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Preface

Image analysis can be simply thought of as the extraction of information from 

data in the form of a picture. An image represents a large highly structured 

data set, with strong spatial dependency between picture elements or pixels. For 

example a typical image will represent a data set of size at least 2562. The 

challenge in image analysis then should be to use and enhance this knowledge 

in making inference about the information contained in the image. W ith this 

in mind it would seem that statistics has a large and important part to play in 

image analysis. However the contrary is in fact more evident.

For instance, numerical measures of dissimilarity between images, termed im­

age metrics, which are the subject of Chapter 3, are commonly examined by 

just exploring pixel-by-pixel differences. In this way, all spatial information con­

tained in neighbouring pixels in the image is ignored. The main justification in 

disregrading this information being mathematical simplicity and computational 

convenience. Image metrics are however a crucial and fundamental component 

of many imaging algorithms. In fact this philosophy pervades much of image 

analysis algorithms. Namely, if a technique is seen to work adequately on a small 

number of test examples, and if it is easy to implement, then it is deemed suitable.

The main aim of this thesis is to place such algorithms or techniques in the 

realm of statistics. The hope is that in so doing these techniques will have a much 

more solid theoretical basis, which may in turn lead to future improvements and



developments. The primary tool used is random set theory.

If the image to be analysed is random then random sets provides a natural 

setting in which to make inference. For instance if a sample of images is to be 

analysed, then it may be appropriate to model this sample as a realisation of a 

random set. This approach could be suitable to average images or to filter images. 

This is the setting in Chapter 5, where sequences of images are ‘averaged’ locally 

with the intention of smoothing the image sequence, a process we call set-valued 

regression.

On the other hand, random sets can be used to treat a deterministic grey-scale 

image as a random binary image. This idea is illustrated in Chapter 1.

C h a p te r  1 introduces some notation and conventions used throughout. In 

particular it introduces the notion of a random set model corresponding to a 

grey-scale image, which is used extensively in Chapters 2 and 3.

C h a p te r  2 explains the thresholding problem, beginning with a summary of 

techniques presented throughout the literature. A new thresholding technique is 

presented based on expectations of the random set model outlined in Chapter 1.

C h a p te r  3 concerns the problem of designing image metrics or measures of 

dissimilarity between images. This is a vital concept in many area of image pro­

cessing. This chapter begins with a discussion of commonly used image metrics. 

A new approach to finding image metrics is illustrated, based on exploring dis­

tances between distributions of random sets, using the random set model from 

Chapter 1.

C h a p te r  4 concerns the Bayesian image restoration problem,that is, restoring 

a noisy image from knowledge of the noise degradation and prior information 

about the true image. We comment on widely used approaches to solving this 

problem. In particular we show how image metrics may be used in this context.

C h a p te r  5 examines a problem which we term set-valued regression. This can



be conveniently thought of as a regression problem where the response variable 

is now set-valued. We use a loss function approach to examining this problem, 

illustrating with examples.

All algorithms were implemented in C + +  using CLIP, a C + +  library for im­

age processing, written by Adri Steenbek from CWI (Amsterdam). All statistical 

calculations were carried out using S-Plus.

Much of the research presented in this thesis has already been published. The 

new thresholding technique described in Section 2.4 has been presented in [18]. 

While the grey-scale image metric described in Section 3.4 appears in [17]. This 

grey-scale metric has been applied to the Bayesian image restoration problem in 

Section 4.5. Details of this research have been presented in [16].
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C hapter 1

Prelim inaries

1.1 Images and functions

An image /  is simply a digital representation of a scene. When a picture is 

digitised, so that it can be interpreted by a computer, it undergoes a quantisation 

process whereby the picture is split into small picture elements or pixels. Each 

pixel is then given a single intensity (or brightness) which best represents that 

part of the picture. Grey-scale images use intensities represented by various 

shades of grey. Zero intensity is seen as black, low intensities as dark grey, with 

the shade of grey lightening as the intensity increases. The maximal intensity is 

perceived as white. Black pixels are typically given the value 0, and white pixels 

a maximal value of, say 1. All intermediate pixels are assigned values between 0 

and 1. In applications maximum values are typically 255.

For colour images, each pixel is given a three dimensional vector, representing 

the intensity of the three colours red, green and blue, which compose the colour of 

the pixel. Throughout this thesis we are concerned solely with grey-scale images.

Further we typically assume that each image /  is defined on a window W  

which is a subset of a Euclidean space, and that each point x G W  is assigned

1



CHAPTER 1. PRELIMINARIES 2

a grey value f ( x )  which lies between 0 and 1. This is similar to the situation in 

fuzzy set theory [37], where f (x)  is called the degree of membership of x  in / .  

We further assume that /  is upper semicontinuous.

D efin ition  1.1 (see [47]). A function f ( x ) , x e W  is upper sem icontinuous

w hen for every x  and every t > f (x)  there exists a neighbourhood Vx of x  such 

th at f ( y )  < t for every y G Vx.

Similarly we may define lower semicontinuity:

D efin ition  1.2. A function f { x ), x G W  is lower sem icontinuous when for 

every x  and every t < f (x )  there exists a neighbourhood Vx of x  such that 

f ( y )  > t for every y G 14-

Upper semicontinuity ensures the measurability of /  and guarantees tha t the 

subgraph (often called the hypograph or umbra) of /  is a topologically closed set 

[47].

D efin ition  1.3. A subgraph Tf  for an image /  may be defined as:

Lf  = {(:r, t) : x  G W, t G [0,1] and f (x)  > t}.

Simply, this is the set of all pairs (x, t) G W  x [0,1] lying between the graph 

of /  and the plane t — 0. See Figure 1.1 below.

Working in the continuous framework permits the use of analytical tools, while 

always allowing the possibility of ‘discretising’ the problem. This is of course the 

situation in most practical situations where W  is a discretised window or set of 

pixels and /  takes discrete grey levels from a set GL = { 0 , 1 , . . . , /  — 1} (typically 

I =  256).

The cumulative histogram of /  is denoted Hf(t).  In the discrete setting 

Hf  ( 2̂ ) — equals the number of pixels with grey levels from the interval
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F ig u re  1.1. Hypograph of image /

(£i, £2 ] • In the continuous framework the number of pixels is replaced by a measure 

of the subset. For W  being a subset of the Euclidean space Rd, the d-dimensional 

Lebesgue measure fid is the most natural choice for the basic reference measure. 

This corresponds to area if d = 2 and to volume if d =  3.

For each 0 < t < 1 define,

H f (t) = fid({x e W  : f (x)  < £}).

It is clear that Hf(t),  0 < t < 1, is a non-decreasing right-continuous function 

and Hf (  1) =  Hd(W).  If for some function h f ,

t

Hf(t )  =  J  hf(s)ds,
0

then the function hf  is called the histogram of / .  Of course in the discrete 

framework, the integral is replaced by a sum and hf(t)  equals the number of pixels 

with grey level t. In fact Hf{-)/ f idiW) may be viewed as a cumulative distribution 

function of a random variable ( /  taking values in [0,1], thus hf(-)/Hd(W)  (if hf(-)
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exists) becomes its probability density function.

A binary image /  differs from a grey-scale image in that it only contains two 

grey levels, conventionally denoted 0 and 1. Thus /  may be identified uniquely 

with the closed subset F  C W,  defined as:

F = {x € W  : f (x)  = 1}.

Thus while a grey-scale image may be thought of mathematically as a function, 

a binary image may be considered as a set F  C W.

1.2 Histogram equalisation

Often a displayed image may contain some details of interest which are not clearly 

visible. The grey levels in this area may, for example, all have low values, so that 

subtle differences between pixel values may not be so apparent. In this case a 

transformation of the grey-scale range of the image may enhance the contrast in 

the image.

An anamorphosis [47, p.435] is defined as a transformation r  of the grey-scale 

range:

r  : [0,1] —> [0,1],

defined such that r  is increasing and continuous. Some examples of anamorphoses 

are, r[f(x)] = [f{x)]2, r[f(x)] = yj f (x) .

Histogram equalisation [42] is a further example of an anamorphosis. It is a 

transformation of the grey-scale range of an image, which aims to transform the 

grey-scale range of an image in order to produce an image with equal or uniformly 

distributed grey values. Histogram equalisation enhances contrast for grey values
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close to the histogram maxima and decreases contrast near the histogram minima. 

Figure 1.2 shows an input image and its corresponding equalised version.

(b)

(b) equalised house image.F ig u re  1.2. (a) house image,

We derive this transformation as follows. Denote the input histogram, as 

before, by hf{t).  Our intention is to find a monotonic grey-scale transformation, 

t = r(s), such that the desired equalised histogram h*Jt), is uniform over the 

entire grey-scale range. Thus we require,

t
hf (x)dx = I  h*f(x)dx, (1-1)

o o

where h*At) has the constant value ^ d{W).  Thus (1.1) becomes,

Hf (s) = tid(W)L

Solving the above we see that the transformation t may be derived as,

t  =  T{s)  =  - ^ W ) H f { s ) -(L2)

In practice where we work in the discrete setting, (1.2) is modified so that Hd(W)
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corresponds to the number of pixels in the window and Hf(s)  = f Qs hf (x)dx  

is approximated by a sum. Therefore we see that the resulting histogram is 

not ideally equalised. Figure 1.3 below shows the histograms of the original 

and equalised images from Figure 1.2, while Figure 1.4 shows the cumulative 

histograms of both images. It is clear that the equalised histogram is much more 

equally spread over the grey-scale range than the original histogram, although it 

is not exactly constant.

It is worth noting that histogram equalisation has parallels to the so-called 

probability integral transform. If X  is a continuous random variable with cumu­

lative distribution function Fx,  then the random variable Fx ( X)  is distributed 

uniformly on [0,1]. This transformation is not possible where X  is a discrete 

random variable, analogous to the situation described in Figure 1.3 where exact 

equalisation is not possible when working with discrete images.

I1
c5

I

(a)

F ig u re  1.3. Histogram of house image (a) before and (b) after equalisation.

1.3 D istance transform

The distance transform (DT) is a widely used tool in the analysis of binary 

images. This idea was first introduced by Rosenfeld and Pfaltz [43] and later 

extended by Borgefors [5, 6]. Subsequently distance transforms have been widely

o

-  s

o
8O

o

50 2500 100 150 200100 150 200 250
I100 150 200 2500 50
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o

0 200
Grey Level

200o
Grey Level

F ig u re  1.4. Cumulative histogram of house image (a) before and (b) after 
equalisation.

used in many areas of images processing, for example, in image thresholding [18], 

image metrics [2, 17], averaging of random sets [3] and image restoration [19, 44].

For any closed set X  G all points in can be classified according to their 

positions with respect to X.  This can be achieved by considering the distance of 

each point to X .  The following definition is a generalisation.

D efin ition  1.4 (see [3]). A function d(x , X)  with the first argument being a 

point x  G and the second one being a closed subset X  C is said to be a 

(generalised) d is tan ce  fu n c tio n  if it is lower semicontinuous with respect to 

its first argument, measurable with respect to its second argument, and satisfies 

the following two conditions.

1. If X\  C X 2 , then d( x , X  1) > d(x, X 2) for all x  G Rd (monotonicity).

2. X  = {x : d(x, X )  < 0} (consistency).

The following are examples of distance functions, some which will be used later:

E xam ple  1.1. The E uc lidean  d is tan ce  fu n c tio n  d(x , X)  is equal to the dis­

tance from x € to the nearest point of X.  More precisely:

d(xy X )  =  p(x, X )  =  inf{||x — y\\ : y G X } ,  x e
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Exam ple 1.2. The signed distance function is defined as:

. p ( x , X ) ,  x $ X ,
d(x , X)  =

—p ( x , x c) , x e x

Here X c denotes the complement of X  in Rd. Note that a mathematical 

analysis of signed distance functions can be found in [13].

Exam ple 1.3. The square distance function is defined as:

d(x , X) =  p2(x , X ).

Note that in Examples 1.1-1.3 the metric p may not necessarily be the Eu­

clidean metric, although henceforth it will be assumed to be so.

A binary image /  corresponds uniquely to the closed set F  defined as:

F = {x e W  : f (x)  = 1},

so that F  is the set of foreground pixels in the image / .  The distance transform  

of the binary image /  (or the corresponding set F ) is then the grey-scale image 

having pixel values

d( x , F ), for all x  G W,

where d(-,F)  could be, for example, any one of Examples 1.1-1.3 above. So 

d(x,F)  is then the (generalised) distance from pixel x  to the nearest foreground
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pixel of F.

In Figure 1.5 below we see a binary image and its corresponding Euclidean 

distance transform.

■nmii p

(a)

F igure  1.5. Binary image and corresponding distance transform

Working in the discrete set-up necessitates estimating Euclidean distances 

with suitable approximations. The reason is twofold. Firstly because pixel values 

of the transformed image must be given integer values and secondly because this 

leads to a much faster implementation.

Borgefors [5, 6] studied several discrete approximations to the Euclidean dis­

tance. Two such choices, known as the chamfer (3,4) and chamfer (5, 7,11) have 

maximum relative errors of 8.09% and 2.02% respectively. Each such approxima­

tion is implemented in a two stage algorithm.

DT’s are implemented as follows. Object pixels are denoted by the value 0 

and background pixels by the value 255. Suppose for the present that vertical 

and horizontal distances from background to object pixels are denoted by the 

value 3 and similarly that diagonal distances are denoted by the value 4. Figure

1.6 illustrates this scheme.

The distance transform shown in Figure 1.6 is known as the (3,4) chamfer 

DT. The first step in the computation of a DT is to define its corresponding 

distance matrix. Figure 1.7 shows the distance matrix for the (3,4) chamfer DT,
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(a)

255 255 255 255 255 7 4 3 4 7

255 255 0 255 255 6 3 0 3 4

255 255 0 0 255 4 3 0 0 3

255 0 0 255 255 3 0 0 3 4

255 255 255 255 255
( b )

4 3 3 4 7

F ig u re  1.6. (a) Binary image (b) Corresponding distance transform 

and the (5,7,11) chamfer DT.

(a)

4 3 4

3 0 3

4 3 4
(b)

11 11

11 7 5 7 11

5 0 5

11 7 5 7 11

11 11

F ig u re  1.7. (a) Distance matrix corresponding to the (3,4) chamfer DT (b) (b) 
Distance matrix corresponding to the (5,7,11) chamfer DT

The DT is implemented by performing two passes (forward and backward) 

over the input image, thus computing distance values for all the pixels. The 

forward pass is left to right, top to bottom and the backward pass is right to left, 

bottom to top. Half of the distance matrix is used in each pass, as illustrated in 

Figure 1.8.

(a) (b)

F igu re  1.8. (a)Top half of distance matrices used in forward pass (b) Bottom 
half of distance matrices used in backward pass



C H A P T E R 1. PRELIMINARIES 11

At successive stages of the forward and backward passes, a series of sums is 

formed. These sums are computed by adding the value of a pixel in the image to 

the corresponding value in the top (bottom) half of the distance matrix. The pixel 

in the image corresponding to centre pixel in the distance matrix is replaced with 

minimum of these sums. After the two passes the resultant image is the distance 

transform of the original image.

1.4 Random sets generated by grey-scale im­

ages

This section outlines an interpretation of a grey-scale image as the distribution 

of a random set. This section is fundamental to much of the discussion in the 

subsequent chapters.

A random closed set may be thought of as a random element whose values 

are closed sets. It is easy to appreciate many examples, including, for example, 

a random disc centred at a random point with a random radius, a convex hull of 

random points from a certain distribution. For instance in an imaging context, 

assign to each pixel a random grey value from a given set of grey levels. The 

resultant set of pixels is a random set. Many more examples abound.

To mathematically define a random closed set in Rd, the first step is to equip 

the space T  of closed sets in Rd with a cr-algebra. This a-algebra, <?>, is the 

minimum cr-algebra containing the family of sets,

T k  =  { F E T  : F  C\ K  ^

where K  is any compact set in Rd. So T k  is the family of closed sets which inter­

sect K.  A random closed set is then a measurable map from a given probability
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space to the space T . The reader is referred to [31] for a discussion of random 

sets.

Define the thresholded set of an image /  at level t E [0,1] as,

Ft = {x e  W  : f ( x )  > t}. (1.3)

This is a closed set since /  is assumed to be upper semicontinuous [47, p.426]. 

The key observation is that this deterministic thresholded set becomes a random 

closed set if the threshold is chosen at a random level. That is, replace the index 

t in (1.3) with a random variable U distributed on [0,1], the set of grey levels. 

In effect this allows us to treat deterministic grey-scale images as random binary 

images.

Proposition  1.1. Let K  C R2 be any compact set. Then {Fjj ft K  ^  0} is 

measurable with respect to a a-algebra generated by U so that Fjj is a random 

closed set.

Proof. { F u H K  0} =  { s u p ^  f ( x ) > U} is measurable since U is a random 

variable. □

The distribution of the random variable U determines the type of weighting 

associated with the random set model. For example choosing a uniformly dis­

tributed random variable on [0,1] ensures that all thresholded sets are given equal 

weighting. We call this a uniformly weighted random set model. Another useful 

model arises if U is distributed according to the histogram of the image, so that,

p {U > t } =  to(Ft)/iid(W)

where fid is the d-dimensional Lebesgue measure. This is called the histogram 

weighted random set model. Another possibility could be to assume a probability
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density proportional to the (d—1)-dimensional Hausdorff measure of the boundary 

of Ft. Of course many other possibilities exist.

In fact the distribution of the uniformly weighted model is immediately related 

to the image /  as follows:

P { x  e Fu} = P {U < f (x ) }  = f (x ) ,  X  e W

The histogram weighted model is advantageous since the distribution of Fu is 

invariant with respect to all increasing continuous transformations of grey values, 

th a t is, anamorphoses. It is important to note that for this model Fu is almost 

surely not empty. This is not true for the uniformly weighted model, which can 

lead to random sets with possible empty values.

There is an immediate connection between the uniform and histogram weighted 

random set models. The histogram random set model of an image /  is equivalent 

to the uniformly weighted random set model of the equalised image / .  This is 

clear since equalisation transforms the grey-scale image to one with uniformly 

distributed grey levels.



Chapter 2 

Thresholding and Random  Sets

2.1 Introduction

Thresholding is an important technique in image processing. It is typically used 

to separate objects in an image from its background. In automatic thresholding 

an appropriate threshold level t* is chosen and all pixels satisfying f { x ) < t* are 

then typically given the value 0 and classified as background pixels. All pixels 

satisfying f ( x )  > t* are typically given the value 1 and classified as foreground 

pixels. So it is seen that thresholding is an operation which transforms a grey­

scale image into a binary image.

Many techniques have been presented for thresholding. These techniques can 

be placed roughly into two categories, namely global and local thresholding. Local 

thresholding divides an image into several subimages and then finds threshold 

levels for each subimage. Global thresholding on the other hand is one that finds 

a single threshold level for the entire image. We concentrate throughout on global 

thresholding.

This chapter begins with an overview of thresholding techniques which have 

appeared throughout the literature. From Section 2.4 onwards a new thresholding

14
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technique is introduced which is based on the representation of an image via its 

random level set interpretation.

2.2 Survey of thresholding techniques

This section includes a summary of popular thresholding methods which have 

appeared in the literature. Commonly these are based solely on the histogram of 

the image often using little other information contained in the image [27, 28, 46]. 

We classify these as histogram based techniques. An obvious criticism of these 

methods is that they each give the same threshold level for different images with 

similar histograms. For instance, each of these methods is of little use in the 

situation where the image histogram is flat (or uniform).

Still other methods use information from local changes in pixel intensities, 

thus utilising more information contained in the image [9, 36]. Specifically these 

methods use information from the co-occurrence matrix M  =  [m^]*x/, where mis­

represents the frequency of occurrence for two neighbouring pixels with grey- 

levels i and j  in some predefined manner. Usually only the four adjacent north, 

south, east and west neighbours are considered. This dramatically reduces com­

putational complexity and in fact has been noted not to adversely effect resultant 

thresholded images.

