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Abstract

Production and regulation of active oxygen species are important 

responses to environmental stress in plant tissues. This study was 

concerned with development of a competitive RT-PCR assay to study 

changes in ascorbate peroxidase gene expression in chilled and non-chilled 

in vitro grown cultures of Rhododendron ponticum, R  hatsugiri and R  

impeditum.

Oligonucleotides for PCR amplification of ascorbate peroxidase and 

glutathione reductase DNA sequences were designed using a sequence 

homology alignment of mRNA/DNA sequences from six distinct plant 

species. Ligation of PCR products into the pT-Adv plasmid vector and 

transformation into Escherichia coli, followed by partial sequencing, 

confirmed fragment identity. The subsequent design of Rhododendron- 

specific primers, and the construction of a cRNA competitor fragment by 

in vitro transcription for use in competitive RT-PCR, were also mediated 

by E. coli cloning. RT-PCR was developed using M-MLV reverse 

transcriptase and total RNA isolated from R  ponticum. The response of in 

vitro grown R  ponticum cultures upon exposure to chilling (4 and 2°C) 

and non-chilling (20°C) temperatures was investigated by competitive RT- 

PCR and enzyme activity studies. Ascorbate peroxidase enzyme activity 

and gene expression appeared to be closely correlated. Results indicated in 

vifro grown cultures of R  ponticum to be chilling sensitive at 2°C.
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The environment elicits responses within every living organism and it has 

become clear that certain environmental stresses induce specific 

physiological and genomic responses in both plant and animal cells 

(Burdon, 1994). These include extremes of temperature, light, 

anaerobiosis, water stress, xenobiotics, heavy metals and pest and 

pathogen attack (Gilmour et al., 1988; Brown et al., 1995; Iturbe- 

Ormaetxe, et al., 1995; Sgherri & Navari-Izzo, 1995; Kirtikara & Talbot, 

1996; Knorzer et al., 1996; Mehedy et al., 1996; de Paula et al., 1996; 

Schwanz et al., 1996; Weckx & Clijsters, 1996). The employment of 

molecular biological techniques has given an insight into how an 

organism perceives stress at a genetic level, and how it can activate 

appropriate defence mechanisms (Burdon et al., 1994). Using such 

approaches in tandem with physiological studies will expand on the 

knowledge already obtained concerned with gene regulation and 

expression. This information can be used as a base for the genetic 

engineering of organisms. Many such studies have been undertaken in an 

attempt to analyse the benefits of over-expression of antioxidant systems 

in plants (McKersie et al., 1993; Creissen et al., 1996; Tanaka et al., 

1996; Allen et al., 1997), to allow them to adapt more readily to hostile 

environments.

1.1 Oxidative Stress

One of the most important mechanisms by which a plant incurs damage 

due to environmental stress is the excess production of active oxygen 

species within its tissues. These include superoxide radicals (0 2-'), 

hydrogen peroxide (H20 2) and hydroxyl radicals (OH-). It has been shown 

that not only does oxidative stress occur in plants exposed to high and low 

temperatures, but also in those exposed to high light intensities, drought, 

air pollutants and herbicides (Foyer and Mullineaux, 1994). Since
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oxidative stress levels vary in response to different stimuli, organisms are 

able to adapt to fluctuating stresses by inducing the synthesis of 

antioxidant enzymes and damage removal or repair enzymes (Davies, 

1995).

Superoxide radicals can inactivate various macromolecules within the cell 

directly. 0 2*‘ reacts with proteins that contain transition metal prosthetic 

groups, such as haem moieties and iron-sulphur groups, causing damage 

to amino acids and loss of protein and enzyme function (Davies, 1995). 

One of the most important superoxide reactions is with another 

superoxide radical, i.e. dismutation, resulting in production of hydrogen 

peroxide. This is an intermediate generated by many different oxidation 

pathways, and is a detrimental oxidant of many biological compounds. 

However, it is the conversion of 0 2#’ and H20 2 to the hydroxyl and 

hydroperoxyl radicals (by the Haber-Weiss reaction, see Inze and Van 

Montagu, 1995) which accounts for their main toxicity. These radicals 

will immediately react with lipids, proteins and DNA causing rapid cell 

damage and death.

Lipid peroxidation in particular, can be thought of as an indicator of 

cellular oxidative stress (Rice-Evans et al., 1991). Membrane

phospholipids are continually subject to oxidant challenges. Figure 1.1 

illustrates peroxidation of unsaturated fatty acids. The process of 

peroxidation is initiated when an H+ atom is abstracted by a previously 

formed peroxide radical, thus creating a carbon-centred lipid radical (L#). 

In an aerobic environment, oxygen will add to this radical, giving rise to a 

lipid peroxyl radical (LOO*). Once instituted, LOO* can increase the 

peroxidation by obtaining an H* atom from neighbouring unsaturated fatty 

acids. The resulting lipid hydroperoxide (LOOH) can easily decompose 

into several reactive species: aldehydes, alkanes, lipid epoxides and 

alcohols (Davies, 1995). Peroxidised membranes become rigid, lose the
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selectivity and, in severe cases, lose their integrity. Figure 1.2 illustrates 

the mechanisms related to oxidative stress, both in damage and defence.

...C-OCOCOC...
'i' I t I, Hydrogen abstraction by a previously

formed peroxide radical

...c*-c=c-c=c-c=c...

1  o2 2. Lipid peroxyl radicalformation.

...C-OGOC-OC...
\
O2*

>!< I f 3. Chain reaction initiation - H* obtainedfrom

...c-c=c-c=coc...
(

neighbouring unsaturated fatty acids.
1

o 2h

4

Formation of lipid hydroperoxide

Formation of reactive species:

aldehydes, alkanes, lipid epoxides and alcohols

Figure 1.1 The mechanism of peroxidation of unsaturated fatty acids. The chain reaction 

causing peroxidation can be inhibited by abstraction of the H atom from another source such 

as a-Tocopherol (vitamin E) This is illustrated in Figure 1.2.
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Several metabolic processes do, however, make use of active oxygen 

species in a profitable way. For example, a large and rapid increase in 

active oxygen species can be observed upon pest or pathogen attack. This 

burst is thought to be linked to the hypersensitive response associated with 

pathogen defences (Inze and Van Montagu, 1995). Some potential sources 

of active oxygen species include chloroplasts and mitochondria. In plants, 

the major production site of superoxide radicals in chloroplasts is the 

reducing site of Photosystem I (Asada et al., 1974).

MITOCHONDRIA
CHLOROPLASTS

superoxide
dism utase

OXYGEN

""""'I m em brane 
*  so lub le

HOg
(hydroperoxyl radical) 

PUFAs-v  
a - tocopherol —

[VITAMIN E] "

▼
[ lipid peroxides

H20 2

h 2o  + 1/20 2
c a ta la se

ascorbate 
a sc o rb a te  pero x id ase

^^dehydroascorbate  
C -G S H

H20 • deh y d ro asco rb a te  
V re d u c ta se

[IMPAIRED MEMBRANE FUNCTION)

toxic aldehydes (4 - HNE)
(GLUTATHIONE TRANSFERASE will detoxify) 

[covalen t m odification to PROTEINS]

ascorbate
+
GSSG

g lu ta th ione  reduc tase

GSH

Figure 1.2 Summary of oxidative stress pathways in plants (adopted from Burdon, 1993).

1.2 Oxidative Defence Mechanisms

Organisms produce many antioxidant compounds to enable them to cope 

with oxidative stress, including a-tocopherol (vitamin E), ascorbate 

(vitamin C), (3-carotene, ubiquinone, uric acid and glutathione (Figure 

1.2). Some of these compounds are lipid soluble, others are aqueous, thus 

allowing antioxidant activity to be carried out in different parts of the cell 

(Davies, 1995). The enzymes which work in cohort with these compounds 

are of equal importance in the role of oxidative defence.
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1.2.1 Superoxide Dismutase

Superoxide dismutase (SOD) is the first, and arguably most significant 

(Davies, 1995), of the antioxidant enzymatic protection mechanisms 

employed in plant and animal cells. Its function is to dismutate superoxide 

radicals to hydrogen peroxide (Chatfield and Dalton, 1993; Inze and Van 

Montagu, 1995). There are several different isoforms of superoxide 

dismutase, distinguishable by the metal compounds they contain. 

Generally plants contain manganese superoxide dismutase (MnSOD) 

located in the mitochondria, as well as cytosolic and chloroplastic 

copper/zinc superoxide dismutase (Cu/ZnSOD; Bowler et al., 1994). It 

has been found that many plant species also contain FeSOD (iron- 

containing superoxide dismutase; Van Camp et al., 1990; Bowler et al., 

1994).

1.2.2. Ascorbate - Glutathione Cycle

Whether the generation of hydrogen peroxide is from spontaneous or 

enzymatic (superoxide dismutase) dismutation from superoxide, its 

presence can be deleterious to plant tissues, and therefore it must be 

removed as quickly as possible. The cycle illustrated in Figure 1.3 is a 

series of redox reactions which occurs in plant and animal cells, becoming 

elevated when the organism is subjected to oxidative stress. Hydrogen 

peroxide is removed by ascorbate peroxidase, an important H20 2 

‘scavenger’, using ascorbate as the electron donor, thus yielding 

monodehydroascorbate and water. Monodehydroascorbate is rapidly 

reduced by its reductase enzyme, otherwise it will spontaneously 

disproportionate into ascorbate and dehydroascorbate. The latter protein is 

recycled into ascorbate however, by utilising reduced glutathione as a 

reductant, which is in turn regenerated by glutathione reductase in an 

NADPH-dependent reaction.
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2 0 2: + 2 H+ — —— h2o2 + o 2

h2 o 2 h2 o

Asccrbste Mcncdehydrcasccrbate

Dehycrcascorbate
;

GSSG GSH

2 NADFH 2 NADF+

Figure 1.3. Ascorbate - Glutathione cycle detail (reproduced from Kangasjarvi et al, 1994). 

Abbreviations: GSH, reduced glutathione; GSSG, oxidised glutathione. Enzymes catalysing 

the reactions are indicated by the following numbers: 1, superoxide dismutase; 2, ascorbate 

peroxidase; 3, dehydroascorbate reductase; 4, glutathione reductase.

1.2.3 Ascorbate Peroxidase

Plant peroxidases were among the first enzymes whose intermediates 

were identified. Their enzymatic and molecular characteristics have been 

well reported (Mittler et al., 1991; Tanaka et al., 1991; Chen et al., 1992; 

Kubo et al., 1992; Chatfield and Dalton, 1993; Koshiba, 1993). Many that

respect to the electron donor, and these enzymes are commonly referred to 

as guaiacol peroxidases. These are assumed to play a broad role in a wide 

range of biological activities, for example biosynthesis of lignin, ethylene 

production, degradation of Indole-3-Acetic Acid (IAA), wound healing 

and pathogen defence (Chen, Sano and Asada, 1992). In contrast, 

ascorbate peroxidase is a far more specific enzyme, playing a precise role 

within plant and animal tissues.

have been isolated from plant tissues to date have low specificities with
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Ascorbate peroxidase (APX, EC 1.11.1.11) is present in all higher plant 

species and many cyanobacteria, suggesting a possible route of evolution 

(Gressel and Galun, 1994). It has been identified that chloroplastic APX is 

a component of the scavenging system of active oxygen species produced 

during oxidative stress. APX is the enzyme responsible for the catalysis of 

hydrogen peroxide reduction, utilising ascorbate (commonly known as 

vitamin C) as the electron donor:

2 ascorbate + H20 2 ->2 monodehydroascorbate + 2 H20

The existence of ascorbate peroxidases, different to ‘plant’ guaiacol 

peroxidases such as horseradish peroxidase, has been established in both 

higher and many C4 plants (Tanaka et al., 1991). There are both 

enzymatic and molecular differences between the two types of peroxidase:

• in the absence of an electron donor, guaiacol peroxidases are not 

inactivated, but APX is rapidly so. (Nakano and Asada, 1987).

• guaiacol peroxidases are glycoproteins, ascorbate peroxidase is not.

• ascorbate peroxidase is inhibited by thiol reagents, guaiacol peroxidases 

are not.

• ascorbate peroxidase contains non-heme iron in addition to protoheme, 

but guaiacol peroxidases do not.

• ascorbate peroxidase has a high degree of specificity for ascorbate as the 

electron donor, especially apparent in the case o f the chloroplast isozyme 

which will rapidly lose activity if ascorbate is absent (Takana et a l, 

1991).

•  there is little homology between the amino acid sequences of the amino- 

terminal region for ascorbate peroxidase and guaiacol peroxidases.

Results from Chen, Sano and Asada (1992) suggest that the amino acid 

sequence for APX obtained from the chloroplast in tea leaves have a 

higher degree of homology to the sequence of cytochrome C peroxidase in 

yeast than to guaiacol peroxidases in plants, thus indicating that these
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enzymes, one from the chloroplast, one from the mitochondrion, may be 

part of the same family. It has been reported that cytochrome C 

peroxidase also acts as a hydrogen peroxide scavenger, as do glutathione 

peroxidases in mammals and NAD(P)H peroxidase in bacteria (Asada and 

Takahashi, 1987).

It has been identified that the action and specificity of ascorbate 

peroxidase differs amongst plant species. Nakano and Asada (1987) 

reported that spinach ascorbate peroxidase has a high specificity for 

ascorbate as its electron donor, whereas in Euglena (Shigeoka et al., 

1980) and root nodules (Dalton et a l, 1986), APX has a specificity for 

artificial electron donors. It is now known that spinach ascorbate 

peroxidase is localised in the chloroplasts, and immediately loses its 

activity when ascorbate is absent (Nakano and Asada, 1981, Nakano and 

Edwards, 1987). In root nodules and Euglena, however, ascorbate 

peroxidase will remain active if ascorbate is absent ( Dalton et a l, 1987). 

It can therefore be assumed that there are different types of APX present 

in plants to cope with the different defence mechanisms present.

1.2.4 Glutathione Reductase

Glutathione (GSH) is a widely distributed thiol-containing tripeptide 

found in the majority of plant and animal tissues and is necessary for a 

wide range of cell functions (Connell and Mullet, 1986). These include 

acting as a protein disulphide reductant, (Candas et a l 1997), the 

detoxification of xenobiotics (herbicides and air pollutants), the 

prevention of lipid peroxidation and associated oxidative stress 

mechanisms (Meister and Anderson, 1983; Zeigler et a l, 1985; Alscher, 

1989; Edwards et a l, 1991). For all these functions, whether enzymatic or 

non-enzymatic, glutathione must be used in its reduced form as it is itself 

a reductant. The reduction of the oxidised form of glutathione (GSSG) is
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catalysed by the flavoprotein oxidoreductase, glutathione reductase 

(Connell and Mullet, 1986; Creissen et al., 1994).

Glutathione reductase (GR, EC 1.6.4.2) utilises NADPH as the electron 

donor in the reaction to reduce oxidised glutathione:

GSSG + NAD(P)H + H+ ->2GSH + NAD(P)+

This reaction is believed to be the rate limiting step during acute oxidative 

stress, thus playing a central role in the intracellular antioxidative 

mechanism (Candas et a l, 1997).

Foyer and Halliwell (1976) found that the concentration of glutathione 

differs in different organelles in the plant cell, the highest concentration 

being in the chloroplast. This correlates with the hypothesis that reduced 

glutathione is involved in recycling ascorbate in the ascorbate - 

glutathione pathway (Halliwell et al., 1981), and is involved in defence 

against oxidative stress, caused primarily by superoxide generation, which 

may occur in PS I. It is not surprising then, that researchers have found the 

highest activity of glutathione reductase in the chloroplast. Edwards et al. 

(1990) for example, have found that 70% of GR activity in pea leaves 

occurs in the chloroplast, and only 3% in mitochondria.

It could be that because the enzyme is present in different cell 

compartments, there are different isoforms of glutathione reductase. 

Several authors have found this to be the case in many different plant 

species. Creissen et al. (1994) found eight isoforms of GR in pea using 2- 

D gels, five of which were revealed to be contained in chloroplasts and 

three in mitochondria, when studied using Western blots. Spinach leaves 

were found to contain different isoforms of glutathione reductase when 

they were cold acclimated (Guy and Carter, 1984). It was shown that they 

possessed different characteristics, the cold acclimated isoform having a
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different thermal inactivation window to the non-acclimated form, as well 

as displaying differing electrophoretic mobilities. Foyer et al. (1991) 

detected six isoforms of GR in tobacco, and Anderson et al (1990) have 

found two isoforms in eastern white pine. It could be concluded then, that 

GR is a ubiquitous enzyme in plants especially significant when the 

organism is subjected to oxidative stress. It is then that the roles of 

glutathione and glutathione reductase become important in the recycling 

of ascorbate, the electron donor necessary for the scavenging of H20 2.

1.3 Environmental Stimuli and Oxidative Stress

Organisms which are subjected to environmental stress are invariably 

exposed to conditions suitable for the production of active oxygen 

species. If a plant is to tolerate these conditions, it must have the ability to 

facilitate antioxidant mechanisms within its cells. Active oxygen species 

are manufactured in the cell by a number of different methods, depending 

on the external stimulus, and a plant must be able to perceive such 

differences to survive in hostile habitats.

1.3.1 Drought

One of an organism’s fundamental requirements for survival is water. 

When a plant is suffering from water stress, one of its primary responses 

is to close its stomata. The advantage is, however, transient. Although 

further water loss will be prevented, there will be a lower influx of carbon 

dioxide and so a reduced rate of net photosynthesis (see Kaiser, 1987). 

This may not affect the perpetuation of the photosynthetic electron chain 

and because of the reduction in C 02 fixation electrons will be transferred 

to oxygen, giving rise to superoxide radicals and other associated active 

oxygen species.
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The oxidative effects of drought have been extensively studied in plant 

species, alone and in combination with other environmental factors. 

Baisak et al. (1994) studied the effects of water stress in primary leaves of 

wheat. It was observed that levels of the antioxidant enzyme, catalase, 

also responsible for the scavenging of H2O2 (Burdon et al., 1994), 

increased with time, then declined in the control tissue. Water stress 

prevented the initial rise in catalase activity to varying degrees, depending 

on the degree of stress inflicted. It was also noted by Baisak et al. (1994) 

that water stress caused a rapid increase in superoxide dismutase activity 

whatever the degree of stress, but ascorbate peroxidase activity only 

increased in mild water stress situations, and was found to decline rapidly 

when the leaves were under severe stress. In contrast, glutathione 

reductase activity increased under all water stress conditions, as did the 

activity of SOD. This could however be due to the increase in the number 

of different isoforms noted for both these enzymes, a common response in 

plant tissues under stress (Edwards et al., 1994).

These activity phenomena were also noted by Sgherri and Navari-Izzo 

(1995). Sunflower (Helianthus annuus L.) seedlings subjected to water 

deficit conditions were seen to induce antioxidant enzyme activities at the 

onset of moderate stress. By the later stages of the study, when severe 

conditions were noted, the antioxidant capacity of the seedlings declined 

and oxidative processes increased. Both Sgherri and Navari-Izzo (1995) 

and Baisak et al. (1994) conclude that the water status and degree of 

water stress inflicted on the plant is important in the activation of the 

antioxidative mechanism. However, in maize (Zea mays L.), observations 

by Brown et al. (1995) concluded that moderate drought had little effect 

on the antioxidant activities in leaf tissue although plant growth was 

inhibited.

Conversely, in a study of oxidative stress in oak (Quercus rubor) and pine 

(Pinus pinaster), Schwanz et al (1996) illustrated that all antioxidant
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enzyme activities studied decreased during drought. However, if the 

plants were grown under elevated C 02 (700j l i 1 I"1), the enzymes studied 

were found to increase in activity, thus increasing survival rates. The 

enriched C 02 atmosphere may allow the plants to compensate for reduced 

fixation due to stomatal closure during drought and water stress.

Because of the relatively uniform way that plants will respond to 

oxidative stress when induced by drought, Rensburg and Kruger (1993) 

suggested that oxidative stress could be used as a means of selection 

between drought tolerant and sensitive tobacco (.Nicotania tabacum) 

cultivars. A progressive, highly significant, differential increase in 

glutathione reductase activity was observed in cultivars in relation to their 

drought tolerance as their leaf water potential decreased. Superoxide 

activity was also seen to increase by as much as 244% in tolerant 

cultivars, but only 161% in sensitive plants. Ascorbate peroxidase activity 

was noted to increase 300-400% in tolerant plants under stress, a 

substantially higher increase than catalase activity, suggesting APX is 

responsible for the scavenging of hydrogen peroxide during drought, and 

not catalase. Although both sensitive and tolerant cultivars exhibited high 

levels of lipid peroxidation when under stress, upon rehydration, levels 

decreased more quickly in tolerant plants. Rensburg and Kruger (1993) 

concluded that drought tolerant tobacco cultivars were capable to initiate 

an effective antioxidant system in response to drought-induced oxidative 

stress, and that the activities of APX and GR are useful indicators of 

tolerance.

1.3.2 Iron deficiency

The antioxidant mechanism in plants can also be a useful indicator of 

plant nutritional status. Iturbe-Ormaetxe et al. (1995) studied the activity 

of antioxidant enzymes in pea (Pisum sativum) plants deficient in iron.
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The activities of glutathione reductase, monodehydroascorbate reductase 

and dehydroascorbate reductase were unaffected by the lack of free iron 

in tissue, but the activity of ascorbate peroxidase was seen to decrease by 

half. They suggest that the activity of APX is highly correlated with the 

amount of iron available in tissue. This may be because the hydroxyl 

radical is thought to be produced through the iron catalysed Haber-Weiss 

reaction (see Inze and Van Montagu, 1995), in which ascorbate could 

replace 0 2‘ as the reductant of iron (Gutteridge and Halliwell, 1989).

1.3.3 Herbicides

Herbicides are known for their effectiveness by their different modes of 

action in plant tissues, for example, the production of detrimental active 

oxygen species. Oxyfluorfen and related p-nitrodiphenyl ether herbicides 

produce free radicals in the presence of light (Knorzer et a l, 1996), which 

in turn, inhibit the primary target enzyme of oxyfluorfen, 

protoporphyrinogen oxidase. This causes an accumulation of pigment 

intermediates, mainly protoporphyrin IX, (an excited form) leading to the 

generation of active oxygen species. The action of paraquat however, is 

quite different, the major target site being the chloroplast. Paraquat is 

thought to accept electrons from photosystem I, to produce paraquat 

radicals. These react with molecular oxygen forming superoxide radicals 

(Kirtikara and Talbot, 1996). Both paraquat and oxyfluorfen induce 

oxidative stress conditions.

Knorzer et al. (1996) studied the changes in antioxidant enzymes when 

soybean (Glycine max) cell suspensions were exposed to various 

concentrations of oxyfluorfen. They observed that all the major 

antioxidant enzymes, with the exception of DHAR, i.e. APX, catalase, 

MDHAR and GR, increased 40-70% when the cells were exposed to all 

concentrations of the herbicide. This may have led to ascorbate
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concentrations decreasing 50% in stressed cells. It is interesting to note 

that there was a considerable increase in the activities of catalase and 

ascorbate peroxidase, suggesting that although the activity of ascorbate 

peroxidase was compromised due to the lack of its electron donor, the 

cells were able to compensate.

A study of paraquat-treated plants has revealed a different chain of 

antioxidative events. Kirtikara and Talbot (1996) observed ascorbate 

regeneration to be constant in paraquat-stressed tomato (Lycopersicon 

esculerentum) cultivars, possibly explaining the uniform ascorbate 

peroxidase activity noted. Again, glutathione reductase activity was found 

to increase, probably because of an increase in the number of isoforms, 

but perhaps also because of an imbalance in the reduced glutathione 

(GSH) : oxidised glutathione (GSSG) ratio. GSSG can also act as a pro

oxidant, and so constant regeneration of GSH, another important plant 

protein, is necessary.

1.3.4 Ozone

Kirtikara and Talbot (1996) studied the effects of ozone (0 3) in 

conjunction with paraquat in tomato cultivars, in an attempt to establish 

the target site of ozone damage. Results revealed two sets of distinct 

polypeptides for the treatments: those which increased and those which 

decreased during both types of stress, but for which there was no overlap. 

These studies also unveiled differing patterns for the antioxidant system 

for paraquat and ozone, suggesting that the target site of ozone is not the 

chloroplast.

Studies by Rao et al. (1996) again illustrated the different mechanisms by 

which plants activate antioxidative defence. In this case, ozone enhanced 

the activities of SOD, peroxidases, GR and APX, while modifying the
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substrate affinity for both ascorbate peroxidase and glutathione reductase, 

a phenomenon not previously noted by any other workers. However, this 

may explain the increase in activities of plant peroxidases and catalase 

(Knorzer et al., 1996) when exposed to elevated ozone levels.

1.3.5 Salinity

Salt is an important toxin encountered by many agricultural species, a 

prime example being rice, a crop, which although salt sensitive, is 

frequently grown in tidal swamps (Greenland, 1990). Fadzilla et al. (1997) 

studied the antioxidative responses of rice (Oryza sativa) shoot cultures 

when grown in a medium containing 0.35M sodium chloride. After only 

one day of exposure to elevated salinity, there were signs of oxidative 

stress primarily due to enhanced levels of superoxide dismutase activity, 

hydrogen peroxide and oxidised glutathione. However, by day eight, the 

concentration of GSSG had returned to that found in control cultures. This 

corresponds with the observed rise in glutathione reductase activity in the 

stressed cultures. The activities of APX and catalase remained similar to 

those of the controls. Similar activities were noted by Sheokand et al. 

(1995) in chickpea. Although plants initially displayed signs of oxidative 

stress, by day 14 of the study, antioxidant enzyme activities had returned 

to levels similar to controls. This suggests that although these species do 

display signs of oxidative sensitivity, and are classed as such, the plants 

have the antioxidant ability to deal with such stress and recover. Although 

there is evidence for metabolic changes occurring in plant tissue exposed 

to ionic stress (Binzel et al., 1988), it is apparently unclear as to why 

oxidative stress may be induced by salinity.
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1.3.6 Plant Disease Resistance

Oxidative stress and active oxygen species are known to exert powerfully 

damaging effects against living organisms. Perhaps that is why plants 

have been shown to induce oxidants in response to attack by pests and 

pathogens (Inze and Van Montagu, 1995). This ‘oxidative burst’ seems to 

be generated by a signalling pathway, similar to that observed in 

mammalian neutrophils during immune responses (Mehedy et al., 1996). 

Illustrated in Figure 1.4 is a possible model of the components involved in 

the oxidative burst. Elicitor receptors in plant plasma membranes are 

thought to activate G proteins and phospholipase C leading to ultimately, 

an active NADPH oxidase complex. NADPH oxidase produces 0 2*' which 

is known to be converted rapidly to hydrogen peroxide. H20 2 is thought to 

play a central role in interceding different aspects of disease resistance, 

e.g. participation in killing pathogen cells during defence responses 

(Apostol et al. 1989), oxidative cross linking of cell wall proteins to 

render them less digestible by pathogens (Mehedy et al., 1996) and as a 

possible intracellular signal regulating defence-related gene expression 

(Mehedy et al., 1996). All these mechanisms will vary depending on the 

sensitivity of the plant to attack and of the pathogen to H20 2.

Cell Wall

Flasma
Membrane NAD(P)H

O xidase

V
Ca2+

Protein Kinase

Figure 1.4. A model of possible components involved in the oxidative burst in plant cells 

involved in the hypersensitive response (taken from Mehdy et al., 1996).
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1.3.7 Senescence

Superoxide radicals are thought to play an important role in the 

senescence of plant leaves (Sandalio et al., 1987, Thompson et al., 1987). 

When the senescence of pea leaves was studied by Pastori and del Rio

(1994), it was found that antioxidant enzyme activities were depressed, 

and those systems which are known to increase active oxygen species, 

including superoxide dismutase, were found to increase considerably. 

This suggests that oxidative stress is necessary in certain plant functions 

but can be the cause of damage under other circumstances.
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1.4 Low Temperature Injury

Referred to as winter damage by horticulturists, this term encompasses a 

whole range of circumstances associated with low temperatures. This 

does not only include damage incurred by frost and freezing, but also that 

caused by low water availability due to the restriction of free water frozen 

in the soil, desiccating effects caused by wind and injury caused by 

temperatures above freezing point.

Damage caused by frost is usually obvious, and plants not normally 

harmed by winter severities are said to be hardy, or have the ability to 

acclimate (Ougham et al., 1992). Non-hardy plants usually blacken, wilt 

and shrivel when experiencing the first autumn frosts. Common long-term 

frost damage signs include foliar sunscald, stem or trunk splitting, winter 

bum of coniferous foliage and midwinter kill of dormant flower buds 

(Anisko and Lindstrom, 1995). If frosts occur particularly early in the 

autumn, these symptoms can also be seen on growing shoots of hardy 

species. For example, Polle et al. (1996) noted that Norway spruce 

seedlings could be severely damaged by unseasonal frosts, although the 

species is known to be very hardy.

The damage caused to both hardy and non-hardy plants by late spring 

frosts is of much greater importance. Frost damage to young leaves and 

flowers in a wide range of plants can severely retard normal plant growth. 

If these frosts occur immediately before bud break, then the buds may be 

killed (Kuroda e ta l., 1993). Repeated spring frost damage can leave some 

trees and shrubs permanently dwarfed (Weiser, 1970).

Low temperature injury can be caused by chilling and freezing stress. 

Chilling stress is injury caused to plant tissues at temperatures above 

freezing, and forms the focal point for the present study.

19



1.5 Chilling Temperature Damage

Responses of plants to low temperature stress are dependent on the 

functions affected, i.e. development, growth rate and survival. Many 

plants originating from tropical regions are chilling sensitive, suffering 

damage when subjected to temperatures below 10°C (Levitt, 1980). 

Depending on the minimum temperature and its duration, plants may be 

partially damaged or killed, resulting in lower yield and quality at harvest, 

or in severe cases, complete crop failure. Low temperatures have been 

known to devastate the caneberry crops in the Northwest Pacific 

(Hummer et al., 1995). Chilling temperatures are known to reduce grain 

set in rice, causing great economic loss to the industry. It has been 

speculated by Hale and Orcutt (1987) that a one degree Celsius drop in 

world mean temperature could result in a forty percent decrease in world 

rice production.

Species from temperate regions can not only withstand chilling 

temperatures, but are also able to increase their tolerance to freezing 

temperatures in response to exposure to low non-freezing temperatures. 

This process is known as cold acclimation. For example, non-acclimated 

wheat seedlings are killed when exposed to freezing at -5°C, whilst cold- 

acclimated seedlings can survive temperatures as low as -20°C 

(Thomashow, 1993). Such adaptation of plants to low temperatures could 

prove to be important in relation to climate change. Milder winters may 

lead to plants de-acclimating earlier in the season, thus exposing them to 

damage from late frosts. Plants that require a period of vernalisation may 

also be affected, and may no longer possess the ability to complete their 

natural life cycle. Considerable effort has therefore been directed at trying 

to obtain a better understanding of the mechanisms underlying cold 

tolerance. Physiological studies have shown that acclimation to cold is 

associated with a variety of changes within the plant, including alterations 

in protein, carbohydrate and lipid composition (Sakai and Larcher, 1987;
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Biggs, 1996). In most cases, the precise role that any particular biological 

change has in the cold acclimation process is uncertain. It can be 

presumed that some contribute to the overall health of the plant and its 

fitness for low temperature survival, whilst others play a part in increasing 

the tolerance of the organism to low temperature exposure (Lin et al., 

1990).

It has been reported that changes in the composition of lipids can directly 

contribute to freezing tolerance (Steponkus et al., 1988). As the 

temperature is lowered, lipids in the cell membrane change from a liquid 

crystalline condition to a solid state, the degree of which is determined by 

the ratio of saturated to unsaturated fatty acids (Quinn, 1988). This change 

occurs at a temperature which is equivalent to that which elicits chilling 

damage (O’Kane et a l , 1995). The development and degree of tolerance 

and the hardiness of plants to freezing temperatures appears to involve 

changes in the ratio between different classes of fatty acid, as noted by 

Biggs (1996) in several Rhododendron species. An increase in the amount 

of unsaturated fatty acids results in continuing membrane function at 

lower temperatures. However, change in the composition of membranes 

towards a higher unsaturated fatty acid content can result in an 

accompanying increase in membrane permeability due to lipid 

peroxidation. This results in a loss of solutes from the cell, causing an 

ionic and pH imbalance. Dysfunction of membrane-based systems, such 

as photosynthesis and respiration, may also occur. Ionic and pH 

imbalances also lead to the accumulation of toxic by-products. Levitt 

(1980) stated that aerobic respiration is disrupted during chilling in 

sensitive species, and observed an accumulation in the products of 

glycolysis, accompanied by a reduction in the formation of ATP. Burdon 

et al. (1994) also noted that chilling induces an increase in the production 

of superoxide radicals and hydrogen peroxide, toxins involved in the 

peroxidation of lipids, and concluded that fatty acid ratios may not be the
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only important mechanism involved in chilling and freezing damage, but 

that oxidative stress may also be significant.

1.6 Acclimation

1.6.1 Cold-Induced Proteins

An ability to increase cold tolerance in response to low non-freezing 

temperatures, known as cold acclimation, is essential for plants to survive 

in temperate winter climates (Chen, 1994). Cold acclimation is associated 

with a variety of changes in plant tissue, including alterations in 

carbohydrate, protein and lipid composition (Thomashow, 1993), thought 

to be governed by genetic control. In most cases, it is unclear how 

important a given change is to the observed increase in cold tolerance. 

Genetic studies have shown that the ability of a plant to cold-acclimate is 

a quantitative trait, and that changes in gene expression occur during cold 

acclimation (Thomashow, 1993). It remains uncertain how many genes 

are involved in the process and what their identities and function are.

Even in a single plant, individual tissues can demonstrate differences in 

cold hardiness, as illustrated by Chen et al (1983). Cold-acclimated winter 

rye and winter wheat plants were exposed to 2°C for 15 days, and the LT50 

(the lethal temperature for 50% death) determined for crown, leaf and 

root tissues according to ion leakage. In both species, the crown tissue 

was found to be the most hardy, followed by leaves and then roots. These 

results concurred with previous results from Weiser (1970) who noted that 

in woody species, ‘wood’ cells (xylem, parenchyma and pith) are several 

degrees less resistant to cold that those of bark (cambium, phloem, cortex 

and epidermis), an expected phenomenon due to the physical structure of 

woody stems.
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More recently, bark and xylem tissues were the focus of study in 

genetically-related (sibling) deciduous and evergreen peach (Prunus 

persica L. Batsch; Arora et al., 1992). Seasonal changes in cold hardiness 

and proteins were characterised. It was found that evergreen trees, while 

retaining their leaves and displaying signs of shoot elongation under 

suitable conditions, achieved only half the level of hardiness in winter, in 

contrast with deciduous trees, whilst in both genotypes, xylem tissue 

obtained maximum supercooling, i.e. ability to tolerate cold. However, 

the mechanism by which plants achieve this acclimation to cold and 

freezing temperatures must be considered.

Identification and cloning of the genes responsible for cold acclimation 

and the resultant proteins involved in this process may lead to a better 

understanding of these mechanisms. Changes in gene expression occur 

during cold acclimation in many plant species. Gilmour et al. (1988) 

studied the abilities of two varieties of Arabidopsis thaliana (Landsberg 

and Columbia) to cold-acclimate. After initial exposure of both varieties 

to 4°C for 24 hours, plants were able to survive temperatures down to - 

6°C. After 8-9 days exposure to 4°C, the LT50 for both varieties was as low 

as -10°C. In vitro translation of poly (A-1)  RNA isolated from control and 

cold-treated Columbia plants showed that the low temperatures induced 

changes in the mRNA population. Two of the polypeptides produced (160 

and 47 kilodaltons in size) were only synthesised at low temperatures 

(Gilmour e ta l ,  1988).

Polypeptides of a similar size were also isolated by Lin et a l (1990) in 

Arabidopsis thaliana and wheat. Analysis by Southern and northern 

blotting, and cDNA cloning of the genes encoding these polypeptides, 

indicated that wheat and A. thaliana had a similar Cold Related (cor) 

gene, with a polypeptide of 47 kilodaltons, (cor41). They suggested that 

these cor polypeptides have a fundamental role in the ability o f plants to 

cold-acclimate, and that they may act as cryoprotectants. Taking account
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of the evolutionary distance between A. thaliana and wheat, it could be 

postulated that the mechanism of acclimation is a highly conserved one 

(Lin et al, 1990) and may not be specifically confined to cold stress.

It has been suggested by several authors that cross-resistance may be an 

important factor in stress acclimation (Lin et al., 1990; Thomashow, 

1993; Chen, 1994; Anisko and Lindstrom, 1995). Anisko and Lindstrom

(1995) found that reducing the water supply to evergreen azaleas in late 

summer induced cold acclimation regardless of previous plant husbandry, 

allowing plants to remain tolerant to early autumn frosts. Drought and 

cold stress are thought to be closely linked because plant cells become 

severely dehydrated during cold and freezing temperatures. Supposed 

functions of ‘cor* genes and proteins include cryoprotection, altered lipid 

metabolism, protein protection and alteration and desiccation tolerance. 

Identification of such genes expressed in cross-resistance and 

determination of their regulation and function would facilitate an 

understanding of mechanisms involved in plant survival.

1.6.2 Acclimation and Antioxidants

None of the cor proteins studied to date have been identified as 

antioxidant proteins, but from current literature, their involvement in gene 

regulation induced in response to cold stress cannot be ruled out, as low 

temperature is a well known instigator of oxidative stress. Generally, 

cold-acclimated conifer species such as Pinus sylvestris and Picea abies 

are subject to an increase in the efficiency of photosystem II, which is 

assumed to provide a mechanism for dissipation of excess excitation 

energy of the photosynthetic apparatus, causing the production of active 

oxygen species (Schoner et a l, 1989). Antioxidant related genes will be 

triggered, thus increasing the activity of antioxidant metabolites. This was 

illustrated by Anderson et al. (1992), who found that antioxidant
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two to four fold from summer to winter, whilst related enzymes increased 

two to 122 fold during the same period. These results clearly indicate the 

supposed protective function ascorbate peroxidase and glutathione 

reductase have against photo-oxidative winter injury.

Researchers have been intrigued by antioxidative acclamatory responses 

of plants. Hakam and Simon (1996) studied the activities of oxygen- 

scavenging enzymes in two populations of the C4 grass species 

Echinochloa crus-galli L. Five-week-old plants were taken from two sites, 

Mississippi (warm climate) and Quebec (cold climate) and subjected to 

cold-induced photoinhibition. The activities of ascorbate peroxidase, 

monodehydroascorbate reductase, dehydroascorbate reductase and 

glutathione reductase were all significantly higher in the Mississippi 

population, suggesting their poorer ability to acclimate to low 

temperatures.

McKersie et al. (1993) facilitated the transformation of alfalfa (Medicago 

sativa L) with the gene encoding superoxide dismutase to determine the 

response of control and transformed plants to chilling. Transgenic plants 

which overexpressed superoxide dismutase were found to exhibit a more 

rapid recovery and regrowth after chilling than their control counterparts, 

strengthening the hypothesis that antioxidants play a protective role in 

plants subjected to chilling and freezing temperatures. Results obtained 

from a study of seasonal fluctuations of antioxidant enzymes in Norway 

spruce (Picea abies) by Polle et al. (1996) illustrate further the protective 

role of antioxidant enzymes in cold acclimation. When seedlings were 

exposed to an artificial frost (-5°C) in spring, some displayed an increase 

in all the antioxidant-related enzymes and survived. During the following 

autumn, plants which had been exposed to the artificial frost had lower 

enzyme activities in comparison to control plants, but with no 

compromise to health, indicating a possible memory effect of unseasonal 

frost, thus leading to an improved ability to acclimate.
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Plants are constantly subjected to a changing environment and must be 

able to adapt in order to stand any chance of survival. One of the ways this 

is achieved is by initiating antioxidant mechanisms in response to 

oxidative stress. Although the ultimate symptoms of oxidative stress are 

similar, a plant’s response depends very much .on which environmental 

stimulus induces the increase in active oxygen species. Indeed, evidence 

shows that there is no clear consensus amongst authors as to whether 

different stress induced pathways initiate antioxidants in the same way.

This study provides an insight into ascorbate peroxidase and glutathione 

reductase activities, both physiological and genetic for the former enzyme, 

in Rhododendron exposed to chilling temperatures. Understanding such 

functions will provide a base for plant genetic modifications, allowing 

plant adaptation to a more hostile environment.
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1.7 Rhododendron as an Experimental Species

Belonging to the family Ericaceae, Rhododendron is a genus of 

evergreen, semi-evergreen and deciduous shrubs ranging from a dwarf 

habit to tree-like stature. Members of this genus are grown mainly for 

their beauty and flowers. The scientific reason for their study is more 

fundamental. Rhododendron is one of the largest genera in the plant 

kingdom, containing over 900 species (Davidian, 1982), 320 of which are 

found at the main centre of diversity, in north west Yunnan, south east 

Tibet and western Szechwan, between 22° and 30°N (Sakai et al., 1986). 

Rhododendron species are found in most areas of the globe, ranging from 

the tropics to the Arctic circle. The diverse range in habit, genotype and 

geographic situation amongst Rhododendron species means that they 

supply an excellent tool for the detailed study of plant response to various 

environmental influences, such as extremes of temperature.

Cold tolerance in Rhododendron is directly related to the severity of their 

native climate, many species being hardy to between -20 and -25°C. For 

example, Rhododendron species found inhabiting the timberline in 

eastern Himalaya and high altitudes of north west Yunnan, have been 

found to be tolerant to such low temperatures (Sakai et a l, 1981). Many 

of the dwarf species originating from northern altitudes are classed as 

hardy (Davidian, 1982). Sakai et al. (1986) found species such as 

Rixododendron parviflorum, R. aureaum and R. impeditum to be very 

hardy. Leaves were shown to display tolerance to temperatures as low as - 

60°C, flower buds to -34°C, vegetative buds to -60°C and xylem to -50°C. 

Larger Rhododendron species, which display tolerance to temperatures as 

low as -30°C, for example R. maximum and R. carolinianum, are found in 

the Appalachian mountains of eastern USA. However, even the hardiest 

species are found to be restricted to forested habitats or those protected by 

snow (Sakai and Larcher, 1987).
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The injuries incurred by Rhododendron species due to low temperature 

stress include bark splitting (caused by mechanical action of ice crystal 

formation within the xylem and phloem) foliar damage (such as chlorosis 

and necrosis), tissue desiccation due to a restriction of free water in the 

soil system and flower bud death. This may be explained in several ways: 

different moisture loss rates, differences in the ability of roots to extract 

free water from near-frozen or frozen soil (Cameron and Dixon, 1997) 

and different rates of water movement through frozen or damaged tissues.

A phenomenon of many of the larger Rhododendron species is 

thermotropic leaf movement after temperatures decrease during winter 

months. It is thought that the change in the angle of the leaf may help to 

protect against injury caused by the combination of low temperatures and 

high light intensities (Biggs, 1996), which can cause photo-oxidation or 

photoinhibition, leading to the peroxidation of membrane lipids, and 

eventually cell death. Antioxidant enzymes provide another mechanism 

by which Rhododendron species can tolerate chilling and oxidative stress, 

although these metabolic pathways have yet to be studied.

Biggs (1996) investigated the acclimatory responses of several 

Rhododendron species and monitored the physiological responses to 

exposure to low temperatures. It was noted that there was an increase in 

unsaturated fatty acid content as the temperature was lowered, as is 

typical of cold tolerant plant species. As previously mentioned, it is 

unsaturated fatty acids which are more susceptible to lipid peroxidation, 

but little is known of the extent of peroxidation in Rhododendron tissue.
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The hardiness ranking for Rhododendron was given by Davidian (1982,

1989, 1992), referring to the tolerance to cold in the UK.

H4 Hardy anywhere in the British Isles

H3 Hardy in the west, east and south and inland, but requires

shelter

H2 Suitable for sheltered gardens on the west coast

HI Usually a greenhouse plant

The three species chosen for the current study were previously used in 

cold stress research by Biggs (1996) and Cameron and Dixon (1997) 

preferred for their different characteristics and diverse habitats. Choosing 

species such as these, with their original habitats in diverse areas of the 

globe, and such distinct phenotypes, would indicate woody plants’ 

differing behaviour when exposed to chilling. This would provide an 

extended picture of how woody species may behave when responding to 

temperature extremes. Details of the species are given below:

Rhododendron ponticum. This, one of the most common Rhododendron 

species found in the British Isles. It can vary considerably in its habit, 

being either a broad upright, lax or compact shrub of 1-4.5m, or of tree

like stature up to 7.6m in height. It bears oblong, dark green, shiny leaves 

and funnel-shaped mauve flowers in June and July. It has been merited a 

hardiness rating of H4.

R. ponticum was first described by Linnaeus in 1762 (Davidian, 1992). Its 

distribution ranges from north Anatolia, Turkey, the Caucasus and 

Lebanon and south-east Bulgaria, to Spain and Portugal. Its habitats 

include pine, mixed deciduous, alder, laurel, beech and spruce forests, as 

well as scrub-land. R. ponticum can characteristically be found forming 

thickets at elevations from sea-level to between 1,200 and 1,700m.
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Rhododendron impeditum was first discovered by Forrest in 1910 

(Davidian, 1982) in mid-west and north-west Yunnan and south-west 

Szechwan. Its natural habitat is open peaty pasture, alpine meadows, 

rocky slopes and cliffs at elevations of 3,600-4,880m. R. impeditum is a 

low-growing shrub, its height rarely beyond 700mm with characteristic 

short, thick branchlets, densely covered in small, dark green leaves, 

bearing small purple flowers in April - May. Davidian (1982, 1989, 1992) 

gives the species a hardiness rating of H3-H4.

Rhododendron cv. ‘Hatsugiri’, commonly known as an evergreen 

Azalea, was first introduced to Britain from Japan in 1920. It has a low 

growing habit, less than 800mm, with dense foliage cover and 

characteristic pink-red flowers borne in May and June. The parentage of 

this cultivar included R  kiusianum, R. kaempferi and R. obtusum, This 

plant also merits a hardiness rating of H4.
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1.8 Objectives of this Study

1. To establish methods for Rhododendron micropropagation and 

maintenance, suitable for high quality DNA extraction.

2. To establish protocols for DNA isolation

3. To identify conserved regions of ascorbate peroxidase and glutathione 

reductase genes in related species, and design primers suitable for their 

amplification in Rhododendron species.

4. To amplify sequences for ascorbate peroxidase and glutathione 

reductase.

4. To clone and partially sequence an ascorbate peroxidase gene from 

Rhododendron species, to confirm the design of the primers.

5. To clone and partially sequence a glutathione reductase gene from 

Rhododendron species, to confirm the design of the primers.

6. To establish a protocol for isolation of high quality RNA suitable for 

use in a reverse transcription-PCR assay to study the change in quantity of 

mRNA in chilled and unchilled plants.

7. To establish a protocol for extraction and analysis of the specific 

activity of ascorbate peroxidase and glutathione reductase.

8. To apply the molecular and enzymatic assays to Rhododendron 

ponticum to study their responses to chilling temperatures.
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2.1 Introduction

Since the advent of the Polymerase Chain Reaction (PCR) in 1985 (Saiki, 

et a l.\  it has been utilised, improved and modified to answer many 

molecular questions. PCR provides a rapid, straightforward means of 

producing microgram amounts of DNA from a few picograms of starting 

material. DNA polymerases carry out the synthesis of a complementary 

strand of DNA (cDNA) in the 5' to 3' direction using a single-stranded 

template, initiated at a specified double-stranded DNA region, i.e. a 

primer extension reaction, a practise commonly used for labelling and 

sequencing techniques (Taylor, 1991). In PCR however, two primers are 

used in the reaction, each complementary to opposite strands of the target 

region of DNA from a total DNA (genomic DNA) preparation. The 

primer sites are arranged such that the extension reaction directs new 

strand synthesis toward the other, resulting in de novo synthesis of the 

target region flanked by the two primers (Figure 2.1).

DNA Fragment ...AGA* 
1 I I I  

...TCT*
i  i  i i i  1 i  i1 I I  M  i i  i

I) Denataration ...AGA*

...TCT*

2) Primer Annealing ...AGA* 
1 1 1 

...TCT

GAG...
1 1 1

...TCT*
1 1 1

3) Primer Extension ...AGA*
1 1 1 i I  i• i  i  |

...TCT*
i l  
• •

•  • *GAG...
i  i  i  i  i  i

...TCT*
I I  i I  M

Figure 2,1 Polymerase Chain Reaction, This cycle is repeated for many molecules at an 

exponential rate
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However, no standard procedure exists for a fail-safe method of DNA 

amplification. For any application of PCR therefore, alterations must be 

made to the basic principles of the technique for success. There are many 

contributing factors to the success or failure of a reaction, all of which 

must be considered singularly and in combination for any experimental 

problem. Of crucial importance to this project was the establishment of a 

suitable approach for the development of primers capable of amplifying 

previously uncharacterised genomic regions. This required an 

understanding of the importance of primer design characteristics.

2.1.1 Primer design

The design and composition of primers used in PCR is paramount to the 

success of the reaction. There are many parameters to be considered in the 

selection of suitable primers pairs for any specific application. These 

include the stability of the primer at the 5' and 3' termini (which can be 

measured by the length of the DNA target duplex, the GC/AT ratio of the 

primer sets, the duplex formation free energy (AG)or melting temperature 

(Tm) (Dieffenbach et al., 1993 Rychlik, 1995)), primer self-compatibility 

and the formation of a stable duplex with the specific target DNA site. 

Generally, the more DNA sequence that is available, the better the chance 

of finding a suitable primer pair for PCR (Rychlik, 1995). Dieffenbach et 

a l (1993) also state that a comparison of all available related sequences 

will determine DNA regions of least heterogeneity, and that these should 

be the starting points for primer selection.

It need not be that all primer criteria are met to obtain success. Alteration 

of the reaction conditions themselves will improve specificity, as 

discussed in section 2.4. Depending on the desired size of the 

amplification product, the primers may be designed manually (for short,
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200-400bp products), or by using dedicated computer software. The 

parameters for either method must be considered with equal importance, 

aiming to create a balance between specificity and efficiency of 

amplification (Dieffenbach et al. 1993).

To ensure correct annealing, primers that are chosen must have a unique 

sequence within the region to be amplified (Rychlik, 1993). It is 

important that the 3' end of the primer is closely matched as this is where 

extension commences. It is also beneficial if  the primer has a G/C 

sequence or ‘clamp’ at the 3' end to ensure annealing, because the triple 

hydrogen bond gives extra stability. These parameters are easily, and in 

some cases automatically, checked by computer-aided design.

