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Summary

Stroke is one of the leading causes of death and disability throughout the world with 

limited effective therapies currently available. It is therefore an important and 

deserving area for experimental research. The mechanisms underlying the damage 

associated with stroke are very complex and include excitotoxicity and oxidative 

stress as well as a number of inflammatory mediated mechanisms which ultimately 

leads to both necrotic and apoptotic cell death.

An inflammatory response can occur within minutes of an ischaemic insult and has 

been well documented. The response is proposed to involve resident inflammatory 

cells of the brain such as microglia and circulating inflammatory cells such as 

macrophages and neutrophils. Although numbers of inflammatory cells have been 

reported to increase under ischaemic conditions, opinion remains divided as to what 

the exact role of these cells are in ischaemic damage and whether these roles are 

beneficial or detrimental.

This thesis examined the role of the circulating inflammatory cell the neutrophil, the 

brain’s resident inflammatory cell the microglia and the inflammatory mediators 

IL-ip , rat neutrophil collagenase (MMP-8) and gelatinase B (MMP-9) in 

experimental models of middle cerebral artery occlusion in the rat to gain a better 

understanding of their roles in ischaemic damage.

The role of the neutrophil in inflammatory mediated ischaemic damage was 

examined in two models of focal ischaemia-1) the intraluminal thread model of 

transient middle cerebral artery occlusion (2 hours occlusion + 2 or 22 hours
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reperfusion ) and 2) the diathermy model of permanent middle cerebral artery 

occlusion (4-72 hours).

This study found no evidence for significant neutrophil accumulation in the 

parenchyma or adherence to cerebral blood vessels in acute focal cerebral ischaemia 

using scanning electron microscopy and light microscopy in either Sprague Dawley 

rats (intraluminal thread) or Spontaneously Hypertensive Stroke Prone Rats (SHRSP) 

(diathermy model) up to 72 hours post ischaemia.

It has been reported that neutrophil accumulation following ischaemia can result in 

the impairment of blood flow and damage via the release of cytotoxic substances. 

Some groups have reported significant neutrophil accumulation in models of 

experimental ischaemia and have demonstrated significant reductions in ischaemic 

damage upon administration of antibodies designed to prevent neutrophil adhesion 

to the endothelium of blood vessels. However in accordance with the findings of this 

study, some groups have also failed to show significant neutrophil accumulation in 

the same models of experimental ischaemia, suggesting that they may not be major 

contributors to acute ischaemic damage.

In addition to neutrophil accumulation, this thesis also considered the possible 

pathogenic role of microglia in ischaemic damage. Microglial activation was 

examined in the diathermy model of permanent middle cerebral artery occlusion in 

the SHRSP and their normotensive reference strain the Wistar Kyoto (WKY). 

Quantitative analysis of the microglial response to focal cerebral ischaemia in the 

SHRSP and WKY revealed three major points: 1) SHRSP displayed increases in the 

numbers of activated microglia associated with the site of injury compared to the
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WKY reference strain between 4 and 72 hours. These differences were most 

significant at 24 hours post ischaemia and within the peri-infarct zone. At 24 hours 

the infarct is still evolving and so the presence of activated microglia in the peri- 

infarct region may suggest a role for the cells in the expansion of the infarct; 2) 

activated microglia were found to express MMP-8 and MMP-9, known contributors 

to the pathology of a number of inflammatory conditions and 3) under normal, non- 

ischaemic conditions, SHRSP also displayed a greater density of microglia, 

especially in the white matter tracts compared to WKY rats.

This is an important study as it is the first to measure the evolution of the infarct in 

the SHRSP and investigate the inflammatory response over 72 hours. The greater 

degree of microglial activation in the SHRSP may be representative of the enhanced 

inflammatory response to ischaemia previously reported in this strain with the 

increased microglial activation possibly contributing to the genetically determined 

stroke sensitivity of the SHRSP.

Microglia are known to become activated in conditions of ischaemia and have been 

reported to either contribute to ischaemic damage via the release of cytotoxic 

substances or to promote recovery and prevent further damage by inducing re-growth 

and repair via phagocytosis and the release of growth factors.

Therefore, the findings of this study are important both in terms of improving our 

understanding of genetically determined stroke sensitivity and of the role of 

inflammatory cells in focal cerebral ischaemia, two research areas associated with 

many unresolved questions and opposing views.



XXII

In addition to the role of inflammatory cells in ischaemic damage, this thesis also 

examined other possible contributors to inflammatory mediated ischaemic damage. 

This included examining ultrastructural changes to the vasculature of parenchymal 

blood vessels to determine whether any changes were apparent which may be 

contributing to ischaemic damage.

Scanning electron microscopy was used to examine the ultrastructure of the 

vasculature following 2 hours intraluminal thread induced ischaemia plus 2 hours of 

reperfiision in Sprague Dawley rats. Increased endothelial microvilli numbers 

(previously reported to increase in conditions of brain trauma and ischaemia) were 

observed in the blood vessels of the parenchyma following intraluminal thread 

induced ischaemia. However similar changes were also observed in sham animals 

suggesting that microvilli formation may be primarily due to the trauma associated 

with the induction of ischaemia, rather than to the ischaemia per se.

Levels of IL-1(3 and matrix metalloproteinases (MMP-8 and MMP-9), believed to be 

contributors to ischaemic damage were also examined to map their distribution and 

cellular location and gain a better understanding of their role in inflammatory 

mediated ischaemic damage. This study found no evidence for IL-lp expression 

following either intraluminal thread induced ischaemia (24 hours) or following 

diathermy induced permanent ischaemia (up to 72 hours). MMP-8 and MMP-9 were 

found to be expressed by activated microglia in both models of ischaemia from 4-72 

hours, in oligodendrocytes (4-72 hours) and in neurons (24-72 hours). No MMP 

expression was found in astrocytes at any of the time points studied.
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The presence of MMP-8 and MMP-9 in activated microglia suggests a role for the 

MMPs in mediating the microglial response to ischaemia be it beneficial or detrimental.
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Chapter 1. Introduction

1.1 Stroke Background

1.1.1 Stroke facts and figures

Stroke is one of the largest causes of death in the world, with the loss of brain 

function from stroke being the primary cause of adult disability in the United States 

and accounting for 12% of deaths in the United Kingdom (Bamford et al., 1988). 

Around three million Americans are currently disabled as a result of an ischaemic 

insult to the brain and 500,000 patients in the United Kingdom are being cared for in 

acute National Health Service and long term beds (Forbes, 1993). Despite the 

severity of the problem and the drain on health resources, no therapy is currently 

licensed in the UK and other than thrombolytic agents (T-PA), no existing therapy 

has the ability to significantly reduce neurological disability. Therefore experimental 

research in the field of stroke is widespread and focuses on gaining a better 

understanding of the complicated mechanisms behind this debilitating disorder in 

order to identify potential therapies.

1.1.2 Ischaemia and stroke

The brain requires a constant supply of blood to meet its high metabolic demands 

and allow normal healthy function, in turn allowing proper control and regulation of 

the whole body. Severe reductions in the flow of blood within the brain, ischaemia,
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are very poorly tolerated and if maintained give rise to the symptoms of clinical 

stroke. The reduced blood flow to the brain during ischaemia results in an 

insufficient supply of nutrients for cell survival.

Cerebral ischaemia can be divided into global and focal ischaemia. In global 

ischaemia, the blood supply to the entire brain is reduced, normally as a result of 

complete cardiac arrest or severe peripheral haemorrhage, whilst in focal ischaemia 

blood supply is reduced in a particular region of the brain due to the blockade of a 

blood vessel supplying that brain region.

Cerebral ischaemia can be defined as complete or incomplete depending on the 

severity of the reduction in blood flow. Complete ischaemia is defined as a total 

absence of cerebral blood flow to either the entire brain or a particular brain region. 

Incomplete ischaemia is defined as a drastic reduction in cerebral blood flow in 

either a global or focal pattern (Siegel et al., 1976 ).

1.2 Classification of Stroke

Stroke can be classed as either ischaemic or haemorrhagic depending on the 

mechanism by which blood flow to the brain is reduced.

Ischaemic stroke can be further subdivided into embolic and thrombotic stroke while 

haemorrhagic stroke occurs as either an intracerebral haemorrhage or a subarachnoid 

haemorrhage.



3

Ischaemic stroke is more prevalent than haemorrhagic stroke, accounting for around 

80% of stroke occurrences in the USA while haemorrhagic stroke constitutes around 

15-20% of stroke cases (McAuley, 1995).

1.2.1 Haemorrhagic stroke

Haemorrhagic stroke occurs when a blood vessel within the cerebral vasculature 

ruptures, normally as a result of recurring high blood pressure or due to the presence 

of an aneurysm or weakening of the blood vessel wall. There are different types of 

haemorrhagic stroke- an intracerebral haemorrhage normally results from 

hypertension mediated bleeding from blood vessels within the brain, and 

subarachnoid or subdural haemorrhage which are normally caused by the rupture of 

an aneurysm (often congenital) resulting in blood collecting under the arachnoid 

membrane (subarachnoid) or under the dural membrane (subdural).

1.2.2 Ischaemic stroke

In ischaemic stroke, the blood supply to a particular part of the brain is reduced 

(focal ischaemia) by the presence of a blood clot or embolus in the cerebral 

vasculature supplying that particular region. If the clot has its origins out with the 

brain, and travels to the cerebral vessel via the bloodstream, this is classed as an 

embolic stroke. If however the blood supply to the brain is impaired due to 

narrowing and occlusion of the blood vessel calibre by thrombus formation in
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arteries supplying the brain, then this is classed as a thrombotic stroke. A thrombus is 

an unwanted formation consisting of a ‘head’ of platelets and leukocytes in a fibrin 

mesh and a ‘tail5 consisting of a diffuse fibrin network capable of trapping blood 

cells. A thrombus can form in an artery or a vein and can break up, dispersing 

fragments of thrombus which can travel in the bloodstream to the brain where they 

may occlude cerebral blood vessels resulting in ischaemia.

1.3 Models of Cerebral Ischaemia

1.3.1 Use of the rat as a model of cerebral ischaemia

Although many different species have been used to develop animal models of 

experimental ischaemia, the rat is the most frequently used.

Similarities between rat and human cerebrovasculature make the rat model of 

ischaemia an important research tool.

In both rat and man, the brain is supplied by the internal carotid and vertebral 

arteries.

The internal carotid arteries supply the cerebrum, while the vertebral arteries and 

basilar artery supply the rest of the brain and part of the cerebrum (Lee, 1995)

The main arteries connect at the base of the brain to form the Circle of Willis, with 

the paired anterior, middle and posterior cerebral arteries branching off from the 

Circle of Willis (Lee et al., 1995) (Figure 1).



The arrangement of the vessels in the Circle of Willis can vary between species and 

even within members of the same species. In humans the Circle of Willis is primarily 

comprised of the anterior cerebral arteries, posterior communicating and posterior 

cerebral arteries. However in the rat, in addition to the above, the internal carotid 

arteries form part of the circle (Lee, 1995)
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Figure 1. Arrangement of the blood vessels in the Circle of Willis in A. Human and 

B. Rat. From Lee et al., 1995.

Collateral circulation is present in both rodents and man which allows re-routing of 

blood flow between the main cerebral arteries through the circle of Willis and



connecting anastomoses. In humans there are eight possible collateral pathways 

capable of supplying the cerebral cortex with blood should the blood supply through 

the internal carotid or vertebral arteries become blocked. In the rat, there are four to 

five times as many collateral supplies. With respect to the MCA, anastomoses are 

present between the anterior cerebral artery and MCA and between the posterior 

cerebral artery and the MCA.

While the rat system can be said to be similar to the human system in some ways, in 

that they both possess a Circle of Willis and internal and vertebral arteries providing 

the brain with blood, there are also important variations.

The human, in common with the bird, cat, sheep, swine and dog, possesses a network 

of branching blood vessels called the carotid retemirabilis which connects arteries 

and veins. The rat however does not possess such a system. Whereas in most species 

arteries and veins run together in pairs, in rats the vessels do not run in pairs but are 

connected by a complex capillary network. Rats also lack connections between 

arteries and veins (A-V shunts in humans).

Despite these differences, the cerebral anatomy of the rat is similar enough to man to 

allow it to be used in experimental models of ischaemia. The size of the rat makes it 

a more economical choice than the cat, dog or guinea pig which are also used in 

experimental stroke research and it also seems to be more acceptable in terms of 

ethical considerations than the primate, cat or the dog.
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1.3.2 Rat models of experimental cerebral ischaemia

Models of experimental ischaemia have been developed to investigate the complex 

mechanisms of damage and to develop potential therapeutic strategies.

Most studies designed to replicate human stroke use models of focal ischaemia 

where the infarct (the region of irreversible brain damage affecting all cell types) is 

localised to a particular brain region. This type of ischaemia can be produced in a 

number of different ways, each of which offers its own advantages and 

disadvantages.

Most of the models developed have concentrated on the occlusion of the middle 

cerebral artery (MCA) as this is the vessel most commonly occluded in human 

stroke, the MCA being occluded in at least 25% of ischaemic incidents (Bamford et 

al, 1987). This figure may be even higher with some groups suggesting a role for the 

MCA in up to 80% of infarcts (Derousne et a l, 1993).

The first rodent model of ischaemia was developed in the 1930s by Peterson and 

Evans and subsequent modifications and improvements have since been introduced. 

Models are commonly modified to increase reproducibility, reduce mortality and 

reduce the difficulty of the surgery (McAuley et al, 1995). No one model can be said 

to be the ideal choice for the study of stroke and although compounds may prove 

successful in animal models of ischaemia when they are then moved to clinical trials 

many prove unsuccessful in ameliorating stroke damage in humans (LASA report,

1999).

Models of focal ischaemia can involve either permanent or transient occlusion of 

the MCA, the latter allows a period of reperfusion following a defined period of



vessel occlusion. It has been suggested that permanent models of ischaemia are most 

valuable in drug evaluation studies as they produce more consistent and definite 

infarcts (STAIR report, 1999) with transient models being used as a follow up to 

study the drug in more detail.

If the period of focal ischaemia is short enough, it may result in reversible cell injury 

from which the brain tissue can recover. In patients presenting with stroke symptoms 

this is known as a transient ischaemic attack (TIA) which resolves with no lasting 

neurological deficit. If the period of ischaemia is prolonged and of sufficient severity 

it will result in irreversible cell injury with the formation of a volume of necrotic 

tissue known as the infarct (McGee et a l, 1992).

The degree and type of disability seen in humans following a period of cerebral 

ischaemia depends on the region of the brain affected, the size of the region affected 

and the severity and duration of the ischaemia.

Common disabilities associated with stroke include paralysis, aphasia and/or 

memory loss. Neurological deficits are also seen in animals and include cognitive 

and sensorimotor deficits (Hunter et al, 1998).

In some cases, collateral circulation can provide a salvaging supply of blood to the 

regions directly surrounding the infarct “core” through anastomoses which connect 

up the most distal of the major cerebral vessels (Coyle et a l, 1991). This surrounding 

region is known as the peri-infarct region or the penumbra and if it receives a large 

enough collateral blood supply can recover from ischaemia.
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1.3.3 Models of permanent middle cerebral artery occlusion

Electrocoagulation of the MCA is a common method of permanent MCA 

occlusion. The model involves the surgical exposure of the MCA via a craniectomy 

and the opening of the dura. The electrocoagulation or diathermy occlusion of the 

MCA is produced either distal or proximal to the origin of the lateral lenticulostriate 

branches of the artery. A proximal occlusion increases the size of the lesion produced 

and increasing the length of vessel occluded results in larger and more consistent 

lesions (Bederson et a l, 1986).

MCA occlusion proximal to the lenticulostriate branches will produce both striatal 

and cortical damage within the MCA territory. Diathermy occlusion has the 

advantage of a low mortality rate, good reproducibility of infarct volume and 

relatively few complications on recovery from surgery.

The position and extent of vessel electrocoagulation has an impact on the localisation 

and the probability of infarction rates in a study. Bederson et a l, 1986 found that 

when carrying out a distal occlusion of the MCA (distal to the Inferior Cerebral Vein, 

ICV), the infarction rate varied from as much as 13%- 100% depending on the 

location and size of the region of electrocoagulation (Figure 2)
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Figure 2. Infarction rate is determined by the size and location of the area of 

electrocoagulation. From Bederson et al., 1986.

The electrocoagulation model does have some disadvantages due to the possibility of 

direct tissue damage and the need for a craniectomy. The electrocoagulation model 

was originally described by Robinson and colleagues, 1975 but was later modified by 

Tamura and co-workers, in an attempt to produce more reproducible infarct sizes.
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Two Vessel Occlusion Model- this model of permanent MCA occlusion involves 

the ligation of the ipsilateral common carotid artery along with electrocoagulation of 

the MCA. This model again produces reproducible infarct sizes which can 

incorporate both cortical and striatal damage.

In an attempt to reduce direct tissue damage associated with the electrocoagulation 

procedure, models of permanent MCA occlusion have been developed where a 

ligature or a clip is applied to the MCA, blocking blood flow by a method other than 

electrocoagulation. With models using a clip or ligature the volume of infarction is 

influenced by the position and number of clip/ligatures involved (Bederson et al,

1986).

As with the diathermy occlusion of the MCA, in clip/ligature models, applying 

occlusive pressure below the lenticulostriate branches has been shown to produce a 

greater degree of ischaemic damage with a striatal involvement.

The introduction of a reperfusion phase with this model is relatively easy due to the 

ability to remove the clip /ligature from the occluded vessel as required. Therefore 

unlike with the electrocoagulation model of MCA occlusion which is purely a 

permanent MCA occlusion model, models using clips or ligatures can produce 

permanent or transient vessel occlusion depending on whether the clip is removed or 

kept in place.
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1.3.4 Models of transient focal ischaemia

Transient focal ischaemia involves vessel occlusion followed by a period of 

reperfusion. Reperfusion is believed to play a role in human stroke as in many cases 

a degree of reperfiision is likely within the first few days following vessel occlusion. 

Various models of transient focal ischaemia exist and each model has its own 

advantages and disadvantages.

Intraluminal Thread Model of Focal Ischaemia- this is a popular model and was 

first introduced by Koizumi and colleagues, in 1986. The technique involves the 

insertion of a filament, normally a nylon suture of a diameter wide enough to block 

the distal portion of the internal carotid artery (ICA) , into the external carotid artery 

(ECA) and then into the internal carotid artery until in a position to block the origin 

of the MCA at the Circle of Willis (Figure 3)

Reperfusion is induced by retraction and removal of the filament. The original 

Koizumi method has since been modified by Longa ZE and co-workers , to produce 

more reproducible infarcts.
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Figure 3. Intraluminal thread induced ischaemia. From McAuley, 1995.

ICA- internal carotid artery, ECA- external carotid artery, CCA- common carotid 

artery, ACA- anterior cerebral artery, MCA-middle cerebral artery, PCA- posterior 

cerebral artery, SCA- superior cerebellar artery

The intraluminal thread model can also be used as a model of permanent vessel 

occlusion when the filament is kept in place throughout the surgical procedure and 

/or recovery period, therefore not introducing a period of reperfusion.

A distinct advantage of this model is that no craniectomy is required although 

mechanical damage to the endothelium of the internal carotid can be expected due to 

the insertion and advancement of the filament. Preparation of the animal for insertion 

of the filament is less technically demanding and can be accomplished in a shorter 

time than that needed for models involving the exposure of the MCA for direct 

occlusion of the vessel.
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Disadvantages of the intraluminal thread model include a risk of subarachnoid 

haemorrhage due to the piercing of the vessel wall while the filament is being 

advanced, failure to induce damage due to a residual flow supplying the MCA 

territory whilst the filament is in place and an increased mortality rate for permanent 

intraluminal thread due to large infarcts and potentially damaging rises in intracranial 

pressure not relieved due to the absence of a craniectomy.

Endothelin-1 models of MCA Occlusion- Two methods of Endothelin -1 MCA 

occlusion exist. The first method involves surgical exposure of the MCA with a 

lesser degree of mechanical damage than methods using electrocoagulation or 

application of a clip/ ligature to a vessel and pharmacologically induced occlusion of 

the vessel.

Following opening of the dura and puncturing of the arachnoid membrane the potent 

vasoconstrictor peptide endothelin-1 (ET-1) is applied topically to the MCA. Severe 

constriction leading to complete occlusion of the MCA occurs within seconds, 

significantly reducing cerebral blood flow within the MCA territory (Macrae et al., 

1993). The severity and duration of ischaemia can be modulated by altering the dose 

of ET-1 administered. As the effects of the ET-1 wear off (t Vz is between 45 and 60 

minutes in studies in cat pial arterioles, Robinson & McCulloch, 1990) the MCA 

returns to its normal calibre resulting in reperfusion of blood into the MCA territory 

(Macrae et al, 1993). Reperfusion levels of approximately 50% can be seen at 4 

hours post ET-1 application.
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The second ET-1 model of MCA occlusion is the Sharkey model (Sharkey et 

al., 1993) and is an alternative to the ET-1 model described above. A lower dose of 

ET-1 is used (0.12nmol when compared to 2.5nmol) and the vasoconstrictor is 

stereotaxically injected into parenchymal tissue adjacent to the MCA in conscious 

animals via a previously implanted cannula. In this model the ischaemia is more 

prolonged than in the Macrae model with no evidence of reperfusion for the first 3-4 

hours.

The intraluminal thread model and the diathermy model of MCA occlusion are the 

most widely used of the models of focal experimental ischaemia. Other available but 

less common models of focal MCA occlusion include the introduction of a catheter 

containing blood clot fragments into the common carotid artery (CCA) and/or ICA, 

branches of the ECA. The catheter is advanced into the ECA following the ligation 

of one or more of the following - the ICA, CCA or branches of the ECA, and is 

advanced to the origin of the ICA where blood clot fragments were injected (Penar,

1987).

Microspheres can also be injected into the CCA following ligation of the extra 

cranial branches of the ECA providing an alternative method of occlusion of the 

MCA (Zivin et al, 1987).
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Photothrombosis- this method uses photoactive agents (for example Rose Bengal a 

photosensitive dye) to occlude vessels on the surface of the cortex (Dietrich et al., 

1989). The dye is administered intravenously and the skull is exposed to light of a 

specific wavelength which irradiates the skull and results in thrombus formation. The 

thrombus is formed as a result of irradiation of the Rose Bengal dye which produces 

singlet oxygen capable of peroxidizing lipids present within the vascular 

endothelium and among constituents of the blood. An argon laser is also used to 

induce thrombolysis in large arteries such as the CCA (Watson et al., 1987).

1.3.5 Models of global ischaemia

Although the studies in this thesis exclusively used models of focal ischaemia, the 

commonly used models of global ischaemia will be briefly described.

Global ischaemia involves cutting off the blood supply to the whole brain rather 

than a defined region of the brain. As with focal ischaemia, global ischaemia can be 

either permanent or non-permanent (complete or incomplete).

Complete Global Ischaemia

Decapitation ischaemia- this is perhaps the most simple of all the experimental 

models of ischaemia and will produce complete ischaemia. This model has been used 

to study the biochemistry of cerebral ischaemia (Ross et a l, 1993)



Application of a neck tourniquet -  blood supply to the brain is halted by the 

application of a pressure cuff to the blood vessels in the neck. The method was first 

introduced by Levine and Marvine in the 1960’s and causes not only ischaemia but 

also cardiovascular failure. It is not therefore exclusively a model of cerebral 

ischaemia. The model has a high mortality rate and is now rarely used as a model of 

experimental ischaemia.

Incomplete Global Ischaemia

Models of incomplete global ischaemia do not completely block the blood supply to 

the entire brain and so cardiovascular function is less affected. Vessels leading to the 

brain are occluded outside of the skull and as a result models of incomplete 

ischaemia will cause less indirect damage and are surgically easier to perform than 

some of the models of focal ischaemia previously described. The most commonly 

used models of incomplete global ischaemia are:

Bilateral occlusion of the common carotid arteries- this model was first 

introduced in the 1970’s by Elkof and Siesjo and involves the clipping or ligation of 

the common carotid arteries. This can be either permanent or transient with the 

clips/ligature being removed to allow reperfusion. This model is usually combined 

with hypotension to improve reproducibility.
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Four vessel occlusion- this model involves the prior permanent occlusion of both the 

vertebral arteries with recovery followed later by the application of clips /ligature to 

the common carotid arteries to induce a defined period of ischaemia. This model was 

first introduced by Pulsinelli and Brierly in 1979 and is still widely used.

In models of global ischaemia there is selective neuronal vulnerability. Neurons in 

certain regions of the brain have a greater vulnerability to ischaemic damage than 

those in other regions. For example in models of global ischaemia, the neurons in the 

CA1, CA3 and CA4 regions of the hippocampus, regions in the caudate and the 

cerebellum and layers 3,5 and 6 of the neocortex are particularly sensitive to 

ischaemia (Siegel et a l, 1976).

1.3.6 The Spontaneously Hypertensive Stroke Prone Rat as a model of 

cerebrovascular disease

The Spontaneously Hypertensive Stroke Prone Rat (SHRSP) is classed as an ‘inbred 

animal model o f cerebrovascular disease'' (Okamoto et a l, 1974) with a pathology 

of hypertension similar to that in humans.

SHRSPs develop a rapid onset of hypertension following birth with a typical mean 

arterial blood pressure of around 190mmHg at age 3 months compared to around 130 

mmHg in its normotensive reference strain the Wistar Kyoto (WKY). Hypertension 

remains a trait of the SHRSP throughout its life (Fredriksson et a l, 1985).

The SHRSP is often used to study stroke as the strain has a high incidence of 

spontaneous stroke and an increased sensitivity to an induced experimental stroke.
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This is illustrated by an increased volume of infarction following MCA occlusion 

when compared to their normotensive reference strain the WKY. This increased 

stroke sensitivity is reported to be independent of high blood pressure and controlled 

by a gene or genes within a quantitative trait loci (QTL) on rat chromosome 5 (Jeffs 

et a l, 1997). Although the gene(s) responsible has not yet been identified various 

factors have been proposed to contribute to this increased stroke sensitivity. These 

include a reduced internal diameter and impaired function of cerebral anastomoses 

leading to a reduced collateral blood supply (Coyle et a l, 1991; Carswell et al,

2000). Other possible contributory factors include an increased release in glutamate 

following ischaemia (Gemba et a l, 1992) and an increased inflammatory response to 

ischaemia (Hallenbeck et a l, 1991).

SHRSPs and the genetically related spontaneously hypertensive rat strain (SHR) 

have been used in experimental stroke studies because of the reproducibility of the 

infarct size produced (Duverger and Mackenzie, 1988; Sauter et a l, 1995 ) and to 

investigate genetically determined factors contributing to sensitivity to ischaemia. 

Although SHRs and SHRSPs have a similar pathology to humans they may not be 

ideal as models to study neuroprotection as they tend to possess less salvageable 

tissue available for drug intervention compared to normotensive strains.

1.4 Ischaemic Events

The focal ischaemia associated with a stroke deprives brain tissue of both oxygen 

and glucose resulting in rapid energy loss with resultant impairment in energy
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dependent ion and neurotransmitter pumps which maintain normal cellular 

homeostasis. Neurons consequently depolarise and release their neurotransmitter 

content. The neurotransmitter glutamate is particularly toxic when levels are not 

strictly controlled in the extracellular space and this can lead to excitotoxicity via 

receptor mediated and non-receptor mediated events (Figure 4- From Koroshetz et 

al, 1996). These events culminate in the swelling and infarction of the brain tissue 

(Koroshetz & Moskowitz, 1996).

ISCHAEMIA >  REPERFUSION
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Figure 4. Events following ischaemia. Modified from Koroshetz, 1996.
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1.4.1 Reperfusion Injury

In addition to the brain damage caused during the ischaemic period, recent evidence 

would suggest that on reperfusion of the cerebral tissue after a significant period of 

ischaemia (1-2 hours in rat), further damage can occur as a result of returning oxygen 

and glucose to ischaemically challenged tissue and as a result of interactions between 

components of the blood and the damaged/ischaemic tissue (Hallenbeck & Dutka , 

1990; Aronowski etal., 1997; Sharkey e ta l,  1996).

Reperfusion has the potential to salvage tissue in the peri-infarct area- the area 

between the densely ischaemic core and the normally perfused brain. During 

reperfusion of the brain there is resumption of oxygen delivery, provision of 

substrates for metabolism and clearance of metabolic waste in an attempt to return 

tissue function to normal (Hallenbeck & Dutka, 1990).

The first indications of reperfusion injury were observed in relation to myocardial 

ischaemia but it is now widely accepted that following ischaemia, restoration of 

blood flow in many tissues, including the brain, can result in further damage 

(Hallenbeck & Dutka, 1991; Traytsman et a l, 1991; Yang et a l, 1994).

Although early reperfusion aids tissue recovery, delayed reperfusion may induce 

deleterious mechanisms in injured tissue leading to further damage to the brain tissue 

and provide a route for inflammatory cells in the bloodstream to the tissue.
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1.4.2 Excitotoxicity and ischaemia

Glutamate mediated excitotoxicity is perhaps one of the most important acute 

mechanisms of ischaemic damage following a period of neuronal oxygen 

deprivation.

High concentrations of glutamate are capable of triggering neuronal death and are 

suspected to play a role in the pathogenesis of a number of CNS diseases including 

stroke.

Three mechanisms give rise to high glutamate concentrations in synaptic clefts 

during ischaemia. 1) glutamate released from synapses in response to the 

depolarisation of ischaemic neurons; 2) glutamate released from depolarised 

astrocytes and 3) failure of glutamate uptake into neurons or glia because of loss of 

ATP. The consequence is over stimulation of NMD A and AMP A receptors. This 

over stimulation of receptors leads to a massive influx ofN a+, Ca2+ and Zn2+ions and 

loss of K+ ions through ion channels associated with the NMDA and AMPA 

receptors. It is the increase in these ion concentrations which leads to metabolic 

disruption and neuronal cell death (Lee J.M., 1999). Other problems associated with 

the excitotoxicity include the rapid influx of water leading to dendritic swelling and 

plasma membrane failure.

NMDA antagonists such as MK801 and AMPA antagonists such as NBQX attenuate 

excitotoxic mediated neuronal cell death following ischaemia and reduce the amount 

of brain damage in experimental models of global and focal ischaemia (Wieloch T., 

1985, SimonR.P. etal., 1984).
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While NMDA receptor antagonists appear more effective in reducing focal 

ischaemic damage, evidence would seem to suggest that AMPA receptors play a 

significant role in excitotoxicity following global ischaemia (Yin et al, 1994; 

McDonald et a l, 1998)

There are several endogenous factors which may reduce the role of NMDA receptors 

in the excitotoxic process. Following ischaemia there is an increase in free radicals, 

Zn2+ and protons all of which have been reported to reduce the activation of the 

NMDA receptors (Lee et a l, 1999). This inhibition of the NMDA receptors may be 

complemented by the direct inhibition of NMDA receptors by intracellular 

calmodulin (Lee et al, 1999). These occurrences may put more emphasis on the role 

of AMPA mediated excitotoxicity.

1.4.3 Inflammation and ischaemia

Although the brain has been described as immunologically deprived due to its lack of 

a lymphoid system and dendritic antigen presenting cells (Schwartz et a l, 1999), an 

inflammatory response to ischaemia can clearly be seen spanning the period from 

minutes to weeks after the ischaemic insult.

The brain’s inflammatory response to ischaemia is a complicated one with many 

instances of overlap and feedback. It involves not only resident inflammatory cells 

such as microglia but also circulating peripheral inflammatory cells such as the 

neutrophils and macrophages. Circulating inflammatory cells can exacerbate 

ischaemic damage by adhering to the walls of injured blood vessels promoting blood
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cell aggregation and physically blocking the lumen. These cells are also capable of 

becoming activated and crossing into the brain releasing cytotoxic substances such as 

interleukins, free radicals, proteases and cytotoxins, further contributing to 

inflammatory mediated damage and increased blood brain barrier permeability. 

Mediators of the inflammatory response to ischaemia are thought to include free 

radicals, inflammatory cells such as neutrophils and microglia, cytokines, proteases 

and protease inhibitors.

These mediators are all part of the general inflammatory response which occurs in 

response to cerebral ischaemia (Figure 5- From Sharkey et al, 1996).
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Figure 5. Inflammatory timescale following ischaemia. Modified from Sharkey et al, 

1996.
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1.4.3.1 Neutrophils

The accumulation and adherence of inflammatory cells and their migration into the 

brain has been reported to contribute to ischaemic damage.

Neutrophils are important inflammatory cells which have been proposed to 

contribute to ischaemic damage. Neutrophils form an important part of the immune 

system, which involves recognition and elimination of potentially pathogenic 

molecules from the body (Male et a l, 1996). Neutrophil migration to sites of damage 

and infection helps to combat pathogenic invasion and inflammatory damage. 

However, in addition to playing a beneficial role in the host defences, neutrophil 

accumulation would seem to accompany various pathological conditions. Perhaps 

most importantly, global and focal ischaemia. Since the late 1960’s, the possible 

contribution of neutrophils to ischaemic damage has been investigated (Somas et a l, 

1972; Garcia et a l, 1974). It is now widely believed that neutrophil accumulation 

and aggregation resulting in the blocking of blood vessels, brain infiltration and the 

release of cytotoxic substances is likely to contribute to ischaemic damage (Grogaard 

et a l, 1989; Hallenbeck et al, 1986; Pozzilli et al, 1985).

Neutrophils are peripheral inflammatory cells which have to travel from the 

periphery to the brain in order to contribute to inflammatory mediated ischaemic 

damage. This process is collectively known as neutrophil extravasation and 

constitutes the following steps- capture, tethering/rolling, activation, adhesion and 

then migration (Figure 6).

Once the neutrophils have reached cerebral blood vessels the blood flow to an 

ischaemic area can be hindered due to the ability of the neutrophils to accumulate
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and adhere to the endothelium of the blood vessel walls, resulting in a plugging of 

the vessels.

This hindrance of blood flow has been termed “no-reflow” and has been 

demonstrated in various animal models. For example in a baboon model of 3 hour 

MCA occlusion, the no-reflow phenomenon was reported in >60% of capillaries 

within 1 hour of reperfusion (Del Zoppo etal., 1991).

Neutrophil

O

Endothelium
o

Figure 6. Steps of Neutrophil Migration. (Modified from Rothlin., 1977)

1 -  Circulating neutrophil attracted to endothelial surface, 2 + 3 -  slowing, tethering 

and rolling , 4 -  Activation, 5 -  Adhesion, 6 -  Passage of neutrophil through endothelium.
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Neutrophils can also transmigrate into surrounding tissue causing damage by a 

variety of mechanisms including the release of free radicals, cytotoxic substances 

and activation of proteinases.

For neutrophil adherence to occur, the expression of adhesion receptors is required. 

The two classes of adhesion molecules which play the greatest role in neutrophil 

adhesion are 1) The Selectins (P and E) recognising carbohydrate ligands and 2) 

members of the Immunoglobulin Super family (including the intercellular adhesion 

molecules-1 and 2- ICAM-1 and ICAM-2 and VCAM) which recognise integrins. 

Various studies have shown that these adhesion molecules are up regulated during 

cerebral ischaemia (Okada et al, 1994; Pantani et al., 1998; Soriano et al., 1996) 

and antibodies which block these adhesion sites have been reported to reduce 

ischaemic damage.

Various mediators are responsible for the expression of receptors on the neutrophils 

and the endothelium. These include N-formyl-methionyl-leucyl-phenylalanine and 

platelet activating factor in the case of neutrophils and interleukin-1 (IL-1) in the 

case of the endothelium adhesion molecule expression. Tumour necrosis factor 

(TNF), lipopolysaccharide (LPS) and leukotriene B4 stimulate both selectins and 

adhesion molecules.