The following survey is not intended to be in any way exhaustive.

2.2.1 Histogram  based techniques

Threshold selection is easier for images that have bimodal histograms, for ex­

ample, Figure 2.1. In this instance the object is clearly distinguishable from the 

background and the threshold level is simply chosen in the valley of the two peaks. 

Of course in practice most image histograms are not bimodal. For example, the
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/I \ u ^ ûu(b) Grev Level

F ig u re  2.1. (a) orca image, (b) histogram of orca image.

a i r p o r t  image in Figure 2.2 has a multimodal histogram. Many techniques have

lMJ  aAAa

Xca,j wm, mmtmmmMMmmmmzmwim (b) ^ ’ GreV Level

F ig u re  2 .2 . (a) a irp o r t  image, (b) histogram of a irp o r t  image.

been presented to modify (or transform) the input histogram to the situation 

where it becomes nearly bimodal. For instance, this can be done by weighting 

the histogram in a certain manner so that its peaks become pronounced and its 

valley deeper. These methods are in general quite ad-hoc.

Suppose an image is known to consist of distinct object and background re­

gions. If it is assumed that 100(1 —p)% of pixels in an image /  are object pixels, 

then it is straightforward from the histogram of the image, to find the threshold 

level t such that the cumulative distribution function of the image is as close as 

possible to 1 — p. This method is known as the p-tile method. This technique
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could be used to threshold, for example, a text image, where it known that the 

characters in the image typically occupy 15% of the image, so that p = 0.15. Of 

course this method has severe limitations.

Entropic thresholding Suppose it is known that the object pixels in an image 

occupy a proportion p of the image and the background pixels 1 — p. Suppose a 

pixel x  € W  is chosen at random. Following Shannon [48], the uncertainty about 

whether x  is a object or background pixel is measured by its entropy:

H(x)  =  -p\og(p)  -  (1 -  p) log(l -  p).

Here and throughout this chapter log(-) denotes logarithm to base 2 . As more 

information becomes available, such as grey-level of pixel x, H(x)  should decrease. 

Entropic thresholding has received much attention in the literature. Below we 

describe some results.

Entropic thresholding based solely on the histogram of the image relies on 

the assumption tha t values for object and background pixels follow two distinct 

discrete probability distributions. Here image /  is assumed to take discrete values 

from { 0 ,1 , . . . , /  — 1}. As before denote the histogram of the input image at level 

5  by, hf(s), the number of pixels in /  with grey level s. Further let,

Pi =  a =  0 , 1 , . . -  1n {W )

where n(W)  equals the number of pixels in the window. Thus $Zo_ 1  Pi =  1- 

Let us suppose that the image is thresholded at level t , so that the a posteriori 

frequency of grey levels in the foreground and background of the image are Pt
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and 1 — Pt respectively, where,

p t = E f t -
i= 0

The a posteriori entropy of this thresholded image at level t is calculated as:

This entropy value gives a measure of the information content of the thresholded 

image. Clearly the value t which maximises this entropy would serve as an 

appropriate criteria. However it is straightforward to show that this occurs when 

Pt = 1 — Pt = 1/2, giving an equal number of foreground and background pixels, 

a naive threshold.

Pun [39] redressed this situation by maximising an upper bound of (2.1) 

formulated as:

threshold level. However no justification is given as to why this is an appropriate

H(t)  =  - P t \ogPt -  (1 -  Pt) log(1 -  Pt). (2 .1)

log [max(p(+i,p i+2, . ■ .pi-i)]log [max(p0, Pi
log(l -  Pt).

(2.2)

Since

Y f0Pi log Pi
log [max(p0 ,p i , . . . , Pt)]

and

S l + 1  Pi lpg ft
log[max(p(+i,p (+2, • • -Pi-i)]

it is clear that H(t)  < H(t).  The level t which maximises H(t)  is chosen as the
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criterion function. In fact it is pointed out in [36] that the maximum value of (2.2) 

may correspond to an inappropriate value in view of (2 .1 ).

In another algorithm, Pun [40] defines an anisotropy coefficient a , as:

i= 0

Therefore m  is the least grey level dividing the histogram of the image into two 

(almost) equal parts. The threshold level t is chosen so that

It has been noted in [27], that this always results in a threshold with t > m. 

That is a thresholded image with less object pixels than foreground pixels, thus 

introducing a bias.

Suppose t is the threshold level which separates the background and fore­

ground pixels into two distinct regions, F  and B  respectively. Then the proba­

bility distributions for F  and B  may be denoted as:

SfcO Pi log (ft)

where m  is the smallest integer satisfying

m
$ >  -  °-5-

P o  P i  P t

P t+ 1  P t+ 2  P i - 1

1 — iV  1 — iV  ’ 1 — P*

Kapur et al. [27] compute the sum of the entropies associated with each 

distribution. This sum is then maximised to give the appropriate threshold level.
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The entropy associated with the foreground region is as follows:

Similarly the entropy associated with the background may be formulated as fol­

lows:

Maximising H(t)  obtains the maximum information between foreground and 

background distributions in the image.

It is interesting to note here that if both distributions are uniform, so that 

the image is ideally equalised (pi = l / l  — l), then this gives the trivial result that 

the threshold level is t = 1/2. This is of course not intuitively appealing. The 

distance threshold method which we will meet in Section 2.4, does not encounter 

any such problems.

O tsu ’s m e th o d  After thresholding an image at threshold level t suppose that 

pixels are partitioned into regions Co and C\ (object and background pixels). 

Otsu [35] used ideas from discriminant analysis to find the rule (grey level) which 

best separates the means from the two classes. Specifically the criterion function

Define
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is evaluated for t = 0 , 1 , . . . , /  — 1. The value of t at which this function is 

maximised is set as the threshold level. Here, as previously Pt = J2l=o Pi and

w , “ — pT '  ~  ~ T ^ p T ’

Maximising the criterion function C(t) has the effect of classifying the object 

and background pixels into two classes, such that the means of their respective 

classes are separated as far as possible. The threshold level is found to be midway 

between the two means.

M inim um  error thresholding Kittler and Illingworth [28] approached the 

thresholding problem by assuming that grey levels of both object and back­

ground pixels follow normal distributions f Q(t) rs-/

respectively. The overall probability distribution function (or normalised his­

togram of the entire image) f c  is a mixture of the two normal distributions and 

is assumed to be of the form,

f T{t) = a f 0 (t) +  (1 -  a ) f b(t), 0 < a < 1, s G GL. (2.3)

Here a  is the so-called mixing ratio (proportion of pixels in Co). Kittler and Illing­

worth [28] described an iterative algorithm to find estimates of the parameters 

(/io, jii, <r0, <Ti, a), while simultaneously finding the value t satisfying

a/oW  =  ( 1  -  oO/i(t),

where f 0 (t) ~  N(P,0 ,(Jq) and similarly for fi{t).  This method minimises the 

number of misclassified pixels from the object and background distributions.

An obvious criticism of this approach is the assumption that the object and
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background pixels are distributed as the mixture of two Gaussian distributions. 

Certainly from inspection, many image histograms would seem to deviate largely 

from a mixture of two Gaussian distributions. Indeed it is unclear how this 

algorithm would deal with the case of an image with a uniform histogram (an 

equalised image).

Some papers [23, 29] have examined the performance of the above histogram 

based techniques and others by generating a series of synthetic histograms, rather 

than images themselves. These histograms are assumed to a mixture of two 

Gaussian distribution functions. Thus a wide variety of differing histograms may 

be synthesised given various values for the parameters (a, /io, <r0, /ii, cq), namely 

the mixing ratio, mean and variance of the object pixel distribution, mean and 

variance of the background pixel distribution.

2.2.2 Region based techniques

As has been pointed out previously, the major drawback of histogram based tech­

niques is the fact that they do not take into account the spatial distribution of the 

grey values in the image. Different images with similar histograms will be given 

the same threshold value. Region based methods utilise the spatial dependency 

of grey levels. Typically these techniques are based on entropy considerations. 

We comment on two such methods.

In common with both is the notion of a co-occurrence matrix. This is defined 

as an / x / matrix, M  = [my]jXj, where entry represents the transition in the 

image from grey level i to grey level j  in a specified fashion.

Let us suppose that given an image of dimension M  x N , / ( / ,  k) represents 

the grey level of /  at pixel (l , k ).* Following [9, 36], we define the (z,j)th  entry

1 H e r e  w e  d e v i a t e  f r o m  c o n v e n t i o n  u s e d  b e f o r e ,  b y  d e n o t i n g  p i x e l s  a s  p a i r s  o f  c o o r d i n a t e s .
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in the co-occurrence matrix as:

where

M  N

m =  E E ^ > fc)> (2.4)
1=1 k = 1

f ( l , k )  = i and /( / ,  k +  1 ) =  j,

6 (1, k) =  1 , if < or

}(l, k) = i and / ( /  +  1 , k) = j\

6 (1, k) =  0 , otherwise.

Thus it is seen that considers transitions from grey levels i to j  between 

adjacent pixels horizontally right and vertically below. It is possible to make the 

matrix M  symmetric by also considering horizontally left and vertically above 

transitions. However it has been noted in [36] that this does not significantly 

improved the information content.

Each entry in the co-occurrence matrix may be normalised to obtain the 

transition probability:

P i j  ~ m 13

' i- i  /-i

EE
v i= 0  j = 0

TTlij (2.5)

It is clear that a threshold t divides the matrix into four submatrices as shown 

in Figure 2.3.

Quadrants A  and C represent local transitions within background and object 

respectively, while quadrants B  and D  represent transitions from background to 

object and vice versa. The probabilities associated with each quadrant may be
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l - l

l - l

Figure 2.3. Co-occurrence matrix partitioned by threshold t. 

formulated as:

t t t i-i
=  E E  Pij,

z=0 j= 0  z=0 j= £ + l
/ - I  / - I  / - I  *

ffcw  =  E  E  p»' p ° ^ > =  E  E p«- (2-6)
i=t+l j—t+l i=t+l j =0

Finally each entry in each quadrant may be further normalised by the quadrant 

probabilities (2 .6 ) as follows:

pfi = Pij/p A for 0 < i < t, 0 < j  < t,

Pij = Pij / Pb for 0 < i < t, t +  1 < j  < I -  1,

Pij = Pij / Pc f°r t +  1 < i < I -  1 , t +  1 < j  < I -  1,

P Pij /  P d for t +  1 < z < / — 1 , 0  < j  < t.

(2.7)

(2 .8 ) 

(2.9)

(2.10)

So pfj for 0  < i < t, 0  < j  < t, represents a probability of background to back­

ground transitions. Similarly for (2.8), (2.9), (2.10). Pal and Pal [36], and Chang 

et al.[9] use these formulations as the basis for their various entropy methods.
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Local and conditional entropy Pal and Pal[36] define the local entropies of 

background and object regions respectively as

H B{t) = - \ Y T E l Pi i Xô ‘Pii (2 -n )
i=0 j=0

Ho(t) = - 1  E ,  S p§ logp« ' (2'12)
i—t+l j=t+l

Both (2.11) and (2.12) correspond to a posteriori entropies at threshold levels 

t and so are functions of t. The local entropy of the image is now defined as 

the sum of the local entropies of the foreground (object) and background and is 

formulated as:

H ( t ) = H B(t) + H 0 (t) (2.13)

The value of t  which maximises (2.13) is chosen as the appropriate threshold 

level.

Quadrants B  and D  correspond to probabilities of transitions of adjacent 

pixels from grey levels in the background to the object and vice versa. In effect 

the entropy associated with the probabilities pfj for 0  < i < t, t +  1  < j  < 1  — 1 

describes the average amount of information gained from the object given that 

one has viewed the background. It is formulated as:

H (0 \B )  = - Z Z pS log pfj- (2.14)
*=0 j=t+1

Similarly,

H (B \0 )  =  -  £  £ p g l o g p g .  (2.15)
z=t+l j = 0
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The conditional entropy of the image is then defined as:

H{t) = (H ( 0 \ B ) +  H{B\0))  / 2 . (2.16)

The maximiser of (2.16) serves as the appropriate threshold level.

R e la tiv e  en tro p y  Given two probability distributions pi and p*, 0 < i <  I — 1 , 

the relative entropy of p relative to p* is defined as,

L(p,P*) =
i= 0

In essence L(p,p*) determines a measure of distance between the two distribu­

tions. Note that in conventional statistics this distance is termed the Kullback- 

Leiber distance.

Chang et al. [9] extended some ideas from [36] incorporating the idea of 

relative entropy. Their criteria for thresholding an image is to find a thresholded 

image best matching the original image in some sense. Specifically they consider 

the co-occurrence matrix [:rriij]ixi as corresponding to a transition probability 

distribution of the original image, and similarly define a co-occurrence matrix for 

a thresholded image at the same level t. Thus the relative entropy between two 

such distributions serves as a measure of how the threshold image matches the 

original image.

An appropriate criteria is then to find the grey level t such that the relative 

entropy is minimised.
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2.3 Thresholding and expectations o f random  

sets

Each image /  is comprised of a nested family of thresholded sets {Ft}, 0 < t < 1. 

In Section 1.4 it was shown that F j j  is a random set if U is a random variable. 

Now the problem of finding the appropriate threshold level may be stated as a 

problem of choosing a set F t * from the sample of thresholded sets { F * } , 0 < £ < 1 ,  

which best summarises this sample (or indeed image / ) .  In classical statistics, 

populations or samples are summarised by means or expectations. In turn this 

suggests that the appropriate thresholded set might be found by exploring ex­

pectations of F j j .

In general the problem of defining an expectation of a random set X  C 

is difficult. The usual approach is to embed the space of sets of interest into a 

linear space. It is now possible to define an expectation in this space, and then 

try to map this expectation back to the space of sets of interest. This idea is 

explained graphically in Figure 2.4.

embed

‘remap’

Sets

Expected
Set

Linear
Functionals

Expectation’ of 
Functional

F igu re  2.4. Approach to defining expectations of random sets 

For examples of expectations of random sets, see [32, 49].
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2.3.1 N aive thresholds

The Vorob’ev expectation [49, p. 113] is based on measures of sets and is defined 

as follows. Let lx (^ )  be the indicator function (or characteristic function) of a 

random set X  in Rd, that is, it is equal to 1 for x  € X  and to 0 otherwise. Then

Elx (x) = px{x) = P {x  EX}

is called the coverage function of X .  Assume that E Pd(X) < oo, where pd is 

the d-dimensional Lebesque measure. Then the Vorob’ev expectation, E y(X ), is 

defined by

X t = {x G Rd : Px{x) > t} (2.17)

for t which is determined from the equation,

pd(X t) = E p d(X).

If this equation is not satisfied for any X t, (for example, if Pd(Xt) is discontinu­

ous), then X t is chosen from the inequality

Td{Xt) < E pd{X) < Pd(Xq), for all q < t.

We now show that finding the Vorob’ev expectation of the random set X  = 

Fu generated by an image / ,  using both the uniformly and histogram weighted 

models, yields naive thresholds.

If the random set model X  =  Fu is uniformly weighted, then,

pFv{x) = P{z e Fu) = P{U < f(x)} = /(*)■
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In this case the coverage function coincides with the image and the set X t coin­

cides with the thresholded set, Fti of the image at level t, as introduced earlier. 

Further,

Thus we see that the Vorob ’ev expectation of the random set Fu is the thresholded 

set Ft defined so that

Pd(Fq) for all q < t. So we see that Ft is the thresholded set whose area is the 

closest to the integral of /  over the entire window. This is a naive approach to 

thresholding.

Now consider the situation where the random set model is histogram weighted, 

so that U = Cf is distributed according to the histogram hf  of the image /  

(assuming that the histogram exists). Then,

E fj,d(X) = E iid(Fu) =  J  P{rr G Fv } dx =  J  f(x) dx
w w

w

if such a set exists. If not, then we choose Ft such that pd{Ft) < f w  }(x)dx  <

/ ( * )

E ftd(Fu) = J p { U < f { x ) } d x  = J  J  d t dx .
w W 0

Changing the order of integration above we see that

i i

E U F u )  = j A y j  /  M *) d t J  ds = j A y j  I  h/(t )tu(Ft) dt. (2.18)
0 0

It may be seen that pd{Ft) = hf(s) ds. Inserting this into (2.18) and
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integrating, we see that E fid(Fu) = Pd{W)/2 . Thus we see that the Vorob’ev 

expectation for the histogram weighted case yields the thresholded set Ft, deter­

mined by Pd{Ft) — UdiW)/2 , if such a set exists. If not, we choose Ft such that 

^d(Ft) <  /J'diW)/2  < iid{Fq) for all q < t. So we see that Ft is the thresholded 

set whose area is the closest to half the area of the window.

2.3.2 D istance average

We have seen in the previous section that the Vorob’ev expectation is determined 

by the measure of X  and its coverage function. In particular it ignores sets of 

measure zero, for example, isolated points or curves in the continuous setup. We 

now describe an expectation which has no such problems. It is based on the 

idea that random sets can be represented by their distance functions rather than 

indicator functions used to define the Vorob’ev expectation.

Let us suppose that X  is a general non-empty random closed set. Let d(x, X )  

be the generalised distance function of X  (defined in Section 1.3). Lower semi­

continuity of d implies that d(x , X )  is a random variable. Assuming that d(x, X )  

has a (possibly infinite) expectation, define the expected distance function as

df (x) = Ed(x , X) .

In general this is itself not a distance function, see [3]. However, it is sensible 

in many cases to search for a deterministic set (or binary image) such tha t its 

distance function (or distance transform) is the closest to df(x)  in some sense.

Since it is difficult to search through all possible closed sets, it is possible 

to restrict the choice of possible ‘candidates’ onto those sets which appear as 

thresholds of dj(x).  A suitable level set of the expected distance function serves 

as the distance average of X  [3]. To find this level, df(x)  is thresholded to get a
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family of sets

X(e)  = {x : df(x) < e} , e > 0 .

Then the distance average X  is the set X(e)  chosen to minimise

llrf/C-) -d (-,A -(e )) ||, (2.19)

where df(-) and d(-,X(e)) are considered to be functions of their arguments 

designated by dots. The norm in (2.19) could be any one of numerous norms (or 

more generally metrics) in function spaces, e.g L0Q, L2, Li- Note that if h is a 

numerical function on W  C Rm, then the norm of h is given by

INloo =  sup \h{x) \ , 
x e w

and the Lp norm of h for p > 1 is defined by

i i%  =  f [  i % ) r
w

We will see later that for our specific purposes some norms serve better than 

others.

2.4 The distance threshold

In computing the distance average of a random set X , a set-valued mean is 

obtained by identifying a deterministic set whose distance function is the closest 

to the expected distance function, in some sense. So we are faced with the problem 

of how to choose various candidates from which the distance average is selected.
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Note th a t in the previous section for a general random set X ,  the expected 

distance function df(x)  is thresholded at different levels, so that these thresholded 

sets become the ‘candidates’ for the corresponding expectation. Therefore, for 

the case of a random set Fu generated from an image, the distance average of 

X  = Fu is not a thresholded set (although it could be considered as an ‘integral 

threshold’).

However, if instead of searching through the sets X ( e ), the distance average 

is chosen from the thresholded sets Ft , then this results in the distance average 

becoming a thresholded set of / .  In other words, the threshold is chosen as a set 

Ft such that its distance function best ‘mimics’ the expected distance function 

df(x).  This obtained binary image will be called the distance threshold.

Let the maximum and minimum grey levels in the grey-scale image /  defined 

on the window W  be denoted by t\ and t<i respectively. It is clear that the interval 

[ii, t2] describes the effective range of grey levels in the image. Further, note that 

Ft is an empty set and consequently d(-,Ft) ill-defined for grey levels t > t\. We 

formulate our algorithm as follows.

1. Evaluate d(x , Ft) for all grey levels t E [ti, and x E W.  This ensures that 

Ft will always be a non-empty set. These functions form a collection of grey­

scale images obtained as distance transforms of Ft for different threshold 

levels t.

