
Design and implementation of a
Multi-Purpose Object-Oriented

Spatio-Temporal (MPooST) data model for
Cadastral and Land Information Systems

(C/LIS)

Christoforos Vradis

Submitted for the title of Master of Science

Department of Geography and Topographic Science
University of Glasgow

January 2000

ProQuest Number: 13834007

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 13834007

Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

GLASGOW
UNIVERSITY
LIBRARY

I 19%-Co?

Declaration

The work presented in this thesis is my own unaided work, except where acknowl-

edgedement is given, and has not been submitted for a higher degree in this or any

other University.

Christoforos Vradis

Abstract

The application of the object-oriented methodology in geospatial information man­

agement has significantly increased during the last 10 years and tends to gradually

replace the status quo relational technology. In general, object orientation offers a flex­

ible and adaptable modelling framework to satisfy the most demanding complex data

structuring requirements.

The objective of this thesis is to determine how a modern Land Information System

used for cadastral purposes can benefit from an object-oriented methodology. To this

aim, a Multi-Purpose, Object-Oriented Spatio-Temporal (abbreviated as MPOOST)

data model has been developed. In brief, the MPOOST data model embodies spatial

data and their temporal reference in the form of objects which contain their attributes

as well as their behaviour. The design of the MPOOST data model has been specified

in such a way that it enables other data models to exploit its functionality, therefore

enabling the multi-purpose aspect.

At first, the requirements of Land Information Systems are being examined. Next,

the functionality that is offered by the object-oriented methodology is being analysed

in detail. Even if the bibliography is quite rich in relevant research, however there

seems to be no starting point regarding the application of 0 0 in LIS. Hence, a whole

chapter of this thesis has been dedicated in an extended bibliographic research. Finally,

the 0 0 methodology is applied for the design and implementation of the MPOOST

data model.

The outcome of the design and the implementation is the first version of the

MPOOST data model written using the Java object-oriented programming language.

In this way, it is proven that:
2

3

• the relational technology has significant drawbacks which prohibit it from being

applied in conceptually demanding information systems; and that

• object-orientation can fully satisfy the most complex data structuring require­

ments posed in modern geographic information systems.

Contents

Acknowledgem ents 15

Finance, resources and support of the research ... 17

Introduction 19

About the re se a rc h ... 19

Research objectives and a i m ... 20

Research s t r u c tu r e ... 21

Thesis s tru c tu re .. 22

Case study: the Hellenic C ad astre ... 24

1 Inform ation System s 27

1.1 Information systems ... 27

1.2 Software Engineering .. 28

1.3 Geographical Information Systems (G IS) .. 28

1.4 Cadastre and Land Information Systems (LIS) 32

1.4.1 Data m o d ellin g ... 36

1.4.1.1 Providing support for multiple application domains

and platform independence 40

1.5 Data in a Geoinformation s y s te m ... 41

4

CONTENTS 5

1.5.1 Spatial D a ta .. 42

1.5.2 Spatial data models and their functionality 44

1.5.2.1 Field versus object data m o d e ls 44

1.6 Required functionality in a G I S .. 45

1.7 Data concep ts .. 50

1.7.1 Spatial and temporal data m o d e llin g 50

1.7.2 Data concepts... 55

1.7.2.1 Spatial data and their geometric s p a c e 55

1.7.2.1.1 Coordinate system s..................................... 57

1.7.2.2 Vector d a t a .. 58

1.7.2.2.1 Topology of vector d a t a 58

1.7.2.2.2 Modelling p rim itiv e s 59

1.7.2.3 Raster D a ta .. 61

1.7.2.4 Tem porality .. 61

1.7.2.5 M e ta d a ta ... 73

1.7.3 Functionality requirem ents... 80

1.7.3.1 O p e ra tio n s .. 84

1.8 The object-oriented a p p ro a c h ... 90

1.8.1 Object-oriented analysis and d e s ig n ... 90

1.8.2 Summary of object-oriented c o n ce p ts 92

1.8.3 Object-oriented database management system s..................... 94

1.8.4 Functionality issues s u m m a ry ... 95

CONTENTS 6

2 R eview o f O bject Orientation 96

2.1 In troduction .. 96

2.2 Moving from conventional models and technology to object-orientation 97

2.3 Object orientation ... 99

2.3.1 General concepts of object orientation107

2.3.1.1 Abstraction and Abstract data types (ADT) . . . 108

2.3.1.2 Classes, Hierarchy and M odules........................I l l

2.3.1.3 In h e rita n c e ... 116

2.3.1.4 Structure of classes - A ttr ib u te s124

2.3.1.5 Structure of classes - Behaviour of objects (Inter­

face, Methods/ Operations, M essag es) 131

2.3.1.6 Associations... 137

2.3.1.7 Encapsulation ... 141

2.3.1.8 Polymorphism ... 142

2.3.1.9 Objects as instances of classes, state and behaviour

of o b je c ts ..146

2.3.1.10 M etaclasses... 149

2.4 Analysis and Design Techniques.. 151

2.4.1 In troduction... 151

2.4.2 The UML approach .. 154

2.4.3 UML elem ents.. 156

2.4.3.1 Classes ..157

2.4.3.2 M etaclasses... 160

2.4.3.3 In te rfa c e s .. 161

2.4.3.4 Use c a s e s .. 163

CONTENTS 7

2.4.3.5 O b je c ts ..164

2.4.3.6 Packages..164

2.4.3.6.1 Logical p a c k a g e s ..165

2.4.3.6.2 Component packages..................................... 165

2.4.3.7 O p e ra tio n s ... 166

2.4.3.8 Components... 166

2.4.3.9 Processors...167

2.4.3.10 D e v ic e s ..167

2.4.3.11 R elationships..168

2.4.3.12 Messages .. 173

2.4.3.13 General extensibility m echanism s..............................173

2.4.3.14 C o n s tra in ts ... 174

2.4.3.15 S te reo ty p es ... 174

2.4.4 UML d ia g ra m s ... 175

2.4.4.1 Class and object d iag ram s...176

2.5 Implementation - Languages and databases.. 176

2.5.1 Object Oriented Programming Languages 177

2.5.2 Object Oriented D atabases.. 179

2.5.2.1 Special characteristics of object-oriented databases 181

2.5.2.1.1 The transaction management mechanism 181

2.5.2.1.2 Support of integrity co n s tra in ts 183

2.5.2.1.3 Concurrency .. 184

2.5.2.1.4 Recovery ...184

2.5.2.1.5 Versioning.. 185

2.5.2.1.6 Performance enhancem ent........................... 186

CONTENTS 8

2.5.2.1.7 Query processing ..189

2.5.2.1.8 Schema Modifications192

2.5.2.1.9 Security and authorization 193

2.5.2.2 UML in database modelling..194

2.5.2.3 Usability of 0 0 databases in G I S 194

2.6 C onclusions... 195

3 Analysis 197

3.1 In troduction ... 197

3.2 Organization of term ino logy .. 198

3.3 Basic req u irem en ts .. 199

3.4 Requirements and terminology in the real world dom ain200

3.5 Terminology and requirements in the system d o m a i n 202

3.6 Terminology and requirements in the map d o m a in203

3.7 Data in p u t .. 204

3.8 Spatial in fo rm ation .. 205

3.8.1 G e o m e try ..205

3.8.2 Coordinate sy stem s... 207

3.9 Spatial topology...209

3.10 Aspatial data related to g eo m etry ..210

3.10.1 A ttr ib u te s ..210

3.10.2 Data q u a lity .. 212

3.10.3 Positional accu racy ... 213

3.10.4 Attribute a c c u ra c y ... 214

3.10.5 C om pleteness... 214

CONTENTS 9

3.10.6 Complete list of required m e ta d a ta .. 215

3.10.7 Spatial reso lu tio n ...219

3.11 T em pora lity .. 219

3.12 Representation ..222

3.12.1 B eh av io u r..224

3.13 Enabling action in space: spatio-temporal e n t i t ie s225

3.13.1 Application d o m a in s ...228

3.13.1.1 Case study: the Hellenic Cadastre 228

3.13.1.1.1 Entities in the cadastre230

3.14 Analysis of the required multi-purpose model characteristics . . . 232

4 D esign of the M PO O ST m odel 236

4.1 In troduction .. 236

4.2 Overall structure of the MPOOST m o d e l.. 237

4.3 Stereotypes defined in the UML m o d e l ... 240

4.3.1 Stereotyped c la s se s ..241

4.3.2 Stereotyped relationships.. 241

4.4 Detailed package structure and class d esc rip tio n 242

4.4.1 The MPOOST p a c k a g e ...242

4.4.2 Package MPOOST.Spatial ... 243

4.4.2.1 Package MPOOST.Spatial.RealWorId243

4.4.2.2 Package MPOOST.S p a t ia l .C a rto g rap h ic .Geometry252

4.4.2.3 Package .. .C artographic .MapCompos i t ion . . . 254

4.4.3 Package MPOOST.Representational ..255

4.4.3.1 Package MPOOST.Representational.Symbol . 255

CONTENTS 10

4.4.4 Package MPOOST.Behavioural ...257

4.4.4.1 Package MPOOST.Behavioural . U t i l i t y 257

4.4.5 Package MPOOST.ASpatial ... 258

4.4.5.1 Package MPOOST.ASpatial.Primitive......................258

4.4.5.2 Package MPOOST.ASpatial.Metadata........................ 260

4.4.5.2.1 Package . . .M etadata.R eferenceSystem s263

4.4.5.2.2 Package . . .M etadata .C oord inateS ystem s

264

4.4.6 Package MPOOST.Temporal...266

4.4.7 Package MPOOST.GUI...267

4.4.8 Package M PO O ST.A pplicationD om ains.....................................267

4.4.8.1 Package M POOST.ApplicationDomains.Cadastre

268

4.4.8.2 Package MPOOST.AppilicationDomains.Topography268

5 Im plem entation of the M PO O ST m odel 272

5.1 Java as the implementation la n g u a g e ... 272

5.2 Code conventions ..275

5.3 MPOOST Package In d ex ...275

5.4 Class H ierarchy .. 275

5.5 The MPOOST Graphical User Interface ...277

5.6 MPOOST GUI S n a p s h o ts ...278

6 Conclusions and further research 282

6.1 Data model assessm ent... 282

6.2 Future w o rk ..286

CONTENTS 11

A ppendices 304

A Object O riented Program m ing Languages 304

A.l Smalltalk ...304

A.2 P S -A L G O L ..304

A.3 C + + ...305

A.4 J a v a ...305

B Interoperability Standards In O bject O rientation 310

B.l C O R B A .. 310

List of Figures

1.1 Building up an information s y s t e m ... 28

1.2 Domains and the modelling stages in a multipurpose G I S 37

1.3 Functionality of a GIS. (Modified from [8 2]) 47

1.4 Discrete modelling sequence, spaces and topological models 56

2.1 Specialization relationships among classes... 112

2.2 Hierarchy of c lasses ... 113

2.3 Is object Al:X an instance of class A1 only, or both A1 and A? . 1 1 7

2.4 Class B will inherit members belonging to class C twice: once from

super-class C l and another from super-class C2. Which of the two

should be preserved? (italics denote inherited m e m b e rs .) 122

2.5 Class C2 contains the attribute A, which is a reference to a class X.

In class C2, attribute A can receive as values not only objects be­

longing to class X, but objects belonging to X sub-classes, namely

XI and X 2 ... 124

2.6 Class i c o n ..157

2.7 Abstract class i c o n ... 158

2.8 Interface icon in component d iag ram s...162

2.9 Interface icon in class d ia g ra m s ...162

2.10 Use case i c o n ... 163

12

LIST OF FIGURES 13

2.11 Single (left) and Multiple (right) Object i c o n s164

2.12 Logical (left) and Component (right) package i c o n s165

2.13 Component ico n ... 166

2.14 Processor ic o n .. 167

2.15 Device i c o n ..168

2.16 Notation used for R ela tionsh ips.. 169

4.1 The overall structuring of the data model into packages 237

4.2 Package MPOOST.Spatial.RealWorld ...269

4.3 Package MPOOST.Representational.Symbol. For visual clarity,

thick lines represent specialization and thin lines represent associ­

ation...270

4.4 The parent class for all application domain classes............................... 271

5.1 The main part of the MPOOST GUI... 279

5.2 Class selection w in d o w .. 280

5.3 Class schema browser w in d o w ... 281

A.l Workaround for multiple inheritance in the UML class diagram

when not supported by the implementation language. Text in

italics denotes class members inherited from the superclass(es).

See text for explanation ... 308

List of Tables

2.1 Object Orientation in I T .. 103

2.2 Major concepts of Object O rien tation ...106

2.3 UML elem ents..156

3.1 Domains and c o n c e p ts ... 204

A.l Comparison of 0 0 programming languages. Based on comparison

found in Booch (1994), augmented with additional features and

facts about Java..309

14

Acknowledgements

The author would like to thank the following individuals, institutions and com­

panies:

- The H ellenic State Foundation of Scholarships, for the funding of

the research, including tuition fees and living expenses for the period of 16

months at the University of Glasgow.

- Dr. Jane Drum mond, lecturer of the Geography and Topographic Science

Department for help on geo-information technology issues, as well for the

funding provided a) to be trained on Laser Scan products, and b) to attend

the 6th GISRUK conference in Edinburgh (for which there was also RRL.net

funding).

- Mr. Ian Gordon, lecturer of the department and supervisor of the re­

search, mainly on issues regarding Cadastral and Land Information Systems.

- M att Duckham, PhD student in Topographic Science Section, for his valu­

able help and recommendations on Gothic ADE, object-orientation and the

Linux operating system.

- Brian Black and Stephen M cGinley, IT technicians at the Geography

and Topographic Science Department, for their IT support.

- Staff of the Geography and Topographic Science D epartm ent, for the

feedback I received from the presentation of the initial research proposal, in

April 1998.

15

LIST OF TABLES 16

- Staff of the C om puting Science D epartm ent, Glasgow University, for

their help on the object-oriented approach and Java programming language.

- Caroline Hogan, from SDS company at Bo’ness in Scotland for kindly

preparing and providing the topographic dataset used to evaluate the Java

application of the MPOOST model.

- The Laser Scan Ltd company, for their training and support on Gothic

Application Development Environment.

- The companies R ational and Valtech, for the free seminars on the Unified

Modeling Language.

Finally, I would like to thank anyone that helped me throughout the research

elaboration, but who is not mentioned above.

LIST OF TABLES 17

Finance, resources and support of the research

Funding for the research was provided by the Hellenic State Foundation of Schol­

arships, for the period of 16 months in total, including both tuition fees as well as

living expenses. Additional funds have been kindly provided by the Department

of Geography and Topographic Science, for training purposes.

Computational resources used during the research include:

- A Fujitsu personal computer, running at 133 MHz, with 32 MB of RAM

and 2 GB of hard disk space.

- My perosnal Mitac notebook equipped with a Pentium processor running at

133MHz, with 1.3GB hard disk and 32 MB RAM

- Operating systems including Microsoft Windows 95, installed by the depart­

ment’s IT technicians, and S.u.S.E Linux 5 and RedHat Linux 5.2, installed

by the researcher. Both OSs were running on the same machine.

- Software for Linux including:

1. GIMP v. 1.0.1 image manipulation program.

2. XEmacs 20.4 text and code editor.

3. Xfig 3.2 graphics program.

4. DTEX2£typesetting environment

5. KDE vl.O X Windows manager

6. Netscape Navigator 4.5

7. Java Development Kit v l .1.7/1.2, including compiler, debugger and

code documentation parser.

8. html2tex , HTML to DT^jXconverter

- A Sun SPARCstation 20 computer, with 192MB RAM, 4GB hard disk space,

running on Solaris OS.

- Software for Solaris OS including Laser Scan’s Gothic ADE GIS, PJam a for

Java compiler and classes.

LIST OF TABLES 18

Usage of Laser Scan’s Gothic ADE was done remotely on the PC through Linux’s

X Windows environment.

Technical support was provided by:

- the department’s IT support group

- Computing Science Department of Glasgow University

- Laser Scan Ltd.

- Usenet newsgroups available through the Internet (e.g. comp.infosystems.gis)

as well as support offered by companies in the form of newsgroups (such as

Sun’s Java Developer Connection)

Introduction

About the research

This dissertation documents the research that the author has undertaken during

the period from February 1998 to May 1999, in the Geography and Topographic

Science Department of the University of Glasgow, as a research student for the

degree of the Master of Science by research in Geoinformation Technology. In

brief, it involves research into the design and implementation of a multipurpose

object-oriented spatio-temporal data model (abbreviated as MPOOST) which can

effectively be used in the context of a modern land information system.

The motive for this research was primarily the recent developments in the Hellenic

National Cadastre, a project suggested and promoted by the Hellenic Ministry

for the Environment, Physical Planning and Public Works. In brief, an initial

two-phase pilot project started in 1994 and is now being implemented as this

dissertation is being written. So far, property registration (that includes to­

pographic mapping) for a part of the country is taking place (approximately 5

million acres), thus producing an extremely large volume of geographical and geo­

referenced data, the management of which is in need of a robust, flexible, effective,

multipurpose, nation-wide Land Information System. The current proposal by

the fairly recent established company “Cadastre S.A” regarding the information

technology support, involves the adoption of the relational technology in the

database management system, which will be used as the underlying computer­

ized environment, mostly because it has been widely used in similar information

19

LIST OF TABLES 20

systems as a safe and proven solution. However, it is anticipated that this ap­

proach will definitely come to a point where the required functionality can not be

satisfied. Thus, the research focuses on the object-oriented approach, and how it

can be used to develop and implement such a multipurpose spatio-temporal data

model so as to meet the requirements posed by this demanding application.

Research objectives and aim

Knowledge and theoretical concepts that have been devised so far in the con­

text of Geographical Information Science are voluminous. During the first two

months of the time allocated, a literature research has resulted in a record of

the most important theoretical and practical issues on these theoretical concepts,

which later are addressed in the context of spatio-temporal modelling. The aim

of the research is primarily to propose an object-oriented design of a multipur­

pose spatio-temporal data model which will be used in the context of a modern

cadastral information system. As a secondary stage, the research involves the im­

plementation of the design which will be as independent of any specific computer

platforms as possible. Finally, through the resulting model, an effort will be made

to identify the degree by which current and future functionality requirements of

a cadastral information system can be satisfied. Existing research work found

in the literature that remains unimplemented will be considered in the literature

review phase and part of it may be incorporated in the object-oriented design

phase of the model.

Methodologically, the research work is divided into four major parts:

1. Literature research on object orientation in GIS.

2. Analysis in the GIS/LIS context.

3. Design of the MPOOST model.

4. Implementation and testing of the MPOOST model.

LIST OF TABLES 21

The system design phase involves aspects other than the data model itself (such

as the hardware component). Some of these aspects will be of minor importance

for the context of this thesis.

One of the main concerns of the research is to propose a design, and tools to work

with which are as much as possible hardware and software independent as well

as easy to become familiar with and be straightforwardly implementable. An aid

to achieve this is the adoption of the current standards that have been developed

so far (e.g. OMG). Whereas specific software platforms are considered and used,

they are chosen with regard to the degree of independence that they have relative

to the hardware platform.

Research structure

In order to better address the problems introduced and organize the research,

five major aspects were identified and treated both separately during the analysis

phase, and later in combination for the purposes of the design and implementa­

tion. These are:

1. analysis and design methodologies in information systems;

2. multipurpose systems and data models;

3. object-orientation;

4. spatial and temporal data, information and models;

5. cadastre and land information systems.

Research work started with familiarization of information technology tools and

methodologies (such as object-orientation and object-oriented programming).

Literature, as it is being accessed today, not only through any local university

library but also through the Internet, allows one to tap an enormous amount of

existing research work. It is noteworthy to mention that only in one week’s time,

a total of well over 300 references were collected. This can be better understood,

LIST OF TABLES 22

if one thinks of how many different science and engineering fields are involved in

the research topic, such as mathematics, information technology, programming

and modelling. However, not all of those references were used in the research, as

firstly not all of them were of interest, and secondly, the time allocated to com­

plete the research did not allow all references to be read and therefore included.

Nonetheless, a significant amount of time (more than 8 months) was spent on

the literature search itself. This was not obvious right from the beginning, hence

an extension of 4 months was necessary, in order that the thesis be completed.

The development of the model took approximately 5 months to complete, includ­

ing the time necessary for familiarization with the object-oriented approach, the

Unified Modelling Language and with the Java programming language.

Thesis structure

Chapter 1 (Introduction, pages 27-95) is an introduction to information technol­

ogy, geoinformation systems, their structure, and the information that they can

manage. The requirements of a modern geoinformation system are of main con­

cern, and problems that are encountered are examined, along with solutions that

have been suggested and used so far. A brief introduction in object orientation

is given as an answer to how it can tackle all addressable issues. The literature

search contributed significantly in the contents of this chapter.

Chapter 2 (Review of Object Orientation, pages 96-196) contains an extended

discussion about object orientation, what it involves, where and how it may be

used. Specific problems regarding geographic information that were encountered

in chapter one are addressed in more depth. This chapter is purely an outcome

of the literature research involved.

Chapter 3 (Analysis, pages 197-235) documents the analysis phase of the research.

Analysis includes topics on the manner that real world entities and phenomena

can be decomposed into primary building blocks (such as spatial and temporal

LIST OF TABLES 23

information, representation etc.) This chapter is based on the previous two and

its outcome is the primary source from which the MPOOST model was developed.

Chapter 4 (Design of the MPOOST model, pages 236-268) explains how the

MPOOST model was built. A documentation of the MPOOST model is also

included, using not only textual descriptions but the Unified Modeling Language

as a visual and definitely more comprehensible tool to the reader.

Chapter 5 (Implementation of the MPOOST model, pages 272-278) is about how

the MPOOST model was implemented using the Java programming language. A

detailed documentation of all Java packages, classes along with their methods

and attributes may be found here. However, none of the Java code itself has

been inlcuded in the thesis text, since it is anticipated that the reader will find

more useful to interact with the Java GUI application (MPOOST GUI), rather

than browse through the code. For reference purposes, all Java code is included

on the accompanying compact disc (CD).

Chapter 6 (Conclusions and further research, pages 282-287) is a discussion on

the functionality provided by the MPOOST model and how it can effectively

address all the problems encountered. Any further research or development work

that is considered necessary is also mentioned.

Finally, Appendices (pages 304-312) are on technical issues, and mostly on object

oriented programming languages.

Additionally, a compact disc is accompanying the thesis which contains:

1. Code written in Java, in ASCII format (.java files), with all implemented

packages and classes. Code files also contain documentation for classes and

class members.

2. Documentation of the code in HTML format (.html files), which can be

browsed using any world wide web browser (such as Netscape Navigator).

3. Compiled Java bytecode (.class files), which can be parsed by any Java

interpreter.

LIST OF TABLES 24

4. The “MPOOST GUI” Java applet(MPOOSTGUI.html file), as a demon­

stration of the implemented MPOOST design, which is viewable within any

world wide web browser with Java support (highly recommended is Netscape

Navigator version 4.5 and higher).

5. All necessary additional Java classes (.class files) used (e.g. JFC Swing 1.1)

6. The actual thesis text, in postcript and device independent format (.dvi and

.ps respectively), as well as all figures in postscript format.

It must be noted that the format of the documentation and code files (.html,

.java) is platform independent, hence they can be browsed with any appropriate

software within any operating system. When it comes to the execution of the byte

code (.class files) this is not always the case. More specifically, every operating

system requires a special version of the Java Virtual Machine used to execute the

application. It is usually the case that a WWW browser includes a JVM so that

it can parse Java applet code. When Java applications are involved, executable

stand-alone files are required. As there is a plethora of operating systems, only

the Windows 95/98 JVM files have been included on the CD. Instructions on how

to launch the MPOOST GUI application may be found in the README.txt file.

Case study: the Hellenic Cadastre

For the testing of the research outcome, the case study chosen was the Hellenic

Cadastre. It is a fairly recent established system (1997) replacing the older Land

Registry system that was used so far. The official Hellenic institution responsible

for the management of the cadastral information is the "Hellenic Cadastre and

Mapping Organization - HCMO" (OKXE). Officially issued documents so far

include:

- Technical specifications regarding data collection using photogrammetric

and land surveying methods.

LIST OF TABLES 25

- Technical specifications regarding cartographic production.

Specifications found in the above documents were used as part of the design,

mainly to incorporate the appropriate cadastral and legislative information in

the final structure of the implemented data model.

Some official documents under consideration that still remain:

- The National Transfer Format for cadastral data submission from various

private surveying companies to HCMO. At the time this dissertation was

written, the format used is a set comprising three ASCII files, which contain

a) the geometry, b) the topology and c) the attribute data.

- The national cadastral database system. Although the official initial pro­

posal involves the usage of relational database management systems, how­

ever by the time of the thesis completion, no implementation had taken

place.

The document involving the database management system relates strongly to

the work undertaken in this thesis, and it can be said that it can contribute

significantly towards the development of such a system in practice.

The phase of cadastral and topographic data collection has been recently initial­

ized. For the purpose of data collection, Greece has been partitioned into 30

surveying areas where topographical mapping and later cadastral data collection

(mainly property registration) will take place by a number of different surveying

companies, both Hellenic and International. No specifications have been issued

yet regarding details about the update of the data, how frequent this should

happen etc.

The above specifications were collected during the early stage of the research

and they were incorporated in the initial LIS domain analysis. Additionally, a

sample vector data containing only topographic features was obtained from the

SDS company, which were used:

LIST OF TABLES 26

- to analyze their inherent characteristics; and

- to test the implementation of the object model using the Java application.

However, no cadastral data relating to the topographic dataset acquired could

be used, due to the organization’s (HCMO) current policy, which does not allow

any exportation of cadastral data out-with the Hellenic State.

The acquired data set can be browsed using the Java applet version of the

MPOOST data model on the accompanying CD.

Chapter 1

Information Systems

1.1 Information systems

This section introduces the reader to the concepts used throughout the research.

In brief, designing a spatio-temporal model should be done by taking into account

the context in which the model will exist and function, namely a geoinforma­

tion system , which is a special kind of information system. An information

system can be defined as a set of organized procedures and data, that, when

executed, provides information. Information is some tangible or intangible en­

tity that reduces uncertainty about a state or event [100]. In other words, it is

a system capable of data input, data processing and information output. The

hierarchical context of an information system could be shown as in figure 1.1.

As depicted above, an information system is an extension of a computer-based

system, with the addition of the information handling procedures and technol­

ogy. It also involves the human factor, that is the set of people that interact

with the system, either as system developers or end users. It is the content of

the information handling procedures and the information itself that add to the

hardware capabilities to meet the demands for a specific application.

27

CHAPTER 1. INFORMATION SYSTEM S 28

Information System

Computer-bases system

Computer System

Computer

Includes hardware peripherals

Includes users and other manual procedures

Includes data and information-handling technologies

Figure 1.1: B uilding up an inform ation system

1.2 Software Engineering

For any information system to be developed, some kind of software engineering

methodology must be adopted and used. Software engineering for information

systems is considered to be an iterative process which initiates from the appli­

cation that poses the requirements, moves to the analysis and design phases,

then to the implementation and testing stage, and goes back to the first stage,

iterating as many times as necessary to refine any stage and apply the modifi­

cations to the consequent phases. This sequence is repeated as many times as

necessary throughout the life cycle of the information system. For every different

stage of this process, humans are involved with different roles, the most impor­

tant of which are the application domain expert, the architect, the designer, the

implementer and the system tester [22].

1.3 Geographical Information Systems (GIS)

A geographical information system or geo-information system (both abbreviated

as GIS) can be defined as an information system that specializes in the manage-

CHAPTER 1. INFORMATION SYSTEM S 29

ment of geographically referenced information. It provides the implementation

environment for mechanisms such as collecting, storing, retrieving, processing,

updating, querying and visualizing geographical data. This geographical com­

ponent of information is related to any physical or artificial real world object or

phenomenon. As Worboys [135] comments: GIS are not just systems, but also

constitute an interdisciplinary endeavour involving many people in industry and

academia. The aim of this endeavour is to provide better solutions to geo-spatial

problems In this manner, a GIS can be thought of as an academia/industry en­

terprise system, in which a core database exists. Around and out of this database,

users belonging to different application domains, store and retrieve data, through

interfaces, that may or may not be spatially related. It is of great importance

for the database model not to exclude possible user views but rather to incor­

porate them or at least provide the ability for expansion with the purpose of a

future incorporation. Story [122] when defining a GIS, talks about "...integra­

tion of geo-scientific, [and] space refered information. [Moreover] The GIS can

be extended by the fourth dimension (time). Thus a Geo-Information System is

a space refered information system for the geosciences". Early stages of GIS are

characterized by their ad hoc nature, and the wide variety of disciplines involved

in the attem pt to use computer technology, since solutions that GIS provided

were very closely related to the application involved.

From a resource management perspective, the main four components that a GIS

includes, are:

1. hardware

2. software

3. information and

4. the users that will interact with the system.

Software along with information are the parts that are stored, some way, within

the hardware, although they are different in structure and behaviour. Software

CH APTER1. INFORMATION SYSTEM S 30

has a dynamic behaviour, as it can instruct the hardware and manipulate the

information. Information on the other hand is static relative to the hardware

component, signifying that it is meaningful only to the users and possibly to

software designed for information processing. Moreover, software is a series of

machine level instructions stored permanently. Before this final status of storage,

an interface (usually a high level language) has to be used by the developer

to create it. Major software components in an information system (that are also

relevant to a GIS as explained later in this chapter) are the database management

system (DBMS), the programming language used for developing applications, and

the graphical user interface that stands between any user and the system.

Information, spatial or not, originates from raw data through a series of pro­

cesses. Along with raw data, it is organised via a data model which serves as an

organisational framework, it is stored permanently into a database and thereafter

it is manipulated through special software called the database management sys­

tem. In any state of transformation, it can be visualized through the graphical

functionality of the computer system.

Users may be categorised generally as either end users or system developers. End

users are the persons that finally utilize the system, with significant limitations

to alter the system’s functionality. Their requirements usually include adding,

storing, retrieving, updating and visualizing data and/or information out of the

system. In an application specific GIS, end-user groups may be defined, with

respect to their security access level, application domains, geographic location

etc. The more generic and integrated a GIS is, the more end user sub-categories

that will be found. This sub-grouping is necessary to be deployed prior to system

implementation, at least in a very generic way so as to aid the system developers

later to build application and/or data specific user group views and interfaces.

System developers groups contain people whose responsibilities involve system

activities with regard mainly to system functionality development itself, such as

system analysis, programming, database development, data base administration

and others. Sub-grouping here is also necessary in order to assign responsibilities

CHAPTER 1. INFORMATION SYSTEM S 31

prior to and after the system development. The taxonomy of the users is not

being addressed in the current thesis. In any category, a user interacts with the

system via an interface. An interface provides access functionality at a specific

conceptual level and hides the rest of the system architecture. User interfaces are

developed based on the functional requirements of a user group.

In many cases, GI systems are being developed in the context of specific applica­

tion domains (e.g. like environmental impact analysis, topographic mapping or

mining exploration, to name but a few). There are cases though, when multidis­

ciplinary applications are involved, such as governmental decision-making, where

information from different application domains must be correlated, combined and

used. In this case the GIS may be composed of many other modular sub-systems,

connected into a network, each one focused on handling a specific part out of the

total information set, thus presenting a distributed environment. In any case,

important factors in building a GIS are the development time necessary and the

assets involved for software development. Therefore, as every organization’s will

is to maintain as long as possible the core parts of the system, it is obvious that

the underlying data model should be capable of expanding its structure whenever

new information is to be stored. In this manner a GIS should be considered as an

integrated environment, in need of an open architecture. Both will be satisfied to

a great degree if the data model involved is intelligent and flexible enough. The

role of standardization is very important in order to achieve open architecture

within such a system.

As for the software components of a GIS, an architecture must be chosen. This

can be of three major types [25]:

- Dual or geo-relational architecture, where a file system is used to store

spatial data and a relational database management system is used to store

aspatial data. Several commercial systems provide such a solution. A well

known example in this category is ESRI’s Arc/Info, which holds all the

spatial data, while aspatial data that are stored in an external DBMS (e.g.

CHAPTER 1. INFORMATION SYSTEM S 32

Oracle) may link to the spatial, through their unique identity. Another

example is ESRI’s ArcView which may be used with Microsoft’s Access

DBMS.

- Layered architecture, where both spatial and thematic data are stored in

relational database management system. An example in this category is

Oracle’s Spatial Data Cartridge (SDC), which is built on top of Oracle

relational DBMS, and provides functionality for storing spatial and aspatial

data in the same database.

- Integrated architecture, where spatial and thematic data are kept in an

extended relational database management system (ERDBMS).

- Object-oriented architecture, where spatial and thematic data are stored in

an object oriented database. Example systems are LaserScan’s Gothic ADE

and Small world GIS.

1.4 Cadastre and Land Information Systems (LIS)

A cadastre may be narrowly defined as a record of interests in land, encompassing

both the nature and extent of these interests [108]. An interest may be broadly

interpreted to include any uniquely recognized relationship among people with

regard to acquisition and management of land. A land information system (LIS)

or a cadastral information system is a specialized GIS in which data are strongly

related to the concept of legal rights to land. According to the Federation Inter­

nationale des Geometres (FIG) [41]:

A Land Information System is a tool for legal administrative and eco­

nomic decision-making and an aid for planning and development which

consists on the one hand of a data base containing spatially referenced

land-related data for a defined area, and on the other hand, of proce­

dures and techniques for the systematic collection, updating, processing

and distribution of the data. The base of a land information system is a

CHAPTER 1. INFORMATION SYSTEM S 33

uniform spatial referencing system for the data in the system which also

facilitates the linking of data within the system with other land-related

data.

Since land related information is definitely geographically related, an LIS can be

seen as a subset of a GIS regarding the type of data that are manipulated. On the

other hand, due to the legal, administrative and economic impacts of an LIS, it

becomes necessary to ascertain its functionality and effectiveness in relation to a

GIS, as an LIS plays an important role within the decision making of a country. In

an LIS database, in contrast to a generic GIS (in which effectiveness depends on

the agreement between the data inside the database and the respective real world

phenomena that they model), information in the database, once stored is reversely

related to the real world phenomena and sometimes used to transfer these features

back into the real world. In effect, the information in the system is of crucial

importance: for example, the information regarding an ownership parcel along

with its respective owner(s), once it has been verified and stored in the database,

is considered to be legally correct as well as absolute, and provided with this

information the specific parcel of land can be legally characterized as belonging

to the specific owner. Unless the contents of the database are not correctly

updated and verified whenever necessary, legal inconsistencies may occur.

The multipurpose cadastre may be defined as a large scale, community-oriented

land information system designed to serve both public and private organizations

and individual citizens [42]. This definition clarifies the multiplicity in the pur­

pose it will serve. Its distinguishing characteristics [111] are:

1. Employment of a proprietary land unit (the cadastral parcel) as the funda­

mental unit of spatial organization;

2. Correlation of a series of land records (such as land tenure, land value and

land use) to this land unit, the parcel;

3. Completeness, wherever possible, in terms of spatial cover;

CHAPTER 1. INFORMATION SYSTEM S 34

4. Provision of a ready and efficient mean of access to the data.

Chrisman [37] identifies that the fundamental framework for a multipurpose land

information system is the underlying geodetic framework and the relevant knowl­

edge of its quality. This is quite obvious, if we take into account what different

GIS applications have in common: that is basically the spatial data themselves,

which are bound to a geodetic framework. It is quite often the case that spa­

tial data refer to a different spatial framework in terms of its coordinate system

definition, however this does not impose a serious problem when it comes to the

combination of the data, which is feasible through coordinate system transfor­

mation.

Moreover, for a cadastre to serve as a multipurpose one, then the underlying data

model (discussed further below in section 1.4.1) must be multipurpose as well, so

that different applications that employ different data structures and information

may have access to the same dataset, without imposing serious operability issues.

For this goal to be achieved, many aspects have to be discussed first. The way

that the proposed model is designed to be a multipurpose one, is discussed in

section 3.14, but it is recommended that the reader should not skip the text in

between, as important issues are discussed.

A cadastre usually contains a core data set, mostly related to land tenure rights

and aspects of value, as well as additional data that are useful and can be ref­

erenced to the parcel. Core items may include land rights and restrictions, land

values and tax assessments, land use, housing and buildings, population and cen­

sus data, administrative information, archaeological sites. Additional information

[42] might be the topography, geological data, soil classification, vegetation, hy­

drology, wildlife, meteorological information, pollution health and safety, indus­

try and employment, transport systems, utilities (gas, electricity and telephones),

emergency services. The primary linkage mechanism among geographical infor­

mation, as mentioned already, is the underlying geodetic framework, which will

enable the correct overlay of data and secondary mechanism is the identity of the

CHAPTER 1. INFORMATION SYSTEM S 35

land parcel in the cadastral database. The implementation of these mechanisms

is done through the data model, which will enable the unified storage and process­

ing of data from different sources and perhaps from different geodetic reference

systems.

In any of the concepts mentioned earlier about the cadastre, the basic unit of

reference is the land or cadastral parcel, which is an unambiguously defined unit

of land, within which homogeneous rights and interests are legally recognized. It

envelops a continuous area of land with a history of legal interests [102], [108]. As

a three-dimensional division of the earth, the parcel may include super-adjacent

and sub-adjacent rights in addition to surface rights. Homogeneity regards the

nature of rights that will define the land encompassed by the parcel, while conti­

nuity is concerned with the spatial extent of the property interests [102]. Parcel-

based land information systems can be classified according to the information

contained in the system and/or the primary purpose of the system. McLaughlin

[102] identifies three categories:

1. fiscal cadastres which are developed primarily for property valuation and

taxation;

2. juridical cadastres which serve as a legally recognized record of land tenure;

and

3. multipurpose cadastres which encompass both fiscal and juridical cadastres.

The definition of a multipurpose cadastre given by McLaughlin and Nichols [102]

is an attem pt to unify the two different kinds of cadastre. However, information

that exists as part of a cadastre can prove useful to a multitude of other applica­

tions. In this way, a multipurpose cadastre encompasses all possible applications

that may retrieve or contribute information. It is considered, that this kind of a

multipurpose cadastre, can serve as the basis of a national GIS, not only due to

the possible country-wide extent of the data, but also because of the plethora of

information held.

CHAPTER 1. INFORMATION SYSTEM S 36

1.4.1 Data modelling

In most cases, GI systems are built ad hoc for a specific application, since the

assets and time allocated for the application development may usually restrict

the functionality of the system. In the future, the need for the system to expand

will usually occur and the degree will mostly depend on the development strat­

egy that has been followed initially, which seriously affects, the so called open

architecture of the system. Different system development methods have been pro­

posed and followed throughout the technological evolution of recent years. The

thesis purpose regarding the open architecture issue is to introduce the object-

oriented approach to the development of a multipurpose data model. It is clearly

the researcher’s opinion that a multipurpose data model serves as the basis for

a multipurpose land information system which is used to manipulate cadastral

information.

According to Worboys [135], "... a model is an artificial construction in which

parts of one domain (source) are represented in another domain (target). ...

The purpose of the model is to simplify and abstract from the source domain."

Whatever belongs to the source domain is transformed into the target and vice

versa. Models are useful if they simulate the source domain as closely as possible.

For this to be feasible, some kind of mechanism that moves from one domain to

another is necessary. This movement is called a morphism [135], which is defined

as “...a function from one domain to another by preserving some of the structure

of the source domain in the translation.”

In the context of a GIS, models can be operated in many situations, from the

application for which a GIS may be built, right down to the lowest level where

the information is stored in the computer. Each application, whether it is related

or not with the geographic space, has a domain, called the application domain,

which in turn has a respective domain model It is the way by which concepts

are organised. Application domains may be information technology related. In

the case that an application needs computerized support, then a connection from

CHAPTER 1. INFORMATION SYSTEM S 37

this application domain to the physical location of the information has to be es­

tablished. This linkage mechanism goes through three major stages, by mapping

the conceptual models of every stage. Thus, (assuming that the application itself

is stage 1), starting from the application domain model (stage 2), and well before

any computer support is involved, a conceptual model must be used (stage 3).

Examples of such models are the network, the hierarchical, the relational and the

object-oriented. If this model has to be permanently stored in the computer, then

the next stage is to manipulate it through a logical computational model (stage

4). This can be a database management system or a persistent programming

language (as discussed in chapter 2). Finally, since information has to reside on

some kind of physical media (e.g. a hard disk, or an optical disc) then the physical

computational model is involved (stage 5). This model implies a strong, and usu­

ally not very flexible, connection with a specific hardware/software platform. To

summarize, a series of mappings from the application domain model to the other

end, the physical computational model must be defined and implemented. This

modelling sequence can be schematically represented as in figure 1.2 (modified

from [135]).

I II III IV V

Physical
computational models

Application domains Application
domain models

Conceptual
computational

model
(Object Orien ta tion)

Logical
computational

model
(O O D B M S , O O PL)(e.g. land parcels,

land rights, etc.)

(e.g. LIS) (distributed hardware
and software platforms)

Figure 1.2: Domains and the modelling stages in a multipurpose GIS

In figure 1.2, arrows represent the translation that takes place from one do-

CHAPTER 1. INFORMATION SYSTEM S 38

main to another and ellipses represent domains. The constituents of any source

domain may, for example, be entities, relationships, processes or any other phe­

nomena of interest. A model is particularly useful when it simulates efficiently

the source domain and the "movement" between the domains (source-target) is

fairly straightforward. Examples of application domains are the administrative

areas domain, electrical supply networks, road and railway network management,

cadastral information management, to name but a few. The last one, as an ap­

plication domain is the focus of the research. Each of these application domains

includes a domain model that is specific to the domain itself. The conceptual

computational model takes into account the computational model. In this do­

main the relational or the object model can play a significant role. The logical

computational model takes into account a specific paradigm. For the entity-

relationship model the conceptual model primitives are mapped into entities and

relations. For the object model the primitives are individual objects. The phys­

ical computational model is a specific combination of a hardware and software

platform. The rapid technology evolution in this domain, results in a diverse

variety of products, each designed for different application domain requirements.

The role of standardization is also important in this phase. The actual presence

of data is at the physical model, while the rest of the models are used to describe

the domain data type and behaviour.

When a data model, regardless of the level involved, is built to manipulate in­

formation that has some kind of geometry as a part, then the model is called

a spatial data model. If this spatial information refers to more than one times­

tamp, then the model should be called a spatio-temporal data model It must be

noted that usually a spatial or spatio-temporal model is mostly used within a

conceptual computational model.

Application domains and their models are the application expert’s task to define.

The concern of this thesis is that a multipurpose data model at this level should

be capable of supporting many application domains, mostly in terms of their spa­

tial component. This is feasible by defining a finite set of application domains,

CHAPTER 1. INFORMATION SYSTEM S 39

specifying their domain models and finding their union regarding the geometrical

information they involve. This union of conceptual entities will be the basis of the

development of a multipurpose model. This, however simple it may sound, in fact

is rather difficult to achieve, simply because of the large amount of different ap­

plication domains that are based on spatial data, along with the many variations

found among data models of the same approach (not to mention the different

data structures that these domains may employ). An alternative to this is to

employ a flexible conceptual computational model, which contains a basic set of

objects1 that include some kind of geometry, and additionally provides support

for the definition and creation of higher level, aggregate objects. Moreover, these

aggregate objects should be able to communicate themselves, regardless of the

data model schema used to define them. The object-oriented model is considered

to be one of the most suitable for this purpose.

In order that an initial model can be built, a single application domain has been

chosen, namely a land information system for the cadastre. It is envisaged that

later, this model may be augmented with additional features and artifacts so as

to provide support to more than one higher-level model from different application

domains. This incorporation will definitely affect the model, but only in terms

of its contents and not of its structure. Schema modification is always part of

model development, both during development and during utilization within a

computerized system.

The computational model concerns the computational context within which the

transition from the application into the computerized system takes place. Ex­

amples of such models are the entity-relationship (ER) or the object-oriented

(0 0) , which has been adopted in this thesis. The latter, as mentioned earlier, is

considered to provide support for modelling multiple application domains. Many

different approaches can be found, in composing the basic artifacts of an object-

oriented model, as discussed in chapter 2. For this thesis, the Unified Modelling

Language (UML) has been adopted as a tool to visually construct the data model.

1The term here is used in the sense of an identified unit of information within the domain.

CHAPTER 1. INFORMATION SYSTEM S 40

UML has been adopted as a standard by the Object Management Group (OMG)

and is spreading and being adopted fairly quickly for similar data and software

modelling purposes. Specifications of the UML can be found in chapter 2.

The logical computational model represents a lower-level modelling than the com­

putational model and regards specific computational paradigms (like relational

against object-oriented databases). In this thesis, the object-oriented paradigm

has been adopted, whenever applicable (that is: object-oriented DBMS, object-

oriented programming language, object-oriented GIS). The main reason for this

selection is because it eliminates the mismatch between object-oriented designs

and non object-oriented platforms, as discussed in chapter 2.

The physical computational model is of no particular concern within this thesis,

since it regards low-level implementations closely coupled with a specific com­

puter platform (software and hardware). Moreover, interoperability is one of the

key goals of the proposed model, which requires loose coupling with the physi­

cal implementation. However, as already mentioned, this is not always feasible

since the final implementation in terms of testing and evaluating the design,

involves specific platforms. This research involves Java as the object oriented

programming language, Java’s serialization mechanism which is used to achieve

persistence, and LaserScan’s Gothic ADE, as the GIS platform. All of these,

individually, constitute specific physical computational models. In this way, in­

teroperability relies on the functionality found in these platforms. This issue is

discussed thoroughly in the relevant appendixes.

1.4.1.1 Providing support for m ultiple application dom ains and plat­

form independence

For a successful open-architecture GIS environment, multiple application domain

models must be able to "morph" quite straightforwardly, into the same concep­

tual computational model. In other words, they should be able to organize the

concepts and information using similar artifacts. Additionally, different applica­

C H A P T E R 1. INFORMATION SYSTEM S 41

tions should be capable of using the same software, regardless of the way they

handle data. It is inevitable therefore that the conceptual model must be flexible,

complex and rich enough to anticipate similar needs found in the application do­

main model. Consecutively, for maximum hardware and software independence,

the logical computational model must provide the capability of "morphing" into

multiple physical computational models. In other words, the design methodology

must be as independent as possible from the software and hardware employed.

Finally, the software itself should also be loosely coupled to the hardware. This

can be achieved either with a single and very efficient logical model on which the

design must be based on, or with a series of interfaces from the various concep­

tual and logical models to the lower level physical ones. The later approach has

been proposed by the OpenGIS consortium. Therefore the conceptual computa­

tional model with the respective logical computational model are of unambiguous

importance in the modelling process for an open architecture and multipurpose

data model. The link between multiple application domains and different hard­

ware/software platforms within the same environment is considered to be the

object model. The MPOOST model has been designed to serve multiple applica­

tion domains and uses the Java language to achieve this goal. This is discussed

in section 3.14.

1.5 Data in a Geoinformation system

With regard to the processing stage and the system, the data that are stored in

a database can be (figure 1.3, page 47):

1. Raw data, which have not undergone any kind of processing.

2. Structured data, which have only undergone processing regarding their struc­

ture and not their content.

3. Interpretations, which have undergone processing which affects both the

structure and their content.

CHAPTER 1. INFORMATION SYSTEM S 42

Data in the later two categories are derived from the previous ones through spe­

cific processes provided by the functionality of the system. Data in all categories

must be stored and later retrieved and visualized not only in isolation, but with

respect to their origin.