Evidence for the early accumulation of neutrophils in ischaemic damage comes from 

histopathological, biochemical and iodine labelled neutrophil studies. The actual 

significance of such accumulation is unclear, although there is a suggestion that it 

may represent a “homeostatic” response to scavenge debris and re-seal damaged 

tissue.
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The time course of neutrophil accumulation after stroke in humans (Pozzilli et a l, 

1985) and after permanent MCA occlusion in animal models (Garcia & Kamijyo, 

1974) has been reviewed. It has been reported that maximal neutrophil infiltration 

around the ischaemic core occurred between 48 and 72 hours with further infiltration 

into the core by 7 days post occlusion. Neutrophil accumulation is greater in animal 

models of transient focal cerebral ischaemia with reperfusion than in permanent 

occlusion models. A greater number of neutrophils are most probably present in 

reperfusion models compared to permanent models due to the fact that reperfusion 

provides a route into ischaemic territory. Reperfusion may also promote earlier 

cellular migration into parenchyma than permanent MCAO due to blood / vessel 

interactions.

Other than the plugging of vessels, neutrophils can also cause ischaemic damage and 

damage during reperfusion via the release of cytotoxic substances such as free 

radicals. A certain degree of positive feedback can occur at this point as free radicals 

are able to stimulate further neutrophil adherence and accumulation.

The release of free radicals by neutrophils and other cell types during reperfusion 

has been studied and a time course of free radical production has been suggested 

(Matsuo et al., 1995). A biphasic profile exists, with an increase in free radicals 

occurring immediately after reperfusion, continuing for around an hour and then 

falling to basal levels with a further increase occurring after 24 hours reperfusion. 

Based on these observations and the fact that neutrophil infiltration usually occurs 

between 6 and 12 hours after reperfusion in the MCA model, it has been 

hypothesised that the initial rise in free radical levels may be due in part to
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circulating neutrophils while the subsequent rise is more likely to be due to 

infiltrating neutrophils and macrophages.

Although numerous studies looking for elevated neutrophil accumulation and 

studies investigating the effect of antibodies against adhesion molecules have been 

carried out in different animal models of ischaemia (Chopp et al., 1994; Zhang et a l, 

1994; Clark et al., 1991; Zhang et al., 1995), opinion still remains divided as to the 

significance of their role in reperfusion injury.

In the dog, indium 111 labelled granulocytes have been shown to accumulate as 

early as one hour after a sixty minute period of brain ischaemia in an air embolism 

model (Hallenbeck et al., 1986). This accumulation occurred in the injured 

hemisphere of the ischaemic animals. Using autoradiography the clustering of 

punctate granulocyte images was detected in regions of low blood flow in half of the 

animals at both 60 minutes and two hundred and forty minutes after ischaemia with 

no clustering occurring in non-ischaemic animals.

As previously mentioned, to further investigate the role of neutrophils in reperfusion 

injury, studies have been carried out to determine the effect of antibodies to 

neutrophil adhesion molecules and integrins on brain damage in models of transient 

MCA occlusion.

Administration of antibodies against endothelial adhesion molecules would be 

expected to ameliorate damage caused during reperfusion if these molecules played a 

significant role in this damage.

A number of studies have demonstrated attenuation of ischaemic damage by anti­

adhesion molecule antibodies. In a rabbit embolic model of stroke (Helps & Gorman,
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1991), anti-ICAM-1 antibody was shown to increase the amount of clot necessary to 

produce permanent damage.

In rat models of MCA occlusion with forty-six hour reperfusion, administration of 

anti-CD l ib  integrin, anti-MAC-1 or anti ICAM-1 monoclonal antibodies 

administered either at the time of ischaemia, within an hour of reperfusion or twenty 

two hours after reperfusion attenuated ischaemic damage (Zhang et a l, 1995, Chopp 

et a l, 1994).

Although it would seem feasible that neutrophils play a part in ischaemic damage, 

various studies have reported no evidence of neutrophil accumulation following 

experimental cerebral ischaemia (Hayward et al, 1996; Peters et a l, 1998; 

Oruckaptan et al, 2000). In addition to negative studies, some groups have found 

that neutrophil accumulation and contribution to ischaemic damage would seem to be 

dependent on the duration of ischaemia with neutrophils contributing to damage in 

transient but not permanent models of middle cerebral artery occlusion (Zhang et a l, 

1995; Prestigiacomo et al, 1999).

1.4.3.2 Microglia

In previous studies from our laboratories, little evidence has been found for a 

significant recruitment of inflammatory cells from the circulation during the time of 

maximal infarct growth. Consequently this thesis has concentrated on the microglial 

cells which are present and activated within the brain during the time of infarct 

maturation.
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Microglia are inflammatory cells thought to play a role in Central Nervous System 

(CNS) pathology. They constitute 5-20% of the total glial cell population in the CNS 

(Gehrmann, 1996) and have been shown to become activated in conditions of brain 

injury, neurodegeneration, inflammation and ischaemia. Whilst their purpose is 

primarily to remove debris and dead cells and limit further damage by promoting 

neural regeneration and tissue repair, it is proposed that their activation may also 

prove detrimental in certain disorders (Nakajima et a l, 1998; Moore & Thanos, 

1996; Nakajima et al, 1993).

As mentioned previously, ischaemia and brain trauma are commonly associated with 

the expression of inflammatory cytokines (IL-1, TNF-a, IL-8, LTB4) and the up 

regulation of adhesion molecules which play a vital role in neutrophil adherence to 

cerebral blood vessel endothelium. Microglia have been shown to secrete 

inflammatory cytokines, glutamate, free radicals and proteases and have also been 

reported to show up regulation of adhesion molecule expression. It is possible 

therefore that they may be involved in the pathology of conditions such as ischaemia 

and brain trauma.

In terms of the origin of brain microglia, various theories have been formed. 

Microglia could be of monocytic, mesodermal or neuroectodermal origin.

The monocytic theory of origin is the most widely believed and it is generally 

accepted that monocytes are capable of crossing the blood brain barrier in the early 

embryonic stages. They are then capable of transforming into ameboid microglia and 

then into ramified, resting microglia following completion of brain development. 

Various pieces of evidence would seem to support this theory. For example, studies 

have shown that the injection of carbon labelled monocytes can lead to the
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production of carbon labelled mature microglia within the brain (Perry et a l, 1985). 

A monocytic origin would also seem to be likely due to the fact that isolectin (3 4 

binds to both microglia and monocytes and that microglia are recognised by many 

macrophage markers (For example antibodies to Fc receptors and major 

histocompatability complexes (MHC)).

Microglia appear in the CNS from early in development in the postembryonic period 

(Barron, 1995). At this stage microglial cells have the appearance of macrophages, 

possessing a large cell body and very short projections. They also undertake the role 

of a macrophage by removing cellular debris, engulfing dead neurons and 

oligodendrocytes and playing a role in the remodelling and reabsorption of brain 

fibre tracts. These functions justify the microglial cell being given the name t£brain 

macrophage” in the early stages of brain development.

As the brain matures, the appearance and the role of the microglial cell changes and 

the number of ameboid microglia decrease. They are replaced by ramified (or 

resting) microglia which have small cell bodies and long spindly processes. In the 

ameboid form, microglia can be said to be in an active form and are able to revert 

from activated to resting and vice versa in response to different stimuli throughout 

their lifetime (Figure 7).
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Figure 7. Stages of microglial activation. A. resting microglia, B. activated microglia, 

C. phagocytic microglia.

In the normal CNS, microglia are present in a resting state, with their morphology 

being dependent on their location in the brain (Keane & Hickey, 1997). For example 

in the white matter, microglia possess a bipolar morphology while in the grey matter 

they possess a stellate morphology . The spiny appearance of microglia was first 

described by Rio- Hortega in the 1930’s (1932) with the use of silver carbonate 

staining and has further been shown with fluorescent labels. Scanning electron 

microscope images have shown that the whole of the microglial surface is covered in 

spines between 2 and 4p.m in length and 0.1 jam in diameter (Giulian et al, 1995) 

T hese are long when compared to the size of the cell body- 5- 10pm Microglia have 

been shown to have an average of 20 spines per cell and this spiny appearance 

distinguishes the microglial cell from peripheral blood borne macrophages as they do 

not possess this feature. The spines are believed to play a role in the migration of the 

microglia
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With the onset of CNS injury or potentially damaging changes in the 

microenvironment, microglia are able to undergo a series of changes and become 

activated (Davis et al., 1994) within a matter of minutes to hours in the case of 

cerebral ischaemia.

Microglial activation is not a single step and microglia undergo several changes in 

morphology until they resemble a phagocytic cell such as the macrophage.

In the activated state microglia develop more pronounced but shorter projections and 

their nucleus becomes more defined. They also undergo up regulation of cell surface 

antigen receptor expression. Examples of antigens up regulated include MHC class 1 

and class 11 antigens. Other antigens thought to be expressed by microglial cells 

during activation include EDI, CR3, EBM11, Fc receptors and plasminogen 

activator inhibitor (Kato et a l, 1995; Gehrmann et a l, 1992; Morioka et al, 1991). 

The development of a phagocytic phenotype is normally the last step in the 

activation process and not all microglia will reach it. When in the phagocytic form, 

the microglial cells perform the beneficial role of removing debris including necrotic 

neurons and damaged tissue to allow remodelling and glial scar formation (Abraham 

and Lazar, 2000; Mabuchi et a l, 2000).

The mechanisms by which the microglial cell becomes activated are not entirely 

understood but are believed to involve changes in calcium and potassium levels in 

the microenvironment, with microglia being particularly sensitive to changes in the 

outward potassium currents.

The following factors have been suggested as potential mediators of microglial 

activation in ischaemia: activation due to the energy depletion accompanying 

ischaemia; activation by exposure to neuronal distress factors; activation by exposure
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to astrocytic secretory products (unlikely as the astrocytic response occurs later than 

the microglial response- Kato & Waltz, 2000); spreading depression induced changes 

and activation by exposure to blood borne elements as a result of the breakdown of 

the blood brain barrier.

Kato and Waltz (2000) set out to investigate energy depletion and spreading 

depression as potential contributors to microglial activation following in vitro 

chemical ischaemia (depriving cells of glucose and applying an inhibitor of the 

electron transport chain). The study found that energy depletion was unlikely to be 

the stimulus for microglial activation as the depletion caused irreversible damage in 

the form of changes in membrane current and in morphology and did not cause an 

increase in the outward potassium current implicated in microglial activation. 

Spreading depression on the other hand, was found to elicit changes to the 

microenvironment conducive to microglial activation. An increase in ATP and 

potassium in microglial cells during spreading depression was found to enhance the 

calcium response to ischaemia. This calcium response is thought to enable the 

microglial cell to translate external factors into a signal code alerting the cell to the 

presence of damage. The intensity of the signal allows the microglial cell to 

determine the severity of the ischaemic damage and to mount an appropriate graded 

response.

It is still relatively unclear what the main signalling molecules involved in the 

microglial cellular response during activation are, although microglial mitogens are 

thought to play a role in initiating such a response. These include macrophage colony 

stimulating factor (MCSF) and IL-6.



37

Prior to the changes in morphology described above, the microglia normally undergo 

a certain degree of proliferation and migrate towards the site of damage, for example 

towards the site of ischaemia.

Proliferation and migration are thought to be induced by a number of inflammatory 

mediators including those belonging to the cytokine family (Table 1) (Rauvich et al., 

1996).

One of the main ways in which microglia are thought to be able to migrate towards 

the site of damage is via a process known as chemotaxis. Different types of microglia 

migrate towards different chemoattractants. In the case of rat microglia they have 

been shown to migrate towards the chemoattractant C5a.

For such an attraction to take place, a soluble chemoattractant gradient must exist 

down which cells are able to move from low to high concentration.
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CYTOKINE ROLE IN INFLAMMATION

I gamma - IFN MHC class 11 (MHC2) expression, antigen presentation.

IL-1 induction of urokinase-type PA (UP A)

LPS NGF,MCSF and IL-2 receptor induction, inhibition of UP A.

TPA delayed microglial proliferation in vitro

FGF indirect effect on microglial proliferation, UPA induction in vitro

IL-2 LPS-dependent microglial survival and proliferation in vitro

IL-3 microglial proliferation in vitro/in vivo, activation of phagocytosis, 

MHC2 expression

LL-4 microglial proliferation in vitro, inhibition of MHC2

MCSF microglial proliferation in vitro, superoxide ion formation, acid 

phosphatase, inhibition of MHC2 expression

GMcsf microglial proliferation in vitro/in vivo, activation of phagocytosis

Table 1. Role of cytokines in proliferation of microglia and the microglial mediated 

inflammatory response. From Rauvitch et al., 1996.

During migration the microglial cell undergoes structural changes which allows the 

cell to physically move. These changes involve alterations to actin polymerisation 

and distribution which can lead to elongation of projections/pseudopodia etc. 

allowing the cells to advance (Figure 8, Lauffenburger and Horwitz, 1996).
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Figure 8. The migration of Cells. (From Lauffenburger and Horwitz, 1996)

Various chemokines have been shown to induce migration of microglia. These 

include IL-8, macrophages inflammatory protein l a  and 1(3, RANTES and interferon 

gamma inducible protein 10.

When the microglia proliferate and migrate to the site of damage they become 

activated. Once activated the microglia are capable of secreting a number of 

damaging substances such as NO, oxygen free radicals, proteases, glutamate and 

cytokines (Banati et al, 1993). This release of cytotoxic agents can be modulated by 

inflammatory mediators and certain neurotransmitters. Either the microglia can be
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stimulated to secrete cytotoxic substances, (for example by IFN-y) or the cytotoxic 

properties of microglia can actually be reduced by cytokines such as EL-4 or TGF-pi. 

A rise in cytokine levels occurring 1-2 days following ischaemia as reported by 

Baback et al., 1996, would seem to correlate well with the timescale for microglia 

activation.

Microglia and ischaemia

Various studies have been carried out looking at microglia numbers and activity 

following ischaemia (Abraham and Lazar, 2000; Zhang et a l, 1997; Moore and 

Thanos ,1996; Gehrmann ,1992) when increased proliferation , migration and 

activation of microglia can occur.

Microglia have the potential to play a double role following an ischaemic insult. On 

the one hand as a contributor to ischaemic damage, and on the other hand promoting 

the recovery and survival of nerve cells.

Microglial mediated neuronal damage is thought to primarily occur due to the 

release of cytotoxic substances such as glutamate, nitric oxide and a host of 

cytokines while the salvaging of recoverable neurons is thought to rely on the release 

of another group of substances including IL-1, TGF-betal and other growth factors. 

Although many studies support a deleterious role for microglia following ischaemia, 

microglia are also capable of beneficial effects following both PNS and CNS injury. 

Microglia are known to be involved in phagocytosis and following injury can clear
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away debris, for example from permanently degenerated neurons, allowing wound 

healing and neuronal regrowth ( Zeev-Brann et al, 1998; Chen et al, 1995).

Indeed, clusters of phagocytic microglia are often seen accumulating around dying 

neurons. Microglia also have the ability to secrete substances which can aid neuronal 

regeneration by stimulating the migration of scar forming and wound healing 

astrocytes to the site of damage (Faber-Elman et al, 1996). These substances include 

IL-1 beta, TNF-alpha and the growth factors- TGF-beta, TGF-alpha, bFGF, EGF and 

IGF. The growth factors released can also inhibit or activate many of the activities 

involved in neuronal regrowth. For example they may stimulate cell migration and or 

proliferation, increase protease activity or alter the expression of extracellular matrix 

components.

While the major role of microglia is to perform a phagocytic role in most forms of 

PNS and CNS neuronal damage, there is evidence to suggest a pathological role in 

cerebral ischaemia (Moore & Thanos, 1996) and it is widely accepted that an 

increased presence of activated microglia following an ischaemic insult may 

contribute to the pathology of the condition.

As mentioned previously the microglia can cause damage directly and indirectly. 

Indirect mechanisms include the release of cytokines- IL-1, IL-6, TNF-a, M-csf, 

prostaglandins and leukotrienes, reactive oxygen intermediates (O2 -,H2C>2 ONOO-) 

matrix metalloproteinases, enzymes (hydralases, cathepsins, plasminogen activator) 

and enzyme inhibitors (Tissue Inhibitors of MMPs).

These substances can cause damage through a variety of mechanisms including 

direct tissue injury, lipid peroxidation, release of neurotransmitters, vascular leakage, 

edema, necrosis and changes in ion flow and hormone release.
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In terms of neurotoxicity associated with transmitter release, microglial induced 

toxicity is thought to be partially due to increased glutamate release (Banati et al.,

1993) since microglia have been shown to be capable of secreting glutamate in vitro. 

This increased glutamate increases NMDA receptor activity and so increases NMDA 

mediated toxicity and neuronal cell death.

The release of glutamate from microglia would seem to occur most often in 

conditions of high extracellular potassium levels. Microglial cells are particularly 

sensitive to changes in extracellular potassium levels due to their lack of a substantial 

potassium outward current.

Microglial cells can also cause damage directly via their ability to strip synapses and 

carry out neurophagia.

The presence of activated microglia following ischaemic insults has been reported by 

a number of groups.

In general it would seem that certain brain regions produce a faster inflammatory 

response to ischaemia than others explaining why certain areas produce a more 

pronounced increase in activated microglia early after ischaemia while in others the 

microglial response is not apparent until days after the insult. For example, in the 

hippocampus, especially the CA1 cell layer, microglia appear particularly susceptible 

to ischaemic damage responding within hours, while in white matter microglial 

responses tend to require days to develop. Studies have shown that following 30 

minutes of global forebrain ischaemia, a microglial reaction can be seen after 24 

hours in the striatum and the CA1 and CA4 of the hippocampus (Gehrmann et al, 

1992). After 72 hrs activated microglia have been shown to spread to other regions
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including the thalamus, substantia nigra and the white matter (Gehrmann et al, 

1992).

A rapid activation of microglial cells following focal cerebral ischaemia has been 

observed following 1 hour of intraluminal filament occlusion of the right middle 

cerebral artery. Microglial activation was seen over 4hrs- 7 days (Kato et al, 1994 ). 

An elevated microglial response in the cortex has also been observed within 18 hrs of 

an occlusion of the middle cerebral artery in the rat in alternative models of 

experimental ischaemia (Morioka et a l, 1991).

The involvement of microglial cells in the development of the infarct was examined 

by Mabuchi et al., 2000. They found that following intraluminal thread occlusion of 

the left MCA in the rat, the infarct was still developing from 16 to 48 hours after the 

induction of ischaemia. During the acute stages of ischaemia (up to 16 hours), they 

found little evidence for inflammatory cell contribution to ischaemic neuronal 

damage and postulated that spreading depression and increased glutamate toxicity 

were the main drivers for the progression of the ischaemic lesion. From 16 hours to 

48 hours an expansion of the ischaemic lesion could be seen and it was during this 

period that activated microglia numbers increased in areas which were subsequently 

to become infarcted. From this observation Mabuchi and colleagues proposed that 

microglia and macrophages producing cytotoxic substances including EL-1 beta, 

were capable of contributing to the expansion of the ischaemic lesion after the early 

ischaemic period.
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Role of microglia in other pathological conditions

In addition to a possible role in the pathology of cerebral ischaemia, microglia are 

also thought to contribute to the pathology of a number of other CNS conditions and 

become activated in states of inflammation and in response to brain injury. (Table 2 

modified from Nakajima and Kohsaka, 1993).

In Alzheimers Disease, p-amyloid depositions within the brain can lead to memory 

loss, confusion and mental instability. Activated microglial cells are observed in and 

around almost all P- amyloid plaques and would appear to be in the activated state 

expressing MHC class I and or class II antigens (Dickson et al, 1993; Mattiace et al, 

1990).

There are various explanations given for microglial plaque association in 

Alzheimer’s disease although no one explanation has been totally accepted.

There is speculation that the microglia may be directly involved in deposition of p- 

amyloid and that microglial cells may possess proteases capable of processing 

amyloid precursor protein (APP) (Moore & Thanos , 1996). The other train of 

thought is that the microglia perform a phagocytic role or that they congregate round 

degenerating neurons releasing cytokines and proteases which may cause neurons to 

produce more amyloid precursor protein.

In Multiple Sclerosis (MS), as in Alzheimers Disease, microglia are seen to 

accumulate in and around MS plaques. Plaques are widely distributed in spinal cord 

and intracerebral white matter tracts which are normally the primary sites of 

demyelination and inflammation. Microglia are proposed to contribute to the 

pathology of the condition due to their ability to secrete cytotoxic substances and 

through direct disruption of myelin (Moore & Thanos 1996; Cattieri et a l, 1994).



45

Microglia are also thought to be involved in the pathology of acquired 

immunodeficiency syndrome (AIDS) as microglial cells are among the CNS cells 

which become infected with the HIV retrovirus (Dickson et al, 1991)

The primary importance of this infection of microglial cells is the appearance of a 

dementia like syndrome which could be due in part to a loss of neurons caused by the 

release of neurotoxic substances from recruited microglia or directly due to the 

infection and debilitation of the microglia themselves (Nakajima & Kohsaka, 1993).
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INJURY OR DISEASE REACTION OF 

MICROGLIA

POSSIBLE

FUNCTION

Injury

(Giulian e ta l,  1987)

proliferation and migration 

to injury site.

defence, phagocytosis, 

gliosis and repair

Axotomy of facial nerve 

(Graeber et a l, 1988; 

Rieskee^a/., 1989)

activation 

expression of CR3

regeneration

Alzheimers Disease 

(McGeer et a l, 1988; 

Frackowiak et a l, 1992)

accumulation around senile 

plaques

phagocytosis, amyloid 

formation, APP processing

AIDS-DC

(Navia et al, 1986; 

Dickson et a l, 1991; 

Watkins et al, 1990)

Host for HIV-1 infection alteration of function

MS (EAE,EAN) 

(Anthony et a l, 1991)

accumulation in or around 

plaque

phagocytosis, degeneration 

of myelin, antigen 

presentation

Table 2- The involvement of microglia in other pathological conditions. Modified 

from Nakajima & Kohsaka, 1993.



Antibodies specific for microglia

Antibodies to microglia are widely available and are a very useful tool in the 

identification of both resting and activated microglia in cerebral ischaemia 

(Gehrmann, 1992).

Different antibodies are currently available which can distinguish between microglia 

in different species and in different stages of activation (Table 3).

ANTIBODY REACTIVITY REFERENCE

F4/80 mouse microglia Perry et a l, 1995

MAC-1, 

Ox-42, 

MRF-1, 

Isolectin (34 

ED-1

rat microglia Htaine/fl/., 1994 

Robinson et a l, 1986 

Tanaka et a l, 1999 

Boya e ta l,  1991 

Damoiseaux etal., 1994

EBM11, Ki-MlP human microglia Esiri and McGeer, 1986

Table 3- Antibodies against microglia. Modified from Gehrmann , 1992.

These antibodies are cell specific for microglia and will not stain any other cell type 

in the brain. The problem is however that they are capable of staining peripheral 

macrophages - which may migrate into the brain during ischaemia. Microglia can be 

distinguished from peripheral macrophages at the ultrastructural level as the
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macrophages do not possess spines characteristic of microglia (Ulvestad et al., 1994; 

Giulian e ta l,  1995).

1.4.3.3 Matrix metalloproteinases (MMPs)

As previously discussed, upon activation, microglia are capable of secreting a 

number of cytotoxic substances capable of contributing to ischaemic damage.

Among these substances are the matrix metalloproteinases (MMPs) and a number of 

groups have shown that MMP levels are increased following ischaemia and that 

administration of inhibitors of MMPs can reduce ischaemic damage and oedema.

The MMPs are a family of zinc dependent endopeptidases which are capable of 

degrading all of the components of the extracellular matrix (ECM) which maintains 

the viability of cells.

MMPs were first discovered in the 1960’s by Cross and Lapiere (1962) who realised 

that an enzyme on the tail of the metamorphosing frog had the ability to degrade 

collagen. This enzyme has since been identified as MMP-13. Since the discovery of 

this first MMP over 40 years ago, over 20 have now been identified.

MMPs are distributed throughout the body and are involved in both beneficial and 

detrimental processes. Beneficial effects include the regeneration of tissue in wound 

healing and scar formation, while detrimental effects include an involvement in the 

pathology of conditions such as rheumatoid arthritis, cancer (where they would seem 

to have a role in the promotion of tumour growth and metastasis), neurodegenerative
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disorders and ischaemia. In the central nervous system MMPs have also been 

implicated in the pathogenesis of neoplastic, degenerative and inflammatory/ 

demyelinating diseases including multiple sclerosis.

The Extracellular Matrix.

An extracellular matrix (ECM) is found in all organs, and is located in the interstitial 

space. The ECM can be defined as the naturally occurring extracellular substance 

upon which cells migrate, proliferate and differentiate in vivo (Rutka et a l,  1988). 

Any substance with the ability to degrade the ECM therefore has the potential to 

disrupt normal physiological function. The ECM is normally composed of collagen, 

non-collagenous glycoproteins, glycosaminoglycans and proteoglycans which are all 

substrates for the MMPs. In the brain, the ECM is not well defined in all areas, 

however a well defined ECM can be found surrounding cerebral blood vessels. The 

extracellular matrix takes the form of a true basement membrane involving 

interactions between the glial limitans externa, pial cells, astrocytes, capillaries and 

neurons of the grey matter and also incorporating oligodendrocytes in the white 

matter (Figure 9).



50

Pial Cell

Astrocyte

CA] Capillary
o

Neuro

White Matter
Oligodendrocyte

Figure 9. Structure of the Extracellular Matrix. Modified from Rutka et al 1988.

L -  Laminin, C -  Collagen, I -  Integrin, P- Proteoglycan, CAM- Cell Adhesion Molecule.

Classes of MMPs.

Matrix metalloproteinases can be divided into 3 classes - the collagenases, 

stromelysins and gelatinases. Each of these classes contains a number of different 

MMPs capable of degrading certain components of the extracellular matrix (Table 

4).
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MMP No. N ame M r late nt/active Other names

MMP-1 Collagenase 1 52 000/43 000 Interstitial Collagenase
MMP-2 Gelatinase A 71 000/62 000 72 kDa collagenase
MMP-3 Stromelysinl 52 000/43 000 Trans in,

Proteoglycanase, CAP
MMP-4 Procollagen peptidase Not available
MMP-5 3A Collagenase cc

MMP-6 Acid metalloproteinase cc

MMP-7 Matrilysin 28 000/19 000 Pump-1
MMP-8 Collqgenase-2 51 000/42 000 Neutrophil Collagenase
MMP-9 Gelatinase B 76 000/67 000 92 kDa collagenase, 

Type V collagenase
MMP-10 Stromelysin2 52 000/44 000 Transin 2
MMP-11 Stromelysin 3 51 000/46 000 Furin motif
MMP-12 Macrophage elastase 52 000/20 000 Metalloelastase
MMP-13 Collagenase 3 52 000/42 000 Rat interstitial collagenase
MMP-14 Membrane type matrix 

Metalloproteinasel
64 000/54 000 MT1-MMP, furin motif

MMP-15 Membrane type matrix 
Metalloproteinase2

71 000/61 000 MT2-MMP, furin motif

MMP-16 Membrane type matrix 
Metalloproteinase 3

66 000/56 000 MT3-MMP, furin motif

MMP-17 Membrane type matrix 
Metalloproteinase 4

62 000/51 000 MT4-MMP, furin motif

MMP-18 Collagenase 4 53 000/42 000 Xenopus
MMP-19 No trivial name 54 000/45 000 RAS-1
MMP-20 Enamelysin 54 000/22 000
MMP-21 XMMP 70 000/53 000 Xenopus, furin motif
MMP-22 CMMP

MMPC31
MMP-H19
MMPY19
Envelysin
Soybean MMP
Fragilysin

51 000/42 000 Chick embryo 
Caenorbabditis elegans 
C.elegans, furin motif 
C. elegans, furin motif 
Sea Urchin 
Glycine max 
Bacteroides fragilis

Table 4 The Matrix Metalloproteinase family. Modified from Woessner and Nagase, 

2000 .



Structure and activity

MMPs share a number of structural and functional properties. Most members can be 

organised into three basic distinctive and well-conserved domains based on structural 

considerations (Massova , 1998). These are an amino acid terminal propeptide, a 

catalytic domain (consisting of a conserved sequence in which 3 histidine residues 

form a complex with a catalytic zinc ion) and a Hemopexin-like domain at the 

carboxy -terminal end. Different members of the MMP family have different 

structures (Figure 10). Of all the members of the MMP family, MMP-7 has the 

simplest structure and MMP-9 the most complex.

Different parts or domains of the MMP structure have different roles. The first 

component of the basic MMP structure is the signal peptide comprising of 18-30 

amino acid residues. The signal peptide is cut from the MMP when it is secreted 

from its cellular source and so plays no role in the activation of the enzyme or the 

binding of the enzyme to its substrate. Lying next to the signal peptide is the 

propeptide domain which extends from the N-terminus (created after the removal of 

the signal peptide) to the catalytic domain and consists of around 80 amino acids. 

Within the propeptide domain, the cysteine residue plays an important role in the 

activation of the MMP. The cysteine residue is located opposite a zinc atom which is 

part of the active centre of the enzyme which allows the MMP to bind to its 

substrates (Springman EB et al., 1990). When the cysteine residue is displaced, by 

gold compounds, mercurials, proteolytic cleavage or oxidation, this exposes the zinc 

atom, therefore exposing the active site of the enzyme.
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Figure 10. MMP structure



The catalytic domain lies between the propeptide domain and the hemopexin like 

domain in all MMPs with the exception of matrilysin. It constitutes 160-170 amino 

acid residues with the catalytic activity being centred around amino acids at positions 

50-54. Fibronectin inserts divide the catalytic domain, separating the last 50 residues 

from the others. The catalytic zinc atom is found in the C-terminal portion of the 

domain bound by three histidine residues. The catalytic domain is believed to contain 

two ions of Zn2+ and one Ca2+ ion (Lovejoy B et a l, 1994). The fibronectin domains 

which divide the catalytic domain are found in gelatinase A and B. It is possible that 

fibronectin may aid with the binding process and certainly in the case of MMP-2 

each of the units binds to the MMP-2 substrate gelatin (Banyai L et al, 1994). 

Between the end of the catalytic domain and the start of the hemopexin domain lies a 

series of amino acid residues known as the hinge region or linker region. This region 

can vary in length from 2-72 amino acids and may play a role in destabilising 

substrates allowing part of their structure to interact with the active binding site.

The hemopexin domain is believed to play a role in binding and is around 200 amino 

acid residues in length. The domain is thought to be particularly important in 

collagenase activity. Clark and co-workers (1989) found that MMP-1 lacking the 

hemopexin domain was unable to digest collagen even though it still retained its 

catalytic activity. The hemopexin domain also binds heparin which is believed to 

accelerate activation rate when bound to the pro-enzyme (Crabbe et al, 1993). The 

domain is also involved in the binding of MMPs to their naturally occurring 

inhibitors the Tissue Inhibitors of MMPs (TIMPs). The transmembrane domain is
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found in the membrane inserted MMPs- MT1-MMP and MMP-14. At the end of the 

hemopexin domain lies an extension of 74 residues which includes a highly 

hydrophobic span suggested to be a transmembrane domain. This domain is believed 

to have a role in cleavage of the pro form of the enzyme to the active form.

All MMPs are produced in the latent form and must undergo proteolysis before 

becoming activated. The activation process involves the removal of the propeptide 

region of the molecule consisting of around 80-90 amino acids and including a 

cysteine residue which is capable of interacting with the catalytic zinc atom in the 

molecule via its thiol group. This proteolytic cleavage of the propeptide domain can 

be carried out by other proteolytic enzymes including other MMPs, mercurial 

compounds, thiol reactive agents and reactive oxygens.

In 1990, it was suggested by Van Wart and co-workers that the mechanism by which 

MMPs are activated involves the removal of a cysteine residue in the pro-peptide 

domain. Under normal circumstances the cysteine residue interacts with the catalytic 

zinc atom and prevents it from becoming associated with a water molecule allowing 

hydrolysis of the peptide. When the peptide becomes activated the cysteine residue is 

removed from the structure, and this exposes the catalytic zinc allowing hydrolysis 

and cleavage of the active form of the enzyme. (Figure 11)
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Figure 11. Activation of MMPs, from Woessner & Nagase, 2000

Different members of the MMP family are cleaved at slightly different points by 

different substances.

The MMPs are capable of degrading a number of different substrates. MMPs have 

their own specific cleavage sequences. For example MMP-9 can cleave substances 

from collagen, myelin basic protein to substance P.

It is the absence or presence of certain structural and functional domains which give 

the different members of the metalloproteinase family specificity for different matrix
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components. For example, MMP-2 and MMP-9, otherwise known as the gelatinases, 

possess the domain which enables them to bind to the denatured collagen or gelatin. 

MMP-11 contains a transmembrane domain at the end of the carboxy terminus, 

which allows recognition of furin-like convertases.

Distribution of MMPs in the CNS.

Matrix metalloproteinases are present within the normal central nervous system 

(CNS) as well as in conditions of inflammation and damage to the CNS. Studies have 

been carried out to determine the cellular localisation and levels.

CNS MMPs are present in small amounts in the latent form in a number of different 

cell types (Table 5). It is only in response to inflammatory stimuli or brain damage 

that the enzyme will be become activated. Inflammatory cytokines such as EL-1 and 

TNF-alpha, growth factors such as TGF-beta and noxious stimuli are capable of 

initiating transcription of the MMPs.
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CELL TYPE MMP PRESENT

Astrocyte 72 kDa and 92kDa gelatinase, stromelysin- 

1, stromelysin-2, collagenase-3

Schwann cells 72kDa gelatinase, stromelysin

Neurons 72kDa and 92kDa gelatinase

Microglia Stromelysin-1, 92kDa gelatinase, 

collagenase-3

Endothelial cells,Vascular smooth muscle 

cells, Ependymal cells

Various MMPs

Table 5- MMP Localisation Within Cell Types- modified from Mun-Bryce, 1998.

The presence of MMPs within the CNS as previously mentioned, is extremely 

important, as they are known to contribute to inflammatory disorders. It is important 

therefore that the cellular localisation of the MMPs is known to enable a better 

understanding of the role of the MMPs in these disorders. In a study looking at the 

cellular localisation of MMPs in control and multiple sclerosis human CNS tissue 

(Maeda & Schobel, 1996) the greatest number of positively stained cells were found 

to be microglial cells and the staining pattern was reasonably consistent among the 

different MMPs. A range of microglia with different morphologies were 

immunoreactive for the MMPs and reactive cells were found in both grey and white 

matter. MMP-1, MMP-2, MMP-3 and MMP-9 were found expressed in microglial 

cells but MMP-1 and MMP-2 would seem to be the MMPs which are most likely 

only to be found within microglia. MMP positive macrophages were found in the MS
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material but not the control tissue. MMP reactivity has also been seen in endothelial 

cells, vascular smooth muscle cells and ependymal cells. In terms of the possible 

presence of MMPs on the endothelium there is evidence that they may play a role in 

adhesion and migration of inflammatory cells. The wide number of immunoreactive 

cells in control tissue would seem to suggest that a high basal level of MMPs is 

present within the human CNS and that these MMPs could be rapidly mobilised and 

activated in pathological conditions.

CNS effects of MMPs

MMP presence is essential for wound healing and scar formation (Slavomir et al., 

1997; Trengove et al., 1999; Wysocki et al., 1999). Following a surgical procedure 

such as a mastectomy MMP levels in serum are shown to be increased by a factor of 

at least 5 to 10 fold increase (Tarlton et al., 1997). It is the presence of these 

enzymes, which allows the rapid healing of the wound.

MMPs are also thought to play a role in bone formation during development with 

MMP-9 especially being found in osteoblasts and being involved in bone 

remodelling (Wee Yong et al., 1998).

Although there are more disorders where MMPs are reported to play a detrimental 

role it is thought that there could be a link between lack of MMPs and the 

development of P amyloid plaques in Alzheimers Disease.
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Alzheimers disease involves the deposition and accumulation of insoluble P amyloid 

plaques in certain regions of the brain leading to neuronal degeneration and memory 

loss. It has been shown that MMP levels are increased in Alzheimers disease, in 

particular MMP-9/ gelatinase B. Based on results from human and canine studies 

(Backstrom, 1996; Linn et al., 1997; Backstrom et al., 1992), it is believed that this 

and possibly other MMPs may be involved in the breakdown of the insoluble p 

amyloid plaques and so a lack of MMP activation could actually result in the 

accumulation of insoluble peptides within the plaques worsening the condition. 