2 . Compute

df (x) = E  [d(x,Fu)]

for all x E W.  (The subscript /  is introduced to emphasis the dependency 

of /  on d(x).) Here U is a random variable distributed on the effective 

range of grey levels [ti, t2]. Two basic options are to let U have the uniform
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distribution on [ti,t2] or use the histogram weighted model where U is 

distributed according the histogram of / .  The resulting function df(x)  

itself can be represented as a grey-scale image on W.

3. For the chosen norm, evaluate ||d/(-) — d(-,F*)||, for example,

i u m  m  pmi _  J SUP ^  ~ d(x ’Ft)\ ioo norm ,
f  ’ * j  ( f w \df ( x ) - d ( x , F t)\2 dx ) 1/2 L2 norm,

for each grey level t G The set Ft corresponding to the value of

t , which minimises the left-hand side of (2 .2 0 ) as a function of t  is chosen 

as the distance threshold. Note that there are further natural choices for 

the norm in (2.20). This step involves minimisation of a function of one 

variable (the level t).

It should be noted that in practical implementation one does not require stor­

age of all distance transforms from step 1. Instead, they are being accumulated 

and averaged successively as the threshold level moves up. Figure 2.5 below 

shows an example of an image together with its corresponding expected distance 

function df(x)  for the uniformly weighted model. This grey-scale image is called 

the grey-scale distance transform, see [33]. It has been noted in [33] that there 

is a one to one correspondence between discrete images and grey-scale distance 

transforms. It is unclear if this assertion holds in the continuous case, that is, for 

upper semi-continuous functions.

We henceforth use the notation T( f )  to denote the distance threshold of an 

image / .  If the distance threshold level is t (obtained by minimisation of (2.20)), 

then

T( f )  = Ft = { x e W :  f i x)  > t},
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F igure  2.5. (a) house image, (b) grey-scale distance transform of house image.

the set of object pixels in the thresholded binary image.

It should be noted that the distance threshold depends on a number of pa­

rameters:

• the random variable [/, (or random set model corresponding to the grey­

scale image), for example uniformly weighted or histogram weighted random 

set model.

• The choice of distance transform used, for example, Euclidean distance 

transform, or signed distance transform.

• The choice of norm chosen to minimise (2.20).

We don’t suggest a fixed approach to take for the situation where there are several 

grey levels minimising (2.20). Some approaches may work better for different 

situations. The following result, however, shows that an advantage in using the 

L 0o norm is that we can characterise the set of levels t which minimise (2.20).

T h eo rem  2.1. I f  for t' < t",

I|d/(x) -  d(x,Fv)\\0o =  II -Fi'Olloo, (2 .21)
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then ||df(x)  — d(x , Ft) ||oo < ||dj(x) — d{x, Ff/JHoo for all t' < t  < t" . In particular

if t ', t" both minimise

||d (-)-d ( ',F O ||oo , h < t < t 2 , (2 .2 2 )

then t will also minimise (2 .2 2 ) for all t' < t  < t " .

Proof. Since d(x,Ft), 0 < t < 1 , is increasing for each fixed x, the following 

inequality holds:

df(x) — d(x , Ftn) < df(x) — d(x , Ft) < df (x)  — d(x , Ft>).

Thus,

|df (x) -  d(x, F t)| < max( |df (x) -  d(x, Ft>)\ , |df (x) -  d(x, Ft»)\ ).

Taking suprema over x  G W,  yields:

| | J , ( - )  -  d(;  F t ) | U  <  | | d / ( 0  -  d(;  F O I L  =  l | r f / ( 0  -  4 ;

Thus t satisfies (2.21), as required. □

C o ro lla ry  2 .1 . ||d/(*) — d(-,Ft) ||oo viewed as a function o f t  has either a single

local minimum or is minimised over an interval of values of t .

2.4.1 Properties

The following section introduces examples of some desirable properties of the 

distance threshold.
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1 . Let /  be an inverse image of /  obtained by replacing all pixels with grey 

level t £ [0,1] with grey level 1 — t. If the signed distance function is used in 

computing the distance threshold, then in this instance

T( f )  = W \ T ( f ) .

So the distance threshold for the ‘inverse’ image of /  is identical with the com­

plement of the distance threshold of /  in W.  This may be shown as follows: 

Denote the corresponding level sets of /  by Ft = {x : f ( x)  > t}. Thus,

Ft = { x : l - f ( x ) > t }  = W \ F 1- t

This implies that d(x , Ft) = —d(x, F i - t), where d is the signed distance function, 

uniformly weighted. Hence

dj(x) = E d(x,Fu) = -E d ( x ,F i -u )  = - d f (x) ,

where df (x)  is the expected distance function of / .  Thus, ||dj{x) — d(x,Ft)\\ = 

||df(x)  — d(x , Fi_t)||, giving the desired result.

Note that this result is specific to the signed distance and in particular does 

not hold for the Euclidean distance function. This result says that the correspond­

ing thresholding operation is not symmetric with respect to a swap of foreground 

and background pixels.

2 . The image c f  is obtained from /  by replacing every grey value t with grey 

value ct. Here we must ensure that the transformed grey-scale range does not lie 

outside [0,1]. The following property holds, for the uniformly weighted case.

T(cf )  =  T( f ) .



CHAPTER 2. THRESHOLDING AND RANDOM SETS 37

Begin by denoting the level sets of c f  by F£ =  {x : cf (x)  > t}. Clearly

Ft = F*t . (2.23)

Further,

t2

df (x) =  . 1 ,  [  d(x,Ft)dt 
*2 ~  tl J

h
t2

h  ~

Introducing the change of variables:

l—  J  d(x, F;t)dt.

Ct2

J/(*) =
ct\

=  dcf(x). (2.24)

So the expected distance function of /  and c f  coincide. Both (2.23) and (2.24) 

combine to give the result.

The result above does not tell us that the thresholded levels in both images 

are equal, rather that the thresholded sets are identical. This property is trivial 

for the histogram weighted case since as above the equalised variants of c f  and 

/  coincide.

3. T ( f  \K) C K,  where
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This property states that the distance threshold of an image restricted to some 

subset K  of the window W,  and zero elsewhere, is contained in the set K.

This is trivially true since the thresholded sets of / |# ,  which we denote by 

Ft*, are such that, Fj* C K  for all grey levels t. The distance threshold is will be 

chosen from one of these sets, and so the assertion is true.

2.4.2 Examples 

M odel im ages

To compute the distance threshold for a model 2-dimensional image, by hand, 

is computationally intensive. It is for this reason that we begin by considering 

sample images in 1 -dimension, i.e. where the window, W,  is a subset of the real 

line.

E xam ple  2 .1 . The image /  in Figure 2.6 is comprised of three grey levels, 

namely 0 , h and 1 . Consequently the image is interpreted as being comprised 

of two distinct level sets Fi and F2 . A uniformly weighted random set model 

together with the signed distance transform and Loo-norm are used to compute 

the distance threshold. Here,

—x  +  ha +  ( 1  — h)b, 0  < x  < (a +  c ) /2 ,

df (x ) — < x( 2 h — 1 ) +  ( 1  — h)b — he, (a +  c) / 2  < x < (b +  c ) / 2 ,

x — c, (b +  c) / 2  < x < d.
\

Further,

IM/O — d(-,-Fi)||oo =  ( 1  — h)\b — a

11̂ ( 0 =  h \b - a \ .

(2.25)

(2.26)
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--

- - F2

- Fi

------------------ 1---------------- ------- 1—

F ig u re  2 .6 . Model image with three grey levels.

Whichever or F2 corresponds to the minimum of (2.25), (2.26) determines the 

threshold level. Clearly the threshold level is F\ if and only if h > 1 / 2  and F2 

otherwise.

E x am p le  2 .2 . Figure 2.7 shows an image /  comprised of three distinct level sets, 

Fi, F2 and F 3 corresponding to the grey levels a, a + b and 1. For this example we 

use the uniformly weighted random set model, Loo-norm and Euclidean distance 

transform.

Here it may be seen that,

df(x) = <

( 1  — a — b)(2 e — x) } 0 < x < e,

b(x — e) +  (1 — a — b)(2e — x), e < x < 3e/2,

(1 — a)(2e — x), 3e/2 < x < 2e,

0, 2e < x < 3e.
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Figure 2.7. Model image with three grey levels.

Hence we find,

| | « i / (0 -<*(•> f i ) I L  

l|rf/(*) -d(- ,-Pa)IU

||J/(-) Fs)||oo

=  max j ( l - a - 6 ) 2 e ,  ( i - ^ )  e ) ,

=  m a x | ( l - a  -  b) 2 e , e} ,

=  (a +  6 )2 e.

(2.27)

(2.28) 

(2.29)

Whichever Fi, F2, F3 corresponds to the minimum of (2.27), (2.28), (2.29) de­

termines the threshold level. For example, the threshold level is F3 if a +  b  <  

max { 1  — a — b ,  ( 1  — a) /4}.

We note here that if we alter the image above so that i t’s histogram remains 

unchanged, for example, by interchanging pixels with grey level a with those of 

grey level a + 6 , then we get a set of conditions different from (2.27), (2.28), (2.29). 

This should appeal to our intuition as it tells us that the distance threshold takes 

into account spatial distribution of pixels, rather than just frequencies of grey 

levels.
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Practical images

In this section we present results of the distance threshold for various grey-scale 

images. Our algorithm must be modified to cater for the discrete set-up. It is 

usual to work with 256 grey levels, { 0 ,1 ,. .. ,  255}. We denote ti and t2 by the 

minimum and maximum grey levels respectively, in the image.

1. Compute d(x , Ft), for each grey level t = ti, ti +  1, . . . ,  t2, for some chosen 

distance transform.

2. For the case of a uniformly weighted model, df(x)  is simply an arithmetic 

mean of the distance functions for each grey level between the minimum 

and maximum grey levels,

di(x) = i r _ \ r + 1 ^ d ( x , F t).
t —t\

For the histogram weighted model,

* / ( * ) = £ £ $ p j d(x >F‘)>
t=t i

where n(W)  equals the number of pixels in the window W  and hf(t)  denotes 

the histogram.

3. For the chosen norm, evaluate

(2.30)
( E x e w  \dA x ) ~ dix < Ft)\2) L 2 norm ,

for each grey level t =  £1}. . . ,  t2. The set Ft corresponding to the value of t 

minimising this norm is chosen as the distance threshold. If the norm
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is used, then using Corollary 2 .1 , we see that we need only search through 

values of t in increasing order until we get a minimum value.

The typical performance time on SUN Ultra 1 (133 MHz) to compute the 

distance threshold for a 256x256 image is 10-15 seconds to compute the grey-scale 

distance transform df(x) and the further 1 0  seconds to solve the minimisation 

problem.

Below in Table 2.1 and Figure 2.8 we present results of the distance threshold 

for a single image (Lenna image) for various choices of parameters. Trends ap­

parent in this example, for various parameter choices, are consistent with trends 

for a wide variety of different images. For example, it is may be said that the Eu­

clidean DT gives a rather high threshold level, resulting in a binary image which 

is ‘too dark’. While in all instances the signed DT seems to have performed much 

better, by comparison. It can also be argued that histogram weighting performed 

marginally better than uniform weighting. Further it is clear that the choice of 

norm did not have a dramatic effect on the distance threshold level for given 

random set model and distance transform.

We have found that for all images encountered, the best visual performance 

(from the author’s subjective viewpoint) among all combination of parameters 

are, a histogram weighted random set model, together with the signed distance 

function and L 00 norm. It is hard to give a theoretical justification for these 

choices. It is apparent however, that in employing the histogram weighted random 

set model we are enhancing information contained in the image.

Below in Figures 2.9 - 2.12 we present various images together with their 

corresponding histograms, we display distance thresholds for each image using 

a histogram weighting, signed distance function and norm. The images are 

grouped into various categories according to the shape of their histograms, which
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Random set model Distance transform Norm Threshold level
Histogram weighted Signed DT Loo 133 Figure. 2.8(c)
Histogram weighted Signed DT l 2 1 2 1  Figure. 2 .8 (d)
Histogram weighted Euclidean DT Loo 148 Figure. 2.8(e)
Histogram weighted Euclidean DT l 2 148 Figure. 2.8(e)
Uniformly weighted Signed DT Loo 133 Figure. 2.8(c)
Uniformly weighted Signed DT l 2 138 Figure. 2.8(f)
Uniformly weighted Euclidean DT Loo 169 Figure. 2.8(g)
Uniformly weighted Euclidean DT l 2 161 Figure. 2 .8 (h)

Table 2.1. Results of distance threshold for various parameter choices for Lenna 
image in Figure 2 .8 (a)

are bimodal, multimodal and unimodal. In this way we aim to display the per­

formance of the distance thresholds on a diverse range of images.

M u ltim o d a l h istog ram s We classify multimodal histograms as those having 

no clear modes. Such images would not lend themselves easily to valley seeking 

methods. Typically these images have a relatively even distribution of grey levels 

over the entire grey level range. For this reason histogram equalisation does not 

dramatically alter the shape of the histogram. This in turn tells us that the 

distance threshold for such images does not change significantly when use either 

uniformly or histogram weighted random set models.

For the Lenna image in Figure 2.8(a) we see that the grey level histogram 

is multimodal. Thus most histogram methods wouldn’t work successfully here. 

This threshold picked up most of the features on Lenna’s face and much of the 

feathers in her hat. The threshold level of 133 (Figure 2.8(c)), for the stated choice 

of parameters, compares favourably with the threshold level of 128 which the 

authors in [46] suggest as giving the best visual performance among all threshold 

levels.

We see that the distance threshold for the image of a postcard in Figure 2.9
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also performs well. Much of the detail in the original image is preserved in the 

thresholded image.

U n im o d al h isto g ram s We classify histograms as being unimodal if there is 

one distinct mode. Again valley seeking methods would be inconclusive here. For 

the tank  image in Figure 2.10 below we see from the corresponding histogram 

that most of the grey level values are centred between levels 110 and 150. The 

distance threshold level of t = 1 1 0  produced a reasonable threshold, although 

some of the details on the tank is missing.

The histogram of the image in Figure 2.11 shows that much of the grey levels 

are centred between levels 150 and 200. The distance threshold level of t = 166 

lies in this range. The thresholded image picked out detail on the gulls beaks and 

eyes.

B im o d al h is to g ram s Images with bimodal histograms are easiest to thresh­

old. Generally a good threshold level is chosen between the two modes. We have 

found that for all images examined with bimodal histograms the corresponding 

distance threshold levels are indeed situated at the valley of the two peaks.

We see that this is the case with the image in Figure 2.12, where the threshold 

level of t  = 126 lies between the two peaks of the histogram.

T e x tu re  im ages The image in Figure 2.13 represents a texture image from the 

Brodatz album of textures. The distance threshold level of t = 161 produces a 

binary image which preserves much of the features of the original image.
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2.5 M ultithresholding

Multithresholding is an extension of thresholding. Thresholding partitions an 

image into two regions, while multithresholding generalises this to partition an 

image /  into k + l  distinct regions. Denote the multithresholded image by f k. The 

idea is to choose an increasing sequence of k grey levels, say {ti,  • • •, tk} from 

the set of grey levels following some optimality criterion, and then to partition /  

following the rule:

0 , if f ( x ) < t u

1 , if ti < f (x )  < t2,

fk(x) = <

k -  1 , if t k - 1 < f ( x )  <  t k , 

k , i f  f { x ) > t k .

The grey levels { 0 ,1 , . . . ,A;} of the multithresholded image are chosen arbitrarily. 

They could, for example be chosen equally spaced in the interval [0, 255].

This problem may be restated in the following manner. Given an image /  

with corresponding random set model, or equivalently a sample of thresholded 

sets Ft, (one for each grey level), choose k thresholded sets, say Fti,Ft2, ■ • • 5 Ftk 

which best summarise all the information contained in the sample.

In this setting the problem has some parallels to that of finding the k-mean 

for a random set X  c  Rd, which is discussed [1 2 ]. Here the aim is to find a set 

H  c R d with k elements, and then to associate each x  G X  with an element i r ( x )  

from H.  The choice of k points is determined in such a way that the discrepancy 

between x  and 7 r ( x )  is minimised in some manner.

Recall that in the implementation of the distance average, the first stage was
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to represent an image /  by its grey-scale distance transform,

df(x) = Eiud(x, Fu),

and then to find a realisation of Fu, Ft say, whose distance function is closest 

to df(-). A  similar idea could be applied to multithresholding. Suppose /  is 

multithresholded into k grey levels {£1 , £2 , • • •, £*;}• Denote the grey-scale distance 

transform of the multithresholded image by,

- . , \ n {W)~l Y!l=ihfk{i)d(x,Fti) (histogram weighted), 
df A x ) = <

I A;- 1  X]?=i dix -> Fu) (uniform weighted).

Here hfk(i) denotes the histogram of f k■ Note that the thresholded level set 

of fk at level i coincides with

Fti = {x : f{x)  > L },

the thresholded set of f (x )  thresholded at level L

The choice of {£1 , £2 , • • • > £&} minimising the distance between <!/(■) and dfk(x) 

determines the multithreshold:

■ ■ ■ ,tk} — argmin 11d/(•) — <?/*(•)II- (2.31)
w )

Clearly when k = 1, this reduces to the distance threshold.

It should be noted that this scheme may be computationally expensive. If, 

for example, it is required to multithreshold a image with 256 grey levels into an 

image with k grey levels, then there are 256(255)... (256 — k + 1) possible choices 

of grey level to minimise (2.31).
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(a) Lenna image

o 200
Grev Level

(b) Histogram

(c) t = 133 (d) t = 121

(e) t = 148 (f) t = 138

(g) t = 169 (h) t = 161

F igure  2.8. Lenna image, corresponding histogram, and results of distance 
threshold for various parameter choices.
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G rey L evel

F igu re  2.9. A irport image, thresholded image and grey level histogram showing
the position of distance threshold (t = 132).
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I

Grey-Level

F ig u re  2.10. Tank image, thresholded image and grey level histogram showing
the position of distance threshold (t = 110) .
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Grey-Level

. G ulls image, thresholded image and grey level histogram showing 
of the distance threshold (t = 166).

F ig u re  2 .1 1 . u u n s  image, tnresnoiaea image c 
the position of the distance threshold (t = 166).
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F ig u re  2.12. An image with a bimodal histogram, thresholded image and grey
level histogram showing the position of the distance threshold (t = 126).
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F ig u re  2.13. Texture image, thresholded image and grey level histogram show­
ing the position of the distance threshold (t = 161).



Chapter 3 

Image M etrics

3.1 Introduction

A measure of comparison of the similarity/dissimilarity between two images is 

a vital concept in image processing. Often algorithms are needed to estimate 

a ‘true’ image as accurately as possible. This is the situation in image recon­

struction, encoding, edge detection etc. In such scenarios it is of interest to 

assess numerically the discrepancy between two images, so that a number d ( f , g) 

characterises the distance between /  and g. In this way we can objectively test 

the performance of the algorithm, diminishing the effect of human subjectivity, 

reducing it to a choice of the disimilarity measure.

It is often desirable that d(f ,g)  takes the form of a metric on the space of 

images. This is certainly more attractive from a mathematical viewpoint. In this 

instance we term d(-, •) an image metric.

Often many methods used to assess distances between grey-scale images are 

formulated on an ad hoc basis. One of the most widely used method of comparison 

is the root mean squared (RMS) distance, which computes the sum of squared

53
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differences between corresponding pixels:

(3.1)

In the continuous set-up RMS can be identified with the L 2 distance

1/2

l l / - s l | 2 =  I J  { f ( x) - g(x) f

The RMS method has the obvious advantage that it is computationally ef­

ficient, however it is accepted that it and other similar pixel by pixel methods 

do not always always give a good measure of visual similarity. One plausible 

reason for this may lie in the fact that RMS ignores locations of pixel by pixel 

errors. Suppose two ‘estimated’ images had the same number and intensity of 

pixel errors, where in the first all the errors were heavily localised in one area of 

the image, while in the second all the errors were evenly spread throughout the 

image. Both estimated images would return the same RMS distance, however the 

visual quality of the first would appear to be much poorer than the second. As an 

illustration consider Figure 3.1 below. Both estimated image 1 and 2 return the 

same RMS value when compared to the true image, however estimated image 1  

would seem to be visually more similar to the true image than estimated image 2 . 