Regardless of the conceptual data model that a system works with (such as

relational/object), data can always be divided into two main categories: spatial

data are those that have a spatial dimension relating to the real world (the

earth) and aspatial data those that do not have. This distinction has proven to

be necessary and it is only a matter of the level in which it takes place. For

instance, in the relational model paradigm the distinction lies within the user’s

initial conceptual view, while in the object model (in which an object as a concept

may have spatial and non-spatial data), the distinction may be done in the lowest

level, the physical. As a result, robust and effective, query oriented, indexing

techniques can be applied. Moreover, for an effective data-level analysis such a

distinction is essential. This distinction however does not mean that spatial and

aspatial data will be treated differently, as one of the basic requirements is to use

a single store which can hold both types of data.

1.5.1 Spatial D ata

Spatial data may be characterized as either raster or vector. The difference be­

tween the two data models is mainly based upon the consideration to discretize

or not the spatial framework to which data are referring. The two models are

strongly related to the instrumentation and methodology used for acquiring them.

Vector data can also be thought as objects, which are discrete entities with sharp

boundaries. With the respect to the Euclidean space, vector data in a GIS may

include up to 3 dimensions and may refer to a specific date/tim e. We could

therefore speak of spatio-temporal data/framework, or perhaps for 4D vector

data or framework. Raster data are continuous by nature and are related to a

specific date/tim e on which these were captured. Moreover, for vector data be­

CHAPTER 1. INFORMATION SYSTEMS 43

sides geometrical information, the topological relations must be built and stored

as well. Topology refers to the connectivity of the geometric objects in a space

where the objects are embedded. Therefore concepts like continuity, boundary

and connectedness may be defined, stored and used within the vector component

of a GIS. Since vector objects can be aggregated, thus comprising more than

one part, topology may be divided into local, refering to the internal structuring

of a complex object, and global or external refering to the connectedness of a

geometric object to its neighbourhing objects [25].

Independently of the model employed, spatial data always represent attem pts to

capture the tru th about a real-world phenomenon. Since, axiomatically tru th is

never known, therefore spatial data are liable to errors and inaccuracies. Error

may refer either to the deviation from the truth, which is described by the term

accuracy, or the precision degree of the measurements, which is expressed by

the term precision. The term error here also includes the statistical concept of

variation.

In the context of an integrated GIS, both vector and raster data must not only be

incorporated but also be interrelated. This implies an efficient data model which

should capable of storing both kinds of spatial data as well as the processing

history of derived information and optionally the computational process itself.

Therefore, the need for storing information on how information is derived from

data is necessary. An example is the raster to vector transformation (and vice-

versa), where the derived vector data set must refer to the original raster data

set, whence it originates.

In conclusion, there is a strong need for an integrated, generic, modular, open

architecture data model which should be capable of including such spatial in­

formation as vectors, the third dimension and time, raster data and provide the

facility to easily expand itself to suit specific application modelling needs that will

occur in the future. However, it has been proven difficult by a model itself to in­

corporate efficiently the diversity of data, concepts and their inter-relationships

CHAPTER 1. INFORMATION SYSTEM S 44

that are encountered within this heavily demanding requirement. In effect, a

combination of many models, or perhaps the expansion of a single model has

to be considered. The most promising of the conceptual and logical models that

can incorporate all the above required functionality is considered to be the object

model.

1.5.2 Spatial data models and their functionality

1.5.2.1 Field versus object data m odels

A commonly encountered debate in GIS centers on the dichotomy of spatial

models. The effect of this cascades down to spatial structures and implemen­

tations. Many researchers (Chrisman [36], Peuquet [116], and Worboys [135])

have discussed these two different ways of modelling. Field based models (in the

bibliography also encountered as raster models) treat information as a contin­

uous distribution of an attribute value over a specific spatial extent, which has

been canonically tessellated. This distribution can be mathematically formalized

as a function. Object based models (or vector) in contrast, are sets of discrete,

identifiable and tangible entities, separate from each other, which usually do not

imply any kind of canonical spatial tessellation.

An interesting commonality between the two models is that they both treat the

geometric space in a discrete way, since otherwise any manual computation and

therefore any computer-based implementation can not take place. In the case

of raster data, a canonical segmentation of space, is basic prior to data capture

and storage. Cells (or pixels) are the fundamental unit that raster models are

using to store data. The respective unit in the object model is the point, where

the segmentation of space is irregular and defined by the existence of identifiable

objects of interest in the real world. Effectively, points and cell centroids are of

the same geometrical nature, but only the spatial pattern in which they form

upper level entities (e.g. lines/polygons or images respectively) is the feature

CHAPTER 1. INFORMATION SYSTEM S 45

that makes the distinction. In the proposed object model, this is the key feature

that links both raster and vector data in the same conceptual model.

Particular to object based models is the topology, that is the connectedness of

objects in the spatial framework. Topology in this case has to be defined ad hoc

and it is strongly related to the object contents themselves. In the case of raster

data, topology is known a priori, since any kind of grid patterns are of known

connectedness. Therefore raster topology is not of major concern in the field

model paradigm.

Usage of either of the two models strongly depends on the real wrorld phenomenon

or entity that is being modelled. As Couclelis [39] notes: "The points, lines,

and polygons that do exist in the geographic world are practically all human

artifacts, falling into two broad categories: a) engineering works such as roads,

dykes, runways, railway lines, and surveying landmarks and b) administrative and

property boundaries.". The concept of an artificial entity is clear, as opposed

to a natural entity or phenomenon. For any artificial phenomenon it is more

convenient to use the vector model, while for natural phenomena, sometimes, is

more appropriate to use the raster model 2.

1.6 Required functionality in a GIS

Regardless of the aforementioned characteristics of spatial data, what makes

a geo-information system more demanding than other information systems is

mainly the idiomatic nature of spatial datasets, which include [122]:

- Extremely large volumes, which are introduced by the recent developments

in data collection techniques, such as GPS, photogrammetry, satellite im­

ages etc., in which a significant enhancement in precision has been achieved

over the past decade. The main issue posed here is how this vast volume

2However, this is not a rule, as for example polygons can adequately model lakes (sharp boundaries)

but not forests (fuzzy boundaries), although both objects may be natural.

CHAPTER 1. INFORMATION SYSTEM S 46

of data can be manipulated efficiently in terms of access, processing and vi­

sualization. Hence, the subsystems of a GIS affected here are the database

management system as well as the graphics kernel, which both should be

incorporating intelligent algorithms which provide the required fastness. As

it it discussed further below in this section, mechanisms like indexing and

clustering found in object oriented databases may help to tackle the problem

of fast access. Additionally, hardware development may also be the answer,

mainly for visualization performance enhancement.

— Complex modelling. Spatial data, regardless of being in a vector or raster

format, are known to be composed of other parts either of spatial data or as­

patial (attributes). The data structure used to model real world geographic

objects should be able to include recursively defined objects as well as tran­

sitive closure operations. Sometimes the degree of complexity and recur­

siveness is increased, and the relational model is known not to provide such

facility (this is discussed in chapter 2, section 2.2). In object-orientation,

complex modelling is an inherent feature.

- Variability of the data associated with the entities of the same type (e.g. geo­

referenced objects, temporal objects). This characteristic, introduces the

need of associating an entity of a certain type with a multitude of different

other entities, when all data are modelled as entities. Object orientation

provides the built-in feature of object links, which properly addresses this

issue.

In order to tackle the issue of required functionality, a classification is necessary,

based on the type of operations on data. The functions that a geographical

information system provides may be divided into five general categories [82]:

1. Data acquisition

2. Preliminary data processing

3. Data storage and retrieval

CHAPTER 1. INFORMATION SYSTEM S 47

4. Spatial search and analysis

5. Display and interaction

The above categorization is illustrated in figure 1.3.

Data acquisition

Database

Display and interactionPreliminary data processingStorage and retrieval

Graphics

Search and analysis

Raw data

Interpretations

Structured data

Observed phenomena, documents and maps

Figure 1.3: Functionality of a GIS. (Modified from [82])

Data acquisition includes all the spatial data collection mechanisms such as to­

pographic surveys, satellite imagery, photogrammetric procedures or even socio­

economic surveys. Data in this stage may be either in digital format or in any

conventional format, such as documents, lists, maps, questionnaires, charts etc.

The first stage of data processing is therefore to transform them into a digital

format within the computer system, namely the database. By the term data, the

set of human concepts and observations that are related to the system itself are

also included. The term has to be broad enough in order to include information

such as rules (real world or data integrity constraints), real world and system

CHAPTER 1. INFORMATION SYSTEM S 48

events, facts, metadata, such as procedural information (lineage) about the data

collection fashion of a specific technique or the processing algorithm used to pro­

duce a specific information set. In order to manipulate such a complicated set

with its inter-relationships in the database context it is necessary to thoroughly

analyze it and find a suitable model, initially for the organization (conceptual

model) and later for the storage (logical and physical model).

As already mentioned, data that are stored within the GIS database may belong

to one of the following three main categories:

1. raw data;

2. structured data;

3. interpretations.

Each category results after some processing of its predecessors. This process

flow is always one way, hence information will never be transformed back into

the source data. However, information as output from one process may serve as

data for another process, either within the same system or when exported to an

external system. Therefore all data must be stored in the database always along

with the processing information involved. In this way, the user is aware of the

origin of information, and may issue queries that are related to all three categories

and their processing history. It is, therefore, of great importance for a GIS to

be built upon an intelligent data model, which has to incorporate processing

information storage. This historical information about data is called lineage and

it is considered to be a metadata component. The object-oriented model and its

artifacts do provide this kind of functionality.

Data collection and update is an expensive phase of the GIS development. There­

fore, the database must have such functionality in order to preserve and exploit

the assets involved to built such a system. As Egenhofer and Frank [59] comment,

a geo-information system integrates data from various resources into a single and

homogeneous system, therefore it requires powerful and flexible data models to

serve tasks. Such data model characteristics can be:

CHAPTER 1. INFORMATION SYSTEMS 49

1. Sophisticated treatment of real-world complex geometry. The term complex

is used to denote the aggregational nature of real-world objects.

2. Representation of the same data at different conceptual levels of resolution

and detail. This signifies the need for abstraction and generalization sup­

port.

3. Management of history and versions of objects (versioning).

4. Combinations of measurements with different resolution and accuracy.

5. Correctness of the information within the database. This is a major concern

in the computer science field. It primarily suggests that any data or infor­

mation stored must be of known correctness degree, whether this is high

or low. Guaranteeing correctness involves mainly the utilization of formal

specifications. In the context of geographic information systems this is still

under research, since no specific formal methodologies have been developed.

So far, the most popular way that correctness information is being stored is

through metadata.

Specific GIS requirements have direct impact on the mechanisms used within

the database management system. Authors such as [35], Frank and Egen-

hofer [64] and Egenhofer and Frank [57] suggest some of them along with

proposals towards providing mechanisms to enhance the functionality.

6. Clustering and indexing enhancement. The data set stored in the database

should be seamless and not divided into user-visible map sheets, unless for

the stage of visualization or hardcopy production. The performance penal­

ties that are introduced are significant in the case of large data sets, mainly

because of the frequency of disk access necessary to retrieve the required

data through a user defined query. In order to minimize the number of ac­

cesses, spatial storage clusters must be integrated into the functionality of

the database subsystem. These techniques are used to store spatial data on

the disk so that spatial neighbors are also neighbors on the storage device

[57]. Obviously, this offers an enhancement to the problem, however it does

CHAPTER 1. INFORMATION SYSTEM S 50

not fully resolve the issue of clustering, since objects are accessed by their

non-spatial components as well. Since simultaneous multiple clustering can

not be implemented (it would result in data being duplicated) the alter­

native is to use indices based on different user needs when querying and

accessing objects.

7. Single database: both spatial and non-spatial data should be stored and

manipulated within the same database.

8. Nested transactioning to support nested objects: for this requirement the

basic principles of a transaction should be augmented with more than the

basics (atomicity, consistency, isolation and durability).

1.7 Data concepts

This section discusses in more detail the main research issues that were examined

during the elaboration of the research. Issues include characteristics of the data

and the concepts, spatial and non-spatial data, temporality, m etadata and the

required functionality.

1.7.1 Spatial and temporal data modelling

According to Egenhofer et al. [55] a spatial data model is "... a formalization of

the concepts humans use to conceptualize space". It is very important that the

model is readily transferable to the computer. Two basic different approaches

are well known within spatial modelling, namely layer based versus object based

approaches. In the earlier, a unit may have several values for every layer, while

in the latter complicated data structures are allowed.

A data model is a means of representation for database design. It provides a

tool for specifying the structural and behavioural properties of a database and

ideally should provide a language which allows the user and database designer

CHAPTER 1. INFORMATION SYSTEM S 51

to express their requirements in ways that they find appropriate, while being

capable of transformation to structures suitable for implementation in a database

management system [140]. As a result, a proper data model should:

- be efficient;

- support data integrity checks;

- offer a natural logical structure to its user;

- demand easy maintenance and extension.

Choi et al. [35] divide the overall object-oriented model into two main modules:

the geographic and geometric data model, with the former being on top of the

latter. This distinction is based primarily on the fact that geography involves

the passage of time, while geometry is rather static. Additionally, the models

are different not only because of the possible user views, but on the computa­

tional functions that are used within each module. Almost every class that mod­

els a geographic object has a corresponding class in the geometric data model,

which contains the geometrical information. This very basic distinction between

time-varying geography and static geometry provided the incentive to start the

component based analysis in chapter three.

Data modeling can be seen as a three-staged process [131]. In short, real-world

entities are part of the continuous space. These entities have the property of

being indefinite in terms of being computationally defined in a precise manner.

Through the abstraction approach, they are transformed into discrete objects and

therefore are part of a discrete space. In this way, they loose their indefiniteness

and become computationable. However, in order for these objects to become

storable an additional transformation is necessary called representation. The

objects resulting from this transformation are part of the representation space.

To make a relation with the modelling stages described earlier, continuous space

belongs to the application domain model, discrete space is part of the conceptual

model and representation space is part of the logical model.

CHAPTER 1. INFORMATION SYSTEM S 52

Two geographical objects may have identical geometry, and therefore refer to

identical geometrical objects. Their identity, however, remains distinct, therefore

resulting in two different geographical objects in the database pointing to the

same geometrical object. This approach is widely used ([35]) and has the

advantage that geometrical data redundancy is attenuated. Moreover, indexing

on geometry is enhanced.

Geo-referenced objects in a database may employ four major properties (Egen-

hofer and Frank [59]):

1. Persistence

2. Geometry

3. Graphical representation

4. Temporal reference

These three latter properties suggest the main modules that classes should be

grouped in as it is discussed in chapter four. Persistence of objects, refers to

whether they are stored in permanent storage media or they remain transient, and

therefore destroyed whenever the application that these originate stops executing.

It is moreover considered to be a property strongly coupled with the other three

mentioned above. It is discussed in more detail in chapter two, section 2.5.2.

Worboys [131] uses the notion of simplicial complexes to represent geographic

data embedded in a plane (two-dimensional). He additionally proposes a classifi­

cation scheme for these geometric artifacts. These include 0-extent, 1-extent and

2-extent objects, having 0, 1, or 2 spatial dimensions respectively. The formal

definitions of every spatial class that he proposes are based on homeomorphism

that they show to a mathematically defined geometric object. Homeomorphism

relates two spatial objects (one is homeomorphic to another) if they are topo­

logically equivalent, i.e. one is transformable into the other using a reversible

topological transformation. In this way, a strand is homeomorphic to a straight

line segment, a loop is homeomorphic to a circle. Simplicial complexes are likely

CHAPTER 1. INFORMATION SYSTEM S 53

to be used in the case of modelling discretized continuous surfaces like Triangu­

lated Irregular Networks.

Geo-referenced objects are constructed as aggregates of geometric objects, the

former as a group holding an ordered set of the latter. Regarding their geometries,

geo-referenced objects may employ a degree of complexity e.g. they are allowed

to cross themselves. This results in the geo-referenced objects having a reference

to the same geometric object more than once. If such a case is allowed, it means

that they should be treated as sets. Therefore, set-based operations must also be

included.

When attempting to model a group of objects to create a category in an appli­

cation domain, this should be done with respect to three properties they must

hold [101]:

- Be identifiable.

- Be of interest to the design.

- Be describable.

An initial categorization for geo-referenced real world objects is necessary to be

addressed. More specifically such objects may be categorized:

1. In terms of their precise geometrical definition:

- Fuzzy, if they are not precisely defined in terms of their geometry. Pre­

cise definition refers not only to the simple aggregation, specialization

and association relationships between complex and primitive spatial ob­

jects, but also to the degree of uncertainty by which a higher level geo­

referenced object refers to its geometric component (e.g. point A is

within a forest area). The existence of such objects causes problems to

object-oriented modelling and therefore has to be simplified, either by

a) eliminating geometric fuzziness, so that sharp boundaries are defined

for fuzzy objects through rules or functions, or b) by allowing a degree

of uncertainty when referring to their geometry (possibility range).

CHAPTER 1. INFORMATION SYSTEM S 54

- Discrete, if they involve precisely defined geometry with no uncertainty

regarding their geometric parts.

2. In terms of their existence in the real world:

- Abstract, if they do not exist as tangible objects but as concepts. Ex­

amples are land property, right-of-way, etc.

- Tangible, if they exist as real world objects (e.g. tunnel, road, building

etc.).

3. In terms of the human role on their existence:

- Physical, if they exist as tangible objects, without the human inter­

vention. An example is the physical drainage network (rivers, lakes),

- Technical, if they exist as tangible objects, only because of human inter­

vention. Examples are road and railway networks, power distribution

facilities etc.

Additional classification may be imposed by other application domains and how

they group spatially related information. These classes will actually act as con­

tainer classes (as described in chapter two).

It is obvious that an object may belong to more than one category. It might

be physical objects which humans have modified in a way (like the diversion

of a river), or objects that exist as technical or physical but are considered to

be abstract as well (as administrative/property boundaries which coincide with

rivers or fences). This type of classification is very similar to the one that Couclelis

[39] has proposed. If this type of classification is used, then the concept of multiple

inheritance must be supported not only by the high level conceptual model but

by the implementation environment as well.

CHAPTER 1. INFORMATION SYSTEM S 55

1.7.2 Data concepts

As it has been stated, data are considered to include more than static attributes

but also the rules, facts, constraints or logical procedures that may be encoun­

tered in the context of spatial information. Therefore, prior to any data model

construction, a thorough examination of the data themselves has to be performed.

1.7.2.1 Spatial data and their geom etric space

Chrisman [36] has recognized that space may be conceptualized in two distinct

ways, either as a set of locations with properties (absolute space, existent in itself)

or as a set of objects with spatial properties (relative space, dependent upon other

objects). The implementation of the two different views of spatial embedding can

be done using the relational or the object-oriented data models correspondingly.

Regardless of the concept of space that may be adopted, it is necessary to dis­

tinguish amongst a) the spatial framework domain, b) the attribute domain and

c) the object domain that references the first two domains. Effectively an inte­

gral view of data, that involves both the spatial and the aspatial aspects can be

achieved. Thus, real world objects can “point” to other objects, which in turn

have their spatial embedding and their own set of properties. Worboys et al. [141]

have proposed a general object model for planar geographic information where

objects are spatially referenced to two kinds of objects: spatial and aspatial. The

spatial framework that they propose is embedded in the Euclidean 3D or 2D

space (R3and R 2 respectively), which results in a model of space described by

records of coordinates [135]. Since the purpose of this research is not to examine

mathematical spaces, but rather to adopt one, the Euclidean metric space for the

geometry along with the common coordinate geometric calculus and formulas will

be used whenever necessary.

With regard to space, spatial data that are stored via the model which will be de­

veloped, will be embedded either in the Euclidean three-dimensional space (R3)

or in two dimensional space {R2), whichever is applicable, depending on the cat­

C H A P T E R 1. INFORMATION SYSTEM S 56

egorization of the spatial data. Real world objects (RWO) that will be stored in

the database, will be embedded in the R 3 space, while the cartographic repre­

sentations of the database objects will be embedded in the R 2 space (see figure

1.4). The adoption of the two-dimensional geometric space is based primarily on

the media that a cartographic end product is produced, usually either on screen

or as a hardcopy.

In order to establish a terminology convention, for the rest of the text the term

entity will refer to a real world entity, tangible or not. An object is defined as

the representation of an entity in the database system, feature is the geometric

simplification of an object in the cartographic database, and symbol is the car­

tographic depiction of a feature in a hardcopy item or on the computer screen

3. The relation between real world entities, database objects and cartographic

features has to be made clear: the earlier, correspond to real world objects while

the later correspond to database objects. This sequence does not always apply

reversely, e.g. as a 2D cartographic feature may correspond to more than one

database objects, due to the elimination of the third dimension. Schematically,

figure 1.4 shows this modelling sequence.

Abstraction Projection Visualization

Entity

Real World

Object

RWO database

- R °

-3D topological
model

Feature
Cartographic

Representation
Database

-R
-2D topological
model

Symbol

Map (hardcopy
or screen)

Figure 1.4: Discrete modelling sequence, spaces and topological models

Real world objects are embedded in a three dimensional space. Cartographic end

products, in their majority, are two dimensional, including even modern virtual

reality interfaces, which nonetheless result in a 2D projection of 3D objects. In

3This convention is quite similar to the proposal by NCDCDS

CHAPTER 1. INFORMATION SYSTEM S 57

this way, the representation of a real world entity is at the same time separate but

linked from the cartographic depiction. An advantage is that digital cartographic

end products can be used in isolation for analysis purposes. The down side is that

the transformation of objects from 3D to the 2D topological model is necessary,

therefore some of the information may be lost. Entities are referring to real

world entities that are tangible or not. Database objects are the representation

of the entities that are stored in the database, while cartographic features are the

depiction of database objects on the map, either on a hardcopy or on the screen.

1.7.2.1.1 Coordinate system s The two major coordinatizations of the three-

dimensional Euclidean space that the spatial sciences have adopted are:

- Geographical coordinates (longitude and latitude). This kind of system

requires the definition of a mathematical parametric surface (either a sphere,

ellipsoid or geoid). A point definition, besides longitude and latitude might

include the distance from this reference surface. The definition of the surface

requires the specification of its parameters along with a major orientation.

In the case of the geoid, which shows a significant more complex degree in

its definition, a number of parameters must also be defined thus it is highly

unlikely to be used as a reference system. It is considered that the most

appropriate mathematical surface to be used is the ellipsoid.

- Cartesian coordinates, which can be either three- (e.g. x, y, z) or two- (e.g.

x , y) dimensional. The earlier might be used in geocentric systems, which

do not involve any kind of distortions, while the latter in map projections

which introduce three types of distortions: angular, areal and linear. The

first type of coordinate system requires the definition of an axis triplet, the

location of the axes start point, along with the major orientation, since axes

are considered to be vertical to each other. The coordinate system used in

a map projection requires more parameters, such as the surface that is used

to project the earth on etc.

CHAPTER 1. INFORMATION SYSTEM S 58

The selection of the coordinate system mainly depends on the extent of the

geographical dataset [48]. When large in extent, for example national datasets

are considered, it is most likely either the geographic or the geocentric coordinate

system will be employed, since both do not introduce any kinds of distortion.

However, map features are considered to use a map projection coordinate system

so that they can be drawn on a two-dimensional media, such as paper or screen.

Both types of systems refer to the same Euclidean space, and there is a one-

to-one transformation between them, so that a point has a set of geographical

coordinates and a set of Cartesian coordinates. Operations and algorithms must

be supplied to transit from one system to another.

1.7.2.2 Vector data

This category of spatial data includes discrete entities which in turn have a ge­

ometry, that derives from the coordinatized representation of the space and a

topology, which describes the spatial relations between them. An effort will be

made to incorporate the third dimension of the data, thus mathematically speak­

ing, working in the R 3 space.

1.7.2.2.1 Topology of vector data Space can be theoretically viewed as an

infinite set of points. Some phenomena though, are not defined for all points in

a continuous space. Only a subset of them is of interest [97]. Topology is about

the relationships between geometric entities in a discretized view of space.

According to Worboys [135], topology is the study of topological transformations

and the properties that are left invariant by them, and he identifies a set of

topological properties. In order to define topological relations between spatial

objects, the modelling primitives must be specified as well as the set of possible

operations between them. Topological relationships can be modelled using the

graph theory [97], where a graph is defined as a finite non-empty set of nodes

together with a set of unordered pairs of distinct nodes, called as edges.

CHAPTER 1. INFORMATION SYSTEMS 59

1.7.2.2.2 M odelling prim itives Theoretically, the notion of the simplicial

complex is used as a fundamental unit to build up a formal model ([76], [135],

[56], [25], [105]) as a finite set of simplices. A simplicial complex is any complex

geometry, which is composed of simpler geometric structures, the simplices. Sim-

plexes are to be the building blocks of larger structures. These are defined with

regard to their dimension as a set of connected points.

The simplices which are usable in a GIS environment are [135] :

- A 0-simplex is a set consisting of a single point. Geometrically it is equal to

a point.

- A 1-simplex is a finite straight-line segment. It is composed of 0-simplexes.

Geometrically it is equal to a line segment.

- A 2-simplex is a set consisting of all the points on the boundary and the

interior of a triangle whose vertices are not collinear. It is composed of

1-simplexes, and geometrically equals to a triangle.

- A 3-simplex is a set of all points on the boundary and the interior of a

tetrahedron (a volume with 4 faces). Graphically, in 2D space equals to a

set of triangles that in pairs share a common edge.

A more formal definition of the simplexes can be found in Breunig [25].

D efinition 1.1 (sim plicial com plex) A simplicial complex is a f inite set of

simplices with the properties that:

1. the intersection of the two respective simplices is either em pty or a face of

both simplices.

2. with every simplex each of its faces is also defined.

The boundary d C of a simplicial complex is a simplicial complex of dimension

(d-l).

A simplicial 3-complex is a set of connected 3-simplices. Each 2-simplex is bor­

dered by at most two 3-simplices and every 1-simplex is surrounded by at most

CHAPTER 1. INFORMATION SYSTEM S 60

two 2-simplices. Every 1-simplex connects two 0-simplices and the boundary of

a simplicial 3-complex is a connected sequence of 2-simplices.

Simplicial complexes employ their geometry by using coordinates, their topology

by maintaining references to other complexes, and their metrics (distance, angle)

by having them derived from its geometry. Metrics are defined in the metric space,

which satisfies the properties of identity, symmetry and triangle inequation. It

is noteworthy to mention that both topology and metrics may be derived from

geometry, although the reverse does not apply.

Other spatial object types can be generalized into 0-extent, 1-extent, 2-extent

and 3-extent, with the prefix number denoting the dimensionality of the type.

0-extent types include sub-types like point and node. 1-extent types include sub-

types like line segment, line, arc, chain, directed or undirected loop. 2-extent

types include subtypes as area, region, cell.

These are similar to simplicial complexes, with the addition that the latter can

be aggregated to form the previous. These primitives can effectively be used to

model complex 3D structures.

The bibliography is rich in work for modelling and classifying spatial primitives.

Major contributions are work from Egenhofer et al. [60], De Floriani et al [44],

Guting and Schneider (1993), Worboys [132], Worboys and Bofakos [138], Wor-

boys [134].

According to National Committee’s for Digital Cartographic Data Standards

NCDCDS et al. [109], definitions of fundamental spatial objects:

- A point is a zero-dimensional spatial object with coordinates and a unique

identifier within the map.

- A line is a sequence of ordered points, where the beginning of the line may

have a special start node and the end a special end node.

- A chain is a line which is part of one or more polygons and therefore also

has a left and right polygon identifier in addition to the start and end node.

CHAPTER 1. INFORMATION SYSTEM S 61

- A node is a junction or endpoint of one or more lines or chains.

- A polygon consists of one outer and zero or more inner rings.

These types of geometric entities can be also modelled using simplicial complexes.

However, in some cases it is considered to be costly, e.g. when maintenance of

the internal triangles of a polygon is required.

The geometric model involved in the research is partially based on the above

proposal by NCDCDS as it has been augmented with more features (e.g. polygons

with an indefinite level of recursively inner polygons).

1.7.2.3 Raster D ata

Raster data need to be transformed and interpreted as objects, so that effective

object-based analysis is possible [7].

1.7.2.4 Tem porality

Time is inherent within spatial data. It may be the date that the entities (rep­

resented by data) existed in the real world, the date that they were captured

or the date that they where stored in the database. Usually, systems are built

to take into account only the date regarding the existence of entities in the real

world. This does not allow the user to have an overview of previous states of the

information. Temporal support, enables an audit trail on the date. Moreover it

allows analysis to be performed of the information known by the database at a

particular time.

Temporal logic is a tool that enables its users to achieve better understanding of

the nature of time. Its primary aim is to clarify the content, to elaborate the

consequences, and to elucidate the interrelationships among the axioms of time in

general (Rescher and Urquhart 1971, from Al-Taha [2]). Unlikely with standard

first-order logic, where a sentence is either true or false exclusively, in modal logic

the truth of a statement is closely related to its temporal component, and can

CHAPTER 1. INFORMATION SYSTEM S 62

only be answered with a temporal context. By the term temporality we address

the aspect of information which is a consequence of the effect of time.

Two basic approaches have been used in temporal reasoning for databases: a

change based approach and a t im e based approach. However, the two concepts

are inseparable, since change occurs over time, and time is meaningless without

any change [2]. This is also the conclusion from the conference held in 1992,

regarding "Methods of Spatio-Temporal Reasoning in Geographic Space" (Frank

et al. 1992), where participants agreed that space and time reasoning can be

inherently linked to each other, since we can infer time from space and vice

versa. This distinction on time and change based views of temporality serves as

the basis that temporal reasoning models have been built: whenever a change

occurs in the real world, this is surveyed and stored in the database, creating a

single snapshot. Eventually, the database will soon evolve to a series of snapshots,

an approach which is change-based. The latter concentrates on recording changes

valid at a certain time point.

The change based approach shows two major modelling shortcomings, namely:

- Instantaneous actions: actions are supposed to be of zero duration, therefore

their results are immediately apparent to the system. This is not true,

however, for most real-world actions that cause change to happen. In a

more formal way, a wait operator is not allowed in this approach.

- Lack of concurrency and overlapping actions: actions cannot be simultane­

ous or overlap among them.

Other limitations involve future prediction not based on changes in the past, com­

plex action results (ramification problem) and selectivity of change on complex

objects (frame problem).

The time-based approach recognizes the passage of time as the only change which

is unaffected by anything else. In this manner, time can be considered regardless

of the space, and the state of the space can be thought of as a consequence of

change due to time passage.

CHAPTER 1. INFORMATION SYSTEMS 63

In any case, when a GIS is enabled with a temporal extension, it might be called

a temporal GIS (there is more than one suitable adjective as discussed later) and

it is therefore able to answer questions of type “when” and “where” instead of

only “where”. Temporal extensions also serve as the basis of handling histori­

cal data and make change management feasible. It must be noted that at the

time that this chapter was written, temporal GI systems are not very common

in the market, and the few available are based on 0 0 technology (e.g. Laser

Scan, Smallworld). This is mainly because the relational model does not pro­

vide artifacts to directly implement versioning, hence change management is not

straightforwardly supported. However, it is possible to use relational technology

to construct temporal GI systems and the literature is rich in relevant work (such

as in Langran [94]).

The simplest way of introducing temporality to spatial information is through

time stamping, which is the attachment of a time value to any other data value.

This is very generic and it implies that all values are subject to change, something

that it is usually partly true since some of the data remain unchanged for the

whole life cycle of an object. In any case, time stamping only takes into account

the time that data were captured. This directly points to the date that they

existed in the real world. Of major importance here, is the level at which time

stamping should occur, especially when aggregate objects are involved, so as to

avoid data redundancy: should aggregate parts be time stamped or should the

whole object? In the first case, the aggregate parts specify the time stamping of

the whole, therefore a generalization relationship is implied, while in the latter

case, the whole object is timestamped, resulting in transfering this information to

its parts. This implies a kind of inheritance function from the whole to its aggre­

gates. Both solutions are viable, although only one should be followed throughout

a design. The answer usually relies on the frequency of updates and the nature

of queries. Snapshot approach can be found in the relational model approach.

Al- Taha[2], uses multivalued attributes to represent temporal data within the

context of a relational DBMS. Each time a new change occurs to an attribute, a

CHAPTER 1. INFORMATION SYSTEM S 64

new value will be added to its multivalued data set, and only changed attributes

will receive a new data field. This approach saves a considerable amount of disk

space, however it results in performance cost whenever a time-specific snapshot of

the database must be reconstructed. This problem occurs regardless of the type

of model used (relational or object-oriented). He suggests that a solution to this

problem would be a hybrid snapshot and multivalued attribute model, so that

the base snapshot from where the reconstruction begins is as close as possible to

the query time. He concludes that this kind of snapshot approach when modeling

temporality may result in data redundancy. However, as if to make things more

complicated, there’s more to the time that geo-referenced objects existed in the

real world, and this is immediately obvious if we think of the computer system

within which the information is entered. In a more holistic view, Worboys [135]

considers temporality in spatial databases as a two dimensional space: it is com­

posed of the transaction time dimension, which is the time when transactions

take place within an information system and the valid time dimension, where

the events occur in the application domain. Effectively, every spatio-temporal

object stored in a system, is related to a bi-temporal interval, that is a two di­

mensional array, where the real world events and the system events are captured.

Langran [95] names these two aspects of time as logical and physical. She sep­

arates the concept of space from time and introduces the concept of temporal

topology where versions of real world objects have a state in cartographic time,

and mutations of these objects correspond to events in cartographic time. The

concept of bi-temporality is still being researched, although through this liter­

ature review it can be seen that the concepts have been both individually and

together considered for quite a while now. Valid time can be found as real world

time [94], effective time (Ben-Zvi 1982), extrinsic time (Bubenko 1977), logical

time (Dadam, Lum and Werner 1984). The concept of transaction time can be

found also in the literature under different names: database time (Langran 1992),

registration time (Ben-Zvi 1982), physical time (Dadam et al. 1984). Snodgrass

[121] introduces the notion of bi-temporal tim e dom ain as a set of bi-temporal

CHAPTER 1. INFORMATION SYSTEM S 65

chronons. This concept is furthermore enhanced by Worboys [135], as mentioned

earlier. Every bi-temporal chronon represents a portion of valid time and trans­

action time, measured along orthogonal axes. He notices that these two different

times require different bounds and granularities. Additionally, transaction time

is derived from the system clock and therefore independent of any application

[122], a fact that separates design from implementation. Arctur [6] suggests the

additional concept of user defined time, which can be of a specific data type (e.g.

string), not interpreted by the system, and therefore not indexed. However, when

the enhancement of value-based user query is involved, indexes should exist for

all types of attributes. Other notions of time might be survey time, when the

change was observed. It is usually treated as user defined time and does not

require any special treatment by the DBMS, so it can be modeled as a standard

attribute [122].

Normally, time-stamping values should not be constrained. However, Story [122]

suggests that transaction time is always upper bounded by the variable instant

known as now, which is nothing more than the system’s own clock time, as no

database transactions can be known to have occurred in the future. It is the

researcher’s opinion that this is not the case always, since there is information

which is stored in the database and refers to a future time, e.g. foreseen future

transactions such as triggers and scheduled events. Nonetheless, this observation

raises the issue of constraints on time values, which should be addressed with

respect to the granularity under which a time-stamp value is being recorded.

These constraints are highly application specific, and are discussed in chapter

three, which deals with the analysis of the model, where the context of a cadastral

information system is being examined.

Consequently, not all systems supporting time serve the same purpose since

there are different kinds of time. Regarding the kind of time involved, tem­

poral databases are divided into four main designs, according to the kind of

time-stamping supported [135]:

CHAPTER 1. INFORMATION SYSTEM S 66

- s ta tic , when there’s no time support. Such a system stores a snapshot of

space-related information at a moment in time;

- rollback, (Snodgrass and Ahn 1985) when there’s only system time support.

These systems store the time when the transaction was done, usually pro­

viding the capability of restoring the old state of information;

- historic, when only real world time is supported. This approach enables

the development of historical GIS, since space related information is time

stamped with respect to when it existed in the real world; and

- temporal, when both system and real-world time are supported. This com­

bination of the two different kinds of time is called bi-temporal [135].

When building a temporal type within the model it is is considered good practice,

mainly for consistency reasons, that this type remains constant throughout the

model as well as the level at which it is integrated [122]. The data model devel­

oped is considered to be on a temporal system, therefore supporting bi-temporal

space. Additionally, the bi-temporality is built-in in the early stage of design.

One of the major conclusions from the 1990 NCGIA workshop [12] was the identi­

fication of two significantly different paradigms of time: (1) time as a continuum

and (2) time as a sequence of intervals and changes caused by events. This

differentiation of the concept of time is quite similar to that which separates

temporality, based on the application involved, into scientific and engineering [2]

which is discussed later on in this section. M utations (or events) are concepts of

zero dimensionality, similar to the concept of point in space, which switch from

one version (or state) to another. The latter are considered to span one dimen­

sion. Changes in real world entities through time are reflected in the database

by changes in the attributes or relations of database objects. Storing the same

object twice with changed attributes would result in major data redundancy. By

versioning database objects, only changes are stored, therefore redundancy is

eliminated. Hornsby and Egenhofer [77] have proposed a classification of tem­

poral change based on object identity along with a set of operations that either

CHAPTER 1. INFORMATION SYSTEM S 67

preserve or change the object identity. These operations can also be applied to

composite objects. A similar approach has been adopted in the object design

phase of the model.

If a system supports temporal data, then the user will definitely require to query

the database against not only the values themselves but with respect to the (sin­

gle if not bi-) temporal domain stored. This introduces the need for fast data

access techniques to be devised so as to create indexes based on the temporal

data component. If different granularity is to be used, then this should differen­

tiate data, which may be indexed on the time value using a quad tree model [7],

Additionally, indexes should be built for both world and transaction times. In­

dexing is part of any object-oriented RDBM system, where one can find features

like custom indexing structures, which are considered to be useful. However, all

the above make obvious that introducing temporality is imposing storage and

performance cost on creating and maintaining indexes, which may very often be

complicated mainly due to the possible large amount of data.

In a bi-temporal GIS, where both system and real-world time are supported,

every value that is subject to change in the future or has undergone changes

during the past, is associated with a time stamp. This time stamp is nothing

more than a value denoting either a specific moment in time (instant) or a period

that the value refers to. Hence, types of time-stamp values can be [7]:

1. Instants at different granularities.

2. Spans, intervals (or periods). These may include the instant limits that

define them, therefore being called closed intervals or may not, and thus

being called open intervals.

3. Relative tim es , where there is a base time instant and a period refering to

this instant (e.g. a week since 13th of August 1998).

The precision that time stamps are recorded is called granularity. Different lev­

els of granularity are usually required indicating that this should be recorded

CHAPTER 1. INFORMATION SYSTEM S 68

separately from the time stamp value itself, instead of using a global fine gran­

ularity throughout the dataset. In the case where granularity is not known or

not provided, it can be a derived attribute, calculated from the precision of the

time stamp. The accuracy of time stamps is an issue similar to any numeric

or attribute value found in a GIS and should be treated accordingly. A direct

impact of granularity, in combination with how instantaneous time stamps are

considered to be, is that an instant can be an interval when the granularity in­

creases. E.g. a day such as 13th of August 1998 may be an instant, while this

day may include a whole 24h period. It is obvious that granularity precision is

determining whether an instant may be considered to be a period at the same

time. Nonetheless, additionally to the aggregative link between a period and

the instants that are used to define it, some kind of generalization/specialization

relationship exists between intervals and instants. However, a more simplified

view might be that of periodic time, since in the specific example “every day” has

an associated 24h cycle, just as an hour has a period of 60 minutes and so on.

Temporality is also related to the application domain to which the data refer. At

the workshop held by NCGIA at the University of Maine ([12] from [2]) it was

concluded that there are two distinct applications for a temporal GIS: science-

oriented and engineering-oriented. The major differences between the two types

of applications are based on:

- specific requirements, where engineering applications aim at solving specific

problems with clearly defined conceptual entities, while scientific applica­

tions are characterized by their genericity and fuzziness of the concepts;

and

- incremental changes, where updates in engineering applications are expressed

in discrete time units, where in scientific applications time is fairly paramet­

ric and quite often not well defined.

This distinction should be always taken into account prior to the design of the

temporal module of a system. Specific and parametric time in engineering appli­

CHAPTER 1. INFORMATION SYSTEM S 69

cations do not necessarily need a mathematical formalism, unlike science oriented

problems, where analysis cannot be initiated without it.

Al-Taha [2] notes some of the main issues in temporal reasoning:

- The imprecision of expressions: keywords such as "now" or "today" are

quite similar but, depending on the context, point to different levels of gran­

ularity. Therefore similar keywords should be avoided as much as possible

in a potential temporal language of any kind within a GI system. If used,

this should be done with caution, and sentences made out of these keywords

should always result in a single interpretation.

- Variety of points of v ie w : different applications demand different times-

tamping granularity. Therefore a system should be capable of handling

multigranular information. This is similar to multiscale spatial information,

since time granularity can be parallelized to space precision.

- Variety of actions: actions are different in their duration, sequence, and

effect. Their classification and formalization are therefore compulsory.

- Conceptual issues: namely the debate between points versus time intervals

and their association. An important issue posed here is that of inheritance,

meaning that a time point might or might not inherit from the time interval

it belongs to. In this way time extrapolation is not always applicable to

time intervals.

- Structural issues: issues here are related to the mathematical model for

the representation of temporal entities, like precedence, discrete time versus

dense, complete vs. incomplete and bounded vs. unbounded.

- Logical issues, which have to do with the formal logic involved when defining

the temporal behaviour of a conceptual model.

How are temporality issues tackled using an object-oriented approach? Object

orientation, as it is discussed in chapter two, is a conceptual modelling procedure

where most of the required temporal features such as identity, events, states, and

CHAPTER 1. INFORMATION SYSTEM S 70

versions are inherent, therefore time and change modelling of spatially referenced

objects is considered to be an extremely straightforward procedure. One of the

problems best addressed using the object-oriented methodology (rather than any

other approach) is that of versioning. In an object-oriented environment, the

version of an object is implemented as another object of the same class and

created whenever a change occurs in its state. Of course, not all state changes

should produce a new version. In any case, succeeding versions should be linked,

therefore the class of the objects should include a self-referenced relationship

pointing to the previous version of the object. In this way, every versioned object

should be associated with a version chain which holds all the information about

the history of the object. Moreover, temporality is not only an aspect of the

data and information stored in a system. The data model itself is subject to

changes, as it is never found to be satisfactory throughout the existence of a

system, therefore the need for the data model evolution is constantly present.

Consequently, a way of modelling the model change itself is necessary. This

change towards aligning the model with the real-world phenomena and current

required system functionality is called schema evolution, and as far as design

is concerned, it should be taken into account before this stage initiates. To

better explain the problem, let us consider the following: in an object-oriented

data model, a class is a structure which consists of attributes and operations

definitions. It is assumed here that references to other classes are implemented as

attributes as well, containing the class name that they point. When the definition

of a class is modified, one (or more) new class(es) is(are) produced. It is apparent

that, a version tree of this class must be maintained. An object as an instance of

a class, is a structure containing attribute values and operations which conform

to the definitions found in its class. Some of these attributes are references to

other objects. Values are subject to change, therefore a version tree of the object

history must be maintained as well. Among the special attributes found in an

object are its identity as well as its class definition. Therefore, every object

should include not only the class name that it belongs to, but the class version

CHAPTER 1. INFORMATION SYSTEM S 71

as well. Computationally, the platform used should directly support schema

evolution, otherwise the designer is responsible for implementing such a strategy,

which is far more complicated, disfunctional and design-dependent than with a

built-in support. Fortunately, most 0 0 methodologies support such a concept

either directly or indirectly, through extensibility mechanisms. Some, but not all

object-oriented computer environments directly support evolution management

of the model (e.g. Java). Schema evolution is discussed in detail in chapter two.

In the context of the current research, and with regard to multipurpose design,

some of the issues that must be addressed regarding object and schema versioning

are:

- Versioning of real-world objects is not part of the adopted UML approach.

It has to be implemented either implicitly, through self associations between

the same object, or by introducing new artifacts which is feasible through

extensibility mechanisms such as stereotypes. In both cases, regardless of the

manner it is implemented, the extension is considered to be very straight­

forward.

- Classes should be classified into versionable and non-versionable. This is

considered to be additional work for both the analyst and the designer.

It is also a starting point to argue whether an object should be versioned

and when this should occur. And when multipurpose design is involved,

it is noticed that different applications may require different approaches

regarding when a spatial object should or should not be versioned.

- Time stamping might be a problem among different versions in a distributed

environment, when each version uses its own clock [7]. The issue of time

synchronization arises among systems with different clocks. An obvious so­

lution to this might be that all systems would be synchronized to a common

clock in the network, an approach which is widely encountered.

- Modeling temporal data requires the introduction of appropriate concepts

for reasoning about change. A conceptual framework is therefore necessary

CH APTER1. INFORMATION SYSTEM S 72

whereupon operations and predicates will be based [7].

- Should time granularity be stored within data, or be a derivative parameter?

An approach might be to assume the degree of time granularity given the

precision of timestamps (e.g. “12:00” is a value with a time granularity of

1 minute, while “twelve o’clock” implies a time granularity of one hour).

However, this might be a problem whenever this kind of information is not

known precisely, since the above assumption is not always correct.

- When should a new object be created? In other words, which are the at­

tribute changes that signify when a new version of the object should be

created with a new and different identity? The answer to this question is

extremely application dependent, something that poses a serious obstacle

to the multipurpose design. In order to address this issue, the data model

must support parametric class versioning.

Version information regarding objects is included in the same module of a system

as the predecessor object. This means that an object A belonging to a class C

may be versioned to produce a newer object B, which also belongs to class C.

But when the schema itself changes, i.e. when the class definition is altered, any

class version information should be part of the schema itself as well as part of the

metadata [7]. Versions of objects (including classes) are usually different from

their predecessors in one or more attribute values. Some of the values might

remain the same. If all of the object attributes are to be stored this might result

in major data redundancy. To avoid this situation, recording changes only to a

complete base state for each version, is a good practice since data duplication is

avoided [122]. In this way, only the changed attribute values are stored, while

the unchanged ones point to the immediately older object. A whole object can

later be reconstructed by tracing the version tree and combining all the changes

from the base state. This solution is considered to be useful in order to achieve

databases small in size. Issues that arise here are that the number of steps

required to reconstruct an object must be the minimum, so as to decrease access

CHAPTER 1. INFORMATION SYSTEM S 73

time and storage overhead. More complicated issues arise when geo-referenced

objects are found to have multiple geometries as part of their structure, with each

geometry refering to a single and different timestamp. This case is common to

aggregate spatial objects, which often change partially in one of their components

(e.g. geometry). Multiple geometries are also useful to model a geographic object

in different scale, whenever this spatial object can be generalized. Issues that arise

here are that:

1. any non-spatial attributes related to this object should be the same through­

out all geometries, hence no attribute-based change modelling is allowed;

2. time stamping of each geometry is rather awkward, if not impossible, since

each geometry should have a 1-1 relationship with a valid timestamp, either

world time or database time [7].

Worboys [137] when discussing the difference between objects and events com­

ments that although events can be treated as objects within the object-oriented

approach, they do belong to distinct categories since events occur, but objects do

not. He considers space as the container for objects while time is the equivalent

container for events. A process can be defined as a composite event.

