ropit” UNIVERSITY

o

GLASGOW

Plasma Diagnostic Signal Analysis: a Bayesian

based Genetic Algorithm approach

by

Alexander Paul Millar, MPhys.

Thesis
submitted to the
University of Glasgow
for the degree of

Ph.D.

Astronomy and Astrophysics Group Submitted
Department of Physics and Astronomy December 2000
University of Glasgow

Glasgow, G12 8QQ.

© Paul Millar 2000



ProQuest Number: 13833942

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 13833942

Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M 48106- 1346



Contents

Acknowledgements

Summary

1 Introduction

1.1

1.2

1.3

1.4

1.5

Motivation . . . . . . . . L
Plasmas . . . . . . . . e e e e e
Thomson scattering . . . . . . . . . . .. e
Optimisation . . . . . . . . . . . . L

Overview of thesis . . . . . . . . . . . e

2 Properties of a Genetic Algorithm

2.1

2.2

2.3

24

2.5

2.6

2.7

Introduction . . . . . . . . ... L
Global convergence and Schemata . . . ... ... ... .........
Mutation rate . . . . . ... .. U
Core functionality of the ELGAR library. . . . . ... ... .. .....
Genetic Algorithms and NP-completeness . . . . .. ... ... .....
Examples of simple problems solved by a GA . . . . . .. ... ... ..
26.1 ChargesonadisC. . . . . . . .« o i e
2.6.2 Fitting a sinusoidal signal . . . . . ... ... ... ... .....

SUMMAry . . . . . o o e e e e

viii

xi



Contents

3 Bayesian Statistics in signal analysis

3.1

3.2

3.3

3.4

3.5

Bayesian Methodology . . . . . . .. ... .. ... ...

Simpleexample . . . . . . . . ...

3.2.1

3.2.2

‘Frequentist’ approach . . . . . ... ... ... ... . .0

Bayesian approach . . . ... . ... ... ... ... .. ...,

Prior information in signal analysis . . . . . .. ... ... ... .....

Example of prior information . . . . ... ... ... ... ... ..., .

Errors

3.6 Summary . . ... ... e

4 Case study: Thomson scattering

4.1 Characteristics of Thomson Scattering . . . . . ... ... ... .....

4.2 Experimental setup at COMPASS-D . . . . ... ... .. ........

4.3 Data acquisition and triggering . . . . . .. .. ... oL

4.4 The noise . . . . . . o o e e e e e e e e e e e e

4.5

4.6

4.7

4.8

4.4.1

4.4.2

4.4.3

444

High frequency region . . .. .. ... .. ... ... .......
High frequency spikes . . . ... ... ... ... . ........
Low frequency region . . . . . ... ... ... ... ... ...

Noisemodel . . . . . . . . . . . . . .

Estimating signal-to-noise ratio . . . . . . . . .. .. ... .. ... ...

4.5.1

4.5.2

Estimating the signallevel . . . . . . . . ... ... ... .....

Estimating the noise level . . . . . . . .. ... .. ... ..

Obtaining reference signals . . . . . . ... .. ... ... . .......

Analytic technique of fitting the signals . . . . . .. ... ... ... ..

Quantifying the errors infits . . . . . ... ... ... ... ... ...

4.8.1

The effects of non Gaussian noise on uncertainty in amplitudes .

37

37

38

39

40

41

42

43

44

45

46

51

53

61

63

63

64

65

65

65

67

70

72

75

76



Contents iii

4.9 Calculating the temperature . . . . . . .. .. ... ... .. L. 78
4.10 Uncertainty in the temperature . . . . . . . . . .. ... ... ... ... 79
4.11 Sampleresults . . . . . . . ... 80

5 Two-temperature Thomson scattering diagnostic analysis 82
5.1 Two-temperature scattering characteristics . . .. ... ... ... ... 82
5.2 Channelresponses . . . . . . . . . . .. 84
5.2.1 Response curvegraphs . . . . . ... ... ... ... . ... ... 84

5.2.2 Recovering the single-temperature distribution function as limit-

INECASE . . . . . v i e e e e 84

5.3 Normalised outputs . . . . . . . . . . . ... ... 88
5.3.1 Single-temperature distributions . . . .. ... ... ... .. .. 89
5.3.2 Two-temperature considerations . . . .. ... .. ... ..... 92

5.4 TSO-response CUIVES . . . . . . v v v v v v vt e it e e 94
5.4.1 Theoretical treatment . . . . . .. . ... ... oL 95
54.2 Figures . . . .. . . .. 95

5.5 Data from COMPASS-D . . .. ... ... ... ... . ... . ..... 97
5.6 Converting measured responses into iso-response curves . . ... . ... 99
5.7 Errors . . . . . .. e 99
58 Conclusions . . . . . .. . .. e 100
6 Conclusions and future work 102
6.1 Summarising Genetic Algorithms . . . . .. . ... ... ... ... ... 102
6.2 Genetic Algorithm Signal Analysis . . . ... ... ... ... ...... 103
6.3 COMPASS-D experiment . . . . . . . .. . ... ... 103

6.4 Future work . . . . . . . .. e 104



Contents iv

A Code listing 107
Al GenePool structure . . . . . .. ... .. .. oo e 107
A.2 The Entity structure . . . . . . ... ... ... oo o 112
A.3 Thomson scattering specificcode . . . ... ... ... ... ... .... 112

B Thomson scattering analysis scripting language 127
B.1 Backus-Naur Form . . .. ... ... ... ... . ... . ... .... 128
B2 Comments. . ... ... ... ... ... e 133
B.3 Variable substitution . . . . . . ... ... oL 133
B4 Assignments. . .. ... ... ... ... e 134
B.b Aliases . . . . . . . .. 134
B.6 Datastorage . . . . . .. . .. .. 135
B.7 Commands . . ... ... ... ... ... e 136

B.7.1 Load . ... ... . ... i 136
B.7.2 Ditch . ... ... 137
B.73 Go . .. .. . e 138
B.7.4 For. . . .. . . e 141
B.75 Next . . ... . 142
B.7.6 Array . .. . .. .. 142
B.7.7 System ... ... ... 143
B.78 Echo . ... ... .. . . 143



List of Figures

1.1

1.2

21

2.2

2.3

24

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

2.15

2.16

2.17

Diagrammatical representation of one-dimensional optimisation. . . . . . 5
Illustration of multidimensional optimisation bracket failing. . . . . . . . 6
The DNA base-pairs. . . . . . . . . . . . vt ii 11
Cell structure hierarchy. . . . . .. ... ... ... ... ... .. 12
Codons within mRNA. . . . ... ... ... .. ... .. ........ 13
Example representation of a GA. . . . . . .. ... .. ... ... ... 14
Example of 1-point cross-over. . . . . . . . . . .. ... 15
Steps in progressing from one generation to the next. . . . . . . . . . .. 16
Convergence rate for 8 gene problem. . . . . . ... .. ... .. ... .. 21
Convergence rate for 12 gene problem. . . . . . .. ... ... ... ... 22
Convergence rate for 16 gene problem. . . . . . ... ... .. ... ... 22
Gaussian fit to covergence rate when 62 mutations occur per generation. 23
Gaussian fit to convergence rate when 63 mutations occur per generation. 23
Gaussian fit to convergence rate when 64 mutations occur per generation. 24
Summary of convergence rates. . . . . ... . ... ... ... 25
Comparison between observed best and predicted mutation rate. . . .. 25
A sample of GAME’soutput. . . . . . ... ... ... oL 28
Minimum energy configurations for Charges on a disc problem. . . . . . 32
Contour plots of x? for noiseless sinusoidal data. . . ... ... .. ... 35



List of Figures vi

2.18

2.19

3.1

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

Contour plots of x? for noisy sinusoidal data. . . ... ... ....... 35
Plot of original and recovered sinusoidal signals. . . . . . . ... ... .. 36
The five platonic solids. . . . . . . . . ... . ... .. oL 39
Overview of the scattering geometry in Thomson scattering. . . . . . . . 47
Theoretical Thomson spectrum illustrating pole in correction factor. . . 50
Theoretical spectra of Thomson scattered light for different electron tem-

peratures. . . . . . .. .. e e e e e 50
Schematics of the Thomson Scattering Diagnostics at COMPASS-D. . . 52
The construction of a polychromator.. . . . . ... ... ... ...... 52
Typical spectral response of polychromator filters. . . . . ... ... .. 53
Theoretical channel output as a function of electron temperature. . . . . 54
Example data with best fit Gaussian. . . . L 55
Statistical distribution of the laser’s temporal extent. . . . . . . ... .. 56
Statistical distribution of laser’s intra-segment delay. . . . . .. ... .. 87
Correlation between offset in channels land 2. . . ... ... ... ... 58
Correlation between offset in channels 1 and 2, separate species are indi-

cated. . . . .. 59
Statistical distribution of offsets relative to the mean. . . . . ... ... 59
Statistical distribution of offsets relative to the mean, separate species

are indicated. . . . . . . . ... L 60
Statistical distribution of offsets relative to the mean for ‘species 1’ only,

split by channel number. . . . . . ... ... o o L. 60
Statistical distribution of offsets relative to the mean for ‘species 1’ date

with Gaussian best fit. . . . . . . ... ... ... ... 61
Typical medium to low signal-to-noise ratio data. . . . . . . .. ... .. 62
Power Density Spectrum of the noise. . . . . ... ... ... ...... 63



List of Figures

4.19 Comparison between two different methods of estimating signal level. . .

4.20 Comparison of various methods of estimating the noise level for high S/N

level signals. . . . . . . . . . ... L
4.21 Comparison of the bias of each each estimate of the noise level . . . . .
4.22 An example reference signal. . . . . .. ... ..o

4.23 Comparison of the performance of Genetic Algorithms against a simple

Linear Least Squares method. . . . . . .. .. ... ... .........
4.24 Correlation between error estimates of low-frequency pass filtered noise.
4.25 Theoretical spectral density function . . . . . ... ... ... ... ...

4.26 Recovered electron temperature distribution. . . . ... ... ... ...

5.1 Response of the three channels to two-temperature plasma. Density ratio

18 50:50. . ... e e e

5.2 Response of the three channels to two-temperature plasma. Density ratio

i 65:35. . . . L

5.3 Response of the three channels to two-temperature plasma. Density ratio

is 80:20. . . . ..

5.4 Representation of mapping two-temperature parameters to observations.

Also illustrates iso-response curves and normalisation. . . . . . ... ..
5.5 Normalised channel response for single-temperature plasma. . . . . . . .
5.6 Iso-temperature curves for normalised channel responses.. . . . . . . ..

5.7 Graph relating two-temperature normalised responses to single-temp-

Erature CUTVE. . . . . . o v o e e e e e e e e e e e e e e e e e e e e e e e

5.8 Graph showing degeneracy in normalised channel responses for two-temp-

erature plasma. . . . . . . ... e
5.9 Iso-response curves with varying initial 7. . . . . . .. . . ... ... ..
5.10 Iso-response curves with varying initiala. . . . . . . ... ... .. ...
5.11 Normalised channel responses from COMPASS-D data. . ... ... ..

5.12 Representation of error estimate for temperature extrema. . . . . . . ..

vii

67

97



Acknowledgements

After spending nearly four years studying and working at the Astronomy and Astro-
physics group, I am left with two striking impressions: that there is an incredible breadth
of expertise within the group and that people are always willing to discuss ideas. This
thesis would not have be possible without this fertile environment. I try here to express

my gratitude to the many people without whom this thesis would not be possible.

Declan Diver was the ideal supervisor. He has an amazing understanding of the
physics of plasmas and no matter how busy he was, he was always accessible for a quick
chat about how things were going. His faith that I was going to get this thesis in on

time was reassuring and he’s a formidable proof reader!

As head of the astronomy and astrophysics group, Astronomer Royal for Scotland and
due to his involvement with many public out-reach of science projects, John Brown was
exceedingly busy; yet as second supervisor he offered support and constructive criticism

on progress of this thesis. Both were much appreciated.

The many hours spend in conversation with Richard Barrett about various aspects
of this thesis are difficult to tally. He is both open in discussion and has a deep under-
standing of mathematics. Indeed, I feel somewhat guilty for taking up so much of his

time! He is a esteemed college and valued friend.

Darren McDonnald was another tireless source of ideas and help in the research of
this thesis. The discussions we held together about various aspects of this research,
often at unusual times, resulted in a substantial section of the work, both presented

here and in a publication.

Martin Hendry was of enormous help with matters statistical, especially Bayesian
related work. Despite working in an unrelated field, he was willing to take time to

explain the answers to the questions I had. Thanks Martin!

viii



Acknowledgements ix

Many thanks are due to Norman Gray who, as one of his many hats, is the resident
TEXpert. His help in persuading TEX to do what I wanted rather than what I was

telling it to do resulted in the clean and accessible typesetting of this thesis.

Thanks are also due to Graeme Stewart has kept the computer system running with
unprecedented stability. Without this, the task of researching and presenting this thesis

would be a considerably harder task.

Hugh Potts was a great encouragement as the thesis writing experience was fresh in

his mind. I only hope my thesis process runs more smoothly than his did!

Both Neal Wade and Richard Barrett were great office-mates who never once com-
plained about my choice of music. Literally a winning combination as our office won

the sunflower competition.

As quite often is the case, there is someone who works quietly behind the scenes, but
who has a pivotal role within the group. That person is Daphne Davison. I owe her a

debt of gratitude for all her help over the years.

I must also thank the rest of the astro group: Guillian, Helen, Gail, Stephane, Es-
ther, Lyndsay, Lida, Eve, Aidan, Chris, Graham, Paul and Doug. You have all been
wonderful friends. I have really enjoyed taking tutorial and undertaking planetariums

shows together as well as the numerious parties and trips to the Rubi.

I'd also like to thank Sara Hunter for her support and encouragement and her time in
proof reading this thesis. Many, many renegade commas were displaced to their correct

position thanks to her diligence.

And finally a big thanks to my family, especially my Mum, Dad and my brother
Stephen. Quite literally, without their help and support over the years none of this

would be possible.



To Scott and Margaret Millar
for their love, support and

encouragement.



Summary

Plasma physics is rich in phenomena, occurrences and applications: many instabilities
exist due to the relatively long-range Coloumb forces that mediate constituent particle
dynamics, most of the visible universe is in the plasma state, and plasmas have been used

from lighting to computer chip manufacturing to (attempted) fusion power generation.

Within plasma. fusion research, Thomson scattering is a commonly used diagnostic. It
allows the temperature and density of the plasma electrons to be measured without dis-
torting the plasma. However, the scattering cross-section is small. Thomson scattering

signals can be difficult to detect against the background emission of the plasma.

In this thesis, the Thomson scattering diagnostic data from the COMPASS-D exper-
iment is analysed. Several aspects of the diagnostic are presented along with detailed
explanation of the inference procedure for determining the plasma’s electron tempera-

ture.

This temperature analysis was achieved by utilising a Bayesian inference model that
allowed prior information about likely values to be systematically included. This prior
information was found to remove the degeneracy present due to the low signal-to-noise

ratio of the data.

A genetic algorithm (GA) library, called ELGAR, was developed and used to solve
the minimisation problem resulting from the Bayesian inference. The GA proved to be
a reliable method of solving such problems. ELGAR was also used to investigate certain
characteristics of the GA such as optimal choice of key parameters. These were found
to be in disagreement with theoretical results but the difference was explained by the

different mode of operation of ELGAR.

The Thomson scattering analysis was extended to include two-temperature consider-
ations. The set of observations consistent with an n-temperature distribution function

was found to be bounded by a curve. Some data from the COMPASS-D experiment lay

x1



Summary xii

outside this boundary, but was bounded by a similar curve. This suggested that some
systematic error had occurred. Some explanations of possible causes of this bias were

suggested.

Constraints were found for interpretations of any observations. These indicated that,
for some observations, a set of temperatures is unavailable (as either to hotter or colder
component) for a distribution function which is consistent with that observation. For
certain observations, the least-squares temperature estimate is contained within the
set of impossible temperatures. This indicates that the presence of a hotter species of

electrons can bias the observations towards higher temperatures.

The thesis concludes with a summary and a discussion of possible future work.



Chapter 1

Introduction

This chapter gives an introduction to the various elements that are combined within the
thesis proper. The topics are covered in greater depth in later chapters but sufficient
information is presented in this chapter to appreciate the overall structure of the research

programme.

The first section of this chapter discusses diagnostics in general and presents the
motivation for Bayesian based analysis. Section two briefly introduces plasmas stating
the relevance of plasma research. Section three discusses Thomson scattering, although
a more detailed description is presented in §4.1. Section four discusses optimisation and
some of the problems within this field. The final section brings these concepts together

to form the framework that the following chapters will build on.

1.1 Motivation

It is rare that an experiment is conducted with no knowledge of possible outcomes.
Often experiments on some physical process are conducted in environments in which
that physical process is carefully controlled. The experimentalist is trying to tease
out the difference between two or more different theorems. Therefore, it is important
that experiments and the analysis of results are conducted without prejudice from any
information known to the investigator, such as ‘likely outcomes’ derived from previous

results.

Physical processes can also be used to measure underlying quantities such as pressure,

temperature, velocity, etc. Generally, when the physical process is used to diagnose some

1



Chapter 1. Introduction 2

parameter it is because the complexity of the experiment prevents precise control of that
parameter. Often, this uncertainty arises from the nature of the experiment itself or

from some uncertainty in calibration.

There is a subtle distinction between experimental investigation of some phenomenon
and using that phenomenon as a diagnostic of some physical property. In the former the
rigors of scientific investigation require an unbiased measurement of the phenomenon,
as stated above. For the diagnostic case, however, we require the best estimate of
the physical property. This estimate may include previous results or other ‘external’
knowledge. For example, if we are in the unlikely position of knowing, a priori, the exact
state of the physical property the diagnostic is set to measure, then the best estimate
would be to ignore the measurements (which would be subject to experimental errors)
and use our infallible information. Likewise, if we knew nothing about likely outcomes,
then our best estimate of the physical property would be based only on the observed

phenomenon.

In general, some information is known a priori but usually insufficient to adequately
constrain the required physical property of the system. Bayesian inference provides a
systematic framework within which this knowledge can be introduced. In the language
of Bayes’ theorem, this knowledge represents ‘prior information’. The inclusion of such
prior information biases the inference towards ‘more likely’ at the expense of ‘less likely’

ones.

1.2 Plasmas

The archetypal plasma is an ionised gas. Instead of the usual gas-like short range
collisional interactions, the charged particles move in response to the local electric and
magnetic fields. The local electric field only arises from Maxwell’s equations; the plasma
will move to oppose externally applied electric fields. The local magnetic field arises
from both Maxwell’s equations and from any externally applied field. Thus any part of

the plasma responds to all activity elsewhere in the plasma.

Plasma physics encompasses the study of both naturally occurring and artificially
created plasmas. Almost all of the mass of the visible universe, from stars to the sparse
interstellar medium, is in a plasma state. Laboratory plasmas are used in a diverse range

of manufacturing processes from computer chip fabrication to coating metalised plastic
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crisp packets. The study of laboratory plasmas also includes the current attempts to

achieve controllable nuclear fusion as the basis for power generation.

The simplest model of plasma dynamics considers a single particle which experiences
some local electric and magnetic field. This model is sufficient to explain dynamics for
sufficiently short time-scales that the particle does not interact strongly with other par-
ticles. Key plasma phenomena are explained such as the gyro-rotation of the particles.
This is the rotation of an charged particle in a magnetic field, with charge e and mass
m, about the magnetic field lines, of magnitude B, with cyclotron frequency w. = eB/m
and Larmor radius r, = v /wc, where v is the component of velocity perpendicular to

the magnetic field lines.

Although this simple model reveals a wealth of observed phenomena it fails to account
for the inter-particle interactions. A full treatment would require accounting for six
degrees of freedom (three spatial and three velocity) per particle. A typical tokamak
plasma density is 10 m~2 rendering the exact approach untenable. Since the exact
method is unapproachable an approximation must be made. One simple approximation
is to describe the plasma by a statistical distribution function, f, where the value of
f(r,u) at some location r describes the number of particles in the infinitesimal volume

element d®r and some infinitesimal velocity element d3u.

In common with the kinetic theory of gases, the evolution of the distribution function

is given by the Boltzmann equation:

of of of of
E‘i‘“'g‘}‘a'a:(-@?)(: (1'1)

where the left hand side is the convective derivative of f and the right hand side discusses

the effect of collisions on the distribution function.

To form a more tractable approximation the acceleration is assumed to be from any
local electric and magnetic fields and collisions are ignored. Ignoring collisions is justified
by the long-range nature of the electric and magnetic fields. These allow particles to
‘miss each other’ without strong distortions in f. Such fields are referred to as the
self-consistent fields and contain the long-range interaction effects. This form of the

Boltzmann equation is known as the Vlasov equation:

of of g of _
o7t ot (E+uxB) o= =0 (1.2)

If the collisional term is replaced then some approximate value must be derived. If

the distribution function is considered a small perturbation of a Maxwellian then the
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distribution function can be expanded as a Taylor series. If the first term of the Taylor

series is retained then this is the Krook collision term:

(%{) —G-fr (13)

where 7 is the time-scale for collisions.

A less crude approximation is the basis for the Fokker-Planck collisional term. This
assumes some transitional probability function % (u, Au) of some particle initially at
velocity u obtaining, through a collision, an increase in velocity of Au in time At. The
collision term is derived by forming a Taylor series expansion of the expectation value

of f at time t.

1.3 Thomson scattering

Thomson scattering is the non-quantum scattering of light off a charged particle. The
assumption that the scattering can be described without quantum effects requires that
the object suffers no recoil from the photon. This assumption is valid provided the
energy of the incident photon (Ephoton = fiw) is much smaller that the ‘rest mass’ energy
of the scattering object (mc?). In the case of a plasma consisting of electrons and heavier
positively charged ions the scattering is almost exclusively due to the electrons. This is
because, under the classical viewpoint, the scattering object vibrates in response to the
electric field of the incident light. The electrons, being far lighter than a typical ion,
will vibrate more easily than the ions and so are responsible for most of the Thomson

scattering.

Electrons have a rest mass of approximately 511 keV. Most Thomson scattering diag-
nostics use optical or near optical frequency lasers as the light source due to availability
of lasers in that frequency, the relative power of those lasers and, for the near infrared,
the relative lack of spectral lines. Infrared wavelengths are often used as there is typi-
cally less line-emission in lower wavelengths. A typical near infrared photon energy is

1 eV so any scattered radiation will be as a result of Thomson scattering.

The measured frequency of any scattered light will depend on the electron’s motion.
The ensemble effect of measuring many scattered photons from a monochromatic source
will be a distribution of the scattered light’s frequency that will depend on the electron’s

velocity distribution. By assuming a Maxwellian distribution of electron velocities and
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Figure 1.1: Diagrammatical representation of one-dimensional optimisation.
Triplet (a,b,c) bracket the minimum. Point d then e were chosen
to further constrain the minimum. This process proceeds until re-
quire accuracy is achieved.

comparing the observed distribution with predicted scattering profiles, the electrons’

temperature can be derived.

1.4 Optimisation

Optimisation is the search for parameters that minimise (or equivalently maximise) a
particular function. There are a number of techniques for finding a local minimum,
t.e. a minimum in the neighbourhood of some initial point. With one-dimensional
optimisation of a function it is possible to bracket the minimum with three points. For
example, a minimum in the function f could be bracketed by the points a, b and c if
f(b) < f(a) and f(b) < f(c). A further point d can then be selected, e.g. d = (a +b)/2.
The minimum bracket (a,b,c) can be updated to (a,d,b) or (d,b,c) depending on whether
f(d) < f(b). Since the interval is always smaller, this method will always converge

towards the minimum. This is shown diagrammatically in figure 1.1.

For multi-dimensional minimisation, minimising a function with more than one pa-
rameter, it is impossible to bracket a minimum. Intuitively, this is because there is
always a direction along which the function could have a narrow valley but to which
the bracketing points (however many) are insensitive. Figure 1.2 demonstrates an ex-
ample of this problem. Instead of bracketing, multi-dimensional optimisation methods
work by taking a ‘good guessr’ and hopefully improving upon it. Because of this, multi-

dimensional minimisation involves (usually many) iterations.
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Figure 1.2: Illustration of the futility of attempting to bracket a minimum in more
than one dimension. Contour lines illustrate the function’s shape.
Five ‘bracketing’ points are located on a circle. The arrows point in
the direction of steepest descent, which is toward the circle’s centre.
However, the true extremum lies outside this circle.

As well as distinguishing between one-dimensional and multi-dimensional optimisa-
tion problems there is also a distinction between local and global optimisation. Local
optimisation is finding the extremum of a function usually in the vicinity of a point.
Multi-dimensional local optimisation usually starts with this point and iteratively finds

more optimal points until an extremum is found.

Global optimisation is searching for the extremum for all possible parameters, for
example the smallest of the local minimum. In practice, the procedure is is usually
limited to some given range of parameter space. Finding the global optimum is a
difficult task and guaranteeing that the discovered extremum is the global extremum
is, in general, impossible. Various techniques exist for finding a reasonable estimate
of the global extremum such as Simulated Annealing and Genetic Algorithms. These
techniques are generally iterative in nature and not guaranteed to work in all cases
but usually provide a good estimate of the vicinity of the global extremum. A local

optimisation finding routine can then be employed to locate the true global extremity.
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1.5 Overview of thesis

This thesis discusses the inclusion of prior information and the analytical form for such
analysis. This is used to improve results from diagnostic equipment in poor signal-to-

noise conditions by systematically including prior information.

Genetic Algorithms are discussed. These are used as a ‘work horse’ to solve the multi-
dimensional non-linear minimisation problems. These problems arise due to the extra,
prior information included in the analysis. Using Bayesian statistics to solve non-linear
problems has been considered in other fields: Aoki et al. [1999] details using a Genetic

Algorithm to cluster documents based on a Baysian measure of their similarity.

The thesis also presents analysis of data from the Thomson Scattering Diagnostic used
at COMPASS-D, the UKAEA Fusion Division’s test tokamak reactor. The signal-to-

noise ratio for Thomson scattering makes it amenable to the Bayesian inference method.

The Thomson scattering analysis is then extended to consider results from a two-
temperature distribution. Although there is insufficient data to fully constrain the

degrees of freedom some constraints can be placed on the available values of parameters.



Chapter 2

Properties of a Genetic Algorithm

This chapter discusses the Genetic Algorithm and its relevance and importance in opti-
misation problems. Chapter 4 will discuss a specific example of an optimisation problem
that uses both the algorithm discussed in this chapter and the formalisation developed

in chapter 3.