It is important that the primers are designed with no self homology 

(Dieffenbach et al, 1993). This can lead to primer-dimer formation, an 

artefact which can compete against the target product for reaction 

reagents and lead to false positives in PCR analysis. Because of this, it is 

very important that any complementarity between the 3' ends of the 

primer pair is removed. Problems can also arise when a hairpin-loop 

forming primer is used. Although this may be suitable in some cases 

(Rychlik, 1995), they become problematic because the 3' end has doubled 

back on itself to form a stable duplex, causing internal primer extension 

and rendering the primer useless in PCR. Because duplex extension 

continues in a 5' to 3' direction, hairpins at the 5' end will not significantly 

effect the reaction.

As previously mentioned, the triplet of hydrogen bonds between the G and 

C bases gives greater stability than the twin hydrogen bonds between the 

A and T bases. Due to this phenomenon, many authors recommend that a 

G/C content of 40-60% within the primers will render them suitably stable 

for PCR (Innes and Gelfand, 1990; Kidd and Ruano, 1995). Alternatively,
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Rychlik (1995) recommends that the G/C content should be close to or 

higher than the G/C content of the target sequence if possible. All authors 

agree however, that the optimum primer length for PCR is 18-25 

nucleotides for DNA amplification, although in some cases, it is 

recommended that shorter primers be used for the amplification of 

complementary DNA (cDNA; produced by reverse transcription of 

messenger RNA), to reduce the formation of non-specific primer/template 

interactions (Dieffenbach et al., 1993).

Melting temperature must be considered when designing primers. This is 

defined as the dissociation temperature of the primer-template duplex 

(Dieffenbach, et a l, 1993). The most accurate way to calculate this is by 

the nearest neighbour method, using the formula:

Tmprimer = &H[AS + R  In (c/4)]-273.15°C + 16.6 log,0 [K+]

Where AH  and AS are the enthalpy and entropy energy for helix formation 

respectively, R is the molar gas content and c is the concentration of the 

primer (Breslauer et al, 1986). This calculation is often substituted by the 

simplified free energy values (AG) equation, also based on a formula 

derived form Breslauer et al. (1986):

AG = AH - TAS

where AH and AS are the enthalpy and entropy of duplex formation 

respectively, and T is the temperature in degrees Kelvin. Table 2.1 gives 

the AG values for all nucleotide pairs, which are substituted into the 

formula to calculate internal stability of a possible primer pair.
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Second [AG (kcal/mol)] 

Nucleotide

First (5’) 

nucleotide

dA dC dG dT

dA -1.9 -1.3 -1.6 -1.5

dC -1.9 -3.1 -3.6 -1.6

dG -1.6 -3.1 -3.1 -1.3

dT -1.0 -1.6 -1.9 -1.9

Table 2.1: Free Energy values of a Nearest Neighbour Nucleotide (Rychlik, 1995). The values 

are given for each nucleotide pair, and can be used to calculate the internal stability of 

possible oligomers.

The combination of GC content and melting temperature is an important 

one to consider. Oligo primers of 20 bases and 50% GC content can be 

said to have Tm values in the range of 56-62°C, providing a suitable 

thermal window for efficient annealing. If there is a relatively poor GC 

content and melting temperature match, the primers will be much reduced 

in efficiency and specificity. Loss of specificity occurs at a lower Tm 

value. A primer with a higher Tm than its partner will have a greater 

chance of mispriming, however if the Tm value is too high, the primer 

with the lower value may not function at all.

Consideration of both the melting temperature and internal stability is 

important to ensure specificity of the product. Such specificity is 

especially important when the target DNA concentration is low in 

comparison with non-target DNA such as in the case of single copy 

sequences.

If using computer-aided primer design, the internal stability of the primer 

pairs can be represented graphically. Figure 2.2, (Rychlik, 1995), shows 

the internal stability profiles of successful and unsuccessful primer pairs. 

The low stability of specific primers improves the possibility of PCR 

being successful, without a preliminary series of optimisation
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experiments. It has been observed that oligonucleotides with 3' terminals 

less stable than -9 kcal/mol are more likely to be specific.

-13.0 • B1 -13.0 E 2

-11.0 . -11.0 • *  9
-9 0 - t 4 4

o T
E -7.0 - 4 * -7.0

• s *
CO
o -5.0 - -5.0

5' ACT7GGGATTGGGCT TCCGGTTCGACAG7CGCC
CD
<

-13.0 ■A *
G1 -13.0 - »  G2

-11.0 - '4 4 '9 -11.0 - 4 *

- 9 f V - 9
4

c O *
-9.0 -

4
-7.0 - -7.0 - 9" - 9444
-5.0 -i -5.0 -

5'CCGGCGCAGAAGCGGCATCAGCAAA CAGCGCCACATACATCAT3'

Figure 2.2: Internal stability of successful (G1 & G2) and unsuccessful primer pairs (B1 &B2) 

(Rychlik, 1995)

The length of the PCR product and the placement of the primers within 

the target sequence influences the efficiency of amplification. In some 

cases, this is also dependent on the template material used. Some clinical 

samples prepared from fixed tissues will yield DNA only suitable for 

generation of relatively small products (Green et a l, 1991; cited in 

Dieffenbach et al., 1993). The criteria for the size of the product are 

usually determined by the application of PCR. For example, to study the 

expression of genes by quantitative PCR (a method used to quantify 

amounts of mRNA obtained from tissue samples), the product must be 

large enough that a competitive fragment can be constructed, and both 

easily distinguished by gel electrophoresis.

When designing primers for use in Reverse Transcription PCR 

(transcribing single stranded transient mRNA molecules from a given 

sample to a stable cDNA molecule suitable for use in PCR), it is best to 

have the primers span an intron site to easily distinguish any 

contaminating DNA, and have the primers placed in a region of coding
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mRNA, rather than non-coding mRNA which may have similarities with 

many other mRNA sequences.

It is not only the parameters for primer design that will influence the 

potential success of PCR, but the reaction conditions themselves. 

Optimising the PCR reaction mix is equally as important as having the 

primers balanced in efficiency and specificity.

2.1.2 Polymerase chain reaction conditions

PCR is an enzymatic, chemical method of exponentially increasing the 

concentration o f particular nucleic acid sequences, relative to others in the 

mixture. Because of the myriad of uses of PCR technology, no single 

protocol will be suitable for all applications. The first step must be to 

match a series of parameters to a particular situation. Generally, for 

successful amplification, there must be a suitable target sequence with 

enough information such that oligonucleotide primers can be synthesised 

to anneal to the target site. A suitable DNA polymerase must be used to 

catalyse the extension of the annealed primers, with a supply of free 

oligonucleotides to allow this extension to occur. The thermal profile 

used for the reaction must incorporate the correct temperatures for DNA 

double-strand denaturing, primer annealing and strand extension.

More specifically, within a given PCR, reaction conditions must be 

modified to obtain optimum amplification. These include the specific 

temperatures of the thermal cycle, the concentration of the primers and 

template used, the concentration of free nucleotides within the reaction 

mix and the concentration of free magnesium ions necessary to satisfy 

enzymatic requirements (Bloch, 1990; Kidd and Ruano, 1995).
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Many problems will be encountered when beginning a new PCR 

application. These include little or no product detected, the presence of 

non-specific background bands due to mispriming and the formation of 

primer-dimers that compete with the product in amplification (Innes and 

Gelfand, 1990; Kidd and Ruano, 1995). To overcome such problems, 

several parameters are modified to improved the specificity, efficiency 

and yield of PCR.

To optimise PCR, the basic principles behind the reaction must be 

understood. All PCR reactions begin with the denaturation of the DNA 

template at 95°C. As the temperature is lowered to that required by the 

primers, they will anneal, or hybridise, to the template. This is important 

during the first few cycles because the primers have to effectively scan 

the template to find the correct complementary region with which to 

anneal (Kidd and Ruano, 1995). Following annealing, the temperature is 

raised to 72°C, and DNA polymerase binds to the primer-template 

complex and, by utilising free oligonucleotides (dNTPs), will extend the 

primer along the template strand. By repeating this cycle of denaturation, 

primer annealing and extension, there becomes an exponential increase in 

the amount of target DNA.

The temperature allowed for primer annealing depends on the length, 

concentration and composition of the primer. Innes and Gelfand (1990) 

recommend that a suitable annealing temperature is 5°C lower than the Tm 

of the primer. Kidd and Ruano (1995) suggest however, that a range of 

temperatures should be tested to find the optimum for a particular primer 

set. Primer annealing will take place at temperatures between 40 and 

75°C, although temperatures toward the higher end of this spectrum will 

result in an increased reaction specificity (Innes and Gelfand, 1990). 

Some researchers report two-step PCR to be more successful in some 

situations. PCR by this method uses only the denaturation step and one
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temperature for both annealing and extension (Kim and Smithies, 1988), 

thus increasing the stringency and specificity of the reaction.

The time and temperature allowed for extension depends on the 

concentration and length of the target sequence. Most authors recommend 

an extension temperature of 72°C (Innes and Gelfand, 1990; Saiki, 1990; 

Kidd and Ruano, 1995). At the end of PCR, a final extension time of 10 

minutes is added, to ensure all extension and double stranding has 

occurred.

As PCR technology has advanced, so too have the reagents used within 

the reaction. When it was first utilised in 1985 (Saiki et al.), the enzyme 

catalyst was the bacterial DNA polymerase, Klenow fragment polymerase 

I (pol I) of Escherichia coli. This enzyme is not thermoresistant so must 

be added at the beginning of each annealing cycle. This was rapidly 

replaced following the isolation of the thermostable DNA polymerases 

from Thermus aquaticus, (Taq polymerase) and T. thermophilus, (Tth 

polymerase). Using a thermoresistant enzyme allows complete 

amplification of the product without disturbance, thus giving greater 

reliability, precision, convenience and productivity (Bloch, 1991). It has 

also led to the use of rapid-cycling automated thermal cyclers.

The recommended concentration of Taq DNA polymerase in PCR 

amplifications is between 1 and 2.5 units per lOOpl reaction when other 

parameters are optimal. (Innes and Gelfand, 1990; Perkin Elmer, 1993; 

Kidd and Ruano, 1995). However, a range of concentrations can be tested 

to define the optimum for a specific application.

Among the other reaction components the correct concentration of 

magnesium chloride can be highly influential to the outcome. Excluding 

the requirement DNA polymerase has for free magnesium ions, other 

factors in the reaction are affected including primer annealing efficiency,
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product specificity and primer dimer formation. Free nucleotides have an 

affinity for Mg2+ ions, thus a higher concentration of dNTPs may require a 

higher concentration of magnesium chloride (Taylor, 1991). Because of 

these phenomena, the concentration should be between 0.5 and 2.5mM 

magnesium chloride (Innes and Gelfand, 1990).

Using the above criteria for primer design and PCR, studies were 

undertaken to provide a suitable system for the amplification of ascorbate 

peroxidase and glutathione reductase DNA sequences from 

Rhododendron ponticum, R. hatsugiri and R. impeditum. Also necessary 

was the establishment of a suitable plant culture system in an adaptable 

environment, which could be used as a source of material for high quality 

extractions of DNA, RNA and proteins.
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2.2 Materials and Methods

2.2,1 Rhododendron micropropagation

Before beginning the DNA work, a suitable source of plant material had 

to be established. This was achieved by using Rhododendron 

micropropagation which allowed a large number of plants to be produced 

in a relatively short time, in an environment which was relatively easy to 

manipulate.

For the culture of micropropagules of Rhododendron ponticum, R  

impeditum and R  hatsugiri, the procedure described by Kenyon et al. 

(1995) was used. Shoot tips of approximately 20mm in length were taken 

from stock plants and all the leaves removed. These shoots were surface 

sterilised in 2% w/v sodium hypochlorite solution for between 20 and 30 

minutes and rinsed three times in sterile distilled water to remove all the 

bleach solution. The shoots were trimmed to eliminate oxidised tissue and 

the apical bud removed to promote axillary bud growth. The sections 

were placed in 60 ml sample jars containing 25 ml Anderson 

Rhododendron stage I medium (Appendix 1), pH 5.7, previously 

autoclaved for 15 minutes at 121°C (Anderson, 1980). Cultures were 

incubated under fluorescent light (280pmol/m .s) with an 18 hour 

daylength and a constant temperature of 20°C. When established shoots 

had formed, these were excised from the main stem and transferred to 

fresh Anderson Rhododendron Stage II medium (Shoot Multiplication 

medium, Appendix 1) and grown under the same conditions. 

Micropropagules were subcultured every 4-6 weeks onto fresh Stage II 

medium, and served as a source of material for DNA, RNA and protein 

extractions.
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2.2.2. Inter-species sequence comparisons

A Genbank database search at the National Centre for Biotechnology 

Information (NCBI) database (website: www.ncbi.nlm.nih.gov/) revealed 

no sequence data for either ascorbate peroxidase or glutathione reductase 

in any Rhododendron species. The approach used to obtain sequence sites 

suitable for primer design was similar to that applied by Diffenbach et al 

(1993), in which related sequences from other plant species were pooled 

to identify highly conserved sequence regions.

A total of six species were studied for ascorbate peroxidase and 

glutathione reductase; Arabidopsis thaliana (thale cress), Glycine max 

(soybean), Spinacia oleracea (spinach), Pisum sativum (pea), Oryza 

sativa (rice) and Nicotiana tabacum (tobacco).

The sequences were manually aligned to identify regions of conservation. 

Once these had been determined (APX Figure 2.3; GR Figure 2.4), the 

areas of greatest homology were investigated as possible sites for PCR 

primer annealing.

2.2.3 Oligo 5.0primer analysis software.

Oligo 5.0 (National Biosciences, Inc.) is a software tool which searches 

for and selects oligomers from a sequence data file suitable for use as 

primers or probes in PCR, sequencing, site-directed mutagenesis and 

hybridisation techniques. The program calculates hybridisation 

temperatures and secondary structures of the oligomers based on the 

nearest neighbour free energy change (AG) values (see Section 2 .1).

One of the many functions of Oligo 5.0 is to perform a search for primers 

suitable for PCR. There are many parameters within the search program
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which are automatically set to select suitable primer pairs. These include 

stringency values against intra-primer hairpin loops, non-compatible 

primer pairs and false priming. The program will also search for regions 

with a GC clamp and matches the melting temperature with oligomer 

length to produce optimal primer pairs. Parameters directly relating to the 

sequence are manually entered into the program.

2.2.4 Primer design

The mRNA sequence file for Pisum sativum ascorbate peroxidase was 

loaded into the Oligo 5.0 Primer Analysis software. The primers and 

probes option was chosen and specific search ranges entered according to 

the regions of sequence conservation identified. The area of sequence to 

be analysed for upper and lower primers were entered by oligonucleotide 

number, illustrated in Table 2.2. The desired length of the product was 

also entered, however this was primarily dictated by the primer search 

ranges. Once these had been completed, the program was ready to run. 

The same search strategy was used for Arabidopsis thaliana glutathione 

reductase mRNA and the areas of conservation and primer analysis can be 

found in Figure 2.4.

Sequence Range Ascorbate Peroxidase Glutathione Reductase

Set A Upper Primer 185-215 360-400

Lower Primer 740-770 885-910

Set B Upper Primer 145-180 620-655

Lower Primer 620-650 1180-1200

Set C Upper Primer 185-215 915-930

Lower Primer 490-520 1501-1530

Table 2.2. Search ranges entered into Oligo 5.0 for primer design and analysis. These areas 

are marked as bold in Figure 2.3 (Ascorbate Peroxidase) and Figure 2.4 (Glutathione 

Reductase)
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Primers which fell within the desired regions and were recommended for 

PCR by the programme were selected for further investigation and were 

custom synthesised (Cruachem Ltd.)

2.2.5 DNA extraction (method 1)

For the extraction of DNA from Rhododendron species, a protocol 

derived from Paterson et al, (1993) was used. Fresh tissue (40 mg) was 

homogenised in liquid nitrogen and added to 500 pi DNA extraction 

buffer (0.35 M glucose, 0.1 M Trizma-HCl, 0.005 M EDTA, 2% (w/v) 

polyvinylpyrolidone (PVP40) in a total volume of 1 litre, pH 7.5, and 

autoclaved at 121°C for 15 minutes. Immediately before use, 0.1% (w/v) 

diethyldithiocarbamic acid (DIECA), 0.1% (w/v) filter-sterilised ascorbic 

acid and 0.2% v/v p-mercaptoethanol were added).

Following incubation on ice for 10 minutes, the sample was centrifuged at 

7000 g  for 20 minutes and the pellet saved. This was resuspended in 600 

pi nuclei lysis buffer (0.1 M Trizma-HCl, 1.4 M NaCl, 0.02 M EDTA, 2% 

(w/v) hexadecyl triammonium bromide (CTAB), 2% (w/v) PVP40, pH 

adjusted to 8.0 and autoclaved at 121°C for 15 minutes. Prior to use, 0.1% 

(w/v) DIECA, 0.1% (w/v) ascorbic acid and 0.2% v/v p-mercaptoethanol 

were added), and incubated at 65°C for 30 minutes, with regular agitation 

to keep the sample homogenous.

The mixture was cooled to 35°C, and incubated for a further 10 minutes 

following the addition of 5 pi RNase (100 pl/ml). Chloroform:octanol 

(24:1; 600 pi) was added, and the mix inverted approximately 50 times. 

Following centrifugation at 7000 g  for 5 minutes, the aqueous layer, 

containing DNA, was transferred to a fresh tube and the 

chloroform:octanol step repeated. Again, the aqueous layer was
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transferred to a fresh tube and 450 pi ice-cold isopropanol was added and 

thoroughly mixed to precipitate the DNA. Precipitation was further aided 

by incubation at -20°C for 30 minutes. The sample was centrifuged at

10,000 g for 5 minutes to pellet the DNA. which was subsequently 

washed in 70% (v/v) ethanol. The centrifugation step was repeated to 

repellet the DNA, which was then air-dried for 30 minutes to remove any 

traces of ethanol. The DNA pellet was then resuspended in sterile 

Molecular Biology Grade water (BDH) and stored at -20°C.

2.2.6 DNA extraction (method 2)

This method followed the Nucleon Phytopure™ Plant DNA Extraction kit 

(Scotlab Bioscience). Rhododendron tissue (O.lg) was homogenised in 

liquid nitrogen and added to 600 j l x I  Reagent 1. When fully homogenous, 

RNase (100 pl/ml) was added and mixed thoroughly. After incubation at 

37°C for 30 minutes, 200 pi reagent 2 was added and the mixture 

rehomogenised and incubated at 65°C for 10 minutes, with regular 

agitation throughout.

Following a further incubation period of thirty minutes on ice, 500 pi ice- 

cold chloroform and 100 pi silica suspension were added to the mixture. 

This was incubated at room temperature for 10 minutes with regular 

agitation, and then centrifuged at 1,300 g for 10 minutes. The upper, 

aqueous layer was transferred to a fresh tube. To this, 450 pi ice-cold 

isopropanol was added, and incubated at -20°C for 30 minutes to 

precipitate the DNA. The mix was centrifuged at 4000 g  for 5 minutes to 

pellet the DNA, which was then briefly washed in 70% (v/v) ethanol and 

recentrifuged at 4000 g. The pellet was air-dried for 15 minutes and 

resuspended in sterile Molecular Biology Grade water and stored at -20°C.
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Using both these techniques, DNA was extracted from Rhododendron 

ponticum, R. impeditum and R. hatsugiri.

2.2.7 Measurement o f DNA concentration

UV densitometry was used as a means to calculate the concentration of 

DNA extracted from a tissue sample. DNA solution (2 jul) was added to 

an Eppendorf tube containing 2 pi ethidium bromide (5 pg/ml) and 

incubated for 10 minutes at room temperature. The samples were pipetted 

as discrete dots onto an Ultraviolet transilluminator (300 nm) and 

photographed using the IS-500 Gel Documentation System. This 

photograph was saved onto disk and the image transferred to the 

Windows Bandleader programme. Using a grid to isolate each dot, the 

programme calculated the fluorescence reading for each sample. Using 10 

ng bacteriophage lambda (X) DNA as a standard, the amount of DNA for 

each sample could be calculated using the following equation:

x  = (S xlOng/pl) + X 

where S is the sample densitometry reading, 10 is the amount of X DNA 

standard and X is the densitometry reading of X DNA standard.

2.2.8 Polymerase Chain Reaction

The basic parameters used as a starting point for primer tests were as 

follows: the reaction mix consisted of PCR buffer (10 mM Tris-HCl, 50 

mM KC1; Perkin Elmer), 1.5 mM MgCl2 (Perkin Elmer), 20 pmoles upper 

primer, 20 pmoles lower primer, 2.5 mM dNTPs (Perkin Elmer), 1 unit 

Taq DNA Polymerase (Perkin Elmer) and 10 ng Rhododendron DNA, in a 

total volume of 25 pi. The thermal cycling programme was set at 95°C for 

5 minutes initially, followed by 1 minute at 94°C, 2 minutes at 55°C and 3 

minutes at 72°C for a total of 30 cycles, followed by a final extension
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cyclogene thermal cycler. In pre-tests, all four machines gave similar 

results.

As mentioned in section 2.1.2, the main PCR conditions to review when 

optimising the reaction are the temperatures used for template-specific 

annealing of primers and the concentration of the primers used. A series 

of annealing temperatures were tested to improve the specificity of the 

reaction: 45, 50, 52, 55, 56, 57 and 58°C. These temperatures were 

initially used with all primer sets and each Rhododendron DNA sample. 

Four primer concentrations were also used as a means of optimising the 

PCR: 20, 30, 35 and 40 pmoles were tested.
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2.2.9 Gel electrophoresis

Agarose gels were used to analyse PCR products and DNA extractions. 

Agarose, 1% (w/v) (Seakem Le, Flowgen) was melted in 0.5x Tris Borate 

EDTA (TBE) buffer (Sigma) and poured into the appropriate gel casting 

tray: Horizon 58 (minigel), Horizon 11.14 (midigel) or Horizon 2025 

(maxigel) (Gibco BRL). Once set, the gel was immersed in TBE buffer 

and the wells loaded with DNA sample. Prior to loading, the DNA sample 

was mixed with DNA loading buffer (0.0025% (w/v) bromophenol blue, 6 

mM EDTA, 30 % (v/v) glycerol) to enable the samples to sink into the 

wells. The gel was electropherised at a voltage suitable to the gel size, and 

when the run was completed, the gel was immersed in ethidium bromide 

stain (5 jig/ml) for 30 minutes, then destained in distilled water for 30 

minutes. The gel was viewed on an UV transilluminator and 

photographed using the IS-500 Gel Documentation System.
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2.3 Results and Discussion

23.1 Rhododendron micropropagation

Micropropagation of R  ponticum, R. hatsugiri and R. impeditum resulted 

in successful shoot growth and culture maintenance. Plant culture by this 

method provided a ready source of sterile material in an easily controlled 

environment, with no apparent somaclonal variation.

23.2  Inter-Species sequence comparisons

As stated in section 2.2.1, the mRNA sequence for ascorbate peroxidase 

in Pisum sativum was used in a Genbank database search. Comparisons 

show that the gene has a relatively high level of sequence conservation 

across the range of plant species chosen. Table 2.3 shows the percentage 

homology of APX in pea with five other plant species, whilst Figure 2.3 

illustrates the regions of conservation in the gene throughout the six 

species.

Species % Homology with APX in Pisum sativum

Glycine max 85.6

Nicotiana tabacum 77.7

Spinacia oleracea 77.4

Arabidopsis thaliana 75.5

Oryza sativa 72

Table 2.3. Ascorbate peroxidase percentage homology results between the species studied

The same procedure was followed for glutathione reductase using the 

mRNA sequence in Arabidopsis thaliana. The percentage homology
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results are shown in Table 2.4. Again, a relatively high percentage of 

homology was found between the species, as is illustrated in Figure 2.4.

Species % Homolgy with GR in Arabidopsis 
thaliana

Pisum sativum 76.9

Glycine max 76.8

Nicotiana tabacum 76.8

Oryza sativa 65.9

Spinacea oleracea 63.9

Table 2.4. Glutathione reductase percentage homology results between the species studied

2.3.3 Primer design

Figures 2.3 and 2.4 also depict the areas of the sequence from which the 

primers were designed. Because they were selected from conserved 

regions of the gene and displayed reasonable melting temperature and 

internal stability profiles (Figure 2.5), it was felt they were more likely to 

anneal to the Rhododendron template DNA, whilst remaining specific to 

the gene. To ensure this further, alternative nucleotides were incorporated 

into the primer sequences for those areas where there was a choice of two 

bases in the sequence. Table 2.5 shows the possible nucleotide 

alternatives used in primer design.
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Figure 2.3. Ascorbate peroxidase sequence homology. * indicates identical bases within all 
sequences, bold type within the sequence indicates the regions chosen as parameters for Oligo
5.0 primer design and analysis. Cyan typescript represents the primer sets A, B and C 
synthesised. Alternative bases that were used in the primer sequences arc represented in red 
type.

P e a l
S y b i l

GAATTCGGCTTGTGCTCTCCTCGTGTCACTAGGGTTTAACTTCTTCGTTTTTGCTTCTTA 60
TTCCATTTTCTCTCTCA 27

r -k -k i

P e a 6 1  
S y b 2 8  
T o b 7  9 
S p n 4  3 
A th 5 2  
R ic 3 7

P e a l 2 1 
S y b 8 8  
T o b l 2 5  
S p n 8 7  
A t h 8 1 
R i c 8 1

P e a l 8 1  
S y b i l  8 
T o b l 8 5  
S p n l 4 8  
A t h l 4 1 
R ic  L 41

GATTTCGAGAATCGTTTGCTATGGGAAAATCTTACCCAACTGTTAGTCCCGATTACCAGA 12 0  
CTTTTCAAGAATCGTAAGCTATGGGAAAGTCTTACCCAACTGTGAGTGCTGATTACCAGA 87 

TTGCTATGGGTAAGTGCTATCCCACTGTAAGCGAGGAGTACCTCA 124  
GCCATGGGAAAGAGCTACCCAACTGTCAGTGAGAACTACCAGA 8 6 

TACCCAACCGTGAGCGAAGATTACAAGA 80  
GCCATGGCTAAGAACTACCCCGTCGTGAGCGCCGAGTACCAGG 80  

B
* * * * * * *  * * * * *  * r * WY* * * y * * W * * * * * *  **  **  *
AGGCCATTGAAAAGGCTAAGAGGAAGCTCAGAGGTTTTATCGCTGAGAAGAAATGCGCTC 1 8 0
AGGCCGTTGAGAAGGCGAAGAAGAAGCTCAGAGGCTTCATCGCTGAGAAGAGATGCGCTC 1 4 7  
AGGCTGTTGACAAATGTAAGAGGAAACTCAGAGGACTCATTGCTGAGAAGAATTGCGCTC 18 4  
AATCTATTGAAAAGGCCCGGAGAAAGCTCAGGGGTTTGATCGCAGAGAAGCAATGTGCTC 14 7 
AGGCTGTTGAGAAGTGCAGGAGGAAGCTCAGAGGTTTGATCGCTGAGAAGAACTGTGCAC 1 4 0  
AGGCCGTCGAGAAGGCCAGGCAGAAGCTGCGCGCCCTCATCGCCGAGAAGAGCTGCGCCC 1 4 0  

A  +  C
★ ★ k  ★ ★ -k *  ★ ★ *

CTCT.AATTCTCCGTTTGGCATGGCACTCTGCTGGTACTTTTGATTCCAAGACAAAGACTG 2 4 0  
CTCTAATGCTCCGTTTGGCATGGCACTCTGCTGGAACCTXTGCAAGGGCACGAAGACCGG 2 0 7  
CTCTTATGCTCCGTCTTGCATGGCACTCTGCTGGTACCTATGATGTGTGCTCCAAAACTG 2 4 4  
CTCTTATGCTTCGTCTTGCATGGCACTCTGCTGGTACCTTTGATTGTACTTCAAAAACTG 2 0 7  
CCATCATGGTCCGACTCGCATGGCACTCTGCTGGAACTTTCGATTGTCAATCAAGGACTG 2 0 0  
CTCTCATGCTCCGCCTCGCGTGGCACTCGGCGGGGACGTTCGACGTGTCGTCGAAGACCG 2 0 0

P e a 2 4 1  GTGGTCCTTTCGGAACAATTAAGCACCAAGCTGAGCTTGCTCATGGTGCTAACAACGGTC 3 0 0  
S y b 2 0 8  TGGACCCTTCGGAACCATCAAGCACCCTGCCGAACTGGCTCACAGCGCTAACAACGGTCT 2 67 
T o b 2 45  GAGGTCCATTCGGTACCATGAGGCTCAAGGCTGAGCAAGGACATGGAGCAAACAATGGTA 30 4  
S p n 2 0 8  GAGGTCCCTTTGGTACAATGAAGCACCAGGCAGAGCTGGCTCATGGGGCTAACAATGGGC 2 6 7  
A th 2 0 1  GAGGTCCATTCGGAACAATGAGGTTTGACGCTGAGCAAGCTCATGGAGCCAACAGTGGTA 2 60  
R ic 2 0 1  GGGGCCCGTTCGGGACGATGAAGACCCCGGCGGAGCTGTCGCACGCCGCCAACGCGGGGC 2 60

P e a 3 0 1  TTGATATCGCGGTTAGGCTGTTGGAGCCTATTAAGGAGCAATTCCCTATTGTGAGCTATG 3 6 0  
S y b 2 6 8  TGACATCGCTGTTAGGCTTTTGGAGCCACTCAAGGCGGAGTTCCCTATTTTGAGCTACGC 32 7  
T o b 3 0 5  TTGACATTGCTATAAGACTCTTGGAGCCCATTAAGGAGCAGTTTCCTATGCTCTCATATG 3 64 
S p n 2 6 8  TTGTTATTGCTGTTAGGCTGTTGGAACCCATCAAGGAACAATTCCCCGAAATTACTTATG 3 2 7  
A th 2 6 1  TCCACATTGCTCTTAGGTTGTTGGACCCCATCAGGGAGCAACATCTTCCCTACCATCTCT 3 2 0  
R ic 2 6 1  TGGACATCGCGGTGCGGATGCTCGAGCCCATCAAGGAGGAGATACCCACCATCTCCTACG 3 2 0

P e a 3 6 1  CTGATTTCTACCAGTTGGCTGGTGTTGTTGCTGTTGAGATTACCGGTGGACCTGAAGTTC 4 2 0  
S y b 3 2 8  CGATTTCTACCAGTTGGCTGGCGTTGTTGCCGTTGAGGTCACGGGTGGACCTGAAGTTCC 3 8 7  
T o b 3 6 5  GTGATTTCTATCAATTAGCTGGAGTTGTTGCTGTTGAAGTTACTGGAGGACCTGATGTTC 42 4 
S p n 3 2 8  CTGACTTTTACCAGCTGGCTGAGTTTGTGGCCGTTGAAGTTACTGGAGGACCTGAAGTTC 38 7 
A t h 3 2 1 TTTGCTGATTTCAGCTTGCTGGTGTTGTGGCCGTTGAAGTTACTGGTGGCCCTGACATTC 3 8 0  
R i c 3 2 1 CCGATTTCTACCAGCTTGCCGGAGTTGTGGCCGTCGAGGTGTCCGGTGGACCTGCCGTCC 3 8 0

P e a 4 2 1  CTTTCCACCCTGGTAGGGAGGACAAGCCTGAGCCACCACCTGAGGGTCGCTTGCCTGATG 4 8 0  
S y b 3 8 8  ATTCCACCCTGGAAGAGAGGACAAGCCTGAGCCACCACCAGAGGGTCGCTTGCCCGATGC 4 47 
T o b 4 2 5  CCTTTCACCCTGGTAGAGAGGACAAGACAGAGCCACCCGTTGAAGGTCGCTTGCCTGATG 4 84 
S p n 3 8 8  CCTTCCACCCAGGCAGAGAGGACAAGCCAGAGCCACCCCAGGAAGGACGTCTCCCTGATG 4 47  
A th 3 8 1  CTTTCCACCCTGGAAGAGAGGACAAGCCCCAACCACCTCCAGAGGGTCGTCTTCCTGATG 4 40  
R ic  3 8 1  CCTTCCACCCAGGAAGGGAGGACAAACCTGCACCCCCACCTGAGGGCCGTCTTCCTGATG 4 40

* * ** * * R Y S * *  * * * *  *
P e a 4 8 1  CCACTAAGGGTTCTGACCATTTGAGGGATGTGTTTGGAAAGGCTATGGGGCTTAGTGATC 54 0
S y b 4 4 8 CACTAAGGGTTCTGACCATTTGAGAGATGTGTTTGGCAAAGCTATGGGGCTTACTGACCA 5 0 7
T o b 4 8 5 CTACCAAGGGTTCTGACCACTTGAGAGATGTGTTTGTGAAGCAAATGGGTCTATCTGATA 54 4
3 p n 4  4 8 CCACCAAGGGTTGTGACCATTTGAGAGATGTCTTCATCAAGCAAATGGGTCTTACTGACC 5 0 7  
A t h 4 41 CTACCAAGGGTTGTGiACCATTTGAGAGATGTCTTTGCTAAGCAGATGGGCTTATCTGACA 5 0 0  
R i C4 4 1  CTACCAAGGGTTCTGACCACCTAAGGCAGGTCTTCGGTGCGCAGATGGGCTTGAGTGATC 5 0 0



P e a 5 4 1 AGGACATTGTTGCTCTATCTGGTGGTCACACCATTGGAGCTGCACACAAGGAGCGTTCTG 6 0 0  
S y b 5 0 8  AGATATCGTTGCTCTATCTGGGGGTCACACTATTGGAGCTGCACACAAGGAGCGTTCTGG 5 67  
T o b 5 4 5 AGGATATTGTTGCACTCTCTGGTGGCCATACCTTGGGAAGGTGCCACAAGGAACGTTCTG 6 0 4  
S p n 5 0 8  AGGACATTGTTGCTCTATCTGGAGGCCACACTTTGGGGAGATGCCACAAGGACCGCTCTG 5 6 7  
A th 5 0 1  AAGACATTGTCGCTTTATCTGGTGCCCACACTCTGGGACGATGCCACAAGGATAGGTCTG 5 6 0  
R ic 5 0 1  AGGACATTGTTGCCCTCTCTGGCGGTCACACCCTGGGAAGGTGCCACAAGGAAAGATCTG 5 6 0

B
** * * * * * Y* RR*WR R* R * *

P e a b O l  GATTTGAGGGACCATGGACTTCTAATCCTCTCATTTTTGACAACTCATATTTCACTGAGT 6 6 0  
S y b 5 6 8  ATTTGAGGGTCCCTGGACCTCTAATCCTCTTATTTTCGACAACTCATACTTCACGGAGTT 6 2 7  
T o b 6 0 5  GTTTTGAGGGACCTTGGACTACCAATCCCCTCATCTTTGACAACTCATACTTTACGGAAC 6 6 4  
S p n 5 6 8  GTTTTGAAGGTGCTTGGACTACCAACCCTTTGGTCTTCGACAACACCTACTTCAAGGAGC 62 7 
A th 5 6 1  GCTTCGAAGGTGCATGGACATCAAACCCTCTAATCTTCGACAACTCTTACTTCAAGGAAC 6 2 0  
R ic 5 6 1  GTTTTGAGGGACCTTGGACAAGAAACCCTCTGCAGTTTGACAACTCTTACTTCACGGAGC 6 2 0

P e a 6 6 1  TGTTGACTGGTGAGAAGGATGGCCTTCTTCAGTTGCCAAGTGATAAGGCACTTTTGACTG 7 2 0  
S y b 6 2 8  GTTGAGTGGTGAGAAGGAAGGTCTCCTTCAGCTACCTTCTGACAAGGCTCTTTTGTCTGA 6 8 7  
T o b 6 6 5  TTTTGAGTGGGGAGAAAGAAGGGCTTTTGCAGTTGCCTTCAGACAAGGCTCTCCTCTCTG 7 2 4  
S p n 6 2 8  TCCTGAGTGGTGAGAAAGAAGGTCTCTTGCAGCTGCCATCTGACAAGGCTCTTCTCTCTG 6 8 7  
A th 6 2 1  TCTTGAGCGGAGAGAAGGAAGGCCTTCTTCAGCTTGTCTCTGACAAAGCACTATTGGACG 6 8 0  
R i c 6 2 1 TTCTGAGTGGTGACAAGGAGGGCCTTCTTCAGCTTCCTAGTGACAAAGCCCTGCTGAGTG 6 8 0

A
* * * *■ **  R W M * * **

P e a 7 2 1 ACTCTGTATTCCGCCCTCTTGTTGAGAAATATGCTGCGGATGAAGATGTTTTCTTTGCTG 7 8 0  
S y b 6 8 8  CCCTGTATTCCGCCCTCTCGTTGATAAATATGCAGCGGACGAAGATGCCTTCTTTGCTGA 7 4 7  
T o b 7  2 5 ATCCTGCTTTCCGCCCCCTTGTTGAGAAATATGCTGCGGATGAAGACGCCTTCTTTGCGG 7 8 4 
S p n 6 8 8  ACCCTGTCTTCCGCCCACTGGTTGAGAAATATGCAGCTGATGAAGATGCATTCTTTGCCG 7 4 7  
A t h 6 8 1 ACCCTGTTTTCCGTCCTTTGGTCGAGAAATACGCTGCTGATGAAGATGCCTTTTTCGCTG 7 40  
R i c 6 8 1 ACCCTGCCTTCCGCCCACTCGTCGAGAAATATGCTGCAGATGAGAAGGCTTTCTTTGAAG 7 4 0

P e a 7 8 1  ATTATGCTGAAGCACATCTTAAGCTCTCTGAGCTTGGATTTGCTGAAGCCTAAGTCACAG 8 40  
S y b 7 4 8  TTACGCTGAGGCTCACCAAAAGCTTTCCGAGCTTGGGTTTGCTGATGCCTAAG 8 0 1
T o b 7 8 5  ACTATGCTGAGGCTCACTTGAAGCTCTCTGAATTGGGATTTGCTGAAGCTTAAG 8 3 7
S p n 7  48  ACTATGCTGAGGCGCACTTGAAACTTTCTGAACTCGGATTTGCTGATGCTTAAG 7 99
A th 7  41  ATTACGCTGAGGCCCACATGAAGCTTTCTGAGCTTGGGTTTGCTGATGCTTAAG 7 9 3
R ic 7  41  ACTACAAGGAGGCCCACCTCAAGCTCTCCGAACTGGGGTTCGCTGATGCTTAAG 7 93
P e a 8  41  TTGTTTGGTGTTTAGAGAGGAGCACTGTCCTGAATCTTACATAAATTTCATAGACGTTGC 9 0 0

P e a 9 0 1  TTTTATTTTCAATGTGATTCATCTTAGTTGGGTAGCATTTTGGATGTATTTTGGAAGTTT 9 6 0

P e a 9 6 1  GATTGTTTTCTCTATTGTTGATCCTTGGTTAAATAACATTGTTAAGTGGTAATGCCCAGC 1 0 2 0

P e a l 0 2 1  TATTGCATTTTCCTGATAAAAAAAAAACCGAATT 1 0 5 4
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Figure 2.4. Glutathione reductase sequence homology. * indicates identical bases within all 
sequences, bold type within the sequence indicates the regions chosen as parameters for Oligo
5.0 primer design and analysis. Cyan typescript represents the primer sets A, B and C 
synthesised. Alternative bases that were used in the primer sequences are represented in red 
type.

A t h l  AGAAGAAGAATCGTGGAGATGGCTTCGACCCCGAAGCTTACCAGTACAATTTCATCATCT 6 0  

A th 6 1  TCTCCATCTCTTCAATTCCTCTGCAAAAAACTCCCAATCGCAATTCATCTACCATCATCT 1 2 0  

A t h l 21  TCTTCCTCTAGCTTTCTCTCGCTTCCTAAAACCCTAACCTCTCTCTATTCTCTCCGTCCC 1 8 0  

A t h l 81  CGTATCGCCCTACTCTCAAACCACCGCTATTACCACTCTCGCCGGTTTTCTGTTTGTGCC 24  0

A th 2  41  AGTACCGATAATGGAGCTGAATCAGACCGCCACTACGATTTTGATCTCTTCACTATCGGT 3 0 0
P e a 2 6 6  CCCAAAACGGCGCCGACCCCGCCCGCCAGTATGACTTCGACCTTTTCACCATCGGC 3 1 6
T o b 2 0 9  AATGGCGCTGACGCTCCTCGCCACTACGACTTTGACTTATTCACCATCGGT 2 6 0
S y b 2 47 CCACTACGACTTCGACCTCTTCACCATCGGC 2 7 8

A th 3 0 1  GCCGGAAGCGGCGGCGTCCGCGCCTCTCGCTTCGCCACTAGCTTCGGTGCATCCGCCGCC 3 6 0  
P e a 3 1 7  GCTGGAAGCGGAGGCGTCCGTGCTTCCCGCTTTGCCTCCAATTTCGGCGCTTCTTCTGCT 37 6 
T o b 2 6 1  GCTGGTAGCGGTGGTGTTAGGGCTTCTCGTTTTGCGTCTAATTTTGGGGCTTCTGTTGCT 3 2 0  
S y b 2 7  9 GCAGGCAGCGGCGGGGTCCGAGCCCGTCGCTTCGCCGCCAACTACGGCGCTTCTGTCGCC 3 3 8  

A
■k * * * * * * * * ** ★ ★ ★ ★* **

A th 3  61 GTTTGCGAGCTTCCTTTTTCCACTATCTCTTCCGATACTGCTGGAGGCGTTGGAGGAACG 42 0
P e a 3 7 7  GTCTGCGAGCTCCCTTTCTCTACTATCTCCTCCGATACCACCGGTGGTGTCGGCGGCACC 4 3 6  
T o b 3 2 1  GTTTGTGAGCTCCCTTTCTCCACTATTTCTTCTGATTCCACTGGTGGCGTTGGTGGCACG 3 8 0  
S y b 3 3 9  ATCTGCGAGCTTCCTTTCTCCACTATCTCCTCCGAAACCACCGGAGTCG GCGGAACC 3 9 8

A t h 4 21  TGTGTATTGAGAGGATGTGTACCAAAGAAGTTACTTGTGTATGCATCCAAATACAGTCAT 4 8 0  
P a a 4 37 TGTGTAATACGGGGATGTGTCCCTAAGAAATTGCTAGTCTATGCCTCAAAATTCTCTCAT 4 9 6  
T o b 3 8 1 TGTGTACTTGTGGATGCGTACCCAAGAAATTACTCGTGTACGCGTCAAAATATTCTCACT 44 0 
S y b 3 9 9  TGTGTAATACGAGGATGTGTGCCGAAGAAGTTGCTGGTTTATGCATCTAAATTTTCTCAT 4 58

k k ★ ★ * ★ ★ ★★ k k k k  k k k k  k  k k  k  k k k k  k k k k k k k k k k k k

A t h 4 8 1 GAGTTTGAAGACAGTCATGGATTTGGTTGGAAGTATGAGACTGAGCCTTCTCATGATTGG 54 0 
P e a 4 97 GAATTTGAAGAAAGCAATGGTTTTGGATGGAGATATGACAGTGAACCTAAGCATGACTGG 5 56  
T o b 4 41  GAGTTTGAGGAAAGTTGTGGTTTTGGATGGAACTATGATGTGGAACCTAGATTTGATTGG 5 0 0  
S y b 4  59  GAATTTGAAGAAAGTAATGGTTTCGGATGGAGATATGACAGTGAGCCCAAGCATGATTGG 5 1 8

A t h 5 4 1 ACTACTTTGATTGCTAACAAGAATGCTGAGTTACAGCGGTTGACTGGTATTTATAAGAAT 6 0 0  
P e a 5 5 7  AGTAGTTTGATTGCTAATAAAAACGCCGAGTTGCAGCGGCTTACTGGTATCTATAAGAAT 6 1 6  
T o b 5 0 1  AGCACCCTCATTGCCAATAAAAATGCCGAGTTGCAGCGCCTCACGGGTATTTACAAGAAT 5 6 0  
S y b 5 1 9 AGTAGTTTCATAGCTAATAAAAATGCTGAGTTGCAGCGTCTTACTGGCATCTACAAGAAT 5 7 8

B
★ ★ * ★ k k k k k k k  k k k k k k k k k k YMRW * * * * * R * * * * * * *

A th 6 0 1  ATACTGAGCAAAGCTAATGTCAAGTTGATTGAAGGTCGTGGAAAGGTTATAGACCCACAC 6 6 0  
P e a 6 1 7  ACTTTGAAAAATGCCGGTGTTAAGTTGATTGAAGGCCGTGGAAAGATTGTAGATGCTCAC 67  6 
T o b 5 6 1  ATTCTGAAGAATGCTGGTGTCACTCTGATTGAAGGGAGAGGAAAGGTTGTGGATCCTCAT 6 2 0  
S y b 5 7 9  ATTTTGAACAATGCTGGGGTCAAGCTGATTGAAGGCCATGGAAAGATGATAGATCCTCAC 6 3 8

* *  * *  * * * * *  * * * * *  * *  *  * *  *  *  *  *  * *  *  * *  * * * * * * *  * *  

A th 6 6 1  ACTGTTGATGTAGATGGGAAAATCTATACTACGAGGAATATTCTGATTGCAGTTGGTGGA 7 2 0  
P e a 6 7 7  ACAGTTGATGTTGATGGGAAGTTATATTCAGCGAAACACATTTTAGTTTCAGTTGGAGGT 7 36  
T o b 6 2 1  ACGGTGGATGTGGATGGAAAACTCTACTCGGCTAAGAACATACTGATTTCAGTTGGGGGA 6 8 0  
S y b 6 3 9  ACGGTTGATGTTAATGGGAAGCTATATTCAGCCAAACACATTTTAGTTGCAGTTGGAGGT 6 9 8

k  k k k  k k k k k k k k k k k k k  k k k k  k  k k  k k k k k k  k k  k k k  k k  k k k k k

A th 7 2 1  CGTCCTTTCATTCCTGACATTCCAGGAAAAGAGTTTGCTATTGATTCTGATGCCGCGCTT 7 8 0  
P e a 7 37 CGACCCTTCATTCCTGATATTCCTGGAAAGGAATATGCAATAGATTCAGATGCTGCCCTT 7 9 6  
T o b 6 8 1  CGCCCATTTATCCCAGACATTCCTGGTAGCGAATATGCTATAGATTCCGATGCTGCCCTT 7 4 0  
S y b 6 9 9  CGCCCCTTCATTCCTGATATCCCTGGGAAGGAATTAGCAATAGATTCAGATGCTGCCCTT 7 58

k k k  k * k k k k k k k  k k k k k k k k  k k k  k k k k k k k k k k k k k k k  k

A th 7 8 1  GATTTGCCTTCCAAGCCTAAGAAAATTGCAATAGTTGGTGGTGGCTACATAGCCCTGGAG 84 0 
P e a 7 9 7  GATTTACCATCAAAGCCTCAGAAGATAGCTATTGTTGGTGGGGGTTACATTGCCTTGGAG 8 5 6  
T o b 7 41 GATTTGCCAACGAAGCCTAACAAAATTGCCATTGTCGGAGGCGGTTACATTGCACTTGAA 8 0 0  
S y b 7 59 GATTTACCAACAAAACCTGTGAAAATAGCCATTGTTGGTGGTGGTTACATTGCCTTGGAG 6 1 8
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★ ★★ ★ ★★ ★ * k * ★★ ★★★★★ k k k  k k k  ★★★★*★★★★

A t h 8 4 1 TTTGCGGGGATCTTCAATGGTCTTAACTGTGAAGTTCATGTATTTATAAGGCAAAAGAAG 9 0 0  
P e a 8 5 7  TTTGCTGGTATCTTTAATGGTTTGAAAAGTGAAGTTCATGTATTTATAAGACAAAAGAAG 9 1 6  
T o b 8 0 1  TTTGCTGGAATCTTCAATGGCTTGAAAAGTGAGGTCCATGTTTTTATAAGACAAAAGAAG 8 6 0  
S y b 6 1 9  TTTGCTGGTATCTTTAATGGTTTGAAAAGTGAGGTTCATGTATTTATACGGCAAAAGAAG 67 8

C
* *M R **K *Y ** * * * * * * * * * * * *  R * Y * * R * * * * * Y * * * *  ** * * * *  * *★*

A th 9 0 1  GTGCTGAGGGGATTTGATGAAGATGTCAGGGATTTCGTTGGAGAGCAGATGTCTTTAAGA 9 6 0  
P e a 9 1 7  GTTTTGCGGGGATTTGATGAAGAGATTAGAGATTTTGTTGCAGAAAATATGGCTCTGAGA 9 7 6  
T o b 8 6 1  GTTTTGAGAGGATTTGATGAAGAAATTAGGGATTTTGTTGGTGAACAGATGTCACTGAGA 9 2 0  
S y b 6 7 9 GTTTTGCGGGGATTTGATGAAGAGATTAGAGATTTTGTTGAAGAACAAATGTCTGTAAGA 7 38

★ * ***** ** -k * ** ** ★★ ** *★* *** ** * * * * ★ ★ * + **
A th 9 6 1  GGTATTGAGTTTCACACTGAAGAATCCCCTGAAGCCATCATCAAAGCTGGAGATGGCTCG 1 0 2 0  
P e a 9 7 7  GGTATTGAATTCCATACTGAGGAGTCTCCTGTAGCTATCACTAAGGCAGCTGATGGTTCG 1 0 3 6  
T o b 9 2 1  GGAATTGAGTTCCATACTGAGGAGTCGCCTCAGGCTATTGTAAAGTCAGCGGATGGCTCA 9 8 0  
S y b 7 39  GGTATTGAATTCCATACCGAGGAGTCTCCTCAAGCTATCACGAAGTCAGCGGATGGCTCA 7 98

★ ★ ** * * * * * *  ★ ** ★ * ★ * ★ *★ ** **  ** ★ ★* * * * * * * *  *★ 

A t h l 0 2 1  TTCTCTCTGAAGACCAGCAAGGGAACTGTTGAGGGATTTTCGCATGTTATGTTTGCAACT 1 0 8 0  
P e a  1 0 3 7  CTCTCTTTAAAGACCAACAAAGGTACTGAGGAAGGTTTCTCTCATATTATGTTTGCCACT 1 0 9 6  
T o b 9 8 1  CTGTCTTTAAAGACTAGCAGAGGAACAGTTGAAGGTTTCTCTCATATCATGTTTGCAACG 1 0 4 0  
S y b 7 99  TTCTCTTTAAAGACCAACAAAGGTACAGTGGACGGTTTCTCACATATTATGTTTGCTACA 8 58 
R ic 9 0 9  TGTTCTGTTTGCTACA 9 2 4
S p n 8  4 4 TGTACTCTTTGCTACT 8 5 9