However it is the detrimental role of MMPs in pathological conditions which is the 

focus of this thesis, laying foundation research that is important in terms of the 

development of therapeutic agents.

Multiple Sclerosis (MS), is a serious inflammatory disorder of the central nervous 

system (CNS) where inflammatory cells such as T-cells, macrophages and microglia 

are involved in widespread myelin destruction and axonal damage within regions of 

the brain and the spinal cord.

From the studies on the pathology of MS there is evidence to suggest the 

involvement of proteinase activity leading to myelin destruction. It is thought that 

this proteinase activity could be that of the MMPs.

Studies using animal models of MS, such as Experimental Autoimmune Neuritis, 

have shown that the MMPs are indeed up regulated in conditions of MS. It has been 

consistently demonstrated using techniques such as PCR, immunohistochemistry and 

zymography that matrilysin, macrophage metalloelastase and 92kDa gelatinase are 

up regulated in the MS lesion (Maeda & Sobe ,1996). These findings have also been 

confirmed to be true in human brain sections (Anthony et al., 1997).
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The involvement of MMPs in MS has been further confirmed by the fact that 

administration of certain broad spectrum MMP inhibitors such as GM-6001 

ameliorates the symptoms of MS and reduces the increase in blood brain barrier 

permeability often associated with the disease (Slavomir et a l,  1997). Another MMP 

inhibitor BB-1101 has also been shown to reduce MS symptoms by inhibiting the 

release of the pro-inflammatory cytokine- tumour necrosis factor (TNF) which is 

believed to play a role in MS pathology.

MMPs are also linked to the pathology of Rheumatoid Arthritis (RA) and 

Osteoarthritis (OA) (Slavomir et al., 1997; Wee Yong et al., 1998; Gomez et al,

1994) due to their ability to destroy connective tissue. MMP-3 expression is 

significantly increased in these disorders and this increase was found to correlate 

with traditional markers of inflammation for RA. MMP-9/ gelatinase B has an 

important role in bone remodelling. In pathologic conditions such as RA and OA, 

MMP-9 levels in the joints of patients were found to be elevated and correlated with 

MMP-3 levels (Slavomir et a l, 1997). This increase in MMP-9 is likely to cause 

pathologic bone resorption.

Perhaps the most important pathological condition where MMPs play a vital role is 

in cancer where they promote both tumour growth and metastasis.

Metastasis is a very important component of the pathology of cancer. A many step 

process it involves proliferation and spread of cancer cells from the primary site of 

invasion to multiple sites throughout the body. This requires movement of tumour 

cells across the extracellular matrix, which in turn requires attachment to and 

degradation of the ECM allowing the cells to pass through the ECM and reach sites
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where they can divide and grow. MMPs are thought to be involved in the series of 

steps allowing metastasis to occur by their degradation of the extracellular matrix. 

MMP-2 / gelatinase A and MMP-9/ gelatinase B have been specifically implicated in 

metastasis associated with lung, breast and colorectal carcinomas (Slavomir et al., 

1997; Wee Yong et al., 1998). Levels of these two MMPs have been found to be 

significantly higher in tissue specimens and there would seem to be a definite 

correlation between MMP levels and the extent of tumour spread.

It is probable that MMP inhibitors may have therapeutic value in reducing the 

spread of cancer and making therapies such as surgery and chemotherapy more 

successful.

MMPs and Cerebral Ischaemia

In addition to a role in the pathology of the above mentioned conditions , the matrix 

metalloproteinases are believed to contribute to the damage caused by cerebral 

ischaemia and increased MMP levels have been found in different models including 

thromboembolic and haemorrhagic stroke (Table 6).

MMPs have been associated with the inflammatory cells involved in the ischaemic 

cascade and levels of these enzymes have been shown to be increased in various 

studies using models of experimental stroke.

In most studies the main technique used is zymography (Rosenberg et a l,  1994) a 

form of gel electrophoresis which can detect and quantify the active form of MMPs.
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Group Species Findings Technique

Permanent MCAO. 
Rosenberg et al.,1996 Rat(SHR)

Increased MMP-9 at 12-24 hrs, 
increased MMP-2 at 5 days

Zymography

Permanent MCAO. 
Romanic et al, 1998

Rat Increased MMP-9 at 12-24 hrs, 
increased MMP-2 at 24 hrs- 5 
days

Zymography 
Immunohisto chemistry

Haemoirhagic stroke. 
Mun-Bryce et al, 1998

Rat Increased MMP-9 and MMP-2 at 
site of injection.

Zymography

Permanent intraluminal 
thread MCAO.
Gasche et al,1999

Mouse Increased MMP-9 at 4 hours Zymography 
Immunohisto chemistry.

Transient MCAO 
MCA Balloon. 
Heoetal., 1999

Non­
human
primates

Increased latent MMP-2 and 
MMP-9 after 1 hr.
Increased active MMP-2

Zymography on 
brain tissue and 
plasma.

Table 6 MMP studies using various animal models of ischaemia.

A few studies have identified MMPs using immunohistochemical techniques with 

antibodies directed against specific MMPs however immunohistochemical markers
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for MMPs cannot differentiate between the latent and the active forms of the 

enzyme.

In a study involving permanent middle cerebral artery occlusion in spontaneously 

hypertensive rats (Rosenberg et al, 1994), MMP-9/ gelatinase B was found to be 

elevated in the ipsilateral hemisphere of the brain after 12-24 hours. MMP-2/ 

gelatinase A was found to be elevated at 5 days after the occlusion. A correlation 

between MMP levels and cytokine levels was investigated and TNF-alpha and IL- 

lbeta in particular were found to be significantly increased. The elevation in levels 

occurred from as early as 3-6 hours and peaked at 12 hours. These results may 

suggest a link between elevation of cytokine levels and the subsequent increase in 

MMP levels.

In another study using immunohistochemistry after permanent MCAO in the rat 

(Romanic et a l,  1998), the results were consistent with Rosenberg et al, 1996. 

MMP-9 levels were found to be elevated after 12 hours and enzymatic activity 

reached maximum levels by 24 hours. MMP-2 levels were increased by 24 hours and 

reached its maximum levels by 5 days. MMP-9 was found within endothelial cells 

and neutrophils in and around the periphery of the infarct at the early stages of its 

activation. After 5 days it was also found within macrophages in the infarct. MMP-2 

was present within macrophages in the infarcted area. This study also reported a 

significant decrease in infarct volume on administration of the MMP-9 antibody 

BB1101 (Romanic et al, 1998).

In a model of haemorrhagic stroke, MMP-9 was found to be elevated after 16-24 

hours of permanent MCAO (identified by zymography) and MMP-2 and MMP-9 

both elevated at the site of the blood injection (Mun-Bryce et a l, 1998).
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Due to the high probability of a contribution of MMPs to the pathology of stroke 

various MMP inhibitors have been tested in experimental models of stroke and BB- 

1101 has been shown to reduce the secondary brain oedema occurring after 

haemorrhage Mun-Bryce et al., 1998).

MMPs could contribute to damage following ischaemia by a number of mechanisms:

1) degradation of the blood brain barrier causing oedema. MMPs have been shown to 

contribute to the breakdown of the BBB directly due to its matrix degrading 

properties and indirectly due to its ability to stimulate cytokine production.

2) degradation of the extracellular matrix allowing migration of inflammatory cells to 

the site of the region of ischaemic injury.

3) increasing or decreasing the release of cytokines and growth factors from 

inflammatory cells. For example MMPs are involved in the cleavage of the latent 

form of TNF to produce the active form.

In response to injury or an inflammatory stimulus, the CNS will respond with an 

immune response, which causes the release of inflammatory cytokines, leading to the 

recruitment of lymphocytes and neutrophils, activation of microglia, the release of 

TNF-alpha and DL-lbeta, with the consequent breakdown of the BBB.

The contribution of MMPs to BBB breakdown has been examined. In one such 

study (Mun-Bryce et al., 1998), brains injected with lipopolysaccharide (LPS, a 

potent inflammatory stimulus) showed a rise in active gelatinase B production after 

24 hours and found latent gelatinase B at 4,8 and 24 hours. BB-1101, an MMP 

inhibitor was found to reduce levels of gelatinase A and B in LPS injected brains and 

also reduced the uptake of 14 C sucrose, which would suggest reduced BBB 

breakdown.
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The fact that CNS cells known to be involved in inflammatory processes such as 

microglia, astrocytes and macrophages express MMPs, would seem to support the 

idea that these cells are using the MMP’s matrix degrading properties to allow them 

to migrate to the area of damage within the brain following ischaemia.

An indication that this indeed might be the case comes from the fact that MMPs 

have been shown to be expressed when inflammatory cells such as T-cells adhere to 

endothelial cells (Romanic & Madri, 1994; Aoudjit et al., 1998) and that this 

expression might be to allow the T-cells to use the degrading properties of the MMPs 

to migrate to sites of damage or inflammation.

The induction of MMPs especially MMP-2 in T cells would seem to rely on the 

expression of one particular cell adhesion molecule- vascular adhesion molecule-1 or 

VCAM-1. It has been shown that T-cells only express MMP-2 activity when they 

adhered to VCAM-1 positive cells (Romanic & Madri, 1994). Adhesion to VCAM-1 

negative cells did occur but was not induced by MMP-2.

The same process would also seem to occur for MMP-9 and the cell adhesion 

molecule ICAM-1 or intercellular adhesion molecule-1 when lymphoma cells bind to 

endothelial cells (Auodjit etal., 1998).

Adhesion of the T-lymphoma cell to the endothelium induces de novo expression of 

MMP-9 and enzymatic activity by both cell types. This expression of MMP-9 allows 

the migration of the T-lymphoma cells to surrounding tissue.

These cells seem capable of releasing and using MMPs to migrate and therefore it 

would seem plausible that inflammatory cells involved in ischaemic damage could 

do the same allowing them to break through the extracellular matrix and reach the 

area of infarction and the surrounding tissue in the peri-infarct region. MMPs both
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stimulate and are capable of inactivating cytokines. TNF-alpha and the pro- 

inflammatory cytokine IL-l-beta can be cleaved and inactivated by MMP-1,2,3 and 

9. Cytokines also have the ability to interfere with the MMP network and increased 

cytokine levels can lead to increased activation of the latent forms of the MMPs.

The ability of the MMPs to increase MMP levels may be due to their involvement in 

the cleavage of the pro peptide TNF-alpha to the active form. It has been shown in 

studies that MMP inhibitors such as BB-1101 were not only capable of reducing 

MMP activity but also that of the cytokine TNF-alpha.

Regulation of MMP activity- Inhibition

Due to the ability of MMPs to cause widespread tissue damage their regulation is 

under strict control.

The activity of the MMPs can be regulated at various points including transcription, 

secretion and activation which is almost certainly advantageous in terms of reducing 

MMP levels in conditions where they are thought to contribute greatly towards the 

pathology of the disorder. Various control mechanisms are in place to prevent 

uncontrollable degradation by MMPs once they have been secreted from their site of 

synthesis. MMPs are only secreted from their cellular source in response to well 

defined signals which arise when MMP degradation is essential, for example in 

wound healing and scar formation. Once secreted from a cell, the MMP commonly 

remains associated with the cell either by remaining bound to the cell surface or 

matrix components or by remaining in close proximity to the cell. Another important
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control mechanism is the fact that most MMPs are secreted in the latent form and so 

require activation before being capable of degradation.

Inhibition of MMPs allows the control of MMP levels. An imbalance can result in 

the development of pathological conditions and it is thought that metastasis can 

occur at a faster rate if naturally occurring inhibitor activity is in some way reduced. 

It can also lead to profound effects on the composition and the adhesion, migration 

and differentiation of cells at the ECM.

Under physiological conditions within the body, inhibition of MMPs is primarily 

carried out by the naturally occurring inhibitors of metalloproteinases including the 

tissue inhibitors of metalloproteinases or TIMPs (Beckett et al., 1998) and the large 

alpha 2-macroglobulin produced by the liver. Synthetic MMP inhibitors are also 

available such as barimastat (BB-94) and marimastat (BB-2516) which are potent 

and specific inhibitors of the metalloproteinases.

Naturally Occurring Inhibitors of MMPs

Various naturally occurring inhibitors of MMPs exist. One of the most important 

members of this group is the Tissue Inhibitor of Metalloproteinases (TIMP) family of 

enzymes. The TIMP family was first identified in 1975 and four members of the 

family have been identified to date- TIMP-1, -2, -3, -4 ranging in molecular weight 

from 20.6-22.3 kDa. TIMP-1, -2 and -3 are capable of inhibiting most members of 

the MMP family while TIMP-4 specifically inhibits MMP-1, -2, -3, -7 and -9.

TIMP-1 (28 kDa) is perhaps the most important of the TIMPs and its activity was 

first reported in 1975 in the medium of cultured human fibroblasts (Bauer et al,
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1975). It is thought that invasion and metastasis could be inhibited by transfection of 

malignant cells with TIMP-1. But in some forms of cancer (e.g. bladder cancer) there 

was a higher degree of invasion and metastasis with increased levels of TIMP-1 and 

TIMP-2 suggesting a beneficial response is dependent on the type of cancer and the 

MMPs involved.

TIMP-2 (20 kDa) was discovered when reverse zymography was developed and 2 

TIMP forms were identified, one at 28 kDa (TIMP-1) and another at 20 kDa which 

was later named TIMP-2 (Raynes et al., 1988). TIMP-2 has about a 40% homology 

with TIMP-1. It has the ability to down regulate the activity of MMP-1, MMP-2 and 

MMP-9. TIMP-2 is also believed to play a role in metastasis and tumour invasion 

with TIMP-2 expression possibly denoting a stromal response to tumour invasion 

especially in breast carcinoma.

TIMP-3 (21 kDa) has a similar structure to TIMP-1 and TIMP-2 in terms of amino 

acid sequences. High levels of TIMP-3 are found in kidneys, lungs and brain where it 

is thought to play a large part in tissue remodelling.

TIMP-4 has recently been identified by molecular cloning (Greene at al, 1996) with 

the highest levels found in the heart and lower levels in the colon, kidney and 

placenta. TIMP-4 has been shown to inhibit MMP-1, -2, -3, -7 and -9.

In addition to the ability of the TIMPs to inhibit MMPs they are also believed to play 

a role in growth factor activity, steroidogenesis and cell morphology modulation.

In terms of which domains of the TIMP molecule are involved in the MMP 

inhibition, the most important domain is the N-terminus domain which consists of 1 - 

126 amino acid residues and can bind tightly to MMP-1, -2, -3, -7 and -9. TIMP-1 

and TIMP-2 particularly rely on the N-terminus domain for their main inhibitory
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action. The C terminus domain of the TIMP also plays an important role in inhibition 

of MMPs. Although the C-terminus domain doesn’t bind tightly to MMPs it 

associates with the hemopexin domain on the MMP which allows proper alignment 

of the TIMP at the active site of the MMP.

TIMP-1 has been shown to be co-ordinately regulated with MMPs and in some 

situations reciprocally regulated. For example, TIMP expression can be regulated by 

substances such as phorbol esters and interleukin-1 beta which are capable of 

stimulating both TIMPs and MMPs and TGF- betal which is capable of up 

regulating TIMP-1 and down regulating MMPs. TIMP-1 production can be 

stimulated and or suppressed by TNF-alpha depending on the concentration i.e. 

stimulation of TIMP-1 at lower concentrations and suppression at higher 

concentrations (Woessner, and Nagase, 2000) There is also a possibility that there 

may be some hormonal control of TIMPs with regard to their role in cancer. One 

study has shown that treatment with progestin either alone or in combination with 

estradiol, down regulates TIMP-2 production by 50% (Woessner, and Nagase, 2000) 

In addition to TIMPS other MMP inhibitors include antibiotics (erythromycin, 

rifamycin); tetracyclines (minocycline, doxycycline); propeptides of MMPs (pro- 

MMP-2, pro-MMP-3) and macroglobulins (a-macroglobulin).

Naturally occurring antibiotics which inhibit MMPs act by a chelation mechanism of 

the active zinc atom at the MMP active site, which is then removed from the MMP 

and the enzyme is joined with a second molecule of chelator.

Members of the tetracycline group of antibiotics also have chelating properties which 

may help to explain their inhibition of MMPs. In vitro, minocycline has been shown



71

to reduce the activity of collagenase (MMP-8) in periodontal disease by up to 90% at 

a concentration of 20pg/pl (40pM) (Golub et al., 1983). Although the actions of 

tetracyclines is clearly inhibitory in vitro, in vivo the inhibition is more of a down 

regulation rather than chelation of the MMP.

Another naturally occurring inhibitor of the MMPs is a-macroglobulin. a- 

macroglobulin is a compound found in human serum. It has a molecular mass of 

725kDa. The a-macroglobulin is capable of binding to all of the MMPs regardless of 

their substrate specificity. The binding and inhibition of the MMP is initiated by 

proteolysis of the ‘bait’ region located near the middle of the subunit. This binding 

causes conformational changes in the a-macroglobulin and entraps the proteinase. 

Although the entrapment doesn’t completely block the active site of the MMP, it 

prevents the MMP from binding to large substrates.

Synthetic inhibitors of MMPs

Synthetic inhibitors have been tested in experimental stroke models and have been 

shown to significantly ameliorate ischaemic damage. It is therefore possible that 

these drugs may prove valuable as part of the therapeutic strategy against stroke. 

Batimastat is a low molecular weight inhibitor of MMPs. Its ability to inhibit the 

MMPs comes from its collagen like backbone, which facilitates binding to the active 

site of the MMP. It also has the ability to chelate the zinc ion in the active site due to 

its hydroxamate structure.
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Studies so far have shown that there are virtually no toxic side effects of Batimastat 

in animals with prolonged survival times in some models of carcinoma. For example 

Batimastat prolongs survival time several fold and suppressed malignant ascites 

formation in human ovarian carcinoma xenograft in athymic nude mice. Similar 

results have been shown with the synthetic inhibitor marimastat.

These drugs are capable of binding to the catalytic domain of the metalloproteinases 

and rendering them incapable of enzymatic activity.

It is therefore apparent that inhibitors of MMPs, be they synthetic or naturally 

occurring, may also prove useful as a therapeutic tool against cerebral ischaemia.

1.4.3.4 Free radicals

Free radical production is believed to contribute to ischaemic damage and or 

reperfusion injury mediated damage (Figure 12 ).

Free radicals are produced as part of the inflammatory response and can also 

contribute to the inflammatory process causing further stimulation of inflammatory 

cells.

Brain cells produce significant amounts of free radicals as by-products of the 

mitochondrial respiratory chain, from which they derive a large fraction of their total 

energy supply, and as by-products of enzymatic reactions (eg lipo-oxygenase, cyclo- 

oxygenase)

The brain is particularly sensitive to free radical mediated damage following 

ischaemia due to its high lipid content and to a loss in the normal equilibrium 

between anti-oxidants and free radicals. Under normal circumstances in the brain
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there are sufficient levels of anti-oxidants to mop up free radicals. However as a 

result of damage resulting from ischaemia low levels of anti-oxidant enzymes 

including catalase, superoxide dismutase and glutathione peroxidase which normally 

act to neutralise free radicals produced by the electron transport chain and are unable 

to cope with the increased free radical production (Siddiqi et al., 1996). As well as 

low levels of these neutralising enzymes following ischaemia, the brain possesses a 

large amount of iron which can catalyse free radical production and large amounts of 

polyunsaturated fats such as arachidonate which can undergo free radical mediated 

lipid peroxidation (Siddiqi et a l, 1996).

During a stroke, damage caused by the initial ischaemic insult can lead to 

uncontrolled free radical production. Oedema and increased BBB permeability 

resulting from ischaemia can cause the movement of red blood cells into 

extracellular spaces. As these red blood cells along with neurons and glial cells in the 

infarcted area disintegrate and die, iron and copper complexes are formed and 

released into the tissue spaces. Normally radicals such as the hydroxyl radical (OH*) 

are produced by superoxide generating systems such as the Haber-Weiss reaction 

(Figure 13a). The Haber Weiss reaction produces hydroxyl radicals in the presence 

of hydrogen peroxide but the reaction will not have much biological significance in 

the absence of a catalyst. It is only when a catalyst such as iron is present that the 

reaction proceeds at a fast enough rate to produce significant and potentially 

damaging levels of hydroxyl radicals. The iron and copper complexes released 

during ischaemia therefore act as catalysts to increase free radical levels and 

subsequently increase cellular damage (Figure 13b).
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a 0 2‘* + H20 2 + Fe3+ -> OH* + OH" + 0 2

b Fe3+ + O2 -. —> Fe2+ + 0 2

c 2 O2 -. + 2H+ -» H2O2 + 0 2

Fe2+ + H2 O2 -> Fe3+ + OH* + OK

Figure 13a - Haber Weiss reaction 13b- Iron catalyses OH* production, 13c-Fenton 

reaction. (Siddiqi et a l, 1996) .

The damage caused by free radicals includes alteration in membrane fluidity and 

permeability, disruption of cellular and membrane function and integrity, an increase 

in blood brain barrier permeability, DNA damage, destruction of essential enzymes, 

activation of latent enzymes such as the calpains, necrosis and oedema. All of these 

actions also contribute to the intensification of the inflammatory response following 

ischaemia.

The most damaging oxidant species tend to be those generated from molecular 

oxygen (Butterfield & McGraw , 1978). These include the superoxide anion (O2*'), 

hydrogen peroxide (H2O2) and the hydroxyl radical (OH*). Of these, the hydrogen 

peroxide and the hydroxyl radicals are the most potent and the most damaging to 

brain tissues when produced in levels exceeding those that the endogenous 

neutralising enzymes can normally cope with .

Various studies support a role for OFT in ischaemic damage (Nakashima et al., 1999; 

Mori et al., 1999; Takamatsu et a l, 1998). These studies have demonstrated elevated 

levels of free radicals following ischaemia and have shown that the
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administration of OH* scavengers such as mannitol and dimethylsulphoxide (DMSO) 

can ameliorate ischaemic damage (Halliwell & Gutteridge, 1995).

Elevation of superoxide free radicals have also been demonstrated in a number of 

studies of ischaemic damage and reperfusion injury (Beetsch et al., 1998; Fabian & 

Kent, 1999). The studies would suggest that during ischaemia and reperfusion, 

activation of some of the enzyme systems responsible for the conversion of oxygen 

to the superoxide radical occurs and contributes to membrane damage to cerebral 

vessel walls (Siddiqi e ta l ., 1996).

Two enzyme systems which have been suggested to contribute to such damage are 

the xanthine oxidase system and the nicotamide- adenine nucleotide phosphate with 

the reduced form NADP(H), NADH(H) oxidase system which is associated with free 

radical production in neutrophils.

The xanthine oxidase system has been investigated most in terms of its potential 

contribution of free radical mediated ischaemic damage. Recent studies have 

reported increased levels of xanthine oxidase in the ischaemic brain, which may lead 

to the subsequent generation of free radical species (Linas et al., 1990; Nishino, 

1994).

Xanthine Oxidase, an enzyme with the ability to produce oxidising agents such as 

the superoxide free radical and hydrogen peroxide exists in two forms: a nicotamide 

dinucleotide (NAD) dependent dehydrogenase (Type D) and an oxygen dependent 

superoxide-producing oxidase (Type O). The type D form appears to predominate in 

most tissues (Mori et al., 1998).
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Studies investigating the effect of xanthine oxidase activity on ischaemic damage 

(Patt, et al., 1988 ) have shown that xanthine oxidase inhibitors such a tungsten and 

dimethyl urea are capable of reducing brain XO activity, or reducing brain H2 O2 and 

subsequently reducing cerebral oedema. These observations would suggest that H2O2 

formed by XO contributes to ischaemia and reperfusion mediated oedema in brains 

subjected to temporary ischaemia.

As well as free radical generation occurring from altered xanthine oxidase activity, 

experimental evidence would seem to suggest that increased superoxide free radical 

generation could also occur as a result of an increase in the activity of the 

cyclooxygenase pathway in the walls of damaged vessels (Hallenbeck & Dutka, 

1990). The sequence of events involves an increase in phospholipase activation, 

leading to an increase in arachidonate and a subsequent increase in the generation of 

free radicals (Abe et al., 1993; Yashuda et al., 1999).

The endogenous inflammatory cells, the microglia, also provide a potential source of 

free radicals and cause cell damage by releasing free radicals (Sharkey et al., 1996). 

Regardless of the origin of free radical production, they potentiate ischaemic 

damage by a number of different mechanisms. These include causing membrane 

damage to cerebral vessel walls, leading to fluid leakage and oedema, damage to 

DNA, carbohydrates, proteins and enzymes, cause inactivation of ion pumps, 

impairment of receptor function and excitotoxic neuronal cell death (Siddiqi et al,

1996).

Free radical scavengers and inhibitors have been shown to reduce brain damage 

following ischaemia and this is particularly true for damage occurring during 

reperfusion (Schmid-Elsaesser et al., 1999; Phillis et al., 1998).



78

Free radical scavengers such as the endogenous neutralising enzymes superoxide 

dismutase (SOD), catalase and glutathione peroxidase have been used experimentally 

to reduce ischaemic damage.

SOD enzymes Mn-SOD and CuZn-SOD found in the mitochondria and the cytosol, 

respectively, catalyse the reaction in which superoxide ions are converted to 

hydrogen peroxide:

202* + 21^ H20 2 + 0 2

In the second step of the process catalase and glutathione peroxidase convert the 

H20 2 to water:

2H20 2 —> 2H20  + 0 2 (catalysed by catalase) 

or

H20 2 + 2 glutathione —> 2H20  + glutathione disulphide (catalysed by

glutathione peroxidase).

Transgenic mice over-expressing SOD have been shown to exhibit reduced cerebral 

infarct size after MCAO compared to wild-type compared to wild- type mice (Sheng 

et al., 1999; Nikawa et al., 1995; Kinouchi et al., 1991). Studies administering PEG- 

SOD, and the glutathione peroxidase mimic, ebselen (Dawson, 1993; Tasksago et al.,

1997) have also shown reduced ischaemic damage (Repine, 1990; Beetsch et al,

1998).
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1.4.3.5 Calcium

An alteration in the level of intracellular calcium following ischaemia was first 

suggested as a possible contributory factor to ischaemia by Siesjo and co-workers . 

Under normal conditions, the intracellular calcium concentration is 10'7 M compared 

to an extracellular concentration of 10'3 M (Hallenbeck and Dutka, 1990)). These 

concentrations are kept stable by the presence of ion pumps such as the Ca2+ 

extruding pump (Ca2+ ATP ase) and an electrogenic Na+ / Ca2+ exchanger and pumps 

that sequester Ca 2+ into intracellular stores with concomitant loss of ATP cell 

depolarisation and excess activation of ionotropic receptors which allow Ca2+ influx 

(e.g. NMD A) and voltage gated Ca 2+ (Hallenbeck and Dutka, 1990) 

channels. During ischaemia, failure and reversal of ion pumps and membrane 

leakage leads to increases in intracellular calcium concentration with further 

increases during reperfusion.

A rise in intracellular calcium levels can lead to damage caused by increased free 

radical production , tissue disruption , latent enzyme activation and release, reduction 

of high energy phosphate stores, neurotransmitter release and activation of second 

messenger systems leading to neuronal excitability (Figure 14).

Reperfusion mediated damage to cell membranes can also lead to a rise in calcium 

due to substances released during reperfusion directly damaging cell membranes. 

Other ways in which calcium levels can be elevated include interference with the 

sodium adenosine triphosphate pump function normally responsible for the exchange 

of sodium into and calcium out of the cell.
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Various studies looking into the benefits of calcium channel blockers have been

carried out with mixed results (Nakayami et al, 1988; Grotta et al, 1988). Early 

studies blocked the L-type calcium channels found in blood vessels which produced 

the unwanted side effect of hypotension.

This haemodynamic effect often counteracted any beneficial effect of calcium 

channel blockade in the CNS. More recent studies have concentrated on using N-type 

(neuronal) calcium channel blockers which offer greater selectivity for neurons over 

the vasculature.

It is also generally accepted that rises in intracellular calcium can occur without 

resultant permanent cellular damage and so the role of altered calcium homeostasis 

in reperfusion injury remains a possibility requiring further investigation.

membrane damage^

increased Ca 
permeability

activation of 
Ca2+ ATPases

cytoskeletal
disruption

oxygen free radical formation

Figure 14. Involvement of calcium in reperfusion injury.
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Chapter 2. Methods

2.1 Surgical Procedures

2.1.1 Preparation of Animals for surgery

Animals undergoing middle cerebral artery occlusion were housed under a 12 hour 

light-dark cycle and were given free access to food and water.

Animals were placed in a perspex chamber and anaesthetised with 5% halothane 

(30:70 oxygen, nitrous oxide mix) for 3-4 minutes then intubated with a 16-gauge 

cannula (the stainless steel guide needle inside the cannula was blunted before use). 

Intubation involved suspending the animal from a silk thread loop around the top 

teeth, on a corkboard propped up between two lead blocks. The animals tongue was 

gently held to the side and the intubation tube slowly inserted into the trachea with 

the aid of a fibre optic light to visualise the opening to the trachea. The intubation 

tube was attached to a ventilation pump and the animal mechanically ventilated with 

anaesthetic gases for the remainder of the surgical procedure. For recovery procedure 

(AB) the pump was set at 60 cycles per minute, for acute procedures (AC) the pump 

was set at 42 cycles per minute. The stroke volume was adjusted according to the 

weight. Following intubation, halothane level was dropped to 1.5%-2% and 

maintained at this lower level throughout the subsequent surgical procedure. A rectal 

probe was used to monitor body temperature within normal limits (36.7-37.2°C) in
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order to prevent the effects of hypothermia or hyperthermia on the infarct size 

(Corbett and Thornhill, 2000). Measurement of blood gases (278 Blood Gas System, 

CIBA Coming, UK), blood glucose (Glucose Analyser 2, Beckman, UK) and blood 

pressure (Biopac) were made via cannulation of the femoral artery using a polythene 

cannula (0.58mm ID, 0.96mm OD). The cannula, containing heparinised saline, was 

inserted for a distance of around 1 cm and tied in place with 4/0 silk suture. A small 

amount of Xylocaine anaesthetic gel was applied to the wound and superglue was 

used to secure the cannula in place. The wound was sutured with 4/0 silk following 

the completion of the surgical procedure. For recovery animals the cannula was 

externalised at the nape of the neck and at the end of the experimental procedure, 

filled with heparinised polyvinylpyrolidone (PVP, Appendix A) to maintain a patent 

line. For the extemalisation a small incision was made in the nape of the neck and a 

stainless steel guide cannula (International Market Supply, UK) was used to pass the 

cannula subcutaneously to the exit point.

2.1.2 Intraluminal Thread model of ischaemia

Method used was Longa et al., 1989. (Figure 15)

A midline incision was made in the neck of the animal to expose the underlying 

muscle covering the trachea and surrounding blood vessels. The muscles were 

carefully teased apart, retractors inserted and connective tissue cleared to expose the
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external and common carotid arteries. These were carefully separated from 

surrounding nerves and fascia and occipital branches of the external

Figure 15. Intraluminal thread model of ischaemia, modified version of Longa et 

al, 1989.

Filament inserted for a distance of around 22mm to block the origin of 

the MCA at the circle of Willis.

MCA- Middle Cerebral Artery, ACA- Anterior Cerebral Artery 

PCA- Posterior Cerebral Artery, EC A- External Carotid .Artery 

BA- Basilar Artery.
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carotid coagulated and cut. The maxillary and lingual artery branches were dissected 

and coagulated. The internal carotid, after being freed from occipital branches, was 

separated from the vagus nerve and the pterygopalatine artery exposed and ligated 

with a 6/0 suture at the bifurcation with the internal carotid. A 6mm micro-clip 

(Johnson &Johnson) was applied to the internal carotid at the bifurcation with the 

pterygopalatine and a second clip applied at the bifurcation between the internal and 

the external carotid. A loose tie (6/0 suture) was placed on the external carotid above 

the bifurcation and the maxillary and lingual branches cut. The external branch was 

held and an incision made in the vessel. A 3/0 nylon mono-filament with rounded tip 

(0.28-0.3mm OD for rats 300-350g) was inserted into the external and advanced to 

the clip on the internal carotid artery. The tie around the external was tightened to 

hold the filament in place and the clip removed to allow the filament to be advanced 

beyond the origin of the posterior cerebral artery and past the origin of the middle 

cerebral artery (approximately 22mm in animals within the weight range 270- 

320gms). All direct sources of perfusion from the ICA, AC A and PC A to the MCA 

are now blocked. The tie was then tightened to secure the filament in place.

To induce reperfusion, the filament was gently removed, the hole in the external 

carotid coagulated and clips and ties removed.

Sham animals had the filament inserted and then removed immediately to simulate 

possible mechanical damage associated with the filament.
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2.1,3 Permanent ischaemia by electrocoaguiation

Method used was a modified version of Tamura et al, 1981. (Figure 16)

Surgery was carried out with the aid of an operating microscope. The animal was 

placed on its side and a 1.5-2 cm incision made between the left orbit and the left 

auditory canal. The underlying temporalis muscle was divided along its fibre bundles 

and retractors inserted to expose the zygomatic arch (Unlike previous methods, the 

zygomatic arch remains intact throughout the surgical procedure to facilitate 

recovery). A dental drill was used to shave away bone from under the zygomatic arch 

and a craniectomy made to expose the distal MCA. The craniectomy site and the drill 

tip were kept cool using sterile saline to prevent heating artefacts and damage. A 

sterile 30 gauge dental needle was used to firstly pierce and then pull back the dura 

to expose the middle cerebral artery running over the ICV. The MCA was 

electrocoagulated by diathermy, distally, for a distance of around 1-1.5mm just distal 

to the ICV and proximal to the first major bifurcation of the MCA (Figure 16).

ICV

MCA^

Figure 16. Permanent MCAO by diathermy



Following electrocoagulation, the MCA was cut using micro scissors to ensure 

complete occlusion. Retractors were then removed and muscle allowed to fall back 

into place after which the muscle and skin were sutured and the animal allowed to 

recover for 4, 24, 48 or 72 hours before being transcardially perfused with 4% 

paraformaldehyde in PBS (Appendix A).

2.1.4 LPS stereotaxic injections (for generation of positive control material for 

immunohistochemistry)

The stereotaxic frame was set up before the animal was put in place, the side arm 

was aligned, the Hamilton syringe attached to the suspended arm and screwed into 

place. The dorsal surface of the head was shaved, swabbed with alcohol and the 

animal placed into the frame with the tooth bar set at -3.5mm. A special nose cone 

allowed the anaesthetic gases to be delivered to the animal. A midline incision (1- 

1.5cm) was made in the scalp and skin and muscle retracted to expose the skull. Any 

remaining muscle and connective tissue was scraped away to reveal bregma. The co­

ordinates for the LPS needle placement (RC 0.26mm,L2mm, V2mm) were identified 

in relation to bregma and a fine ink mark made on the skull. A saline cooled dental 

drill was used to make a small craniectomy and the dura pierced with a sterile 30 

gauge dental needle. A lOjil Hamilton syringe attached to the stereotaxic frame was 

gently lowered according to the co-ordinates and 2pl of lipopolysaccharide 

(Escherichia Coli, serotype 055-B5, Sigma, UK) slowly injected over 2 minutes. The
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needle was kept in place for 10 minutes before being slowly retracted. The muscle 

and skin were then sutured and the animal allowed to recover for 24 hours.

2.1.5 Recovery of animals following surgery

Following induction of middle cerebral artery occlusion wounds were sutured with 

4/0 silk. A subcutaneous injection of 3 mis of sterile saline was given to prevent 

dehydration due to loss of body fluids during surgery and recovery. In intraluminal 

thread animals where there is the possibility of Vagus nerve stimulation, 0.3-0.5 mis 

of atropine (O.lmgs/Kg; Atropine sulphate, Phoenix Pharmaceuticals Ltd., UK) was 

administered to prevent the build up of mucus and subsequent breathing difficulties. 

