 

to T\  =  T2 w ith a  rem aining zero. As the point where T\ = T2 is reached, a  will rise 

w ithout any change in T\  or T2 until a  is unity. Further following the curve reveals T\ 

and a  rem aining constant and T2 increases. This case corresponds to  an observation 

exactly on the single-tem perature curve of figure 5.5.

Figure 5.10 shows the effect of varying the initial value of a. The iso-curves have 

an initial conditions of T\ =  lOeV, T2 is either IkeV or 3keV and a  is from the set 

{5 x 10~5, 10“ 4, 10~3, 10"2, 0.1}.
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F igure 5.10: Iso-response curves (a axis suppressed) for initial points with dif
fering values of a. The initial value of a  (oo) is taken from the set
{ 5  x  i o - 5 ,  n r 4 , 10- 3 ,  n r 2 , 0 . 1} .

5.5 Data from COMPASS-D

It is interesting to consider a large collection of da ta  and plot these observations on 

a normalised response graph. To do this, the da ta  for all plasm a shots between 24 

November 1997 and 4 June 1998 (some 1831 shots) were catalogued. For the  d a ta  due to 

spectrom eter 5, the combined signal-to-noise ratio  for the three channels was calculated 

for each of segment range 90 to 99 (those where plasm a is likely to have been present) 

of each shot, as described in §4.5. The 1000 observations w ith the greatest combined 

signal-to-noise ratio  were then  plotted  in figure 5.11 w ith error bars for selected data.

It is clear th a t the m ajority of da ta  in figure 5.11 lie above the single-tem perature 

d istribu tion  function curve. This is in contrast to  the expectation th a t all da ta  would 

lie below the curve. Although the m ajority  of da ta  are above the curve, there are 

data-points which lie inside the curve by m any error-bar lengths. In addition, the data- 

points th a t lie outside the curve appear to  be bounded by some curve similar to the 

single-tem perature curve. This suggests th a t the tw o-tem perature d istribution model is 

applicable and th a t there is some system atic bias in the analysis.

One example of a system atic bias th a t would account for the difference is if the ref-
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Figure 5.11: Observated normalised responses for the 1000 data from spectrom
eter 5 with the greatest combined signal-to-noise ratio. The single 
tem perature curve of figure 5.5 is also shown. Selected points have 
error bars.

erence signal was not correct for a  p a rticu la r channel. T h is  would reduce the  m easured  

am p litu d e  for th a t  channel and  norm alisa tion  would th en  increase th e  m easured  am pli

tude for th e  o th er two channels. If the  reference signal for channels one and  th ree  were 

slightly  incorrect th en  th e  observations would be biased d iagonally  tow ards increased 

channel two and  decreased channel one norm alised responses, which is th e  observed 

behaviour.

A no ther possible cause is a  film form ing on the  vacuum  vessel’s view p o rt from  deposi

tion  of im purities. B a rth  et al. [1997] s ta tes  th a t, a t th e  RTP. transm ission  m ay decrease 

by 78% for w avelengths of 700 to  850 run and  70% for 550 nm  light. T h is chrom atic  

effect would affect channel one (longest w avelength) th e  m ost, channel two to  a  lesser 

ex ten t an d  channel th ree  th e  least. A fter norm alising, th is  would in troduce a system atic  

bias in the  channel responses: the  response for channel one would be suppressed  w hilst 

the  response for channel two enhanced.

It is w orth  em phasising  th a t  there  are unquan tifiab le  u n certa in ties in th e  single

te m p e ra tu re  curve. T h is curve was construc ted  using supplied  frequency response d a ta  

for each of th e  channels. If th is in form ation  were incorrect, due to  th e  chrom atic  effect 

of the  deposited  film for exam ple, th en  the  s in g le-tem p era tu re  curve will not describe 

th e  u p p er lim it for d a ta .
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5.6 Converting measured responses into iso-response curves

Iso-response curves are values of T \, T 2 and a  th a t have identical observed responses. 

Any point on the line is sufficient inform ation to construct the iso-response curve as any 

point can be the initial value for the IVP. Therefore, the iso-response curve for a set of 

normalised observations can be obtained by ascertaining one valid set of T \ , T2 and a. 

Since there is a degree of freedom, there is freedom in choice of in itial Ti.

It is possible to choose Ti =  0 and discover T2 and a  from inspection against the 

single-tem perature curve. However, as previously stated , the solution is degenerate for 

any tem peratu re  a t or sufficiently close to zero. Instead some small, non-zero value of 

T\ could be used {e.g. lOeV) or some another value which is more convenient.

Once the iso-response curve has been established, it may be possible to  place any 

further constraints on the system. Any m easurem ent will yield two (independent) nor

malised channel responses. As described above, these can be converted into a iso

response curve containing all values of {Ti, T2 , a}  th a t are consistent w ith the observed 

data. The values of T i, T 2 and a  vary along this curve. Sections of the curve may 

correspond to values of Ti, T2 or a  th a t can be ruled out by ‘ex ternal’ criteria.

This should be done carefully as the ex tra inform ation may be inapplicable for the 

specific shot under consideration. For example, evidence from van Lam meren et al. 

[1992] suggests the m inority (in this case non-therm al) species at TO R TU R  is less than  

10% of the electron density, placing a strong constraint on valid values of a. However, 

Pieroni and Segre [1975] reports th a t the density of the m inority ho tter species at 

Alcator was 40% of the cooler species. Undoubtably, this differences arises from the 

different operational regimes of the two tokamaks. However, since bo th  the upper limit 

of a  and the cause of the m inority species are not known for COMPASS, imposing 

upper-boundary restrictions on a  would be dubious.

5.7 Errors

An uncertainty in the ( / 1 , ^2 ) will be manifest as an uncertainty in T f13* and T™111. 

To obtain  the true probability d istribution function for the  uncertainties the probabil

ity density function of the point must be integrated over. For example, consider the 

probability density for T™ax being some tem perature T*, denoted p{T l) .  If the line
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Figure 5.12: Error estimate for T™3* and T2min by projecting the 1 x a surface 
onto the single-temperature curve.

connecting f (T  =  oo) (the origin in figure 5.5) to the single-tem perature response point 

f (T  = T i )  is param eterised by I so th a t f ( l  =  0) =  (0,0) and f(/ =  1) =  f (T  =  T*) 

then  p(T£)  is given by (5.12) where p(f) is the probability density associated w ith the 

uncertainty in the observation.

p p i ) =  f \ m i  (5.12)
Jo

In general this integral is intractable as the  form of the curve will depend on the 

channel responses. An approxim ation to this is to  project the 1 x a  ellipse onto the 

curve as shown in figure 5.12.

5.8 Conclusions

F itting  a tw o-tem perature model when supplied w ith three channel responses is an 

ill-conditioned problem. As the d a ta  provides insufficient constraints on the model, 

a  family of solutions (a curve) exists for each observation. In  the absence of further 

inform ation, any solution along this curve is equally likely.

Despite the degeneracy in the tw o-tem perature param eters, analysis of the channel 

responses provides constraints for the two tem peratures and the ratio  of the two species’ 

electron densities. For a given set of observations and w ithout further ‘ex ternal’ infor

m ation, the da ta  is sufficient to place upper and lower bounds on the cooler and hotter
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components respectively and bo th  upper and lower boundaries on the ratio  of electron 

densities for the two tem perature species.

W ith  additional information, it is possible to constrain the solutions further. However, 

this inform ation m ust be from a source other th an  Thom son scattering results. An extra 

channel would enable precise measures of the two tem peratures w ithout the degeneracy. 

W hilst if five channels were present then  an objective m easure of the validity of the 

tw o-tem perature model would be possible.

Increasing the num ber of channels in the spectrom eters becomes progressively more 

difficult due to alignment problems and losses. An alternative m ethod of analysing 

the scattered light is to use a grating or prism. This splits the one-dimensional beam 

pa th  into a two-dimensional planar representing the scattered light spectrum  at each 

point along the beam  path . This two-dimensional plane can then  be imaged onto some 

recording device.

The original form of this diagnostic, as described in Bretz et al. [1978], used a tele

vision cam era as the recording device. From this design, the generic term  Television 

Thom son Scattering (or TVTS) diagnostic was coined.

M odern TV TS uses image intensifiers w ith a Charge-Coupled Device (CCD) as the 

m ethod of da ta  acquisition (see B arth  et al. [1997] and van Lam meren et al. [1992] 

for example configurations). A CCD uses the photoelectric effect to generate a charge 

proportional to the num ber of incident photons a t each picture element (pixel). CCDs 

provide a more flexible and higher resolution m ethod of d a ta  acquisition than  analogue 

television cam era technology.

The m ajor disadvantage w ith TVTS is a low repetition  rate. Diagnostics using TVTS 

utilise ruby lasers. These are high power devices, up to  25 J, th a t produce light in the 

visible spectrum  at a wavelength of 964.3 nm. However, these diagnostics suffer from a 

num ber of disadvantages. The laser frequency is close to  the  Hq, line and some He lines 

so a regions of the spectra are unusable. Ruby lasers do not have the high repetition 

ra te  of the Nd:YAG lasers, lim iting TV TS to analysing the signal at one tim e during the 

plasm a discharge. Recently, the TV TS system  at RTP has been upgraded to achieve 

some tem poral measurement. See Beurskens et al. [1997] and Beurskens et al. [1999] for 

more details.



Chapter 6

Conclusions and future work

This chapter summarises the results and conclusions presented in this thesis. Possible 

future developments are suggested.

The first section of this chapter recapitulates the m ain advantages and disadvantages 

of the Genetic Algorithm  (GA) approach to optim isation. In section two these points 

are framed w ithin the context of signal analysis, especially w ith Bayesian methodology 

in mind. A retrospective view of the Thom son scattering diagnostic is presented in 

section three w ith the final section describing future work and unanswered questions.

6.1 Summarising Genetic Algorithms

A set of generic library routines, collectively referred to as called ELGAR, was devel

oped to allow solutions of optim isation problems. Although the principle use of this 

library was signal analysis, the library is flexible enough to perm it investigations of 

other problems.

By default, each param eter in ELGAR can take on one of 256 different values. Due 

to the biological inspiration of the algorithm , these param eters are usually referred to 

as genes. This allows sufficient resolution w ithout encountering ‘boundary problem s’ 

associated w ith true floating point representations.