* * * * * * * ★ * * * * * * * * ★ * * *
A t h l 0 8 1  GGTCGCAAGCCCAACACAAAGAACTTAGGGTTGGAGAATGTTGGCGTTAAAATGGCGAAA 1 1 4 0  
P e a 1 0 9 7  GGACGCTCACCTAATACTAAGGATTTGGGCCTGGAGTCTGTTGGTGTGAAAGTGGCTAAA 1 1 5 6  
T o b l 0 4 1 GGAAGAAGACCTAATACAAAGAATTTAGGATTAGAGACAGTGGGAGTGAAAATGACAAAG 1 1 0 0  
S y b 8 5 9  GGACGCAGACCTAATACTCAGAACTTAGGCCTGGAGTCTGTTGGTGTGAAACTAGCTAAA 9 1 8  
R i c 9 2 5 GGTCGCACACCAAACTCCCAGAGGTTGAACTTGGAAGCTGCTGGTGTTGAAGTTGATAAT 98  4 
S p n 8 6 0  GGGCGTTCTCCTAACACAAAAAGGCTGAATCTGGAAGCTTTAGGTGTAGAACTTGACCGA 9 1 9

B
★ * * * ★ * * * * * * *  * ★ * * k k  ★ ★ * * KW WY * *

A t h l 1 4 1  AATGGAGCAATAGAGGTTGACGAATATTCACAGACATCTGTTCCATCCATCTGGGCTGTT 1 2 0 0  
P e a  1 1 5 7  GATGGATCAATAGAGGTTGATGAATACTCTCAAACATCGGTTCCTTCTATTTGGGCAATT 1 2 1 6  
T o b l l O l  AATGGAGCCATAGAGGTTGATGAGTATTCTCGTACATCAGTACCATCAATTTGGGCAGTT 1 1 6 0  
S y b 9 1 9 GATGGAGCTATAGAGGTTGATGAATACTCTCAAACATCAGTTTATTCAATTTGGGCAGTT 97 8 
R ic 9 8  5 ATTGGAGCTATAAAGGTTGATGATTATTCTCGTACATCAGTCCCAAATATATGGGCTGTG 1 0 4  4 
S p n 9 2 0  ACAGGAGCTGTCAAGGTTGACGAGTATTCAAGAACGAGTGTACCTAGCATATGGGCTATT 97  9

k k  k k  k k  k k  k k k k k k k k k k  k  k k k k k k k  k k it k k k

A t h l 2 0 1  GGGGATGTTACTGACCGAATCAATTTGACTCCAGTTGCTTTGATGGAGGGAGGTGCATTG 12  60  
P e a l 2 1 7  GGAGATGCTACAAATAGAGTAAATCTCACTCCAGTTGCTTTGATGGAGGGAGTGGCATTA 1 2 7  6 
T o b 1 1 6 1  GGAGATGTTACTGATAGAATTAATTTAACTCCAGTTGCTTTGATGGAGGGAGGAGCATTG 1 2 2 0  
S y b 9 7  9 GGAGATGTTACAAACAGGATAAATCTCACCCCAGTTGCTTTGATGGAGGGAGGAGCATTA 1 0  38 
R 1C 104  5 GGTGATGTAACGAACCGGATAAATTTAACACCTGTTGCACTGATGGAGGCTACCTGCTTT 1 1 0 4  
S p n 9 8  0 GGTGATGTTACTAATCGAATGAACCTTACTCCTGTGGCTTTGATGGAAGGAACTTGTTTC 1 0 3 9

* * * * *  *  * *  *  *  * *  * *  * * * * *  * *  *  *  *  * *  

A t h l 2 6 1  GCTAAAACTTTGTTTCAAAATGAGCCAACAAAGCCTGATTATAGAGCTGTTCCCTGCGCC 1 3 2 0  
P e a 1 2 7 7  GCAAAAACTTTGTTTCAGAATGAGCCGACAAAACCTGATTATAGGGCTATACCTTCTGCT 1 3 3  6 
T o b l 2 2 1 GCAAAAACTATTTTCGCTCATGAACCCACAAAACCAGATTATAGGAATGTACCAGCTGCG 1 2 8 0  
S y b l 0 3 9  GTAAAAACGCTGTTTCAGGATAACCCAACAAAACCTGATTATAGAGCTGTTCCTTCTGCT 1 0 9 8  
R 1 C 1 1 0 5  TCTAAAACTGTGTTTGGTGGCCAGCCAACTAAACCTGATTACAGAGATGTACCTTGTGCT 1 1 6 4  
S p n l 0 4 0 GCTAAAACTGTATTTGGGGGCCAGAATAGCAAACCGGATTACAGCAATATAGCATGTGCC 1 0 9 9

k k k k k k k k k k k k k k  k  k k k k k k k k  k k

A t h l 3 2 1  GTTTTCTCCCAGCCACCTATTGGAACAGTTGGTCTAACTGAAGAGCAGGCCATAGAACAA 1 3 8 0  
P e a 13 3 7 GTGTTTTCCCAACCACCAATTGGAGGAGTTGGTCTTACAGAGGAACAGGCTGCTGAACAA 1 3 9 6  
T o b 12 81  GTATTTTCCCAACCACCTATTGGACAAGTTGGTCTAATGGAAGAACAGGCCATCAAAGAG 1 3 4 0  
S y b l 0 9 9  GTATTTTCTCAACCACCAATTGGACAAGTTGGTCTTACTGAGGAACAGGCTGTACAACAA 1 1 5 8  
R i e l 1 6 5  GTTTTCTCCATCCCACCACTATCAGTAGTGGGCTTGAGTGAACAGCAGGCTTTGGAGGAA 1 2 2  4 
S p n l 1 0 0  GTCTTCAGCATACCTCCTCTAGCCGTGGTGGGCCTAAGTGAAGAACAAGCTATAGAGCAA 1 1 5  9

k k  k k k k k k  k  k k k  k k  k

A t h l 38 1  TATGGTGATGTGGATGTTTACACATCGAACTTTAGGCCATTAAAGGCTACCCTTTCAGGA 14 4 0  
P e a  1 3 9 7  TATGGTGATATTGACGTTTTCACAGCAAATTTTAGGCCGATGAAGGCCACCCTCTCTGGG 14 5 6  
T o b l 3 4 1  TTTGGTGACGTTGATGTTTATACAGCAAATTTTAGGCCCTTAAAGGCTACTATTTCTGGT 1 4 0 0  
S y b i l 59  TATGGAGATATTGACATCTTCACTGCAAATTTAGGCCGCTGAAAGCTACTCTCTCTGGGT 1 2 1 8  
R 1C 122  5 GAAGGCGATGTTCTTGTTTACACTTCCAGCTTCAACCCAATGAAGAACAGCATATCCAAA 12 8 4 
S p n l 1 6 0  AATGGTGATATTTTGGTCTTCACGTCATCATTCAACCCAATGAAAAATACTATTTCTGGA 1 2 1 9
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★ ★ *  ★ ★ ■k k k k k ★ *  *

A t h l 4 41  CTTCCAGACCGAGTATTTATGAAACTCATTGTCTGTGCAAACACCAATAAAGTTCTCGGT 1 5 0 0  
P e a l 4  57 CTTCCAGACCGGGTTTTTATGAAACTAATAGTCTCTGCAGAAACAAATGTTGTTCTTGGA 1 5 1 6  
T o b l 4 0 1  CTTCCAGATCGGGTTTTCATGAAACTTATAGTCTGTGCAAAGACAAGCAAAGTTCTGGGC 14 60  
S y b l 2 1 9 CTTCCAGACCGGGTTTTTATGAAATTAGTAGTCTGTGCAAAAACAAATGAAGTTCTAGGT 1 2 7 8  
R i c l 2 8 5  CGGCAGGAGAAGACCGTCATGAAACTGGTGGTTGATTCAGAGACTGATAAAGTACTTGGT 1 3 4  4 
S p n l 2 2 0  CGACAAGAAAAGACTATTATGAAGCTTGTTGTTGATGCTGAGACAGATAAAGTGCTTGGA 1 2 7  9 

C
*★★★★★★ *{^3 KW * * *M*WS * * * ic it k ic k  ★ ★  ★ ★★ k  k k k

A t h l 5 0 1  GTTCACATGTGTGGAGAAGATTCACCAGAAATCATCCAGGGATTTGGGGTTGCAGTTAAA 1 5 6 0  
P e a l 5 1 7  TTGCACATGTGTGGAGAAGATGCTGCTGAAATTGCACAGGGGTTTGCAGTTGGTATTAAA 1 5 7 6  
T o b l 4 6 1  TTGCATATGTGTGGAGATGATGCACCAGAAATTGTACAGGGATTTGCGATTGCAGTCAAA 1 5 2 0  
S y b l 2 7 9  TTGCATATGTGTGGAGAAGATGCTCCTGAAATTGTGCAGGGGTTTGCAGTTGCTCTTAAA 1 3 3 8  
R1 C13  4 5 GCATCAATGTGTGGACCAGATGCACCAGAGATTATCCAGGGTATGGCTGTAGCGCTGAAG 14 04  
S p n l 2 8 0  GCATCCATGTGTGGCCCAGATGCAGCTGAAATTATGCAGGGAATTGCTATAGCACTGAAA 1 3 3 9

★ ★★ k k  k  k  k k  k k k  k  k  k k  k k  k  k k  k k  k  k

A t h l 5 61 GCTGGTTTAACTAAGGCCGACTTTGATGCTACAGTGGGTGTTCACCCCACAGCAGCTGAG 1 6 2 0  
P e a 15  77 GCTGGATTAACAAAGGCGGACTTTGATGCCACAGTAGGCATTCATCCAACTGCAGCTGAG 1 6 3 6  
T o b l 5 2 1  GCTGGGTTGACCAAGGCGGACTTTGATGCCACTGTGGGAATTCACCCTACATCAGCAGAG 1 5 8 0  
S y b l 3 3 9  GCTCGCTTGACCAAGGCTGACTTTGATGCCACTGTAGGCATTCACCCAAGTGCAGCTGAG 1 3 9 8  
R i e l 4 0 5  TGTGGAGCCACCAAGGCGACCTTTGACAGCACTGTTGGTATTCACCCGTCTGCTGCTGAA 14 64 
S p n l 3 4 0  TTTGGAGCAACAAAGGCACAATTTGATAGTACGGTGGGAATCATCCTTCTGCAGCCGAAG 1 3 9 9

k k  k  k k k  k k  k k k  k  k  k k  k  k  k k  k  k  k  k k k k k k k k k k k k k

A t h l 6 2 1  GAGTTTGTCACTATGAGGGCTCCAACCAGGAAATTCCGCAAAGACTCCTCTGAGGGAAAG 1 6 8 0  
P e a 1 6 3 7  GAATTTGTTACCATGAGGACTCCCACTAGGAAGGTTCGAAA 1 6 7 7
T o b l 5 8 1  GAGTTTGTCACCATGCGTACCCCTACAAGGAAGGTTCGAAGCAGTCCATCTGAGGGAAAG 1 6 4 0  
S y b l 3 9 9  GAATTTGTTACCATGAGGACACCTACTAGGAAGATACGAAA 1 4 4 0
R i c l 4 6 5  GAGTTTGTGACAATGCGGACCTTGACCAGG 14 97
S p n l 4 0 0  AAGTTTGTGACAATGAGGGAACCATCAAG 1 4 2 9

★ ★★ k k  k  k  k k  k k k  k  k  k k  k  k  k  k

A t h l 6 8 1  GCAAGTCCTGAAGCTAAAACAGCTGCTGGGGTGTAGAGAAGGTTGCAAAAAGATTGTATT 17 4 0  
T o b l 6 4 1  GCAGAGCACGATATTAAAGCTGCAGCTGGAGT 1 6 7 1

A t h l 7 41 TACGGCATTGGAGCCCCCTGATAAGGAGAACATTGTGTCTGTGAAGAAGAAGCTTTTCTT 1 8 0 0

A t h l 8 0 1  TTGGCAGAGAATATTTTTTCATAATGTCGTGTGAAGATATGATCGCTGTCCTGCAATACT 1 8 6 0

A t h l 8  61 TTTGATCGTTTGACACACGACCAAATTCCTCGAGAGAGAGAGGTTGTAACTATTCCGAAA 1 9 2 0

A t h l 9 2 1  GAGCTCTAAAACTGAAGCTTTCAGTTCTTGTGACATCATAATGAAGGCTGTATAGATATA 1 9 8 0

A t h l 9 8 1  ACAGTTTCGAGTT 1 9 9  3
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Figure 2.5. Internal Stability profiles of ascorbate peroxidase and glutathione reductase 
primers chosen for PCR optimisation and analysis. These profiles were obtained from Oligo
5.0 Primer Analysis Software. An indication of a successful primer in PCR is low stability at 
the 3' end (Rychlik, 1995). 2.5A: APX set A profiles; 2.5B: APX set B profiles; 2.5C: APX set 
C profiles; 2.5D: GR set A profiles; 2.5E: GR set B and 2.5F: GR set C internal stability 
profiles. Primer regions are indicated by bold type.

2.5A: Ascorbate Peroxidase Set A Upper Primer

Position 1 (18-mer) 
aG

.1

4 . 9

5 . 1

5 ' AAC-AAATGCGCTCCTCTAATTCTCCGTTTGGCATGGCACTCTGCTGGTACTTTTGATTCCAA 3

Ascorbate Peroxidase Set A Lower Primer

Position 1 (21-mer) 
ag

2 . J

:. i

,7

5 ' TGACTGACTCTGTATTCCGCCCTCTTGTTGAGAAATATGCTGCGGATGAAGATGTTTTCTTT 3 1

2.5B: Ascorbate Peroxidase Set B Upper Primer

Position 1 (19-mer) 
ag

- 1 1 . 7  -

- 10 . t  _  

- 8 . 4  

-4.9 
- 5 . 2 L
5 ' AGGAAGCTCAGAGGTTTTATCGCTGAGAAGAAATGCGCTCCTCTAATTCTCCGTTTGGCATG 3

Ascorbate Peroxidase Set B Lower Primer

Position 1 (20-mer) 
aG

■7

5 . 3

TTCTGGATTTGAGGGACCATC-GACTTCTAATCCTCTCATTTTTGACAACTCATATTTCACTG 3 'c I
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2.5C: Ascorbate Peroxidase Set C Upper Primer

Position 1 (18-mer) 
a g

11.7
t o .  1

9 . 4

5

5 1 AAATGCGCTCCTCTAATTCTCCGTTTGGCATGGCACTCTGCTGGTACTTTTGA.TTCCAAGA.C 3 '

Ascorbate Peroxidase Set C Lower Primer

Position 1 (20-mer) 
aG

- 11.4

5 ATGCCACTAAGGGTTCTGACCATTTGAGGGATGTGTTTGGAAAGGCTATGGGGCTTA.GTGAT 3 ' 

2.5D: Glutathione Reductase Set A Upper Primer

Position 1 (21-msr) 
aG

7.4

5'
fAGGCGTTGGAG 3

Glutathione Reductase Set A Lower Primer

P o s i t i o n  1 (21-mer]
ag

- 10.5 J  
•9.5 J

1-5.4 J

5 1 TTCA-TGTATTTA-TAAGGCAAAAGAAGGTGCTGA.GGGGATTTGA.TGAAGATGTCAGGGATTTC 3 1
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2.5E: Glutathione Reductase Set B Upper Primer

Position 1 (20-mer)

5 ' AAAGCTAATGTCAAGTTGATTGAAGGTCGTGGAAAGGTTATAGACCCACACACTGTTGATGT 3 '

Glutathione Reductase Set B Lower Primer

Position 1 (16-ner) 
aG

5 ' AATGGAGCAATAGAGGTTGACGAATATTCACAGACATCTGTTCCATCCATCTGGGCTGTTGG 3 '

2.5F: Glutathione Reductase Set C Upper Primer

Position 1 (20-mer) 
aG

10 . 9

•4.3

7 . 0

5 . 7

5 ' AGGGGATTTGATGAAGATGTCAGGGATTTCGTTGGAGAGCAGATGTCTTTAAGAGGTATTC-A. 3 '

Glutathione Reductase Set C Lower Primer

Position 1 (21-mer) 
aG

11

5. 4

GTGTTCACATGTGTGGAGAAGATTCACCAGAAATCATCCAGGGATTTGGGGTTGCAGTTAAA 3 'c  r
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Base Pairs Represented by:

C+G S

C+A M

C+T Y

A+G R

A+T W

G+T K

Table 2.5. Possible base alternatives used in primer design. If sequence homology differed due 

to a choice of two bases, an alternative nucleotide could be incorporated into the primer 

sequence, so that both bases were represented in the final primer sequence, thus increasing 

the likelihood of annealing.

Thus, the final sequences for all the primers synthesised are shown in 

Table 2.6.

APX Set A Upper Primer 

APX Set A Lower Primer 

APX Set B Upper Primer 

APX Set B Lower Primer 

APX Set C Upper Primer 

APX Set C Lower Primer

5' GWYTGGCATGGCACTCTG 3'

5' TTCATCMGCWGCRTATTTCTC 3' 

5' AGRGGWYTTATYGCWGAGA 3'

5' TTGTCRAARARWARRGGYTT 3'

5' GWYTGGCATGGCACTCTG 3'

5' ASACATCY CT CAARTGGTCA 3'

GR Set A Upper Primer 

GR Set A Lower Primer 

GR Set B Upper Primer 

GR Set B Lower Primer 

GR Set C Upper Primer 

GR Set C Lower Primer

5' T GY GAGCT Y CCTTT YTCYACT 3' 

5' TCCYCKCARMACCTTCTTTTG 3' 

5 T GATTGAAGG YMRW GGAAAR 3' 

5' CCAAYWGCCCAWATWK 3'

5' T GAAG ATRT Y AGRG ATTT Y G 3' 

5' T CW GS W CMAT CWKSKCCA 3'

Table 2.6. Ascorbate Peroxidase and Glutathione Reductase Primer Sequences. Three primer 

pairs for each gene were synthesised, with the incorporation of base pair representatives to 

increase the possibility of primer annealing to the correct gene sequences.
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2.3.4 DNA extractions

Extractions o f DNA were performed using both techniques outlined in 

sections 2.2.5 and 2.2.6. Figure 2.6 shows R. ponticum  genomic DNA 

samples from the Nucleon Phytopure™ kit were less degraded (e.g. lane 

8) than those obtained using the technique from Paterson el al (1993), for 

example lane 5. Similarly for the other species, data not shown, the 

Nucleon kit provided a higher quality of DNA and was therefore used for 

all subsequent extractions. In addition, as illustrated in section 2.3.6, no 

difference was observed in amplification of the DNA extracted by either 

method.

1 2 3 4 5 6 78
—  —  M  mm M  mm

Figure 2.6. Rhododendron DNA extracted by Paterson et aI (1993) technique (Lanes 1-6) and 

Nucleon Phytopure™ Plant DNA extraction kit (Scotlab Bioscience, lanes 7-8, R. ponticum). 

Lanes 1-2: R. impeditum , lanes 3-4: R. hatsugiri, Lanes 5-6: R. ponticum. A comparison of the 

quality of DNA can be made using lanes 5 and 8 which contain similar quantities of DNA.

2.3.5 DNA concentration

Figure 2.7. Fluorescent DNA dots viewed on the UV transilluminator. Using a computer grid 

system, each dot was placed in a square, and the densometric reading of the dot obtained. The 

dot positioned on the far right of the figure was the lOng X DNA standard.
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The fluorescent dots obtained by incubation of genomic DNA and 5 

Hg/ml ethidium bromide are shown on Figure 2.7. These dots were 

analysed densometrically by the Bandleader Windows programme and the 

value compared against that of a known standard, in this case 10 ng/pl X 

DNA. Using the formula stated in section 2.2.7, the quantity of DNA in an 

extract was calculated. All DNA samples were standardised to the same 

concentration to be used in Polymerase Chain Reaction.

2.3.6 PCR optimisation

The conditions used for Polymerase Chain Reaction are stated in Section 

2.2.8. The reaction mix was constant throughout the annealing 

temperature experiments, and was adjusted accordingly with water for the 

primer concentration experiments.

Results for the annealing temperature experiments and primer 

concentrations for ascorbate peroxidase are shown in Figure 2.8a-f and 

Figure 2.10a-d respectively. It is clear by analysis using gel 

electrophoresis, that an annealing temperature of 55°C was best for APX 

primer sets A (Figure 2.8) and C (Figure 2.9), with a concentration of 20 

pmoles. As illustrated, the range of annealing temperatures tested had a 

marked effect on the PCR result. Authors have stated that the higher the 

annealing temperature (Innes and Gelfand, 1990; Saiki, 1990; Kidd and 

Ruano, 1995; Rychlik, 1995), the greater the specificity of the primers 

and this has also proved to be the case here.
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Figure 2.8a-d. Manipulation of primer annealing temperature in ascorbate peroxidase PCR 

using R  ponticum  genomic DNA replicates. A: annealing temperature 45°C, B: annealing 

temperature 50°C, C: annealing temperature 52°C, D: annealing temperature 55°C. In all 

cases lkb ladder (Gibco BRL) was used. 55°C yielded a discrete product of 2.1 kb using 

primer set A.

Figure 2.8e-f. Manipulation of primer annealing temperature (58°C) in ascorbate peroxidase 

PCR using R. ponticum  genomic DNA (Figure 7E, lanes 2-6), R  impeditum  DNA (Figure 7E, 

lanes 7-11) and R  hatsugiri DNA (Figure 7F), n=5.
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At an annealing temperature of 45°C (Figure 2.8a) there are many bands 

appearing on the gel, indicating a low specificity of the primers to the 

specified template region. As the temperature is increased to 55°C 

(Figures 2.8d and 2.9b and c) there is an increase in the specificity of the 

reaction, yielding only one product of the expected size. To ensure that 

this temperature was ideal, annealing temperatures were tested as high as 

58°C(Figures 2.8e and f), upon which few PCR samples yielded a product 

in all three Rhododendron species.

Ill t* < - 1.6

mm

mm

Figure 2.9. Ascorbate peroxidase set C amplification, annealing temperature 55°C. 8A: R. 

ponticum  genomic DNA replicates amplified, 8B: R  hatsugiri genomic DNA amplified, 8C: R  

impeditum  genomic DNA amplified. A discrete product of 1.6kb was obtained at this 

annealing temperature for R. hatsugiri and R  impeditum.
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Figure 2.10. Manipulation of Primer Concentration. Figures A-D are replicates o f  R. 

ponticum  DNA amplified with ascorbate peroxidase primers set A. 9A: 20 pmoles each primer 

used in the reaction, 9B: 30 pmoles, 9C: 35 pmoles, 9D: 40 pmoles. Each figure illustrates 5 

replicates of the reaction and lkb ladder (Gibco BRL).

As illustrated in Figure 2.10, four different concentrations of primer set A 

were also tested as a means to optimise PCR: 20, 30 35 and 40 pmoles. 

For 20, 30 and 35 pmole reactions (Figures 2.10 a, b and c respectively), 

there was little difference in the result, all yielding the expected product 

of approximately 2kb in size with some spurious banding for all samples. 

The result for the 40pmole reaction (Figure 2.10d) however indicates very 

little or no PCR product whatsoever. Disruption of optimal PCR 

conditions due to the addition of excess primer may have lead to a 

depletion in amplification efficiency.

Using both these primer sets for all three Rhododendron species gave a 

discrete product of approximately 2 kb in size at 55°C, 20 pmoles each 

primer. This product was much larger than the size estimated from the 

mRNA sequence. It was thought that this product was most likely to be a
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fragment of the ascorbate peroxidase gene following a study of the DNA 

sequence of APX in Pisum sativum. With primer sets A and C 

superimposed onto the P. sativum sequence, they would theoretically 

yield a product of 1.7 kb (Appendix 2). This is because both primer sites 

were designed to span at least one intron. Allowing for the differing sizes 

of plant genomes, the given PCR product was expected to be 

approximately this size or greater.

Primer set B for ascorbate peroxidase yielded no product throughout all 

the optimisation experiments. This was to be expected when the physical 

properties of the primers themselves were noted. Upon studying the 

internal stability profiles (Figure 2.5), it can be seen that this was not an 

ideal primer pair. Looking at the lower primer, the 3' end is the most 

stable area, contradicting the rules of PCR primer design. It is possibly for 

this reason that set B proved to be unsuccessful in PCR. As mentioned by 

Rychlik (1995), instability at the 3' end of a specific primer will improve 

the chances of successful PCR, and this is not the case with primer set B.

PCR optimisation for glutathione reductase DNA yielded similar results. 

In this case, it was only primer set A which yielded a discrete product of 

approximately 500 bp (Figures 2.11. and 2.12). It was estimated that this 

would be the most successful primer pair due to the suitable internal 

stability profiles of the primer set. Figure 2.11 shows the results of GR 

primer concentration experiments. 40 pmoles of each primer yielded the 

greatest amount of product whilst maintaining product specificity (Figure 

2.lid ), thus was subsequently used in glutathione reductase PCR. Lower 

concentrations of primers (Figure 2.11a-c) resulted in little or no PCR 

product. The size of the glutathione reductase fragment is much smaller 

than that obtained for ascorbate peroxidase, because there is much less 

distance between the exon sites in the DNA sequence for glutathione 

reductase in Arabidopsis thaliana (Appendix 2).
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Figure 2.11. Manipulation of glutathione reductase primer concentration. In each case, results 

for the amplification of R. ponticum  genomic DNA are shown. 10A: 20 pmoles each primer 

(Set A) used in the reaction, B: 30 pmoles, C: 35 pmoles, D: 40 pmoles used in PCR.

The annealing temperature experiments indicated that 55°C was also the 

optimal temperature for primer annealing. Illustrated in Figures 2.12a, b 

and c are PCR results of annealing temperatures 45, 50 and 52°C 

respectively. These indicate that due to smearing and multiple bands, 

these temperatures are too low to yield a discrete product of 500bp.
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Figure 2.12. Manipulation of glutathione reductase set A primer annealing temperature. In 

each case, results are shown for the amplification of R. ponticum  genomic DNA. 11 A: 45°C 

used in the thermal cycle, 11B: 50°C, 11C: 52°C used in the thermal cycle.
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2.4 Conclusions

• A suitable system for the production of maintenance of Rhododendron 

micropropagules was established as a source of plant material for the 

extraction of high quality DNA, RNA and proteins.

• Inter-species comparisons of six diverse plant species revealed highly 

conserved mRNA regions for ascorbate peroxidase and glutathione 

reductase. These areas were suitable for gene-specific PCR primer design.

• Analysis of these regions by Oligo 5.0 Primer Analysis software indicated 

several suitable primer pairs for APX and GR gene sequences.

• Primer pairs were synthesised and applied in PCR optimisation 

experiments.

• DNA Isolation using Nucleon Phytopure™ Plant DNA extraction kit 

(Scotlab Biosceience) resulted in high quality preparations, suitable for 

PCR.

• A range of optimisation experiments showed an annealing temperature of 

55°C and primer concentration of 20 pmoles (APX) and 40 pmoles (GR) 

to be optimal for discrete PCR products (2.1 kb, APX primer set A; 1.6 

kb, APX primer set C and 500 bp GR primer set A).

• Primer pairs which had been designed with too much stability at the 3' 

ends performed poorly in PCR.

• PCR product sizes of 2.1 kb for APX and 500bp for GR in Rhododendron 

were accepted as gene-specific following comparative studies with DNA 

sequences in Pisum sativum (APX) and Arabidopsis thaliana (GR). PCR
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product sizes of approximately 1.8kb and 600bp respectively were 

estimated from these DNA sequence data.
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Chapter 3 Ascorbate Peroxidase and Glutathione Reductase: Cloning

and Sequencing

3.1 Introduction

3.1.1 T/A cloning introduction

Generation of PCR products expected to be ascorbate peroxidase and 

glutathione reductase necessitated their cloning and sequencing to 

confirm their identity. A number of strategies are available for cloning 

PCR products but it was decided to attempt T/A cloning in the first 

instance. This approach exploits the terminal transferase activity of the 

thermostable DNA polymerase, Taq. During the Polymerase Chain 

Reaction (PCR), the enzyme adds a single deoxyadenosine (A) to the 3' 

end of many reaction products (Clark, 1988; Mead et al., 1991), 

irrespective of the template sequence. Many polymerases studied 

exhibited this phenomenon, both from pro- and eukaryotic organisms, 

suggesting that this is a possible evolutionary remnant of activity used by 

an ancestral enzyme prior to the advent of template-directed synthesis. 

The rate at which the non-templated addition takes place is thought to be 

slower than template-mediated synthesis, although this is dictated by the 

particular polymerase (Clark, 1988). The biological significance of 

transferase activity in DNA polymerases is unclear at present, but the 

phenomenon is easily exploited for blunt-end cloning.

The pT-Adv plasmid vector illustrated in Figure 3.1, with its 3' T 

overhangs, enables direct cloning of reaction products. The transferase 

activity of the enzyme is non-specific, theoretically allowing ligation of 

any PCR product into the plasmid, without any prior sequence knowledge. 

The plasmid includes sites for T7 RNA Polymerase, and flanking M13 

forward and reverse primer sites for direct sequencing, as well as a T7

74



promoter for RNA transcription and translation. Several restriction sites 

have also been incorporated into the plasmid structure for ligation 

analysis by restriction digestion. The vector also contains the lacZa gene, 

providing a simple blue/white visual assay for rapid identification of 

positive transformants.

The lacZa gene codes for part of the enzyme p-galactosidase. This 

enzyme is one of a series involved in the breakdown of lactose to glucose 

and galactase, and is normally coded by the gene lacZ. The strain of E. 

coli used in T/A cloning has a modified lacZ gene, lacking a segment 

referred to as lacZa. This E. coli strain can only synthesise p- 

galactosidase when the cells contain a plasmid, such as pT-Adv, that 

carries the lacZa gene segment. Cloning with pT-Adv involves the 

inactivation of the gene by insertion of a DNA sequence.

The reaction used to test for the production of this enzyme involves a 

lactose analogue, known as X-Gal ( 5-bromo-4-chloro-3-indolyl-P- 

galactopyranoside) which is broken down by p-galactosidase to a product 

that is blue in colour. If X-Gal and an enzyme inducer (IPTG; isopropyl- 

thiogalactoside) is added to the growth medium, only those cells which 

synthesise P-galactosidase will be blue in colour.
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Figure 3.1. Plasmid Map indicating restriction sites and the Multiple Cloning Site (MCS) of 

pT-Adv (Clontech Laboratories Inc., 1997). Unique restriction site are shown in bold. 

Restriction sites with asterisks (*) are only present in the MCS and can be used to excise the 

inserted product. The MCS illustrated above represents the vector sequence after 

modification and linearisation for ligation (The 3' T overhang preceding the insert is added to 

the vector during modification).

3.1.2 Transformation into competent E. coli cells

Cloning involves the maintenance and amplification of the recombinant 

plasmid in bacterial cells which requires a bacterial transformation 

process. The majority of bacterial transformations are based on results 

from a study by Mandal and Higa (1970, cited by Sambrook et al, 1989),
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which showed that bacteria which were chilled with calcium chloride and 

briefly heated could be transfected with bacteriophage X DNA. Such 

treatment induces a transient state of ‘competence’ in bacterial cells 

allowing them to take up DNA from a variety of sources. The efficiency 

of DNA uptake can be improved by treating the cells with a number of 

reagents, such as DMSO and reducing agents, but it is not known how 

these compounds act. Improving the strain of the bacteria to be 

transfected also improves the efficiency of transformation. In this study, 

TOPI OF' E. coli (Promega) cells were used.

3.1.3 DNA Sequencing using dye terminators

DNA sequencing is a molecular technique utilising primer extension 

reactions. Traditional techniques use radio-labelled dideoxynucleotides 

which terminate the reaction when bound to the DNA strand. Separate 

reactions are carried out for each nucleotide base and the products 

separated by polyacrylamide gel electrophoresis. The DNA sequence is 

then read from an autoradiograph of the gel. This technique is time 

consuming and accommodates manual reading errors.

The majority of automated sequencing reactions performed at present use 

dye-labelled terminators as well as free nucleotides found in a normal 

DNA extension reaction (Perkin Elmer 1997). These terminators have a 

specific fluorescent dye attached to them denoting a particular 

dideoxynucleotide base, A (green), T (red), C (blue) or G (black). 

Dideoxynucleotides do not contain the hydroxyl group at the 3'position of 

the sugar component, necessary for attachment of the next nucleotide 

(Brown, 1989). When a dideoxynucleotide is incorporated into the 

extending DNA, chain termination occurs. The use of dye terminators in 

sequencing reactions allows all four bases to be sequenced in the same 

reaction tube. They comprise an energy donor (fluorescein) and acceptor
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dye (rhodamine) that are connected by an energy transfer linker. 

Sequencing reactions can be catalysed by AmpliTaq® or Sequenase® 

DNA Polymerase (Perkin Elmer, 1997) and the reaction proceeds under 

the following conditions: denaturation at 96°C for 30 seconds, primer 

annealing at 50°C for 15seconds, and extension at 60°C for four minutes, 

for a total of 25 cycles. (Perkin Elmer, 1995). The completed reaction is 

still separated by polyacrylamide gel electrophoresis, however band 

florescence in the automated sequencer is read by an argon laser (Lee et 

al, 1997) and interpreted by computer to create a chromatogram of dye 

fluorescence and an accurate translation of the DNA sequence.

3.1.4 Sequence homology

In order to correctly identify a gene, thus providing some information 

about its structure and function, a comparison of the sequenced fragment 

in question and known gene sequences must be made. This is routinely 

carried out by sequence homology studies, performed by many different 

software packages. The majority of these are based upon a measure of 

chance similarities between sequences (Karlin and Altschul, 1989). 

BLAST (Basic Local Alignment Search Tool, Altschul et al., 1990) offers 

a new approach to sequence similarity searches, accessed through the 

NCBI (National Centre for Biotechnology Infonnation) database.

BLAST, developed by Altschul et al. (1990), has the ability to identify 

alignments with a high measure of local similarity, as opposed to global 

similarity, which may include vast regions of the sequence with low 

similarity. Hence, unconserved regions of a gene are not taken into 

account,resulting in greater accuracy. This precision is achieved by 

utilising the Maximal Segment Pair (MSP) measure, defined as the 

highest scoring pair of identical length segments chosen from two 

sequences. Statistical studies carried out by Altschul et al. (1990) confirm
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the significance of the alignments given by the programme. The algorithm 

used is simple (compiling a list of high-scoring words, scanning the 

database for hits and extending hits) reliable and can be applied to any 

number of situations; DNA and protein sequence analysis, gene 

identification searches, the analysis of multiple regions of similarity in 

long DNA sequences. Also noteworthy of this tool, is the relative speed at 

which the homology is calculated in comparison to other software 

packages (Altschul et a l, 1990).

Manual gene analysis can also be carried out to obtain more infonnation 

about the newly sequenced gene. Alignment of sequences of the same 

gene in the same family of plant species, such as Rhododendron, as well 

as unrelated species, can give an indication of possible evolutionary 

differences and sequence conservation. Structural information such as the 

intron sites in the gene can also be useful in identification and 

determining function.

Using such a variety of molecular biological techniques as outlined in this 

chapter, one can study specific genes and their function. Ligation of a 

gene sequence of interest into a plasmid vector allows the manipulation of 

the sequence in many molecular techniques; sequencing, gene expression 

studies and RNA transcription and translation for example. Such 

information can help to increase the foundation of knowledge of genetic 

studies.
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3.2 Materials and Methods

3.2./ PCR amplification

PCR was carried out as stated in Section 2.2.8, using genomic DNA from 

the three experimental Rhododendron species, R  ponticum, R  impeditum 

and R. hatsugiri. Initially, Primer set APX A was used in the reaction but 

met with limited success, thus APX set C was used in latter cloning 

attempts. Details of both primer sets can be found in Table 3.1. The cycle 

used consisted of an initial denaturation step of 95°C for 5 minutes, 1 

minute at 94°C, 2 minutes at 55°C and three minutes at 72°C, for a total of 

30 cycles, and a final extension of 10 minutes at 72°C, before being held 

at 4°C, until the ligation mix was ready. An aliquot of the reaction mix 

was removed after PCR for analysis by gel electrophoresis (refer to 

Section 2.2.10), to confirm successful fragment amplification.

A control DNA template and primers supplied with the kit were also 

amplified for ligation into the pT-Adv vector. The control primers amplify 

a 700bp fragment which should produce about 80% white colonies on 

IPTG/X-Gal selective media following transformation.

APX Set A Upper Primer 

APX Set A Lower Primer

5' GWYTGGCATGGCACTCTG 3'

5' TTCATCMGCWGCRTATTTCTC 3'

APX Set C Upper Primer 

APX Set C Lower Primer

5' GWYTGGCATGGCACTCTG 3' 

5' ASACATCYCTCAARTGGTCA 3'

Table 3.1. Ascorbate peroxidase primers used in PCR amplification.
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3,2.2 Purification o f PCR product from agarose gels

The desired PCR fragment was cut from the 1% (w/v) agarose gel using a 

scalpel and placed in a 1.5ml Eppendorf and incubated at -80°C for 30 

minutes. Once thawed, the gel and liquid were transferred to a Wizard™ 

Minicolumn (Promega) and centrifuged at top speed in a MicroCentaur 

for one minute. To the liquid, 0.1 volume o f 3M sodium acetate and 2 

volumes 96% (v/v) ice-cold ethanol were added and the DNA precipitated 

at -20°C for one hour. After centrifugation at 4000g for 5 minutes, the 

pellet was washed in 70% (v/v) ethanol and centrifuged at 4000g for a 

further 5 minutes. The pellet was allowed to air-dry and resuspended in 

20jul sterile distilled water.

3.2.3 Ligation into pT-Advplasmid vector

A 10 jul ligation reaction was prepared by adding the following 

components in the order listed:

PCR Product: 2pl

1 Ox T4 Ligation Buffer* 1 jul

pT-Adv vector (25ng/pl) 2jul

Sterile Molecular Biology Grade H20  3pi

T4 DNA Ligase 1 pi

* Working solution of ligation buffer contained 50 mM Tris-HCl (pH 7.8), 

10 mM Mg Cl2, 10 mM dithiothreitol, 1 mM ATP, 25 pg/ml Bovine 

Serum Albumin (BSA).

The reaction mixture was incubated overnight at 14°C, and then stored at - 

20°C until ready to proceed to transformation. Ligation was confirmed by 

gel electrophoresis and by growth of white colonies in transformed E. coli 

culture plates.
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3.2.4 Transformation into E. coli

The tubes containing the ligation reactions were centrifuged briefly and 

placed on ice. For each ligation reaction, one tube of competent TOPI OF' 

E. coli cells (Clontech) were thawed on ice.

(3-mercaptoethanol (2 pi) was pipetted into each tube of competent cells 

and mixed by gently stirring the mix with the pipette tip. To this, 2 pi of 

ligation reaction was added and mixed by stirring gently with the pipette 

tip. The tubes were then incubated on ice for 30 minutes, before treating 

with heat shock for exactly 30 seconds at 42°C. The tubes were removed 

and placed on ice for exactly two minutes and then 250 pi of SOC 

medium (Appendix 1) was added at room temperature. The cultures were 

incubated horizontally at 37°C for 1 hour at 225 rpm in a rotary shaking 

incubator, then kept on ice until ready to be plated.

LB agar plates, containing 100 pg/ml ampicillin*, 40 pi (40 mg/ml in 

DMF) X-Gal and 40 pi (100 mM) IPTG, which had been prepared earlier, 

were used to culture the cells. Plates were spread with either 50 pi or 200 

pi cell suspension, and left to incubate at 37°C overnight. The plates were 

transferred to 4°C to allow full colour development of the untransformed 

colonies.

* The first attempts at transformation selection resulted in growth of many 

small white colonies around the colonies of smaller size. These are 

ampicillin sensitive satellites, which do not contain the plasmid, so higher 

concentrations of antibiotic were tested until one suitable was found at 

which no small colonies were present.
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3.2.5 Analysis of transformation

Any pure white single colonies found were isolated into 5 ml LB broth, 

containing 100 jug/ml ampicillin, and incubated overnight at 37°C at 225 

rpm in a rotary shaking incubator. The culture was streaked out on 

ampicillin/X-Gal/EPTG plates and incubated at 37°C overnight to obtain 

single colonies. A single colony from each plate was isolated and 

incubated overnight in 5ml LB broth as before. These cultures were used 

for plasmid purification and subsequent analysis.

3.2.5.1 Plasmid Purification

Wizard™ Plus Minipreparation DNA Purification System (Promega).

E. coli cell cultures (3 ml) were pelleted by centrifugation for 1-2 minutes 

at 10 000 g  in a microcentrifuge, and all the supernatant media carefully 

removed. The pellet was completely resuspended in 200 pi Cell 

Resuspension Solution (50 mM Tris-HCl, pH 7.5; 10 mM EDTA; 100 

pg/ml RNase A) by vortexing. To this, 200 pi of Cell Lysis Solution 

(0.2M NaOH; 1% (w/v) SDS) was added and mixed by inversion until the 

lysate became clear. An aliquot (200 pi) of Neutralisation Solution (1.32 

M potassium acetate) was mixed with the lysate by inversion and 

centrifuged at 10 000 g  for 5 minutes. The supernatant was removed and 

transferred to a fresh 1.5 ml Eppendorf. 1ml of the Wizard™ Minipreps. 

DNA Purification resin was added to the supernatant and mixed by 

inversion. The mix was left to incubate while the minicolumns were 

prepared.

The plunger from a 3 ml disposable syringe was removed and a Wizard™ 

Minicolumn attached to the luer-lock extension of the barrel. The 

DNA/resin mix was pipetted into the barrel and the plunger carefully 

inserted. The mix was then pushed into the column by the syringe plunger.
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The syringe was removed from the Minicolumn and the plunger 

withdrawn and set aside while the Minicolumn was reattached to the 

barrel. Column Wash (2ml; 80 mM potassium acetate; 8.3 mM Tris-HCl, 

pH 7.5; 40 pM EDTA; 55% (v/v) ethanol) was pipetted into the barrel and 

pushed through the column with the plunger as before. The Minicolumn 

was detached from the syringe and transferred to a 1.5 ml Eppendorf. This 

was centrifuged at top speed in a microcentrifuge for 20 seconds to diy 

the column.

The Minicolumn was transferred to a fresh Eppendorf, and 50 jul of sterile 

distilled water applied to the Minicolumn and left to incubate for one 

minute at room temperature. The DNA could then be eluted from the 

column by spinning at top speed in a microcentrifuge for 20 seconds. The 

recovered plasmid DNA was stored at -20°C until needed.

UltraClean™ Mini Plasmid Preparation Kit (MO BIO Laboratories. 

California)

An overnight E. coli culture (2 ml) was centrifuged at top speed in a 

MicroCentaur (MSE) for 30 seconds and all traces of supernatant 

removed. The pellet was thoroughly resuspended in 50 pi Cell Suspension 

solution (Tris-HCl, EDTA and RNase A- concentrations not stated in 

published protocol). To this, 100 pi Cell Lysis solution (containing SDS 

and NaOH) and 325 pi Binding solution (containing potassium acetate 

and binding agent™) was added and mixed by inversion and the 

homogenous mixture centrifuged at top speed for one minute. The 

supernatant was transferred to a spin filter and centrifuged for a further 30 

seconds. The liquid collected from centrifugation was discarded and 300 

pi Ethanol Wash solution (ethanol, Tris-HCl and NaCl) added to the spin 

filter. Following centrifugation for 30 seconds at top speed, the filter was 

fitted to a fresh centrifuge tube, and 50 pi sterile distilled water was
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added, and the filter centrifuged for a further 30 seconds to elute the 

plasmid DNA, which was stored at -20°C until ready to use.

3.2.5.2 PCR amplification

PCR was carried out as stated in Section 2.2.8. Initially the primer pair 

APX A was used for ascorbate peroxidase, GR A for glutathione 

reductase. The cycle used consisted of an initial denaturation step of 95°C 

for 5 minutes, 1 minute at 94°C, 2 minutes at 55°C and three minutes at 

72°C, for a total of 30 cycles, and a final extension of 10 minutes at 72°C, 

before being held at 4°C. The samples were mixed with gel loading buffer 

(0.0025% (w/v) bromophenol blue, 6 mM EDTA, 30% (v/v) glycerol) and 

analysed electrophoretically, as stated in Section 2.2.10.

3.2.5.3 Restriction analysis

The plasmid vector used contains several restriction enzyme recognition 

sites (Figure 3.1). These can be used to analyse the success of 

transformation. In this case EcoRl was used to excise the known size PCR 

fragment from the plasmid. The EcoKl sites flank either side of the PCR 

insert, so analysis by restriction should yield two fragments, one of 

approximately 2 kb (APX insert; GR insert, 500 bp) and one of 3.9 kb 

(plasmid).
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A 20 pi restriction reaction was prepared by adding the following 

components in the order listed:

EcoBl Reaction Buffer 3(Gibco BRL)* 2pl

Sterile Molecular Biology Grade Water 

Plasmid Preparation

EcoRl Restriction Enzyme (Gibco BRL) 2pl

8jul

8pl

* Reaction buffer contained 50 mM NaCl, 100 mM Tris-HCl, 10 mM 

MgCl2, 0.025% (v/v) Triton X-100 (pH 7.5 @ 25°C).

The reaction mix was incubated at 37°C overnight, then the enzyme 

inactivated by a 2 minute incubation at 85°C. Before analysis by gel 

electrophoresis, the samples were precipitated by sodium acetate. To the 

reaction mix, 0.1 volume 3 M sodium acetate and 2 volumes of 96% (v/v) 

ethanol were added, and the DNA left to precipitate at -20°C for 30 

minutes. The DNA was pelleted by centrifugation at 4000 g for 5 minutes 

and subsequently washed in 70% (v/v) ethanol and centrifuged as before. 

Once the pellet had been air-dried to remove any trace of ethanol, it was 

resuspended in 20 pi sterile molecular biology grade water. The sample 

could then be analysed by gel electrophoresis.

3.2.6 Storage o f  bacterial cultures

The transformed E. coli cultures obtained were stored using several 

different methods, to maintain a supply of transformed organisms, without 

mutation: single colony plates, stab cultures and glycerol cultures.
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3.2.6.1 Stab cultures

Bijoux bottles were half filled with molten LB agar and autoclaved for 15 

minutes at 121°C. When cooled, the bottles were stored at room 

temperature until needed. To store E. coli, a single, well isolated fresh 

colony was picked with a sterile inoculating needle, and stabbed several 

times in the LB agar to the bottom of the bottle. The bottles were labelled 

and stored in the dark at room temperature.

3.2.6.2 Glycerol Cultures

Sterile glycerol (150 jul) was added to 850 jul E. coli culture and 

thoroughly mixed by vortex in a 1.5 ml Eppendorf tube. The Eppendorf 

tubes were sealed with parafilm before instant freezing in liquid nitrogen, 

and transferred immediately to -80°C for long-term storage. Cultures were 

easily rejuvenated by thawing to room temperature and incubating in 5 ml 

LB broth overnight at 37°C and 225 rpm in a rotary shaking incubator.

3.2.7 Preparation ofplasmid fo r  sequencing

Plasmid preparations were generated as outlined in Section 3.2.5.1, and 

sent in dry ice packaging to Oswell Laboratories (in the first instance) and 

later to Cambridge Bioscience for autosequencing of the fragment ends 

using the M l3 forward and reverse sequencing primers.
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3.2.8 Sequence analysis

Fragment sequences were entered into the NCBI BLAST (Basic Local 

Alignment Search Tool) homology search database as a means of 

identification. Once the origin of the fragments had been established, a 

series of gene analyses could be performed; inter-species comparisons 

with the original sequences used in primer design, conservation of the 

gene within the Rhododendron genus, comparison of primer sequences 

between the original sequence and those found in Rhododendron and 

possible intron sites in the Rhododendron DNA sequence.
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3.3 Cloning of Ascorbate Peroxidase - Results and Discussion

3.3.1 Cloning attempt one

To successfully ligate a PCR product into a plasmid vector, the fragment 

must be discrete and abundant. To achieve these criteria, following PCR 

and gel electrophoresis (shown in Figure 3.2), the product band was cut 

and purified from the gel as descibed in section 3.2.2.

Figure 3.2 A and B. PCR products of 2.1 kb, suspected to be that of ascorbate peroxidase were 

cut from the gel and purified. 1A: lanes 1 and 7 are lkb  ladder (Gibco BRL), lanes 2-4 

represent amplification using APX A primers and R  ponticum  genomic DNA, lanes 5-6 using 

R  hatsugiri genomic DNA. 3.2B: lanes 1 and 7 are lkb  ladder, lanes 2-3 represent 

amplification using APX A primers and R  impeditum  genomic DNA, lanes 4-6 using R  

ponticum  genomic DNA. All DNA was sourced from Rhododendron micropropagules, except 

DNA used in PCR lanes 4-6, Figure 3.2B, which were obtained from whole plant leaf tissue.

The control DNA template and primers supplied with the kit had also 

been used in PCR, and were found to amplify a product of 700 bp, as 

stated by the protocol. This result is shown in Figure 3.3. Because of the 

clarity and abundance of the product, there was no need to purify the 

product from the gel, and the PCR reaction mix was used directly in the 

cloning protocol.
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Figure 3.3. Gel electrophoresis of PCR product using control DNA template and primers 

supplied in AdvanTAge PCR Cloning Kit (Clontech). Lanes 1 and 7 are lkb  ladder (Gibco 

BRL), lanes 2-6 are replicates of the reaction. Lane 5 sample was used in ligation and 

transformation. The expected 700 bp product was obtained.

Following ligation and transformation, the samples were plated out onto 

IPTG/X-Gal/ampicillin selective media. Growth of the cultures revealed 

that only the control PCR had been successful in procedure, in which 

approximately 70% of the cultures were white. Several colonies were 

isolated and grown in LB/ampicillin broth overnight, before plasmid 

purification and storage.

It was clear from this result that the cloning procedure was successful in 

the laboratory environment and the reagents were suitable and free from 

contamination. The lack of success in the Rhododendron samples could 

be due to a variety of reasons. The purification of the PCR product from 

the agarose gel may well have degraded the dA nucleotide additions 

necessary for this type of blunt-end cloning (Clark, 1988). The PCR 

product must be as pure as possible before proceeding to ligation and 

transformation, and it was this aspect which became a central focus in the 

second attempt at cloning the ascorbate peroxidase fragment from 

Rhododendron species.
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3.3.2 Cloning attempt two

Repeated PCR of genomic DNA from the three Rhododendron species 

yielded little or no result, therefore fresh DNA was extracted from the 

three species using the Nucleon Phytopure™ Plant DNA Extraction kit 

(Scotlab Bioscience), the protocol of which is outlined in section 2.2.6. 

Figure 3.4 shows the high quality of the genomic DNA extracted from the 

micropropagule tissue. The PCR products obtained and used directly in 

ligation are shown in Figure 3.5. The sample in lane 2 was used for R. 

ponticum , lane 7 for R. hatsugiri and lane 12 for R. impeditum ascorbate 

peroxidase cloning.