All of the erroneous pixels in estimated image 1 are spread evenly throughout 

the image, while in estimated image 2  all errors are localised in the ‘face’, that 

is, eyes, nose and mouth are missing. In fact the double integral distance, which 

we shall meet later in this chapter, and which does take into account spatial 

considerations returns more realistic distances of 0.017 and 0.158 when the true 

image is compared with estimated images 1 and 2, respectively. (Note that the 

double integral distance is normalised here to return values between 0  and 1 .)
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(a)

F igu re  3.1. (a) True image, (b) Estimated image 1, (c) Estimated image 2

Throughout this chapter we will be concerned solely with discussing methods 

of comparison between images of similar dimension and size, further we will 

assume that the grey-scale range of both are identical. This is not as restrictive 

as it may seem, since for most applications where ones works with ‘true’ and 

‘estimated’ images, these assumptions hold true.

This chapter begins with a discussion of binary image metrics in present use, 

followed by the situation for grey-scale images. We conclude with a discussion of 

new grey-scale image metrics.

3,2 B in a ry  im age m e tr ic s

3.2.1 P ixe l-b y-p ixe l differences

Recall that a binary image /  may be uniquely described by the compact set F  

defined as:

F = {x e W  : f {x)  ^  0}.

Thus F  is the set of pixels in the image /  taking the value 1. It is clear that 

the problem of finding a measure of distance between two binary images / ,  g 

amounts to finding an appropriate distance between the corresponding sets F , 

G. W ithout further notice for binary images we interchange the notation / ,  g
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with F, G respectively.

Many metrics commonly used for binary image comparison are very simple in 

nature. A frequently used metric is the pixel misclassification error rate:

£(/)#) ~  i[/(g)^g(g) i> 0-2)
xew

where 1 \f{x) ĝ{x)] is the usual indicator function taking the value 1 when f ( x )  = 

g(x) and 0 otherwise. Note that (3.2) takes values between 0 and 1 and is 

equivalent for binary images to RMS. In the continuous set-up it is equivalent, 

up to a constant l / n (W) ,  to the L\  norm of ( /  — g). Indeed (3.2) has the 

advantage that it is computationally efficient, and displays some good theoretical 

properties, however it has been noted that often such pixel by pixel methods don’t 

accurately convey a visual sense of similarity [2]. Distances between F  and G are 

measured by the number of disagreements, without regard to their location. For 

example, errors such as the displacement of the boundary of F.  involving a large 

number of pixels, but not severely affecting its ‘shape’ are given high e values. As 

an illustration consider Figure 3.2. Here Image B is obtained by rigid motion of 

Image A. The misclassification error rate between the two images has the value 

0.315. The delta metric distance, which we will meet in the subsequent section, 

gives a much more realistic value of 0.07.

F igure  3.2. (a) Image A, (b) Image B
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Pratts ‘figure of merit’ (FOM) has also been proposed as a dissimilarity mea­

sure for binary images [1, 38]. It is defined as,

FO M (F,(?) =  ' E  i  + k p ( x , F Y '  3̂ '3*

where p(-, •) is the Euclidean distance function and k is a scaling constant, usually 

set to 1/9 when p(-, •) is normalised so that the smallest non-zero distance between 

neighbouring pixels equals 1. Note that FOM is implemented by setting the 

true image to correspond to the compact set F  and the estimated image to 

correspond to the set G. It is clear that FOM is not itself a metric, in fact 

FOM(F, G) /  FOM{G,F).  Also 0 < FOM (F,G)  < 1 and FOM(F, G) =  1 if 

and only if f ( x )  = g(x) for all x  G W.  It has also been noted that FOM doesn’t 

always convey an accurate measure of distance.

3.2.2 B addeley’s delta metric

A recently presented binary error metric which circumvents some of the difficulties 

mentioned in the above error measures is Baddeley’s delta metric [2]. We begin 

with a brief discussion of the Hausdorff metric, on which the delta metric is based.

D efin ition  3.1. Given two non-empty sets (or binary images) F, G in (or 

W), the Hausdorff distance is defined as:

H(F, G) =  max < sup p(x , G), sup p(x, F)  i  . (3-4)
( xEF xeG J

In other words, the Hausdorff distance is the maximum distance from a point 

in one set to the nearest point in the other as shown in Figure 3.3.

As before p(-,-) is the Euclidean distance function. The Hausdorff distance
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F ig u re  3.3. Hausdorff distance between F  and G

may be equivalently formulated as:

H(F,G)  = sup \ p ( x , F ) - p ( x , G ) \ .  (3.5)
xew

The Hausdorff metric is a theoretically attractive metric. It generates the 

myopic topology, which Serra [47] argues is the most appropriate topology for the 

medium of binary images. It is however practically unusable, since it is highly 

sensitive to background noise. The changing of a even a single background pixel 

to a foreground pixel or vice versa, can drastically affect the Hausdorff distance. 

Figure 3.4 displays two similar sets F  and G. However the presence of the point 

x  e  F  gives a large value of H(F, G). In the absence of x, H ( F , G) would give a 

more realistic measure of distance.

F

F igu re  3.4. Sensitivity of H ( F , G) to noise
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It should be noted that different metrics may induce the same topology. Bad- 

deley [2] proposed an alternative metric to the Hausdorff metric which in its 

continuous form, is topologically equivalent to the Hausdorff metric, but which 

is less sensitive to noise. This metric is obtained by replacing the supremum in 

(3.5) with an LP average, and bounding the distance function by some appropri­

ate concave transformation. The delta metric between two binary images / ,  g is 

defined as:

* ( / . * > .  (3.6)

Here p*(x,F) = min{p(:r, F),  c}, so that in (3.6) pixels greater than a distance 

c, the so-called cut-off value, from the nearest foreground pixel will'be given the 

value c. In this way the effect of background noise is limited.

By construction, letting p —> oo and c f  oo, reduces AJ to the Hausdorff 

metric. It is also worth noting that if the cut-off value c is less than the smallest 

distance between any two distinct pixels, then Apc is related to the misclassifica­

tion error rate:

{ A c ( f , g ) / c)P =  n ( yy \  ^ 2  Mf(x)^9(x)]-
' ' x£W

The delta metric has been applied to a Bayesian restoration problem [19, 44], 

with successful results. We will explore this restoration problem for grey-scale 

images in the subsequent chapter.
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3.3 Grey-scale metrics

The problem of finding an error metric between grey-scale images is somewhat 

more complex than that of binary images. Grey-scale images have the added 

dimension of pixel grey level, while error metrics for binary images essentially 

amounts to finding an appropriate distance between compact sets in some (dis­

crete) subset (or window) of a Euclidean plane.

There are many approaches to take towards finding ‘good’ grey-scale image 

metrics. One approach might be to extend useful binary image metrics to the 

hypographs (subgraphs) of grey-scale images, for example [51]. One may also 

apply metrics between fuzzy sets to images, since an image may be considered 

as representing a fuzzy set. The approach taken in [17] is to formulate distances 

between images via probability metric distances between the random set models 

generated by the images. Probability metrics [41] are used to determine distances 

between random variables, and can be generalised for random sets [31]. One such 

probability metric is modified so that it is equivalent to the delta metric, when 

applied to binary images, and then this metric is extended to the more general 

case of grey-scale images.

3.3.1 Usual measures of comparison

In most applications involving comparison of images, methods to assess discrep­

ancies are usually quite ad hoc in nature. Many use methods based on simple 

pixel by pixel differences. Two of the most widely used include the root-mean- 

squared (RMS) distance,

RMS(/,<?) =  £ ( / ( * )  _  5 ( x ) ) d  , (3.7)
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which is equivalent, up to a constant, to the L2 distance between /  and g , and 

the signal-to-noise ratio (SNR),

contained in pixel x. The denominator then aims to calculate the total amount 

of noise in the ‘estimated’ image. It is clear that SNR is not a metric.

RMS and other distances are widely used in many applications, image com­

pression/decompression, restoration etc., however it is accepted that they do not 

convey an accurate sense of discrepancy. Part of the downfall of RMS and SNR 

lies in the fact that each are invariant to localisation of errors. If pixel by pixel 

differences were heavily localised in a certain area of an image, then visual quality 

would seem to be much poorer than if the same number and intensity of errors 

were spread over the entire image. That is, the effect of all the pixel differences 

would be ‘diluted’ throughout the image, see Figure 3.1 as an example. A further 

complication lies in the fact that equal differences in pixel grey levels do not have 

the same visual impact — the retina is known to to have different sensitivities to 

different grey levels.

It is also possible to transfer metrics between grey-scale images from the spa­

tial domain to the frequency domain via Fourier transforms. Parseval’s identity 

gives an immediate connection between RMS in the spatial and frequency do­

mains. Let f ( u ) be the Fourier transform of an image / ,  for each pixel u in the 

frequency domain U, then Parseval’s identity says that:

SNR(/,s) = E sg  w 9(x ? (3.8)
E xew ( f ( x ) ~ 9(x))2'

Here f (x )  represents the ‘true’ image and g(x) the ‘estimated’ noisy image. It 

is assumed tha t g(x) = f (x )  +  e(x), where e(x) represents the amount of noise

(3.9)
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which in turn tells us that RMS is equivalent in both the frequency and spatial 

domains. That is,

However this explains the idea that error measures need not always be defined 

in the spatial domain. The Sobolev metric of order 6, where 0 < 8 < 1 can be 

abstracted by modifying (3.9) as

S ob(/,s) =  +  M 2)S\f(u) ~  g(u)\2

Here r]u is the two dimensional frequency vector associated with position u in the 

frequency domain U. The Sobolev metric first appeared in the context of image 

comparison in [51].

3.3.2 Fuzzy metrics

A fuzzy subset of a set IT is a mapping a  from W  into [0,1]. For x  G W,  

a(x)  G [0,1] gives the ‘degree of membership’ of x  in a. If a  takes only the values 

0 or 1 , then such a membership function is called crisp. The support of a  is 

defined as supp(o;) =  {x : a(x) > 0 }.

The concept of a fuzzy set is similar to that of a grey-scale image. Here the 

approach is to treat grey levels as degrees of membership for various pixels, so 

tha t

f  : W  [0,1],

becomes its membership function. The connection between the random set model
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for an image / ,  introduced earlier, is obvious. Recall that given an image /  with 

corresponding uniformly weighted random set model Fjj, P (x  G Fu) = f (x )  for 

x  G W.  That is, given a pixel x, the probability that it is contained in the random 

set is simply f (x) .  Analogously in fuzzy set terminology, f (x )  is the degree of 

membership of x. Throughout this section we will equivalently speak about fuzzy 

sets and images.

It is clear that metrics defined between fuzzy sets may be applied to define 

distances between grey-scale images. Examples of fuzzy set metrics appear in 

[8 , 10]. Both are based on representing a fuzzy set via level sets (or t-cuts), 

which in image processing language are nothing but thresholded sets. The level 

set of the fuzzy set (or thresholded set of the image) may be denoted (as before) 

by

Ft = {x : f (x )  > t } ,  t e  [0,1].

Chaudhuri et al. [10] define a metric M(-, •) between fuzzy sets (images) /  and g 

as the weighted integral of Hausdorff distances between corresponding level sets:

, N f'w(t)H(Fu Gt)dt
M ( / ’9) =  Vi J ’ > (3-1°)Jo w(t)dt

where w(t) = t and H ( •, •) is the Hausdorff metric. However this metric is 

only computable if the fuzzy sets (images) / ,  g have the same maximum value. 

Otherwise, if f ( x )  = t* for some x G W,  such that t* is larger than the maximum 

value of g , then Gt* is empty. Thus in (3.10) we would be computing the Hausdorff 

distance to an empty set, which isn’t well defined.

Chaudhuri et al. [10] addressed this problem by modifying both fuzzy sets so 

that the maximal values of /  and g in both sets is 1 and occurs just at the points 

where the maximal value in each occurred previously. The resultant fuzzy sets



CHAPTER 3. IMAGE METRICS 64

are denoted / ' ,  g'. In imaging terminology this amounts to modifying each image 

so that the set of pixels with the largest grey level are now given the maximal grey 

level value 1. However M(f ' ,g ' )  = 0 does not imply that f  — g. A correction 

term is introduced to avoid this:

If I _ Iw l / (x ) - 9{x)\dx 
e u ,9 >

The fuzzy metric is now defined as:

M*(f ,g)  = M ( f , g ' )  + e(f ,g).  (3.11)

It is suggested that this metric and a similar metric proposed in [8 ], could be used 

in an imaging framework. We outline a few drawbacks in this scenario. First of all, 

the Hausdorff metric is inappropriate as a basis for this method, considering its 

instability to background noise, as mentioned earlier. A more sensible approach 

would seem to be to apply better binary metrics here, for example, the delta 

metric. Also no justification is given for the choice of weights w(t) = t in (3.10).

It is clear that the above fuzzy set metrics could also be formulated using the 

random set model for grey-scale images. Suppose we have two images / ,  g with 

corresponding random sets F u, Gu , then all of the above metrics are particular 

cases of the metric given by,

E m (Fu ,  G u ),

Here m(-, •) is some metric defined between binary images (or compact sets), for 

example the delta metric. As with (3.11), care may need to be taken if both /  

and g don’t reach the same maximal value and so Fu or Gu may be empty.
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In this setting the metrics in (3.10) and (3.11) are generated if U has cumu­

lative distribution function:

This choice of distribution is rather arbitrary.

More interesting metrics may be generated if the distribution U, or the cor­

responding random set model, is more appropriate. We consider some choices 

below. Let us suppose that /  and g both attain the maximal grey value 1. 

(Otherwise /  and g should be adjusted accordingly.)

We could consider a uniform weighting, so that

or maybe a distribution corresponding to the histogram of the ‘true’ image, if 

either f  or g can be interpreted as such. For example if /  is ‘true’ image, then 

we may consider a metric of the form,

i

o

i

o

3.3.3 Binary metrics applied to grey-scale images

Recall that a subgraph Tf  for a grey-scale image /  is defined as:

r f  = {(x, t) : x G Wj t G [0,1] and j (x )  > t}

so that this is the set of all pairs (x, t) G W  x [0,1] lying between the graph of /  

and the plane t — 0 .
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In this way we may consider a 2-dimensional grey-scale image as a 3-dimensional 

binary image, incorporating the grey values as an additional dimension. Any bi­

nary metric may be applied to T/ and to define distances between grey-scale 

images.

The aim in [51] was to use the delta metric to calculate the distance between 

r > , r 5, for two images / ,  g. It is clear then that the crux of this problem is to 

define an appropriate measure of distance, d((x, £), T/), between points (x,t)  G 

W  x [0,1 ] and the subgraph T/ of / .  (Once this has been done, analogous to 

the delta metric, this new metric will then be an Lp average of such distances, 

over all points (x , t ).) A first step is to define distances between pairs of points 

in IT x [0,1]. Wilson et al. [51] propose:

d((x, t), (x ' , t ')) =  max (p(x , x'), |£ — t ' | ) , (3-12)

where p(x , x') is some metric defining distances between points in the plane.

Using the same notation as previous, the thresholded set for an image /  at 

any grey level t is defined as,

Ft = {x :  f (x )  > t}.

The distance between points in the plane and this set is defined as the distance 

to the nearest point in the set:

d(x,Ft) = inf{p(x,x') : x' G Ft}. (3.13)

Using (3.12) and (3.13), the distance from a point (x,t)  G W  x [0,1] to the
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subgraph of / ,  Tf  may now be defined, after some calculations as:

d((x, t ) ,Tf )  = inf  ̂{max[d(x, Ft>), 11 — £'|]} . (3.14)

Analogous to the formulation of the delta metric, this distance is truncated 

by a distance c, to suppress the influence of noise as:

The desired metric A<?, between the two subgraphs T/  and T5 is now defined as,

In the discrete setting, working with a discrete set of grey levels GL,  A~? may be 

written as:

where n(W)n(GL)  is the total number of pairs (x , y) 6  W  x GL.  This metric is 

shown to perform adequately on a wide variety of images. One major drawback 

to this metric however, is the vast computation time required to calculate this 

distance and additional storage requirements arising from the necessity to store 

distance transforms of all thresholded sets as noted in (3.14).

A ’ ( f ,g)  =  A » (I7 ,r ,)

V
n(W)n(GL)

1

(x,t)eWxGL
J2 |<r ((*, i ) , r , ) - * • ( ( * ,  t ) , r , )  I'
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3.3.4 Kantorovich distance

An image /  may be viewed as a probability distribution function defined such 

that for A  C  W,

P (A) = h  / ( * ) dx
f w f ( x ) d x '

A natural tool to explore distances between probability distribution functions 

are probability metrics. Kantorovich [26] introduced one such probability metric. 

We begin with a description of this metric in an abstract setting, and then show 

how it may be applied to grey-scale images [25].

Let (C7, 5) be a separable metric space and let Pi, P2 be two probability mea­

sures defined on this metric space. Define 0 (P i,P 2 ) as the set of all probability 

measures P  on U x U with fixed marginals Pi, P 2 and put

K ^ P u P i )  =  inf 1 J  6(x,y)P(dx,dy):  P e e ( P u P2) \  . (3.15)
Kuxu )

The fact that Ki(-, •) is a metric follows from the fact that £(-, •) itself is a metric. 

A dual formulation may also be written. Let

Lip(P) =  sup{/ : U -> R  : | f (x )  -  f ( y )| < 6(x,y)},  (3.16)

be the family of Lipschitz functions on U. Now define

K 2(Pi ,P2) =  sup | J  f (x)Pi{dx) -  J  f ( x ) P2(dx) : /  6  Lip(IT) . (3.17)

The equivalence of (3.15), (3.17) may be stated as a theorem due to Kantorovich 

[26]:
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Theorem  3.1. IfU is compact then

K 1(P1,P2) = K 2(PU P2).

Kaijser [25] has adopted this metric to the situation where the metric is now 

defined between images /  and g defined on windows W\  and W 2 respectively. 

The Kantorovich distance is often interpreted as a mass transportation problem, 

where the cost-function of the transportation problem depends on the type of 

distance function used to measure distances between pixels.

To begin, we introduce the notion of a transportation image. A transportation 

image is a set

of a finite number, N  say, of three-dimensional vectors. It is assumed that each 

m n is strictly positive and that there are never two vectors for which the first 

two elements are equal. The first two elements are denoted transm itting and 

receiving pixels respectively.

Given a transportation image, it is possible to define two images, termed a 

transmitting image, /  and a receiving image, g as follows: Let W\  denote the 

union of all transmitting pixels and W2 denote the union of all receiving pixels. 

Given x  E Wi,  let A(x)  represent the set of indices in the set { ( x n, yn, m n), 1 < 

n < N }  for which the transmitting pixel is equal to x. Similarly for y E W 2l 

B(y)  denotes the set of indices for which the receiving pixel is equal to y. The 

transmitting image is now defined by:

n£A(x)
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and the receiving image by

9(v) = ^2 m^ y G W2'
neB(y )

It is clear from the definition of / ,  g that the total grey value of / ,  g defined as 

T , x e w f ( x )i T ,xew9(x ) respectively, is equal.