In addition to the signal analysis, some properties of GAs in general (such as the 

optim um  m utation rate) were investigated using ELGAR. A discrepancy between the

102
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results observed and those predicted was observed. This was accounted for by the 

different operational mode between ELGAR and typical binary  genetic algorithms.

GAs proved a valuable m ethod of solving the optim isation problems investigated. 

However, the improvement of the solution was found to  be severely lim ited if the  mini

mum ‘valley’ lies off-axis. This seems to  be a fundam ental lim itation of GA techniques 

as further improvement requires m ultiple m utations of the  required m agnitude. This 

problem  would be lessened if variable m utation ra te  scheme were employed.

6.2 Genetic Algorithm Signal Analysis

Signal analysis for models w ith non-linear dependent variables was investigated. GAs 

were found to  be able to fit such models efficiently. An example of this is fitting a 

sinusoidal signal to some tim e sequence da ta  (§2.6.2). It is im portan t to note tha t 

the GA fitting procedure is via a purely forward modeling paradigm . Although fitting 

periodic signals can be achieved via Fourier decomposition, the  GA does not use this 

inform ation and therefore can be applied to a  non-periodic or nonlinear signal.

Augm enting the likelihood function via Bayesian Inference model was found to greatly 

improve the fitting procedure. In the presence of high levels of noise, the addition of 

prior inform ation can reduce any degeneracy and was found to reduce the error from 

fitting to  the noise. In general, the optim isation problem  then becomes more complex, 

typically there will be many local minima, bu t the GA technique was found to cope 

w ith this problem. Complex problems, such as extracting a reference signal from many 

poor examples th a t are not perfectly aligned (as described in §4.6), became tractable.

6.3 COMPASS-D experiment

An analysis of the diagnostic ou tpu t was conducted. The m ethod of solving the Bayesian 

augm ented likelihood estim ation via application of a Genetic A lgorithm  proved to be 

valuable in analysing results from the Thom son scattering diagnostic at COMPASS-D.

The analysis was further extended by considering a tw o-tem perature distribution 

function. This form of pertu rbation  of a Maxwellian d istribu tion  was chosen due to 

its simplicity and observational evidence. Several constraints on the observations were
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found, despite the available inform ation being insufficient to  full constrain the two- 

tem perature  d istribution function.

The region of ‘observation space’ consistent w ith an n-tem pera tu re  distribution func

tion was found to be bounded by the single-tem perature response curve. D ata from 

COMPASS-D diagnostic was analysed and found to like outside this region of valid 

solutions. However, the da ta  appeared to be bounded by a sim ilar curve suggesting 

system atic bias at some point in the analysis process. Several possible explanations for 

th is bias were suggested.

For any valid observation, and assuming a tw o-tem perature d istribu tion  function, let 

T\ be the lower tem perature and T2 the upper tem perature. Let the set of T\ consistent 

w ith an observation be A  and the set of T2 consistent w ith the same observation be B. 

It was found th a t these two sets, A  and B , are disjoint. For m any possible observations, 

the set of tem peratures in neither A  or B  (i.e. the intersection of the complements of A  

and B ) contained the least-squares best-fit single-tem perature solution. If we assume 

th a t the plasm a is consistent w ith the tw o-tem perature model w ith bulk tem perature 

Ti w ith some m inority species at T2 then  the presence of these ‘h o t’ electrons was found 

to bias the least-squares estim ate towards higher tem peratures.

6.4 Future work

The obvious extension for the two tem perature  analysis is to consider a m any channel 

dataset and to recover a full electron d istribution function. This recovery procedure 

would require a dataset w ith good spectral resolution. One possible source of such da ta  

is from a Television Thom son Scattering (TVTS) based diagnostic.

The problem  of recovering the distribution function is an inverse problem. The form 

of the problem  is given by Pechacek and Trivelpiece [1967] as sta ted  in (4.4) on page 48. 

This is an inhomogeneous Fredholm equation of the first kind. A lthough the equation 

appears linear in /(/3), due to positivity constraints, the full problem  will be non-linear. 

It is possible to solve (4.4) treating it as linear and forcing the positivity after the 

inversion.

Various m ethods exist for solving Fredholm equations. Most use regularisation to 

remove the degeneracy from the ill-posed nature of the inversion. Such regularisation



Chapter 6. Conclusions and future work 105

could be from imposing a (relativistic) Maxwellian-like d istribu tion  function or from 

M aximum Entropy constraint.

Stability is another concern in inversion. Sharp features in the  response of one speed

preferentially to those receding. This introduces a skew in the observed spectrum  which 

would improve the stability  of the solution.

A GA will utilise many points in the a ttem pt to solve the specified problem. W hen 

the GA finishes, the final generation will contain some best-fit solution as well as many 

other solutions. In general, these other solutions will be close to or identical to the 

best solution. If identical points are disallowed (an option in ELGAR) then the final 

generation will contain n  — 1 d istinct points close to the  best solution.

It may be possible to use this d istribution of points to  estim ate the d istribution 

function near to the best-fit solution. This would alleviate the  necessity of a full Monte 

Carlo sim ulation for recovering confidence intervals w ithout the  norm al d istribution 

assum ption. However, there would have to be careful analyses of GA dynamics (e.g. via 

Markov chain analysis) as the final points are very likely to be correlated.

The code for fitting the reference signal to observed da ta  could be extended. At 

present it considers the reference signals to be perfect. However, after constructing 

reference signals there will inevitably be some uncertainty in the  final result. This 

uncertainty is easily included by considering (3.4) on page 42. To consider errors on the 

reference signal of a i j  the new likelihood function is:

The most obvious element th a t could be included to improve ELGAR is the  addition 

of a  local optim isation routine. Such routines would allow ‘fine tun ing ’ of the fitting

only use function evaluations, such as Powell’s m ethod, could be employed. One such

option for backward com patibility (see A ppendix B for discussion).

ELGAR could also be extended by adding more advanced options such as aging, 

variable m utation rate  and directed m utations. It is possible to  sim ulate these effects

(considering all directions) indicates stability  in the recovered distribution. The rel

ativistic beam ing effect implies th a t electrons approaching the observer are scattered

(6 .1 )

param eters after the GA had finished. A standard  m ulti-dim ensional algorithm  that

m ethod could be adapted to work for the library. This code should then  operate as an
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w ithout altering ELGAR through carefully w ritten  client-side software (the problem- 

specific code). However, code th a t extends GA-based functionality belongs w ithin the 

library. Inclusion of these ex tra  features and operators would allow testing of the library 

against other GA implem entations.

The overall m ethod, using GAs to  solve Bayesian inference problems, is applicable 

to a wide range of problems not lim ited to plasm a diagnostic analysis. The m ethod 

provides a system atic m ethod of introducing previous experience whilst not requiring 

a in itial point close enough to the true minimum. This identifies the algorithm  as a 

highly suitable m ethod of solving a wide range of problems. Therefore, applications in 

unrelated  fields should be investigated.



Appendix A

Code listing

There are 207 program  files {i.e. ending in .c ) and 76 header files {i.e. files ending in 

.h). These contain 49670 lines of code which would take up 1035 pages to list. Because 

displaying all the code is im practical, only selected pieces are listed. The whole source 

code is available on a CDROM at the  end of this document.

A .l  GenePool structure

The C program m ing language allows many variable types to be grouped together to 

form a ‘struc tu re’. S tructures usually contain many related items and grouping these 

items together allows easy handling of often abstract objects. For example, C has no 

concept of a complex num ber b u t a structure consisting of two floating point numbers 

(labelled real and imaginary) would allow a function to  take a complex num ber as a 

single argum ent.

The most im portant structure  w ithin ELGAR is GenePool. This contains all the 

inform ation about the optim isation. As all the inform ation about the optim isation in 

contained w ithin the structure, there can be any num ber of instances of ELGAR running 

concurrently or hierarchically.

The following code listing is as present on cdrom, including all comments.

File: GA/Elgar/elgar.h

59 typedef struct gp_struct{
60
61 / *  ALL values from here to the AUTOINITALISE section *MUST* be
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* filled in before calling the GimiGenePoolO routine.
*/

/* These are the parameters to main. They are required
* by the X interface so that X-like options can 

* be processed. */ 
int gp.argc; 
char **gp_argv;

/* Number of parents and number of children should be
* obvious. Note that these values must be greater than
* the minimum above. Also, number of children must be

* an even number.*/ 
unsigned gp_No0fParents; 
unsigned gp.NoOfChildren;

/* This is the number of genes needed to describe each
* entity. A byte is allocated for each Gene. Note, it

* is purely the responsibility of the gp_CalculateError()
* routine to assign some kind of interpretation on these

* bytes. */ 
unsigned gp.NoOfGenes;

/* The number of byte-wise mutations to impose per
* generation. At the moment this is a fixed number. */ 

unsigned gp.MutationsPerGeneration;

/* Boolian value:
* TRUE => display X window

* FALSE => don’t use X interface */ 
unsigned gp.GAMEOn;

/* This is the pointer to the routine for calculating
* the error for a specified entity. This is the problem
* specific area. It must be a routine with a prototype
* like:
* #include "elgar.h"
*
* int CalcErr( Entity *);
*
* and assigned within c-code thus:
*
* myGenePool.gp.CalculateError = CalcErr;
*
* It is the responsibility of this routine to fill in
* the element ent_Error within the entity, based on
* the gene sequence. */

int (*gp_CalculateError)( Entity *);
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/* These entries *MUST* be filled in, but may contain blanks/NULL. NB
* Don’t assume that they are blanks: initalise them! */

/ *  If this is not NULL then the routine is called after
* each generation. This allows the calling routine(s)
* to update some information, watch progress, etc * /  

int (*gp_NewGeneration)( struct gp_struct *);

/* Sometimes a different method of breeding is required
* This entry allows the "hooking" of a different breeding
* routine. The first two Entities are the parents and the
* second two are the children. The whole GenePool structure
* is also passed as a parameter (in case it is needed).
* To disable this option, assign the value NULL to it. * /  

int (*gp_NewBreed)( struct gp_struct *, Entity *, Entity *,\
Entity *, Entity *);