Figure 3.4. Gel Electrophoresis of Rhododendron genomic DNA using the Nucleon 

Phytopure™ Plant DNA Extraction kit (Scotlab Bioscience). Lanes 1 & 8 are 1 kb ladder 

(Gibco BRL). Lanes 2-3: duplicate extractions of R. ponticum , lanes 4-5: duplicate extractions 

of R. hatsugiri, lanes 6-7: duplicate extractions of R  impeditum.

Figure 3.5. Gel electrophoresis of PCR using APX primer set A and Rhododendron genomic 

DNA. Lanes 1 & 16 are lkb  ladder (Gibco BRL). Lanes 2-3, 8-9: R. ponticum  genomic DNA 

amplified, lanes 4-5, 12-13: R. impeditum, lanes 6-7, 10-11: R. hatsugiri, lanes 14-15: Pisum  

sativum  genomic DNA amplified as positive control.
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Visualisation of the IPTG/X-Gal/ampicillin plates revealed several pure 

white colonies in Rhododendron samples from each species. Many of the 

colonies were observed to be white with blue centres, caused by only 

partial disruption of the lacZ gene. This may be due to partial ligation of 

the smaller bands generated in the original PCR reaction (Figure 3.5) or 

the PCR product having lost ligation efficiency. The white colonies were 

isolated and the plasmids purified for further analysis.

Figure 3.6. PCR products visualised by gel electrophoresis of plasmids from transformed 

colonies. 3.6A: R. ponticum  fragments. Lanes 1 and 10 are lkb  ladder (Gibco BRL), lanes 2-9 

are duplicate samples of plasmid samples amplified with APX A primers. Lanes 8 & 9 show 

an upper band of expected size, 2 .lkb . 3.6B: R  hatsugiri fragments, all lanes as above. 3.6C: 

R. impeditum  fragments, all lanes as above. R. impeditum  shows no fragment of expected size, 

2. lkb.

PCR analysis of 1:100 dilution of plasmid samples with APX inserts from  

R. ponticum  and R. hatsugiri revealed, upon visualisation by gel 

electrophoresis, a product of 2 .lkb, a size corresponding to that of the 

original PCR product, which is shown in Figure 3.6, suggesting successful
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preparations is another questionable factor in this case, although the first 

90 or so bases sequence well, corresponding to the plasmid run-in 

sequence, so this explanation is unlikely.

When studying the entire cloning protocol, the most plausible reason for 

problems in the sequencing is the quality of the clone itself. When 

studying the PCR products which were used as the plasmid insert, only 

fragments using R. hatsugiri have a single product band (lane 7, Figure 

3.5), and thus gave rise to a successful clone coding the correct gene 

sequence for ascorbate peroxidase. To confirm this hypothesis, the 

cloning protocol was repeated only with R. hatsugiri fragments, and 

sequenced by Cambridge Bioscience Autosequencing (Figure 3.7b).
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Figure 3.7a. Ascorbate peroxidase R. ponticum  fragment sense strand
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Figure 3.7a. Ascorbate peroxidase R. ponticum  fragment antisense strand.



Figure 3.7b. Ascorbate peroxidase R. hatsugiri fragment sense strand
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Figure 3.7b. Ascorbate peroxidase R. hatsugiri fragment antisense strand



Figure 3.7b. Repeated sequence reaction by Cambridge Bioscience of R. hatsugiri ascorbate 
peroxidase sense strand.
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Figure 3.7c. Ascorbate peroxidase R. impeditum fragment sense strand
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Figure 3.7c Ascorbate peroxidase R. impeditum fragment antisense strand



Figure 3.7d Ascorbate peroxidase R. hatsugiri replicate sense strand



Figure 3.7d Ascorbate peroxidase R. hatsugiri replicate antisense strand



3.3.3 Cloning attempt three

Ligation and transformation were performed using the 2. lkb PCR product 

generated from the amplification of genomic R. hatsugiri DNA and 

ascorbate peroxidase primers A. Figure 3.8 illustrates analysis of 1:100 

dilutions of the cloned plasmids by PCR and gel electrophoresis. Lanes 

11-12 have a band of the approximate fragment size, but it is unclear as to 

whether it relates to the insert fragment. Restriction digestion of the 

plasmids using the restriction enzyme EcoKl, illustrated in Figure 3.9, 

yields a band at 2 .lkb in lane 8, corresponding to the original PCR 

product band size, which is shown in lane 13. Thus this plasmid sample 

was used for further analysis by sequencing at Cambridge Bioscience 

Autosequencing.

Figure 3.8. PCR analysis of R  hatsugiri plasmid fragments. Lanel3: 1 kb ladder (Gibco 

BRL). Lanes 1-12 are dulpicate replicates of 1:100 dilutions of plasmid with R  hatsugiri APX 

fragment insert. Lanes 11 & 12 show a product which may be the insert size of 2.1 kb.
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Figure 3.9. Restriction Digestion of R. hatsugiri cloned plasmids using ZscoRI. Lanes 1, 7 and 

14 are lkb  ladder (Gibco BRL). Lanes 2-4 replicates of undigested cloned plasmid, lane 5: 

undigested X DNA, lane 6: undigested pT-Adv plasmid vector (control). Lanes 8-10 are 

digested replicates of cloned plasmids, lane 11: digested X DNA, lane 12: digested pT-Adv 

plasmid vector control, lane 13 original PCR fragment control (undigested) as size 

comparison.

BLAST homology searches of the sequences generated revealed 

homology with plasmid vectors (Appendix 3), thus it could be concluded 

that ligation of the PCR insert was unsuccessful.

3.3.4 Cloning attempt four

In each case of repeating the cloning procedure, initial amplification of 

genomic DNA proved to be challenging, despite PCR optimisation, as 

outlined in Chapter 2. Fresh genomic DNA extractions from all three 

Rhododendron species were prepared, and ascorbate peroxidase primer 

set A used in PCR amplification. Figures 3.10a and b illustrate the limited 

success o f the reaction i.e. in Figure 3.10b there are no PCR products for 

R. hatsugiri and R. impeditum. Indeed, after reamplification of the 

products (Figures 3 .10c and d), results were little improved.
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Figure 3.10A-D. PCR Amplification of Rhododendron DNA. 8A: Lanes 1 and 17 are lkb  

ladder (Gibco BRL), lanes 2-11 are R  ponticum  DNA amplified with APX primers A. Lanes 

12-16 are R  hatsugiri DNA 3.10B: lanes 2-6 are R  hatsugiri DNA and lanes 7-16 are R  

impeditum  Lane 17, water control. 3.10 C & D: lanes as above, but PCR products have been 

reamplified under same PCR conditions.

Ligation reactions were carried out with the products from Figure 3.10A 

(R. ponticum  fragments), and analysed by gel electrophoresis, illustrated 

in Figure 3.11. This analysis indicated that ligation of the PCR fragment 

had not taken place, because the samples are approximately the same size 

as the original plasmid vector, shown in lane 6. The control ligation 

reaction, using the control PCR product of 700 bp (Figure 3.3) had been 

successfully ligated into the vector, as indicted by the higher molecular 

weight of the control band.
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Figure 3.11. Gel electrophoresis of ligation reactions. Lanes 1 and 7 are lkb  ladder (Gibco 

BRL), lanes 2-4 are replicates of R  ponticum  PCR ligation into pT-Adv plasmid vector, lane 

5: PCR control fragment ligation and lane 6: pT-Adv vector unligated.

The cloning protocol was halted at this stage and PCR methods 

reconsidered.
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3.3.5 Cloning attempt five

Several reasons necessitated the alteration in PCR from APX primer set A 

to APX primer set C. Amplification of a smaller fragment, set C 

generating a product of 1.6 kb in size, may increase the efficiency of the 

ligation reaction. The efficiency of primer set A annealing was 

questionable, and set C had performed well in PCR optimisation. Fresh 

DNA extractions from all three Rhododendron species were also 

prepared.

Figure 3.12 illustrates the success of PCR using APX set C and the fresh 

DNA extracts. All three species amplified well, and duplicate samples of 

the PCR reaction mix were used directly in the ligation reactions (R. 

ponticum , lanes 6 & 11, Figure 3.12A; R. hatsugiri, lane 16, Figure 3.12A 

and lane 6, Figure 3 .12B; R. impeditum lanes 10 and 11, Figure 3 .12B).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

-1 6

Figure 3.12. 3.12A: lanes 1 and 17 are lkb  ladder (Gibco BRL). Lanes 2-11: R  ponticum  DNA 

replicates amplified using APX primer set C, lanes 12-16: R  hatsugiri DNA replicates 

amplified using APX primer set C. 3.12B: Lanes 1 and 18 are lkb  ladder, lanes 2-6: R  

hatsugiri replicates amplified with APX primer set C, lanes 7-16: R  impeditum  DNA 

replicates amplified with APX primer set C, lane 17: water control.

Ligation reactions were analysed by gel electrophoresis, but results 

remained inconclusive because of band smearing, as shown in Figure 

3.13. The transformations were carried out, and it was noted after 

incubation at 37°C overnight, that there were a number of pure white
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colonies present on the IPTG/X-Gal/ampicillin selective plates. Figure 

3.14 illustrates one of the transformation plates, the blue and white 

colonies clearly visible.

Figure 3.13. Gel electrophoresis of ligation reactions. Lanes 1 and 8 are lkb  ladder (Gibco 

BRL). Lanes 2-7 are duplicates of ligations using R  ponticum , R  hatsugiri and R  impeditum  

respectively.
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Figure 3.14. Sample of transformation plates observed after overnight incubation at 37°C. All 

of the colonies present on the plate had been transformed with the vector plasmid. Those 

colonies which were white in colour contained the plasmid vector that carried the PCR insert.

Samples of the pure white colonies were isolated and grown in 

LB/atnpicillin broth, and the plasmid DNA purified from the cultures by 

Wizard™ Minipreparation system (Promega). Digestion of the 

transformed plasmid with the restriction enzyme EcoKl, whose 

recognition sites flank the PCR insert (Plasmid vector map, Figure 3.1) 

yielded two bands, one of 3.9 kb (the size of the plasmid vector) and one 

of 1.6 kb (the size of the PCR insert), as shown in Figure 3.15.
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Figure 3.15. Digestion of the transformed plasmids with EcoRl. 3.15A: Lanes 1 and 12 are 1 

kb ladder (Gibco BRL), lanes 2-11: undigested and digested transformed plasmids with R. 

ponticum  APX inserts, (loaded alternately undigested/digested), lane 11 illustrating successful 

cloning, showing two bands of 3.9kb (plasmid) and 1.6kb (insert). Figures 3.15B &3.15C show 

digestions of plasmids with R  hatsugiri and R. impeditum  APX inserts respectively. 3.15B: 

lane 13, PCR control transformation band of 700bp. 14C: lanes 14 and 15 show undigested 

and digested X DNA control, lane 16 pT-Adv vector.

The single successful R. ponticum  clone was sequenced with four samples 

each of R. hatsugiri and R. impeditum. The sequence was easily 

determined from the resulting chromatograms, Figure 3.16, and BLAST 

analysis confirmed that the R. ponticum  insert, three R. hatsugiri inserts 

and two R. impeditum inserts that had been ligated into the plasmid vector 

and subsequently cloned, were significantly homologous to previously 

published ascorbate peroxidase mRNA sequences.
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Figure 3.16. Ascorbate peroxidase R. ponticum sense strand. Example of successful 
chromatogram profile.



3.3.6 Ascorbate peroxidase sequence analysis

The attainment of the insert sequences allowed a number of sequence 

analyses to be performed. Figures 3.17A -D show the sense and antisense 

strand comparisons between the replicates of R  hatsugiri and R. 

impeditum. The dT end of the plasmid vector is marked in each case. 

These figures illustrate the accuracy of the PCR/cloning procedure and the 

sequencing system used at Cambridge Bioscience Autosequencing, as all 

replicates are identical.

Far more interesting however, is the comparison of the fragment ends 

between the three Rhododendron species. Illustrated in Figure 3.18A and 

B, a high degree of homology between the three species can clearly be 

seen in both the sense (Figure 3.18A) and antisense(Figure 3.18B) strands. 

Indeed, for the first 200 or so bases in the sense strand, the sequences are 

identical. There are some insertions and/or deletions further into the 

sequence, which may be due to PCR amplification by Taq DNA 

polymerase. It is known that Taq polymerase has a relatively high 

percentage of base misincorporation. Using the lac 10Za fidelity assay, it 

was observed that Taq DNA polymerase yielded 16% mutated products 

(Stratagene, © 1997). Amplification with the proof-reading DNA 

polymerase, Pfu, would reduce mutated products to as low as 2%. It 

cannot be ruled out, however, that such differences may be evolutionary. 

This assumption can be made due to the former comparisons of replicates 

of the same species, in which such mutations have not occurred. It can be 

safely assumed by examination of the sequence chromatograms that the 

differences were not a sequencing anomaly. Such phenomena were also 

noted in the antisense strand.
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Figure 3.17a. R  hatsugiri -reverse sequence alignment. The alignments show
the reading frame errors of Taq DNA polymerase in three samples which
should be identical.

15a TTTTNAAANCCCGCTCGGATNCACTAGTAACGGCCCGCCAGTGTGCTGGA 
20a * * * * *AAATCCAGCTCGGNTTCACTAGTAACGGCCGCC*AGTGTGCTGGA 
15 e TTTTTGANACCCCGCTCGGATCCCTAGTAACGGCCCGCCAGTGTGCTGGA
15a AT T C GGC T T GAC T GGC AT GGC AC T C T GC T GNT AC C TAC GAT GT GAAAAC A 
20a AT T C GGC T T GT C T GGC AT GGC AC T C T GC T GGGAC C TAC GAT GT GAAAAC A 
15 e AT T C GGC T T GAT T GGC AT GGC AC T C T GC T GGGAC C TAC GAT GT GAAAAC A
15a AAAAC AGGAT T GN C T T T C GGGAC GATAAAGC AC C C AGC AGAGC T GGC T T A 
20a AAAAC AGGAGGGC C T T T C GGGAC GAT AAAGC AC C C AGC AGAGC T GGC T T A 
15 e AAAAC AGGAGGGC C T T T C GGGAC GAT AAAGC AC C C AGCAGAGC T GGC T T A
15a C GAAGCAAAC AAC GGC C T T GAAAT AGC C GT C AGGC T GT T GGAGC C AAT C A 
20a C GAAGC AAAC AAC GGC C T T GAAAT AGC C GT CAGGC T GT T GGAGC C AAT C A 
15 e C GAAGC AAAC AAC GGC C T T GAAAT AGC C GT CAGGC T GT T GGAGC C AAT C A
15a AGGAGCAGTTTCCTATCCTGTCT TAC GCAGACTTCTACCAGGTAAC CTGT 
20a AGGAGCAGTTTCCTATCCTGTCTTACGCAGACTTCTACCAGGTAACCTGT 
15 e AGGAGC AGT T T C C TAT C C T GT C T TAC GC AGAC T T C TAC C AGGT AAC C T GT
15a T GC T GT T GAT AGGAT AT AAT GGT TAC C AAT T T GAT T T T TAT GC T C AAC AT 
20a T GC T GT T GAT AGGAT AT AAT GGT TAC C AAT T T GAT T T T TAT GC T C AAC AT 
15 e T GC T GT T GAT AGGAT AT AAT GGT TAC C AAT T T GAT T T T TAT GC T C AAC AT
15a AT GT T GT T GGC GT AT T AGT C CAT AT T T T GC GT AT T C T AAC GT C C AAGAT G 
20a AT GT T GT T GGC GT AT T AGT C CAT AT T T T GC GT AT T C T AAC GT C C AAGAT G 
15 e AT GT T GT T GGC GT AT T AGT C CAT AT T T T GC GT AT T C T AAC GT C C AAGAT G
15 a ACGTGTTCCTCTTTGTTATGTGATTCTCAATTGAAGTTGGCTGGAATTGT 
20a ACGTGTTCCTCTTTGTTATGTGATTCTCAATTGAAGTTGGCTGGAATTGT 
15 e ACGTGTTCCTCTTTGTTATGTGATTCTCAATTGAAGTTGGCTGGAATTGT
15a T GC T GNT GAAGT C AC AGGAGGC C C T GAGAT T C C T T T C C AC C CAGGC AGAC 
20a T GC T GT T GAAGT C AC AGGAGGC C C T GAGAT T C C T T T C C AC C CAGGC AGAC 
15 e T GC T GT T GAAGT C AC AGGAGGC C C T GAGAT T C C T T T C C AC C CAGGC AGAC
15a CGGTTAGTGAGACACTGAGACTTACTACTTCTTTCTTTTCTTCTTATTGT 
20a CGGTTAGTGAGACACTGAGACTTACTACTTCTTTCTTTTCTTCTTATTGT 
15 e CGGTTAGTGAGACACTGAGACTTACTACTTCTTTCTTTTCTTCTTATTGT
15 a AATATGTAAAACTCACTTGGTTCTTCCTTTTTCCGTCACAAGGGTGGAAA 
20a AATATGTAAAACTCACTTGGTTCTTCCTTTTTCCGTCACAAGGGTGGAAA 
15 e AATATGTAAAACTCACTTGGTTCTTCCTTTTTCCGTCACAAGGGTGGAAA
15a AT T GAAAGAAN GAAAAAT GGAAAAAT GAT AAT TAC AAC T T T T GGC C C GAG 
20a ATAGAAAGAAAGAAAAATGGAAAAATGATAATTACAACTTT * GGCC * GAG 
15 e AT AGAAAGAAAGAAAAAT GGAAAAAT GAT AAT TAC AAC T T T * GGCC * GAG
15a T GAT T GT AAGGGAT AT T AAC AGGGC C C GAT GC T GGC TTTGCCCTT C AC GC 
20a TGATTGTAAGG*ATAT*AACAGGGCC*GATGCTGGCTTTGCC*TTCACGC 
15 e TGATTGTAAGG*ATAT * AACAGGGCC * GATGCTGGCTTTGCC * TTCACGC
15 a AT AGGT AGT T T GGGGT T CANT C C T T GGAAC T GGGC C C AAAT T GN GAGTAA 
20a AGAGGT AGT T T GGGGT CAT T C GC T * GGAAC T GGGC C AAAT T GT GAT GT AA 
15 e AGAGGT AGT TTGGGGTCCATTCGCT GGAAC T GGGC C AAAT T GN GAT GT AA
15a T T GAT GC C AAT AAC T NAAT GGC T GAAAT GGAANT AGGGC GGC G 
20a T GAT GC AAT AAT NAAT GGC T GAAAT GGAAGT AN GC C GAC T 
15 e T GAT GC CAT AAT AAAT GGC T GAAAT GGAAGT AGC C



Figure 3.17b. R. hatsugiri -21 sequence alignment. The alignments show the
reading frame errors of Taq DNA polymerase in three samples which should be
identical.

15a TNACTATNCGGCGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCA 
2 Oa T C AC TAT AN GGC GAAT T GGGC C C T C T AGAT GC AT GC T C GAGC GGC C GC C A 
15 e GTACTATCCGGCGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCC
15a GTGTGATGGATATCTGCAGAATTCGGCTTAGACATCTCTCAAGTGGTCAG 
20a GT GT GAT GGAT AT C T GC AGAAT T C GGC T T AGAC AT C T C T C AAGT GGT C AG 
15 e GT GT GAT GGAT AT C T GC AGAAT T C GGC T TAGAC AT C C C T C AAGT GGT C AG
15a C AC C T GATAT T AAGAAAT GAAAAAAAAAAT GGAAAGGC AAC T GAT AAT C T 
20a CAC C TGATATTAAGAAATGAAAAAAAAA* TGGAAAGACAAC TGATAAT C T 
15 e CAC C T GATAT TAAGAAAT GAAAAAAAAA* T GGAAAGAC AAC T GATAAT C T
15a CAGTCATTAGTTCATAGAAAAGTACCATACAAATAAGAACAAGAGACTTA 
20a CAGTCATTAGTTCATAGAAAAGTACCATACAAATAAGAACAAGAGACTTA 
15 e CAGTCATTAGTTCATAGAAAAGTACCATACAAATAAGAACAAGAGACTTA
15a CCTTTTTTGGCATCAGGCAAGCGGCCTTCCGGAGGTGGTTCAGATTTGTC 
20a CCTTTTTTGGCATCAGGCAAGCGGCCTTCCGGAGGTGGTTCAGATTTGTC 
15e CCTTTTTTGGCATCAGGCAAGCGGCCTTCCGGAGGTGGTTCAGATTTGTC
15a C T GAGAT C AAT GAAT AT T T T T AGT T AAT AT GAAC AC AAT AC CAT C T C AAG 
20a C T GAGAT C AAT GAAT AT T T T T AGT T AAT AT GAAC AC AAT AC C AT C T C AAG 
15 e C T GAGAT C AAT GAAT AT T T T T AGT T AAT AT GAAC AC AAT AC CAT C T C AAG
15a C C AT GAC AC AAGC AT T GC T C CAC GAAAT T T T CAT GGT T C AAAGC T GT AGT 
20a CCATGACACAAGCATTGCTACACGAAATTTTCATGGTTCAAAGCTGTAGT 
15 e C CAT GAC AC AAGC AT T GC TAC AC GAAAT T T T CAT GGT T C AAAGC T GT AGT
15a C AAAGT T C T C GGAC AAT AC T GT C AGT AC AC AAGGAC T AGGC AAGAGT GGC 
20a C AAAGT T C T C GGAC AGT AC T GT C AGT AC AC AAGGAC T AGGC AAGAGT GGC 
15 e C AAAGT T C T C GGAC AGT AC T GT CAGT AC AC AAGGAC TAGGCAAGAGT GGC
15a AAAGAT GGT T T CAT GAAT CAT GT CAC C AAAAT T GT T GAT GC T C AAGAAC T 
20a AAAGAT GGT T T CAT GAAT CAT GT CAC C AAAAT T GT T GAT GC T C AAGAAC T 
15 e AAAGAT GGT T T CAT GAAT CAT GT CAC C AAAAT T GT T GAT GC T C AAGAAC T
15a TTTTCTCC CAT C GT AT TAC T AAGAT GAAGT AGT GC AC GC AAAC TAT T AAC 
20a TTTTCTCC CAT C GT AT TAC T AAGAT GAAGT AGT GC AC GC AAAC TAT TAAC 
15 e TTTTCTCC CAT C GT AT TAC T AAGAT GAAGT AGT GC AC GC AAAC TAT TAAC
15a AT AGT TAAC GT C AGC AT T GGAT C T C T GT CAC CAGAT C AAAT AGGT C T AAA 
20a AT AGT TAAC GT C AGC AT T GGAT C T C T GT CAC CAGAT C AAAT AGGT C T AAA 
15 e AT AGT TAAC GT C AGC AT T GGAT C T C T GT CAC CAGAT C AAAT AGGT C T AAA
15a T TAAGC T TAACAAAAAA.T GT CAT CAGAAGCAAC TAGAT T C TAAC T TAC T G 
20a T T AAGC T T AAC AAAAAAT GT CAT C AGAAGC AAC T AGAT T C TAAC T TAC T G 
15 e T T AAGC T T AAC AAAAAAT GT CAT C AGAAGC AAC T AGAT T C TAAC T TAC T G
15a AC C CAAAAGAT AAAA* * CAC AC C TAGAC T C TAC T C AAGC T GT AT T T GGAT 
20a AC C CAAAAGAT AAAAAN CAC AC C TAGAC T C TAC T C AGC T GT AT T T GNAT C 
15 e AC C CAAAAGAT AAAAA* CAC AC C TAGAC T C TAGC T CAGGC T GT TAT T T GT
15a C T C TAAC T C T AAAGGAT C AAC C AAAGC C T C CAC AT GAAT C T GC T GAC AT T 
20a TCTTAGCTCTAAAGGATCAACCAAGCCTACCACATGAATCTGCTGACATT 
15 e AT C T C T T AGC T C T AAAGGAT C AAC C AAAGC C TAC CAC AT GAAT C T GC T GA
15 a GC T GAGTAC GT T T GGC TAGT T
20a GCTGAGTACGTTTGGCTAGTTN
15e CATTGCTGAGTTACCGTTTGGCTAGTTN



Figure 3.17c R  impeditum -reverse sequence alignment. The alignments show
the reading frame errors of Taq DNA polymerase in three samples which
should be identical.

24a NCTTTCTT GGT AC C NAGC T C GGAT C CAC TAGTAAC GGC C GC CAGT GT GC T 
25a *NCTTNTTGATACCCCGCTCGGATCCACTAGTAACGGCCGCCAGTGTGCT
24a GGAAT T C GGC T TACAC AT C T C T C AAAT GGT C AGC GC C T CAC AT T AAGAAA 
25a GGAAT T C GGC T TAC AC AT C T C T CAAAT GGT C AGC GC C T GAC AT T AAGAAA
24a T C GAAAAAC AAAAT T AGAAAGAC AAC T GATAAT C T T AGT CAT GAGT G * TA 
25a TCGAAAAACAAAATTAGAAAGACAACTGATAATCTTAGTCATGAGTGCTA
24a AGAAAC GT AC C AC AC AT AT AAGAAC AAGAGAC T TAC C T T T T T T GGC AT C A 
25a AGAAACGTACCACACATATAAGAACAAGAGACTTACCTTTTTTGGCATCA
24a GGCAAGC GGC C T T C C GGAGGT GGT T CAGAT T T GT C C T GAGAT CAAT GAAT 
25a GGC AAGC GGC C T T C T GGAGGT GGT T CAGAT T T GT C C T GAGAT C AAT GAAT
24a AT T T T T AGT TAATAT GAAT GC AAT AC CAT C T C AAAC CAT GAC ACAAGAAT 
25a AT T T T T AGT TAAT AT GAAC GC AAT AC CAT C T C AAAC CAT GAC AC AAGAAT
24a TGCTACACGAAATTTTCTTAGTTCAAAGCTGTAGTTGAAGTTCTCGGACT 
25a TGCTACACGAAATTTTCTTAGTTCAAAGCTGTAGTTGAAGTTCTCGGACT
24a GT AC AC AAGGAC T AGGC AAGAGT GGC AAAGAT GGT T T CAT GAAT CAC AGT 
25a GT AC AC AAGGAC T AGGC AAGAGT GGC AAAGAT GGT T T CAT GAAT CAC AGT
24a AAT T AAGAT T GT T GAT GC T C AAGT AC T T T T T C T CAGGC T GT C C AGC CAC A 
25a AAT T AAGAT T GT T GAT GC T C AAGT AC T T T T T C T CAGGC T GT C C AGC CAC A
24a AAT GAC AT GC AC GGTGCCTTTC GGC CAT T GT AAT AC TAAGAT GAAGT AGT 
25a AAT GAC AT GC AC GGTGCCTTTCGGC CAT T GTAAT AC TAAGAT GAAGT AGT
24a GC AT GC AAAC T T T TAAC AT AGC TAAC AT C AGAGC AT T GGAT C T C T GT CAC 
25a GC AT GC AAAC T T T TAAC AT AGC TAAC AT C AGAGC AT T GGAT C T C T GT CAC
24a CAGACCAAATAGGATTAAATTAAGCTAACAAAAAATATCANAAGCAACTA 
25a C AGAC CAAAT AGGAT T AAAT T AAGC T AAC AAAAAAT AT C AGAAGC A* C T A
24a GAT T C T GAC T TAC TAAC C CAAAAGAAAAAAAC AC AC C TAGAC T C TAAC T C 
25a GAT T C T GAC T TAC TAAC C C AAAAGGAAAAAAAC AC AC C TAGAC T C TAC T C
24a ANGCTGGTATT*GNATCTTCTTAGCTCTGAAGGATCAACCCAAGCCT*CC 
25a CAGCTTTTATTTGNATCTTCTTAGCTCTTAAGGATCAACCCAAGCCTACC
24a AC AT GAAT C T GC T GC CAT GNT GAT TAC GT T T GGC T AGT T N 
25a AC AT GAAT C C NT T GC ATT GC T GAT TAC GT T T GGC TAG



Figure 3.17d R  impeditum -21 sequence alignment The alignments show the
reading frame errors of Taq DNA polymerase in three samples which should be
identical.

24a CAT TAT CAT AT AC GGC GAAT TGGGCCCTC T AGAT GC AT GC T C GAGC GGC C 
2 4h C T TNNTNNT AT C C GGC GAAT T GT GC C C T C T AGAT GC AT GC T C GAGC GGC C 
25a NT AC T CAC TAT AN GGC GAAT TGGGCCCTC T AGAT GC AT GC T C GAGC GGC C
24a GCCAGTGTGATGGATATCTGCAGAATTCGGCTT * * GACTGGCATGGCACT 
2 4h GC C AGT GT GAT GGAT AT C T GC AGAAT T C GGC T T T GGC AT GGC AC T C T GC T 
25a GC CAGT GT GAT GGAT AT C T GC AGAAT TCGGCTTGTTT GGC AT GGC A* * CT
24a C T GC T GGGAC C TAC GAC GT GAAAAC AAAAAC AGGAGGGC C T T T C GGGAC G 
2 4h C T GC T GGGAC C TAC GT C GT GAAAAC AAAAAC AGGAGGGC C T T T C GGGAC G 
25a C T GC T GGGAC C TAC GAC GT GAAAAC AAAAAC AGGAGGGC C T T T C GGGAC G
2 4a AT AAAGC AT C C AGC AGAGC T GGC T CAC GAAGC AAAC AAC GGC C T T GAAAT 
2 4h AT AAAGC AT C C AGC AGAGC T GGC T CAC GAAGC AAAC AAC GGC C T T GAAAT 
25a AT AAAGC AC C C AGC AGAGC T GGC T CAC GAAGC AAAC AAC GGC C T T GAAAT
24a AGCCGTCAGGCTGTTGGAGCCAATCAAGGAGCAGTTTCCGATCCTGTCTT 
2 4h AGC C GT CAGGC T GT T GGAGC C AAT C AAGGAGC AGT T T C C GAT C C T GT C T T 
25a AGC C GT CAGGC T GT T GGAGC C AAT C AAGGAGC AGT T T C C GAT C C T GT C T T
24a AC GC AGAC T T C TAC C AGGT AAC C T GT T GC AGT T GATAT GAT AT AC T GGT T 
2 4h AC GC AGAC T T C TAC C AGGTAAC C T GT T GC AGT T GATAT GAT AT AC T GGT T 
25a AC GC AGAC T T C TAC C AGGT AAC C T GT T GC AGT T GATAT GAT AT AC T GGT T
24a AC T GAT T TAAT T T T TAT GC T C AAC AT AT GT T GT C GGC GT AT TAT T AGT C C 
2 4h AC T GAT T TAAT T T T TAT GC T C AAC AT AT GT T GT C GGC GT AT TAT T AGT C C 
25a AC T GAT T TAAT T T T TAT GC T C AAC AT AT GT T GT C GGC GT AT TAT T AGT C C
24a ACATTTTGCGTACTCTAACGTCCAAAATGACATGTTCCCCTTTCTTATGT 
24h ACATTTTGCGTACTCTAACGTCCAAAATGACATGTTCCCCTTTCTTATGT 
25a ACATTTTGCGTACTCTAACGTCCAAAATGACATGTTCCTCTTTCTTATGT
24a GAT TAT C AAT T GAAGT T GGC T GGAAT T GT T GC T GT T GAAGT C ACAGGAGG 
2 4h GAT TAT C AAT T GAAGT T GGC T GGAAT T GT T GC T GT T GAAGT C AC AGGAGG 
25a GATTATCAATTGAAGTTGGCTGGAATTGTTGCTGTTGAAGTCACAGGAGG
24a C C C T GAGAT T C C T T T C CAC C CAGGC AGAC C GGT T AGT GAGAGT TAT TAC T 
2 4h C C C T GAGAT T C C T T T C CAC C CAGGC AGAC C GGT T AGT GAGAGT TAT TAC T 
25a CCCTGAGATTCCTTTCCACCCAGGCAGACCGGTTAGTGAGAGTTATTACT
2 4a TCTTTCTTTGCTTCTTATCGTAATATGTAAAACTCACTTGGTTCTTCCTT 
2 4h TCTTTCTTTGCTTCTTATCGTAATATGTAAAACTCACTTGGTTCTTCCTT 
25a TCTTTCTTTGCTTCTTATCGTAATATGTAAAACTCACTTGGTTCTTCCTT
24a TT * CTGTCACAAGGGTGGAAAATAGAAAGGAAAAAAATAAAGGAAGGAAA 
2 4h T T T C T GT CAC AAGGGT GGAAAAT AGAAAGGAAAAAAATAAAGGAAGGAAA 
25a T T T C T GT CAC AAGGGT GGAAAAT AGAAAGGAAAAAAATAAAGGAAGGAAA
24a AAT GAGAAT TAC AAC T T T GGC C GAGT GAT T GTAAGGAT AT AAC AGGGC C * 
2 4h AAT GAGAAT TAC AAC T T T GGC C GAGT GAT T GTAAGGAT AT AAC AGGGC C C 
25a AAT GAGAAT T ACAAC T T T GGC C GAGT GAT T GTAAGGAT AT AAC AGGGC C C
24a GAT GC T GGC TTTGCGCTCCAC GC AGAGGT AGT T T GGGGT C C AT T C GC TAG 
2 4h GAT GCTGGCTTTGCGCTC CAC GC AGAN GT AGT T T GGGGT C CAT T C GC TAG 
25 a GAT GCTGGCTTTGCGCTT CAC GC AGAN GT AGT T T GGGGT C CAT T * GC TAG
24a AC T GT GC CAAAT T C T GAT GTAAT GAT GC NN 
24h ACTG*GCCAAATTCTGATGTAATGATCAATAN 
25a AC TAGAC T GNGC CAAAT T C T GAT GTAAT GAT G



Figure 3.18a -Rev Sequence similarity R  ponticum (lOh), R  hatsugiri (15a)
and R  impeditum (25b) Upper Primer APX C highlighted (Arabidopsis thaliana)

lOh TT GT GAT AC C C C GC T C GGAT C CAC T AGT AAC GGC C GC C - AGT GT GC T GGA 
15a TTTTNAAANCCCGCTCGGATNCACTAGTAACGGCCCGCCAGTGTGCTGGA 
25b CTGCTTGGTACCGNCTCGGATCCCTAGTAACGGCCGCC-AGTGTGCTGGA
1 Oh AT T C GGC T T G A C  T G G C A T G G C  A C  T C  T G C  T GGGAC C TAC GAC GT GAAAAC A 
15a AT T C GGC T T G A C  T G G C  A T G G C  A C  T C  T G C  T GNT AC C TAC GAT GT GAAAAC A 
25b AT T C GGC T T G A T T G G C A T G G C  A C  T C  T G C  T GGGAC C TAC GAC GT GAAAAC A
1 Oh AAAAC AGGAGGGC C T T T C GGGAC GAT AAAGC AC C CAT C AGAGC T GGC T C A 
15a AAAAC AGGAT T GN C T T T C GGGAC GAT AAAGC AC C C AGC AGAGC T GGC T T A 
25b AAAAC AGGAGGGC C T T T C GGGAC GAT AAAGC AT C C AGC AGAGC T GGC T C A
1 Oh C GAAGC AAAC AAC GGC C T T GAAAT AGC AGT CAGGC T GT T GGAGC C AAT C A 
15a CGAAGCAAACAACGGCCTTGAAATAGCCGTCAGGCTGTTGGAGCCAATCA 
25b C GAAGC AAAC AAC GGC C T T GAAAT AGC C GT CAGGC T GT T GGAGC C AAT C A
1 Oh AGGAGC AGT T T C C AAT CCTGTCTTAT GC AGAC T T C TAC C AGGT AAC C T GT 
15a AGGAGCAGTTTCCTATCCTGTCTTACGCAGACTTCTACCAGGTAACCTGT 
25b AGGAGC AGT T T C C GAT C C T GT C T TAC GC AGAC T T C T AC C AGGTAAC C T GT
1 Oh T GC AGT T GATAT GAT AT AC T GGT TAC T GAT T T GAT T T GAT T T T TAT GC T C
15a T GC T GT T GATAGGAT AT AAT GGT TAC C AAT T T GA TTTTTATGCTC
25b T GC AGT T GATAT GAT AT AC T GGT TAC T GAT T T AA TTTTTATGCTC
1 Oh AAC AT AT AT T GT C GGC GT AT TAT T AGT C CAC AT T T T GC GT AC T C TAAC GT
15 a AACATATGTTGTTGGCGTATT AGTCCATATTTTGCGTATTCTAACGT
25b AAC AT AT GT T GT C GGC GT AT TAT T AGT C CAC AT T T T GC GT AC T C TAAC GT
1 Oh CCAAAATGACATGTTCCTCTTTGTTATGTGATCATCAATTGAAGTTGGCT 
15a CCAAGATGACGTGTTCCTCTTTGTTATGTGATTCTCAATTGAAGTTGGCT 
25b CCAAAATGACATGTTCCCCTTTCTTATGTGATTATCAATTGAAGTTGGCT
1 Oh GGAATTGTTGCTGTTGAAGTCACAGGAGGCCCTGAGATTCCTTTCCACCC 
15 a GGAATTGTTGCTGNTGAAGTCACAGGAGGCCCTGAGATTCCTTTCCACCC 
25b GGAATTGTTGCTGTTGAAGTCACAGGAGGCCCTGAGATTCCTTTCCACCC
1 Oh AGGC AGAC C GGT TAGT GAGAC---------TACTACTTCTTTCTTTGCTT
15a AGGCAGACCGGTTAGTGAGACACTGAGACTTACTACTTCTTTCTTTTCTT 
25b AGGC AGAC C GGT T AGT GAGAG--------TTATTACTTCTTTCTTTGCTT
lOh CTTATCGTAATATGTAAAACACACTTGGTTCTTCCTTTTTCTGTCACAAG 
15a CTTATTGTAATATGTAAAACTCACTTGGTTCTTCCTTTTTCCGTCACAAG 
25b CTTATCGTAATATGTAAAACTCACTTGGTTCTTCCTTTTTCTGTCACAAG
1 Oh GGT GGAAAATAGAAAGAAAAAAAAAGGACAAA- TGAGAAAT GAGAAATAA
15 a GGT GGAAAAT T GAAAGAAN GAAAAAT GGAAAAAT GATAAT TAC AAC---
25b GGT GGAAAAT AGAAAGGAAAAAAATAAAGGAAGGAAGAAT GAGAAT TAC A
1 Oh AAC T T T GGC C - GAGT GAT T GT AAGG-AT AT - AAC AGGGC C - GAT GC T GC C 
15 a --TTTTGGCCC GAGT GAT T GT AAGGGAT AT TAAC AGGGC C C GAT GC T GC C 
25b A- C T T T GGC C - GAGT GAT T GT AAGG - AT AT - A- C AGGGC C - GAT GC T GGC
lOh TTTGCCCTTCACGCANANGTAGTTTGAGGTCCATTTGCTAGAACTGNGC- 
15a TTTGCCCTTCACGCATAGGTAGTTTGGGGTTCANTCCTTGGAACTGGGCC 
25b TTTGCGCTTCACGCAGAAGTAGNTTGGGGNNCATTCGCTAGAACTGNGCC
1 Oh CAAAT T C T GAT GTAAT GGAT GC-AATAACTTAATGGCTTAAATGGAAGTGGG
15a CAAAT T GN GA- GTAAT T GAT GC C AAT AAC T NAAT GGC T GAAAT GGAANT AGGGC GGC G
25b CAAAT - C T GAT GTAAT GAT GC AAT AAT NAAT GGC T TAAAT GGAAGAAGGG



Figure 3.18b -21 Sequence similarity R  ponticum (lOh), R  hatsugiri (15a)
and R  impeditum (25b) Lower Primer APX C highlighted (Pisum sativum).

1Oh TCAC TATCNGGCGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCA 
15a TNACTATNCGGCGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCA 
25b T CAC TAT AGGGC GAAT TGGGCCCTC T AGAT GC AT GC T C GAGC GGC C GC C A
1 Oh GTGT GAT GGATAT C TGC AGAAT T C GGCT T A G A C A T C T C T C A A A T G G T C A G  
15a GT GT GAT GGATAT C T GC AGAAT T C GGC T T A G A C A T C  T C  T C A A G T G G T C  A G  
25b GT GT GAT GGATAT C T GC AGAAT T C GGC T T A G A C  A T C  T C T C A A G T G G T C A G

1 Oh GGC C T GAC AT T AAGAAAT C GAAAAAC AAAAT T AGAAAGAC AAC T GATAAT 
15a CAC C T GATAT TAAGAAAT GAAAAAAAAAA- T - GGAAAGGCAAC T GATAAT 
25b C GC C T CAC AT T AAGAAAT C GAAAAAC AAAAT T AGAAAGAC AAC T GATAAT
1 Oh C T T AGT CAT GAGT GC T T AGAAAC GT AC C GC AC AT AT AAGAAC AAGAGAC T 
15a C T C AGT CAT T AGT T C AT AGAAAAGT AC CAT AC AAATAAGAAC AAGAGAC T 
25b C T T AGT CAT GGGT - GT AAGAAAC GT AC CAC AC AT AT AAGAAC AAGAGAC T
1 Oh TACCTTTTTTGGCATCAGGCAAGCGGCCTTCCGGAGGTGGTTCAGATTTG 
15 a TAC C T T T T T T GGCAT CAGGCAAGC GGCCTTCC GGAGGT GGT T CAGAT T T G
2 5b TAC C T T T T T T GGC AT CAGGCAAGC GGC C T T C C GGAGGT GGT T CAGAT T T G
1 Oh T C C T GAGAT C AAT GAAT AT T T T T AGT TAAT AT GAAC GAAAT AC CAT C T C A 
15a T C C T GAGAT C AAT GAAT AT T T T T AGT TAAT AT GAAC AC AAT AC CAT C T C A 
25b T C C T GAGAT C AAT GAAT AT T T T TAGT TAAT AT GAAT GC AAT AC CAT C T C A
1 Oh AAC CAT GAC AC AAGAAT TGC TAC AC GAAAT TTTCTTGGTT C AAAGC T GT A 
15a AGC CAT GAC AC AAGC AT T GC T C CAC GAAAT T T T CAT GGT T C AAAGC T GT A 
25b AAC CAT GAC AC AAGAAT TGC TAC AC GAAAT T T T C T TAGT T C AAAGC T GT A
1 Oh GT C GAAGT T C T T GGAC T GT AC AC AAGGAC T AGGAAAGAGT GGC AAAGAT G 
15a GT C AAAGT T C T C GGAC AAT AC T GT C AGT AC AC AAGGAC T AGGC AAGAGT G
2 5b GT T GAAGT T C T C GGAC T GT AC AC AAGGAC T AGGCAAGAGT GGC AAAGAT G
1 Oh GT T T CAT GAAT C AC AGTAAT TAAGAT T GT T GAT GC T C AAGT AAT T T T T C T 
15a GTTTCATGAATCATGTCACCAAA*ATTGTTGATGCTCAAGAACTTTTTCT 
25b GT T T CAT GAAT CAC AGT AAT TAAGAT T GT T GAT GC T C AAGT AC T T T T T C T
1 Oh CAGGC T GT C AAGC CAC AAAT GAC AT GC AC GGT GC C T T T C GGC CAT T - GT - 
15a C C CAT C GT AT TAC TAAGAT GAAGT AGT GC AC GC AAAC TAT TAAC AT AGT T 
25b CAGGC T GT C C AGC CAC AAAT GAC AT GC AC GGT GC C T T T C GGC CAT T - GT -
1 Oh AAT AC TAAGAT - GAAGT AGT GC AT GC AAAC TAT TAAC AT AGC TAAC AT C A 
15 a AAC GT C AGC AT T GGAT C T C T GT CAC CAGAT CAAAT AGGT - - C T AAAT T—  
25b AAT AC TAAGAT - GAAGT AGT GC AT GC AAAC T T T TAAC AT AGC TAAC AT C A
1 Oh GAGC AT T GGAT C T C T GT CAC CAGAT CAAAT AGGT C T AAAT T AAGC TAAC A 
15a * AAGC T T AAC AAAAAAT GT CAT C AGAAGC AAC T AGAT T C TAAC T TAC T GA 
25b GAGC AT T GGAT C T C T GT CAC C AGAC CAAAT AGGAT T AAAT T AAGC TAAC A
1 Oh AAAAAT AT C AGAAGC AAC T AGAT T C T G - C T TAC TAAC C C AAAAGAAAAAA 
15 a C C CAAAAGAT AAAA- CAC AC C TAGAC T C TAC T C AAGC T GT AT T T GGAT C T 
25b AAAAAT AT C AGAAGC AAC T AGAT T C T GAC T TAC TAAC C C AAAAGAAAAAA
lOh AC AC AC C TAGAC T C TAC T C AGC T GGT AT T T GGAT C T T T C T T AGC T C T AAA 
15a C TAAC T C T AAAGGAT C AAC C AAAGC C T C CAC AT GAAT C T GC T GAC AT T GC 
25b AC AC AC C TAGAC T C TAAC T C AAGC T GGT AT T T GT AT C T T C T T AGC T C T GA
lOh GGAT C AAC C AAAGC C TAC CAC AT GAAT
15 a T GAGTAC GT T T GGC TAGT T
25b AGGAT C AAC C AAAGC C TAC CAC AT GAAT



BLAST homology searches permit a diagrammatic representation of the 

regions of homology with published ascorbate peroxidase sequences, in 

this case pea (Pisum sativum, Mittler and Zilinskas, 1991). Figure 3.19 

illustrates the full mRNA sequence of ascorbate peroxidase in pea. The 

primer sequences used to amplify ascorbate peroxidase in Rhododendron 

are highlighted, and show only a three base difference at the beginning of 

the primer region for the sense primer, and only a two base difference in 

the antisense primer. The stars represent bases which are identical in the 

Rhododendron sequence.

1 GAATTCGGCTTGTGCTCTCCTCGTGTCACTAGGGTTTAACTTCTTCGTTTTTG CTTCTTA  

6 1  GATTTCGAGAATCGTTTGCTATGGGAAAATCTTACCCAACTGTTAGTCCCGATTACCAGA  

1 2 1  AGGCCATTGAAAAGGCTAAGAGGAAGCTCAGAGGTTTTATCGCTGAGAAGAAATGCGCTC

5 '  U
k k k k k k k k k k k k k k k k k k k  k  k  k k  k  k  k  k  k  k  k  k  k  k  k

1 8 1  CTCTAATTCTCCGTTTGGCATGGCACTCTGCTGGTACTTTTGATTCCAAGACAAAGACTG

k k k  k k k k k k k k  k  k  k  k  k  k  k k  k  k  k  k  k  k  k  k  k  k  k k  k  k  k  k  k  k  k k k k k k k k  k

2 4 1  GTGGTCCTTTCGGAACAATTAAGCACCAAGCTGAGCTTGCTCATGGTGCTAACAACGGTC

* * * * * * * * *•* *■* * + *•**•***• *■* * * * * * * * * 

3 0 1  TTGATATCGCGGTTAGGCTGTTGGAGCCTATTAAGGAGCAATTCCCTATTGTGAGCTATG

k  k  k  k k k k k k k k k  k  k  k  k  k  k  k  k k k k k k k k k k k k k  k  k  k  k  k  k  k k  k  k  k  k  k  k  k

3 6 1  CTGATTTCTACCAGTTGG CTGGTGTTGTTGCTGTTGAGATTACCGGTGGACCTGAAGTTC

k k k k k k k k k k  k  k k  k  k  k k  k  k  k  k k k k  k k  k k k k  k  k  k k  k k k k k k k k k k k k k k k

4 2 1  CTTTCCACCCTGGTAGGGAGGACAAGCCTGAGCCACCACCTGAGGGTCGCTTGCCTGATG

3' L
k  k k  k  k  k k k k k k k k k k k k k k k k  k  k  k  k k  k

4 8 1  CCACTAAGGGTTCTGACCATTTGAGGGATGTGTTTGGAAAGGCTATGGGGCTTAGTGATC

5 4 1  AGGACATTGTTGCTCTATCTGGTGGTCACACCATTGGAGCTGCACACAAGGAGCGTTCTG  

6 0 1  GATTTGAGGGACCATGGACTTCTAATCCTCTCATTTTTGACAACTCATATTTCACTGAGT  

6 6 1  TGTTGACTGGTGAGAAGGATGGCCTTCTTCAGTTGCCAAGTGATAAGGCACTTTTGACTG  

7 2 1  ACTCTGTATTCCGCCCTCTTGTTGAGAAATATGCTGCGGATGAAGATGTTTTCTTTGCTG

7 8 1  ATTATGCTGAAGCACATCTTAAGCTCTCTGAGCTTGGATTTGCTGAAGCCTAAGTCACAG

8 4 1  TTGTTTGGTGTTTAGAGAGGAGCACTGTCCTGAATCTTACATAAATTTCATAGACGTTGC  

9 0 1  TTTTATTTTCAATGTGATTCATCTTAGTTGG GTAGCATTTTGGATGTATTTTGG AAGTTT  

9 6 1  GATTGTTTTCTCTATTGTTG ATCCTTGG TTAAATAACATTGTTAAGTGG TAATGCCCAG C  

1 0 2 1  TATTGCATTTTCCTGATAAAAAAAAAACCGAATT

Figure 3.19. Pea Ascorbate peroxidase mRNA complete sequence / Rhododendron homology 
(* = sense strand homology with Rhododendron , * = antisense strand homology with 
Rh ododen dr on).
Coloured sequence represents the primer sequences - upper (LI) and lower (L).
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Of the region highlighted in Figure 3.19, the Rhododendron ponticum 

fragments have 79% homology with ascorbate peroxidase mRNA in pea 

(refer also to BLAST homology searches, Appendix 2). It may be deduced 

from Figure 3.19 that APX primer set C was suitable for successful 

amplification of ascorbate peroxidase in Rhododendron species, and such 

primer sites may be suitable for the amplification of mRNA by Reverse 

Transcription PCR.

The R. ponticum APX fragment was derived from genomic DNA, and so 

to further interpret the sequence, the Rhododendron fragments were 

joined, the antisense strand being reversed and complemented, thus 

representing the partial DNA sequence of APX in Rhododendron. This is 

depicted in Figure 3.20. It can be postulated when studying this diagram, 

that there is at least one, if not two intron sites in the known sequence. 

There is no gene conservation with known published sequences between 

243 bp and 392 bp in the sense strand, and again after 458 bp. The first 

gap in homology may well be an intron, as after 458 bp, however the latter 

is less certain because of a reduced resolution of the electrophoresis. The 

small gap in homology in the antisense strand is also worthy of noting, but 

may however, be an evolutionary difference rather than an intron.