Now suppose we are given two images /  and g defined on windows W\, W2 

respectively, then distances between pixels x  G W\  and y G W2 may be computed 

via a distance p(x,y),  for example the Euclidean metric. (Note that Wi, W2 

may or may not overlap.) Suppose further that both images have equal total 

grey value. Let © (/,# ) denote the set of all transportation images from /  to 

g. Given a particular distance function, we may now define a cost for any given 

transportation image T  G 0 ( f , g )  as:

N

c(T) =  y ^p ( xn,yn)mn.
71=1

The Kantorovich distance d/^(/, g) between /  and g may now be defined as:

d>K{f,g) = inf(c(T) : T  G ©(/,#)}• (3.18)

Kaijser [25] shows how computation of this distance may be stated in terms of 

a linear programming problem. Analogous to the situation described above for 

probability measures, a dual formulation may also be presented. Let {a(a;),a: G 

Wi}  and {/3(y),y G W2} denote sets of variables associated with pixels in W\  and 

W2 called dual variables. As above, let p(-, •) denote a distance function between 

pixels in W\  and W2. Let 'L denote the set of all dual variables satisfying

p ( x , y ) - a ( x )  -  f3(y) > 0
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where, x  G W i , y  G W 2. (This condition is analogous to the Lipschitz condi­

tion (3.16) for probability measures.) The dual formulation of dx(-,  •) may now 

be written as:

dK{f,g) = sup |  ^ 2  a{x) f (x)  +  ^ 2  P i v M y )  ■ G ^  1 . (3.19)
IrrGWi y E W 2  J

References to proofs of the equivalence between (3.18) and (3.19) are given in 

[25].

One immediate drawback to this metric is that the total grey value for both 

input images needs to be identical. The author [25] suggests finding two normal­

ising constants, one for each image, and multiplying pixel values in each image by 

the corresponding constant, so that the two transformed images will have equal 

total grey value.

Another disadvantage is the vast computation time required to calculate this 

distance. Kaijser [25] has produced an algorithm which has less computational 

complexity than standard algorithms, but which would still seem to be infeasible 

for many applications.

3.4 Probability metrics

The following section illustrates a new approach towards generating metrics for 

grey-scale images. This method relies on the usage of the random set model for 

images. Distances between images may now be formulated via distances between 

their corresponding random sets. Probability metrics have been used to generate 

distance between random variables, see [41]. Molchanov [31] generalised this 

theory to the class of closed random sets.
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3.4.1 Probability metrics for random sets

Following Rachev [41], a probability metric d(£, rj) between two random variables 

£ and rj satisfies the following conditions:

1- d(£, rj) = 0  implies P { f  =  77} =  1.

2 . d{^rj) = d(r}^).

3. d(£, rj) < d(£, £) +  d(£, rj) for each random variable

Probability metrics are used to determine distances between random variables. 

Examples of probability metrics include, the uniform (or Kolmogorov) metric:

U&rj) = sup{|F^x)  -  Fn{x) | : x  E R}, (3.20)

where denotes the cumulative distribution function of £. Another example is 

the Levy metric, which is defined as follows:

£(£> Ti) — inf{e > 0 : F^(x — £) — £ <  FT1(x) < F^(x +  e) +  £ Vi e  R}. (3.21)

The Kantorovich metric outlined in Section 3.3.4 is also a probability metric.

There are many approaches to generalise probability metrics to the class of 

random sets, for example, it is possible to generalise some classical probability 

metrics by replacing distribution functions with capacity functionals of random 

sets, see [31]. Capacity functionals play the same role in the theory of random sets 

as probability distribution functions in classical probability theory. The capacity 

functional of a random set X  is defined as

TX {K) = P { X  fl K  ±  0}, K e J C ,
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where K  denotes the family of all compact sets. We see that the capacity func­

tional is the probability that a given compact set K  hits the random set X.

The class K, of all compact sets is too large to efficiently define and compute 

the capacity functional on it. For this reason it may be necessary to reduce the 

class of test sets in order to compute the capacity functional. That is, we need 

to fix a certain class A4 C /C on which we examine TX (K),  bearing in mind that 

the distribution of X  may not be uniquely identified.

The uniform metric (3.20) may be extended to random sets X  and Y  as 

follows:

U{X,  Y- M )  = sup{|Tx (iF) -  Ty {K )| : K  e M }  .

The Levy metric (3.21) can be reformulated for random sets as:

C(X,  Y- M )  = mf{e  > 0 : TX {K) < TY ( K e) +  e , TY (K) < TX ( K £) +  e, V/c € M } ,  

where

K £ = U {Be(x) : x e K }  = K ®  B e{0)

is the e-envelope of K  with © being the Minkowski addition and Be(0) being a 

ball of radius e centred at the origin. Both metrics depend on the choice of the 

class A4. This class is often chosen to be the class of all singletons, all balls, or 

all rectangles (parallelepipeds).

Unfortunately, these two metrics (which are useful in the study of general ran­

dom sets) are not particularly interesting for random sets obtained as thresholds 

of grey-scale images. If X  = Fv and Y  =  Gy  for two grey-scale images /  and g 

and independent random variables U and V  are uniformly distributed over [0,1],
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then

t fv (K)  =  sup f ( x ) , TGv (K ) =  sup .
x E / f  x G if

Assume that M.  contains all singletons. Then

U(Fu, Gv \ M )  =  sup | f (x )  -  g(x)|

is the uniform distance between /  and g. The Levy metric is reduced to

C(Fjj, Gy\ A4) = inf {e > 0 : Ty C ( r g) © (Be x [0, e ]),

r g C ( r f) © (Be x [0,e])} ,

where V/  denotes the subgraph (Definition 1.2) of /  (respectively of g) and B e(x), 

the ball of radius £, centred at x  is defined as,

B e(x) = {y € W  : p(x, y) < e}.

Thus the Levy metric equals the Hausdorff distance between the subgraphs of 

the images as subsets of W  x [0,1] where the carrier space is equipped with the 

metric

P((z, t), (y, s)) = max(p(:r, y), \t -  s | ) , x , y  e W  , t , s  e [  0,1], 

where p(x, y) is the Euclidean distance between pixels x and y.
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3.4.2 Integral M etrics

Let £ and £ be general random elements in a space X  and let Ti denote a family 

of non-negative measurable functions

h i X  i—y R.

An approach taken by Miiller [34] towards defining a class of metrics between 

random elements £, 77 G X,  called integral metrics, is as follows:

Jtf ({, n) =  sup |E[ft(f)] -  E[fcfo)]|. (3.22)
ken

Note that each expectation in (3.22) may be written explicitly in terms of the 

corresponding probability measure as:

E[fc(f)] =  J  h{x)dPi {x). (3.23)

E xam ple  3.1. The uniform (or Kolmogorov) metric between random variables:

U{i,n) = sup \F( (t) -
feR

is a special case of the integral metric. Since the probability distribution 

function of may be written as F^(t) = 1 — / 1  [ti00)dP^ it is clear that the 

uniform metric is an integral metric generated by the family of all functions 

h(t) =  1^)00), t G R.

Since the integral metric is defined for arbitrary random elements, it is possible 

to apply it to random sets X ,  Y:

7 ( x ,y )  =  sup |E (/i( X ) ) - E ( / i (y ))|.
hen
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So functions h G % are defined on sets. One particular important example is when 

such functions are sup-measures, so that functions from TL can be identified by 

their values on singletons.

In particular if

h(X)  = sup h(x),
xEX

then h is a sup-measure, and this allows a reformulation of the integral metric in 

terms of Choquet integrals.

Choquet integral

The integral of h : 1 

defined as,

[0, oo) with respect to the capacity functional T x ( ’) is

J h d T x  = J  Tx (Ht) d t ,
Rd 0

(3.24)

where Ht = {x : h(x) > t}. Note that this is called the Choquet integral [11, 14].

Following (3.23) and (3.24) the integral metric for random sets X  and Y  may 

be written as,

I { X , Y) = sup \ f  hdTx  -  f  h dTY 
hen\J  J

oo  oo

J T x (Ht) dt — J T y ( H t) dt=  sup 
hen

(3.25)

Henceforth we concentrate on applying the integral metric to the special case 

of random sets generated from images. Consider the situation now where the 

random set X  =  Fjj and Y  = Gy  are generated from images /  and g. Then the
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capacity functional takes the following form:

TFu{Ht) = P { U  <  sup /(*)}.
xEHt

(3.26)

In the case of a uniformly weighted random set model, the capacity functional 

may be written as,

TFu(Ht) = sup f ( x ) .
x£Ht

Using (3.24) and (3.27) we see that (3.25) can be reformulated as,

(3.27)

I ( f , g ) = I ( F u , G u ) =  sup
hen

OO OO

/ sup f (x )  dt — sup g(x) dt 
xEHt J x£Ht

(3.28)

Hausdorff-Type M etrics

Suppose now that the images /  and g are binary, where each pixel takes, for 

example, the values 0 or 1. In this case we define F  = {x  € W  : f (x )  /  0} and 

similarly for G , so that the random sets Fy and Gu now become deterministic 

sets F  and G respectively.

It may be seen that,

oo

/
sup{/i(a:): x G F}

sup f (x )  dt 
x£Ht / dt = sup h(x)

x£F

Therefore,

/ ( / ,  g) = I ( F: G) =  sup | sup h(x) — sup h(x) \ .
hen xeF xeG

(3.29)

We now show that by choosing the family of functions PL in a, certain manner
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F igu re  3.5. Diagram showing the function ha together with the corresponding 
level set Hf.

the integral metric becomes the Hausdorff metric for binary images. Define

R  = {ha : a € W }  (3.30)

where

II — \\x — a\\/c , \\x — a II < 1,
(3.31)

0 , otherwise,

is the cone of height 1 with the circular base of radius c centred at a, see Figure 3.5. 

We set ha(x) = 0 for all points x  E  W,  not contained in the base of ha. (We allow 

for the possibility that the base may not be entirely contained in the window.) 

Observe that,

H? =  {x - .h ? ( x )> t} =  B(1_t)c(a ) .

T h eo rem  3.2. Assume that EL is given by (3.30) and (3.31) with c sufficiently
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large to satisfy

c > diam(VF) =  sup{||x — y\\ : x :y G W }  .

Then

I(F,G) = H(F, G) /c .

Proof. It may be seen, since c is large enough, that

ua, \ c - p ( a , F )  sup h (x) = --------------- ,
xeF c

whence

| sup ha(x) — sup ha(x) | =  c"11p(a, F) — p(a, G) \ .
x£F x£G

Thus, using (3.29),

I (F, G) = c"1 sup |p(a, F) -  p(a, G ) \ = c ~ l sup |p(a, F) -  p(a, G ) \ ,
haeu aew

as required, using the representation in (3.5). □

It is straightforward to modify (3.29) so that it is equivalent (up to a constant) 

to the delta metric. To see this, define % as before, where the radius c of each 

cone is now taken to be the fixed cut-off value c, as described above. In this 

instance

c - p * ( a , F )  
sup h (x) = ---------------- ,
xeF c

where p*(a,F) = min(p(a, F),c),  that is the distance transform of F  truncated
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at a value c. Replacing the outer supremum in (3.29) with an Lp average over all 

points a G W  leaves,

i *(f , g ) = /w sup ha(x) — sup ha(x) \p da
x£F x£G

1 / p

= A p(F,G)/c. (3.32)

3.4.3 Double integral metric

Return now to the situation where Fu, Gu are uniformly weighted random sets 

generated from images / ,  g. Generalising (3.32) to grey-scale images leads to a 

new error metric which we call the double integral metric, defined as:

D I ( f , g )  = DI(Fu,Gu)
i i

/ / sup f (x )  dt — I  sup g(x) dt
J J x£H? J x£H?
w o  o

da

i / p

(3.33)

Note that sup^^a f (x )  may also be expressed as

sup f (x )  = ( /  © B {1_t)c)(a).
xeH?

The operator © is termed a dilation operator and the disc R(i_*)c in this situation 

is termed a structuring element. The idea is that spatial information the image 

/  is obtained as £ ( i_*)c is translated over the image / .  Below in Figure 3.6 is 

seen an image /  dilated by a disc of radius t.

Using (3.33) and changing variables, we get

D l c( f , g )  =  -
C

LW

cJ j  [{f © B t){a) - ( g ®  B t)(a)] dt da

l ip

(3.34)

The subscript c is introduced into the notation to emphasise the dependence of
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f e s t

Figure 3.6. Dilation of image /  by disc B t.

the parameter c in the double integral metric. It is interesting to note that letting 

c =  0 in (3.34), we find that DIo(f ,g)  = Lp(f,g).  That is,

Note further that DIc(f,g)  —>• |s u p /  — supp| as c —»■ oo. In general, smaller 

values of c make the metric more ‘local’.

3.4.4 Discrete variant

In all practical applications, where IT is a discrete grid of pixels, the double 

integral metric (3.34) may be discretised as:

p-\ Vp

D I c(f ,g)  =  E  E ( ( /  ® -  (S © B t)(a))
_ a e w  t= 0

(3.35)

It is unclear whether in the continuous set-up D /c(*, •) satisfies the uniqueness 

axiom of a metric, specifically whether D I c(f ,g)  — 0 implies /  =  g. However in
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the discrete framework the following result holds.

T h eo rem  3.3. Suppose f , g  are defined on a discrete parameter space (or for 

images, on a grid of pixels), then D I c(f ,g)  = 0 implies f  =  g, for two upper 

semicontinuous functions f  and g.

Proof. Let /  achieve its maximum at point a e W  and g at point b G W.  Assume 

that f (a)  > g(b). Note that from (3.35) D I c( f , g ) implies, in particular, that

C C

(c +  l ) - 1 © B t)(a) =  (c +  l ) - 1 © B t) ( a ) .
t=0 t=0

if m  > g(a), then the left-hand side equals f(a),  while the right-hand side is 

strictly less than g(b). The obtained contradiction shows that f (a)  = g (a) = g(b) 

and so both /  and g achieve its maximum at a.

Now let /  achieve its maximum on the set W \  {a} at point a\, and g at point 

b\. Assume that f{a\)  > g(b\). As before (3.35) implies, in particular, that

c c

(c +  l ) - 1 ® Bt)(a ,) =  (c +  l ) - 1 Y , ( 3  © B t) (a i ) . (3.36)
<=0 t=0

> g(ai), and allowing for the fact that point a may or may not lie in the 

set B c(ai), then (3.36) forces a contradiction, and implies that f (ai )  =  g(ai).

Because W  is finite (in the discrete setup) we can apply this argument in 

succession to show that /  and g coincide at all points inside W.  □

O th e r  v a ria n ts

It is also possible to formulate other versions of the double integral metric, which 

may be useful in certain situations. For example a symmetrised variant:

D I c(f,  g) = (DIc(f,  g) + D I c( f ,  g))/2, (3.37)
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where f ( x )  = L — f (x) ,  with L  being the maximum grey level of / .  Alternatively 

a weighted variant of the following form could be considered:

PI 1/P

_ a e w  t —0

where wt’s are non-negative weights summing to unity. These weights could be 

used to emphasise different structuring elements B t.

3.5 Grey-scale distance transform metric

Recall from Section 2.3.2 that the grey-scale distance transform for an image /  

is written as:

The subscript /  is introduced to denote the dependency on image / .  In the 

discrete case, for an image with 256 grey levels { 0 ,1 ,. . . ,  255}, df(x)  for the 

uniformly weighted model is written as,

where t i , t 2 are the minimum and maximum grey levels respectively, in / .  So

thresholded level set over the effective grey-scale range of the image.

The histogram weighted model leads to the grey-scale distance transform

df(x)  =  E d(x, Fjj).

in this case df(x)  is simply an arithmetic average of distance functions of each
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It is noted in [33], that for the discrete case, there is a uniqueness between 

grey-scale images and corresponding grey-scale distance transforms. It is unclear 

whether this holds in the continuous case.

The idea of the grey-scale distance transform metric is simply to use distances 

between grey-scale distance transforms as a measure of distance between their 

underlying images. Thus the distance between images /  and g is written as:

It is seen that G D T ( •, •) depends on three choices, namely both the random set 

model, and distance function used to compute the grey-scale distance transform,

In fact the G D T ( *, •) is used implicitly to find the distance threshold. If a 

uniformly weighted random set model is used, then for a binary image F , its 

grey-scale distance transform reduces to the distance transform d(-,F ). In this 

case the distance threshold level is then chosen as the grey level t which minimises 

G D T { f , Ft). Similarly it is suggested in Section 2.3.6 that the k grey levels chosen 

to form the multithresholded image f k be chosen in such a way that G D T ( f , f k) 

is minimised over all choices of k grey levels.

It is worth noting that A£(-, •) is a special case of G D T ( •, •) applied to binary 

images. Suppose / ,  g are binary images, then a uniformly weighted random set 

model implies trivially, that df(x) =  d(x,F).  Further if this distance function 

is a truncated distance function, d*(x,F) = min(d(x, F),c),  and an L9 norm is 

used in (3.38), then

GDT{f ,g)  = \ \ d , ( x ) - d s{x)\\. (3.38)

and then the choice of norm used to evaluate distances between df(x)  and dg(x).

GDT( f ,  g)
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3.6 Some examples

In this section we compare results of the two newly introduced image metrics, 

D I C, G D T  together with the widely used R M S  distance. Throughout we have 

used the symmetrised version (3.37) of the double integral metric, where the 

value of p is fixed at p = 2. Further for the grey-scale distance transform metric, 

we have used the histogram weighted variant, with a signed distance function 

truncated at c = 8, and L 2 norm. Each of the three metrics have been rescaled, 

by multiplying each by an appropriate constant, so that they each give values 

between 0 and 255.

3.6.1 Experim ent 1. Local image distortion

Figure 3.7 shows five images of the letter T , where the width of the dot on the ‘i’ 

is being gradually reduced. Each of the three metrics compared the original letter 

‘i’ with each of the distorted letters. The aim of this experiment is to investigate 

how well each metric recognises when the dot on the ci’ was fully removed.

These images are grey-scale images where i.i.d. Gaussian noise of mean 0 and 

standard deviation 30 grey level units have been added to original images with 

just two grey levels 0 and 255. All pixels with grey levels greater than 255 and 

less than 0 were truncated to lie in the grey-scale range {0, . . . ,  255}. The noise 

is independent between both the pixels and the images.

From the left graph in Figure 3.8 the x —axis shows the number of columns 

removed from the original ci’ image, before noise was added. The y —axis shows 

for each metric the distance between corresponding images. Each metric shows an 

increase in distance between the original letter ‘i’ when compared with successive 

images showing reduction in the dot. Further G D T  and in particular D I  show 

smaller values than R MS .  The right graph in Figure 3.8 plots the differences
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(e)

F igure  3.7. Letter ‘i’ image showing gradual reduction of the width of the dot
on the T

between adjacent results for each distance in the left graph. It is clear that the 

greatest changes in distance, when the dot on the T  has been fully removed, has 

occurred for both D I  and GDT.  This strengthens the idea that both account 

for some spatial information in the image, while the RMS seems to ignore this 

information.
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3 A- 5 7 82 6 1 .O 1 . S 2.0 2 . 5 3 . 0

F ig u re  3.8. The left graph indicates values of each of the three metrics when 
the original image in Figure 3.7(a) is compared with each of images (b)-(f) in 
Figure 3.7. The right graph plots the differences between adjacent results for 
each distance in the left graph.

3.6.2 Experim ent 2. Image com pression/decom pression

In this experiment the t r u i  image in Figure 3.9 (a) was distorted by compressing 

it by increasing degrees of compression. The original image was then compared 

with each decompressed image shown in Figure 3.9 (b)-(f). The images were 

compressed using a fractal image compressor. Note that increased compression 

leads to a decrease in image fidelity.

Examining the images visually, it would appear that although image quality 

decreases with increased compression, the greatest decrease in image quality oc­

curs moving from image (d) to images (e) and (f). This is indeed reflected in 

the D I  values in Figure 3.10. By comparison, R M S  shows an almost uniform 

transition between each image, while GD T  finds the largest decrease in image 

quality between images (c) and (d).
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(e) (f)

F igu re  3.9. (a) t r u i  image, (b)-(f) compressed/decompressed t r u i  images

3.6 .3  E x p er im en t 3. Im age d ila t io n /ero s io n

This experiment compares visual quality of images distorted by erosions. An 

image /  eroded by a so-called structuring element S  C  M2 corresponds to the
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F ig u re  3.10. The left graph indicates values of each of the three metrics 
when the original image in Figure 3.9(a) is compared with each of the com­
pressed/decompressed images (b)-(f) in Figure 3.9. The right graph shows dif­
ferences between adjacent values in the left graph.

image,

( /  G S)(x)  =  inf f{y).
y€S+x

So that this image is formed by taking the minimum of a set of pixel values in 

the moving window S.