/* Another hook entry, this time for the mutation operation
* Set to NULL to use the built-in one. */

int (*gp_NewMutate)( struct gp_struct *, Entity *);

/ *  If this value is non-zero, then the optimisation
* routines will terminate if the lowest error (best
* solution) is less than this value. * /  

float gp_Tolerance;

/* If the range of parent error is less than the best error
* divided by this number, then all but the best parent are
* replaced by random values. */ 

unsigned gp_CatastrophicFraction;

/* The maximum number of catastrophes before "giving up" and
* returning from FindMinimumQ. Set to zero for an infinite
* number. NB this option is ignored if gp_CatastrophicRange
* is set to -1.0. */ 

int gp_MaxNoCatastrophes;

/* If this value is greater than zero, then FindMinimumO will
* give up after this number of generations. NB other criteria
* may cause FindMinimumO to return before this. */ 

unsigned gp_MaxNo0fGenerations;

/* If this is non-zero, then parents will die after gp_MaxAge
* generations. */

unsigned gp.MaxAge;
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/* If non-NULL, this string will appear as part of the title
* of the GAME window. The memory pointed to by gp_Title
* is copied, so it need not have extent for the
* duration of the optimisation. */ 

char *gp_Title;

/* Boolean value:
* TRUE = All (completely) identical entities in the gene
* pool are removed. The method of removal is that
* they are moved from the parent area to the far
* end of the child area. They are then lost in the
* next lot of breading.
* FALSE = Multiple copies of gene-identical entities
* are allowed. * /

int gp_RemoveIdenticals;

/* Elgar will pause for gp_SleepFor milliseconds after each
* generation. The sleep occures after GAME has refreshed (if
* active) and after calling gp_NewGeneration() (if defined). */ 

unsigned gp.SleepFor;

/ *  The seed for the random number generator. Set to zero for the
* default. * /  

unsigned gp.Seed;

/ *  Elgar _can_ produce output to STDERR as a quick error-tracing
* facility. The output is subdivided into three classes:
* 1. Critical errors - Something has gone
* very wrong and Elgar
* cannot recover from this.
* 2. Recoverable errors - Something has gone
* wrong but Elgar can use
* a default value, etc.
* 3. Warnings - Something unexpected happened
* which has no direct consequence.
* 4. Information - General information (there’s an
* awful lot of this!).
* Set gp_Verbosity to 0 for no output, 1 for just critical errors, 2
* for Critical and Recoverable errors etc. */ 

unsigned gp_Verbosity;

/* **************************************
* ***** AUTOINITALISE *****
* **************************************
*
* ... from here onwards the variables do not need to be specificed before calling
* GimiGenePoolQ .
*/
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/* These four variables are used for the two relevent
* graphs. */

unsigned long *gp_SpliceSpread; 
unsigned long *gp_SpliceTotals; 
unsigned long *gp_MutateSpread; 
unsigned long *gp_MutateTotals;

/ *  Here we store the evolution of the GA
* gp.BestEvolution: time-evolution of the best solution.

* gp.MedianEvolution: evolution of the middle solution.
* gp_EvolutionCount: total number of entries taken. Increases
* from zero to EV0LUTI0N_SIZE.
* gp_NextPoint: where in the arrays we should insert the next
* data. * /

float *gp_BestEvolution; 
float *gp_MedianEvolution; 
unsigned gp_EvolutionCount; 
unsigned gp.NextEvolutionPoint;

/ *  Calculated automatically from gp_NoOfParents and
* SP-NoOfChildren. Also includes the two spares required
* by the Quicksort algorithm. * /  

unsigned gp_NoOfEntities;

/ *  The current generation’s number. Initalised to
* zero * /

unsigned gp_GenerationNo;

/* Elgar’s current "problem". If it’s zero, then there is no
* problem. * /  

unsigned gp_ErrorLevel;

/* The collection of parents, which is allocated automatically * /  

Entity *gp_Parents;

/* This collection of children, which is allocated automatically * /  

Entity *gp_Children;

/* We need a couple of spare entities for the Quicksort
* algorithm (and other things too). These, too, are
* automatically allocated *BUT* these spare entities do
* NOT have gene sequences allocated. */

Entity *gp_Sparel;
Entity *gp_Spare2;

/ *  Used by the Numerical Recipes in C random number generator
* ranlO (see chapter 7 of NRC) * /
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258 long gp_idum;
259

260

261 / *  These are specified by whichever GAME’S being used */
262 GameDetails gp_GAME;
263

264 1 GenePool;

A.2 The Entity structure

A nother im portan t structure  is ‘E n tity ’. This contains all inform ation about a particular 

entity  w ithin the genetic algorithm  (see §2.1). It includes the creatu re’s genes, i t ’s error 

value and its age. The definition is:

File: GA/Elgar/elgar.h

49 typedef struct { 
so float ent_Error;
51 unsigned ent.Age;
52 GeneSequence ent_Genes;
53 } Entity;

where the GeneSequence is defined as

File: GA/Elgar/elgar.h 

44 typedef unsigned char * GeneSequence;

Although all the program s consider GeneSequence as a collection of num bers in either 

base 256 or base (256)2, the only parts of ELGAR th a t make th a t distinction are the 

breeding and m utation routines. These can be replaced via the gp_NewBreed and 

gp_NewMutate elements of the GenePool structure. If new breeding and m utation 

routines are w ritten, the in terpretation (i.e. conversion into phenotype) of GeneSequence 

is arbitrary.

A.3 Thomson scattering specific code

The code specifically for analysing the Thom son scattering diagnostic channels is in

cluded here. The function DoJob() is the m ain entry point for this code. It is called 

by the parser when it encounters the Go comm and (see A ppendix B, especially §B.7.3). 

The Job structure contains all inform ation about a particu lar fitting problem.
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File: GA/Thomson/noglobal.c

•include <stdio.h>
•include <string.h>
•include <math.h>
•include "elgar.h"
•include "random.h"
•include "display.h"
•include "noglobal.h"

/* Routines to calculate temperature from areas */
•include "temp.h"

•define GOFFSET.LOWER (-50.0)
•define GOFFSET.RANGE (100.0)

•define DOUBLE.GENES 

/* History:
* 29/11/98 Relaxed condition that dT (uncertainty in temperature) must lie
* at least one standard deviation away from zero in StoreBestSolnO. 
*/

/ *  A generalised collection of statistical information * /  

typedef struct •( 
float Mean;
float AverageDeviation; 
float StandardDeviation; 
float Variance; 
float Skewness; 
float Kurtosis;

> Statslnfo;

/* A collection of all the parameters required
* to specify a solution */ 

typedef struct {
float Offsets [3]; 
float Amplitudes [3]; 
float DCLevels [3];

}  Solution;

typedef struct ■(
float WaveMaximum[3], WaveMinimum[3];
Job *myJob;
unsigned Generation;
float *fits[3], *residuals[3];
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float area[3];
DisplayCtrl *win;
float ResidalsVarianceEstimate[3];

} GlobalVariables;

GlobalVariables Globals;

/* This is the error function, as required by the GA. */ 
int ErrFn( Entity *);
void ConvertToNumbers(unsigned char *, Solution *); 
void BuildFitsC Solution *); 
void StoreBestSoln( GenePool *, Job *); 
char *StrDup( char *);
void CalcStats( float *, unsigned, Statslnfo *); 
int SoFar( GenePool *);
void PlotGraph( unsigned, unsigned, unsigned, float *, float *, unsigned); 
int Initalise( Job *); 
void CleanUpC Job *);
int compare( const void *, const void *);

int Initalise( Job *myJob)

float squares, value, ^sorted, median, area, minimum, maximum; 
unsigned i, RefNo, wave;
Statslnfo stats;

DisplayRequest reqst;

/ *  Open window to display best solution after each generation. */
reqst.Width = 520;
reqst.Height = 300;
reqst.Titlel = "Best Solution";
reqst.Title2 = "Soln";
reqst.WaitAtEnd = FALSE;
if( myJob->DoGraphics) ■(

Globals.win = OpenWindow( myJob->argc, myJob->eirgv, fereqst); 
if( Globals.win == NULL)

fprintf( stderr, "Unable to open X-Windows\n");
}
else

Globals.win = NULL;

/ *  Point the global variable myJob to myJob. */
Globals.myJob = myJob;

/* Normalise reference pulse shapes. First we work out a good(ish)
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* approximation to the DC offset. Note we use the median instead of
* the mean since the median is a more robust estimate of the DC
* Offset (see section 15.7 in Numerical Recipes in C) * /  

for( RefNo = 0; RefNo < 3; RefNo++) {

/* Calculate the median. We use the standard library function qsortQ 
* which aught to be portable. */ 

sorted = (float *) malloc( myJob->nReference[RefNo]*sizeof(float)); 
if( sorted == NULL) {

printf( "Out of memory trying to sort Reference [’/,u] .\nTerminating. \n", RefNo); 
return 1;

}
for( i = 0; i < myJob->nReference[RefNo] ; i++) 

sorted [i] = myJob->Reference[RefNo] [i]; 
qsort( sorted, myJob->nReference[RefNo] , sizeof( float), compare); 
median = sorted [myJob->nReference[RefNo]/2 ]  ; 
maximum = sorted [myJob->nReference[RefNo]-1]-median; 
free( sorted);

/ *  Reset Reference[i] so it goes through the zero. * /  

for( i = 0; i < myJob->nReference[RefNo] ; i++) 
myJob->Reference [RefNo] [i] -= median;

/ *  Normalise the pulse shape so that it has maximum height of 1.0. * /  

for( i = 0, area = 0.0; i < myJob->nReference[RefNo]; i++) 
myJob->Reference [RefNo] [i] /= maximum;

/* Code to calculate the sum of the squares in the (normalised) function. * /  

for( i=0, area=squares=0.0; i < myJob->nReference [RefNo]; i++) { 
area += (value = myJob->Reference [RefNo] [i]); 
squares += value * value;

}
myJob->Factor[RefNo] = sqrt( squares);
Globals.area[RefNo] = area;

> /* for * /

/ *  Calculate the maximum and minimum values for each Waveform. */ 
for( wave = 0; wave < 3; wave++) {