Successful cloning and sequencing of a small part of the ascorbate 

peroxidase gene in Rhododendron has yielded information about gene 

conservation between quite diverse species such as pea and 

Rhododendron, as well as PCR primer suitability. Specific sequence data 

for Rhododendron species which was previously unknown, can allow the 

design and generation of Rhododendron-specific primers for amplification 

of ascorbate peroxidase mRNA in Rhododendron ponticum.
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1 TTGTGATACCCCGCTCGGATCCACTAGTAACGGCCGCCAGTGTGCTGGAATTCGGCTTGA

5' U
k k k k k k k k k k k k k k k k k k k  k  k  ★ ★ * k  k  k  k  k  ★ k  k  k  k k k k k k k k

6 1  CTGGCATGGCACTCTGCTGGGACCTACGACGTGAAAACAAAAACAGGAGGGCCTTTCGGG

k k  k k  k  k  k k  k  k  k  k k k k  k  k  k  k  k  k  k  k k  k  k  k k k k k k k k  k  k  k  k  k  k  k  k  k  k  k

1 2 1  ACGATAAAGCACCCATCAGAGCTGGCTCACGAAGCAAACAACGGCCTTGAAATAGCAGTC

k k k k k k k k k k k k k k  k  k  k k k k k k k k  k  k  k  k  k  k  k  k  k  k  k  k  k  k  k  k k k k k k k k k

1 8 1  AGGCTGTTGGAGCCAATCAAGGAGCAGTTTCCAATCCTGTCTTATGCAGACTTCTACCAG

k

2 4 1  GTAACCTGTTGCAGTTGATATGATATACTGGTTACTGATTTGATTTG ATTTTTATGCTCA  

3 0 1  ACATATATTGTCGGCGTATTATTAGTCCACATTTTG CG TACTCTAACGTCCAAAATGACA

* * * * * * * * * *  * * * * * * * * * * * * *  *

3 6 1  TGTTCCTCTTTGTTATGTGATCATCAATTGAAGTTGGCTGGAATTGTTGCTGTTGAAGTC

k  k  k  k  k  k  k  k  k  k  k  k k k k k k k k k k k k k  k  k  k  k

4 2 1  ACAGGAGGCCCTGAGATTCCTTTCCACCCAGGCAGACCGGTTAGTGAGACTTACTACTTC  

4 8 1  TTTCTTTGCTTCTTATCG TAATATG TAAAACACACTTG G TTCTTCCTTTTTCTG TCACAA  

5 4 1  GGGTGGAAAATAGAAAGAAAAAAAAAGGACAAATGAGAAATGAGAAATAAAACTTTGGCC  

6 0 1  GAGTGATTGTAAGGATATAACAGGGCCGATGCTGCCTTTGCCCTTCACGCANANGTAGTT  

6 6 1  TGAGGTCCATTTGCTAGAACTGNGCCAAATTCTGATGTAATGGATGCAATAATTAATGGC  

7 2 1  TTAAATGGAAGTGGG

5'
ATTCATGTGGTAGGCTTTGGTTGATCCTTTAGAGCTAAGAAAGATCCAAATACCAGCTGA  

G TAGAGTCTAGGTTGTGTTTTTTTCTTTTGGGTTAGTAAGCAGAATCTAGTTGCTTCTGA  

TATTTTTTGTTAGCTTAATTTAG ACCTATTTGATCTGGTGACAGAGATCCAATGCTCTGA  

TGTTAGCTATGTTAATAGTTTGCATGCACTACTTCATCTTAGTATTACAATGGCCGAAAG  

GCACCGTGCATGTCATTTGTGGCTTGACAGCCTGAGAAAAATTACTTGAGCATCAACAAT  

CTTAATTACTGTGATTCATGAAACCATCTTTGCCACTCTTTCCTAGTCCTTGTGTACAGT  

CCAAGAACTTCGACTACAGCTTTGAACCAAGAAAATTTCGTGTAGCAATTCTTGTGTCAT

k  k  k  k  k  k  k k

GGTTTGAGATGGTATTTCGTTCATATTAACTAAAAATATTCATTGATCTCAGGACAAATC

k k k k  k  k  k  k k  k k k k  k  k k k k k k k k k k k k k k k k  k  k  k  k k

TGAACCACCTCCGGAAGGCCGCTTGCCTGATGCCAAAAAAGGTAAGTCTCTTGTTCTTAT

ATGTGCGGTACGTTTCTAAGCACTCATGACTAAGATTATCAGTTGTCTTTCTAATTTTGT

3' L
k k k k k k k k k k k k k k k  k  k k k k k

TTTTCGATTTCTTAATGTCAGGCCCTGACCATTTGAGAGATGTCTAAGCCGAATTCTGCA

GATATCCATCACACTGGCGGCCGCTCGAGCATGCATCTAGAGGGCCCAATTCGCCNGATA

GTGAN

Figure 3.20. R. ponticum  fragments joined together to make singular sense strand the - 
antisense sequence has been reversed and complementary sequence made to generate single 
sense strand (* = sense strand homology with Pisum sativum , * = antisense strand homology 
with Pisum sativum). Coloured sequence represents the primer sequences - upper (U) and 
lower (L).
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3.4 Cloning of Glutathione Reductase - Results and Discussion

3.4.1 Cloning attempt one

The same disciplines were adhered to in the cloning of this enzyme. 

DNA extractions of Rhododendron ponticum , R. hatsugiri and R. 

impeditum were prepared and amplified using glutathione reductase 

primer set A, and thermal cycle conditions stated in section 2.2.8. Figure 

3.21 illustrates the gel electrophoresis analysis of PCR. Lane 10 shows 

the only successful amplification with R. impeditum genomic DNA, with 

a products size of approximately 500 bp, and its reaction mix was 

subsequently used directly for replicate ligation reactions.

Figure 3.21. Gel electrophoresis of PCR using glutathione reductase primer set A. Lane 1: 

lkb  ladder (Gibco BRL). Lanes 2-4: R  ponticum  genomic DNA amplified, lanes 5-7: R  

hatsugiri genomic DNA amplified, lanes 8-10 R  impeditum  genomic DNA amplified.

Following transformation and incubation of the E. coli cultures, 

inspection of the colonies revealed several pure white colonies, which 

were isolated for plasmid purification by Wizard™ Minipreparation 

System (Promega). Plasmid DNA was analysed by gel electrophoresis, 

both before and after digestion with the restriction enzyme EcoR\ (Figure 

3.22). Bands of 3.9 kb and 500 bp are visible on the gel, indicating 

successful ligation and transformation of the insert and pT-Adv plasmid 

vector, thus these plasmid samples were sequenced by Cambridge 

Bioscience Autosequencing.
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Figure 3.22-.GR plasmids digested with £coR L Lanes 1 and 14 are lkb  ladder (Gibco BRL), 

lanes 2 & 4 are samples of undigested plasmid with R  impeditum  GR insert, lanes 3 & 5 are 

the former plasmids digested with EcoRI. Lanes 6-13 are APX inserts digested with EcoRI.

BLAST homology searches (Appendix 3) revealed that the inserts 

contained in the plasmid vector were not homologous to any published 

gluathione reductase sequence. As noted by the uniform chromatograms 

(Figure 3.23), the sequencing process was successful. Further 

consideration must therefore be given to the PCR protocol.
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Figure 3.23a. Glutathione reductase R. impeditum  replicate sense strand



Figure 3.23a Glutathione reductase R. impeditum  replicate antisense strand



figure 3.23b. Glutathione reductase R. impeditum replicate sense strand



Figure 3.23b. Glutathione reductase R. impeditum  replicate antisense strand



3.4.2 Cloning attempt two

For successful Competitive Reverse transcription PCR, an important 

criterion is the distinction between the amplification of the control and 

target sequences. If the control fragment is to be made from DNA, it is 

best if the primers span at least one intron site. Because previous PCR 

studies with glutathione reductase involved a fragment of only 500bp in 

length, and did not represent a fragment of the gene, new primers were 

designed, synthesised and tested using methods described in chapter 2, to 

meet this criterion. Table 3.2 shows the primer sequences designed and 

tested.

GR 1 Upper Primer 

GR 2 Lower Primer

5' CTATCGGTGCCGGAAGC 3'

3' T G AACACCCACT GTAGCAT C A 5'

GR A Upper Primer 

GR B Lower Primer

5' GCGAGCTTCCTTTTTCCACTA 3' 

3' AACCAGCTTTAACTGCAACCC 5'

Table 3.2. Glutathione Reductase Primer sequences used in PCR for subsequent product 

cloning (attempt two),

PCR tests revealed successful amplification using GR A & B primers, 

illustrated in Figure 3.24. The final PCR conditions consisted of a 

reaction mix containing lOx PCR Buffer (10 mM Tris-HCl, 50 mM KC1, 

Perkin Elmer), 1.5 mM MgCl2, (Perkin Elmer), 20 pmoles upper primer, 

20 pmoles lower primer (synthesised by Cruachem), 2.5 mM dNTPs 

(Perkin Elmer), 1 unit Taq Polymerase (Perkin Elmer) and lOng 

Rhododendron genomic DNA, in a total volume of 25 pi. The thermal 

cycle programme was set at 95°C for 5 minutes initially, followed by 1 

minute at 94°C, 2 minutes at 55°C and 3 minutes at 72°C for a total of 30 

cycles, and a final extension time of 10 minutes at 72°C. No results were 

gleaned from primers GR 1 & 2 throughout the tests. PCR reaction mixes 

using R. ponticum genomic DNA yielding a product of approximately 

2. lkb, shown in lanes 2-6 of Figure 3.24, were used directly in ligation.
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Figure 3.24. Gel Electrophoresis of PCR amplification using primers GR A & B. Lanes 1 and 

17 are lkb  ladder (Gibco BRL), lanes 2-6: amplification using R  ponticum  DNA, lanes 7-11: 

amplification using R  hatsugiri DNA, lanes 12-16: amplification using R  impeditum  DNA.

Incubation of the transformed E. co/i cultures on selective IPTG/X- 

Gal/ampicillin LB plates revealed unsuccessful cloning using this 

protocol. Due to time constraints on the project, work was unable to 

continue with the glutathione reductase gene. There are again several 

reasons why the cloning procedure for glutathione reductase was 

unsuccessful. The non-specific addition of dA to the ends of the PCR 

product, may in this case have been unsuccessful. The nucleotide 

addition may also be particularly unstable, therefore if the PCR mix was 

not used immediately, the dA ends may have been lost, rendering the 

ligation reaction inefficient.
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3.5 Conclusions

• Cloning by T/A overhang method proved to be a delicate technique to 

apply because of the vulnerability of the single base overhang. However, 

this approach was efficient when successful.

• A high degree of accuracy is necessary at every stage of the cloning 

procedure, particularly with the quality and age of the PCR fragment to 

be ligated into the pT-Adv plasmid vector.

• Initial cloning attempts for both genes possibly failed for several reasons:

- poor PCR product quality,

- inadequate concentrations of product for successful ligation,

- multiple PCR products within the sample (APX cloning attempt two).

• Correction of the above criteria resulted in successful cloning of a 

possible ‘ascorbate peroxidase’ fragments for Rhododendron ponticum , 

R. hatsugiri and R. impeditum and a possible ‘glutathione reductase’ 

fragment for R. impeditum.

• DNA sequencing and gene homology studies of the fragments from 

Riiododendron species revealed the 1.6 kb product to be ascorbate 

peroxidase.

• The 500 bp product cloned from R. impeditum was shown not to be a 

fragment of glutathione reductase, illustrating the importance of PCR 

primer design.

• Generation of new primers enabled the amplification of a larger product 

to be synthesised, however the sensitivity of the cloning procedure and 

time constraints prevented sequencing to identify the fragment.
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4.1 Introduction

Polymerase Chain Reaction (PCR) allows sensitive, selective detection 

and amplification of a target DNA fragment. Combined with its 

flexibility, these properties have led to the utilisation of the technique in 

DNA sequencing, cloning and mutagenesis (Ohan and Heikkila, 1993). In 

theory, PCR also offers an attractive means of detecting and analysing 

mRNA, provided an initial reverse transcription (RT) step is incorporated. 

Because of the sensitivity of the technique, RT-PCR has many potential 

advantages over established mRNA analyses, including sensitivity, 

rapidity and generation of complementary DNA (cDNA) samples that can 

be stored and used for the study of various genes (Phillips, Sarang and 

Gibson, 1993). Characterisation of mRNAs previously undetectable by 

conventional methods such as northern, dot or slot blots, hybridisation and 

RNase protection assays (Gilliland, et al., 1990; Wang and Mark, 1990; 

Ohan and Heikkila, 1993) and disease diagnosis (Ohan and Heikkila, 

1993) also contribute to RT-PCR becoming an invaluable technique. The 

sensitivity of the technique allows successful amplification with relatively 

small amounts of mRNA. As little as 60 pg total RNA (of which mRNA 

comprises less than 5%) can be used successfully, as demonstrated by 

Ohan and Heikkila (1993).

4.1.1 RT-PCR criteria

In theory, the design of the reverse transcription reaction is relatively 

straightforward, with only the primers and transcriptase enzyme to be 

decided upon. The efficiency of first strand cDNA synthesis is paramount 

to the success and reproducibility of the reaction. The quality of the RNA 

preparation used is an important contributor to the success of RT-PCR, 

less degraded preparations generating concise results (Philips, et al., 

1993).
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4.1.2 Reverse transcription primers

There are three types of DNA primer which can be used to initiate reverse 

transcription: a) random hexanucleotides, b) oligo (dT) primers and c) 

target-specific primers (Ohan and Heikkila, 1993; Philips, et a l, 1993). 

Random hexamers will generate cDNA from all RNA present in the 

reaction mix and are particularly useful for amplification of RNA larger 

than 2 kilobases (kb). Oligo (dT) primers are best applied when study of 

poly (A) RNA of 2-3kb in size is desired. Both these primer types can 

however, result in the coamplification of non-specific templates (Baier et 

al., 1993). Target specific primers (the antisense primer of DNA PCR 

primer pairs) are less often used in the majority of RT-PCR applications 

because optimal conditions must be determined for each mRNA. If used, 

design should be such that the primers span an intron site, thus 

contaminating DNA can be distinguished by size (Wang et al, 1989).

4.1.3 Reverse transcription enzymes

As with PCR, reverse transcription PCR must be tailored to suit specific 

applications and RNA. The type of transcriptase enzyme used is an 

important factor in the success of mRNA studies. At present, there are two 

specific transcriptase enzymes commonly in use, and more recent studies 

have determined the success of a DNA polymerase in reverse 

transcription reactions.

Avian Myeloblastosis Virus Reverse Transcriptase (AMV) is a DNA 

polymerase which can use DNA, RNA or RNA:DNA hybrids as a 

template, and requires the presence of an oligomer for template annealing 

and free magnesium in the reaction mix for optimum transcription. 

Because of its high RNase H activity, a phenomenon which causes 

cleaving of the extending strand if the enzyme pauses during transcription,
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AMV is best suited for producing relatively short cDNA structures. The 

high optimal temperature for enzyme efficiency (42°C) reduces problems 

of RNA secondary structure allowing increased efficiency of cDNA 

synthesis (Ohan and Heikkila, 1993).

Moloney Murine Leukemia Virus Reverse Transcriptase (M-MLV) is an 

RNA-dependent DNA polymerase requiring a DNA primer and an RNA 

template to synthesise a complementary DNA strand. This enzyme has a 

weaker inherent RNase H activity, an important factor in obtaining longer 

cDNA products (Promega Corporation, 1998) However, because of its 

lower optimal temperature for activity (37°C), M-MLV reverse 

transcriptase is less efficient when the RNA template exhibits secondary 

structures.

Thermus thermophilus DNA polymerase (Tth polymerase) has more 

recently been utilised in RT-PCR applications (Myers and Gelfand, 1991) 

because it has dual activity (RT and DNA polymerase) and is heat stable. 

In such cases, the same enzyme is used for both the reverse transcription 

and polymerase chain reaction, improving the efficiency of the overall 

procedure and providing more scope for automation. Tth polymerase also 

has the ability to read RNA secondary structures, regions best avoided 

when using AMV and M-MLV reverse transcriptase, because the higher 

optimal activity temperature allows for secondary structure denaturation.

4.1.4 mRNA quantification using RT-PCR

Reverse transcription PCR has made possible the study of rare and 

previously undetectable RNA transcripts (Gilliland et a l 1990). 

However, the quantification of the amount of mRNA in tissue or cells has 

been a more challenging procedure, restricted mainly by the amplification 

process. Because amplification is an exponential process, small
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differences in variables at the beginning of the reaction can lead to 

dramatic variation between replicate samples. Such variations include the 

concentration of the enzyme, dNTPs, magnesium, DNA and primers, all 

which can be alleviated to a certain extent by the use of master mixes 

(Wang et al., 1989; Gilliland et al., 1990; Chen et a l, 1993; Clontech, 

1993).

Such reaction characteristics make the quantification of mRNA difficult. 

However, the use of internal standards in RT-PCR can aid the collection 

of accurate quantitative data. Standards can be generated by different 

means - endogenous ‘housekeeping’ genes which are expressed at a 

constant rate in cells or tissues (Clontech, 1993), or exogenous standards 

which are added to the mix (Wang et al, 1989; Gilliland et al, 1990), 

sometimes referred to as Competitive RT-PCR. The use of 

‘housekeeping’ genes, such as p-actin (Philips et al, 1993), to quantify 

mRNA is restrictive as data can only ever be semi-quantitative because of 

differences in primer pairs for the target and standard mRNA (Wang et al, 

1989).

It is possible to determine initial amounts of mRNA in competitive RT- 

PCR by using a known dilution series of control fragment with constant 

amounts of target mRNA in reverse transcription. A graph of the ratio of 

final yield of competitor:target product yield versus known concentration 

of initially added control fragment will determine the amount of starting 

mRNA in the reaction. A ratio of 1:1 is thought to be representative of the 

initial amount of target template (Gilliland et al, 1990; Ohan and 

Heikkila, 1993). Alternatively, the amount of mRNA can be determined 

by extrapolation against the standard curve created from the internal 

standard (Wang et al, 1989).
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4.1.5 Competitive RT-PCR

In the present study, an attempt was made to use a specifically prepared 

exogenous template as the internal standard in reverse transcription PCR, 

in a truly competitive fashion because the control and target are 

competing for the same primers and reaction reagents in the same tube. 

One method of quantifying mRNA by PCR is by using a synthetic RNA 

molecule as the competitor (Wang et al, 1989), which consists of a linear 

arrangement of target sense primer sequences, followed by the 

complementary sequences to the antisense primers in the same order. This 

type of competitor can allow the quantification of several target mRNA 

species without altering reaction conditions.

Ideally, the competitor fragment would have the same sequence as the 

target mRNA, with a small mutation (introduction of a restriction site, for 

example) to discern one from the other. Thus the efficiency of reverse 

transcription or amplification would not be compromised by sequence 

differences or size (Clontech, 1993). Alternatively, the DNA fragment 

generated by PCR with the same primers may be used as the competitor 

fragment (Gilliland et al, 1990). Because target-specific primers are 

designed to span an intron site (Wang et al, 1989), it is feasible to 

generate a synthetic transcipt (RNA) molecule from genomic DNA PCR 

to create a competitor which will amplify with comparable efficiency as 

the target mRNA sequence. However, using such an approach calls for 

reaction optimisation for each mRNA studied.

Although RT-PCR offers a very powerful tool to study and quantify 

mRNA and gene expression in a wide variety of biological situations, it 

can prove to be a technically demanding procedure. The efficiency of first 

strand synthesis is paramount to the success of the reaction, thus the 

quality and quantity of initial RNA is important. As the quality of RNA 

decreases, so does the efficiency of the reaction, likewise as the quantity
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of the RNA increases, the efficiency of first strand synthesis decreases 

(Philips et al, 1993). Consideration of all reaction parameters must be 

given in order to achieve success. The type of primers, enzyme and 

internal standard used all contribute to the accuracy and efficiency of 

reverse transcription PCR. Developing an assay to glean information 

regarding mRNA quantification to study mechanisms such as chilling and 

oxidative damage, for a woody species such as Rhododendron, can only 

serve to increase our understanding of genetic stimuli and responses.
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4.2 Materials and Methods

4.2.1 Design of Rhododendron-specific APX primers and PCR 

optimisation

Using the ascorbate peroxidase data obtained from the cloned 

Rhododendron ponticum fragments (Figure 3.20), APX primer set C was 

altered to be specific to the Rhododendron species, named APX primer 

set R and illustrated in Table 4.1. Once synthesised by Cruachem, the 

primers were used to amplify R  ponticum genomic DNA to produce a 

discrete product of 1.6 kb. Primers were tested initially using a 52°C 

annealing temperature.

APX Set R Upper Primer 5' ACGACGTGAAAACAAAAACA 3'

APX Set R Lower Primer 5' ATTCGGCTTAGACATCTCTCA 3'

Table 4.1 Rhododendron-specific ascorbate peroxidase primers

As mentioned previously in section 2.1.2, several PCR conditions must be 

reviewed to attain an individual PCR product, including annealing 

temperatures (52 and 55°C), primer concentration (5, 10, 15 and 20 

pmoles), the availability of free magnesium (0.375, 0.75, 1,125 and 1.5 

mM MgCl2) in the reaction and the concentration of free nucleotides 

(0.625, 1.25, 1.875 and 2.5 mM dNTPs). Because of the significantly high 

homology of the two primer sets, primer mismatch tests were also 

perfonned, using upper primer C and lower primer R, and vice versa. 

Once a discrete product of 1.6 kb had been obtained and PCR optimised, 

reverse transcription tests could begin.
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4.2.2 Extraction of RNA

4.2.2.1 Total RNA Isolation Reagent (Advanced Biotechnologies)

This protocol is based on a patent pending guanidine salt/phenol 

extraction solution available from Advanced Biotechnologies.

Fresh plant tissue (100 mg) was ground in liquid nitrogen with sterile 

quartz sand using a mortar and pestle. To this, 1ml of Total RNA Isolation 

Reagent (14 M guanidine salts, urea and phenol, concentrations not given; 

Advanced Biotechnologies, TRIR) was added and the mixture allowed to 

freeze in the mortar and pestle. Once the homogenised mixture had 

thawed, it was transferred to a 1.5 ml Eppendorf tube, 200 pi of 

chloroform was added and the mix was shaken vigorously for 15 seconds 

before a 5 minute incubation on ice. The homogenate was then 

centrifuged at 12,000 g for 15 minutes at 4°C.

The upper, aqueous phase was transferred to a fresh Eppendorf tube and 

an equal volume of isopropanol added. This mixture was incubated at - 

20°C for 30 minutes to allow full precipitation of the RNA. Samples were 

centrifuged at 12,000 g for 10 minutes at 4°C, and the supernatant 

removed. The white pellet was washed twice in 75% (v/v) ethanol, by 

vortex and centrifugation at 7,500 g for 5 minutes at 4°C. The pellet was 

dried briefly in a laminar flow cabinet before resuspension in 50 pi 

DEPC-treated water*. The samples were ready for analysis by TAE (Tris- 

Acetate electrophoresis buffer; 0.04 M Tris-Acetate, 0.01M EDTA, pH 

8.0) gel electrophoresis and RT-PCR.

* All chemical reagents were treated w ith ' 0.1% (v/v)

Diethylpyrocarbonate (DEPC) overnight then autoclaved. All glassware 

had been baked at 200°C before use to eliminate contamination with 

RNase enzymes.
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4.2.2.2 RNA extraction using QIAGEN® column

This protocol is derived from the QIAGEN® Plasmid Purification Kit. 

Nucleic acids are extracted from fresh plant tissue and bound to the 

QIAGEN Anion-Exchange Resin in the column under high salt and pH 

conditions. DNA, proteins, dyes and low molecular weight impurities are 

removed by a column wash and the RNA eluted in a low salt buffer and 

precipitated by isopropanol, giving an RNA sample free from DNA 

contamination.

Fresh tissue (300 mg) was ground to a fine powder in liquid nitrogen and 

sterile quartz sand using a mortar and pestle. Twelve ml of a two-phase 

system containing an equal volume of RNA Lysis buffer (1% (v/v) Triton 

X-100; 500 mM MOPS pH 7.0, 50 mM EDTA, 2 M urea, 5% (v/v) P- 

mercaptoethanol, pH adjusted to 7.0,) and Ultrapure buffer-saturated 

phenol (pH 7.0, Gibco BRL) was added to the mortar and pestle and the 

mixture allowed to freeze. Once thawed at room temperature, the 

homogenous mixture was transferred to a sterile 50 ml centrifuge tube and 

vortexed for 30 seconds before shaking at room temperature for 25 

minutes.

The mixture was centrifuged at 3500 g  (Mistral 2000R, MSE) for 15 

minutes at 4°C and the aqueous phase retained. Following a second 

extraction with buffer-saturated phenol (pH 7.0) the mixture was 

centrifuged at 3632 g  (4°C) for 15 minutes, and the aqueous layer 

transferred to a fresh centrifuge tube. An equal volume ice-cold 

chloroform was added this, and the mixture vortexed for 30 seconds. 

Following centrifugation for 15 minutes at 3632 g (4°C), the aqueous 

nucleic acid layer was transferred to a fresh centrifuge tube and adjusted 

to contain 350 mM NaCl using 5 M NaCl and stored on ice.
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The QIAGEN-tip 100 column was equilibrated with 5 ml Equilibration 

Buffer A (400 mM NaCl, 50 mM MOPS pH 7.0, 15% (v/v) ethanol, 

0.15% (v/v) Triton X-100) before the nucleic acids were adsorbed onto 

the column. The column was washed with 5 ml Buffer A, before adding 5 

ml Elution Buffer R (400 mM NaCl, 50 mM MOPS pH 7.0; 15% (v/v) 

ethanol, 0.15% (v/v) Triton X-100). The eluted RNA was captured in 0.8 

volume isopropanol and incubated at -20°C for one hour (samples were 

stored at -70°C at this stage). The RNA was pelleted by centrifugation at 

maximum speed in a microcentrifuge for 30 minutes at 4°C. The pellet 

was washed in ice-cold 70% (v/v) ethanol and air-dried in a laminar flow 

cabinet for 5-10 minutes before resuspension in 50 jul DEPC-treated 

sterile water.

4.2.3 Determination o f RNA concentration and visualisation by gel 

electrophoresis

A 10 pi aliquot of RNA sample was diluted in a total of 400 pi sterile 

DEPC-treated water. The diluted sample was placed in a quartz cuvette 

and the OD26o measured against a DEPC-water blank. A solution of RNA 

with an OD26o of 1.0 contains approximately 40 pg RNA per ml.

1% (w/v) agarose gels were used to analyse PCR products and DNA 

extractions. 1% (w/v) agarose (Seakem Le, Flowgen) was melted in 0.5x 

Tris Acetate EDTA (TAE) buffer (Sigma) and poured into the appropriate 

gel casting tray, Horizon 58 (minigel); Horizon 11.14 (midigel) or 

Horizon 2025 (maxigel) (Gibco BRL). Once set, the gel was immersed in 

TAE buffer and the wells loaded with 4 pi RNA sample which had been 

incubated for 15 minutes at 65°C with 10 pi RNA sample buffer (64% 

(v/v) formamide, 26 mM MOPS, 6.45 mM sodium acetate, 0,6 mM 

EDTA) and 2 pi RNA loading buffer (50% (v/v) glycerol, 1 mM EDTA, 

0.4% (w/v) bromophenol blue, 1 mg/ml ethidium bromide). The gel was
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electrophorised at a voltage suitable to the gel size and viewed on the UV 

transilluminator and photographed using the IS-500 Gel Documentation 

System.
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4.2.4 Generation of cRNA competitor

The PCR competitor was produced by in vitro transcription using T7 

RNA polymerase. This was procured in kit form as the RiboMAX™ Large 

Scale RNA production system (Promega).

4.2.4.1 Preparation o f the DNA template

The plasmid samples used were obtained as described in Chapter 3, by the 

Wizard™ Plus Minipreparation DNA Purification System (Promega). The 

DNA template was linearised using the restriction enzyme BamYR (Gibco 

BRL). Plasmid (2 pi) was mixed with 2 pi enzyme and 2 pi of reaction 

buffer 2 (150 mM NaCl, 10 mM Tris-HCL, 10 mM MgCl2, 1 mM 

dithiothreitol, pH 7.9 @ 25°C; Gibco BRL) and added to 14 pi nuclease- 

free water to a total volume of 20 pi. This reaction mix was incubated for 

4 hours at 37°C, then heated to 85°C for 2 minutes to deactivate the 

enzyme. Once the samples had been quick-chilled on ice for 5 minutes, 

the linearised template was precipitated from the reaction mix by sodium 

acetate, as outlined in Section 3.2.5c, and resuspended in 15 pi nuclease- 

free water, then, 6 pi of this was used for analysis by gel electrophoresis 

and the remaining 9 pi for in vitro transcription.
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4.2.4.2 In vitro transcription

The following reaction was prepared at room temperature, the 

components added in the order shown:

1 T7 Reaction buffer contained 400 mM HEPES-KOH, pH 7.5, 120 mM 

MgCl2, 10 mM spermidine and 200 mM DTT.

2T7 Enzyme Mix contained RNA Polymerase, rRNasin® Ribonuclease 

Inhibitor and Yeast Inorganic Pyrophosphatase.

The reaction was thoroughly mixed by gentle pipetting and incubated at 

37°C for 4 hours.

4.2.4.3 Removal o f DNA template after transcription

One unit per microgram of template RQ1 RNase-free DNase (Promega) 

was added to the reaction mix and incubated for 15 minutes at 37°C. The 

synthesised RNA was extracted with one volume of TE-saturated phenol: 

chloroform: isoamyl alcohol (25:24:1; pH 4.5) by vortexing for one 

minute before centrifugation at top speed in a microcentrifuge for 2 

minutes. The upper, aqueous layer was transferred to a fresh tube and one 

volume of chloroform: isoamyl alcohol (24:1) added. The sample was 

vortexed and centrifuged as before, and the aqueous layer transferred to a 

fresh Eppendorf tube.

5x T7 Reaction Buffer (Promega)1

rNTPs (25 mM ATP, CTP, GTP, UTP) (Promega)

Linear DNA template (50-100 pg)

T7 Enzyme Mix (Promega)2 

Nuclease-Free Water to a final volume of

4pl 

6pl 

8pl 

2 pi 

20pl
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To precipitate the RNA, 0.1 volumes of 3 M sodium acetate (pH 5.2) and 

1 volume of isopropanol were added to the sample and incubated at -20°C 

for 30 minutes, before centrifugation at top speed for 10 minutes. The 

supernatant was removed and the pellet washed with excess 70% (v/v) 

ethanol. The pellet was dried briefly in a laminar flow cabinet before 

resuspension in DEPC-treated (nuclease-free) water to a volume identical 

to that of the starting volume of the reaction. The samples were stored at - 

70°C.

4.2.5 Reverse Transcription

4.2.5.1 Reverse transcription using AM V reverse transcriptase 

(Promega)

A 20 pi reaction mix was prepared by adding the following components in 

the order listed:

Magnesium Chloride 4pl

AMV Reverse Transcription 5x Buffer* 2pi

dNTP mixture 2pl

Recombinant RNasin® Ribonuclease Inhibitor (Promega) 0.5pl

AMV Reverse Transcriptase (Promega) 0.65pl

Oligo (dT)15 Primer (Control)/ Ascorbate Peroxidase 

Downstream Primer 0.5pg

1.2 kb Kanamycin Positive Control RNA / Substrate RNA 1 pg

Nuclease-Free Water to a final volume of 20pl

*AMV Reverse Transcription buffer contained 250 mM Tris-HCl (pH 8.3 

@ 25°C), 250 mM KC1, 50 mM MgCl2, 2.5 mM spennidine and 50 mM 

DTT.

127



Following incubation at 42°C for 30 minutes, the reaction mix was heated 

to 99°C for 5 minutes and quick-chilled on ice to deactivate the enzyme 

and prevent further transcription. The mix was then used immediately in 

PCR, outlined in section 4.2.6.

128



4.2.5.2 Reverse transcription using M-MLV RNase H  minus reverse 

transcriptase

All the reagents used in the reverse transcription reaction, with the 

exception of the primer, were obtained from Promega.

A 20 jiil reaction was prepared by adding the following reagents in the 

order listed:

Magnesium Chloride 4jal

M-MLV Reverse Transcription 5x Buffer* 2jul

dNTP mixture 2jul

Recombinant RNasin® Ribonuclease Inhibitor 0.5pl

M-MLV Reverse Transcriptase (RNase H minus) 0.8jal

Oligo (dT)15 Primer (Control)/ Ascorbate Peroxidase 

Downstream Primer 0.5pg

1.2 kb Kanamycin Positive Control RNA / Substrate RNA 1 jug 

Nuclease-Free Water to a final volume of 20pl

*M-MLV Reverse Transcriptase buffer contained 250 mM Tris-HCl (pH

8.3 @ 25°C), 375 mM KC1, 15 mM MgCl2 and 50 mM DTT.

This reaction mix was incubated for 60 minutes at 37°C. Once completed, 

the sample was heated to 99°C for 5 minutes, then quick-chilled on ice for 

5 minutes to deactivate the M-MLV Reverse Transcriptase and prevent it 

from binding to the cDNA.
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4.2.6Polymerase chain reaction

A 25 jul reaction mix was prepared immediately after construction of the 

single-stranded cDNA fragment by combining the following reagents:

Magnesium Chloride (Promega) lpl

Reverse Transcription 5x Buffer (Promega)* 2 pi

APX Upstream Primer 50 pmol

APX Downstream Primer 50 pmol

Taq DNA Polymerase (Perkin Elmer) 2.5 units

First Strand DNA Reaction 5jul

Nuclease-Free Water to a final volume of 25pl

*The type of reverse transcription buffer used corresponded to the enzyme 

used in the reverse transcription assay.

The thermal cycle programme used for PCR was set at 95°C for 5 minutes 

initially, followed by 1 minute at 94°C, 2 minutes at 55°C and 3 minutes 

at 72°C, for a total of 30 cycles, and a final extension period of 10 minutes 

at 72°C. The reaction was carried out in either a Perkin Elmer 480 thermal 

cycler, or a Techne PHC-3 thermal cycler / cyclogene thennal cycler. The 

products of the reaction were analysed by gel electrophoresis.

4.2.7 Reverse transcription-polymerase chain reaction optimisation

As with previous PCR applications using genomic DNA, the optimisation 

of PCR to successfully amplify complementary DNA sequences was 

necessary. Primer (5, 10,15 and 20pmoles) magnesium chloride (0, 0.375, 

0.75, 1,125 and 1.5 mM MgCl2) and dNTP (0.625, 1.25, 1.875 and 2.5 

mM dNTPs) concentrations were adjusted in both reverse transcription 

and PCR to obtain a product of 1.6 kb for the competitor fragment and
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approximately 800 bp for the target cDNA, and only those two bands 

when the templates were combined in the reaction tubes. A suitable ratio 

of competitor:target cDNA was also established through a series of 

competitor dilutions and concentrations.

Because of limited PCR success in samples which had been transcribed 

with AMV reverse transcriptase, the PCR enhancing agent, Dimethyl 

Sulphoxide [DMSO, Frackman et al., 1997) was added to the PCR mix (0, 

1, 5 and 10% (v/v)] to increase the specificity of the reaction. Because no 

single additive is guaranteed to improve the result, the non-fat milk 

cocktail BLOTTO (Bovine Lacto Transfer Technique Optimiser) was also 

added to both the reverse transcription and polymerase chain reactions in 

an attempt to rule out reaction inhibition by plant compounds, such as 

polyphenolics (De Boer et al., 1995). BLOTTO (10% (w/v) skimmed milk 

powder, 0.2% (w/v) NaN3) was added at a concentration of 2% (v/v), to 

both the reverse transcription and PCR reactions, only the PCR reaction or 

not at all, and results analysed by gel electrophoresis.
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4.3 Results and Discussion

4.3.1 Design o f Rhododendron-specific APX primers and PCR 

optimisation

As with previous PCR optimisation experiments, annealing temperature 

was the initial variable to be altered. Figure 4.1 illustrates the initial PCR 

using the newly designed Rhododendron-specific primers using R. 

ponticum, R. hatsugiri and R. impeditum genomic DNA and an annealing 

temperature of 52°C. Multiple banding on the gel suggests little specificity 

o f the primers, hence the annealing temperature was increased to 55°C. 

No result was given by this PCR analysis, as was also noted for PCR tests 

with magnesium chloride variations (0.375; 0.75; 1.125 and 1.5 mM), and 

dNTP concentrations (0.625, 1.25, 1.875 and 2.5 mM).
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Figure 4.1. PCR amplification of genomic Rhododendron DNA using Rhododendron-specific 

APX primers. 4.1A: Lanes 1 & 17 are lkb  ladder (Gibco BRL), lanes 2-11: R  ponticum  

genomic DNA used, lanes 12-16: R  hatsugiri DNA used. 4.1B: Lanes 1 & 17 are lkb  ladder, 

lanes 2-6: R  hatsugiri DNA, lanes 7-16: R  impeditum  DNA.

PCR amplification with the primer set mismatches (the reaction mix 

consisted of PCR buffer (10 mM Tris-HCl, 50 mM KC1; Perkin Elmer),

1.5 mM M gCf (Perkin Elmer), 20 pmoles upper primer, 20 pmoles lower 

primer (synthesised by Cruachem), 2.5 mM dNTPs (Perkin Elmer), 1 unit
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Taq DNA Polymerase (Perkin Elmer) and 10 ng DNA, in a total volume 

of 25 jlxI )  gleaned a product of 1.6 kb, the expected fragment size, when 

the upper Rhododendron-specific primer and the lower primer from set C 

were used, as depicted in Figure 4.2a. Figure 4.2b illustrates the result of 

mismatches using the upper APX C primer and the lower Rhododendron- 

specific primer, which produced a band of less than 500 bp in size, 

possibly an artefact of PCR.

1 2 3 4 5 6 U  9 Ki l l  1213141516 171

Figure 4.2. PCR amplification of Rhododendron genomic DNA using primer set mismatches. 

4.2A: PCR using upper primer APX R, lower primer APX C. Lanes 1 & 18 are lkb ladder 

(Gibco BRL), lanes 2-6: using R  ponticum  DNA, lanes 7-11: using R  hatsugiri DNA, lanes 12- 

16: R  impeditum  DNA. Lane 17 water control. 4.2B: PCR using mismatch upper primer APX 

C and lower primer APX R. Lanes as 2A.

Although Figure 4.2a shows a successful PCR amplification with a 

discrete product of 1.6kb for R. ponticum  and R. impeditum, R. hatsugiri, 

the gels displayed evidence of a secondary product of larger size when 

amplifying R. hatsugiri DNA (see lanes 7-11) thus further PCR 

optimisation was necessary.

Magnesium chloride, dNTP and primer concentrations were all 

scrutinised as before, and the results are shown in Figures 4.3-4.5. 

Magnesium chloride concentration was noted to have a significant effect 

on PCR as shown in Figure 4.3. As the concentration of magnesium 

chloride decreases, so does the amount of PCR product. Illustrated in
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Figure 4.3b, a drop in concentration to 1.125mM greatly reduces the 

amount of PCR product in comparison with 1.5mM MgCl2 (Figure 4.3a). 

Reactions with 0.75 and 0.375mM MgCl2 resulted in no detectable 

amplification (results not shown).
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Figure 4.3. PCR with MgCh variation. 4.3A: PCR using APX primer R (upper) and C (lower) 

and 1.5mM MgCL. Lanes 1 & 12 are lkb ladder (Gibco BRL), lanes 2-4: JR. ponticum  DNA, 

lanes 5-7: R. hatsugiri DNA, lanes 8-10: R. impeditum  DNA. Lane 11 water control. 4.3B: 

PCR using APX primer R (upper) and C (lower) and 1.125mM MgCh. Lanes as 4.3A.

Figure 4.4 illustrates the effect of altering the dNTP concentration in the 

PCR reaction mixture. Decreasing the amount of dNTPs available from 

2.5mM (Figure 4.4a) to 0.625mM (Figure 4.4d) in the reaction simply 

results in less product amplification. This characteristic is also noted in 

experimentation of primer concentration alteration (Figure 4.5). Reducing 

the primer concentration from 20pmoles (Figure 4.5a) to 15pmoles 

(Figure 4.5b) and lOpmoles (Figure 4.5c) decreases the amount of 

amplified product, with 5pmoles primer (Figure 4.5d) giving no product 

whatsoever. However, in all the optimisation experiments, the larger 

secondary product was still amplified when PCR was successful using R. 

hatsugiri DNA.
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Because discrete PCR products had been obtained for R. ponticum  and R. 

impeditum, the primer mismatch APX R (upper) APX C (lower) were 

deemed of suitable specificity to use in reverse transcription PCR.

Figure 4.4. PCR with dNTP variation. 4.4A: PCR using APX primer R (upper) and C (lower) 

and 2.5mM dNTPs. Lanes 1 & 12 are lkb ladder (Gibco BRL), lanes 2-4: R  ponticum  DNA, 

lanes 5-7: R  hatsugiri DNA, lanes 8-10: R  impeditum  DNA. Lane 11 water control. 4.4B: 

PCR using APX primer R (upper) and C (lower) and 1.875mM dNTPs. Lanes as 4.4A. 4.4C: 

PCR using 1.25mM dNTPs, lanes as above, 4.4D: PCR using 0.625mM dNTPs, lanes as above.
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Figure 4.5. PCR with primer variation. 4.5A: PCR using APX primer R (upper) and C (lower) 

and 20pmoles each primer. Lanes 1 & 12 are lkb  ladder (Gibco BRL), lanes 2-4: R  ponticum  

DNA, lanes 5-7: R  hatsugiri DNA, lanes 8-10: R  impeditum  DNA. Lane 11 water control. 

4.5B: PCR using APX primer R (upper) and C (lower) and 15pmoles each primer. Lanes as 

5A. 4.5C: PCR using 10 pmoles each primer, lanes as above, 4.5D: PCR using 5 pmoles each 

primer, lanes as above.
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4.3.2 RISA Extraction - Total RNA Isolation Reagent (TRIR)

As illustrated by Figure 4.6, the RNA preparations obtained appeared as a 

smear with low molecular weight material when electrophorised on a 1% 

(w/v) TBE agarose gel, with no high molecular weight nucleic acids, 

suggesting the samples are free of DNA. Although the RNA extracted 

appeared degraded, the preparations were used in initial reverse 

transcription experiments. TAE gels (1% w/v agarose) were subsequently 

used to visualise RNA preparations because of the inconclusive nature of 

the TBE gel analysis.

12 3 4

__________
Figure 4.6. 1% (w/v agarose) TBE gel electrophoresis of RNA preparations using TRIR. 

Lanes 1 & 2 are extracts prepared from R. ponticum , lanes 3 & 4 are preparations from R. 

impeditum.

4.3.3 R!\A Extraction - QlAGEN® column

TAE (1% w/v agarose) gel electrophoresis analysis of initial total RNA 

extractions carried out at the RNA laboratory, SAC Edinburgh, (see 

Figure 4.7a), indicates high quality total RNA preparations. Both lanes 1 

and 2 clearly indicate the presence of two ribosomal RNA bands 

suggesting RNA to be of reasonable quality with some degradation. 

Extractions by this method were subsequently used in all RT-PCR 

procedures. Some loss in quality was noted in the RNA preparations 

performed at the Molecular Ecology Laboratory at SAC Auchincruive
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(Figure 4.7b). This is possibly due to the lack of facilities available and 

sharing of equipment, although aseptic techniques were used throughout.

1 2 1 2

b

Figure 4.7. 1% (w/v agarose) TAE gel electrophoresis of RNA extracts prepared using 

QIAGEN column protocol. 4.7A: Lane 1: R  impeditum  extraction, lane 2 :R  ponticum  

extraction performed in the RNA laboratory, SAC Edinburgh. 4.7B: RNA extractions as 

4.7A, but performed in the Molecular Ecology laboratory, SAC Auchincruive.

4.3.4 Generation o f complementary RNA competitor by In vitro 

transcription

Before transcribing the desired PCR insert, the plasmid must first be 

linearised by digestion with a restriction enzyme, in this case BamHI. As 

indicated on the pT-Adv plasmid vector map (see Figure 3.1, Chapter 3), 

BamHI has only one recognition site in the plasmid construct, therefore 

will serve to cleave the plasmid once, creating a linear fragment. Figure 

4.8 depicts gel electrophoresis analysis of R. ponticum  APX insert 

plasmid samples following digestion with the restriction enzyme. The 

sample shown in lane 5 was successfully digested, producing a fragment 

of 5.5 kb in size (3.9 kb plasmid plus 1.6 kb insert), and was subsequently 

used for in vitro transcription of the fragment.
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Figure 4.8. BamH\ digestions. Lane 1: lkb  ladder (Gibco BRL), lanes 2-8 are replicate 

samples of plasmid containing APX PCR fragment of 1.6kb. Lane 5 depicts successful 

cleavage of pT-Adv plasmid with the R  ponticum  APX insert using BamHI with a discrete 

band of 5.5kb.

The success o f in vitro transcription can be viewed as an RNA sample on 

a 1% TAE gel, as is illustrated in Figure 4.9. The Rhododendron PCR 

fragment gave rise to an RNA fragment similar in appearance to the 

kanamycin positive control RNA (Promega). Further confirmation of 

success of in vitro transcription was necessary by reverse transcription- 

PCR of the sample and control.

Figure 4.9. In vitro Transcribed RNA, R  ponticum  APX fragement and kanamycin control. 

Lane 1: in vitro transcript created from APX PCR fragment ligated into pT-Adv plasmid 

vector, lanes 2 and 3 blank, lane 4: kanamycin positive control RNA (Promega).
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4.3.5 Reverse transcription PCR using AM V reverse transcriptase

Initial attempts to reverse transcribe RNA samples extracted by the Total 

RNA Isolation Reagent (TRIR, Advanced Biotechnologies) protocol gave 

poor results. This was probably due to the poor quality of the RNA 

extracted from plant tissue (Figure 4.6). The kanamycin positive control 

RNA supplied with reverse transcription reagents (Promega), however 

performed well in RT-PCR.

Figure 4.10. 1% TBE gel electrophoresis of RT-PCR using TRIR extracted RNA. Lanes 1 and 

8 are lkb ladder (Gibco BRL), lanes 2 & 3: R. ponticum  total RNA used, lanes 4 & 5: R. 

impeditum  total RNA used. Lane 6 represents first strand synthesis of 1.2kb kanamycin 

control, lane 7 RT-PCR of 1.2kb kanamycin control.

RNA extracted using the QIAGEN column protocol initially performed 

much better in RT-PCR using AMV reverse transcriptase. Figure 4.11 

represents gel electrophoresis analysis o f this reaction. Lane 5 illustrates 

the RT-PCR result using total RNA from R. ponticum , indicating 

successful, although unspecific, amplification.
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Figure 4.11. AMV RT-PCR. Lanes 1 and 12 are lkb  ladder (Gibco BRL), lanes 2-3: R  

impeditum  RNA (QIAGEN method) RT-PCR, lanes 4-5, RNA from R  ponticum, the first lane 

of each representing first strand synthesis. Lanes 7-9 are duplicates of in vitro transcription 

samples, the first of each representing first strand synthesis, second RT-PCR product, 

predominant band 1.6kb. Lanes 10 & 11: Kanamycin positive control RNA, first strand 

synthesis and RT-PCR product, 1.2kb.

The results from the RNA extracts were inconclusive at this stage, 

although the predominant bands present in duplicate samples of the in 

vitro transcript samples were 1.6kb in size, comparable to the original 

plasmid ascorbate peroxidase PCR insert size. The presence of multiple 

bands in these samples is probably due to overloading of the reaction with 

RNA, hence AMV RT-PCR optimisation was initiated.

Firstly, serial dilutions of the amounts o f total RNA from R. ponticum  and 

R. impeditum (Figure 4.12a) and in vitro transcript (Figure 4.12b) were 

tested, alongside a serial dilution of RNA / in vitro transcript mix; i.e. 

RNA target template and competitor fragment (Figure 4.12c). Apart from 

successful amplification of the competitor fragment of 1.6 kb, there was 

little to conclude from R. ponticum  or R. impeditum RT-PCR. Addition of 

the PCR enhancing agent DMSO did little to improve the result of the 

reaction for either RNA samples (Figure 4.13a) or competitor fragment 

(Figure 4.13b) and indeed is decreased further the specificity of the 

reaction.
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Figure 4.12. RT-PCR serial dilutions of RNA. 4.12A: ianes 1 and 8  are lkb  ladder (Gibco 

BRL), lanes2-4: 1:10,1:100 and 1:1000 dilutions of R  impeditum  RNA used in RT-PCR, lanes 

5-7: 1:10, 1:100 and 1:1000 dilutions of R  ponticum  RNA used in RT-PCR. 4.12B: lanes 1& 8  

are lkb ladder, lanes 2-7: 1:10, 1:100 and 1:1000 dilutions of in vitro transcription duplicates. 

4.12C: lanes 1 and 6 : lkb ladder, lanes 2-5: 1:10, 1 : 1 0 0  and 1 : 1 0 0 0  dilutions of R  ponticum  

RNA and in vitro transcript (competitor fragment) in same reaction tube.

Figure 4.13. Addition of DMSO to Polymerase Chain Reaction. 4.13A: Lanes 1 and 10 are lkb  

ladder (Gibco BRL), lanes 2-5: R  impeditum  RNA with 0 ,1 ,5  and 10% DMSO added to PCR 

mix, lanes 6-9: R  ponticum  RNA with 0 ,1 ,5  and 10% DMSO added to PCR mix. 4.13B: lanes 

1 and 10 are lkb ladder, lanes 2-9 are duplicates of competitor fragment with 0 ,1 , 5 and 10%  

DMSO added to PCR mix.
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Adjusting the reaction temperature at which AMV reverse transcriptase 

optimally functions was tested in an attempt to improve target specificity. 

Temperatures of 42°C (the recommended enzyme optimum), 50°C and 

58°C were used, illustrated by Figures 4 .14a, b and c respectively. At 58°C 

with 20 pmoles primer (lane 6, Figure 4 .14c) the RNA sample had been 

reduced to a single produced of 1.6 kb, most probably due to DNA 

contamination. The addition of too much competitor fragment caused 

similar results for all treatments. Little difference was noted in any of the 

reaction temperatures regarding primer concentration in reverse 

transcription (lanes 2-5, Figures 4 .14a-c).