The house image in Figure 3.11(a) eroded by a disc of radius 2 is shown in 

Figure 3.11(b). The radius of the disc has increased by 2 successively for images 

(c)-(f).

It is seen the image quality decreases as the radius of the disc increases. This 

is reflected in the left graph in Figure 3.12. However visually it would seem 

that greatest difference between successive images occurs between image (b) and 

image (c). Much of the features of the house are missing in image (c) and all 

subsequent images. In particular D I  seems to notice this change, as is reflected 

in the right graphs in Figure 3.12, which shows differences in adjacent values from 

graphs on the left. Both GDT  and R M S  by comparison, don’t show as dramatic
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a change between image (b) and subsequent images.

90

F ig u re  3.11. (a) house image, (b)-(f) eroded house images
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F ig u re  3.12. The left graph indicates values of each of the three metrics when 
the original image in Figure 3.11(a) is compared with each of the eroded images 
(b)-(f) in Figure 3.11. The right graph shows differences between adjacent values 
in the left graph.

3.6.4 Experim ent 4. Image translation

Figure 3.13 shows 5 images of the letter ‘i \  These images were obtained by 

repeatedly translating a binary image, with two values 0 and 255, of the letter 

‘i’, corresponding to Figure 3.13(a) two pixels horizontally to the right. Gaussian 

i.i.d. noise of mean 0 and standard deviation 30 grey level units was then added to 

each image. All pixels with grey levels greater than 255 and less than 0 were then 

truncated to lie in the grey-scale range {0,1 , . . . ,  255}. The noise is independent 

between the pixels and the images.

The left graph in Figure 3.14 shows the results of the three metrics when 

image (a) is compared with each of images (b)-(e). The rr-axis shows the number 

of pixels that have been horizontally translated. The y —axis shows for each 

metric the distance between corresponding images. It is curious to note that 

G D T  shows a decrease in distance between image (d) and image (e). This could 

be explained by random variation in both images. However both G D T  and 

in particular D I  show considerably less values than R M S , recognising that all
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five images are highly similar. The right graph in Figure 3.14 shows differences 

between adjacent values in the left graph.

(e)

F ig u re  3.13. (a) i image, (b)-(e) translated images

3.6.5 S u m m ary  o f  resu lts

These above results have attempted to assess the performance of each of the two 

newly presented image metrics, D I  and G D T , when compared to the usual R M S  

distance. In each experiment it could be argued that D I  has perfomed better
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F ig u re  3.14. The left graph indicates values of each of the three metrics when the 
original image in Figure 3.13(a) is compared with each of the translated images 
(b)-(e) in Figure 3.13. The right graph shows differences between adjacent values 
in the left graph.

than R M S .  However it should also be noted that R M S  itself has performed 

adequately. The performance of G DT  is a little erratic. In some cases it could 

be argued that it has performed better than R M S , while in other instances this 

is not true.



Chapter 4 

Bayesian Image R estoration

4.1 Introduction

Image restoration involves estimation of some unknown true image scene from a 

known noisy version of it. In this chapter we concentrate solely on a Bayesian 

approach. Using Bayesian notation, the true unknown image is denoted by x, and 

the observed noisy version by y . Here x  is modelled as a random variable with 

prior distribution 7r(x) and in particular as a (local) Markov random field (MRF). 

Following a Bayesian approach, inference is based on the posterior distribution,

7r(x|y) oc 7r(y|x)7r(x).

The noisy data y  is acquired with some known likelihood 7r(y|x).

Common estimators of x  include that image which maximises the posterior 

distribution, called the MAP estimator, and the image corresponding to the ex­

pectation of the posterior distribution, the PE estimator. In practice the posterior 

distribution is often analytically intractable and in this instance a solution may 

be to represent the posterior distribution by samples. As is typical in Bayesian

94
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statistics, Markov chain Monte Carlo (MCMC) methods are the most widely used 

tool for this purpose. We will speak more about these methods later.

Several authors [16, 19, 44, 45] have approached the Bayesian restoration 

problem from a decision theoretic viewpoint. Here a first step is to select a 

suitable image metric, or in more usual terminology, loss function L(x, z). So that 

this gives a measure of discrepancy between the true image x and an estimated 

image z. Following this set-up the optimal Bayes estimator (OBE) is then chosen 

as the configuration minimising the posterior expectation of this loss (often called 

the risk),

x* =  R(  z) =  argm inE x|yL(x, z). (4.1)

While much work has gone into modelling prior distributions, very little, by 

comparison, has involved loss function modelling. This might be due to the 

complexity of solving (4.1). In this chapter we show a simple framework for loss 

function modelling, generalising an algorithm described in [19]. Results of this 

and other algorithms are presented on real and synthetic data.

4.2 Bayesian framework

Henceforth in this chapter we deviate slightly from notation used previously and 

adopt the standard notation used in Bayesian literature, representing images as 

vectors x, y and z. Pixels will be represented by the letters i , j  and pixel values 

or grey levels will be denoted by the letter p, where the grey-scale range equals 

GL = {0 ,1 , . . . ,* - 1 } .

The true unknown image x is assumed to be a realisation of a random vector

X  -  {X(0 : i G W}. (4.2)



CH APTER 4. B A YE SIA N  IMAGE RESTO RATIO N 96

While the observed image y  is a realisation of a random vector

Y  =  (Y(z) : i e W } (4.3)

caused by some known stochastic degradation of x.

Here we make some assumptions (following closely [4]):

1. The random variables (Y(z) : z G W }  are conditionally independent and 

have the same conditional density function dependent on X. Thus the joint 

density function of y  given X  =  x  is:

This is essentially a likelihood function of the data, and incorporates knowl­

edge of the stochastic noise model.

2. The true image x  is a realisation of a locally dependent Markov random 

field. In particular this means that the following two conditions hold:

(a) 7r (X =  x) > 0 for all x  in the sample space of X.

where Oi is some specified neighbourhood structure centred at pixel z G W.

A  first-order neighbourhood consists of those pixels immediately adjacent to pixel 

z. Edge pixels have three rather than four neighbouring pixels, except at corners 

where they have two. A second-order neighbourhood in addition consists of those 

pixels diagonally adjacent to pixel z.

Figure 4.3 shows first and second-order neighbourhood structures.

’r(ylx ) = (4.4)
i e w

(b) 7r (X(z) =  x(z)|X (j) =  x (j), j  ^  z) =

7r (X(z) =  x(z)|X (j) =  x ( j ) , j  e Oi) ,
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(a)

o oooo#o o#oo (b) ooo
F ig u re  4.1. (a) first-order neighbourhood (b) second-order neighbourhood

Assumptions 1 and 2 represent our beliefs and knowledge about the observed 

and true images. This information is merged following Bayes theorem to form 

the posterior distribution:

?r(x|y) =
7i-(y|x)7r(x)

/  7r(y |x )7r(x) dx
(4.5)

The denominator here is typically difficult to compute and so the posterior dis­

tribution is written as:

7r(x|y) oc 7r(y|x)7r(x).

Of course in practice the posterior distribution will often be analytically in­

tractable and in this instance a solution may be to represent the posterior dis­

tribution by samples. As is typical in Bayesian statistics, Markov chain Monte 

Carlo (MCMC) methods are the most widely used tool for this purpose.

4.3 MCMC m ethods - an overview

In this section we provide a brief introduction to MCMC methods widely used 

in Bayesian Statistics. The reader is referred to [22] and references therein for a 

more comprehensive discussion.
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Consider the following problem: How may we compute the posterior expec­

tation of a function /  of X? Formally this may be written as

P  r f m i  -  t / M  d xEjt!y[/(X)] — /ff(y|x)w(x)dx • (4.6)

As above with (4.5) the normalising constant in (4.6) is difficult to compute 

and a final resort may be to compute this expectation by drawing samples 

{x i ,x2, . . .  ,xw} from 7r(x|y) and then approximating

1 N
E*|y [ / ( X ) ] « - £ / ( Xi). (4.7)

t= 1

This is called Monte Carlo integration. This shows that the population mean is 

approximated by a sample mean. Clearly when the samples {x*} are independent, 

laws of large numbers ensure that approximations can be made more accurate by 

increasing the sample size N.  However drawing samples {x*} independently from 

7r(x|y), in general, not possible. It may happen that the posterior distribution is 

quite non-standard, so that it would become necessary that, generally speaking, 

samples from 7r(x|y) be chosen in the correct proportions. Samples generated by 

a Markov chain having 7r(x|y) as its stationary distribution is a solution. This is 

called Markov chain Monte Carlo (MCMC).

The following shows how a Markov chain may be constructed so that images 

may be sampled from the posterior distribution. The method which we first 

examine is based on the work of Hastings [24], which generalises an earlier paper 

by Metropolis et al. [30]. We describe this in the context of image analysis as 

follows.
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4.3.1 M etropolis-H astings algorithm

The Metropolis-Hastings algorithm [24] is widely used throughout Bayesian statis­

tics. We briefly describe its implementation below. Let us begin by denoting 

successive states (images) in the Markov chain at time t by x*. At time t , choose 

uniformly at random for each pixel i in x t a new colour or grey level p from 

some proposal distribution <?(*|-). (The proposal probability g(p|xt(i)) denotes 

the probability of changing from grey level x*(i) to grey level p.) Denote the 

proposed new image configuration by x* and the old configuration by x t . The 

move is accepted with probability

If a candidate grey level for pixel i is accepted, then the updated image is defined 

as x* =  x f. This procedure is repeated until all pixels have been visited just once, 

at which point the iteration increases from t to t +  1.

It has been shown in fact that for any proposal distribution g(-|-), convergence 

to 7r(x|y) is guaranteed. See [22, chapter 3,4] for details. However the choice of 

<7(-|-) is of importance. A cautious proposal distribution generating small changes 

in grey-levels will have a high acceptance rate, but will mix slowly, while a bold 

proposal giving large changes in pixels values will have a low acceptance rate and 

again will mix slowly. In both instances convergence to the stationary distribution 

will be slow. A proposal distribution somewhere between these extremes would 

be the ideal.

The following update mechanism is a particular case of the Metropolis-Hastings 

algorithm.

min 1,
( x d y )  ? (p M * ) )

(4.8)
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4.3.2 M etropolis algorithm

The Metropolis algorithm [30] is similar to the Metropolis-Hastings algorithm 

except that it only considers symmetric proposal distributions. That is distri-

In all examples henceforth, we use the Metropolis algorithm. In most appli­

cations we propose grey levels p from a uniform distribution given by:

So grey-level p is proposed uniformly from the integers in the closed interval 

[xt(z) — a,x.t(i) +  a]. Here a  is chosen so that the distribution is neither not 

too narrow nor too wide, and is, generally speaking, determined by the number 

of grey levels in the original image. However care needs to be taken to ensure 

that proposed pixel values don’t lie outside the original grey-scale range. Thus 

if p ~  ^(-|xt(z)) ^ [0, 1 — 1], the original grey-scale range, p is set equal to x*(z). 

This ensures that <7(-|-) is a symmetric proposal distribution.

The Metropolis algorithm may be written algorithmically as:

1. Choose some starting image configuration x 0 arbitrarily.

2. Choose pixel i at random from x t and sample a new pixel value p from a 

symmetric proposal distribution g(-|xf(z)) (for example, (4.10) as described

butions having the form q(pi\p2) = q(P2 \Pi)- It is seen now that the acceptance 

probability (4.8) reduces to

min [ 1 (4.9)

thus avoiding the need to compute the proposal probability for each proposal.

(4.10)
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above). Set x.t (i) = p and define

j  ± i 

x t(*), j  = i.

(So xt is identical to x t except at pixel i)

3. Calculate the ratio

7r(x«Jy)
~~ ^ (x d y )’ (4 1 1 )

4. Sample a random variable U from a t /(0 ,1), a uniform distribution on [0,1].

5. If U < A set x t(i) =  x*(z).

6. Repeat from step 2 until all pixels in the window have been visited.

7. Increase iteration counter t  and repeat from step 2 until convergence.

It is straightforward to show that (4.11) can be simplified much further, using 

assumptions 1 and 2, and the fact that the images x* and x t differ only by the 

grey level of pixel r.

frfoly) _  7r(y(»)|p)fl-(p|xt,-i)
^(xtly) 7r(j/(i)|xt(i)) 7r(xt(*)|xt - j ) '

Here denotes the set of all pixel grey levels in x* excluding pixel grey level

i. Each factor on the left-hand side of (4.12) is straightforward to compute. So 

it is seen that the Metropolis algorithm is relatively easy to implement.

Let us return briefly to the question posed at the beginning of Section 4.3, 

namely to the problem of computing the posterior expectation of a function /  of 

X. In light of the above the solution is to first simulate a Markov chain, using
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for example the Metropolis algorithm, for a sufficiently long number of iterations 

or burn-in, say m  iterations until its distribution is close to the stationary dis­

tribution, continuing to obtain dependent samples {x*, t = m ,. . . ,  N  +  m}  from 

the stationary distribution. The expectation E [/(X )] may now be estimated as:

This is called an ergodic average. The ergodic theorem establishes convergence 

to the required expectation, as N  —> oo. See [22, p.45-48] for details.

4.4 Simulated annealing

Previously we have seen methods to sample from complex distributions and to 

compute expectations. Here we discuss a powerful method for solving global 

optimisation problems. Simulated annealing was introduced into the realm of 

statistics by Geman and Geman [20]. Annealing is a term used in Physics which 

describes a procedure whereby certain chemical systems are driven to their low 

energy highly regular states.

Simulated annealing works as follows. Let R (z) be a function, of an image 

z, which we aim to minimise. In an imaging context z might be some image 

configuration. The idea is to interpret z as sampled from a distribution depending 

on a parameter t , called the temperature:

_ - tiil

Ex^fpC)] =  £  /(x t)
N+m

(4.13)
t=zm+ 1

(4.14)

where C is a normalising constant, ensuring that 7r(z; t) sums to 1 for all possible 

z. The constant C is usually difficult to calculate explicitly, so instead 7r(z;£) is
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written in the form,

7r(z;t) oc exp {—it^z)}1/7̂ .

As shall be seen later, the constant C  is not crucial to any calculations.

The first step is to check that 7r(z; t) induces an MRF or equivalently that 

7r(z;t) is a so-called Gibbs distribution. (In [20], the interest was primarily in 

computing the MAP estimate, that is, the global minimiser of the posterior dis­

tribution 7r(x|y), which is an MRF.)

Our aim now is to find the global maximiser or mode of 7r(z; t). Since exp(-) is 

an increasing function, the mode of 7r(z; t) will correspond to the mode of —R (z)  

and so the minimum of R(z). Generally speaking the problem of maximising 

7r(z; t) is computationally intensive. Suppose for instance that z is an image of size 

64 x 64 with 64 possible colours, then the number of possible image configurations 

is approximately 21500. Further, if 7r(z;t) is a complex distribution, with many 

local maxima, then convergence of z to the global maximum of 7r(z; t ) may be 

difficult to ensure. Usual iterative search algorithms may get trapped in local 

maxima. Simulated annealing tends to avoid such problems.

Loosely speaking, the approach is to use MCMC methods to sample from 

7r(z;£), which when combined with the temperature schedule T(t)  guarantees 

that if T(t)  tends sufficiently slowly to zero, sampling will be from the mode of 

7r(z;t ) , that is, convergence to the global maximum of 7r(z;t). At high tempera­

tures the distribution is essentially uniform, while as the temperature decreases 

slowly, 7r(z; t) becomes more and more ‘spiked’ around its global maximum. Thus 

small values of T(t)  exaggerate the mode of 7r(z; t ) , making it easier to find by 

sampling. See Geman, Geman [20] for convergence results. The choice of temper­

ature schedule T(t)  is of importance. It is stated in [20] that if the tem perature
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schedule satisfies the bound

T ( t ) >
log(l + 1) '

where c is a constant independent of t , then convergence to the target global 

maximum is guaranteed. However in practice this schedule may be too slow, and 

faster schedules may be needed.

Simulated annealing requires only slight modification from, for example, the 

Metropolis algorithm, and so is straightforward to implement. The algorithm 

may be written as:

1. Choose some starting image configuration z0 and cooling schedule T(t),  

defined so that T(t) tends slowly to zero as iteration t increases.

2. At iteration t choose pixel i at random from z t and sample a new pixel 

value p from a symmetric proposal distribution q(-\zt(i)) (for example, as 

described above). Set z t(i) = p  and define

zt(j), j  ±  i
z t \

zt(i), j  = i.

(So zt is identical to z t except at pixel i)

3. Calculate the ratio

A =  ^ 4  (4.15)
7r(zt;t) ( J

(This step renders the calculation of the constant C  (4.14) unnecessary.)

4. Sample a random variable U from U{0,1), a uniform distribution on [0,1].
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5. If U < A set z t(i) = z t (i).

6. Repeat from step 2 until all pixels in the window have been visited.

7. Increase iteration counter t and repeat from step 2 until convergence to the 

mode of z.

As with the Metropolis algorithm, the ratio (4.15) may be split into easily 

computed factors similar to (4.12).

4.5 Loss functions and Bayesian image 

restoration

Let us return now to the main thrust of this chapter, that of restoring a noisy 

image y given information of the noise degradation and prior information of the 

true image x. Inference is based on the posterior distribution. At this stage 

all our tools are in place. MCMC methods allow us to both sample from the 

posterior distribution and to estimate expectations. Further simulated annealing 

allows us to optimise functions and distributions.

Since we are going to base all our inference on the posterior distribution, 

plausible estimates for the true image would thus seem to be, for example, that 

image which maximises the posterior distribution, which is called the maximum 

a posteriori or MAP estimate. Another suitable estimator might be that image 

corresponding to the posterior mean which we call the P E  estimate. Both of these 

estimators may be calculated easily via MCMC methods. A simulated annealing 

algorithm could be used to calculate xmap, while a Metropolis algorithm could 

be used to sample images from the posterior which would then used to form the 

posterior mean estimate xpp, even without simulated annealing.
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Suppose now for a moment that the true image is known and that several es­

timates of it are available, for example x M a p , x p e . H ow  then should we compare 

the estimates? Following Chapter 3, the answer is simply to choose a suitable 

image metric, say L, and then find the image which returns the smallest met­

ric distance when compared with the true image. Suppose now that the true 

image is unknown. We can still use the same basic idea. Compute the poste­

rior expectation of L  for each estimate, choosing the estimate returning the least 

value.

Returning to the present situation, a similar idea still applies. For a given 

image metric L  the optimal Bayes estimator (OBE) is computed by minimising 

the expectation of this metric,

In this instance the image metric L  is termed a loss function. Henceforth we 

adopt this terminology. This decision theoretic approach has been taken by 

several authors including [16, 19, 44, 45], with good effect.

4.5.1 Usual Bayesian estim ators

Many of the widely used Bayesian estimators can be easily written in the form 

of (4.16). The MAP estimate which maximises the posterior distribution has as 

a corresponding loss function:

x* =  argm inE x|yZ/(x, z). (4.16)

I 'MApix, z) — l[x^z]' (4.17)

Here l[x^z] denotes the indicator function, taking the value 1 when x  ^  z and 

0 otherwise. The PE estimate, which corresponds to the mean of the posterior,
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has a loss function corresponding to:

L p e ( x . , z ) =  J3 (x ( i)  -  z(i))2. (4.18)
iew

This is the sum of squared differences between images x  and z. While the mode 

of the marginal posterior distribution, MPM estimate, can also be written in the 

form of (4.16), where,

Note that for binary images, L M p m  = L P E ■ Of course for each of (4.17), (4.18) 

and (4.19), the corresponding OBE’s are known explicitly, and the underlying 

loss functions often only implicitly specified.