/ *  Find minimum and maximum for this waveform. * /  

maximum = myJob->Waveform [wave] [0]; 
minimum = maximum;
for( i = 1; i < myJob->nWavef orm [wave] ; i++) ■( 

if( myJob->Waveform [wave] [i] < minimum)
minimum = myJob->Waveform [wave] [i];

if( myJob->Waveform [wave] [i] > maximum)
maximum = myJob->Waveform [wave] [i];
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} / *  for */

/* Store the results. */
Globals.WaveMinimum[wave] = minimum;
Globals.WaveMaximum[wave] = maximum;

sorted = (float *) malloc( myJob->nWaveform [wave] * sizeof(float)); 
if( sorted == NULL) {

printf( "out of memory.\n"); 
return 1;

>
for( i = 0; i < myJob->nWaveform[wave] ; i++) 

sorted [i] = myJob->Waveform[wave] [i]; 
qsort( sorted, myJob->nWaveform[wave] , sizeof( float), compare);

/* Remove the upper 5 percentile and take the average deviation:
* a more robust statistic. */

CalcStats( sorted, (unsigned) (myJob->nWaveform [wave] * .95), festats); 
Globals.ResidalsVarianceEstimate [wave] = stats.AverageDeviation * \

stats.AverageDeviation;
free( sorted);

> /* for * /

/ *  Allocate memory for storing fits and residuals. * /  

for( i = 0; i < 3; i++) {
Globals.fits[i] = (float *) malloc( myJob->nWaveform[i] * sizeof( float)); 
if( Globals.fits[i] == NULL) {
printf( "Initalise: out of memory.\n"); 
return 1;

>
>
for( i = 0; i < 3; i++) ■(

Globals.residuals[i]=(float *)malloc( myJob->nWaveform[i] * sizeof( float)); 
if( Globals.residuals[i] == NULL) {
printf( "Initalise: out of memory initalising storage.\n"); 
return 1;

>
>

return 0;
} /* Initalise. */

void CleanUp( Job *myJob) 

unsigned i;
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/* Fool (cc) into not warning that myJob is not used */ 
myJob = myJob;

/* Free memory allocated for storing residuals and fits. */ 
for( i = 0; i < 3; i++) { 

free( Globals.fits[i]); 
free( Globals.residuals[i]);

}

ifC Globals.win)
CloseWindowC Globals.win);

} /* CleanUp */

/* This function acts as a simple comparitor for the stdlib library 
* quick sort algorithm qsortQ */ 

int compare( const void *first, const void *second)
-c

if(*(float*)first==*(float*)second)return 0; 
return (*(float*)first<*(float*)second)?-l:1;

}■ /* compare */

int DoJob( Job *myJob)
-C

GenePool myGA;

if( Initalise( myJob)) 
return 1;

/* Build Genetic Algorithm information. */ 
InitaliseGenePool( tonyGA);
myGA.gp_argc = myJob->argc; myGA.gp_argv = myJob->argv; 
myGA.gp_No0fParents = myJob->NoParents; 
myGA.gp_No0fChildren = myJob->NoChildren;

#ifdef DOUBLE.GENES
myGA.gp_No0fGenes = 18;

#else
myGA.gp_No0fGenes = 9;

#endif
myGA.gp_MutationsPerGeneration = myJob->NoMutations; 
myGA.gp_MaxNo0fGenerations = myJob->NoOfGenerations; 
myGA.gp_GAME0n = myJob->DoGAME;
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myGA.gp_CalculateError = ErrFn;
myGA.gp_NewGeneration = (myJob->DoGraphics) ? SoFar : NULL; 
myGA.gp_Tolerance = -1;
myGA.gp_CatastrophicFraction = 100000; /* 100000;*/
myGA.gp.MaxNoCatastrophes = 0;
myGA.gp_Title = "Thomson Signal fitting";
myGA.gp_RemoveIdenticals = TRUE;
myGA.gp_SleepFor = 0;
myGA.gp_Seed = 0; /*myJob->RndSeed;*/
myGA.gp.Verbosity = VERBOSE.WARNING.OUTPUT;

Globals.Generation = 0;

Randomi s e( fcmyGA);

/* Allocate GA resources */ 
if( GimiGenePool( tonyGA)) 

return -1;

/* Find the answer. */ 
if( FindMinimum( tonyGA))
printf( "GA returned an error code.\n");

/* Store answer. */
StoreBestSoln( tonyGA, myJob);

/* Clean up. */
FreeGenePool( tonyGA);
CleanUp( myJob);

/* That’s us */ 
return 0;

} /* DoJob */

void StoreBestSoln( GenePool *myGA, Job *myJob) 
{

Areas myAreas;
Temperature myTemp;
Calibration myCalib;
Solution bestSolution; 
unsigned i, wave; 
float TotalChiS = 0.0;
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Statslnfo stats[3];

/* be optimistic. */ 
myJob->InvalidSoln = 0;

/ *  Build the best fits * /

ConvertToNumbers(myGA->gp_Parents[0].ent.Genes, fcbestSolution);
BuildFits( fcbestSolution);

/ *  Build the residuals. * /  

for( wave = 0; wave < 3; wave++)
for( i = 0; i < myJob->nWaveform [wave]; i++) {

Globals.residuals [wave] [i] = myJob->Waveform [wave] [i] -\
Globals.fits[wave] [i];

TotalChiS += Globals.residuals [wave] [i] * Globals.residuals [wave] [i];
}

/ *  Calculate the stats on each of the residuals. * /  

for( wave = 0; wave < 3; wave++)
CalcStats( Globals.residuals [wave], myJob->nWaveform [wave].fcstats[wave]);

for( wave = 0; wave < 3; wave++){
myJob->BestDC [wave] = bestSolution.DCLevels [wave]; 
myJob->Best0ffset [wave] = bestSolution.Offsets [wave];

myJob->BestAmp [wave] = bestSolution.Amplitudes [wave];
myAreas.A[wave]=myJob->BestArea [wave] = bestSolution.Amplitudes [wave] *\

Globals.area [wave]; 
myJob->AreaError [wave] = stats[wave].StandardDeviation *\

Globals.area[wave] / myJob->Factor[wave]; 
myJob->AreaError [wave] *= myJob->MultiError; 
myAreas.dA[wave] = myJob->AreaError [wave]; 
myAreas.dA2[wave] = myAreas.dA[wave] * myAreas.dA[wave]; 
myJob->ResidualMean [wave] = stats[wave].Mean; 
myJob->ResidualSD [wave] = stats[wave].StandardDeviation; 
memcpy( myJob->Fit [wave], Globals.fits[wave],

myJob->nWaveform [wave]*sizeof( float)); 
memcpy( myJob->Residuals [wave], Globals.residuals[wave], 

myJob->nWaveform [wave]*sizeof( float));
>

/ *  Point the entries in myCalib to the correct bits of the calibration 
* data passed to this section from the parser. * /  

myCalib.NoOfEntries = myJob->nCalibration; 
myCalib.T = myJob->Calibration[0] ; 
myCalib.C[0] = myJob->Calibration[l];



3̂3
344

345
346
347
348
349
350
351
352
353
354

355
356
357
358
359
360
361
362
363
364

365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

385
386
387
388
389
390
391

Appendix A. Code listing 120

myCalib.C[l] = myJob->Calibration[2]; 
myCalib.C[2] = myJob->Calibration[3] ;

/* Attempt to calculate the temperature. * /  

if( AreasToTemp( femyAreas, femyTemp, StmyCalib)) { 
myJob->InvalidSoln = 1;

>

/* Store results. * /  

myJob->Temp = myTemp.T; 
myJob->TempError = myTemp.dT;

myJob->ChiS = TotalChiS;

/ *  We relax the condition that the result must lie one sigma away from zero. 
*
* if( myTemp.dT >= myTemp.T)
* myJob->InvalidSoln = 1;
*/

} / *  StoreBestSoln */

/ *  Function for calculated the error. Required for the GA. * /  

int ErrFn( Entity *myEntity)

Solution mySolution; 
float diff, goffset;
float chil_sqr, chi2_sqr, chi3_sqr, chi_sqr; 
unsigned i, wave;

/ *  Convert our genes to significant numbers. * /

ConvertToNumbers( myEntity->ent_Genes, tonySolution);

/ *  Build our fit, based on these numbers. * /

BuildFits( femySolution);

/* Calculate chi squared for just the data. * /  

chil_sqr = 0.0;
for( wave = 0; wave < 3; wave++) {

for( i = 0; i < Globals.myJob->nWaveform [wave]; i++) ■[
diff = (Globals.myJob->Waveform [wave] [i] - Globals.fits [wave] [i]); 
chil_sqr += diff*diff / Globals.ResidalsVarianceEstimate[wave];

}
>

/ *  Calculate the global offset. This is just the average offset */
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for( wave = 0, goffset=0.0; wave < 3; wave++) 
goffset += mySolution.Offsets [wave]; 

goffset /= 3;

/* Now calculate the sum of the differences squared */ 
for( wave = 0,chi2_sqr = 0.0; wave < 3; wave++) { 

diff = goffset - mySolution.Offsets [wave]; 
chi2_sqr += diff * diff / (2*0.61*0.61);

}

/* N/(N-1) Finite population factor */ 
chi2_sqr *= 3/2;

/* This is the "pulse roughly in the middle" bit */
/* chi3_sqr = goffset * goffset / (1.5*1.5);*/
diff = goffset - 123.819;
chi3_sqr = diff*diff / (2*2.96074*2.96074);

/* The overall chi squared is the weighted sum of these two components
* The weighting factor comes from (s_D~2/s_0~2) where s_D‘2 is the
* square of the standard deviation of typical noise and s_0“2 is the
* square of the standard deviation of the offsets. s_D~2 was found to
* be approx 84.4 and s_0~2 is approx 1.2. */ 

chi_sqr = chil_sqr + chi2_sqr + chi3_sqr;