The first section of this chapter gives a general introduction to Genetic Algorithms on
which the following section expands giving more details on global optimisation. Section
three discusses the effect of different mutation rates, an adjustable parameter of the
GA, on the convergence rate. Section four details how the Genetic Algorithm was
constructed and section five illustrates some standard problems that were tackled with

a Genetic Algorithm. The key points are then summarised.

2.1 Introduction

Unlike a human, a computer cannot take an overview of a problem. Heuristical prob-

1 are generally easy for a human if the data

lems, such as spotting the global maximum
is suitably presented; but it is difficult to describe the sequence of steps the human

observer uses to derive the answer.

With vast collections of data it is impractical to require a human to sift through

each dataset and locate the overall maximum. Such drudgery is to be avoided and, in

! Although throughout this chapter, the objective of the algorithms discussed will be to locate the
maximum of a function, it should be remembered that the minimum of the function f is the maximum
of the function —f.
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any case, is prone to mistakes. For ‘complex’ data, where the maximum could be the
subject of debate, an automated scheme would remove the possibility of unwarranted
human bias. However, in such cases, a human observer can bring experience to bear and
bias the answer towafds more likely solutions. A method for encoding experience, in
the form of ‘prior information’, is discussed in chapter 3; but for the moment, we shall
consider the problem of locating some extremum of the supplied data without being

influenced by previous results.

Many routines exist for locating the maximum of a function in the neighbourhood of
some initial point in parameter space. For examples of such algorithms see chapter 10
of Press et al. [1996]. These routines are collectively referred to as ‘local maximisation
routines’. Perhaps the simplest local maximisation routine is ‘hill climbing’: an iterative

algorithm where the next point is selected by stepping in the direction of steepest ascent.

Local maximisation routines have the property that they take a point in parameter
space (or in the case of simplex optimisation, n + 1 points for n dimensional parameter
space) and conjure up a new point usually based on a variant of the hill climbing
algorithm. This process is then repeated forming an iterative scheme that is terminated
once a suitable stopping criteria is reached. These routines use different methods to
decide on the new, better point. Some use information about the function’s gradient
whilst others rely upon only the evaluated function values. Some use a single method
whereas others are hybrids and tentatively try a selection of different methods before
committing to a new point and proceeding to the next iteration. However the iterative
scheme proceeds one factor is common to all local maximisation routines: after finding

a region where the function’s first derivative vanishes they will all stop.

It is possible to construct a global maximum searching algorithm from the simpler
local maximisation routines. One method of achieving this is to create a set of initial
trial solutions: points in parameter space where it is hoped that for one trial solution
the local maximum is the global maximum. By finding the local maximum near each
trial solution and retaining the largest local maximum the global maximum may have
been discovered. In many real-life problems there is no way to know a priori the
‘smoothness’ of a given solution, i.e. how large a volume of parameter space is considered
the neighbourhood of the global maximum. For most functions this means that one of
the starting points must be ‘close enough’ to the global maximum that the function is

smooth and the maximum can be arrived upon.
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One method of finding a point in an n dimensional parameter space close enough to
the global maximum is to try a large number of points in different locations. These initial
points can be selected randomly, sub-randomly such as a Halton or Sobel sequence (see
section 7.7 of Press et al. [1996]), or from a n dimensional grid of mxm xm x --- = m™

points.

However the points are selected the multiple-point local maximum algorithm is inef-
fective. The probability of one randomly chosen point lying within the neighbourhood
of the global maximum is P, = {; where v is the volume of the neighbourhood and V' is
the total volume of the parameter space under investigation. For k points, the proba-
bility of at least one lying within the neighbourhood is P, =1 — (1 — %)k ~ k%! where
l is the dimensionality of the parameter space and r and R are typical length-scales for
the neighbourhood and the parameter space under investigation respectively. It is clear
that an exponentially increasing number of points are required to maintain the same

probability of finding the global maximum for increasing dimensionality of the problem.

Despite the inefficiency of the multiple-point local maximisation routine it is impossi-
ble to guarantee that a computer will find the global maximum of a function. Moreover,
if the function we wish to optimise is in some sense ‘expensive’ to calculate (e.g. in terms
of computer resources) then a more efficient algorithm is required. Such algorithms are
often inspired by natural phenomena. One such method is simulated annealing, which
gradually ‘cools’ towards a solution in an analogy to a metal being annealed to remove
grain boundaries and achieve a minimum internal energy. For more information about
simulated annealing see §10.9 of Press et al. [1996], Kirkpatrick et al. [1983], Wille
and Vennik [1985b] and references therein. Another method, deriving inspiration from

natural selection and evolution, is the Genetic Algorithm.

A Genetic Algorithm (GA) uses concepts borrowed from genetics and Darwin’s theory
of evolution. As an algorithm classification the GA is quite broad. In the most abstract
sense a GA consists of a collection (tens or hundreds) of points in parameter space and
a collection of operators that are applied iteratively to the collection. The effect is to
create an environment in which multiple entities (the points in parameter space) vie
with each other to include their ‘genetic information’ as part of the ‘gene pool’ of the

next iteration.

Each entity can be considered analogous to a single creature forming part of a partic-

ular species. Therefore, the collection of such entities used by a GA at some particular
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Figure 2.1: The DNA base-pairs that encode amino acids.

iteration is analogous to the bio-diversity of the species at that particular time.

In a further analogy to natural systems, the terms genotype and phenotype are used to
describe the process of evaluating the entity’s fitness. In biological systems, the genotype
refers to the sequence of DNA base-pairs that ‘code upl the entity (see figure 2.1)
whilst the phenotype refers to the physical result of the coding, which includes any
environmental effects. The creature’s phenotype has to survive until maturity so it can

propagate it’s particular genetic code onto the next generation.

In humans, the complete genotype is present in most cells as 23 pairs of chromosomes.
A pair of chromosomes contain the same number of DNA base-pairs, which are nearly
identical. Each chromosome consists of two connected choinatids that contain the genes.
A gene is the region of DNA responsible for a particular trait (e.g. hair colour). This

hierarchy of structure is shown in figure 2.2.



Chapter 2. Properties of a Genetic Algorithm 12

Chromosome
Chromatid Chromatid

alelomere

Centromere

Telomere

Histones

DNA(double helix)

Figure 2.2: The hierarchy of structure within a cell’s nucleus from chromosome
to the base pairs.

A gene typically consisting of many codons which are groups of three base-pairs that
code a particular amino acid. Part of the cell’s manufacturing process involves copying
a section of DNA to RNA (called messenger RNA or rnRNA). The multiple codons in
a gene specify the sequence of amino acids that join to form a particular protein that

then causes the particular trait. An example set of codons is shown in figure 2.3.

The gene’s location within its chromosome is referred to as the gene’s locus. Some
genes’ loci are not fixed and can change from individual to individual. This is achieved
because the vast majority of genetic material within a chromosome is insignificant.
As the chromosome is ‘read’ (i.e. copied to mRNA) specific codons turn on the cell’s
manufacturing process enabling later codons to be ‘decoded’ into protein. The different
expressions of the gene’s trait are referred to as the allele of that gene. For example, the
gene for the eye colour trait results in different proteins being produced due to different

codons within the gene. Blue eye colour is an example of the eye colour gene’s alleles.

The pairing of chromosomes allows complex behaviour such as dominant and recessive
genes. At a particular locus, the gene from one chromosome might take precedence
over the other resulting in the phenotype only developing the trait associated with
the dominant gene. However, a recessive gene that is not been expressed (due to the

presence of a dominant gene) can be passed on to an offspring where it can be expressed
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Figure 2.3: Codons within mRNA copied from DNA (with U instead of T).

if no equivalent dominant gene is present. It is worth noting that the phenotype also
includes environmental effects so that two different phenotypes can derive from the same
genotype. This level of indirection (phenotype is used for fitness evaluation whilst only
genotype is passed on) promotes hardiness by encouraging genotypes that are fiexible

enough to cope with different environments.

With genetic algorithms the genotype usually consists of a fixed length string from
an alphabet. The alphabet is usually a fixed set of symbols (such as binary or decimal
digits) but some GAs work with a genotype consisting of floating point numbers. The
‘meaning’ attributed to each element (the alleles) of the genotype string is usually
fixed although some work (Bethera and Nanjundiah [1997]) suggests some benefits from

allowing some variation in gene alleles.

To illustrate the definitions discussed above in the context of optimisation consider the
following curve-fitting problem. Data di is supplied with estimates of the uncertainties
<l assuming the errors are normally distributed. The model is two independent Gaussian

curves and a constant offset as shown in (2.1).

L 1 5~
B axend CTARIL o LA, 5

=axexp

If we take x2 —Yliifi ~ as our likelihood measure one method of solving this
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Figure 2.4: Representations and information pertaining to a single entity of a
GA.

problem is to guess a set of initial values for the seven parameters {a1, p1, w1; az, p2, wo;l}
and to use some multi-dimensional optimisation method to iteratively improve this so-
lution. As stated earlier, this will work only if the initial guess is close enough to the
true minimum. Figure 2.17 on page 35 demonstrates that for a similar fitting problem,
even in the absence of noise, the fraction of the total parameter space ‘close enough’ to

the global minimum can be small.

An alternative method of solving this curve fitting problem is via a GA. For this
example, the GA’s genotype consists of five genes: one for each parameter. Whilst the
GA is running each entity in the GA’s current population will have specific numbers
allocated to each gene. The phenotype is the function we wish to fit, so a specific entity’s
phenotype is a curve given by the values of the genes that describes (to a greater or
lesser extent) the data. The fitness function is taken to be —x?. This is illustrated in

figure 2.4.

The genetic operators are used to generate new entities which then form the next
iteration of the algorithm. Although implementations of GAs differ in their choice of
which operator to implement they will generally include selection, cross-over, mutation
and some form of survival operators. The selection and cross-over operators are used to

generated the required number of entities: a user supplied parameter of the algorithm.
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The mutation operator is then applied to the set of child solutions. The survival oper-
ator is analogous to Darwin’s survival of the fittest and ensures the algorithm ‘evolves’

towards the global maximum.

The selection operator finds two entities from which new entities are formed. The
three common selection operators are ‘unbiased’, ‘roulette’ and ‘tournament’. Unbi-
ased is the simplest and selects two entities from the collection of available (without
replacement). The roulette operator differs from unbiased in that it weights the selec-
tion towards more optimal solutions. The weighting is usually taken to be the fitness
function, requiring it to be positive definite. Tournament selection works in two stages:
it first randomly selects two pairs of entities then the fittest of each pair then proceeds

to the breeding stage.

The cross-over operator takes two selected entities (‘parents’) and combines them
to produce two variants (‘children’) so that each contain some information from one
parent and some from the other. There are three variants on the cross-over operator:
single-point, two-point and n-point. Single-point cross-over operator duplicates the two
parent entities’ chromosomes and chooses some ‘splice point’ along the length of the
chromosome between two genes. The fragment of genetic material after the splice point
are swapped between the child entities to form distinct entities. An example of this is
shown in figure 2.5. Two-point cross-over is similar to one-point but two splice points
are selected. The genetic material between the two splice points in the child solutions
are then swapped. The n-point cross-over considers each point along the chromosome in
turn and allocates the position a splice point with probability psplice. Genetic material

between alternate sections is copied.

Parents Children
+ = '
Splice
point

Figure 2.5: An example of a 1-point cross-over operator for a 7 gene problem.

Once all the children have been bred the mutation operator is applied. This alters a
randomly chosen genes to new, random values. This serves two purposes. First it gives

the GA a method of escaping a local maximum and second it allows fine adjustment to
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Figure 2.6: Steps in progressing from one generation to the next.

a solutions close to a local (perhaps global) maximum.

After mutation, a merit or fitness function is used to assign a numerical ‘fitness’ to
each new solution and the survival operator is applied. One survival operator is: rank
entities (parents and children together) based on their fitness function and select the
top fraction to proceed to become the potential parents for the next generation. This is
illustrated diagrammatically in figure 2.6. Another common survival operator is to have
the number of children equal the number of parents and replace all parents with their
children. In this case, evolution is encouraged by using roulette or tournament selection

and cross-over is altered to no longer be automatic but to operate with probability pc;.

It is vital to note that all the problem specific information is contained within the
fitness function and that the only assumption the algorithm makes is that this function
is single valued. This is a weak assumption. It suggests that GAs are robust: the
algorithm will still converge on the global maximum if the fitness function varies sharply

or is discontinuous — provided a limiting value of the function can be defined.

The following list illustrates some advantages gained from using a Genetic Algorithm:

e A genetic algorithm is self-organising. It requires no problem specific strategy or
length-scale information. A generic GA should solve most problems eventually.
For discussion on minimum conditions for a GA to converge on the global minimum

see Eiben et al. [1991].

e Genetic algorithms are a robust method. For example, in the arena of data re-
duction ‘extra information’, such as extra peaks and noise in spectral data, does

not confuse a GA. It will still arrive at a ‘reasonable answer’, i.e. within the
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neighbourhood of the global minimum.

e GAs are very fast algorithms for finding approximately the global minimum: a

solution that is nearly correct.

Despite these advantages listed above there are disadvantages and unresolved issues

related to Genetic Algorithms.

The improvement in successive generations’ best solution decays exponentially. Even-
tually it become ineffective to continue with a GA. The best solution from the GA could
then be further improved by some local maximum finding procedure, provided the true

global maximum has been located.

If the fitness function is noisy then this can disrupt the progress of a GA. This has
been demonstrated for a binary GA using roulette wheel selection (Fogel and Ghozeil

[2000]). Other forms of GAs may better deal with such problems.

A genetic algorithm will improve a good solution via mutations. But this method is
ineffective if the ‘ridge’ of the maximum lies diagonally (i.e. off-axis) in parameter space.
Diagonal maxima require multiple mutations of the same solution for any improvement.

This is increasingly unlikely as the dimensionality of the valley increases.

It is unclear how to implement a genetic algorithm that uses floating-point numbers.
The floating-point analogue of cross-over and mutation is not obvious. For example,
if the numbers are encoded as decimal digits then there is a problem associated with
rounding: 0.999 would require four co-incident mutations to become 1.000, where as
0.998 would require only one to become 0.999. The result of this effect is floating-point

GAs tends to get stuck at rounding points.

Most numerical optimisation problems use a rectangular region of parameter space.
For the operators discussed, mutation and cross-over will always produce children whose
parameters lie within this region of parameter space. If the bounded region of parameter
space is irregular, or if parameter space is, in some sense, non-orientable, cross-over may
produce invalid solutions. Invalid solutions may be rejected automatically, which greatly
hinders the genetic algorithm, or could be penalised with a decrease in the solution’s

fitness. See Goldberg [1989] for specific examples.

For non-continuous, combinatory problems, such as scheduling a series of order-

dependent tasks to take the minimum time on a parallel computer as in Corréa et al.
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[1999], the parameter space is non-Euclidean and no distance-metric can be applied as
there is no direction which is ‘uphill’. For the purpose of developing suitable genotypes
such spaces can be embedded within a ‘larger’ space that also includes invalid solutions.
For example, a scheduling problem could be expressed as an ordered list of tasks but this
would then permit possibilities that are invalid. Simple operators, such as cross-over,
cannot be used as they might generate an invalid point in parameter space, such as a
schedule that does not include all the required tasks. Care must be taken in develop-
ing new operators that have similar properties to the simpler versions. New operators
should permit only correct solutions that do not disrupt the operation of the GA, apply
some minimum fix-up operation to invalid solutions or use a penalty system such as

described above.

Perhaps a surprising result from Wolpert and Macready [1997] is the No Free Lunch
(NFL) theorems for optimisation. These state that the average performance of an
algorithm, when considering all possible problems (i.e. over all ‘algorithm space’), is
independent of the algorithm: all algorithms average out the same. If, for two algorithms
a1 and ag, a; out performs as for some subset of all problems then it must, on average,

under perform ay for all other problems.

The GA’s robustness can be viewed under this context. GAs have a broad peak in
algorithm space. For any given narrow problem-set of interest, other algorithms may
exist that are faster. However, because of the breadth of the GA’s peak the GA will
still work when, for example due to noise, the specific problem has wandered outside

the region in which the fast algorithm works.

There are a number of methods of improving GAs. A GA can be restarted after some
criteria such as lack of progress or after a specific time (see Fukunaga [1998]). The
mutation rate (and cross-over probability) can be altered to reflex the GAs progress
as described in Sriniva and Patnaik [1994] or Neubauer [1997]. Mutations can also
be ‘directed’ towards the (hopefully global) minimum at hand (see Bhandari et al.
[1994]). However, the effectiveness of these techniques generally have been shown on a
few problem-sets. Accelerating convergence through one of these techniques increases
the risk of premature convergence of the population (lack of bio-diversity) around some

non-global minimum. This goes back to the NFL theorems. Nothing is free!
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2.2 Global convergence and Schemata

Most of the analysis on how Genetic Algorithms work is based on the concept of
schemata. A schema is a string with the same length as the GA’s genotype and popu-
lated with entries from either the GA’s alphabet or an extra ‘wild card’ character. For
example, if the GA’s alphabet was the binary digits, 0 and 1, then schemata could be

written using the symbols 0, 1 and # where # is the wild card character.

A particular genome is consistent with a schema if it matches all non-wild card entries.
For example, the genotype 01011 matches the schema O1##1 whereas the genotype
00011 does not. In general, a schema with k£ # symbols can be thought of as a d — k

hyper-plane within the d dimensional parameter space.

According to schema theory, any string in a GA contains partial information about
many schemata simply by replacing an element of the genotype with the wild-card
symbol #. For example in a binary GA, the function value or ‘fitness’ of the string
01011 contains information about the schemata 0101#, 010#1, O10##, 01#11, and so
on, where # represents the extra ‘wild card’ character. In turn, each schema matches
many other possible strings, for example 010## matches 01000, 01001 and 01010. In
this way, the function evaluation of 010111 provides information about many other

strings. This is called implicit parallelisation.

Breeding, especially the cross-over operation, on average will preserve short-order
schemata. This effect can be shown (see Goldberg [1989]) to improve the average fit-
ness of the population by increasing the number of genotypes that have good-looking
schemata. This works well for certain class of problems: one where the problem can be

split into two or more mostly orthogonal sub-problems.

Recently, there has been some debate as to the effectiveness of schema theory for best
describing the dynamics of genetic algorithms. Alternative methods have been proposed
including statistical mechanics (Rattray and Shapiro [1996]) and Markov chain analy-
sis. Markov chain analysis is a powerful description allowing expressions for minimum
conditions for convergence (in the sense of tending towards the optimal solution). Eiben

et al. [1991], Agapie [1998] and Schmitt et al. [1998] discuss these findings.
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2.3 Mutation rate

One of the major benefits of GAs is their speed in finding an answer close to the global
maximum. This convergence relies on the choice of the various elements that make up
the genetic algorithm. One of these elements required by a GA is an operator that
mutates solutions. Typically, this operator changes solution genes and operates at a
fixed probability py;. This is equivalent to mutating a fixed number m = (M{)py (for
small values of py) of genes. The genes to be mutated are selected randomly (with
replacement) from a population of M solutions each having [ genes. The mutation
rate is usually kept constant throughout the optimisation process although adaptive

mutation rates have been successfully applied (see Neubauer [1997]).

The mutation rate m is a key variable in determining the convergence rate of a GA.
If it is set too high then too much of the information learned from previous generations
is lost. Taken to extreme enough mutations would occurred that all child genes were
overwritten. This would reduce the method to a simple hit or miss with the current

best solution retained.

If the mutation rate is too low then the algorithm’s exploration of parameter space is
hindered. If the mutation is turned off then the best solution of all permutations of the
initial genes would be found. As this is likely to be a sub-optimal maximum, the GA

would not be able to find the global maximum.

The expected value of the optimum mutation rate for a simple test problem (OneMaxz)
are presented in Hesser and Ménner [1991]. This states that the optimum mutation rate

is one with probability p}; given by (2.2).

1.76

Py = Y (2.2)

To investigate the effect of different mutation rate of the efficiency of the GA, and
compare the results with (2.2), the charges on a disk problem (see §2.6.1) was considered
with different values of mutation rate. This problem was chosen as it is close to a ‘real-

life’ optimisation problem but the dimensionality can be altered easily.

The analytical solution of the minimum energy problem for n charges (n < 12) can
be calculated as discussed in §2.6.1. For each value of the mutation rate 10 parents were

used to generate 20 children and the process was stopped when the best solution is less
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Figure 2.7: The convergence rate for the Charges on a Disc problem with different
mutations per generation for the 8 gene problem (4 charges).

than 1% greater than the true minimum or more than 10000 generations had occurred.
This process was repeated 2000 times and the results binned based on the number of
generations before achieving the 1% tolerance required. A selection of results are shown

in figures 2.7, 2.8 and 2.9.

These figures show three dimensional representations of the log of the probability
distribution function as estimated by the Monte Carlo simulation along with contour
lines. For very small values of mutation rate, m, there is a wide range of convergence
rates. This is consistent with the GA being largely dominated by initial population with
the lack of mutation hindering the effective search of parameter space. As rn increases
the middle and width of the distribution of convergence rates decreases to a minimum
before increasing again. These increases are symptomatic of over-mutating and the
resulting loss of information reducing the GA to a random hit-or-miss method whilst

retaining the best solution.

For each value of mutations rate a Gaussion fit was conducted using the Levenberg-
Marquardt method (see §15.5 Press et al. [1996]). To overcome the problem of choosing
initial conditions the minimisation was repeated with each datapoint as the initial centre
of the Gaussian. The best resulting minimisation was retained. Figures 2.10, 2.11 and

2.12 show sample results from this fitting procedure.

Figure 2.13 shows the resulting Gaussian’s centre as a function of mutations rate
for different dimensioned problems. For some of the data the 1000 generation cut-off

truncated the distribution too greatly to recover the Gaussian curve. These points have
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Figure 2.8: The convergence rate for the Charges on a Disc problem with different

mutations per generation for the 12 gene problem (6 charges).
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Figure 2.9: The convergence rate for the Charges on a Disc problem with different

mutations per generation for the 16 gene problem (8 charges).
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Figure 2.10: Fitting of a Gaussian to the convergence rate curve for the 8 gene
(four charges) problem with 62 mutations per generation.
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Figure 2.11: Fitting of a Gaussian to the convergence rate curve for the 8 gene
(four charges) problem with 63 mutations per generation.
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Figure 2.12: Fitting of a Gaussian to the convergence rate curve for the 8 gene
(four charges) problem with 64 mutations per generation.

been removed.

To establish the optimum mutation rate a simple function (2.3) was fitted to each

dimensionality where z is the mutation rate and «, f, v, ¢ and { are fitting parameters.

y=a(£>_%+’)’(§)2+C (23)

The minimum, Zy;,, is shown in (2.4).

026283\ 5
Zmin = < 16’)’5 ) (2.4)

This allows an objective measure of the optimum mutation rate for some specified
problem. This procedure was used to calculate the observed optimum for the 3, 4, 5, 6, 7
and 8 charge problems. The results are plotted in figure 2.14 along with the predictions
from Hesser and Méanner [1991] stated in (2.2).

The observed values of optimum fitness are higher than the predicted value. This is
not too surprising as the binary GA described in Hesser and Ménner [1991] allows the
splice point to occur within the binary coding for the parameters. This has an effect
similar to mutating as there is no guarantee that, say, the lower 4 bits of a floating point
number will retain the same meaning when swapped from one number to another. This

implicit mutation could account for the discrepancy.
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It is also possible that the geometry of the global minimum changes in a problem-
specific way. This is unlikely as the solution for the problems considered were of the

same form.

2.4 Core functionality of the ELGAR library

In order to study various problems associated with a genetic algorithms a GA was
written using the C computer language. It was designed as a set of library routines.
These routines could be embedded with the problem-specific code at the linking stage.
This allows the code to be reused for different problems without recompiling. The set

of GA routines was called Embedded Library Genetic Algorithm Resource (ELGAR).

ELGAR was written for the Unix operating system model and ran under both the
GNU/Linux and Sun Solaris operating systems but should run without major alterations
on any platform with an ANSI-C compiler. ELGAR was designed to be an experimental
library. In addition to the problem-specific fitness function the two genetic operators
(cross-over and mutation) could be altered by replacing the existing default code with

routines designed with a particular problem in mind.

The data structure Entity within ELGAR holds information about each of the points
in parameter space. These are, in turn, used to evolve into a new potential solutions.
The structure is defined as:

File: GA/Elgar/elgar.h

typedef struct {

float ent_Error;

unsigned ent_Age;

GeneSequence ent_Genes;
} Entity;

The collection of entities that ELGAR manipulates is an array of Entities as defined
above. It is the responsibility of the error function to assign a numerical value to the

ent_Error element when it is presented with a Entity structure.

The ent_Age is included so that more advanced evolutionary schemes could be in-
cluded such as automatically culling entities that have become too old. This feature
would allow ELGAR to mimic the behaviour of some other GAs in which all parent

solutions are replaced by their children.
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The ent_Genes stores an array of genes. These are defined as unsigned chars,

which allows each gene to take an integer value between 0 and 255 inclusively.

File: GA/Elgar/elgar.h

typedef unsigned char * GeneSequence;

The key data element in ELGAR is the GenePool structure. This holds all the
problem specific information about a particular problem so several problems can be
solved simultaneously or hierarchically: a GA to optimise GA parameters. The structure

is displayed in Appendex A.1.

To optimise a function, a GenePool structure must be allocated and initialised with
the required parameters (all those before “AUTOINITIALISE” above). After the values
have been set, the function GimiGenePool completes the initialisation process, including
the generation of a random initial population. Thereafter, a call to FindMinimum will

start the minimisation proper.

The key element of the structure is gp_CalculateError. This contains a pointer
to the error function, which must be defined to take an Entity pointer as its single

argument and return an integer value.

The error function should take the values of the ent_ Genes array and use these
values to obtain some floating point number, placed in ent_Error, that ELGAR tries
to minimise. Note that although all functions described herein divide each element of
ent_Genes by 256 to obtain a number in [0,1), there is no requirement to use the
unsigned chars in this fashion: any encoding of the problem is valid but consideration
should be given to prevent invalid encodings and to facilitate preservation of schemata

when breeding.

The return value is used to indicate the success or failure of the error calculating
routines; for example, if the error function required some equipment external to the
computer that became unavailable during the minimisation process the error function

could indicate this by returning a non-zero value.

This library was further extended by the Genetic Algorithm Monitoring Extension
(GAME), which graphically displayed the current progress of the GA. This was used to
assess the progress of the GA when choosing a mutation rate and also to gives a quick

visual indication of any problems with the GA. GAME was designed to run under the X
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Genetic Algorithm Monitor Extension: charges on a disc.
Generation 14
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Figure 2.15: A sample of GAME’S output.

windowing system but is modular so that if ELGAR was compiled for another computer

architecture it would be easier to implement a new version of GAME.