1.7.2.5 M e ta d a ta

Metadata are any data that are used to describe a data set. Jones [82] has

identified the following component hierarchy of metadata for spatial datasets:

1. D a ta exchange fo rm at

(a) Specification of data storage format

2. D a ta su m m ary

(a) Source, classes of data, areal coverage, date, scale

3. L ineage

(a) Agency of origin

CHAPTER 1. INFORMATION SYSTEM S

(b) Method of data collection:

i. Primary survey techniques

ii. Secondary data sources

A. Digitizing method

(c) Dates updated

(d) Processing history:

i. Coordinate transformation

ii. Data model transformations

iii. Attribute transformations

4. Coordinate system

(a) Type of coordinate system

(b) Map projection parameters

5. Spatial data m odel

(a) Specification of primitive spatial objects

(b) Topological data stored

6. Feature coding system

(a) Definition of feature codes and classification system

7. Classification com pleteness

(a) Documentation on extent of usage of classification system

8. Geographical coverage

(a) Overall extent

(b) Detailed specification of coverage if not complete

9. Positional accuracy

(a) Statistics on coordinate error

10. A ttribute accuracy

(a) Statistics on attribute error

CHAPTER 1. INFORMATION SYSTEM S 75

11. Topological accuracy

(a) Methods of topology validation employed

12. Graphical representation

(a) Graphical symbolism for each feature class

(b) Text fonts for annotation

A serious issue here is whether the values that these fields may take, have to

be standard or not. This is not always applicable. For instance, the spatial

data model can be generally either vector or raster. However, the topological

accuracy information can be expressed in various ways. If multiple datasets must

coexist in the same database, then metadata information must be standardized.

Nonetheless, if this type of data are stored along with the core dataset, they

can describe satisfactorily the contents of it. Concepts of m etadata as discrete

entities relating to spatial objects can be easily modelled and manipulated within

the context of the object-oriented paradigm.

Data quality is a major subcomponent of metadata, relating to errors and the

sources of them. Burrough and McDonell [30] identify seven main groups of

factors that affect the quality of data: currency, completeness, consistency, ac­

cessibility, accuracy and precision, sources of errors in data, and sources of errors

in derived data and in the results of modelling and analysis. Chrisman [37] pro­

posed that data quality is a measure of fitness for use of data for a particular

task. Moreover, data quality information provides the handle for long-term main­

tenance. This kind of measure gives the degree to which a particular data set can

be used for a particular purpose, and it is considered to be of major importance

in a data model that functions as a multipurpose one. Different applications will

require to use the same dataset. For this to be successful, it will depend strongly

on the quality requirements posed by the application in conjunction with the

stored quality information about a specific dataset.

The International Cartographic Association[70] proposal based on analysis of

spatial data from different countries has reached a consensus and identified six

CHAPTER 1. INFORMATION SYSTEM S 76

major components of data quality:

1. Positional accuracy, which applies for spatial data only. The number of its

components is as many dimensions as the spatial object is embedded in. In

the case of the usual 3D Euclidean space positional accuracy consists of 3

components, x,y,z in the case of Cartesian coordinates or f,l,h in the case of

geographical coordinates. Positional accuracy should definitely be an input

to the system rather than derived, since derivative accuracy values are in

most cases incorrect, as they strongly depend on the processing history of

the spatial dataset.

2. A ttribute quality, which applies for any non-spatial attributes of an object.

In this category, the temporal quality of the spatial dataset may also be­

long, if the temporality of the geo-referenced entities is considered to be an

attribute.

3. Logical consistency, which encompasses any constraints that the data should

follow. This includes topological constraints among spatial objects.

4. Com pleteness , which is defined as “...an attribute describing the relationship

between the objects represented in a data set and the abstract universe

of all objects” [104]. It describes the exhaustiveness of a set of features,

including both spatial and attribute properties [109]. For the degree of

completeness to be assessed, a detailed description of this abstract universe

is necessary. This term is used here to denote all possible real world entities

or phenomena that may be perceived by a human observer. Moreover, it

is obvious that such a concept is quite general, as it contains a multitude

of entities, therefore its detailed and complete definition is considered to be

extremely time-consuming. The answer to this is the adoption of standards

within every application domain that the entities belong.

5. Lineage, which refers to the process responsible for creating a dataset. This

includes a description of the source material from which the data were de­

rived, the methods of derivation, all transformations involved, reference to

CHAPTER 1. INFORMATION SYSTEM S 77

control information used, and a description of the mathematical transfor­

mations of coordinates.

6. Temporal inform ation , which is about the date or period that information

refers and regards their validity in combination with the date that the data

are being examined.

Within the above six major categories, some of the most important data quality

research issues that have been suggested recently (International Symposium on

Spatial Data Quality 1999) are:

1. Uncertainties in real world entities.

2. Uncertainty propagation in spatial operations.

3. Uncertainty in remotely sensed images and classification.

4. Error in Digital Elevation Models.

5. Spatial querying with uncertain data.

6. Spatial reasoning with uncertain information.

7. Uncertainty in geographical and environmental analysis.

8. Visualizing uncertainty in spatial data and analysis.

9. Meta-data and model for GIS data.

10. Spatial data models for uncertain objects in GIS.

Not all of the above are always significant. It always depends on the application

domain which of the above components are addressed and which are the relevant

data to be stored. Each one of the above components may use continuous or

discontinuous variables to quantify quality. Every measured continuous variable

has additionally three aspects: precision , resolution and accuracy. It is very

common mistake to confuse these three concepts and to misuse them. The term

error is also widely used and it is mostly connected to the concept of accuracy as it

refers to the deviation of a single feature’s value (e.g. estimated or measured) from

its true value, or a value which is axiomatically set to be true. More specifically:

CHAPTER 1. INFORMATION SYSTEM S 78

- Precision refers to the repeatability of a value which has been reported.

As such, it is used to characterize measurements (like lengths, angles or

coordinates) and always applies to an individual feature, or a set of features

that have been collected using the same methodology. Most commonly

the standard deviation a is used to quantify precision. Precision itself is a

continuous variable, usually taking integer values.

- Accuracy refers to the "nearness to the truth", and always applies to a set

of features (dataset). Accuracy is quantified by means of the error concept

and most commonly the root mean square error (RMSE) is used. Accuracy

is also a continuous variable, with values taken from the domain of real

numbers.

- Resolution refers to the minimum unit of measurement. It applies only to

continuous variables (like coordinates, angles, lengths, areas, volumes etc).

Resolution is also a continuous variable.

- Error is a quantitative indication of the accuracy. It is a statistical concept

based on some assumption of the nature of the measurement process.

Precision depends mostly on the computer system used to store the data. It has

been stressed earlier that there is a need for space discretization in order that

computation may take place. However, this results in inaccuracies. We must also

take into account that any computer implementation involves integer arithmetic.

As [135] states, "... the Euclidean space (2- or 3- dimensional), is topologically

dense and capable of an infinite amount of precision." (i.e. resolution). It is ob­

vious that coordinates will be expressed as real numbers, which support infinite

levels of resolution. In this way, however, space is not computable in terms of

integer arithmetic. Therefore, it has to be discretized into computable objects,

namely points. In this way, the geometric domain used is a "...finite connected

portion of the discrete Euclidean space" , either 2 or 3 dimensional, consisting

of a set of points, called P. Any line segment that belongs to this space, must

CHAPTER 1. INFORMATION SYSTEM S 79

have its endpoints as members of P. Consequently, if two line segments inter­

sect, their common intersection point must also be a member of P. It has been

shown [135] that this results in accuracy loss, since straight line segments cease

to be "absolutely" straight, but these are only a rough approximation to the real

straight line they model. This also depends on the resolution used in the model.

Regarding models employed to quantify positional error, three types can be iden­

tified: point, line and polygon error models.

From the data collection stage, right through to using a map as an end product,

information is not only liable to inherent errors but to errors being propagated

from one stage to the next. Jones [82] identifies the five stages that may increase

the error of the information:

1. primary data acquisition errors, attributed to human usage and interpreta­

tion, resolution of instrumentation, or possible misuse of instrumentation;

2. secondary data acquisition due to shortcomings in data collection method

(e.g. digitizing), shortcomings of the source document, failure to obtain

adequate metadata;

3. data manipulation and analysis due to changes in the coordinate system,

changes between spatial models, interpolation procedures, integration of

both geometrical and thematic data from various sources (e.g. overlay),

compromises and generalizations of classes;

4. data transmission due to numerical degradation because of inadequacies of

the transmission media;

5. usage due to data misuse by the user.

Errors introduced during any of the above stages, need to be mathematically

modelled not only individually but in combination as well.

An interesting question that arises regards how different applications that access

the same dataset can be aware of the degree of fitness for use for the purpose

they serve.

CHAPTER 1. INFORMATION SYSTEM S 80

Finally, it must be emphasized that, regardless of how m etadata information is

modelled, space, time and attributes interact and it is considered that quality

information plays an important role in these interactions [37].

1.7.3 Functionality requirements

During the development process of modelling for a geo-information system, many

technical issues that arise in a low level stage of the design (e.g. implementation),

are reflected in a higher level (e.g. design), therefore making the application

domain expert to interact with, and modify the conceptual model that it is used.

For example, some operations on objects, like splitting or versioning, require the

introduction of new object identifiers. As already mentioned, it is the application

domain expert’s decision to specify the cases when this should be done.

Jones [82] groups functions within a GIS into three categories (figure 1.3):

1. Data acquisition.

2. Preliminary data processing.

3. Search and analysis.

Data acquisition involves the process of obtaining data from various sources.

The data collection phase is also a part of acquisition (primary data acquisi­

tion). The concern of the thesis is the final digital format in which they are

stored temporarily, prior to final database storage. This phase involves other

techniques and method specifications (e.g. photogrammetric procedures, land-

surveying techniques, GPS usage etc.). Secondary data acquisition involves data

that are in various digital formats. The system must be capable of transforming

these formats to the internal data representation, first conceptually and later

logically. Examples of such formats are the DXF, DLG, NTF, for vector-based

data and TIFF, ERDAS for raster based data.

Data storage and retrieval involves the mechanisms provided by the GIS for the

persistence of the information. Data, in all levels of processing, are stored and

CHAPTER 1. INFORMATION SYSTEM S 81

later retrieved. Vector and raster, object or relational are all conceptual data

models that enable the organization of spatial information prior to storage. The

logical data model is the way that the database management system organizes the

conceptual data models in a specific class of hardware and software configuration

using database specific concepts as files records and indexes. In most cases of a

commercial platform, these tools are built in, therefore little concern is given as

to how they operate, unless the performance of the system is of an unsatisfactory

level for a specific application. In this case, storage techniques must be reviewed

and new ones must be proposed. Within the object paradigm, where encapsula­

tion restricts all the information of an object and makes it available only through

its interface, a workable solution is imperative for an effective indexing storage

and retrieval.

White [125] classifies user queries out of a data set into topological, metrical,

about consistency, purely geometrical, and geometrical/geographical. Examples

of these types of queries are (referring mostly to 2D entities):

- Topological queries. These are related to the connectedness among the

objects, including the possible internal structure of the object. Examples

are:

1. What 0-, 1- and 2D elements does the map comprise of?

2. Which 2-cells cobound a particular 1-cell?

3. Which 0-cells terminate particular 1-cells?

4. For a particular 0-cell, which 1-cells are incident?

5. For a 2-cell, which 1-cells are incident (both bounding and interior)?

- M etrica l queries. These are related to the geometrical attributes of an

object. Examples are:

1. What is the location of a particular 0-cell?

2. W hat is the shape of a 1-cell? The answer might include metric details

about length.

CHAPTER 1. INFORMATION SYSTEM S 82

3. W hat is the shape of a 2-cell in three-dimensional space? The answer

might include metric details about perimeter, 2D area and surface area

(e.g. upon the physical earth surface).

- Geographical queries. These focus on the combination (overlay) of ob­

jects that do not necessarily belong to the same thematic layer or object

class. Examples are:

1. For any two regions A and B, does A equal B?

2. What regions does a given region cover?

3. What regions cover a given region?

4. What is the join of two regions?

5. What is the meet of two regions?

- G eom etrical and Geographical queries. These are combined questions

both on the geometry and the overlay of two or more objects. Examples

are:

1. For a particular region, what 2-cells are included?

2. For a particular 2-cell, what regions include it?

3. For a particular linear feature, what 1-cells are included?

4. For a particular 1-cell, what features include it?

5. For a particular set of points what 0-cells are included?

6. For a particular 0-cell, what set of points include it?

Analysis functions are part of the core function group in a GIS, which emphasises

the decision-making aspect of the system. Jones [82], summarises these query

types as:

1. Containment search within a spatial region.

2. Proximal search.

3. Phenomenon based search and overlay processing.

4. Interpolation and surface modelling.

CHAPTER 1. INFORMATION SYSTEM S 83

5. Best path analysis and routing.

6. Spatial interaction modelling.

7. Correlations, associations, patterns and trends.

8. Map algebra with gridded data.

The taxonomy presented by Jones refers to both raster and vector data but mainly

for the 2D representation of space. Incorporating 3D spatial data sets into these

categories, includes the consideration of volumes instead of regions and voxels

instead of pixels.

Additionally to the above categorization, the visualization of information in any

level is considered to be the visual way for information dissemination from the

system to the user, in a specific spatial data set. Graphics functionality is of

major importance in a GI system. Visualization techniques are developed in con­

junction with the technological context. Recent advances include virtual reality

systems. Visualization of 3D data incorporates techniques such as transforma­

tions, projections, 3D clipping, hidden surface removal, viewshed analysis, surface

shading and rendering. The major concern in cartographic visualization is the

adoption of proper symbols and rules that cartographic features are depicted and

processed. In the object paradigm, these can be encapsulated in the static and

dynamic behaviour of the cartographic object within the database. Generaliza­

tion is a challenging aspect of the cartographic production process, where the

geometry of a data set is modified in a manner appropriate to the visualization

scale. Jones [82] summarises generalization concepts as semantic, which includes

processes such as aggregation and classification, and geometrical generalization

which includes elimination of objects, amalgamation of objects, dimensionality

collapse, exaggeration, enhancement, typification, and displacement.

It must be noted that parcel-based cadastral digital outputs are not always in

real need of very rich graphics kernel functionality (e.g. rendering support), but

rather in need of algorithms fast enough to tackle the problem of large data vol­

umes. When it comes to linking and combining spatial information from other

CHAPTER 1. INFORMATION SYSTEM S 84

application domains (e.g. raster orthophoto images) and incorporating raster

data, then this kind of functionality will be determinant for the successful visu­

alization of these derived complex data sets. Generalization is also a procedure,

which might not be of importance in large-scale parcel based diagrams. It will be

of concern when small-scale representations are involved, where the abstraction

of information has to take place.

An extended classification and taxonomy in the context of the LIS paradigm will

be considered in the early phases of the thesis research phase. Special focus will be

given on the three-dimensional and temporal nature of the required functionality.

1.7.3.1 Operations

Preliminary data processing functions involves operations such as structuring,

classifying and transforming representations of data to make them suitable for

further analysis. Examples are topological structuring, image classification, vec­

tor to raster (rasterisation), raster to vector (vectorization), interpolation to grid,

triangulation, reclassification, and projection [82].

Operations can also be broadly grouped as attribute, distance/location, and using

built-in spatial topology. Attributes are properties of real world entities that

define their static nature. Burrough and McDonell [30] groups mathematical

operations on attributes as:

1. Logical (Boolean)

2. Arithmetical

3. Trigonometric

4. Data type

5. Statistical

6. Multivariate

A taxonomy of spatial operations based on topology can be found in Worboys

[135], with a classification of basic static spatial operations (unary and binary)

CHAPTER 1. INFORMATION SYSTEM S 85

into general, set-oriented, topological and Euclidean. The static nature implies

that operands are not affected by the application of the operation. His major

concern is 2D space, which necessitates the expansion of these operators into 3D

space. These operations may well work in object-oriented models, as a part of

the dynamic structure of objects (methods). He also separates dynamic spatial

operations on entities into dependent and independent of the creation of a spatial

object. Dependent creation (when an object is created with reference to another

object) includes operations as reproduce, generate, split and merge. Addition­

ally, dynamic operations might be transformations, which are treated as update

operations such as translate, rotate, scale, reflect and shear, which mostly effect

the geometry of a spatial object.

Operations on spatial objects must be identified and classified. The initial pro­

posal used is that of Worboys [131], which proposes four different categories of

operations upon spatial object classes, mostly in the two dimensional space. In

the current research, this proposal has been augmented to incorporate three-

dimensional spatial classes.

Worboys [135] identifies four different types of spaces that spatial objects can be

embedded within: Euclidean, metric, topological, and set-oriented. This classifi­

cation dictates also the categories that operations upon embedded spatial classes

are classified into. In short, such operations might be set-oriented, topological,

metric and Euclidean. Some of these operations are members of spatial classes,

while some other belong to utility classes, for the reasons already mentioned.

More specifically, every category includes the following operations:

1. Set-oriented operations:

(a) Equals

(b) Member

(c) Subset

(d) Intersection

(e) Union

CHAPTER 1. INFORMATION SYSTEM S 86

(f) Difference

(g) Cardinality

2 . Topological operations:

(a) Interior

(b) Closure

(c) Boundary

(d) Components

(e) Extremes

(f) Begin

(g) End

(h) Inside

(i) Clockwise

3. M etric operations:

(a) Distance

(b) Length

(c) Perimeter

(d) Volume

4. Euclidean operations:

(a) Bearing

(b) Area

Additionally and with respect to the temporal aspect of a system, Langran [94]

classifies the six fundamental functions of a temporal GIS as:

— inventory;

- analysis;

- updates;

— quality control;

CHAPTER 1. INFORMATION SYSTEM S 87

- scheduling;

- display.

Al-Taha [2] also proposes a classification for operations (he calls then actions) on

objects with temporal extensions, depending on their characteristics according

to:

- their starting effect as:

1. immediate effect

2. delayed effect

3. earlier effect

4. periodic effect

- their permissibility as:

1. permissible act

2. non-permissible act

3. must action

- their results as:

1. single change

2. multiple changes

- other attributes

1. instantaneous

2. consecutive

3. parallel

CHAPTER 1. INFORMATION SYSTEM S 88

It must be noted that some of the above operations may be solely related to time

but it is mostly likely to be invoked on complex data with more than a temporal

component, resulting in spatio-temporal operations. As far as the implementa­

tion is concerned, operations are an inherent part of object-oriented modelling,

according to which, objects are modelled having attributes and operations. An

important question is whether spatial classes should include general methods re­

garding geometric operations. If these operations are part of the spatial classes

they are usually modelled as class members (which are common to all object in­

stances) and they are only invoked through them, therefore tightly coupled with

the spatial classes. If such operations are part of the so-called utility classes,

they are independent of the spatial classes they may receive as arguments and

therefore not requiring their presence, in terms of whenever their invocation is

necessary. This finally results in general geometric methods independent of the

structure of the spatial classes, and definitely fosters software reusability.

Regarding the existence of objects in a system, Worboys [135] identifies three

fundamental dynamic operations, upon which all the rest are derived from:

- create

- destroy and

- update

Whenever a user retrieves information from a database, a transient copy is made,

which matches the criteria set by the user. This is done in the form of queries.

A query language is usually used as the primary user interface to the database,

so that operations can be implemented and executed. Choi et al. [35] use the

concept of query-generated objects which are transient objects that result from

the processing of a query against the 0 0 database. These type of objects may

belong to a predefined class found in the schema or in a query generated class.

Functions, invoked during run-time, are usually responsible for the generation of

these objects. These objects might be stored, so that they can be retrieved later

without having to re-execute the query. This of course does not apply whenever

CHAPTER 1. INFORMATION SYSTEM S 89

object attributes are changed and have to be re-read from the database. Query

modelling can be considered as the classification and parameterization of possible

user queries, and it is closely connected to:

- the data model used to store information and

- the application domain (s) that the data are coming from

Current approaches on incorporating any kind of operations as programs in a

GIS involved the separation of these programs from the data that they manipu­

late. Hence, programs were made tailored to the specific data structure that the

application involved. The object-oriented paradigm suggests that programs are

very coupled with the data that they operate on, since they are both part of an

object. However, as far as the core geometrical algorithms are concerned, many

of them remain the same either in procedural or object oriented approaches.

CHAPTER 1. INFORMATION SYSTEM S 90

1.8 The object-oriented approach

This section aims to introduce the reader to the paradigm of object-orientation,

what it involves and how it can be employed in a GIS. Chapter two is a more

detailed discussion on object orientation.

1.8.1 Object-oriented analysis and design

Long before object-orientation evolved into a usable solution for information tech­

nology, the available modelling techniques were models such as the network, the

hierarchical model and then the relational model with its relatively recent evolu­

tion into the extended relational model. The object oriented approach, although

it is considered to be effectively used by the academics for the past 20 years or so,

however it is only until the current decade that it gained popularity within the

software market. The major difference between an object-oriented data model

and the relational data model is what the latter had to offer: the introduction

of concepts such as encapsulation, inheritance and polymorphism [88]. For this

reason the object oriented model can be seen as the natural evolution of the

extended relational model. Object orientation has proved attractive to certain

GIS users because of the intuitive manner in which it offers the modelling func­

tionality [30]. A characteristic of the object its modularity. It is comprised of a

state, at a given time period and a functionality, that is a set of operations which

impose a dynamic nature. In object-oriented design, the computer is divided

into a number of smaller computers, or objects, each of which can be given a role

like that of an actor in a play [84]. An object can be defined as something that

plays a role with respect to a request for an operation. The request invokes the

operation that defines some service to be performed [79].

In general, object-oriented development is a conceptual process, which is inde­

pendent of any specific programming language or database management system.

It refers to identification and organization of application domain concepts, rather

CHAPTER 1. INFORMATION SYSTEM S 91

than their final representation in a language or database [120]. In contrast with

the functional methodology, where the primary concern is to specify and decom­

pose functionality, the object-oriented approach focuses on the identification of

objects and on fitting the proper procedures around them. The object-oriented

methodology consists of building a model of an application and then adding im­

plementation details. The four stages are:

1. analysis, where the specifications of the functionality for the desired system

are defined;

2. system design, where the overall architecture of the system is specified;

3. object design, where implementation details are added to the conceptual

model from the analysis stage, and

4. implementation, where the object model from the previous stage is trans­

lated to a specific configuration of hardware and software platform.

Many different methodologies have been devised, proposed and used through­

out the existence of object-orientation. One of the these methodologies used by

the researcher initially is by Rumbaugh et al. [120] which is called the Object

Modelling Technique (OMT). This technique uses three kinds of models to de­

scribe a system, as it comprises of the object model, describing objects and their

relationships, the dynamic model, describing interactions between objects in a

system, and the functional model, which describe the data transformations of

the system. Each of the models mentioned above has a respective diagram, to

graphically represent the concepts that it models. The object diagram is a graph

whose nodes are object classes and whose arcs are relationships among classes.

There are two types of object diagrams, namely the class diagram, which rep­

resents many possible instances of data and the instance diagram, which refers

to a specific set of object instances. A state diagram is a graph whose nodes

are states and whose arcs are transitions between states caused by events. The

data flow diagram is a graph whose nodes are processes and whose arcs are data

flows. In this way the three models are orthogonal parts of the description of

CHAPTER 1. INFORMATION SYSTEM S 92

a complete system. Similar object-oriented modelling and design technique has

been proposed by [21] and widely used in many system development examples.

Jacobson et al. [80] have proposed a similar methodology which focuses mostly

on the use case aspect of the object model. The most recent proposal for an

object-oriented modelling technique has been by Booch et al. [22] and it is called

the Unified Modelling Language (UML). It is considered to be a fusion of the

three aforementioned methodologies proposed by each author individually. This

approach is being used for the analysis and design of the model, and it is thor­

oughly explained in chapter two.

1.8.2 Summary of object-oriented concepts

An object class describes a group of objects having similar properties, common

behaviour, common relationships to other objects and common semantics. The

identification and creation of classes is done through abstraction and generaliza­

tion from a specific case to a host of similar cases. Every object class has a set

of attributes that characterize the class. For a given class instance (object) each

one of its attributes has a value. A special attribute of an object instance is its

identity, a unique identifier for the object. Additionally, every object class has a

set of operations, which are functions or transformations that may be applied to

or by objects in a class. An operation can be polymorphic, when the same opera­

tion name takes places on several classes but in different forms. An operation is

implemented via a method. A link is a connection between object instances. An

association is a group of similar links between object classes. Associations are

possible to be modelled as classes, therefore having attributes and operations. Ag­

gregation is the assembly of an object class from other classes. Generalization is

the relationship between a class and one or more refined versions of it (superclass,

subclass). Through inheritance classes may be sharing attributes and operations

in a hierarchical manner. It is also possible for an operation to be overridden from

a superclass to a subclass. Attributes and operations are encapsulated within an

CHAPTER 1. INFORMATION SYSTEM S 93

object class but some operations define the interface of the object, that is the

way operations may be invoked from other objects via messages. According to

Cox [40] encapsulation is the foundation of the object-oriented approach shift­

ing emphasis from coding technique to packaging, while inheritance builds on

encapsulation to make reuse of code practical. A module is a logical construct

for grouping classes. According to Mattos et al. [101], an entity, in order to be

modelled, must be identifiable, relevant and desirable in the context of a specific

GI application. Communication among objects instantiated from classes which

are made by models written in different languages , is considered to be achiev­

able by incorporating the CORBA standard in the early object-oriented data

model design. This however, is not possible for all aforementioned platforms,

namely Gothic ADE, since the platform that was used (version 3.0a. 18) CORBA

standard has not been incorporated into the system functionality. Other specific

programming environment employ their own interoperability mechanisms, such

the Remote Method Invocation in Java. These issues are discussed in more detail

in chapter two as well as in the relevant appendix (chapter seven).

According to proper object-oriented design, five steps are involved in the specifi­

cation of the model:

1. Requirements analysis within the application domain.

2. Identification of objects, classification, and extraction of classes. Specifica­

tion of the class hierarchy.

3. Specification of relationships among classes, apart from their hierarchy, as

well as their role and cardinality.

4. Specification of the structure of the classes (attributes and methods).

5. Specification of the signatures in the methods.

6. Specification of messages among classes.

This sequence of steps is supposed to be iterative throughout the whole devel­

opment process. This will guarantee the correctness of the model contents, and

CHAPTER 1. INFORMATION SYSTEM S 94

its integrity always according to the requirements that are to be met within the

application domain. There is no specific limitation in the number of iterations

necessary, since this may continue even when the system is operative. The only

factor that imposes limitations is the time necessary to complete a full iteration

in relation with the total amount of time allocated for a project. Additionally,

the above sequence applies for every different viewpoint of the model.

1.8.3 Object-oriented database management systems

An object-oriented database is a collection of persistent objects whose behaviour

and state, and the relationships are defined in accordance with an object-oriented

data model. Object-oriented databases integrate object orientation with database

capabilities [88]. One of the most important database capabilities is the persis­

tence of objects. Khoshafian [86] suggests that functionality in an object-oriented

database comprises mainly of persistence, concurrency, transactions, recovery,

querying, versioning, integrity, security and performance. One of the most se­

rious deficiencies within an object-oriented database management system is the

performance under which it retrieves persistent objects. This originates from

the concept of encapsulation and information hiding: an object’s attributes are

only accessible from the available interfaces it provides. Effectively searching

for an object within a database requires sending messages to it and waiting for

the response. The time required is more than it takes for a procedural program

to access properly indexed data (e.g. SQL queries from a table in a relational

database). Proposals to work out this problem involve the separation of the ob­

ject identity from the rest of the attributes so as to stop being hidden. However

efficient this solution is, it violates the principle of encapsulation and has been

declined by a few researchers. Alternative viable solutions involve indexing and

storage of objects based on their identity or using internal system addresses as

object identifiers. All relevant issues are discussed in more detail in chapter two.

CHAPTER 1. INFORMATION SYSTEM S 95

1.8.4 Functionality issues summary

It must be noted that in the context of the object-oriented system, embedding

the computational process as an object is better in many ways with regard to a

relational database combined with a procedural program. Because of the nature

of raster data, it is very difficult to break down the continuity into separate units,

such as objects [30]. Working out this mismatch involves treating raster images

and data sets as objects composed of cells. Even when fuzzy boundaries are

involved[29], the object-based model offers the required functionality for mod­

elling. Burrough and McDonell [30] have also summarized the advantages and

disadvantages of the object-based paradigm.

Chapter 2

Review of Object Orientation

2.1 Introduction

The purpose of this chapter is to investigate the effects of adopting the object-

oriented paradigm in the context of a Geographical Information System. This

is accomplished in two steps: initially, through an introduction to the approach

of object orientation, in general, as it is being utilized within the information

technology domain. Secondly, a special focus is given, whenever necessary, on

the context of an object-oriented Geographical Information System, through dis­

cussion of the issues (benefits and problems) that are encountered.

The structure of this chapter is as follows: first, the reasons for moving from

conventional methodologies to object orientation are discussed. Next, through a

somewhat extended, literature review, an attem pt is made to capture the concepts

of object orientation, as they have been devised and used by various authors and

methodologists worldwide. The third section is about how these concepts are

used and implemented within specific computing environments, such as database

management systems, programming languages and GIS platforms. Finally, a

short description of the most popular and historically important object oriented

environments is included at the end of the chapter. Special attention has been

given to the environments used for the implementation stage of the research.
96

CHAPTER 2. RE VIE W OF OBJECT ORIENTATION 97

2.2 Moving from conventional models and tech­

nology to object-orientation

In general, it can be said that object orientation represents an attem pt to over­

come the problems encountered within the conventional approaches, namely func­

tional analysis and design techniques, relational data models and databases and

procedural programming. More specifically, several studies [59] have shown that

conventional models and systems (including the relational) are not suitable to

be used within the context of geographical data management. In short, when

conventional approaches are involved, the major limitations to be confronted are:

— limited data types provided, hence difficulty when modeling complex nested

entities;

— limitation of semantic expression;

— lack of grouping code with data;

— impedance mismatch: lack of support for data types found in programming

languages such as structured or long unstructured data;

— lack of support for concepts like aggregation and generalization;

— lack of support for temporal data;

— lack of support for recursion, a crucial feature in the GIS domain e.g. for

modeling multi-scale data [59] or using tree shaped index methods;

— lack of support in DBMS for multidimensional searches and search structures

[H2];

— very poor support for single storage space, where both spatial and aspatial

data may reside.

It must be noted that almost all of the above problems are encountered when

attempting to model the real-world geometry in terms of well defined objects.

Many proposals regarding the extension of the relational model to incorporate

CHAPTER 2. RE VIE W OF OBJECT ORIENTATION 98

the storage of spatial data can be found in the literature (Egenhofer and Frank [59]

include a large list with references). Many of these proposals claim to overcome

the aforementioned problems by suggesting techniques at the design conceptual

level. They, sometimes, are awkward to implement, however efficient they might

be. Hence, they only pinpoint the difficulty of the conventional methodologies to

handle real-world complexity.

Conventional databases are good at managing large amounts of data, sharing

data among programs, and fast value-based queries. They are not very good at

modeling the relationships among data, since everything must be represented as

a series of two-dimensional tables.

Worboys [135] clarifies the notion of instance uniqueness in the relational and

object models: "In E-R model, each entity should be identified uniquely, (a.n.

via providing unique entity names in the entity schema definition) . Each oc­

currence of an entity is uniquely identified by giving values for the identifying

attributes. Thus, the E-R model is a "value-based" model. Additionally, in re­

lational databases the uniqueness of each record is characterized by the primary

key, which is usually dependent on other attributes within the same record, and

results in a unique combination of values for each record. If attribute values

change then the primary key value changes as well. W ithin the GIS context,

the attributes of many spatial objects do not exist independently, which is a re­

quirement of the relational model [122]. However, in the 0 0 model, an object

occurrence retains its identity even if all its attributes change their values. An

object ID is independent of its attribute values".

A solution to the problems that the relational model imposes, is to extend a rela­

tional database to accommodate geometry. However, join operations are expen­

sive both time-wise and storage-wise, since semantic links have to be maintained

through integrity constraints. This idea has resulted into the Extender Entity

Relation Model (EER).

CHAPTER 2. R E VIE W OF OBJECT ORIENTATION 99

Object orientation disregards the way that the EER is based upon (tables)

and provides support for general data types and nested objects. It includes

the concepts of encapsulation, inheritance, and polymorphism. Object-oriented

databases extend the relational data model by relaxing the first normal form con­

dition1, since they support sets of atomic values, tuple-valued attributes, sets of

tuples (nested structures), set and tuple constructors and object identity which

is independent of any object-related data2.

2.3 Object orientation

There is no consensus about what precisely object-orientation means, or even how

it is defined. Many ideas exist throughout the literature and it is only recently

that standards have been proposed [22]. It is generally recognized [115] that there

is a clear ascending chain from the relational model through the earlier semantic

models.

Kim [88] observes that if one examines existing object-oriented programming

languages, knowledge representation languages, databases and data models, a

set of common, core concepts can be identified. It is the approach that has been

followed in this literature review.

The most general definition about object orientation is given by Khoshafian and

Abnous [87]. He defines object-orientation as a set of "...software modeling and

development (engineering) disciplines that facilitate the construction of complex

systems from individual components". He therefore identifies the three main

components of object orientation:

Object Orientation = Abstract Data Typing + Inheritance -I- Object

A ccording to the First Normal Form: "Each value in a tuple is an atomic value; that is, it is

not divisible into components within the framework of the relational model. Hence composite and

multi-valued attributes are not allowed." [63]
2It must be noted that within the ER approach a record identity independent of the record values

is feasible, although it is hardly encountered.

CHAPTER 2. REVIE W OF OBJECT ORIENTATION 100

Identity

In summary, the fundamental concept that object orientation is based upon is

that of the object: it is a unique real world entity and the designer is attempting

to model its static structure (also known as attributes) as well as its dynamic

component (also know as behaviour), through abstractions (also called classes).

Classes may be organized in a hierarchy, so that through the inheritance mecha­

nism they can share their members.

The object oriented approach was introduced and used for many reasons. Egen-

hofer and Frank [59], in their literature search, suggest the major ones:

- Object oriented data models have been developed to capture more semantics

than the relational model.

- Object oriented user interfaces make systems appear more natural and easier

to use.

- Object oriented database management systems have been investigated to

provide the corresponding features for storage and retrieval of complex ob­

jects.

- Object oriented software engineering techniques and programming languages

have been developed to support the implementation of software systems

that were designed following an object oriented approach. They allow for

immediate implementations of object concepts rather than simulating them

with traditional programming languages.

The functional benefits from the adoption of object-oriented methods are many.

Object-orientation, in general, provides ([87, 88, 21, 22, 6]) the advantages listed

below:

- Modeling of the real world close to the user’s perspective. The result is

that the normal radical transformation from system requirements, defined

in user’s terms, to system specification, defined in computer terms is greatly

CHAPTER 2. REVIE W OF OBJECT ORIENTATION 101

reduced. This benefit is commonly known as removal of the so-called "se­

mantic gap".

- Interaction with the computational environment using familiar metaphors:

the notion of object is originating from real world situations, hence it will

be easier for the user to model complex structures, without worrying about

the internal mapping to the data structuring in the computing environment.

- Reusable software components: Software that is built in an object oriented

fashion can be reused "as is" within different applications. Code alteration,

whenever it is necessary is definitely minimized, and may be limited only

within the object.

- Extensible software libraries: new modules are built on top of old ones,

without the need for modifications within the old modules. This is feasible

either by behavioural extension or through inheritance.

- Ease in the modification and the implementation of the extension of software

modules: through the notion of encapsulation, modifications in the software

code of a module are independent of any changes occurring in other modules.

What should remain unchanged is the interface.

- Rapid prototyping.

- Incremental refinement of the system behaviour. The four stage develop­

ment iterative process (discussed later in this chapter) allows the model to

be defined in different levels of abstraction. As the process moves, the model

is defined in more detail. In this way, the developer can focus on what they

think is of interest, without worrying about the lower or upper levels of

definition.

- The intuitive way of describing systems leads to flexibility when used for

customization.

- Support for collaborative decision making across geographically distributed

systems.

- Improved application design and implementation practices.

CHAPTER 2. R E VIE W OF OBJECT ORIENTATION 102

Moreover, the major benefits in the adoption of object-orientation are directly on

the system users, either they are developers, programmers or end-users. These

can be ([87, 40]):

- benefits to end-users through friendlier user interfaces;

- benefits to application developers through semantically richer models; and

- benefits to system programmers through code reusing, clarity in syntax,

easier debugging, improved code maintenance, and time reduction when

building complex systems.

Some of the benefits particularly in the context of GIS are ([6]):

- Improved capabilities for data modeling and spatial phenomena simulation.

- Treatment of attribute values as complex objects.

- Modeling of relationships as objects.

- Modeling of abstract concepts.

- Support for versioning, multi-user concurrency, feature-object change track­

ing.

- Spatial and non-spatial data are modeled using the same conceptual model

and stored within the same database space.

Booch [21] endorses that object orientation’s main component is the object model,

the basic artifact which incorporates object-oriented concepts. When this model

serves as the basis for a specific paradigm, this paradigm can therefore be char­

acterized as object-oriented. The four major areas that are adopting the object-

oriented model, and, as a result, can be characterized object-oriented, are shown

in table 2.1:

How are these four categories related? As Booch [21] suggests "...the prod­

ucts of object-oriented analysis serve as the models from which we may start

CHAPTER 2. RE VIE W OF OBJECT ORIENTATION 103

Table 2.1: Object Orientation in IT

Analysis and Design Techniques OO ADT

Programming Languages OOPL

Database Management Systems O O DBM S

Graphical User Interfaces OOGUI

an object-oriented design; the products of object-oriented design can then be

used as blueprints for completely implementing a system using object-oriented

programming methods." In addition to programming languages, the implementa­

tion might take place in the environment of a database management system, be it

object-oriented or not. As it is explained further in the relevant section, DBMS

usually extend the functionality of 0 0 programming languages by adding the

concept of data persistence, where objects survive beyond the termination of the

program in which they belong, usually in a permanent media space. Moreover,

the implementation of the design might be the graphical (or not) user interface,

between the computer and those humans exploiting the system. User interfaces

are beyond the scope of this chapter and therefore not discussed in detail.

It must be noted that, regardless of the target implementation, the stages of

analysis and design are always present and preceding any other phase. Hence,

a sharp boundary has to be drawn between the analysis and design techniques

(1) and the implementation environments (2 and 3) mentioned earlier: OOADT

output refers to a higher conceptual model than the other three and are pre­

requisites in object-oriented system construction. Moreover, it can be viewed

as the link between the real world phenomena, that are being modeled and the

computing environment, where the implementation will eventually (but not in­

evitably!) take place. It must be emphasized that the first stage of analysis and

design must not, in any case, be influenced by any disadvantages that a specific

0 0 implementation environment naturally shows. In other words, the designer

should not consider the way that the design is about to be implemented. This

gives the freedom to the designer to incorporate as many object-oriented con­

CHAPTER 2. RE V IE W OF OBJECT ORIENTATION 104

cepts as possible, making the design more powerful, flexible and adaptable to

complex application domains. However, if the implementation environment does

not support directly the theoretical concepts that have been adopted, it is the

user’s responsibility to devise implementation artifacts, as an interface, so as to

enforce the design to "fit" the language or the database. In this situation, the

user can be either the designer or the developer of a commercial system. One

such paradigm, recently developed, is the so-called "object-relational database

management system", where the high level object-oriented design model, with

objects, attributes, methods and associations fits into the relations (or tables) of

a relational database management system, with records, tuples, attributes and

links. This is discussed in section 2.5.2.3.

How does a geographic information system relate to these four areas under exam­

ination? The answer lies purely on the architecture of a GIS as a computerized

information system. As mentioned earlier in chapter one a GIS includes:

- a database kernel which stores and retrieves the data. It is usually based on

a pre-defined data model.

- a programming language, which may be used as an application development

interface, a query language or as a simple customization tool;

- a graphical user interface, which may be used to provide simplicity and

friendliness in the human-computer interaction process;

- an analysis and design technique, which may be used in the high level stage,

to map the real-world phenomena being modeled, into the computer data

model, although this is not encountered very often in commercially available

GISs. It is a phase usually external to the GIS itself.

- an interface that is used to define the application domain model into a com­

putational conceptual model. Some environments (e.g. Smallworld) provide

CASE tools to significantly aid the user towards this direction. Other plat­

forms (e.g. LaserScan Gothic) simply provide a generic model definition

GUI.

CHAPTER 2. REVIE W OF OBJECT ORIENTATION 105

Since, object-orientation can be applied to any of the above components, hence

a GIS can be object-oriented in more than one way. However, characterizing a

GI system as object-oriented simply because it involves the usage of an object-

oriented language does not necessarily mean it provides full object-oriented ca­

pabilities 3.

In this chapter, the focus is mainly upon the first three areas, namely analysis

and design techniques, programming languages and their use in combination with

database management systems.

As mentioned earlier, the common part that the four different areas share is

the object-oriented data model, which is the model that captures the concepts

of object orientation and uses them to organize data. Codd [38] defines a data

model as a collection of:

- data structure types;

- operators or inferencing rules and

- general integrity constraints.

If the data model is to be object-oriented, then this should reflect the data struc­

ture employed in the model itself, since operators, rules and constraints are revolv­

ing around the structures. One important question posed at this point is when

should a data model be characterized as object-oriented, since object-orientation

involves more than a few concepts? According to Brodie [27] the object oriented

model is based on the principles of abstraction, classification, generalization and

aggregation. Booch [21] agrees on that issue as he suggests that for a model to be

characterized as object-oriented, it must comprise of these four major concepts (

table 2.2).

3a characteristic example is ESRI’s Arc/Info (all versions prior to 8.0) which can be customized

using the object-oriented language C++. However the database kernel involves the relational model

only.

CHAPTER 2. REVIE W OF OBJECT ORIENTATION

Table 2.2: Major concepts of Object Orientation

106

Abstraction

Encapsulation

M odularity

Hierarchy

The adjective "major", denotes that without all four concepts mentioned earlier,

a model can not be characterized as an object oriented one.

The three minor elements of an object-oriented model that he suggests are:

- Typing

- Concurrency

- Persistence

Minor means that these concepts are useful but not essential for an environment

to be object oriented. The last element is encountered mostly within database

management systems.

Any environment can be characterized as object-oriented if it incorporates all

of the major concepts mentioned earlier. Some other systems might be sim­

ply characterized as object-based, when they offer less semantics than object-

orientation. For example, a computing environment may be characterized as

object based when it provides the capability to create new objects out of existing

classes without the option to create new classes. Booch [21] suggests that when

a programming language does not support the notion of inheritance it is then an

object-based language. Such an example is the Avenue macro language which is

part of ESRI’s ArcView GIS.

As a conclusion, it must be noted that object-oriented design is the most natural

of the design approaches at the conceptual level. And when implementation is

involved, the full cooperation between the conceptual design and the underlying

computing environment becomes the most persuasive argument for the adoption

CHAPTER 2. R E VIE W OF OBJECT ORIENTATION 107

of an object-oriented database or programming language. The latter two are

discussed in detail in sections 2.5.1 and 2.5.2 respectively.

The structure of this chapter is as follows:

The first section is an introduction to the general concepts of object-orientation

along with various definitions and views found in the literature. The following

three sections are devoted to each of the specific groups of object-oriented envi­

ronments (OOADT, OOPL, and OODBMS) and the focus is upon the individual

and special problems and issues encountered when object-oriented concepts are

incorporated within them. It must be noted that there are many 0 0 implemen­

tation environments for both languages and databases. Since the purpose of this

review is not to focus on the platforms themselves, but on the theoretical con­

cepts of 0 0 , not all platforms are mentioned but only those ones which introduce

support for 0 0 concepts. Moreover, special focus is upon platforms that are to

be used at the final implementation of the spatio-temporal model in this work,

such as Java and LaserScan’s Gothic ADE.

Henceforth, the abbreviation 0 0 will point to the term object-orientation as

a noun and to the term object-oriented as an adjective. The context of the

abbreviation (i.e. the sentence) will clarify whether the abbreviation is used as a

noun or as an adjective term.

2.3.1 General concepts of object orientation

It must be noted that the literature on object-orientation is vast, and there is a

considerable variation in the naming and the notation of the concepts. More or

less, the semantics remain the same, and it is only the naming of the terminology

that varies from author to author or among different implementation platforms

that support 0 0 concepts. As already mentioned in chapter one, although the

0 0 paradigm spans a period of almost 20 years, it is only recently "official"

standards have been released. Such standards are the work of the Object Man­

agement Group (OMG) and the Unified Modeling Language (UML), as well as

CHAPTER 2. RE VIE W OF OBJECT ORIENTATION 108

the CORBA standard (both are explained in further detail later in this chap­

ter). The term "official" is used mostly here in terms of the interoperability of

commercial products, since that was the initiative of this kind of work.

The theoretical foundation for relational models and databases is the relational

algebra. However, no formal theoretical approach exists so far within the 0 0

paradigm, which remains a research area. A mathematical formalism in 0 0

is the so-called A-calculus. Moreover, a mathematical concept close to object

orientation is that of multi-sorted or heterogeneous algebras [17]. It must be

noted that the focus of the current text is more on practical issues rather than

any surrounding theory, hence no formal approach is being discussed, since it

is considered to be well beyond the scope of the research. The variation that

occurs makes a literature search important. It will show how concepts are used

within the object-orientation paradigm in general and the specific areas that it

can be implemented. Hence, this chapter’s aim is to give a survey of the 0 0

terminology and concepts and to built the foundations of the 0 0 reasoning that

has been followed in the rest of the thesis. There are many other literature

surveys that elaborate in more depth upon 0 0 concept variations and they are

mentioned later in this chapter.

Finally, it must be noted that the notation used in figures throughout the next

sections is according to the proposal by the UML authors, which is documented

in section (section 2.4.2).

2.3.1.1 A bstraction and A bstract data types (A D T)

As mentioned earlier, one of the key elements of object orientation is abstrac­

tion. Abstraction is a conceptual mechanism via which the human brain copes

with complexity. This is achieved through the recognition of similarities between

object, situations, or processes in the real world. The goal of abstraction is to

simplify a complex system. It is the specific context within which the focusing

on specific details is done. Booch [21] suggests that abstraction "...denotes the

CHAPTER 2. RE VIE W OF OBJECT ORIENTATION 109

essential characteristics of an object that distinguish it from all other kinds of

objects and thus provides crisply defined conceptual boundaries, relative to the

perspective of the user". He, therefore, points out that "...objects as abstractions

of entities in the real world, represent a particularly dense and cohesive clustering

of information."

The goal of abstraction within the 0 0 paradigm is firstly to separate individual

types of objects so as to produce categories (called the classes) and secondly to

distinguish between the object’s structure and behaviour in a general level and

later from its implementation. Moreover, abstraction is always dependent on the

domain and the user’s view, as mentioned earlier.

The closest concept to abstraction, which is found in the 0 0 paradigm, is that of

data types. [87] uses the notion of an Abstract Data Type (ADT) and defines it

as "...an encapsulated set of similar objects with the same representation". The

specification of an ADT usually includes the structure, that is the static part,

as well as the behaviour, or the dynamic part of an object. A clear separation

is made between the visible part of an ADT, which is the interface, and its

implementation. The implementation of an ADT consists of:

- the representation (data structures); and

- the operations (algorithms) which constitute the interface of an ADT.

As the principle of encapsulation applies in the design (explained later) and

functioning of ADT’s, the interfaces are kept public, but the implementations

remains private, not known or visible to other ADTs (usually called the clients).

The final implementation of an ADTs is done through classes.

Booch [21] uses the term type to denote an ADT. He also uses it interchangeably

with the term class (explained later) and abstraction. He therefore defines typing

as "... the enforcement of the class of an object, such that objects of different

types may not be interchanged, or at the most, they may be interchanged only

in very restricted ways". The notion of type makes necessary the distinction

CHAPTER 2. REVIE W OF OBJECT ORIENTATION 110

between strong typing and weak typing: in strong typing type conformance is

strictly enforced, meaning that operations can not be called upon an object unless

the exact signature of that operation is defined in the object class. In weak-typing

a client can send any message to any class, even if the class might not know how

to respond to that message.