Reducing the amount of primers available in PCR as well as reverse 

transcription did little to improve results (Figure 4.15a-d), and no specific 

product was noted for RNA amplification in any of the tested reverse 

transcription temperatures, 42°C (Figure 4.15a); 50°C (Figure 4.15b) and 

58°C (Figure 4.15c). The in vitro transcription competitor fragment RT- 

PCR however, did show an increase in specificity, with only one 

dominant product of 1.6 kb being observed (Figure 4.15c). Figure 4.15d 

illustrates that non-specific banding present in the RNA samples was not 

due to primer-dimer formation at 42°C as lanes 2-5 are blank.
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Figure 4.14. AMV Reverse Transcription reaction temperature variation, and primer 

concentration variation in RT only. 4.14A: RT reaction temperature 42°C. Lanes 1 and 10 are 

lkb ladder (Gibco BRL), lanes 2-5 are competitor fragment 1:1000 dilution transcribed using 

0.5pg, 0.375pg, 0.25pg and 0.125pg lower primer (respectively) added to reverse 

transcription. Lanes 6-9: R  ponticum  amplified with same primer concentrations as 

competitor. 4.14B: RT reaction temperature 50°C. Lanes and samples as 4.14A. 4.14C: 

reaction temperature 58°C. Lanes and samples as 4.14A.
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Figure 4.15. AMV Reverse Transcription reaction temperature variation. 4.15A: RT reaction 

temperature 42°C. Lanes 1 and 10 are lkb  ladder (Gibco BRL), lanes 2-5 are competitor 

fragment 1:1000 dilution transcribed using 0.5pg, 0.375pg, 0.25pg and 0.125pg lower primer 

(respectively) added to reverse transcription and 20, 15, 10 and 5 pmoles primer in PCR. 

Lanes 6-9: R  ponticum  amplified with same primer concentrations as competitor. 4.15B: RT 

reaction temperature 50°C. Lanes and samples as 4.15A. 15C: reaction temperature 58°C. 

Lanes and samples as 4.15A. 4.15D: water controls at 42°C, reaction mixes as RNA and 

competitor fragments.

The universally poor result o f RT-PCR tests observed in Figures 4.14 and 

4.15 may have been due to plant compounds co-extracted with RNA from 

Rhododendron, inhibiting the success of both reverse transcription and 

PCR. Addition of 2% (w/v) BLOTTO to the reaction, a compound known 

to attenuate the inhibition of PCR due to such compounds (De Boer, et 

al., 1995) did not however improve reaction results. As shown in Figure 

4.16, RNA samples which had BLOTTO present in the RT-PCR reaction 

resulted in no amplification (Figure 4 .16a), likewise with BLOTTO added 

to PCR only (Figure 4 .16b) and one in vitro transcript duplicate generated 

a product of approximately 500 bp (Figure 4.16c, lanes 6-9), and was 

subsequently discarded from further use in experimentation
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Figure 4.16. Addition of 2% BLOTTO. 4.16A: Addition of 2% BLOTTO to reverse 

transcription and PCR mixes. Lanes 1 & 10 are 1 kb ladder (Gibco BRL). Lanes 2-3: 

duplicates of R. ponticum  RNA, lanes 4-5: duplicates of R  impeditum  RNA, lanes 6-9 

replicates of in vitro transcript competitor fragment. 4.16B: Addition of 2% BLOTTO to 

PCR mix only. Lanes as 4.16A. 16C: no addition of 2% BLOTTO, RT-PCR mixes as original. 

Lanes as 4.16A.

As Figure 4.16c illustrates, the original RT-PCR reactions were also 

functioning poorly. Reverse transcription may not be optimised due to the 

enzyme used in the reaction, thus tests were initiated using M-MLV 

reverse transcriptase as the reaction catalyst.
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4.3.6 Reverse transcription PCR using M -M LV RNase H  minus reverse 

transcriptase

Initial results using M-MLV reverse transcriptase showed a predominant 

product of approximately 800 bp for both R. ponticum  and R. impeditum 

cDNA amplification (Figure 4.17b) in comparison to AMV reverse 

transcriptase reactions (Figure 4.17a). The competitor fragment of 1.6 kb 

also showed an increase in amplification as compared to reverse 

transcription using AMV reverse transcriptase. All subsequent RT-PCR 

protocols were performed using M-MLV reverse transcriptase. However, 

a degree of optimisation was necessary to improve results using this 

enzyme.
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Figure 4.17. Comparison of RT-PCR using AMV and M-MLV Reverse Transcriptases. 

4.17A: RT-PCR using AMV RT. Lanes 1 and 8  are lkb ladder (Gibco BRL), lanes 2-3: R  

ponticum  RNA, lanes 4-5: R  impeditum  RNA, lanes 6-7, competitor fragment, 1.6kb. 4.17B: 

RT-PCR using M-MLV RT. Lanes as 4.17A, lanes 9 & 10 are water controls using AMV 

(Iane9) and M-MLV (lane 10) respectively. Lane 11, lkb  ladder.

As with AMV reverse transcriptase, optimisation tests by adjustment of 

annealing temperature (55-58°C, Figure 4.18a-d), primer concentration (5, 

10, 15 and 20 pmoles, Figure 4.18a-d) and MgCl2 concentration (1.5, 

1.125, 0.75 and 0.375 mM, Figure 4.19) in the PCR mix. The dNTP 

concentration (2.5, 1.875, 1.25 and 0.625 mM, Figure 4.20 A & B) was 

adjusted in the reverse transcription mix.
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Figure 4.18. Primer concentration and annealing temperature variation. 4.18A: 55°C 

annealing temperature. Lanes 1 & 11 are lkb  ladder (Gibco BRL). Lanes 2-4: R  ponticum, R  

impeditum  and competitor fragment respectively, 20pmoles primers used in PCR. Lanes 5-7: 

as lanes 2-4, but 15pmoles primer. Lanes 8-10, lOpmoles primer. 4.18B: 56°C annealing 

temperature, lanes as 4.18A. 4.18C: 57°C annealing temperature, lanes as 4.18A. 4.18D 58°C 

annealing temperature, lanes as 4.18A.

Figure 4.19. MgCh variation in PCR mix. Lanes 1 & 14 are lkb  ladder (Gibco BRL). Lanes 2- 

5: R  ponticum, R  impeditum , competitor fragment and water control respectively, 1.5mM 

MgCL used in PCR. Lanes 6-9: 0.75mM MgCh used in PCR, lanes as 2-5. Lanes 10-13: no 

MgCh used in PCR mix, lanes as 2-5.
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Figure 4.20. dNTP variation in RT mix. 4.20A: Lanes 1 & 10 are lkb  ladder (Gibco BRL), 

lanes 2-5: R  ponticum, R  impeditum , competitor fragment and water control respectively, 

2.5mM dNTPs used in RT. Lanes 6-9: 1.875mM dNTPs used in RT, lanes as 2-5. 4.20B: Lanes 

1 & 10 are lkb  ladder, lanes 2-5 as 4.20A, 1.5mM dNTPs used in RT, lanes 6-9: 0.625mM  

dNTPs used in RT.

Figures 4.18-4.20 show that there is little difference in the final result of 

the PCR optimisation tests. Although the presence o f a predominant 

product of approximately 800 bp may suggest successful amplification of 

Rhododendron RNA, there is evidence of smaller, non-specific PCR 

products. There are several reasons for the lack of specificity: the quality 

of the RNA extract prepared under laboratory conditions, poor primer 

design, or poor first strand cDNA synthesis (Philips et al., 1993).

Variations of the amounts of cDNA added to the PCR reaction as well as 

a reduction in the number of amplification cycles is shown in Figure 4.21. 

Here, 1 ql cDNA was added, as opposed to 5 jul originally, and 20 thermal 

cycles used instead of 30, achieved a single RNA product of 800 bp. This 

however may be considered a false positive result, because other non

specific products will still be amplified, but to such a small degree as not 

to be readily visible upon gel electrophoresis analysis.
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Figure 4.21. PCR amplification of lp l Rhododendron cDNA, using only 20 thermal cycles. 

Lane 1: lkb ladder (Gibco BRL) Lanes 2-5: R. ponticum, R  impeditum, competitor fragment 

and water control respectively, lp.1 cDNA used in each case. Lanes 6-9: replicates of lanes 2-5.

4.3.7 Development o f competitive RT-PCR assay to study ascorbate 

peroxidase gene expression

Despite multiple products in Rhododendron cDNA amplification, tests 

were carried out using the competitor (1.6 kb) fragment and the target 

RNA in the same tube to develop the competitive RT-PCR assay.

Figure 4.22 illustrates initial tests using target RNA:competitor fragment 

ratios. Whilst Figure 4.22a shows the amplification results of 

Rhododendron RNA alone, Figure 4.22b depicts the amplification of 

competitive RT-PCR. Ratios of 2.5:1 (R. ponticum , lane 2, Figure 4.22b) 

and 1:1 (R. impeditum lane 7, Figure 4.22b) proved successful, amplifying 

products of 1.6 kb and 800 bp, the expected size of the cDNA molecule 

for ascorbate peroxidase in Rhododendron species.
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Figure 4.22. Competitive RT-PCR tests. 4.22A: lanes 1 and 6  are lkb ladder (Gibco BRL). 

Lanes 2-3: 12.5 and lO îl R  ponticum  RNA used in RT respectively, lanes 4-5: 12.5 and 10p.l 

R  impeditum  RNA used in RT. 4.22B: Target RNA:Competitor fragment ratios. Lanes 1 & 8  

are 1 kb ladder, lanes 2-4: 12.5,10 and 5pl R  ponticum  RNA used with 5pl competitor. Lanes 

5-7: 12.5,10 and 5pl R  impeditum  RNA used with 5ja1 competitor.

Replication of the reaction illustrated in Figure 4.23 (lanes 9-10) indicated 

that these ratios were optimal for competitive RT-PCR. The smaller bands 

which appeared throughout all the results are most likely due to the 

partially degraded quality of the RNA preparations used in the reactions 

(Figure 4.7b), which despite repeated attempts, could not be improved 

upon.

The final reaction conditions derived from these optimisation tests were 

as follows: reverse transcription was carried out at 37°C for one hour, 

using 0.5jag lower (reverse) primer; and PCR using 1.5mM MgCl2, 

2.5mM dNTPs, 20 pmoles forward and reverse primers, annealing 

temperature 55°C for 2 minutes for 30 thermal cycles.
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Figure 4.23. Replication of Competitive RT-PCR ratios. Lanes 1 & 11 are lkb  ladder (Gibco 

BRL), lanes 2-4: 12.5, 10 and 5pl R  ponticum  RNA only, lanes 5-7: 12.5, 10 and 5pl R  

ponticum  RNA and lp l competitor fragment added, lanes 8-11 12.5, 10 and 5pl R  ponticum  

and 5pl competitor added.

With these ratios firmly determined and repeated with these cDNA 

samples, the RT-PCR assay could be used to study the changes in amounts 

of mRNA found in Rhododendron ponticum  micropropagules when 

exposed to 4°C, a temperature known to induce chilling damage and 

oxidative stress (O’Kane et al., 1996). The assay at this stage of 

development however, would provide semi-quantitative data because of 

the presence of smaller non-specific products, which would also be 

competing in the amplification reaction. R. ponticum  micropropagules 

exposed to 20°C or 4°C were studied over a period of 14 days, sampling at 

days 0, 2, 4, 6, 8, 10 and 14 and total RNA extracted for competitive RT- 

PCR.

Experimental naivety led to the failure of this first chilling study. Because 

the establishment of the assay had been implemented by using ratios of 

amounts of RNA preparation and competitor fragment, nothing was 

known of the absolute concentrations of total RNA present in either 

samples or competitor. For every fresh RNA extract that was used in the 

assay, as was so for each sampling day, the concentration of RNA would 

change in the reaction mix, thus rendering the ratios useless and any 

comparable studies redundant. Figure 4.24 illustrates this well. Figure 

4.24a shows limited success of the assay for day 0 samples, when no
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micropropagules had been exposed to 4°C. However, by day 14 (Figure 

4.24b), when there may be more RNA present in the extracts because of 

chilling stress increasing total RNA in tissues, or an increased proficiency 

in the extraction technique, the assay failed to amplify the competitor 

fragment.
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Figure 4.24. Competitive RT-PCR chilling experiment. 4.24A: Day 0 R. ponticum samples. 

Lane 1: lkb  ladder (Gibco BRL). Lanes 2-5: 20°C samples, lanes 6-9: 4°C samples. 4.24B: 

Day 14 R. ponticum samples. Lane 1: lkb ladder. Lanes 2-5: 20°C samples, lanes 6-9: 4°C 

samples.

Figure 4.25 illustrates the difference between competitive RT-PCR using 

volume ratios (Figure 4.25b) and concentration ratios (Figure 4.25b). 

Determination of the concentrations of the RNA extracted, and of the 

competitor fragment achieved more comparable results through 

competitive RT-PCR. Tests using various amounts o f RNA resulted in 2 

ng total RNA and 6 ng competitor fragment being used in subsequent 

assays. The assay results are not o f sufficient quality to glean absolute 

quantitative data due to a high degree of background amplification, but 

could possibly provide comparable data of a semi-quantitative nature, 

allowing comparisons between treatment days, indicating possible 

changes in ascorbate peroxidase gene expression.
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Figure 4.25. Competitive RT-PCR using volume ratios and concentration ratios. 4.25A: Day 8  

samples. Lane 1: lkb  ladder (Gibco BRL), lanes 2-5: R  ponticum  samples exposed to 20°C, 

lanes 6-9: samples exposed to 4°C. Volume ratio used 2.5pl:lp.l RNA: competitor. 4.25B: Day 

8  samples. Lane 1: lkb  ladder, lanes 2-9 as 25A, concentration ratio used lng:3ng RNA: 

competitor.
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4.4 Conclusions

• PCR primer design based on homologous sequence data allowed specific 

amplification of APX sequences from R. ponticum, R, hatsugiri and R. 

impeditum.

• Good quality total RNA extracts were obtained from R. ponticum 

micropropagules using a protocol incorporating QIAGEN® columns.

• A competitor cRNA fragment was created by in vitro transcription of the 

cloned R. ponticum APX product.

• RNA samples (both plant and synthetic cRNA) were repeatedly and 

successfully amplified by reverse transcription PCR using M-MLV 

reverse transcriptase and Taq DNA polymerase.

• A ratio of 1:3 total plant RNA : cRNA competitor was found to repeatedly 

amplify two fragments suitable for comparable mRNA studies by 

competitive RT-PCR.
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5.1 Introduction

Many environmental conditions, e.g. flooding, drought, ozone and 

temperature extremes are well known to induce oxidative stress in plants 

(Foyer and Mullineaux, 1994). Abscisic acid and salt stress in rice, for 

example, induce an up-regulation of the novel genes RAB21 and SalT 

(Mundy and Chua, 1988), thought to be involved in intracellular transport 

(Drew et al., 1993). Attack from pathogens will also induce a stress 

response, perhaps attributed to the hypersensitive response (see Mehdy et 

al., 1996).

One major area of research that provokes interest, however, is the 

relationship between the stress of temperature extremes and oxidative 

stress mechanisms in plant and animal systems. Because of this, there is 

now a greater appreciation for the two important groups of stress proteins: 

the heat shock proteins and the antioxidant proteins. This chapter deals 

specifically with antioxidant enzymes and their role in chilling-stressed 

plant tissue.

5.1.1 Oxidative stress and temperature extremes in plants

Extremes of temperature are widely known to lead to an increase in 

cellular lipid peroxidation, a phenomenon particularly marked following 

exposure to low temperatures (Levitt, 1980; Biggs, 1996). This raises the 

question of what actually causes the increase in peroxidation, as it is often 

the indicator of cellular oxidative stress (Rice-Evans et al., 1991).

Investigations on chilled soybeans revealed increased levels of superoxide 

generation (0 2*), hence also hydrogen peroxide (H20 2) by dismutation 

(Bell and Burdon, unpublished observations, see Burdon, 1993). It is 

possible that during these reactions, the superoxide radical can combine
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with protons in the membrane lipids to yield hydroperoxy radicals (H 02*) 

which are capable of initiating the lipid peroxidation reaction. Peroxidised 

lipids do not only interfere with membrane fluidity and function. The lipid 

radicals formed during the peroxidation process may also damage 

neighbouring membrane proteins and affect their activity.

5.1.2 Superoxide production in plants

The increases in cellular lipid peroxidation that occur upon chilling stress 

may be an outcome of increased superoxide production. It is thought that 

the sources of superoxide generation in plants include the mitochondria 

and chloroplasts, the main site within the latter being the reducing site of 

Photosystem I (PS I) (Asada et al., 1974). The electron which is generated 

in Photosystem II by the oxidation of water is transported to PS I, causing 

the reduction of NADP. Superoxide molecules are generated by the self

oxidation of the thylakoid-bound primary electron acceptor of PS I. When 

the thylakoids are illuminated by a flash of light for a single complete 

reaction, one molecule of superoxide is generated. The superoxide anions 

released from the thylakoid membranes are disproportionated by CuZn- 

superoxide dismutase yielding hydrogen peroxide. Superoxide dismutases 

are found in either the chloroplast (localised in the stroma), mitochondria 

or the cytosol (Asada et al. 1974).

Asada (1992) has since established the role of ascorbate peroxidase in 

scavenging the hydrogen peroxide in the chloroplasts, and in the 

regeneration of ascorbate from the primary oxidation product of the 

peroxidase reaction (monodehydroascorbate) and from its 

disproportionation product (dehydroascorbate). Monodehydroascorbate is 

reduced into ascorbate by electron donation from NADPH, whilst 

dehydroascorbate is recycled into ascorbate by utilising reduced 

glutathione as a reductant. Both reductants are supplied through PSI. The
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oxidised glutathione subsequently produced is recycled back to its 

reduced form by the action of the second key antioxidant enzyme, 

glutathione reductase.

If the levels of the enzymes produced by these mechanisms do not become 

elevated during oxidative stress, whether induced by drought, 

waterlogging, ozone, paraquat or chilling, then the plant may suffer 

detrimentally from the outcome of excessive toxic chemicals in its tissues 

and organs. Superoxide generation can lead to the peroxidation of lipids 

and impaired membrane function (Burdon et al. 1994), ultimately causing 

death, if it cannot be scavenged by antioxidant systems.

The aim of the study was to determine possible differences in the 

activities of ascorbate peroxidase and glutathione reductase between 

plants exposed to chilling temperatures and plants grown at 20°C. 

Observations of the levels of mRNA in plants exposed to such 

experimental regimes, in conjunction with physiological data, i.e. the 

specific activities of the enzymes, may give an indication of antioxidant 

defence mechanisms induced in Rhododendron ponticum on exposure to 

chilling stress. Because of the diverse habitat range of R. ponticum, an 

insight into environmental stress mechanisms of such a tolerant plant 

would be of particular interest in aiding the understanding of defence 

mechanisms and could aid plant improvement by genetic modification. 

Using tissue cultured material would provide a clean source of plant 

material in an easily controllable environment.
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5.2 Materials and Methods

5.2.1 Ascorbate peroxidase assay -1

The protocol used was adapted from the methods of Berkowitz and Gibbs 

(.1992) and Nakano and Asada (1980). It is based on the oxidation of 

ascorbate by ascorbate peroxidase.

Shoot samples (0.3 g) were ground in excess liquid nitrogen using a 

mortar and pestle and the resulting powder transferred to a 50 ml Coring 

centrifuge tube. Extraction buffer (2 ml; 50 mM MES (pH 6.2), 0.33 M 

sorbitol, 10 mM NaCl, 1 mM MgCl2, 2 mM EDTA, 0.5 mM KH2P 0 4 and 

1 mM ascorbate) was added to the powder and the mixture vortexed for 

10 seconds. The homogenate was filtered through two layers of muslin 

and the filtrate retained. This was centrifuged at 750 g for 5 minutes at 

4°C and the supernatant retained for protein determination (Section 5.2.4).

The pellet was resuspended in 2 ml HEPES-sorbitol buffer (50 mM 

HEPES (pH 7.6), 0.33 M sorbitol, 10 mM NaCl, 1 mM MgCl2, 2 mM 

EDTA and 0.5 mM KH2P 0 4) and gently layered onto 2 ml 40% (v/v) 

percoll This was centrifuged at 2,500 g for 10 minutes at 4°C. The pellet 

obtained was resuspended in 0.5 ml HEPES-sorbitol buffer and 

centrifuged at 2,500 g  for 15 minutes to remove all traces of percoll. The 

resulting pellet was resuspended in 100 pi HEPES-sorbitol buffer and the 

mixture sonicated for one minute in 6x10 second bursts to fully lyse the 

chloroplasts, immediately prior to performing the enzyme activity assay.

The assay reaction solution used contained 50 mM potassium phosphate 

(pH 7.0), 0.5 mM ascorbate and 0.1 mM EDTA, 979 pi of which was 

placed in a 1 ml quartz cuvette. To this, 20 pi enzyme extract and 1 pi 

lOmM hydrogen peroxide were added to initiate the reaction. The change 

in absorbance at 290 nm at 22°C was monitored over three minutes.
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Ascorbate peroxidase activity can be expressed in pmoles ascorbate

oxidised per hour per mg protein:

Specific Activity = (AA/min x ml reaction x 106umol/mol x 60 min/hour) 
(units/mg protein) (E x mg protein xlOOOml/litre)

where E = molar extinction coefficient of ascorbate (2.8 x 103 M^cm'1).

5.2.2 Ascorbate peroxidase assay - 2

The following protocol was derived from the method of Sen Gupta (1993) 

and also measures the rate of oxidation of ascorbate.

Plant tissue (0.3-0.5 g) was ground in liquid nitrogen with a mortar and 

pestle. Homogenisation buffer (10 ml; 50 mM HEPES (pH 7.0), 1 mM 

ascorbate, 1 mM EDTA, 1% v/v Triton X-100 and 1% w/v 

polyvinylpyrrolidone) was added and the mixture allowed to freeze. Once 

thawed at room temperature, the homogenate was transferred to a clean 

Coring centrifuge tube and vortexed for 10 seconds. Following 

centrifugation at 3600 g for 15 minutes at 4°C, the supernatant (enzyme 

extract) was retained for use in protein determination (Section 6.2.4) and 

enzyme activity.

The reaction solution contained 50 mM HEPES (pH 7.0), 1 mM EDTA, 1 

mM ascorbate (974 pi) and 25 pi enzyme extract which was placed into a 

quartz cuvette. The reaction was initiated by the addition of 1 pi 10 mM 

hydrogen peroxide and the change in absorbance at 290 mn monitored 

over 3 minutes at 22°C.

Results were expressed as previously stated in section 5.2.1.
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5.2.3 Glutathione reductase assay

This protocol, based on the method stated by Sen Gupta, (1993), measures 

the rate of oxidation of NADPH by glutathione reductase.

Shoot samples (0.1 g) were ground in excess liquid nitrogen with a mortar 

and pestle. Extraction buffer (1 ml; 50 mM potassium phosphate (pH 7.0), 

0.1 mM EDTA, 1% w/v polyvinylpyrrolidone) was added to the frozen 

ground tissue and the mixture left to thaw at room temperature and 

transferred to a clean 1.5 ml Eppendorf tube. After vortexing (10 

seconds), the homogenised mixture was centrifuged at 12,000 g for ten 

minutes at 4°C. The supernatant was transferred to a fresh Eppendorf tube 

and used for the determination of enzyme activity and protein content, the 

latter using Bradford’s Reagent (Section 5.2.4).

The assay reaction mixture contained 0.1 M Tris-HCl (pH 7.8); 20 mM 

EDTA and 0.5 mM oxidised glutathione (GSSG). The reaction was 

initiated by the addition of 150 pM NADPH and 25 pi enzyme extract, 

and its progression monitored by the rate of change in absorbance at 340 

mn over 3 minutes at 22°C. Initial experiments with this protocol gave 

inconsistent absorbance readings, some samples showing no enzyme 

activity whatsoever. Therefore the protocol was subject to a degree of 

modification.

The amount of substrate used in the reaction, i.e. the amount of NADPH, 

was altered to achieve a consistent result between similarly treated 

samples. A series of concentrations were tested, ranging from the 

recommended 50 mM to 250 mM.
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Glutathione reductase activity was expressed in terms of pmoles NADPH

oxidised per hour per mg protein:

Specific Activity = (AA/min x ml reaction x 106umol/mol x 60 min/hour) 
(units/mg protein) (E x mg protein x l OOOml/litre)

where E = molar extinction coefficient of NADPH (6.2 x 103 M ^cm'1).

5.2.4 Protein determination by Bradford's Reagent

Protein concentration was determined according to the method of 

Bradford (1976). A modified Bio-Rad Protein Assay kit was used. The 

assay is based on the chromogenic reaction of protein with Coomassie 

Brilliant Blue G-250 in the reagent. The protocol was followed as stated:

The dye reagent (450 ml solution of dye, phosphoric acid and methanol) 

was supplied as a five-fold concentrate, therefore was diluted in four 

volumes of HPLC grade water (BDH). The mixture was filtered through 

Whatman No. 1 paper and stored at room temperature in a glass bottle. 

Fresh solution was prepared every two weeks. Several dilutions of Bovine 

Serum Albumin (BSA) were prepared containing between 0.2 and 

1.4mg/ml for construction of a protein standard curve, which was 

prepared every time the assay was performed.

BSA standard (0.1 ml), appropriately diluted samples and sample buffer 

(blank) were placed in clean, dry test-tubes. Diluted reagent (5 ml) was 

added to these and mixed by inversion several times. After an incubation 

time of ten minutes, the samples absorbencies were read at 595 nm versus 

the reagent blank. The OD595 of the standards were plotted against the 

concentration of BSA. Protein concentrations of the unknown samples 

were estimated from the standard curve.
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5.2.5 Competitive reverse transcription polymerase chain reaction (RT- 

PCR)

The assay used to study the amount of mRNA in a given sample was 

derived and is described in full in Chapter 4, using Qiagen Column RNA 

extraction, as outlined in Section 4.2.2.2. Densitometry readings, obtained 

in a similar manner as DNA concentration determination (Section 2.2.7), 

were used to calculate the percentage of mRNA in the RT-PCR. Readings 

were obtained for the control fragment, the background and the mRNA 

fragment in successful RT-PCR lanes. The background reading was 

subtracted from both fragment readings and the sample reading calculated 

as a percentage of the control, whether it be greater or less than 100%.

5.2.6 Chilling experiment 1. A Comparison o f Plants Held at 2(fC  and 

4°C

Rhododendron ponticum plant tissue cultures were established and 

maintained as stated in Section 2.2.1. For experimental purposes, 

quadruplicate cultures for each sampling day were either transferred to a 

Sanyo Fitotron growth cabinet held at 4°C, or left in the growth room held 

at 20°C. The light intensity remained the same for both growth 

environments. All callus tissue was removed from the cultures before 

enzyme and nucleic acid extractions were initiated. All the cultures used 

in this experiment had been subcultured three to four weeks previously. 

Micropropagules were removed each sampling day for use in ascorbate 

peroxidase specific activity (Section 5.2.2), glutathione reductase specific 

activity (Section 5.2.3) and RT-PCR (Section 5.2.5) assays.
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5.2.7 Chilling Experiment 2 -A  Comparison o f Plants Held at 20°C and 

2°C

Rhododendron ponticum plant tissue cultures were established and 

maintained as stated in Section 2.2.1. For experimental purposes, 

quadruplicate cultures for each sampling day were either transferred to a 

Sanyo Fitotron growth cabinet held at 2°C, or left in the growth room held 

at 20°C. The light intensity remained the same for both growth 

environments. All callus tissue was removed from the cultures before 

enzyme and nucleic acid extractions were initiated. All the cultures used 

in this experiment had been subcultured three to four weeks previously. 

Micropropagules were removed each sampling day for use in ascorbate 

peroxidase activity (Section 5.2.2), glutathione reductase activity (Section

5.2.3) and RT-PCR (Section 5.2.5) assays.
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5.3 Results

5.3.1 Ascorbate peroxidase assay 1

Although Figure 5.2 illustrates a significant difference between the two 

temperature treatments, when the assay was performed, the change in 

absorbance of the reaction mixture increased over the three minute 

observation, suggesting a reduction o f ascorbate. Many researchers 

(Nakano and Asada, 1980; Rensburg and Kruger, 1994; Franck, et al., 

1996; Kirtikara and Talbot, 1996; Rao, Paliyath and Ormond, 1996) state 

that the OD29o should decrease during the experiment, thus indicating that 

the assay performed was not specific for ascorbate peroxidase in 

Rhododendron tissue, but was perhaps also detecting one of the other 

antioxidant enzymes such as dehvdroascorbate reductase. Due to time 

constraints, a second protocol was tested to determine the activity of 

ascorbate peroxidase in Rhododendron tissues.

umol ascorbate oxidised/mg protein

Figure 5.1. The activity profile of ascorbate peroxidase using Assay 1 (adapted from Nakano 

and Asada, 1980 and Berkowitz and Gibbs. 1992). A significant difference between treatments 

is observed after 3 and 7 days exposure to 2 0  and 4UC. («=.?)
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5.3.2 Ascorbate peroxidase assay 2

This protocol achieved constant decreases in OD290 during the three 

minute test period for both chilling experiments, and it is this protocol 

which was used to determine the activity profiles illustrated in Figures 5.4 

and 5.8.

5.3.3 Glutathione reductase assay - optimisation

Figure 5.2 illustrates the effects of NADPH concentrations on glutathione 

reductase activity in the assay. As the amount of NADPH added was 

increased, the reproducibility of the reaction increased, with all four 

samples of Rhododendron ponticum behaving similarly at 250 jaM 

NADPH, noted by the small degree of error between the replicates. 

Subsequently, it was this concentration that was used in all following 

experiments.
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Figure 5.2. The graph represents the influence of NADPH concentration on the activity of 

glutathione reductase in enzyme assay. Summary statistics for this optimisation experiment 

can be found in Appendix 4.

5.3.4 Protein determination using Bradford's Reagent

Figure 5.3 shows a typical protein standard curve obtained for each 

protein assay. The O D 5 9 5  readings of the unknown samples for R. 

ponticum  were used to estimate the protein content from the curve and the 

amount of protein entered into the specific activity formula (Section

5.2.3).

BSA Standard C urve, Day 0

0 . 8

0 . 6
1/5
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£ 0-4 
O

0.2

0

Figure 5.3. Illustration of a typical BSA Standard curve obtained from Bradford's Reagent 

Protein Assay. OD 5 9 5  readings of unknown samples were used to estimate protein content.

200 6040
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5.3.5 RNA Extraction

Figure 5.4 illustrates one replicate of the RNA extracts from chilled and 

non-chilled R. ponticum micropropagules for each sampling day that were 

obtained for use in Competitive RT-PCR. As stated in chapter 5, the 

quality of the RNA preparation is crucial to the success of RT-PCR. 

Unfortunately in this case, all the extracts, with the exception of day 10, 

show partial degradation, with the presence of only one of the ribosomal 

RNA bands. The extracts from Day 10 samples illustrate the presence of 

two ribosomal bands, indicating a less degraded sample of total RNA. The 

higher quality of the sample is reflected in the result of RT-PCR for day 

10, shown in Figure 5.7f.
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Figure 5.4. 1% (w/v agarose) TAE agarose gel electrophoresis of total RNA extractions from 

chilled and non-chilled R. ponticum  micropropagules for chilling experiments 1 (5.4a) and 

2(5.4b). Lanes 1 & 2 represent extracts from 20°C and 4°C/2nC day Orespectively, followed by 

day 2, 20°C/4°C and so on.
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5.3.6 Chilling experiment 1. A comparison o f plants held at 2(/}C and

rc

Figure 5.5 shows that initial exposure to 4°C caused a decline in the 

activity of ascorbate peroxidase (APX). By day 2, there was a significant 

difference in the activity between the two treatments, ascorbate 

peroxidase in the cultures exposed to 4°C having decreased approximately 

two-fold. As the length of exposure of cultures at 4°C progressed, the 

activity of ascorbate peroxidase increased, returning to a level similar to 

that of the control cultures at 20°C by day 8, suggesting that the plant may 

have reached a level of acclimation.

umol ascorbate oxidised/mg protein
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Figure 5.5. Activity of Ascorbate Peroxidase in R. ponticum  held at 20°C and 4°C over a 

period of 14 days. (n=4)

However, the activity profile for cultures held at 20°C showed a sharp 

increase in APX activity on day 8, with the activity increasing 3-fold by 

day 14. This is mirrored in the 4°C cultures, where the APX activity 

profile increased 3-fold between days 10 and 14. It is thought that this 

significant increase in both treatments may be due to an additional stress
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affecting the plants’ responses. The cultures held at 4°C appeared to be 

slower to react, probably because chilling temperatures are well known to 

slow down all growth mechanisms (O’Kane et al., 1996). The reason for 

the observed increases in APX activity can only be speculated upon 

without further experimentation, but it is thought that it may be the 

cultures’ need for subculture onto fresh Anderson’s Rhododendron Stage 

II medium that was the underlying stress. After 5-6 weeks in culture, the 

plants will probably have depleted the nutrients in the medium and the 

gaseous composition and possible humidity within the culture vessel will 

have altered, exposing the plant to further stress.

This phenomenon was also noted for glutathione reductase. Figure 5.6 

shows that on exposure to 4°C, the plants exhibited a considerable 

(approximately 4-fold), but not significant increase in the activity of GR, 

compared to those at 20°C. By day 6, activity returned to a similar level as 

the control cultures held at 20°C. However, at day 10 there was a 

significant change in the activity of the enzyme, reflecting the possible 

influence of a different stress. Unlike the ascorbate peroxidase activity, 

the chilled plants showed a 3-fold decrease in GR activity between days 8 

and 10, compared to the control plants which exhibited only a slight 

decrease in activity at this time. By day 14 however, the control plants 

showed a sharp increase in activity, the cultures exposed to 4°C mirroring 

this to a lesser extent, suggesting once more that the exposure to the lower 

temperature affected the plants’ response.
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Figure 5.6. Activity of Glutathione Reductase in R. ponticum  held at 20°C and 4°C over a 

period of 14 days, (n -4)

5.3.7 Ascorbate peroxidase gene expression studies - A comparison o f  

plants held at 20°C and 4°C

As explained in Chapter 4, the use of Reverse Transcription PCR could 

not be used for its original intent, to quantify the changing amount of 

mRNA produced in stressed and unstressed Rhododendron tissue, because 

of the considerable amount of ‘background1 in the samples. The 

background interference observed in all RT-PCR samples is most likely 

due to the degradation found in the total RNA samples used in 

experimentation, arising in a loss of specificity in the amplification 

procedure. The assay could be used however, in a semi-quantitative 

manner to allow comparisons to be made between chilling treatments and 

determine a possible correlation between mRNA quantity and enzyme 

activity. Results from the RT-PCR assay are depicted in Figure 5.7 by gel 

electrophoresis analysis, and the corresponding graph obtained from the 

band densitometry readings from these gels is illustrated in Figure 5.8.

174



Tabulated results of the APX RNA percentages can be found in Appendix 

5.
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Day 0. Lanes 1-4, 20°C, lanes 5 -8 ,4°C. Day 2. Lanes 1-4, 20°C, lanes 5 -8 ,4°C.

<-

h

Day 4. Lanes 1-4, 20°C, lanes 5 -8 ,4°C. Day 6. Lanes 1-4, 20°C, lanes 5 -8 ,4°C.

-  1.6 -

- 8 o o  -

c

Day 8. Lanes 1-4, 20°C, lanes 5-8, 4°C. Day 10. Lanes 1-4, 20°C, lanes 5-8, 4°C.

Day 14. Lanes 1-4, 20°C, lanes 5 -8 ,4°C.

Figure 5.7. Gel Electrophoresis of Competitive RT-PCR. The competitor fragment is 1.6Kb in 

size, the cDNA fragment of ascorbate peroxidase, 800bp. In each figure, cDNA amplification 

is represented in lane 9, the competitor fragment in lane 10. (Lanes containing size markers 

have not been numbered).
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Figure 5.8. An illustration of the percentage of cDNA in the RT-PCR reaction. The calculation 

for the percentage of cDNA is explained in Section 5.2.5. Tabulated results can be found in 

Appendix 5

The results from Competitive RT-PCR for this first chilling experiment 

revealed an interesting pattern, illustrated in Figure 5.8. The percentage of 

mRNA in the reaction followed the profile of the ascorbate peroxidase 

activity during the first six days of the experiment. A similar initial 

decrease in ascorbate peroxidase was noted in the plant samples exposed 

to 4°C, levelling out to a similar amount as in the control plants by day 6. 

However, unlike the APX activity graph, it is the mRNA in the chilled 

plants which increased considerably in the latter stages of the study, with 

the control plants being slower to respond. It is interesting to note the 

similar patterns of the control and chilled plants for APX activity and 

gene expression during the early part of the study. A note of caution must 

be added however. Although gene expression reflected the activity of the 

enzyme, this was only one experiment, in which the number of replicates 

varied due to the delicacy of competitive RT-PCR.
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5.3.8 Chilling experiment 2. A comparison o f plants held at 20°C and 

2°C

This study was initiated to investigate whether the response noted in 

experiment 1, i.e. the initial decrease in APX activity and increase in GR 

activity, would be more significant at a lower temperature. The results 

show however, that the plants’ behaviour is completely different when 

exposed to a further 2°C drop in temperature.

Figure 5.8 displays the results of ascorbate peroxidase activity at 20°C and 

2°C. The control samples at 20°C follow a similar profile to the control 

plants in experiment 1, the only difference being the considerable increase 

in activity occurring at day 6, not day 8. The behaviour of the chilled 

plants is somewhat different. Figure 5.8 shows that plants exposed to 2°C 

have similar APX activity to the control plants until day 8. As before, 

there appears to be the influence of another external stress taking over the 

plants’ responses in the control samples, but this increase in activity was 

not observed in the chilled plants after day 8, which displayed a 

considerable decrease in activity, suggesting that they did not have the 

ability to cope with oxidative stress. At this stage in the experiment, the 

micropropagules were also displaying visible signs of chilling stress such 

as tissue dehydration, and none of recovery at this temperature.
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Figure 5.9. Specific Activity of Ascorbate Peroxidase in R. ponticum  held at 20°C and 2°C 

over a period of 14 days. (n=4)

A similar lack of ability to cope with oxidative stress was noted with 

glutathione reductase activity, illustrated in Figure 5.10. Here also there 

was a completely different activity profile for plants exposed to 2°C, 

compared to 4°C. GR activity at 2°C decreased to a significantly lower 

level than the control plants by days 4 and 6. Day 8 revealed a rather 

spurious result however, which is more likely to be explained by 

experimental error rather than a true activity reading. It could be assumed 

to be highly unusual for GR activity in a control plant to decrease to 

almost zero on one sampling day, and then to have recovered two days 

later. Figure 5.11 shows the activity profile without the unusual day 8 

result, and gives a far clearer explanation of what may have happened in 

the Rhododendron micropropagules. By the latter stages of the study, the 

activity of glutathione reductase decreased to almost negligible levels in 

plants exposed to 2°C. Comparing this result with the activity o f APX, it 

could be assumed that the plants were dying rather than displaying any 

signs of oxidative stress resistance and cold acclimation.
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Figure 5.10. Specific Activity of Glutathione Reductase in R. ponticum  held at 20°C and 2°C 

over a period of 14 days. (n=4)
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Figure 5.11. Glutathione Reductase Experiment 2 - Omission of Day 8 result.
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5.3.9 Ascorbate peroxidase gene expression studies - A comparison o f  

plants held at 20°C and 2°C

The Competitive Reverse Transcription PCR in experiment 2 was less 

successful in general, and so data are not available for all the sample days. 

However, the pattern which has been observed for the chilled plants 

(Figure 5.12) does reflect, to a certain extent, that of the enzyme activity 

of plants at 2°C. The initial decrease in percentage APX transcript is 

similar to the decrease in APX activity, as is the increase at day 8 

followed by the substantial decrease at days 10 and 14. The partial result 

for the control plants is quite different however, but as mentioned 

previously, nothing substantial can be concluded from these results as this 

was only one experiment. Figure 5.11 illustrates the gel electrophoresis 

results of the Competitive RT-PCR. Tabulated results of the APX 

percentages can be found in Appendix 5.
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Day 0 Lanes 1-4, 20°C, lanes 5-8, 2°C. Day 2 Lanes 1 -4 ,20°C, lanes 5 -8 ,2°C.

Day 4 Lanes 1 -4 ,20°C, lanes 5 -8 ,2°C. Day 6 Lanes 1-4, 20°C, lanes 5 -8 ,2°C.
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Day 8 Lanes 1-4, 20°C, lanes 5 -8 ,2°C.
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Day 10 Lanes 1-4, 20°C, lanes 5-8, 2°C.
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Day 14 Lanes 1-4, 20°C, lanes 5-8, 2°C.

Figure 5.12 Gel Electrophoresis of Competitive RT-PCR. The competitor fragment is 1.6 kb 

in size, the cDNA fragment of ascorbate peroxidase, 800 bp.(Lanes with marker are not 

numbered)
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Figure 5.12. An illustration of the percentage of cDNA in the RT-PCR reaction. The 

calculation for the percentage of cDNA is explained in Section 5.2.5.
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5.4 Discussion

It has been reported that exposure to chilling temperatures which induce 

oxidative stress cause an initial rise in the activity of ascorbate peroxidase 

(Anderson et al., 1992; Kuroda et al, 1993; Hakam and Simon, 1996; 

O’Kane et al., 1996). Anderson, et al. (1992) observed in Eastern white 

pine that antioxidant enzyme activities increased between 2 and 122-fold 

from summer to winter, and suggested the increase in activity to be linked 

to the cold hardening process in this particular woody plant species. 

Kuroda et al. (1993) noted in apple flower-buds that during spring 

dehardening, antioxidant enzyme activity decreased as the temperatures 

increased, again substantiating an antioxidant role in plants’ response to 

external temperatures. Indeed, this is not only true for woody plants, but 

herbaceous plants also. O’Kane et al. (1996) found that glutathione 

reductase activity significantly increased in Arabidopsis thaliana almost 

immediately on exposure to 4°C. This correlates with the increase noted 

in Rhododendron ponticum micropropagules (Figure 5.5).

Concentrating on the activity of ascorbate peroxidase and glutathione 

reductase in R. ponticum micropropagules exposed to 4°C (Figures 5.4 

and 5.5) over the first 8 days of the study, it could be postulated that the 

initial rise in GR activity may be a function of the ascorbate - glutathione 

pathway to produce more ascorbate, the recognised electron donor for 

ascorbate peroxidase (Foyer and Halliwell, 1976; Halliwell et al., 1981). 

If more substrate were readily available, then the plant would indeed have 

obtained a better line of defence against oxidative stress. This theory 

could also account for the initial loss in APX activity, but by day 8, as the 

GR activity has returned to a level similar to that of the control activity, 

the APX activity has also recovered to a level similar to that of the non- 

chilled cultures.
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This may not be due to acclimation however, but possibly due to changes 

in the isoform population of GR. Because detergents were used in the 

extraction of both enzymes, it is most likely a mixture of all isozymes are 

present in the extracts (Polle and Morawe, 1994). Guy and Carter (1987) 

found that glutathione reductase partially purified from cold-acclimated 

spinach had a greater stability against freezing and a higher affinity for 

substrates at low temperatures than GR purified from non-acclimated 

spinach. Edwards et al. (1994) also observed an increase in GR activity 

which appeared to be due to a change in isoform population. However, 

Rhododendron micropropagules do not seem to have the same extent of 

cold hardening ability because of the initial decrease in APX activity. 

Ascorbate peroxidase is well known as being one of the most important 

enzymes in oxidative stress, because of its ability to scavenge hydrogen 

peroxide (Dalton et a l, 1986; McKersie et al., 1993; Mathews et al, 1997) 

and it could be assumed that if the increase in activity is not present on 

exposure to chilling, the plants will be deprived of the ability to cold- 

acclimate.

This lack of ability to cold-harden is further established by observations 

made in chilling experiment 2 (Section 5.3.8). The initial aim of the 

experiment was to investigate whether the response, i.e. the initial 

decrease in APX activity and rise in GR activity, observed in experiment 1 

would be more significant at a lower temperature. The activity of 

ascorbate peroxidase and glutathione reductase at 2°C in R. ponticum 

micropropagules (Figures 5.8, 5.9& 5.10) is characteristic of non- 

acclamatory behaviour. Polle et al. (1996) studied the seasonal changes of 

ascorbate peroxidase activity in Norway spruce (Picea abies). When the 

young seedlings were exposed to temperatures of -5°C, the activity of 

APX was found to decline before the onset of visible cold temperature 

injury. Such activity was also noted in shoot cultures of rice exposed to 

4°C, a species known to be chilling sensitive (Fadzillah, et a l, 1996). The 

activity of ascorbate peroxidase was observed to remain at a similar level
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to cultures grown at 25°C over an 8-day period. Chilling temperatures had 

a marked effect on the activity of glutathione reductase however. It was 

noted by Fadzillah et al (1996) that throughout the duration of their study, 

the activity of GR significantly declined, and this result is reflected in the 

activity of GR in R. ponticum micropropagules. Indeed, by the end of this 

study, there were definite signs of visible chilling injury to the 

micropropagules, the cultures looking dehydrated and necrotic.

There are a variety of reasons why a species so well known to survive to 

temperatures as low as -25°C (Sakai et a l,  1981) may not have the ability 

to do so in micropropagation. Polle et a l (1996) found that seedlings and 

young needles were subject to cold temperature injury and death. R. 

ponticum micropropagules have very soft leaf and stem tissue, similar to 

young shoots in mature R. ponticum plants. Young tissue is often 

subjected to chilling and freezing injury because of their sensitivity to 

lipid peroxidation, which is closely linked to oxidative stress. Superoxide 

radicals generated in oxidative stress are thought to bind to protons in cell 

membrane lipids thus yielding hydroperoxy radicals, thought to initiate 

peroxidation (Burdon et a l,  1994). Peroxidised lipids interfere with 

normal membrane fluidity and biological function, as well as damaging 

membrane proteins and therefore affecting their activity also. All these 

mechanisms will result in cell injury and ultimately, death.

It has been thought for some time that temperature affects organisms at 

both a physiological and molecular level (Burdon, 1986; Ougham and 

Howarth, 1988). As previously mentioned in Chapter 1, oxidative stress 

and lipid peroxidation are closely linked, and the peroxidation of lipids is 

thought to be an indicator of oxidative stress (Rice-Evans et a l, 1991). It 

is still not known what triggers the change in gene -expression to begin 

with, i.e. the upregulation of antioxidant gene expression on exposure to 

stress. Although the results obtained in the present study of the R. 

ponticum ascorbate peroxidase gene are far from complete, they can still

186



be informative. It can be said that the amount of mRNA transcribed from 

the APX gene reflects the activity of the enzyme during the duration of 

the studies (Figures 5.7 & 5.12). This is a further indication that the in 

vitro grown Rhododendron plant tissue did not seem to be acclimating to 

chilling temperatures.
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5.5 Conclusions

• Optimisation of the ascorbate peroxidase enzyme activity assay allowed 

an accurate activity profile of enzyme activity from R. ponticum 

micropropagation tissue to be constructed

• Alteration in the amount of substrate (NADPH) added to the glutathione 

reductase assay optimised the assay to be specific for R. ponticum tissue.

• Reasonable quality total RNA extracts allowed the progression of the 

competitive RT-PCR assay, as an additional source of ascorbate 

peroxidase activity in chilled and non-chilled tissue.

• Plants exposed and held at 4°C showed an initial decrease in ascorbate 

peroxidase activity, indicating a poor antioxidant response, however 

returned to control levels by day 8 of experiment 1.

• Plants exposed and held at 4°C showed an initial increase in glutathione 

reductase activity, a response typical of the ascorbate-glutathione cycle to 

compensate for reduced ascorbate levels. Glutathione reductase activity 

returned to control levels by day 8 of experiment 1.

• Competitive RT-PCR results in experiment 1 indicated that the change in 

ascorbate peroxidase gene expression in response to chilling stress 

reflected the change in enzyme activity.

• Enzyme activity profiles showed that plants exposed to and held at 2°C 

had not the ability to cold harden. Ascorbate peroxidase and glutathione 

reductase activities mirrored those of control plants throughout 

experiment 2.
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• Competitive RT-PCR results in experiment 2 reflected the change in 

ascorbate peroxidase enzyme activity.

• R. ponticum grown in vitro does not have the same ability to cold harden 

as plants grown in vivo.
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Chapter 6 General Discussion

Molecular biological techniques can be very helpful in attempting to 

comprehend the causes and effects of the responses of plants to changing 

environments. Environmental stresses such as temperature extremes, 

light, anaerobiosis, water stress, xenobiotics, heavy metals and pest and 

pathogen attack (Gilmour et al., 1988; Brown et al., 1995; Iturbe- 

Ormaetxe, era/., 1995; Sgherri & Navari-Izzo, 1995; Kirtikara & Talbot, 

1996; Knorzer et at., 1996; Mehdy et al., 1996; de Paula et at., 1996; 

Schwanz et al., 1996; Weckx & Clijsters, 1996) all induce stress 

responses within plant and animal tissue (Burdon, 1993). Investigating 

how a plant may perceive stress at a genetic level may give an insight as 

to how defence mechanisms may be activated. Molecular studies in 

conjunction with physiological methodology may present a clearer 

illustration of gene regulation and expression in plants.

The production of active oxygen species (superoxide radicals, hydrogen 

peroxide and hydroxyl radicals) in plants is one of the most important 

mechanisms by which a plant incurs damage following environmental 

stress stimuli (Foyer and MuIIineaux, 1994) and may lead to severe cell 

damage and death (Inze and Van Montagu, 1995). The adaptation of 

plants to low temperatures may prove to be important as global climate 

change becomes more apparent. Milder winters may lead to earlier plant 

deacclimation, thus exposing them to late spring frosts, whilst plants 

which require a period of vernalisation may be unable to complete their 

natural life cycle.

Survival in such hostile habitats is enhanced by the production of 

antioxidant proteins and enzymes (Davies, 1995). Investigating the 

expression of genes encoding such antioxidant enzymes and the activity of 

the enzymes themselves, may lead to a better understanding o f some of 

the mechanisms underlying cold tolerance in plant species. By
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investigating the change in quantity of specific mRNA species in plant 

tissues or cells, it is possible to determine how much a particular gene has 

been expressed in response to an environmental stimulus. The 

employment of competitive Reverse Transcription Polymerase Chain 

Reaction (RT-PCR) may provide accurate quantitative changes in 

amounts of mRNA produced (Gilliland et al., 1990). To fully develop 

such a molecular assay to study the expression of genes which may be up- 

regulated during exposure to chilling temperatures, several criteria must 

be met, each of which have their own specific parameters which must be 

adhered to;

a) the establishment of a suitable plant growth system comprising 

appropriate species, for the production of quality plant material (for the 

extraction of nucleic acids), and for ease of maintenance and 

environmental manipulation.

b) the development of a DNA isolation protocol producing DNA of 

sufficient quality to be used in PCR.

c) the generation of suitable primer sets for the amplification of ascorbate 

peroxidase and glutathione reductase in PCR.

d) the identification of PCR product fragments by cloning and sequencing.

e) the establishment of an RNA isolation protocol producing RNA of 

sufficient quality to be used in RT-PCR.

f) the synthesis of an RT-PCR competitor fragment to allow the 

monitoring of the changes in mRNA present in stresses and non-stressed 

plants, hence the establishment of a suitable competitive RT-PCR assay.