A typical view of the output from GAME is shown in figure 2.15. The top left of
the GAME output shows the current generation number and a plot of the entities’
fitness functions. Below this is a graph showing the evolution of the best and median
average fitness functions as the system evolves. The two boxes to the right of the
output show representations of the statistical distribution of splice points and selected
genes for mutation; the numbers in brackets indicates the number of random calls per
generation. The black bars indication this generation’s selected values whereas the
lighter colour indicates the average values so far. This checks that the cross-over and

mutation operators are not biased towards certain values.

One requirement of the problem specific code is that it contained the function CalcErr.
This function contains all the problem specific information ELGAR requires and is called
with an entity as a parameter. The function must calculate the fitness of this entity

and store the result in the entity structure.

ELGAR used unsigned chars to store the gene information. Each byte takes a
numerical value between 0 and 255. A typical CalcErr function first divides each gene
by 256 to obtain a number in [0,1) and then multiply that number by some scaling

factor. This would then be used as the parameters for the fitness function.

The error function for the charges on a disc problem discussed in §2.6.1 is a useful
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illustration of these concepts. The functions used within the algorithm are presented
without explanation at this stage but are descriptively named and commented so should

be readily understood.

File: GA/Disc/disc.c

int CalcErr( Entity *myentity)
{

Charges *soln;

/* Convert byte-string into something meaningful */

soln = CharToCharges( myentity->ent_Genes);

/* if soln is NULL, then an error has occured. */
if( soln == NULL)

return 1;

/* Calculate the corresponding error */

myentity->ent_Error = WOrkUutEnergy( soln, charges);

/* All ok */
return 0;

} /% CalcErr */

Instead of searching for the maximum of the function, the ELGAR library found the
solution with the minimum of the function as this is more often required in data reduc-
tion problems. However, as stated earlier, any maximisation problem can be rewritten

as a minimisation problem.

2.5 Genetic Algorithms and NP-completeness

Binary decision problems (i.e. problems where the solution is either ‘yes’ or ‘no’) can
be classified based on the complexity of the best algorithm that can solve them. The
complexity of an algorithm describes how the computational burden (measured by the
time taken to find the answer) increases with more difficult problems; for example, a
problem that has a complexity of order N2, usually written simply as O(N?), will take
four times longer to complete if the problem is twice as ‘big’. The variable N measures

the size of the problem in usually an intuitive but problem-dependent fashion.

Problems that can be solved by algorithms that have a complexity described by a
polynomial function of N are in the class P. Also included in P are problems solved

by algorithms that have complexities that are not polynomial but grow at a slower rate
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than an exponential, such as O(N log N). Problems that allow the answer to be verified
in polynomial time are in the class NP. All problems in P are in NP but it is believed
that not all problems in NP are in P or NP#P. Perhaps surprising, it can be shown that
certain NP problems can encode all other NP problems through some polynomial time
algorithm. All problems with this property are called NP-complete. The importance
of this is that if a polynomial time algorithm were found for any of the NP-complete
problems then all NP problems would be solvable in polynomial time. In some sense

the NP-complete problems are the most difficult problems in NP.

Problems that are not binary decision, such as optimisation, but that can encode an
NP-complete problem through a polynomial time algorithm are called NP-hard. These
have the same property that they can be reduced to each other through some polynomial
algorithm so that being able to solve one in polynomial time would imply being able to

solve all.

At present, no algorithm exists that can solve any NP-complete problem in polynomial
time. It is believed (see Garey and Johnson [1979] for more details) that NP-hard
problems (and the complementary problem-set: NP-complete) are somehow intrinsically
difficult and that no algorithm can exist that solves these problems in polynomial time.
It is, therefore, unfortunate and ironic that proving the intractability of NP-hard and

NP-complete problems at present seems to be as intractable as the problems themselves.

Various people have attempted various NP-complete and NP-hard problems using
genetic algorithms. The satisfiability problem (SAT) and travelling salesman problem
(TSP) are perhaps the two most common. Due to the combinatorial nature of the
parameter space, the simple genetic algorithm described above generally is inefficient.
Different methods have been attempted, such as adding a fixing-up stage to mend broken
solutions (see Watson et al. [1998], Ulder et al. [1991] and Gottlieb and Voss [1998] for
examples) with excellent results, or by introducing redundancy in the genotype (as in

Gerrits and Hogeweg [1991]), but this continues to be an area of ongoing research.

2.6 Examples of simple problems solved by a GA

This section discusses some problems with which ELGAR was used. These were used
as either a test problem to check ELGAR was working correctly or to investigate how

well ELGAR performs. They are included here as they illustrate some of the benefits



Chapter 2. Properties of a Genetic Algorithm 31

and difficulties associated with a GA. They also give practical examples of how to solve

a problem with ELGAR.

Also used with some of the programs is a small (approximately 1700 lines of code)
library called ReadData. Various projects were required to read user supplied data
in a variety of formats. This library unifies the reading procedure to completing a
‘request’ structure DataRequest and a single function call: ProcessDataRequest().
The resulting structure (DataList) contains details about the NumberOfSeries series

each containing NumberOfEntries elements.

2.6.1 Charges on a disc

The problem of minimising the electrostatic energy of n discrete charges embedded
within some conducting medium was first posed by Berezin [1985]. For the three di-
mensional spherical case the form of the minimum energy configuration is independent
of the number of charges and has all charges confined to the sphere’s surface. However,
for the two dimensional circular case the minimum energy configuration is dependent
on the number of charges. For cases where the number of charges is less than 12 the
minimum energy is with the charged particles located at the vertices of a regular n-
sided polygon inscribed within the disc. For n = 12 to 15 charges the minimum energy
configuration is n — 1 charges forming a regular polygon as previously and the last
charge in the centre. Figure 2.16 illustrates these different configurations. For the en-
ergy minimisation problem with n greater than 15 the ground state has a more complex

pattern.

The problem of determining the ground-state of an atomic cluster, which is related to
the charges on a disk problem, has been shown in Wille and Vennik [1985a] to be NP-
hard. And, whilst the 2 dimensional charges on a disc problem has not be shown to be
NP-hard it is still difficult due to the small neighbourhood in which solutions converge
on the global minimum. This is seen clearly by considering the case for moderate n,
say 10, where the global minimum configuration is a regular decagon. If the charges
are placed on the circumference (the global minimum configuration) and one charge
is displaced slightly then a local optimisation method would expel that charge to the

centre resulting in a sub-optimal minimum.

ELGAR defaults to 10 parents breeding 20 children each generation. With these

values the correct conﬁgurations for up to 8 charged particles was found. However, the
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Figure 2.16: Minimum energy configurations for the Charges on a disc problem.
Diagram shows n = 10 to 15.

configuration found for 9 particles was a local minimum: a regular octagon with the

ninth charge in the centre.

Increasing the number of parents and children improves the performance of a GA.
With 20 parents and 50 children the GA found the correct configuration for 9 charges.
50 parents and 200 children were required before ELGAR found the correct configura-
tion for 10 charges and 500 parents and 1000 children were required before the correct

configuration of 11 charges was found.

The increasingly large resources required to solve these problems are symptomatic of
off-axis valleys in parameter space. Whereas in §2.6.2 the off-axis valley hinders further
improvement after the neighbourhood of the minimum is found in this problem a local
minimum is present that is far easier for the GA to fall into: the global minimum is
off-axis whereas the local minimum is not. Consider the case of 9 charges arranged at
the circumference of the disc but with one charge offset towards the centre. Moving the
offset charge towards the centre reduces the energy, and requires just one mutation, but
to move it back to the correct position on the circumference would require moving all the

charges by the correct amount: nine coincident mutations all of the correct magnitude.

The efliciency of the GA in solving this problem is adequate compared to existing
methods (such as simulated annealing discussed in Wille and Vennik [1985b]) but im-
provements are likely to be possible. The coding scheme for the genotype and the

genotype to phenotype conversion could be improved and alternative forms of genetic
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operators could be investigated.

2.6.2 Fitting a sinusoidal signal

Another problem attempted with ELGAR was extracting an arbitrary sinusoidal signal
from noisy sampled data. The sinusoidal signal was taken to be the sine function with
arbitrary amplitude, phase offset and frequency. It was assumed that there may be some
DC offset. Although this problem is trivially solved (for example, the Fourier transform
of the data reveals this information) it could be any non-linear function sampled at

arbitrary intervals.

One consideration was deciding the limits for each parameter. Both frequency and
phase offset have natural boundaries. For the DC offset and amplitude realistic limits

can be imposed without overly increasing the search space.

Sample theory limits the maximum frequency of reconstructible signals to the Nyquist
frequency, which is half the sampling frequency: vsam. The non-dimensional variable

used, v = Vsig/Vsam, varied between 0 and 0.5.

The phase offset can have any value in [0,27). The non-dimensional variable used,

®, varied between 0 and 1.

The amplitude, a, is taken to lie between 0 and the range of the data (the difference
between the data maximum and minimum). The DC offset, b, was constrained to lie

between the largest and smallest data values.

The phenotype for the problem is:

fila,b,v,®) = asin[27 (vi+ ®)] + b (2.5)

The code section to implement this is:

File: GA/Sines/fitsine2.c

void CharsToSolution( unsigned char *byte, Solution *mySoln)

{
mySoln->Frequency = MAX_FREQ * byte[0]/256.0;
mySoln->0ffset = byte([1]/256.0;
mySoln->Amplitude = Globals.Max_Amplitude*byte[2]/256.0;
mySoln->DC_Level = Globals.Min_DC +\

byte[3]*(Globals.Max_DC-Globals.Min_DC)/256.0;
} /* CharsToFloats */
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where the Solution structure is defined as:

File: GA/Sines/fitsine2.c

typedef struct {
float  Amplitude;
float Offset;
float DC_Level;
float Frequency;

} Solution;

The function ELGAR minimised (i.e. the negative fitness) was the equal error x?
function as stated in (2.6). y; is the data, each with uncertainty o. However, it is trivial

to adapt the method to deal with data with uneven uncertainties.

n Y A Y
=3 (vi sz,) (2.6)
i=1

This is implemented by the following section of code:

File: GA/Sines/fitsine2.c

int ErrFn( Entity *Ent)
{
Solution mySoln;
float X, Y, diff, chi_s=0.0;

unsigned n;

/* Convert byte sequence into meaningful floats */

CharsToSolution( Ent->ent_Genes, &mySoln);

/* For each data point */

for( n=0; n < theData.Entries; n++) {

theData.X [n];

-
n

mySoln.DC_Level + mySoln.Amplitude*sin( TWO_PI *\
(mySoln.Frequency*X + mySoln.0ffset));

diff = (theData.Y [n] - Y)/Globals.Error;

chi_s += diffxdiff;

Ent->ent_Error = chi_s/n;

/* Everything ok */

return 0;

} /* ErrFn */
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Figure 2.17: Grey-scaled contour plots of y2(a=1.0, iq $, 5= 0.0) for a noiseless
sample, (a) shows the full range of $ and v, (b) shows detail of central
region.
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Figure 2.18: Grey-scaled contour plots of x2/a = 1.0, 1/,<f) for the noisy data
(7= 1.0).

Perhaps surprisingly, the x 2 function shows detail for sampled data with no noise.
Figure 2.17 show a x 2 plot for offset and frequency for a signal sin27r(*a: + *). Plot (a)
shows x 2 f°r the whole range of v and $§ whereas plot (b) shows the detail closer to the
global minimum at u = 0.25,<F = 0.5. Note the number of local minima close to the
global minimum. Any local minimisation routine with initial parameters too far away

from the global minimum would ‘get stuck’ in these regions.

Artificial noise was generated using the Gaussian distribution function gasdev (see
chapter 7 of Press et al. [1996] for details). Figure 2.18 shows the same x 2 plots but for

the noisy data. The noise has a — 1.0.

ELGAR found the region of the global minimum within 100 generations using very
modest resources: 10 parents breeding 40 children each generation. However, the global
minimum’s valley is off-axis. Once a solution close to the original signal is found, further

improvement is slow. Figure 2.19 shows the original signal, the noisy sampled data and
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Figure 2.19: Plot of the original signal, the sampled data and the reconstructed
signal.

the reconstructed signal.

Further improvements to the algorithm could be achieved by rephrasing the problem
so the global minimum appears on-axis. Alternatively, a local optimisation routine (such
as Powell’s method in §10.5 of Press et al. [1996]) could be employed once the GA has

found the global minimum.

2.7 Summary

The Genetic Algorithm is a technique for solving a wide range of difficult optimisation
problems. Difficult may mean that the parameter space has lots of local extrema (such
as fitting to noisy data) or that it cannot easily be searched (such as combinatory

optimisation).

GAs track and use many points in parameter space rather than trying to improve one
point. These many points are iteratively subjected to several operators which mimic
some of the processes that a biological species undergoes. The effect is to encourage the

points to ‘evolve’ to increase their fitness thus solving the optimisation problem.

Problems with off-axis valleys around the global minimum prove to be a difficulty for
GAs but the effect can be reduced by constructing a hybrid method that uses a local
minimisation routine after the GA has finished, by using more computer power, or by

rephrasing the problem so that the minimum valley is aligned with the axis.
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Bayesian Statistics in signal analysis

This chapter describes the method used to introduce ‘prior information’ using abstract
information known a prior: to analysing data that then biases the inference procedure
(see Kendall and Stuart [1963] and Hoel and Craig [1978] for indepth discussion). This
is useful when analysing noisy data: the prior information biases the analysis towards
more likely values. This is achieved via Bayesian Inference: using Bayes’ equation to

choose between different possible hypotheses.

The first section of this chapter introduces Bayes’ equation and discusses the basic
premise of Bayesian Inference which the following section illustrates with a simple ex-
ample without any prior information. Section three formulates the Bayesian concept of
prior information in a useful form for the next chapter. An abstract example of this
formulation is given in section four. Section five discusses methods of estimating the

uncertainties and section six summaries the key points.

3.1 Bayesian Methodology

Many data reduction problems involve fitting a model described by a set of pafameters,
A, to some experimental data, D. Typically, this is done by maximising a statistical
measure of likelihood: a measure of how likely the data is for a given value of A. One
commonly used likelihood is the x? statistic: x* = >.(fi — d;)?/o2 where f; is the
model, d; (which depends on M) is the data and o? is the variance of the noise. The

method of maximising this likelihood (by minimising x?) is called the ‘least squares’

37
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method and, in the case when A is a set of linearly independent parameters, can be

solved analytically.

The Bayesian model for inference works on the concept that each value of A has some
‘acceptability’ assigned to it. This acceptability is expressed by a number between 0
and 1 where 0 indicates the value of A is not acceptable and 1 indicates that the value is
certainly the correct one. The acceptability of a particular value of A is denoted P(X)

so the most likely value of A is the one with the maximum P(A).

This is similar to the concept of probability in ‘normal’ or ‘frequentist’ statistics
where P(c) is the probability of event a occurring. The usual interpretation of P(a)
in the frequentist approach is that for an infinite number of trials the fraction of trials
consistent with event a occurring is P(a) or that P(a) is the limiting value for the
fraction of event a occurring for increasing number of trials. This is in contrast to the
Bayesian interpretation which treats P(A) as the plausibility of the particular set of
values A. This is a significant difference as P(A) does not appear as a limiting value
for an increasing number of trials but rather as an estimate of plausibility based on the

available data.

Each value of A has some a priori acceptability before any measurements are made.
Once data has been observed it can be employed to update the plausibility of each
hypothesis. The method of doing this is described in Bayes’ equation:

P(D[A)P(A)

P(AD) = == )

(3.1)

This gives us a method of calculating P(A|D), the posterior distribution, which is
the probability that a set of parameters explains the data. P(DJ|A) is the likelihood
function detailing how likely the observed data values are for a given set of parameters
A and P(A) is our prior assumptions about the likelihood of any given set of parameters.
P (D), the probability of observing a given set of data, is a constant for those data and
so can be ignored in our optimisation problems—in this context it is a normalisation

constant.

3.2 Simple example

In this section, we will consider a simple inference problem to illustrate the different

approach taken by a ‘Bayesian’ statistician when compared to the approach taken by a



Chapter 3. Bayesian Statistics in signal analysis ' 39

A R
)

Figure 3.1: The five platonic solids.

‘frequentist’ statistician. The approach adopted by the imaginary frequentist statistician
should be considered pedagogical and not a recommended method. The purpose is to
illustrate the differences between the process of inference for the two methods which, in

this case, leads to a sub-optimal choice of frequentist statistic.

The problem is to ascertain the number of sides of a die when only given the results
of several throws of the die. Assuming the die is fair and has regular polygon sides of
equal area, there are geometric constraints that restrict the number of sides of the die
to be from the set {4,6,8,12,20}: the platonic solids (see figure 3.1). For the purposes
of this illustration, the data is taken to be D = {4,1,2,7,3,8}.

3.2.1 ‘Frequentist’ approach

The process of inferring a hypothesis from a selection of hypotheses takes the following

steps:

1. Given the problem, we choose a statistic that will differentiate between the con-
tending hypotheses. In this example, the statistic can be defined: let s be the

frequency of the number ‘1’ in the data.

2. For each hypothesis, the expected value of the statistic is calculated, based on

some theoretical (usually infinite) dataset. For example, a four sided die would

have the statistic s = 11-.
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3. For the observed data, calculate the value of the statistic. For this example:

=

Sp =

4. Compare each model against the data by comparing each model’s expected statis-
tic value with the data’s statistic value. This is typically achieved by disproving
some ‘null hypothesis’. Hopefully, this will rejecting all but one hypothesis. For

this example, the most likely solution is a six-sided die.

3.2.2 Bayesian approach

The Bayesian approach starts with a statement of how likely each model is before any
data is known. This is expressed by the prior probability distribution P(A). A flat

distribution implies no prior bias towards any one solution (Hy).

The steps in the inference are as follows:

1. Calculate the prior information. Dice with six sides are more common than dice
with other number of sides and this information could be included in the analysis
(e.g. we could take P(H,) < A, where A, is the sales of n sided dice). However, we
shall assume no such prior information so that we simply take P(Hy) = P(Hg) =
...=P(Hy) = % In fact, in this example, the inclusion of such prior information

would not make much difference to the outcome of the inference.

2. The likelihood function, P(d|A), is considered for each hypothesis. If we assume

that the die is fair then the following likelihoods are appropriate.

(d <)
(d >1)

3. For each element of available data, update the probability of each hypothesis ac-
cording to Bayes’ theorem. Note that under Bayes’ equation, data can be analysed
either all at once or datum by datum without any consequence. Here we analyse

the data roll-by-roll using the likelihood function described above.
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D P(H4|D) | P(Hg|D) | P(Hs|D) | P(Hy12|D) | P(Hzl|D)
0 0.20 0.20 0.20 0.20 0.20
(4) 0.37 0.25 0.19 0.12 0.07
{4,1} 0.54 0.24 0.14 0.06 0.02
{4,1,2) 0.68 0.20 0.09 0.025 0.005
(4,1,2,7) 0 0 0.83 0.15 0.02
{4,1,2,7,3) 0 0 0.89 0.1 0.01
{4,1,2,7,3,8} 0 0 0.9903 0.0093 0.0004

From the above table it is clear that the the die cannot be either four or six sided as
there is at least one roll that cannot be generated by either sided die (the ‘7’ for example).
There are two interesting points to note. Firstly, this deduction was not imposed from
ad hoc modeling of the system: we did not have to explicitly state that because there
was a ‘7’ that four and six sided dies were impossible. Instead, it arose naturally because
if one datum excludes a hypothesis (P(H4|7) = 0) then any data including that datum
must equally be impossible (P(Hy|4) x P(Hy4|1l) x P(Hy4|2) x 0 x ... = 0). Secondly,
this effect is not limited to restricting impossible hypotheses: a collection of data that is
unlikely but not impossible under one model can effect the overall inference procedure

towards more likely models.

After completing the Bayesian analysis we see that a better frequentist statistic would

be: smallest n € {4,6,8,12,20} such that Vd € D n > d.

3.3 Prior information in signal analysis

We shall develop some terminology using the following example. In doing this, we shall
place more restrictions on the class of problems that can be dealt with. However, despite
these restrictions, the methodology is still applicable to a large class of problems and is

likely to be of use in physically realistic analysis.

We will consider a set of I distinct problems which are labelled 1 = 1,--- ,I. These
problems are unrelated except for any constraints created by prior information. Each
problem 3 involves fitting J pieces of data d; = {d;;} (where j =1,---,J) to a model
gi(A) = {gi;;(A)}. Although each problem could have a different number of data (J;)

we shall restrict our attention to problems that have the same number of data.
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For each problem 4, the model is described by the set of parameters \jx, (k =1,--- , K).
The overall task is to find the value of the parameters, A, that ‘best describe’ the data
D= {dz} where A = {)\zk}

For ease of notation, A will sometimes be written indexed by a single index: A,,. The
translation between this notation and the two-index form is simply A = {A\ik} = {Am}

wherem =i+ I(k—1)=1,--- ,M and M = IK.

If the data is assumed to be produced from the models g;(A) (for some A) obscured

by Gaussian noise with a standard deviation of op then the probability of any given set

of data is:
I,J 2
—1J/2 dii — gii(A
P(DIA) = (2m03) /2 exp{ — > [UQM (3.2)
i=1,7=1 D
—1J/2
= (2n0h) " exp {-x}/2} (3:3)
where '
b d.. — .. A 2
i=1,j=1 D

If we have no prior knowledge of the parameters (that is, P(A) is constant) our task

is to maximise equation (3.3). More usually, we think of this as minimising:
—In[P(D|A)] (3.5)

which is equivalent to minimising X%- Thus, we have a Bayesian justification for the

‘least squares’ method.

However, if we do have some prior information about the parameters we must include

the P(A) term in our analysis. We would then have to minimise:
—In[P(D[A)] - In[P(A)] (3.6)

which would amount to adding an extra x? term to represent the prior information.

3.4 Example of prior information

Consider in each problem %, one of the parameters ();1, say) may be most likely to lie

around some value A* with a standard deviation oy: that is,

I .
P(A) = (2m02) Pexp !-Z(Az_lzg_iiﬁ} (3.7)

i=1

= (2n03) " exp [-x3/2] (3.8)
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where

I
(M = A)?
XA = E —— (3.9)
The optimisation problem of equation (3.6) becomes simply the minimisation of:

X +x3- (3.10)

Therefore equation (3.10) is the full minimisation problem including the prior infor-

mation for this example.

In general, the probability distribution of the parameters will be more complicated
than in the above example and may well involve cross terms between the different sets
of data (d;). When this happens the number of dependent parameters, and hence the
complexity, of the individual optimisation problems rises dramatically. Often what we
are left with is a multi-dimensional nonlinear minimisation problem. Such problems
are notoriously difficult to solve numerically due to problems of convergence and the

existence of many local minima.

3.5 Errors

Confidence intervals are the correct way of dealing with uncertainty. For one-dimen-
sional distributions, the relationship between error-bars and confidence intervals is that
a 1 x ¢ error-bar corresponds to a 68% confidence interval for normally distributed

errors, 2 X o errors bracket a 95.4% confidence interval and so on.

With non-normally distributed errors, there will be a 68% confidence interval, a 95.4%
confidence interval and so on, but they may be asymmetric with respect to the distri-
bution’s centre. Moreover, the extent of the 95.4% confidence interval may be different
than twice the 68% confidence interval. Usually an error bar can be drawn but in general

the interpretation of this interval will be different than for normal error bars.

To find an interval for a particular variable the full parameter space must be bracketed
using some chosen shape (such as a ellipsoid). This region then contains the correct
solution to the required probability. For the uncertainty in a single variable this re-
gion can be projected onto the required axis to produce the confidence interval in that

variable.
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This method of estimating the uncertainty in some variable requires knowledge of
the distribution function around the solution (or at least around the best-fit point). In
general this is difficult to obtain analytically and methods such a Monte Carlo simu-
lation are required. However, a Monte Carlo simulation requires repeating the fitting
procedure many times to obtain an estimate of the distribution function. Although
Genetic Algorithms are an efficient global optimisation method they generally impose
a non-trivial computational burden. The Monte Carlo simulation would be required for
each recovered signal, which, for an acceptable uncertainty in the distribution function,

would require solving at least 100 further fitting problems.

As the computational burden for the full uncertainty method is too great, the errors
are estimated by computing the information matrix (see Kendall and Stuart [1963]).
This compromise is equivalent to approximating the errors to being normally dis-
tributed. Sufficiently close to the solution, this approximation will be valid. A normal
distribution is more compact than other distributions. This implies that a normal esti-

mate of errors will over- rather than under-estimate the width of a confidence interval.

3.6 Summary

Bayesian Statistics allows systematic including of prior information. This prior infor-
mation is introduced through Bayes’ equation. With the more general understanding of
probability as a measure of plausibility for some non-repeatable event, Bayes’ equation

can be viewed as a method of inference.

For the problem of model fitting, there is an increased computational burden as a
result of this prior information. This is because the hitherto separate inference problems

have been linked by a statistical constraint.
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Case study: Thomson scattering

In this chapter the problem of analysing the data produced by the Thomson Scattering
Diagnostic at the COMPASS-D test reactor is discussed. This topic forms a case study
of how the Genetic Algorithm with Bayesian Statistics method described in the previous

chapter can be implemented.

There are several aspects of this problem that are specific to this case study and that
simplify the analysis (such as the linear dependency of certain parameters), but the main
concept, prior information resulting in improved parameter estimation, is applicable to

a wide range of problems.

The first section of this chapter describes the physical arrangement of the experimen-
tal rig at the COMPASS-D test reactor. These details are expanded in section two,
which describes the practicalities of how data is acquired at the reactor. Section three
discusses the nature of the noise and section four describes how the signal to noise ratio
can be estimated. This estimate is used in later statistical analysis of the signal. Section
five describes a method of obtaining reference signals, which are used later for deducing

the temperature.

The theory described in the previous chapter is applied to the scattering problem
in section six and section seven discusses how the errors are quantified. Section eight
outlines the method of converting between measured amplitudes and the inferred temp-
erature and section nine describes how the errors in the signal-fitting amplitudes can be
mapped into an error in the final temperature. Section ten contains recovered electron

distributions.

45
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4.1 Characteristics of Thomson Scattering

Thomson scattering is the scattering of light off mobile charged particles such as elec-
trons. Classically, this scattering process takes into account no quantum or relativistic
effects. Thus, for the treatment to be valid, the scattering particle must be moving
slowly and the light must have a long wavelength. The condition for ‘moving slowly’ is
v < ¢, where v is particle’s speed and c is the speed of light in vacuum and the condition
for long wavelength is hw < mc? where h is Planck’s constant and m is the mass of the

particle.