In summary, the benefits of Abstract Data Typing are that:

- it allows better conceptualization and modeling of the real world and en­

hances representation and reusability;

- it enhances the robustness and the performance of the system;

- the capturing of the semantics is done through grouping of operations and

attributes;

- the specification from implementation are kept separate. Modification in

implementation is done without affecting the specification of the interface;

- it allows extensibility of the system.

Abstract data types, in terms of their members, need to be complete and correct

[87]. Both terms are used literally. Some language constructs are necessary to

achieve this goal, in order to help the designer to fully control the behaviour of

the abstraction. Two approaches can be found in the literature and both include

the usage of constraints:

1. Constraints on objects, which are similar to integrity constraints on tables in

relational databases. They usually force the values of the object’s attributes

to follow the constraint. Constraints can be attached predicates [87] which

are usually triggers that get fired up whenever an event associated with the

object and the constraint occurs, e.g. on update of a value, on the access of

a value etc.

2. Pre- and post-conditions on methods: preconditions apply constraints upon

an object’s attributes that must be satisfied before a method is executed.

CHAPTER 2. REVIE W OF OBJECT ORIENTATION 111

Post-conditions apply on the same attributes but are checked after a method

has finished executing.

Genericity [32] has proven to be a powerful method to reduce redundant defi­

nitions of ADTs. A generic type or object is a definition which is a backbone

for a series of detailed and specified definitions. Through generic types program­

ming is greatly reduced [57] since operations applied to all types are coded only

once. The choice between the two approaches is mainly upon the user for ad hoc

semantic convenience.

The major concept that abstract data types are lacking is tha t of inheritance,

which is supported by the concept of classes, explained in the next section.

2.3.1.2 Classes, Hierarchy and M odules

The concept of the class can be seen as a blueprint or a template according

to which objects are instantiated. It is the most fundamental in the object

orientation paradigm. A class is the definition of an abstract data type. This can

be seen clearly in the environment of an object-oriented programming language,

where the class is a language construct to define and implement ADTs. Booch

[21] defines the concept of the class as a "...set of objects that share a common

structure and a common behaviour". A class includes the name, the external

operations to manipulate the class, also known as the interface, the internal

representation, namely the attributes and the internal implementation of the

interface, which are the methods of the class. The set of structure (attributes)

and behaviour (operations) within a class, may also be called members of the

class. A class may be instantiated to produce a set of objects. Usually, an object

belongs to a single class, although there are exceptions, which are mentioned later

in this chapter.

Classes are linked together via the sub-class/super-class relationship, also known

as the "IS-A" relationship, resulting in a class hierarchy graph, usually called the

class schema, a special type of "node-and-link" semantic network. Nodes in this

CHAPTER 2. RE VIE W OF OBJECT ORIENTATION 112

graph are the classes and links are the sub/super-class relationships. When a

class Ai is a sub-class of another class A, then it is said that class Ai specializes

class A (figure 2.1).

Class A2
(e.g. A Road)

Class AI
(e.g. Motorway

Class A
(e.g. Road)

Class A3
(e.g. B Road)

Figure 2.1: Specialization relationships among classes.

Hierarchy can be viewed as a ranking or ordering of the abstractions [21]. It

mainly refers to how classes are related to each other, with the child/parent rela­

tionship. One of the main reasons that classes are embodied in a hierarchy is for

the inheritance mechanism to work: sub-classes will be inheriting members from

super-classes and super-classes will be sharing their members with sub-classes. A

secondary reason is that some class members are other classes, therefore the ag­

gregation relationships must be shown. Kim [88] separates the notion of the class

hierarchy, which captures the generalization/specialization relationships, from

that of class-composition hierarchy, which captures the aggregation relationships

only, among the classes. Nonetheless, within a single class hierarchy, both types

of relationships should be modeled, as well as any other types of associations

(explained later in this chapter) for a clearer overview of the schema. All 0 0

environments use a single class hierarchy to model the entirety of class associa­

tions. Additionally, for modularization reasons, they use the notion of modules,

where classes belong and are grouped logically. It is necessary to mention that

for the inheritance concept to work, the specialization relationship between two

classes must be defined explicitly.

In a more formal definition [88], a class hierarchy can be defined as a "...rooted

CHAPTER 2. RE VIE W OF OBJECT ORIENTATION 113

directed acyclic graph, such as for a class C and a set of lower classes {5*}

connected to C, a class in the set {S';} is a specialization of class C, and conversely

the class C is the generalization of the classes in the set {-S';}. The classes in {S';}

are sub-classes of the class C; and the class C is a super-class of the classes

in {S;}. Sub-classes inherit structure and behaviour from their parent, super­

classes." (figure 2.2)

Class C

Class S Class S Class SClass S

Class S, Class S. Class S-Class SClass S

Figure 2.2: Hierarchy of classes

Classes themselves are very often treated conceptually as objects in many object-

oriented environments. It is then that they are also called containers (as in Java)

or collection objects, containing not only the class definition, but the instances

that are being produced from it as well. The class specification that a class itself

belongs to is called a metaclass, which is a “higher level” class describing a class

that is used to instantiate objects. The notion of metaclass is explained later in

this chapter.

A class can be abstract if no object is allowed to be instantiated from it. It is

usually the sub-classes of an abstract class that, after being enriched in structure

and behaviour, can be instantiated. In stan tia te classes are called concrete or leaf

classes. It is the designer’s choice within the application domain that they work

in, to incorporate abstract classes in the class hierarchy. Most 0 0 environments

implicitly consider a newly created class as concrete, unless the user explicitly

declares it as abstract. The most generalized class of a hierarchy is called the base

or root class. It is very common that there might be more than one base class

CHAPTER 2. RE VIE W OF OBJECT ORIENTATION 114

in a class hierarchy. However, in some 0 0 environments the unique existence of

such a class is necessary.

When a class is created to incorporate program code and attributes that are not

part of any other class but are useful throughout the system in a generic way,

the class is called a class utility ([21]). Class utilities are not instantiated to

produce objects, but serve as both the class and the single instance of it. There

are further explanations in section 2.3.1.5 about the class behaviour.

Creating classes to model real world objects in large projects, eventually results

in a large number of classes that might form one or more class schemata. There­

fore, a more elegant manner of grouping schemata is necessary, and that is done

through the concepts of modules. Modularization according to Liskov [99] con­

sists of dividing a program into modules which can be compiled separately, but

which have connections with other modules. The main purpose of partitioning

a program into individual components is because it can reduce its complexity

to some degree. Therefore, the module, can be the basic element upon which a

system’s physical architecture can be based. A module (or package, like in Java)

is an artifact used as a container for classes that model similar real world objects.

It is very closely connected to the notion of abstraction, since it is the imple­

mentation means. Moreover, modules may contain more than one abstraction,

providing the means to group them as well. Modules usually contain classes,

which are considered more specific and a smaller unit of decomposition. In this

way, modularity helps the management of a system’s complexity by providing

the means to cluster logically related classes. Booch [21] defines modularity as

"...the property of a system that has been decomposed into a set of cohesive

and loosely coupled modules". He therefore observes that the concepts of en­

capsulation, abstraction and modularity are synergistic with regard to building

individual components, since an object provides a well-defined boundary around a

single class and both encapsulation and modularity serve as a shelter around this

class. Coad and Yourdon (1991) use the notion of viewpoints in the early stages

of analysis, to divide the overall model into smaller units and to organize the

CHAPTER 2. R E VIE W OF OBJECT ORIENTATION 115

phases of analysis and design. The general viewpoint may include several other

viewpoints according to the application domains that the model encompasses.

One of the first stages in analysis and design is to identify objects from the

domain that is being modeled and to construct classes. Booch [21] proposes five

concepts against which the class design should be checked:

- Coupling: denotes the measure that modules are interconnected. Strong

coupling makes a system more complicated since strongly interconnected

modules are difficult to understand and maintain. It is worth noting that

inheritance, which connects classes, is quite a barrier to loose coupling.

- Cohesion: measures the degree of inner connectivity among the elements of a

class. The most desired form of cohesion is functional, in which the elements

of a class or module work together to provide well-bounded behaviour, so

that the connection with other classes is minimized.

- Sufficiency: characterizes the degree to which a class captures enough char­

acteristics of an abstraction to allow efficient and functional interaction with

the class/object. It usually denotes the minimal interface required.

- Completeness: measures the degree to which the interface of a class fully

covers and captures the behaviour of the abstraction.

- Primitiveness: refers to how operations can be implemented using an al­

ready existing set of classes (Booch calls them "...the underlying represen­

tation"). It is quite often that many high-level operations can be composed

of many low-level ones, eliminating the need to write new operations from

scratch. A proper way of forming classes should start with primitive ones,

so that later classes can be based on them.

In general, object orientation tends to loosen the coupling among the components

of a complex system. Therefore, effects that are due to individual module changes

have little or no impact on other modules and their relations with them. However,

CHAPTER 2. RE VIE W OF OBJECT ORIENTATION 116

due to the flexibility of object orientation, a poor design might end up in strongly

connected classes in the system.

2.3.1.3 Inheritance

Inheritance is the concept of code (methods) and structure (attributes) being

shared among classes in the same class hierarchy. It resembles to a great extent

the notion of inheritance found in the natural world: a living organism inherits its

characteristics from its parents. The term can also be encountered with the adjec­

tive class (class inheritance), which emphasizes that inheritance refers to classes

and their members, in a class hierarchy. Inheritance is based on the so-called "IS-

A" relationship between two classes. A super-class represents an abstract (but

real) world object, while the sub-classes are more specialized objects, in a specific

way. By inheriting the behaviour, the goal of code sharing is achieved, and by

inheriting representation, the goal of structure sharing is achieved. Inheritance

works in a top-down wise fashion: sub-classes within a class-hierarchy inherit the

structure (attributes) and code (methods) from its super-class (es). In the case

that a subclass inherits from more than one super-class, then the inheritance is

called multiple, a powerful semantic concept which is not widely supported by

0 0 systems (e.g. Java). Cox [40] observes that without inheritance classes would

be stand-alone units each of them developed from ground up. He therefore em­

phasizes the significance of inheritance since it "...makes it possible to define new

software in the same way we introduce any concept to a newcomer, by comparing

it with something that is already familiar. " Booch [21] views inheritance as a

generalization/specialization hierarchy: as the inheritance hierarchy evolves in a

class schema, the structure and behaviour that are common for different classes

will tend to migrate to common super-classes.

A question posed at this point [88], is that, since a class hierarchy captures the

"IS-A" relationship between a class and its super-class, should an instance of a

class belong to its super-class as well? An example is given in figure 2.3. The

CHAPTER 2. RE V IE W OF OBJECT ORIENTATION 117

answer is both yes and no for different reasons: since a class is also its super-class

via the "IS-A" relationship (but more specialized), an instance should also be

its class’ super-class instance as well. This happens only up to a point, since

any instance contains an instance of its super-class (es) in terms of structure and

behaviour. An exception to this fact is the case when the sub-class has modified

the members of its ancestors, either by overriding attributes and/or operations

or by restricting members in general. In this case, the instance belonging to

the modified sub-class can not be an instance of its super-class precisely, since

instance members are different. In both cases mentioned above, another question

is when an instance has to be deleted, should it continue to exist as an instance

of the super-class of the class it used to belong to? This question is mainly posed

in the environment of an 0 0 database management system. If the answer to the

earlier question is no, then a deleted instance should not be kept as an instance

of its super-class. Nonetheless, the answer to this depends on what exactly is

being deleted: if e.g. an object which has a single member that purely belongs

to its class (that it is not a member of one of its super-classes) is being deleted,

but members that have been inherited then this instance may change its class,

or it may not.

Obj ect A I :X
Motorway M8

Class A2
(e.g. A Road)

Class AI
(e.g. Motorway

Class A3
(e.g. B Road)

Class A
(e.g. Road)

Figure 2.3: Is object ATX an instance of class AI only, or both AI and A?

CHAPTER 2. RE VIE W OF OBJECT ORIENTATION 118

The three main parts that are inherited from a super-class by its sub-classes are:

- The interface of the super-class (method definitions).

- The code that implements the methods.

- The attributes of the class.

It is worth noting that aggregation associations also follow the inheritance rule,

since they are stored in attributes as references to object identities (from one

object to another).

Inheritance and specialization are very often confused and misused as terms:

through specialization, a set of classes of the same level, become members of

a higher set, that of the their common super-class. In this way, every class is

the superset of its sub-classes and the topmost (root) class is the superset of all

classes, in a class hierarchy. Through inheritance, sub-classes can be enriched in

terms of their structure and behaviour, by accumulatively inheriting new mem­

bers as the class hierarchy graph is traced downwards. In this way, the structure

(behaviour) of a sub-class, as a set of attributes (methods), is a superset of the

respective one defined in its super-class. Although it may not seem obvious, in

terms of inclusivity, inheritance and specialization are working reversely. The

sub-class that enriches the structure and behaviour of its super-class (es) is said

to use inheritance for extension. Sub-classes might also restrict the structure

and behaviour of their super-classes, therefore using inheritance for restriction

[21]. It is very common, though, for a sub-class to both restrict and extend its

super-class. Extension and restriction should be applied in different members.

The concept of inheritance is quite similar to that of sub-typing, although there

are a few differences. Khoshafian and Abnous [87] compare the concepts of in­

heritance with that of sub-typing.

A major issue that arises is which methods (and/or attributes) should be in­

herited and which should not, by sub-classes in a class-hierarchy schema. This

makes imperative the introduction of the selective inheritance concept [88], which

CHAPTER 2. REVIE W OF OBJECT ORIENTATION 119

applies for both methods as well as attributes. Selective inheritance is the prohi­

bition of a sub-class from inheriting a specific subset of the structure and/or the

behaviour from its super-class (es). This concept not only provides maximum

flexibility, but it also gives a solution to the problem of any naming clash that

might occur. This is explained in more detail later in this chapter.

Class inheritance, as explained earlier, is a very fundamental concept in 0 0

environments. However, it only regards the sharing of structure and attributes

and behaviour, but not the actual values among instances, whose classes have

the sub/super-class relationship. Through value inheritance, an instance C can

inherit the values of an instance C’, only if the class of C’ is a super-class of the

class of instance C. A dilemma that arises with this concept is whether within the

child instance, the attribute values should change, whenever this occurs within

the parent instance. This kind of inheritance between instances is called value

inheritance and it is a very useful feature for 0 0 databases.

With multiple inheritance, a class can have more than one super-class from which

it inherits structure and behaviour. In this situation, the class hierarchy graph

becomes a Directed Acyclic Graph (DAG): It has the properties of being directed,

acyclic and connected: Directed means that inheritance between classes works

only from top (super-classes) to bottom (sub-classes). Acyclic means that any

sub-class can not have any of its super-classes as a sub-class within the same

class hierarchy. And connected means that every class (node) on the graph is

reachable through the root class (node). Every class has a name, which ought

to be unique throughout the class hierarchy schema. Multiple inheritance allows

a class to logically belong to more than one class, which otherwise would be too

costly to maintain [88].

A common problem encountered with multiple inheritance is that of name clashes:

whenever a given set of super-classes (two or more) have the same member name

but different interfaces and/or implementations, and a sub-class inherits mem­

bers from these super-classes, a rule should be specified so that only one member

CHAPTER 2. R E VIE W OF OBJECT ORIENTATION 120

among members with the same name, from different super-classes, will be in­

herited. An example is given in figure 2.4. This problem is similar to the one

that is encountered in single inheritance in combination with polymorphism (as

explained later in this chapter), where a class may inherit two methods with the

same name but different signatures and implementations. A rule commonly used

is that of ordered parent classes 4. In this technique, the set of super-classes of a

class is explicitly ordered in a linear fashion. Members are inherited from the last

class in order and move upwards. If the same method or attribute is encountered

more than once, then only that of the first super-class in order is inherited, thus

prohibiting methods and attributes with the same name being inherited from

the next super-classes in order. However convenient this might be, in practice it

results in structure or data loss, since some methods or attributes will eventually

not be inherited, probably without the designer’s intention. Moreover, when in­

heritance is partial, as when a class inherits all methods, but not all attributes,

because of a name clash among attributes, it is possible that references to at­

tributes from within a method will become invalid. Another implication of this

approach is that if the specified order is not similar to the class hierarchy, then

the intended class design becomes invalid. It is also certain that indirect access

to methods belonging to super-classes will be necessary. If this technique is to be

used, it is obvious that the user is responsible for avoiding the usage of methods

with the same name, throughout the class schema. LaserScan’s Gothic ADE uses

this technique to order the parent classes so as to avoid name clashes.

Other ways to resolve such conflicts can be [87]:

- By forbidding conflicts whenever there is a name conflict in inheritance, by

e.g. issuing an error message. The user is then responsible for renaming any

of the members in the super-classes definitely before inheritance is allowed.

However flexible this might seem, as it provides the user with the freedom

of choosing the qualification strategy, it is also an encumbrance for the

4Khoshafian and Abnous [87] uses the term linearization

CHAPTER 2. R E VIE W OF OBJECT ORIENTATION 121

designer.

- By renaming members. In this case, inherited members with the same name

are renamed in the class where they are inherited (as opposed to the previous

way).

- By qualifying the inherited conflicting member names, something which is

done by adding the class name as a prefix (any of the super-classes that

members originate from).

It must be noted that the problem does not arise whenever the source of similar

structure or behaviour is a common ancestor of two (or more) classes. Then

the inherited attribute(s) and/or method(s) are identical. Thereby, only one

of the identical constructs is used. This is a similar problem to that of name

clashes, but in a simpler form. It is called repeated inheritance [21], where two

or more peer sub-classes share a common super-class. In this case (where the

class hierarchy will be diamond shaped) the issue is whether the lowest sub-class,

which inherits from both peer super-classes should inherit one or two copies of

the common members. In some 0 0 languages, this is prohibited before it occurs.

In C ++ , however it is the programmer’s decision. Anyhow, it is necessary from

the programmer’s side to explicitly qualify the inherited copies to differentiate

between them. Otherwise, if prevention of inheriting all members is adopted, it

will result in data loss.

Three strategies exists to confront the issue of repeated inheritance [21]:

a) by prohibiting its occurrence, therefore treating it as illegal. Smalltalk follows

this approach. The user therefore is responsible for member renaming.

b) by permitting repeated inheritance, provided that the inherited method or

attribute names are qualified before used. This approach has been taken by

C ++.

c) by treating multiple references to the same class as denoting the same class.

This approach is also found in C ++, where the ancestor common super-class is

declared within a sub-class as a virtual base class.

CHAPTER 2. REVIE W OF OBJECT ORIENTATION 122

Class B
Attribute A
Attribute A

Attribute A

Class C2

Class C
Attribute A

Attribute A

Class Cl

Figure 2.4: Class B will inherit members belonging to class C twice: once from super­

class Cl and another from super-class C2. Which of the two should be preserved?

(italics denote inherited members.)

Quite often multiple inheritance is overused in the 0 0 design, and this may

complicate the schema itself. Booch [21] suggests that it may be avoided, by

replacing one (or more) of the hierarchy associations of a class with one (or

more) of the aggregation association. He also names classes that inherit only

their members without adding new structure or behaviour as aggregate classes.

The issue here is that a programming language deficiency has an effect on the

way that the model is built, which according to proper 0 0 design should not

occur, since high level design is independent of the functionality offered by the

implementation environment. However, this is considered to be a convenient

artifice in languages like Java, which does not support multiple inheritance. As

it is explained in detail in chapter 4 in the design stage of the model, cases where

multiple inheritance was necessary are transformed to aggregation relationships

between classes.

An extreme view of the combination of inheritance and encapsulation is that these

two concepts invalidate each other: since structure and behaviour are hidden

CHAPTER 2. RE VIE W OF OBJECT ORIENTATION 123

in a class, by allowing inheritance by sub-classes, encapsulation is violated. If

encapsulation is enforced, then sub-classes should inherit neither structure nor

behaviour. Liskov [99] notes three ways in which encapsulation can be violated,

always in coexistence with inheritance. A sub-class might:

1. access an instance variable of its super-class,

2. call a private operation of its super-class, or

3. refer directly to super-classes of its super-classes.

It must be noted though, that in most of the 0 0 environments, encapsulation is

forced only on instances of classes, therefore allowing the combination of the two

concepts to coexist and cooperate within the class hierarchy. This issue gives rise

to the characterization of the members of a class as private, protected and public,

which are explained later in this chapter.

So far, inheritance refers to code (methods) and attribute specification sharing

between parent and child classes. When classes are instantiated to produce ob­

jects, it may be useful to not only inherit the structure of its super-classes but

the attribute values of an object belonging to its direct super-class or super­

classes, in the case of single or multiple inheritance respectively. This concept of

value inheritance is considered to be of use, to model temporal data, especially

in OODBMS environments, and in combination with object versioning, although

currently it is not explicitly supported by any commercial 0 0 environment. This

mechanism may be implicitly implemented with pre-conditions found in construc­

tor methods of a class. Value inheritance has meaning only among objects and

not classes. It must be also noted, that value inheritance imposes once more the

question of how encapsulation and inheritance can co-exist without violating each

other, since it does violate the principle of encapsulation. This can be avoided by

including methods that access the attribute values, instead of directly accessing

the attribute themselves. In this way, value inheritance may conform more easily

with any interoperability mechanisms (discussed later in this chapter). Anyhow,

CHAPTER 2. RE VIE W OF OBJECT ORIENTATION 124

value inheritance should be used with caution and only whenever it is absolutely

necessary.

2.3.1.4 Structure of classes - A ttributes

Classes comprise structural specifications that describe what objects look like.

These are called the attributes of the class. When the class is instantiated and

an object is created, attributes contain values that conform to the specifications

of their attributes. Every attribute has an associated domain, which is actually

the class, where the values of the attribute belong. Values can be other objects

or primitive classes, such as integers, real numbers, strings etc. These classes are

often called base objects. It must be emphasized that an attribu te’s domain is not

specific, as is the case with the relational model. Since an attribute can receive a

class as its domain, it can also receive all its sub-classes as well, expanding in this

way the range of values it can receive (see figure 2.5). This is considered to be

an extremely powerful mechanism that provides a significant degree of flexibility

both to the design and the implementation.

Class C Class X

Class X2Class Cl Class C2
Attribute A + &

Class XI

Figure 2.5: Class C2 contains the attribute A, which is a reference to a class X. In

class C2, attribute A can receive as values not only objects belonging to class X, but

objects belonging to X sub-classes, namely XI and X2

Kim [88] distinguishes between two types of attributes depending on the way

that their values are set: shared are those attributes whose values are set by the

CHAPTER 2. REVIEW OF OBJECT ORIENTATION 125

user explicitly in every instance of the class. Default, are those attributes whose

values are set implicitly when the class is instantiated (usually by the constructor

method of the class, explained further below in this chapter).

As mentioned earlier, associations are finally implemented as attributes within a

class, and are called links. They contain the reference to the object with which

they are related (a sub/super class, aggregate part or other). In other words, links

are object attributes that usually contain the identity of the referenced object.

The identity (ID) of an object, is a special attribute that distinguishes it from

other objects and makes it unique within a given object space. In contrast to

the relational databases5, object identity is created with total disregard to the

object’s attribute values. Hence, whenever a value of an attribute in an object

changes, its identity remains the same, unaffected.

A single identity is associated with every object in one-to-one relationship, so

that no identity can exist that does not point to an object, and vice versa. The

identity should be created simultaneously with the object.

Additionally, through identity, objects can reference other objects, establishing

the basis on which complex (or aggregate) objects may be built. Moreover,

objects can be stored persistently in a database system (as explained later in this

chapter) and therefore be referenced, distinguished and retrieved, only by their

identity.

Effective utilization of an object’s identity (OID) poses a question as to how it

should be formed. In a truly object-oriented environment, object identity should

be constructed based upon the following principles [87]:

- Uniqueness throughout the object space (transient or persistent).

- Independence of any particular computer implementation.

- Independence of where the object is stored (the physical address).

5 In relational databases the uniqueness of each record is characterized by the primary key, which

is usually dependent of other attributes within the same record, and results in a unique combination

of values in each record. If attribute values change then the primary key value changes as well.

CHAPTER 2. RE VIE W OF OBJECT ORIENTATION 126

- Independence of its attribute contents (object state) or even the way it is

accessed.

- Uniformity of object identity type across the same object space.

Any technique used to create object identities should follow and preserve the

above principles, in order to be used effectively.

Many 0 0 environments, though, relate the OID to the physical address of an

object, whether the object is stored temporarily (within the execution of a pro­

gram, in RAM) or permanently (within a database system, in permanent storage

media). The main dichotomy here is: should the OID be the same as the physical

object address or not? Should there be any relation between these two? Accord­

ing to the principles of constructing an OID posed earlier, this should not be the

case, but why?

The answer lies in the address of an object, which is a lower-level, usually

environment-dependent mechanism, used to reference an object within a partic­

ular environment. If the object moves physically, within the same environment,

or the environment of the object changes (e.g. the object is exported out of

the system) the address will change as well. Therefore, relation to the physical

address compromises the notion of identity.

Other techniques of forming object identities, commonly found in 0 0 environ­

ments, include user-specified names or the usage of identifier keys in object collec­

tions. An example of a user-specified name is the hierarchical directory structure

in most operating systems. Identifier keys form the approach mostly encoun­

tered within relational database systems, as mentioned earlier. The major dis­

advantages of this technique, that violate the principles by which OID should be

constructed are that [87]:

- the modification of the identifier keys that participate, results in modifica­

tion of identity.

CHAPTER 2. RE VIE W OF OBJECT ORIENTATION 127

— the combination of different type fields (like string, integer and Boolean),

results into non-uniform identities across different objects.

In some 0 0 environments (as in Smalltalk), object identity is based upon the

attribute values of the object, but only for basic, built-in objects (like INTEGER).

In the context of an OOPL in general, variables are referenced through pointers, a

concept first introduced in ALGOL 68. Pointers are actually physical addresses,

which correspond to memory locations. Moreover, pointers are part of a technique

very often used to implement the notion of identity.

In the case of 0 0 environments, where all variables are treated as objects, and

as every object has a unique identity complex, objects will therefore be treated

as collections of references to other objects. In this way the state of an object

can formally be expressed as the set of tuples which consist of the variable name

and the actual value, that is the referenced object identity.

The life cycle of an object depends on the environment in which it is manip­

ulated. In 0 0 languages the object life cycle is the duration of the program

execution. In 0 0 databases the users of the database define the object life cycle.

In any case, the identity of the object should not change. Some programming

languages support the notion of object persistence, that is storage of the object

past the program execution. Most of them, however, do not allow the persistence

of objects if they contain pointers to other objects, since identity is usually im­

plemented as the physical address of the object, and upon program termination

it ceases to exist along with the objects. An exception to the above is the PS-

ALGOL language, an extension of ALGOL, which supports persistence of the

dynamically allocatable memory. It must be noted that in the case of persistent

complex objects, all aggregate objects must be stored as well.

Every object in the transient or persistent object space is stored, and therefore a

memory address points to the memory location where the object is stored. Types

of object spaces (in term of physical storage media) may be:

- the virtual memory (for transient object spaces);

CHAPTER 2. REVIEW OF OBJECT ORIENTATION 128

- a secondary storage address, e.g. the hard disk (for persistent spaces); or

- a structured name (in the context of a distributed environment).

The memory address is a direct way to refer to the position where an object

is stored within an object space. Indirect ways to memory locations use other

object-related information to access memory addresses. It is the most convenient

way to differentiate between object identity and address, and keep these two

correlated. However, to adopt this strategy, the processing overhead required

should be taken into account: objects keep unchanged identities that point to

memory addresses, which in turn may be changed, if objects are to be moved (as in

garbage collection). Given the object ID, this address is always known. Therefore,

there should always be a function that retrieves the object address through its

identity, and vice versa. Indirect ways are also called indexes (explained further

below in this chapter). Implementation strategies can be [87]:

- Object-tables: these are tables with tuples, each of which is a combination

of the object identifier, along with the starting object address within the

object space.

- Address schemes: this is the simplest way to implement the identity of

persistent objects through its physical address within an object space. As

opposed to the previous approach, no differentiation is done between identity

and address. When used by itself, it imposes all the problems related to

treating identity and address as identical constructs (expanded earlier in

the identity section of this chapter).

The two different approaches, mentioned above, can be used in conjunction,

although this will result in a dual representation [87]. The first could be used

in the case of disk-resident objects (disk object space), while the latter when

the object is retrieved and read into the read-only memory of the system (RAM

object space). However the overhead of transforming memory addresses from the

one object space to the other is required, in the case of complex objects that have

references to other objects, the later being their aggregate parts.

CHAPTER 2. REVIE W OF OBJECT ORIENTATION 129

The most powerful technique so far, to implement the concept of object identity

is through surrogates (Bancilhon et al., 1987). Surrogates are values that are

generated by the system and have the properties of being:

- Globally unique (even in distributed object spaces).

- Independent of the object state.

- Independent of the object location in memory (transient or persistent object

space).

An important issue arising here is how should a surrogate be formed within a

distributed environment and yet preserve all the properties prescribed earlier

that apply to the notion of object identity. Leach et al. [98] propose a way to

implement surrogates in distributed environments.

Another important issue is when an object’s attributes change, should its identity

change as well? Arctur [6] suggests that this is an application related answer

where some rules need to be predefined. This is also related to the mechanism

embedded for object versioning. Should a new version of the whole object be

created, therefore requiring a new identity, or should the attributes be versioned

themselves, therefore having the same object throughout the version life cycle?

Since the OID differentiates itself from the state of an object (namely any com­

bination of the actual values of its attributes), it is imperative to discuss the

operations that can be used upon the object identity. Khoshafian and Abnous

[87] identifies three types of identity operations: equality, copy, and merge/swap.

Differences among objects of the same class are based mainly upon their identity

and secondly on their state (the values of their properties). Therefore, equality

of objects is a concept that must be examined in terms of their identity, their

contents as well as the level of the object structure. More specifically:

a) Two objects can be considered equal, either on the basis of their identity or

in terms of their attribute values. The two cases are quite different and impose

semantic and symbolic differentiations on the operators that should be used to

CHAPTER 2. REVIEW OF OBJECT ORIENTATION 130

denote each type of equality. Many 0 0 environments use the " = " operator to

denote value equality and the "= = "operator to denote identity equality. Identity

equality occurs whenever two objects can be used interchangeably within an

operation, without any effect in the operation result. It is obvious that whenever

the identity equality condition is true, the equality in the values that the object

holds should be true as well, since otherwise the principle of identity uniqueness

is violated. In other words, two objects with the same identity must hold the

same attribute values. The term equal is therefore used to denote complete object

equality.

b) In the case that two objects hold exactly the same values in their attributes,

belong to the same class, but have a different OID, it is the case of equivalent

objects. Khoshafian and Abnous [87] uses the term of shallow equality for this

type of equality.

c) When two objects belong to the same class, but have different OIDs and share

partially identical values in their attributes, it is the case if partially equal objects.

Khoshafian and Abnous [87] uses the notion of deep equality. If the equality is

upon the isomorphism of the graph structure of the objects (which obviously

belong to different classes) it is the case of isomorphic partial equality.

All the cases of object equality mentioned earlier have the properties of being

reflexive, symmetric, and transitive.

As a conclusion, it is considered to be a purely conceptual problem whether and

when an object should become another object (e.g. change its identity) if it

undergoes a transformation. It is suggested that this should be specified in the

early stage of the analysis and later in the design documentation, namely through

the notation language used.

CHAPTER 2. RE VIE W OF OBJECT ORIENTATION 131

2.3.1.5 Structure of classes - Behaviour of objects (Interface, M eth­

o d s / O perations, M essages)

Apart from the static, structural part, objects are also dynamic: they respond

to messages that other objects, called the clients, send to them, according to the

operation definitions found in their class. It is also called the behavioural part of

the object. Usually, for a given class, there are two kinds of clients: classes that

invoke operations defined within the class; or, sub-classes that inherit from that

class.

Behavioural specifications describe:

a) what requests are applicable to objects, as well as b) how the processing of

these requests is executed inside the object.

Objects can process these requests from other objects, known as messages: they

either ask the target object to perform a computation and return a value or mod­

ify the object’s content resulting in a change of its state, namely the values of its

attributes. Booch [21] names the interaction among the objects as mechanisms.

He also considers objects as small independent machines, which are parts of a

larger software system. Therefore objects may be classified as either active, when

they encompass their own thread of control and as passive when they do not.

Each object has a communication protocol, which is the set of messages to which

the object can respond, returning a non-error status. This, in turn, is defined

by the class to which the object belongs. The protocol of an object defines its

interface, which is a collection of methods defined for the instances of its class.

The actual implementation of an interface is done through method or operation

definition. Operations denote the services that a class may offer to its clients.

The specification of a) the arguments (input) and b) the returned (output) types

of a method are the signature of the method. In typeless 0 0 environments the

argument number is sufficient to define the signature. Booch [21] endorses that

as the protocol of an object is the implementation of its behaviour it denotes the

role that an object can play, mainly between its class and the clients that access

CHAPTER 2. REVIEW OF OBJECT ORIENTATION 132

the class.

Objects are individual components but also related to each other. As Parnas

[*] states that "the connections between modules (objects) are the assumptions

which the modules make about each other". This statement makes clear and ob­

vious the necessity for a priori interface definition of what an object exposes to

other objects. When this is standard, communication between objects is feasible.

This is a prerequisite stage prior to any object-oriented design and implemen­

tation, so that, objects which have been instantiated from classes of the same

module, can communicate among them. When this interface is not standard,

objects must have an inherent mechanism to declare their interface functionality

to other objects, upon any request. The CORBA standard has been developed

specifically for this purpose, so that objects coming from different designs and

applications can communicate, without the interface having to be in a standard

form. The CORBA standard is explained in detail in the relevant appendix.

A method definition comprises the name, the number and the type (or class)

of the arguments. The actual code that specifies what the method does is the

implementation of the method. In most programming environments, the definition

and the implementation of a method are treated separately, since the principles

of encapsulation and object-to-object message communication through public

interfaces are preserved. Invoking a method involves a target object, the name

of the method, and the arguments of the operator. Methods are inherited from

parent classes similar to attributes, through the principle of inheritance, in a class

hierarchy.

Khoshafian and Abnous [87] distinguishes three categories of methods:

- Accessor methods, which can simply retrieve values of an object’s attributes;

- Update methods, which modify the value of one or more attributes of the

object they belong to; and

- General methods which perform complex computations probably involving

other objects and methods as well. According to Booch [21] a special type

CHAPTER 2. R E VIE W OF OBJECT ORIENTATION 133

of a general method is the iterator, which includes operations that permit

all parts of an object to be accessed in some well-defined order.

Accessor methods exist so as to preserve the principle of encapsulation: the at­

tribute values are accessed only through an invocation of a method, namely a

message to an object. They are very common, so that many programming en­

vironments generate them automatically (usually with the qualification prefix

"getXXX", where XXX is the name of the attribute which the method is retriev­

ing the value). Update methods provide considerable flexibility when it comes to

actually implement methods without modification of the interface, thus enforc­

ing encapsulation and message communication between objects. Another two

important types of methods encountered almost in every object-oriented envi­

ronment are the constructor and destructor methods: they are associated with

the creation and the destruction of an object respectively within the object life

cycle. Constructor methods usually contain instructions relative to the initial­

ization of the object and its attribute values, while destructor methods deal with

the allocation of the space that the object was occupying while it exists in an

object space. Both methods are usually invoked automatically, whenever there

is a client request to create or destroy, respectively, an object. For a new object

to be instantiated, a constructor method is usually invoked via a message to the

object class, (since classes are treated as objects in most 0 0 environments, as

mentioned earlier). The strategy of free space allocation upon object destruction

is called garbage collection. The computing environment is mainly responsible

for this procedure, i.e. the 0 0 language or DBMS. There are many proposals

for garbage-collection techniques, which deal with the problem that arises when

an object is deleted: the references that other objects have as attributes must be

deleted or updated. Khoshafian and Abnous [87] group these proposals into ref­

erence counting, mark and sweep and scavenging algorithms. Garbage collection

is well beyond the thesis’ scope. When an 0 0 environment does not provide im­

plicitly constructor or destructor methods, the user is responsible for the explicit

definition and implementation of such methods, whenever necessary. It is very

CHAPTER 2. RE VIE W OF OBJECT ORIENTATION 134

often encountered within database systems, where objects are stored persistently.

Egenhofer and Frank [59] use the concept of propagation to denote that a prop­

erty of a value in a class is derived from a property value found in another

class. Usually, this value originates from a component object (or a collection of

them), and is inserted into a property of the composite object. The reverse case

is equally possible. Propagation, as a mechanism which works among objects

belonging in a "IS-PART-OF" relationship is different from inheritance, which

works among objects belonging in the "IS-A" relationship. Formal definitions

of propagation have been given in terms of first-order predicate calculus [54].

Propagation usually involves the calculation of a value in the aggregate object

out of a set of property values that belong to its components. The functions

used for this calculation are called aggregate functions, and their purpose is to

reduce the aggregate object’s details found in the aggregate parts. Examples

of aggregate functions are maximum, minimum, average, sum, weighted average

etc. The main advantage of propagation is that it guarantees data consistency

along with reduction in data redundancy, across a dataset, since data are only

stored once, and therefore any values depending on a data subset are derived.

It must be noted that elementary values (the ones found in the aggregate part)

may only be changed explicitly, while the aggregate value can not be altered

except through the aggregate function. Two main properties of propagation are

identifiable: 1) the calculation of a value through an aggregate function might

involve values found in different classes, and 2) the propagation mechanism is

transitive since the derived values may be used to calculate further aggregate

values. However convenient this mechanism might be, it introduces performance

problems in query execution, since checks should be applied beforehand, in order

to guarantee data consistency.

The choice of the actual code to be executed for a given message to an object

depends on the object’s class. The determination is usually done at run time,

and this technique is known as dynamic binding (also known as late binding),

which is very common in object-oriented languages, unlike with procedural pro­

CHAPTER 2. RE VIE W OF OBJECT ORIENTATION 135

gramming. It means that the system binds message selectors to the methods that

implement them at run time, instead of at compile time. If the environment does

not support dynamic binding then a large case statement would be necessary

[87] so as to differentiate among the various implementations of a single method

name. Whenever an object receives a message to execute a method, then a search

is necessary prior to execution so as to determine which class holds the method

that matches the given message. The usual algorithm involves searching, firstly,

the receiver object class. If no appropriate method is found, then the searching

continues upwards along the class hierarchy, until the method is found, and on

upwards to the root class, where it has to terminate. An error should be issued

if no method is found at ail.

Similar to the equality operation possibly imposed on two objects, the copy oper­

ation can also be implemented as shallow and deep. In the first case, an object is

created with all values but the identity, equal to an existing object. In the latter

case, the new object that will be created will be deeply equal to an existing one.

Deep copying also denotes the copying of the structure of the object along with

a partial copy of the values in its attributes.

Finally, two objects can be merged if they are instances of the same class and

are deeply equal. The result is that one of the objects ceases to exist, and

all references from other objects point now to the one object. Similar to this

operation is also swapping identities between two objects, as long as they are,

once again, instances of the same class and deeply equal.

In pure object-oriented environments, operations should always be implemented

as methods that belong to a specific class as a member, hence no stand alone

functions or procedures can exist. In some 0 0 languages, however, (like C ++)

non-member functions can exist, usually called free subprograms. Booch [21]

defines them as "...procedures or functions that serve as non primitive operations

upon an object or objects of the same or different classes". The latter are also

called class utilities and they serve as the basis on which free subprograms are

CHAPTER 2. REVIE W OF OBJECT ORIENTATION 136

grouped. They are simply declared as members of a class with no state (no

attributes). C + + has adopted this approach. Booch [21] comments on class

utilities and based upon this concept, differentiates the concepts of methods and

operations: all methods are operations but not all operations are methods, since

some operations can be expressed as free-subprograms.

In order that two objects can communicate and send messages, they ought to be

visible to each other in some way. This is feasible in the four following ways [21]:

- The server object is global to the client.

- The server object is a parameter of some operation of the client.

- The server object is a part of the client object.

- The server object is a locally declared object in some operation of the client.

Not all objects are visible to each other. This is a policy for which the user is

responsible during designing and implementation.

Synchronization between two objects is achieved whenever one object passes a

message to another across a defined link [21]. In the presence of many simul­

taneous messages among the objects, special mechanisms are necessary for the

sequence of message passing to be guaranteed. Since active objects, as mentioned

earlier, embody their own thread of control, their semantics will be guaranteed

in the presence of other active objects. In the case of message passing across a

link between an active and a passive object, three approaches exist to guarantee

synchronization [21]:

- Sequential, when the semantics of the passive object are guaranteed only in

the presence of a single active object at a time.

- Guarded, when the semantics of the passive object are guaranteed in the

presence of multiple threads of control, but the active clients must collabo­

rate to achieve mutual exclusion.

CHAPTER 2. REVIE W OF OBJECT ORIENTATION 137

- Synchronous, when the semantics of the passive object are guaranteed in the

presence of multiple threads of control, and the supplier guarantees mutual

exclusion.

2.3.1.6 A ssociations

An association is the way that two or more classes are related in a class hierarchy.

The following four major types of associations among classes can be found in the

literature:

1. Generalization, when a class represents a more abstract real world object

than the set of its sub-classes.

2. Specialization, when classes represent a more specific real world object than

their super-class. It is the opposite of generalization, and is sometimes used

interchangeably, in terms of the association. It is only the direction that

changes. Booch [21] names this type of association as inheritance, and it

is of the same meaning as the one described earlier in this chapter (section

2.3.1.3).

3. Extension [87] or "instance-of" relationship [88], when a set of objects is

instantiated from a class. The association is between the class and each one

of the objects that can be instantiated from it. Objects that are instances

of the same class are indirectly related through their common class. Booch

[21] names this relationship as instantiation.

4. Metaclass when a class is used to model a class. This concept implies that

classes are treated as objects.

5. Using [21] denoting that an object uses the available resources of another

object, along peer-to-peer links (links between objects that belong to the

same class, or between objects that belong to classes that are at the same

level in the class schema). The supplier object is called the server, and the

requester object is called the client. This kind of association is confining only

CHAPTER 2. REVIE W OF OBJECT ORIENTATION 138

when the public interface of a server is available to be accessed by clients.

In C + + the concept of friend class is employed, in order to allow access to

private and/or protected members to otherwise unauthorized client objects.

6. Aggregation, whenever one class is made of a number (at least one or more)

of other classes. The instances of these classes form complex (or aggregate)

objects. [88] uses the term composite reference and distinguishes between

two types: exclusive, where a class is a part only of another class and shared,

where a class may be a part of more than one class. In the case of dependent

references, the existence of the aggregate instances depend on the existence

of the object that they are part of. This view leads to four types of aggregate

(or composite) relationships:

- Exclusive dependent composite references

- Exclusive independent composite references

- Shared dependent composite references

- Shared independent composite references

Aggregation usually denotes the physical containment of an object within an­

other. It is then that the aggregate object is called a container. When two classes

are associated via an aggregation relationship, the objects that are instantiated

will come in pairs: one of them will belong to the other one and sometimes the

existence of the part object will depend on the existence of the aggregate object.

This type of dependent aggregation is named by-value aggregation. In contrast

with this, when the part’s existence does not depend on the container object,

then the aggregation type is by-reference [21]. In any case, it is definite that

aggregation is not cyclic, since both objects cannot be parts of one another at

the same time. This type of containment relationship, which is modeled via the

"PART-OF" relationship, is transitive: if an object named {a} found at level

{z} on an aggregate hierarchy contains an object {b}, then its parent aggregate

object, named {c} which is at level {(z — 1)} also contains object {6}.

CHAPTER 2. REVIE W OF OBJECT ORIENTATION 139

In general, the above types of associations can be defined explicitly in any 0 0

environment. It is not necessary, though, for a compiler to actually know if a

relationship is any specific kind, with a few exceptions. Differentiation among

relationships is purely for user convenience. In this manner, any visual modeling

becomes clearer and more comprehensible.

The "IS-A" relationship in a GIS context, is often used to model non-spatial

relationships among classes (spatial or not). Choi and Luk [35] use the term

"non-spatially-associated" to characterize these object classes. The "PART-OF"

relationship is usually used to model the spatial containment relationship, which

may or may not include spatial overlapping among the objects. This approach

can be found in [35].

Classes are related through associations. When objects are instantiated, they

are related through links, which is the implementation of the concept of asso­

ciation. Associations are implemented by placing attributes in the classes that

reference other classes, through their name, be it specialization/generalization,

relationships, aggregate parts or other associations. Links between objects are

implementable through placing values in the attributes of their structure that

contain the identifiers of the linked objects.

If class associations are defined explicitly by the user (e.g. aggregation), most

of the types mentioned earlier are implemented by the user as well in the same

fashion, namely as attributes within the object structure. The differentiation

between two types of associations is done by the naming convention that the

user follows. It is usually the implicit associations that are implemented by the

system in an internal way, usually hidden from the user.

Every association is between two classes. Each class plays a role in this associ­

ation. Roles are not necessary concepts for the 0 0 model to work. They only

help the reader to understand the relationship between two classes. Regarding

the built-in behaviour of a class, objects that are instantiated and related through

links, can play one of the three following roles [21]:

CHAPTER 2. REVIE W OF OBJECT ORIENTATION 140

- Actor object, when it can operate upon other objects but never be operated

upon by other objects. The term active object can be used in the same way.

- Server object, when it never operates upon other objects but it is only

operated upon by other objects. It is the opposite role of the actor object.

- Agent object, when it can play both roles mentioned above. It is usually

used as a mediator between an actor and a server object.

The identification of associations among classes is done in the stage of analysis

and early design.

Associations between two classes are implemented as links between two objects

that are instances of these classes. However in the case of instances, more than

two objects can actually be related, even if their classes are related through a

single association. The concept of cardinality, denotes the number of objects be­

longing to a class B that can be linked to a single object belonging to a class A

and vice versa. The two classes are related through a single association. Cardi­

nality can be of any type, always declared explicitly by the user. Three common

kinds of cardinality are mostly used:

- One-to-one, when a single instance of class A is linked to a single instance

of class B. The instance of class B is linked also to the same instance of class

A. This is a rather narrow type of association.

- One-to-many, when a single instance of class A is linked to a number of

instances of class B. The set of instances of class B are all linked to the

same instance of class A.

- Many-to-many, when an instance of class A is linked to a number of instances

of class B. An instance of class B might also be linked to a number of

instances of class A, but not necessarily to the same ones.

CHAPTER 2. REVIE W OF OBJECT ORIENTATION 141

2.3.1.7 Encapsulation

Encapsulation is the principle of keeping the internal structure and behaviour

of an object hidden from being viewed by unauthorized clients. It is one of the

fundamental concepts that object orientation is based upon, and it is feasible

through the mechanism of information hiding.

Booch [21] defines encapsulation as "...the process of compartmentalizing the

elements of an abstraction that constitute its structure and behaviour; encap­

sulation serves to separate the contractual interface of an abstraction and its

implementation". He considers that abstraction and encapsulation are comple­

mentary concepts since abstraction focuses upon the observable behaviour of an

object, whereas encapsulation focuses upon the secret implementation of this

behaviour.

Encapsulation enables the so-called "plug-and-play" software, which is based on

the client-server architecture. A software server object consists of two distinct

parts: its interface, always presentable to the outside world, namely any client,

and its implementation, which is kept private and only known to the object itself.

A client sends a message to the server object requesting a service, with the proper

arguments and in a predefined format: the response message is sent back, and

the exact way it was calculated is known only to the server object itself. If more

than one implementations of the same object exist in the same database, written

in two different languages (e.g. Java and C ++) they could easily substitute each

other without the client knowing anything neither care about this, since messages

and responses remain the same.