Previous acclimation and cold stress studies undertaken at SAC 

Auchincruive, utilised Rhododendron species in experimentation. A genus 

comprising of more than 900 species (Davidian, 1982), found throughout 

the globe, it was chosen as a model system suitable to represent woody 

plant species because of the distinct range in genotype and habitat 

Rhododendron ponticum, R. hatsugiri and R. impeditum, distinct species 

within the genus, were established in a micropropagation system, chosen
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because it was ideal for rapid multiplication of plants, and ease of 

maintenance and manipulation of the growing environment Using in vivo 

plant material would only allow for the harvest of a single leaf for 

analysis, immediately introducing variation between replicate studies. The 

entire explant was harvested using in vitro material, all of which was 

relatively uniform in age and appearance. Explants obtained for R. 

ponticum, R  hatsugiri and R. impeditum were found to be suitable for the 

extraction of high quality genomic DNA (Section 2.3.4)

6.1 Development of competitor RT-PCR assay

Given that there was no sequence data available for the antioxidant 

enzymes ascorbate peroxidase (APX) and glutathione reductase (GR) in 

Rhododendron species, a comparison of known plant sequences was 

performed. Identification of conserved regions of these genes presented a 

starting point for the design of primers suitable for PCR amplification 

(Section 2.3.2). Following parameters provided by Dieffenbach et al. 

(1993) and Rychlik (1995) i.e. primer stability, primer self-compatibility 

and formation of a stable duplex with the target template, the sequences 

encoding ascorbate peroxidase in Pisum sativum and glutathione 

reductase in Arabidopsis thaliana were used in primer design (Section

2.3.3).

Oligo 5.0 Primer Analysis Software provided the analysis necessary for 

efficient primer design. Pre-programmed parameters included a high 

degree of homology between the 3' end of the primer and the target 

sequence, the primer region being unique within the target sequence, no 

self-homology between the primers, and the internal stability of the 

primers. The latter is significant especially at the 3' end when stability 

should be low to allow successful annealing, made possible accurate 

design (Rychlik, 1995). The melting temperature and internal stability
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profiles were suitable for successful amplification according to Rychlik 

(1995), for several primer sets for both genes (Figure 2,5, Section 2,3,3), 

and using aforementioned pre-programming, Oligo 5.0 excluded 

unsuitable primer pairs from final analysis results. Thus, three primer sets 

were synthesised for each gene to be tested in PCR optimisation (Table 

2.6, Section 2.3.3).

Results from PCR optimisation showed however, that although criteria for 

successful primer annealing and amplification were achieved, PCR met 

with limited success. As reported by Innes and Gelfand (1990) and 

observed in ascorbate peroxidase and glutathione reductase primer tests, 

several reaction conditions must be modified to improve the specificity, 

efficiency and yield of PCR. The specific temperatures of the thermal 

cycle, particularly primer annealing temperature, the concentration of the 

primers and template used and the concentration of free nucleotides and 

magnesium ions within the reaction mix, may need to be altered to obtain 

the desired PCR result (Bloch, 1990; Kidd and Ruano, 1995). Indeed, 

within this study all parameters comprising PCR were considered in the 

attainment of a discrete product for ascorbate peroxidase (2.1 kb, primer 

set A; 1.6kb, primer set C) and glutathione reductase (~500bp primer set 

A; Section 2.3.6).

A reduction of primer annealing temperature was shown to decrease 

reaction specificity, whilst an increase in temperature resulted in an 

increase in specificity, correlating with results obtained by Innes and 

Gelfand, (1990), Saiki, (1990) and Kidd and Ruano, (1995) (Section

2,3.6). A temperature of 55°C was found to be the optimum for both 

genes, with 20 pmoles of each primer in the reaction mix (Section 2.3.6). 

Temperatures tested above the optimum resulted in reduced or no yield of 

PCR product. Given that the internal stability profiles were less suited to 

PCR amplification for APX set B and GR set B and C, none of the 

optimisation tests performed resulted in a desirable PCR product (Section
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2.3.3). This result correlates with findings from Rychlik (1995) which 

showed that primer sets with high stability at the 3' ends perform poorly 

in PCR.

Confirmation of PCR analysis, necessary to ensure correct annealing of 

the primers and amplification of the desired gene, was facilitated by gene 

cloning and sequencing (Chapter 3). Exploiting the T/A cloning technique 

derived from Clark (1988) and Mead et al. (1991), PCR fragments for 

both ascorbate peroxidase and glutathione reductase were ligated into a 

plasmid vector. In order to achieve this successfully, many parameters 

were adhered to. The PCR fragment must have the dA overhangs which 

Taq Polymerase adds to the end of the target template, irrespective of its 

sequence to be ligated into the dT ends o f the plasmid vector. If this is not 

so, as was found in the first cloning attempt with ascorbate peroxidase, no 

ligation will occur. The PCR fragment should be fresh and unpurified 

from the reaction mix otherwise the fragile dA ends will be degraded 

(Section 3.3.1).

Indeed, it is not only the quality of the PCR reaction mix which must be 

considered, but the quality of the product. If the PCR product to be ligated 

into the plasmid vector is not discrete, then the efficiency of ligation is 

very much decreased. This was illustrated particularly in the second 

attempt at cloning the ascorbate peroxidase fragment (Section 3.3.2). 

Although the desired fragment of 2.1 kb was indeed the most dominant 

band observed upon gel electrophoresis analysis, smaller bands present 

were possibly later responsible for the lack of success of sequencing. The 

chromatograms obtained from the sequencing of what was initially 

thought of as successfully cloned plasmids, were inconclusive - meaning 

that the presence of lots of smaller background chromatogram peaks made 

sequence difficult to determine. It could be postulated that multiple 

products present in the reaction mix used for ligation reactions led to 

different ligations within one sample, thus the chromatogram and

195



sequence were hard to define. This hypothesis is further substantiated by 

the R. hatsugiri ascorbate peroxidase fragment being identified as such, 

because it was the only reaction mix containing a discrete product, noted 

upon visualisation by gel electrophoresis (Figure 3.5, Section 3.3.2).

A third cloning and sequencing attempt with potential ascorbate 

peroxidase fragments gleaned much clearer chromatograms, but the 

fragments cloned lacked homology with published ascorbate peroxidase 

mRNA sequences, again most likely due to the quality of the PCR 

product. Throughout the cloning procedure, control reactions were 

successful, further substantiating the need to improve the quality of the 

experimental PCR. This necessitated the use of a different primer set, 

APX set C, which produced a smaller product of 1.6 kb and of 

significantly higher quality. DNA from all three Rhododendron species 

produced a single PCR product upon amplification with these primers, as 

shown by gel electrophoresis (Figure 3.12, Section 3.3.5). Sequencing 

provided clear chromatograms for these clones, and BLAST homology 

searches revealed that all species have significant homology (79%) with 

ascorbate peroxidase mRNA in Pisum sativum (Figure 3.19, Section

3.3.6).

Results for cloning and subsequent sequence analysis for glutathione 

reductase were however, less successful. Although the same disciplines 

were followed throughout the protocol as for the successful cloning and 

sequencing of ascorbate peroxidase fragments, the ligated PCR products 

shared no homology with published glutathione reductase mRNA 

sequences. Analysis of successfully cloned plasmids by restriction 

digestion revealed an insert of approximately 500 bp, the size of the 

initially ligated PCR product. However, the insert was not homologous 

with any published glutathione reductase sequence, indicating that 

although the primers produced a discrete PCR product, amplification 

and/or annealing was not specific to glutathione reductase (Section 3.4.1).
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These results thus necessitated the design and synthesis of new 

glutathione reductase primers, from a different area of the Arabidopsis 

thaliana mRNA sequence, in an attempt to amplify a region specific to 

glutathione reductase. Using newly synthesised primers resulted in a 

single PCR product of approximately 2 kb in size using R. ponticum 

genomic DNA (Figure 3.24, Section 3.4.2). However, cloning with these 

PCR mixes was unsuccessful in the first instance, and due to significant 

time constraints, could not be repeated at this time. The delicate nature of 

the cloning procedure, discovered throughout the cloning of ascorbate 

peroxidase and outlined by Clark (1988) and Mead et al. (1991), most 

likely contributed to the lack of success with glutathione reductase.

The successful cloning of an ascorbate peroxidase fragment allowed the 

development of a competitive RT-PCR assay to continue. Specific 

information about the DNA sequence of ascorbate peroxidase in 

Rhododendron facilitated the synthesis of species-specific PCR primers, 

necessary for the success of mRNA-specific reverse transcription PCR 

(Ohan and Heikkila, 1993; Philips et al., 1993). However, PCR 

optimisation tests using new Rhododendron-specific APX primers met 

with limited success, although primer mismatches using Rhododendron- 

specific APX upper primer and APX set C lower primer in PCR did 

produce a fragment of 1.6 kb, the desired product size, using R. ponticum 

and R. impeditum genomic DNA (Section 4.3.1). Thus established as 

suitable primers for the amplification of a discrete product of the expected 

size using genomic DNA, these primers were employed in the 

development of an appropriate reverse transcription protocol was 

developed (Section 4.3.5).

To effectively amplify RNA from plant and animal tissues, all aspects of 

RT-PCR must be carefully controlled due to the precise nature of the 

reaction, and the transient nature of RNA molecules. The specific nature 

of the primers had been determined previously, but the quality of the RNA
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preparation and the type of reverse transcriptase used in the reaction were 

yet to be established. Gel electrophoretic analysis of RNA preparations 

using two different extraction methods showed that QIAGEN column 

extraction produced a preparation of higher quality, suitable for use in 

RT-PCR (Section 4.3.3). Indeed, initial RT-PCR tests using AMV reverse 

transcriptase found amplification to be successful, if unspecific, using 

samples prepared by this method (Section 4.3.5). However, throughout 

this period of experimentation, it was noted that the quality of the RNA 

extraction, and the degree of RNA degradation, was very important to the 

success of specific amplification, a phenomenon observed by Philips et al. 

(1993). Results revealed that although the quality of RNA was as high as 

could be obtained under laboratory conditions, undegraded preparations 

yielded more conclusive competitive RT-PCR results (Section 4.3.7; 

Figure 5.6, Section 5.3.7).

Given the relative success of initial reactions with AMV reverse 

transcriptase, this enzyme was used for a number of experiments aimed at 

increasing the specificity of RT-PCR. AMV is a DNA polymerase which 

utilises DNA, RNA or RNA:DNA hybrids as a template for transcription. 

It possesses RNase H activity, which causes cleavage of the extending 

strand if the enzyme pauses during transcription (Promega Corporation, 

1998). This could explain the multiple banding noted during gel 

electrophoresis analysis (Figure 4.11). However, as RT-PCR optimisation 

continued, it became apparent that AMV reverse transcriptase was 

unsuitable for the transcription of ascorbate peroxidase mRNA. Results 

became consistently more inconclusive, with a smear (Figure 4.12), or no 

result at all being observed upon gel electrophoresis. Addition of the PCR 

enhancing agent, DMSO (Frackman et al., 1997) did little to improve the 

specificity of the reaction (Figure 4.13). Indeed, the addition of the non

milk fat compound BLOTTO (De Boer et al., 1995) made little impact on 

RT-PCR results when no amplification was noted in control samples
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(Figure 4.16). It was for these reasons that the second type of reverse 

transcriptase was tested in RT-PCR development.

M-MLV reverse transcriptase is an RNA-dependent DNA polymerase 

with a weaker RNase H activity than AMV (Promega Corporation, 1998) 

It is better suited to the synthesis of longer cDNA molecules. Results 

revealed much better cDNA synthesis and amplification using this 

enzyme, although multiple products were still observed. RT-PCR 

optimisation tests using M-MLV proved to be more conclusive, with the 

eventual amplification of a dominant product of approximately 800bp in 

size, expected to be that of ascorbate peroxidase mRNA in R. ponticum 

and R. impeditum. Some smaller bands were still produced, but were most 

likely to the partial degradation of the total RNA samples that were used 

(Section 4.3.6).

Reverse transcription PCR made possible the study of rare, transient 

mRNA transcripts (Gilliland et al., 1990), although a means of 

quantification of these molecules to glean information about gene 

expression was yet to be established. Results from Wang et al. (1989) and 

Gilliland et al. (1990) concluded that the use of exogenous standards in 

the reaction mix can accurately quantify target cDNA molecules. 

Adhering to these results, an exogenous standard was designed for RT- 

PCR which would compete for the same primers and reaction reagents in 

the same tube. This was achieved by the generation of a complementary 

RNA molecule, synthesised from the cloned DNA ascorbate peroxidase 

fragment used previously in sequencing studies, by in vitro transcription. 

By using the DNA fragment as a competitor, the same primers could be 

used for competitor and target molecule amplification, thus reaction 

efficiencies should be comparable for each (Wang et al., 1989). Reverse 

transcription PCR of the in vitro transcription competitor fragment proved 

to be successful, generating a product of 1.6 kb, the same size as the
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original DNA fragment and easily distinguishable from the dominant 

cDNA amplification product (Section 4,3.6).

To fully develop competitive RT-PCR, a suitable ratio of competitor and 

target molecules must be established. Otherwise, amplification 

efficiencies will differ, resulting possibly in preferential amplification of 

one or other molecule (Philips et al., 1993). This was indeed the case 

when initially volumetric ratios of the two fragments were used in 

competitive RT-PCR. Results indicated that although a suitable 

volumetric ratio was found for one set of RNA preparations, when applied 

to another, the reaction preferentially amplified the cDNA target (Section 

4.3.7). It was thus concluded that the ratios of competitor and target used 

in RT-PCR should be based on concentrations of molecules. Optimisation 

tests proved that using 2 ng total RNA extract and 6 ng control fragment 

in the reaction were successful in producing repeatable results (Figure 

4.24, Section 4.3.7). Background amplification still proved to be a factor 

in the final stages of assay development, and so results were used in a 

semi-quantitative manner, the amount of target cDNA in the reaction 

expressed as a percentage of the RT-PCR reaction. Although competitor 

and target fragments were amplified reproducibly, the presence of smaller 

products, also competing in the reaction, meant that no quantitative 

results could be retrieved. Time and facility constraints limited further 

refinement of the assay, which was thus used in conjunction with 

physiological studies, i.e. ascorbate peroxidase and glutathione reductase 

activity studies, to indicate the antioxidant activity within chilled and non

chilled Rhododendron ponticum (Section 5.3).
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6.2 Activity of ascorbate peroxidase and glutathione reductase in

control and chilled R. ponticum micropropagules

Once appropriate activity assays had been established for ascorbate 

peroxidase and glutathione reductase, the former by testing different 

protocols (Nakano and Asada, 1980; Sen Gupta, 1993) and the latter by 

optimisation of reaction compounds, chilling studies were initiated. R. 

ponticum micropropagules were subjected to a 20°C control temperature 

or 4°C, a temperature known to induce chilling damage in plants (O’Kane 

et al., 1996). Findings from the activity assays revealed R. ponticum 

micropropagules to have limited acclimation to chilling at 4°C (Section

5.3.6). Although there was an initial increase in the activity of glutathione 

reductase (Figure 5.5), possibly due to the action of the ascorbate- 

glutathione cycle (Foyer and Halliwell, 1976; Halliwell et al., 1981), a 

decline was noted in the activity of ascorbate peroxidase (Figure 5.4). The 

cause of this decline is unknown, but could be postulated to be due to a 

decrease in the recognised electron donor for ascorbate peroxidase, 

ascorbate (vitamin C). This reasoning would account for the increase in 

glutathione reductase activity, to replenish the amount of ascorbate 

available to ascorbate peroxidase, thus increasing the plants’ tolerance to 

chilling temperatures. This is indicated by a return of the activities of both 

enzymes to control levels by day 8 of the study (Section 5.3.6; Figures 5.4 

and 5.5). Although the results obtained by competitive RT-PCR for 

ascorbate peroxidase gene expression studies could only be used for 

comparison between sampling days and treatments, it was shown that the 

changing amounts of mRNA in tissues were reflected in the activity of the 

enzyme (Figure 5.7; Section 5.3.7). These results suggest that gene 

expression may control the role of ascorbate peroxidase in chilling stress 

defence.

Given that the results were interpreted as R. ponticum micropropagule 

plants having a reduced ability to acclimate, a second study of plants
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exposed to 20°C and 2°C was performed (Section 5.3.8). Initial 

interpretations were substantiated as it was noted throughout the duration 

of the study that the micropropagules behaved similarly to chilling 

sensitive plant species (Figures 5.8 and 5.9). The changes in ascorbate 

peroxidase (both enzymatic and molecular) and glutathione reductase in 

this study were characteristic of non-acclamatory behaviour. Close 

correlations with results from Fadzilla et al (1996) and Polle et al (1996) 

studying responses of chilling sensitive rice and young pine seedlings 

respectively, were recognised.

Rhododendron species are known to survive temperatures as low as -25°C 

in their natural habitats (Sakai et al., 1981), but may not have the ability 

to do so in vitro. Micropropagated plantlets, like young shoots in mature 

plants, are comprised of soft leaf and stem tissue, and may be expected to 

be victim to chilling and freezing stress because of a sensitivity to lipid 

peroxidation, which is closely linked to oxidative stress mechanisms 

(Burdon et al., 1994). Physical differences in mature and micropropagule 

Rhododendron samples may also contribute to such differences in 

acclamatory behaviour.
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6.3 General conclusions

Rhododendron species maintained by micropropagation provided a useful 

tool for the study of responses to chilling temperatures. A growth medium 

which allowed straightforward multiplication and maintenance of plant 

material, and high quality genomic DNA and total RNA extracts, could 

potentially be used in controlled environment studies. However, as 

ultimate stress responses indicated, Rhododendron micropropagules 

cannot be used as a model to illustrate acclamatory responses in mature 

plants.

Rhododendron ponticum is a plant species well known to survive many 

habitat extremes, and indeed is often regarded as a weed due to its robust 

characteristics. It is perhaps surprising then that such a species should not 

have the ability to acclimate to chilling temperatures of 2°C when grown 

in vitro. It could be postulated that the artificial environment of 

micropropagation has led to some losses in acclamatory behaviour, at a 

physical, physiological and gene expression level. Time constraints due to 

the development of the molecular assay prevented further investigation 

into observed plant responses.

Regarding the molecular assay, the optimisation of each of the reactions 

involved in its development to a quality suitable for progression to the 

next stage were time consuming, and so refinement of competitive PCR to 

study ascorbate peroxidase mRNA changes in plants exposed to 20°C and 

4°C or 2°C was restricted. Such a study as this would merit further 

development of the RT-PCR assay, a probable initial improvement being 

the quality of total RNA extracts used in the reaction, a factor unable to 

be improved upon here because of time and facility restraints. However, 

with the information retrieved from the assay, in conjunction with 

physiological data i.e. the activity of the antioxidant enzymes, it was
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possible to obtain a clear indication of plant response when exposed to 

temperature extremes.

Future work in this area would benefit from improvements to develop a 

precise quantitative molecular assay for the study of antioxidative genes. 

The assay could be used to study a whole variety of stress responses 

including:

a) exposure to a lower, non-chilling temperature as a means of 

acclimation before exposure to known chilling temperatures,

b) responses of plants to deacclimatory temperatures,

c) responses of plants to a combination of high light/low temperature 

regimes

d) cross-resistance between drought and chilling stress in plant species.

Manipulation of the assay to study any number of plant species, at 

whatever stage of growth or development would increase current 

understanding of plant responses to oxidative stress.
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6.4 Suggestions for further studies

1. Complete cloning and sequencing studies to yield full sequence data for 

both ascorbate peroxidase and glutathione reductase in Rhododendron 

ponticum, R. hatsugiri and R. impeditum.

2. Improve the quality of RNA isolation and further reduce the possibility 

of RNase cross-contamination by shared equipment.

3. Refine the Competitive RT-PCR assay by possible experimentation 

using Tth DNA polymerase, thus reducing the reaction to one step and 

possibly increasing reaction specificity.

4. Develop Competitive RT-PCR protocol for the study of glutathione 

reductase gene activity.

5. Compare responses of leaf tissue from mature R. ponticum plants and 

micropropagules when exposed to non-chilling and chilling conditions.

6. Expand the study to include comparisons between in vitro-grown and in 

v/vo-grown plants of the three Rhododendron species initially studied.
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Media
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LB Medium (Luria-Bertani) pH  7.0

1.0% (w/v) Bacto-tryptone 10 g

0.5% (w/v) Yeast Extract 5 g

1.0% (w/v) NaCl 10 g

1 Litre distilled water

SOC Medium

2% (w/v) Tryptone 

0.5% (w/v) Yeast Extract 

10 mM NaCl

2.5 mM KC1 

10 mM MgCl2.6H20  

20 mM Glucose

Anderson’s Rhododendron Basal Salt Mixture(Sigma)

mg/L

Ammonium Nitrate 400

Boric Acid 6.2

Calcium Chloride (Anhydrous) 332.2

Cobalt Chloride.6H20 0.025

Cupric Sulphate. SH20 0.025

Na2-EDTA 74.5

Ferrous Sulphate. 7H20 56.7

Magnesium Sulphate 180.7

Manganese Sulphate-H20 16.9

Molybolic Acid (Sodium Salt)-2H20 0.25

Potassium Iodide 0.3

Potassium Nitrate 480

Sodium Phosphate (Monobasic) 330.6
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Anderson’s Rhododendron Stage I  Medium

Anderson’s Rhododendron Basal Salt Mixture 1.89 g 

Myo-Inositol 0.05 g

Adenine Hemisulphate .0.4 g

6-y-y-Dimethylallylaminopurine 0.01 g

Indole-3-Acetic Acid 0.0025g

Sucrose 15 g

Agar 10 g

Distilled Water 1 litre

Anderson’s Rhododendron Stage IIMedium

Anderson’s Rhododendron Basal Salt Mixture 1.89 g 

Myo-Inositol 0.05 g

Adenine Hemisulphate 0.04 g

6-y-y-Dimethylallylaminopurine 0.08 g

Indole-3-Acetic Acid O.OOlg

Sucrose 15 g

Agar 10 g

Distilled Water 1 litre

208



Appendix 2

Ascorbate Peroxidase and Glutathione Reductase

DNA Sequences
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i) DNA Sequence for Pisum sativum Ascorbate Peroxidase. Sequence regions highlighted in green 

represent exons coding for mRNA. Red areas within these represent APX primer set C used in PCR and 

subsequent experiments.

1 a t g a t a a t a t a g g t c a a g c c t t a g c c a a a t tc a a a a c a a a t t a t a a a a t a t t t t t a t t t a

61 t t t t a a a a t a t t t a a t a t g a a t a a a t a t t t t t a t g t a a t g a a c a t a a t t a t a a t t t a c g t

121 t a t c a c t c a t t a t t t a a a a a a t a a a a t a a t a a t t t a t a a g g t t c t a c g a a a a t t g a a t a c

181 a t t g t a c t a a a a c a a a t t g a a t a g a t t a t c t t t a a g a a t a a t a t t t t a t c a t t t a a a c a t

241 c ta a a a a a a a t a a a a a t a a a g t t g g c a t t t a t c a a t a a t t a a t t a a t a c t a a t a t t a a t t

301 t t a a a a t a a a a a a a c ta a g a a t a a t t t a t t a t c a a t a t a a a t a a t t t t a c a t c a t t a t t t

361 a a t c a a a t t a a a a t a t t t c g t c a c g t c a t a t t a a t a t t t t a a a a t c a a t a t g c t a g t a t a

421 a c t t a a t a g a a t a t a t a t t c g t a a t t a a t t t a t a a t a t a a a a a t a t t t t a t a t t a t c a c a

481 t t t t t c t t a t c t a a a t a a g a a t a a a a a t a t t g t a t g c a c g a c t t t c t t t t c c g a a a t a a t

541 a c a a a t a c a a t a t t a c t a t a g t c a a c a a t a g g g c t c t g t c a t a a c t c a t c a c g c a a c g a a

601 a c c c g t t t t c a c g c a t t c a a a a a c t c a c g a c c t t t c g a a t t t a t a t t t c t t a a t t a t t c c

661 a t t a t t a c t c c a t t t c t c t c a c t t c t c t c a t t c g t c g t t c a c g a a a c c t a c c t c a c c t a c

721 c c a a t a a t c c a c a c a c t g t g a a t t t a g t c a t t t a c a c g t g t a g a t t c a t c t t a a c a t t c a

781 a c t c t c c g a a t c a a c a a t a a c c g t a c g a t t c c a a c c a t c c a a c g t c t c a c a g t a a a g c t a

841 c t a g a a c t t t c t c c t c t t c c t t c c t c t t t a t a t t a c g t g t t c t t c a t t t c t a a c a c a c g c
901 t c t t c a c t c t t g g c t t g t g c t c t c c t c g t g t c a c t a g g g t t t a a c t t c t t c g t t t t t g c t

961 t c t t a g a t t t c g a g g t t c g a a c g t t t c g c t t t t g a t t c a g c t t t t t t c t t c g t c g t a g g g

1021 a t t g t t a a t a c t c g a a t t g c a g t t g a t t a t t t t c t a g a a t c a t t t t t t t t a g a t t a g a t c

1081 c a t g t t t t g a t c t t g t t t t t g c t t c g a t t t a t t g g t a t a c g c g a t g a t c t g a t t c t g t t t
1141 g t g a t g t a t g g a t t t t t g t t t g a t t t t g c t g t a g a g t c g t t t g c t a t g g g a a a a t c a t a c

1201 c c a a c t g t t a g t c c c g a t t a c c a g a a g g c c a t t g a a a a g g c t a a g a g g a a g c t c a g a g g t

1261 t t t a t c g c t g a g a a g a a a tg c g c t c c t c t a a t t c t c c g t t t g g c g t a a g t t t t g t t a t c t

1321 g c a a t t t t t t t a t a g a a t c g t t g a t t t g t g a g a t t t t g a t t t t t t g a a t t g t c t g t g t t t

1381 a a g t t t t t g a g t g a t t t a c t t t g t t g a t g a t t t g t t t g t g a t a t t t t a t t t g c g a t g g t t

1441 t t g t t t t g t g t a g a t g g c a c t c t g c t g g t a c t t t t g a t t c c a a g a ca a a g a c t g g t g g t c

1501 c t t t c g g a a c a a t t a a g c a c c a a g c c g a g c t t g c t c a t g g t g c t a a c a a c g g t c t t g a t a

1561 t c g c g g t t a g g c t g t t g g a g c c t a t t a a g g a g c a a t t c c c t a t t g t g a g c t a t g c t g a t t

1621 t c t a c c a g g t t g g t a a t t t t t g t g t g t g t t t a g t t t t t a g a t t t g a a t t t a t g t g g t t g t

1681 t c a a t t t t t g t g a t c a t g t g g t t g a t g g t t t a t t t t a a t a c g t a a c g c a g t t g g c t g g t g

1741 t t g t t g c t g t t g a g a t t a c c g g t g g a c c t g a a g t t c c t t t c c a c c c t g g t a g g g a g g t a t

1801 g t t t g a c c a c a a c t a t c g c t t t t g t c t t c a a a t c t a a t t t a c a t g a t t a g t a a a t c a a t t

1861 a t t g g g t a t c a c t t t t t t c g g t t a t a t a a t g a t t g g a t t c a t g t t g g t g g g t a c c t t t t t

1921 t t t t a a a g a a t a g t g t a t g t t t a a t t t t t a t a t c a t g t t c g g a c a t t a g t t t g t a a g c t t

1981 t g a t a t t t g t c a c t t t t t g g t g c c t t c t g g t t t t c a a g a a t t t c c a t t g g t t a c a t a a t t

2041 g c g g tc a g a a t c a c a a c a a t t a a t c t a a t g t g a t g g a a t a a t t g g a a a t g c t t t t c t t a c

2101 a t g t t t t a c t a a a a t g t a t g t a a a g t g t g g t t a t a t t a t t t t a c a c a g t t g t t g a t g a t g

2161 t a t t c t t t a t c t t t t t t t a c t c a g t t t t t c a g a t a g t t g a a g c t a t a a c a g t c c t t t t g t

2221 t t t g t t t t c a t a t c a g g a c a a g c c t g a g c c a c c a c c t g a g g g t c g c t t g c c t g a t g c c a c

2281 t a a g g g t c a g t g a t c t g a t t t g t g a t g t g a a t t a a t c t a t a t g a t t g a t g t a t t t a t t t g

2341 t c t a a g g a t t t g a t t c t t g a t t a t t a t t g c a g g t t c t g a c c a t t t g a g g g a t g t g t t t g g

2401 a a a g g c t a t g g g g c t t a g t g a t c a g g a c a t t g t t g c t c t a t c t g g t g g t c a c a c c a t t g t

2461 a t g t c a t a a c t t t a a g c t c g c t c c t a c t t t t a t t g t a g t a t t a a t a a a a c c a t t a a t a t t

2521 g a g a t t t g c a t a a t c a t c t g c a t t a t g a t t g t g c a a t t c a g g a t g t g g a t g t t a a t a t t a

2581 c t a c t a c t a a t g g g g c tg g a a t a t c a a a a g c t t g a t a c t t c t a a c t g t a t a a t t c a g c t g

2641 a c t t t t g t g t a a a t g t t a t a t a t g a t a a t g t a t t t t t g a t g c t c t g g g c t t a a c t c t t t c

2701 g g a a t a g c t t a a t g t a a t t c t t a g g g a g c t g c a ca c a a g g a g c g t t c t g g a t t t g a g g g a

2761 c c a t g g a c t t c t a a t c c t c t c a t t t t t g a c a a c t c a t a t t t c a c g t a a g t c t t c t a a a a c

2821 a t t a t c t t t c a a c c a t g c c a c c t t t t a t c t a t t t t a t a a a t c t c t t c a t t g a c a a c a t t a

2881 t t a a t a a a t g t a t a g t g a g t t g t t g a c t g g t g a g a a g g a t g g c c t t c t t c a g t t g c c a a g
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2941 t g a t a a g g c t  c t t t t g a c t g  a c t c t g t a t t  c c g c c c t c t t  g t t g a g a a a t  a t g c t g c g g t

3001 a a g t a t a t t t  c t a t a t t t c t  a t t c t a t g t g  a a a t t a t a a t  g t c t a c t g t a  a a g g t a a t a a

3061 a a a t a a c t g t  c a t c t g t c a a  t g t t t a c a g g  a t g a a g a t g t  t t t c t t t g c t  g a t t a t g c t g

3121 a a g c a c a t c t  t a a g c t c t c t  g a g c t t g g g t  a g g t c a t t t t  a t c a a t t t a a  c t t t g g a g c t

3181 t a t g a a g a a t  a t a c t t g t t t  a t a g a g a g t t  g a t t c a t t t t  t a t g t a t t t t  t t a c c t t g c a
3241 g a t t t g c t g a  a g c c t a a g t c  a c a g t t g t t t  g g t g t t t a g a  g a g g a g c a c t  g t c c t g a a t c

3301 t t a c a t a a a t  t t c a t a g a c g  t t g c t t t t a t  t t t c a a t g t g  g a t t c a t c t t  a g t t g g g t a g

3361 c a t t t t g g a t  g t a t t t t g g a  a g t t t g a t t g  t t t t c t c t a t  t g t t g a t c c t  t g g t t a a a t a

3421 a c a t t g t t a a  g t g g t a a t g c  c c a g c t a t t g  c a t t t t c c t g  a t a a t t a c t g  g t t t t a t t c t

3481 t a t t t t g c g g  g t g a a a t t t c  a t c t a a a g t g  a g c c a t g t a t  t t a g t t t a g a  t t a a a a t t t t

3541 a a a c a t c a t c  c g t t g a t a a a  c t t c a a a t g t  a t g a t a t t t c  a t t t c t t a t c  t c c c a t g c t t
3601 c a g a a a t g g t  g a a a a c t c t a  t t a t t

211



ii) DNA sequence for Arabidopsis thaliuna glutathione reductase. Sequence regions highlighted in green 

represent exons coding for mRNA. Red areas within these represent GR primer set A and GRa and 

GRb used in PCR and subsequent experiments.

t g g c c a t t t a a a a c a t g a a c t a a a c g t t g a c t a c c a t t t a a g a c a t a a a a a t a t c g t t g a

6 c c a g a c c a a a a t a g a c a t g t c t t t a t c a g t a g a a c c t a g a a a c c c g t t a a t a a c t g t t a a

12 t c t g t c c a a a a c a a c g t c g t t t g a g a a t a a t c g a a a g a a c a t a a a g a t t t t t c c c a t a t g

18 a a a t c t c c a t a t c a a a a a g t t t t a a g t a g a a c c c a a g a a c a t a g t t t g a t a a a g a g a t a a

24 t c g c a g t g t c a g t a a t t g g a a g c a a a t a a a g g t a t t t t c g t t t a t a t a t t t g t t t t a a a t

3 0 t t g a a a t t g a a t c a t g g a a g c a a a t t g a a g a c t c a t t a t a a g a t t g t t c g t c t t g t t t g a

3 6 g c g g t t g t a g a a a t a g a t t t g g g g a a c t g g g g t t t c a t t t a g a a a a c a a t c c t g a t t t t c

42 t t t t g a t t a t t c t c a a a a c a a a g t c g t t t t a g g g a t a c t a a t a g a g t c g t t a a c a a g t g a

48 t a a t g a a t g t t a t a a g t t c t t t t a a t g a a t g a t g a c a a c a t g t t t a t t t t g g c t t g g t c a

54 a c g a a t t t c t c a t g t t t t a a a t g g t a g t c a a c g c t t a g t t c a t g t t t a a a a t t g c c a c a t

60 a t a a a g t c g a t g t t t a a a t t g a c c a c a a t t t a a a a c t t g a c t a a t a a a g t c g t t a a c g g a

66 t g a t a a c g g a c g t t a g a a g t t c c g t t a a t g a c t g a t a a c g a c a t g t c t a t t t t g g c a t g a

72 t c a a c g a a t a a t c a t g t t t t a a a a g t t a g t c a a c a t t t a a t t c a t g t t t t a a a c a g c c g c

78 a t a c g a a a t t g a t g t a t a a a a t g a c c a t t t t t t g a a a g t t a g g a g a t t a a t t g a t a t t t t

84 t c c c t t t a t a g t t t a c a g g t a c a t a c g t t g a t a a c a c a a a t c g t a t a a c t t t c t a a c g g t

90 a c a g a a a a t a g t a a a c c g t a c a a a a a t a a t a a a a a a g g g t a a g a t g t a g a a g t a t a a a a c

96 t a a t a g t a c a a a t t a a a a g a t t t t g g t t c c a c t t g t a t g t a t a a g t g a t t a c a t c a a a a t

1 0 2 g g t a t t a c t a a g t c a t c a t t t a g a t t t g a t g a a g t t t g t a t t c g t g t c a t a a a c c g g g c g

1 0 8 t a g g t g g a g t t a t t g t c a g t t t g g t a g c g t t t t a c g a c c a c a c a t a a a a a c a t g t t t a t a

1 1 4 a a t t g t t a a a a a a c a a t a a g a c a t g t c a t a a a t c t a a a t g c c a c a a g t a g a a t t a t c g a a

1 2 0 a t a a a g c t t t t a c a t a a a t a c a c a c a c c c a a a c t a a a a a a g a a a a a a a a a a g a a a g a g a g

1 2 6 a g a g a g a a g a a g a a t c g t g g a g a t g g c t t c g a c c c c g a a g c t t a c c a g t a c a a t t t c a t c

1 3 2 a t c t t c t c c a t c t c t t c a a t t c c t c t g c a a a a a a c t c c c a a t c g c a a t t c a t c t a c c a t c

1 3 8 a t c t t c t t c c t c t a g c t t t c t c t c g c t t c c t a a a a c c c t a a c c t c t c t c t a t t c t c t c c g

144 t c c c c g t a t c g c c c t a c t c t c a a a c c a c c g c t a t t a c c a c t c t c g c c g g t t t t c t g t t t g

1 5 0 t g c c a g t a c c g a t a a t g g a g c t g a a t c a g a c c g c c a c t a c g a t t t t g a t c t c t t c a c t a t

1 5 6 c g g t g c c g g a a g c g g c g g c g t c c g c g c c t c t c g c t t c g c c a c t a g c t t c g g t g c a t c c g c

1 6 2 c g c c g t t t g c g a g c t t c c t t t t t c c a c t a t c t c t t c c g a t a c t g c t g g a g g c g t t g g a g g

1 68 a a c g t a a g a t t t c t t c c t t c t t g t g g c t t a t a t c g a t a g c t a g t g a a t t t g a c t t t a g t a

17 4 g t a g c t a t a c c a g a a t t t g a a g c a t t t g c t t g a t g a t t t a t g g t t t g a t t g t g t t g t c t a

1 8 0 c t c a t t t t t g g t t a t t t t g c a g g t g t g t a t t g a g a g g a t g t g t a c c a a a g a a g t t a c t t g

1 8 6 t g t a t g c a t c c a a a t a c a g t c a t g a g t t t g a a g a c a g t c a t g g a t t t g g t t g g a a g t a t g

1 9 2 a g a c t g a g c c t t c t c a t g a t t g g a c t a c t t t g a t t g c t a a c a a g a a t g c t g a g t t a c a g c

19 8 g g t t g a c t g g t a t t t a t a a g a a t a t a c t g a g c a a a g c t a a t g t c a a g t t g a t t g a a g g t c

2 0 4 g t g g a a a g g t a t g c c g a g g c t c g g t g t t t a t a t a g t t c a t g a g t t a a c c t c t a t g t a t t g

2 1 0 a t t t g a g c t t g a g t a t g t a t t t t a t a t g t g t a g g t t a t a g a c c c a c a c a c t g t t g a t g t a

2 1 6 g a t g g g a a a a t c t a t a c t a c g a g g a a t a t t c t g a t t g c a g t t g g t g g a c g t c c t t t c a t t

2 2 2 c c t g a c a t t c c a g g a a a a g a g t t t g c t a t t g a t t c t g a t g c c g c g c t t g a t t t g c c t t c c

2 2 8 a a g c c t a a g a a a a t t g c a a t a g t t g g t g g t g g c t a c a t a g c c c t g g a g t t t g c g g g g a t c

2 3 4 t t c a a t g g t c t t a a c t g t g a a g t t c a t g t a t t t a t a a g g c a a a a g a a g g t g c t g a g g g g a

2 4 0 t t t g a t g a a g a t g t a a g t a a a a a a t t g a g a a t g a c t t t t g c t g c t t t c a t t t a t c c g t c t

2 4 6 g g a t a t t t t c t a a t t g t a a t t g t t a t t c t t g t t t c a g g t c a g g g a t t t c g t t g g a g a g c a

2 5 2 g a t g t c t t t a a g a g g t a t t g a g t t t c a c a c t g a a g a a t c c c c t g a a g c c a t c a t c a a a g c

2 5 8 t g g a g a t g g c t c g t t c t c t c t g a a g a c c a g c a a g g g a a c t g t t g a g g g a t t t t c g c a t g t

2 6 4 t a t g t t t g c a a c t g g t c g c a a g c c c a a c a c a a a g g t a t a g t g t g a t t t t t a t t a t t t t c c

2 7 0 a a a g g a t g t t t a t a a a a t g a a a a c t g g t a g c a a a g t t c a t c c t t t a a t a a t t t g t c t a a g

2 7 6 a t a a a c t g a c c a c t g c t g c c c c t t g t t t a t g a c t t t a a t g g a a t a t g a t t g t t c a t t g a t

2 8 2 g t a a t g t t g g c t g t t a t a a c a g a a c t t a g g g t t g g a g a a t g t t g g c g t t a a a a t g g c g a a

2 8 8 a a a t g g a g c a a t a g a g g t a t g a t c c a g t g t t t t a c c t a g t t t t t t t g t c a c t t a g g a t t t

2 1 2



2 9 4 1 c t a t t a t t g c a t t g t g c a c a g t t c t c t t g t t a t a c c t g g t t a c t t c t t g t g a t t g t g c t c

3 0 0 1 c a t g t t t c c a c t t t t t t t t t g t a a g g t t g a c g a a t a t t c a c a g a c a t c t g t t c c a t c c a t

3 0 6 1 c t g g g c t g t t g g g g a t g t t a c t g a c c g a a t c a a t t t g a c t c c a g t t g c t t t g a t g g a g g g

3 1 2 1 a g g t g c a t t g g c t a a a a c t t t g t t t c a a a a t g a g c c a a c a a a g c c t g a t t a t a g g t a a c a

3 1 8 1 t a a c a a t c t t a a c t t t t g a t g t t t a a a c c t t t g g g a t t t t t t g g t g a t t g a t g a g a g t t t

3 2 4 1 t t c t c t g t t t a g t c t t a c a t g c t g c a t c a g t g a t c t a t a a c a t t t t a t a a c t g t t g t c t c

3 3 0 1 t g a t g g c t t t t a t c c t t t c t g t g t t c t a t a a t c a a c t a g a g c t g t t c c c t g c g c c g t t t t

3 3 6 1 c t c c c a g c c a c c t a t t g g a a c a g t t g g t c t a a c t g a a g a g c a g g t a a g t a g g a t g a t t t g

3 4 2 1 t c a a a a a t a t g g t t t a t c a t g c a t g c c a c t a c a t a g a a a t a t t a a c t a c g t g t t t g c a g g

3 4 8 1 c c a t a g a a c a a t a t g g t g a t g t g g a t g t t t a c a c a t c g a a c t t t a g g c c a t t a a a g g c t a

3 5 4 1 c c c t t t c a g g a c t t c c a g a c c g a g t a t t t a t g a a a c t c a t t g t c t g t g c a a a c a c c a a t a

3 6 0 1 a a g t t c t c g g t g t t c a c a t g t g t g g a g a a g a t t c a c c a g a a a t c a t c c a g g t t t c a t t t t

3 6 6 1 t t a a c a t g a t t g g t a t t c t c t g a a a a g t a a t c a c g g a a a a c a t a t a t g a t t g a a t a t g a a

3 7 2 1 t t t t a t t t t a c a a t t t t t c a g g g a t t t g g g g t t g c a g t t a a a g c t g g t t t a a c t a a g g c c

3 7 8 1 g a c t t t g a t g c t a c a g t g g g t g t t c a c c c c a c a g c a g c t g a g g a g t t t g t c a c t a t g a g g

3 8 4 1 g c t c c a a c c a g g a a a t t c c g c a a a g a c t c c t c t g a g g t t t g t t t g t g a a c a g t c a a a a c t

3 9 0 1 t a t c c a t c t a g t t a t t t c t c g t g g t t t t g c a a c a t g g g a a a a t g a t t g g a a c t g a g t g a g

3 9 6 1 a t g t g t a t g t c c a a t t t c a t t t c a g g g a a a g g c a a g t c c t g a a g c t a a a a c a g c t g c t g g

4 0 2 1 g g t g t a g a g a a g g t t g c a a a a a a g a t t g t a t t t a c g g c a t t g g a g c c c c c t g a t a a g g t a

4 0 8 1 t t c a t t c a c c a g t t t c c g a a g t a t t g g t c c t a a t t c c t a a a a t t a g a a a a g a c a t g c a a t

4 1 4 1 g c a t t a g c t c a t a c c a t g c t t a a g t a a g a t g t c a a t t a g g g c c a a a g c t t t g t t t c t g c c

4 2 0 1 c a c c c c g g a a a a a t a g g g t a g a c t a g a a t t c t c c t c c a t a a c g g t g t t t g a t a t t t g a c t

4 2 6 1 t g c a t g t t t g c a g g a g a a c a t t g t g t c t g t g a a g a a g a a g c t t t t c t t t t g g c a g a g a a t

4 3 2 1 a t t t t t t c a t a a t g t c g t g t g a a g a t a t g a t c g c t g t c c t g c a a t a c t t t t g a t c g t t t g

4 3 8 1 a c a c a c g a c c a a a t t c c t c g a g a g a g a g a g g t t g t a a c t a t t c c g a a a g a g c t c t a a a a c

4 4 4 1 t g a a g c t t t c a g t t c t t g t g a c a t c a t a a t g a a g g c t g t a t a g a t a t a a c a g t t t c g a g t

4 5 0 1 t t t a t t t g g a t t t g t a g t a t t t t t g t t t t c t a t t g t g t t g a a c t t g t c t c t t t g a a g t c a

4 5 6 1 c c a c g g g a g a c c t c a t a t c a g c a t c g t t g c g a a t c a a a t g a g g t t t t g a g t t t t g a c a a g

4 6 2 1 a a a t t c a a c a c g a t c a c c a a a t c c t t g a g t c a t t a t c a t a t t c a g a t t t c a g a g t c t c c t

4 6 8 1 a c c a t a a t c a t a t t t a t g g t t c g a c t g t a c a t t a t t a c t g t t t a a a a t t g a t t t g a t t t t

4 7 4 1 t g a a a a g t t a a a a a c t a a t a g t t g a c t a a a a a a t t c a t a a a c a a a t a t a t a c t t t t t a a a

4 8 0 1 g a g a t a c g t t t t g a t t a a t a a c a a a a a g g a a a t a t a t a c a t t a a g t a t t a t a a t t a a t a t

4 8 6 1 a c t t a t a t a a c t a a a a a t c a c t a t t a t a a g t a a c a a t a t c t c t a a a a c t t t g a a t g g c c a

21 3



Appendix 3

BLAST Search Results of 

Unsuccessful Cloning Attempts
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i)APX 1 forward sequence BLAST homology - first ten results.

Sequences Producing Significant Alignments Score E
(bits) Value

E. coli plasmid pMM234 DNA 4.4e-206 6
Artificial DNA. Bicistronic eukaryot.. 6.0e-205 5
Artificial DNA; bicistronic eukaryot... 9.0e-205 5
Cloning vectorpCI-neo, mammalian ex... l.le-204 5
Cloning vectorpTet-Off complete se... 5.0e-204 5
Cloning vector pTet-On, complete seq... 5.0e-204 5
Cloning vector pSV2neo aminoglycosid... 6.6e-204 5
pRSVNeo cloning vector for high effi... 7.7e-204 5
Cloning vectorpSV2neo aminoglycosid... 8.6e-204 5
Cloning vector cosmidpTCFDNA seque... 4.0e-203 5

ii)APX 1 reverse sequence BLAST homology - first ten results.