In the following sections, only the electrons of the plasma are considered. The electron
will be far less massive than the plasma’s ion species. Classically, the scattering process
can be considered in terms of an incident oscillating electric field (from the incident
light) causing the electron to oscillate. An oscillating charge will radiate, implying the
electron oscillating as a result of the incident light will, by virtue of that oscillation,
emit light. This is the scattered radiation. Since the electron’s motion will have to
overcome the effect of inertia, the more massive ions will oscillate to a far lesser extent.

This results in an insignificant scattering off ions.

Although little light is scattered off the ions directly they may have an indirect effect
on scattered radiation. A cloud of increased electron density, a Debye sphere with
typical radius Ap, surrounds each positive ion. These ‘shield’ the positive ion from the

rest of the plasma resulting in a stable equilibrium configuration.

If the wavelength is comparable to the length-scale of these spheres then the fluctu-
ations in electron density will result in scattering and the ions will affect the resulting
spectrum. However, if k;,Ap > 1, where k; is the magnitude of the incident wave vector,
then each Debye sphere will experience many wavelengths of the incident light and the
scattering can be approximated by considering no ion correlation effects: the scattering

1s incoherent.

The scattering geometry is shown in Figure 4.1. The vectors k; and k; are the wave
vectors of the incident and scattered light respectively. It is useful to define k = k; —k;.

The scalar values k;, ks and k are the magnitudes of k;, ks and k respectively.

The total Thomson scattering cross-section (e.g. see Hutchinson [1987]) integrated

over all solid angles is:

8
or = —3’1r3 (4.1)
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Figure 4.1: Overview of the scattering geometry in Thomson scattering.

where 7, is the classic electron radius r, = e?/(4megmc?).

The oscillating electron behaves analogously to a dipole and the non-relativistic limit
is referred to as the dipole approximation. The total scattered power from this approxi-
mation is given by (4.2), where (S;) is the mean incident Poynting vector, which can be
taken as the total beam power divided by the beam’s cross-section area. Eg is the unit
vector for the incident electric field indicating the plane of polarisation. fx(vx) is the
projection of the distribution function onto the vector k, i.e. fx(vk) = [ f(vi,vk)dvy.
The projected distribution function for a (non-relativistic) Maxwellian distribution is

given by (4.3).

0P N N ~ w
= Tg/d'gf‘(Si)lks X ks X E0|2fk‘ (-I—C-)

1
Z (4.2)

1
o= (o) enp (-T2 (43)

Pechacek and Trivelpiece [1967] was the first correct relativistic treatment of inho-
mogeneous Thomson scattering. In this extension of the classic Thomson scattering
process, the electrons are no longer required to be travelling slowly with respect to the
speed of light. The power spectrum of scattered radiation is given by (4.4) where S is
the electron velocity as a fraction of the speed of light, IV is the number of scattering
electrons and y = (1 — 32)~1/2. The tensor I is the identity tensor whilst M and N are

given by (4.5) and (4.6) respectively.
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?P(w) . cr? [M-N-Eg)?
9w _N8_7r dsﬁf(ﬂ)ma(W—wd) (4.4)
M =1 - k,k, — Ik,.0 + Bk, (4.5)
N =y"(I-88)-[I(1 - B-K) + KB (46)

In (4.4), f(B) is the distribution function for the electrons in the scattering region.
For thermally relaxed electrons moving at relativistic speeds, this distribution function

is given by (4.7) where o = mc?/2kgT and K(z) is the modified Bessel function.

f(B) = [27TK2(2a)]’1a'75 exp(—2avy) (4.7)

An approximate analytical solution to (4.4) with a electron distribution function given

by (4.7) is derived in Zhuravlev and Petrov [1979]. The resulting form is given by (4.8).

1
do rdw?la 1K (2a) [ (w—1)? ] 2
- expd =20 |1+ —2 1) 48
0wl (1 — 2wcosl + wQ)% P 4w sin®(6/2) (48)

The approximation used by Zhuravlev and Petrov [1979] is that the ‘depolarisation
term’ is taken as constant over the velocity-space integration. This may be corrected
for by introducing a scattering angle dependent correction faction ¢(#). This correction
can be calculated exactly for specific angles (as illustrated in Selden [1980]), but a more

convenient form is the rational approximation discussed in Naito et al. [1993].

Several approximations are discussed in Naito et al. [1993]. The lowest order is:
g=1-4n¢ +O(n*) (4.9)

where = (20) 71y, ( = zy, y = (2% + uz)%, u = sinf/(1 — cosh), z2 = 1+ €2/(2(1 -
cosB)(1+¢€) and e = Ag/A; — 1.

The (1,1) approximation is:

20— (233 4
g=1 477§2C_ G150 + O(n*) (4.10)
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and the (2,2) approximation is:

po + P17 + pan? 6
+0 4.11
9 + q1n + @n? () (4.11)

g=1-4n¢
where

po = qo=4+30¢%—55¢*

p1 = —((24 —545¢% 4+ 720¢%)

p = 2(33 —165¢% + 240¢* + 100¢®)
q = 25¢3(29 — 42¢?)

¢ = 5(18 —66¢% +630¢* — 805¢°)

(4.12)

The resulting approximation, consisting of (4.8) multiplied by a correction term, g,
was compared to results from numerically integrating (4.4) in Naito et al. [1993]. The
relative errors for the (2,2) approximation with 180° scattering is less than 107°% at
10 keV, 1073% at 20 keV and less than 0.1% at 100 keV. The (1,1) approximation gives
poorer results with relative errors of 1072% at 10 keV, 0.1% at 20 keV and ~ 1% at
100 keV.

The (2,2) approximation has excellent agreement with numerical work for all rea-
sonable temperatures. However, for the 90° scattering configuration, the (2,2) rational
approximation has a pole. This is illustrated in figure 4.2. The (1,1) approximation
does not have a pole at this location (also indicated in figure 4.2). To alleviate this
problem, the (2,2) solution is used unless the correction term ¢ is starting to diverge. If

it does, then the (1,1) approximation is used instead.

Figure 4.3 shows the spectrum of the Thomson scattered light for several electron
temperatures for monochromatic incident light. As the temperature is increased the
scattered light’s distribution is both broadened and the centre of the distribution is
shifted towards higher frequencies. This blue shift is a result of the relativistic beaming
effect, where light is scattered preferentially towards the observer when the electron is

moving relativistically.
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Figure 4.2: Theoretical Thomson scattering spectrum. (2,2) rational approxima-
tion contains a pole for § = 90° whereas the (1,1) approximation does
not.
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Figure 4.3: Theoretical spectra of Thomson scattered light for different electron
temperatures.
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4.2 Experimental setup at COMPASS-D

COMPASS-D is an experimental fusion reactor that contains plasma by the applied
magnetic field configuration. The vacuum vessel is toroidal in shape and the magnetic
field is set to have a strong, directly induced toroidal component with a secondary,

current-generated poloidal component. This design is typical of tokamak devices.

At COMPASS-D, a neodymium doped yttrium aluminum garnet (Nd:YAG) laser is
employed to produce the incident light (with a wavelength of 1064 nm) for Thomson
scattering. This is used as a diagnostic that measures electron temperature. Nd:YAG
lasers are preferable for performing Thomson scattering as they can be repeatedly fired
at a high enough frequency that the evolution of the plasma can be studied. In addition
there are fewer impurity lines around the 1064 nm wavelength than at the 694.3 nm
regime at which ruby lasers operate; for example the H, line is 656 nm and there are
He lines at 587.6 nm and 656.3 nm (see Barth et al. [1997] and page 258 of Hutchinson
[1987]). As discussed in §4.3, the laser is set to pulse with a pulse width of approximately
10 ns. This is repeated at 50 ms intervals allowing the laser to produce a typical total

pulse energy of 1 J.

The laser pulses produce ‘snap-shots’ of information about the electron temperature
distribution along the laser beam path within the tokamak. Each snap-shot is hereafter
referred to as a segment. In each plasma shot, the laser fires test pulses before the
plasma has formed. Segment 91 (counting the first segment as segment 0) is typically
the first segment with useful results. The plasma typically lasts for several hundred
milliseconds so that the plasma normally quenches before segment 99: the last recorded

segment.

The physical setup of the laser is shown in Figure 4.4. The laser beam passes vertically
through the plasma’s centre and onto a beam dump, which absorbs the majority of any
unscattered light. The laser beam path is imaged onto an array of 16 optical fibre ends
via a lens within a view port in the vacuum vessel. Each fibre optic images a section of

the laser beam approximately 24 mm in length and is hereafter referred to as a view.

The fibre-optics of selected views are connected to polychromators. These are located
outside the immediate vicinity of the toroidal coils to reduce interference. Each poly-
chromator consists of three detector channels, each of which has a filter that transmits

a narrow spectrum of light and reflects the remainder. With each channel, the trans-
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Figure 4.5: The construction of a polychromator.

mitted light is focused onto photodetector-amplifier assembly. The light reflected from

one channel is directed towards the next channel. Figure 4.5 illustrates the construction

of a polychromator.

The three channels of each polychromator produces three independent signals that
are proportional to the integrated intensity over that channel’s filter response curve. A
typical frequency response of three channel filters is shown in Figure 4.6. Note that the
filters transmit light to the shorter wavelength (‘blue-shifted’) side of the laser light’s

wavelength, which is marked “Nd:YAG” on the ordinance axis.

The scattered light’s distribution, as illustrated in Figure 4.3, will pass through the
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Figure 4.6: The spectral response of typical polychromator filters.

set of three filters of a polychromator. The theoretical output from these filters, as
a function of electron temperature, can be computed. For filters with the spectral
response shown in Figure 4.6, Figure 4.7 shows the expected form of the output from

each channel as a function of electron temperature.

4.3 Data acquisition and triggering

The output from each channel will rise and fall over the temporal extent of the laser’s
pulse. In addition to recording any scattered light the detectors will also measure a
background ‘noise’ consisting mainly of Bremsstrahlung radiation and line emission
from the plasma. To make best use of the available information, the output from each
channel is connected to a channel of a fast, digitising oscilloscope. Each laser pulse
triggers the oscilloscope data-acquisition system which is operated in sequence mode
with memory segmented and triggered to capture individual scattering pulses. The
oscilloscopes sample every 2 ns for 504 ns each segment and are triggered slightly before
the laser pulse. The triggering is to ensure the measured pulse activity in the channel’s

output occurs approximately in the middle of the segment’s data.

The triggering of the oscilloscope is not exact. There is some ‘jitter’ in the exact
position of the pulse. In order to analyse the distribution of ‘jitter’ we considered only
data with a high signal to noise ratio and assumed the profile of the laser’s pulse is

approximately Gaussian. Data typical of this criterion is shown in Figure 4.8 along
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Figure 4.7: Theoretical channel output as a function of electron temperature.

with a Gaussian best fit. For sufficiently high signal-to-noise ratio, the position of the
pulse can be found by fitting a Gaussian model described by (4.13) where A is the
amplitude of the Gaussian, B is the offset to the data due to, for example, a constant

DC current, ig is the centre of the distribution and o; is a measure of the signal’s width.

— (4 —p)?

fi = Aexp [ 5 +B (4.13)
20

For some dataset g;, the x? statistic (4.14) is used to measure the extent particular
values of A, B, ig and o are inconsistent with the data: a smaller x? indicates a model

which is more consistent with the data.

I

XZ — z (fz ;291')2 (414)

=1

To find the values of A, B, iy and o that best describe the data the x? function is
minimised. This minimisation problem is complicated by the fact that the Gaussian
model is non-linear. The method used to achieve this minimisation is the Levenberg-
Marquardt (LM) method. This method for solving non-linear minimisation problems is

discussed in chapter 15 of Press et al. [1996].

The LM method returns the parameters that minimise x? and an estimate of the
uncertainty of each parameter. The minimum value of x? is used to estimate the ‘good-

ness of fit’, i.e. to ascertain at what probability a value of x? as poor as the recovered
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Figure 4.8: Shot 26921 Polychromator 9 Channel 1 Segment 93 and best fit Gaus-
sian.

minimum might occurred by chance. This probability is given by the incomplete gamma

function Q(X B X;), where N is the number of data-points, v is the number of degrees

of freedom and Q(a,z) is given by (4.15) where I'(a) is the gamma function.

Qa,z) = %a) /:0 e ' 1de (4.15)

The LM method returns only the local minimum, so the initial value of the parameters
must be sufficiently close to the correct answer for the algorithm to succeed. The initial
values for A and B, as defined in (4.13), are the difference between the minimum
and maximum data values and the minimum data value respectively. The width is
estimated by considering the first and last points where the graph crosses the value
halfway between the maximum and minimum data values. If the distance between
these two points is less than half the total ordinance length of the data then it is used
as the estimate of the width. If the distance between the two points is greater then
the width defaults to a third of the ordinance length of the data. The method depends
somewhat critically on the initial value of the Gaussian’s centre. An initial value of the
data’s ordinance centre is the logical choice; however, in the presence of noise, there
may be a local minimum in that vicinity. To alleviate this problem, each datapoint in
turn is tried as the initial value of the Gaussian’s centre. The Gaussian fit with the

lowest x? is used.

The method of estimating signal-to-noise ratio described in §4.5 was used to select
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Figure 4.9: The distribution of o; measuring the width of the laser’s temporal
profile for the 3000 segments (of all polychromator channels) that
have the highest signal-to-noise ratio. The best-fit Gaussian has width
0.52 ns and centre 9.7 ns.

the 3000 segment datasets with the highest signal-to-noise ratio from all polychromator
channels. These segments were taken from data collected between 24 November 1997

(shot 25659) and 4 June 1998 (shot 27490). For each segment, the values of o; and iy

that minimised the x? statistic were calculated.

The distribution of laser widths (o; above) is shown in figure 4.9 and has been mod-
elled by a Gaussian with centre of 4.867 and width of 0.2651. These values correspond
to a laser width of 9.73 & 0.53 ns.

For the offsets the situation is more complicated. The distribution of offsets is clearly
non-Gaussian as can be seen from figure 4.10. Instead of fitting a Gaussian, the model

fitted was a convolution of square pulse and a Gaussian. The normalised convolved

distribution is:

1 _ b—y a—y)]
ca,bo)==(b—a)t|0(—=)-® 4.16
fanbo) = 36 -0 [0 (28] -0 (220 (4.16)
where @ is the Error Function given by:
d(z) = — e " dt 4.17
@)= (417

Scaling to reflect the integrated area of the data and solving a, b and ¢ using the LM

method the best-fit values are ¢ = 118.9, b = 127.2 and o = 0.91.
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Figure 4.10: The distribution of sample number containing the laser’s peak power
for the 3000 segments (of all polychromator channels) that have the
highest signal-to-noise ratio along with model fit.

The method described above analyses the three channel offsets independently: each
channel’s offset is with respect to the start of the segment. This is an optimal analysis
if there is one source of the jitter that (by virtue of different channels having different
temporal offsets) occurs after the beam passes through the polychromator. If there is
some source of jitter before the polychromator (for example, some uncertainty about
when the laser fires) then all three channels would be offset by the same amount. In this
case the offsets would be distributed about some time p* (jitter after the polychromator)

and p* is distributed about some point pg (jitter before the polychromator).

The two sources of jitter can be illustrated by plotting the offset of channel 1 peak’s
centre against the offset of channel 2 peak’s centre as shown in figure 4.11. The strong
trend along the line y = z is consistent with variability in the laser’s firing time. The
uncorrelated scatter around this trend is consistent with uncertainty due to oscilloscope
timing and also in the Gaussian fitting procedure. In addition to the central trend data
(species 1), there is a large number of ‘outliers’ (species 2): points that are sufficiently
far away from the central trend that they constitute a subset of the total data with

different origins.

The mean of the three offsets (Z = (11 + p2 +13)/3) is an estimator of p*: the laser’s
true temporal offset. As there are only three data-points, this estimate will, in general,

be poor. If i is a good estimate of p* then the offsets relative to & would become
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Figure 4.11: Scatter plot showing correlation between the pulse’s offset in Chan-
nel 1 and its offset in Channel 2.

uncorrelated. Figure 4.12 shows a similar plot to figure 4.11, but using only species 1

data.

For each polychromator and segment, the sum of the signal-to-noise ratios for the
three channels was used as a quality measure for that segment. The 3000 best overall
signals were used to build the distribution of the relative offsets. This distribution is

shown in Figure 4.13

The data was largely Gaussian, with small ‘bumps’ at relative offset values 3 and —2.

Figure 4.14 shows the same data is in figure 4.13 but split into separate channels.

The peak at relative offset 2 is clearly evident in channel 1 only whilst the peak at
relative offset -2 is from offsets derived from channel 2 only. Data lying within 1.5 of line
y = z in figure 4.11 are considered species 1. By selecting only this subset of data the

extra channel-dependent bumps of figure 4.14 are eliminated, as shown in figure 4.15.

Recombining the three channels gives our prior: that the three channel offsets, rel-
ative to the mean offset of the three channels, are normally distributed with standard

deviation of 0.6099 samples or 1.220 ns. This is illustrated in figure 4.16.
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Figure 4.13: The distribution of /i* —// (where i E {1,2,3}) for the 3000 best
polychromator segments.
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Figure 4.14: The distribution of —/z (where i G {1,2,3}) for the 3000 best
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Figure 4.16: The distribution of p; — @ (where ¢ € {1,2,3}) for ‘species 1’ data
selected from the 3000 best polychromator segments along with best
fit Gaussian curve.

4.4 The noise

With all data, there is some noise that contributes to uncertainty in the measurements.
The analysis of this noise is important as it allows the uncertainty in the recovered

amplitudes to be estimated, either analytically or via a Monte Carlo simulation.

From typical low signal-to-noise ratio data (see figure 4.17), it is clear that the noise
is derived from a non-Gaussian distribution since the noise varies smoothly from point
to point. To discover the nature of the distribution, an estimate of the Power Density
Spectrum (PDS) of the data was obtained. The PDS of a dataset describes to what
extent the data is a result of various frequencies. A pure sinusoidal signal would have
a sharp spike at the relevant frequency in its PDS whereas random noise appears as a

flat PDS spectrum.

To obtain the PDS estimate, the datasets were windowed using a Welsh window,
(4.18). The j** datapoint is multiplied by the weighting given by (4.18), where N is
the number of datapoints to be considered. Windowing reduces the ‘leakage’ from far
away frequency bins at the expense of (slightly) broadening the central response. The
Discrete Fourier Transform (DFT) is then taken using the Fast Fourier Transform (FFT)
method (see chapter 13 of Press et al. [1996] for further details). This was repeated for
several segments of low signal-to-noise ratio data and the results were averaged. The

resulting PDS is shown in Figure 4.18.
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Figure 4.17: Typical medium to low signal-to-noise ratio data. Data from shot
26521 spectrometer 7 channel 3 segment 96.
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wj=1—( 11\2] ) (4.18)
2

White noise is an uncorrelated random signal with a Gaussian probability density
function: (27m2)_% exp[—z?%/20?]. The PDS of this is a flat level with amplitude of o.
When a signal passes through some bandwidth limiting device (such as an amplifier),

higher frequency components of the signal are increasingly attenuated.

The overall PDS shown in figure 4.18 is not flat. This would imply a correlation
between successive data-points. To test this hypothesis, the statistic described by (4.19)

was calculated for sample data.

N-1 T; —T 2
b= 222{\[—1_1:10(37(1 - -Ti—)l)2 (419

The expectation value of D for Gaussian based noise is 1. A value of D greater than

1 is consistent with noise in which each data point places a constraint on the successive
data point. The value of D was calculated for some data and the values of D were drawn

from a distribution where D = 17.8 £+ 6.8.

The following subsections discuss various aspects of the PDS which together form a
model that can be used to generate ‘fake’ data by adding noise generated by the model

to a reference signal.
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Figure 4.18: Power Density Spectrum estimate for the ‘noise’ in poor signal-to-
noise data.

4.4.1 High frequency region

Figure 4.18 shows a flat region (except for the sharp features discussed in §4.4.2) beyond
100 MHz. This response is characteristic of uncorrelated or white noise. It is remarkable

that the signal is flat up to the Nyquist frequency (vN) of 250 MHz.

The most likely cause of this flat response is ‘quantisation noise’. The oscilloscope
takes samples with 8-bit (binary digits) detail level, thus the signal is stored as an
integer between 0 and 255. By imposing this constraint an error is introduced into
the signal. This error is effectively uncorrelated as successive segments (i.e. sampling

different signals) will have different quantisation error signature.

Provided the signal’s dynamic range (difference between maximum and minimum
values) is spread over sufficiently large number of sample bins, the error introduced
by quantisation should be small. However, the dynamic range for many segments is

sampled by few data-bins leading to the visible quantisation signal.

4.4.2 High frequency spikes

There are peaks at around 190 MHz, 125 MHz and 60 MHz. To establish if these are
artifacts from the experiment several ‘dark’ segments were taken. A ‘dark’ segment is a

dataset taken where there is no plasma and with no laser pulse. The peaks were present
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in these segments. This then eliminates the plasma and laser as possible origins of the

peaks.

For the special case of a flat spectrum with a single elevated data-point (i.e. an
additional sinusoidal signal) adding a windowing function will smooth out that signal
whereas the FFT without any window (effectively a top-hat window function) will pre-
serve the signal (see chapter 13 of Press et al. [1996] for more in depth discussion on
windowing functions). For the above spectrum, a non-windowed FFT reveals the spikes
as having a width of a single frequency bin. The spikes are located at %VN, %VN and
L.

It seems highly likely that these peaks are artifacts introduced into the signals by the
oscilloscopes. The effects of these peaks are largely negligible as the power in the peaks
is small and their frequency is much higher than the typical frequencies contained in

the reference signal.

4.4.3 Low frequency region

It is clear that the majority of the signal’s power occurs below 60 MHz. This is con-
sistent with some noisy source’s signal that passed through a system that has a limited
bandwidth. Suspicion immediately falls on the amplifiers that increase the signal level
from the photodiodes. However, for this analysis, the source of the bandwidth limitation

is immaterial.

The first Fourier channel contains the mean of the signal. As each shot has an
arbitrary DC voltage offset, this channel is large. In order to prevent leakage from
this channel into nearby channels, an estimate of the DC offset level (the median) was
subtracted from each segment. The small signal that persists is indicative of a skewed
distribution in the data. One possible cause of skew is the presence of a small (but

non-zero) signal.

Ignoring the first two data-points (from signal contamination and window related
leakage), the lower frequency response can be modeled as a Gaussian centred on zero
with width o4. This is equivalent to white noise smoothed by a window with Gaussian

weights.
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4.4.4 Noise model

The ideas in the preceding subsections can be combined to form a model for the noise.
If the quantisation noise and the %VN spikes are ignored, the noise can be modeled by

(4.20).

g* N(o) = F [ g FIN(0)]] (4.20)

where * is the convolution operator, F and F~! represent the Fourier and inverse Fourier
transforms, o is a measure of the intensity of noise before passing through the amplifiers
and g is the amplifier response which, for simplicity, is taken to be a Gaussian centred

at v = 0 and with width oq4.

4.5 Estimating signal-to-noise ratio

A useful and intuitive statistic when dealing with signal analysis is the signal-to-noise
ratio (SNR). The SNR is a measure of how much of the data contains information about
the signal and is some measure of the uncertainties in measuring the signal. A typical
high SNR dataset is shown in Figure 4.8. The data consists of a central peak with noise

superimposed.

The method used to estimate the signal-to-noise ratio is to simply estimate the signal
level and the noise level and to then take ratio of the two. The two estimates are

discussed in the following two sections.

4.5.1 Estimating the signal level

The difficulty associated with estimating the signal level is due to the presence and

nature of the noise within the measured signal.

Methods exist for removing noise whilst leaving some quantities of the signal intact.
Whilst sources indicate that this is a dubious activity (for discussion see chapter 14 of
Press et al. [1996]), the ability to emphasise any signal present suggests that that signal
can, in principle, be measured. A primitive example of emphasising a signal in noisy
data is the moving average: replacing each value with the average value of the four

neighboring values. The moving average preserves the signal’s zeroth order moment
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and, if the signal is symmetric about some time, the first order moment; however, it
distorts higher order moments. There are more sophisticated techniques (e.g. Savitzky-
Golay smoothing filters and various Kalman filters) that preserve higher order features
of the signal. However, these techniques work on the premise that the signal is slowly
varying whilst the noise is random and rapidly changing. This is not the case with these

datasets.

Clearly then, it is impossible to remove the noise from the signal; the estimate must
work with the raw data. This becomes a problem for low SNR data where any slight

signal is swamped by the similar noise and becomes indistinguishable.

Two methods for estimating the signal level are described below. Both make assump-
tions about the signal’s form, but the first method is more general. The two methods

are:

1. Find the maximum value of the dataset. Let the difference between the maximum
value and the median value be the signal’s strength. The median is a ‘robust’
estimator of a distribution’s centre (see §15.7 of Press et al. [1996]). Is is less
sensitive to outliers and differences in overall distribution shape than the mean
and it is used to estimate the DC offset. This method assumes the signal is, at

some point, greater than zero.

2. Assume the signal is of the form described in (4.13) where A is the amplitude
of the signal, B is the DC offset, i is the time of the i*P data point, iy is the
centre of the peak and o; is the width of the peak. This assumes a specific form
of the distribution but provided the assumptions are valid, linear least squares is
applicable to finding values of A and B. The analysis is similar to above. However,
the value of o; is assumed constant and each data-point is tried as the centre of
the Gaussian. This simplifies the minimisation and reduces the computational

effort involved.

Both methods were tested using a Monte Carlo calculation of simulated data using

the model described in §4.4. The results are plotted in Figure 4.19.

As both estimators will overestimate the signal level in the presence of noise, the

minimum of both methods was taken as the estimate of the signal level.
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Figure 4.19: Comparison between two different methods of estimating signal
level.

4.5.2 Estimating the noise level

Noise is usually taken to be derived from a Gaussian distribution, often with no formal
justification that noise is truly from such a distribution. In general, as stated by the
Central Limit theorem, large quantities of small random events tend towards a Gaussian
distribution. In the case ofdata from the Thomson Scattering Diagnostic at COMPASS-
D, the noise is clearly non-Gaussian. However, we shall take the noise as Gaussian. This
has the effect of biasing the distribution width estimator of the noise towards higher
values, but, as we are interested in the SNR mainly for ranking data, this does not

matter.