While each of the above estimators seems plausible, their corresponding loss 

functions seem to have many drawbacks. In the case of (4.17), it returns the 

maximum value of 1 even when there is disagreement at just a single pixel. Indeed 

both (4.17) and (4.19) don’t examine differences in grey levels, rather whether or 

not pixel values agree or disagree. From this point of view their use as grey-scale 

image estimators is dubious. In fact Rue [44] and many others have stated that 

the MAP estimate tends to lead to oversmoothing, mislabelling of pixel values 

and deletion of fine details in image reconstruction. This indeed agrees with 

the author’s experience. Each of (4.18) and (4.19) are based on pixel by pixel 

differences and following the discussion in Section 3.2.1, each of the above loss 

functions may not always work well in practice. In essence, they do not consider 

any spatial structure in the image, penalising errors on a pixel by pixel basis. It 

has been written in [44] that the x Pm estimate is too local, at the expense of 

global detail in the reconstructed image.

The challenge therefore is to explore ‘better’ loss functions, with the hope

I ' M P M ( x ,  z )  —  ^  ^ l [ x ( i ) ^ z ( z ) ] (4.19)
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that they improve upon existing methods. In the next section a brief discussion 

of some recent methods is described.

4.5.2 Some improved loss functions 

D elta  m etric

The delta metric, AJ(-, •) has been shown in [2] to be a good binary image met­

ric. See also the discussion in Section 3.2.2. Frigessi and Rue [19] successfully 

implemented this as a loss function for use as an OBE for binary image restora­

tion. It is important to note that when the cut-off value c = 0, that N 2C =  Lpp. 

As c increases, more spatial information becomes available, which in turn visibly 

improves the restoration.

Incorporating prior inform ation into loss functions

Rue [44] also presented another binary loss function. It is based on pixel mis- 

classification rates. Here all inference is based on the pixel misclassification rate, 

defined as:

not account for any magnitude of difference in grey-level it is therefore unsuitable 

for images with many grey levels.

Let D  be some subset of W.  Denote Mp as the number of misclassification

otherwise,

so that e(i) = 0, if pixel i is correctly classified, and 1 otherwise. Since e(i) does
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in D. Define polynomials p and q as:

p(D) = 1 -  J J (1  -  e(»))
0, if Md =  0

1, otherwise.

9(-d) = I l eW
1, if M d = |D |

0, otherwise

where \D\ is the number of pixels in D.

Thus p(D) = 0 if all pixels in D  are classified correctly and 1 otherwise. So 

D  might represent an area or feature which is important to restore correctly. 

Similarly q(D) = 1 if all pixels in D  are misclassified, and 0 even if there is a 

single pixel misclassified. In this instance D  could represent an area which we 

penalise if completely misclassified.

of D, which are of size k. For example, if D = {^1 ,^ 2 ,^ 3 }, then P2 {D) = 

{ { x u x 2}, {^2 ,^ 3 }}-

Let s and 0 denote translation and rotation operators, respectively, for the 

set D. Fix some pixel in D  to be the origin and denote, TsR q(D) or RgTs(D) to 

be the set D  first rotated by 9 and then translated to a new origin s.

The idea now is to examine loss functions of the form,

For 0 < k < \D\ define Pk(D) to be the set of all subsets u

L(x,z) =  L(e) = tuq(u),
ojCW
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and

L(x,z) =  L(e) = ^2 tp(cj).
UC W

for appropriate choices of weights tu and t'u corresponding to specified local sets 

u) C W . In fact Rue [44] has shown that these two forms are equivalent.

The approach is as follows. First choose a set of basis regions Di ,  D 2, . . . ,  D n , 

and for each basis region Di,  define weights Uj for the polynomial Pi(Di):

m
p i{Di) = ' E tii E  (4-20)

j = i  u e p j ( D i )

The loss function is then defined as:

n
L(x, z) =  L(e) = Y^ J2 PtiT.RtiDi)).

i = 1 s,0:TaR o ( D i ) C W

The second sum is over all rotated and translated basis regions. It is suggested 

that the number of basis regions chosen is small, and that each are local. Consider 

the following (trivial) example, similar to one presented in [44], as motivation 

towards choices of basis regions {A}i=i,...,n and weights {Uj } .  In Figure 4.2 is 

seen a binary image of size 15 x 15, where each box is of size 2 x 2  pixels.

F ig u re  4.2. True image with regular geometric structure
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Suppose this image is degraded by some noise model, and the aim then being 

to restore the noisy image as accurately as possible. If it is known a priori that the 

true image contains boxes of size 2x2, and it is required to completely restore each 

box, then an appropriate basis region might then be, D\ = {2 x 2block of pixels}, 

(number of basis regions equals 1). The choice of weights t i j  in the polynomial 

P i(D i), might be =  0, j  = 1, 2,3, and =  1.

This approach to loss function modelling can be seen as both a strength and a 

weakness. If prior information is available, as to what the true image should look 

like ( 2 x 2  squares on a black background, in the example above), then following 

a Bayesian philosophy this information should be incorporated into the model. 

In this case the information is merged in the loss function, and so should be seen 

as a strength. However in the absence of any information of this nature, then it 

is unclear how to model the loss function appropriately. This might be seen as a 

weakness.

In all the examples presented in [44], using knowledge of the true image scene, 

the choice of loss function outperforms both the MAP and MPM (or equivalently 

PE estimate for binary images).

A loss function based on sample covariance

An improved grey-scale loss function model has been presented by Rue [45]. He 

suggested a covariance based loss function with the aim of removing the major 

weakness of L PE which does not depend on the spatial structure of pixel by pixel 

differences.

The proposed loss function only depends on errors through pixel by pixel 

differences. It is convenient to introduce the notation

e{ =  e ( i)  =  x ( i)  -  z (i) ,
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so that image e =  x — z. This situation contrasts with the previous loss function, 

which is based solely on a loss function where magnitude of difference in pixel 

values is unimportant.

Specifically this loss function adds a penalty term to L p e , penalising strong 

sample covariance of the error in a specified neighbourhood of each pixel. 

Suppose Wi is the set of 3 x 3 pixels centred at pixel i. The sample covariance 

of e at lag k in Wi gives a strong indication of local spatial structure in the error 

e. This structure can then be penalised by adding it as a penalty to the pixel by 

pixel error ê .

Specifically suppose A; is a spatial lag in Wi, and denote by |iUj| the number of 

pixels in Wi. Note that a spatial lag is simply a specified position for a pixel in 

some collection of pixels. Let Wi +  k equal the set of pixels in Wi translated by 

pixel k. The sample covariance of e at lag k in Wi may be defined as:

denotes the sample mean of e in Wi. Where Wi is the 3 x 3 set of pixels centred 

at pixel i. Rue suggests the set of lags 4/ as shown in Figure 4.3. The penalty 

for local spatial structure in the errors Wi is defined as the sum of C j (k) over all 

pixels k in the lag 4/. This penalty term when combined with the pixel by pixel 

error terms gives a loss function as:

jewiD(wi+k)
y  (ej -  m Wi)(ej+k -  m Wi), (4.21)

where,

(4.22)

L ri/e (x ,z ) =  5 2 (x (t)  -  z(i))2 -
i€W k£V

(4.23)
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•  • •oo#
OOP

F ig u re  4.3. Set of lags and corresponding set Wi

The parameter A controls the relative importance of spatial structure in the error.

Rue [45] presents a two step algorithm to compute OBE’s based on this loss 

function. Much of the following work relies on this algorithm.

4.5.3 Estim ating O BE’s

We now address the problem as to how OBE’s may be calculated for a given class 

of loss functions. At first glance it would appear that the approach to evaluating

x* =  argm ini?(z) =  argm inE xiyL(x, z),
z  z

would be to consider this as an ordinary minimisation problem evaluating the 

expectation for each image configuration z. However to do this in practice would 

not be feasible. An alternative is to first compute R(z), an estimate of R (z), via 

MCMC methods, and then to minimise R(z). In fact this is the route we take. 

Consider loss functions of the form:

L(x>z) = X /(M x; i) -  m(z; *))2, (4-24)
iew

where /x(x; i) is some function defined locally for image x around pixel i. Using
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loss functions of this form allows the risk to be written as,

R( z) =  Ex|yL(x, z)

iew
=  ^ /z ( z ;z )  [/z(z;z) -  2Ex|y/z(x;z)] +  constant. (4.25)

iew

It is clear that the constant term in (4.25) has no bearing on the minimisation of 

R(z) and so may be ignored. Notice that such loss functions allows an explicit 

estimate of the risk, once the posterior expectation of /z(x; z) has been estimated. 

Note also that x* may be interpreted as the image having {/z(x*;z) : z G W }  

closest to {Ex|y/z(x;z) : z G W}.  The algorithm to estimate x* may be split into 

two parts:

1. Estimate the posterior expected values of /z(x;z) for each z G W,  whence 

an explicit expression for the risk R (z) is available.

2. Minimise R(z) over all image configurations z.

The posterior expectations of /z(x; z) may be calculated using MCMC meth­

ods, and then R(z) minimised using simulated annealing. The choice of function 

//(•; z) is of crucial importance, since it determines how spatial information around 

pixel z is to be obtained. In fact some of the loss functions (image metrics) we 

have met may be restated in the form (4.24). We summarise these below:

L PE : /z(x; z) =  x(z)

: /z(x; z) =  min(d(z, x), c)

DI2c : /i(x; i) =  —i — (x © Br) (i).
c +  1 i—1
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Recall that the symmetrised double integral metric is written as:

D I = ( D I { f , g )  +  DI( f , ~9j )  A

where f (x )  = I — 1 — f (x ) ,  with I — 1 being the largest grey level of / .  Thus,

R(z) =  (Ex)y£>/(x, z) + E x|y£>/(x,z)) /2.

So calculation of the OBE for D I ( f , g) first requires estimation of two expecta­

tions, E/i(x; z) and E//(x; z), where //(x; i) — ^  Yli=i (x  ® &r) (*)• An estimate 

of R (z) is then available, which can be minimised via simulated annealing.

4.6 An alternative approach

We now present an alternative idea, somewhat different to the approach described 

previously, while still retaining much the same flavour. We call this approach the 

level-by-level method. The idea is based on the simple fact that any image x 

with I grey levels may easily be reconstructed from its I — 1 constituent binary 

thresholded images. That is,

x  =  y > « > ,
t=i

where x^) is the image x  thresholded at level t. (Note that the notation here for 

a thresholded image is different from that in Chapter 2.) Here the summation is 

pixelwise, so that x(z) =  i W- Note that each value of x^) is either 0 or 1 

since it is a binary. Now instead of estimating the true image globally, we try  to 

estimate x ^ ,  the estimate of the true image thresholded at level t  using a ‘good’ 

binary loss function, for example, A^(-,-), as explained in Section 3.2.1. Then
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each reconstructed binary image — 1 , . . . ,  Z — 1 can be used to estimate the 

true image as,

This situation has some parallels to stack filtering. Here an input noisy im­

age is first decomposed into its constituent binary thresholded images, and each 

binary image is passed through a binary filter.

W hat could be the potential advantages to using this method? Certainly bi­

nary images are easier to analyse than grey-scale images. Further has been 

shown to work well in a Bayesian context [19]. Also reconstruction of the binary 

images at each grey level is independent and so may be carried out in parallel. 

However a disadvantage is that as the number of grey levels increases, the com­

putational complexity increases further. This may suggest that this approach is 

more suitable for reconstruction of images with few grey levels.

This scheme works as follows: sample N  grey-scale images x i, X2 , . . . ,  xjv from 

the stationary distribution 7r(x|y). Threshold each image at grey level t , to form 

(Z — 1) x N  binary images

t=i

This sample \ x ^ , . . . , x ^ } ,  for each t =  l ,2 , . . .Z — 1 may then be used to 

estimate E/x(x^;z) as:
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He we use //(•; i) =  min(d(z, ♦), c), so that the estimate of the true image thresh­

olded at level z is calculated using the N 2 loss function. The estimated expecta­

tion (4.26) is then used to calculate

4.7 Simulation experiments

This section display results for both the symmetrised double integral metric and 

level-by-level method on artificial data. Further, MAP estimates and PE esti­

mates are presented to compare with the newly introduced alternatives. In gen­

eral we have found that the double integral metric overestimates restored pixels 

values. However the symmetrised variant generally gives more appealing results. 

The prior model introduced by Geman and McClure [21] is used throughout:

It uses contributions from each pixel and its eight nearest neighbours, The sum 

(i , j)  is over all first-order neighbouring pairs and [i,j\ is over all second-order

T(d) =  d2/(d2 +  k2), where « is a scale parameter.

The simulated annealing step uses the cooling schedule T ( t ) /T ( 0) =  0.99*,

=  a rg m in E A ^ x ^ , z)
z

«  argmin //(z; z) /z(z; i) — 2E/i(x(0; i) +  constant. 
z iew

Pixelwise addition of each image results in,

z-i

771=1

7r(x) oc exp ) T(x(z) “  x 0'))

neighbouring pairs (see Figure 4.3. The potential function T takes the form
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with 10 and 0.005 as the initial and final temperatures. This represents approxi­

mately 750 iterations.

The PE estimate was computed by averaging, pixelwise, a sample of 1, OOOimages 

from the posterior. The MAP estimate was computed via simulated annealing 

using the cooling schedule described above.

4.7.1 Experim ent 1

The test image in Figure 4.4(a) consists of an image of size 15 x 15 pixels, 

where the pixel values increase in steps of 3 , there are 9 pixels values in to­

tal, {0,1 , . . . ,  8}. The noisy data 4.4(b) is the true image with i.i.d. Gaussian 

noise of mean 0 and variance 1.52 added to each pixel. Also displayed are the PE 

and MAP estimates and restored images corresponding to both the symmetrised 

double integral metric and the level-by-level method.

In the prior model we use /? =  0.75 and k = 0.5. We first run a Metropolis 

algorithm converging to the stationary (posterior) distribution after 5,000 itera­

tions. At iteration t a new value p for pixel i is chosen uniformly from the integers 

[xt (i) -  1, x t (i) +  1]. If p 0 [0,1, . . . ,  8], then p =  x t(i).

To compute D I  we first compute the posterior expectations of f i (x ; i) and 

n{x] z), where /x(x; i) =  (x © Br) (i ) from 1,000 sample from the poste­

rior distribution. Each full sweep visits all pixels in a uniform order.

The level-by-level method uses a sample of 1,000 images from the posterior 

distribution, each of which are thresholded to give 9 sample of 1,000 binary 

images, one for each of the 8 grey levels. Each sample is then used to compute 

the expectation (4.26).

In this instance the MAP estimate seems to have over-smoothed the true 

image, although it does display distinct homogeneous regions. Both the PE 

estimate and the estimate corresponding to the level-by-level method look quite
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similar. However the level-by-level method has slightly out-performed it. The 

estimate corresponding to D I  has tended more than any of the others to preserve 

the step nature of the true image, although it has tended to overestimate most 

pixel values.

4.7.2 Experim ent 2

An disadvantage of Bayesian image restoration is that it is computer intensive. 

This makes it difficult to feasibly examine real-life images. In this example we 

have taken an image 4.5(a) and cropped an area of the image around the right 

eye 4.5(b). This now serves as a real-life example. This image has a grey-scale 

range of {0 ,1 , . . . ,  255}. Gaussian i.i.d. noise of variance 202 grey levels was 

added to each pixel.

Again MAP and PE estimates are presented, together with the estimate corre­

sponding to DI.  In this example we have chosen not to include the level-by-level 

method, since the grey-scale range of the true image, is quite large.

In the prior model we use (3 — 1.1 and k = 0.5. Again a Metropolis algorithm 

was implemented converging to the stationary (posterior) distribution after 5,000 

iterations. At iteration t  a new value p for pixel z is chosen uniformly from the 

integers [x*(z) — 20, x*(z) +20]. If p $  [0,1, . . . ,  255], then p =  x*(z).

To compute D I  we first compute the posterior expectations of /z(x; z) and 

/i(x; z), where /i(x; z) =  x  © B r(i) from 1,000 sample from the posterior

distribution. Each full sweep visits all pixels in a uniform order.

Looking at Figure 4.5, the following comments can be made. Again the MAP 

estimate has oversmoothed the data. Both the PE estimate and the estimate 

corresponding to the D I  loss function provide similar estimates. However again 

D I  has overestimated pixel values.
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(a) Lines image

j — M ■ H |
■

m
sBMaim

(c) MAP estimate

(b) observed image

(d) PE estimate

(e) level-by-level (f) £ /

F igure  4.4. Lines image and various estimates.
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(a) Trui image (b) True data

(c) observed data (d) MAP estimate

(e) PE estimate (f) jjj

F ig u re  4.5. Trui image and various estimates.



Chapter 5 

Set-valued Regression

5.1 Introduction

Classical regression involves exploring relationships between two types of vari­

ables, response and explanatory variables. This chapter aims to extend this 

theory to the situation where the response variable is set-valued. Of particular 

interest is when the set is a binary image in M2. Analogous to classical regres­

sion where the response variable is observed with a certain amount of noise, each 

observed set (or binary image) is assumed to be an inexact measurement of an 

underlying set (or binary image). Further in this instance, it is useful to interpret 

the explanatory variable as time.

The ideal now would be to extend concepts and methods from the classical 

setting to the present situation. This however is not straightforward, for a number 

of reasons. The family of compact sets in the Euclidean space is not linear, which 

makes concepts like expectations difficult to formulate. Further, subtraction of 

sets is unclear, so the problem of finding residuals is difficult.

The problem examined in this chapter may be succinctly stated as follows. 

Suppose given some observed time sequence of noisy (or inexact measurements

122
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t\ t2 tn Time

F ig u re  5.1. Time dependent noisy image sequence

of) sets, find the underlying time evolution of the noise-free sets. We term this 

problem set-valued regression.

It is clear that this problem has applications in many real-life situations. 

Consider the following as a motivation. Suppose that it is wished to send an 

image sequence, maybe a movie, via a noisy channel to a receiver. Suppose further 

that it is costly to send each image in the sequence, so that the receiver obtains 

an incomplete noisy version of the original sequence. Set-valued regression would 

help in this situation to recover or estimate the original noise-free complete image 

sequence. Figure 5.1 illustrates this problem.

This chapter begins with a simple examination of what happens when the 

response variable is a single closed interval or segment in E. This is the simplest 

example of a non-trivial convex set in E. Approaches are suggested in Section 5.4 

to deal with the case where the response variables are general sets in E2. We 

illustrate this approach on some binary images. Finally we outline with exam­

ples, an application of this scheme, to image warping which provides a smooth 

transition between two given images.
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5.2 A simple case of set-valued linear regression

Suppose that given an ordered increasing sequence of time points ti, • • •, tn, 

which correspond to sets Yti, i = 1 , . . .  n. The problem is now to find a smooth 

evolution of the sets over all time point.

We begin by considering the simple case where Yti are convex sets in R1 , tha t 

is, closed intervals on the real line. Consider the following regression model:

Yti = r © H tj+Ctj. (5.1)

The problem posed by (5.1) is to fit a constant set T to the observed sets (seg­

ments) Yti. Here T and Eti are set-valued where it is assumed that 0 G Eti. 

Further, £t. is a random variable. The term Eti represents a ‘shape’ disturbance 

of T, while Cti denotes a location error. Note that the operation T ® Eti enlarges 

T. In particular this implies that T must be smaller than the length of each of 

the observed intervals Yti, introducing a constraint to the problem.

We introduce the notation Yu = [2/^ ,2/g], T =  [7 *, 7 “ ], Eti = [?{.,£*“]. Denote 

y t . = V t i } yt . = Vti and 7  =  Y+Y  ? j  — T ~ i l m The constraint described 

above may now be conveniently written as:

7  < m m {yu}. (5.2)

5.2.1 M aximum likelihood estim ators

The following two examples illustrate maximum likelihood estimators (MLE) for 

several possible noise models.