Halothane was discontinued and oxygen administered until the animal showed signs 

of consciousness. When the animal started to breathe spontaneously, the intubation 

tube was removed and when fully conscious, and the animal moved to a recovery 

room and monitored throughout the recovery period. Soft diet was provided to 

encourage eating.
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2.2 Processing of Tissue for H&E and for Immunohistochemistry

2.2.1 Fixation

Once a piece of tissue has been removed from an organism it will lose all of its 

microscopic features and structure unless the tissue is preserved. Non preserved 

tissue faces potential damage from osmotic swelling or shrinkage, attack from 

bacteria, autolysis and evaporation. To prevent the above from happening, tissues 

can be preserved using solutions which allow the tissue to be kept for long periods of 

time and also to undergo treatments or processes without damaging the original state 

of the tissue (common processes leading to damage include embedding, sectioning 

and mounting). Fixation can be either chemical or heat based. Chemical fixation is 

favoured today and results in less distortion than heat fixing material.

Fixatives can be divided into two groups- coagulating (methanol, ethanol, HC1 and 

picric acid) and non-coagulating (formaldehyde, paraformaldehyde, acetic acid, 

potassium dichromate). Coagulating fixatives like methanol create protoplasm 

networks while non- coagulating fixatives like paraformaldehyde do not. The choice 

of fixative for individual experiments depends on what the material is to be used for 

and how long the material has to be preserved for. In most of the studies in this thesis 

the fixative of choice was paraformaldeyhde.

For acute experiments: Following the surgical procedure, the percentage of halothane 

was increased to 3% for a period of around 5 minutes to deepen anaesthesia. An 

incision was made below the sternum to expose the rib cage. The diaphragm was cut
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away from the rib cage and the rib cage cut at either side to expose the heart. A 12 

gauge needle attached to the perfusion apparatus was inserted into the apex of the 

heart and advanced into the aorta until visible. The needle was clamped in place and 

the right atrium punctured. A constant pressure (equivalent to the average blood 

pressure of the anaesthetised animal during the surgical procedure) was applied to 

allow the perfusion of 300-350mls of heparinised saline. When saline outflow from 

the atrium was bloodless, 300-400mls of fixative (4% paraformaldehyde in PBS, 

Sigma, UK) was perfused until the animal was drained of colour and rigid to the 

touch. The perfusion needle was removed, the animal decapitated and the head 

placed in 4% paraformaldehyde for 24-48 hours which allows a more rapid 

penetration of the tissue. The length of time tissue should be left in fixative is 

debatable as the minimum length of time required depends on the rate of penetration 

of the fixative used. Fixatives such as formaldehyde/ paraformaldehyde continue to 

act progressively on tissue after it has penetrated the tissue. Periods of 24-48 hours 

seem to be commonly used but prolonged fixation is rarely detrimental to the 

condition of the tissue (Baker, 1968).

For chronic experiments: Animals were placed in a perspex box and anaesthetised 

with 5% halothane in a 30:70 oxygen: nitrous oxide mix for 3-5 minutes. 

Anaesthesia was then delivered via a facemask, halothane dropped to 3% and the 

fixation procedure carried out as above.
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2.2.2 Post fixation

Following 24-48 hours post-fixation in 4% paraformaldehyde in PBS, the brain was 

removed from the skull and placed in 4% paraformaldehyde for 24 hours. For 

cryostat cut sections, the brain was removed from the skull and placed in 30% 

sucrose solution (cryoprotectant) for 3-5 days or until sunk. For paraffin processing, 

the brain was removed and kept in fixative before processing.

2.2.3 Cutting cryostat sections for immunohistochemistry

Brains were removed from 30% sucrose and frozen for 5 minutes at - 42°C in 

isopentane (Fischer Chemicals, UK). The brain was then mounted using OPC 

(Sigma, UK) and 20pm coronal sections cut at -22 °C to provide sections throughout 

the eight coronal levels used to cover the MCA territory (Osborne at a l, 1987), 

picked up on poly-l-lysine coated slides (Appendix A) or collected in cryoprotectant 

in cell wells for mounting on poly-lysine slides at a later date. Sections on poly­

lysine slides were left overnight at room temperature to dry and then stored at -80°C 

until used for immunohistochemistry or traditional histology.
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2.2.4 Paraffin processing

Brains were passed through a graded series of alcohols, then into xylene and finally 

into wax over a period of 3 days. (Appendix A).

Following processing and paraffin embedding, the brains were re-embedded and 

mounted onto wooden chucks for microtome cutting of 6pm thick coronal sections. 

Paraffin processing is a common method of preparing sections for 

immunohistochemistry as multiple sections can be obtained and stored easily. 

However at various points throughout the paraffin processing procedure the tissue 

may be subject to shrinkage. The fixation procedure itself doesn’t usually cause 

shrinkage (it may indeed lead to swelling) but dehydration and embedding can lead 

to substantial shrinkage.

2.2.5 Infarct determination

2.2.5.1 Haematoxylin & Eosin staining for determination of infarct

Sections were washed in running water for 3 minutes. They were then passed 

through graded alcohols (70%, 90% and 100 % alcohol) for 2 minutes each then 

washed again in running water. Sections were placed in haematoxylin for 1-2 

minutes and then washed. At this point the sections were examined under the light 

microscope to check for degree of haematoxylin staining. It is preferable to have 

only nuclear staining with a very faint background. If the staining is too intense the
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sections can be differentiated in acid alcohol and washed to remove excess 

haematoxylin. When the desired level of staining had been achieved, sections were 

placed in Scots Tap Water Substrate for 2 minutes, washed in running water for two 

minutes and placed into aqueous eosin for 3 minutes. Following another wash, 

sections were passed through the graded alcohols for 2 minutes each and then placed 

in histoclear for 2-4 minutes prior to being mounted on coverslips using DPX (RA. 

Lamb Ltd.UK).

2.2.5.2 Detection of ischaemic neurons for infarct determination

H&E staining allows the area of infarct to be clearly seen on a brain section at low 

magnification. The damaged area appears as an area of pallor on a darker stained 

background (Figure 17)

Figure 17. Haematoxylin and eosin staining of A. damaged hemisphere and B. 

contralateral hemisphere.
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Focal ischaemia, leads to morphological changes in neurons and the presence of 

certain characteristics which make it possible to distinguish between a healthy 

neuron and an ischaemic neuron at the light microscopic level (Figure 18).

»
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Figure 18. Morphology of neurons: A. healthy neurons and B. ischaemic neurons.

Ischaemic neurons undergo a series of changes termed the ischaemic cell process 

which normally starts with the formation of small circular/ oval spaces in the 

cytoplasm known as microvacuoles. These are swollen mitochondria and 

endoplasmic reticulum. Then a visible change in cell shape occurs with the cell body 

and the nucleus becoming shrunken and triangular in shape The nucleus also 

becomes densely stained and the cytoplasm becomes eisonophilic. The next stage 

involves the formation of incrustations caused by the shrinking of the cytoplasm and 

the nucleus. Small densely stained circular bodies appear caused by the compression
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of the cytoplasm by astrocytic processes. The process normally culminates in the 

neuronal cell taking on a pale and homogeous appearance and it is at this point that 

the cell can be said to be irreversibly damaged (Greenfield, 1992)

It is sometimes possible to mistake fixation artefacts for the above changes and for 

this reason it is important to achieve a good perfusion fixation at all times and to 

leave the brain within the skull in fixative for 24 hours before removing for 

processing. Changes such as dark cell change, hydropic cell change and the presence 

of peri-neuronal and vascular spaces can occur as a result of improper control of 

perfusion pressure or due to an inadequate volume of fixative being passed through 

the animal.

By identifying the characteristics of ischaemic neurons, the area of infarction can be 

identified to allow the mapping of the boundary of ischaemic damage for infarct size 

determination and for mapping of immunohistochemical staining.

2.2.5.3 Measuring Infarct Size.

The light microscope was used to identify ischaemic neurons and mark the boundary 

of the infarct onto a line diagram consisting of eight coronal brain levels (Figure 19)
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Figure 19. Line diagram representing the eight coronal levels, as described by 

Osborne el al., 1987). Level of the: 1 Anterior Comissure; 2.Nucleus Accumbens;

3.Lateral Septal Nucleus; 4.Globus Pallidus; 5.Dorsal Hippocampus; 6.Lateral 

Habenular Nucleus; 7. Substantia Nigra; 8.Cerebral Aqueduct.

The area of the infarct at each of the eight levels was outlined and measured using a 

computer based imaging analysis system (MCID, Imaging Research Inc.). The 

system allows the counting of the number of pixels which constitute the outlined 

image, to give an area measurement. To allow expression of the data in units of area, 

the system was calibrated using a graticule of 40mm to allow the pixels to be 

calibrated with a spatial reference scale The line diagram from each animal was 

placed under a video camera and the area of the infarct drawn round. The MCID was 

then able to count the number of pixels within the outline of the infarct and the mean 

area calculated by repeating the measurement three times and taking the average 

value for each coronal level The volume of ischaemic damage in the ipsilateral 

hemisphere was calculated by integration of the 8 coronal areas (mm2) with the 

known distance between the stereotaxic co-ordinates of the levels.
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2.2.6 Immunohistochemistry

Immunohistochemistry was employed to identify different cell types and their 

contents within the brain. An antigen on the cell can be labelled in a series of steps 

culminating in the visualisation of the antigen at the light microscope level.

The first step in the process involves the application of a primary antibody which has 

the ability to bind to one (monoclonal) or more than one (polyclonal) antigenic sites. 

A secondary antibody, which is normally biotinylated, is then applied to bind to the 

primary antibody. The signal is amplified with the addition of an avidin-biotin 

complex (ABC) which binds to the biotin on the secondary antibody. In the final step 

in the immunohistochemical process, a visualisation substance, commonly 

diaminobenzidine (DAB), is used which reacts with the ABC to produce a visible 

brown deposit representing labelled cells or areas containing the substance of interest

2.2.6.1 Immunohistochemistry on cryostat cut sections

The following immunohistochemical technique was used for the staining of 

microglial cells with monoclonal antibodies for the staining of microglia : Ox-42 

antibody (1:1000, Serotec, UK); staining of astrocytes with GFAP (1:1000, Dako, 

UK); oligodendrocytes with tau-1 (1:1000, Dr D Hanger, Institute Psychiatry, 

University of London); and polyclonal antibodies for MMP-9: AB805 (1:100, 

Chemicon , UK) and C-20 (1:100, Santa Cruz, USA); MMP-8 antibody Se594
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(1:100, British Biotech, UK); microglial marker mrf-1 (1:100, gift from Dr S 

Tanaka, Hokaido University, Japan) ; IL-ip antibody S328 (1:100, NIB SC, UK).

As a general rule, monoclonal antibodies used in this thesis were blocked with 

normal horse serum and an anti-mouse raised in horse secondary applied. For 

polyclonal antibodies, a normal goat serum was used followed by an anti-rabbit 

raised in goat secondary. The only exception to this was the EL-1(3 antibody which 

was blocked using normal donkey serum and an anti- sheep secondary raised in 

donkey used.

Immunohistochemistry was carried out over two days. Day 1: Sections were circled 

with a hydrophobic pen (DAKO) and the following steps carried out -  sections were 

washed with 50mM PBS for 2 x 5 minutes, Triton X100 (30pl in 15 mis PBS, 

Sigma, UK) for 30 minutes, 2 x 5  minute wash with PBS, 10% H2O2 in PBS for 20 

minutes to quench endogenous peroxidase activity. After 2 x 5minute washes with 

PBS, sections were blocked with 10% normal horse/goat serum (or 20% normal 

donkey serum for IL-1(3) for 1 hour to suppress non-specific binding of the 

immunoglobulin then incubated with primary antibody at 4°C overnight.

Day 2: following a 2 x 5 minute wash with PBS, sections were incubated with the 

secondary antibody (1:100; biotinylated anti-mouse IgG raised in horse/ anti rabbit 

raised in goat or anti sheep raised in donkey, Vector, UK) for 1 hour (lhr 30 mins for 

mrf-1). After another 2 x 5  minute washes with PBS, sections were incubated with 

avidin biotin peroxidase complex (ABC reagent, Vector, UK) for 1 hour to enable 

visualisation of the immunoreactivity. Following ABC, diaminobenzidine
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tetrahydrochloride (DAB, Vector, UK) was applied for 5-7 minutes or until colour 

had developed to enable positive staining to be visualised. Sections were then placed 

in distilled water for 20 minutes and counterstained with haematoxylin.

2.2.6.2 Method for dehydration of sections and counterstaining with 

haematoxylin.

Sections were washed in running water for 10 minutes then rehydrated by passing 

them through graded alcohols: 2 minutes in 70%, 90%, absolute alcohol and then 2 

minutes in absolute, 90%, 70% alcohol. Sections were then washed in running water 

for 2 minutes. After 6 dips in haematoxylin, sections were washed in tap water (if

required sections can be differentiated in acid alcohol at this point), then were passed 

through graded alcohols for 2 minutes. 70%, 90%, absolute alcohol, 4 minutes in 

histoclear, mount using DPX (R. A. Lamb Ltd. UK).

2.2.6.3 Immunohistochemistry on paraffin sections.

Pre-treatment for paraffin sections: Sections were placed in histoclear for 10 minutes, 

then placed in absolute alcohol for 10 minutes then a further 5 minutes. After 30 

minutes in 0.3% H2O2 in methanol, sections were washed in distilled water for 20 

minutes.
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Pre-treatment to maximise staining: The fixation procedure and the paraffin 

embedding can mask some antigenic determinants. Treatment with heat (e.g. 

mnicrowaving), enzymes and detergents can help to reveal the masked antigens.

Microwaving with citric acid buffer: Sections were placed in a citric acid buffer 

(1.05g of citric acid in 500mls of distilled water, pH 6.0), and microwaved on high 

for 5 minutes. The solution was topped up and reheated for a further 5 minutes and 

allowed to cool for twenty minutes before proceeding with the

immunohistochemistry protocol- otherwise the steps for the paraffin treated sections 

were the same as laid out in section 2.2.6.1.

2.2.6.4 Double label immunohistochemistry

Double label immunohistochemistry was carried out for the following combinations 

of antibodies:

1st DAB 2nd SG

AB805 (MMP-9) + Mrf-1 (microglia)

Se594 (MMP-8) + Mrf-1 (microglia)

AB805 (MMP-9) + GFAP (astrocytes)

Se594 (MMP-8) + GFAP (astrocytes)

AB805 (MMP-9) + Tau-1 (oligodendrocytes)

Se594 (MMP-8) + Tau-1 (oligodendrocytes)
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For paraffin sections dewaxing and pre-treatment was carried out as in section

2 .2 . 6 . 3 .

Immunohistochemistry was carried out over three days. Day 1: Following a 2 x 5 

minute washes with PBS, sections were blocked with 10% normal goat /normal horse 

serum (Vector, UK) for 1 hour then incubated with the first primary antibody 

overnight at 4°C. Day 2: Following a 2 x 5 minute wash with PBS, secondary 

antibody (1:100, monoclonal anti-mouse IgG/polyclonal anti-rabbit IgG, vector, UK) 

was applied for 1 hour, following another 2 x 5  minute washes with PBS, ABC 

reagent was applied for 1 hour. 2 x 5  minute washes with PBS preceded VIP/DAB 

(Vector, UK) for 3-4 minutes or until pink colour develops.

A 2 x 5 minute wash with PBS was carried out prior to blocking with 10% normal 

horse serum/normal goat serum for 1 hour. Sections were then incubated with the 

second primary antibody overnight at 4°C. Day 3: Following 2 x 5  minute washes 

with PBS, sections were incubated with the second secondary antibody (1:100, 

monoclonal anti-mouse IgG or polyclonal anti-rabbit IgG, Vector, UK). Sections 

were washed with PBS and ABC reagent applied for 1 hour. Another 2 x 5  minute 

washes with PBS were carried out prior to application of SG (Vector, UK) for 3-4 

minutes or until grey colour develops. Sections were then placed in running water for 

20 minutes then rehydrated and mounted using DPX (R. A. Lamb Ltd. UK).
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2.2.6.5 Fluorescence double labelling.

For paraffin sections dewaxing and pre-treatment was carried out as in section

2.2.6.3. Immunohistochemistry was carried out over 3 days.

Day 1: Following 2 x 5  minute washes with PBS, sections were blocked with 10% 

normal horse serum/normal goat serum for 1 hour. They were then incubated with 

primary antibody at 4°C overnight.

Day 2: Following 2 x 5  minute washes with PBS sections were incubated with the 

secondary antibody (1:100, monoclonal anti-mouse IgG Texas Red labelled or 

polyclonal anti-rabbit IgG fluorescein labelled, Vector, UK) for 1 hour (sections 

should be kept covered and protected form light from this point on). After 2 x 5  

minute washes with PBS sections were blocked with 10% normal horse 

serum/normal goat serum for 1 hour and incubated with the second primary antibody 

overnight at 4°C. Day 3: Sections were washed with PBS and the second secondary 

antibody (1:100, monoclonal anti-mouse IgG, fluorescein or polyclonal anti-rabbit 

IgG Texas_Red, Vector, UK) applied for 1 hour. Sections were then mounted with 

special aqueous mounting media.



102

2.2.7 Controls for immunohistochemistry

To ensure the efficacy and specificity of the stain obtained with an antibody, 

negative and positive control material was included in every immunohistochemistry 

run.

Negative controls followed the same protocol as standard sections but the primary 

antibody was omitted. Instead sections were incubated with blocker or PBS. The 

negative control should give an indication of the levels of non-specific background 

staining.

For the immunohistochemistry studies in this thesis, positive control material used 

had expression of inflammatory mediators to confirm positive staining with the 

inflammatory markers. Rat ischaemic tissue with either the presence of an abscess or 

meningitis as identified by a neuropathologist (Professor D.I. Graham, Southern 

General Hospital, Glasgow) was used to test the efficacy of the antibodies. Tissue 

injected with the inflammatory stimulus LPS was also used to test antibody efficacy.

2.3 Western Blotting

2.3.1 Mini Gels

Antibody specificity was checked with Western blotting to ensure that the band 

detected by the antibody on the gel was consistent with the molecular weight of the 

protein concerned.
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For example, western blots were run to determine if antibody (AB805/ anti-MMP-9) 

was detecting the correct band in rat tissue.

2.3.2 Protein concentration determination

After a recovery period of 24 hours, animals having undergone 24 hours intraluminal 

thread induced middle cerebral artery occlusion were re-anaesthetised, decapitated 

and the brains rapidly removed. Tissue from the MCA territory and from the 

cingulate cortex was dissected from both the ipsilateral and the contralateral 

hemispheres and snap frozen in liquid nitrogen and stored at - 80°C until required for 

Western Blotting.

Brain samples were homogenised 1:10 (weight to volume ratio) in Hepes buffer 

using a glass homogeniser. Samples were then homogenised for five minutes at 

13000 rpm using a Beckman Microfuge E and the supernatant stored at -80°C until 

required. Supernatant samples were used to run protein assays (Lowry et al., 1951). 

This involved diluting samples in homogenisation buffer (1:5 & 1:10) and vortexing. 

Samples were allowed to stand for 20-30 minutes at room temperature following 

vortexing. A standard curve using bovine serum albumin (BSA, Sigma, UK) was 

then prepared to allow determination of the protein concentration of the unknown 

samples. The Bio-Rad protein assay was the method used to determine the protein 

concentration of the samples. The following concentrations of BSA standards were 

prepared: 0.2,0.4,0.6,0.8 and l.Omg.ml in homogenisation buffer. The absorbance of 

the BSA standards and samples were measured at 680nm using a spectrophotometer
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(Pharmacia LKB, Ultrospec III) and a standard curve obtained. The absorbance of 

unknown samples protein concentrations were determined from the known protein 

concentration samples on the standard curve. Following the calculation of the protein 

content in the brain homogenates, samples were prepared in Laemmli buffer (lp l = 

lpg protein).

2.3.3 Running of gels

SDS Polyacrylamide Gel electrophoresis (SDS-Page).

Prior to the loading of the gel, glass plates were cleared with distilled water followed 

by alcohol. The plates were assembled and distilled water used to check for leaks. A 

mark was made on the plate 1 cm below the comb position. Resolving gel (Appendix 

A) was added to the plates up to the mark avoiding air bubbles and the gel overlayed 

with 0.1% SDS (Appendix A). The gel was allowed to set for 15-30 minutes after 

which time the SDS was poured off and stacking gel prepared (Appendix A). 

Stacking gel was poured into the apparatus and the comb inserted at an angle to 

avoid bubbles. The gel was allowed to set for 45 minutes. A gel loading pattern was 

constructed and a running buffer prepared. Prestained and biotinylated standards 

(Bio-Rad, UK) were defrosted and 5 pi of stock added to lOpl of laemmli buffer 

(Appendix A). Standards and samples were boiled for 5 minutes and spun in a 

microfuge. Running buffer was poured into the inner reservoir and the outer reservoir 

of the electrophoresis tank. The combs were removed from the gel and samples and 

standards (lOpl) injected into the relevant lanes using a Hamilton syringe. The power
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pack was switched on and set to run at 200V until the proteins had run 1cm from the 

bottom of the gel. The gels were then prepared for transferring. Prior to transferring, 

2 pieces of nitrocellulose (8.5cm x 6cm) were soaked in distilled water for 30 

minutes and 24 pieces of filter paper (8.5cm x 6cm) in transfer buffer for 30 minutes. 

The platinum transfer plates were wiped with distilled water prior to transfer. After 

the gels had been removed from the electrophoresis apparatus and the SDS gel cut 

away and discarded, they were placed between 6 sheets of filter paper and a sheet of 

nitrocellulose placed on top. 6 sheets of filter paper were placed on top of the 

nitrocellulose and the process repeated for the second gel. The sheets were flattened 

between stages to remove air bubbles and excess liquid wiped from the transfer 

plates. The gels were transferred for 15 minutes at 15 V.

Following the transfer step, the blots were incubated with T-TBS-M (5% Marvel, 

Appendix A) for 1 hour on a shaker. Blots were then washed for 3 x 10 minutes with 

T-TBS and then incubated with primary antibody (diluted in T-TBS) overnight at 

4°C.

For the immunodetection step, blots were washed with T-TBS for 3 x 10 minutes 

then incubated with biotinylated secondary antibody (1:500, diluted in T-TBS) for 1 

hour on a shaker. Blots were washed for 3 x 10 minutes in T-TBS then incubated 

with SAP (1:500, diluted in T-TBS-M) for 1 hour at room temperature. Following 

another 3 x 1 0  minutes wash with T-TBS blots were developed with AP substrate kit, 

washed in distilled water and air dried on filter paper.
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2.3.4 Optical density measurements

The optical densities of the bands were measured using the MCID image analysis 

program. The blots were placed onto a light box and the image enlarged and captured 

on the computer screen. Three optical density readings were then taken from each 

separate band and averaged. A background reading was also taken and this value 

subtracted from the band readings to remove any variation associated with 

background differences. Values were then analysed and graphed.

2.4 Scanning Electron Microscopy (SEM)

2.4.1 Fixation

Animals in the group for SEM were fixed with non-heparinised Karnovsky’s fixative 

(2% formaldehyde, 2% gluteraldehyde). Kamovsky’s fixative achieves a more rapid 

overall penetration of tissue than with formaldehyde or gluteraldehyde alone 

(Kamovsky, 1971) and is the fixative of choice for SEM studies. Heads were 

removed and placed in fixative for 24-48 hours, and the brains post fixed for 24 

hours. Following the fixation procedure, middle cerebral arteries were dissected from 

the brains and placed in 200mM phosphate buffer (pH 7.4) and kept for processing.
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2.4,2 Processing of tissue for SEM

The sequence of steps involved in processing tissue for SEM is illustrated in Figure 

20. 300pm brain slices were required for SEM examination and were cut using a 

vibrotome. Prior to vibrotoming brains were placed in phosphate buffer overnight. 

After cutting the slices were transferred to pH 7.4 phosphate buffer for 1 hour then 

post fixed with buffered 1% osmic acid for 30 minutes. Following 3 x 10 minute 

washes in phosphate buffer, slices underwent a series of dehydration steps: 50% 

acetone for 1 hour and 3x 1 hour in absolute acetone. Slices were then dried in 

hexamethyldisilazane (HMDS) for 1 hour, placed on filter paper and kept in a 

dessicator until mounted. Following the mounting of samples they are normally 

coated with a layer of conductive metal (in this case gold) of around 20-3 Onm.

The coating of the specimen prevents the build up of high voltage charges and 

prevents heat damage by conducting the heat away from the specimen. The brain 

slices were gold coated using a Polaron Sputter Coater. The Polaron Sputter Coater 

creates a vacuum (around 0.1 Pa) around the specimen which removes potentially 

damaging water and oxygen molecules. Once the vacuum has been achieved an inert 

gas (normally argon) is introduced into the chamber and flow adjusted until the 

vacuum is maintained at 6-7 Pa. A negatively charged high voltage is then applied 

and this causes the ionisation of argon into Ar + molecules which strike the gold 

cathode resulting in the emission of metal atoms which coat the specimen. Following 

coating the slices were placed in the scanning electron microscope, a vacuum 

produced, accelerating voltage turned on and image obtained.

Middle cerebral arteries were processed in the same way.
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SEM SPECIMEN PREPARATION
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Figure 20. Sequence of events for processing of specimens for SEM. From Bozzola 

and Russell, 1992.
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2.4.3 Developing of SEM films

Images captured on 35 mm film from the SEM were developed for 4-7 minutes in 

Kodak developer (1:3 dilution, 20°C), and then transferred to Kodak fixer (1:4 

dilution) for 2-4 minutes. Films were then unwound from their holder and placed in 

cold running water for 5 minutes then dried and contact prints produced.
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Results: Chapter 3 Microvilli / Neutrophil Study

3.1 Introduction

In terms of inflammatory mediated ischaemic damage, previous studies have 

concentrated on the role of the circulating inflammatory cell, the neutrophil. 

Neutrophils have the ability to adhere to the endothelium of cerebral blood vessels 

reducing or completely blocking blood flow. They are also capable of contributing to 

ischaemic damage indirectly through their ability to release cytotoxic substances. 

The results of previous studies seem to be divided with some groups reporting a 

significant early neutrophil accumulation in ischaemic damaged tissue (Chopp et a l, 

1994; Zhang et al, 1994; Hallenbeck et a l, 1986) while others failed to find any 

significant neutrophil presence in the acute phase (Hayward et a l, 1996; Peters et a l, 

1998; Oruckapten et al, 2000).

In addition to a reported increased presence of neutrophils, other characteristic 

changes to cerebral blood vessels have been reported following experimental 

ischaemia. Various morphological changes have been reported using Scanning 

Electron Microscopy (S.E.M) and Transmission Electron Microscopy (T.E.M), 

including an increase in the number and distribution of microvilli, astrocytic swelling 

and ultravascular disruption (Maxwell et al, 1988; Dietrich et a l, 1984).

Microvilli are small finger-like projections, which can be found in various parts of 

the body including the cardiovascular system, the gastrointestinal tract and the 

cerebrovascular system in the brain. They vary slightly in shape and size depending
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on their anatomical position Within the blood vessels of the brain, microvilli project 

from endothelial cells for a distance of around 0.5pm in length and 0.1pm in 

diameter (Fig 21).

Figure 21. Microvilli in a control non-ischaemic vessel in the cortex. SEM 

photograph taken at X 7500. Arrow represents microvilli projecting from endothelial 

cells of cortical blood vessels.

At present the functional significance of the microvilli and their increased number 

following ischaemia is not clear. It is possible that they may act as a haemodynamic 

impediment causing increased vascular resistance and postischaemic hypoperfusion 

(Dietrich et al, 1984). They may be present to increase the absorption of essential 

metabolites such as glucose, vitamins etc. (Lossinsky et a l, 1989; Tagami et al., 

1983). Microvilli have also been shown to express adhesion molecules and so they
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may be present to allow the subsequent adhesion and accumulation of inflammatory 

cells within the vessels of the brain.

The aim of this study was to investigate ultrastructural changes to cerebral blood 

vessels following intraluminal thread induced middle cerebral artery occlusion and to 

determine whether there was an increase in neutrophil number and microvilli 

number, which may result in subsequent inflammatory mediated damage.

3.2 Methods

3.2.1 Surgical procedures

Surgery was carried out with the help of Miss E. Peters.

Male Sprague Dawley rats (n=5) underwent intraluminal thread induced ischaemia 

using the method of Zealonga et al as previously described in section 2.1.2. The 

thread was inserted into the internal carotid and kept in place for two hours after 

which the thread was removed and the animal reperfused for a further two hours. 

Following the period of reperfusion the animals were transcardially perfused with 

Karnowsky’s fixative and the brains and MCA’s processed for S.E.M as previously 

mentioned in section 2.4.2.

Sham animals (n=5) had the thread inserted but removed immediately and the 

animals were kept under anaesthesia for the same 4 - hour period as the experimental 

animals.
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3.2.2 Neutrophil adherence / accumulation

To determine whether neutrophil adherence was playing a role in intraluminal thread 

induced ischaemic damage, Scanning Electron Microscopy (S.E.M) was used to look 

for signs of neutrophil adherence or accumulation in cortical blood vessels and in the 

MCA’s. 10 small vessels (<10pm internal diameter (ID)) and 10 large vessels 

(>10pm internal diameter (ID)) were examined in the ffonto-parietal cortex of both 

the ipsilateral and the contralateral hemispheres and the presence of neutrophils 

noted and photographed. This process was repeated for ipsilateral and contralateral 

MCA’s in each animal.

3.2.3 Ultrastructural changes in parenchymal vessels and MCA’s

Using S.E.M, photographs were taken of 10 small (<10pm ID) and 10 large (>10pm 

ID) parenchymal cortical blood vessels in both the ipsilateral and contralateral 

hemispheres and the number of microvilli counted. The vessels were photographed 

firstly at xlOOO to determine the diameter of the vessel and then at x7500 to allow the 

microvilli counts to be performed.

Microvilli were counted in 3 non-overlapping regions of 25 pm2 in each vessel and 

the number of microvilli counted and averaged to give microvilli numbers per 

25 pm2.



The photographs were also used to look for signs of damage to the smooth muscle 

and the endothelium in the ipsilateral hemisphere compared to the contralateral 

hemisphere and in the sham versus the occluded animals.

3.2.4 Statistical analysis

Data are presented as mean ± SEM for the animals used. The significance of 

differences in physiological variables and microvilli number between ipsilateral and 

contralateral hemispheres and between sham and occluded animals were determined 

by a one-way ANOVA followed by an unpaired Student’s t-test.

3.3 Results

3.3.1 Physiological Variables

Physiological variables were maintained within normal limits under anaesthesia 

(Table 7): normocapnia (36-42mmHg), normal physiological pH (7.4), and normal 

body temperature (36.5-37.5°C). Arterial blood pressure under anaesthesia was 

similar in both the occluded and the sham animals. A significant difference between 

body temperature was observed between occluded and sham animals (p< 0.01). This 

difference was of statistical significance but not biological significance as both 

groups were within the normal physiological range.
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Weight
(g)

PaC02
(mmHg)

Pa02
(mmHg)

pH MABP
(mmHg)

Temp.
(°C)

Occluded 285± 12.1 41. 1±1.1 153.6+7.1 7.4+001 85+2.1 37.1+0.07*

Sham 278±10.21 42.1+4.5 133.7+19.3 7.4+0.03 100+7.7 36.6±0.16

Table 7. Physiological variables for scanning electron microscopy series using the 

intraluminal thread model; n=5 in occluded and sham groups. Data represents mean 

± SEM. Data analysed by ANOVA followed by unpaired Students t-test. * p<0.01. 

MABP = mean arterial blood pressure.
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3.3.2 Extent of Ischaemic Damage

The area of ischaemic damage as identified by light microscopy, 

incorporated both cortical and striatal regions . Figure 22 illustrates the extent of 

damage achieved with the intraluminal thread model of ischaemia (2 hours of 

ischaemia followed by 2 hours of reperfusion). The average volume of ischaemic 

damage was 62.5± 10.0 mm3. No evidence of ischaemic damage was found in any of 

the sham animals.

I

■
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Occluded Sham

Figure 22.Volume of ischaemic damage (mm3) for intraluminal thread MCAO, 2 

hours of occlusion followed by 2 hours reperfusion. n=5 per group.
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3.3.3 Neutrophil Adhesion

There were no signs of neutrophil adhesion, as characterised by the appearance of a 

cell of neutrophil morphology (Fig 23,A), in any of the parenchymal cortical vessels 

or in the MCAs (Fig 23,B, C) in any of the animals exposed to ischaemia or sham 

procedures (n=5 per group).

A B C

Figure 23 Lack of neutrophil accumulation in parenchymal vessels or MCAs. A. 

Typical appearance of a neutrophil adhering to the endothelial surface of a cortical 

blood vessel- taken from a previous study (Peters, 1999) in the Endothelin -1 model 

of MCAO, B. Lack of neutrophils in parenchymal cortical vessels in the ipsilateial 

hemisphere of occluded animals, C. Lack of neutrophils in the MCA from the 

ipsilateral hemisphere of an occluded animal. Photographs taken at X 7500. Scale bar 

represents 3pm.
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3.3.4 Microvilli Counts

In both occluded and sham animals, there was a significantly greater number of 

microvilli present in the blood vessels of the ipsilateral hemisphere when compared 

to the contralateral hemisphere (For example, in occluded animals, ipsi = 21 45 ± 

1.86, contra = 15.33 ± 0.5, p<0.05; in sham animals, ipsi= 21.01 ± 0.89, contra = 

14.85 ± 0.65, p<0.05) (Figure 24)

A B

Figure 24 Microvilli in parenchymal cortical vessels Microvilli were more abundant 

in the ipsilateral hemisphere (A) o f the occluded animals than in the contralateral 

hemisphere (B). S.E.M photographs taken at X 7500. Scale bar represents 1pm.
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H  Contralateral 

I | Ipsilateral

Sham Occluded

Figure 25.Number of microvilli per 25pm2 in cortical parenchymal 

blood vessels, n=5 in occluded and sham groups. Data represents mean 

± SEM and was analysed by ANOVA followed by unpaired Student’s t- test, 

*p<0.05.
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Microvilli were present in small vessels (<10pm ID) and in large vessels (>10pm ID) 

with the larger vessels tending to possess slightly greater numbers of microvilli than 

the small vessels (For example, in occluded animals, ipsi: small= 20.72 ± 0.79 SEM, 

large = 22.49 ± 0.99 SEM; in sham animals, ipsi: small= 20.63 ± 0.83 SEM, large = 

22.72 ± 2.9 SEM). (Figure 26)

A B

Figure 26. Number of microvilli in small and large vessels. Large vessels (A) 

(>10pm ID) had greater numbers of microvilli than small vessels (B) (<10pm ID). 

The difference did not however achieve statistical significance. Photographs taken at

X 7500. Scale bar represents 1pm.
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Small blood vessels (<10 pm ID) Large blood vessels (>10pm ID)

ipsi contra ipsi contra

Occluded 20.7±0.79 15.6±0.53 22.5 ±0.99 15.1±0.47

Sham 20.6±0.83 13.8±1.03 22.3 ±2.9 15.9± 0.28

Table 8. Number of microvilli per 25pm2 in intraluminal thread induced ischaemia., 

n=5 occluded and sham groups. Data represents mean ±SEM.

There was no significant difference in the number of microvilli present in the 

occluded animals when compared to the shams (Figure 27). In sham animals the 

microvilli tended to be arranged more regimentally and could be seen to form lines 

along endothelial cell junctions. In occluded animals however, microvilli distribution 

appeared more random.
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Figure 27. Microvilli distribution and number in parenchymal cortical vessels in A. 

sham animal and B. occluded animal. S.E.M photograph at X 7500. Scale bar 

represents 1pm.
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There was no evidence of a correlation between volume of ischaemic damage and 

microvilli number in the occluded group- r2 = 0.137 (Figure 28)
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Figure 28. Correlation between the number of microvilli in parenchymal vessels

and infarct size following ILT induced ischaemia (2 hours occlusion 

+ 2 hours reperfusion) n=5.