With data from the COMPASS-D reactor, the segments typically will have some signal
which is positive with respect to the noise (see Figure 4.8 for a sample segment). The
presence of the signal will introduce a distorted ‘tail’ in the data’s distribution in the
positive half. This will bias the normal estimator of distribution width (the variance)

towards larger values by an amount dependent on the signal strength.

With that in mind, six methods of estimating the noise-distribution’s width were

tested:

1. Using the Standard Deviation. This is the statistic o where a/ — YIjLi (xj ~
x) 2 for the N data Xj. This is the maximal unbiased estimator of the distribution’s
width, provided the distribution is Gaussian. The presence of the tail in the

positive half of the distribution will, therefore, be most noticeable to this estimate.
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2. Using the Average Deviation. This is the statistic 4 Z;V=1 |z; —T| for the N data
zj. The median x4 Was substituted for T as it is a more robust estimator of the
distribution’s centre. The average deviation is a more robust estimate than the
standard deviation as it weights more importance to points near the centre of the

distribution.

3. Using the median as an estimator of the distribution’s centre, the standard devia-

tion of data less than the median is calculated, i.e. o’ where 0'* = 2 Eévzll(w’- -

J
Tmed)? Where 3:3 is the N’ data less than the median z,eq. If a signal is present in
the data as additional values of zero or greater, then the data with value of less

than the distribution’s centre should be unaffected by the signal.

4. Removing the middle section of data points. The signal generally occurs in the
middle of the segment. By simply removing the 30 middle data-points (those
most likely to have some signal content) the standard deviation should yield a
more accurate estimate at the expense of uncertainty due to the fewer data-points

present.

5. Adaptively removing the middle section of data points. This is similar to the
previous method, but with two steps. First the middle 30 data-points are removed
and the maximum value of the remaining noise found, then all data points greater
than this value are removed and the standard deviation calculated. This is to try

and reduce the number of data-points removed from the segment.

6. Minimising the Kolmogorov-Smirnov (K-S) statistic to fit a Gaussian to the sig-
nal’s distribution. The K-S statistic measures the ‘difference’ between two dis-
tributions and is defined as D = max_oo<z<oo |SN, () — Sn,(z)| where Sy, and
Sn, are the cumulative frequency distributions for the two distributions to be
compared, i.e. Sy, = [* oo P(N1)dz. For this case, the cumulative frequency of
the data is calculated and compared against that of a Gaussian. The variance
of the Gaussian is altered so that the statistic is minimised. The minimisation
was done via an algorithm due to Brent; see chapter 10 of Press et al. [1996] for

implementation discussion.

The results of a Monte Carlo simulation are shown in figure 4.5.2. The model of
the noise described in §4.4 was used to generate the noise at a prescribed level and a

reference signal was used to construct the signal element.
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The Standard Deviation deviates by the greatest amount, as expected. The Average
Deviation is recommended as a robust estimator of the distribution’s width when the
distribution has interference in its tails. However, other methods provided a better

estimate of the noise level in this case.

The minimum of methods 3 and 4 was taken as the estimate of noise level.

4.6 Obtaining reference signals

When first analysing the data from the oscilloscopes, reference signals for each channel
of each polychromator were supplied. These reference signals were either one ‘good’

dataset or the average of a few such segments.

Reference signals were used for fitting instead of using an analytical function. This
was to allow for any instrumentation effects in the electronics or optics of the diagnostic

without having to model the total system.

There were several problems with the reference signals as supplied. The reference
signals were ‘hand made’. This may have lead to bias in the reference signal (for example,
what makes a signal ‘good’?). Also, for certain channels of particular polychromator,
no discernible signal was present in the reference signal! Because of these limitations,

reference signals were produced via the GA driven Bayesian Statistics method.

The problem associated with extracting the reference signal is that the signals occur
at different times: they are not aligned. The problem of finding a reference curve can
therefore be split into two parts: aligning the datasets and extracting the reference

signal.

If the datasets were aligned then intuitively, averaging the data would produce an
estimate of the reference signal provided the distribution the noise is taken from is
symmetric about zero. This can easily be seen by imagining some collection of datasets
(d;) that contain the reference signal with an arbitrary amplitudes, an arbitrary offset
and some noise (a;r + 1(b; + ¢€;)). Averaging these signals gives Y [a;r + (b; + €;)1]/1
whichisr) a;j/I+ 1% bj/I+ 1) ¢;/I. With a symmetrical distribution about zero,

we would expect ) €; to be less that I{e) in general.

More rigorously, the optimal I-point reference signal (r;) derived from a set of J noisy

datasets (d;;) can be derived via the linear least squares method. Considering all fitting
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problems together, (4.21) describes the simple model for the reference fitting in terms

of a set of J amplitudes and offsets, a; and b; respectively.

dij = ajr; + bj (4.21)

The total x? for this fitting problem is defined in (4.22) where 032. is the variance of

the j*0 dataset’s noise.

X* = (dij — ajri — )/} (4.22)
ij
Requiring the reference signal to have mean zero and unit variance and assuming the

datasets have had their means subtracted, the values of a; and b; are given by (4.23)

and (4.24) respectively.
a] = Zd,j?‘,; (423)

bj =Y dij/I (4.24)

Substituting (4.23) and (4.24) into (4.22) and solving (%)8 = O\gives (4.25). This
indicates that a weighted average (using the signal-to-noise ratio as the weight) yields
the optimum estimate of the reference signal, provided the noise is normally distributed.
As stated in §4.4, the noise is not drawn from a normal distribution. Therefore, (4.25)
is not the optimum estimator for the reference signal. However, it will be an estimator

and probably not too bad.

(4.25)

wqm 'ugw

r, = Z aJ dU/Z
j

J

The problem of aligning the datasets can be tackled by Bayesian analysis. Using the

normal Bayesian formulation, we see that:

P(p|D) = P(D|p)P(p)/P(D) (4.26)

where p is the set of alignment offsets for the data and D is the set of datasets. P(u|D)
is the posterior probability, i.e. how likely the value of p is correct. P(u) is the prior
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information, in this case that the offsets should be from some Gaussian distribution (see
Figure 4.10). P(D|p) is the likelihood function. This can be estimated by first deriving
the reference curve for the value of p, then calculating some statistic that measures
‘goodness of fit,’” e.g. the x? statistic. P(D) is a constant with respect to the offsets and

therefore can be ignored.

The problem was split into the two parts described above. The non-linear part (align-
ing the datasets) was solved by a GA whilst Linear Least Squares was employed to fit

the resulting reference curve to each dataset so the value of P(D|u) could be calculated.

After the GA has chosen some set of offsets and the corresponding reference signal
was found, an estimate of the likelihood of this set of offsets is evaluated by fitting
the reference signal to all the aligned signals, as described above. Any uncertainty in
the reference signal will be manifest in the distribution of the residuals after fitting the

reference signal as described by:
{0:} = {dij — (ajri + b5) : j € [1,J]} (4.27)

where a; and b; are defined above.

Consider one point, i, along the reference curve. If the reference curve fits each
equivalent point exactly then the set of residuals, {4;}, will contain J zeros. This implies
that r; is exact. However, if the values in {0} are scattered in some distribution then
the width of this distribution is an estimate of the error of r;: the standard deviation

of {6;} measures the uncertainty of the reference point.

4.7 Analytic technique of fitting the signals

Using the terminology of section §3.1, we identify the number of problems (I) with the
number of channels. The number of data (J) in each channel is 252 so the set of data
for a given segment and polychromator is d;; where ¢ = 1,2,3 and j = 1,---,252. For
each channel we have a reference signal f; = {f;;} derived from previous shots (see §4.6).
The received signal in channel i (d;) has the same shape as the reference signal but with

an amplitude a;, a DC bias b;, and a time offset p;: hence our model has the form:

@i fiti) T bi fl1<j—u <J
RS Bt e (429)

b; otherwise.



Chapter 4. Case study: Thomson scattering 73

L '
0 100 200 300 400 500
Time /ns

Figure 4.22: An example reference signal.

For a given set of data d; we have three curves, g;(\), to fit, described by 9 parameters
(the three dimensional vectors: a = {a;}, b = {b;} and p = {u;}). Assuming Gaussian
noise with standard deviation op, the overall task becomes the minimisation of the

Least Squares function of (3.1), where:

A=| b |. (4.29)

Without prior information, the analysis is simply to minimise (3.4), with g;;(A) given

by (4.28), i.e. the standard Least Squares method.

This minimisation can be achieved whilst treating the three channels separately so
the problem reduces to three separate ones, each with only three parameters. Of these
three parameters, a; and b; appear linearly in (4.28) and so may be minimised by matrix
inversion (see Mood and Graybrel [1974]). Only u; appears nonlinearly so we are left

with a rather trivial one dimensional minimisation problem.

However, this method fails badly when the signals amplitude becomes comparable to
the background noise. To produce a better fit for the data given, we include prior infor-
mation in the problem using the Bayesian formulation of section 3.1. In the Thomson
Scattering Diagnostic, for a given segment, the pulse should appear in the three channels
of the data at the same time. However, there is a spread in arrival times as discussed

in §4.3. Our prior information is that the relative spread of the three peak offsets will
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Figure 4.23: Comparison of the performance of Genetic Algorithms against a
simple Linear Least Squares. The line y = z is included for reference.

be normally distributed about the mean offset of the three peaks (& = [p1 + p2 + p3]/3)

with standard deviation o, = 3.0 ms:

P(\) = (2mdl) 3/2exp{ Z["M } (4.30)
= (2n02) 3 exp {~x%/2} (4.31)
where
Z["’; . (4.32)
i=1

This is a precise statement of our prior information, based on physical observation,
but without over constraining the solution: the pulse must occur ‘near-simultaneously’

in each channel but not necessarily at the same time.

Applying the Bayesian method of §3.1, (3.1) gives us a x? of:

X’ = x5+ x5 (4.33)

The inclusion of the prior information gives a significant improvement in data analysis,
especially when signal to noise ratio is low. To illustrate this, figure 4.23 shows the
performance of the complete analysis (minimising x2%, + Xi) by the Genetic Algorithm
technique compared to that of Least Squares (minimising just x%). At all points, noise
was generated at a constant level using the model discussed in §4.4. A reference signal

was added with the required amplitude to achieve the signal to noise ratio. Three sets
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of such data were generated which the Genetic Algorithm technique (full analysis) and
a simple Linear Least Squares technique were required to fit. The average of the three
amplitude was recorded and the process was repeated 100 times to obtain a reasonable
estimate of this value. The line y = z is included in the graph to show the actual signal
level. The Linear Least Squares curve deviates markedly from this line for low signal to

noise ratios whereas the complete analysis deviates by a lesser extent.

The resulting increase in complexity from including the prior information is manifest
in that x? is no longer separable into the x% of the three separate channels. The overall
task is now to minimise a nonlinear function of nine variables, which is readily handled

by our Genetic Algorithm technique.

4.8 Quantifying the errors in fits

Errors were calculated using the information matrix: the inverse of the covariance ma-

trix. The information matrix, ¢, is given by (4.34).

a2x2
Amp = =——F5— 4.34
T OAmOA, (4.34)
Considering the information matrix amounts to assuming that data points are taken

from a normal distribution centred on some ‘correct value’ A°, thus:

9,9
PA) = (n)"7det(@Zexp |~ > (Am =A%) tmn (An = A2) | - (4.35)

m=1,n=1
The information matrix o represents a set of correlated errors for the nine parameters
of the minimisation task. We then marginalise this matrix to one for only the three
amplitudes, a;, by integrating over the other six parameters. The result is a 3 x 3
information matrix, a(2), that describes the correlated errors for the amplitudes alone.

For uncorrelated errors in the three amplitudes «(® has the form:

1/202, 0 0
o®=1 0 1/22 0 (4.36)
0 0 1/202,

where 0,,, 04, and o,, are the standard deviations of the three measured amplitudes.

Thus the Probability Density Function is reduced to:

3,3
P(a) = (m) 2 det(a®)7exp [= > (am—al) ol (an—ad)|.  (437)

m=1,n=1
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For data with normal errors, the uncertainty o,; in the amplitude a; is given by:
N 2
Oa;
2 2 J
o, = o | =— 4.38
aj .E_ z(ayi) (4.38)
i=1
where ai2 is the variance of the i*® data-points’ normal error, y; is the i*" data-point and

N is the number of data-points.

For this fitting problem and assuming constant normal errors across each segment of

032, the estimate is given by:

2
2 - _ Y 4.39
Sy -
1= 1

4.8.1 The effects of non Gaussian noise on uncertainty in amplitudes

As discussed in §4.4, the noise was found to be non-Gaussian. The ‘correct’ method
of dealing with non-Gaussian errors is to conduct a Monte Carlo simulation. For each
set of recovered amplitudes, a statistically large number of synthetic data would be
generated: for example, by using the recovered amplitudes, the reference signals and
the model described in §4.4. The fitting procedure would be run against each set of
‘fake’ data. By looking at the statistical behaviour of the recovered amplitudes (for

example) the nature of the errors of the recovered amplitude is gleaned.

If the Monte Carlo simulation contains too few fake datasets then the resulting dis-
tribution of recovered amplitudes will be highly and randomly distorted: the measure
of uncertainty would be unreliable. Therefore, the Monte Carlo process requires a large
number of datasets which, in turn, requires a large number of GA runs to fit each fake
dataset. The GA fitting procedure is expensive (in terms of processing time) compared
to simple local minimisation routines and, in general, Monte Carlo simulation cannot

be used because it would take too long.

Instead of using the Monte Carlo method for each GA fit one can assume that, for
sufficiently large signal-to-noise ratios, the recovered fit will have approximately normal
errors. There are two points to note. First, these errors will, in general, be different
from the linear estimate given in (4.39). Second, as the signal-to-noise ratio decreases
the signal would eventually become ‘lost in the noise’ and (4.39) will cease to give any

meaningful information about the uncertainty in the signals’ amplitudes.

To analyse this approximation, a Monte Carlo simulation of the error in recovered

amplitude was conducted. For each of the 41 selected data-sets the amplitude of the



Chapter 4. Case study: Thomson scattering 77

25 T T T T T
3.84393°'x —

20 | 1
_ °
g
]
% (3
2
£

15 | -
E o 2% ©
g °
© ° »
£ ° °
§ 10 ¢ ° s ]
% &°
° o of
€ o © o
2 ° o 4 °

°
5 -
o 7 &
°
O 1 1 1 1 1
0 1 2 5 6

3 4
Linear estimate of amplitude error

Figure 4.24: Correlation between error estimates of low-frequency pass filtered
noise.

signal was determined using the GA technique and the uncertainty in the amplitude was
estimated (assuming uncorrelated Gaussian noise). Once the amplitude was determined,
consistent noise was constructed using the limited band-width model (see §4.4) and the
reference curve (scaled to match the determined amplitude) was added. The amplitude
of the GA fit to the resulting data was noted. This was repeated 1000 times and the
standard deviation of the distribution of amplitudes was taken. Figure 4.24 shows the
correlation between the Monte Carlo estimate of the uncertainty and the uncorrelated

estimate.

The results suggest a simple numerical correction allows the correlated, non-Gaussian

noise to be treated as uncorrelated Gaussian noise.

The cut-off after which the linear estimate gives no information about the signal
(when the signal is lost in the noise) is less of a problem. This occurs when a signal
is faint. By considering figure 4.25, this is most likely a problem for channel 3 for
electron temperatures of less than 0.3 keV. However, the actual value of channel 3’s
signal amplitude does not matter much as the graph is relatively flat for that region.
Thus any error in channel 3 (including an incorrectly estimated uncertainty) will not

effect the final value of the electron temperature.
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Figure 4.25: Theoretical spectral density function, calculated for incident wave-
length of 1064 nrn scattered through 87.7°.

4.9 Calculating the temperature

To derive the electron temperature the amplitudes of the three channels of the polychro-
mator, ftj, are fitted to the theoretical scattering functions, SI(Te), for a given electron
temperature (Te), assuming a Maxwellian velocity distribution for the electrons. The

analytical form of S¢(Te) is discussed in Selden [1980].

Finding the correct temperature for a given set of amplitudes, a, is equivalent (see
Bindslev [1999]) to minimising the function:
XrSa,0= £ (a,-$S,)T«!?2(". ! (44°)

i=Li'=

with,

<-(*nm) (4,41)
where $ is a parameter that is proportional to the plasma’s electron number density.
The minimisation problem discussed in (4.40) is linear in <€ The linear least squares

method can be employed to determine the optimum value of for a given electron

temperature:
y ’_l /\
Kain(Te) = ~ M
SiCrjctfSt
For uncorrelated errors in amplitudes, is given by the diagonal matrix:

a(a) = diag(l/2a”1,1/2¢r”*2,1/2¢r"3)
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For this case (4.42) reduces to:
L 0iSi(Te)
(2
Brmin( E 207 / § 202 (4.43)

Substituting this into (4.40) reduces the problem to a one-dimensional minimisation

problem:
1.1
X%‘e (a,Te) = Z (@i — PminSi) ag;) (@i — PminSi') (4.44)
i=14=1

This was solved using the one-dimensional minimisation routine due to Brent (see

Chapter 10 of Press et al. [1996] for details).

4.10 Uncertainty in the temperature

To calculate the uncertainty in the temperature, the uncertainty in & (see (4.41)) is
calculated from the underlying distribution. If we assume that measured value of &
(that is, £€°) is drawn from some normal distribution, then estimating the uncertainty
in £ involves converting the trivariant normal distribution described in (4.37) into some

bivariant normal distribution:
P(€) = 77]a'®|7 exp [-55%@)55] (4.45)

where o(8) is the information matrix for the £ distribution, §¢ = £¢—¢° and £° = {T?, ®°}

is the centre of the distribution: the values that minimise (4.44).

In general, if there exists some linear transformation, i.e.
§¢ = Mda (4.46)
then the information matrices transform as in:
o® = MTo\&) M (4.47)

where MT denotes the transpose of matrix M. Consider the Taylor series of f(a, &) =

x%e (a, &) expanded to second order, i.e.

o 82 2
fa&)=fo + afa a+ 5 (00T 5 0a + (0a)T 5 1o
N (4.48)
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Considering an arbitrary shift in origin, { = 6§ + C, the Taylor series expansion

becomes:
s =t + Lot Jer Tl
T
v 2 P a0 (4.49)
+ 2C 3520+[(5) 33{ -C (9_.£2le

-1
If C is chosen to be (3_2) %{;6a, then the Taylor series expansion of f has no

linear terms in ¢, i.e. ¢ = 0 for all values of da. From a direct comparison with (4.46),

the value of M is:

o2\ 8f
=(=L) =L 4.
u=(5) (450
Substituting (4.50) into (4.47) and rearranging leads to () = TTo(®)T, where T is:
&f (& 8\
= 4.51
T 0adg <6§6a aaag) 0¢? (4.51)

The uncertainty in the recovered electron temperature o7, is found by marginalising
the matrix a(8). Consider the probability density function for T,:

GIE
P(Te)zlgw—lzexp [—(5T )2a§§)] / d% exp [-(5@)%53’ 25@5Tea§§)] (4.52)

where 6T, = T.— T, 6& = ®—®° and T? and ®° are the recovered electron temperature
and electron number density respectively.

By the change of coordinate y = ¢ + (S)TE, (4.53) is obtained.

—(6T,)? (la(gl)] /dyexp[ yQagﬁz)]

Q22
( 1al®)] ) :
= exp
ra®

Q)

_ 2 [ ¥

(6Te) < NG )]
22

Therefore, the uncertainty in T, is:

1
&) Y2

_ ) %
T = {2|a<e>|}

€3
P(T.) = o IzexP

™

(4.53)

4.11 Sample results

To illustrate the recovery of data in poor signal-to-noise conditions, figure 4.26 shows the
reconstructed plasma electron temperature distribution as a function of height above

the torus mid-plane for part of shot 26522.
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Figure 4.26: Recovered electron temperature distributions for segment 91 of shot
26522. GA is distribution recovered using techniques described in
this chapter, Linear uses a pre-existing method.



Chapter 5

Two-temperature Thomson

scattering diagnostic analysis

This chapter extends the concepts and methodology of the previous chapter to a more
complicated model: a two electron temperature plasma. As the available data consists
of three channel responses at each segment it is insufficient to fully constrain the two

temperatures. However, some constraints can be placed on the model parameters.

In this chapter, the first section gives an overview of the model stating the motivation
for adopting a two-temperature distribution function. Section two illustrates the effect
of the second temperature on the channel responses. The significance of normalising
the channel outputs is discussed in section three. Section four interprets the degeneracy
in the solution. Section five illustrates data taken from COMPASS-D whilst section six
discusses observed data in terms of the degeneracy. Section seven discusses the effects

of observational errors.

5.1 Two-temperature scattering characteristics

Whenever something is described as having a specific temperature there is a tacit as-
sumption that the distribution function (the number of particles with a particular ve-
locity at a particular location) is Maxwellian. As the distribution function of the gas
will, over time, evolve towards a Maxwellian distribution most objects will be close to

this distribution.

82
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Often an ensemble under investigation will have a non-Maxwellian distribution func-
tion. For example, there might be some process that excites a subset of the particles
resulting in a fast-moving species. In order to model these subspecies, perturbations to

the Maxwellian distribution must be considered.

Non-thermal distribution functions have been observed at the Alcator tokamak (Coppi
et al. [1976] and Pieroni and Segre [1975]), at the TORTUR tokamak (Kluiver et al.
[1988] and van Lammeren et al. [1992]), the L-2 stellarator (Blokh and Larionova [1981])
and the Rijnhuizen Tokamak Project (RTP) (Box [1999]). Non-thermal signatures in
the Thomson scattered spectrum can occur due to neutral beam injection, electron-
cyclotron resonance heating (ECRH) or deuterium pellet injection (Box [1999]), electron
streams travelling at the Alfvén speed (as described in Kluiver et al. [1988]) or from a

trapped electron population (Blokh and Larionova [1981]).

The simplest natural generalisation of the single-temperature Maxwellian is to add
another Maxwellian distribution of a smaller amplitude. This corresponds to the major-
ity of electrons existing at one temperature whilst a smaller subsection of the electron
population exists at some hotter temperature. Thomson scattering spectra consistent
with a two-temperature electron distribution have been observed at the RTP (Box
[1999]) and Alcator tokamak (Coppi et al. [1976] and Pieroni and Segre [1975]). It
is worth emphasising that, although a two-temperature distribution will be discussed
throughout this chapter, without two extra measurements no quantitative analysis of
the validity of this model can be undertaken. Moreover, non two-temperature deviations
from a Maxwellian distribution have been observed at tokamaks such as TORTUR (van
Lammeren et al. [1992]).

If the two species are considered separate and non-interacting over the duration of
observation (approximately 10 ns) then the combined Thomson scattering is the linear

sum of the light scattered from each separate species given by

fi=®18i(Th) + ®25:(Tx) i=1,2,3 (5.1)

where f; is the combined scattered intensity from the two species, ®; and ®, are pro-
portional to the plasma electron densities for the two species and S;(T1) and S;(T3)
are the two spectral density functions for the i*! filter (see §4.2 for more details) with

electron temperatures 77 and T3 for the two species respectively.

There are four degrees of freedom for the two-temperature model: ®,, ®5, 77 and 1.
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However, as only three filter responses f; are available an observation is only sufficient
to constrain the solution to lie on some line. Therefore, there will be a 1-parameter
family of two-temperature solutions consistent with each set of filter responses. All of

these solutions are possible in the absence of further information.

5.2 Channel responses

In order to get an idea of the effect of a second temperature, we investigate how the

filter responses change with the presence of a second temperature species.

5.2.1 Response curve graphs

The response to two-temperature distributions for the channels of spectrometer 5 are
shown in figures 5.1-5.3. For figure 5.1, the plasma densities are equal and the corre-
sponding response curves are symmetric about the plane T3 = T5. In the sequence of
figures 5.1-5.3 the electron density becomes increasingly dominated by the first species,
which has a temperature of T7. This can be clearly seen in figure 5.3 where the curve
becomes stretched along the T, axis: at any point on the surface the response is roughly

constant along the 75 axis whereas it varies markedly along the T3 axis.

5.2.2 Recovering the single-temperature distribution function as limiting

case

The single-temperature response function appears from the two-temperature distribu-
tion function as several variables are taken to limiting values. Irrespective of the method
of measuring the scattered spectra, the response of a two-temperature distribution will
tend to that of a single-temperature distribution as the electron density of one of the

two species tends to zero.

The method of Thomson-scattered-spectrum analysis used at COMPASS-D involves
measuring the response at three spectral channels. As can be seen in figure 4.6, these
channels do not cover all frequencies. For example, channel 1 (measuring the longest
wavelengths) does not measure wavelengths very close to the laser’s wavelength. If the
electron temperature is sufficiently low then the filters will detect none of the scattered

light. Likewise, if the temperature is sufficiently high, then although the detectors
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Figure 5.1: Response of the three channels to a two-temperature
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n\ :ri2 is 50 : 50.

85



Chapter 5. Two-temperature Thomson scattering diagnostic analysis

0.05
0.045 -
004

Filter Response / art)

ST
0
N
N
2000 Temperature 1/e\

Temperature 2 / eV

(a) Channel 1

Filter Response / arb.

/\/\
N

2000 Temperature 1/ eV

Temperature 2 / eV

(b) Channel 2

Filter Response / arb

P* 5000

>500
0 Temperature 1/ eV

Temperature 2 / eV

(¢) Channel 3

Figure 5.2: Response of the three channels to a two-temperature distribution

function. The electrons have densities 7! = 1.3 x 1020m-3 and
D7 v in*m-3-fhp ratin P - nr~



Chapter 5. Two-temperature Thomson scattering diagnostic analysis

Filter Response / art)

2000 Temperature 1/e\

Temperature 2/ eV

(a) Channel 1

Filter Response / art)

Sifmiu

N
N

2500
00 Temperature 1/ e\

Temperature 2 / eV

(b) Channel 2

Filter Response / arb.

N
N
2000 Temperature 1/ e\

Temperature 2 / eV

(¢) Channel 3
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Figure 5.4: Various mappings from {7}, T%, ®;, ®2} space into observation space
{f1, f2, f3} are shown. Solid curves in {T},T%, ®1, P>} space are iso-
response curves. Certain iso-response curves are equivalent when the
channel responses are normalised by projection onto the plane.

pick up some scattered light, the majority is scattered at too high a frequency for
the spectrometer channels to detect. Although these temperature limits exist they are

unlikely to be encountered in practice.

A one-temperature response curve is recovered in the limit as ny tends to zero, as Th

tends to zero or as Ty tends to oo.