/* Store this as the error. */ 
myEntity->ent_Error = chi_sqr;

return 0;
> /* ErrFn */

void ConvertToNumbers(unsigned char *genes, Solution *mySoln) 
{

unsigned i;
signed mumin, murange;
float rep[10], range;

for( i = 0; i < 9; i++){ 
tifdef DOUBLE.GENES

rep[i] = genes [2*i]/256.0 + genes[2*i+l]/(65536.0);
#else

rep[i] = genes[i]/256.0;
#endif
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for( i = 0; i < 3; i++) {
range = Globals.WaveMaximum [i] - Globals.WaveMinimum [i]; 
mumin = -(Globals.myJob->nReference[i]/2);
murange = (Globals.myJob->nReference[i]+Globals.myJob->nWaveform[i])/2;

mySoln->0ffsets[i] = mumin + rep[ i]*murange;

mySoln->Amplitudes[i] = rep[3+i]*range;

mySoln->DCLevels [i] = Globals.WaveMinimum [i] + \
rep [6+i]*range;

} /* ConvertToNumbers * /

void BuildFits( Solution *mySoln)

unsigned Pulselndex=0, FitIndex=0; 
unsigned PulseLength, FitLength, i, vaveno; 
signed offset;

for( waveno = 0; waveno < 3; waveno++) {

Pulselndex = 0;
FitIndex = 0;
offset = (signed) mySoln->0ffsets [waveno];

PulseLength = Globals,myJob->nReference [waveno]; 
FitLength = Globals.myJob->nWaveform [waveno];

/ *  Fill in the blanks before PulseShape * /  

if( offset < 0) {
Pulselndex = -offset;

>
else {

if( offset >= Globals.myJob->nWaveform [waveno]) 
offset = Globals.myJob->nWaveform [waveno];

for( i=0; i < offset; i++)
Globals.fits [waveno] [i] = mySoln->DCLevels [waveno]; 

Fitlndex = offset;
>
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/ *  Copy PulseShape with correct amplitude and DC offset. * /  

f or(;(PulseIndex<PulseLength)fe&(FitIndex<FitLength);PulseIndex++\
,FitIndex++)

Globals.fits [waveno] [Fitlndex] = Globals.myJob->Reference [waveno] [Pulselndex]\
* mySoln->Amplitudes [waveno] \
+ mySoln->DCLevels [waveno];

/* Pad out after PulseShape with the DC level. */ 
for(;FitIndex < FitLength;FitIndex++)

Globals.fits [waveno] [Fitlndex] = mySoln->DCLevels [waveno];
> /* for */

)• /* BuildFit * /

/* Routine to see how the optimisation is progressing. Displays problem specific 
* information. * /  

int SoFar( GenePool *GP)

unsigned WinHeight, i;
Solution bestSoln;

if( !Globals.win) 
return 0;

/ *  Build best solution * /

ConvertToNumbers( GP->gp_Parents[0].ent_Genes, ftbestSoln);
BuildFitsC febestSoln);

/ *  Graph these solutions * /

ClearPad( Globals.win);

/ *  Height of each graph, 5 pixel gaps * /

WinHeight = (Globals.win->d_Height - 5 * (3+l))/3;

for( i = 0; i < 3; i++)
PlotGraph( 5, 5+i*(5+WinHeight), (i+l)*(5+WinHeight),

Globals.myJob->Waveform [i], Globals.fits[i],\
Globals.myJob->nWaveform [i]);

/ *

PlotGraphC 5, 50, 95, Globals.myJob->Waveform [1], Globals.fits[1],\
Globals.myJob->nWaveform [1]);

PlotGraphC 5, 100,145, Globals.myJob->Waveform [2], Globals.fits[2],\
Globals.myJob->nWaveform [2]);

* /
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SwapBuffers( Globals.win);

return 0;
}  / *  sofar */

/* This function emulates the function strdupQ for portability. */ 
char *StrDup( char *string)

char *result;
unsigned length;

if( string == NULL) 
return NULL;

if( (length = strlen( string)) == 0) 
return NULL;

result = (char *) malloc( length+1);
if( result == NULL) 

return NULL;

strcpy( result, string);

return result;
} /* DupStr */

/ *  Calculate various statistics on data. This routine is a modified version 
* of the one appearing in Numerical recipies in C (see section 14.1 in NRC). */ 

void CalcStats( float *data, unsigned n, Statslnfo *info)

int j ;
float ep=0.0,s,p; 

if( n <= 1) {
printf( "CalcStats: there must be at least 2 data pts\n"); 
return;

}
s=0.0;
for(j=0; j<n; j++) s += data[j]; 
info->Mean = s/n;
info->AverageDeviation = info->Variance = info->Skewness = info->Kurtosis = 0.0; 
for(j=0; j<n; j++) {

info->AverageDeviation += fabs(s=data[j]-info->Mean);
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ep += s;
info->Variance += (p = s*s); 
inf o->Skewness += (p *= s); 
info->Kurtosis += (p *= s);

>

info->AverageDeviation /= n;

info->Variance = (info->Variance - ep*ep/n)/(n-l); 
info->StandardDeviation = sqrt( info->Variance); 
ifC info->Variance) {

info->Skewness /= (n * info->Variance * info->StandardDeviation); 
info->Kurtosis = info->Kurtosis/(n*info->Variance*info->Variance)-3.0;

>
else ■[

/*printf( "CalcStats: no skewness/kertosis when Variance = 0.0\n");*/ 
info->Skewness = 0.0; 
info->Kurtosis = 0.0;

}

}■ / *  CalcStats */

void PlotGraphC unsigned x, unsigned yl,unsigned y2,\ 
float *datal, float *data2, unsigned num)
■C

signed dy, i, yp, yn, y_l, y_2; 
float y_scale, largest, smallest;

y_i = yl; 
y_2 = y2;

/* calculate the y.scale * /  

dy = y2-yl;
for( i = 1, smallest=largest=datal[0] ; i < num; i++) { 

if( smallest > datal [i]) 
smallest = datal [i]; 

if( largest < datal [i]) 
largest = datal [i];

>
y.scale = dy / (largest - smallest);

/ *  Plot data. * /

for( i = 1; i < num; i++) {
XSetForeground( Globals.win->d_Display, Globals.win->d_gc,\
Globals.win->d_Foreground);
XDrawLine( Globals.win->d_Display.Globals.win->d_DD0,Globals.win->d_gc,\
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x + 2*(i-l), y2 - y_scale*(datal [i-1] - smallest),\ 
x + 2*i, y2 - y_scale*(datal [i] - smallest));

yp = y2 - y_scale*(data2[i-1]-smallest); 
if( yp < y_l)

yp = y i ;

else

i f (  yp > y-2)  

yp = y2;
yn = y2 - y_scale*(data2[i]-smallest); 
if C yn < y_l) 

yn = yl; 
else

if ( yn > y_2) 
yn = y2;

XSetForegroundC Globals.win->d_Display, Globals.win->d_gc,\
Globals.win->d_blue);
XDrawLine( Globals.win->d_Display.Globals.win->d_DD0.Globals.win->d_gc,\ 

x + 2*(i-l), yp, x + 2*i, yn);

} /* PlotGraph * /
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Thomson scattering analysis 

scripting language

As quite often happens w ith code development, the design specification changed after 

the code was produced. Such things as the  form at th a t the da ta  was supplied in changed 

as did the final ou tpu t form at and the nature  of the analysis.

W hen faced w ith the problem of changing design, a decision is needed whether to 

extend the lim ited existing system  to cover bo th  the old and new requirem ents, or to 

retire the  existing code and rewrite (e.g. copy and alter) the code to  support only the new 

requirem ents. The la tte r option is generally quicker in the  short term  bu t suffers many 

problems: future improvements m ust be applied to each different im plem entation, bugs 

fixed in one must be applied to different source trees, potentially  introducing further 

bugs, etc.

Extending the code to cover new cases will generally take longer to  program , a t least 

initially. However, this is offset by the increased ease w ith which future improvements 

can be included. O ther benefits include any bugs are fixed in the  one source tree 

and improvements can be implem ented whilst retaining backwards compatibility. For 

these reasons, the code to  analyse the Thom son scattering problem  was extended over 

time. Because of this, there is one large program  rather th an  m any smaller specialised 

programs.

In order to obtain  the required level of flexibility, a scripting language was developed. 

This was initially a simple set of commands and registers bu t has been extended to solve

127
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alternative problems as the need arose. The language now includes support for global 

and local assignments, arrays, loops and a collection of comm ands including the ability 

to call external programs.

B .l  Backus-Naur Form

W hen defining a com puter language it is usual to  use the Backus-Naur Form (usually 

referred to as BNF). A logical element of the gram m ar is denoted by a label contained 

w ithin angular brackets. These logical elements are broken down into one or more 

possible simpler expressions. A lternative expressions are separated by a vertical line 

character. Literal strings are contained w ithin single quote marks. This is true except 

for space, tab  and end of line . An exclam ation m ark in front of a set indicates a logical 

not and a dot represents the em pty set.

The first three definitions in this gram m ar are irreducible elements of the language, 

usually referred to as tokens. The rem aining elements are comprised of these simpler 

elements.

(space char) ___ C 5••— u

(tab char) ::=  A t ’

(EOL char) ::=  A n’

(digit) ::=  ‘0’ | ‘1’ | ‘2 ’ | ‘3 ’ | ‘4 ’ | ‘5 ’ | ‘6 ’ ‘7 ’ |

(white space char) (space char)

| (tab char)

(white space) ::= (white space char) (white space) \ (i

(opt white space) (white space) | .

(req white space) (white space char) (opt white space)

(int) ::=  (digit) (int) \ (digit)

(opt int) :\= (int) | .

(mantissa) (int) | (opt int) (int)

(e> ::=  ‘e ’ | ‘E’
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(exponent)

(float)

(text)

(opt text)

(non white space char) 

(non white space text)

(empty statement)  

(comment statement) 

(string)

(format type)

(full numeric range) 

(numeric range)

(series number)

(data series)

(numerical range ref) 

(data reference)

(true)

(false)

(boolean)

(range)

(e) (int)

(mantissa) | (mantissa) (exponent)

\(EOL char) (text) \ \(EOL char)

(text) | .

\((EOL char) | (white space char))

(non white space char) (non white space text) 

(non white space char)

:=  ‘#’ (opt text)

:= (non white space text)

| (text)

:= ‘ASCII_Column’
| ‘ASCII.FreeForm’
| ‘LeCroy_Waveform’

:=  (int) (opt white space) (opt white space) (int)

:= (full numeric range)

| (opt white space int)

| (int) (opt white space) 1.