Score E
Sequences producing significant alignments: (bits) Value

Vibrio cholerae beta-galactosidase (lacZ) 2e-25
Uncultured gamma proteobacterium SUR-ATT-2... 2e-25
Mus musculus Ampd3 gene, exon 1, partial s... 2e-25
Homo sapiens DNA for p58 NK receptor gene 2e-25
Mus musculusproapoptoticprotein (Siva) g... 2e-25
Uncultured bacterium OS9F16S ribosomalRN... 2e-25
Dengue virus type 3 DOH33 nonstructuralpro... 2e-23
Dengue virus type 3 SLMC 54 nonstructuralpr... 2e-23
Uncultured bacterium OS9C 16S ribosomal RN... 2e-23
Hevea brasiliensis mRNA for chitinase 2e-23

iii) APX 2 forward sequence BLAST homology - first ten results

Score E
Sequences producing significant alignments: (bits) Value

Anopheles gambiae mRNA for infection respo... 2e-22
Mus musculus proteinase-3 and neutrophil... 2e-22
Picea jezoensis internal transcribed sequence 1, 5.. 4e-21
Sorghum bicolor var. White Martin gene enco... 4e-21

Babesia bovis strain Ur rhoptry associated... 4e-21
Uncultured bacterium OS9F16S ribosomal RN... 2e-20
Haemophilus influenzae 16SribosomalRNA g... 2e-20
Homo sapiens D15S1506 ca repeat region, co... 6e-20
Mus musculus Clone pad69, Complete Sequenc... 6e-20
Uncultured bacterium 1A 16S ribosomal RNA ... 6e-20

215



iv) APX 2 reverse sequence BLAST homology - first ten results

Score E
Sequences producing significant alignments: (bits) Value

Mus musculus Ampd3 gene, exon I, partial s... 2e-29
Homo sapiens DNA for p58 NK receptor gene 2e-29
Vibrio cholerae beta-galactosidase (lacZ) ... 2e-29
Uncultured bacterium OS9F16S ribosomal RN... 2e-29
Uncultured gamma proteobacterium SUR-ATT-2... 2e-29
Mus musculusproapoptoticprotein (Siva) g... 2e-29
Uncultured bacterium OS9C16S ribosomal RN... 3e-28
Dengue virus type 3 DOH 33 nonstructural pro... 3e-28
Dengue virus type 3 SLMC 54 nonstructuralpr... 3e-28
Hevea brasiliensis mRNA for chitinase Je-27

v)APX 3 forward sequence BLAST homology - first ten results

Score E
Sequences producing significant alignments: (bits) Value

Uncultured bacterium OS9E 16Sribosomal RN... 4e-18
Rattus norvegicus melanocortin-4 receptor mR... 4e-18
Sorghum bicolor var. White Martin gene enco... 4e-18
Haemophilus influenzae 16S ribosomal RNA g... 4e-18
Cloning vector pcDNA3ZEO DNA 4e-l8
Uncultured bacterium OS9C16S ribosomal RN... 4e-18
Rattus norvegicus clone for microsatellite... 4e-l8
Uncultured bacterium OS9F16S ribosomal RN... 4e-18
Alu 2 region-T-cell receptor J  delta 1 fusion ... 4e-18
Papio hamadryasplasminogen (BABPEPSG) mRN... 4e-18

vi) APX 3 reverse sequence BLAST homology - first ten results

Score E
Sequences producing significant alignments: (bits) Value

Uncultured bacterium OS9F16S ribosomal RN... 2e-26
Mus musculus Ampd3 gene, exon 1, partial s... 2e-26
Uncultured gamma proteobacterium SUR-A TT-2.. 2e-26
Homo sapiens DNA for p58 NK receptor gene 2e-26
Vibrio cholerae beta-galactosidase (lacZ) ... 2e-26
Mus musculus proapoptotic protein (Siva) g... 6e-26
Sphenostylis stenocarpa class III chitin... 4e-24
Hevea brasiliensis mRNA for chitinase 4e-24
Dengue virus type 3 SLMC 54 nonstructural pr... 2e-23
Dengue virus type 3 DOH 33 nonstructural pro... 2e-23
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1)GR 1 forward sequence BLAST homology - first ten results

Score E
Sequences producing significant alignments: (bits) Value

Sorghum bicolor var. White Martin gene enco... le-27
Uncultured bacterium OS9E 16S ribosomal RN... le-27
Uncultured bacterium 1A 16S ribosomal RNA ... le-27
Anopheles gambiae mRNA for infection respo... le-27
Homo sapiens D15S1506 ca repeat region, co... le-27
Homo sapiens asthmatic clone 1 mRNA, 3' UTR le-27
Papio hamadryasplasminogen (BABPEPSG) mRN... le-27 
Amoeba proteus symbiotic bacterium macro... le-27
Mus musculus proteinase-3 and neutrophil... 1 e-27
Haemophilus influenzae 16S ribosomal RNA g... 2e-26

ii) G R 1 reverse sequence BLAST homology - first ten results

Score E
Sequences producing significant alignments: (bits) Value

Cloning vectorpSG930, HIS4-basedplasmid, c... le-27
Mus musculus proteinase-3 and neutrophil... le-27
P.capsici gene for cutinase 7e-26
Expression vector pCOR116aN le-18
Cloning vector pSG928, HIS4-basedplasmid, le-18
Cloning vector pSG929, HIS4-basedplasmid, le-18
Calonectris diomedea random amplified polymorph le-18 
Cloning vector pZeRO-2T 4e-18
Cloning vector pKIL PCR-2 4e-18
Expression vector pB5T-MRz, complete cds 7e-l 7

iii) GR 4 forward sequence BLAST homology - first ten results

Score E
Sequences producing significant alignments: (bits) Value

Vibrio cholerae beta-galactosidase (lacZ) ... 6e-39
Mus musculus Ampd3 gene, exon 1, partial s... 6e-39
Uncultured gamma proteobacterium SUR-A TT-2... 2e-38
Homo sapiens DNA for p58 NK receptor gene 3e-28
Uncultured bacterium 1A 16S ribosomal RNA ... le-27
Papio hamadryas plasminogen (BABPEPSG) mRN... le-27
Uncultured bacterium OS9E16S ribosomal RN... le-27
Anopheles gambiae mRNA for infection respo... le-27
Amoeba proteus symbiotic bacterium macro... le-27
Homo sapiens asthmatic clone 1 mRNA, 3' UTR le-27
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iv) GR 4 reverse sequence BLAST homology - first ten results

Score E
Sequences producing significant alignments: (bits) Value

Mus musculus proteinase-3 and neutrophil.. 6e-45
Cloning vector pSG930, HIS4-basedplasmid, c... 9e-44
P. capsici gene for cutinase 9e-44
Cloning vector pZeRO-2T le-36
Cloning vector pKIL PCR-2 5e-36
Calonectris diomedea random amplifiedpolym... le-24
Cloning vector pSG929, HIS4-basedplasmid, c... le-24
Cloning vector pSG928, HIS4-basedplasmid, c... le-24
Expression vector pCOR 116aN (modifiedfrom... le-24
Cloning vector pKMZB containing zero-backgro... 4e-24

218



Appendix 4

Glutathione Reductase Enzyme Assay 

NADPH Concentration Calculations
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150uM NADPH 175uM NADPH

Mean 10.48
Standard Error 2.8068161

Median 9.425
Standard Deviation 5.6136322
Sample Variance 31.512867
Kurtosis 1.9440727
Skew ness 1.057619
Range 13.37
Minimum 4.85
Maximum 18.22
Sum 41.92
Count 4
Confidence Level 
(95.0%)

8.9325499

200uM NADPH

Mean 10.7775
Standard Error 1.9731801
Median 10.015
Standard Deviation 3.9463601
Sample Variance 15.573758
Kurtosis 0.5857404
Skew ness 0.9622181
Range 9.12
Minimum 6.98
Maximum 16.1
Sum 43.11
Count 4
Confidence Level 
(95.0%)

6,2795455

250uM NADPH

Mean 9.3325
Standard Error 0.8352283
Median 9.71
Standard Deviation 1.6704565
Sample Variance 2.790425
Kurtosis 2.4170699
Skew ness -1.2635884
Range 3.95
Minimum 6.98
Maximum 10.93

Sum 37.33
Count 4
Confidence Level 
(95.0%)

2.6580716

Mean 9.2075
Standard Error 3.112524

4

Median
I

8.79
Standard Deviation 6.225048
Sample Variance 38.75122
Kurtosis 0.020185
Skew ness 0.355132
Range 14.77
Minimum 2.24
Maximum 17.01
Sum 36.83
Count 4
Confidence Level 9.905450
(95.0%) 1

225um NADPH

Mean 10.59
Standard Error 1.660441
Median 9.85
Standard Deviation 3.320883
Sample Variance 11.02826
Kurtosis 1.5
Skew ness 1.159960
Range 7.72
Minimum 7.47
Maximum 15.19
Sum 42.36
Count 4
Confidence Level 5.284271
(95.0%) 5
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Appendix 5

Experiment 1 and 2 

Enzyme Statistical Data & 

RT-PCR Percentage Calculations
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i)Raw data for ascorbate peroxidase enzyme activity experiment 1: a comparison of plants
held at 20°C and 4°C. Values were derived from the formula stated in section 5.2

20oC 4oC
0 169 0 478.8
0 367 0 434.8
0 327 0 459.2
0 * 0 *

2 425.2 2 178.5
2 526.3 2 219.8
2 288.2 2 284.3
2 297.6 2 202.4
4 235.9 4 191.3
4 312.5 4 252.9
4 200 4 107.1
4 412.1 4 154.8
6 125.7 6 248.2
6 444.5 6 175.9
6 246.7 6 265.5
6 163.7 6 114.7
8 92.8 8 139.9
8 200 8 107.7
8 255 8 252.7
8 315.6 8 232.1
10 457.8 10 167
10 572.9 10 175.4
10 446.4 10 134.7
10 454.5 10 91.2
14 717.2 14 386.7
14 907.9 14 451.5
14 731.3 14 361.9
14 698.8 14 336.9
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ii) Descriptional statistics for ascorbate peroxidase enzyme activity, experiment 1: a
comparison of plants held at 20°C and 4°C.

DayO 20 °C D ayOtfC

M e a n 2 8 7 . 6 6 6 6 7 M e a n 4 5 7 . 6

S t a n d a r d  E r r o r 6 0 . 4 4 6 4 8 7 S t a n d a r d  E r r o r 1 2 . 7 2 6 8 7 4

M e d i a n 3 2 7 M e d i a n 4 5 9 . 2

S t a n d a r d  D e v ia t i o n 1 0 4 . 6 9 6 3 9 S t a n d a r d  D e v i a t i o n 2 2 . 0 4 3 5 9 3

S a m p l e  V a r i a n c e 1 0 9 6 1 . 3 3 3 S a m p l e  V a r i a n c e 4 8 5 . 9 2

S k e w n e s s - 1 . 4 5 1 9 8 6 S k e w n e s s - 0 . 3 2 4 9 0 4

R a n g e 1 9 8 R a n g e 4 4

M i n im u m 1 6 9 M i n im u m 4 3 4 . 8

M a x i m u m 3 6 7 M a x i m u m 4 7 8 . 8

S u m 8 6 3 S u m 1 3 7 2 . 8

C o u n t 3 C o u n t 3

C o n f i d e n c e  L e v e l 2 6 0 . 0 8 0 4 2 C o n f i d e n c e  L e v e l 5 4 . 7 5 9 3 5 9
( 9 5 . 0 % ) ( 9 5 . 0 % )

Day 2 2<fC Day 2 ^ 0

M e a n 3 8 4 . 3 2 5 M e a n 2 2 1 . 2 5
S t a n d a r d  E r r o r 5 6 . 7 0 7 5 1 5 S t a n d a r d  E r r o r 2 2 . 6 5 7 3 9 4
M e d i a n 3 6 1 . 4 M e d i a n 2 1 1 .1

S t a n d a r d  D e v ia t i o n 1 1 3 . 4 1 5 0 3 S t a n d a r d  D e v i a t i o n 4 5 . 3 1 4 7 8 8
S a m p l e  V a r i a n c e 1 2 8 6 2 . 9 6 9 S a m p l e  V a r i a n c e 2 0 5 3 . 4 3
S k e w n e s s 0 . 6 3 5 0 1 6 1 S k e w n e s s 1 . 1 8 7 9 8 0 1

R a n g e 2 3 8 .1 R a n g e 1 0 5 . 8

M i n im u m 2 8 8 . 2 M i n i m u m 1 7 8 . 5

M a x i m u m 5 2 6 . 3 M a x i m u m 2 8 4 . 3

S u m 1 5 3 7 . 3 S u m 8 8 5

C o u n t 4 C o u n t 4

C o n f i d e n c e  L e v e l 1 8 0 . 4 6 8 7 9 C o n f i d e n c e  L e v e l 7 2 . 1 0 6 0 0 7
( 9 5 . 0 % ) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ( 9 5 . 0 % )

Day 4 2(fC Day 4  4 ° C

M e a n 2 9 0 . 1 2 5 M e a n 1 7 6 . 5 2 5

S t a n d a r d  E r r o r 4 6 . 9 4 0 9 2 7 S t a n d a r d  E r r o r 3 0 . 7 4 5 2 5 4

M e d i a n 2 7 4 . 2 M e d i a n 1 7 3 . 0 5

S t a n d a r d  D e v ia t i o n 9 3 . 8 8 1 8 5 4 S t a n d a r d  D e v ia t i o n 6 1 . 4 9 0 5 0 7

S a m p l e  V a r i a n c e 8 8 1 3 . 8 0 2 5 S a m p l e  V a r i a n c e 3 7 8 1 . 0 8 2 5

K u r t o s i s - 0 . 7 8 9 2 3 7 K u r t o s i s - 0 . 0 8 7 3 0 6

S k e w n e s s 0 . 7 5 2 8 7 1 S k e w n e s s 0 . 2 9 7 8 0 8 7

R a n g e 2 1 2 .1 R a n g e 1 4 5 . 8

M i n im u m 2 0 0 M i n i m u m 1 0 7 .1

M a x i m u m 4 1 2 .1 M a x i m u m 2 5 2 . 9

S u m 1 1 6 0 . 5 S u m 7 0 6 .1

C o u n t 4 C o u n t 4

C o n f i d e n c e  L e v e l  
( 9 5 . 0 % )

1 4 9 . 3 8 7 1 2 C o n f i d e n c e  L e v e l  
( 9 5 . 0 % )

9 7 . 8 4 5 2 1 1
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D ay6 20bC

M e a n 2 4 5 . 1 5

S t a n d a r d  E r r o r 7 1 . 0 8 9 8 6 7

M e d i a n 2 0 5 . 2

S t a n d a r d  D e v i a t i o n 1 4 2 . 1 7 9 7 3

S a m p l e  V a r i a n c e 2 0 2 1 5 . 0 7 7

K u r t o s i s 1 . 4 0 1 9 1 2

S k e w n e s s 1 . 3 1 6 9 1 4

R a n g e 3 1 8 . 8

M i n i m u m 1 2 5 . 7

M a x i m u m 4 4 4 . 5

S u m 9 8 0 . 6

C o u n t 4

C o n f i d e n c e  L e v e l  
( 9 5 . 0 % )

2 2 6 . 2 3 9 9

Day 8 2(fC

M e a n 2 1 5 . 8 5

S t a n d a r d  E r r o r 4 7 . 3 2 4 5 0 9

M e d i a n 2 2 7 . 5

S t a n d a r d  D e v ia t i o n 9 4 . 6 4 9 0 1 8

S a m p l e  V a r i a n c e 8 9 5 8 . 4 3 6 7

K u r t o s i s 0 . 2 3 4 5 9 4 2

S k e w n e s s - 0 . 6 4 0 4 7 4

R a n g e 2 2 2 . 8

M i n i m u m 9 2 . 8

M a x i m u m 3 1 5 . 6

S u m 8 6 3 . 4

C o u n t 4

C o n f i d e n c e  L e v e l  
( 9 5 . 0 % )

1 5 0 . 6 0 7 8 5

Day 10 2(fC

M e a n 4 8 2 . 9

S t a n d a r d  E r r o r 3 0 . 0 9 5 4 3 2

M e d i a n 4 5 6 . 1 5

M o d e # N / A

S t a n d a r d  D e v ia t i o n 6 0 . 1 9 0 8 6 3

S a m p l e  V a r i a n c e 3 6 2 2 . 9 4

K u r t o s i s 3 . 8 7 8 7 2 3 1

S k e w n e s s 1 . 9 6 1 6 3 1 7

R a n g e 1 2 6 . 5

M i n i m u m 4 4 6 . 4

M a x i m u m 5 7 2 . 9

S u m 1 9 3 1 . 6

C o u n t 4

C o n f i d e n c e  L e v e l  
( 9 5 . 0 % )

9 5 . 7 7 7 1 8 5

Day 6 4 ° C

M e a n 2 0 1 . 0 7 5

S t a n d a r d  E r r o r 3 4 . 7 2 0 0 3 2

M e d i a n 2 1 2 . 0 5

S t a n d a r d  D e v i a t i o n 6 9 . 4 4 0 0 6 4

S a m p l e  V a r i a n c e 4 8 2 1 . 9 2 2 5

K u r t o s i s - 2 . 2 8 5 8 3 4

S k e w n e s s - 0 . 5 7 4 0 4 1

R a n g e 1 5 0 . 8

M i n i m u m 1 1 4 . 7

M a x i m u m 2 6 5 . 5

S u m 8 0 4 . 3

C o u n t 4

C o n f i d e n c e  L e v e l  
( 9 5 . 0 % )

1 1 0 . 4 9 4 7 4

D a y 8 f C

M e a n 1 8 3 .1

S t a n d a r d  E r r o r 3 5 . 1 1 4 7 6 4

M e d i a n 1 8 6

S t a n d a r d  D e v i a t i o n 7 0 . 2 2 9 5 2 8

S a m p l e  V a r i a n c e 4 9 3 2 . 1 8 6 7

K u r t o s i s - 4 . 5 8 8 6 3 7

S k e w n e s s - 0 . 1 0 4 8 5 4

R a n g e 1 4 5

M i n i m u m 1 0 7 . 7

M a x i m u m 2 5 2 . 7

S u m 7 3 2 . 4

C o u n t 4

C o n f i d e n c e  L e v e l  
( 9 5 . 0 % )

1 1 1 . 7 5 0 9 6

Day 10 S C

M e a n 1 4 2 . 0 7 5

S t a n d a r d  E r r o r 1 9 . 0 9 2 9 0 3

M e d i a n 1 5 0 . 8 5

M o d e # N / A

S t a n d a r d  D e v i a t i o n 3 8 . 1 8 5 8 0 7

S a m p l e  V a r i a n c e 1 4 5 8 . 1 5 5 8

K u r t o s i s - 0 . 4 5 4 3 5 1

S k e w n e s s - 0 . 9 5 2 8 7 1

R a n g e 8 4 . 2

M i n i m u m 9 1 . 2

M a x i m u m 1 7 5 . 4

S u m 5 6 8 . 3

C o u n t 4

C o n f i d e n c e  L e v e l  
( 9 5 . 0 % )

6 0 . 7 6 2 1 9 7
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Day 14 2<fC Day 14 4°C

M e a n 7 6 3 . 8

S t a n d a r d  E r r o r 4 8 . 4 9 1 9 4 1

M e d i a n 7 2 4 . 2 5

S t a n d a r d  D e v ia t i o n 9 6 . 9 8 3 8 8 2

S a m p l e  V a r i a n c e 9 4 0 5 . 8 7 3 3

K u r t o s i s 3 . 6 3 7 8 9 8 6

S k e w n e s s 1 . 8 8 7 0 2 0 4

R a n g e 2 0 9 .1

M i n i m u m 6 9 8 . 8

M a x i m u m 9 0 7 . 9

S u m 3 0 5 5 . 2

C o u n t 4

C o n f i d e n c e  L e v e l  
( 9 5 . 0 % )

1 5 4 . 3 2 3 1 4

M e a n 3 8 4 . 2 5

S t a n d a r d  E r r o r 2 4 . 6 1 3 8 6 8

M e d i a n 3 7 4 . 3

S t a n d a r d  D e v i a t i o n 4 9 . 2 2 7 7 3 6

S a m p l e  V a r i a n c e 2 4 2 3 . 3 7

K u r t o s i s 1 . 1 0 4 1 2 7 7

S k e w n e s s 1 . 0 4 4 0 7 7 2

R a n g e 1 1 4 . 6

M i n i m u m 3 3 6 . 9

M a x i m u m 4 5 1 . 5

S u m 1 5 3 7

C o u n t 4

C o n f i d e n c e  L e v e l  
( 9 5 . 0 % )

7 8 . 3 3 2 3 8 7
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iii)Raw data for glutathione reductase enzyme activity experiment 1: a comparison of plants
held at 20°C and 4°C. Values were derived from the formula stated in section 5.2

20oC 4oC
0 32.3 0 48.4
0 36.9 0 23.9
0 21.5 0 30.5
0 40.3 0 40.3
2 23.3 2 105.9
2 148.4 2 105.9
2 92.2 2 212.9
2 * 2 *

4 115.7 4 136.9
4 30.9 4 131.6
4 76.8 4 73.7
4 ★ 4 146.6
6 106.4 6 109.9
6 31.5 6 32.6
6 140.1 6 83.2
6 58.3 6 63.9
8 134.4 8 43.6
8 103 8 161.3
8 93.6 8 105.9
8 ★ 8 *

10 48.2 10 27.8
10 63.1 10 25.8
10 166.8 10 30.2
10 * 10 16.7
14 209.7 14 90.8
14 161.2 14 61.2
14 179.2 14 11.6
14 44.4 14 19.1
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iv) Descriptional statistics for glutathione reductase enzyme activity, experiment 1: a
comparison of plants held at 20°C and 4°C.

Day 0 20°C Day O f  C

M e a n 3 2 . 7 5 M e a n 3 5 . 7 7 5

S t a n d a r d  E r r o r 4 . 0 9 2 5 7 5 S t a n d a r d  E r r o r 5 . 3 9 0 6 3 6
M e d i a n 3 4 . 6 M e d i a n 3 5 . 4

S t a n d a r d  D e v ia t i o n 8 . 1 8 5 1 4 9 S t a n d a r d  D e v i a t i o n 1 0 . 7 8 1 2 7
S a m p l e  V a r i a n c e 6 6 . 9 9 6 6 7 S a m p l e  V a r i a n c e 1 1 6 . 2 3 5 8
K u r t o s i s 1 . 0 2 8 8 1 4 K u r t o s i s - 2 . 0 3 1 5 4
S k e w n e s s - 1 . 1 2 0 9 8 S k e w n e s s 0 . 1 5 0 8 8
R a n g e 1 8 . 8 R a n g e 2 4 . 5
M i n im u m 2 1 . 5 M i n i m u m 2 3 . 9
M a x i m u m 4 0 . 3 M a x i m u m 4 8 . 4
S u m 1 3 1 S u m 1 4 3 .1
C o u n t 4 C o u n t 4
C o n f i d e n c e  L e v e l  ( 9 5 . 0 % ) 1 3 . 0 2 4 4 1 C o n f i d e n c e  L e v e l  ( 9 5 . 0 % ) 1 7 . 1 5 5 4 3

D a y  2  2 0 ° C Day 2 S C

M e a n 8 7 . 9 6 6 6 7 M e a n 1 4 1 . 5 6 6 7
S t a n d a r d  E r r o r 3 6 . 1 7 5 2 4 S t a n d a r d  E r r o r 3 5 . 6 6 6 6 7
M e d i a n 9 2 . 2 M e d i a n 1 0 5 . 9
S t a n d a r d  D e v ia t i o n 6 2 . 6 5 7 3 5 S t a n d a r d  D e v i a t i o n 6 1 . 7 7 6 4 8
S a m p l e  V a r i a n c e 3 9 2 5 . 9 4 3 S a m p l e  V a r i a n c e 3 8 1 6 . 3 3 3
S k e w n e s s - 0 . 3 0 2 6 5 S k e w n e s s 1 . 7 3 2 0 5 1
R a n g e 1 2 5 .1 R a n g e 1 0 7

M i n i m u m 2 3 . 3 M i n im u m 1 0 5 . 9

M a x i m u m 1 4 8 . 4 M a x i m u m 2 1 2 . 9
S u m 2 6 3 . 9 S u m 4 2 4 . 7

C o u n t 3 C o u n t 3

C o n f i d e n c e  L e v e l  ( 9 5 . 0 % ) 1 5 5 . 6 4 9 6 C o n f i d e n c e  L e v e l  ( 9 5 . 0 % ) 1 5 3 . 4 6 1 4

Day 4 20° C Day 4 4°C

M e a n 7 4 . 4 6 6 6 7 M e a n 1 2 2 . 2
S t a n d a r d  E r r o r 2 4 . 5 0 7 4 4 S t a n d a r d  E r r o r 1 6 . 4 6 2 2 3

M e d i a n 7 6 . 8 M e d i a n 1 3 4 . 2 5

S t a n d a r d  D e v ia t i o n 4 2 . 4 4 8 1 3 S t a n d a r d  D e v i a t i o n 3 2 . 9 2 4 4 6

S a m p l e  V a r i a n c e 1 8 0 1 . 8 4 3 S a m p l e  V a r i a n c e 1 0 8 4 . 0 2
S k e w n e s s - 0 . 2 4 6 6 1 S k e w n e s s - 1 . 7 8 4 7 8
R a n g e 8 4 . 8 R a n g e 7 2 . 9

M i n i m u m 3 0 . 9 M i n im u m 7 3 . 7

M a x i m u m 1 1 5 . 7 M a x i m u m 1 4 6 . 6
S u m 2 2 3 . 4 S u m 4 8 8 . 8

C o u n t 3 C o u n t 4
C o n f i d e n c e  L e v e l  ( 9 5 . 0 % ) 1 0 5 . 4 4 7 1 C o n f i d e n c e  L e v e l  ( 9 5 . 0 % ) 5 2 . 3 9 0 2 1
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DayO 20° C Day 6 4 ° C

M e a n 8 4 . 0 7 5 M e a n 7 2 . 4

S t a n d a r d  E r r o r 2 4 . 2 6 5 3 5 S t a n d a r d  E r r o r 1 6 . 2 7 6 7 2

M e d i a n 8 2 . 3 5 M e d i a n 7 3 . 5 5

S t a n d a r d  D e v ia t i o n 4 8 . 5 3 0 7 S t a n d a r d  D e v i a t i o n 3 2 . 5 5 3 4 4

S a m p l e  V a r i a n c e 2 3 5 5 . 2 2 9 S a m p l e  V a r i a n c e 1 0 5 9 . 7 2 7

K u r t o s i s - 2 . 5 7 4 0 2 K u r t o s i s - 0 . 1 2 6 7

S k e w n e s s 0 . 1 4 3 0 7 5 S k e w n e s s - 0 . 1 8 6 7 7

R a n g e 1 0 8 . 6 R a n g e 7 7 . 3

M i n i m u m 3 1 . 5 M i n i m u m 3 2 . 6

M a x i m u m 1 4 0 .1 M a x i m u m 1 0 9 . 9

S u m 3 3 6 . 3 S u m 2 8 9 . 6

C o u n t 4 C o u n t 4

C o n f i d e n c e  L e v e l  ( 9 5 . 0 % ) 7 7 . 2 2 3 2 5 C o n f i d e n c e  L e v e l  ( 9 5 . 0 % ) 5 1 . 7 9 9 8 4

Day 8 20°C Day 8 4 ° C

M e a n 1 1 0 . 3 3 3 3 M e a n 1 0 3 . 6

S t a n d a r d  E r r o r 1 2 . 3 3 5 5 S t a n d a r d  E r r o r 3 3 . 9 9 6 5 2

M e d i a n 1 0 3 M e d i a n 1 0 5 . 9

S t a n d a r d  D e v ia t i o n 2 1 . 3 6 5 7 S t a n d a r d  D e v i a t i o n 5 8 . 8 8 3 7

S a m p l e  V a r i a n c e 4 5 6 . 4 9 3 3 S a m p l e  V a r i a n c e 3 4 6 7 . 2 9

S k e w n e s s 1 . 3 6 2 5 7 6 S k e w n e s s - 0 . 1 7 5 5

R a n g e 4 0 . 8 R a n g e 1 1 7 . 7

M i n i m u m 9 3 . 6 M i n i m u m 4 3 . 6

M a x i m u m 1 3 4 . 4 M a x i m u m 1 6 1 . 3

S u m 3 3 1 S u m 3 1 0 . 8

C o u n t 3 C o u n t 3

C o n f i d e n c e  L e v e l  ( 9 5 . 0 % ) 5 3 . 0 7 5 3 9 C o n f i d e n c e  L e v e l  ( 9 5 . 0 % ) 1 4 6 . 2 7 5 3

Day 10 2(fC Day 10 S C

M e a n 9 2 . 7 M e a n 2 5 . 1 2 5

S t a n d a r d  E r r o r 3 7 . 2 9 8 8 4 S t a n d a r d  E r r o r 2 . 9 4 8 8 3 5

M e d i a n 6 3 .1 M e d i a n 2 6 . 8

S t a n d a r d  D e v ia t i o n 6 4 . 6 0 3 4 8 S t a n d a r d  D e v i a t i o n 5 . 8 9 7 6 6 9

S a m p l e  V a r i a n c e 4 1 7 3 . 6 1 S a m p l e  V a r i a n c e 3 4 . 7 8 2 5

S k e w n e s s 1 . 6 2 8 9 7 6 S k e w n e s s - 1 . 4 5 5 4 7

R a n g e 1 1 8 . 6 R a n g e 1 3 . 5

M i n i m u m 4 8 . 2 M i n i m u m 1 6 . 7

M a x i m u m 1 6 6 . 8 M a x i m u m 3 0 . 2

S u m 2 7 8 .1 S u m 1 0 0 . 5

C o u n t 3 C o u n t 4

C o n f i d e n c e  L e v e l  ( 9 5 . 0 % ) 1 6 0 . 4 8 4 1 C o n f i d e n c e  L e v e l  ( 9 5 . 0 % ) 9 . 3 8 4 5 1 6
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Day 14 2(fC Day 14 4°C

M e a n 1 4 8 . 6 2 5 M e a n 4 5 . 6 7 5

S t a n d a r d  E r r o r 3 6 . 1 5 4 7 2 S t a n d a r d  E r r o r 1 8 . 5 8 4 5 5

M e d i a n 1 7 0 . 2 M e d i a n 4 0 . 1 5

S t a n d a r d  D e v ia t i o n 7 2 . 3 0 9 4 4 S t a n d a r d  D e v i a t i o n 3 7 . 1 6 9 1 1

S a m p l e  V a r i a n c e 5 2 2 8 . 6 5 6 S a m p l e  V a r i a n c e 1 3 8 1 . 5 4 3
K u r t o s i s 2 . 6 9 3 6 2 7 K u r t o s i s - 2 . 9 3 1 6 8

S k e w n e s s - 1 . 5 4 0 7 5 S k e w n e s s 0 . 4 8 4 1 9 5
R a n g e 1 6 5 . 3 R a n g e 7 9 . 2
M i n i m u m 4 4 . 4 M i n i m u m 1 1 . 6
M a x i m u m 2 0 9 . 7 M a x i m u m 9 0 . 8

S u m 5 9 4 . 5 S u m 1 8 2 . 7

C o u n t 4 C o u n t 4

C o n f i d e n c e  L e v e l  ( 9 5 . 0 % ) 1 1 5 . 0 6 0 6 C o n f i d e n c e  L e v e l  ( 9 5 . 0 % ) 5 9 . 1 4 4 4
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v) Data used to determine the percentage of cDNA amplified during RT-PCR to determine 
the expression of the Rhododendron gene encoding ascorbate peroxidase. Experiment 1: A 
comparison of plants held at 20°C and 4°C.

Day/Temp. Control (C) cDNA (D) Background (B) C-B D-B cDNA 
%age of 
control

0, 20oC 54.29 43.65 38.04 16.25 5.61 34%
0, 4oC 49.35 47.37 38.52 10.83 8.85 81%

2, no 
result

4, 20oC 19.93 15.65 10.22 9.71 5.43 55%
4, 4oC 56.63 26.27 16.91 39.72 9.36 23%
4, 4oC 34.67 22.26 15.11 19.56 7.15 36%

6, 20oC 19.03 6.78 4.66 14.37 2.12 15%
6, 4oC 29.3 9.12 2.25 27.05 6.87 25%

8, 20oC 6.71 17.56 8.52 -1.81 9.04 499%
8 4oC 19.11 19.55 13.33 5.78 6.22 107%

10, 20oC 33.36 30.11 23.3 10.06 6.81 68%
10, 4oC 25.96 34.26 22.11 3.85 12.15 315%
10, 4oC 34.29 32.03 17.96 16.33 14.07 86%

14, 20OC 44.84 39.54 40.07 4.77 -0.53 -11%
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vi) Raw data for ascorbate peroxidase enzyme activity experiment 2: a comparison of plants
held at 20°C and 2°C. Values were derived from the formula stated in section 5.2

20oC
0 158.1

4oC
0 297.6

0 228.2 0 334.3
0 178 0 374.5
2 260.6 2 255.1
2 263.9 2 339.3
2 285.7 2 322.2
4 133.2 4 188.4
4 67.8 4 151.8
4 209.5 4 244.8
6 189 6 154.2
6 137.2 6 230.4
6 249.4 6 312.6
8 262.9 8 417.7
8 375 8 714.2
8 428.6 8 484.8
10 757.5 10 452.9
10 753.3 10 483.3
10 477.3 10 519.3
14 546.6 14 306.8
14 634.9 14 234.7
14 636.1 14 336.5
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vii) Descriptional statistics for ascorbate peroxidase enzyme activity, experiment 2: a
comparison of plants held at 20°C and 2°C.

Day 0 2(fC D a y O fC

M e a n 1 8 8 .1 M e a n 3 3 5 . 4 6 6 6 7

S t a n d a r d  E r r o r 2 0 . 8 5 6 7 3 4 S t a n d a r d  E r r o r 2 2 . 2 0 6 7 8 1

M e d i a n 1 7 8 M e d i a n 3 3 4 . 3

S t a n d a r d  D e v ia t i o n 3 6 . 1 2 4 9 2 2 S t a n d a r d  D e v i a t i o n 3 8 . 4 6 3 2 7 3

S a m p l e  V a r i a n c e 1 3 0 5 . 0 1 S a m p l e  V a r i a n c e 1 4 7 9 . 4 2 3 3

S k e w n e s s 1 . 1 5 9 7 8 8 4 S k e w n e s s 0 . 1 3 6 3 6 8 3

R a n g e 7 0 .1 R a n g e 7 6 . 9

M i n i m u m 1 5 8 .1 M i n i m u m 2 9 7 . 6
M a x i m u m 2 2 8 . 2 M a x i m u m 3 7 4 . 5

S u m 5 6 4 . 3 S u m 1 0 0 6 . 4
C o u n t 3 C o u n t 3

C o n f i d e n c e  L e v e l 8 9 . 7 3 9 3 4 4 C o n f i d e n c e  L e v e l 9 5 . 5 4 8 1 3 2
( 9 5 . 0 % ) ( 9 5 . 0 % )

Day 2 20PC Day 2 ^ 0

M e a n 2 7 0 . 0 6 6 6 7 M e a n 3 0 5 . 5 3 3 3 3

S t a n d a r d  E r r o r 7 . 8 7 4 5 0 1 7 S t a n d a r d  E r r o r 2 5 . 6 9 5 2 8 7
M e d i a n 2 6 3 . 9 M e d i a n 3 2 2 . 2

S t a n d a r d  D e v ia t i o n 1 3 . 6 3 9 0 3 7 S t a n d a r d  D e v i a t i o n 4 4 . 5 0 5 5 4 3
S a m p l e  V a r i a n c e 1 8 6 . 0 2 3 3 3 S a m p l e  V a r i a n c e 1 9 8 0 . 7 4 3 3
S k e w n e s s 1 . 6 1 8 6 7 8 2 S k e w n e s s - 1 . 4 4 8 8 5 4

R a n g e 2 5 .1 R a n g e 8 4 . 2

M i n i m u m 2 6 0 . 6 M i n im u m 2 5 5 .1

M a x i m u m 2 8 5 . 7 M a x i m u m 3 3 9 . 3

S u m 8 1 0 . 2 S u m 9 1 6 . 6

C o u n t 3 C o u n t 3

C o n f i d e n c e  L e v e l 3 3 . 8 8 1 2 7 C o n f i d e n c e  L e v e l 1 1 0 . 5 5 7 9 7
( 9 5 . 0 % ) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ( 9 5 . 0 % )

Day 4 2(fC Day 4  2 °  C

M e a n 1 3 6 . 8 3 3 3 3 M e a n 1 9 5

S t a n d a r d  E r r o r 4 0 . 9 4 5 5 8 7 S t a n d a r d  E r r o r 2 7 . 0 4 8 8 4 5

M e d i a n 1 3 3 . 2 M e d i a n 1 8 8 . 4

S t a n d a r d  D e v ia t i o n 7 0 . 9 1 9 8 3 7 S t a n d a r d  D e v i a t i o n 4 6 . 8 4 9 9 7 3

S a m p l e  V a r i a n c e 5 0 2 9 . 6 2 3 3 S a m p l e  V a r i a n c e 2 1 9 4 . 9 2

S k e w n e s s 0 . 2 2 9 9 3 6 9 S k e w n e s s 0 . 6 2 1 3 5 7 4

R a n g e 1 4 1 . 7 R a n g e 9 3

M i n im u m 6 7 . 8 M i n im u m 1 5 1 . 8

M a x i m u m 2 0 9 . 5 M a x i m u m 2 4 4 . 8

S u m 4 1 0 . 5 S u m 5 8 5

C o u n t 3 C o u n t 3

C o n f i d e n c e  L e v e l  
( 9 5 . 0 % )

1 7 6 . 1 7 4 7 7 C o n f i d e n c e  L e v e l  
( 9 5 . 0 % )

1 1 6 . 3 8 1 8 7
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Day 6 20°C D ayO tC

M e a n 1 9 1 . 8 6 6 6 7 M e a n 2 3 2 . 4

S t a n d a r d  E r r o r 3 2 . 4 2 1 0 4 9 S t a n d a r d  E r r o r 4 5 . 7 3 7 0 7 5

M e d i a n 1 8 9 M e d i a n 2 3 0 . 4

S t a n d a r d  D e v ia t i o n 5 6 . 1 5 4 9 0 5 S t a n d a r d  D e v i a t i o n 7 9 . 2 1 8 9 3 7

S a m p l e  V a r i a n c e 3 1 5 3 . 3 7 3 3 S a m p l e  V a r i a n c e 6 2 7 5 . 6 4

S k e w n e s s 0 . 2 2 9 1 2 3 S k e w n e s s 0 . 1 1 3 5 3 6 8

R a n g e 1 1 2 . 2 R a n g e 1 5 8 . 4

M i n i m u m 1 3 7 . 2 M i n i m u m 1 5 4 . 2

M a x i m u m 2 4 9 . 4 M a x i m u m 3 1 2 . 6

S u m 5 7 5 . 6 S u m 6 9 7 . 2

C o u n t 3 C o u n t 3

C o n f i d e n c e  L e v e l 1 3 9 . 4 9 6 6 1 C o n f i d e n c e  L e v e l 1 9 6 . 7 9 0 8 9
( 9 5 . 0 % ) ( 9 5 . 0 % )

Day 8 20° C Day 8 2°C

M e a n 3 5 5 . 5 M e a n 5 3 8 . 9

S t a n d a r d  E r r o r 4 8 . 8 1 7 0 3 9 S t a n d a r d  E r r o r 8 9 . 7 6 4 8 2 2

M e d i a n 3 7 5 M e d i a n 4 8 4 . 8

S t a n d a r d  D e v ia t i o n 8 4 . 5 5 3 5 9 2 S t a n d a r d  D e v i a t i o n 1 5 5 . 4 7 7 2 3

S a m p l e  V a r i a n c e 7 1 4 9 . 3 1 S a m p l e  V a r i a n c e 2 4 1 7 3 . 1 7

S k e w n e s s - 0 . 9 8 2 6 0 5 S k e w n e s s 1 . 3 7 6 2 3 9 1

R a n g e 1 6 5 . 7 R a n g e 2 9 6 . 5

M i n i m u m 2 6 2 . 9 M i n i m u m 4 1 7 . 7

M a x i m u m 4 2 8 . 6 M a x i m u m 7 1 4 . 2

S u m 1 0 6 6 . 5 S u m 1 6 1 6 . 7

C o u n t 3 C o u n t 3

C o n f i d e n c e  L e v e l 2 1 0 . 0 4 2 9 1 C o n f i d e n c e  L e v e l 3 8 6 . 2 2 7 1 3
( 9 5 . 0 % ) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ( 9 5 . 0 % )

Day 10 2(fC Day 10 t C

M e a n 6 6 2 . 7 M e a n 4 8 5 . 1 6 6 6 7

S t a n d a r d  E r r o r 9 2 . 7 0 7 9 2 8 S t a n d a r d  E r r o r 1 9 . 1 9 0 7 3 9

M e d i a n 7 5 3 . 3 M e d i a n 4 8 3 . 3

S t a n d a r d  D e v ia t i o n 1 6 0 . 5 7 4 8 4 S t a n d a r d  D e v i a t i o n 3 3 . 2 3 9 3 3 4

S a m p l e  V a r i a n c e 2 5 7 8 4 . 2 8 S a m p l e  V a r i a n c e 1 1 0 4 . 8 5 3 3

S k e w n e s s - 1 . 7 3 0 7 1 7 S k e w n e s s 0 . 2 5 1 9 1 5 6

R a n g e 2 8 0 . 2 R a n g e 6 6 . 4

M i n im u m 4 7 7 . 3 M i n i m u m 4 5 2 . 9

M a x i m u m 7 5 7 . 5 M a x i m u m 5 1 9 . 3

S u m 1 9 8 8 .1 S u m 1 4 5 5 . 5

C o u n t 3 C o u n t 3

C o n f i d e n c e  L e v e l  
( 9 5 . 0 % )

3 9 8 . 8 9 0 3 C o n f i d e n c e  L e v e l  
( 9 5 . 0 % )

8 2 . 5 7 1 1 4 1
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Day 14 20°C Day 14 2PG

M e a n 6 0 5 . 8 6 6 6 7

S t a n d a r d  E r r o r 2 9 . 6 3 5 3 5 8

M e d i a n 6 3 4 . 9

S t a n d a r d  D e v ia t i o n 5 1 . 3 2 9 9 4 6

S a m p l e  V a r i a n c e 2 6 3 4 . 7 6 3 3

S k e w n e s s - 1 . 7 3 0 9 8 5

R a n g e 8 9 . 5

M i n i m u m 5 4 6 . 6

M a x i m u m 6 3 6 .1

S u m 1 8 1 7 . 6

C o u n t 3

C o n f i d e n c e  L e v e l  
( 9 5 . 0 % )

1 2 7 . 5 1 0 7 4

M e a n 2 9 2 . 6 6 6 6 7

S t a n d a r d  E r r o r 3 0 . 2 2 4 8 4 3

M e d i a n 3 0 6 . 8

S t a n d a r d  D e v i a t i o n 5 2 . 3 5 0 9 6 3

S a m p l e  V a r i a n c e 2 7 4 0 . 6 2 3 3

S k e w n e s s - 1 . 1 2 6 3 3 0 7

R a n g e 1 0 1 . 8

M i n im u m 2 3 4 . 7

M a x i m u m 3 3 6 . 5

S u m 8 7 8

C o u n t 3

C o n f i d e n c e  L e v e l  
( 9 5 . 0 % )

1 3 0 . 0 4 7 0 9
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yiii) Raw data for glutathione reductase enzyme activity experiment 2: a comparison of
plants held at 20°C and 2°C. Values were derived from the formula stated in section 5.2.

20oC
0 220.7

2oC
0 209.7

0 264.1 0 92.8
0 * 0 *

2 111.2 2 49.8
2 39.1 2 119.4
2 32.6 2 45.8
4 77.4 4 31.9
4 62.8 4 33.5
4 92.2 4 16.6
6 436.3 6 151.2
6 838.7 6 232.9
6 120.1 6 186.1
8 50.9 8 47.9
8 34.7 8 33.5
8 161.3 8 299.5

10 630.5 10 93.2
10 645.2 10 460.8
10 552.9 10 362.9
14 399.4 14 45.2
14 665.3 14 50.4
14 529.9 14 5.62
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ix) Descriptional statistics for glutathione reductase enzyme activity, experiment 2: a
comparison of plants held at 20°C and 2°C.

Day 0 2(fC D a y O tC

M e a n 2 4 2 . 4 M e a n 1 5 1 . 2 5

S t a n d a r d  E r r o r 2 1 . 7 S t a n d a r d  E r r o r 5 8 . 4 5
M e d i a n 2 4 2 . 4 M e d i a n 1 5 1 . 2 5

S t a n d a r d  D e v ia t i o n 3 0 . 6 8 8 4 3 4 S t a n d a r d  D e v i a t i o n 8 2 . 6 6 0 7 8 3
S a m p l e  V a r i a n c e 9 4 1 . 7 8 S a m p l e  V a r i a n c e 6 8 3 2 . 8 0 5

R a n g e 4 3 . 4 R a n g e 1 1 6 . 9

M i n im u m 2 2 0 . 7 M i n i m u m 9 2 . 8
M a x i m u m 2 6 4 .1 M a x i m u m 2 0 9 . 7
S u m 4 8 4 . 8 S u m 3 0 2 . 5

C o u n t 2 C o u n t 2
C o n f i d e n c e  L e v e l 2 7 5 . 7 2 3 4 6 C o n f i d e n c e  L e v e l 7 4 2 . 6 7 4 4 9
( 9 5 . 0 % ) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ( 9 5 . 0 % )

Day 2 2QPC D ay2 2?C

M e a n 6 0 . 9 6 6 6 6 7 M e a n 7 1 . 6 6 6 6 6 7
S t a n d a r d  E r r o r 2 5 . 1 8 6 6 5 9 S t a n d a r d  E r r o r 2 3 . 8 9 4 5 8 3
M e d i a n 3 9 .1 M e d i a n 4 9 . 8
S t a n d a r d  D e v ia t i o n 4 3 . 6 2 4 5 7 3 S t a n d a r d  D e v i a t i o n 4 1 . 3 8 6 6 3 2
S a m p l e  V a r i a n c e 1 9 0 3 . 1 0 3 3 S a m p l e  V a r i a n c e 1 7 1 2 . 8 5 3 3
S k e w n e s s 1 . 6 8 8 8 9 1 9 S k e w n e s s 1 . 7 1 3 8 6 6 8
R a n g e 7 8 . 6 R a n g e 7 3 . 6
M i n i m u m 3 2 . 6 M i n im u m 4 5 . 8
M a x i m u m 1 1 1 . 2 M a x i m u m 1 1 9 . 4

S u m 1 8 2 . 9 S u m 2 1 5
C o u n t 3 C o u n t 3

C o n f i d e n c e  L e v e l 1 0 8 . 3 6 9 5 2 C o n f i d e n c e  L e v e l 1 0 2 . 8 1 0 1 7
( 9 5 . 0 % ) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ( 9 5 . 0 % )

Day 4 20° C Day 4 2?C

M e a n 7 7 . 4 6 6 6 6 7 M e a n 2 7 . 3 3 3 3 3 3
S t a n d a r d  E r r o r 8 . 4 8 7 1 1 4 4 S t a n d a r d  E r r o r 5 . 3 8 6 5 0 5 8
M e d i a n 7 7 . 4 M e d i a n 3 1 . 9

S t a n d a r d  D e v ia t i o n 1 4 . 7 0 0 1 1 3 S t a n d a r d  D e v i a t i o n 9 . 3 2 9 7 0 1 7

S a m p l e  V a r i a n c e 2 1 6 . 0 9 3 3 3 S a m p l e  V a r i a n c e 8 7 . 0 4 3 3 3 3

S k e w n e s s 0 . 0 2 0 4 0 7 6 S k e w n e s s - 1 . 6 7 4 9 1 8
R a n g e 2 9 . 4 R a n g e 1 6 . 9

M i n i m u m 6 2 . 8 M i n im u m 1 6 . 6

M a x i m u m 9 2 . 2 M a x i m u m 3 3 . 5
S u m 2 3 2 . 4 S u m 8 2

C o u n t 3 C o u n t 3
C o n f i d e n c e  L e v e l  
( 9 5 . 0 % )

3 6 . 5 1 7 1 3 1 C o n f i d e n c e  L e v e l  
( 9 5 . 0 % )

2 3 . 1 7 6 2 8
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Day 6 2(fC Day B7TC

M e a n 4 6 5 . 0 3 3 3 3 M e a n 1 9 0 . 0 6 6 6 7

S t a n d a r d  E r r o r 2 0 7 . 9 3 8 8 5 S t a n d a r d  E r r o r 2 3 . 6 6 8 0 0 5

M e d i a n 4 3 6 . 3 M e d i a n 1 8 6 .1

S t a n d a r d  D e v ia t i o n 3 6 0 . 1 6 0 6 5 S t a n d a r d  D e v i a t i o n 4 0 . 9 9 4 1 8 7

S a m p l e  V a r i a n c e 1 2 9 7 1 5 . 6 9 S a m p l e  V a r i a n c e 1 6 8 0 . 5 2 3 3

S k e w n e s s 0 . 3 5 6 7 2 1 5 S k e w n e s s 0 . 4 3 1 3 5 0 8

R a n g e 7 1 8 . 6 R a n g e 8 1 . 7

M i n im u m 1 2 0 .1 M i n im u m 1 5 1 . 2

M a x i m u m 8 3 8 . 7 M a x i m u m 2 3 2 . 9

S u m 1 3 9 5 .1 S u m 5 7 0 . 2

C o u n t 3 C o u n t 3

C o n f i d e n c e  L e v e l  
( 9 5 . 0 % )

8 9 4 . 6 8 9 2 7 C o n f i d e n c e  L e v e l  
( 9 5 . 0 % )

1 0 1 . 8 3 5 2 8

Day 8 2(fC Day 8 2 ° C

M e a n 8 2 . 3 M e a n 1 2 6 . 9 6 6 6 7

S t a n d a r d  E r r o r 3 9 . 7 7 5 8 7 2 S t a n d a r d  E r r o r 8 6 . 3 6 6 7 6 3

M e d i a n 5 0 . 9 M e d i a n 4 7 . 9

S t a n d a r d  D e v ia t i o n 6 8 . 8 9 3 8 3 1 S t a n d a r d  D e v i a t i o n 1 4 9 . 5 9 1 6 2

S a m p l e  V a r i a n c e 4 7 4 6 . 3 6 S a m p l e  V a r i a n c e 2 2 3 7 7 . 6 5 3

S k e w n e s s 1 . 6 2 4 9 3 2 S k e w n e s s 1 . 7 1 4 0 1 2 2
R a n g e 1 2 6 . 6 R a n g e 2 6 6
M i n i m u m 3 4 . 7 M i n im u m 3 3 . 5

M a x i m u m 1 6 1 . 3 M a x i m u m 2 9 9 . 5

S u m 2 4 6 . 9 S u m 3 8 0 . 9

C o u n t 3 C o u n t 3

C o n f i d e n c e  L e v e l 1 7 1 . 1 4 1 8 8 C o n f i d e n c e  L e v e l 3 7 1 . 6 0 6 4 5
( 9 5 . 0 % ) ( 9 5 . 0 % )

Day 10 2(fC Day 10 2 ° C

M e a n 6 0 9 . 5 3 3 3 3 M e a n 3 0 5 . 6 3 3 3 3

S t a n d a r d  E r r o r 2 8 . 6 3 2 8 6 8 S t a n d a r d  E r r o r 1 0 9 . 9 1 2 1 5

M e d i a n 6 3 0 . 5 M e d i a n 3 6 2 . 9

S t a n d a r d  D e v ia t i o n 4 9 . 5 9 3 5 8 2 S t a n d a r d  D e v i a t i o n 1 9 0 . 3 7 3 4 3

S a m p l e  V a r i a n c e 2 4 5 9 . 5 2 3 3 S a m p l e  V a r i a n c e 3 6 2 4 2 . 0 4 3

S k e w n e s s - 1 . 5 6 2 4 2 8 S k e w n e s s - 1 . 2 3 1 1 6 5

R a n g e 9 2 . 3 R a n g e 3 6 7 . 6

M i n im u m 5 5 2 . 9 M i n im u m 9 3 . 2

M a x i m u m 6 4 5 . 2 M a x i m u m 4 6 0 . 8

S u m 1 8 2 8 . 6 S u m 9 1 6 . 9

C o u n t 3 C o u n t 3

C o n f i d e n c e  L e v e l 1 2 3 . 1 9 7 3 7 C o n f i d e n c e  L e v e l 4 7 2 . 9 1 4 1 5
( 9 5 . 0 % ) ( 9 5 . 0 % )
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Day 14 2(fC Day 14 ? C

M e a n 5 3 1 . 5 3 3 3 3 M e a n 3 3 . 7 4

S t a n d a r d  E r r o r 7 6 . 7 6 3 0 6 3 S t a n d a r d  E r r o r 1 4 . 1 3 9 9 0 6

M e d i a n 5 2 9 . 9 M e d i a n 4 5 . 2

S t a n d a r d  D e v ia t i o n 1 3 2 . 9 5 7 5 2 S t a n d a r d  D e v i a t i o n 2 4 . 4 9 1 0 3 5

S a m p l e  V a r i a n c e 1 7 6 7 7 . 7 0 3 S a m p l e  V a r i a n c e 5 9 9 . 8 1 0 8

S k e w n e s s 0 . 0 5 5 2 7 2 5 S k e w n e s s - 1 . 6 4 4 6 2 1

R a n g e 2 6 5 . 9 R a n g e 4 4 . 7 8

M i n i m u m 3 9 9 . 4 M i n im u m 5 . 6 2

M a x i m u m 6 6 5 . 3 M a x i m u m 5 0 . 4

S u m 1 5 9 4 . 6 S u m 1 0 1 . 2 2

C o u n t 3 C o u n t 3

C o n f i d e n c e  L e v e l  
( 9 5 . 0 % )

3 3 0 . 2 8 5 0 3 C o n f i d e n c e  L e v e l  
( 9 5 . 0 % )

6 0 . 8 3 9 1 4 6
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x) Data used to determine the percentage of cDNA amplified during RT-PCR to determine 
the expression of the Rhododendron gene encoding ascorbate peroxidase. Experiment 2: A 
comparison of plants held at 20°C and 2°C.

Day Control (C) cDNA (D) Background (B) C-B D-B cDNA 
%age of 
control

0, no 
result

2, 20oC 22.66 24.28 22.43 0.23 1.85 804%

4, 20oC 41.99 37.95 35.66 6.33 2.29 36%
4, 20oC 39.42 41.17 39.25 0.17 1.92 1129%
4, 20oC 36.67 39.36 36.07 0.6 3.29 548%
4, 20oC 27.99 27.38 25.84 2.15 1.54 71%

6, 20oC 37.89 48.42 40.12 -2.23 8.3 -372%
6, 2oC 36.13 56.27 36.69 -0.56 19.58 -3492%

8, 20oC 64.87 53.19 39.35 25.52 13.84 54%
8, 20oC 39.95 44.69 35.15 4.8 9.54 198%
8, 20C 30.51 40.6 24.28 6.23 16.32 1009%
8, 2oC 23.05 35.3 18.85 4.2 16.45 391%

10, 20oC 41.53 59.49 30.2 11.33 29.29 258%
10, 2oC 38.8 45.26 31.28 7.52 13.98 186%

14, 2oC 25.31 29.13 220.4 3.27 7.09 217%
14, 2oC 23.35 28.7 18.73 4.62 9.97 216%
14, 2oC 17.24 28.3 13.18 4.06 15.12 372%
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