5.3 Normalised outputs

In order to present and understand the data, it is convenient to reduce the number of
degrees of freedom. One can observe that there is a degree of freedom that corresponds
simply to scaling the overall density of the plasma, which can be expressed by multiply-
ing (5.1) by some arbitrary number. This gives a different measured triplet, {f1, f2, f3},
but the two temperatures remain unaltered. Geometrically, this degree of freedom is
manifest as straight lines emanating from the origin in (fi, f2, f3) space. Each point
along these lines is identified with exactly the same two-temperature distribution. This

is shown in figure 5.4.

In order to remove this ‘uninteresting’ degree of freedom, the responses were nor-
malised by dividing the i*h observed channel response f; by the sum of all three chan-
nels. The resulting normalised channel responses, fi, are described by (5.2). This places
the constraint on the triplet {f1, f2, f3} that f1 + f> + f3 = 1. This normalisation can

be viewed as projecting all points in {f1, f2, f3} space onto the plane that intercepts the
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three axes at 1 as shown in figure 5.4.

= fi _ 218i(Th) + $25:(T3)
X @ 85(T) + @23, 8(Th)

(5.2)

If the responses from the three channels are f;, fo and f3 as defined in (5.1), then we

can define a normalised spectral density function for the it channel, S; (T), as in (5.3).

5i(r) = <D (5.3)

B Zj S;i(T)

This leads to an alternative definition of the overall filter response, analogous to (5.1)

but using the normalised spectral density function as in (5.4).

fi = 218i(T1) + ©25:(Tn) (5.4)
®; is again proportional to the plasma electron density n; but now also takes into
account the normalisation factor ), S;(T).

We can express (5.2) in terms of this normalised spectral density function (5.3) as in

(5.4), so that (5.2) becomes:

AL IO ) %\
fi = &)1 + ‘:Pz SZ(TI) + (1 ‘i’] + ég) SZ(T2)
= aSi(Ty) + (1 - ) Sy(Ty) (5.5)

This form of the normalised data depends on three variables: 17, 75 and o where « is

the relative density of the first species compared to the second species.

It will be useful later to define a vector of normalised observed responses as defined
in (5.6). The third normalised channel response is not included as it is not independent

of the first two normalised channel responses.

f [ @Si(T) + (1 - ) Si(T)
fo aSy(T1) + (1 — ) S2(T>)

5.3.1 Single-temperature distributions

A single-temperature electron distribution has a unique set of observed channel resp-

onses and so has a unique set of normalised channel responses. Figure 5.5 shows the
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Figure 5.5: Plot showing the pairs of normalised channel responses for single-
temperature distribution functions. The scattering angle is 90°. Se-
lected points have their temperature in electron volts labeled.

set of normalised channel responses consistent with a single-temperature distribution
function. This curve was generated using the measured spectral responses for spec-
trometer 5 (see figure 4.6). For a given temperature, the theoretical Thomson scattered
signal was integrated over each channel’s spectral response in turn. The resulting three

signals were then normalised and plotted.

It is the nature of experimental error that the measured response from each channel
will have an element of noise. This means that observations from a plasma precisely
described by a single-temperature distribution will not, in general, lie exactly on the
curve shown in figure 5.5. Instead, there will some scatter about this curve. To assign
a best-fit temperature to such deviant data we find the point on the single-temperature
curve (figure 5.5 for the normalised case) that is ‘closest’ to the observed data. Under
§4.9, this closeness is taken to be the least-squares measure. This is usual, as x? is
the minimum variance unbiased estimator or the maximum likelihood estimator for
Gaussian errors. The likelihood function for estimating the temperature of a single-

temperature distribution in the presence of noise is given by (4.40) on page 78.

For any given temperature, T', there will be a curve, Qis,_7, consisting of the set of
points (i.e. the set of observations) for which the best measure of temperature is 7'
These curves will be referred to as iso-temperature curves hereafter. This degeneracy
arises from forcing data to fit a model, which in this case is a single-temperature dis-
tribution function. The distance from the single-temperature curve to the observation

along the iso-temperature curve is a measure of how inconsistent the observation is with
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a true single-temperature distribution.

The ‘closeness’ is measured with the observed signals before they are normalised.
Under the full set of observations the iso-temperature curve will be normal to the single-
temperature surface: this is from our least-squares definition of ‘closest’ or ‘best’. The
normalisation has the geometric interpretation of a projection on the plane fi+ fo+ f3 =
1. This projection will introduce apparent distortions to the iso-temperature curves:

they will no longer appear normal to the single-temperature surface.

To analyse these iso-ture curves, the normalised responses for a single-temperature
distribution were considered. For such a distribution, normalising the three channel
responses is equivalent to removing any @ (i.e. plasma electron density) dependency,
with f;(T) = S;(T"). Therefore, the ‘best fit’ procedure described in §4.9 assigns a temp-

erature to each set of normalised observations: T'(f). This mapping was then expanded

into a Taylor series as shown in (5.7), where A is the 1 x 2 matrix (dT/df; dT/df3).

T(f) = Ty + A df + O(df?) (5.7)

Iso-temperature curves in f are those curves along which the temperature does not
vary, i.e. Vf € Qigo_71 T(f‘) = Tp. This must be true for an arbitrary point along the

line, requiring (5.8) to hold along so—7

Adf=0 (5.8)

Single value decomposition (SVD) of matrix A (an N x M matrix) finds the three
matrices U (Nx M), W (M x M) and V (M x M) for which A = U-W-VT, The three
matrices also have the property that W is diagonal, V is orthogonal and, if M > N,
UT.U=1. If M < N then UT . U will still be diagonal but N — M elements will be
zero instead of one. The diagonal elements in U that are zero will have corresponding
elements in W that are also zero. Columns of V (or rows of V) corresponding to zero
diagonal elements of W are the null-vectors of A. For the above problem there is one
null-vector. This vector is unbounded by 5.8, so it is tangential to the iso-temperature

curve.

Following the null-vector (as given by SVD) to form the complete iso-temperature
curve is a problem in integrating an Ordinary Differential Equation (ODE). By using

the boundary condition that the integration have an initial value for f; and fy this
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Figure 5.6: A selection of iso-temperature curves are shown along with the exact
single-temperature curve as in figure 5.5. All points along an iso-
temperature curve have the sample ‘best estimate’ temperature. The
lines are not normal to the single-temperature curve because of the
projection due to the normalisation.

ODE can be classified as an initial value problem (IVP). Various methods are available
for solving IVPs. A commonly used robust method is the fourth-order Runge-Kutta
method (see chapter 16 of Press et al. [1996]). The step size can be either fixed or
adaptive. Because of the flexibility associated with the adaptive step-size, this method

was used for the integration. The routines used were taken from Press et al. [1996).

The results from the Runge-Kutta method is shown in figure 5.6 along with the
single-temperature curve. The iso-temperature curves are straight lines crossing the
single-temperature curve at the relevant temperature. As can be seen clearly for the
low temperature cases, the iso-temperature curves are generally not normal to the single-

temperature curve.

5.3.2 Two-temperature considerations

From (5.5), a two-temperature distribution is a linear superposition of two single-
temperature distributions. In this simple model, the electron density of each species
cannot be negative. This positivity constraint implies that a line connecting two points
on the single-temperature curve in figure 5.5 contains all points consistent with a two-
temperature distribution function, as shown in figure 5.7. T} and 75 for this two-
temperature distribution function are given by the two intercepts between the line and

the single-temperature curve.



Chapter 5. Two-temperature Thomson scattering diagnostic analysis 93

1
! ! ! Single lempera’ture curve
Two temperature curve for 100eV & 1keV -+~

08 | -
3
8
3
=]
o~ 06 y
ko)
€
] 400eV
4 V 300eV oc0ev

600eV,
3 7006V, 200V
2 04} p
E theVl 1508V
s | /el
z 1.5keVy e
2keVy TN 100eV
0.2 | 3keV, i
10keV
[100keV 50eV
0 1 1 1 1
0 0.2 04 0.6 0.8 1

Nomnalised channel 1 output

Figure 5.7: Graph showing the pairs of normalised channel responses for all two-
temperature distributions (dashed) with 71 = 100eV and T, = lkeV.
The scattering angle is 90°. The single-temperature response curve
of figure 5.5 is shown for reference.

The positivity constraint on plasma electron density requires that all observations
must lie underneath the curve for two-temperature distribution functions. This is ob-
vious as the observation must lie on the line connecting some 7} and some other T,. If
the model is relaxed to allow an n-temperature distribution function and those n tem-
peratures are known a priori then the observation must lie within the n sided polygon
with vertices touching the single-temperature curve at Ty, 75, ..., T,. Irrespective of
the values of T1, T3, ..., Ty, again positivity requires that the observation lie beneath

the single-temperature curve.

There is a natural, geometric interpretation of the degree of freedom in the two
temperatures. Consider a point on the line connecting 77 and T5. This point corresponds
to a specific observation: a set of three observed channel responses that have been
normalised (by dividing by their sum) to produce the two normalised channel responses.
By rotating the line about that point the data remains consistent with the observation
whilst the values of T, T and « are altered. Any line that passes through that point
gives rise to a valid two-temperature interpretation where 77 and 75 are the intercepts
with the single-temperature response curve and « is the length of the line from T, to

the observation point as a fraction of the total line’s length.

Requiring 73 > 0 places a lower bound (T4"™) on T} whilst stipulating 75 < oo places
an upper bound (77?*) on T;. For all points that lie off the single-temperature curve,

there is a range of temperatures 74" > T > T/** that the electron distribution cannot
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Figure 5.8: Graph showing the single-temperature response curve (solid) and
three two-temperature lines consistent with 77 = 100eV, Ty = lkeV
and a = 2/3. Two of the lines represent the limiting cases; T{"* and
Tin are labelled.

contain. The two limits are shown in figure 5.8 along with a third intermediate case.

It is worth emphasising that the best fit single-temperature distribution may have
a temperature that is inconsistent with the two-temperature model. By comparing
figures 5.6 and 5.8 it is easy to find points (i.e. observations) that have a best fit
single-temperature distribution, with a temperature T say, and have a two-temperature
distribution with 74M® > T' > T, This inconsistency is not surprising as any non-
thermal component will distort the best fit single-temperature away from the underlying

Maxwellian distribution.

In addition to the limits placed on 77 and T, there are constraints on the value of a.
For the case where T} = 0 and Ty = T{™" ¢ then has a minimum value: a™®. There is
a corresponding maximum value of a, a™®*, appearing as the limit as 77 tends to T7"**

whilst T, tends to oo. Therefore the value of @ must lie between ™™ and a™2X,

5.4 Iso-response curves

As illustrated in the previous section, each observed measurement corresponds to a
family of solutions. It is impossible to find the correct value without further information
but the family of solutions may be plotted and external information, such as the likely

fraction of the minority hot component, can be used to constrain this family of solutions.
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5.4.1 Theoretical treatment

We defined f in (5.6) as the vector of normalised observed responses. Also, we define &

as the vector of model parameters of the normalised distribution function as:

T
gE=| Ty (5.9)

«a

By considering a Taylor series expansion of f (&) and retaining the first-order term,

the gradient of the normalised responses, the matrix A, is defined as:

df = Adg (5.10)

The iso-response curves are lines in g along which the normalised response, f, does
not change. A tangent to the iso-response curve is the direction in which the gradient

of the response is zero:

df =Adg=0 (5.11)

dg thus lies in the null space of A, i.e. it is an eigenvector of A with eigenvalue of zero.
This null vector, described by (5.11), was obtained using a method similar to §5.3.1.
SVD was used to find the three matrices U, W and V. The null vector is the column of
V corresponding to the zero singular value in W. These vectors were integrated using

an adaptive step-size fourth-order Runge-Kutta method.

5.4.2 Figures

This methodology was used to produce the iso-response curves illustrated. It is crucial to
appreciate that in the following graphs the third axis, «, has been suppressed. Because

of this projection, the curves may appear to cross where in the full 3-space, they do not.

In figure 5.9, several iso-response curves are plotted on the same graph. The initial
points chosen from which to build the curves are T} = 10eV, a = 0.001 and T5 selected

from 250eV to 4keV in 250eV steps.
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Figure 5.9: Iso-response curves (¢ axis suppressed) for initial points with differing
values of T5, where T, > T3.

The initial points of T} are ‘close’ to the axis but not at zero. This is because the
solutions become degenerate if T is exactly zero. A complementary set of curves can be
generated that are the mirror image through the line T} = T5. This simply corresponds

to swapping 77 and 75 and taking 1 — o instead of ¢ as the initial value of a.

The value of « increases along the curve as T increase. For the tight curves with low
initial 77 the value of « increase slowly up to the sharp corner. At this point, the value
of a rapidly increases until a value close to one is achieved and the curve has turned

the corner. After this, a increases slowly as T5 increase.

The limiting case is an iso-response curve with an initial value of « of zero. As such
an iso-response curve is followed, the initial direction will be a straight line from 77 =0
to 77 = T, with o remaining zero. As the point where T7 = T is reached, a will rise
without any change in 77 or 7, until « is unity. Further following the curve reveals T;
and a remaining constant and T5 increases. This case corresponds to an observation

exactly on the single-temperature curve of figure 5.5.

Figure 5.10 shows the effect of varying the initial value of a. The iso-curves have
an initial conditions of 77 = 10eV, T3 is either 1keV or 3keV and o« is from the set

{5 x107%, 1074, 1073, 1072, 0.1}.
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Figure 5.10: Iso-response curves (a axis suppressed) for initial points with dif-
fering values of . The initial value of & (ap) is taken from the set
{5x1075,1074,1073,10-2,0.1}.

5.5 Data from COMPASS-D

It is interesting to consider a large collection of data and plot these observations on
a normalised response graph. To do this, the data for all plasma shots between 24
November 1997 and 4 June 1998 (some 1831 shots) were catalogued. For the data due to
spectrometer 5, the combined signal-to-noise ratio for the three channels was calculated
for each of segment range 90 to 99 (those where plasma is likely to have been present)
of each shot, as described in §4.5. The 1000 observations with the greatest combined

signal-to-noise ratio were then plotted in figure 5.11 with error bars for selected data.

It is clear that the majority of data in figure 5.11 lie above the single-temperature
distribution function curve. This is in contrast to the expectation that all data would
lie below the curve. Although the majority of data are above the curve, there are
data-points which lie inside the curve by many error-bar lengths. In addition, the data-
points that lie outside the curve appear to be bounded by some curve similar to the
single-temperature curve. This suggests that the two-temperature distribution model is

applicable and that there is some systematic bias in the analysis.

One example of a systematic bias that would account for the difference is if the ref-
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Figure 5.11: Observated normalised responses for the 1000 data from spectrom-
eter 5 with the greatest combined signal-to-noise ratio. The single
temperature curve of figure 5.5 is also shown. Selected points have
error bars.

erence signal was not correct for a particular channel. This would reduce the measured
amplitude for that channel and normalisation would then increase the measured ampli-
tude for the other two channels. If the reference signal for channels one and three were
slightly incorrect then the observations would be biased diagonally towards increased
channel two and decreased channel one normalised responses, which is the observed

behaviour.

Another possible cause is a film forming on the vacuum vessel’s view port from deposi-
tion of impurities. Barth et al. [1997] states that, at the RTP. transmission may decrease
by 78% for wavelengths of 700 to 850 run and 70% for 550 nm light. This chromatic
effect would affect channel one (longest wavelength) the most, channel two to a lesser
extent and channel three the least. After normalising, this would introduce a systematic
bias in the channel responses: the response for channel one would be suppressed whilst

the response for channel two enhanced.

It is worth emphasising that there are unquantifiable uncertainties in the single-
temperature curve. This curve was constructed using supplied frequency response data
for each of the channels. If this information were incorrect, due to the chromatic effect
of the deposited film for example, then the single-temperature curve will not describe

the upper limit for data.
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5.6 Converting measured responses into iso-response curves

Iso-response curves are values of 71, 75 and « that have identical observed responses.
Any point on the line is sufficient information to construct the iso-response curve as any
point can be the initial value for the IVP. Therefore, the iso-response curve for a set of
normalised observations can be obtained by ascertaining one valid set of 77, T3 and a.

Since there is a degree of freedom, there is freedom in choice of initial 77.

It is possible to choose 71 = 0 and discover 75 and o from inspection against the
single-temperature curve. However, as previously stated, the solution is degenerate for
any temperature at or sufficiently close to zero. Instead some small, non-zero value of

T could be used (e.g. 10eV) or some another value which is more convenient.

Once the iso-response curve has been established, it may be possible to place any
further constraints on the system. Any measurement will yield two (independent) nor-
malised channel responses. As described above, these can be converted into a iso-
response curve containing all values of {71, T2, a} that are consistent with the observed
data. The values of 77, T and « vary along this curve. Sections of the curve may

correspond to values of 77, T» or « that can be ruled out by ‘external’ criteria.

This should be done carefully as the extra information may be inapplicable for the
specific shot under consideration. For example, evidence from van Lammeren et al.
[1992] suggests the minority (in this case non-thermal) species at TORTUR is less than
10% of the electron density, placing a strong constraint on valid values of a. However,
Pieroni and Segre [1975] reports that the density of the minority hotter species at
Alcator was 40% of the cooler species. Undoubtably, this differences arises from the
different operational regimes of the two tokamaks. However, since both the upper limit
of a and the cause of the minority species are not known for COMPASS, imposing

upper-boundary restrictions on « would be dubious.

5.7 Errors

An uncertainty in the (fi, f2) will be manifest as an uncertainty in Tmax and Tin,
To obtain the true probability distribution function for the uncertainties the probabil-
ity density function of the point must be integrated over. For example, consider the

probability density for T{"®* being some temperature T}, denoted p(77). If the line
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Figure 5.12: Error estimate for T/"®* and Ty"™ by projecting the 1 x o surface
onto the single-temperature curve.

connecting f(7T'=o00) (the origin in figure 5.5) to the single-temperature response point
f(T = T}) is parameterised by [ so that f(I =0) = (0,0) and f(I = 1) = £(T = Ty)

then p(TY) is given by (5.12) where p(f) is the probability density associated with the

uncertainty in the observation.

1 -
p(T}) = /0 p(E) i (5.12)

In general this integral is intractable as the form of the curve will depend on the
channel responses. An approximation to this is to project the 1 x o ellipse onto the

curve as shown in figure 5.12.

5.8 Conclusions

Fitting a two-temperature model when supplied with three channel responses is an
ill-conditioned problem. As the data provides insufficient constraints on the model,
a family of solutions (a curve) exists for each observation. In the absence of further

information, any solution along this curve is equally likely.

Despite the degeneracy in the two-temperature parameters, analysis of the channel
responses provides constraints for the two temperatures and the ratio of the two species’
electron densities. For a given set of observations and without further ‘external’ infor-

mation, the data is sufficient to place upper and lower bounds on the cooler and hotter
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components respectively and both upper and lower boundaries on the ratio of electron

densities for the two temperature species.

With additional information, it is possible to constrain the solutions further. However,
this information must be from a source other than Thomson scattering results. An extra
channel would enable precise measures of the two temperatures without the degeneracy.
Whilst if five channels were present then an objective measure of the validity of the

two-temperature model would be possible.

Increasing the number of channels in the spectrometers becomes progressively more
difficult due to alignment problems and losses. An alternative method of analysing
the scattered light is to use a grating or prism. This splits the one-dimensional beam
path into a two-dimensional planar representing the scattered light spectrum at each
point along the beam path. This two-dimensional plane can then be imaged onto some

recording device.

The original form of this diagnostic, as described in Bretz et al. [1978], used a tele-
vision camera as the recording device. From this design, the generic term Television

Thomson Scattering (or TVTS) diagnostic was coined.

Modern TVTS uses image intensifiers with a Charge-Coupled Device (CCD) as the
method of data acquisition (see Barth et al. [1997] and van Lammeren et al. [1992]
for example configurations). A CCD uses the photoelectric effect to generate a charge
proportional to the number of incident photons at each picture element (pixel). CCDs
provide a more flexible and higher resolution method of data acquisition than analogue

television camera technology.

The major disadvantage with TVTS is a low repetition rate. Diagnostics using TVTS
utilise ruby lasers. These are high power devices, up to 25 J, that produce light in the
visible spectrum at a wavelength of 964.3 nm. However, these diagnostics suffer from a
number of disadvantages. The laser frequency is close to the H, line and some He lines
so a regions of the spectra are unusable. Ruby lasers do not have the high repetition
rate of the Nd:YAG lasers, limiting TVTS to analysing the signal at one time during the
plasma discharge. Recently, the TVTS system at RTP has been upgraded to achieve
some temporal measurement. See Beurskens et al. [1997] and Beurskens et al. [1999] for

more details.



Chapter 6

Conclusions and future work

This chapter summarises the results and conclusions presented in this thesis. Possible

future developments are suggested.

The first section of this chapter recapitulates the main advantages and disadvantages
of the Genetic Algorithm (GA) approach to optimisation. In section two these points
are framed within the context of signal analysis, especially with Bayesian methodology
in mind. A retrospective view of the Thomson scattering diagnostic is presented in

section three with the final section describing future work and unanswered questions.

6.1 Summarising Genetic Algorithms

A set of generic library routines, collectively referred to as called ELGAR, was devel-
oped to allow solutions of optimisation problems. Although the principle use of this
library was signal analysis, the library is flexible enough to permit investigations of

other problems.

By default, each parameter in ELGAR can take on one of 256 different values. Due
to the biological inspiration of the algorithm, these parameters are usually referred to
as genes. This allows sufficient resolution without encountering ‘boundary problems’

associated with true floating point representations.

In addition to the signal analysis, some properties of GAs in general (such as the

optimum mutation rate) were investigated using ELGAR. A discrepancy between the

102
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results observed and those predicted was observed. This was accounted for by the

different operational mode between ELGAR and typical binary genetic algorithms.

GAs proved a valuable method of solving the optimisation problems investigated.
However, the improvement of the solution was found to be severely limited if the mini-
mum ‘valley’ lies off-axis. This seems to be a fundamental limitation of GA techniques
as further improvement requires multiple mutations of the required magnitude. This

problem would be lessened if variable mutation rate scheme were employed.

6.2 Genetic Algorithm Signal Analysis

Signal analysis for models with non-linear dependent variables was investigated. GAs
were found to be able to fit such models efficiently. An example of this is fitting a
sinusoidal signal to some time sequence data (§2.6.2). It is important to note that
the GA fitting procedure is via a purely forward modeling paradigm. Although fitting
periodic signals can be achieved via Fourier decomposition, the GA does not use this

information and therefore can be applied to a non-periodic or nonlinear signal.

Augmenting the likelihood function via Bayesian Inference model was found to greatly
improve the fitting procedure. In the presence of high levels of noise, the addition of
prior information can reduce any degeneracy and was found to reduce the error from
fitting to the noise. In general, the optimisation problem then becomes more complex,
typically there will be many local minima, but the GA technique was found to cope
with this problem. Complex problems, such as extracting a reference signal from many

poor examples that are not perfectly aligned (as described in §4.6), became tractable.

6.3 COMPASS-D experiment

An analysis of the diagnostic output was conducted. The method of solving the Bayesian
augmented likelihood estimation via application of a Genetic Algorithm proved to be

valuable in analysing results from the Thomson scattering diagnostic at COMPASS-D.

The analysis was further extended by considering a two-temperature distribution
function. This form of perturbation of a Maxwellian distribution was chosen due to

its simplicity and observational evidence. Several constraints on the observations were
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found, despite the available information being insufficient to full constrain the two-

temperature distribution function.

The region of ‘observation space’ consistent with an n-temperature distribution func-
tion was found to be bounded by the single-temperature response curve. Data from
COMPASS-D diagnostic was analysed and found to like outside this region of valid
solutions. However, the data appeared to be bounded by a similar curve suggesting
systematic bias at some point in the analysis process. Several possible explanations for

this bias were suggested.

For any valid observation, and assuming a two-temperature distribution function, let
T be the lower temperature and T5 the upper temperature. Let the set of 77 consistent
with an observation be A and the set of T, consistent with the same observation be B.
It was found that these two sets, A and B, are disjoint. For many possible observations,
the set of temperatures in neither A or B (i.e. the intersection of the complements of A
and B) contained the least-squares best-fit single-temperature solution. If we assume
that the plasma is consistent with the two-temperature model with bulk temperature
T, with some minority species at T3 then the presence of these ‘hot’ electrons was found

to bias the least-squares estimate towards higher temperatures.

6.4 Future work

The obvious extension for the two temperature analysis is to consider a many channel
dataset and to recover a full electron distribution function. This recovery procedure
would require a dataset with good spectral resolution. One possible source of such data

is from a Television Thomson Scattering (TVTS) based diagnostic.

The problem of recovering the distribution function is an inverse problem. The form
of the problem is given by Pechacek and Trivelpiece [1967] as stated in (4.4) on page 48.
This is an inhomogeneous Fredholm equation of the first kind. Although the equation
appears linear in f(3), due to positivity constraints, the full problem will be non-linear.
It is possible to solve (4.4) treating it as linear and forcing the positivity after the

Inversion.

Various methods exist for solving Fredholm equations. Most use regularisation to

remove the degeneracy from the ill-posed nature of the inversion. Such regularisation
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could be from imposing a (relativistic) Maxwellian-like distribution function or from

Maximum Entropy constraint.

Stability is another concern in inversion. Sharp features in the response of one speed
(considering all directions) indicates stability in the recovered distribution. The rel-
ativistic beaming effect implies that electrons approaching the observer are scattered
preferentially to those receding. This introduces a skew in the observed spectrum which

would improve the stability of the solution.

A GA will utilise many points in the attempt to solve the specified problem. When
the GA finishes, the final generation will contain some best-fit solution as well as many
other solutions. In general, these other solutions will be close to or identical to the
best solution. If identical points are disallowed (an option in ELGAR) then the final

generation will contain n — 1 distinct points close to the best solution.

It may be possible to use this distribution of points to estimate the distribution
function near to the best-fit solution. This would alleviate the necessity of a full Monte
Carlo simulation for recovering confidence intervals without the normal distribution
assumption. However, there would have to be careful analyses of GA dynamics (e.g. via

Markov chain analysis) as the final points are very likely to be correlated.

The code for fitting the reference signal to observed data could be extended. At
present it considers the reference signals to be perfect. However, after constructing
reference signals there will inevitably be some uncertainty in the final result. This
uncertainty is easily included by considering (3.4) on page 42. To consider errors on the

reference signal of o; ; the new likelihood function is:

I,J 2
Z di; — gij(A)
[ J +Ja ] . (6.1)
1=1,j=1 D

The most obvious element that could be included to improve ELGAR is the addition
of a local optimisation routine. Such routines would allow ‘fine tuning’ of the fitting
parameters after the GA had finished. A standard multi-dimensional algorithm that
only use function evaluations, such as Powell’s method, could be employed. One such
method could be adapted to work for the library. This code should then operate as an

option for backward compatibility (see Appendix B for discussion).