E x am p le  5.1. Consider the following noise model:

-n  = [-& ;,& ], where ( ti ~  Expo(A).
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and

Ctj ~ n (o,<j 2).

The random variables £ti and are assumed to be independent, while the pa­

rameters A and a are assumed known. The regression model (5.1) may now be 

expanded as:

Uti =  7“ +  ?«<+(*<> (5-3)

y ‘u =  +  (5.4)

Now adding (5.3) and (5.4), and subtracting (5.4) from (5.3), gives the two equa­

tions:

Vu =  7 +  Cti, (5-5)

Vu =  7 +  6i- (5-6)

By independence of f t. and ( ti, we can write the likelihood of obtaining Yt l , Yt2, . . . ,  Ytr

as,

n

L ( i ,  7 ) = n  p (<i -  y)Phi (yt, -  7 )
2= 1

=  (27rg2W 2An exp { “  “  ^ ) 2 / 2 < j 2  "' ' L 2=1 2=1

Thus it is seen that the maximum likelihood estimator of 7  may be written as:
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The maximum likelihood estimator for 7  is found by maximising the likelihood

subject to the constraint (5.2). Since 7  < m in j^ }  this estimator is seen to be:

7  =  min {yt.}.

Of course both 7  and 7  may be combined to form an estimate of I \

E x am p le  5.2. Consider the following noise model:

+  o ( =  ].

where,

j?{. =  min(^(1. , /*;.),

Vu = “ “ ( f t '. /1?,)-

Here /xj, //f. are independent identically distributed as N (0 ,a 2).

In this example the regression model (5.1) reduces to the two equations:

y'u =  7 l +  Vt„

llu =  7 “ +  %“ •

The probability density function of the end points for Yti may be written as:

=  2 Pn\.(v‘u -  (v l  ~  7 “).
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by independence of j i \ . , //f.. Thus the likelihood of obtaining the intervals Ytl , Yt2, . . . ,  Ytn, 

may be written as:

n

H i 1, 7 “) =  n  2jh  (y‘u -  -  t ,“)
i = l

n„vv 1 r-(yt - v)2i r-te“-7u)2'i
= 2 n  w exp i  2g2 } exp 1 - 2̂  —  /•

Re-parameterising the problem in terms of 7 , 7 :

L(7 , 7 ) =  (const) exp 1 - ̂  ((yu -  7 ) 2 -  (yti -  -y)2) 1 .
i= 1

Thus the maximum likelihood estimator is then found by minimising the 

equation,

E  {(.vu -  i f  +  (vu -  i f ) ,
i = 1

with respect to 7 , 7 , subject to the constraint (5.2).

So it is seen, as in the previous example, the maximum likelihood estimators 

of both 7  and 7  may be written respectively as:

1 n
7  =  “  Vu and 7  =  m in {^ J .7 n i=i

5.2.2 Least squares type estim ators

Now we turn our attention to calculating estimators of T of the form:

n

f  =  a r g m in y ]Z ,(r tj,r ) ,  (5.7)
i—1
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where L(Yti, Z ) is some measure of distance between the closed intervals Yti and T. 

So f  has analogies to least squares estimators for conventional linear regression. 

Note that this estimation problem is again constrained by the condition (5.2).

In the following examples, we evaluate T for various choices of L(-, •).

E x am p le  5.3. Let L(-, •) be the Hausdorff metric (3.4),(3.5). Thus,

n

f  =  a r g m in ^ m a x { |t / t“ - J u\,\ylti ~ V | } -
Z= 1

This may be reformulated in terms of yti, y*i5 7 , 7  as,

n

f  =  argmin max {\yti — 7  — [yt. t)I,  \ Vu — 7  +  {Vu — 7 ) 1}
7.7

2 = 1
n

=  argmin V { |y ti - j \ + y ti - 7 }, (5-8)
7.7 *rrf

2 = 1

since the constraint (5.2) implies that yti — 7  > 0 for all i = 1 , 2 , . . . ,  n. Now,

Vu =  7 +  .,

where > 0 , which implies that 7 , the estimator of 7  may be written as

7  =  min{y*J.

Finally 7  satisfies the equation,

n

7 =  argm _iny'|y*i - 7 !-
7  “

2 = 1
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So it seen that,

7  =  m edian{^ }.

E x am p le  5.4. Suppose that the choice of L(-, ■) in (5.7) is the sum of squared 

difference between end-points. That is,

L (Yti>T) = (Vu ~ i uf  +  (ylu ~  V)2-

In this case,

n

f  =  arg min £ ( ( » »  ~  l " ?  + (Vu ~  V )2) (5-9)
7 >7 2= 1

As for each of the previous examples we re-parameterise the problem in terms of 

Vu-, Vu, 7  and 7 . After some simplification (5.9) reduces to,

n

f  =  arg min 2 -  j ) 2 +  {yti -  l ) 2). (5.10)
7 ,7  *rr

Now it is seen using the constraint (5.2), that the estimators of 7  and 7  are 

(respectively):

1 n
7 = - ' 5 2 y t i, and 7  =  m in {^ J .

2 = 1

So it is seen that this estimator of T coincides with the maximum likelihood 

estimators in Examples 5.1 and 5.2. This is similar to the situation in conventional 

linear regression, where the maximum likelihood estimators corresponding to the 

Gaussian noise model coincides with the usual least squares estimators.
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E x am p le  5.5. Suppose now that the L(-, •) in (5.7) is the Delta metric, intro­

duced in Section 3.2.1. The aim now is to estimate the interval,

n

f  =  arg min ^  A* (Yti, T).
i= 1

Unlike each of the previous examples, it is difficult to find a closed form solution 

to this problem. However it will be seen in he subsequent sections that this 

estimation problem may be tackled using a simulated annealing approach.

5.3 Non-parametric set-valued regression

This section extends the work of the previous section to the case where the 

response variable is now a compact set in R2, specifically a binary image. It will 

be observed that the subsequent discussion may be easily extended to images or 

sets in higher dimensions.

In the previous Section the intention was to fit a constant set to the data. Of 

course in practice this is highly unrealistic, being a crude approximation to any 

underlying trend in the data. All is not lost however. Non-parametric regression 

is often used in conventional statistics by fitting constants to the data ‘locally’. 

In this way local constant fits are, in a sense, ‘pieced’ together giving a regression 

function which explains much better the underlying trend in the data. The aim 

now is to extend such non-parametric regression ideas to the case where the 

response variable is a closed set or binary image in R2.

5.3.1 Background information

Consider first the situation where we deal with points (x2, 2/2 ), • • •, (xn, yn),

following some model yi = f(x i)  +  £i, where (usually) E (^ |x j) =  0. Kernel



CH APTER 5. SET-VALUED REGRESSION 131

smoothing offers a non-parametric approach towards recovering or estimating 

the underlying function f{x).  The reader is referred to [7, 50] for an introduction 

to non-parametric regression. The idea is simple. Choose some kernel function 

k(x; h), with bandwidth h, and estimate f (x )  as:

m  = SftT'ffT- ( m i )

So f (x )  is just a weighted average of the data yi. The kernel function is usually a 

smooth symmetric function, peaking at 0  and monotonically decreasing as \xi~x\  

increases in size. This ensures that most weight is given to points Xi lying close 

to x. The bandwidth h controls the width of the kernel function, and hence the 

degree to which neighbouring points influence the estimate. As h —> oo, f (x )  

tends to n~l 2/*> ^he average of all observations, introducing a large bias. 

On the other hand small values of h give estimates which reproduce the data, 

that is, f (x i)  = yi. In fact (5.11) may be equivalently written in the form:

n

f (x )  = arg min -  x\ h)(yi -  6X)2, (5.12)
0x i—1

so that Qx can be viewed as a weighted least squares fit of a constant to an 

unknown function / .  Since the weights determined by the kernel are small or 

vanishing outside a neighbourhood of x , the constant fit is local.

This idea may be extended to fit local polynomials i 0Jxxj to an unknown 

function / .  The value of the function at value x  may be estimated as:

f (x )  =  arg min k (xi -  x; h) h /j -  V ]  .
<*>tf V U )

Clearly this increases the computational complexity of the problem.
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The reader is referred to a paper by Fan and Gijbels [15], which outlines some 

good theoretical properties which the local linear regression estimator possesses.

We now concentrate on the situation where the response variables are set­

valued.

5.3.2 Extension to set-valued regression

Suppose now that instead of points we are given some time dependent sequence 

of binary images { X tl, X t2, . . . ,  X tn}. How can we obtain a smooth evolution of 

the given images? The formulations in (5.11) and (5.12) suggest two approaches. 

In particular (5.11) suggests an approach whereby we estimate X t , at some time 

point t, by a weighted ‘average’ of the binary images { X tl, X t2, . . . ,  X tn}, for 

weights k(ti — t \h ). Averaging or more generally finding expectations of random 

closed sets however, is not straightforward. We have already seen examples of 

expectations of random sets in Section 2.3.1, including the Vorob’ev expectation.

The Aumann expectation [49] is based on the representation of a set via its 

support function,

h(X, u) = sup{(x,u)  : x  E X }, u € Sd_1,

where (x, u) is the scalar product and Sd_1 is the unit sphere in Md. The scalar 

product of x  =  (x i:X2 , . . . ,  xd) and u = (iq, u2, . . . ,  ud) is defined as

(x, U) = XiUi +  x 2u2 +  ■ • • x dud.

If X  is non-convex, then the support function of X  corresponds to the convex 

hull of X .  The Aumann expectation of a random set X  is defined as the convex 

set having support function h(EX, u) = E h(X, u). So the Aumann expectation is 

determined by the expected support function of X .  This is particularly useful to
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find expectations of convex sets, since the expectation itself will always produce 

convex sets.

The Frechet mean is a general concept of an expectation in a metric space Rd. 

Let X  be a random set in Rd and d a metric defined on /C, the space of compact 

sets in Md. The set K q G /C, which minimises

E d (X ,K ) 2 for k e  X  (5.13)

is defined to be the Frechet mean of X .  In most practical situations however the 

minimisation problem (5.13) is difficult to compute.

The distance average [3], on which the distance threshold (Section 2.4) is 

based is another example. Recall that it is based on the representation of a set 

via its distance function. Here the first step is to form the expected distance 

function, which in the present case may be written as:

n

dt(x) = -  t\h )d (- ,X ti). (5.14)
Z= 1

This however is not in general a distance function. The distance average is then 

chosen as the binary image X t whose distance transform is closest to E d (- ,X t). 

In [3] it is suggested that this set or binary image may be found by thresholding 

dt(x), forming a family of sets,

X(e) = {x : dt{x) > e}, (5.15)
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and then defining,

X t = X ( i )  =
argmine ||d(-,X(e)) -  d(-,dt(-))||,

argmine {J2W \d{-,X{e)) -  d(-,d t ( - ) ) | 2 } 1 /2

L qo norm 

Z/2 norm.
(5.16)

Here d(-,X)  could be any one of many distance functions, including

the truncated distance function used to define AJ(-, •). A clear advantage of the 

distance average is its ease of computation.

5.4 Loss functions and non-parametric 

sm oothing

An alternative approach to exploring averages of binary images might be to gen­

eralise (5.12), suggesting estimators of the form:

where £(•,•) is some loss function between sets (or binary images). Note that 

L (X ti, Bt) generalises (yi — 6X)2 in (5.12), a non-negative distance between obser­

vations and parameter of interest.

We concentrate on such an approach, illustrating how such estimators may 

be computed. Note that this is a non-parametric approach, and so in contrast 

to the problem explored in Section 5.2 presupposes no parametric form of the 

solution, which in turn doesn’t induce any constraints on the solution.

n

t = arg mm 
B t

(5.17)
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Henceforth we apply (5.17) using the delta metric AJ, so that,

n

X t = arg min -  t;h) (Apc(X ti,B t))2 . (5.18)
Bt • 1i—\

For the rest of the discussion we will fix the value of p in AJ? to p = 2. We 

introduce the notation,

n

R (B t) =  £ « * ( * )  ( A ; (5. 19)
i=1

to denote the risk of estimating X t by B t. The weights Wi(t) = k(ti — t; h) are 

determined from some kernel density and it is assumed that for each time point 

t, the weights Wi(t) are normalised so that 5 Zr=i wi(t) = 1 - The smooth image at 

time t will then be that image X t minimising the risk R (B t), that is, satisfying:

X t = arg min R (B t).
Bt

At first glance (5.18) would appear to be a nasty optimisation problem. However 

it will be shown that similar to the problem posed in the previous chapter, of 

estimating the OBE for a given loss function, that the present problem may be 

tackled in a like manner. Note that (5.19) may be expanded as:

R (B t) =
i= 1 x£W
n

=  ^ 2 wi(t) ^ 2  [d*(x,Bt) -  2d*(x,Xti)] +  const
x = l  x £ W

n

+  const. (5.20)
xew 2 = 1

It is clear that the constant term in (5.20) has no bearing on the minimisation
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of R (B t) and so may be ignored. In fact this minimisation problem may be 

equivalently written as:

X t = arg min ^  d* (:x , B t)
B t w

=  arg min ̂
B t

W

i= 1
2

d*(x,Bt) -  y Z Wl(t)d% x,Xti)
i = l

(5.21)

So the estimator X t has the nice property that it has truncated distance function 

d*(-,Xt) closest to Wi(t)d*(-,XU).

The algorithm to compute X t has many similarities to tha t used in Section 

4.5.3, to calculate the optimal Bayes estimator for the image restoration problem. 

Here the algorithm may be split into distinct parts:

1. Calculate W i ( £ ) d * ( - ,  X ti), where the normalised weights W { ( t )  correspond 

to some kernel density.

2 . Minimise R (B t) (5.20) over all sets B t e R d.

As with the Bayesian restoration problem, minimisation is carried out via simu­

lated annealing. Further, Yli wi(t)d*(’: X ti) may be thought of, in a sense, as an 

expected distance function of X t. In this way it is seen to be an analogue of the 

algorithm to estimate OBE’s for certain loss functions (Section 4.5.3).

In fact this scheme also follows closely that of the distance average. Step 1 

above is identical to the first step in the computation of the distance aver­

age (5.14). Further, Step 2 guarantees convergence to the global minimiser, if 

the cooling schedule in the simulated annealing is sufficiently slow. Minimisation 

is over the entire space of binary images, contrasting with the distance average 

where minimisation is restricted to the family of sets (5.16).

To minimise R (B t), we use a simulated annealing approach and interpret B t
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as a Markov random field with distribution

7r(Bt]i) oc exp(~ R (B t))1/T^ . (5.22)

where T(i)  is some decreasing cooling schedule defined such that T{i) tends slowly 

to 0 as t —>• oo. The mode of 7r(Bt) can now be approximated using a Metropolis 

algorithm within simulated annealing as follows. Start with some initial image B 0 

and decreasing temperature schedule T(i). At iteration i, propose for each pixel 

x  the opposite colour, if pixel x  is white then propose the colour black and vice 

versa. Denote the old configuration by Bi and the proposed new configuration 

by B\x\  Accept the move with probability

min ( l ,  exp ( j^ y (B (B i)  “  •R(£p ')) ))  )  •

After each full sweep of all pixels update the iteration value i. The hope is that if 

the cooling schedule is sufficiently slow then the resulting image Yt will converge 

to the global minimiser of R (B t).

It is worth noting that the above algorithm may be carried out for higher 

powers of p, although this will increase the computing time dramatically.

5.5 Early Experimental Results

This section displays some results of the smoothing algorithm on a synthesised 

binary image sequence in Figure 5.2. All of the images are of size 64 x 64 pixels. 

Figure 5.3 displays results of the smoothing algorithm at various intermediate 

time points. The Epanechnikov kernel,

k (t) =
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was used with bandwidth h = 0.5. The cooling schedule T( i ) / T( 0) =  0.99' was 

used with 10 and 0.005 as the initial and final temperatures. This represents 

approximately 750 iterations for each smooth image.

It is clear from Figure 5.3 that the resultant image sequence is certainly 

smoother than the original sequence, although an unfortunate aspect is that the 

resultant images don’t maintain the connectivity of the original sequence. This 

is certainly an area which may require further research.

*
(c) t. = 10 (d) t = 15

F ig u re  5.2. Original image sequence at time points: (a) Time t = 0, (b) Time 
t = 5, (c) Time t = 10 (d) Time t = 15

5.6 A  fu r th e r  ap p lic a t io n  - im age  w a rp in g

Suppose given two sets X,  Yboth in K*, aims to find a family of 

sets {Zt ,0 < t < 1} which interpolate X  and Y.  When t = 0, Zt = X  and when
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t  = 1 , Z t = Y .  As t increases, Zt progressively leaves X  and goes to Y.

The idea is simply to find for a particular value t lying between 0 and 1, the 

binary image Zt satisfying:

Z t = argmin [tA2c(X, B t) +  (1 -  t )A 2c(Y, B t)\ . (5.23)
B t

It is clear that this is identical to the problem of smoothing image sequences 

addressed in the previous section. In this case the observed images are just the 

two images X  and Y.  The weight function is simply,

\ t ,  image X  
w(t) = <

I 1 — t, image Y.

Figure 5.4 displays results of image warping on the input images Figure 5.4(a) 

and Figure 5.4(f). As with the smoothed image sequence in the previous section, 

the resultant images don’t preserve the connectivity of the input images.
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90
(d) t = 5 (e) t = 6

«*> 90
(g) t =  10 (h) t = 11

(f) t = 8

W

(i) t = 13

(j) t = 15

F ig u re  5.3. Smooth image sequence at various time points between (a) t = 0 
and (j) t = 15
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(a) a = 0

(c) a = 0.4

(b) a  = 0.2

(d) a  — 0.G

(e) a  =  0.8 (f) a  = 1

F ig u re  5.4. Results of image warping between images corresponding to a =  0 
and a = l



Chapter 6

Conclusions

This thesis has achieved its stated aim of placing many image analysis algorithms 

in a statistical context. Through the course of this research many further ques­

tions have arisen, which could form the basis for future developments. We briefly 

summarise and conclude the work presented in this thesis.

The distance threshold in Chapter 2 has been shown to work extremely well on 

a wide variety of image types, certainly improving on many techniques presented 

in the literature. Indeed it represents an altogether new approach to threshold­

ing. One problem which may be worthwhile exploring in the future is that of 

the robustness of the threshold with respect to image perturbations. This prob­

lem has received very little attention in the literature, and certainly would be a 

desirable property which any thresholding algorithm should possess.

The newly presented image metrics, double integral metric and grey-scale 

distance transform metric, in Chapter 3 have shown encouraging results. The 

design of image metrics is one area of image analysis, which in the author’s opinion 

has received very little attention in the literature, but which is fundamental to 

many image processing algorithms. One worry with the newly presented image 

metrics might be the computational time required to calculate these metrics.

142
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They certainly take longer to compute than the usual RMS distance, however 

this might be counterbalanced with each metrics improved performance. The 

double integral metric in particular has performed well.

One of the main motivations in exploring new image metrics was to test their 

performance as loss functions in Bayesian image restoration, outlined in Chapter 

4. It is worthwhile that the new double integral metric can be conveniently used 

to solve the often cumbersome problem of estimating the optimal Bayes estimator. 

One of the main reasons why new loss functions are rarely applied to this problem 

is primarily due to the computational difficulty of estimating the corresponding 

optimal Bayes estimators. The results displayed are encouraging, however one 

drawback, in common with many Bayesian restoration techniques, is that it is 

difficult to see global effects of the restored estimates, due to computational 

difficulties in working with large images.

The set-valued regression problem explored in the final chapter is clearly a 

very useful problem. It may be seen that this problem might be applied to 

many different scenarios. For the particular example of set-valued regression on 

binary images, the results may not be as visually appealing as would be hoped. 

However it does outline a very promising approach and basis for this problem. A 

further problem worth exploring might be that of finding appropriate stochastic 

noise models. This might suggest a maximum likelihood approach to set-valued 

regression.
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