(opt white space) (int)

:=  (text)

| (text) (opt white space) (series number)

:=  ‘ [ ’ (opt white space) (numeric range) (opt white space) ‘] ’ 

:=  (data series)

| (data series) (opt white space) (numerical range ref)

'■= ‘y’ | ‘yes’ | ‘true’ | ‘1’

:= ‘n’ | ‘no’ | ‘false’ | ‘0’

:=  (true) \ (false)

:= (full numeric range) \ (string)
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(non white space list)

(white space list)

(list)

(string assignment) 

(format assignment) 

(integer assignment) 

(data assignment) 

(boolean assignment) 

(range assignment)

(list assignment) 

(assignment statement)

(non white space text) ‘ , ’ (non white space list) 

| (non white space text)

::= (text) ‘ , ’ (list) \ (text)

(non white space list)

| (white space list) ‘" ’

(opt white space) ‘=’ (opt white space)

::=  (opt white space) ‘=’ (opt white space)

::=  (opt white space) ‘=’ (opt white space)

::= (opt white space) ‘=’ (opt white space)

::=  (opt white space) ‘=’ (opt white space)

::=  (opt white space) ‘=’ (opt white space)

(opt white space) ‘=’ (opt white space)

::= ‘Filename’ (string assignment)

| ‘Format’ (format assignment)

| ‘Skip’ (integer assignment)

| ‘Preamble’ (string assignment)

| ‘ErrorMultiplier’ (string assignment)

| ‘References’ (data assignment)

| ‘Referencel’ (data assignment)

| ‘Reference2’ (data assignment)

| ‘Reference3’ (data assignment)

| ‘Responsel’ (data assignment)

| ‘Response2’ (data assignment)

| ‘Response3’ (data assignment)

| ‘Temperatures’ (data assignment)

| ‘Waveforms’ (data assignment)

| ‘Waveforml’ (data assignment)

| ‘Waveform2’ (data assignment)

| ‘Waveform3’ (data assignment)

| ‘Parents’ (integer assignment)

| ‘Children’ (integer assignment)

| ‘Mutations’ (integer assignment)

(string)

(format type) 

(int)

(data reference)

(boolean)

(range)

(list)
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(register)

| ‘Generations’ (integer assignment)

| ‘RandomSeed’ (integer assignment)

| ‘OutputLogFilename’ (string assignment) 

| ‘ErrorLogFilename’ (string assignment)

| ‘OutputLogFormat’ (string assignment)

| ‘DumpFilename’ (string assignment)

| ‘Graphics’ (boolean assignment)

| ‘GAME’ (boolean assignment)

| ‘MakeAllValid’ (boolean assignment)

| ‘Range’ (range assignment)

| ‘StepSize’ (integer assignment)

| ‘Values’ (list assignment)

| ‘Start’ (integer assignment)

‘Filename’
| ‘Format’
| ‘Skip’
| ‘Preamble’
| ‘ErrorMultiplier’
| ‘References’
| ‘Referencel’
| ‘Reference2’
| ‘Reference3’
| ‘Responsel’
| ‘Response2’
| ‘Response3’
| ‘Temperatures’
| ‘Waveforms’
| ‘Waveforml’
| ‘Waveform2’
| ‘Waveform3’
| ‘Parents’
| ‘Children’
| ‘Mutations’
I ‘Generations’
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(command expression)

{local assignments) 

{command statement) 

{statement)

{line)

{file)

{array element) 

{loop label) 

{variable)

‘RandomSeed’
‘OutputLogFilename’
‘ErrorLogFilename’
‘ OutputLogFormat ’
‘DumpFilename’
‘Graphics’
‘GAME’
‘MakeAllValid’
‘Range’
‘StepSize’
‘Values’
‘Start’

‘Load’ {req white space) {string)

‘Ditch’ {req white space) {string)

‘Go’
‘For’ {req white space) {string)

‘Next’
‘Array’ {req white space) {string)

‘System’ {req white space) {string)

{assignment statement)

{assignment statement) {req white space) {local assignments) 

{command expression)

{command expression) {req white space) {local assignments)

{empty statement)

{comment statement)

{assignment statement)

{command statement)

{opt white space) {statement) {opt white space) {EOL char) 

{line) {file) \ .

{text) ‘ : ’ {opt white space) {int) {opt white space)

{text)

{loop label) \ {array element)



Appendix B. Thomson scattering analysis scripting language 133

(variable ref) ::= £{ ’ (opt white space) (variable) (opt white space) £} ’

The gram m ar describes how to build a complete script from sim pler elements, bu t it 

does not describe the meaning of each element. Semantics are crucial to correct usage 

of the scripting language and the following sections briefly describe key elements of the 

language giving examples where appropriate.

B.2 Comments

Any line where the first (non white space char) is a hash symbol £# ’ is treated  as a 

comment. Lines identified as comments are read by the parser and ignored. However, 

if the £# ’ is used w ithin a line then it is treated  as any other symbol.

Comments allow annotation to exist w ithin the script. They also allow code to be 

tem porarily  disabled.

B.3 Variable substitution

It is often useful to refer to the current value of a variable, e.g. to  index an array. 

Variable substitu tion  allows this as well as simple substitu tion  of the current value of a 

loop label or array element.

A variable appears as either a (loop label) or as an (array element) identifier sur

rounded by braces: £{’ and £}’. For example, if the array view has an element w ith an 

index of 5, then  the value of this element can be substitu ted  at any point by the string 

£{view : 5}’.

Variables are expanded as the line is processed. Therefore, an assignment w ith a 

variable in the argum ent takes a fixed value, even if the value of the  variable subsequently 

changes.

Variable substitu tion  can be nested, so th a t £{view: { i}  }’ returns the i th element 

of array £view ’.
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B.4 Assignments
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An assignment alters the value of a (register) to the supplied value. If the  value contains 

(white space), then  the value must be protected by placing double quote marks, on 

either side.

There is a fixed set of registers each with particu lar meaning. Most are connected 

w ith a particu lar command, some of which m ust be set for the comm and to work. An 

explanation of these registers is presented w ith the related command. However, there 

are some registers th a t apply globally. These are defined in the following subsections.

O u tp u tL o g F ile n a m e  Normal ou tpu t consists of results from the GA fitting routines, 

including the p ream ble, and the ou tpu t from the echo command. By default, all 

norm al ou tpu t is sent to stdout, which is norm ally displayed in the term inal. If 

this register is set, then  all ou tpu t is appended to the file given by this register.

E r ro rL o g F ile n a m e  Any problems, for example due to an incorrect script or missing 

datafile, results in error messages. These error messages are normally sent to 

stderr, which is displayed in the term inal by default. If this register is set then  all 

warning or error messages are appended to the file given by this register.

The value of registers can be assigned on the comm and line. For example including 

a command-line option of ‘GAME=True’ would assign ‘True’ to  register ‘GAME’. These 

assignments allows the program  to be run  w ithin a batch  environm ent w ith different 

param eters for each run.

B.5 Aliases

Certain registers do not store d a ta  themselves bu t form a short-hand m ethod of assigning 

the same d a ta  to many registers. This is useful when a single reference curve is used to 

fit all three data-channels.

The aliases are:

R e fe re n c e s  Any assignment made to this alias is m ade to  Referencel, Reference2 and 

Reference3.
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W a v efo rm s  Any assignment made to th is alias is m ade to  W aveforml, Waveform2 and 

Waveform3.

Example:

The aliases assignment:

Waveform = data:l

is equivalent to:

Waveforml = data:l 
Waveform2 = data:l 
Waveform3 = data:l

B.6 Data storage

Any da ta  th a t has been loaded into memory is trea ted  as a  collection of many series. 

A series contains a sequential list of numbers and each series of a datafile is required to 

have the same num ber of data.

W hen d a ta  is loaded, a label is assigned by the load command. This label is used 

when identifying the da ta  to  a {register). In addition, the specific series and range can 

be specified, although only the label is required. If no series is specified then the first 

series is used. The default range is the whole series.

Example:

If d a ta  has been loaded, labelled by ‘wave’, then  all of the  first series can be referred to 

by:

wave

To refer to  the th ird  series, the following construction can be used:

wave:3

To refer to d a ta  elements 10-35 of this series, the following construction is used:

wave:3[10..35]
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To refer to  the twenty fifth element through to the last element, the  following construc

tion is used:

wave:3[25..]

B.7 Commands

Com m ands take either zero or one argum ent. If an argum ent is required, then it must 

be the next word after the command. If the argum ent contains (white space) then it 

can be encased w ithin double quotation marks.

It is possible to alter the value of registers for the  duration  of a  comm and by placing 

the assignments after either the argum ent, if present, or after the command. Assignment 

lines can be thought of as altering global settings whilst assignm ents on the same line 

as a  command are local to the command.

The following sections describe the various commands and the registers they inspect. 

B.7.1 Load

This command attem pts to load da ta  from a storage m edium  into memory. It requires 

an argum ent which is the label w ith which the da ta  can be referred to later. If the load 

fails, then an error message is generated and the script a ttem pts to continue.

Example:

load reference_data filename="some file.dat" fonnat=ASCII_Column

Registers:

The load command accepts three registers:

f ile n a m e  (mandatory) The filename register to  decide which file to load. It should be 

the correct form at for the com puter’s file system.

fo rm a t  (mandatory) The form at th a t the da ta  is stored in. The system  understands 

three formats:



Appendix B. Thomson scattering analysis scripting language 137

A SC II_co lu m n  D ata in this form at is contained in columns separated by one 

or more non-numeric characters. The exact alignm ent of the  columns does 

not m atter and it is assumed th a t da ta  exists for all columns in each row. 

Missing da ta  generates a warning message and a zero is substitu ted .

A SC II_freeform  D ata in ASCII_freeform  is read sequentially. M ultiple num

bers on the same line are treated  as sequential num bers from the same series. 

A blank line separates successive series. All series are m ade up to the same 

to ta l num ber elements w ith zeros replacing missing data.

L eC roy_w aveform  This is the raw ou tpu t form at from the LeCroy oscillo

scopes. D ata  is segmented tim e series. Typically for the COMPASS-D 

configuration, there will be 1 0 0  series corresponding to the 1 0 0  segments 

recorded by a spectrom er’s channel.

sk ip  (optional) For A SCII_colum n and A SCII_freeform  this register informs the data  

parser to skip the first n  lines of the datafile. This register is ignored if the format 

is LeCroy_ waveform.