ELGAR could also be extended by adding more advanced options such as aging,

variable mutation rate and directed mutations. It is possible to simulate these effects
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without altering ELGAR through carefully written client-side software (the problem-
specific code). However, code that extends GA-based functionality belongs within the
library. Inclusion of these extra features and operators would allow testing of the library

against other GA implementations.

The overall method, using GAs to solve Bayesian inference problems, is applicable
to a wide range of problems not limited to plasma diagnostic analysis. The method
provides a systematic method of introducing previous experience whilst not requiring
a initial point close enough to the true minimum. This identifies the algorithm as a
highly suitable method of solving a wide range of problems. Therefore, applications in

unrelated fields should be investigated.
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Appendiz A

Code listing

There are 207 program files (i.e. ending in .c) and 76 header files (i.e. files ending in
.h). These contain 49670 lines of code which would take up 1035 pages to list. Because
displaying all the code is impractical, only selected pieces are listed. The whole source

code is available on a CDROM at the end of this document.

A.1 GenePool structure

The C programming language allows many variable types to be grouped together to
form a ‘structure’. Structures usually contain many related items and grouping these
items together allows easy handling of often abstract objects. For example, C has no
concept of a complex number but a structure consisting of two floating point numbers
(labelled real and imaginary) would allow a function to take a complex number as a

single argument.

The most important structure within ELGAR is GenePool. This contains all the
information about the optimisation. As all the information about the optimisation in
contained within the structure, there can be any number of instances of ELGAR running

concurrently or hierarchically.
The following code listing is as present on cdrom, including all comments.

File: GA/Elgar/elgar.h

typedef struct gp_struct{
/* ALL values from here to the AUTOINITALISE section *MUST* be
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* filled in before calling the GimiGenePool() routine.
*/
/* These are the parameters to main. They are required
* by the X interface so that X-like options can
* be processed. */
int gp_argc;

char **gp_argv;

/* Number of parents and number of children should be
* obvious. Note that these values must be greater than
* the minimum above. Also, number of children must be
* an even number.*/
unsigned gp_NoOfParents;
unsigned gp_NoOfChildren;

/* This is the number of genes needed to describe each
* entity. A byte is allocated for each Gene. Note, it
* is purely the responsibility of the gp_CalculateError()
* routine to assign some kind of interpretation on these
* bytes. *x/
unsigned gp_NoOfGenes;

/* The number of byte-wise mutations to impose per
* generation. At the moment this is a fixed number. */

unsigned gp_MutationsPerGeneration;

/% Boolian value:
* TRUE => display X window
* FALSE => don’t use X interface */

unsigned gp_GAMEOn;

/* This is the pointer to the routine for calculating

* the error for a specified entity. This is the problem
* specific area. It must be a routine with a prototype
* like:

* #include "elgar.h"

* int CalcErr( Entity *);

* and assigned within c-code thus:

* myGenePool.gp_CalculateError = CalcErr;

* It is the responsibility of this routine to fill in
* the element ent_Error within the entity, based on

* the gene sequence. */

int (*gp_CalculateError)( Entity *);
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/* These entries *MUST* be filled in, but may contain blanks/NULL. NB

* Don’'t assume that they are blanks: initalise them! */

/* If this is not NULL then the routine is called after
* each generation. This allows the calling routine(s)
* to update some information, watch progress, etc */

int (*gp_NewGeneration)( struct gp_struct *);

/* Sometimes a different method of breeding is required

* This entry allows the "hooking” of a different breeding

* routine. The first two Entities are the parents and the

* second two are the children. The whole GenePool structure

* is also passed as a parameter (in case it is needed).

* To disable this option, assign the value NULL to it. #*/
int (*gp_NewBreed) ( struct gp_struct *, Entity *, Entity *,\
Entity *, Entity *);

/* Another hook entry, this time for the mutation operation
* Set to NULL to use the built-in one. */

int (*gp_NewMutate)( struct gp_struct *, Entity *);

/* If this value is non-zero, then the optimisation
* routines will terminate if the lowest error (best
* solution) is less than this value. */

float gp_Tolerance;

/* If the range of parent error is less than the best error
* divided by this number, then all but the best parent are
* replaced by random values. */

unsigned gp_CatastrophicFraction;

/* The maximum number of catastrophes before "giving up" and
* returning from FindMinimum(). Set to zero for an infinite
* number. NB this option is ignored if gp_CatastrophicRange
* is set to -1.0. */

int gp_MaxNoCatastrophes;

/* If this value is greater than zero, then FindMinimum() will
* give up after this number of generations. NB other criteria
* may cause FindMinimum() to return before this. */

unsigned gp_MaxNo0OfGenerations;

/* If this is non-zero, then parents will die after gp_MaxAge

* generations. */

unsigned gp_MaxAge;
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/* If non-NULL, this string will appear as part of the title
* of the GAME window. The memory pointed to by gp_Title

* is copied, so it need not have extent for the

* duration of the optimisation. */

char *gp_Title;

/* Boolean value:
* TRUE = All (completely) identical entities in the gene
* pool are removed. The method of removal is that
* they are moved from the parent area to the far
* end of the child area. They are then lost in the
* next lot of breading.
* FALSE = Multiple copies of gene-identical entities
* are allowed. */

int gp_Removeldenticals;

/* Elgar will pause for gp_SleepFor milliseconds after each
* generation. The sleep occures after GAME has refreshed (if
* active) and after calling gp_NewGeneration() (if defined). */

unsigned gp_SleepFor;

/* The seed for the random number generator. Set to zero for the
* default. */

unsigned gp_Seed;

/* Elgar _can_ produce output to STDERR as a quick error-tracing
* facility. The output is subdivided into three classes:

* 1. Critical errors - Something has gone

* very wrong and Elgar

* cannot recover from this.

* 2. Recoverable errors - Something has gone

* wrong but Elgar can use

* a default value, etc.

* 3. Warnings - Something unexpected happened

* which has no direct consequence.

* 4, Information - General information (there’s an

*

awful lot of this!).
* Set gp_Verbosity to O for no output, 1 for just critical errors, 2
* for Critical and Recoverable errors etc. */

unsigned gp_Verbosity;

/* ook ok kR ok sk sk ok ok ok Aok ok ok ok ok ok ok

* Hokdkok ok AUTOINITALISE *okkkok

* T

*

* ... from here onwards the variables do not need to be specificed before calling

* GimiGenePool().

*/
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/% These four variables are used for the two relevent
* graphs. */

unsigned long *gp_SpliceSpread;

unsigned long *gp_SpliceTotals;

unsigned long *gp_MutateSpread;

unsigned long *gp_MutateTotals;

/* Here we store the evolution of the GA
* gp_BestEvolution: time-evolution of the best solution.
* gp_MedianEvolution: evolution of the middle solution.
* gp_EvolutionCount: total number of entries taken. Increases
* from zero to EVOLUTION_SIZE.
* gp_NextPoint: where in the arrays we should insert the next
* data. */
float *gp_BestEvolution;
float *gp_MedianEvolution;
unsigned gp_EvolutionCount;

unsigned gp_NextEvolutionPoint;

/% Calculated automatically from gp_NoOfParents and
* gp_NoOfChildren. Also includes the two spares required
* by the QuickSort algorithm. */

unsigned gp_NoOfEntities;

/* The current generation’s number. Initalised to
* zero */

unsigned gp_GenerationNo;

/* Elgar’s current "problem". If it’s zero, then there is no
* problem. */

unsigned gp_ErrorLevel;

/* The collection of parents, which is allocated automatically */

Entity *gp_Parents;

/* This collection of children, which is allocated automatically */

Entity *gp_Children;

/* We need a couple of spare entities for the QuickSort
* algorithm (and other things too). These, too, are

* automatically allocated *BUT* these spare entities do
* NOT have gene sequences allocated. */

Entity *gp_Sparel;

Entity *gp_Spare2;

/* Used by the Numerical Recipes in C random number generator

* ran1() (see chapter 7 of NRC) */
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long gp._idum;
/* These are specified by whichever GAME’s being used */
GameDetails gp_GAME;

} GenePool;

A.2 The Entity structure

Another important structure is ‘Entity’. This contains all information about a particular
entity within the genetic algorithm (see §2.1). It includes the creature’s genes, it’s error

value and its age. The definition is:

File: GA/Elgar/elgar.h

typedef struct {

float ent_Error;

unsigned ent_Age;

GeneSequence ent_Genes;
} Entity;

where the GeneSequence is defined as

File: GA/Elgar/elgar.h

typedef unsigned char * GeneSequence;

Although all the programs consider GeneSequence as a collection of numbers in either
base 256 or base (256)2, the only parts of ELGAR that make that distinction are the
breeding and mutation routines. These can be replaced via the gp_NewBreed and
gp_NewMutate elements of the GenePool structure. If new breeding and mutation
routines are written, the interpretation (i.e. conversion into phenotype) of GeneSequence

is arbitrary.

A.3 Thomson scattering specific code

The code specifically for analysing the Thomson scattering diagnostic channels is in-
cluded here. The function DoJob() is the main entry point for this code. It is called
by the parser when it encounters the Go command (see Appendix B, especially §B.7.3).

The Job structure contains all information about a particular fitting problem.
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File: GA/Thomson/noglobal.c

#include <stdio.h>
#include <string.h>
#include <math.h>
#include "elgar.h"
#include "random.h"
#include "display.h"
#include "noglobal.h"

/* Routines to calculate temperature from areas */

#include "temp.h"

#define GOFFSET_LOWER (-50.0)
#define GOFFSET_RANGE (100.0)

#define DOUBLE_GENES

/* History:
* 29/11/98 Relaxed condition that dT (uncertainty in temperature) must lie

* at least one standard deviation away from zero in StoreBestSoln().

*/

/* A generalised collection of statistical information */
typedef struct {

float Mean;

float AverageDeviation;

float StandardDeviation;

float Variance;

float Skewness;

float Kurtosis;

} StatsInfo;

/* A collection of all the parameters required
* to specify a solution */
typedef struct {
float Offsets [3];
float Amplitudes [3];
float DCLevels [3];

} Solution;

typedef struct {
float WaveMaximum[3], WaveMinimum[3];
Job *myJob;
unsigned Generation;

float *fits[3], *residuals([3];
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float areal[3];
DisplayCtrl *win;
float ResidalsVarianceEstimate[3];

} GlobalVariables;

GlobalVariables Globals;

/* This is the error function, as required by the GA. */
int ErrFn( Entity #);

void ConvertToNumbers(unsigned char *, Solution *);

void BuildFits( Solution *);

void StoreBestSoln( GenePool *, Job *);

char *StrDup( char #);

void CalcStats( float *, unsigned, StatsInfo *);

int SoFar( GenePool *);

void PlotGraph( unsigned, unsigned, unsigned, float *, float *, unsigned);
int Initalise( Job *);

void CleanUp( Job *);

int compare( const void *, const void *);

int Initalise( Job *myJob)

{
float squares, value, *sorted, median, area, minimum, maximum;
unsigned i, RefNo, wave;

StatsInfo stats;
DisplayRequest reqst;

/* Open window to display best solution after each generation. */
reqst.Width = 520;
reqst.Height = 300;
reqst.Titlel = "Best Solution";
reqst.Title2 = "Soln";
reqst.WaitAtEnd = FALSE;
if( myJob->DoGraphics) {
Globals.win = OpenWindow( myJob->argc, myJob->argv, &regst);
if( Globals.win == NULL)
fprintf( stderr, "Unable to open X-Windows\n");
}
else

Globals.win = NULL;

/* Point the global variable myJob to myJob. */
Globals.myJob = myJob;

/* Normalise reference pulse shapes. First we work out a good(ish)
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98 * approximation to the DC offset. Note we use the median instead of
99 * the mean since the median is a more robust estimate of the DC
100 * Offset (see section 15.7 in Numerical Recipes in C) */

101 for( RefNo = 0; RefNo < 3; RefNo++) {

102

103 /* Calculate the median. We use the standard library function gsort()
104 * which aught to be portable. */

105 sorted = (float *) malloc( myJob->nReference[RefNo]*sizeof(float));
106 if( sorted == NULL) {

107 printf( "Out of memory trying to sort Reference[%u].\nTerminating.\n", RefNo);
108 return 1;

109 }

110 for( i = 0; i < myJob->nReference([RefNo]; i++)

111 sorted [i] = myJob->Reference[RefNo] [il;

112 gsort( sorted, myJob->nReference[RefNo], sizeof( float), compare);
113 median = sorted [myJob->nReference[RefNo]l/2];

114 maximum = sorted [myJob->nReference[RefNo]l-1]-median;

115 free( sorted);

116

117 /* Reset Referencel[i] so it goes through the zero. */

118 for( i = 0; i < myJob->nReference[RefNo]; i++)

119 myJob->Reference [RefNo] ([i] -= median;

120

121 /* Normalise the pulse shape so that it has maximum height of 1.0. */
122 for( i = 0, area = 0.0; i < myJob->nReference[RefNo]; i++)

123 myJob->Reference [RefNo] [i] /= maximum;

124

125 /% Code to calculate the sum of the squares in the (normalised) function. */
126 for( i=0, area=squares=0.0; i < myJob->nReference [RefNo]; i++) {

127 area += (value = myJob->Reference [RefNo] [il);

128 squares += value * value;

129 }

130 myJob->Factor[RefNo] = sqrt( squares);

131 Globals.area[RefNo] = area;

132 } /* for */

133
134

135

136 /* Calculate the maximum and minimum values for each Waveform. */
137 for( wave = 0; wave < 3; wave++) {

138

139 /* Find minimum and maximum for this waveform. */

140 maximum = myJob->Waveform [wave] [0];

141 minimum = maximum;

142 for( i = 1; i < myJob->nWaveform[wave]; i++) {

143 if ( myJob->Waveform [wave] [i] < minimum)

144 minimum = myJob->Waveform [wave] [i];
145 if( myJob->Waveform [wave] [i] > maximum)

146 maximum = myJob->Waveform [wave] [i];
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} /* for */

/* Store the results. */
Globals.WaveMinimum[wave] = minimum;

Globals.WaveMaximum[wave]l = maximum;

sorted = (float *) malloc( myJob->nWaveform [wave] * sizeof(float));
if( sorted == NULL) {
printf( "out of memory.\n");
return 1;
}
for( i = 0; i < myJob->nWaveform[wave]; i++)
sorted [i] = myJob->Waveform[wave] [i];

gsort( sorted, myJob->nWaveform[wave], sizeof( float), compare);

/* Remove the upper 5 percentile and take the average deviation:
* a more robust statistic. */
CalcStats( sorted, (unsigned) (myJob->nWaveform [wave] * .95), &stats);
Globals.ResidalsVarianceEstimate [wave] = stats.AverageDeviation * \
stats.AverageDeviation;

free( sorted);

} /* for */

/* Allocate memory for storing fits and residuals. */
for( i = 0; i < 3; i++) {
Globals.fits[i] = (float *) malloc( myJob->nWaveform[i] * sizeof( float));
if( Globals.fits[i] == NULL) {
printf( "Initalise: out of memory.\n");

return 1;

}
for( i = 0; i < 3; i++) {
Globals.residuals{i]=(float *)malloc( myJob->nWaveform[i] * sizeof( float));
if( Globals.residuals[i] == NULL) {
printf( "Initalise: out of memory initalising storage.\n");

return 1;

return 0;

} /* Initalise. */

void CleanUp( Job *myJob)
{

unsigned i;
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196 /* Fool (cc) into not warning that myJob is not used */

197 myJob = myJob;

198

199 /% Free memory allocated for storing residuals and fits. */

200 for( i =0; i < 3; i++) {

201 free( Globals.fits[il);

202 free( Globals.residuals[i]);
203 }

204

205 if( Globals.win)

206 CloseWindow( Globals.win);

207

208 } /* CleanUp */

209

210

211 /* This function acts as a simple comparitor for the stdlib library
212 * quick sort algorithm gsort() */

213 int compare( comst void *first, const void *second)
24 {

215 if (*(float*)first==+(float*)second)return 0;

216 return (*(float*)first<*(float*)second)?-1:1;

217 '} /* compare */

218

219

223 int DoJob( Job *myJob)
224 {
225 GenePool myGA;

226

228 if( Initalise( myJob))

229 return 1;

232 /* Build Genetic Algorithm information. */

233 InitaliseGenePool( &myGA);

234 myGA.gp_argc = myJob->argc; myGA.gp_argv = myJob->argv;
235 myGA.gp_NoOfParents = myJob->NoParents;

236 myGA.gp_NoOfChildren = myJob->NoChildren;

237 #ifdef DOUBLE_GENES

238 myGA.gp_NoOfGenes = 18;

239 #else

1

240 myGA.gp_NoOfGenes = 9;

241 #endif

242 myGA.gp_MutationsPerGeneration = myJob->NoMutations;
243 myGA.gp_MaxNoOfGenerations = myJob->NoOfGenerations;

244 myGA.gp_GAMEOn = myJob->DoGAME;
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245 myGA.gp_CalculateError = ErrFn;

246 myGA.gp_NewGeneration = (myJob->DoGraphics) ? SoFar : NULL;
247 myGA.gp_Tolerance = -1;

248 myGA.gp_CatastrophicFraction = 100000; /* 100000;*/

249 myGA.gp_MaxNoCatastrophes = 0;

250 myGA.gp_Title = "Thomson Signal fitting";

251 myGA.gp_Removeldenticals = TRUE;

252 myGA.gp_SleepFor = 0;

253 myGA.gp_Seed = 0; /*myJob->RndSeed;*/

254 myGA.gp_Verbosity = VERBOSE_WARNING_OUTPUT;

256 Globals.Generation = 0;
258 Randomise( &myGA);

260 /* Allocate GA resources */

261 if( GimiGenePool( &myGA))

262 return -1;

263

264

265 /* Find the answer. */

266 if( FindMinimum( &myGA))

267 printf( "GA returned an error code.\n");
268
269 /* Store answer. */

270 StoreBestSoln( &myGA, myJob);
271

272

273 /* Clean up. */

274 FreeGenePool( &myGA);

275 CleanUp( myJob);

276

277

278 /* That’s us */

279 return 0;

280 } /* DoJob */

286 void StoreBestSoln( GenePool *myGA, Job *myJob)

287 {
288 Areas myAreas;
289 Temperature myTemp;

290 Calibration myCalib;
291 Solution bestSolution;
292 unsigned i, wave;

293 float TotalChiS = 0.0;



294
295
296
297

298

300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317

3

~

8
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341

342

Appendix A. Code listing

StatsInfo stats[3];

/* be optimistic. */

myJob->InvalidSoln = 0;

/* Build the best fits */
ConvertToNumbers (myGA->gp_Parents[0] .ent_Genes, &bestSolution);

BuildFits( &bestSolution);

/* Build the residuals. */
for( wave = 0; wave < 3; wave++)
for( i = 0; i < myJob->nWaveform [wavel; i++) {
Globals.residuals [wave] [i] = myJob->Waveform [wave] [i] -\
Globals.fits[wave] [i];

TotalChiS += Globals.residuals [wave] [i] * Globals.residuals [wave] [i];

/* Calculate the stats on each of the residuals. */
for( wave = 0; wave < 3; wave++)

CalcStats( Globals.residuals [wave], myJob->nWaveform [wave],&stats[wavel);

for( wave = 0; wave < 3; wave++){
myJob->BestDC [wave] = bestSolution.DCLevels [wave];

myJob->Best0ffset [wave] = bestSolution.Offsets [wave];

myJob->BestAmp [wave] = bestSolution.Amplitudes [wave];
myAreas.A[wavel=myJob->BestArea [wave] = bestSolution.Amplitudes [wave] *\
Globals.area [wave];
myJob->AreaError [wave] = stats([wave].StandardDeviation *\
Globals.area[wave]l / myJob->Factor[wave];
myJob->AreaError [wave] *= myJob->MultiError;
myAreas.dA[wave] = myJob->AreaError [wave];
myAreas.dA2[wave] = myAreas.dA[wave] * myAreas.dA[wavel;
myJob->ResidualMean [wave] = stats{wave].Mean;
myJob->ResidualSD [wave] = stats[wave].StandardDeviation;
memcpy( myJob->Fit [wave], Globals.fits[wave],
myJob->nWaveform [wavel*sizeof( float));
memcpy ( myJob->Residuals [wave], Globals.residuals[wave],

myJob->nWaveform [wavel*sizeof( float));

/* Point the entries in myCalib to the correct bits of the calibration
* data passed to this section from the parser. */

myCalib.NoOfEntries = myJob->nCalibration;

myCalib.T = myJob->Calibration[0];

myCalib.C[0] = myJob->Calibration[1];
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}

myCalib.C[1] = myJob->Calibration[2];
myCalib.C[2] = myJob->Calibration(3];

/* Attempt to calculate the temperature. */

if( AreasToTemp( dmyAreas, &myTemp, &myCalib)) {
myJob->InvalidSoln = 1;

}

/* Store results. */
myJob->Temp = myTemp.T;
myJob->TempError = myTemp.dT;

myJob->ChiS = TotalChiS;

/* We relax the condition that the result must lie one sigma away from zero.
*

* if( myTemp.dT >= myTemp.T)

* myJob->InvalidSoln = 1;

*/

/* StoreBestSoln */

/% Function for calculated the error. Required for the GA. */

int ErrFn( Entity *myEntity)

{

Solution mySolution;
float diff, goffset;
float chil_sqr, chi2_sqr, chi3_sqr, chi_sqr;

unsigned i, wave;

/* Convert our genes to significant numbers. */

ConvertToNumbers( myEntity->ent_Genes, &mySolution);

/* Build our fit, based on these numbers. */

BuildFits( &mySolution);

/* Calculate chi squared for just the data. */
chil_sqr = 0.0;
for( wave = 0; wave < 3; wave++) {
for( i = 0; i < Globals.myJob->nWaveform [wavel; i++) {
diff = (Globals.myJob->Waveform [wave] [i] - Globals.fits [wave] [i]);

chil_sqr += diff*diff / Globals.ResidalsVarianceEstimate[wave];

/* Calculate the global offset. This is just the average offset */
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392 for( wave = 0, goffset=0.0; wave < 3; wave++)
393 goffset += mySolution.Offsets [wave];

394 goffset /= 3;

395

396

397 /* Now calculate the sum of the differences squared */
398 for( wave = 0,chi2_sqr = 0.0; wave < 3; wave++) {

399 diff = goffset - mySolution.Dffsets [wavel;

400 chi2_sqr += diff * diff / (2%0.61%0.61);

401 }

402

403 /* N/(N-1) Finite population factor */

404 chi2_sqr *= 3/2;

405

406

407 /* This is the "pulse roughly in the middle" bit */
408 /* chi3_sqr = goffset * goffset / (1.5%1.5);%/

409 diff = goffset - 123.819;

410 chi3_sqr = diff*diff / (2%2.96074%2.96074);

411

412 /* The overall chi squared is the weighted sum of these two components
413 * The weighting factoi‘ comes from (s_D"2/s_0"2) where s_D"2 is the
414 * square of the standard deviation of typical noise and s_072 is the
415 * square of the standard deviation of the offsets. s_D"2 was found to
416 * be approx 84.4 and s_0"2 is approx 1.2. */

417 chi_sqr = chil_sqr + chi2_sqr + chi3_sqr;
418

419

420 /* Store this as the error. */
421 myEntity->ent_Error = chi_sqr;
422

423 return 0;

424 } /* ErrFn */

425

426

427

428

429 void ConvertToNumbers(unsigned char *genes, Solution *mySoln)

430 {
431 unsigned i;
432 signed mumin, murange;

433 float rep[10], range;
434
435 for( i =0; i < 9; i++){

436 #ifdef DOUBLE_GENES

437 rep[i] = genes[2%i]/256.0 + genes[2*i+1]/(65536.0);
438 ielse
439 rep[i] = genes[i]/256.0;

440 #endif
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441 }

442

443 for( i =0; 1 < 3; i++) {

444 range = Globals.WaveMaximum [i] - Globals.WaveMinimum [i];

445 mumin = -(Globals.myJob->nReference[i]/2);

446 murange = (Globals.myJob->nReference[i]+Globals.myJob->nWaveform[i])/2;

448 mySoln->0ffsets[i] = mumin + rep[ il]*murange;
450 mySoln~>Amplitudes[i] = rep[3+i]*range;

452 mySoln->DCLevels [i] = Globals.WaveMinimum [i] + \

453 rep[6+i]*range;

456

457 } /* ConvertToNumbers */

458

459

460

461

462

463 void BuildFits( Solution *mySoln)
464 {

465 unsigned PulseIndex=0, FitIndex=0;

466 unsigned PulseLength, FitLength, i, waveno;

467 signed offset;

468

469 for( waveno = 0; waveno < 3; waveno++) {

470

471 Pulselndex = 0;

472 FitIndex = 0;

473 offset = (signed) mySoln->0ffsets [waveno];

i

475 PulseLength = Globals.myJob->nReference [waveno];
476 FitlLength = Globals.myJob->nWaveform [waveno];
477

478 /* Fill in the blanks before PulseShape */

479 if( offset < 0) {

480 PulseIndex = -offset;

481 }

482 else {

483 if( offset >= Globals.myJob->nWaveform [waveno])

484 offset = Globals.myJob->nWaveform [waveno];

485

486 for( i=0; i < offset; i++)

487 Globals.fits [waveno] [i] = mySoln->DCLevels [waveno];
488 FitIndex = offset;

489 }
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}

/* Copy PulseShape with correct amplitude and DC offset. */
for(; (PulseIndex<PulseLength)&&(FitIndex<FitLength) ;PulseIndex++\
,FitIndex++)
Globals.fits [waveno] [FitIndex] = Globals.myJob->Reference [waveno] [PulseIndex]\
* mySoln->Amplitudes [waveno] \

+ mySoln->DCLevels [waveno];

/* Pad out after PulseShape with the DC level. */
for(;FitIndex < FitLength;FitIndex++)

Globals.fits [waveno] [FitIndex] = mySoln->DCLevels ([waveno];
/* for */

} /* BuildFit */

/* Routine to see how the optimisation is progressing. Displays problem specific

* i

nformation. */

int SoFar( GenePool *GP)

{

un

So

if

/*

Co!