There were very few microvilli present within the MCAs of sham or occluded 

animals and no obvious differences between the number of microvilli in the MCAs 

from the ipsilateral hemisphere and the contralateral hemisphere of the occluded 

animals (occluded- ipsi- 11 ±1.5, contra- 8 ± 2.2; sham- ipsi- 9 ± 0.5, contra- 1 ± 

1.6).
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3.3.5 Ultrastructural Changes to MCA

The appearance of the endothelium of the ipsilateral middle cerebral artery differed 

slightly between the occluded and the sham animals.

Both sets of MCAs displayed a roughly textured endothelium with a faint corrugated 

appearance. The endothelium of occluded animals appeared to be slightly rougher in 

texture than the shams (Figure 29). Few microvilli were present on the endothelium 

of the MCAs.

A B

Figure 29. Ultrastructural changes to ipsilateral MCA in A sham animal and B. 

occluded animal. S.E.M photographs taken at X 7500. Scale bar represents 10pm.
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3.4 Discussion

Various changes to the cerebral vasculature have been reported to occur as a result of 

an ischaemic insult. These include an increase in neutrophil adhesion and an increase 

in the number of microvilli projecting from the endothelium of cerebral blood vessels 

(Del Zoppo et al., 1991; Dietrich et al., 1984; Okumura et al., 1994).

Neutrophils

The first part of this study considered the role of the neutrophil in ischaemic damage. 

An increase in neutrophil recruitment following ischaemia can prove detrimental due 

to the ability of the neutrophil to adhere to the endothelial surface of blood vessels 

therefore obstructing blood flow through that vessel (Del Zoppo et al., 1991). Once 

adhered to the endothelium, neutrophils can undergo activation and may release 

cytotoxic substances and free radicals further potentiating ischaemic damage to the 

vasculature or parenchyma, if infiltration occurs (Matsuo et al., 1995).

Several groups have investigated the role of the neutrophil in ischaemia but opinion 

remains divided as to whether it contributes significantly to damage. Studies have 

shown that administration of antibodies directed against the adhesion molecules 

involved in the neutrophil -  endothelial interaction (e.g. P-selectin, E-selectin, 

ICAM-1 and CD-18) have successfully attenuated ischaemic damage in a number of 

species (Chopp et al, 1994; Zhang et al, 1994; Clark et al, 1991). However it has 

been noted that the reduction in ischaemic damage seen with anti-neutrophil 

therapies are modest when compared to a 50-75% reduction in ischaemic damage
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reported with glutamate antagonists (Hayward et a l, 1996). Many of the studies have 

also indicated that anti-neutrophil therapy may prove more successful in transient 

MCAO than in permanent MCAO (Zhang et al, 1995) as neutrophil recruitment may 

contribute greatly to the pathogenesis of reperfused as compared to non-reperfused 

tissue (Prestigiacomo et a l, 1999; Matsuo et a l, 1994). Increases in neutrophil 

counts in the blood has been identified in human stroke using the Lekergy test to 

measure neutrophil levels in the blood (Silvestrini et a l, 1998) with numbers being 

significantly higher in patients with severe stroke damage. It is therefore important to 

develop a better understanding of the role of the neutrophil in the pathogenesis of 

stroke as anti-neutrophil therapy may prove an effective way of reducing damage 

caused by stroke in a clinical setting. Clinical studies have so far, however, proved 

unsuccessful in attenuating ischaemic damage. The Enlimomab Acute Stroke Trial 

(EAST), administered the anti-ICAM-1 antibody R6.5 (Enlimomab) to stroke 

patients but the results of the study demonstrate that this antibody is not beneficial in 

improving clinical outcome, with mortality and infarct sizes reported to be greater in 

the treatment group (Vuorte et al, 1999; Sherman, 1997) than the placebo group. 

These negative results however cannot rule out an involvement of neutrophils in 

ischaemic damage as inhibiting ICAM-1 is only one of a number of mechanisms by 

which one could reduce neutrophil accumulation. Enlimomab was also found to have 

frequent adverse effects which may have contributed to its failure to improve patient 

recovery and reduce infarct size (Vuorte et a l, 1999).

In addition to the failure of the above clinical trial, various groups have found no 

evidence for a significant early neutrophil accumulation in experimental models of
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ischaemia which is in accordance with the findings of this study in which very few or 

no neutrophils were found in the parenchymal vessels or MCAs of rats following 

transient intraluminal thread induced ischaemia (Peters et a l, 1998; Hayward et al., 

1996). Indeed even in a study inducing neutropenia, the absence of neutrophils had 

no effect on the size of the infarct (Hayward et a l, 1996).

The current study used a transient model of MCAO. If neutrophils were contributing 

to early reperfusion mediated ischaemic damage one would expect to see evidence of 

an increase in neutrophil presence in the ipsilateral hemisphere of this model.

However, it could be argued that in this study, a lack of neutrophil accumulation 

could be attributed to the short duration of reperfusion (2 hours occlusion followed 

by 2 hours reperfusion) and that if the animals had been reperfused for a longer 

period of time then neutrophil accumulation may have become apparent. Previous 

studies have shown neutrophil accumulation following longer periods of reperfusion 

(24 hours- Matsuo et al., 1994; 46 hours- Chen et al., 1994; 1 week -  Zhang et al, 

1995). However, previous studies from this laboratory and others have failed to show 

any evidence for neutrophil accumulation up to 72 hours using both the intraluminal 

thread and the endothelin-1 models of transient ischaemia in the rat (Peters et al, 

1998; Hayward et al, 1996; Dimagl et al, 1994).

A lack of neutrophil accumulation in this study could also be associated with the 

processing of the tissue following surgery. In order to preserve the tissue for SEM 

analysis and for continued storage, the animals were fixed with Karnovsky’s fixative. 

This fixing procedure is standard for S.E.M and T.E.M studies and involves infusing 

saline and then the fixative through the blood vessels in order to preserve the brain.



128

The act of perfusing solutions through the cerebral blood vessels might dislodge 

any neutrophils which may have been present following the ischaemic insult. 

However the pressure used to perfuse the animals was no greater than the animals 

mean arterial blood pressure under anaesthesia. Previous studies using the same 

method of neutrophil analysis (neutrophil counts in brain slices or blood vessels) in 

non-fixed brains have reported no evidence of neutrophil accumulation therefore 

ruling out the possibility of the neutrophils being washed out of the vessels prior to 

the counting stage (Hayward etal., 1996).

Lastly, the absence of neutrophils following experimental ischaemia may be an 

indicator of a sterile surgical procedure as neutrophils commonly accompany 

infection and inflammation which can occur as a result of non- aseptic surgical 

practice and were found in abundance in the rare cases where an animal had 

complications of meningitis and abscess formation caused by an infection developing 

after surgery.

It is clear that neutrophils have the potential to contribute to ischaemic damage either 

indirectly via the secretion of cytotoxic substances or directly by the plugging of 

blood vessel and obstruction of flow. However this study failed to provide any 

evidence for an early significant involvement of neutrophils in the brain damage 

induced by transient MCA occlusion.

Microvilli

In addition to the role of neutrophils in ischaemic damage, this study also examined 

potentially pathogenic changes to the vasculature following intraluminal thead 

induced MCAO and reperfusion.
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Microvilli are small bulbous projections from the endothelium of blood vessels 

which have been shown to increase in number following injury to the brain. An 

increase in microvilli number has been found to accompany other changes in the 

cerebral vasculature- astrocytic swelling and general vascular disruption- in models 

of both global (Dietrich et al., 1984; Kumar et a l, 1987; Wisniewski et a l, 1995) and 

transient ischaemia (Okumura et al, 1997; Dietrich et a l, 1987).

However, this study showed no significant increase in the number of microvilli in the 

brains of rats undergoing ILT induced ischaemia when compared to sham animals. 

Microvilli were identified and counted using scanning electron microscopy (S.E.M), 

the standard method of identifying microvilli in the studies previously cited.

In both occluded and sham groups, a significantly greater number of microvilli were 

found to be present in the ipsilateral hemisphere when compared to the contralateral 

hemisphere (p<0.05) but there was no difference in microvilli number in the 

ipsilateral hemisphere between sham and occluded animals. An increase in the 

number of microvilli in the ipsilateral hemisphere of occluded animals would seem 

to suggest a possible pathogenic link with the development of the ischaemic damage. 

However, the fact that the hemispheric difference was found in sham animals as well 

as occluded animals would seem to suggest that the increased microvilli numbers in 

the ipsilateral hemisphere could be attributed to mechanical damage caused by the 

insertion of the filament and its subsequent removal from the cerebral vasculature. 

Sham animals underwent the same degree of invasive surgery and had the filament 

inserted to block the origin of the MCA as in the occluded animals. The filament was 

immediately removed following insertion so no period of ischaemia was induced in 

the shams. There was no difference in the magnitude of the increase in microvilli
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numbers between sham and occluded groups. If ischaemia increased microvilli 

number one might expect to see a greater increase in the occluded animals 

representing mechanical stimulation of microvilli and an additional increase 

attributed to ischaemia which would not be present in the sham animals. This was not 

the case in this study, and it would appear that insertion of the filament itself may 

cause sufficient damage to promote maximal microvilli formation.

The number of microvilli counted were not as high as was reported in previous 

studies from our laboratory using different models of MCAO. For example, in 

studies using the endothelin-1 method of transient MCAO, microvilli numbers were 

significantly higher than in this study (around 70 microvilli per 25pm2 in endothelin- 

1 induced MCAO compared to around 23 microvilli per 25 pm2 in ILT induced 

ischaemia; Gartshore, 1996). If indeed microvilli numbers are primarily increased as 

a result of mechanical damage associated with a particular model, this could also 

help to explain the differences in microvilli number observed in the ILT and the 

endothelin-1 models. The endothelin-1 model as previously discussed (section 1.3.4 ) 

involves topical application of the potent vasoconstrictor peptide endothelin-1 

directly to the MCA (via a craniectomy) therefore applying a potent force to the 

smooth muscle and endothelium of the blood vessel causing severe constriction and 

distortion of the surface of the vessel. One might expect this model therefore to 

produce a greater degree of mechanical damage than the ILT model where 

mechanical damage can mainly be attributed to the filament coming into contact with 

the endothelium of the vessels as it is advanced towards the Circle of Willis and
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while it is being removed. The greater degree of physio-mechanical damage in the 

endothelin-1 model may be contributing to the greater number of microvilli. 

Differences in microvilli formation may also depend on the severity of ischaemia 

associated with the model. The intraluminal thread model produces a more sustained 

ischaemic insult than the endothelin-1 model (Mean infarct volume 47.5 ±2 mm in 

Endothelin-1 induced MCAO (From Gartshore, 1996) versus 67.0 ± 12mm3 in ILT 

induced ischaemia in this study). It has been reported that energy depletion can affect 

microvilli formation to such an extent that depleting ATP levels can reduce 

microvilli formation (Soagabe et al., 1996). Since intraluminal thread induced 

ischaemia can be said to inflict a more severe insult it could be postulated that this 

model may cause a greater degree of energy depletion leading to lower numbers of 

microvilli being present. Intraluminal thread ischaemia could also be expected to 

cause a greater degree of oxygen deprivation than endothelin-1 induced MCAO since 

the ischaemia is maintained for 2 hours. A lack of oxygen has been shown to result in 

reduced microvilli number (Leuschen and Nelson, 1987).

However, the idea that a more severe insult leads to decreased energy and decreased 

microvilli formation is contradicted by Dietrich and co-workers (1987) who found 

that prolonged periods of complete ischaemia (4 hours bilateral common carotid 

artery occlusion) produced greater numbers of microvilli and luminal disruption than 

1 hour occlusion and 3 hours reperfusion. It has previously been suggested that 

reperfusion may cause a reduction in microvilli numbers (Dietrich et al., 1984) and 

so the differences in microvilli between the ILT model and the endothelin-1 model 

may be attributed in part to the differences in reperfusion patterns. In the intraluminal



132

thread model of MCAO, reperfusion occurs immediately on removal of the filament- 

giving rise to a rapid return of blood. In the endothelin-1 model, however, the 

vasoconstrictor actions of the peptide wear off gradually over time- leading to a 

gradual reperfusion. If reperfusion does reduce microvilli formation the quicker, 

more intense reperfusion in ILT MCAO may help to explain lower numbers of 

microvilli when compared to the endothelin-1 model.

Another indicator that microvilli presence may not solely be associated with the 

pathology of ischaemia is that correlation analysis showed no link between the 

microvilli number and the extent of ischaemic damage (r2 = 0.137). This lack of 

correlation and the association between increased microvilli number and mechanical 

damage associated with the experimental models of ischaemia would seem to suggest 

that microvilli are not major contributors to ischaemic damage but a marker of injury 

induced by the induction of ischaemia. However it is unwise to rule out a pathogenic 

role completely as it may be that microvilli are one of many contributors to the 

damage and may perform a lesser role in ischaemic damage than for example 

glutamate excitotoxicity or inflammatory mediated damage. It is also possible that 

microvilli formation may contribute to ischaemic damage at a later time point.

Although an increase in microvilli number in models of MCAO would seem to be 

associated with the mechanical damage rather than ischaemic damage there may still 

be a consequence to their increase in number.

There is currently a lack of clarity as to whether microvilli are pathogenic or 

beneficial following ischaemia and it remains unclear what the function of such 

endothelial microvilli may be.
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It has been proposed that the microvilli are acting to increase the surface area of the 

blood vessels in an attempt to facilitate the absorbtion of essential nutrient. Studies 

have shown that microvilli in other organs, for example the digestive system 

contribute to the exchange of metabolites and microvilli like tubules have been 

identified in the injured CNS which have been proposed to be involved in increasing 

the transport of essential macromolecules to the damaged areas (Lossinsky et al, 

1989; Tagami et a l, 1983). This would seem even more likely due to the fact that 

microvilli numbers do not appear to be as high following transient ischaemia as they 

are following global ischaemia (Dietrich et al, 1987). This may suggest that 

microvilli are indeed acting to increase the area for absorption to compensate for lack 

of a normal blood flow. When the blood flow is re-introduced (as in reperfusion 

models) the supply of nutrients is restored to a greater extent. Therefore an increase 

in microvilli would no longer be needed. Dietrich et al., 1994 reported that microvilli 

numbers did indeed decrease towards basal levels on reperfusion. However TEM 

analysis of microvilli have shown that the microvilli present in the brain do not 

possess the organelles necessary for nutrient exchange (Dietrich et a l, 1984).

Another possible consequence of increased brain endothelial microvilli could be post 

ischaemic hypoperfusion (Chiang et a l, 1968; Dietrich et a l, 1984). The numbers of 

microvilli seen in ischaemic studies appear to be high enough to obstruct normal 

blood flow and result in a ‘no-reflow’ phenomenon (Ames et a l, 1968). However 

other studies have failed to provide supporting evidence that numbers of microvilli 

were high enough, or indeed that microvilli were of sufficient size to significantly 

affect blood flow (Fischer et al, 1977).
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Lastly, an increase in microvilli numbers may well indirectly contribute to ischaemic 

damage via the promotion of the adherence of inflammatory cells to the vascular 

endothelium. In addition to increasing the surface area available for neutrophil 

adherence, microvilli are also present on neutrophils and have been shown to express 

receptors for adhesion molecules (L & P selectin: Bruehl et a l, 1996; Bruehl et al, 

1997 and ICAM-1: Sasaki et al, 1998). There may therefore be interactions between 

the microvilli on the neutrophil and the microvilli on the endothelium of the blood 

vessels which may aid neutrophil adherence and migration. Brain microvilli in 

vessels exposed to cancer cells have been shown to express ICAM-1 which may 

serve to facilitate migration of tumour cells or may facilitate the transport of essential 

macromolecules to the injured brain (Lossinsky et a l, 1995).

In terms of ultrastructural changes to the MCA itself, following ILT induced 

ischaemia the MCA’s appeared rougher in texture than in sham animals. Few 

microvilli were present on the endothelium of the MCA’s. One possibility is that 

mechanical damage during processing may have resulted in the removal of microvilli 

from the endothelial surface (Fujimoto et al, 1975)

An increase in the number of folds in the vessels of occluded animals and a general 

distortion of the regimental alignment of microvilli may occur as a result of 

ischaemia induced vasospasm (Puta et a l, 1991; Naganuma et a l, 1990; 

Wisniewski et a l, 1995). However due to the fact that sham animals also possessed a 

certain degree of transverse ridging and distortion, some form of mechanical damage 

cannot be ruled out. Disruption of the endothelium of the MCA may also occur as a 

result of the release of cytotoxic substances during ischaemia.
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Free radicals, including nitric oxide are candidates for endothelial damage and the 

administration of the nitric oxide inhibitor L-arginine methyl ester has been shown to 

ameliorate damage to the endothelium and reduce microvilli number following brain 

injury (Katumukache., 1993, MSc thesis).This study has demonstrated an increase in 

the number of microvilli following experimental ischaemia. Although it cannot be 

concluded that microvilli are involved in the pathogenesis of ischaemia it can be said 

that microvilli are markers of the mechanical damage associated with models of 

experimental ischaemia, independent of whether their presence is beneficial or 

detrimental. The increase in the number of microvilli and the slight distortion of the 

endothelium of the MCA were the only sign of acute changes to the ultrastructure of 

the cerebral vasculature following intraluminal thread induced MCAO, with no 

evidence of neutrophil or other blood cell adherence to the endothelium.



Results: Chapter 4. Matrix metalloproteinase expression 

following intraluminal thread induced ischaemia.

4.1 Introduction

Various studies have shown increased expression of certain matrix 

metalloproteinases in models of both permanent and transient cerebral ischaemia. 

Elevated levels of MMPs are thought to contribute to inflammatory mediated 

ischaemic damage by a number of mechanisms including 1) the degradation of the 

blood brain barrier leading to increased BBB breakdown and oedema, 2) the 

stimulation of the secretion of cytotoxic substances from inflammatory cells, 3) the 

facilitation of the migration of inflammatory cells to the site of ischaemic damage 

and 4) the activation of cytokines.

However, information is currently lacking on the anatomical distribution and cellular 

localisation of MMPs following cerebral ischaemia. Consequently this study has 

been carried out in order to develop a better understanding of the ways by which 

MMPs might contribute to ischaemic damage.

The aims of the study were 1) to map the distribution of MMP-9 (gelatinase B, 

known to be up regulated following ischaemia) and rat neutrophil collagenase 

(MMP-8, gifted by British Biotech, Oxford, UK) 24 hours after intraluminal thread 

induced ischaemia (2 hours ischaemia and 22 hours reperfusion) and 2) to identify 

the cellular localisation of these two MMPs.
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Following experimental ischaemia the blood brain barrier (BBB) can be altered in 

such a way that its permeability is increased and its role as a regulator of the 

movement of substances into the brain is compromised.

Various methods are available for the quantification of BBB permeability including 

Evans Blue, Horseradish Peroxidase and Peroxidase anti-Peroxidase (PAP) staining 

technique. Studies using these methods, in models of transient ischaemia, would 

suggest a biphasic opening of the BBB. The period of increased permeability would 

seem to be associated with the start of reperfusion and could be said to be 

“haemodynamic” in nature caused by the sudden return of blood through maximally 

dilated blood vessels (Kuroiwa et al, 1985). This increase in permeability is transient 

and a second permeability increase occurs some hours later in the reperfusion period. 

The mechanism of the second opening of the BBB is unclear but is more likely to be 

related to factors associated with damaged tissue rather than haemodynamic factors. 

Matrix metalloproteinases as previously mentioned are thought to play a role in 

increased BBB permeability due to their ability to degrade components of the 

extracellular matrix. This study therefore also set out to investigate 

whether there was evidence of increased BBB permeability associated with 

intraluminal thread induced transient ischaemia and to identify whether this 

increased BBB permeability correlated with increased MMP expression.
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4.2 Methods

4.2.1 Surgical procedures.

All experiments were carried out under licence from the Home Office. Animals were 

housed under a 12 hour light-dark cycle and were given free access to food and 

water.

Sprague Dawley rats underwent intraluminal thread induced ischaemia as previously 

described in section 2.1.2. The filament was inserted into the internal carotid and 

kept in place for 2 hours after which time the thread was withdrawn and the animals 

were allowed to recover for 22 hours. Following the recovery period the animals 

were perfusion fixed with 4% paraformaldehyde in PBS as described in 2.2.1 and 

brains processed and embedded in paraffin. 6pm sections were collected for H&E 

staining and for immunohistochemistry.

To ensure that any changes in MMP levels were occurring as a result of ischaemia 

and not simply as a result of mechanical damage associated with the surgical 

procedure, sham animals had the filament inserted into the internal carotid but 

removed again immediately. The sham animals were kept under anaesthesia for the 

same period of time as animals exposed to focal ischaemia.
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4.2.2 Haematoxylin and eosin staining for infarct determination.

Sections throughout all 8 coronal levels were stained with haematoxylin and eosin 

and the light microscope used to identify the area of ischaemic damage. The area of 

damage was then transcribed onto line diagrams using image analysis on a 

Microcomputer Imaging device or MCID and the volume of infarction calculated by 

integration (Osborne et al., 1987) as previously described in section 2.2.5.

4.2.3 Western blotting

Western blotting as described in section 2.3.1 was carried out to determine the 

specificity of the MMP-9 antibody AB805.

Optical Densities of the bands was measured using the MCID Image analysis 

program as described in section 2.3.4.

4.2.4 Immunohistochemistry

Sections throughout all 8 coronal levels were stained with polyclonal antibodies to 

MMP-9, AB805 (1:100, Chemicon International Pic), MMP-8, SE594 (1:100, British 

Biotech, Oxford, UK) or MMP-9, C-20 (1:100, Santa Cruz) . Immunohistochemistry 

was carried out using the polyclonal antibody protocol for paraffin processed 

material which was described previously in section 2.2.6.3.

The MMP antibodies required pre-treatment involving microwaving in citric acid 

buffer (1.05g/500mls dH^O, pH 6.0) for two periods of five minutes. After the
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microwaving the sections were allowed to cool for 30 minutes before proceeding to 

the washing and blocking stages of the immunohistochemistry protocol. 

Immunohistochemistry using the standard polyclonal antibody protocol was also 

carried out using peroxidase anti-peroxidase (PAP, 1:100, Vector Laboratories, UK) 

and antibodies to the serum proteins albumin and fibrinogen (rabbit anti-human 

albumin, 1:1000 and rabbit anti-human fibrinogen, 1:250, DAKO, UK) to investigate 

any correlation between MMP staining and areas of increased BBB permeability.

4.2.5 Double labelling immunohistochemistry.

To identify gelatinase B/ rat neutrophil collagenase positive cell types, normal 

double labelling was carried out with GFAP (Glial Fibrillary Acidic Protein, 

astrocytic marker, 1:1000, Sigma, UK), mrf-1 (Microglial Response Factor, 

microglial marker, 1:100, Dr S Tanaka, Hokaido University, Japan) and tau-1 

(marker of injured oligodendrocytes, 1:1000, Dr D Hanger, University of London) 

using DAB (brown chromagen) and SG (grey chromagen) and the standard double 

labelling technique as described in section 2.2.6.4. This was followed by 

fluorescence double labelling with confocal microscopy to confirm the results of 

light microscopy double labelling. Fluorescence double labelling was carried out 

using the three day protocol described in section 2.2.6.5 using Fluoroscein and Texas 

Red labelled secondary antibodies (1.100, Vector Laboratories, UK).
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4.2.6 Blocking peptide protocol for determination of non-specific staining

A blocking peptide to the MMP-9 Santa Cruz antibody (C-20) was used in order to 

determine the specificity of MMP staining patterns (Pollock and Van Noorden, 1997) 

(blocking peptides were not commercially available for the other MMP antibodies 

used).

The antibody was diluted 5, 10, 20 and 50 fold with blocking peptide and lOOpl of 

PBS added to each dilution and the solutions placed on a shaker for 3 hours. 

Solutions were then centrifuged for 15 minutes. After centrifugation, the blocking 

peptide diluted antibody was diluted as normal (1:100) and applied to the sections as 

in the normal polyclonal immunohistochemistry protocol (as previously described in 

section 2.3.6.4). The blocking peptide diluted antibody was run along side the Santa 

Cruz antibody alone to determine which staining patterns were removed by the 

presence of the blocking peptide (specific staining) and which patterns remained 

(non-specific staining). Unfortunately, blocking peptides were not commercially 

available for the other MMP antibodies used.

4.2.7 Distribution and quantification of staining

Gelatinase B (MMP-9) and rat neutrophil collagenase (MMP-8) positive cells were 

identified under the light microscope. Line diagrams featuring the eight coronal 

levels through the MCA territory were used to produce maps marking the 

distribution and intensities of MMP-9 and MMP-8 immunohistochemistry.
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The cell types showing positive staining were identified by double label 

immunohistochemistry and any differences in staining patterns between ipsilateral 

and contralateral hemispheres were noted. The following brain regions were 

examined in detail.

4.2.8 Statistical analysis

Data are presented as mean ± SEM for the animals used.

The significance of differences in infarct size and physiological variables between 

groups was determined by ANOVA followed by a two tailed, unpaired Students t- 

test.

1 Cingulate cortex
2 Core of infarct

4 External capsule
5 Striatum

3 Genu Corpus Callosum
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4.3 Results

4.3.1 Physiological variables

Physiological variables were maintained within normal limits under anaesthesia: 

normocapnia (36-42mmHg), normal physiological pH (7.4) and normal body 

temperature (36.5-37.5°C). Table 9 illustrates mean + SEM for physiological 

variables during the surgical procedure. There were no significant differences in any 

of the above variables between experimental and sham animals.

4.3.2 Infarct Size

The area of ischaemic damage as identified at the light microscopic level 

incorporated both cortical and striatal regions (Figure 30). The mean infarct size for 

the occluded animals (n=5) was 187.14 ± 10 mm3 (Figure 30). H&E sections 

produced from the sham animals (n=5) displayed no evidence of ischaemic damage 

at any of the coronal levels examined.
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Figure 30. A Representative line diagram of ischaemic damage following 2 hours 

ILT induced ischaemia plus 22 hours reperfusion B. Volume of ischaemic damage 

n=5 per group.

4.3.3 Western Blotting- Mini-Gels.

Antibody AB805, is commeidaily produced as an anti-human MMP-9 antibody. 

Results have been published involving immunohistochemical studies using AB805 

on rodent tissue (Romanic et al, 1998). To confirm that AB805 was detecting the 

correct protein, mini-blots were carried out on MCAO rat tissue using the protocol 

previously described in section 2.3 .1.



A standard curve for the Lowry Protein Assay was plotted (Fig 31) to quantity 

protein concentrations in samples of cortical tissue from the MCA territory of the 

ipsilateral hemisphere and control tissue from cortical tissue in the contralateral 

hemisphere from four animals at the 24- hour time point so that 10pg/|il of each 

sample could be loaded onto the gels. Antibody concentrations of 1:500, 1:1000, 

1:2000 and 1:5000 all produced bands which corresponded to the latent (92kDa) and 

active (88kDa) molecular weights of MMP-9 (Fig 32). In the ipsilateral hemisphere 

samples, the active band (OD- 0.21±0.01) appeared darker in colour than the latent 

band (0.11± 0.01) suggesting greater levels of the active form than the latent form 

(Figure 33). In the contralateral hemisphere, there appeared to be more of the latent 

form of MMP-9 (OD-O.14± 0.01) than the activated form (OD-0.049+ 0.01) (Figure 

33). The Western blot confirmed the specificity of the antibody, ensuring that the 

antibody was capable of detecting the correct bands for MMP-9 in rat tissue.

Standard Curve for 
Lowry Protein Assay

0.75-1

a>
B  0 .5 0 -  
«  auowo
^  0.25-

0.00
1.0 1.50 .50.0

(Protein mg/ml)

Figure 31. Graph for Lowry Protein Assay.
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Figure 32. Western Blots for MMP-9 antibody AB805 showing both latent and active 

bands of the enzyme following 2 hours ILT induced ischaemia plus 22 hours 

reperfusion.

A. Biotinylated SDS- Page Standard (Broad range),

Myosin = 200 kDa, |3- galactosidase =116  kDa, Bovine serum albumin = 66.2 kDa 

B Blot of cortical tissue from ipsilateral MCA territory, 1:500 AB805, C. Blot of 

cortical tissue from ipsilateral MCA territory 1:2000 AB805, D. Blot of MCA 

territory contralateral hemisphere, 1;2000 AB805. Arrows represent L- latent MMP- 

9 (92kDa) and A- active MMP-9 (82 kDa).
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Figure 33. MMP-9 Western Blots captured on MCID. A. Contralateral hemisphere, 

active and latent bands in cortex o f MCA territory, B. ipsilateral hemisphere, active 

and latent bands in cortex o f MCA territory, C. Optical Density in western blots

for MMP-9. Data represent mean ± SEM, n =2 per group
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4.3.4 Distribution and Cellular Localisation of MMP-9.

Regions of positive staining for MMP-9 (recognised by the presence of 

immunopositive cells) were drawn onto line diagrams and the boundary of the infarct 

subsequently superimposed from the H&E sections to determine how the regions of 

MMP immunoreactivity correlated with the lesion site (Figure 34).

Intense cellular staining was present throughout the infarct but the presence o f MMP 

positive cells also extended beyond the boundary of the infarct into the peri-infarct 

region in ischaemic animals.

Figure 34.Distribution o f MMP-9 staining A. Representative distribution map for 

MMP-9 immunoreactivity. The boundary o f the lesion is marked in yellow and 

immunoreactivity in black. B Representative photo o f staining in neurons in the peri-

infarct region.
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Cells immunopositive for MMP-9 were identified under the light microscope in both 

the ipsilateral and contralateral hemispheres and were found within the lesion site 

within the cortex and the striatum. Some of these cells had the appearance of 

ischaemic neurons being triangular and shrunken in shape. (Figure 35). Blood vessels 

did not appear immunopositive for MMP-9.

Healthy/non-ischaemic neurons in non-infarcted regions of the ipsilateral hemisphere 

and in the contralateral hemisphere displayed a less intense and different pattern of 

staining to that present in ischaemic neurons. Non ischaemic neurons exhibited a 

cytosolic ‘ halo-like’ rim of staining (Figure 36). Sham animals exhibited this halo­

like staining of neurons but no other pattern o f MMP-9 immunoreactivity.

A
B

I ® ;  m lN * gL*

ft i Jju I'
* w -

-

Figure 35. Representative MMP-9 cytosolic staining as present in the contralateral 

hemisphere of occluded animals and throughout sham sections. A. Staining in 

neurons of the contralateral hemisphere in occluded animals. B. Negative control for 

MMP immunohistochemistry. Magnification = X I00 in A and X40 in B, scale bar 

represents 20pm and 50pm respectively.
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Figure 36. Photographs representing cellular staining of MMP-9 (AB805) in the 

ipsilateral and contralateral hemispheres of occluded (A-C) and sham (D) animals (n=5) 

In A. frontal cortex, B caudate nucleus, C. white matter, D. throughout all regions in 

sham. Magnification = X40 Scale bar represents 50pm.
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Within the white matter tracts of the corpus callosum and external capsule and in 

axonal tracts within the caudate nucleus, cells with the characteristic morphology of 

oligodendrocytes exhibited immunoreactivity for MMP-9. Within the genu of the 

corpus callosum and the external capsule, the positively labelled cells were clearly 

arranged in lines indicative of oligodendrocytes (Figure 36C).

Other immunopositive cells with a glial appearance were also present within the 

cortex and caudate of the ipsilateral hemisphere but the staining with DAB alone was 

insufficient to determine the nature of these MMP-9 positive cell types (Figure 36B). 

Due to the fact that microglia and astrocytes have been reported to constitutively 

express MMPs, double labelling was carried out with DAB (brown) and SG (grey) to 

identify whether some immunopositive cells were astrocytic or microglial in nature. 

Double labelling with MMP-9 and GFAP, appeared to show no double labelling of 

astrocytes with MMP-9. However double labelling with MMP-9 and mrf-1 (the 

microglial marker) provided evidence for MMP-9 expressing microglia within the 

cortex and the striatum of the ipsilateral and contralateral hemispheres of occluded 

animals (Figure 37). All activated microglia appeared to express MMP-9. Resting 

microglia expressed little or no MMP-9 as indicated by weak MMP staining (weak 

brown) or no MMP staining. MMP staining in both activated and resting microglia 

(when present) appeared to be mainly localised to the cell body rather than the 

processes.
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Figure 37. Double labelling with DAB/SG showing A. MMP-9 expressing 

microglial cell (MMP-9 +ve, mrf-1 +ve) and B MMP negative astrocyte 

(MMP-9+ve, GFAP-ve). Magnification = X I00. Scale bar represents 20pm.

= X I00, scale bar = 20pm.

Fluorescent double labelling with confocal microscopy was used to confirm whether 

microglia were indeed expressing MMP-9. Using the confocal microscope activated 

microglia could clearly be seen to be expressing MMP-9 (Figure 38), with a greater 

number of fluorescent cells being seen in the ipsilateral hemisphere when compared 

to the contralateral hemisphere.

At X60 oil objective on the confocal microscope the projections and the cell body of 

the microglial cell could clearly be seen to be expressing MMP-9.
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Figure 38. Confocal images (X60 oil objective) representing microglial staining 

observed with MMP-9. A. Represents MMP immunopositive cells under 

a fluoroscein filter, B. cells are recognised as microglia under a texas red filter (mrf-1 

filter) and C. when both images are combined double labelled cells appears as a third 

colour in this case vellow, indicating microglia are expressing MMP-9 (MMP-8 results 

(not shown) were almost identical to above images, demonstrating co-localisation o f mrf- 

1 anH M M P-R in activated mirroalia^
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As indicated by light microscopy double labelling, fluorescent double labelling 

showed both resting and activated microglia were immunopositive for MMP-9 and 

MMP-8 but the majority of the microglia in the MCA territory were in the activated 

state as expected following ischaemia. Resting microglia had a much weaker 

fluorescent signal suggesting lower levels of MMP-9 or MMP-8. Fluorescent double 

label immunohistochemistry also confirmed that the MMP positive cells in the 

contralateral hemisphere of occluded animals (identified in earlier single label 

studies) were activated microglia.

Double label immunohistochemistry with MMP-8 and MMP-9 and tau-1, a marker 

for ischaemic oligodendrocytes, was also carried out to confirm that 

oligodendrocytes in the white matter tracts of occluded animals were MMP positive 

(Figure 39).

Figure 39 . MMP expression in oligodendrocytes. Double labeling with MMP-9 

and Tau-1 in the white matter tract in the ipsilateral hemisphere of an occluded 

animal MMP-8 and tau-1 double labeling (not shown) was similar to that seen 

with MMP-9. Magnification = X40 Scale bar represents 50pm. Arrow represents

0
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4.3.5 Distribution and cellular localisation of MMP-8.

Regions of cellular immunopositive staining for MMP-8 were drawn onto the line 

diagrams as for MMP-9.

The areas of immunoreactivity with MMP-8 correlated well with the infarcted 

regions (Figure 40) with further evidence for the spread of MMP immunopositive 

cells in the peri-infarct region.

Figure 40. Distribution o f MMP-8 staining. A. Representative distribution map for MMP-8 

Immunoreactivity. The boundary o f the lesion is marked in red and immunoreactivity in 

Black B Representative photo o f staining in neurons in the peri-infarct region.
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The distribution and the cellular localisation of the MMP-8/ rat neutrophil 

collagenase was very similar to that of MMP-9/ gelatinase B.

Cells immunopositive for the MMP-8 antibody were found in both the ipsilateral and 

the contralateral hemispheres with the same neuronal staining patterns being seen as 

with MMP-9 (Figure 41).

Sham animals once again displayed a cytosolic MMP-8 staining pattern within 

neurons throughout all region studied.

Oligodendrocytes and glia appeared to be expressing MMP-8 and double labelling 

followed by fluorescence double labelling and confocal microscopy showed that 

activated microglia and oligodendrocytes were indeed expressing MMP-8 

(Figure 42) but astrocytes were not. As with MMP-9, all activated microglia 

appeared to express MMP-8 in their cell bodies with resting microglia displaying 

undetectable or weak MMP-8 staining.