B.7.2 Ditch

Frees memory associated w ith a particu lar label. It requires an argum ent which is the 

d a ta  to free. It also relinquishes the label so future load comm ands may use this label.

This comm and is optional. If a  load comm and uses an existing label, then  a warning 

message is generated and the old d a ta  is ditched. At the  end of the script all loaded 

d a ta  is ditched.

Example:

The following commands load some d a ta  and label it ‘m ydata’ then  free resources asso

ciated w ith the dataset:

load mydata filename="some data.dat" format=ASCII_FreeForm 

ditch mydata

Registers:

This command uses no registers.
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B.7.3 Go
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This comm and is used to s ta rt the GA. It takes no argum ents bu t uses many registers

th a t affect the optim isation process.

Registers:

This command uses 22 registers:

Pream ble (optional) If this register is set, then  the contents of the register is sent to 

the  current norm al ou tput, i.e. either ( OutputLogFilename) or stdout. The exact 

form at of the preamble depends on the ou tpu t form at setting (see below).

ErrorM ultiplier (optional) If set, the resulting uncertainty in tem perature is m ulti

plied by th is factor.

R eferen ce l, R eference2, R eference3 (mandatory) The three da ta  series contain

ing the reference signal for channels one, two and three respectively.

T em peratures (mandatory) D ata  containing a list of tem peratures in electron volts. 

This corresponds to the ordinance axis in figure 4.7. It m ust have the same number 

of elements as R esponsel, Response2 and Response3.

R esp o n se l, R esponse2, R esponse3 (mandatory) D ata  containing the response of 

channels one, two and three respectively at the  tem peratu re  given by the Temp

erature  dataset at the same index. M ust have the same num ber of elements as 

Tem perature.

W aveform l, W aveform 2, W aveform3 (mandatory) The observed da ta  from chan

nels one, two and three respectively. This is the  d a ta  th a t will be analysed. The 

three waveforms m ust have the same num ber of data.

Parents (mandatory) The num ber of parents to  use in the  Genetic Algorithm.

C h i ld re n  (mandatory) The num ber of children to use in the Genetic Algorithm. This 

m ust be an even num ber

M utations (mandatory) The num ber of m utations to undertake after breeding is com

pleted.

G enerations (mandatory) The maximum  num ber of generations to  undertake.
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R andom Seed (mandatory) An (in t) w ith which the random  num ber generator is 

seeded. This allows for identical runs, if required.

O utputLogForm at (optional) The ou tpu t form at for the analysis. There are six 

options:

verbose This is the default ou tpu t. It gives detailed inform ation about the opti

m isation. The ou tpu t has the  following format:

Preamble: (text)

Results (after "Go" on line (in t))  are as follows 
Temperature = (float) + /-  (float)

Line 1 Area = (float) + / -  (float)

DC Level = (float)

Time base offset = (float)

Residuals have mean (float) and standard deviation (float) 

Line 2 Area = (float) + / -  (float)

DC Level = (float)

Time base offset = (float)

Residuals have mean (float) and standard deviation (float) 

Line 3 Area = (float) + / -  (float)

DC Level = (float)

Time base offset = (float)

Residuals have mean (float) and standard deviation (float)

tem perature This ou tpu t option restricts the recorded inform ation to just a 

single line containing the preamble (if any), the recovered tem perature and 

the uncertainty in the tem perature. The form at is:

(text) (float) (float)

areas This ou tpu t form at stores the results from fitting the reference signals to 

the data. The result of fitting the three areas to  the  tem perature response 

curves is still calculated but is ignored. The ou tpu t form at is three lines 

containing the preamble, the area and the uncertain ty  in the areas, i.e.

( text) (float) (float)

(text) (float) (float)

(text) (float) (float)
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te r s e  This ou tpu t, like verbose, contains all generated inform ation bu t condenses

the inform ation to  make further analysis easier. The preamble, if present,

is displayed on its own line, followed by the tem peratu re  and uncertainty

in tem perature. In the following three lines the results for each channel are

stored. The area and uncertainty in the area is followed by the DC level and

(channel) offset. The last two entries in each line are the m ean and standard

deviation of the residuals. The form at is:
(text)

(float) (float)

(float) (float) (float) (int) (float) (float)

(float) (float) (float) (int) (float) (float)

(float) (float) (float) (int) (float) (float)

T e m p C h iS  This option is ju st an extension of the  Tem perature option. It in

cludes a final field w ith the value of yfl for the three channels. The form at 

is:

(text) (float) (float)

a m p li tu d e s  This option ou tputs the  am plitude for each channel ra ther than  the 

integrated areas. There is no direct physical m eaning to the am plitude, so

this option is m ainly for debugging purposes. The form at is:

(float)

(float)

(float)

D u m p F ile n a m e  (optional) This option stores the raw result of the GA fitting proce

dure. This da ta  is stored in a file given by the register. The d a ta  is form atted as 

ten  columns: the first column is an index and it is followed by nine columns con

sisting of the raw data , the G A ’s best fit of the  reference signal and the residues 

for each of the three channels.

G ra p h ic s  (optional) If this register is set to true then  a window is opened and the 

da ta  (in black) and the results of the  best-fit param eters (in blue) are displayed 

for each channel. The graphs are updated  at the end of each generation. This

provides an easy, visual way of checking on the GA’s progress.

G A M E  (optional) If this register is set to  true then  the GA m onitoring window is
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opened. This m aintains inform ation about basic GA statistics as shown in fig

ure 2.15.

M a k e A llV a lid  (optional) If this register is set to true  then  all d a ta  is stored. Nor

mally, if something goes wrong (e.g. the m atrix  inversion required to obtain the 

uncertainty in tem perature is singular) then  a warning message is generated and 

th a t datapoin t is ignored. This option overrules th a t behaviour and all datapoints 

are stored.

B.7.4 For

This comm and establishes a point in the program  to which a loop will return. The 

comm and takes an argum ent which is a variable. The variable changes value in each 

iteration  of the loop as described by the Range register.

Example:

To load four files from files ‘d a ta l .d a t’, ‘da ta2 .d a t’, ‘d a ta3 .d a t’ and ‘d a ta4 .da t’ which 

we wish to label ‘first’, ‘second’, ‘th ird ’ and ‘fou rth ’, the following code may be used.

Array labels start=l values=first.second,third,fourth

Format=ASCII_Column

For i range=l..4
Load {label:{i}} filename=data-[i>.dat 

Next

Registers:

R a n g e  (mandatory) This register describes the s ta rt and end values for the loop. If the 

argum ent of the assignment is a (numerical range) then the loop will be between 

the first num ber and the second number. If the  argum ent of the register is an 

array, then  the loop variable will be assigned to the elements of the array in turn .

S te p S iz e  (optional) For a loop where the range register is set to  a (numerical range) 

this register describes what num ber to increm ent the  loop variable by after each 

loop.
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B.7.5 Next

Loops back to the most resent ‘F o r’ statem ent. This comm and takes no argum ent or 

registers.

Example:

For i range=1..3 
Ditch data-fi}

Next

Registers:

This comm and uses no registers.

B.7.6 Array

Establishes an array of values. The com m and takes an argum ent which is the label used 

to reference this array.

Example:

Array labels start=l values=first,second,third,fourth

Format=ASCII_Column

For i range=l..4
Load {label:{i}} filename=data{i}.dat 

Next

Registers:

V alu es  (mandatory) This register contains a  comma separated list of entries. If any of 

the list contains (white space) then  the whole list m ust be enclosed w ithin double 

quotes (‘" ’s).

S t a r t  (optional) The first element of the array is usually assigned to index 1. If this 

register is set then the first element will be the num erical value of th is register.
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B.7.7 System

This comm and run a external program. It requires an argum ent which is the command 

to run.

Example:

If an external program  creates data , for example for a  M onte Carlo simulation, then  the 

following code section could be used.

For i range=l..1000 
System buildData

For j range=l..3
Load data-tj} filename=file{j}.dat 

Next

Go

For j range=l..3 
Ditch data-Cj}

Next
Next

Registers:

This comm and uses no registers.

B.7.8 Echo

This comm and places some arb itrary  text in the  norm al ou tput. It requires an argument: 

the  tex t to be displayed.

Example:

This comm and can be used to  store the current value of a particu lar variable:

echo "variable i: {i} j th label: {label:{j}}"

Registers:

This comm and uses no registers directly, bu t the O utputLogFilenam e is used indirectly.
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B.8 Worked example

The following script analyses the da ta  from a single plasm a shot although many shots 

can be analysed by appending the definition of the allshots array. The ou tpu t is in a 

series of files each containing lines w ith the height above torus m id-plane followed by a 

tem peratu re  and uncertainty. The code contains num erous comm ents th a t, along w ith 

the above description of the scripting language, should fully explain how this script 

works.

File: GA/Thomson/datdata/persegment.ctrl

# Control file for second set of data.
# See test.Ctrl for explainitory information.

# Global definitions.
Parents = 40
Children = 100
Mutations = 110
Generations = 400
RandomSeed = 0
ErrorMultiplier = 3.8 
ErrorLogFilename = persegment.err

# Choice of Temperatures, Areas, Verbose or Terse.
OutputLogFormat = Temperatures
# Graphics = TRUE
# GAME = True

# Define an array which maps spectrometer to view. First element in
# view is index 1.
Array view start=l values=9,3,5,,7,12,8,14,10

# We also want an array of what height each view looks at (in mm).
Array height start=l values=171,147,123,99,75,51,27,3,-21,-45,-69,-93,-117,-141,-165,-189

# Also an array of all the spectrometer. This is for a For loop: starting value
# does not matter.
Array SpectrometersUsed values=2,3,5,7,l,9,6,8 

Array allshots values=26933

# Specify the default format (for the rest of the data files) 
format = ASCII_FreeForm
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# Load in all the reference spectra. Skip over initial blank data, 
load ref filename=tsd7_ref.dat skip=127

for shot range=allshots

# Main loop for calculating each segment. This refers to segments so the
# first one is ’1’ and the last one is ’100’. 
for segment range=90..100

OutputLogFilename = s{shot}seg{segment}.temp.dat

for spec range=SpectrometersUsed

# Load in spectrometer specific data.
load temp filename=s{spec}v{view:{spec}}_r9_040298.cal format=ASCII_Column skip=10

# Define our temperature calibration curves, 
temperatures = temprl
responsel = temp:2 
response2 = temp:3 
response3 = temp:4

# Break up the series to form the reference data, 
referencel = ref:{spec}[0..251]
reference2 = ref:{spec}[252..503] 
reference3 = ref:{spec}[504..755]

# Output the height (above torus mid-plane) for this spectrometer.
Preamble = {height:{view:{spec}}}

# Load the data. Deal with ith channel.
for i range=l..3

load data{i} filename=tsr{shot}.0{spec}{i} format=LeCroy.Waveform 
waveform{i} = data{i}:{segment} 

next

# Save raw data.
dumpfilename = s{shot}seg{segment}spec{spec}.dump.dat

# Run Genetic Algorithm.

g°

ditch temp 
for i range=l..3 

ditch data{i} 
next

next
next
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next

ditch ref



References

A. Agapie. Genetic Algorithms: M inimum conditions for convergence. Lecture Notes in 

Computer Science, 1363:183-193, 1998.