Bu

/%
Cl

/%
Wi

fo

/*
Pl

Pl

*/

signed WinHeight, i;

lution bestSoln;

( !'Globals.win)

return O;

Build best solution */
nvertToNumbers( GP->gp_Parents[0].ent_Genes, &bestSoln);
ildFits( &bestSoln);

Graph these solutions */

earPad( Globals.win);

Height of each graph, 5 pixel gaps */
nHeight = (Globals.win->d_Height - 5 % (3+1))/3;

r( i =0; i< 3; i++)

PlotGraph( 5, 5+i*(5+WinHeight), (i+1)#*(5+WinHeight),
Globals.myJob->Waveform [i], Globals.fits[i],\
Globals.myJob->nWaveform [i]);

otGraph( 5, 50, 95, Globals.myJob->Waveform [1], Globals.fits[1],\
Globals.myJob->nWaveform [1]);
otGraph( 5, 100,145, Globals.myJob->Waveform [2], Globals.fits[2],\
Globals.myJob->nWaveform [2]);
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SwapBuffers( Globals.win);

return 0;

} /* sofar */

/* This function emulates the function strdup() for portability. */
char *StrDup( char *string)
{

char *result;

unsigned length;

if( string == NULL)
return NULL;

if( (length = strlen( string)) == 0)
return NULL;

result = (char *) malloc( length+l);
if( result == NULL)

return NULL;

strepy( result, string);

return result;

} /* DupStr */

/* Calculate various statistics on data. This routine is a modified version
* of the one appearing in Numerical recipies in C (see section 14.1 in NRC).
void CalcStats( float *data, unsigned n, StatsInfo #*info)
{
int j;

float ep=0.0,s,p;

if(n<=1) {
printf( "CalcStats: there must be at least 2 data pts\n");
return;
}
s=0.0;
for(j=0; j<n; j++) s += datalj];
info->Mean = s/n;
info->AverageDeviation = info->Variance = info->Skewness = info->Kurtosis =
for(j=0; j<n; j++) {

info->AverageDeviation += fabs(s=data[j]-info->Mean);

*/

0.0;
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ep += s;
info->Variance += (p = s*s);
info->Skewness += (p *= s);

info->Kurtosis += (p *= s);

info->AverageDeviation /= n;

info->Variance = (info->Variance - ep*ep/n)/(n-1);
info->StandardDeviation = sqrt( info->Variance);
if( info->Variance) {
info->Skewness /= (n * info->Variance * info->StandardDeviation);
info->Kurtosis = info->Kurtosis/(n*info->Variance*info->Variance)-3.0;
}
else {
/*printf( "CalcStats: no skewness/kertosis when Variance = 0.0\n");*/
info->Skewness = 0.0;

info~>Kurtosis = 0.0;

} /* CalcStats */

void PlotGraph( unsigned x, unsigned yi,unsigned y2,\
float *datal, float *data2, unsigned num)
{

signed dy, i, yp, yn, y.1, y.2;

float y_scale, largest, smallest;

[}

yi;
¥2;

y-1
y_2

/* calculate the y_scale */
dy = y2-y1;
for( i = 1, smallest=largest=datal[0]; i < num; i++) {
if( smallest > datal [i])
smallest = datal [i];
if( largest < datal [i])
largest = datal [il;
}
y_scale = dy / (largest - smallest);

/* Plot data. */
for( i = 1; i < num; i++) {
XSetForeground( Globals.win->d_Display, Globals.win->d_gc,\

Globals.win->d_Foreground) ;

XDrawLine( Globals.win->d_Display,Globals.win->d_DD0,Globals.win->d_gc,\
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XDrawLine( Globals.win->d_Display,Globals.win->d_DDO0,Globals.win->d_gc,\

x + 2%(i-1), y2 - y_scalex(datal [i-1] - smallest),\
x + 2*%i, y2 - y_scale*(datal [i] - smallest));
yp = y2 - y_scale*(data2[i-1]-smallest);
if( yp < y_1)
yp =yl
else
if( yp > y_2)
yP = ¥y2;
yn = y2 - y_scalex(data2[i]-smallest);
if( yn < y_1)
yn = yi;
else
if( yn > y_2)
yn = y2;
XSetForeground( Globals.win->d_Display, Globals.win->d_gc,\
Globals.win->d_blue);
x + 2%(i-1), yp, x + 2%i, yn);
}
} /* PlotGraph */
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Thomson scattering analysis

scripting language

As quite often happens with code development, the design specification changed after
the code was produced. Such things as the format that the data was supplied in changed

as did the final output format and the nature of the analysis.

When faced with the problem of changing design, a decision is needed whether to
extend the limited existing system to cover both the old and new requirements, or to
retire the existing code and rewrite (e.g. copy and alter) the code to support only the new
requirements. The latter option is generally quicker in the short term but suffers many
problems: future improvements must be applied to each different implementation, bugs
fixed in one must be applied to different source trees, potentially introducing further

bugs, etc.

Extending the code to cover new cases will generally take longer to program, at least
initially. However, this is offset by the increased ease with which future improvements
can be included. Other benefits include any bugs are fixed in the one source tree
and improvements can be implemented whilst retaining backwards compatibility. For
these reasons, the code to analyse the Thomson scattering problem was extended over
time. Because of this, there is one large program rather than many smaller specialised

programs.

In order to obtain the required level of flexibility, a scripting language was developed.

This was initially a simple set of commands and registers but has been extended to solve
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alternative problems as the need arose. The language now includes support for global
and local assignments, arrays, loops and a collection of commands including the ability

to call external programs.

B.1 Backus-Naur Form

When defining a computer language it is usual to use the Backus-Naur Form (usually
referred to as BNF). A logical element of the grammar is denoted by a label contained
within angular brackets. These logical elements are broken down into one or more
possible simpler expressions. Alternative expressions are separated by a vertical line
character. Literal strings are contained within single quote marks. This is true except
for space, tab and end of line . An exclamation mark in front of a set indicates a logical

not and a dot represents the empty set.

The first three definitions in this grammar are irreducible elements of the language,

usually referred to as tokens. The remaining elements are comprised of these simpler

elements.
(space char) =y
(tab char) n= At
(EOL char) = ‘\n’
(digit) n= 0|12 |34 B e | T8 Y
(white space char) = (space char)
| (tab char)
(white space) = (white space char) (white space) | (white space char)
(opt white space) ::= (white space) | .
(req white space) = (white space char) (opt white space)
(int) = (digit) (int) | (digit)
(opt int) = (int) | .
(mantissa) n= (int) | (opt int) ‘.’ (int)

(e) n= ‘e’ | ‘E’
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(exponent)

(float)

(text)

(opt text)

(non white space char)

(non white space text)

(empty statement)
(comment statement)

(string)

(format type)

(full numeric range)

(numeric range)

(series number)

(data series)

(numerical range ref)

(data reference)

(true)

(false)

(boolean)

(range)

(e) {int)

(mantissa) | (mantissa) (ezponent)
{EOL char) (tezt) | (EOL char)
(test) | .

I((EOL char) | (white space char))

(non white space char) (non white space text)

(non white space char)

‘4 (opt text)
(non white space text)

‘w0 (test)

‘ASCII_Column’
‘ASCII_FreeForm’
‘LeCroy_Waveform’

(int) (opt white space) ‘..’ {opt white space) (int)

(full numeric range)

4

..” (opt white space int)
(int) (opt white space) ‘..’
“:’ (opt white space) (int)

(text)

(text) (opt white space) (series number)
‘[’ (opt white space) (numeric range) (opt white space) ‘1’

(data series)

(data series) (opt white space) (numerical range ref)
‘y' | ‘yes’ | ‘true’ | ‘1

‘0’ | ‘no’ | ‘false’ | ‘0’

(true) | (false)

(full numeric range) | (string)
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(non white space list)  ::= (non white space text) ‘,’ (non white space list)

| (non white space text)
(white space list) n= (text) ¢, (list) | (text)

(list) 2= (non white space list)

| v (white space list) ‘"’

(string assignment) := (opt white space) ‘=" (opt white space) (string)
(format assignment) = (opt white space) ‘=" (opt white space) (format type)
(integer assignment) == (opt white space) ‘=" (opt white space) (int)

(data assignment) = (opt white space) ‘=" (opt white space) {data reference)
(boolean assignment) = (opt white space) ‘=" (opt white space) (boolean)
(range assignment) := (opt white space) ‘=" (opt white space) (range)

(list assignment) = (opt white space) ‘=" (opt white space) (list)
(assignment statement) := ‘Filename’ (string assignment)

| ‘Format’ (format assignment)

| ‘Skip’ (integer assignment)

| ‘Preamble’ (string assignment)

| ‘ErrorMultiplier’ (string assignment)
| ‘References’ (data assignment)

| ‘Referencel’ (data assignment)

| ‘Reference?2’ (data assignment)

| ‘Referenced’ (data assignment)

| ‘Responsel’ (data assignment)

| ‘Response2’ (data assignment)

| ‘Response3’ (data assignment)

| ‘Temperatures’ (data assignment)
| ‘Waveforms’ (data assignment)

| ‘Waveforml’ (data assignment)

| ‘Waveform2’ (data assignment)

| ‘Waveform3’ (data assignment)

| ‘Parents’ (integer assignment)

| ‘Children’ (integer assignment)

| ‘Mutations’ (integer assignment)
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(register)

‘Generations’ (integer assignment)
‘RandomSeed’ (integer assignment)
‘OutputLogFilename’ (string assignment)
‘ErrorLogFilename’ (string assignment)
‘OutputLogFormat’ (string assignment)
‘DumpFilename’ (string assignment)
‘Graphics’ (boolean assignment)

‘GAME’ (boolean assignment)
‘MakeAl11Valid’ (boolean assignment)
‘Range’ (range assignment)

‘StepSize’ (integer assignment)
‘Values’ (list assignment)

‘Start’ (integer assignment)

‘Filename’
‘Format’

‘Skip’
‘Preamble’
‘ErrorMultiplier’
‘References’
‘Referencel’
‘Reference?2’
‘Reference3d’
‘Responsel’
‘Response?2’
‘Responsed’
‘Temperatures’
‘Waveforms’
‘Waveforml’
‘Waveform?2’
‘Waveform3’
‘Parents’
‘Children’
‘Mutations’

‘Generations’
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(command ezpression)

(local assignments)

(command statement)

(statement)

(line)

(file)

(array element)
(loop label)

(variable)

‘RandomSeed’
‘OutputLogFilename’
‘ErrorLogFilename’
‘OutputLogFormat’
‘DumpFilename’
‘Graphics’

‘GAME’
‘MakeAllValid’
‘Range’

‘StepSize’

‘Values’

‘Start’

‘Load’ (req white space) (string)
‘Ditch’ (req white space) (string)
‘Go’

‘For’ (req white space) (string)
‘Next’

‘Array’ (req white space) (string)
‘System’ (req white space) (string)
(assignment statement)

(assignment statement) (req white space) (local assignments)

(command ezpression)

(command expression) (req white space) (local assignments)

empty statement)

comment statement)

(
(
(assignment statement)
(command statement)

(opt white space) (statement) (opt white space) (EOL char)
(line) (file) | .

(text) ‘2’ (opt white space) (int) {opt white space)

(text)

(loop label) | (array element)
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(variable ref) = ‘{’ (opt white space) (variable) (opt white space) ‘¥’

The grammar describes how to build a complete script from simpler elements, but it
does not describe the meaning of each element. Semantics are crucial to correct usage
of the scripting language and the following sections briefly describe key elements of the

language giving examples where appropriate.

B.2 Comments

Any line where the first (non white space char) is a hash symbol ‘#’ is treated as a
comment. Lines identified as comments are read by the parser and ignored. However,

if the ‘#’ is used within a line then it is treated as any other symbol.

Comments allow annotation to exist within the script. They also allow code to be

temporarily disabled.

B.3 Variable substitution

It is often useful to refer to the current value of a variable, e.g. to index an array.
Variable substitution allows this as well as simple substitution of the current value of a

loop label or array element.

A variable appears as either a (loop label) or as an (array element) identifier sur-
rounded by braces: ‘{’ and ‘}’. For example, if the array view has an element with an
index of 5, then the value of this element can be substituted at any point by the string

‘{view:5}".

Variables are expanded as the line is processed. Therefore, an assignment with a
variable in the argument takes a fixed value, even if the value of the variable subsequently

changes.

Variable substitution can be nested, so that ‘{view: {i} }’ returns the i*® element

of array ‘view’.
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B.4 Assignments

An assignment alters the value of a (register) to the supplied value. If the value contains
(white space), then the value must be protected by placing double quote marks, ‘"’, on

either side.

There is a fixed set of registers each with particular meaning. Most are connected
with a particular command, some of which must be set for the command to work. An
explanation of these registers is presented with the related command. However, there

are some registers that apply globally. These are defined in the following subsections.

OutputLogFilename Normal output consists of results from the GA fitting routines,
including the preamble, and the output from the echo command. By default, all
normal output is sent to stdout, which is normally displayed in the terminal. If

this register is set, then all output is appended to the file given by this register.

ErrorLogFilename Any problems, for example due to an incorrect script or missing
datafile, results in error messages. These error messages are normally sent to
stderr, which is displayed in the terminal by default. If this register is set then all

warning or error messages are appended to the file given by this register.

The value of registers can be assigned on the command line. For example including
a command-line option of ‘GAME=True’ would assign ‘True’ to register ‘GAME’. These
assignments allows the program to be run within a batch environment with different

parameters for each run.

B.5 Aliases

Certain registers do not store data themselves but form a short-hand method of assigning
the same data to many registers. This is useful when a single reference curve is used to

fit all three data-channels.

The aliases are:

References Any assignment made to this alias is made to Referencel, Reference2 and

Reference3.
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Waveforms Any assignment made to this alias is made to Waveform1, Waveform2 and

Waveforms3.

Example:

The aliases assignment:

Waveform = data:1

is equivalent to:

Waveforml = data:1

Waveform2 data:1

Waveform3 = data:1

B.6 Data storage

Any data that has been loaded into memory is treated as a collection of many series.
A series contains a sequential list of numbers and each series of a datafile is required to

have the same number of data.

When data is loaded, a label is assigned by the load command. This label is used
when identifying the data to a (register). In addition, the specific series and range can
be specified, although only the label is required. If no series is specified then the first

series is used. The default range is the whole series.

Example:

If data has been loaded, labelled by ‘wave’, then all of the first series can be referred to

by:

- wave

To refer to the third series, the following construction can be used:

wave:3

To refer to data elements 10-35 of this series, the following construction is used:

wave:3[10..35]
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To refer to the twenty fifth element through to the last element, the following construc-

tion is used:

wave:3[25..]

B.7 Commands

Commands take either zero or one argument. If an argument is required, then it must
be the next word after the command. If the argument contains (white space) then it

can be encased within double quotation marks.

It is possible to alter the value of registers for the duration of a command by placing
the assignments after either the argument, if present, or after the command. Assignment
lines can be thought of as altering global settings whilst assignments on the same line

as a command are local to the command.

The following sections describe the various commands and the registers they inspect.

B.7.1 Load

This command attempts to load data from a storage medium into memory. It requires
an argument which is the label with which the data can be referred to later. If the load

fails, then an error message is generated and the script attempts to continue.

Example:

load reference_data filename="some file.dat" format=ASCII_Column

Registers:

The load command accepts three registers:

filename (mandatory) The filename register to decide which file to load. It should be

the correct format for the computer’s file system.

format (mandatory) The format that the data is stored in. The system understands

three formats:
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ASCII_column Data in this format is contained in columns separated by one
or more non-numeric characters. The exact alignment of the columns does
not matter and it is assumed that data exists for all columns in each row.
Missing data generates a warning message and a zero is substituted.

ASCII_freeform Data in ASCII_freeform is read sequentially. Multiple num-
bers on the same line are treated as sequential numbers from the same series.
A blank line separates successive series. All series are made up to the same
total number elements with zeros replacing missing data. |

LeCroy_waveform This is the raw output format from the LeCroy oscillo-
scopes. Data is segmented time series. Typically for the COMPASS-D
configuration, there will be 100 series corresponding to the 100 segments

recorded by a spectromer’s channel.

skip (optional) For ASCII_column and ASCII_ freeform this register informs the data
parser to skip the first n lines of the datafile. This register is ignored if the format

is LeCroy_ waveform.

B.7.2 Ditch

Frees memory associated with a particular label. It requires an argument which is the

data to free. It also relinquishes the label so future load commands may use this label.

This command is optional. If a load command uses an existing label, then a warning
message is generated and the old data is ditched. At the end of the script all loaded
data is ditched.

Example:

The following commands load some data and label it ‘mydata’ then free resources asso-

ciated with the dataset:

load mydata filename="some data.dat" format=ASCII_FreeForm

ditch mydata

Registers:

This command uses no registers.
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B.7.3 Go

This command is used to start the GA. It takes no arguments but uses many registers

that affect the optimisation process.

Registers:
This command uses 22 registers:

Preamble (optional) If this register is set, then the contents of the register is sent to
the current normal output, i.e. either ( QutputLogFilename) or stdout. The exact

format of the preamble depends on the output format setting (see below).

ErrorMultiplier (optional) If set, the resulting uncertainty in temperature is multi-

plied by this factor.

Referencel, Reference2, Reference3 (mandatory) The three data series contain-

ing the reference signal for channels one, two and three respectively.

Temperatures (mandatory) Data containing a list of temperatures in electron volts.
This corresponds to the ordinance axis in figure 4.7. It must have the same number

of elements as Responsel, Response2 and Response3.

Responsel, Response2, Response3 (mandatory) Data containing the response of
channels one, two and three respectively at the temperature given by the Temp-
erature dataset at the same index. Must have the same number of elements as

Temperature.

Waveform1, Waveform2, Waveform3 (mandatory) The observed data from chan-
nels one, two and three respectively. This is the data that will be analysed. The

three waveforms must have the same number of data.
Parents (mandatory) The number of parents to use in the Genetic Algorithm.

Children (mandatory) The number of children to use in the Genetic Algorithm. This

must be an even number

Mutations (mandatory) The number of mutations to undertake after breeding is com-

pleted.

Generations (mandatory) The maximum number of generations to undertake.
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RandomSeed (mandatory) An (int) with which the random number generator is

seeded. This allows for identical runs, if required.

OutputLogFormat (optional) The output format for the analysis. There are six

options:

verbose This is the default output. It gives detailed information about the opti-

misation. The output has the following format:

Preamble: (text)

Results (after "Go" on line (int)) are as follows
Temperature = (float) +/~ (float)

Line 1 Area = (float) +/- (float)

DC Level = (float)

Time base offset = (float)

Residuals have mean (float) and standard deviation (float)
Line 2 Area = (float) +/- (float)

DC Level = (float)

Time base offset = (float)

Residuals have mean (float) and standard deviation (float)
Line 3 Area = (float) +/- (float)

DC Level = (float)

Time base offset = (float)

Residuals have mean (float) and standard deviation (float)

temperature This output option restricts the recorded information to just a
single line containing the preamble (if any), the recovered temperature and

the uncertainty in the temperature. The format is:

(tezt)(float)(float)

areas This output format stores the results from fitting the reference signals to
the data. The result of fitting the three areas to the temperature response
curves is still calculated but is ignored. The output format is three lines

containing the preamble, the area and the uncertainty in the areas, i.e.

(tezt)(float)(float)
(text)(float) (float)
(text)(float) (float)
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terse This output, like verbose, contains all generated information but condenses
the information to make further analysis easier. The preamble, if present,
is displayed on its own line, followed by the temperature and uncertainty
in temperature. In the following three lines the results for each channel are
stored. The area and uncertainty in the area is followed by the DC level and
(channel) offset. The last two entries in each line are the mean and standard

deviation of the residuals. The format is:
(text)

(float) (float)

(float) (float)(float) (int) (float) (float)
(float) (float)(float) (int) (float)(float)
(float) (float)(float) (int)(float) (float)

TempChiS This option is just an extension of the Temperature option. It in-
cludes a final field with the value of x2 for the three channels. The format

is:
(text)(float)(float)

amplitudes This option outputs the amplitude for each channel rather than the
integrated areas. There is no direct physical meaning to the amplitude, so

this option is mainly for debugging purposes. The format is:

(float)
(float)
(float)

DumpFilename (optional) This option stores the raw result of the GA fitting proce-
dure. This data is stored in a file given by the register. The data is formatted as
ten columns: the first column is an index and it is followed by nine columns con-
sisting of the raw data, the GA’s best fit of the reference signal and the residues

for each of the three channels.

Graphics (optional) If this register is set to true then a window is opened and the
data (in black) and the results of the best-fit parameters (in blue) are displayed
for each channel. The graphs are updated at the end of each generation. This

provides an easy, visual way of checking on the GA’s progress.

GAME (optional) If this register is set to true then the GA monitoring window is
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opened. This maintains information about basic GA statistics as shown in fig-

ure 2.15.

MakeAllValid (optional) If this register is set to true then all data is stored. Nor-
mally, if something goes wrong (e.g. the matrix inversion required to obtain the
uncertainty in temperature is singular) then a warning message is generated and
that datapoint is ignored. This option overrules that behaviour and all datapoints

are stored.

B.7.4 For

This command establishes a point in the program to which a loop will return. The
command takes an argument which is a variable. The variable changes value in each

iteration of the loop as described by the Range register.

Example:

To load four files from files ‘datal.dat’, ‘data2.dat’, ‘data3.dat’ and ‘datad.dat’ which

we wish to label ‘first’, ‘second’, ‘third’ and ‘fourth’, the following code may be used.

Array labels start=1 values=first,second,third,fourth
Format=ASCII_Column

For i range=1..4
Load {label:{i}} filename=data{i}.dat

Next

Registers:

Range (mandatory) This register describes the start and end values for the loop. If the
argument of the assignment is a (numerical range) then the loop will be between
the first number and the second number. If the argument of the register is an

array, then the loop variable will be assigned to the elements of the array in turn.

StepSize (optional) For a loop where the range register is set to a (numerical range)
this register describes what number to increment the loop variable by after each

loop.
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B.7.5 Next

Loops back to the most resent ‘For’ statement. This command takes no argument or

registers.

Example:
For i range=1..3

Ditch data{i}
Next

Registers:

This command uses no registers.

B.7.6 Array

Establishes an array of values. The command takes an argument which is the label used

to reference this array.

Example:

Array labels start=1 values=first,second,third,fourth
Format=ASCII_Column

For i range=1..4

Load {label:{i}} filename=data{i}.dat

Next

Registers:

Values (mandatory) This register contains a comma separated list of entries. If any of
the list contains (white space) then the whole list must be enclosed within double

quotes (‘"’s).

Start (optional) The first element of the array is usually assigned to index 1. If this

register is set then the first element will be the numerical value of this register.
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B.7.7 System

This command run a external program. It requires an argument which is the command

to run.

Example:

If an external program creates data, for example for a Monte Carlo simulation, then the

following code section could be used.

For i range=1..1000
System buildData

For j range=1..3
Load data{j} filename=file{j}.dat
Next
Go
For j range=1..3
Ditch data{j}

Next

Next

Registers:

This command uses no registers.

B.7.8 Echo

This command places some arbitrary text in the normal output. It requires an argument:

the text to be displayed.

Example:

This command can be used to store the current value of a particular variable:

echo "variable i: {i} j th label: {label:{j}}"

Registers:

This command uses no registers directly, but the OutputLogFilename is used indirectly.
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B.8 Worked example

The following script analyses the data from a single plasma shot although many shots
can be analysed by appending the definition of the allshots array. The output is in a
series of files each containing lines with the height above torus mid-plane followed by a
temperature and uncertainty. The code contains numerous comments that, along with
the above description of the scripting language, should fully explain how this script

works.

File: GA/Thomson/datdata/persegment.ctrl

# Control file for second set of data.

# See test.ctrl for explainitory information.

# Global definitions.

Parents = 40
Children = 100
Mutations = 110
Generations = 400
RandomSeed =0

ErrorMultiplier = 3.8

ErrorLogFilename = persegment.err

# Choice of Temperatures, Areas, Verbose or Terse.
OutputLogFormat = Temperatures

# Graphics = TRUE

# GAME = True

# Define an array which maps spectrometer to view. First element in
# view is index 1.

Array view start=1 values=9,3,5,,7,12,8,14,10

# We also want an array of what height each view looks at (in mm).

Array height start=1 values=171,147,123,99,75,51,27,3,-21,-45,-69,-93,-117,-141,-165,-189

# Also an array of all the spectrometer. This is for a For loop: starting value

# does not matter.

Array SpectrometersUsed values=2,3,5,7,1,9,6,8

Array allshots values=26933

# Specify the default format (for the rest of the data files)

format = ASCII_FreeForm
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# Load in all the reference spectra. Skip over initial blank data.

load ref filename=tsd7_ref.dat skip=127

for shot range=allshots

# Main loop for calculating each segment. This refers to segments so the

# first one is ’1’ and the last one is ’100’.

for segment range=90.

OutputLogFilename

.100

= s{shot}seg{segment}.temp.dat

for spec range=SpectrometersUsed

# Load in spectrometer specific data.

load temp filename=s{spec}v{view:{spec}}_r9_040298.cal format=ASCII_Column skip=10

# Define our temperature calibration curves.

temperatures =
responsel =
response2 =

response3 =

# Break up the

temp:1
temp:2
temp:3

temp:4

series to form the reference data.

referencel = ref:{spec}[0..251]
reference2 = ref:{spec}[252..503]
reference3 = ref:{spec}[504..755]

# Output the height (above torus mid-plane) for this spectrometer.

Preamble = {height:{view:{spec}}}

# Load the data. Deal with ith channel.

for i range=1..3

load data{i} filename=tsr{shot}.O{spec}{i} format=LeCroy_Waveform

waveform{i}

next

= data{i}:{segment}

# Save raw data.

dumpfilename =

s{shot}seg{segment}spec{spec}.dump.dat

# Run Genetic Algorithm.

go

ditch temp

for i range=1..

3

ditch data{i}

next

next

next

145
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86 next
87

88 ditch ref
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Colophon

This thesis was typeset using the I#TEX system, occasionally delving into TEX as nec-
essary. The body font is Computer Modern at 11 point on 13.6 point.

Program code extracts are displayed with the relevant line number typeset in italics
and placed in the margin. When the file has been taken from the CDROM, the relevant
filename is displayed preceding the code. Wherever possible, the code was taken directly

from the source file to reduce the possibility of introducing errors.

The graphs were generated using the venerable ‘gnuplot’ program, except for the
contour plots (2.17 and 2.18) which were generated using IDL. The diagrams were
generated using xfig, except for figures 2.1, 2.2 and 2.3.

Figures 2.1, 2.2 and 2.3 were taken from the ‘Glossary of Genetic Terms’ web-pages
(http://www.nhgri.nih.gov/DIR/VIP/Glossary/), part of the Division of Intermural

Research site, and are included with their kind permission.
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