A * B

1

Figure 42. Double labelling with DAB/SG showing A MMP-8 expressing 

microglial cell (MMP-8+ve, mrf-1+ve) and B. MMP-8 negative astrocytes 

(MMP-8+ve, GFAP-ve). Magnification = X40 Scale bar represents 50pm.
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Figure 41 Photographs representing cellular staining of MMP-8 in the ipsilateral and 

contralateral hemispheres of occluded (A-C) and sham (D) animals (n=5).In A. frontal 

cortex, B caudate nucleus, C. white matter and D. throughout all regions in sham 

Magnification = X40. Scale bar represents 50pm
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4.3.6 Specificity of neuronal staining

Due to the possibility that ischaemic neurons could display non-specific staining as a 

result of their increased stickiness to the antibody, the specificity of the neuronal 

staining (both in ischaemic neurons and healthy neurons) was later investigated when 

an MMP-9 antibody with a specific blocking peptide became available. A blocking 

peptide has the ability to block specific staining patterns so that any 

immunoreactivity that remains after the use of the blocking peptide is likely to be 

non-specific.

A blocking peptide was not available for the Chemicon MMP-9 antibody AB805 

which was used in this study but one was available for the Santa Cruz MMP-9 

antibody C-20. Immunohistochemistry with the polyclonal antibody C-20 (1:100) 

demonstrated a different pattern of staining to AB805 with immunoreactive blood 

vessels in addition to staining in ischaemic and healthy neurons (Figure 42). After 

the addition of the blocking peptide, immunoreactive blood vessels were no longer 

visible but both types of neuronal staining could still be seen. This would suggest 

that MMP-9 staining within ischaemic neurons and the cytosolic MMP-9 staining in 

healthy neurons of both occluded and sham animals may not be specific.

The Santa Cruz antibody did not stain oligodendrocytes or microglia and so no 

comments can be made in terms of the specificity of these two staining patterns.
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Figure 43. MMP-9 Santa Cruz antibody staining with blocking peptide. A. MMP-9 

antibody, B. MMP-9 pre-incubated with blocking peptide Magnification = X40. Scale 

bar represents 50(am.
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4.3.7 BBB permeability and MMP-9 staining.

PAP immunohistochemistry showed the presence of extravasated proteins within the 

infarct and showed a characteristic graded pattern of staining with the strongest 

immunoreactivity in the hypothalamus. Blood vessels within the infarct were also 

found to be PAP positive (Figure 43) with PAP positive extravasated serum proteins 

in the surrounding parenchyma.

A

Figure 44. PAP immunoreactivity following ILT induced ischaemia at 24 hours. A. 

graded staining and B. extravasated serum proteins around an immunopositive blood 

vessel within the core of the infarct. Magnification =X40. Scale bar represents 50pm
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When the area of PAP immunoreactivity and MMP positive cells in the area of the 

infarct were compared there was a clear overlap between the regions with MMP 

positive cells and the region of increased BBB permeability as represented by PAP 

immunoreactivity. PAP staining was not however consistently found in all animals.

In an attempt to look more specifically at BBB permeability, antibodies to the 

extracellular proteins albumin and fibrinogen were used to confirm the increase in 

extravasated proteins occurred following intraluminal thread induced MCA 

occlusion and to identify any correlation with increased MMP immunoreactivity.

As with PAP immunoreactivity, staining with anti-albumin and anti-fibrinogen was 

found within and around blood vessels within the infarct (Figure 44). Staining was 

found in the core of the infarct and in the peri-infarct region and was graded with 

intense staining at the core of the infarct which became more diffuse as you moved 

from the core to the boundary of the lesion. Areas of anti-albumin and anti- 

fibrinogen immunoreactivity correlated with areas of MMP immunoreactivity. 

However once again the staining was not consistent amongst animals.

A

Figure 45 Staining of extravasated serum proteins following ILT induced ischaemia (24 

hour time point). A albumin staining in core o f the infarct of an occluded animal, B. 

fibrinogen staining in the core of the infarct of an occluded animal. Magnification = X40.
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4.4 Discussion

Matrix metalloproteinases have been implicated in the pathogenesis of stroke with 

increases in MMP levels occurring following ischaemia (Rosenberg et a l, 1996; 

Roamanic et a l, 1998; Gasche et a l, 1999).

Studies using zymography, a form of gel electrophoresis, to measure MMP activity 

following ischaemia have reported an increase in the activity of gelatinase A (MMP- 

2) and gelatinase B (MMP-9) (Romanic et al, 1998; Rosenberg et a l, 1996) 

following experimental ischaemia. In some cases an accompanying increase in the 

levels of members of the TIMP family of naturally occurring MMP inhibitors was 

also observed suggesting a possible link between the MMP and their inhibitors in the 

pathogenesis of stroke (Gasche et al, 1999).

The technique of immunohistochemistry has been used by some groups in an attempt 

to identify MMP expressing cells following ischaemia (Romanic et a l, 1998; Gasche 

et al, 1999). These studies, however, are fewer in number and have not yet 

conclusively characterized the cellular localization of MMPs and their distribution 

following ischaemia. Antibodies available for MMPs cannot distinguish between 

activate and latent forms of the MMP but immunohistochemistry is essential for 

determining cellular location of the MMPs. The present study therefore set out to 

investigate which cell types were expressing MMP-8 and MMP-9 along with the 

anatomic location of MMP staining in order to gain a better understanding of the 

possible roles of MMPs in ischaemic damage.

In accordance with previous studies, increased levels of MMP-8 (rat collagenase) 

and MMP-9 (gelatinase B) were found in animals exposed to an ischaemic insult.
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Sham animals exhibited only a weak cytoplasmic immunoreactivity of MMP-8 and 

MMP-9 staining in neurons. In occluded animals, the greatest numbers of 

immunopositive cells were found in the ipsilateral hemisphere associated with the 

infarct core and peri-infarct zone supporting a role for MMPs in ischaemic damage.

An important finding of this study was the expression of MMP-8 and MMP-9 in 

neurons within the peri-infarct zone in animals exposed to 2 hours ILT induced 

ischaemia and 22 hours reperfusion. It has previously been reported that in the 

intraluminal thread model of MCAO, following 2 hours occlusion, the infarct is still 

evolving at the 24 hour time point. Indeed a 62% increase in the volume of ischaemic 

damage occurs between 24 and 48 hours (80 ± 14mm3 at 24 hours versus 131 

±26mm3 at 48 hours; Peters, 1999). The presence of MMP-8 and MMP-9 in the peri- 

infarct zone at a time when the infarct is still evolving could implicate the MMPs in 

the generation of further damage.

As discussed previously, MMPs are believed to contribute to ischaemic damage in a 

number of ways:

MMPs and BBB breakdown.

Perhaps the most important potential mechanism of MMP mediated ischaemic 

damage is the ability of the MMPs to degrade components of the ECM leading to 

BBB breakdown and oedema. The knock-on effect of this could potentially lead to 

an increased influx of inflammatory cells and the subsequent release of cytotoxic 

substances. The degradation of the basal lamina of the ECM by MMPs resulting in a 

loss of basal lamina integrity is believed to be the main cause of microvascular 

haemorrhage after focal MCAO (Hamann et a l, 1996; Okada et a l, 1994) and
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studies using synthetic inhibitors of MMPs have reported a decrease in oedema 

following experimental ischaemia (Mun-Bryce et al, 1999).

This study attempted to investigate the link between BBB permeability and MMP 

expression and found that following two hours intraluminal thread induced ischaemia 

and twenty-two hours reperfusion, the serum proteins albumin and fibrinogen, both 

markers of BBB breakdown, were present in the injured tissue of the ipsilateral 

hemisphere. Albumin and fibrinogen could be seen around blood vessels in areas 

with increases in MMP expression. Areas immunopositive for PAP (also used as a 

marker for BBB breakdown) could also be seen within injured tissue -  in the core of 

the infarct and within the peri-infarct zone and these again correlated with areas of 

MMP staining in surrounding ischaemic neurons and activated microglial cells. This 

would support the theory that MMP degradation of ECM components may contribute 

to BBB breakdown following ILT induced transient ischaemia. This would seem 

feasible as studies have shown MMP staining of blood vessels following ischaemia 

(Romanic et a l, 1998; Gasche et a l, 1999), with blood vessels being the main source 

of extravasated proteins during increased BBB permeability.

MMPs and inflammatory cells.

MMPs are also believed to contribute to ischaemic damage via their ability to aid the 

migration of inflammatory cells to the site of damage following MCAO. The tissue 

degrading properties of the MMPs are well reported and it is feasible that 

inflammatory cells use MMPs to degrade ECM components to allow their movement 

through the tissue towards the lesion site. Inflammatory cells such as neutrophils and 

T cells have been reported to secrete MMPs in order to migrate towards the site of
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damage in a number of pathological conditions including Experimental Autoimmune 

Neuritis (EAN) (Graesser et a l, 2000) and experimental MCAO (Heo et a l, 1998). 

Although no neutrophils were identified in the ILT brain sections under the light 

microscope, another important inflammatory cell- the microglial cell- was found to 

be immunopositive for MMP-8 and MMP-9. Microglial recruitment is widely 

accepted to be a major event following ischaemia (Gehrmann et a l, 1992) 

irrespective of whether these microglial cells perform a beneficial (phagocytosis, 

repair and growth factor secretion) or a detrimental (release of cytotoxic substances 

and free radicals leading to further tissue damage) role. Previous studies have 

suggested that microglia may use the white matter tracts to migrate towards the site 

of tissue damage following ischaemia (Zhang et al., 1997; Peters, 1999) and 

microglia accumulate in high numbers within the ipsilateral hemisphere within the 

core and the peri-infarct regions (Peters, 1999; chapters 5 and 6 of this thesis). In this 

study MMP positive microglia were identified in both grey and white matter in the 

contralateral and the ipsilateral hemispheres of occluded animals. Sham animals 

possessed very few activated microglia and a very low level of MMP expression 

limited to the halo-like cytosolic staining pattern of healthy neurons. The presence of 

MMP positive microglia in the contralateral hemisphere of occluded animals may 

suggest a role for the MMPs in aiding the migration of activated microglia in the 

contralateral hemisphere (the activation is probably stimulated by diaschisis (Seitz et 

a l, 1999) or spreading depression (Kato and Waltz, 2000) to injured regions of the 

ipsilateral hemisphere where they accumulate in large numbers, in and around the 

lesion (see chapter 5).
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Although no reports of MMP mediated microglial migration have been published, 

MMPs have been implicated in the migration of neutrophils (Vos et a l, 2000; Pugin 

et a l, 1999) and cancer cells giving rise to metastasis. MMPs (commonly MMP-2 

and MMP-9) have been reported to aid the movement of

cancerous cells/tumerous massses through tissue in various forms of cancer (Liotta et 

a l, 1980; Aoudjit et a l, 1998; Tomita et a l, 1996). Drugs directed against MMPs 

have also been shown to slow the progression of cancer metastasis formation in 

various animal models of cancer (Slavomir et a l, 1997; Gomez et a l, 1997)

If MMPs are capable of promoting the movement of neutrophils and tumour cells 

then it is feasible that their presence in microglial cells may indicate a role in the 

migration of microglia during ischaemia. If this is indeed the case then inhibiting 

MMP mediated microglial migration may be an important therapeutic strategy in 

reducing ischaemic damage.

MMPs and increases in cytokines and reactive oxygen species.

By facilitating the migration of inflammatory cells, MMPs could be said to be 

indirectly contributing to ischaemic damage by increasing the number of activated 

microglia present at the lesion site subsequently increasing the levels of cytotoxic 

substances and reactive oxygen species released by these cells.

A rise in cytotoxic substances (e.g. TNF-a, IL-ip) and in reactive oxygen species 

has been reported to occur within hours of an ischaemic insult (Babak et a l, 1996).
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One of the sources of these substances is believed to be activated inflammatory cells 

such as neutrophils and microglia. By enabling the neutrophils and microglia to 

move towards the ischaemic lesion and accumulate within the ipsilateral hemisphere, 

MMPs could be said to be indirectly increasing the likelihood of the release of 

cytotoxic substances therefore potentiating ischaemic damage.

It has been reported in various clinical conditions that cytokines and MMPs are 

closely linked in terms of negative and positive feedback in the inflammatory 

response to damage. In terms of brain injury IL-ip has been shown to increase the 

release of MMPs from glial cells (Rosenberg et al., 1996) and in peripheral nerve 

injury TNF-a and MMP-2 levels correlate well suggesting a role for the TNF-a 

converting function of MMP-2 in the pathology of this condition (Shubayev et al, 

2000). Matrix metalloproteinases have previously been linked to TNF-a production 

by their ability to cleave the TNF-a precursor to biologically active TNF-a (Gearing 

et al., 1994; McGeehan et al., 1994). If there was a link between MMP levels and 

cytokine levels following MCAO, one might expect to see an increase in some of 

these cytotoxic substances following ischaemia accompanying increases in MMP-8 

and MMP-9. To investigate this possibility, this study used an antibody directed 

against LL-1 (3 to characterise any IL-lp expression following ILT induced ischaemia 

. No evidence was found for an increase in IL-ip expression in this model of MCAO 

at the 24-hour time point. However, this was not due to failure of the antibody to 

identify IL-ip since IL-ip positive microglia could clearly be seen in the positive 

control tissue which was run along with ischaemic material. If IL-ip were 

contributing to increases in MMP-8 and MMP-9 leading to increased ischaemic 

damage one might expect to see some degree of immunoreactivity at 24 hours in this
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model as previous studies have shown widespread IL-1J3 expression in astrocytes, 

microglia and neutrophils at this time point in models of brain injury and ischaemia 

(Pearson et a l, 1999; Davies et a l, 1999; Rothwell et a l, 1997; Guilian et a l, 1985; 

Loddick & Rothwell, 1996 ).

Although a number of groups have reported increased IL-ip expression in models of 

experimental stroke, other studies from this laboratory have also failed to provide 

evidence for increased IL-1J3 up to 72 hours following ILT or endothelin-1 induced 

MCAO in the rat (Peters et al., 1999).

Increased levels of MMPs could therefore result in an increased BBB permeability 

and an enhanced inflammatory response to ischaemia through a series of cytokine 

interactions leading to increases in the levels of inflammatory cells and mediators 

following experimental ischaemia.

MMPs and their involvement in the development of the infarct.

MMPs have been implicated in ischaemic damage and various groups have 

investigated MMP inhibitors in models of experimental ischaemia in order to 

determine whether they have the ability to reduce ischaemic damage and/or 

associated BBB permeability (Asahi et a l, 2000; Rosenberg et a l, 1998; Romanic et 

al, 1998).

Romanic and co-workers demonstrated a 30% reduction in infarct size with the 

systemic administration of an MMP-9 neutralising antibody (monoclonal MMP-9 

antibody) 1 hour before MCAO and Asahi and co-workers found that administering 

the broad spectrum synthetic MMP inhibitor BB-94 at 30 minutes before and 3 hours 

after the start of a focal ischaemic insult resulted in a significant reduction in
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ischaemic volume (around 15%). The presence of MMP-8 and MMP-9 positive cells 

in the core of the infarct and within the peri-infarct zone in this study would seem to 

provide further evidence for an MMP role in ischaemic damage and may suggest that 

an MMP inhibitor/antibody may be a useful therapeutic tool in ischaemic damage. 

MMP positive neurons were seen within the core of the infarct suggesting that they 

may be responsible for ischaemic damage within the core. However due to the sticky 

nature of ischaemic neurons, the specific nature of the neuronal staining was 

questioned. The use of a blocking peptide with another MMP-9 antibody (Santa Cruz 

MMP-9 C-20) confirmed that the neuronal staining observed in ischaemic neurons in 

the core and the cytosolic halo-like staining observed in healthy neurons in both 

occluded and sham animals was probably non-specific. However due to the fact that 

no blocking peptide is currently available for the MMP-9 antibody used in this study 

(Chemicon, AB805) one cannot completely rule out the possibility that the neuronal 

staining reported with the Chemicon MMP-9 antibody is specific. Additional 

evidence that the neuronal staining in ischaemic neurons may be specific is that in 

the peri-infarct region of the ipsilateral hemisphere of occluded animals MMP 

positive neurons could be seen which had a more normal morphology and would not 

have the stickiness of the ischaemic neurons at the core of the lesion. No comments 

can be made about the specificity of the peri-infarct neuronal staining as the Santa- 

Cruz antibody alone did not exhibit such staining

If the neuronal staining in the core is non-specific this does not rule out the 

possibility that MMPs found in other cell types including activated microglia may be 

contributing to ischaemic damage and or the expansion of the infarct (as suggested
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by the presence of MMP expressing activated microglia in the peri-infarct zone). 

Microglia are widely believed to have a role in ischaemic damage and so their 

presence in the peri-infarct zone following ILT induced ischaemia may provide 

evidence for a role in ischaemic damage.

Differences in reported MMP immunoreactivity

In this study MMP-8 and MMP-9 positive microglia, neurons and oligodendrocytes 

were identified in the occluded animals following ILT induced transient MCAO. In 

the contralateral hemisphere and throughout both hemispheres in sham animals, a 

fainter rim of cytosolic staining could be seen around healthy neurons. No studies 

have previously attempted to characterise MMP-8 cellular localisation but studies 

using antibodies directed against MMP-9 have reported different results in terms of 

which cell types exhibited immunoreactivity. Romanic et a l, (1998), identified 

positively stained neutrophils in ischaemic rat tissue while Gasche et al., (1999), 

identified positively stained neutrophils, blood vessels and a form of extracellular 

staining in the caudate with MMP-9 antibodies.

Differences in cellular localisation may result from the use of different MMP-9 

antibodies from different commercial sources. It could well be that different MMP-9 

antibodies are capable of detecting different cellular forms of MMP-9 so while one 

may be able to detect the microglial form of MMP-9 another may only be able to 

detect the neutrophil form of MMP-9. This would seem feasible as in this study two 

different MMP-9 antibodies produced different patterns of staining. The Chemicon 

MMP-9 antibody (AB805) was found to be expressed in microglia, oligodendrocytes 

and possibly neurons, while the Santa Cruz MMP-9 antibody (C-20) was
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predominantly found in blood vessels suggesting that the two antibodies are 

detecting different cellular forms of MMP-9. In addition to differences in the 

antibody used, differences in the model of ischaemia may result in differing degrees 

of inflammatory mediated damage. Certainly in our model of transient ischaemia 

very few neutrophils if any were seen in either the experimental or the sham animals. 

This would explain the lack of neutrophil expression of MMP-8 or MMP-9. Different 

models may have varying degrees of neutrophil activation depending on the time 

point examined (see chapter 3). In terms of the neuronal staining of healthy neurons, 

no such staining has been reported previously. However from the western blots 

carried out on the ILT tissue, low levels of MMP-9 expression was found within the 

contralateral hemisphere and studies from other labs using zymography have also 

reported low levels of MMP expression in the contralateral hemispheres of rat brains 

(Gasche et a l, 1999; Yjanheikki et a l, 2000, abstract). However, in the blocking 

peptide study, all the staining patterns observed in the contralateral hemisphere 

appeared to be non-specific and the cytoplasmic rim staining of healthy neurons was 

not apparent with this antibody.

In conclusion, this study has demonstrated an increase in the levels of MMP-8 and 

MMP-9 following ILT induced transient ischaemia in the rat. Levels of these two 

MMPs were higher in the ipsilateral hemisphere suggesting that MMPs may 

contribute to the development of the infarct. The most specific MMP staining was 

found expressed within activated microglia suggesting a role for MMPs in the 

migration of these inflammatory cells during ischaemia.
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Chapter 5 SHRSP/WKY Microglia Study

5.1 Introduction

Spontaneously hypertensive stroke prone rats (SHRSPs) have a genetically 

determined increased sensitivity to experimental stroke, displaying greater volumes 

of cerebral infarction when compared to their normotensive reference strain the 

Wistar Kyoto (WKY) (Coyle et a l, 1983)

One of the main contributory factors to the increased stroke sensitivity of the 

SHRSP is thought to be a reduced collateral blood supply following middle cerebral 

artery occlusion. This reduced collateral blood flow may be due to impaired function 

in anastomotic vessels resulting in reduced supplementary flow from the anterior and 

posterior cerebral arteries to the middle cerebral artery territory (Coyle et al., 1983). 

However it is widely accepted that other factors may also contribute to increased 

sensitivity to stroke in the SHRSPs. These include an increased release in glutamate 

following ischaemia (Gemba et a l, 1992), genetic hypertension (Yamori et a l, 1982) 

and an increased inflammatory response.

With regard to the inflammatory responses, SHRSP and the related spontaneously 

hypertensive rat (SHR, the strain from which the SHRSP were derived) have been 

reported to elicit a greater response to inflammatory stimuli than control strains. In 

response to a provocative dose of lipopolysaccharide, SHRSP and SHR both produce 

significantly more tumour necrosis factor (TNF), a mediator of inflammation, in the 

plasma, than WKY or Sprague Dawley rats (Hallenbeck et al, 1991). Mature SHR 

have also been reported to have significantly elevated neutrophil, monocyte and
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lymphocyte counts in their blood compared to WKY (Del Zoppo et a l , 1991), with 

an abnormal degree of activation of these cells and have been shown to produce 

higher levels of TNF and platelet activating factor in CSF following i.c.v. 

lipopolysaccharide (Siren e ta l,  1992).

Inflammation and inflammatory cells are widely reported to contribute substantially 

to ischaemic damage. Although it is acknowledged that inflammatory cells in general 

can aid the repair process at sites of injury it is well established that increases in 

certain inflammatory cells and inflammatory mediators can lead to increased 

ischaemic damage.

As previously mentioned, neutrophils in particular have been proposed to contribute 

to ischaemic damage migrating to sites of injury via a process of slowing, rolling and 

tethering to the blood vessel wall via the expression of adhesion molecules on their 

surface and on the endothelium of blood vessels. Once adhered to the vessel wall, 

neutrophils are capable of damage not only via their physical blockade or “ plugging 

“ of vessels, reducing blood flow (no-reflow phenomenon), but also by their 

activation and release of cytotoxic substances, either at the endothelial surface or 

following migration into the brain. An increase in the release of cytotoxic substances 

such as TNF-a (Liu et a l, 1994) and certain interleukins (Giulian et a l, 1990; 

Touzani et al, 1991; Loddick et a l, 1996) from inflammatory cells such as 

neutrophils has been shown to potentiate ischaemic damage with the administration 

of antibodies directed against these inflammatory mediators ameliorating damage in 

experimental conditions of ischaemia.
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In addition to the possible involvement of invading inflammatory cells like 

neutrophils in inflammatory mediated ischaemic damage, it is also possible that 

resident inflammatory cells from within the CNS may be contributing to damage. 

Microglia, inflammatory cells resident in the brain, have the ability to both prevent 

further damage by removing debris and aiding neural regeneration and to contribute 

to ischaemic damage by a variety of mechanisms including the secretion of cytotoxic 

substances. It is the release of these cytotoxic substances which is thought to be the 

main cause of microglial mediated damage during and after ischaemia. Cytokines 

induce lipid peroxidation, excess release of transmitters and hormones, vascular 

leakage, oedema, necrosis and changes in ion flow. Indeed a rise in cytokine levels 

occurring 1-2 days following ischaemia (Baback et al., 1996) would seem to 

correlate well with the timescale for microglial activation. As previously mentioned, 

an increase in activated microglia has been reported in models of both global and 

focal experimental ischaemia with the rate of microglial activation being dependent 

on brain region and duration of the ischaemic insult.

The aim of this study was to investigate the CNS inflammatory response to focal 

ischaemia in SHRSP and WKY, to determine whether strain differences existed in 

the number of neutrophils and activated microglia present following experimental 

ischaemia and to characterise the inflammatory response in relation to evolution of 

ischaemic damage.

In addition to quantification of microglial numbers in experimental animals, levels 

were also examined in naive SHRSP and WKY. SHRSP are known to develop 

hypertension within weeks of birth resulting in a systolic blood pressure of around 

200mmHg maintained throughout life (Yamori et a l, 1977). It is possible that this
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underlying hypertension could influence the levels of activated microglia under basal 

conditions. Indeed hypertension in the SHRSP has been shown to predispose the 

strain to blood brain barrier breakdown (Fredricksson et al., 1985). Damage to the 

blood brain barrier may act as a stimulus for microglial activation under non- 

ischaemic conditions with no equivalent activation occurring in the normotensive 

WKY. Therefore to rule out any influence of potential basal differences between the 

two strains microglial expression was characterised in naive animals in addition 

those undergoing MCAO.

5.2 Materials and Methods.

All experiments were carried out under licence from the Home Office and were 

subject to The Animals (Scientific Procedures) Act, 1986. Age matched (3-5 month) 

male rats, were obtained from inbred colonies of SHRSP and WKY held in the 

Department of Medicine and Therapeutics, University of Glasgow. These colonies 

were established from a group of 13 SHRSP and WKY rats obtained from inbred 

colonies held at the University of Michigan as previously described by Davidson et 

al, 1995.
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5.2.1 Surgical procedures.

Middle cerebral artery occlusions were carried out by Dr H.V.O. Carswell.

A 2 mm distal occlusion of the middle cerebral artery (MCA) was carried out via a 

transorbital approach using a modified version of Tamura et a l, 1981 as described 

previously in section 2.1.3. On completion of the surgery, animals were allowed to 

recover for 24 hours. Both occluded and naive animals were perfused with 4% 

paraformaldehyde in PBS. Brains were then removed, and frozen in isopentane 

before 30pm sections were cryostat cut, stored in cryoprotectant and mounted onto 

poly-lysine slides as required for immunohistochemistry, described in section 2.2.6..

5.2.2 Infarct Determination.

Infarcts were transcribed from H&E sections onto line diagrams and infarct area was 

then measured from the line diagrams using image analysis (MCID, Imaging 

Research, St Catherines, Ontario) and infarct volume calculated by integration as 

previously described in section 2.2.5..

Sections from naive animals were examined at the light microscopic level to look for 

any evidence of damage or inflammatory responses as a result of any BBB damage.
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5.2.3 Neutrophil counts.

Neutrophils, easily identified on haematoxylin and eosin stained sections by their 

morphology and the characteristic segmented or lobular appearance of their nucleus 

(Figure 46) were counted at coronal levels of the nucleus accumbens, globus pallidus 

and lateral habenula.

Figure 46. Characteristic neutrophil morphology, showing lobular appearance of the 

nucleus. Photograph was taken from positive control material for CNS inflammation 

(infection in an ischaemic animal resulted in massive neutrophil infiltration and 

meningitis). Scale bar represents 50pm.
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5.2.4 Immunohistochemistry

Sections from 5 of the coronal levels were stained with the monoclonal microglial 

marker Ox-42 (Serotec, UK, 1:1000) or the polyclonal marker mrf-1 (1:1000 gifted 

by Dr S. Tanaka and Dr T. Koike, Molecular Neurobiology Laboratory, Hokkaido 

University). To ensure consistency of staining, SHRSP and WKY sections were 

always stained in the same immunohistochemistry run with appropriate negative and 

positive control sections. Negative controls involved the omission of the primary 

antibody and sections from a rat brain exhibiting signs of meningitis were included 

as positive control inflammatory tissue. Immunohistochemistry was carried out using 

protocols described previously in section 2.2.6.

5.2.5 Quantification of inflammatory cell staining.

Activated microglia, as determined by positive immunostaining, presence of a 

nucleus and appropriate morphology, were counted in 3 non-overlapping regions 

(using a 0.25 X 0.25 mm grid at a X 40 magnification) in the following brain 

regions- cortical infarct core, cingulate cortex, genu of the corpus callosum, external 

capsule and parietal cortex in the ipsilateral hemisphere and in homotopic regions of 

the contralateral hemisphere (Figure 47).
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1- Cingulate Cortex
2- Core of infarct
3- Genu Corpus Callosum
4- External capsule
5- Peri-infarct

Figure 47. Regions o f interest for microglial counts.

B

Figure 48. Microglial phenotype. A. Resting and B Activated phenotype o f the 

microglial cell as stained with Ox-42 antibody in the cortex of an SHRSP animal 

following distal electrocoagulation of the MCAO. Magnification = X40, scale bar 

represents 50pm
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Values were expressed as activated microglia per mm2 and graphed.

Staining distribution maps were also produced where areas of increased number of 

activated microglial displaying intense staining were marked onto line diagrams 

representing the eight coronal levels.

The diagrams for the five SHRSPs and the five WKYs were superimposed to give 

an average pattern of distribution for each strain (using an NIH Image program). This 

involved digitally scanning the line diagrams using a UMAX Powerbook flatbed 

scanner and importing the images into the NIH program. Diagrams were then aligned 

to an identical orientation using Alignment software and guided to fiducial markers 

to produce a single diagram for SHRSP and WKY to indicate number and anatomical 

distribution of the microglial staining in each strain. The consistency of staining in 

animals within each group was represented with a grey scale from 0-12 (carried out 

by Dr J Patterson, Southern General Hospital, Glasgow).

Correlation graphs were plotted for number of activated microglia against infarct size 

for peri-infarct and core regions.

5.2.6 Statistical analysis.

Data are presented as mean ± SEM. The significance of differences in microglial 

number, infarct size and physiological variables between strains was determined by 

ANOVA followed by unpaired, Student’s t - test, p <0.05 was taken as the level of 

statistical significance.
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5.3 Results.

5.3.1 Physiological variables

Physiological variables were maintained within normal limits under anaesthesia 

(Table 10): normocapnia (36-42mmHg), normal physiological pH (7.4), and normal 

body temperature (36.5-37.5°C). Brain and body temperature were similar in the two 

strains, but, as expected, SHRSP exhibited significantly higher mean arterial blood 

pressure than the normotensive WKY under anaesthesia.

5.3.2 Infarct Size

Ischaemic damage as identified at light microscopic level, was mainly confined to 

cortical regions as expected with this model of experimental ischaemia.

Infarct volume in SHRSP was 135±4.7mm3 compared to 102±4.7mm3 in WKY 

(p<0.005, unpaired Student’s t-test) (Figure 49). When individual coronal levels are 

examined, SHRSP exhibited a greater degree of damage over all eight coronal levels 

when compared to WKY (Figure 50)
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200
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— a
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50
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SHRSPW KY

Figure 49. Infarct volume in SHRSP and WKY at 24 hours after distil MCA occlusion. 

n= 5. Data analysed by Student’s t-test7 ** p< 0.005.
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Ischaemic Damage 
WKY SHRSP

Activated Microglia
WKY SHRSP

Figure 50. Composite line diagrams o f topography o f the infarct and o f activated microglial densities 

for WKY (n=5) and SHRSP (n=5y In the top diagram (scale 0 -  4), 4 represents areas that 

were infarcted in 100% of animals. 3 represents areas infarcted in 75% of animals. 2 represents 

areas infarcted in 50% of animals and 1 represents areas infarcted in 25% of animals. In the bottom 

diagram, the scale 0 to 12 represents activated microglia cell densities with 12 representing the greatest 

density of cells.
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5.3.3 Neutrophil Counts

No neutrophils were observed within blood vessels of the MCA territory in either 

SHRSPs or WKYs in the sections examined. Neutrophils were also extremely rare 

within the parenchyma. No neutrophils were identified within the parenchyma of any 

WKY sections examined and only one out of the five SHRSP displayed cells with 

the morphology of neutrophils. In this animal 3 neutrophils were identified in the 

cortex at the level of the nucleus accumbens, 2 at the level of the globus pallidus and 

4 at the level of the lateral habemula.

5.3.4 Characterisation of microglial activation

The CNS of ischaemic SHRSP and WKY displayed activated microglia as 

determined by immunopositive staining and morphology under the light microscope. 

Activated microglia had much shorter projections and more distinct densely stained 

cell bodies while resting microglia possessed long spindly projections and faintly 

stained cell bodies.

Distribution of the activated microglia included brain regions in the ipsilateral and 

the contralateral hemispheres and in both grey and white matter.

As previously reported, the morphology of the microglia differed between grey and 

white matter, with the grey matter microglia possessing a stellate morphology whilst 

those in the white matter appeared more bipolar in appearance.
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5.3.5 Distribution of Microglia

The composite line diagrams of activated microglial densities and topography of the 

infarct for each strain (Figure 50) display the greater density of cells and their more 

widespread distribution in the SHRSP when compared to the WKY. In addition to 

the distribution of activated microglia was found to be more widespread than the 

region of ischaemic damage. High concentrations of activated microglia were found 

within the peri-infarct regions as well as lower concentrations in the contralateral 

hemisphere. Staining intensity was also greater within the ipsilateral hemisphere and 

more specifically within the coronal levels nearest to the core of MCA territory (For 

example at the level of the septal nucleus). The diagrams also show regional 

microglial distribution within both grey and white matter (Figure 51).



Figure 51. Distribution and morphology of microglial cells in grey and white matter 

of both hemispheres of SHRSP following distal electrocoagulation of the MCA 

A Ipsilateral grey matter B Contralateral grey matter, C. Ipsilateral white matter, D. 

Contralateral white matter. Cells stained with Ox-42 antibody. Magnification =X40, 

scale bar represents 50pm. Arrow represents activated microglia
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5.3.6 Microglial Counts

Significant numbers of activated microglia were evident in both ipsilateral and 

contralateral hemispheres of both strains within 24 hours of focal cerebral ischaemia 

with the greatest density of cells being found within the infarct core (Figure 51, 52). 

The activated and resting microglia did not differ in morphology between the two 

hemispheres only in their frequency and intensity of staining.

5.3.7 Strain differences

SHRSP exhibited greater numbers of activated microglia than WKY in all 5 brain 

regions examined in the ipsilateral hemisphere albeit not significant in all regions 

(Figure 52, 58). The strain difference appeared most significant in the histologically 

normal, peri-infarct region of the cortex surrounding the infarct (Figure 53), in the 

adjoining region of the cingulate cortex (Figure 54), also histologically normal, 

receiving its blood supply from the anterior cerebral artery, and within the infarct 

core itself (Figure 55). Although activated microglial counts overall were lower in 

the contralateral hemisphere, a strain difference between SHRSP and WKY was 

clearly evident. (Figure 53-57).
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Ipsilateral Hemisphere

200

100

t1 □

lull i
WKY

SHRSP

External Genu Cingulate Infarct Peri-Infarct 
Capsule Corpus Cortex Core Cortex 

Callosum

200

Contralateral Hemisphere

100
**

External Genu Cingulate Cortex Cortex 
Capsule Corpus Cortex homotopic homotopic 

Callosum to to
Infarct Peri-infarct 
Core

Figure 52. Mean counts o f activated microglia per mnf in the brain regions 

examined in A. ipsilateral and B. contralateral hemispheres. Data analysed using 

Student’s t-test. *p<0.05, **p<0.005, ***p<0.001. n=5 SHRSP, n=5 WKY.
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Ipsilateral Hemisphere
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( ' <* \  i jfij
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3 4
Coronal Level

Figure 53. Microglial numbers for peri-infarct region in ipsilateral and

equivalent region in contralateral hemispheres, SHRSP Vs WKY, n=5 per group

Data expressed as mean +/- SEM.
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Figure 54.Activated microglial numbers for cingulate cortex region in ipsilateral 

and in contralateral hemispheres, SHRSP Vs WKY, n=5 per group.

Data expressed as mean V- SEM.
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Figure.55. Activated microglial numbers for infarct core region in ipsilateral and

equivalent region in contralateral hemispheres, SHRSP Vs WKY,n=5 per group

Data expressed as mean +/- SEM.
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Figure.56.Activated microglial numbers for external capsule region in ipsilateral and 

in contralateral hemispheres, SHRSP Vs WKY, n=5 per group.

Data expressed as mean +/- SEM.
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Figure 57 Activated microglial numbers for Genu ofCorpus Callosum in

ipsilateral and in contralateral hemispheres, SHRSP Vs WKY, n=5 per group.

Data expressed as mean +/- SEM.
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Numbers of activated microglia per mm2 are displayed in each of the 5 levels 

examined in figure 52-56 to reveal any rostro-caudal differences. No differences 

were apparent over the rostro-caudal extent of MCA territory.