Although encapsulation is one of the fundamental 0 0 concepts, it poses many

obstacles: for instance, a major issue is how to preserve the concept of encapsu­

lation in the environment of an 0 0 database where attributes must be indexed,

which is expanded more in the section for object-oriented databases. Encapsula­

tion can also be a barrier to quality management issues in software, since the way

that algorithms are implemented is hidden, therefore preventing the examination

CHAPTER 2. R E VIE W OF OBJECT ORIENTATION 142

of the code itself.

2.3.1.8 Polym orphism

Webster’s dictionary (1998, http://www.m-w.com) defines polymorphism as "...the

quality or state of being able to assume different forms". The application of

polymorphism onto programming languages indicates that the same language

construct can be used to manipulate different types of objects. One form of

polymorphism is the method or operator overloading or overriding. In method

overloading, the same method name can be used more than once but with dif­

ferent semantics and implementation, thus involving different code. Overloading

can be applied to operators as well, resulting in operator overloading, meaning

that the same operator can accept different types of operands. In parametric poly­

morphism, types are used as parameters in generic type declarations or classes.

0 0 languages that support parametric polymorphism allow the use of parame­

terized classes in both built-in and user-defined programming constructs. Some

0 0 environments (like C ++) use the term “virtual” to denote a method defined

in a class but which is being overridden in a sub-class that inherits from this

class. Distinction among overridden methods of a class is done on the basis of

their signature, which has to remain unique. When a method in a sub-class is

overridden, it usually invokes a method found in the super-class, with the addi­

tion of some other behaviour. Booch [21] claims that in this way polymorphism

in subclass methods plays the role of augmenting the behaviour defined in super­

classes. Alternatively, the overridden method will include code totally different

than the one found in its super-class.

There is a strong connection between dynamic binding and overloading. In

method overloading, where the same method name can exist within the same

class more than once with different implementations, the actual code that will

be executed is decided after the message request to the object, provided that the

full message specifications have been defined (method name, number of and type

http://www.m-w.com

CHAPTER 2. REVIE W OF OBJECT ORIENTATION 143

arguments). This late decision is imperative during run-time rather than compile

time, and that is how dynamic binding and overloading come in pairs. The same

strategy applies in the case of operator overloading. It must be noted that the

late binding technique is not only obligatory but also best utilized by typeless

languages.

Operator overloading although is considered to be a powerful feature, however,

it poses user comprehensibility issues, since the programmer has to be aware of

the definition of the operator, whenever this has been altered.

The advantages that dynamic binding in conjunction with overloading offers are

[87]:

- Extensibility, since the same method name or operator may apply to in­

stances of many classes without code modification.

- Compact code development: elimination of case statements to decide upon

which code to execute.

- Clarity: the generated code is more readable and comprehensible by the

programmer.

The main disadvantage of dynamic binding and overloaded operations is perfor­

mance cost increase, since run-time binding and/or type checking is necessary

for correctness reasons. Acceleration can be achieved through hash tables and

indexes to decrease the run-time overhead required.

Overloading offers great flexibility in the use of structure and behaviour naming.

A categorization of how overloading can be used is given by Khoshafian and

Abnous [87]:

For attributes:

- No redefinition: In this case, the overloading of attributes is prohibited.

This is a conservative strategy since it disallows the power of polymor­

phism, although it eliminates the problems arising from the implementation

of polymorphism.

CHAPTER 2. RE VIE W OF OBJECT ORIENTATION 144

- Arbitrary redefinition: this is the opposite of the first approach since no

constraints are applied to how attributes are overridden. It is a characteristic

of typeless 0 0 languages.

- Constrained redefinition: this occurs when the redefinition of attributes is

done only by sub-typing, that is the redefined attribute is a subtype of the

parent attribute (or a sub-class when the attribute is a reference to a class).

This is an imperative strategy within strong typed 0 0 languages to ensure

correctness of arguments.

- Hidden redefinition: in this case, the definition of the attribute is hidden

from the child classes that could (but do not) inherit it. It is similar to

the concept of selective inheritance. It actually enforces the concept of

encapsulation even between parent and child classes in a class hierarchy.

For methods:

- Arbitrary redefinition: no restrictions are applied to how the overloading is

done.

- Constrained redefinition: in this case, the arguments of the overridden

method must be subtypes (or sub-classes) of the method defined in the par­

ent class. This brings up the concept of signature conformity (also known

as covariant rule) between the parent and the child definition of the method

[87]. Note that conformity also applies to the post and pre-conditions that

have been applied within the implementation of the method. This kind

of redefinition is likely to be found in strong-typed 0 0 languages, since it

guarantees the correctness. The run-time however is required in this case.

- Explicit/implicit exclusion of method: this is similar to the hidden redef­

inition of inherited attributes as mentioned earlier. This might be useful

whenever the method references attributes or performs operations on the

class that are not inherited or not wanted, respectively. In this case the

method is totally hidden from the sub-class. Run-time errors might oc­

cur though, within 0 0 environments that support dynamic binding: an

CHAPTER 2. REVIE W OF OBJECT ORIENTATION 145

excluded method can still be accidentally referenced to an instance that

originates from a class that does not support it, although it is syntactically

correct. Therefore exclusion of methods should be used with great care in

combination with dynamic binding.

The various ways allowing class members to be or not to be redefined from within

the child class, gives rise to the concepts of public, private and protected mem­

bers of a class. Public members are accessible from within any client. Private

members are accessible by no client. Protected members are only accessible from

within child clients, namely objects belonging to sub-classes of the original class.

Protected members also implicitly declare that they are private to clients that do

not belong to the specialization hierarchy and therefore not accessible by them.

Both the C + + as well as the Java programming languages support explicit dec­

larations of all three types of class members mentioned above.

It is often necessary from within a class, to invoke an overridden method found in

one of the super-classes. Both the sub-class and the super-classes share the same

name of the method, but the actual code of the two methods might be totally

different. The invocation of the overridden method is feasible through qualifying

it, usually with the super-class name as a prefix. Another, special, qualification

way is to use a keyword that denotes the immediate super-class of the class that

the method is defined in, like "super". It is obvious that a keyword like this

can only be used within 0 0 languages that support single inheritance, since a

qualification keyword may point only to one super-class.

When a method can take many arguments, upon which the modification in the

behaviour depends, the method is then called a multi-method. In this case, the

kind of polymorphism that the 0 0 environment offers is called multiple polymor­

phism., since multiple behaviours can be achieved not only in different sub-classes

of the server object, but also in different sub-classes of the arguments themselves.

In environments that only support single polymorphism such as C + + , argument-

based behaviour can be achieved by a technique called double-dispatching [21].

CHAPTER 2. RE VIE W OF OBJECT ORIENTATION 146

2.3.1.9 O bjects as instances of classes, state and behaviour o f objects

Classes and objects are definitely two different concepts, although related, since

an object is an instance of its class. Classes should be static prior to their

instantiation since objects can not be created otherwise. Objects, however, are

behaving dynamically since they are created, destroyed and their state often

undergoes changes.

Booch [21] views an object, both as an instance of a class and as a "...tangible

entity that exhibits some well-defined behaviour". He points out that objects can

be more than material and the following are a few examples:

- A tangible and/or visible thing.

- Something that is apprehended intellectually.

- Something towards which thought or action is directed.

The software concept of the object was first introduced in the Simula program­

ming language. Egenhofer and Frank [59] in their compact, three-part definition

of an object, state that it is "...any entity, independent of whatever complexity

and structure, may be represented by exactly one object". This is a definition

regarding the structural aspect of an object, and implies that any object may

be composite, otherwise the complexity of the system can not be modeled ad­

equately. The operational aspect of an object can also be formally defined as

a set of operations which are performed on complex objects and "...are possible

without having to decompose the objects into a number of simple objects". The

behavioural aspect of the object is defined by the rule according to which " a

system must allow its objects to be accessed and modified only through a set of

operations specific to an object type".

An object besides being well defined exists throughout time, both in the real

world and in the environment where it is manipulated. The total lifetime of

an object is often called its life cycle. During the life cycle of an object, its

structure and/or its contents may be altered. Booch [21] incorporates this fact

CHAPTER 2. REVIE W OF OBJECT ORIENTATION 147

in his definition, by stating that an object "...has state, behaviour and identity;

the structure and behaviour of similar objects are defined in their common class;

the terms instance and object are interchangeable".

As mentioned earlier, objects are created from classes from their instantiation.

When an object is created, every single attribute it contains must initialize its

value, according to constraints found within the class definition. When an object

need no longer exist, it is destroyed, and it is therefore subject to garbage collec­

tion, so as to allocate free space. The 0 0 system is usually responsible for the

free-space allocation. The object space that the object resides in can be either

transient, in the case of RAM memory storage, or persistent in the case of per­

manent disk-storage. Transient object spaces are usually found in programming

languages, within the scope of a program, while persistent object spaces are found

in database management systems. However, the object space within a database

transaction, can be transient as well, which means that data are temporarily

processed in memory for validation rules to be applied and checked, before they

are finally stored in the persistent object space of the database. Usually, per­

sistent object spaces are larger than transient ones, because the reason to use a

database system is to store data larger in size than a program will manipulate.

Moreover, in terms of physical storage, RAM memory is smaller in size than

permanent media (like hard disks). Objects stored within a persistent space are

said to "survive" both in terms of behaviour and state, after the termination of a

transaction and are also called persistent objects as opposed to transient objects,

which are deleted after their usage.

Khoshafian and Abnous [87] uses the notion of extension or extent of a class, to

denote a set of instances of a class, which have been created but not destroyed

within an object space. In systems where a class can be an object as well, then

access to the extension of a class is feasible through the class object itself. This

is a convenient way to process objects that belong to the same class, especially in

database management systems, where queries regarding the retrieval of objects

that belong to the same class are often encountered. Many database systems

CHAPTER 2. REVIE W OF OBJECT ORIENTATION 148

support implicit class extension (e.g. Java). In the case where class extension is

not supported explicitly, the same goal can be achieved through collection objects,

which are usually objects referencing to all objects belonging to the same class.

Elements that belong to the collection of objects described by a class are called

instances of the class.

Khoshafian and Abnous [87] identifies the three main properties of objects:

1. object type (or class),

2. object state and

3. object identity.

The above differentiation clearly shows the importance and independence of ob­

ject identity.

Real world objects that are being modeled appear to have an inherent time and

event dependent behaviour and structure: they very often modify their attributes

and might change their behaviour as well. This fact must also be incorporated

in the object model, via the concept of object state, which, according to Booch

[21] "...encompasses all of the (usually static) properties of the object plus the

current (usually dynamic) values of each of these properties". It can therefore be

viewed as the properties along with the specific values of the object’s properties

in a given moment of its life cycle.

As already mentioned in the previous chapter, the concept of state is a concept

quite similar to that of the primary key of a table in a relational database: a

primary key is composed of specific attributes of the record and characterizes

the uniqueness of it. In 0 0 environments, the specific value set characterizes

the state of the object, but not necessarily its uniqueness, since the same values

may be shared among objects with different identities. Therefore the concept of

object identity is used instead.

Complementary to object state, is the object behaviour, which according to Booch

[21] "...is how an object acts and reacts, in terms of its state changes and mes­

CHAPTER 2. R E VIE W OF OBJECT ORIENTATION 149

sage passing". It is the part of the object which is usable by its clients. The fact

that an object shows behaviour, which is usable by other objects, makes obvious

the requirement that objects can not exist by themselves, since operations and

message passing is done among different objects. The values of an object’s at­

tributes may change due to its own or other object’s behaviour. Hence, there has

to be a relation between object state and behaviour. Booch [21] comments on

this relation and views the state as "...the cumulative results of its behaviour".

The lifetime of an object, extends from the time it is first created, until it is

destroyed, and therefore the space it used to allocate is freed. Creation and de­

struction of objects is done either explicitly or implicitly. The latter occurs in

the case of aggregate objects, since its parts must be created/destroyed when

necessary. Booch [21] characterizes the object creation/destruction as transi­

tive. However, when this is not desired, the user can declare which parts of

the aggregate object will be created/destroyed by overriding the semantics of the

copy constructor and assignment operator or the destructor method, respectively.

This is a policy encountered in C ++. Some 0 0 environments (like Smalltalk)

automatically destroy aggregate objects whose parts have been destroyed as well.

This procedure is part of the garbage collection feature. When this feature is

not available, aggregate objects continue to exist, even if their parts have been

destroyed. Nonetheless, the 0 0 environment should provide the user with the

choice whether or not to destroy aggregate objects with non-existing parts.

2.3.1.10 M etaclasses

A metaclass is a class whose instance is not an object but also a class. It can

also be described as the class of a class. Metaclasses are mostly used to model

the class hierarchy schema itself, as the class hierarchy is used to model the state

and behaviour of instantiated objects. In some 0 0 environments, there is a

distinction between two types of objects:

- Class objects, which are templates and can instantiate other objects as well

CHAPTER 2. REVIE W OF OBJECT ORIENTATION 150

as themselves. These could be classes or metaclasses. They usually comprise

attribute definitions, interface specifications and code.

- Terminal objects, which can be instantiated but can not create other objects.

They usually comprise values and code.

0 0 environments support the notion of metaclass either explicitly or implicitly:

in the first case, appropriate language constructs are necessary for the manipula­

tion of metaclasses. In the second case, metaclasses are hidden from the user and

there is a one to one correspondence between a metaclass and the class it models,

since metaclasses have only one instance, namely the class that they model.

Some of the advantages that make the notion of metaclasses useful are:

- Storage of group information: It is a convenient way to centrally and globally

store information on object groups, that is objects belonging to the same

class, should these objects be instances of classes or classes as instances of

metaclasses. This is a quite useful construct especially in database manage­

ment systems, where queries on objects of the same template (class/metaclass)

are very often encountered.

- Storage of initialization methods: a metaclass can hold information on ini­

tializing instance variables for classes that they model, as in turn, classes,

might hold information on initialization of instance variables for objects that

they model.

The concept of stereotype found in the UML, is similar to the one of the metaclass

as it not only tries to model any schema artifact that is encountered with the

same structure frequently, but it can also introduce new ones.

CHAPTER 2. RE VIE W OF OBJECT ORIENTATION 151

2.4 Analysis and Design Techniques

2.4.1 Introduction

One of the most frequently encountered areas that use 0 0 methodologies are

the analysis and design techniques. The three main methods of 0 0 analysis and

design that are briefly examined within this chapter are:

- Grady Booch’s Object-Oriented Analysis and Design (OOAD)

- Rumbaugh et al., widely know as Object Modeling Technique (OMT)

- Jacobson’s Object Oriented Software Engineering methodology (OOSE)

- Coad/Yourdon’s Object Oriented Analysis and Design (OOAD)

Moreover, the very recent OMG’s proposal, called Unified Modeling Language

(UML), which is an amalgamation of the previous first three methodology pro­

posals, is more thoroughly examined, since it has been incorporated in the final

design. Because all three methods mentioned earlier are used within the UML

proposal, little regard has been given to the variations among them. The focus

of the section is upon the functionality that the UML offers.

W hat do OOAD techniques offer as benefits? According to Khoshafian and Ab-

nous [87] "...with object-oriented methodology we eventually achieve a linear

expansion in effort as a function of size or functionality".

Booch [21] distinguishes among three types of analysis and design methods:

- Top-down structured design, which implies algorithmic decomposition. This

category does not include the notions of data abstraction, information hid­

ing, or concurrency.

- Data-driven design, which does not address the issue of time-critical events.

- Object-oriented design, which models complex software systems as collec­

tions of cooperating objects, which in turn are instances of a class, out of a

class hierarchy.

CHAPTER 2. REVIE W OF OBJECT ORIENTATION 152

He also suggests that "object-oriented design is a method of design encompassing

the process of object-oriented decomposition and a notation for depicting both

logical and physical as well as static and dynamic models of the system under

design". It is obvious that the concept of system decomposition is inherent and

necessary in the process of the 0 0 design. Regarding object oriented analysis,

he defines it as "...a method of analysis that examines requirements from the

perspective of the classes and objects found in the vocabulary of the problem

domain".

Object Oriented Analysis is the stage where objects and their members are ab­

stracted from the application domain. According to Coad/Yourdon (1991) the

proposed sequence of steps in the analysis stage are:

- Subject layer analysis

- Class and object layer analysis

- Structure layer analysis

- Attribute layer analysis

- Service layer analysis

Each of the above steps takes place in every viewpoint (or module) of the overall

design. Therefore, the viewpoints must be defined before analysis initiates.

Following the analysis stage, next is the design phase. In Object Oriented Design,

identified objects are grouped into classes, classes are grouped into packages (or

modules) and classes are refined with details about their structure and behaviour.

Their relationships with other classes are also defined here. The design requires

an appropriate modeling language to act as an interface and tool for the user.

According to the UML authors (Booch, Rumbaugh and Jacobson), a modeling

language must include:

- Model elements: fundamental modeling concepts and semantics.

- Notation: visual rendering of model elements.

CHAPTER 2. R E VIE W OF OBJECT ORIENTATION 153

- Guidelines: idioms of usage within the trade.

It is widely accepted that no official OOAD technique or modeling language ex­

isted before the creation of the UML. The three individual approaches mentioned

earlier (Booch’s, Jacobson’s and Rumbaugh’s) share similarities, they do have dif­

ferences, but when a choice has to be made regarding a language to work with, a

decision must be made. However, comparing the three individual approaches and

choosing the most suitable one (which will definitely be in need of amendments

and additions probably taken from the other two which were rejected) has been

avoided, since the answer to this issue came with the recent industry-standard

development in 0 0 analysis and design techniques, the UML, which is exactly

the merging of the three approaches mentioned earlier. The Object Management

Group’s Analysis and Design Task Force (ADTF) adopted the UML version 1.1 in

November 1997. Maintenance of the UML was taken over by the OMG Revision

Task Force (RTF).

However flexible and powerful object oriented methodologies are, they still show

inadequacies, mostly regarding the following ([122]):

- There is a tendency to focus on objects at the lower level without taking

into account the "scaling-up" of related objects into groups.

- There is no comprehensive methodology which provides clear guidance from

the requirements stage to implementation. However, this is being overcome

by the recent proposal called the Unified Objectory Process.

- Notations are usually imprecise and they lack semantic detail. Even if ad­

ditional detail is supported in the notational language, it is the designer’s

responsibility to add and organize it.

- Analysis and design output is not effectively reused. Ways of reusing such

material is still under research.

- There are not enough guidelines and definitely no formal methodology as to

how to identify classes and objects.

CHAPTER 2. RE VIE W OF OBJECT ORIENTATION 154

- Concurrency and orthogonal persistence are still not adequately supported.

- There is no standard object oriented data model.

- There is no standard object oriented query language.

There has been an effort to resolve many of the above issues by groups such as

OMG and by standards such as CORBA.

2.4.2 The UML approach

The Unified Modeling Language fuses the concepts of Booch, OMT, and OOSE.

The result is a single, common, and widely usable modeling language for users

of these and other methods. UML was developed jointly by Grady Booch, Ivar

Jacobson, and Jim Rumbaugh at Rational Software Corporation, with contribu­

tions from other methodologists, software vendors, and users. Based on extensive

use of the Booch, OMT, and Jacobson methods, the UML is the evolution of these

and other approaches to object and component modeling.

According to the authors of the UML [22], the UML "...is a language for specify­

ing, visualizing, constructing, and documenting the artifacts of software systems,

as well as for business modeling and other non-software systems." The two ma­

jor parts that the UML is composed of (which are common with any other 0 0

analysis and design techniques) are

- the semantics, and

- the notation that is uses.

It is noteworthy that a special component found in the UML approach, not found

in other OOADT is the Object Constraint Language Specification explained later

in this chapter.

The semantics part of the UML consists of three views:

CHAPTER 2. REVIE W OF OBJECT ORIENTATION 155

- The abstract syntax: UML class diagrams are used to present the UML

metamodel, its concepts (metaclasses), relationships, and constraints. Defi­

nitions of the concepts are included.

- The "well-formedness rules": The rules and constraints on valid models are

defined. The rules are expressed in English and in a precise Object Con­

straint Language (OCL). OCL is a specification language that uses simple

logic for specifying invariant properties of systems comprising sets and rela­

tionships between sets.

- The semantics: The semantics of model usage are described in English prose.

The three component views of the UML make mathematical expressions, used to

express the model, unnecessary.

The UML Notation component is about graphical notation and textual syntax,

which are the most visible part of the UML, and are used by users. These are

representations of a user-level model, which is semantically an instance of the

UML meta-model.

User-defined extensions of the UML are enabled through the use of stereotypes,

tagged values, and constraints. Two extensions are currently defined: 1) Objec-

tory Process and 2) Business Engineering.

In order to reduce potential confusion between implementations, the following

terms have been defined within the UML proposal:

- UML Variant - a language with well-defined semantics that is built on top of

the UML metamodel, as a metamodel. It specializes the UML metamodel,

without changing any of the UML semantics or redefining any of its terms.

- UML Extension - a predefined set of so-called Stereotypes, TaggedValues,

Constraints, and notation icons that extend and customize the UML for a

specific domain. It is envisaged that this component will be used to add

spatio-temporal modeling capabilities to the UML proposal.

CHAPTER 2. REVIE W OF OBJECT ORIENTATION 156

These diagrams, are the primary components that a developer is visually using,

although the UML and supporting tools will provide for a number of derivative

views. The notation, enables the creation and refinement of the aforementioned

views, within an overall model representing a problem domain and software sys­

tem. Moreover, it provides graphical icons to represent each kind of model ele­

ment and relationship.

2.4.3 UML elements

To capture the products of object-oriented analysis and design, a logical and a

physical model are necessary. The overall model that is used within UML has

the elements shown in table 2.3:

Table 2.3: UML elements
Classes

Metaclasses

Interfaces

Use cases

Logical packages

Operations

Component packages

Components

Processors

Devices

Relationships

Messages

Each of these elements is described in more detail in the next paragraphs. It

must be noted that the goal of this section is not to serve as a UML tutorial

but to emphasize the major components that have been used in the design of the

CHAPTER 2. REVIE W OF OBJECT ORIENTATION 157

spatio-temporal model and to demonstrate how they can be used to effectively

throughout the analysis and design stage, since some of them are of no particular

use.

2.4.3.1 Classes

A UML class captures the common structure and common behaviour of a set of

objects. The instances of the class are referred to as objects. For each class that

has significant temporal behaviour, a state diagram may be created to describe

this behaviour. Classes are declared in class diagrams and used in most other

diagrams. UML provides a graphical notation for declaring and using classes, as

well as a textual notation for referencing classes within the descriptions of other

model elements. A class represents a concept within the system being modeled.

Classes have data structure, behaviour, and relationships to other elements. The

name of a class has scope within the package in which it is declared and the name

must be unique (among class names) within its package.

A class icon is drawn as a 3-part box, with the class name in the top part, a list

of attributes (with optional types and values) in the middle part, and a list of

operations (with optional argument lists and return types) in the bottom part.

model spatio-temporal information. Not all of these elements have been used

Shape 'Name

origin
Attributes

m o v e ()
resize()
display()

Operations

Figure 2.6: Class icon

The following UML features are associated with every class and must be set

explicitly by the user:

CHAPTER 2. RE VIE W OF OBJECT ORIENTATION 158

- Abstract: Defines the class as a class with no instances. The abstract ad­

jective identifies a class that serves as a base class, defining both operations

and state that will be inherited by subclasses. An abstract class has no

instances. A class that has one or more abstract operations is abstract as

well. Abstract notation is indicated by displaying the class name in italics.

Shape

origin

m o v e ()
resize()
display()

Figure 2.7: Abstract class icon

- Attributes: Specifies the parts in the case that the class is aggregate. At­

tributes may be characterized as:

* Public: The attribute is visible outside of the enclosing class and can be

imported into other portions of the design. Public visibility is marked

using is a " + " sign prefix on the attribute.

* Protected: The attribute is visible only in the class in which it is defined.

Protected visibility is marked using is a sign prefix on the attribute.

* Private: The class is visible only within itself and to any other elements

declared as friends. Private visibility is marked using is a "- " sign prefix

on the attribute. It must be noted that visibility specifications found

in UML match the ones found in most popular programming languages

as C ++ , Java, Ada and Eiffel. This type of adornment makes feasible

the implementation of security policies when multiple developers are

involved.

- Operations: Specifies the services provided by the class. An operation has a

name and a list of arguments. Some of the information can also be displayed

inside icons representing classes in the class diagrams. Operations may have

CHAPTER 2. RE VIE W OF OBJECT ORIENTATION 159

the same characterizations as the attributes (public, private and protected).

An operation that does not modify the system state (one that has no side

effects) is indicated by the keyword ’’{query}” 6. A class-scope operation is

shown by underlining the name and type expression string. An instance-

scope operation is the default and is not marked. The set of operations found

in a class actually defines its interface that is being exposed to other classes.

This, however, should not be confused with the UML artifact interface,

which is explained further below.

- Cardinality: Specifies the number of instances for the class, always in con­

junction with another class through a class relationship. Cardinality speci­

fies how many instances of one class may be associated with a single instance

of another class. When a cardinality characterization is given to a class, the

number of instances allowed for that class is indicated. When a cardinal­

ity characterization is given to a relationship, the number of links allowed

between one instance of a class and the instances of the another class is

indicated. Values are presented in "lower-bound .. upper bound" format.

- Concurrency. The concurrency of a class is a statement about its semantics

in the presence of multiple threads of control. The concurrency of a class

can be set to one of the following types:

* Sequential: The semantics of the class are guaranteed only in the pres­

ence of a single thread of control. Only one thread of control can be

executing in the method at any one time.

* Guarded: The semantics of the class are guaranteed in the presence

of multiple threads of control. A guarded class requires collaboration

among client threads to achieve mutual exclusion.

* Active: The class has its own thread of control. The method can be

executing concurrently with other methods.

6This is quite similar to the query concept found in DBM systems, although queries are modelled

as stereotypes, as it is discussed in chapter 3

CHAPTER 2. RE VIE W OF OBJECT ORIENTATION 160

* Synchronous: The semantics of the class are guaranteed in the presence

of multiple threads of control; mutual exclusion is supplied by the class.

- Visibility. Specifies how the class is seen outside of the package in which

it is defined. Class visibility specifies the export control and import status

of the class. Export control specifies how this class is seen outside of the

package in which it is defined.

- Components-. Specification of the software modules that realize the class.

A class utility is a grouping of global variables and procedures in the form of a

class declaration. This is not a fundamental construct but a programming con­

venience. The attributes and operations of the utility become global variables

and procedures. Therefore, it is inappropriate for a utility to declare class-scope

attributes and operations because the instance-scope members are already in­

terpreted as being at class scope. It is shown using the keyword “utility” and

its cardinality has the value of zero, meaning it can be instantiated only once.

Additionally, classes have responsibilities, which is a contract or an obligation for

a class. UML models responsibilities in a free textual form within the class icon

in a different compartment. The class element is the mostly used UML element

throughout the MPOOST model, as it is the fundamental 0 0 artifact. Abstract

classes will mostly be used to model general categories that apparently can not

be instantiated to objects.

2.4.3.2 M etaclasses

A metaclass is a class whose instances are classes rather than objects. Metaclasses

provide operations for initializing class variables and serve as repositories to hold

class variables where a single value will be required by all objects of a class

(constant values). A metaclass is displayed as a 3-part box, with the class name

in the top part, a list of attributes (with optional types and values) in the middle

part, and a list of operations (with optional argument lists and return types) in

the bottom part.

CHAPTER 2. R E VIE W OF OBJECT ORIENTATION 161

Regarding relationships:

- An "inherits" relationship may be defined between a metaclass and an in­

stantiated class or another metaclass

- An "association" relationship may be defined between a metaclass and a

class, a parameterized class, an instantiated class, another metaclass, a

class utility, a parameterized class utility, an instantiated class utility, or

an interface.

- A "dependency" relationship may be defined between a metaclass and a

class, a parameterized class, an instantiated class, another metaclass, a

class utility, a parameterized class utility, an instantiated class utility, or

an interface.

The following metaclass features may be defined explicitly by the user:

- Attributes: Definition of the parts of the aggregate object.

- Cardinality: The number of instances for the class.

- Concurrency: The semantics in the presence of multiple threads of control.

- Operations: The services provided by the class.

- Persistence: The definition of the lifetime of the instances of a class.

- Visibility: Specification of how the class is seen outside of the package in

which it is defined.

2.4.3.3 Interfaces

An interface specifies the externally-visible operations of a class and/or compo­

nent, and has no implementation of its own. An interface typically specifies only

a limited part of the behaviour of a class or component. Interfaces belong to the

logical view but can occur in both class and component diagrams.

In component diagrams, an interface is displayed as a small circle with a line to

the component (explained further below) that realizes the interface.

CHAPTER 2. RE VIE W OF OBJECT ORIENTATION 162

Visualization

Figure 2.8: Interface icon in component diagrams

In class diagrams, an interface is represented by a class icon with the stereotype

"interface." Thus, it is a 3-part box, with the interface name in the top part,

a list of attributes (usually empty) in the middle part, and a list of operations

(with optional argument lists and return types) in the bottom part.

Visualization

drawSreen()
drawPrinter()
display()

Figure 2.9: Interface icon in class diagrams

The attribute and operation sections of the interface class box can be suppressed

to reduce detail when shown in a generic overview of the schema. Suppressing

a section makes no statement about the absence of attributes or operations,

but drawing an empty section explicitly states that there are no elements in that

part. A "generalization" relationship may be drawn from one interface to another

interface.

The following features may be defined for an interface:

- Abstract: Defines the interface as a base class with no instances.

- Cardinality: The number of instances for the interface.

- Concurrency: Definition of the semantics in the presence of multiple threads

of control.

- Operations: The services specified by the interface.

CHAPTER 2. RE VIE W OF OBJECT ORIENTATION 163

- Visibility: Specification of how the interface is seen outside the package in

which it is defined.

Interfaces are the means by which behaviour that is common to many classes is

modelled, without including the actual implementation. For instance, a circle

and a rectangle class may both have associated a display method. This method

name can be part of the “visualization” interface, so that both classes are ensured

to realize it. It may be that later in the design stage more classes have to realize

this set of methods offered by this specific interface.

2.4.3.4 U se cases

A use case is a sequence of transactions performed by a system in response to a

triggering event initiated by an actor to the system. In other words, they provide

the users the ability to interact with the system. Users are modelled by actors

in the context of UML (explained further below in this chapter). A full use case

should provide a measurable value to an actor when the actor is performing a

certain task. A use case contains all the events that can occur between an actor-

use case pair, not necessarily the ones that will occur in any particular scenario. A

use case contains a set of scenarios that explains various sequences of interaction

within the transaction. A use case can also describe the behaviour of a set of

objects, such as an organization. The basic shape of a use case is an ellipse:

Request contour map

Figure 2.10: Use case icon

Use cases as they are part of the behavioural component of the system, will be

used to model the possible interactions that users is anticipated to have with the

model. Any kind of queries will be initially modeled by use cases.

CHAPTER 2. R E VIE W OF OBJECT ORIENTATION 164

2.4.3.5 O bjects

An object is an instance of a class, and has state, behaviour, and identity. The

structure and behaviour of similar objects are defined in their common class.

Each object in a diagram indicates some instance of a class. An object that is

not named is referred to as a class instance. If the same name is used for several

object icons appearing in the same collaboration diagram, they are assumed to

represent the same object, otherwise each object icon represents a distinct object.

Object icons appearing in different diagrams denote different objects, even if their

names are identical. If the name of the object’s class is specified in the Object

Specification, the name must identify a class defined in the model. The object

icon is similar to a class icon except that the name is underlined. If multiple

objects exist that are instances of the same class, the icon used is one with three

staggered objects. Optionally, a name can also be given to the object, so that

it can be uniquely identified throughout the object diagram where it is usually

shown.

p i :Point

Figure 2.11: Single (left) and Multiple (right) Object icons

Whether the object is persistent or transient, it is also written in the object box.

Objects will be used in specific object diagrams of the model, so as to illustrate

specific cases of interest.

2.4.3.6 Packages

A package is a grouping of model elements. Packages themselves may be nested

within other packages. A package may contain both sub-packages and model

elements. The entire system description can be thought of as a single high-level

CHAPTER 2. RE V IE W OF OBJECT ORIENTATION 165

subsystem package with everything else in it. All kinds of UML model elements

and diagrams can be organized into packages. It is worth noting that packages

own model elements and model fragments and are the basis for configuration

control, storage, and access control. Each element can be directly owned by a

single package, so the package hierarchy is a strict tree. However, packages can

reference other packages, so the usage network is a graph.

2.4.3.6.1 Logical packages Logical packages serve as means to partition

the logical model of a system. They are clusters of highly related classes that

are themselves cohesive, but are loosely coupled relative to other such clusters.

Packages can be used to group classes, interfaces, and other packages as well.

While many 0 0 programming languages do not yet support this concept, using

packages in a class diagram allows the expression and preservation of important

architectural elements of the system design. A high-level design of the system may

be captured simply by creating a class diagram that consists only of packages.

The logical package is a folder shaped icon.

2.4.3.6.2 C om ponen t packages Component packages represent clusters of

logically related components. Component packages parallel the role played by

logical packages for class diagrams. They allow the partitioning of the physical

model of the system. Typically, a component package name is the name of a

file system directory. A component package can have dependencies with other

component packages, components, and interfaces. The component package is a

folder shaped icon as well.

Geometry GUI
Spatial
Temporal

Panel
Button

Figure 2.12: Logical (left) and Component (right) package icons

Packages are the means by which classes will be grouped. General data categories

CHAPTER 2. REVIE W OF OBJECT ORIENTATION 166

can also be implemented using packages, instead of using abstract classes, since

packages offers a greater degree of both encapsulation and grouping.

2.4.3.7 Operations

The information in the Operation Specification is presented textually. Some of

the information can also be displayed inside icons representing classes in the class

diagrams. One operation specification should be completed, for each operation

that is a member of a class and for all free subprograms.

2.4.3.8 Com ponents

A component represents a software module (e.g. source code, binary code, ex­

ecutable, dynamically linked library, etc.) with a well-defined interface. The

interface of a component is represented by one or several interface elements that

the component provides. Components are used to show compiler and run-time

dependencies, as well as interface and calling dependencies among software mod­

ules. They also show which components implement a specific class.

A component icon is drawn as a large rectangle with two smaller rectangles

attached to its left side. An interface circle attached to the component icon

means that the component supports that particular interface. That is, there is

no explicit relationship arrow between a component and its interfaces.

JApplet.java

Figure 2.13: Component icon

Components may be used in the model to denote that services from existing

programs that are already in binary format are being used. This however will be

avoided as much as possible since often components that denote binary format are

CHAPTER 2. R E VIE W OF OBJECT ORIENTATION 167

strongly connected to specific software architectures, mainly operating systems.

This of course does not apply in the case where the component refers to code

that is in pre-compiled ASCII format, e.g. like Java files, or when the compiled

code is platform independent, e.g. Java bytecode 7. Moreover, components are

the appropriate elements to model the physical implementation of the system in

terms of files (executables, binaries, data etc.)

2.4.3.9 Processors

A processor is a hardware component capable of executing programs. Each pro­

cessor must have a name. There are no constraints on the processor name because

processors denote hardware rather than software entities. The icon for a processor

is a shaded box:

Intel 233MHz

Figure 2.14: Processor icon

A processor is used within the model at a specific node to denote a local machine

capable of executing code, usually a computer connected to the network that

forms the distributed environment.

2.4.3.10 D evices

A device is a hardware component with no computing power. Each device must

have a name. Device names can be generic, such as "modem" or "terminal." The

icon for a device is a box. Sometimes, an icon representing the actual appearance

of the device may be used instead.

7 An exception to this is whenever the binary-format component is built including the usage of an

interoperability standard (like CORBA, COM +, or Java Beans).

CHAPTER 2. RE VIE W OF OBJECT ORIENTATION 168

Figure 2.15: Device icon

Devices are excellent UML elements to model all the hardware peripherals of the

system which will be used for data input and information output like digitizers,

scanners, photogrammetric instrumentation, printers, plotters etc.

A processors may be linked to another processor as well as to a device, and

the association is adorned with the type and characteristics of the connection

employed, e.g. 10/100 Mbit Ethernet between two processors, or RS232 between

a processor and a device.

2.4.3.11 R elationships

A relationship is the way that two model elements are connected and related be­

tween them. Different model elements may involve different kinds of relationship.

In every relationship its name is defined and used to identify the type or purpose

of the relationship. The following types of relationships are defined in the UML:

- "Generalize/Inherits": A "generalize" relationship between classes shows

that the subclass shares the structure or behaviour defined in one or more

super-classes. Usage of a "generalize" relationship is to show an "IS-A"

relationship between classes. A "generalize" relationship is a solid line with

an arrowhead pointing to the super-class (figure 2.16).

The definition of a "generalize" relationship may be done by specifying its access,

identifying whether the class grants rights to another class, and identifying the

super-class as a base class. The following items may be set:

- Access: public, private, protected, or implementation.

CHAPTER 2. REVIE W OF OBJECT ORIENTATION 169

Geo-referencedGeometric

Specialization Multiple Inheritani

Point Line Polygon Parcel

Association
Aggregation

<<Interface>>
Visualization

'Association classOwner

disp'

Realizes

Figure 2.16: Notation used for Relationships

- Friendship required: the friend characterization is used to designate that the

supplier class has granted rights to the client class to access its non-public

parts.

- Virtual Inheritance: in a multiple inheritance situation, the virtual charac­

terization may be applied to ensure that only one copy of the base class will

be inherited by descendants of the subclasses.

An inheritance tree is useful when a number of subclasses share the behaviour

and structure of a super-class. Rather than creating a multitude of inheritance

relationships pointing directly from the subclasses to the super-class, the relation­

ships may be tied together to form one link to the super-class, thereby creating

a tree structure.

- "Aggregate" Relationship: The "aggregate" relationship shows a whole and

part relationship between two classes. The class at the client end of the

CHAPTER 2. RE V IE W OF OBJECT ORIENTATION 170

aggregate relationship is called the aggregate class. An instance of the ag­

gregate class is an aggregate object. The class at the supplier end of the

"aggregate" relationship is the part whose instances are contained or owned

by the aggregate object. The aggregate object is physically constructed from

other objects or it logically contains another object. The aggregate object

has ownership of its parts. An "aggregate" relationship is a solid line with

a diamond at one end. The diamond end designates the client class (figure

2.16).

The following features may be defined for an "aggregate" relationship by speci­

fying its access, cardinality, containment, and whether the instance of the part

class is owned by the aggregate class.

- Containment: The physical containment for every "aggregate" relationship

containment is either by-reference or by-value.

* Cardinality: this may be specified for the client class, supplier class, or

both

* Static: used to specify that the instance of the part class is owned by

the class itself not by its individual instances.

* Access: For each aggregate relationship, the type of access allowed for

the relationship may be set, namely public, private, protected, or im­

plementation.

- "Association" Relationship: An association represents a semantic connec­

tion between two classes, or between a class and an interface. Associations

are bi-directional: they are the most general of all relationships and the most

semantically weak. This type of relationship, although it is general, however

it is useful mainly in the early stages of analysis and early design: initially

the identification of general dependencies between classes may be done. As

the model evolves, additions are possible to associations so as to make them

CHAPTER 2. RE VIE W OF OBJECT ORIENTATION 171

more precise. An "association" relationship is an oblique or orthogonal line

(figure 2.16).

An "association" relationship may be defined between all types of classes and

interfaces. A variety of characterization and properties may be defined to "asso­

ciation" relationships. These are: derived, name direction, documentation, roles,

cardinality, navigability, aggregate, static, friend, access, containment, associa­

tion and role constraints, link elements, and qualifiers.

— "Dependency" relationship: a dependency relationship between two classes,

or between a class and an interface, is used to show that the client class

depends on the supplier class/interface to provide certain services, such as:

* The client class accesses a value (constant or variable) defined in the

supplier class/interface.

* Operations of the client class invoke operations of the supplier class/interface.

* Operations of the client class have signatures whose return class or

arguments are instances of the supplier class/interface.

A dependency relationship is a dotted line with an arrowhead at one end. The

arrowhead points to the supplier class.

A dependency relationship may be defined only between logical packages.

- "Realize" Relationship: A "realize" relationship between classes and inter­

faces and between components and interfaces shows that the class realizes

the operations offered by the interface. A "realize" relationship is a dashed

line with an arrowhead pointing to the interface (figure 2.16).

A "realize" relationship may be defined between a class and an interface or a

component and an interface. The relationship between a component and an

interface cannot be defined explicitly. It is usually defined when an interface is

assigned to a component.

CHAPTER 2. REVIE W OF OBJECT ORIENTATION 172

Relationships between classes may also be modeled as classes themselves in terms

of having structure. The association class is used to model properties of asso­

ciations. The properties are stored in a class and linked to the association re­

lationship. Association classes are also referred to as Link Attributes in OMT

literature. Link attributes are degenerate association classes comprised only of

attributes. An association class is a class linked to an association by a loop (figure

2.16). An association class may be defined between all types of classes. Further­

more, for an association class its access, cardinality, concurrency and persistence

characteristics may be defined as well.

- Meta relationship: The meta relationship is used to show the relation be­

tween a class and its metaclass. The meta relationship is a gray line with

an arrowhead pointing towards the metaclass.

A meta relationship may be defined between a class and its metaclass, as well as

between a parameterized class and its metaclass.

- Links: When classes are instantiated to produce objects, associations be­

come links between objects. Objects interact and pass messages through

their links to other objects. A link is defined as an instance of an associa­

tion. A link should exist between two objects, including class utilities, only

if there is a relationship between their corresponding classes. The existence

of an relationship between two classes symbolizes a path of communication

between instances of the classes: one object may send messages to another.

Links can support multiple messages in either direction. If a message is

deleted, the link remains intact. The link is depicted as a straight line be­

tween objects or objects and class instances in a collaboration diagram. If

an object links to itself, the loop version of the icon is used instead.

CHAPTER 2. REVIE W OF OBJECT ORIENTATION 173

2.4.3.12 M essages

A message conveys the source object’s invocation of an operation from the des­

tination object. Messages are carried by links. A message is represented on

collaboration diagrams and sequence diagrams by a message icon which visually

indicates its synchronization. A message’s synchronization can be modified via

the message’s specification. The following synchronization types are supported:

- Simple: For messages with a single thread of control, one object sends a

message to a passive object.

- Synchronous: In synchronous messages, the operation proceeds only when

the client sends a message to the supplier and the supplier accepts the

message. The client runs until it sends the message; it then waits for the

supplier to accept it. The client continues to wait until the message is

accepted.

- Balking: In balking synchronization, the client can pass a message only if the

supplier is immediately ready to accept the message. The client abandons

the message if the supplier is not ready.

- Timeout: In timeout synchronization, the client abandons a message if the

supplier cannot handle the message within a specified amount of time.

- Asynchronous: Asynchronous communication occurs when the client sends

a message to the supplier for processing and continues to execute its code

without waiting for or relying on the supplier’s receipt of the message.

2.4.3.13 General extensib ility m echanism s

The elements in this category are general-purpose mechanisms that may be ap­

plied to any modeling element. The semantics of a particular use depends on a

convention of the user or an interpretation by a particular constraint language or

programming language, hence they constitute an extensibility device for UML.

CHAPTER 2. RE VIE W OF OBJECT ORIENTATION 174

2.4.3.14 Constraints

A constraint is a semantic relationship among model elements that specifies con­

ditions and propositions that must be maintained as true, otherwise the system

described by the model is invalid. Certain kinds of constraints (such as an as­

sociation ”or” constraint) are predefined in UML, others may be user-defined. A

user-defined constraint is described in words in a given language, whose syntax

and interpretation is a tool responsibility. A constraint represents semantic in­

formation attached to a model element, not just to a view of it. A constraint is

shown as a text string in braces ({}).

A comment is a text string attached directly to a model element. This is syntac­

tically equivalent to a constraint written in a non-programming language whose

meaning is significant to humans but which is not “executable”, as long as hu­

mans are regarded as the instruments of interpretation. A comment can therefore

attach arbitrary textual information to any model element of general importance.

Constraints will be widely used throughout the MPOOST model so as to enhance

the integrity requirements of the data that are being modelled. Comments will

mostly be used for diagram comprehensibility purposes, although sometimes for

modelling rules that are too difficult or not straightforward to be modelled using

constraints.

2.4.3.15 Stereotypes

A stereotype represents a subclass of an existing modeling element with the

same form (attributes and relationships) but with a different intent. Generally,

a stereotype represents a usage distinction. A stereotyped element may have

additional constraints on it from the base class. The general presentation of a

stereotype is to use the symbol for the base element but to place a keyword string

above the name of the element; the keyword string is the name of the stereotype

within matched guillemets (“”).

CHAPTER 2. RE VIE W OF OBJECT ORIENTATION 175

Stereotypes are the means by which the UML can be adjusted to model spatial

and temporal information. Most of the UML elements will be stereotyped, before

they will be used within the MPOOST model. For example, association relation­

ships between classes can be e.g. «temporal», classes can be e.g. «geometric»,

operations can be «query», «modifier»etc.

2.4.4 UML diagrams

Each of the model elements examined earlier has properties that identify and

characterize it. A model also contains diagrams and specifications, which provide

a means of grouping, visualizing and manipulating the model’s elements and

their model properties. Since diagrams are used to illustrate multiple views of

a model, icons representing a model element can appear in none, one, or several

diagrams. In terms of the views of a model, the UML defines the following

graphical diagrams:

1. use case diagram

2. class diagram

3. behaviour diagrams:

(a) statechart diagram

(b) activity diagram

(c) interaction diagrams:

i. sequence diagram

4. collaboration diagram

5. implementation diagrams:

(a) component diagram

(b) deployment diagram

CHAPTER 2. REVIE W OF OBJECT ORIENTATION 176

2.4.4.1 Class and object diagrams

A class diagram is a graph of class elements connected by their various static re­

lationships. It shows the static structure of the model, in particular, the elements

that it consists of, such as classes and types, their internal structure, and their

relationships to other elements. Class diagrams do not show temporal informa­

tion, although they may contain occurrences of elements that have or describe

temporal behaviour.

An object diagram is a graph of class instances, including objects and data values.

It is an instance of a class diagram and shows a snapshot of the detailed state of

a system at a point in time.

Additional notation that might be necessary is [122]:

- Class hierarchy collapse, so that a class schema can be viewed in any level,

abstracting and hiding information in “higher” levels but showing more detail

in “lower” levels.

- A part which is dependent on the existence of its assembly, as well for the

assembly class itself.

Dependent assembly classes can be straightforwardly notated by using stereo­

types. Hierarchy collapsing, in other words omitting unwanted classes and rela­

tionships can be done by adding additional notation to classes of higher level, so

as to denote that these are specialized by other lower level ones.

2.5 Implementation - Languages and databases

The outcome from the analysis and design as discussed so far is a formal spec­

ification of how the system, or model should be structured and behave. This

formal specification involves the usage of a visual language, like the UML, and it

does not involve the implementation on any software platform, since according

to the software engineering rules, it should be as independent as possible of the

CHAPTER 2. R E VIE W OF OBJECT ORIENTATION 177

implementation software. 8. The software may be a programming language (PL)

in combination with a database management system (DBMS). The programming

language can be independent of the DBMS or a part of it. Moreover, both can

either be object-oriented or not. This chapter does not examine how non object-

oriented platforms can be used to implement an object-oriented model9 since it

is beyond the scope of the thesis.