K. Aoki, K. M atsum oto, K. Hoashi, and K. Hashimoto. A study of Bayesian clustering 

of a  docum ent set based on GA. Lecture Notes in Computer Science, 1585:260-267, 

1999.

C. J. B arth , M. N. A. Beurskens, C. C. Chu, A. J. H. Donne, N. J. L. Cardozo, J. Her- 

ranz, H. J. van der Meiden, and F. J. . P ijper. A high resolution m ultiposition 

Thom son scattering system for the Rijnhuizen Tokamak Project. Review of Scientific 

Instruments , 68(9):3380-3392, Septem ber 1997.

A. A. Berezin. An unexpected result in classical electrostatics. Nature , 315(6015):104, 

1985.

N. Bethera and V. Nanjundiah. trans gene regulation in adaptive evolution: a genetic 

algorithm  model. Journal of Theoretical Biology, 188:153-162, 1997.

M. N. A. Beurskens, C. J. B arth, N. J. L. Cardozo, and H. J. van der Meiden. A 

high spatial resolution double-pulse Thom son scattering diagnostic; description, as

sessment of accuracy and examples of applications. Plasma Physics and Controlled 

Fusion, 41:1321-1348, 1999.

M. N. A. Beurskens, C. J. B arth, C. C. Chu, A. J. H. Donne, J. A. Herranz, N. J. L. 

Cardozo, H. J. van der Meiden, and F. J. P ijper. Double pulse Thom son scattering 

system  at rtp . Review of Scientific Instruments , 68(2):721-724, January  1997.

D. Bhandari, N. R. Pal, and S. K. Pal. D irected m utation  in Genetic Algorithms. 

Information Sciences, 79:251-270, 1994.

147



REFERENCES 148

H. Bindslev. M ethods for optim izing and assessing diagnostic capability, dem onstrated 

for collective Thom son scattering. Review of Scientific Instruments , 70(1): 1093—1099, 

1999. P a rt 2.

M. A. Blokh and N. F. Larionova. Soviet Journal of Plasma Physics , 7:31, 1981.

F. M. A. Box. Non-Maxwellian Thom son scattering spectra a t the RTP tokamak as a 

new diagnostic tool. Nuclear Fusion, 39(9): 1193-1203, 1999.

N. Bretz, D. Dimock, V. Foote, D. Johnson, D. Long, and E. Tolnas. M ultichannel 

Thom son scattering apparatus. Applied Optics, 17(2): 192-202, January  1978.

B. Coppi, F. Pegoraro, R. Pozzoli, and G. Rewoldt. Slide-away distributions and relevant 

collective modes in high-tem perature plasmas. Nuclear Fusion, 16(2):309-328, 1976.

R. C. Correa, A. Ferreira, and P. Rebreyend. Scheduling m ultiprocessor tasks with 

Genetic Algorithms. IE E E  Transactions on parallel and distributed systems , 10(8): 

825-837, August 1999.

A. E. E iben, E. H. L. Aarts, and K. M. van Hee. Global convergence of Genetic 

Algorithms: a Markov chain analysis. Lecture Notes in Computer Science, 496, 1991.

D. B. Fogel and A. Ghozeil. Schema processing, proportial selection, and the misallo- 

cation of trials in genetic algorithms. Information Sciences, 122:93-119, 2000.

A. S. Fukunaga. R estart scheduling for Genetic Algorithms. Lecture Notes in Computer 

Science, 1498:357-366, 1998.

M. R. Garey and D. S. Johnson. Computers and intractability: a guide to the theory of 

NP- Completeness. W.H. Freeman and Co, 1979.

M. G errits and P. Hogeweg. R edundant coding of a  NP-com plete problem  allows ef

fective Genetic Algorithm  search. Lecture Notes in Computer Science, 496:70-74, 

1991.

D. E. Goldberg. Genetic algorithms in Search, Optimization and Machine Learning. 

Addison-Wesley, Reading, MA, 1989.

J. G ottlieb and N. Voss. Representations, fitness functions and genetic operators for 

the satisfiability problem. Lecture Notes in Computer Science , 1363:55-68, 1998.



REFERENCES 149

J. Hesser and R. M anner. Towards an optim al m utation  probability for Genetic Algo

rithm s. Lecture Notes in computer science, 496:23-32, 1991.

P. Hoel and A. Craig. An introduction to Mathematical statistics. MacMillan, 1978.

I. H. Hutchinson. Principles of Plasma Diagnostics. Cam bridge University Press, 1987.

M. K endall and A. S tuart. The advanced theory of statistics vol 1. Haffner Publ Co., 

NY, 1963.

S. K irkpatrick, C. D. Gellat, and M. P. Vecchi. O ptim ization by sim ulated annealing. 

Science , 220:671-680, 1983.

H. D. Kluiver, C. J. B arth , and A. J. H. Donne. C urrent driven turbulence and micro- 

tu rbu len t spectra in the TO RTU R tokamak. Plasma Physics and Controlled Fusion, 

30(6) :699—719, 1988.

A. M. M ood and A. F. Graybrel. Introduction to the Theory of Statistics. McGraw-Hill, 

1974.

O. Naito, H. Yoshida, and T. M atoba. Analytic form ula for fully relativistic Thomson 

scattering spectrum . Physics of Fluids B , 5(ll):4256-4257, November 1993.

A. Neubauer. Adaptive non-uniform  m utation for Genetic Algorithms. Lecture Notes 

in Computer Science , 1226:24-34, 1997.

R. E. Pechacek and A. W. Trivelpiece. Electrom agnetic wave scattering from a high- 

tem pera tu re  plasma. The Physics of Fluids, 10(8): 1688—1696, August 1967.

L. Pieroni and S. E. Segre. Observation of non-M axwellian electron d istribution func

tions in the  A lcator device by means of Thom son scattering and their interpretation. 

Physical Review Letter , 34(15):928-, April 1975.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes 

in C. Cam bridge University Press, 2nd edition, 1996.

M. R a ttray  and J. Shapiro. The dynamics of a Genetic Algorithm  for a  simple learning 

problem . Journal of Physics A: Mathematical and general, 29:7451-7473, 1996.

L. M. Schm itt, C. L. Nehaniv, and R. H. Fujii. Linear analysis of genetic algorithms. 

Theoretical Computer Science, 200:101-134, 1998.



REFERENCES 150

A. C. Selden. Simple analytic form of the relativistic Thom son scattering spectrum. 

Physics Letters, 79A(5,6):405-406, 1980.

M. Sriniva and L. M. Patnaik. Adaptive probability of crossover and m utation in 

Genetic Algorithms. IE E E  transactions on systems, man and cybernetics, 24(4) :656- 

666, April 1994.

N. L. J. Ulder, E. H. L. Aarts, H. Bandelt, P. J. M. van Laarhoven, and E. Pesch. 

Genetic local search algorithm s for the travelling salesm an problem. Lecture Notes in 

Computer Science, 496:109-116, 1991.

A. C. A. P. van Lammeren, C. J. B arth, Q. C. van Est, and F. C. Schuller. Non- 

Maxwellian electron velocity d istributions observed w ith Thom son scattering in the 

TO R TU T tokamak. Nuclear Fusion, 32(4):655—665, 1992.

J. W atson, C. Ross, V. Eisele, J. Denton, J. Bins, C. G uerra, D. W hitley, and A. Howe. 

The traveling salesrep problem, edge assembly crossover, and 2-opt. Lecture notes in 

Computer Science, 1498:823-832, 1998.

L. W ille and J. Vennik. C om putational complexity of the ground-state determ ination of 

atom ic clusters. Journal of Physics A: Mathematical and General, 18(8):L419-L422, 

1985a.

L. T. W ille and J. Vennik. Electrostatic energy m inim isation by sim ulated annealing. 

Journal of Physics A: Mathematical and General, 18(17):L1113-L1117, 1985b.

D. H. W olpert and W. G. Macready. No Free Lunch theorems for optim ization. IEEE  

transactions on evolutionary computation, 1(1) :67—82, April 1997.

V. A. Zhuravlev and G. D. Petrov. Scattering of rad iation  by finite volumes of relativistic 

plasm a stream s. Soviet Journal of Plasma Physics, 5(1):3—5, January  1979.



Colophon

This thesis was typeset using the DTgX system, occasionally delving into TgjK as nec

essary. The body font is Com puter M odern at 11 point on 13.6 point.

Program  code extracts are displayed w ith the relevant line num ber typeset in italics 

and placed in the margin. W hen the file has been taken from the CDROM, the relevant 

filename is displayed preceding the code. W herever possible, the code was taken directly 

from the source file to reduce the possibility of introducing errors.

The graphs were generated using the venerable ‘gnuplot’ program , except for the 

contour plots (2.17 and 2.18) which were generated using IDL. The diagrams were 

generated using xfig, except for figures 2.1, 2.2 and 2.3.

Figures 2.1, 2.2 and 2.3 were taken from the ‘Glossary of Genetic Term s’ web-pages 

( h t t p : //www. n h g r i  . n i h . g o v /D IR /V IP /G lo ssa ry /) , p a rt of the  Division of Interm ural 

Research site, and are included w ith their kind permission.