Figure 58 Strain differences between microglial numbers in SHRSP Vs WKY 

animals. In the cortex of the ipsilateral hemisphere of A. SHRSP and B. WKY and in 

the contralateral hemisphere o f C. SHRSP and D. WKY. Magnification=X40, scale 

bar represents 50pm
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5.3.8 Correlation graphs

Number of activated microglia in infarct core and peri-infarct regions at the level of 

the lateral septal nucleus plotted against ischaemic damage showed no evidence for a 

correlation between number of activated microglia and infarct size (Figure 59) (r2 

=0.45, p=0.214 for infarct core; r2=0.025, p=0.214 for peri-infarct cortex).

5.3.9 Naive controls

Cells with the morphology of both resting and activated microglia were identified in 

the CNS of naive, control SHRSP and WKY animals (Figure 60).

Activated microglia were extremely rare in the MCA territory of naive control rats of 

either strain (Figure 61). However, naive SHRSP brains had higher total numbers of 

microglia (resting and activated) than WKY in all of the brain regions examined over 

the eight coronal levels (60).
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Figure 59. Correlation graphs for SHRSP and WKY - Ischaemic damage versus number 

of activated microglia at the level o f the lateral septal nucleus in the peri-infarct and core 

regions, n = 5 per group.
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■  WKY 

D  SHRSP

External Genu Cingulate Sensory Frontal/
Capsule Corpus Cortex Motor Parietal

Callosum Cortex Cortex

100

50

-n mti Wn
External Genu Cingulate Sensory Frontal/
Capsule Corpus Cortex Motor Parietal

Callosum Cortex Cortex

Figure 60. Mean counts o f microglia per mn5 in the 5 brain regions studied 

A. Total number of microglia per mm2and B. number of activated microglia. n=5. 

Data analysed using Student’s t-test. *p<0.05, **p<0.005.



Figure 61. Representative images of activated ( and resting (^HH ) microglia in 

A. grey and B. white matter of a naive SHRSP rat. Microglia stained with mrf-1 

antibody. Magnification =X40, scale bar represents 50pm.

The distribution of microglial cells was similar in both strains Differences in 

microglial number between SHRSP and WKY reached statistical significance 

(p<0.05) in the two white matter regions examined, the external capsule and the genu 

of the corpus callosum.
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5.4 Discussion

Quantitative analysis of the inflammatory response to focal cerebral ischaemia in the 

genetically determined, stroke sensitive SHRSP rat has revealed 3 important results: 

1) SHRSP displayed significant increases in the numbers of activated microglia 

associated with the site of ischaemic injury compared to the WKY reference strain at 

24 hours post-ischaemia; 2) there was no evidence for a significant neutrophil 

involvement in the evolution of the infarct in either strain at 24 hours post- ischaemia 

and 3) Under normal, non-ischaemic conditions, SHRSP also display a greater 

density of microglia, especially in white matter tracts, compared to WKY rats. These 

results are important both in terms of improving our understanding of genetically 

determined “stroke sensitivity” and of the role of inflammatory cells in focal 

cerebral ischaemia, two research areas associated with many unresolved questions 

and opposing views.

Stroke sensitive rat strains such as the SHR and SHRSP have previously been shown 

to display an elevated inflammatory response to inflammatory stimuli (Hallenbeck et 

al., 1991; Schmid-Schonbein et al., 1991; Siren et a l, 1992) suggesting that an 

amplified inflammatory response to cerebral ischaemia may be associated with 

increased stroke sensitivity. This hypothesis was examined in the current study. No 

significant neutrophil presence was found in cerebral vessels or parenchyma of either 

SHRSP or WKY animals at 24 hours post-ischaemia which is in accordance with 

previous studies from this laboratory which have similarly failed to find evidence of 

neutrophils in acute focal ischaemic damage (Peters et al., 1998) . However, 

widespread microglial activation was evident within 24 hours of focal ischaemia in
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both strains (Figure 52), in agreement with previous studies of global (Gehrmann et 

al, 1992) and focal (Kato et a l, 1996) ischaemia in normotensive rat strains.

SHRSP exhibited greater microglial activation than WKY both in terms of density 

and distribution of cells (Figure 50), supporting a potential link with increased stroke 

sensitivity in the SHRSP. However, what is not yet clear is whether the greater 

microglial activation is caused by or might contribute to the increased infarct size in 

the SHRSP. However there was no significant correlation between activated 

microglial density in either infarct core or peri-infarct cortex and infarct size (r2 

=0.451, p=0.214 for infarct core; 1^=0.025, p=0.214 for peri-infarct cortex). This 

indicates that the greater microglial activation is probably not simply a direct result 

of the increased infarct size. The lack of a correlation however does not rule out a 

contributory role of activated microglia to increase infarct size but if they are 

involved, they may be one of a number of contributors.

At 24 hours, the infarct is still evolving in the SHRSP (see chapter 6) and tissue in 

the peri-infarct region (penumbra) is balancing between life and death. Although it is 

widely believed that the inflammatory response may contribute to ischaemic brain 

damage, potentiating the destructive effects of ischaemia (Barone and Feuerstein, 

1999) , microglia could alternatively have a beneficial influence, representing the 

brain’s attempt to protect itself from further damage as happens in the periphery 

(Schwartz et al, 1999) (discussed below).

Activated microglia could contribute to ischaemic damage both directly- via synaptic 

stripping and neurophagia (Nakajima and Kohsaka, 1993) and indirectly- through the 

release of cytotoxins. These cytotoxins can induce lipid peroxidation, excess release 

of transmitters and hormones, vascular leakage, oedema, necrosis and
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changes in ion flow. Glutamate released from microglia can give rise to excessive 

NMDA receptor activation (Nakajima and Kohsaka, 1993) resulting in neuronal cell 

death. High extracellular potassium levels, as found in ischaemic tissue, potentiate 

glutamate release from microglia which are particularly sensitive to changes in 

potassium levels due to their lack of a substantial potassium outward current (Banati 

et al, 1991).

A recent study has suggested that microglia are capable of contributing to the 

development of the ischaemic infarct at similar time points to the current study 

(Mabuchi et a l, 2000). However, the conclusion was based only on the expression of 

IL-lp and Bax in microglia within the peri-infarct and infarct areas rather than from 

the results of an intervention strategy. The definitive experiment, to determine 

whether microglia contribute to or ameliorate ischaemic injury, would be to 

selectively block microglial activation without affecting the other inflammatory and 

deleterious mechanisms in the ischaemic cascade. However, although theoretically 

feasible, this is not currently achievable as potential drugs and strategies which 

attenuate microglial activation have significant influences elsewhere in the ischaemic 

cascade, which would invalidate the interpretation of the results. For example, 

tetracycline derivatives which block microglial activation also display antagonism of 

glutamate, cyclo-oxygenase-2, interleukin converting enzyme, inducible nitric oxide 

synthetase, gelatinase B and superoxide production by leukocytes (Yjranheikki et a l, 

1998; Yjranheikki etal., 1999).

Some groups would disagree with the idea that microglia are contributing to 

ischaemic damage and that the early presence of microglial activation preceding 

neuronal death would seem to suggest a protective role for the microglia (Banati &
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Graeber, 1994; Elkabes et al., 1996; He et al, 1997). Indeed the presence of 

microglial cells next to or even engulfing neurons does not always precede neuronal 

death and microglial association with neurons which do not subsequently die would 

seem to provide evidence for a protective role for the inflammatory cells in some 

circumstances (Kato & Waltz, 2000)

In terms of microglia protecting injured tissue from further damage, following 

neuronal injury in the periphery, microglia have been reported to participate in 

neuronal regeneration (Zeev-Brann et a l, 1998; Lazarov-Speigler et a l, 1998) by 

performing phagocytosis of debris, for example from permanently degenerated 

neurons, which then allows neuronal regrowth (Zeev-Brann et a l, 1998). Activated 

microglia, like macrophages, are also recruited into injured brain to remove debris 

and thereby prevent further damage. In the present study, the highest microglial 

counts were found in the ipsilateral hemisphere within the infarct in both strains, 

which would support a phagocytic role.

Microglia also contribute to neuronal regrowth and wound healing via the secretion 

of growth factors such as TGF-alpha, TGF-beta, bFGF, EGF and IGF (Faber-Elman 

et a l, 1996) which promote migration of glial cells such as astrocytes which are 

conducive to neuronal regrowth and wound healing (Faber -Elman et a l, 1996). As 

well as stimulating cell migration and/or proliferation, these growth factors may also 

increase protease activity or alter the expression of extracellular matrix components. 

However, the participation of microglia in immune activities and regeneration of 

neurons within the CNS is much less intense than is seen in cases of peripheral 

injury. This is possibly due to the presence of inhibitory substances which restrict
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their participation (Zeev-Brann et al., 1998; Hirschberg and Schwartz, 1995) and 

produce an inhospitable growth environment within the CNS (Lazarov-Speigler et 

al, 1998). In spite of a less pronounced phagocytic response in the CNS, microglia 

have been reported to perform a beneficial role in CNS injury following viral 

infection (Bi et a l, 1995) and axonal injury (Lazarov-Speigler et a l, 1996).

Activation and migration of microglia may be induced by chemokines or cytotoxins 

released during ischaemia, which would explain the observed increase in numbers of 

activated microglia in the ipsilateral hemisphere of both strains. A rise in cytokine 

levels, occurring one to two days following ischaemia (Babak et a l, 1996), correlates 

well with the timescale for microglial activation.

However, significant numbers of activated microglia were also recorded in more 

distant sites in the contralateral hemisphere in this study and others (Schroeter et al, 

1999). Various explanations for contralateral activation of microglia are available for 

consideration including active recruitment by signals sent from the ipsilateral 

microglia. A significant increase in the number of activated microglia in the 

contralateral genu may be representative of migrating microglia which move along 

the white matter tracts to reach their target site -  in this case the area of ischaemic 

damage. Cytokines secreted from the ipsilateral hemisphere may stimulate activation, 

proliferation and migration of contralateral resting microglia to the site of damage 

(Schroeter et a l, 1999). Alternatively, contralateral microglia may become activated 

as a result of diaschisis (Seitz et a l, 1999) or waves of ischaemia induced waves of 

spreading depression (depolarisation) (Stoll et a l, 1998). The findings that spreading 

depression activates astrocytes and microglia (Stoll et a l, 1998), and that SHRSP 

exhibit a greater amount of spreading depression than WKY following
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ischaemia (Yasui and Kawasaki, 1994) provide a possible explanation for the greater 

number of activated microglia in the contralateral hemisphere of SHRSP compared 

to WKY. Increases in brain swelling and subsequent increases in intracranial 

pressure represent an alternative stimulus for contralateral activation of inflammatory 

cells and mediators. In this particular model of ischaemia, brain swelling would be 

significant at 24 hours in SHRSP but intracranial pressure would not be elevated 

because of the surgical craniectomy.

Strain differences in the number of activated microglia following ischaemia could be 

a consequence of differences in basal levels of resting or activated microglia. SHRSP 

are known to develop hypertension within weeks of birth resulting in a systolic blood 

pressure of around 200mmHg maintained throughout life (Yamori et a l, 1977). It is 

possible that this underlying hypertension could influence the levels of activated 

microglia under basal conditions. Indeed hypertension in the SHRSP has been shown 

to predispose the strain to blood brain barrier breakdown (Fredricksson et a l, 1985). 

Blood brain barrier breakdown could provide changes in the microenvironment 

which could stimulate microglial activation under non-ischaemic conditions with no 

equivalent activation occurring in the normotensive WKY. This study showed that 

numbers of activated microglia within the MCA territory of naive SHRSP and WKY 

were extremely small with no significant elevation in the SHRSP. However, 

microglial counts per se (resting and activated combined) were elevated in naive 

SHRSP with significantly greater numbers in the two white matter regions studied. 

The presence of a greater number of basal resting microglia in SHRSP could 

therefore be a contributory factor in the greater numbers of activated microglia seen 

in SHRSP following ischaemia.
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To conclude, this study has shown evidence of an elevated microglial response to 

experimental ischaemia in the SHRSP compared to WKY with greater numbers of 

activated and resting microglia in SHRSP under basal conditions. These results 

illustrate an increased inflammatory response to focal cerebral ischaemia in the 

SHRSP and suggest a role for increased microglial activation in “stroke sensitivity”. 

What remains unclear at present is whether these microglia have a beneficial or 

detrimental role within the evolving infarct.
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Chapter 6 SHRSP/WKY time course study.

6.1 Introduction

The data obtained from the 24-hour microglia study indicated that the SHRSP 

exhibited a greater degree of microglial activation when compared to the WKY at 24 

hours following permanent MCAO. Since it is not known if the infarct is still 

increasing in size at this time point, a time point study was undertaken with animals 

undergoing permanent MCAO and recovered for periods of 4,24,48 or 72 hours (n=5 

SHRSP, n=5 WKY per time point). The aims of this study were to 1) map the 

evolution of the infarct in SHRSP Vs WKY, 2) investigate whether strain differences 

in the number of activated microglia existed at earlier/later time points following 

permanent MCAO, 3) examine whether microglial activation may precede further 

development of the infarct (suggesting a role for microglia in the expansion of the 

ischaemic lesion) and 4) to map the distribution of EL-lp, MMP-8 and MMP-9 to 

determine whether activated microglia were expressing these mediators of 

inflammation.

In the previous study in this thesis, microglia were found to express MMP-8 and 

MMP-9 following 2 hours ILT induced ischaemia plus 22 hours reperfusion (Chapter 

4). Levels of MMPs have been shown to be increased following MCAO (Asahi et a l, 

2000; Rosenberg et al., 1996; Romanic et a l, 1998) but what remains unclear is 

whether their role is solely detrimental. In addition to causing increased BBB 

breakdown and increased levels of cytotoxic substances, MMPs have been reported
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to aid the migration of various cell types via their ability to degrade components of 

the ECM (Maeda et a l, 1996). It is feasible therefore that the presence of MMPs 

within microglial cells following MCAO may suggest a role for MMPs in the 

migration of microglia towards the site of damage.

6.2 Materials and methods.

Methods for the time course study were the same as used for the 24 hour study 

(section 5.2) with additional recovery times of 4, 48 and 72 hours in addition to 24 

hours. Brains were paraffin processed and sections used for infarct determination and 

immunohistochemistry were cut at 6pm on a microtome.

Immunohistochemistry was carried out using antibodies against MMP-8, MMP-9 

and DL-1 (3 in addition to microglia as described in section 2.2.6.

6.2.1 Assessment of brain swelling

The influence of brain swelling on measurements of infarct size can be limited by 

transcribing the area of ischaemic damage onto line scaled drawings as has been 

presented in this thesis. Over a time course, brain swelling in this model will increase 

significantly (Barone et al., 1992) Therefore, an assessment of brain swelling was 

made by measurement of the volume of both ipsilateral and contralateral 

hemispheres in each animal. It is recognised that this is an assessment rather than an 

accurate measurement of brain swelling since the tissue processing involved in 

dehydration and paraffin embedding of the tissue will result in shrinkage of the brain.
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Volumes of ipsilateral and contralateral hemispheres was measured from H&E 

sections over the 8 coronal levels in both strains and over the 4 time points using 

MCID image analysis. Brain swelling was expressed as a % of the contralateral 

hemisphere.

(ipsi-contra/ contra) X 100.

6.3 Results.

6.3.1 Physiological variables

Physiological variables were maintained within normal limits under anaesthesia 

(Table 11): normocapnia (36-42mmHg), normal physiological pH (7.4) and normal 

body temperature (36.5-37.5°C). Body temperature, pH and blood gases were similar 

in both strains but as expected SHRSPs exhibited a significantly higher mean arterial 

blood pressure both before and after MCAO when compared to the WKY.

6.3.2 Evolution of the infarct over the 72- hour time course.

Ischaemic damage as identified at the light microscopic level was again mainly 

confined to cortical regions as expected with this model of MCAO. Very few 

animals throughout the time course exhibited damage out with the cortex. A small 

number of SHRSP animals displayed damage to the lateral caudate nucleus. No
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damage to the caudate nucleus was observed in WKY. SHRSP displayed a greater 

degree of ischaemic damage than WKY over all four time points (4,24,48 and 72 

hours) (Figure 62) and in some animals, damage was present in the dorsolateral 

caudate.
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Figure 62. Evolution of the infarct over 72 hours in SHRSP and WKY, n= 5 per 

group. Data analysed using tw o-w ay ANOVA followed by unpaired Student’s 

T-test with a Bonferroni correction for multiple comparisons. SHRSP displayed a 

significantly greater degree of ischaemic damage compared to WKY at each time 

point and within each strain the infarct increased with time out to 48 hours.

**p< 0.005, *p<0.001 comparisons within WKY strain; ### p<0.001, ## p<0.005,

comparisons within SHRSP strain.



Statistics

Data was analysed using ANOVA followed by an unpaired Student’s t-test corrected 

for multiple comparisons.

SHRSP displayed a significantly greater degree of ischaemic damage compared to 

WKY at all of the 4 time points over the 72 hours (p< 0.001).

In SHRSP, the infarct increased in size significantly between 24 and 48 hours 

(p< 0.001) and between 24 and 72 hours (p< 0.005).

In WKY, the infarct increased in size significantly between 4 and 48 hours 

(p< 0.005) and between 4 and 72 hours ( p< 0.05).

From this data it can be said that in both strains, the infarct continued to develop up 

to 48 hours and then plateaus after this point in both strains. There was no difference 

in the pattern of change over time in the two strains as indicate by a lack of time 

/strain interaction in the ANOVA analysis.

6.3.3 Tissue Swelling.

As previously reported the SHRSP displayed a significantly greater degree of brain 

swelling than WKY (Figure 63). Modest brain swelling was evident only at 48 hours 

in WKY and appeared to have resolved by 72 hours. Significantly more brain 

swelling was apparent in SHRSP with evidence of significant swelling appearing
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earlier (24 hours) in SHRSP than in WKY. This swelling was still evident at 72 

hours.
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Figure 63 Tissue swelling in SHRSP and WKY over 72 -hour time course. n=5 per 

group Data represents mean +SEM and was analysed using 2-way ANOVA 

followed by Student’s t-test *p<0.1, ***p<0.005 comparisons between SHRSP and 

WKY at each time point.
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6.3.4 Microglial counts in specific brain regions over the 72- hour time course.

Graphs were plotted for each of the 5 brain regions to quantify regional distribution 

of microglial activation.

The number of activated microglia differed between individual brain regions and 

between strains.

In both SHRSP and WKY, the number of activated microglia was greater in the 

ipsilateral hemisphere when compared to the contralateral hemisphere in all five of 

the regions examined (Figure 64). The numbers of activated microglia changed over 

time with the greatest numbers of activated microglia observed at the 72-hour time 

point than in any of the earlier time points.

Tn terms of strain differences, SHRSP displayed greater numbers of activated 

microglia than WKY at all the 4 time points in all of the five regions examined 

(Figure 65-69). These differences were most significant in the peri-infarct region and 

the two white matter regions - genu of the corpus callosum and the external capsule.

Statistics

Data were analysed using ANOVA followed by an unpaired Student’s t-test with a 

Bonferroni correction for multiple comparisons.

Peri-infarct region (Figure 65): In the ipsilateral hemisphere, SHRSP displayed 

significantly greater numbers of activated microglia than WKY at 24 hours (p<0.05), 

48 hours (p<0.001) and 72 hours (p< 0.001). In SHRSP, the number of activated
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microglia in the ipsilateral hemisphere increased significantly between 4 and 72 

hours (p< 0.001), with a step like increase between each time point (significant 

between 24 and 48 hours, p<0.001; and between 48 and 72 hours, p< 0.005.). In 

WKY, numbers of activated microglia also increased significantly between 4 and 72 

hours (p< 0.05) again with a step like increase between each time point although the 

differences were not as significant as in SHRSP (significant only between 24 and 72 

hours (p< 0.001). Numbers of activated microglia were not significantly different 

between the two strains in the contralateral hemisphere nor was there any significant 

increase in the number of activated microglia over the 72 - hour time course in either 

strain.

Infarct Core (Figure 66): In the ipsilateral hemisphere, SHRSP displayed 

significantly greater numbers of activated microglia than WKY at the 24- hour time 

point only (p< 0.05). This was also the case in the equivalent region in the 

contralateral hemisphere (p< 0.05). In SHRSP, numbers of activated microglia in the 

ipsilateral hemisphere increased significantly between 4 and 72 hours (p< 0.001), 

again with a step like increase between each time point (significant between 4 and 24 

hours, p< 0.05 and between 48 and 72 hours, p< 0.005). In WKY, there was a 

significant increase in the number of activated microglia between 48 and 72 hours 

(p< 0.05) only. In the contralateral hemisphere, there was a significant increase in the 

number of activated microglia between SHRSP and WKY at 24 hours only (p<0.05). 

In SHRSP numbers of activated microglia increased significantly between 48 and 72 

hours (p< 0.001) in the contralateral hemisphere. In WKY in the contralateral
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hemisphere, there was also a significant increase in numbers of activated microglia 

between 48 and 72 hours (p< 0.05).

Cingulate cortex (Figure 67): In the ipsilateral hemisphere, SHRSP displayed greater 

numbers of activated microglia than WKY at the 48- hour time point (p< 0.05). The 

same was true for the contralateral hemisphere (p< 0.05). In the ipsilateral 

hemisphere, there were significant increases in microglial number between 4 and 72 

hours (p< 0.005) and between 24 and 72 hours (p< 0.005) in SHRSP. No such 

differences across time existed for WKY microglial numbers. In the contralateral 

hemisphere, there was a significant increase in the number of activated microglia in 

SHRSP between 24 and 72 hours (p< 0.05) suggesting an increase in number over 

time. No such changes occurred in the WKY.

External capsule (Figure 68): In the ipsilateral hemisphere, there was a significant 

difference in the number of activated microglia between SHRSP and WKY at 72 

hours only (p< 0.005). The same was true for the contralateral hemisphere (p< 0.05). 

In the ipsilateral hemisphere, there were also significant increases in the number of 

activated microglia over time in SHRSP (4 and 72 hours, p< 0.005; 48 and 72 hours, 

p< 0.05) In the contralateral hemisphere of SHRSP, there was also a significant 

increase in the number of activated microglia between 4 and 72 hours (p< 0.001) and 

between 48 and 72 hour (p< 0.01). No such differences between time points were 

evident in the WKY.
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Genu o f  Corpus Callosum (Figure 69): In the ipsilateral hemisphere, differences in 

the number of activated microglia between SHRSP and WKY existed at 48 hours (p< 

0.05) and 72 hours (p< 0.01). In the contralateral hemisphere, differences also 

existed at the same time points (p< 0.05). In the ipsilateral hemisphere, differences in 

the number of activated microglia existed between 4 and 72 hours (p< 0.005); 24 and 

48 hours, p<0.01 and 48 and 72 hours, p< 0.05). No such differences over time were 

present in WKY. In the contralateral hemisphere, differences in activated microglial 

number were apparent between 4 and 72 hours (p< 0.005) again increasing in steps 

between time points over the time course (significant between 48 and 72hours, 

p<0.005). No such increases over time were apparent in the WKY.



No
 

of 
ac

tiv
ate

d 
m

icr
og

lia
 

pe
r 

m
m

3 
W 

No
 

of 
ac

tiv
at

ed
 

m
ic

ro
gl

ia 
pe

r 
mm

*
219

400 n

300  '

200 -

100 -

0 - 1

WKY

ifl j\ if\ j  i\ iO J   iftl

□ CONTRA
IPSI

CC- cingulate cortex 
PI- peri-infarct 
C- core
EC- external capsule 
GCC- genu corpus callosum

J mil
CC PI C EC GCC CC PI C EC GCC CC PI C EC GCC CC PI C EC GCC

4 hour 24 hour 48 hour 72 hour

400  -i SHRSP

300 -

200 -

100

ill I Jliki Jli j f l I  I I I 1 I
CC PI C EC GCC CC PI C EC GCC CC PI C EC GCC CC PI C EC GCC

4 hour 24 hour 48 hour 72 hour

Figure 64. Microglial counts in A. WKY and B. SHRSP over 72 hours.



220

<D
O h

■ 2 
rab
2o

<D-4->

.§-4->oC3
O
o

£

400

300 '

200 '

100 '

Peri- infarct- 
Ipsilateral Hemisphere

LiO
* 7 "  T

-ill I

B WKY
I I SHRSP

4 hour 24 hour 48 hour 72 hour

Region Ho mo topic to Peri-infarct 
Contralateral Hemisphere

T 3<L>

400 -l
<D
O h
a2 300 -00
2o

200 '

B ioo io
o 
o 
£ 4 hour 24 hour

■ Q .
48 hour 72 hour

Figure 65. Microglial counts in WKY Vs SHRSP in the Peri-infarct 

region following permanent MCAO. rr=5 per group.Data represent mean 

±SEM and were analysed using ANOVA followed by Students t-test.

* p< 0.05, *** p< 0.001 for strain differences.
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Figure 66. Microglial counts in WKY Vs SHRSP in the infarct core 

region following permanent MCAO. n=5 per group.Data represent mean 

+SEM and were analysed using ANOVA followed by Students t-test.

* p< 0.05 for differences between animals.
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Figure 67. Microglial counts in WKY Vs SHRSP in the cingulate cortex 

region following permanent MCAO. n=5 per group.Data represent mean 

+SEM and were analysed using ANOVA followed by Students t-test.

* p<0.05 for differences between strains.
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Figure 68. Microglial counts in WKY Vs SHRSP in the external capsule 

region following permanent MCAO. n=5 per group.Data represent mean 

+SEM and were analysed using ANOVA followed by Students t-test.

* p<0.05, ** p<0.005 for differences between strains.
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Figure 69 Microglial counts in WKY Vs SHRSP in the genu of corpus callosum 

following permanent MCAO. n=5 per group.Data represent mean ±SEM 

and were analysed using ANOVA followed by Students t-test. * p, 0.05,

** p<0.01 for differences between strains.
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6.3.5 Characterisation of Microglia! Response.

At 4 hours post ischaemia, the majority of microglial cells were ramified or resting in 

appearance (Figure 70) - exhibiting a small cell body and large, fine, spindly 

projections. Only a few activated microglia (Figure 70) - exhibiting a densely stained 

cell body and thick shortened projections-, could be identified in both SHRSP and 

WKY.
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Figure 70 Microglia in the peri-infarct region following 4 hours permanent MCAO 

in A. WKY and B SHRSP. Arrows represent: a = activated microglia, 

r = resting microglia . Magnification = X40. Scale bar represents 50pm.
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At 24 hours post ischaemia, an increase in microglia with an activated phenotype 

could be seen in both SHRSP and WKY with a higher incidence in the ipsilateral 

hemisphere in both strains. SHRSP displayed a greater density of activated microglia 

than WKY at 24 hours (Figure 71).

B

:
a

<— a a

Figure 71. Microglia in the peri-infarct region following 24 hours permanent MCAO 

in A. WKY and B. SHRSP. Magnification = X40. Scale bar represents 50pm.

Following 48 hours ischaemia a further increase in activated microglia could be seen 

in both species with SHRSP again displaying a greater increase than WKY (Figure 

72). At 48 hours a large number of microglia assumed a phagocytic phenotype- 

appearing small, round and densely stained.



Figure 72. Microglia in the peri-infarct region following 48 hours permanent MCAO in 

A. WKY and B. SHRSP. p = phagocytic microglia. Magnification = X40. Scale bar 

represents 50pm.

At 72 hours post ischaemia a further increase in the number of activated and 

phagocytic microglia could be seen in both strains with SHRSP displaying the 

greatest increase in staining density (Figure 73).
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Figure 73. Microglia in the peri-infarct region following 72 hours permanent MCAO 

in A. WKY and B. SHRSP. Magnification = X40. Scale bar represents 50pm.

6.3.6 Microglial Distribution Maps.

The distribution of the activated microglia incorporated all five of the regions 

Has been studied, with activated microglia being present in both grey and white 

matter regions at all eight coronal levels (Figure 74-75). At the later time points of 48 

and 72 hours, phagocytic microglia could be identified in the peri-infarct region 

forming a boundary around the ischaemic lesion (Figure 76). A few phagocytic 

microglia could also be seen in the core of the lesion. Activated microglia could be 

seen in the white matter tracts of both SHRSP and WKY at all time points although 

the numbers
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increased as the time progressed. This white matter tract expression of activated 

microglia incorporated both ipsilateral and contralateral hemispheres.

Core of lesion

Figure 76. Activated microglia and phagocytic microglia forming a boundary around 

the infarct. Arrows represent boundary of lesion. Magnification = X20. Scale bar 

represents 100pm
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Figure 74. Microglial distribution maps for SF1RSP 4- 72 hours
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Figure 75. Distribution maps for WKY 4- 72 hours
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6.3.7 Characterisation of MMP-8 and MMP-9 staining.

MMP positive cells were present over all 4 of the time points in both strains.

At 4 hours, MMP-8 and MMP-9 staining was relatively weak when compared to 

later time points. Immunopositive cells had the appearance of microglial cells. Both 

resting and activated microglia were immunopositive for the two MMPs but 

activated microglia had a more intense MMP staining when compared to resting 

microglia (Figure 77).

A. WKY core o f ischaemic damage 4h B. SHRSP core o f ischaemic damage 4h

C. WKY peri-infarct 4h D.SHRSP peri-infarct 4h

■ — w

1 ■ in—

>
Figure 77. MMP-8 staining 4 hours following permanent MCAO within the region of 

ischaemic damage in A. WKY and B. SHRSP. Double labelled microglia (MMP-8, 

brown and mrf-1, grey) in the peri-infarct region of C. WKY and D. SF1RSP.

Magnification = X40 Scale bar represents 50pm.
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Figure 77 represents MMP-8 staining. MMP-9 exhibited very similar staining 

patterns.

MMP-8 and MMP-9 staining extended over a greater percentage of MCA territory in 

SHRSP compared to WKY. However there was no real difference in the staining 

intensity of positive cells in the two strains.

At 24 hours the number of MMP-8 and MMP-9 positive cells increased in 

accordance with an increase in activated microglia. Most of the immunopositive cells 

again had the appearance of activated microglia (Figure 78). Figure 78 represents 

MMP-8 staining, MMP-9 staining was very similar. MMP-8 positive neurons could 

also be seen within the peri-infarct regions. These neurons had the morphology of 

salvageable non-ischaemic neurons exhibiting a strong cytosolic staining (Figure 78). 

MMP-9 staining was also present in neurons within the peri-infarct region at 24 

hours but this staining was not as intense as with MMP-8. Again SHRSPs exhibited a 

greater degree of staining than WKYs due to their larger infarcts but there was no 

difference in staining intensity between SHRSP and WKY MMP positive cells.
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A. W KY infarct core 24h B. SHRSP infarct core 24h

C. W KY Peri-infarct 24h D. SHRSP infarct core 24h

Figure 78. MMP-8 staining 24 hours following permanent MCAO within the infarct 

in A. WKY and B. SHRSP and double labelled microglia (MMP-8, brown and mrf- 

1, grey) in the peri-infarct region of C. WKY and D. SHRSP. Magnification = X40, 

Scale bar represents 50pm (A-D)

At 48 hours the number of MMP positive cells again increased along with the 

number of activated microglia. Both activated and phagocytic microglia were
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positively stained for MMP-8 and MMP-9 (Figure 79) with intense microglial 

MMP staining within the peri-infarct in both strains. Figure 79 represents MMP-8 

double labelling, MMP-9 exhibited similar staining. Once again, cells with a normal 

morphology (salvageable neurons) could be identified in the peri-infarct zone of the 

sections stained with MMP-8 and to a lesser extent MMP-9 (Figure 79).

A. W KY infarct 48 h B. SHRSP infarct 48h

C. WKY peri-infarct 48h
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Figure 79. MMP-8 staining 48 hours following permanent MCAO within the infarct 

in A.WKY and B. SHRSP, and double labelled microglia (MMP-8, brown and mrf-1, 

grey) in the peri-infarct region of C. WKY and D. SHRSP. Magnification = X40.

Scale bar represents 50pm. MMP-9 exhibited similar staining.

D. SflRSP peri-infarct 48h
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Figure 80. Image representing MMP-8 staining in neurons within the peri-infarct 

region at following permanent MCAO. Scale bar represents 100pm. Such staining 

could be seen at 24 and 48 hours in both SHRSP and WKY.

At 72 hours the number of MMP-8 and MMP-9 positive cells increased further, 

accompanying the increase in the number of activated and phagocytic microglia- 

particularly around the peri-infarct region in both strains. Activated and some 

phagocytic microglia were immunopositive for MMP-8 and MMP-9 (Figure 81). 

Figure 81 represents MMP-8 staining; MMP-9 produced similar staining patterns. At 

the 72-hour time point, phagocytic microglia appeared to be associated with neurons 

within the peri-infarct zone, in most cases either surrounding or adjacent to the 

neuron. There was no evidence of any MMP-8 staining of neurons with a normal 

morphology within the peri-infarct region in either SHRSP or WKY at this time 

point. SFIRSPs displayed a greater spread of MMP-8 and MMP-9 staining which was 

linked to their increased infarct size and their increased expression of activated 

microglia.
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A. W KY infarct 72h B. SHRSP infarct 72h

C. W KY peri-infarct 72h D. SHRSP peri-infarct 72h

Figure 81. MMP-8 staining 72 hours following permanent MCAO within the infarct 

in A WKY and B SHRSP, and double labelled microglia (MMP-8, brown and mrf-1, 

grey) in the peri-infarct region of C. WKY and D SHRSP. Magnification =X40. 

Scale bar represents 50pm. MMP-9 exhibited very similar staining patterns.
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No evidence for astrocytic (Figure 82) or blood vessel MMP-8 or MMP-9 staining 

was found at any of the 4 time points examined. Oligodendrocytes were found to be 

immunopositive for both MMP-8 and MMP-9 in the white matter tracts of both 

SHRSP and WKY following 4-72 hours permanent MCAO. Figure 81 represents 

MMP-9 staining at 24 hours. MMP-8 staining exhibited similar patterns.

A W KY B SHRSP C SHRSP

Ol ► {

ast—►

Figure 82. A. Lack of MMP-9 staining in astrocytes (GFAP+ve, MMP-9-ve), and 

MMP-9 staining in oligodendrocytes in WKY, B. MMP-9 positively stained 

oligodendrocytes in SHRSP and C. lack of astrocytic MMP-9 staining in SHRSP 

(GFAP+ve, MMP-9-ve) at 24 hours following permanent MCAO. Ast = astrocyte, ol 

= oligodendrocyte. Scale bar represents 50pm.
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6.3.8 Distribution maps for MMP staining.

MMP-8 and MMP-9 positive cells could be seen in both the contralateral and 

ipsilateral hemispheres in both SHRSP and WKY (Figures 83-86). More MMP 

positive cells could be identified in the ipsilateral hemisphere. MMP-8 and MMP-9 

positive cells could also be seen in the white matter tracts of both hemispheres 

although the staining was more intense in the genu of the corpus callosum of the 

ipsilateral hemisphere. The number of MMP positive cells increased with time over 

the 72 hours in both strains.



240

WKY 4 hour MMP-8

( ' A
y «*

WKY 4 hour MMP-9

( A
\  •> _ / m )

SHRSP 4 hour MMP-8

(  *i I rt> j

SHRSP 4 hour MMP-9

Boundary of infarct 

MMP staining in ischaemic neurons

Little or no MMP staining 

Moderate MMP staining 

Intense MMP staining

Figure 83. MMP distribution in SHRSP and WKY at 4 hours following permanent MCAO.
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SHRSP 24 hour MMP-9

Boundary of infarct 
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Figure 84. MMP distribution in SHRSP and WKY at 24 hours following permanent MCAO.
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Figure 85. MMP distribution in SHRSP and WKY at 48 hours following permanent MCAO
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Figure 86. MMP distribution in SHRSP and WKY at 72 hours following permanent MCAO.
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6.3.9 Characterisation of IL-lp staining.

IL -lp  staining was seen in the positive control ischaemic tissue (with meningitis), 

which was included in each immunohistochemistry run with ischaemic material 

(Figure 87). However, no cells strongly immunopositive for II-1 p could be seen in 

either WKY or SHRSP strains over the 72 hours following permanent distal MCAO 

(Figure 88).

Cells in the positive control material which were immunopositive for IL-ip 

displayed the characteristic morphology of activated microglia- small dense cell 

bodies and thick bushy projections.