2.5.1 Object Oriented Programming Languages

Object-oriented programming is based on a paradigm of objects responding to

messages, rather than on one of operators performing actions on operands, as

is the case with procedural languages [89]. Booch [21] defines object-oriented

programming as "...a method of implementation in which programs are organized

as cooperative collections of objects, each of which represents an instance of

some class, and whose classes are all members of a hierarchy of classes united

via inheritance relationships.". It is the researcher’s opinion however, that, a

programming language can be characterized as object-oriented, if and only if, it

incorporates the four major concepts of object-orientation, namely abstraction,

encapsulation, modularity and hierarchy (see table 2.2 earlier in this chapter).

The three significant parts in the definition given by Booch [21] that contrast

with procedural programming are that an 0 0 language involves:

1. the usage of objects, in contrast with algorithms, in the case of the proce­

dural programming,

2. objects, that are instantiated from classes which are related through the:

3. inheritance relationship.

If the concept of inheritance is absent from an 0 0 language, then programming

8In practice however, this does not happen, since, choosing specific implementation software, effects

the early stages of the design, due to the possible lack or idioms in its functionality.
9Exception is the object-relational databases, which is briefly discussed.

CHAPTER 2. R E VIE W OF OBJECT ORIENTATION 178

is said to be done with abstract data types [21], mentioned earlier in this chap­

ter. Khoshafian and Abnous [87], and Booch [21] discuss the evolution of the

programming languages from procedural to object-oriented.

It must be noted that programming languages are actually interfaces between

the user and the computer. They are used by the programmers to develop appli­

cations. Therefore, the end user who is not involved in programming will not be

affected by the incorporation of a 0 0 language in the design and implementation

stages of a GI system. However, this does not apply in the case where the end

user will be using an object-oriented query language. Nonetheless, the user has

to be familiar with the 0 0 approach, since regardless of the interface involved,

users are sometimes responsible for creating and maintaining the class hierarchy.

The most widely used and popular object-oriented programming languages are

C ++, Smalltalk and Ada. Recently, and mainly due to the growing expansion

and usage of the Internet, a C + + descendant, the Java programming language is

slowly becoming the most popular network programming language. Appendix A

includes a comparison of 0 0 programming languages that shows the advantages

and disadvantages of every language.

Traditional programming languages have provided facilities for the manipulation

of data whose lifetime does not extend beyond the activation of the program. On

the other hand, if data are assumed to survive a program activation, then some

kind of environment that provides persistence is needed. Different persistent

types are treated differently. The mapping between the two types of data is

usually done in part by the file system or the computing environment and in

part by explicit user transaction code which has to be written and included in

each program. A consequence of this view of data is the need for a considerable

amount of program code concerned with transferring data to and from files, or the

DBMS, which leads to much space and time being taken up by the code required

to perform translations. W hat is needed is to make the quality of persistence

orthogonal to type and naming. A language which applies this rule is called a

persistent language. A good example of a persistent language is the PS-ALGOL

CHAPTER 2. REVIE W OF OBJECT ORIENTATION 179

(see appendix A), which is considered to be the first that introduced the concept

of an orthogonally persistent language. An other similar but more recent effort

is found in the PJama project, which has successfully attempted to incorporate

orthogonal persistence in the Java 0 0 programming language.

Java has been used for the implementation of the MPOOST data model. This

implementation includes:

- the class schema definition with some basic algorithms for every class;

- the graphical user interface that the user can use to interact with the stored

information.

2.5.2 Object Oriented Databases

A successful attem pt has been made to incorporate the concept of persistence

introduced to the object model, within a programming language (see previous

section). Booch [21] defines persistence as "...the property of an object through

which its existence transcends time (i.e. the object continues to exist after its

creation ceases to exist) and/or space (i.e. the object’s location moves from the

address space in which it was created).". He also states that when persistent

objects are involved, their state as well as their classes remain also persistent.

The latter must transcend any individual program so that "...every program

interprets this saved state in the same way." This issue is one more burden for

the integrity of the system, since the class of the object requires a change. This is

one of the issues when manipulation of persistent objects is required. Moreover,

when simultaneous retrieval of a large amount of information by different users is

involved, then the requirements can not be met within the functionality provided

by a programming language, even if it is orthogonally persistent. These additional

user requirements, namely the transactioning capability, give rise to database

management systems (DBMS). In the context of the object model, an object-

oriented database is a collection of objects whose behaviour and state, and the

CHAPTER 2. RE VIE W OF OBJECT ORIENTATION 180

relationships are defined in accordance with the object-oriented model. An object-

oriented database management system is a database system which allows the

definition and manipulation of an object-oriented database [88]. Object-oriented

databases combine the object-oriented concepts with programming constructs

and database management capabilities [87]. In the case that they incorporate

object-oriented languages to define and manage the data that are stored within, it

is then that they extenuate the "impedance mismatch" between the language and

the database structure. This was not the case with older, relational databases,

where the integration of a programming language within was cumbersome and

sometimes impossible. In practice, as Booch [21] notes, such databases build upon

proven technology (e.g. network, relational etc.) and offering the object-oriented

interface through database operations are manipulated in terms of objects whose

lifetime exceeds that of an individual program. A known example is the object-

relational databases.

In 0 0 database management systems, the structure of the object space is defined

by the so called class schema, which is nothing more than the fully detailed

definition of the class hierarchy. The schema, as well as any object instantiated

from it are both persistently stored. Incorporation of object-oriented capabilities

in databases is feasible in many ways [87], namely:

- Novel database data model/data language approach (e.g. POET or ON-

TOS).

- By extending an existing database language with object-oriented capabili­

ties.

- By extending an existing object-oriented programming language with database

capabilities. Example is the PJam a project for an orthogonally persistent

Java.

- By providing expansible object-oriented database management system li­

braries.

- By embedding object-oriented database language constructs within a host

CHAPTER 2. RE V IE W OF OBJECT ORIENTATION 181

language. This is a technique that many commercial products offer, even if

they are not pure extensions of a specific language, by providing "bindings"

for popular programming languages (e.g. POET DBMS offers bindings for

C + + and Java).

Object oriented databases can also be defined as combining the object-oriented

concepts plus database capabilities such as the ones listed and expanded below.

The first two major features (namely the transaction management mechanism

and support for integrity constraint) are those that differentiate database man­

agement systems from persistent languages.

2.5.2.1 Special characteristics of object-oriented databases

2.5.2.1.1 The transaction m anagem ent m echanism This is a mecha­

nism through which objects in a database are being manipulated. A transaction,

as a group of database commands, has the property of being atomic, which means

that either all of the code of the transaction can be executed (if commands after

being processed result in a valid database state) or none (if some or all of the

commands violate the validity of the database state). The constructs used to

denote the abnormal termination of a transaction is called rollback, while upon

the successful termination of the transaction it is then committed. Transaction

can be nested ([107] from [87]). In this case, a nested transaction is composed

of sub-transactions, each one of should be atomic. Nested transactions can be

modeled through a tree structure, with the topmost transaction as the root, and

all the rest of the transactions as children. Parent-child relationship can be recur­

sive throughout the tree (children of the root can act as parents and have their

own child transactions and so on). In order for the top-level transaction to be

validated, all its children transactions must be validated first.

A transaction is also a scope, within which integrity constraints (explained below)

may temporarily be violated, but only until the termination of the transaction,

after which they should be amended or rejected, always resulting to a valid,

CHAPTER 2. RE VIE W OF OBJECT ORIENTATION 182

consistent state of the database according to the set of integrity constraints.

Database consistency is guaranteed through the serialized order of transactions.

This means that even if some transactions have the same starting time, they will

be executed in a specific order. Khoshafian and Abnous [87] identifies three main

categories of concurrency control algorithms, namely:

- Time-stamp ordering, where every transaction is associated with a time

stamp, which is usually the transaction start time. The system is responsible

for executing transactions based on their time-stamp order. In the case

of conflicts (usually caused by update operations) a transaction may be

aborted, if any operation is inconsistent with the database status.

- Optimistic algorithms, where transactions are allowed to execute, in pri­

vate spaces, until finished. In the case of conflicts, transactions are aborted,

therefore resulting into loss of transaction work, otherwise committed. They

are mostly applicable in databases with minimum conflicts between trans­

actions.

- Pessimistic algorithms, where locks on persistent objects are necessary be­

fore any transaction operation takes place. Locks can be either read or write.

Upon transaction termination, locks are released, therefore allowing other

transactions to operate upon them. This technique is imperative in the case

of multi-user databases, where objects are shared among many users. In

this case, transactions must follow the two-phase locking mechanism, where

every operation must acquire a lock on the objects it accesses, and after the

release of the lock, no more lock should be acquired.

For concurrency to work in conjunction with the locking strategy, locks must

be minimized. Multigranule locking [88] allows different levels of the schema

to be locked, depending on the requirements of the transaction, like total class

and instances locking or partial instances locking. Pessimistic and optimistic

algorithms can be used in combination. Locks can be either read or write. Read

locks prevent write locks and vice-versa: when an object is read, it cannot be

CHAPTER 2. RE V IE W OF OBJECT ORIENTATION 183

updated until read access operation is through. If a write operation has locked

an object, read operations cannot lock it until the write operation terminates.

Deadlocks are transactions that cyclically wait for each other to terminate [87].

Although deadlocks are unlikely to occur since locking is sequential, still there

has to be a mechanisms so as they can be identified and prevented by the system,

through termination of one of the transactions in the cycle.

Management of long transactions in an OOGIS environment involves working

with virtual copies of the dataset, without the need to use redundant physical

copies. Arctur [6] uses the term "Local Integration" function to denote the po­

tential need for conflict resolution among multiple users’ changes to the database.

The concept of central data warehousing may also be incorporated through the

"Global Integration" function. Moreover, usage of multi-tiered long transactions

may be used for large and complex datasets. [7]. It must be noted here that

relational DBMS do not provide support for long transactions.

2.5.2.1.2 Support of integrity constraints Integrity constraints are rules

and conditions to which the state of the database must conform, therefore speak­

ing of a consistent database state. They usually apply on values of objects’

attributes. Types of integrity constraints may be [87]:

- Unique key: these constraints ensure uniqueness of an attribute’s value

(whenever this applies for the attribute) within the database. For example,

the object identity should be unique as a value throughout the database

- Referential constraints are rules which guarantee that when an attribute’s

value is the identity of another object, these values always point to existing

ones, therefore avoiding dangling references. In 0 0 systems where there is

support for object identity, referential constraints are implied, and therefore

not necessary.

- Non-null constraints which ensure that attributes cannot be null valued,

wherever this applies. These constraints make necessary the definition and

CHAPTER 2. RE V IE W OF OBJECT ORIENTATION 184

inclusion of initialization methods, mentioned earlier in this chapter.

- Domain constraints, which limit the domain of the values that an attribute

can receive. This is straightforwardly implementable in the 0 0 databases by

creating appropriate, specialized classes, which obey the constraints posed

and incorporating them as aggregate parts in other objects, the attributes

of which should follow the domain constraints.

- General constraints posed upon values that attributes should hold, usually in

combination among them, and conjunction with functions such as average,

sum or count.

It is quite often inevitable that integrity constraints result in redundant relation­

ships among database objects [103].

2.5.2.1.3 Concurrency Concurrency is a technique through which many

transactions can be running the same time in a database, having as access target

the same objects. Concurrency control is the mechanism that a DBMS sup­

ports, and checks for conflicts among simultaneous transactions. Its purpose is

to guarantee a valid database state, throughout the database life.

2.5.2.1.4 Recovery Recovery refers to the mechanisms available within a

OODBMS that implements strategies to recover data lost by events such as:

- Transaction failures.

- System failure.

- Media failure.

- Any combination of the above three reasons.

Recovery, as a way to restore lost objects after a failure, is a capability that

enforces the persistence of objects.

CHAPTER 2. R E V IE W OF OBJECT ORIENTATION 185

2.5.2.1.5 Versioning Kim [88] uses the notion of version as a relationship

among instances of a class: a versioned class is a set of objects which are versions

of the same conceptual object and it consists of a hierarchy of objects which

capture the "version-of" relationship between an object and another object de­

rived from the class. The notion of version introduces two types of relationships

between versioned objects: "derived-from" relationship between an arbitrary ver­

sion of an object and the initial, abstract object it came from and "version-of"

relationship, between the newer and the older versions of an object in a version

graph. It is obvious that the two relationships are related, since the "derived-

from" can be extracted from the "version-of" by tracing upwards the version

graph, from the version of interest up to the root object.

Versioning refers to the mechanism found in a database that allows previous states

and state transitions of objects to be stored, and later retrieved at the user’s will.

Transitions from state to state are usually caused by events that change the values

in one or more of the object’s attributes. When a new version of an object must

be created, its predecessor is selected and retrieved, and the new object inherits

all values from the old object. This is where the value inheritance mechanism

is necessary. The user, or a function can modify any of the values in the object

and thus create the new version. Khoshafian and Abnous [87] name these two

phases of version creation as check-in and check-out respectively. Versioning of

an object throughout its life cycle can be modeled with a tree structure, where

the initial state of the object is the root of the tree. Nodes represent versions

and links represent transitions. Every version, including the root object, may

have one or more newer versions. Additionally, any number of versions can be

combined to create a newer version, that is a node (as a {n} level version) can

have many parents and children. It is obvious that a new version can be created

out of any node of the tree. Problems arise if a version has to be deleted. Then

a set of versions might be necessary to be merged.

Configuration objects are special system objects that hold information on all

versions of a specific object [87]. Their purpose is similar to that of container

CHAPTER 2. R E VIE W OF OBJECT ORIENTATION 186

classes (or collection objects). Object versions can be grouped together, forming

a dataset version of the database. Laser-Scan’s Gothic ADE supports dataset

versioning.

Versioning is a useful construct especially for applications that hold historical

data in the persistent repository, but many issues arise with the introduction of

the object versioning mechanism. One of them regards the maintenance of the

uniqueness of the object identity. Should the object identity remain the same

throughout all versions of the same object, or not? If a new object is to be

created, as a successor of another object, then these two cannot share the same

identity, since the principle of identity uniqueness is violated. If the identity of

the newly created object is different than the previous one, then the two objects

are different and therefore, semantically, the new one cannot be considered as a

version of the previous. The researcher’s suggestion on this problem includes the

insertion of a self-relating association into the root class in the schema hierarchy.

This association is inherited by every class in the schema. In this way every

object which is instantiated as a new version of another object relates to a same

class object, referred to as the predecessor object. The predecessor object in turn

relates to the its next version via the same association (but through a different

link). This class relationship could possibly be associated with an event class (as

an association class) so that for every version of object the system or user event

that caused the versioning can be identified. In this way, identity remains unique

and versions of the same object are related along with the version causing event.

2.5.2.1.6 Perform ance enhancem ent Taking full advantage of an object-

oriented database requires storage management strategies as well as very powerful

hardware platforms, since performance issues arise, due to the complexity of the

object space structure. The storage management includes the efficient organi­

zation, storage and access of the objects. Problems that need to be resolved

include mapping of the object space that contains complex objects, to the linear

physical space (e.g. disk pages). Query optimization is the set of techniques that

CHAPTER 2. R E VIE W OF OBJECT ORIENTATION 187

attem pt to minimize the number of accesses and the computation time that the

system performs to execute a query. This is done through proper usage of access

methods such as clustering and indexing.

Indexes are sorted tables that relate the value of the object identifier to the

values of one or more attributes, in the same object, therefore accelerating the

access for queries based on these attributes. When a table relates the OID with

an attribute, the attribute is characterized as indexed. Indexed attributes must

be specified explicitly in most 0 0 databases in the schema definition (as is the

case in relational databases), because the creation and maintenance of the index

table imposes processing overhead. Therefore the user must choose between the

processing requirements of creating an index table and the requirements of pro­

cessing queries without index tables, which is usually based upon the frequency

that a query is relating to a specific attribute. Indexes do not add new infor­

mation to the system, but the opposite: they contribute to the problem of data

redundancy, only of course to aid the system to perform faster. An important

issue arising, as already mentioned, is on how to combine the usage of indexes in

a 0 0 environment, with the concept of encapsulation: for an index to be created

on an attribute, the values of it must be read, for all the set of objects that

include this attribute in their structure. The principle of encapsulation, how­

ever, prohibits direct read accesses to a value. A solution to the problem might

involve the permission of client objects and classes to directly access object val­

ues, for read only purposes. However, this strategy still violates the principle

of encapsulation. Alternatively, values can be accessed indirectly, by a method

written specificly for this purpose, which is usually called an accessor method

(as already discussed). This does preserve encapsulation, however it may impose

access time overhead, since for every value to be read, the associated method has

to be executed as well.

Clustering is the strategy by which objects that are frequently accessed together,

are stored on the same disk section. Clustering strategies can be either:

CHAPTER 2. REVIE W OF OBJECT ORIENTATION 188

- Automatic, where the system is responsible for deciding when to cluster

objects and create indexes of attributes, based on the frequency and the

combination by which they are retrieved.

- Manual, where the user has built predefined indexes on specific attribute

combinations, that he or she knows will be accessed together. The system

will not create extra indexes unless instructed by the user to do so.

Some DBMS systems support breadth-first and depth-first clustering (e.g. Gem-

Stone), for the internal organization of a complex object. In breadth-first storage,

the object’s attributes are stored first in their entirety, as the OIDs of the aggre­

gate objects and, next in sequence, the values of the attributes of each one of the

aggregate parts. In depth-first order, each aggregate part is fully stored (both the

ID and its attribute values) before the next one in sequence is stored the same

way. The choice between the two ways is a m atter of how queries are based upon

an object’s values: for example, if queries are often based on deep-level attributes

of the object, then depth-first clustering is most suitable.

Other techniques for query optimization include caching of frequent accessed

objects. A comparison on performance between a RDBMS and an OODBMS

(namely Oracle and ONTOS) by Milne et al. [103] shows the advantages of object

caching which RDBMS currently are lacking of. It also shows the advantage of

the group storage manager model in database organization, where objects are

clustered by their class: in this way, de-referencing of objects is accelerated and

the number of disc accesses is reduced. However, this technique introduces the

problem of maintaining an additional copy of the object space, which means data

redundancy. This may not be a serious problem, especially when storage media

are becoming lower in cost. Other issues include the performance and code cost

of additional mapping of the persistent object space with the temporary memory,

where objects are cached as well as the performance cost due to necessary update

of cached objects from their original storage source, through a network in the case

of a distributed environment. For the latter two reasons object caching might

CHAPTER 2. R E VIE W OF OBJECT ORIENTATION 189

prove insufficient and a burden on performance.

Egenhofer and Frank [57] report how storage structures for heterogeneously dis­

tributed spatial data can be improved so that access on less frequent objects

performs well.

2.5.2.1.7 Q uery processing When a user has to retrieve some data out

of the database, they first of all have to define the criteria that the required

data must conform to. This usually initiates by the user specifying the criteria

using their own native language, as e.g. English. Such an example sentence may

be: “retrieve all administrative areas that are populated by more than 40000

people and are within a distance of 100 km around the capital of the country”.

This way of specifying criteria, is only meaningful to the user and not to the

computer. Some sort of translation has to take place, so that the application

that handles the data can process such criteria. This requires the formation and

specification of a query language. Such a language must hold artifacts that will

be both comprehensible by the user, without them having to know the query

language in detail, or to necessarily have to look up a command so as to be aware

of its functionality, but also readily processable by the database, in terms of

formalized and strict definition. This, obviously, will result in a query language

that is much less rigid than one used by humans. Again, some kind of mapping

is necessary, based on what the user may retrieve from the database and how.

As it is impossible to use a human spoken language as a query language, taking

into account its idiomacies (e.g. English), it is inevitable that some kind of less

complex and more plain language has to be specified. Additionally, this query

language must support such features as spatial, aspatial and temporal searching,

either in isolation or in combination. In other words, the query language is the

mediator between the user and the database. Any query language is composed of

queries. A query is a declarative and explicit user definition of what is needed to

be accessed within a database and for what purpose. When queries are executed

within a database, a subset of the whole dataset is produced, which conforms to

CHAPTER 2. RE VIE W OF OBJECT ORIENTATION 190

the specifications set within the query. In the case of 0 0 databases, this data

subset will be a set of objects. Kim [88] defines as query graph the subset of

the overall class hierarchy which represents the results of a query: the selection

operation on a class C retrieves instances of the class C which satisfies a Boolean

combination of predicates on a sub-graph of the schema graph for C. Predicates

can be distinguished by the attribute level that they seek: simple predicates ,

when the query retrieves instances and is based on the values of the attributes

of these instances which are not other objects, or complex predicates, when the

query is based on attribute values found in one or more aggregate object of the

object that is being queried.

Cyclic branches [88] are branches of the class schema if it contains a class Cj and

a class Cj, such that Cj is the (indirect) domain of an attribute of Cj, and Ci is

the domain of an attribute of Cj] or Cj is the (indirect) domain of an attribute

of Cj, and a super-class of a subclass of Cj is the domain of an attribute of Cj.

The standard query language in relational systems is the Structured Query Lan­

guage (SQL). Some 0 0 environments extent the SQL language with object-

oriented constructs, called Object SQL (OSQL). In general, SQL is a convenient

and popular language to use and extend, and users may become familiar fairly

quickly, if they are not already. However, the additional constructs that are in­

troduced pose questions regarding the standardization issue of an object-oriented

SQL.

Language constructs should also be created and used to support querying of

versioned objects, such as to retrieve objects for version creation and then version

storage, as well as to retrieve predecessors and successors of a version.

Functions found in a query language that is to be used within a GIS, must be

classified before any actual specification and implementation takes place. Choi

and Luk [35] use the following categories of functions:

- Semantic spatial functions: the concept denotes a set of spatial operations

that are invoked to manipulate spatial data and produce information. The

CHAPTER 2. RE V IE W OF OBJECT ORIENTATION 191

actual representation and implementation of these functions are both hidden

from the user, therefore enforcing the concept of encapsulation. Examples of

such functions are: adjacent, area, complement, contains, intersects, length,

route and surrounds.

- Retrieval functions, used to retrieve properties or attributes.

- Set-oriented functions, like count, union, and common.

- Aggregate functions like minimum, maximum, sum, average and percentage.

These functions initially retrieve data from the aggregate parts of an object.

Therefore, the calculated values depend on the values found in the aggregate

parts.

Custom, user defined functions may be utilized replacing a query when it is very

complex (to reduce the degree of complexity) or one that is used very often (to

reduce the amount of commands that must be invoked). Choi and Luk [35] use

the concept of superfunction to denote a function which is composed of other,

kernel based functions. A superfunction is defined using the query language. The

superfunction construct requires an additional compiler to interpret the defined

functions. Regardless of the overhead involved, it is considered to be one of the

most suitable techniques (if not the best) in order to build custom, user-based

applications on top of a database kernel.

Geometrical functions found in a query may be classified as Choi and Luk [35]

suggests:

- “overlap”, or “intersect”, which are used to compute the geometrical com­

monality between objects;

- “containment”, which calculate enclosure information;

- “component” or “aggregate”, which retrieve the components of an aggregate

geometrical object;

- geometric object computations, which create new geometrical objects;

CHAPTER 2. R E V IE W OF OBJECT ORIENTATION 192

— arithmetic computations on attributes, which compute derived information

out of the object’s geometry;

Usage of a query language within the GIS, requires the existence of a query

processor module which parses the user defined queries and outputs information

to the user. Query languages are supposed to benefit from the 0 0 paradigm

by possibly incorporating frequently used queries within the class specifications.

Moreover, 0 0 provides a user interface with operations on objects [57].

2.5.2.1.8 Schem a M odifications In multi-user environments where the same

persistent object space is accessed by a number of different users, it is sometimes

necessary to modify the schema of the class hierarchy, as it might evolve through

time. In this object space instances already exist, but the system must not be

made unavailable due to the required modifications. This is more important

for experimental purposes during the development phases of the database. Kim

[88] identifies two ways that a schema may be modified: single schema modifica­

tion is the direct modification of a single schema, without keeping track of the

changes, and schema versioning when a single schema is versioned and therefore

the changes are stored. The two ways of schema modification can co-exist, since

a specific version can be modified without having to create a new version of the

schema. Kim [88] classifies the changes that a schema may undergo, and distin­

guishes between two main types: class structure or behaviour changes and class

hierarchy changes. He also separates changes in terms of required updates to

the instances: soft changes do not require instance updates, while hard changes

require updates to existing instances. In general, the impact of schema changes

is not only on the class itself, but also on its sub-classes as well as on the in­

stances that have already been produced and exist in the database. Nonetheless,

changes incur updates to the instances in the databases, which may or may not

be processed right after the schema changes take place.

Schema modifications may have a complex impact on both the class hierarchy

as well as on the instances. It is therefore useful to define a set of rules and

CHAPTER 2. RE VIE W OF OBJECT ORIENTATION 193

principles that must be followed and preserved whenever a change in the schema

is necessary. An example of these rules and principles is the ORION database

[88]. In this paradigm, principles are called invariants and four types may be

identified:

- Class-Hierarchy invariant, which defines the class hierarchy as a directed

acyclic graph (DAG).

- Name Invariant by which names of classes, methods and attributes are

unique throughout the class hierarchy.

- Origin Invariant by which all class members have distinct origin.

- Full-Inheritance Invariant, by which members are inherited to sub-classes,

unless this violates the name and origin invariants.

Rules for single schema modification can be based upon the above invariants,

therefore providing control for the impact that these will have on the schema

itself.

Schema modifications are very often involved in an 0 0 DBMS. There is usually

no particular problem when temporality is not supported. Usually, the schema

is stored differently than the objects themselves, even in the case where classes

are treated as objects. However, in some cases, comparisons might become inex­

pressible and impossible to implement [7]. Dynamic schema support is essential

in any 0 0 DBMS kernel.

2.5.2.1.9 Security and authorization In multi-user database environments,

where the object space is accessed by many users, simultaneously, the issue of data

security and authorized access arises, that is what can be accessed and modified

by which user. It is obvious that every user not only has different requirements

when it comes to access the database, but not all data should be accessible or

modified by all users.

In the case of relational databases, there exists an authorization model, through

which a user may be granted access to invoke a query on the data which may or

CHAPTER 2. R E VIE W OF OBJECT ORIENTATION 194

may not alter the values stored. In 0 0 databases, this model exists in a somehow

different implementation.

2.5.2.2 UML in database m odelling.

As mentioned in the beginning of this section, the major characteristic of DBMS

is that they provide persistence for objects. The UML is well-suited to support

persistence in the notational part [22], as one can adorn a class as persistent.

Moreover, the UML is appropriate to model not only logical database schemas but

physical databases as well, as the UML’s class diagrams are a superset of entity-

relationship diagrams (E-R), which is a common modelling tool for database

design, mostly for the static part. Additionally, UML models the behavioural

part of the schema, as it employs an 0 0 methodology.

2.5.2.3 U sability of OO databases in GIS

Prototypes that have been implemented in 0 0 databases include commercial

products such as Smallworld GIS [85, 124], G e02 [43, 96], GeoStore [11]. Relevant

research work can be found in Choi and Luk [35], Egenhofer and Frank [53],

Egenhofer and Frank [57], Frank and Egenhofer [64], Milne et al. [103], Oxborrow

and Kemp [113], Worboys et al. [139], Worboys et al. [140], Worboys et al. [141].

The lack of a theory regarding geographical databases, is considered to be a

serious obstacle for research in this field. Formalization, if provided, may be used

in many levels across the system development, such as the underlying data model.

Efforts to provide such formal theories can be found in the work of Worboys [131],

Egenhofer et al. [55], Egenhofer [56], Frank [65], Pullar and Egenhofer [117], Yang

et al. [142].

An object-oriented data model can alternatively be implemented using a rela­

tional DBMS [19, 140]. It has been shown that many of the constructs of the 0 0

data model can be mapped to the to the relational model although losing some

of their natural meaning which is useful to the user. The efficiency of the process

CHAPTER 2. RE VIE W OF OBJECT ORIENTATION 195

is also decreased by using a relational database, since object oriented databases,

unlike with relational ones, eliminate the need for frequent joins of tables when

query execution is involved.

It has been shown [126] that SQL by itself has shortcomings and cannot be used

in its current form in the context of an object-oriented database. Therefore, the

need for a standard object oriented query language is imposed that can be used

to model spatio-temporal queries. The major parts of a such a query sentence

would be : who, what, where, when, why? Respectively, these keywords respond

to parts of a physical language sentence as Subject, Action, Object, Place, Time,

and Reason. Questions posed here are:

- Which ones are the fundamental to form a basic query?

- What if a part is omitted? Then assumptions for the missing parts are

necessary.

- What if multiple parts exist?

Most commonly, object oriented databases offer a custom or standard object

query language as part of their core functionality for the user to interact with

the data.

2.6 Conclusions

The object orientated mechanisms of abstraction and inheritance are necessary

to model the complex situations, such as geometric objects, which can change

over a period of time. Moreover, 0 0 programming languages will be necessary

to implement an 0 0 GIS design, which is more flexible and better-suited to

describe complex data structures. By using 0 0 databases as well, the required

property of persistence is being best implemented since the architecture of a GIS

will become clearer, and the maintenance will be easier and the life cycle longer.

Moreover the physical location of data are not a user’s or programmer’s concern,

CHAPTER 2. R E V IE W OF OBJECT ORIENTATION 196

since a unified set of commands are used to retrieve them. Performance problems

encountered by using process time demanding 0 0 database management systems

are considered to be eliminated by using powerful (but not necessarily expensive)

hardware.

Chapter 3

Analysis

3.1 Introduction

Chapters one and two elaborate on the major issues encountered when spatio-

temporal information is being modelled following an object oriented methodology.

Some of these issues have already been addressed through proposals found in the

literature, however some remain still under research. Both previous chapters

aimed to provide input for the current, which eventually narrows down the prob­

lems, adopting or providing a solution whenever necessary, and using conventions,

which are considered to be of major importance.

As it has been discussed in chapter two, the initial process that leads to develop­

ment is first requirements capture and later analysis. It has been already stressed

(chapter two) that analysis, as a conceptual process, is considered to be a pre­

requisite to synthesis. Hence, the material presented here is considered to be the

first of four stages that result in the development of any software product, in this

case the MPOOST (multi-purpose object-oriented spatio-tem poral) model. It

focuses on the identification of spatio-temporal entities in the real world and at­

tempts to analyze their structure and behaviour. It must be noted that the part

of the chapter that deals with the real world domain is to a great degree indepen­

dent of any computerized context, since it is (and should be) totally independent
197

CHAPTER 3. ANALYSIS 198

of the stages of design and implementation that follow. However, as a whole,

analysis is considered to be part of a broader development process, hence there

are references to the stages of design and implementation whenever necessary.

3.2 Organization of terminology

It is imperative that from the early stage of analysis, a set of basic terms is spec­

ified and used for consistency and comprehensibility reasons. This is called the

analysis domain vocabulary. The main source for the concepts and terms of this

vocabulary is the real world and the phenomena and objects that are being mod­

elled by various applications that employ some kind of view. Later, this vocabu­

lary may expand, as concepts are analyzed and new terms are being introduced,

despite the fact that it is considered to be a finite set of terms for the purposes

of this research. However, in real world projects, practice has shown that future

expansions will occur, and the whole process of analysis-design-implementation-

testing should undergo as many iterations as possible in order for the developed

product to reflect the additions and/or modifications that have occurred. When

exactly an iteration should be invoked is a decision primarily depending on the

practical needs that the final product serves, as well as on the magnitude of mod­

ifications themselves. It must be noted that there are no theoretical strict rules

to be followed for both issues, but it is a collaborative decision based primarily

on empiricism.

Since a computerized environment is employed, in order that the MPOOST data

model is implemented, a system domain vocabulary must also be established. It

is anticipated that all terms found in the analysis domain vocabulary will have an

associated term in the system domain vocabulary. We shall call this one-to-one

association of terms as the analysis to system mapping.

CHAPTER 3. ANALYSIS 199

3.3 Basic requirements

One of the basic requirements that the MPOOST model must satisfy regards its

effective use by multiple applications (hence the adjective multi-purpose). But,

what happens when multiple application domains are involved in the analysis? In

this case, every application holds its own vocabulary domain with a set of terms,

and a conceptual model. It is considered that applications are not independent

of each other, as they share concepts and information, and possibly conceptual

models. Specifically, in the context of a GIS, one of the default components that

applications share is the core spatial conceptual model 1, which is separated into

geometry and topology, as already mentioned in chapter one. This, of course,

is not addressed and used in the same manner by all applications, but the way

that geometry and topology are treated differs significantly from two-dimensional

to three-dimensional geometry, from vector to raster models, and from spaghetti

to node-link-arc topology. We shall call the spatial conceptual model that an

application employs as a spatial representation [25]. In order that the MPOOST

data model can stand up to its name, it is inevitable that it must support het­

erogeneous spatial representations. Regarding the support for any non-spatial

data and models that applications may involve, it is considered that it will be

achievable by the underlying computerized conceptual model, namely the object-

oriented model, as has already been discussed in chapter two. Hence, it will not

be of major concern in this stage of analysis. It must be noted that the com­

parison of different spatial representations is beyond the scope of this thesis2. In

brief, spatial representations can be of four major types [25]:

1. vector;

2. raster;

3. hybrid; and

Tn some cases it could be the spatio-temporal model, but not all application models consider time

as an inherent part of the information
2Research work regarding comparison of spatial data models is from Peuquet [116], Breunig [25]

CHAPTER 3. ANALYSIS 200

4. analytical or parametric.

There is a further categorization of spatial representations in each of the above

categories. All of these representations use spatial objects as fundamental build­

ing blocks, which may be uniquely identified. Complex blocks and their internal

structure and external relationships with other blocks are derived and stored.

Any of these blocks is considered to be an independent chunk of data which may

hold references to other blocks. All of these features are an inherent part of

the object oriented modelling methodology. Therefore, it is considered that the

realization of different spatial representations can coexist in an object oriented

model. Hence, the requirement that model implementation should be spatially

multipurpose is served by its object-oriented realization. However, at the higher

conceptual level (spatial data model), this is achievable by using extended com­

plexes (e-complexes) [25]. In brief, objects embedded in the discretized geometric

space have geometry, topology and metrics. Geometry can be described by means

of the e-complexes, topology is described by the internal and external relation­

ships of the e-complexes and metrics as operations which may or may not be

part of the e-complexes. One of the inherent key features of e-complexes is that

they support the realization of heterogeneous spatial representations. The im­

plementation of such a spatial data model is extremely straightforward using the

object-oriented approach.

3.4 Requirements and terminology in the real world

domain

Objects that exist in real world are called real world entities. If this entity involves

or references some kind of geometry that corresponds to the real world, then this

entity is called a real world geo-entity. Similar geo-entities can be grouped in

categories (explained further below). The four main components of a geo-entity

category are:

CHAPTER 3. ANALYSIS 201

1. its geometry, which is modelled by temporal e-complexes as discussed later

in section 3.8.1;

2. a set of aspatial attributes;

3. a set of cartographic representation entities; and

4. a set of behavioural interfaces.

Each one of the above aspects is discussed in more detail in the following sections

of this chapter.

Both types of entities (real world or system) can have a number of properties

associated as well as a set of well defined actions as part of their behaviour,

which can be either passive or active, with regard to whether the subject of the

action is the container geo-entity itself or another geo-entity, respectively. Real

world entities that are similar in structure and/or behaviour can be grouped

together into categories. Every real world entity has a unique identity which

does not depend on the internal structure and behaviour of the entity. Real world

entities may be created, altered in their structure destroyed, and reincarnated as

a result of a real world event. A real-world event is anything that occurs in

the real world, has a cause and an effect, may involve a set of entities which

in turn may change in some way. Any real world entity may have associated a

number of other real world entities (aggregate entity). At any moment, when

the real world entity is not being altered, and for the whole time duration that

the entity remains unaltered, we may say that the entity has a specific status. If

something occurs that affects the structure of the entity in some way, then the

entity transcends to a different status. Therefore the status of a real-world entity

is strongly related to the snapshot in time of its internal structure. When a real

world entity alters significantly because of a real world event, its status may alter

significantly as a result, so that a new entity may be produced altogether, which

has a different identity than the old one. The new entity may refer to its previous

as the predecessor entity. If the entity’s identity remains the same, and no new

entity is created, then the entity has a series of statuses related, in an ordered

CHAPTER 3. ANALYSIS 202

and linear fashion. We may call this the status set.

Both real world entity and event categories are quite general, and may contain

a set of existing real world entities or events, in a similar manner that an object

can be instantiated from an object class, in object-orientation (see chapter two,

section 2.3.1).

Observations in the real world domain are always made in the context of a spe­

cific science or application, such as physical geography, topography, geology etc..

Every single such domain, has a different viewpoint, both quantitative and qual­

itative, as to how the real world is perceived, observed and modelled. This

application context is called the application domain. Every single application

domain involves a model (see chapter one section 1.4.1 for the definition of a

model), called the application domain model 3. In this way, the set of definable

application domains is a subset of the real world domain.

As real world entities are viewed and modelled in the context of a scientific field

or an engineering application, some kind of mathematical or empirical reasoning

is employed that involves a set of constraints and rules to which entities and their

parts must conform, so that the data integrity is guaranteed. We will call these

application integrity constraints, and it is obvious that they have meaning only

in the context of an application in the presence of geo-entities.

3.5 Terminology and requirements in the system

domain

Real world entities (regardless of whether they may be geo-entities), when mod­

elled and stored in a computerized environment system may be called system

entities 4. In this way, every real world entity should have a corresponding sys-

3 also known as the conceptual application model
4 This is similar but not identical to the concept of object found in object-orientation which is

instantiated from a class, since a system entity may or may not be an object

CHAPTER 3. ANALYSIS 203

tem entity used for modelling. System entities however, may not reflect directly

back to real world entities, especially when purely software artifacts are used as

system entities. Hence, the relationship between a real world entity and a sys­

tem entity is not reflective. Nonetheless, system entities are being modelled as

objects 5 in the database, therefore having both attribute values and associated

behaviour. System entities when modelled as objects can be grouped into classes

and have a unique object identifier (OID) that can be used when other system

entities refer to them. System entities may be instantiated, modified, deleted and

restored. A system class is used as a specification that holds information on

what an object can contain as actual values. Objects produced by system classes

are called system instances. A system event is anything that occurs within the

context of the system, has a cause which has only meaning within the system

and it ceases to be meaningful out-with, has an effect only within the system and

may involve a set of system objects that are being affected. System events may

change the state of these system objects, and as a result a series of new system

objects may be produced. It is considered that different application domains

that employ specific application domain models may use different system domain

models. However, herein, all possible definable application models map vertically

to the same system model, namely the object model.

3.6 Terminology and requirements in the map do­

main

Real world entities with an inherent geometric nature or with a relation to a

geometry, map to system entities in the system domain. There has to be some

way of visualizing the system objects produced from system entities, using specific

methodology, which is none other than the cartographic visualization process.

The output of such a process is considered to be the map composition, either on

5The basic concept of object-orientation, see section 2.3

CHAPTER 3. ANALYSIS 204

Table 3.1: Domains and concepts

the computer screen or in a hardcopy format. System entities that appear on

a map composition, are called map features when referred within the context of

the map 6.

Real World Domain System Domain Map Domain

A pplication m odel System (object) m odel C artographic m odel

R eal world entity S ystem entity M ap feature

P roperty A ttribute V isual attrib u te

A ction /b eh aviou r M eth od /b eh aviou r -

C ategory Class Layer

Identity Identifier Identifier

Create Instantiate P roject

A lter M odify E dit

D estroy D elete Erase

R eincarnate R estore R einsert

S tatus State Version

R eal world event S ystem event -

R eal world tim e S ystem tim e -

3.7 Data input

A GIS as it is defined in chapter one (see page 28) amongst others, involves

procedures to collect data that will be the input to the system. This is always

done in the context of specific requirements for which the data will be used.

Regardless of the data collection techniques involved, the output from a data

collection phase will be called a dataset, which contains data that refer to the

6This term is not the same to the concept of a feature which denotes a characteristic of the map

itself e.g. scale, size, legend etc.

CHAPTER 3. ANALYSIS 205

same data collection session. As is obvious, a dataset comprises various types

of data, both spatial and aspatial. The most important part of a dataset is the

metadata information, that describes the content of the dataset, in the way that

is explained later on in this chapter. An input dataset is the one that is used

by the system to create information. It may contain information only for real

world entities, for both real world entities/map features or only map features,

always according to the data collection technique involved. It must be noted

that real world entities will be transformed into system entities once the dataset

is processed by the system. An output dataset is the one that contains information

created by the system, and may contain system entities, map entities or both.

3.8 Spatial information

3.8.1 Geometry

As mentioned in the introductory section about fundamental requirements (chap­

ter one), the data model should be able to support heterogeneous spatial repre­

sentations.

Discretization of the space is based on first-degree polynomial approximations

to 3-, 2- and 1- dimensional extents [135]. The simplicity of the polynomial

degree contributes towards efficient and fast algorithms whenever calculations

are involved in a computerized environment. However, higher degree polynomials

may be used, as in the case of smoothed contour lines, or in the case of spatial

regression analysis.

Regarding the geometry of primitive geometric objects, these are considered not

to cross themselves. In this way, non-aggregate 1-extent objects cannot contain

the same point more than once, non-aggregate 2-extent objects cannot contain

the same polyline more than once, and non-aggregate 3-extent objects (solids)

cannot contain the same surface more than once. This is done according to

the principle of maximum decomposition. A complex information system, in

CHAPTER 3. ANALYSIS 206

order to simplify its structure, has to be first analyzed and decomposed into

the smallest possible units. This unit is strongly related to any resolution that

the system will be capable of supporting, not only in the geometry but also

in its structure. Advantages are that these units can serve as the basis upon

which more complex aggregate objects can be build. Any operations on objects

will eventually result in fundamental operations found in the units. Moreover,

duplication of information is avoided since any complex object made of points can

simply reference the specific point-object. Hence, structures that share the same

points (with disregard to the rest of the structure) can be quite easily traced, e.g.

within a user query. Thus, such an object structuring results in manipulation of

references among objects. Disadvantages are that a large number of references

must be maintained. In the case of spatial information and since the embedding

space is discretized, these units are considered to be the class of 0-extents and

more specifically the sub-class of points with co-ordinates x,y,z.

The fundamental spatial building blocks are the e-complexes. An e-complex is

defined by means of a simplicial complex (see chapter one, 1.1), its geometry and

its topology as (Breunig [25]):

D efin ition 3.1 (e-com plex) a triplet (C ,T ,G), where C is a simplicial com­

plex of dimension d, T is the set of the d-simplices of C (for d > 1 :with neigh­

borhood), T is called the d-dimensional topology of C, and G is the Euclidean

geometry of C (the set of the Euclidean coordinates of the 0-simplices o f C)

The geometry of e-complexes is considered to be embedded in the Euclidean

space.

Since spatial indexing of geometric entities will be involved, then bounding rect­

angles in all planes (xy,xz,yz) must also be computed. This will enable both two-

as well as three-dimensional indexing and enhance query processing.

CHAPTER 3. ANALYSIS 207

3.8.2 Coordinate system s

It is mentioned already that real world entities are assumed to be embedded in

the Euclidean three-dimensional space. The geometry of real world entities is

recorded using coordinates. For this to be feasible, a coordinate system must be

defined. Coordinate systems may be either geocentric using Cartesian coordinates

(x, y or x , y , z) or geographical that uses geographical coordinates (<p, A, h). Both

kinds of systems employ a number of variables that make possible their definition.

Such variables are:

1. The reference surface, e.g. spheroid or ellipsoid of revolution.

2. The geometry of the reference surface (e.g. radius of sphere, axes length of

ellipsoid).

3. The orientation of the reference surface.

4. The location of the reference surface.

In the case of geocentric Cartesian coordinates, a geodetic datum must be also

defined.

It must be noted that reference systems employ a lot of variations, but not all of

them are discussed herein.

Map features as depictions of real world entities, are considered to be embedded

in a two-dimensional space. A map projection is a mathematical transformation

that relates a point on the surface of the earth to a point on a developable surface

via an ellipsoidal model of the earth. It is used to transform the 3D real world

entities to 2D map features.

Map projections, according to the geometrical shape that they employ may be

grouped in:

1. Cylindrical

2. Conical

3. Azimuthal

CHAPTER 3. ANALYSIS 208

4. Other

According to the type of distortion they cause on the metrics of the real world

entities they depict, they can be grouped in:

1. Equidistant when specific distances are being preserved.

2. Equal area, when areal properties are being preserved.

3. Conformal, when specific directions are being preserved.

Hence, every projection has to be defined as a combination of the above two cat­

egories. Moreover, mathematical formulae that transform the coordinates from

the surface of the earth on the projection plane and vice versa must also be

provided. These formulae operate upon the coordinates in the geometry of a

geo-entity, and may affect at least one or more of the metrics properties (such

as distance, azimuth, area, volume). Topology is not always affected by the pro­

jection of the geometry. This depends on the type of surface that the projection

is using and on the extent of the earth surface that is being projected on the

plane. Hence, whether the topology is required to be recomputed every time

that the geo-entity is projected should be known a priori. For example, some

of the azimuthal projections can only display half of the earth’s surface, hence

geo-entities that belong to the other half will not be shown, and if their references

found in map features on the map are maintained then these will not be valid.

Interrupted projections (such as the interrupted parabolic or the interrupted eu-

morphic [114]) are also well known not to preserve the topology of geo-entities.

We shall call the map projections that preserve the topological relationships of

the geo-entities as homeomorphic and those that do not as non-homeomorphic.

The model should be aware of the whether topological relationships are valid

after a non-homeomorphic map projection.

CHAPTER 3. ANALYSIS 209

3.9 Spatial topology

Spatial topology is considered one of the three components (T) of an e-complex.

Topology is divided into internal and external Internal topology refers to the in­

ternal structuring of geometrical entities, namely the simplicial complexes, while

external refers to the connectedness of an entity to its neighbors. If topology

information for a specific geo-entity in a dataset is not present, then it can be

derived from its geometry always in combination with the geometry of the geo­

entities of the same dataset. The reverse, however, does not apply, since geometry

cannot be constructed from topology. Topology, either internal or external usu­

ally refers to real world entities of the same real world time. It is not incorrect

to correlate entities that have different real world timestamps, only if this is in

the context of snapshot overlaying, i.e. to combine (so as to possibly compare)

entities of different timestamps.

Not all topological relations among geo-entities should be computed a priori, since

this would result in extremely large datasets, that would make query execution

impractical. Moreover, not all geo-entity categories are relating to each other

topologically. Depending on the query itself, topological relationships may be

calculated on demand. This obviously imposes a serious delay in getting the

result of the information, which mainly depends on the speed of the computer

hardware involved, but it can be tackled by using proper topology optimization

algorithms.

It must be noted that external topological relationships are stored in the geo­

metrical component of a geo-entity, namely the e-complex, so that they remain

independent of the application domain that the geo-entity belongs to. In this way

the same geometry along with its external topological relationships can be used

by different geo-entities. This can not be feasible in every case though, especially

when the geometry and its wrapper geo-entity are strongly coupled together.

CHAPTER 3. ANALYSIS 210

3.10 Aspatial data related to geometry

A plethora of aspatial information may be “attached” to a geo-entity, always ac­

cording to the identifiable properties it holds. Data quality classes are considered

to be the major aspatial component of a geo-entity, and are defined within an

individual package. If this component is design-independent, it may be related to

any object-oriented model rather easily, thus enforcing the multi-purpose design

of the model. The latter can fit various other object-oriented spatial data mod­

els. For this to be achieved, some of the aspects of data quality which may be

found as built-in 0 0 model functionality are separated from the inherent mech­

anisms of the object-oriented model (such as lineage which should be linked to

the event/state transition mechanism). This only results into additional design

required, and avoiding using existing model features.

3.10.1 Attributes

An attribute can be defined as a fact about some location, set of locations or

feature on the surface of the earth [68], and it usually a result of a measurement,

of an interpretation or the outcome of historical/political consensus (e.g. place

names). Attributes are part of any entity (real world or system) and they contain

values.

Formally, an attribute A is defined explicitly by eight parameters: A (name n,

unit u, static/non static, constant/variable, source/derived, function / , type Y,

domain D, timestamp T S , constraints C).

The name of an attribute serves as the unique identifier within the entity that the

attribute belongs to. The unit of an attribute is the name of the measurement

unit used (e.g. “meter”, “degrees”, “pH”, “pound”, etc.). When an attribute value

is the same for all entities, the attribute may be static, otherwise it is called non

static. Common static attributes are the counters. Usually an attribute may

receive any value, and then it is called variable attribute. If this value does not

CHAPTER 3. ANALYSIS 211

change then the attribute is a constant attribute.

Attributes may contain values that originate from an input dataset as direct

observations, called original attributes, or attributes that are calculated by some

well-defined operation of the system from other attribute values, called derived

attributes. Derived attributes are accompanied by the function that calculates

the values.

Every attribute has a type Y , as well as a domain D from where its values are

taken from. Regarding the numericity of the value types, attributes may be either

quantitative, when numbers are used or qualitative, when non-numeric values are

used. Attribute types can be:

1. ordinal, when values have a predefined ordering, usually the one found in

the domain;

2. nominal, which may a name from any domain, which does not necessarily

imply any relative order or priority among values;

3. ratio, when the zero value means a zero quantity; and

4. interval scales, when quantifying differences between particular values.

A domain is a real world or system entity. The fundamental entities (usually

found as predefined by the system) that serve as attribute domains are:

1. Integer;

2. Real;

3. String; and

4. Boolean

All other attribute domains can be constructed using a specialization or a com­

bination of the above. An attribute may be timestamped, therefore a bi-temporal

interval T S will be associated.

CHAPTER 3. ANALYSIS 212

Any attribute may have a set of associated constraints that will serve as a restric­

tion to receive values from a specific subset of a domain. Constraints are given in

the form of an equation (or most frequently an inequation) between the attribute

value and acceptable values, either static or referring to other attributes.

3.10.2 D ata quality

Brassel et al. [24] when discussing data quality emphasize the role it plays. The

definition of data quality that they propose is based on the definition of the ISO

Standard 8402:

The totality of features and characteristics of a data set that bear on

its ability to satisfy a stated set of requirements.

This definition emphasizes the very close connection of the quality of a dataset

to the scope of its uses. If there are no requirements then no characterization

can or should be given as to whether a dataset is of good or poor quality. And

the quality of the same dataset can vary significantly when different requirements

are to be met. Moreover, in the context of a multipurpose model, extended data

quality information is crucial, and if missing, then the assessment of the data

for particular uses by different applications is not feasible. It is apparent that

the more there are applications accessing the dataset then the more detailed and

extended the data quality information should be. Hence, a dataset may prove

to have a different kind of quality, by applications that set their requirements a

posteriori. This type of assessed quality is called fitness for use and Brassel et al.

[24] give the following definition:

The totality of features and characteristics of a data set that bear on

its ability to satisfy a set of requirements given by the application.

Hence, while data quality is an input to the system, fitness for use is something

which is assessed by the system, based on the data quality information and the

set of a specific application requirements. This assessment may be done with or

CHAPTER 3. ANALYSIS 213

without the aid of human interpretation. This human intervention may prove

to be minimal, if data quality and requirements information are both structured

properly, so that a deterministic model can be built. Therefore, a well defined

set of procedures that match and assess the two inputs must also exist in the

system.

In this manner, data quality information should be stored with the m etadata

part of the dataset. Requirements that were defined prior to data collection (and

possibly re-processing) might be relevant for storing along with the metadata.

However, in the context of the MPOOST model this is not considered neces­

sary, since such requirements should be part of the application domain that will

possibly access the data in the future. These requirements posed by different ap­

plications after the collection of the data will help to assess the degree of “fitness

for use” against the data quality information stored within the dataset.

The major components of m etadata are explained in detail in the next sections.

3.10.3 Positional accuracy

As has been discussed earlier in this chapter, real world entities that employ

some kind of geometry are composed of points. Hence, positional accuracy in the

MPOOST model is based on the positional accuracy of points. This is achievable

by storing the standard deviation for every point in the database. Positional

accuracy of higher dimension entities is derived from the standard deviation of

the points of which they are composed, either directly or indirectly. It must be

noted, that standard deviation remains unaltered only for system points that

originate from an input dataset. If any kind of processing is involved, then a

derived point is produced and the standard deviation should be calculated. The

technique to be used for calculating the standard deviation propagation is that

of variance propagation [48].

CHAPTER 3. ANALYSIS 214

3.10.4 Attribute accuracy

Attributes may have an associated standard deviation or certainty statistic which

is input to the system along with the attribute value. If this standard deviation

or certainty statistic is unknown then the value is set to null.

Attributes that are derived from other attributes through a process, have their

accuracy calculated as well. For this purpose, variance propagation is used to cal­

culate the standard deviation for attributes such as length, area and volume, and

set theory is used to calculate certainty statistics for attributes such as species,

land use, and agricultural suitability.

3.10.5 Completeness

We shall use the concept of completeness, as discussed in chapter 1 (see section

1.7.2.5, page 76). It describes whether the objects within a dataset represent all

entities of the “entities universe”. It is noteworthy to mention that this “entities

universe” may be relevant to a specific application, since a data collection phase

is always done in this context. In order that this definition be functional, the

application domain’s “entities universe” must be well defined. Currently there are

no formal way to define such a concept. In the case of the MPOOST model, this

is a set of either tangible or conceptual real world entities that an application

domain expert can identify. This facilitates the one-to-one comparison between

the contents of the “entities universe”, which are all possible observable or con­

ceivable entities and the contents of the dataset. Since a) multiple views of the

same application may exist, and b) there is no consensus on standardizations of

“entities universes”, the data model that is to be built (namely the MPOOST

model) must provide the facility to map similar entities, relationships, attributes

and behaviour of different viewpoints of the “entities universe” to common ones.

For this to be effective, the MPOOST data model must, at its best, either include

an expandable, predefined set of application domain entities universes, or at least

provide the capability for such mappings with the existing system objects found

CHAPTER 3. ANALYSIS 215

in the database. In this manner, two aspects of completeness assessment are fea­

sible: whether each entity exists in a dataset or whether an entity is represented

adequately within a dataset. The completeness of a dataset is anticipated to

decrease as a result of the data age. If this rate of change in the real world is

somehow known, another desired model capability would be the calculation of

estimated completeness, expressed as the percentage of existing real world enti­

ties that correspond to existing system entities. Finally, for the MPOOST model

itself to be complete [24] and flexible, it should provide the functionality to incor­

porate different real world representations, both spatial and aspatial. Modelling

completeness information is considered to be of crucial importance, should the

MPOOST model serve as a multipurpose one (See section 3.14 at the end of this

chapter).

3.10.6 Complete list of required m etadata

The metadata (including data quality information) that are considered to be of

use for the development of the MPOOST model are:

1. Data sum m ary

(a) Source, classes of data, areal coverage, date, scale. This is in descriptive

form and it is used for a quick overview of the m etadata contents.

2. Lineage

(a) Agency of origin. This is a paired list of the names of the company/institution

responsible for the data collection along with the type of method of data

collection.

(b) Method of data collection. This involves all data collection techniques

used.

i. Primary survey techniques. A list of all techniques used. This might

be topographic surveys, photogrammetric acquisition, sattelite im­

age classification etc.

CHAPTER 3. ANALYSIS 216

ii. Secondary data sources

A. Digitizing method, e.g.using a vector digitizer or a raster to vector

format translation.

(c) Source scale denominator. This is the denominator of the map scale the

data were digitized.

(d) Type of source media. This is textual description of the medium that

the source data set originate from.

(e) Date of source media. This is the date that the source media refer to.

(f) Dates updated. This is a set of dates with updates on the data contents

along with the description of the update.

(g) Source contribution. This is a textual description of the type of possible

contribution to the data set from the source.

(h) Processing history:

i. Coordinate transformation. This a paired list of timestamps along

with the type of coordinate transformations involved.

ii. Data model transformations. This is a paired list of timestamps

along with the transformation involved, (e.g. raster to vector)

iii. Attribute transformations. This is a paired list of timestamps with

the type of attribute transformation involved.

iv. Data transformations. A paired list of timestamps with the function

responsible for transforming data.

3. C oordinate system

(a) Type of coordinate system. This can be either Cartesian or geographic.

(b) Map projection name.

(c) Map projection parameters. This is the full list of all parameters used

to define the projection.

(d) Unit of measurement for coordinates.

4. Spatial data m odel

CHAPTER 3. ANALYSIS 217

(a) Specification of primitive spatial objects. This is a paired list of the

name of the primitive spatial objects used along with their description

and explanation of their geometry.

(b) Topological data stored. This is the description of the topological model

used as well as the relationships among geometric objects.

5. Feature coding system

(a) Definition of feature codes or classes. This is a list of codes (nu­

meric/alphanumeric for codes or textual for classes) along with a textual

description of what these codes represent.

(b) Definition of the classification system. This is a series of tables, possibly

for every attribute, that correlate the values stored within the dataset

to the textual description which is comprehensible to the users.

6. C om pleteness

(a) Model completeness. The degree of the inherent conceptual model func­

tionality which will be used in the context of an application domain.

(b) Data completeness. Similar to the model completeness but refers to the

actual volume of data and the degree to which they correspond with

the dataset.

(c) Formal completeness. This specifies whether [24]: a) all mandatory

meta-information is available, b) the format corresponds to the stan­

dard or data format used, respectively, and c) the data is syntactically

correct.

(d) Entity object and attribute completeness, which is the degree to which

entities that should be part of the dataset actually exist. For this to be

assessed then a set of requirements, a dataset and a set of real world

entities are necessary. Attribute completeness measures the degree to

which a system object is including attribute type and values according

to specifications. For this to be assessed, a set of system objects is

necessary. In brief, when comparing a dataset to the “entities universe”,

CHAPTER 3. ANALYSIS 218

a) a value of an attribute may be missing, b) an attribute type may be

missing or be of different type or c) the object itself may be missing

from the dataset.

(e) Documentation on the usage extent of the classification system. This is

a detailed textual description on the usage of the employed classification

system.

7. Geographical coverage

(a) Overall extent. A set of coordinates of the polygon that encloses the

area surveyed.

(b) Detailed specification of coverage if not complete. This is an additional

set of polygons, enclosed by the overall extent polygon, that show which

areas have been left out of the survey and why.

8. Positional accuracy

(a) Statistics on coordinate error.

(b) Standard deviation of point features, referring to the dataset as a whole
7

9. A ttribute accuracy

(a) Statistics on attribute error. This is a table that correlates the at­

tribute fields in the dataset along with statistical information about

this attribute.

10. Topological accuracy

(a) Methods of topology validation employed. This is a textual description

of what methodologies were followed to validate the topology stored

within the dataset.

11. Graphical representation

7Standard deviation for individual points is stored along with their geometry. All other geometric

features (e.g. 1- and 2-extent) base their positional accuracy on this quantity.

CHAPTER 3. ANALYSIS 219

(a) Graphical symbolism for each feature class. This is a table of two

columns which correlates the symbol used to depict any information

to the feature class.

(b) Text fonts for annotation. This is a series of text font names used

to depict textual information in the dataset. The actual metric file

should not be included, due to the diversity of software and font formats

involved.

3.10.7 Spatial resolution

The geometry of real world entities is recorded using either Cartesian or ge­

ographic coordinates. Spatial resolution refers to the smallest distinguishable

distance over which it is possible to identify and record change in the geometry.

As it is obvious, spatial resolution in the real world depends strongly on the

instrumentation used to measure geometry, and it can be quite small. Spatial

resolution is also strongly connected to the application domain under which the

collection of geometric data took place.

3.11 Temporality

In a chapter one, a detailed discussion is presented on philosophical issues re­

garding time and how it is being philosophically perceived throughout history.

One, however, cannot rest at simply discussing and bringing up questions, but

give answers as well. This section is a more pragmatic approach of the issue

of temporality and it is based purely on how it is being used in the context of

geographical information. However, it must be said that the basic notion used to

initiate the analysis on this component is time based and not change based, since

it is the researcher’s opinion that change is an effect of various self-existing events,

that have an existence in time, and a result in space. Hence space is embedded

in time, in a hierarchical way. This hierarchy denotes that the approach of space

CHAPTER 3. ANALYSIS 220

within time is definitely closer to how the real world functions, rather than the

timeless space paradigm which is infinitely static, and rather more theoretical

than pragmatic. Moreover, the result of an event is considered not to have any

effect in the order time, as time’s existence is independent of changes in space.

This applies for real world time, as the system time can be manually set and

therefore events do have an effect on its order8.

As already discussed, time is inherent in both the real world (real world time)

and system (system time) entities. However, this is not an explicit feature, but

done implicitly through timestamping, which is the process of attaching temporal

information to any real world or system entities. The basic temporal construct

used for time stamping is the timepoint, which is identical to the chronon concept

(see chapter one, page 65). An ordered pair of timepoints may define a period in

time, called a simple time interval. A time interval may or may not include the

starting and/or ending timepoint, therefore being an open or closed time interval.

If two or more disjoint simple time intervals are combined, then a complex time

interval may be composed, which involves aggregation of its parts. Complex time

intervals are equivalent to time periods, which may contain void intervals.

For any entity properties for which we record a change in values, we may associate

a bi-temporal interval as a two dimensional time interval. This is the Cartesian

product of the real time r and the system time s.

Timepoints may be of different resolution, called the temporal resolution. This

refers to smallest distinguishable difference of interest between two measurable

time values. It can be said that temporal resolution may be derived from the

value that a timepoint contains. E.g. the fact that “the property A was registered

on Wednesday 26th of May”, implies that the temporal resolution involved is that

of one day. It is also implied that the exact time within the day that the event

occurred is not of concern. However, if the registration time is known, then the

temporal resolution increases.

8This however does not imply that it happens in a functional system. It is only emphasized to

clearly differentiate between the two types on the concept of time.

CHAPTER 3. ANALYSIS 221

In the real world, different temporal resolutions result in different units of mea­

surement. As in the previous example, the knowledge of the exact time that the

event occurred, is based on two different units (day and hour). Temporal units of

different resolution show a relationship which is of hierarchical, generalizational

and aggregational nature at the same time. The time units used are:

- 1 year (consists of 12 months)

- 1 month (consists of 31, 30, 29 or 28 days)

- 1 week (consists of 7 days)

- 1 day (consists of 24 hours)

- 1 hour (consists of 60 minutes)

- 1 minute (consists of 60 seconds)

- 1 second (consists of 100 mseconds)

- 1 millisecond (basic smallest temporal unit)

It is considered that there is no meaning to time below the value of one mil­

lisecond and this is already too detailed for events that occur in the real world

and are being modelled by a GIS. However, this resolution should be maintained

for system time, where it does have meaning (e.g. processor time, transaction

execution time etc.).

Obviously it is possible to replace a timepoint unit using one of greater detail,

e.g. 24 hours instead of one day), or using one of less detail (one week instead

of seven days). However, such a replacement should not always happen, since

it results in either a loss of information or a useless increase of resolution. In

the first example there is no increase in accuracy, although a larger arithmetic

value is used in replacement. In the second example the value replaced might

result in a timepoint being treated as an interval, where it should not. Hence, the

time unit should be pre-defined and events should be timestamped accordingly

and in a consistent manner. If both real world and system time is measured in

CHAPTER 3. ANALYSIS 222

milliseconds, it can be treated as an integer number, where simple arithmetic

operations apply. As real world time has one direction, most recent events have

greater time values than older ones.

3.12 Representation

Every geo-entity that is modelled via a system entity and stored in the system,

according to its geometry, may be visualized as part of a map composition using

a set of cartographic symbols. The map composition herein is considered to be

embedded in a two-dimensional geometric space, regardless of whether the com­

position appears on screen or on hardcopy, since both result in a two dimensional

view 9. Hence, cartographic symbols are of four main types:

1. Point

2. Linear

3. Areal

4. Raster

In all three cases listed above, the graphic variables in a cartographic symbol are

(enriched from Jones [82]):

1. Hue

2. Saturation

3. Brightness (or Luminosity)

4. Size

5. Shape

6. Texture or pattern

7. Orientation

9 this applies in the case of using VRML as a means of map composition

CHAPTER 3. ANALYSIS 223

An additional, not quite a graphic one, variable the colormap, also known as Look

Up Table (LUT), which applies only in the case of visualizing raster entities, is

linked to the above list of graphic variables. It associates one of the graphic

variables (or a combination of those) to the value stored in a raster dataset (cell

value).

Not all cartographic symbols employ all graphic variables. Some graphic variables

may have meaning to not only the symbols but to other variables as well (e.g.

orientation, which may apply to the shape of a point symbol to the pattern of an

areal symbol).

As it is quite obvious that the relationships among the graphic variables are quite

complex, it would be quite difficult (if not impossible) to model using any other

data structuring methodology apart from an object-oriented one.

A map feature is a cartographic representation of a geo-entity that employs a

set of cartographic symbols. The property values found in the geo-entity are

being mapped to the graphic variables in a manner specified by the user (or more

properly the cartographer).

Geo-entities may have a set of cartographic symbol objects associated, always

according to their geometry. The model should be able to assign values from

other components of a geo-entity to the visual variables.

Regarding the display, cartographic symbols should know how to “display ” on

any media (hardcopy or screen), given specific values to the graphic variables

that a symbol contains. Hence, we need to construct methods that perform on

the geometry of every visual variable, and be a part of the symbol behaviour.

The classification for the cartographic schema proposed in this thesis is based

upon the proposal of Worboys [131] for a generic model for planar geograph­

ical objects. All cartographic objects are assumed to be embedded in a two-

dimensional space (a plane). Moreover, cartographic objects have a relationship

with real world entities that have been modeled, which although it may seem

an one-to-one relationship, however it is not. This is because any cartographic

CHAPTER 3. ANALYSIS 224

object has a corresponding real world entity that it models. On the other hand, a

real world entity may have more than one cartographic object associated with it,

since factors that play a significant role here include the time that the real world

entity existed, as well as any attributes upon which the cartographic object was

rendered on the map (e.g. its color, pattern, line width etc.)

The notion of map layer which is commonly found and used in conventional

manual and computerized map production methodologies is being replaced by

the notion of object class, as it is defined in the 0 0 paradigm: a single class may

be instantiated to produce a set of similar objects, e.g. a road class may produce

a set of road objects, therefore the class itself acts as a representation of a layer.

However, not all classes can act as cartographic layers, since not all of them

model geometric objects. In the case where a layer has to consist of objects from

different classes then a "layer" class is created only for the purpose of associating

all relevant objects from different classes into one group. E.g. A road class may

produce road objects, a railway class may produce railway objects. These two

sets of objects may belong to a TransportationM apLayer object (through an

association relationship) instantiated from a transportation class.

As maps are considered to be two-dimensional views of the three-dimensional

world, the Euclidean space that objects are embedded within is considered to be

the two-dimensional (2D) 10.

3.12.1 Behaviour

Behaviour, as part of a geo-entity, is called the real world behaviour, as opposed

to the system behaviour that a system entity shows. The main type of system be­

haviour is persistence, denoting that the system entity will reside in a permanent

storage media. Behaviour is modelled by identifying specific actions or methods

that an entity can perform, either to itself (passive) or in collaboration with other

10This is mainly because even when cartographic objects are considered to be three-dimensional,

they are always projected onto a plane, where only two dimensions are involved.

CHAPTER 3. ANALYSIS 225

entities.

A method is a form of action that an entity shows as part of its behaviour, and

it employs a name as well as a set of arguments that have a type. An interface

is a set of methods as part of a behaviour common to many entities, regardless

of the category to which they belong. Interface is a convenient concept to group

entity methods. It is important to mention that regarding the semantics of the

method naming, the same method found in similar geo-entities may be addressed

differently by different application domains. Hence, there is no universal set of

application-independent elementary GIS functions, but each application has its

own view into the semantics, that may be expressed as a web of relations [4]. It is

considered that semantic variety in method naming is supported by the concept

of polymorphism as an inherent feature of the object model.

Methods may be either entity methods which are part of the geo-entities as an

inherent behaviour, or utility methods which are independent of the geo-entities

and more task oriented. Albrecht [4] categorizes such tasks into fifteen functional

groups. Utility methods are part of the system behaviour.

3.13 Enabling action in space: spatio-temporal

entities

Entity attribute types that may change must be identified. These may be either

spatial attributes (the geometry-topology-metrics triplet) or any other aspatial

attributes. Spatial attributes, are modelled by the e-complexes, which are multi­

dimensional structures. One could consider that time is the fourth dimension,

beyond the three dimensions of space. This would enable the e-complexes to serve

as spatio-temporal units. However, the current approach differentiates space from

time, hence we consider that the dimensions of an e-complex are purely spatial

and the concept of the temporal e-complex is introduced, as a temporal extension

to the triplet found in its definition.

CHAPTER 3. ANALYSIS 226

Since geo-entities involve complex geometries, e-complexes are considered to be

a straightforward way of such geometry modelling. This complex geometry is

usually changed by events, and it may involve specific and different changes that

descend to its aggregate parts, i.e. the simplices of the simplicial complex that

is one of the 4 parts of an e-complex. Therefore, the simplices should be times-

tamped, so that information on the event, and the real world and system time can

be derived. It is considered that changes in an e-complex that affect its whole ge­

ometry/topology/metrics triplet are less likely to occur than individual changes.

We introduce the concept of the temporal simplex and the temporal e-complex.

The concept of spatio-temporal simplices and complexes have already been pro­

posed by Worboys [136]. We use the same building blocks but the way that higher

level entities are composed is different, since we keep the notion of time and space

separate, by timestamping spatial entities. The concepts of simplices and com­

plexes remain the same, referring to the geometry/topology/metrics trinity. More

specifically:

1. A temporal simplex is a timestamped simplex. A bi-temporal attribute T is

being added to its geometry.

2. A temporal e-complex, is defined as a timestamped e-complex. A two di­

mensional timestamp T and an ordered set of e-complexes (excluding the

container e-complex) called its life cycle, and represent the different statuses

that the temporal e-complex has undergone.

More formally:

D efinition 3.2 (tem p o ra l sim plex) a temporal simplex (t-simplex) s of spa­

tial dimension d is a triplet sd (G, BT, L), where G is the geometry, B T is the

bi-temporal timestamp, and L is the set of d-simplices that are different states of

the t-simplex.

D efinition 3.3 (tem p o ra l e-com plex) A temporal e-complex of spatial dimen­

sion d (ted-complex) is defined as a fivefold entity ed(C,T, B T ,G , L), with the

CHAPTER 3. ANALYSIS 227

simplicial complex (C), topology (T) and geometry (G) as defined by Breunig

[25] in section 3.8.1 of this chapter, with the addition of the bi-temporal interval

B T as the timestamp, and the life cycle L, as an ordered set of ed-complexes

(of the same dimension d). The bi-temporal interval and a pair of timestamps

called the real-world (r) and system (s) timestamps. This set of ed-complexes

describes the various forms of the complex during its life cycle, form its creation

to its destruction and its possible reincarnation and so forth. Members of the L

set are called states. Every state relates to a previous state and a next state.

An important observation (that applies for both simplices and e-complexes) is

that the e-complexes (simplices) that are part of the life cycle set L of a ted-

complex (simplex) with spatial dimension d, constitute an e-complex (simplex)

of (d + 1) spatial dimensions. Hence, the life cycle set of a eo-complex is a polyline

(ei-complex), the life cycle of a ei-complex is a surface (e2-complex) and the life

cycle of an e2 -complex is a solid (e3 -complex). The life cycle of a te^-complex may

also be called the spatial projection operator [136]. A similar kind of projection,

the temporal projection operator may be defined to be the bi-temporal interval

which is the union of all the individual, possibly disjoint, real world and system

temporal intervals of the e-complex or simplex.

Spatial and temporal information does not necessarily have to be combined, in

order to model spatio-temporal data, since through aggregation we can tempo­

rally enable a geo-entity. However, it is considered that combining temporal

and spatial structures into a single, we can achieve support for applications that

require purely spatio-temporal information, which may not be related to a geo­

entity in the real world. In this way, the requirement of supporting different

spatio-temporal representations is achieved, on top of supporting different spa­

tial representations.

CHAPTER 3. ANALYSIS 228

3.13.1 Application domains

Every application, either scientific or engineering (as distinguished in chapter

one) involves an application domain which is nothing more than the container

space of concepts, knowledge, information and processes involved in the specific

application.

In order that different application domains can be modelled using a single data

model, two fundamental steps are prerequisite:

1. Identification of the application domains and the classes they should contain.

2. Modelling of the classes in such a manner that they are not contained in

more than one domain.

The debate at this point is mostly about which classes should belong to which

application domain. In some cases this may be straightforward to decide, how­

ever there are cases that categorizing a class into a specific application domain

might be ambiguous. For the sake of simplicity, we will suggest a way of orga­

nizing application domains, always according to the object oriented methodology

adopted.

3.13.1.1 Case study: the H ellenic Cadastre

The project for the Hellenic National Cadastral System that is still undergoing

by the time this thesis was written, was initiated back in 1993. Amongst many of

the new technical sub-projects that are part of this novel organizational strategy,

is first the base topographic mapping, covering the whole of Greece and second the

two-way linkage between the land owners and their land rights to their ownerships.

Both projects produce an extremely voluminous amount of data that is to be

manipulated in the context of a national land information system, which will

act as a virtual container for all kinds of information involved. This system, in

order to be not only effective but to conform to the Greek law as well, has to be

developed according to the following six principles:

CHAPTER 3. ANALYSIS 229

1. The principle of parcel-based cadastral information organization, which pri­

marily requires the creation, maintenance and continuous update of the

information.

2. The principle of validity check of the titles, before a request about a title

interest can be stored in the system.

3. The principle of public faith, so that any person in good faith, with interest

on a title can be protected.

4. The principle of temporal priority of submitted requests.

5. The principle of the publicity of records, that requires the cadastral records

be open to the public.

6. The principle of the multipurpose cadastre, which requires that the system

should be open to any kinds of relevant data and information (e.g. technical

and legislative).

It is considered that principles 1, 4, 5 and 6 are to be satisfied and guaranteed

by the functionality of the conceptual data model. Principles 2 and 3 are consid­

ered to be coupled with the internal organization of the cadastral institution, and

therefore are not examined in this thesis as they are well beyond its scope. Re­

garding principle 1, it is not clear whether update should be parcel change-based

or based on a predefined frequency. It is considered that both types of informa­

tion update will be necessary, hence the temporal component of the model should

anticipate this.

Additional to the six principles mentioned above, the information system that

will provide computing support, must be networked and based on a distributed

and interoperable technology, since data input, pre- and post-processing as well

as storage of the output information will take place at the local cadastral offices,

equipped with the various appropriate hardware and software. Regarding both

hardware and software, it must be anticipated that since neither will be from

standard vendors, software must conform to some kind of interoperability and

CHAPTER 3. ANALYSIS 230

platform independence standard. The cadastral offices will be scattered across

the country, with one office for every local self-administrative area.

The focus of this research is on the specific view of the geo-entities that are to

be manipulated by a cadastral system. The outcome will be used to identify the

degree to which requirements posed here are satisfied.

D efinition 3.4 (N ational Cadastre) The National Cadastre constitutes a sys­

tem of parcel-based legislative, technical and other additional information regard­

ing the ownerships for the whole of the State and must conform to the six prin­

ciples mentioned.

3.13.1.1.1 E ntities in the cadastre A cadastral parcel may be defined as:

D efinition 3.5 (cadastral parcel) A uniquely numbered and geometrically de­

fined spatial unit of land, within which, homogeneous and unique legal land inter­

ests may be recognized.

The means by which a parcel is identified is through the unique parcel identifica­

tion number (UPID). This number is subject to change whenever the geometry of

the parcel changes, but it will remain the same regardless of any administrative

boundaries change.

The cadastral sheet contains all the land transactions relevant to the parcel, the

owner(s) and the parties that have any type of legal right on the parcel. All

information on land parcels is held in the cadastral book, which is defined as the

collection of cadastral sheets. Both cadastral sheets and books are assumed to

exist in digital form.

The content of the cadastral records are the legal rights according to the legis­

lation valid at the time the record is stored. The fundamental reference unit for

the overall parcel-based cadastral information is the individual ownership unit,

i.e. the parcel, as a general geometric entity on or under the surface of the earth,

CHAPTER 3. ANALYSIS 231

which may be subject to legal rights, according to the legislation at the time the

unit was created.

Regarding historical data, the system must be able to hold at least 7 years of

parcel and parcel related data. This only gives an indication of the importance of

maintaining historical data, but it cannot be directly translated into the required

amount of historical data that must be kept, unless there is information on the

average amount of changes that occur within the period of one year.

Legal interests on land parcel may be expressed either by an individual person

or a legally formed group of persons.

The relationship among the three major aspects of the cadastre, may be summa­

rized in the following sentence: “A legal person may have a series of legal rights

to one or more land parcels” The above sentence signifies the tertiary nature of

the relationship. Any legal right exists only if there is a legal person that can

show an interest on a land parcel. Any of the above parts can be specialized to

be more specific and aggregate to include more specific attributes.

Parcel-based information stored in the cadastre can only be altered via a legal

process. The type and content of the process is defined by the legislation at the

time that this process initiates. Possible changes that may occur are of six types:

1. Geometrical changes of the land parcel.

2. Aggregational changes.

3. Changes in the relationships between the legal persons and the land parcel.

4. Changes in the relationship between the types of legal rights that a legal

person has on a land parcel.

5. Changes in the relationship between the land parcel and the legal rights that

a legal person has.

6. Any combination of the above

CHAPTER 3. ANALYSIS 232

3.14 Analysis of the required multi-purpose model

characteristics

The aspects of multipurpose data model have been discussed in chapters one and

two. It can be seen clearly now that the main requirement of the data model is

that many and different applications will request to manipulate datasets, mod­

elled under the same data model and stored in the same database. These appli­

cations in turn have their own specific set of requirements upon the data contents

and the model itself. It might be the case that these datasets have overlapping

contents, mainly regarding their geometry, which as a major component is of

paramount interest to all applications.

A successful multipurpose data model is the one that provides the functionality

to assess the degree of fitness for use of the data manipulated by the data model,

against requirements that are posed by a specific application domain. When

multiple application domains are involved, then multiple sets of requirements

should be defined. But how do these requirements differ with regard to each

application?

The main categories of differences in class structuring found in various applica­

tions that can be identified are:

1. with regard to the class schema, applications that do not have a pre-defined

object-oriented schema may map existing geo-entities to predefined classes

in the model with difficulty, because of:

(a) lack of specific class names;

(b) different types of classes;

(c) different semantics of the same class, similar but not identical classes

(different class structuring of the same real world entity);

(d) different number and types of thematic (or aspatial) data attached to

semantically identical classes;

CHAPTER 3. ANALYSIS 233

(e) different number and types of behaviour attached to semantically iden­

tical classes;

(f) different types and number of relationships between the same pair of

classes.

(g) different way of class generalization and specialization.

2. with regard to the data stored within objects:

(a) different demands on accuracy, precision and resolution of the proper­

ties;

(b) different dimensionality in the geometry (e.g. 2D/3D, different coordi­

nate systems, different map projections or map projection parameters);

(c) different ways of classifying aspatial data;

(d) different demands on topology (e.g. no topology vs. specific topological

relations vs. full topological model);

(e) different types of algorithms for similar operations used to calculate

derived attribute values.

All the above deficiencies and differences are viewed as a result of different de­

signs. From a user’s point of view, Bishr et al. [18] group the various types of

heterogeneity into three major groups: syntactic, semantic and schematic.

Semantic heterogeneity regards the classes found in a single schema or between

two (or more) class schemata. It is considered that this is an issue closely related

to answering the question of the degree of “fitness-of-use” for a particular dataset,

from a completeness point of view. In the case of a single schema, and assuming

that classes exist in this schema that are semantically similar at a high degree but

not identical, and additionally assuming that all output information is feasible

only through a query, then all query results that involve such classes, are likely

to be of poor quality due to a lack of information completeness, since a (possi­

bly large) number of objects will not have participated in the formulation of the

result. It is noteworthy to mention that currently no object oriented system sup­

ports semantic similarity checks on their class schema, hence it is allowed to exist

CHAPTER 3. ANALYSIS 234

in a database, sometimes without the user being aware. MPOOST classes have

to be generalized and flexible enough so that various application domains can

map their classes in such manner that there is no data structure and behaviour

loss. Different applications that do not have a strictly defined class schema, can

map their entities, data and behaviour (if any) onto a common central model, e.g.

the MPOOST model, by defining mappings between classes (e.g. “Road Type 1”

is “Motorway”) and possibly member mappings (e.g. “Polyline LeftBoundary” is

“Polyline PavementLine”). In the case that the core model class lacks a class

member, then it should be possible that a new member can be added. Such map­

pings can be defined by the user, provided that the appropriate user interface

exists. A GUI is considered more likely to be used, since no formal language

exists that can be used to specify class mappings between different schemata. An

example is Laser Scan’s Translate module, which provides a GUI which helps the

user to map entities found in various, non object-oriented, external file formats

(e.g. DXF) into classes found in a pre-designed class schema. The experienced

user can use the customization language Lull to write such specifications. How­

ever, this approach requires that some code is written every time a new format

has to be imported. Nonetheless, it is considered that the best way to achieve

semantic interoperability is to design generalized and flexible classes, that can be

specialized and customized to suit the needs of the application, without allowing

the existence of semantically similar classes.

Regarding the differences in class schemata found in different application domains

(schematic heterogeneity), the answer lies in how these schemata can map into a

single one, rather than how these schemata can interrelate among them, since the

possible combinations may be rather numerous and hence too complicated to ex­

amine. In this way, a central object model must be built, which has at its core the

set of definable geo-referenced classes. Then, any other schema can map directly

on this common classification, which acts like a superset of all applications that

may use it. Classes in this model must be generalized and decomposed enough,

with a flexible way of adding or removing members. Moreover, geo-referenced

CHAPTER 3. ANALYSIS 235

classes are not part of any specific application domain. This is considered to

enhance the multi-purpose nature of the model.

The answer to the problem regarding the behaviour and algorithms employed

by different applications (syntactic heterogeneity) that demand different types of

both methods and algorithms is reusability via information and behaviour shar­

ing. If a set of fundamental algorithms and operations common to all application

domains can be identified, then through object oriented development these can

be implemented as reusable software components. More specialized, refined and

customized algorithms can be based on top of this set. Software reusability refers

to the specific implementation programming language used. If implementation is

totally independent of this language, then the degree of reusability is the high­

est possible. This is achievable by incorporating interoperability standards in

the implementation, so that any kind of object-oriented programming environ­

ment can reuse these fundamental components. In the case of the MPOOST

data model CORBA is the chosen standard (however not incorporated within

the implementation).

Another approach to tackle the issue of different semantics by different applica­

tions on the geo-entity level is to present reusable information to the application

native model as if the data model had been developed in the first place with the

specific application in mind. This is very similar to the approach that Bishr et al.

[18] have proposed. It involves the enrichment of metadata information with a

detailed and formal specification about the meaning of the geo-entities in the real

world 11. In order that this type of information is functional, it must be specified

in a formal way.

11 Bishr e t al. [18] call this type of information as c o n te x t i n f o r m a t io n .

Chapter 4

Design of the MPOOST model

4.1 Introduction

This chapter describes the design phase of the MPOOST model, specifically the

way that classes are formed based on the analysis stage (discussed in the second

chapter), as well the internal structure and their grouping into packages. Dia­

grams in this chapter that document the model are according to the notation of

the Unified Modeling Language, as it is described in the previous chapter (see

section 2.4.2). The description begins from the packages of the model, followed

by a detailed description of the classes within the packages. This is the reverse

order by which the MPOOST model was designed, since building up initiated

from classes and then moved on to group classes into packages. T ypew rite r

te x t (Courier font) has been used in this chapter for the naming of the packages

and classes. For packages, the full path is used along with the qualifier “package”

(e.g. package MPOOST.Spatial.Cartographic). Class names are usually given

without the package name that they belong to, when they are described in a

section named after their package. Otherwise, the full name of the package is

given with the class (e.g. class M PO O ST.Spatial.Cartographic.OpenPolyline).

Not all class members are described in detail, only the ones that are of major

importance. This is mainly for comprehensibility reasons. Detailed class member
236

CHAPTER 4. DESIGN OF THE MPOOST MODEL 237

descriptions are included in chapter five, where Java code may also be found.

Persistence-wise, all modelled classes will be stored in the database involved,

hence they have not been adorned explicitly as «persistent», bu t it is, rather,

implied for all classes. Moreover, when multiplicity is not shown explicitly on

the upper-right corner of the class icon, the class is implied to have n instances,

unless it is an abstract class, which is not allowed to have any instances, or a

utility class which may have only one instance.

For a full explanation of the UML terms and nota tion used, the reader should

refer to chapter two, section 2.4.2.

4.2 Overall structure of the MPOOST model

Package MPooST
Spatial
RealWorld

Cartographic

Behavioural
RealWorld

System

GUI

ASpatial
Primitive

Metadata

App1icationDomains
Cadastre

Figure 4.1: The overall structuring of the d a ta model into packages

The three m ajor component categories in the model are:

1. Objects: They are instantia ted from object classes, which in turn belong to

a package. Objects can model any type of entity. These entities are grouped

according to their contents in six major packages (see figure 4.1 for the UML

documentation):

CHAPTER 4. DESIGN OF THE MPOOST MODEL 238

(a) Spatial. Such classes are part of the package S p a t ia l . Sub-packages

in this package are RealWorld (which contains any spatially referenced

objects as they exist in the real world) and C arto g rap h ic (which con­

tains the cartographic representation of the real world object). The

embedding space for objects belonging to the first sub-package is con­

sidered to be three-dimensional, while for the latter two-dimensional.

The C artograph ic package contains classes that model the geometry

of the cartographic objects. The selection of the classes used to build

both geometric modules is based on their homeomorphicity to formal

geometric objects, which has been described in chapter three.

(b) Aspatial. Such classes are part of the package A Spatia l. Classes belong­

ing in this package do not involve any kind of geometry in their members.

Metadata and coordinate systems information is also included in this

package.

(c) Temporal. Such classes are part of the package Temporal. This package

contains classes that model the temporal component of geo-referenced

objects. Basic temporal constructs are time points (class TimePoint)

which models a concept similar to that of chronons (see chapter one,

page 65) and time finite intervals (class Time I n te r v a l . Intervals are

defined as sets of time points. An interval may have definite duration,

when it is lower and upper bounded by a time point, or indefinite dura­

tion, where one of the two bounds is not defined. Temporal classes, as

they do not employ any kind of geometry, could be part of the A Spatia l

package. However, temporality is considered to be one of the orthogonal

aspects of geo-entities, and as such, should be treated as a peer to their

aspatial component. Moreover, in this way, the timestamping module

of the design may be used as an add-on to an existing class schema.

(d) Behavioural. This is the B ehavioural package that contains mostly

interfaces and utility classes which model the behaviour common to

many entities. Behaviour is divided into two major categories, namely

CHAPTER 4. DESIGN OF THE MPOOST MODEL 239

the system behaviour (sub-package System and the real-world behaviour

(sub-package RealWorld) which includes behaviour observed in the real

world as part of specific application domain objects.

(e) Application domains. This group (package ApplicationDomains) con­

tains sub-packages that respond to specific application domains and

contain classes that model objects out of that domain. One of the sub­

packages that is of interest for the development of the MPOOST data

model is the Cadastre, which contains all the classes that model con­

cepts related to a cadastral information system (sub-package Cadastre).

It is considered that if more than one application will be manipulating

data through the MPOOST model, then the relevant application do­

main specific declarations should be part of this package.

(f) Graphical User Interface. This is the GUI package. It contains all classes

which are used to model the graphical interface that the user will in­

teract with. Classes of this package are somehow separated from the

rest of the structure, since they refer to classes of the implementation

programming language (Java).

2. Relationships. It must be noted that most relationships involved in the

design of the model are binary, that is they involve two model elements.

These may be:

(a) spatial relationships (or topological). They involve two spatial objects

(objects that belong to the package S p a tia l) , and are refering strictly

to their topology, that is the external connectedness of an object (simple

or complex) to another neighbourhing object. The usage of stereotypes

separate spatial relationships into external and internal topological.

(b) aspatial relationships

(c) temporal relationships. The most important type of relationship in this

group is the VersionOf relationship. It denotes an ordered sequence

between the two objects involved, and signifies which object is the newer

CHAPTER 4. DESIGN OF THE MPOOST MODEL 240

version. Of course, this involves some kind of change in the state of the

older object.

There has been an effort to avoid tertiary relationships as much as possible,

as they are considered to be complicated implementation-wise. However

they have been used in a few cases. To avoid such cases, whenever a tertiary

relationship was initially observed among three classes, it has been turned

into a binary, with the third class attached to the relationship itself as an

association class.

Moreover each one of the above relationship categories is implicitly sub­

divided into the predefined stereotypes found in the UML specifications,

namely specialization, aggregation, and association. Additionally, every re­

lationship has a name (not necessarily unique) which makes more compre­

hensible to the reader the UML diagram. In some cases, relationship cate­

gories are treated as classes, provided that they have associated attributes.

Such relationship classes are:

3. Events. All events are treated as objects in the 0 0 model, therefore mod­

elled by classes. They have both attributes and methods associated. Events

may be separated, according to the context that they occured within, into:

(a) Real world events and

(b) System events

An event is usually instantiated whenever an object must undergo a change in

one or more of its attribute values. Some methods also create event objects.

System events are mostly associated with the user interaction process and the

internal transaction mechanism.

4.3 Stereotypes defined in the UML model

Stereotypes (as discussed in chapter 2, section 2.4.3.15) are UML mechanisms

that extend the notational elements of the language, and result in the visual

CHAPTER 4. DESIGN OF THE MPOOST MODEL 241

enhancement of the UML diagrams. The MPOOST development involves the

definition and usage of stereotypes for classes, relationships and interfaces.

4.3.1 Stereotyped classes

Classes have been stereotyped into:

1. «Entity» for any kind of tangible object.

2. «Concept» for any kind of abstract idea or concept.

3. «RealWorldEntity», when the object modeled exists in the real-world as a

tangible object. Examples are a building, a road, human being, a parcel etc.

4. «RealWorldConcept», when it models any non tangible, abstract but defin­

able concept or idea, and refers to the application domains. An example is

ownership rights.

5. «SystemConcept», when it models any non tangible, abstract but definable

concept or idea, and refers to some computer (hardware or software) mech­

anism. An example is a transaction.

6. «SystemEntity», when the class models a purely system component that has

no counterpart in the real world.

It is obvious that class stereotypes are specified using the specialization relation­

ship. The first two stereotypes are likely to be used for abstract classes high up in

the class hierarchy. Their sub-classes may specify whether an entity or a concept

is a real world or a system. However, if an abstract class has as sub-classes both

«Entity» and «Concept» classes, then it is not adorned with the appropriate

stereotype information.

4.3.2 Stereotyped relationships

Relationships have been stereotyped into:

CHAPTER 4. DESIGN OF THE MPOOST MODEL 242

1. «ExternalTopological», for any relationships between different geometrical

objects (e.g. the left and right polygons of a line).

2. «InternalTopological», for any relationships among any complex geometric

object and its aggregate parts (e.g. the points comprising a line).

3. «Temporal», for the relationships between classes that enable the manipu­

lation of historical information (e.g the previous and the next version of an

application domain object.)

4. «Aspatial», for any other type of relationship that does not belong in any

of the previous categories.

4.4 Detailed package structure and class descrip­

tion

This section describes the structure of the packages and classes in detail. Not

all attributes and methods are mentioned here, since it is considered that not

all of these are part of the design. The ones omitted are either trivial, or they

are part of the implementation mechanism. A detailed class and class member

documentation is included in the Java code and it is browsable in HTML format

(see the MPOOST documentation on the accompanying CD).

4.4.1 The MPOOST package

The root package, which is a container for all packages, is called MPOOST. It

contains the abstract class MPOOSTRoot, which is the root class for all classes

across the model.

Abstract class MPOOSTRoot sub-class of jav a . la n g .Object: The root class of all

classes.

CHAPTER 4. DESIGN OF THE MPOOST MODEL 243

4.4.2 Package MPOOST.Spatial

The package MPOOST.Spatial contains packages with regard to the geometric

modelling of the geo-referenced objects.

4.4.2.1 Package MPOOST.Spatial .RealWorld

The package MPOOST.Spatial .RealWorld contains classes that model the geom­

etry of real-world objects. The fundamental class is the P o in t class, out of which

all other classes are constructed. As the space that embeds all objects is the

Euclidean i?3, the Point class contains a triplet of coordinates. These can be in

many formats, according to the ReferenceSystem object that the Point is related

to. The overall hierarchy of this package is shown in figure 4.2, on page 269. 1

1. Abstract class RRoot sub-class of MPOOST.Root: this is the root class for all

classes in this package.

2. Abstract class ZeroExtent sub-class of RRoot: The parent class for all zero

dimensional classes. Attributes in this class are common to all of its sub­

classes, hence their presence in this class.

Attributes:

(a) Coordinate X,Y,Z: Coordinate triplet for the point. This might be

either Cartesian or geographical, depending on the coordinate system

in which the point object is embedded.

(b) Double SX,SY,SZ: Standard Deviation of the coordinate triplet respec­

tively.

(c) Double RMSE: The Root Mean Square Error associated with the point.

Tt must be noted that the implementation of this package has been omitted, mostly due to the lim­

ited time schedule. However, the model is considered to be flexible enough to be functional only with

the M POOST.Spatial.Cartographic classes as the geometric component of the application domain

entities.

CHAPTER 4. DESIGN OF THE MPOOST MODEL 244

(d) CoordinateSystem CSystem: The coordinate system object that the

zero extent belongs to.

3. Concrete class ZeroDSimplex sub-class of ZeroExtent: A zero-dimension

simplex.

Attributes:

(a) Set of ZeroDComplex aComplex: References to the zero-complexes that

it belongs to.

4. Concrete class ZeroDComplex sub-class of ZeroExtent: A zero-dimension

complex (zero-complex). It is contains a non-empty set of ZeroDSimplex

objects.

Attributes:

(a) Set of ZeroDSimplex: The non-empty set of zero-simplex objects that

it is composed of.

5. Concrete class Point sub-class of ZeroDSimplex: This the fundamental

zero-dimensional geometrical object. Point objects do not connect topolog­

ically with other geometrical objects.

6. Concrete class C en tro id sub-class of ZeroExtent: The centroid of a poly­

gon.

Attributes

(a) SimplePolygon Polygon: The polygon object that the centroid belongs

to.

7. Concrete class Vertex sub-class of Poin t: A vertex is a point that polylines

are composed of. Vertex objects may belong to a single PolyLine. Hence,

they have two references, one to the previous vertex in the sequence, and

one for the next vertex in sequence. These references are not necessary, since

the can be accessed through the PolyLine class, however it is considered

that it enhances query output on the vertex sequence, since no reference is

necessary to the PolyLine that it belongs to.

Attributes:

CHAPTER 4. DESIGN OF THE MPOOST MODEL 245

(a) LineSegment Segment: The LineSegment object that the vertex belongs

to.

(b) Vertex PreviousVertex: The previous vertex in order.

(c) Vertex Next Vertex: The next vertex in order.

8. Concrete class Node sub-class of Vertex: A node is where a PolyLine begins

or ends.

Attributes:

(a) Set of OpenPolyline Polylines: The non-empty set of OpenPolyline

objects that begin/end at this node object.

9. Concrete class C ell sub-class of P oint: A cell is used to construct raster

objects (class R aster . It may contain a value of any type. Details about

cell size and structuring are kept in the R as te r class.