<—  mglia

r
mglia

Figure 87 IL-lp staining in positive control material. Arrows represent IL-ip 

positive microglial cells. Magnification =X40. Scale bar represents 50p.m.
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A. 4h WKY B. 4h SHRSP

C. 24h WKY D. 24h SHRSP

E. 48h WKY F. 48h SHRSP

G. 72h WKY H- 72h SHRSP

Figure 88 Lack o f IL -ip staining in WKY and SHRSP following permanent distal 

MCAO over 72 hours (A-H). Photographs taken in the caudate region. Magnification 

= X40. Scale bar represents 50p.m.
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6.4 Discussion 

Evolution of the infarct

This is the first study to investigate changes in the size of the infarct over time in 

SHRSP and WKY rats.

SHRSPs exhibited a greater degree of ischaemic damage compared to the 

normotensive WKY over the 4 time points studied (p< 0.001), the infarct reaching its 

maximal size at 48 hours in each strain. The pattern of the evolution (enlargement) of 

the infarct was very similar in both strains. The greater degree of ischaemic damage 

in SHRSPs is a finding which is consistent with previous studies which have shown 

that SHRSP have an increased sensitivity to stroke.

In both SHRSP and WKY, the infarct increased over the first 48 hours in both 

strains. This is in contrast to previous studies involving proximal occlusion of the 

MCA in Sprague Dawley rats where the infarct attains its maximal size around 4 

hours and does not increase in size significantly over the following 68 hours 

(Dawson, 1993, thesis; Gill, 1992, thesis). The difference in models is the length and 

position of the MCAO occlusion. In this study only a small segment of the MCA is 

electrocoagulated (2mm) at a point distal to the inferior cerebral vein whilst in 

models of proximal MCA, a much greater extent of the MCA is coagulated (from 

the lenticulostriate branches to the inferior cerebral vein). One possible explanation 

for the difference in the time course of damage in the two models is that in occluding 

only a small portion of the MCA, there is a greater likelihood that collateral blood 

vessels will still be able to supply the MCA territory giving rise to a certain level of
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potential reperfusion injury in turn leading to an increased chance of further damage 

and possible variation in ischaemic damage with time.

Increased microglial activation in SHRSP

In the time course study, SHRSPs displayed a greater number of activated microglia 

in all 5 regions examined when compared to WKY. It is not currently clear whether 

the presence of increased numbers of activated microglia following permanent 

MCAO is detrimental or beneficial. Microglia are capable of direct tissue damage via 

synaptic stripping and neurophagia (Nakajima and Kohsaka, 1993) and of indirect 

damage via the release of cytotoxins such as IL-1(3 and TNF-a. On the other hand 

however, microglia may have a beneficial role following ischaemia which may 

involve participating in neuronal regeneration by performing phagocytosis of debris 

which then allows neuronal regrowth (Zeev-Brann et al., 1998; Lazarov-Speigler et 

al, 1998). In the CNS, microglia have been described as the major mononuclear 

phagocytic participants at the site of injury (Stoll et a l , 1989). In a study by Zeev- 

Brann and co-workers (1998) the phagocytic nature of microglia was investigated in 

vitr o. CNS resident microglia isolated from newborn rats were isolated and incubated 

overnight with either sciatic or optic nerve segments and fluorescent beads. The 

uptake of fluorescent beads was taken as a measure of the microglial cells phagocytic 

activity. The microglia were found to possess phagocytic activity in the presence of 

both types of nerve. However, the phagocytic activity was higher in the presence of 

the sciatic nerve segments suggesting that phagocytic activity although present in the 

CNS is being limited by some form of CNS inhibitor substance. Certainly, other
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studies have also demonstrated that microglial and macrophage infiltration and 

accumulation appears to be delayed and restricted when compared to similar 

responses in the periphery (George & Griffin, 1994; Perry et al., 1987).

In an important recent study, Imai and co-workers (2000, abstract) investigated 

whether migrating microglia were likely to be contributing to damage by 

systemically injecting microglia into an ischaemic animal. Although the peripherally 

injected microglia did migrate into the ischaemic brain, histological analysis and 

TUNEL staining failed to provide any evidence that these microglia exacerbated 

ischaemic damage. This study would therefore seem to provide more evidence for a 

beneficial rather than a detrimental role of microglial in ischaemia.

Microglia and progression of the infarct

If microglia were contributing to the expansion of the infarct, one would expect to 

see increased microglial activation preceding further development of the infarct. 

Although there appears to be a significantly greater degree of ischaemic damage at 4 

hours in SHRSP when compared to WKY (p< 0.001), there appears to be no 

significant difference in activated microglial number between the two strains at the 4 

hour time point in any of the brain regions studied. This would seem to suggest that 

certainly at the 4-hour time point, there is little evidence to support a role for 

activated microglia in increased stroke sensitivity in the SHRSP.

However, the greatest increase in activated microglia between strains, was seen in 

the peri-infarct region. The presence of activated microglia in the peri-infarct region



249

of the ipsilateral hemisphere in SHRSP, at a time when the infarct is still evolving 

(infarct significantly different between 24 and 48 hours in SHRSP, p< 0.001) in this 

model would seem to suggest that activated microglia may be contributing to later 

increases in ischaemic damage. Indeed activated microglia have been previously 

associated with increased ischaemic damage (Gehrman et a l, 1996; Kato et al, 1992) 

so it would seem feasible that the microglia may be contributing to neuronal death in 

the peri-infarct region, (a region containing salvageable neurons capable of either 

succumbing to ischaemic damage or recovery to normal neuronal function) therefore 

leading to an expansion of the area of damage.

However, the results of this study could equally support a beneficial role for 

microglia in ischaemia. The fact that a significant increase in activated microglia in 

the peri-infarct region also occurs between 48 and 72 hours in SHRSP (p< 0.005), 

and to a lesser extent in the WKY, when there is no accompanying increase in infarct 

size would seem to suggest the opposite, that an increase in activated microglia may 

in fact be a protective mechanism occurring in response to damage occurring in the 

first 48 hours, in an attempt to remove debris and promote re-growth and neuronal 

regeneration. Microglia are known for their phagocytic properties and their role in 

neuronal re-growth and regeneration in different forms of injury (Schwartz et al,

1998). Indeed at 72 hours most of the microglia appear phagocytic in appearance. 

These phagocytic microglia could be seen to be associated with neurons in the peri- 

infarct and core regions. The microglia appeared to be engulfing neurons or were 

found adjacent to neurons. This would seem to provide evidence to support the idea 

that phagocytic microglia may be involved in the removal of dead or irreversibly 

damaged neurons in the peri-infarct zone allowing subsequent regeneration.
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In SHRSP and WKY, a significant increase in the number of activated microglia 

occurs in the core of the lesion between 48 and 72 hours (SHRSP: p< 0.005, WKY 

p<0.05). This would seem to suggest once again that activated microglia present 

within the core are there not to cause damage but rather to limit and prevent any 

further damage. Furthermore, there appears to be no significant increase in the 

number of activated microglia in the core between 24 and 48 hours, suggesting once 

again that activated microglia may not be contributing to ischaemic damage. 

However, an increase in activated microglial number in the core of the lesion does 

occur between 4 and 24 hours (p< 0.05 ) in SHRSP suggesting that they may have a 

role to play in acute ischaemic damage in this strain. However the fact that there is 

no significant accompanying increase in ischaemic damage between 4 and 24 hours 

in either strain may suggest that their activation is stimulated by early ischaemic 

events in an attempt to prevent further damage.

In addition to an increase in activated microglial numbers in the peri-infarct and the 

core regions between 48 and 72 hours in the ipsilateral hemisphere in SHRSP, there 

was also an increase in the number of activated microglia in ipsilateral and 

contralateral white matter regions: external capsule (ipsi- p<0.05; contra p<0.01) and 

genu of corpus callosum (ipsi- p<0.05; contra p<0.005) between 48 and 72 hours 

and also between 24 and 48 hours in the genu of corpus callosum (ipsi- p< 0.01). 

Again this increase would seem to be more likely to be associated with protective 

rather than detrimental mechanisms as there would appear to be no significant 

accompanying increase in infarct volume between 48 and 72 hours. It has been 

suggested that microglia may use the white matter tracts to migrate from distant sites 

to the region of damage and this would seem to provide a feasible explanation for the
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increased numbers of microglia in the white matter tracts. They may be migrating to 

the lesion site in an attempt to promote regeneration and remove dead or irreversibly 

damaged neurons.

An additional piece of evidence for a beneficial role for microglia following 

ischaemia, comes from the lack of IL-ip staining in the microglia. IL-lp is 

considered to be associated with injury and is often found to be expressed by glia in 

pathological conditions (Pearson et al., 1999; Loddick et a l, 1998). However, lack of 

IL-lp expression by activated microglia following permanent MCAO would seem to 

suggest that their presence is not purely detrimental.

Pattern of microglial distribution

The pattern of microglial distribution (Figure 64) indicates that the activated 

microglia accumulate around the border of ischaemic damage and would seem to 

migrate towards the infarct over the 72 hour period resulting in a high density of 

activated and phagocytic microglia in and around the infarct at 72 hours.

In addition to increases in the number of activated microglia in the ipsilateral 

hemisphere, accompanying increases in microglial number occurred in the 

contralateral hemisphere would seem to be more pronounced in SHRSP than WKY 

for all regions suggesting a greater degree of contralateral stimulation possibly by 

diaschisis (Seitz et al., 1999) or spreading depression (Kato and Waltz, 2000) .

The pattern of microglial distribution within the white matter tracts over the 72 hours 

suggests that the microglia may be using the white matter tract to migrate towards



252

the ipsilateral hemisphere as large numbers of activated microglia can be seen to 

accumulate in the genu of the corpus callosum in the contralateral hemisphere 

extending into the white matter tracts of the ipsilateral hemisphere. This finding is in 

accordance with other studies from this laboratory which found similar white matter 

tract expression of microglia following ischaemia (Zhang et al., 1997; Peters, 1999, 

thesis). The contralateral activation of microglia would seem to suggest that some 

form of signalling is being activated across the hemispheres in response to ischaemic 

damage. Previous studies have shown evidence for spreading depression activating 

microglia distant from the site of damage (Kato and Waltz, 2000) and the activation 

of activation of contralateral microglia would seem to support this idea. 

Alternatively, diaschisis may be another possible activator of contralateral microglia 

and it has been reported to cause contralateral stimulation in conditions of damage 

(Seitz, 1999).

Microglia and MMP expression

If indeed the activated microglia are migrating from the contralateral hemisphere to 

the site of damage in the ipsilateral hemisphere, one would expect to see expression 

of some of the compounds known to mediate microglial migration. One family of 

inflammatory mediators known to facilitate the migration of inflammatory cells such 

as neutrophils and T-cells in CNS injury are the matrix metalloproteinases. Matrix 

metalloproteinases have been shown to facilitate the migration of neutrophils to the 

site of damage in lung disease (Gibbs et al, 1999) and to play an important role in 

metastasis due to their ability to degrade components of the ECM allowing cells to 

move with ease through tissue (Tomita et al., 1996; Kurschat and Mauch, 2000). If
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MMPs were contributing to the migration of the activated microglia one might 

expect to see MMP expression mirroring the expression of activated microglia. This 

study found very little or no expression of MMP-8 (neutrophil collagenase) or MMP- 

9 (gelatinase B) at the 4 hour time point in either SHRSP or WKY. However at the 

later time points of 24, 48 and 72 hours, MMP-8 and MMP-9 expression mirrored 

the increase in number of activated microglia and the migration of the microglia 

towards the lesion site. This suggests that MMPs may play a role in the migration 

and the effects of microglia on surrounding cells and that expression of MMPs is up 

regulated with microglial activation. Double labelling using DAB (brown) and SG 

(grey) confirmed that activated microglia were indeed expressing both MMP-8 and 

MMP-9 in their cell bodies (Figure 77-81). This included both activated and 

phagocytic phenotypes.

In addition to the possibility that MMPs are induced to facilitate migration, they may 

be secreted by microglia contributing to their proposed cytotoxicity and leading to 

further ischaemic damage. MMPs are known to increase BBB permeability, cause 

oedema and associated tissue damage and increase the expression of inflammatory 

mediators such as TNF-alpha. It is therefore feasible that activated microglia may 

secrete MMP-8 and MMP-9 at some stage during activation providing an explanation 

for the presence of the two MMPs in the microglial cell body. If on activation, 

microglia were secreting cytotoxic substances (including MMPs) that were 

contributing to ischaemic damage, one might expect to see evidence of interleukin 

production. An increase in IL-ip immunoreactivity has commonly been linked to 

increased damage following MC AO and one of the
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principal cells identified as expressing IL-ip is the microglial cell (Pearson et al,

1999).

No IL-lp positive cells were seen in either SHRSP or WKY at any of the time points 

over 72 hours. Although many studies have associated an increase in microglial 

activation with an increase in IL-lp leading to an increase in ischaemic damage 

(Pearson et al, 1999; Rothwell et al, 1997), it is accepted that activation of 

microglia does not automatically result in IL-lp expression (Perry, personal 

communication). Various different stimulants are required for II-lp expression and it 

may well be that this model of MCAO does not produce the necessary changes in the 

micro-environment for stimulation of IL-lp to occur.

MMP staining

In addition to MMP positive microglia, MMP-8 and MMP-9 immunostaining could 

be seen in ischaemic neurons within the lesion, in neurons with a more normal 

morphology in the peri-infarct region and in injured (Tau +ve) oligodendrocytes 

within white matter tracts. The presence of MMP-8 and MMP-9 in the core of the 

lesion suggests a possible role for the MMPs in ischaemic damage and potentially in 

the phagocytic process for removal of dead cells. MMP-8 and MMP-9 staining was 

seen from 24 to 72 hours post- ischaemia but little or no MMP staining was apparent 

at 4 hours in either SHRSP or WKY. These findings are in accordance with the 

findings of other (non-quantitative or descriptive) studies reporting MMP-9 

expression at 6 hours, peaking at 24 hours following permanent MCAO (Romanic et 

al., 1998; Rosenberg et al, 1996). The intensity of the MMP staining did not appear
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to increase over the 72 hours but the number of immunopositive cells did increase- 

the majority of them being activated microglia.

The MMP staining of ischaemic neurons was questioned due to the reported 

stickiness of ischaemic neurons which can lead to non-specific immunostaining 

(Polack and Van Noorden, 1997). A blocking peptide was used to investigate the 

likelihood of non-specific neuronal staining within the core of the infarct. Blocking 

peptide studies showed that staining of ischaemic neurons was still present after the 

addition of the blocking peptide which would suggest that this staining is likely to be 

non-specific. However as no blocking peptide was available for the Chemicon MMP- 

9 antibody used in this study and the results are based on the Santa Cruz MMP-9 

antibody, one cannot completely rule out the possibility that the MMP staining of 

ischaemic neurons is specific (discussed in Chapter 4).

The presence of MMP-8 and MMP-9 in neurons with a more normal morphology in 

the peri-infarct region at 24 hours and 48 hours, in both strains, may suggest that the 

neuronal staining (at least in these cells) may be specific. The staining in the peri- 

infarct region appeared strongest for MMP-8. The presence of MMP positive 

neurons in the salvageable area of the lesion may suggest that MMPs may be 

contributing to the expansion of the lesion. Indeed MMP expression would appear to 

precede expansion of the infarct over the first 48 hours.

MMP-8 and MMP-9 positive oligodendrocytes were seen in the white matter tracts 

of both SHRSP and WKY. Oligodendrocyte MMP expression has previously been 

reported in the literature but was associated with process outgrowth and myelination 

by oligodendrocytes in culture (Luke et al, 1999). This would seem to suggest that
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MMP-9 expression associated with oligodendrocytes may not be pathological but 

may be associated with an attempt to repair damage and promote regeneration and 

remyelination in damaged ischaemic tissue.

Although astrocytes have been reported to express MMPs (including MMP-9) 

constitutively and in conditions of acute and chronic MS (Maeda et a l, 1996). 

However this study showed no evidence for MMP-8 or MMP-9 expression in 

astrocytes in any of the brain region studied. There appears to be variation in 

reported cellular location of MMPs in models of experimental ischaemia and other 

pathological conditions (e.g. MS, EAN). These differences in MMP positive cell 

types could be caused by different MMP antibodies detecting different cellular forms 

of MMP. The MMP-9 antibody used in this study may detect the microglial form of 

MMP-9 while other commercially available antibodies detect the astrocytic or 

neutrophilic form of the enzyme (discussed further in chapter 4). Due to the 

difference in antibody specificity, one cannot rule out the possibility that astrocytes 

may express MMP-8 and or MMP-9 in the permanent model of MCAO only that the 

Chemicon MMP-9 or Santa Cruz MMP-9 antibody did not detect any astrocytic 

expression of MMP-9.
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Chapter 7 General Discussion 

7.1 Introduction

The search for a therapeutic agent with the ability to reduce the damage associated 

with clinical stroke is an extremely important area for scientific research as stroke is 

not only one of the biggest killers throughout the world but also one of the largest 

causes of disability and reduced quality of life (Bamford et a l, 1988; Forbes, 1993).

The factors contributing to stroke are numerous and no one factor can be said to be 

the sole cause of the damage. The downstream consequences of cerebral ischaemia 

include excitotoxicity, oxidative stress, changes in gene expression, waves of 

spreading depolarisation and inflammation ultimately leading to necrosis, 

programmed cell death and brain swelling. All of these components are being 

investigated in order to gain a better understanding of how we can reduce the 

severity of a clinical stroke.

Although a number of cells and substances have been implicated in inflammatory 

mediated ischaemic damage, it remains unclear in many cases, whether their 

presence is detrimental or beneficial to the brain’s recovery.

In this thesis, different models of experimental stroke, different rodent strains 

(including stroke sensitive strains) and time course studies have been employed to 

increase our knowledge of inflammation and stroke.
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7.2 The role of neutrophils and microvilli in ischaemic damage.

Lack of evidence for a neutrophil involvement in acute ischaemic damage.

No evidence was found for a significant neutrophil accumulation in either 

parenchyma or blood vessels at 4 hours or 24 hours after intraluminal thread induced 

ischaemia (2 hours occlusion + 2 hours or 22 hours reperfusion) in Sprague Dawley 

rats (chapters 3 and 4) or at 4-72 hours after diathermy induced MCA occlusion 

(chapters 5 and 6). This suggests that neutrophils may not be contributing to acute 

ischaemic damage and therefore anti-neutrophil therapy in the early stages of 

ischaemia may not significantly ameliorate ischaemic damage. At early time points, 

therapies should perhaps concentrate on other components of the inflammatory 

response.

As widely discussed (chapter 3), neutrophils are believed by many to have the ability 

to block cerebral blood vessels and obstruct blood flow during ischaemia. It has also 

been suggested that they may contribute to ischaemic damage indirectly via the 

secretion of cytotoxic substances such as cytokines (IL-lp, TNF-a), proteases 

(MMP-2, MMP-9) and free radicals (superoxide anion, hydroxyl radical) (Del Zoppo 

et al, 1991; Grogaard et al, 1989; Hallenbeck et a l, 1988). In terms of the 

contribution of neutrophils to ischaemic damage, experimental studies have shown 

varied results. Some groups have found that inhibiting neutrophil accumulation with 

antibodies directed against adhesion molecules reduces infarct size (Chopp et al, 

1994; Zhang et al, 1994; Clark et a l, 1991) while others have found no evidence for
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significant neutrophil accumulation in models of experimental cerebral ischaemia 

(Hayward et al, 1996; Peters et al., 1998; Oruckaptan et a l,  2000).

In addition to studies in experimental animal models of ischaemia, neutrophil 

accumulation has been studied in conditions of clinical stroke, with Silvestrini and 

co-workers (1998) reporting significantly higher numbers of neutrophils in patients 

with severe stroke damage. However phase 3 clinical studies using inhibitors of 

neutrophil adhesion have reported no beneficial clinical outcome after administration 

(EAST trial of Enlimomab) (Sherman and Polmar, 1997). This would seem to 

suggest that neutrophils are not major contributors to inflammatory mediated 

ischaemic damage.

Although this study would seem to suggest that neutrophils do not play a major role 

in inflammatory mediated ischaemic damage, one cannot entirely rule out a 

neutrophil contribution to ischaemic damage. If the study had been extended to 

include later time points, one may have seen a greater degree of neutrophil 

accumulation. Certainly of those studies reporting significant neutrophil 

accumulation in experimental cerebral ischaemia, most used late time points- Matsuo 

and co-workers, 24 hours; Chen and co-workers, 48 hours and Zhang and co­

workers, 1 week). In spite of these findings, in this thesis where ischaemic damage 

was investigated over time (Chapter 6) no significant neutrophil presence was 

evident prior to or including the time point where the infarct reached its maximal 

size. Previous studies from this laboratory and others have also reported no evidence 

of a neutrophil contribution to ischaemia as late as 72 hours post ischaemic damage 

(Peters et al, 1998; Hayward et al, 1996).
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Lack of evidence for microvilli contribution in acute ischaemic damage.

This thesis found no evidence to support a microvilli contribution to ischaemic 

damage. Rather, microvilli would appear to be useful markers of a general 

perturbation to the cerebrovasculature induced by the occluding device associated 

with intraluminal thread induced ischaemia (2 hours occlusion + 2 hours reperfusion) 

as both occluded and sham animals exhibited almost identical numbers of microvilli 

(chapter 3, section 3.3.4; 21.61 ±0.89 in occluded animals Vs 21.45 ±1.86 in sham 

animals). Also no correlation was found between number of microvilli and infarct 

size (r2 = 0.137).

Various studies have suggested that an increase in microvilli number may prove a 

useful marker of ischaemic damage (Dietrich et al., 1984; Dietrich et al., 1996; 

Okumara et al., 1997, previously discussed in Chapter 3) with an increase in 

microvilli number accompanying astrocytic swelling and general vascular disruption 

in models of transient focal (Dietrich et al., 1986; Okumura et al., 1997) and global 

(Dietrich et al., 1984) experimental ischaemia.

Although this study would seem to rule out a major role for microvilli in ischaemic 

damage, as with neutrophil accumulation, one cannot rule out entirely a role for 

microvilli based on the results of this thesis. If the study had been extended to later 

time points, a role for microvilli in ischaemic damage may have been observed as it 

has been postulated that microvilli may have the ability to express receptors for
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adhesion molecules therefore allowing them to participate in the migration and 

accumulation of inflammatory cells such as neutrophils (Lossinsky et a l, 1995).

Once again it can be said that it appears unlikely that microvilli are contributing to 

acute ischaemic damage and that acute inflammatory mediated damage must be 

associated with another component or components of the inflammatory response to 

ischaemia.

7.3 The role of microglia in inflammatory mediated ischaemic damage.

Microglia are known to become activated in conditions of experimental ischaemia 

with this activation occurring within minutes to hours of the ischaemic insult 

(Morioka et al., 1991; Gehrmann, 1992; Kato et al, 1994). Although activated 

microglial numbers increase following ischaemia it is not entirely clear whether this 

increase serves to protect the brain from further damage or contribute to ischaemic 

damage.

In this thesis (Chapters 5,6) numbers of activated microglia were found to be 

increased following diathermy MCAO in SHRSP and WKY rats (chapter 6, section 

6.3.4). This increase was apparent from 4 hours to 48 hours in a time course study 

extending out to 72 hours. Numbers of activated microglia were significantly greater 

in the SHRSP, a strain known to exhibit an increased sensitivity to stroke, which may 

in part be due to an enhanced inflammatory response to ischaemia. The presence of 

significantly greater numbers of activated microglia in the SHRSP when compared to
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the normotensive WKY would at first glance appear to suggest that the microglia 

may be contributing to the greater degree of ischaemic damage in the SHRSP over 

the 72 hour time course (chapter 6, section 6.3.2). Further evidence to support a role 

for activated microglia in ischaemic damage comes from the observation that the 

most significant increases in activated microglia occurred in the peri-infarct region- 

the region where the infarct can expand over time. It would seem feasible therefore 

that the presence of activated microglia in the peri-infarct region may suggest a role 

for these cells in the expansion of the infarct. However, when numbers of activated 

microglia were studied in relation to the development of the infarct, a significant 

increase in activated microglia (chapter 6, section 6.3.4, p<0.005) occurred at a time 

when there was no accompanying increase in infarct size (between 48 and 72 hours, 

chapter 6, section 6.3.2). In addition , there was no correlation between the number 

of activated microglia and infarct size at 24 hours in the SHRSP in the core (r2= 0.45) 

or the peri-infarct region (r2= 0.025) (chapter 5, section 5.3.8). An alternative 

hypothesis is that rather than contributing to ischaemic damage, the microglia may 

become activated in an attempt to prevent further damage and promote repair and 

neuronal regeneration, a role which macrophages appear to perform in the periphery 

(Chen et al., 1995; Faber -Elman et al., 1996; Zeev-Brann et al., 1998). Certainly at 

the later time points of 48 and 72 hours, microglia had a phagocytic phenotype both 

in the peri-infarct and in the core of the lesion (chapter 6, section 6.3.5) suggesting 

that they are present to remove cellular debris and encourage repair. In addition to 

this another piece of evidence to support a role for microglia in regeneration and 

repair may be the observation that phagocytic microglia appeared to be closely
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associated with neurons in the peri-infarct region at later time points (chapter 6, 

section 6.3.7). At the 72 hour time point when there is a massive accumulation of 

microglia in the peri-infarct and core regions, there is no increase in infarct size 

compared to the 48 hour time point (chapter 6, section 6.3.4 + 6.3.2), suggesting that 

the microglia have halted the progression of damage.

Further evidence for a protective rather than destructive role for the microglia comes 

from the fact that the activated microglia do not appear to be secreting IL-ip, one of 

the main cytotoxic substances believed to be involved in indirect microglial mediated 

ischaemic damage (Rothwell et al., 1997; Pearson et al, 1999). Lack of IL-ip would 

seem to suggest that their role is not purely one of destruction (chapter 6, section 

6.3.9).

Activated microglial cells were found to be expressing MMP-8 and MMP-9, two 

members of the matrix metalloproteinases family. Although MMPs are reported 

to contribute to ischaemic damage, their presence in microglial cells should not be 

associated purely with damage. MMPs have the ability to aid the migration of a 

number of cells including T-cells, neutrophils and cancer cells (Graesser et al., 2000; 

Vos et al., 2000; Auodjit et al., 1998). Their presence in activated microglia could 

therefore be in a capacity to aid the migration of the microglia to the site of damage 

in order that they can then perform their phagocytic role.
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7.4 The role of MMP-8 and MMP-9 in inflammatory mediated ischaemic 

damage.

In this study, elevated numbers of immunopositive cells for MMP-8 and MMP-9 

were found following intraluminal thread induced ischaemia, (2 hours occlusion + 22 

hours reperfusion ,Chapter 4) and following diathermy induced permanent mCA 

occlusion (Chapter 5, 6 ) which suggests an MMP involvement in inflammation 

associated with ischaemia. MMP-8 and MMP-9 immunopositive cells could clearly 

be seen in the peri-infarct region in addition to the core of the lesion (chapter 6, 

section 6.3.8-diathermy MCAO; chapter 4, section 4.3.4 + 4.3.5—ILT induced 

ischaemia) at a time when the infarct was still evolving in both models (24 hours) . 

Double label immunohistochemistry with mrf-1 (microglial marker) and MMP-8 

and MMP-9 antibodies confirmed that the majority of the MMP-8 and MMP-9 

positive cells in the peri-infarct region were activated microglia.

Increased numbers of MMP-8 and MMP-9 positive activated microglia occurred at a 

time when there was no accompanying increase in infarct size (48-72 hours) (chapter 

6, section 6.3.4) in the diathermy model of MCAO. If MMP-8 and MMP-9 were 

contributing significantly to ischaemic damage one would expect to see an increase 

in infarct size accompanying the increase in MMP-8 and MMP-9 expression. This 

would seem to suggest that the MMPs may not have a purely destructive role in 

ischaemia and that their presence in microglia, as previously discussed, may be for 

migration to the site of damage.
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MMPs are believed to play a role in ischaemic damage due to their ability to degrade 

the brain matrix tissue leading to increased BBB permeability and the subsequent 

influx of inflammatory cells. Various studies have reported increases in the levels of 

MMPs, primarily MMP-2 and MMP-9 following experimental ischaemia (Rosenberg 

et al, 1998; Romanic et al, 1998; Gasche et al., 1999) and some have shown that 

administration of an MMP inhibitor has the ability to reduce infarct size and oedema 

(Rosenberg et a l, 1998; Romanic et al, 1998; Asahi et a l, 2000). This study did 

show MMP expression following experimental ischaemia but did not provide strong 

evidence for a pathologic role for MMPs in inflammatory mediated ischaemic 

damage

7.5 General conclusions.

The studies undertaken in this thesis have shown the complicated nature of the 

inflammatory response to ischaemia. It is clear that in response to cerebral ischaemia, 

a complex inflammatory response is initiated. However, this study provides evidence 

that not all the components of this inflammatory response are necessarily detrimental 

to the brain with responses such as microglial activation possibly acting to prevent 

further damage. One must also consider the fact that the inflammatory response to 

ischaemia may differ significantly in different species and models of ischaemia. One 

must, therefore, consider this possibility when considering new therapies which 

block such components of the inflammatory
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response and weigh up the risks of attenuating beneficial effects against the benefits 

of attenuating the destructive effects.
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APPENDICES

Appendix A: Solutions.

PVP (Polwinvlpvrolidine)

25g of PVP in 50mls of sterile saline + 10,000 units of heparin.

Solution was stirred for 2-3 hours and stored at -4°C.

50mM phosphate buffer 

For 1L:

38mls of Na2PC>4 + 162mls of Na2HP (> 4  + 7.2g NaCl were added to 800mls of dFbO 

and the solution mixed and stored at -4°C.

200mM phosphate buffer 

For 1L:

190mls ofNaH 2P0 4  + 810mls ofNa2HP0 4  .

PAM Fixative (4% paraformaldehyde in 50mM phosphate buffer)

For 1L:

500mls dH20  heated to 65°C. 40g of paraformaldehyde were added and the solution 

mixed. A few drops of 1M NaOH were added to aid dissolution. The solution was 

filtered and 250mls of 200mM phosphate buffer added and the solution made up to 

1L with dH20 and stored at -4°C.



II

Kamovskv’s Fixative (2% gluteraldehvde. 2% formaldehyde!

For 1L:

400mls of dFkO heated to 65°C and 20g paraformaldehyde added. A few drops (2-4) 

of NaOH were added to aid dissolution. 80mls of gluteraldehyde (25% solution) 

were added followed by 500mls of 50mM phosphate buffer and 4mls of 0.5% CaCh. 

The solution was made up to 1L with dFbO and pH adjusted to 7.4 and stored at -4°C.

Crvoprotectant 

For 1L:

1.57g of NaH2P 0 4  + 5.46g Na2HP0 4  were dissolved in 400mls dH20. 300mls 

glycerin and 300mls ethylene glycol were added to the solution and the solution 

mixed for 1 hour and stored at -20°C.

Polv-L-lvsine coating of slides

Slides were racked and placed in 10% poly-L-lysine solution for 5 minutes. Slides 

were then placed into an oven at 40-50°C overnight to dry.



Ill

Solutions for western blotting

Hepes Buffer 

For 250mls:

0.2975g of 5mM Hepes

27.38g of 0.32M sucrose

1,2mls of 5mM benzamide

43.75 pi of p-mercaptoethanol

0.285g EGTA

0.03075g of M gS04

2.5mls of lOpM sodium vandate

200pi of 0.1 mM phenylmethyl-sulphonyl fluoride

500pl of Leupeptin

1.25mls Pepstatin A

500pl of Aprotinin.

pHto 8.0.

Solutions for Lowry assay

2% copper sulphate solution in H2 O, 2% potassium sodium tartrate in H2O and2% 

sodium carbonate in 0.1 Molar NaOH.

Mixture A: 500pl copper sulphate + 500pl potassium sodium tartrate + 50mls 

sodium carbonate.

Folins: 1ml of mix A + 25 pi of sample + lOOpl Folins. Mix and allow to stand at 

room temperature for 20-30 minutes.



Standard Curve dilutions: BSA :0.2mg/ml- 20pl H20/5pl BSA.
0.4mg/ml- 15 pi FkO/lOpl BSA 
0.6mg/ml- lOpl H20/15pl BSA 
0.8mg/ml- 5pi H2O/20pl BSA 
l.Omg/ml- 25pl BSA 

For samples: 12.5pl of sample + 12.5pl H2 O.

Laemmli Buffer 

0.1M Tris HCL pH8 

0.1% bromophenol blue 

5M urea 

5% DTT 

5% SDS

aliquot and store at -20°C.

Solution 1 (for resolving gel)

0.75M Tris-base, pH 8.8 

0.2% SDS

(per lOOmls- 9.1g Tris -base + 0.2g SDS) 

store at room temperature

Solution 2 (Tor stacking gel)

0.25M Tris-base, pH 6.8 

0.2% SDS

(per lOOmls- 3.03g Tris-base + 0.2g SDS) 

store at room temperature



Resolving gel 

6mls Solution 1 

4.02 mis acrylamide 

1.98 mis distilled water 

60pl 10% APS 

15pl TEMED

Stacking gel 

0.562 mis acrylamide 

2.44mls Solution 2 

1.94 mis distilled water 

50pl 10% APS 

lOpl TEMED

Running buffer 

72g glycine 

15g Tris 

50 mis SDS

Incubation buffer (T-TBS-M)

TBS + 5% Tween 20 (T-TBS! 

+ 5% Marvel (T-TBS-M)



VI

Appendix B: Paraffin processing

Station

Number

Time (Hours) Temperature

(°C)

Solution

1 2 35 70% alcohol

2 3 35 80% alcohol

3 4 35 95% alcohol

4 4 35 100% alcohol 1

5 5 35 100% alcohol 2

6 5 35 100% alcohol 3

7 6 35 100% alcohol 4

8 4 35 100%

9 5 35 alcohol/Xylene

10 5 35 Xylene 1

11 5 60 Xylene 2

12 5 60 Wax 1

13 6 60 Wax 2 

Wax 3

Processing carried out using an automated tissue processor.

The process comprises a 60 hour cycle- 59 hours processing + 1 hour turnover. 

Pressure and a vacuum are maintained at each stage over the 60 hour cycle.
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Appendix C: Antibody details

Antibody Target Tissue Diluti
on

Blocker Secondary Source

OX-42 Microglia
Fixed,
Frozen 1:1000

Normal
Horse
Serum

Anti-mouse 
raised in horse

Serotec, 
Ltd. UK

MRF-1 Microglia
Fixed,
Paraffin
Processed

1:100
Normal
Goat
Serum

Anti-rabbit 
raised in goat

Dr Tanaka 
Hokkaido 
Uni, Japan

GFAP Astrocytes
Fixed,
Paraffin
Processed

1:1000
Normal
Horse
Serum

Anti-mouse 
raised in horse

Sigma
Ltd.UK

MMP-9
(AB805) MMP-9

Fixed,
Paraffin
Processed

1:100
Normal
Goat
Serum

Anti-rabbit 
raised in goat

Chemicon,
Ltd,
UK

MMP-8
(SE594) MMP-8

Fixed,
Paraffin
Processed

1:100
Normal
Goat
Serum

Anti-rabbit 
raised in goat

British 
Biotech, UK

EL-ip
(S328) IL-lp

Fixed,
Paraffin
Processed

1:100
Normal
Donkey
Serum

Anti sheep 
raised in 
donkey

NISBC,
UK

Fibrinogen
Fibrinogen

Fixed,
Paraffin
Processed

1:100
Normal
Goat
Serum

Anti-rabbit 
raised in goat

Dako Ltd, 
UK

Albumin
Albumin

Fixed,
Paraffin
Processed

1:100
Normal
Goat
Serum

Anti-rabbit 
raised in goat

Dako Ltd, 
UK

Tau-1 Oligo­
dendrocytes

Fixed, 
Paraffi n 
Processed

1:1000
Normal
Horse
Serum

Anti-mouse 
raised in horse

Dr S Hanger 
University 
of London