Attributes:

(a) Object Value: The value that the cell contains. Any object for which

its class is a sub-class of Object can be a potential value for the cell.

(b) R aste r aRaster: The raster object it belongs to.

10. Abstract class OneExtent sub-class of RRoot: This is any linear, 1-dimensional

geometrical object. One dimensional system entities are composed of points

instead of line segments, since line segment information is not always neces­

sary, and if used between any polyline and a point set it only adds complexity

to the model. However, if it is desired, line segments can be used to model

any one-extent.

Attributes:

(a) 3DLength TotalLength: The total length of the object.

(b) 2DLength XYPlaneLength: The length of the projected plane on the

A, Y plane.

Methods:

CHAPTER 4. DESIGN OF THE MPOOST MODEL 246

(a) Length CalculateLength(): Calculates the total length of the object.

Empty declaration that will be overridden by the sub-classes to fit spe­

cific needs, taking into account the dimensions and the type of coordi­

nates available.

11. Concrete class OneDSimplex sub-class of OneExtent: This class models a

1-simplex which is equivalent to a line segment. It is composed of two

ZeroDSimplex objects.

Attributes:

(a) ZeroDSimplex Start: The start point of the simplex.

(b) ZeroDSimplex End: The end point of the simplex.

(c) OneDComplex Complex: The one-dimensional object that this object

may belong to.

12. Concrete class OneDComplex sub-class of OneExtent: A one-dimensional

simplicial complex, consisting of a non-empty set of one-dimensional sim­

plices.

Attributes:

(a) Set of OneDSimplex SimplexSet: The non-empty set of one-dimensional

simplices.

(b) In teg er SimplexNumber: The total number of simplices comprising

the simplicial complex.

13. Concrete class Network sub-class of OneDComplex: A network structure,

which is a non-directed, cyclic graph, embedded in 3D space.

14. Concrete class LineSegment sub-class of OneDSimplex A straight line which

starts and ends on a node.

Attributes:

(a) Node Start: The start node of the segment.

(b) Node End: The end node of the segment.

CHAPTER 4. DESIGN OF THE MPOOST MODEL 247

15. Concrete class PolyLine sub-class of OneExtent: A polyline is an ordered

set of vertices. It may be either open or closed, self crossing or not.

Attributes:

(a) In te g e r NumberOfVertex: The total number of points that define the

polyline. Minimum vertex number must be three.

(b) Ordered set of Vertex VertexSet: The set with the polyline vertices,

with at least three vertices.

Methods: Calculate3DLength: This operation is used to calculate the total

length of the polyline. The formula used is:

n

l = Y , V 'W +i - x i)2 + W +i - W + (3 + i - z ty (4.1)

16. Concrete class C losedP o ly line sub-class of PolyLine: A closed polyline is

a polyline whose first and last nodes are identical. It is formed out of open

polylines (at least two). A closed polyline is used to form simple polygons.

Attributes:

(a) SimplePolygon EnclosedArea: The polygon to which the polyline is a

boundary.

17. Concrete class OpenPolyline sub-class of PolyLine: An open polyline is a

polyline whose first and end node are not identical.

Attributes:

(a) Node StartNode: The start node of the open polyline. This is used to

associate the OneExtent object with the set of LineSegment objects it

is composed of.

(b) Node EndNode: The end node of the open polyline. The same applies

as for the previous attribute.

18. Abstract class TwoExtent sub-class of RRoot: This is any 2-dimensional

geometrical object.

Attributes:

CHAPTER 4. DESIGN OF THE MPOOST MODEL 248

(a) Area TotalArea: The total area of the polygon.

Methods:

(a) Area CalculateArea: Calculates the total area of the polygon, depending

on the type. It is overridden by sub-classes to take into account the

possible number of outer and inner polygons, or the number of triangles,

in the case of the surface.

19. Concrete class TwoDSimplex sub-class of TwoExtent: This class models a

two dimensional simplex, which is equivalent to a triangle, but it has been

included for semantic consistency.

Attributes:

(a) TwoDComplex Complex: The two-dimensional simplicial complex that

this object belongs to.

20. Concrete class TwoDComplex sub-class of TwoExtent: This class models a

two dimensional simplicial complex, which is a set of two dimensional sim-

plices, equivalent to a set of triangles. It has been included for semantic

consistency. Attributes:

(a) Set of TwoDSimplex TwoDSimplices: The non-empty set of two dimen­

sional simplices.

21. Concrete class SimplePolygon sub-class of TwoExtent: A simple polygon is

the area that is enclosed by a closed polyline. I t ’s geometry cannot have any

inner island polygons. However, it can be linked to other polygons which

are inner to its geometry in the case where the earlier is referenced through

a ComplexPolygon, where it is used to form complex polygons, either as

an inner, an outer or both (to different complex polygons). Special types

of simple polygons are the triangle and oblong (square) shapes. A simple

polygon is associated with two OneExtent objects.

Attributes:

(a) C losedPolyline Boundary: The closed polyline that is the boundary

of the polygon.

CHAPTER 4. DESIGN OF THE MPOOST MODEL 249

(b) SimplePolygon Outer: The polygon that encloses this polygon. Values

may be null. When it is not null, it is used to associate outer and inner

polygons that form ComplexPolygon objects.

(c) Set of SimplePolygon Inner: The polygons that this polygon encloses.

May be null.

22. Concrete class ComplexPolygon sub-class of TwoExtent: A complex poly­

gon is the area enclosed by a set of simple polygons. There is always one

outer simple polygon and a set of at least one simple inner polygons. Every

inner polygon may have a number of inner polygons and so on. This struc­

ture is a hierarchy of SimplePolygon objects. Inner polygons are always

topologically enclosed by the outer polygon.

Attributes:

(a) In te g e r Level: The maximum level in the hierarchy of island polygons.

(b) SimplePolygon OuterPolygon: The outermost polygon of the object.

(c) In te g e r Level: The level number of the polygon in a ComplexPolygon

hierarchy.

23. Concrete class T rian g le sub-class of TwoDSimplex: This is a simple polygon

which is defined by three node objects.

Attributes:

(a) Ordered set of Node Nodes: The nodes of the triangle.

(b) Ordered set of LineSegment: The line segments of the triangle.

24. Concrete class Region sub-class of TwoExtent: A region is the area defined

by a set of complex polygons, which may be spatially disjoint. There is a

set of outer simple polygons, each of which may have a set of enclosed inner

simple polygons (as described in the simple polygon class).

Attributes:

(a) Set of ComplexPolygon Polygons: The set of complex polygons that

belong to the region.

CHAPTER 4. DESIGN OF THE MPOOST MODEL 250

25. Concrete class Surface sub-class of TwoExtent: This class models any two-

dimensional surface, defined by a Triangulated Irregular Network (TIN),

embedded in three dimensions. It is composed of a number of T riangle

objects.

Attributes:

(a) Set of T riang les SurfaceSegments: The set of triangles that the TIN

surface is composed of.

(b) Region Boundary: The set of polygons that are the boundaries of the

surface, as modeled by the Region. Inner polygons may be null, in the

case where there are no holes in the TIN.

26. Abstract class ThreeExtent sub-class of RRoot: This is any 3-dimensional

geometrical object.

Attributes:

(a) Volume Volume: The volume of the object.

(b) Area SurfaceArea: The area of the bounding object surface.

Methods:

(a) Volume CalculateVolume(): Calculates the volume of the object. It

is overridden by sub-classes for customized calculation of the object,

depending on the geometry.

27. Concrete class Sim pleSolid sub-class of ThreeExtent: This class models

any three dimensional solid, as it is composed of its bounding surface, with­

out any internal solids.

Attributes:

(a) Set of Surface Boundary: The bounding surface of the object. Must

not be null.

(b) Sim pleSolid OuterSolid: The simple solid object that this object is

surrounded by. May be null if the object is not part of a complex solid.

(c) Set of Sim pleSolid InnerSolids: The set of simple solid objects that

this object includes. May be null if it is not part of a complex solid.

CHAPTER 4. DESIGN OF THE MPOOST MODEL 251

28. Concrete class ComplexSolid sub-class of ThreeExtent: An object with an

external solid object, and a hierarchy of inner simple solid objects, with any

degree of recursiveness. Inner solids are referenced indirectly through the

outermost solid object.

Attributes:

(a) In teg er Level: The highest level of inner solids.

(b) Sim pleSolid OuterSolid: The outermost solid object.

29. Concrete class ThreeDSimplex sub-class of ThreeExtent: This is a 3-simplex

class, which is equivalent to a tetrahedron. It is composed of four two-

dimensional simplices.

Attributes:

(a) Set of TwoDSimplex Faces: The set of two-dimensional simplices that

the objects consists of.

(b) ThreeDComplex Complex: The three dimensional complex that this ob­

ject belongs to.

30. Concrete class ThreeDComplex sub-class of ThreeExtent: This is a three

dimensional simplicial complex, defined as a set of three dimensional simplex

objects. Attributes:

(a) Set of ThreeDSimplex Simplices: The set of three dimensional simplices

that this object contains.

31. Concrete class Tetrahedron sub-class of ThreeDSimplex: This is the fun­

damental building block for three dimensional solids. Although it is similar

to the ThreeDSimplex, it has been included for consistency reasons.

Attributes:

(a) Set of T riang les Faces: The faces of the tetrahedron.

CHAPTER 4. DESIGN OF THE MPOOST MODEL 252

4.4.2.2 Package MPOOST.Spatial.Cartographic.Geometry

The package MPOOST. S p a t i a l . C a r to g ra p h ic . Geometry includes classes that model

the cartographic geometry of the geo-referenced objects. Its purpose is to provide

a minimal two-dimensional model which will serve as the basis upon which map

products will be created and stored. Cartographic objects are considered to be

derived from real-world geo-referenced objects through projection of their geom­

etry onto a mathematical surface, according to the cartographic projection used.

The basic unit of aggregation is the class CPoint. The rest of the classes in this

package are considered to be either a specialization (e.g. class Node) or an aggre­

gation (e.g. class Po ly line) of this class. Classes in this package are related to the

P ro jec tionS ystem class (from the MPOOST. A Spa tia l .M etadata. CoordinateSystems

package) used to create them. Every class in the geometry package is associated

with an ordered set of classes from the MPOOST. S p a t i a l . C a r tog raph ic . R ep rese n ta t io n

package, always according to their dimensionality (e.g. a point object is associ­

ated with a set of point symbols, a linear geometric object is associated with a

set of linear symbols, etc.). The ordered set denotes the aggregational layering

of the representation of a single geometric feature. In this way, complex symbols

may be assigned to a geo-entity and be drawn on a map composition. 2 Classes

in the package are:

1. Abstract class CartographicRoot, which is the parent class of this package.

This class contains members that are common to all of its sub-classes.

2. Abstract class ZeroExtent sub-class of C artographicRoot: This class mod­

els zero dimensional cartographic objects. It is associated with an SPoint

class which is used to visualize the geometry of the sub-classes.

3. Concrete class CPoint: This class models a point as a zero dimensional

geometric feature. It has no topological associations with other carto­

graphic objects. It is associated with one real world geometric point (class

2As this package has been fully implemented in the Java programming language, and therefore

thoroughly documented within the code, hence it is not documented in detail in this chapter.

CHAPTER 4. DESIGN OF THE MPOOST MODEL 253

MPOOST.Spatial.RealWorld. P o in t) that it models.

4. Concrete class C en tro id sub-class of ZeroExtent: A centroid models the

centroid point of a polygon, and as such, it is associated with a SimplePolygon

class.

5. Concrete class Vertex sub-class of CPoint: This class is used to construct

1-extent classes. It is associated with one 1-extent class, where it belongs,

and with two other V ertex objects, a Previous Vertex and a Next Vertex.

6. Concrete class Node sub-class of Vertex: This class models a node as a point

which either starts or ends any linear (one-extent) object. Intersections of

1-extent classes are supposed to occur on nodes. It is associated with a set

of 1-extent classes.

7. Abstract class OneExtent sub-class of C artographicRoot: It is an ordered

set of (at least two) Vertex classes. Ordering of the set is for storing the

information on the direction of the linear object. It is associated with exactly

two Node classes: one as a StartNode and one as an EndNode.

8. Concrete class OpenPolyline sub-class of OneExtent: This class models

an open polyline, which is composed of at least two Vertex objects. The

first and the last Vertex objects are a Node class (StartNode and EndNode),

which must not be identical3.

9. Concrete class C losedP o ly line sub-class of OneExtent: This is a closed

polyline. The main difference with the OpenPolyline class is that the start

and the end nodes are identical objects 4. This must be verified prior to

creation of the object.

10. Concrete class Network sub-class of OneExtent: This class models the struc­

ture of a DCG-like network (Directed Cyclic Graph).

3 coordinate inequality (which implies object identity inequality)
4object identity equality since two nodes may have the same values for coordinates but may be

different objects.

CHAPTER 4. DESIGN OF THE MPOOST MODEL 254

11. Abstract class TwoExtent sub-class of C artographicR oot: This is an ab­

stract class that has as children any two-extent geometrical object.

12. Concrete class SimplePolygon sub-class of TwoExtent: This is the class that

models the area enclosed by a polygon, along with its surrounding border.

It is not allowed to have any “island” polygons (holes). It consists of exactly

one C losedP o ly line class and of exactly one C en tro id class.

13. Concrete class T rian g le sub-class of SimplePolygon: This class models a

triangle. It is a SimplePolygon consisting of a C lo se P o ly l in e with exactly

three Vertex objects.

14. Concrete class ComplexPolygon sub-class of TwoExtent: This class models

any polygon with islands, that has an outer polygon and a number of internal

polygons. It consists of exactly one Outer SimplePolygon and of a non-zero

set of inner SimplePolygon (at least one such object).

15. Concrete class Region sub-class of TwoExtent: This models any two-extent

areal object, regardless of how complex it might be. It consists of a set of

ComplexPolygon objects (at least one). These in turn may be composed of

a set of SimplePolygon objects (at least one) as mentioned already.

4.4.2.3 Package . . . Cartographic.M apComposition

The package MPOOST. S p a t i a l . C ar to g rap h ic . MapComposit ion holds informa­

tion on classes that model the structure of a map composition either on-screen

or as a digital file that may be printed to produce a hardcopy. Classes of the

package are:

1. Concrete class Legend: The legend of the map. It contains explanatory

information on the cartographic symbols shown.

2. Concrete class Fea tu reS e t: A container for all cartographic objects dis­

played. Attributes:

CHAPTER 4. DESIGN OF THE MPOOST MODEL 255

(a) Set of CRoot: The set of cartographic objects that are displayed on the

map composition.

3. Concrete class Composition: A map composition as it is being displayed on

screen or printed on paper, or written to a file for exporting.

4.4.3 Package MPOOST.Representational

4.4.3.1 Package MPOOST.Representational.Symbol

The package MPOOST.Representational.Symbol contains classes that model

the cartographic representation of a spatial object, either on screen or on a hard­

copy. Symbols have been divided into three major categories for point, linear and

areal cartographic symbols (see figure 4.3 on page 270).

1. class Color: Models the color information of a cartographic symbol. This

class supports 16777216 (224) unique colors. Attributes:

(a) In te g e r R,G,B: The red, green and blue components of the color, ex­

pressed in the range from 0 to 255.

(b) In teger C,Y,M: The cyan, yellow, and magenta components of the

color, expressed in the range from 0 to 255.

(c) In teg er H,S,I: The hue, saturation and intensity of the color.

Methods:

(a) Color toRGB(): Returns the R,G,B triplet of the color.

(b) Color toHSlQ: Returns the H,S,I triplet of the color

(c) Color toCYMQ: Returns the C,Y,M triplet of the color.

2. Concrete class Shape: This class models the geometry of a shape. At­

tributes:

(a) P o ly line Outline: The outline of the shape.

(b) Angle Orientation: The orientation of the shape.

CHAPTER 4. DESIGN OF THE MPOOST MODEL 256

(c) Color FillColor: The color used to fill the interior of the shape.

(d) Color LineColor: The color used for the outline of the shape.

(e) Bitmap Icon: An external bitmap icon (raster) used instead of using a

picture or a vector shape.

(f) P ic tu re Pic: An external vector picture used instead of using a bitmap

icon or a vector shape

(g) Colormap Lookup: The colormap that associates values from the map

feature to colors of the shape. Can be null.

3. Concrete class P a tte rn : Attributes:

(a) Angle Orientation: The orientation of the pattern.

(b) Color FillColor: The color used to fill 2-extent objects.

(c) S trin g PatternType: The type of the pattern, specifying its definition.

(d) Colormap Lookup: The colormap that associates values from the map

feature to colors of the pattern. Can be null.

4. Abstract class RootSymbol: The parent class for cartographic symbols.

Methods:

(a) Draw(): Method that displays the geometry of the cartographic symbol

according to its specifications and the geometry of the map feature.

It is overridden by sub-classes for customized display, according to the

geometry of the map feature, the symbol and the type of display (screen

or file).

5. Concrete class PointSymbol sub-class of RootSymbol: A point symbol, with

a location, a shape and a size. Attributes:

(a) GraphicCoordinate LocationX, LocationY: The location of the symbol

on the map composition.

(b) Shape Geometry: The geometry of the point symbol.

(c) In teg er SizeX, SizeY: The size of the symbol.

CHAPTER 4. DESIGN OF THE MPOOST MODEL 257

6. Concrete class LinearSymbol sub-class of RootSymbol: A class with speci­

fications on drawing linear map features.

(a) Paired list of G raphicCoordinate Outline: The geometry of the map

feature to be drawn, expressed in graphic coordinates.

(b) Shape: The geometry of the symbol.

(c) In te g e r Width: The width of the line symbol.

(d) P a tte rn LinePattern: The pattern used to draw the line.

7. Concrete class ArealSymbol sub-class of RootSymbol: Attributes:

(a) Paired list of G raphicCoordinate Outline: The polyline that encloses

the area to be drawn.

(b) P a tte rn FillStyle: The specification of the interior filling of the polygon.

8. Concrete class Colormap: This class maps the values of a R a s te r object to

displayable colors (be it on screen or on a hardcopy). Attributes:

(a) Paired list of (Color, Object): The mapping of raster values to colors.

4.4.4 Package MPOOST.Behavioural

This package contains interfaces and utility classes. Interfaces are being imple­

mented by various classes. Utility classes contain methods that cannot semanti­

cally be part of any other class.

4.4.4.1 Package M POOST.Behavioural.Utility

This package contains classes that include mainly operations that are not (or

should not) be part of another class across the class schema. More specifically,

the following methods have been specified:

1. Concrete class D ata lm p o r tU ti l i ty : Contains classes and operations used

to import data from external sources, mainly various GIS format files. For

CHAPTER 4. DESIGN OF THE MPOOST MODEL 258

the implementation purposes, the DXF format has been used to import data

from external files.

2. Concrete class Math: This class contains any mathematical formulas defined

as methods that are useful across the model.

4.4.5 Package MPOOST.ASpatial

The package MPOOST.ASpatial contains all aspatial classes, that are part of a

geo-entity.

4.4.5.1 Package MPOOST.ASpatial.P rim itive

The package MPOOST. A S p a tia l.P rim itiv e contains all the classes which are fun­

damental for the model. Most of them are originating from the Java program­

ming language, as it has been chosen as the implementation language and they

are called Java Native Classes (JNC). Classes that are not coming from the Java

PL, are either sub-classes or they employ a JNC through a relationship.

1. class Constant: This class stores data on constant values.

2. class Integer (JNC)

(a) class Year sub-class of In teg er

(b) class Hour sub-class of In teg er

(c) class Minute sub-class of In teg e r

(d) class Second sub-class of In teg er

(e) class M illisecond sub-class of In teg er

3. class String (JNC)

(a) class UnitOfMeasure sub-class of S tring . This is a collection of units

of measurement. Example values are: “meter”, “feet”, “degrees”, “rad”,

“gon”

(b) class Day sub-class of S trin g

CHAPTER 4. DESIGN OF THE MPOOST MODEL 259

(c) class Month sub-class of S tr in g

(d) class Model sub-class of S tr in g : The data model of a dataset. Values

can be “raster”, “vector” etc.

4. class Long (JNC)

(a) Concrete class Currency sub-class of Long

5. class F lo a t (JNC)

6. class Double (JNC)

(a) Abstract class Coordinate

i. Concrete class LinearC oord ina te sub-class of Coordinate: Models

cartesian coordinates (x, y , z)

ii. Concrete class AngularCoordinate sub-class of Coordinate: Mod­

els geographical coordinates as expressed in angles (y>, A)

iii. Concrete class G raphicCoordinate sub-class of Coordinate: Mod­

els coordinates used on a map composition (x , y)

7. class Area sub-class of Double

8. class D istance sub-class of Double

9. class Angle sub-class of Double

10. class Volume sub-class of Double

11. class Time: Models time within a day. Attributes:

(a) Hour

(b) Minute

(c) Second

(d) M ill isecond

12. class Date: Models a date. Attributes:

(a) Day

(b) Month

(c) Year

CHAPTER 4. DESIGN OF THE MPOOST MODEL 260

13. class Boolean (JNC): The boolean value (true or false).

4.4.5.2 Package MPOOST.ASpatial.Metadata

The package MPOOST.ASpatial.Metadata contains m etadata information of a

specific dataset. A dataset is a container for system entities, that undergo changes

due to a system event.

All application domains have in common a group of system entities modelled by

the D ataset class. This class includes references to all metadata classes presented

below. In this way, metadata information can easily plug-in to a group of objects

that model geo-entities. Some metadata information is stored within geo-entities

individually, and some is implicitly denoted through the dataset that the geo­

entity belongs to.

1. Abstract class D ataset. This class is used as a generic container for either

input or output datasets. It is a way of grouping system classes or map

features.

2. Final class InputD ataset sub-class of D ataset. This is a class used to

model a group of data that were part of a single survey session.

3. Final class OutputD ataset sub-class of D ataset. Used to group objects

that are exported out of the system at some specific timestamp.

Metadata classes in this package are:

1. Concrete class SpatialM odel: Description of the spatial data model em­

ployed in a dataset.

Attributes:

(a) S trin g Name: The name of the model.

(b) List of Class PrimitivesList: Specification of primitive spatial objects.

This is a list of the classes of the primitive spatial objects. Their de­

scription and explanation of their geometry and topology is contained

within the classes.

CHAPTER 4. DESIGN OF THE MPOOST MODEL 261

2. Concrete class DataSummary: Summary about the data contents, and it is

used for a quick overview.

Attributes:

(a) Paired list of (S tring , Source) Origin: The source of the dataset. This

is a paired list of the names of the company/institution responsible the

data collection along with the type of method of data collection.

(b) List of Class: The classes of objects included in the dataset.

(c) Region Coverage: The area that geo-entities cover.

(d) RWInterval DatePeriod: The real world time period that the data are

valid.

(e) DBInterval SystemPeriod: The total time that the data existed in the

system.

(f) S trin g Media: Type of source media. This is textual description of the

medium from which the source data set originates.

(g) Date MediaDate: This is the date that the source media refer to.

(h) Paired list of (S tring , Date): Updates: This is a set of dates with

updates on the data contents along with the description of the update.

(i) S trin g SourceContribution: This is a textual description of what the

type of possible contribution to the data set from the source.

(j) S trin g Scale: The scale used to collect the data, in the case of an

InputD ataset.

(k) CoordinateSystem GeodeticSystem: The coordinate system of the dataset.

(1) Model DataModel: The data model of the dataset.

(m) Paired list of (S tring , S tring) CodeDefinition: The definition of codes

used by object members. This is a list of codes (numeric/alphanumeric

for codes or textual for classes) along with a textual description of what

these codes represent.

(n) Double DeviationX, DeviationY, DeviationZ: Average standard devia­

tion of point features, for every coordinate, referring to the dataset as a

CHAPTER 4. DESIGN OF THE MPOOST MODEL 262

whole. It is calculated from the standard deviation for individual points

that is stored along with their geometry.

(o) Paired list of (C lass ,S tr ing) A ttr ibu teA ccuracy : Statistics on at­

tribute error. This is a list that correlates the attribute fields in the

dataset along with statistical information about this attribute.

3. Concrete class Source sub-class of Str ing : This class models the method of

data collection. This involves all data collection techniques used. Attributes:

(a) S trin g Name: The survey techniques name. A list of all techniques

used. This might be “topographic survey”, “photogrammetric acqui­

sition”, “sattelite image classification” , “vector digitizing”, “scanning”.

More values may be added here.

(b) S trin g Info: Information on the instrumentation involved in the collec­

tion technique.

4. Abstract class Transform ation: It models any kind of transformation that

the data may undergo.

5. Concrete class C oord inateT ransform ation sub-class of Transform ation:

Any type of coordinate system transformation.

Attributes:

(a) CoordinateSystem OldSystem: The coordinate system that the data

are refering to before the transformation.

(b) CoordinateSystem NewSystem: The coordinate system that the data

refer to after the transformation.

6. Concrete class ModelTransformation sub-class of T ransform ation : This

involves a data model transformation involved, namely from raster to vector

and vice versa.

Attributes:

(a) Model OldModel: The model that the data are refering to before the

transformation.

CHAPTER 4. DESIGN OF THE MPOOST MODEL 263

(b) Model NewModel: The model that the data refer to after the transfor­

mation.

7. Concrete class A ttr ib u teT ran sfo rm atio n sub-class of Transform ation:

The type of attribute transformation involved in a class.

Attributes:

(a) Class Member: The member whose values undergo the transformation.

(b) Class OldType: The attribute type that the data are refering to before

the transformation.

(c) Class NewType: The attribute type that the data refer to after the

transformation.

8. Concrete class M odification: This class models a single modification of a

dataset, that took place for a speficic period in the system. An effort has

been made to include all possible variations of modifications.

Attributes:

(a) DBInterval TimeStamp: The period within which the modification

took place, expressed in system time.

(b) Transform ation DataTransformation: The possible transformation of

the data.

9. Concrete class Lineage: The history about a dataset. It contains a list of

timestamped M odifica t ion objects.

Attributes:

(a) List of M odification: The list containing all the timestamped modifi­

cations of the dataset. Information in this class is added by SystemEvent

objects.

4.4.5 .2 .1 Package . . .M etadata.ReferenceSystems All the requirements dis­

cussed in chapter three (See section 3.8.2) dictate the need to classify hierar­

chically the set of coordinate systems, thus producing the package ReferenceSys-

tems. Every geometric 0-extent class is associated with a class of a reference

CHAPTER 4. DESIGN OF THE MPOOST MODEL 264

system, therefore (e.g.) every point object will be linked to a reference system,

e.g. WGS84. 1-, 2-, and 3-extent objects are implicitly linked to a reference

system through their aggregation relationship (of 0-extent) to them.

4.4.5 .2 .2 Package . . .M etadata .C oordinateSystem s The package MPOOST. A sp a t ia l .M

contains classes that model the reference systems used by the geometrical objects.

1. Abstract class RootSystem sub-class of MPOOSTRoot: The root class for this

package.

2. Abstract class Geodetic sub-class of RootSystem: A coordinate system that

refers to unprojected coordinates, geocentric or geographic (e.g. WGS84).

Attributes:

(a) S trin g Name: The name of the coordinate system.

3. Abstract class P r o je c t io n sub-class of RootSystem: A coordinate system

that involves a map projection (e.g. Transverse Mercator). Attributes:

(a) S trin g Name: The name of the projection.

4. Abstract class Shape sub-class of P ro je c t io n : Root class for categorizing

projections according to the geometrical surface they employ.

5. Abstract class C y l in d r ic a l sub-class of Shape: A map projection that uses

a cylinder as a projection surface.

6. Abstract class C onical sub-class of Shape: A map projection that uses a

cone as a projection surface.

7. Abstract class Azimuthal sub-class of Shape: A map projection that uses a

plane as a projection surface.

8. Abstract class D is to r t io n sub-class of P ro je c t io n : Root class for catego­

rizing projections according to the distortion they cause to the metrics of

geo-entities.

9. Abstract class E q u id is ta n t sub-class of D is to r t io n : Any projection that

preserves distances.

CHAPTER 4. DESIGN OF THE MPOOST MODEL 265

10. Abstract class EqualArea sub-class of D is to r t io n : Any projection that

preserves areas.

11. Abstract class Conformal sub-class of D is to r t io n : Any projection that

preserves directions.

12. Abstract class C a r te s ia n sub-class of Geodetic: Any coordinate system

that uses cartesian coordinates.

13. Abstract class G eocen tric sub-class of C ar te s ian : A real world system

that uses cartesian coordinates and considers the centroid of the earth as

the point (0,0,0).

14. Abstract class G eographical sub-class of Geodetic: A real world coordi­

nate system that uses geographical coordinates (</?, A, h)

15. Abstract class EarthShapes sub-class of RootSystem: Root class for cate­

gorizing reference surfaces according to their geometry.

16. Abstract class E llip so id S y s tem sub-class of G eographical, EarthShapes:

A geographical coordinate system that employs an ellipsoid of revolution.

Attributes:

(a) Length MajorSAxis: The length of the major ellipsoid semi-axis.

(b) Length MinorSAxis: The length of the minor ellipsoid semi-axis.

(c) Double E: The eccentricity of the ellipsoid.

(d) Double Ed: The second eccentricity of the ellipsoid.

(e) Double F: The flattening of the ellipsoid.

(f) GeographicCoordinate F,L: The latitude and longitude (</?, A) of a

point on the ellipsoid.

17. Abstract class SphereSystem sub-class of G eographical, EarthShapes: A

geographical coordinate system that employs a sphere.

CHAPTER 4. DESIGN OF THE MPOOST MODEL 266

4.4.6 Package MPOOST.Temporal

The package MPOOST.Temporal contains all classes that model the temporal na­

ture of the information.

1. Abstract class Event sub-class of MPOOST.MPOOSTAppRoot Attributes:

(a) S t r in g Description: The description of the event

2. Concrete class SystemEvent sub-class of Event. Any event that regards

system activity and has no counterpart in the real world. Attributes:

(a) RealWorldEvent RealWEvent: A reference to the real world event that

triggered this system event.

3. Concrete class RealWorldEvent sub-class of Event. This class models any

real world event. It is usually accompanied by a system event, which reflects

the system update that must take place. Attributes:

(a) SystemEvent SysEvent: The system event that is triggered so that

changes are reflected in the system entities.

4. Abstract class TimeStamp sub-class of MPOOST.MPOOSTRoot. This is a times­

tamp that refers to a single moment in the time domain.

5. Abstract class TimePoint sub-class of TimeStamp. This is a timestamp that

refers to a single moment in the time domain.

Attributes:

(a) Time TimeData.

(b) Date DateData.

6. Concrete class DBTimePoint sub-class of TimePoint. A momentum times­

tamp which is used to mark system events and entity life cycles.

7. Concrete class RWTimePoint sub-class of TimePoint. A momentum times­

tamp which is used to mark real world events and entity life cycles.

8. Abstract class I n t e r v a l sub-class of TimeStamp. Any time period that

spans more than one time point.

CHAPTER 4. DESIGN OF THE MPOOST MODEL 267

Attributes:

(a) TimePoint Start: The start timepoint of the period.

(b) TimePoint Stop: The end timepoint of the period.

9. Concrete class DBInterval sub-class of Interval. A time interval that is

associated with system events and entities.

10. Concrete class RWInterval sub-class of Interval A time interval that is asso­

ciated with real world events and entities.

4.4.7 Package MPOOST.GUI

The package MPOOST. GUI contains all the classes that are written for the graphical

user interface of the model. Class members specific and detailed specification can

be found in the relevant HTML files of the package.

4.4.8 Package MPOOST.ApplicationDomains

The parent class for all classes in this package is the AppRoot class. A self-

referencing «temporal» relationship relates any object to its previous and its

next state. Every object that is instantiated from a sub-class of this class be­

longs to a dataset group (D ataset class). A system event is associated whenever

a new version is being produced due to a value change in one or more attributes.

Classes belonging in this package are composed of a geometry, a temporal stamp,

a series of interfaces specifying behaviour, as well as the cartographic representa­

tion, which uses the geometry of the class and any attribute value for the visual

variables. If a new version is being produced, then the object has a different iden­

tity. Not all attribute values may change, and the ones that remain unchanged

refer to values found in the immediately previous version through the reference

to the object identity. In this way we avoid duplicating data when a new ver­

sion is produced. Moreover nullable attributes that contain null values denote a

lack of data that could be traced back to first version of the object. Application

CHAPTER 4. DESIGN OF THE MPOOST MODEL 268

domain classes are considered to be created on demand, that is the user will be

able to specify the members of the class, according to the geo-entity that is being

modelled. However, a few core classes have been included. Figure 4.4 on page

271 shows the UML diagram of the AppRoot class).

Attributes:

1. In teg e r VersionLevel: The sequential number of the object version.

2. AppRoot PreviousVersion: The previous version of the entity. Can be null

if no value changes have occured regarding this object.

3. AppRoot NextVersion: The next version of the entity. Can be null if this

object has not changed in any way.

4. SystemEvent ThisVersionReason: The system event that caused the object

to transcend to the current version.

4.4.8.1 Package MPOOST. ApplicationDomains .C adas tre

The package MPOOST. ApplicationDomains .C ad as tre contains sample classes

that have been defined for the cadastral case study.

4.4.8.2 Package MPOOST.AppilicationDomains.Topography

The package MPOOST. A ppilicationD om ains .Topography contains real world en­

tities that are part of a topographic survey. It is considered to be a base package,

since other application domains will reference entities in this package (e.g. Pack­

age MPOOST. ApplicationDomains.Cadastre).

The next chapter (Implementation) discusses the partial implementation of the

MPOOST data model using the Java programming language. It also contains a

brief description of the implemented Java classes, and a short description of how

the MPOOST Graphical User Interface functions.

CHAPTER 4. DESIGN OF THE MPOOST MODEL 269

Figure 4.2: Package MPOOST.Spatial.RealWorld

CHAPTER 4. DESIGN OF THE MPOOST MODEL 270

Point Symbol

RootSymbol ava.lang.Ob]ec

0 . . n

LineSymbol ArealSymbol Colormap

0 . .1 0. .1 1

'for}

1. .n

1. .n

I __ t 0. .n
MPooSTColor]ava.awt.Color

0. .n

rectorShape RasterShape

Figure 4.3: Package MPOOST.Representational.Symbol. For visual clarity, thick lines

represent specialization and thin lines represent association.

CHAPTER 4. DESIGN OF THE MPOOST MODEL 271

BelongsTo ->
<<ASpatial>>

PreviousVersion

NextVersion
0 . .n

. n

<<Temporal>>

VersionLevel

AppRoot

<<Concept>>
Event

« SystemEntity>>
DataSet

Figure 4.4: The parent class for all application domain classes.

Chapter 5

Implementation of the MPOOST

model

5.1 Java as the implementation language

The implementation of the MPOOST model involves the usage of the Java pro­

gramming language. The main reasons for choosing this specific environment

are:

1. It is a pure object oriented programming language, where everything is

treated like an object.

2. It implements the principle of “WORE” (“Write Once Run Everywhere”),

since a Java compiler produces byte code that is platform independent.

3. The requirement of software interoperability is satisfied by the built-in func­

tionality of Remote Method Invocation (RMI) among Java programs or by

incorporating the CORBA standard so that it can co-exist with software

written in other languages (e.g. C++).

4. Java applets, applications, servlets and components (beans) can be used

effectively to deploy a distributed environment.

272

CHAPTER 5. IMPLEMENTATION OF THE MPOOST MODEL 273

5. Awkward features found in other programming languages that are bug-prone

have been eliminated (like operator overloading in C + +), without am putat­

ing functionality to a great degree.

6. The Java development kit, as well as any client software used to execute

Java applets locally, can be acquired free of charge, minimizing the financial

cost of development.

7. A large amount of resources are available on the Internet where a developer

can get valuable information and feedback regarding Java development.

8. The design of the model requires that associations found in high levels of the

class schema must be inherited by sub-classes. This is perfectly handled by

Java. Moreover, operations can receive as arguments not only the specified

classes but their sub-classes as well. For example, a Colormap class relates

a Color instance with the class Object, which is any type of instance. This

means that any instance belonging to a class which is a sub-class of Object

can exist in a Colormap instance.

However, problems that arise by implementing the model in Java are:

1. Multiple inheritance of classes is not supported. Although a class can im­

plement more than one interface, it can only have a single parent class.

This is considered to be a serious obstacle when implementing an object

oriented data model that involves cases of multiple class inheritance. In this

research, it has been addressed by eliminating multiple inheritance cases

from the design stage1.

2. Java applets although they are theoretically designed to work on any plat­

form, practically this does not always happen, since new versions of Java

require new versions of platform dependent software (e.g. browsers) that

run the Java Virtual Machine (VM). This problem can be tackled if client

platforms keep their Java VM software up-to-date.

This is one of the possible solutions, see also section A .l on page 308

CHAPTER 5. IMPLEMENTATION OF THE MPOOST MODEL 274

3. Java does not have a built-in DBMS functionality, apart from object serial­

ization, hence some external DBMS software is required. In this research,

the problem of orthogonally persistent Java has been partially addressed by

using either the experimental PJam a classes, developed by the Computing

Science Department of Glasgow University, as well as by using the Object-

Store PSE classes that provide the additional functionality of transactioning

and data querying. The final persistence mechanism used is through Java’s

Object Serialization. It is considered to be the most appropriate solution

since no additional server software is required.

4. Java does not provide functionality for GIS operations, hence a lot of de­

velopment is required for including such capabilities. This would not be

the case if other pure GIS software was used instead (e.g. LaserScan Gothic

ADE). However, existing GIS software can be used if it implements any kind

of interoperablity standard (e.g. CORBA).

Problems of code modifications due to continuous alterations and additions in

requirements and design caused a delay and it proved to be rather time con­

suming, especially when modifications involved class interfaces (name, number

of arguments or type of any argument), since this is considered to be the linkage

mechanism that enables object communication.

It is worth mentioning that one of the most useful tools used in the development

(which comes with the Java Development Kit) is the javadoc utility, that enables

the integration of code and documentation in a single file. In this way, the devel­

oper can write code and document it simultaneously. Later, code documentation

can be produced automatically on demand. This tool was used to produce the

documentation of the code found in this chapter, as well as on the accompanying

CD.

CHAPTER 5. IMPLEMENTATION OF THE MPOOST MODEL 275

5.2 Code conventions

Package names, class names and class fields always begin with a capital letter

(e.g. package MPOOST. S p a t i a l .RealWorId, P o ly l in e , P o ly l in e .Length. Class

methods begin always with a lower letter (e.g. Sim plePolygon.draw O). Apart

from the first letter, any combination of lower and upper case letters is used.

The detailed documentation of the packages and classes and the Java code files

are included on the accompanying CD. A small part of the documentation has

been printed on the following pages, regarding the implemented package index

and the class hierarchy. Finally, as already mentioned, not all packages specified

in the design stage (chapter four) have been implemented.

5.3 MPOOST Package Index
- package M PooST

- package M P ooST .A Spatial

- package M P ooST .A Spatia l.M etadata

- package M P ooST .A Spatia l.P rim itive

- package M P ooST .B ehavioural

- package M P ooST .B ehavioural.U tility

- package M PooST .G U I

- package M P ooST .R epresentational

- package M P ooST .Spatia l

- package M P ooST .Spatial.C artographic

- package M P ooST .Spatial.C artographic.G eom etry

- package M P ooST .Spatial.C artographic.M apC om position

- package M P ooST .Spatial.C artographic.Sym bols

- package M PooST .Spatial.R ealW orld

- package Spatial.M etadata.C oordinateSystem s

5.4 Class Hierarchy
- class java.lang.O bject

* class java.awt. C om ponent

CHAPTER 5. IMPLEMENTATION OF THE MPOOST MODEL 276

• class java.aw t.C ontainer

• class com .sun.java.sw ing.JC om ponent

• class com .sun.java.sw ing.JL abel

• class M PooST .G U I.Sam pleT reeC ellR enderer

■ class com .sun.java.sw ing.JPanel

• class M P ooST .G U I.D raw P anel

• class java.aw t.P anel

• class java .app let.A pplet

• class com .sun .java.sw ing.JA pplet

• class M P ooST .G U I.G U I

• class java.aw t.W indow

• class java.aw t.D ialog

• class com .sun .java.sw ing.JD ialog

• class M P ooST .G U I.L istD ia log

* class com .sun .java.sw ing.tree.D efaultM utableT reeN ode

• class M P ooST .G U I.D ynam icT reeN ode

* class com .sun .java.sw ing.tree.D efaultT reeM odel

• class M P ooST .G U I.Sam pleT reeM odel

* class M PooST .G U I.D isp layM anager

* class M P ooS T .M P ooS T R oot

• class M P ooS T .A S p atia l.A S p atia lR oot

■ class M P ooS T .A S p atia l.P rim itive.P rim itiveR oot

• class M P ooS T .A S p atia l.P rim itive.C on stan t

• class M P ooS T .A S p atia l.P rim itive.R ectan gle

• class M PooST .Spatia l.C artographic.C artographicR oot

• class M P ooST .Spatia l.C artographic.G eom etry.O neE xten t

■ class M P ooST .Spatia l.C artographic.G eom etry.C losedP olyline

• class M P ooST .Spatia l.C artographic.G eom etry.O penP olyline

• class M PooST .Spatial.C artographic.G eom etry.T w oE xtent

• class M P ooST .Spatia l.C artographic.G eom etry.C om plexPolygon

• class M P ooST .Spatial.C artographic.G eom etry.R aster

• class M PooST .Spatial.C artographic.G eom etry.R egion

• class M PooST .Spatial.C artographic.G eom etry.S im pleP olygon

• class M P ooST .Spatial.C artographic.G eom etry.T riangle

• class M P ooST .Spatia l.C artographic.G eom etry.Z eroE xtent

• class M PooST .Spatial.C artographic.G eom etry.C P oint

■ class M P ooST .Spatia l.C artographic.G eom etry.C ell

• class M P ooST .Spatial.C artographic.G eom etry.C entroid

• class M P ooST .Spatia l.C artographic.G eom etry.L abelP oint

• class M P ooST .Spatial.C artographic.G eom etry.N ode

• class M PooST .Spatial.C artographic.G eom etry.V ertex

CHAPTER 5. IMPLEMENTATION OF THE MPOOST MODEL 277

• class MPooST.Behavioural.Utility.ClassSchema
• class MPooST.Behavioural.Utility.Dataset
• class MPooST.Behavioural.Utility.Debuger
• class MPooST.Spatial.Cartographic.Symbols.SymbolRoot
• class MPooST.Behavioural.Utility.Utility

* class MPooST.Behavioural.Utility.Math
* class MPooST.Behavioural.Utility.ObjectManager
* class MPooST.GUI.PanelDebug
* class PutClasses
* class system.utility.Query
* class MPooST.GUI.SampleData
* class MPooST.GUI.SampleTree
* class MPooST.Behavioural.Utility.SpatialObjectSet
* class MPooST.Behavioural.Utility.Tree
* class MPooST.Behavioural.Utility.TreeNode

5.5 The MPOOST Graphical User Interface

Besides the implementation of the data model itself, a graphical user interface

(MPOOST GUI) has been deployed in order that the user can interact with the

data model. The basic functionality of the interface includes:

- DXF import.

- Database creation.

- Database loading.

- Pan, zoom operations.

- Class selection for display.

- Class schema browser.

The MPOOST GUI is based on the Java Foundation Classes (JFC or mostly

known as Swing) version 1.1 beta 2, which provide a rich library of visual gadgets

(e.g. windows, panels, text areas, tables, listseic.).

CHAPTER 5. IMPLEMENTATION OF THE MPOOST MODEL 278

The full Java executables of the GUI as well as the Java Virtual Machine for

Windows 95/98 can be found on the accompanying CD. Instructions on how to

run the application may be also found.

5.6 MPOOST GUI Snapshots

A few snapshots of the application are included. It must be noted that the

application looks different (and sometimes behaves in a slightly different manner)

depending on the operating system being used. The following screen snapshots

were obtained running MPOOST GUI in RedHat Linux environment (version 5.2,

kernel version 2.0.37) with the KDE window manager (v l.l). These snapshots

show the main functions of the application.

CHAPTER 5. IMPLEMENTATION

[V M

g ' V l ^ j

Figure 5.1: The main part of the M PO O S T GUI.

CHAPTER 5. IMPLEMENTATION OF THE MPOOST MODEL ‘280

- -4J | V .

sl Poo ST Application Domains Topogr aphy 5rnple_Tdgonome1rfc J * qW A.
S1 Poo ST Application Domains Topography.Tngon::oietric_Point
Sl Poo 87. Application Domains .Topography .ContMDi_Point
S1 Poo ST.Applitalion Domains Topogr aphy .Topography
M Poo57 AppifttfionDomains A spirationsH oot
Si Poo ST. Application Domains Topography .G P S _ P o n t
S1 Poo ST. Application Domains .Topogr aphy .Traver ae^Poini
M Poo ST. Application Domains Topogr aphy.iiiveJing_S1.?y1_p£«rst
MPooST Application Domains Topography. Photo_Cc40trci_Point
St Poo ST. Applic ation Domains Topography .Laradmart:
si Poo ST. Application Domains Topogr aphy. Hypsometric^ Point
MPooST Appicalion Domains Topography ^ p a o m e try
SlPooST Application Domains T opography. Terr si n _ M o t photog^
Si Poo ST. Application Domains Topography .H^p3ometric_Mar k _ P orit
s! Poo ST Application Domains Topogr apT»y .Verified Main„ Cor lour_UPd
M Poo s t Application Domains Topography M am _t©ntour _ lr ®
SI Poo ST. Appl>; ation Domains T opography.Con!our_Line
sl Poo ST. Applcation Domains Topogr aphy.NemVeuified JSfein^C ontour L i e
MPooST Application Domains Topogr aphy A ^rilied._5^coniJ¥y_Contcwr_Lir^
S1 Poo ST ApplicationDomains Topography Secondary_Contour _L n e

[4 I -| ► j

Display selected Classes

Figure 5.2: Class selection window

CHAPTER 5. IMPLEMENTATION OF THE MPOOST MODEL 281

---- --

| I Class hierarchy
^ i n vipoos i

©■ J ^ .'s S p a t i a I

\ W o o S ! Rout

9 C 3 ^ fl 13 ̂ in n Do m a i rrs
f op u q ra p f iy

(JF| A pp b ea t i o n s Root
©- c 3 f r a n s p d i la t io n
©- c 3 H yd rograp h y
©-

r~i
c 3 f e Ic co rn m u n i ca t i o » s

0- ^ 3 Land U se
©- [3 C ad astre
©-

, Ti
c 3 A d m in is tr a t io n

€>• c 3 l e g i s l a t i v e
f □ s p a t i a l

9 r 3 c a n o g r a p h i c
©- [□ G e o m e tr y

£ | § i a r r n t p a n M e Root

Structure o f Class MPooST Spol-d CartograpNc ChUng' >t| *

''fields’
is - No accessible fidds ->

'Methods’
1} pubic slate mg MPooST MPouSTBoot gel Counter
2} pubic slat e ong MPooST Spa!i* Cartograph*. Car
3) pubic sla te avalang String MPooST Spatial Cartogr
4) pubic s la te MPooST ASpatial Prim live Rectart^e MF
5) pubic final native avalang Class java lang Objrct ye!
6) pubic native Pit java.tang Obecl baaCiCodteO
7) pubic boosean iava.lang Object equaJi;>va]ang Cfcjec
8) pubic lavalany Str ng lava l**<y Object to5trirg()

* CopyrightChristoforos Vradis 1998
V

pac Rage M PocST.Spatia I.C artograph ic

i m p ort M PooS T, M PooS T h o o t
i rn p ort M P ooS T AS pat ia I. Pr i m»t iv e. Re eta ng le

i m por t M PooST.G UI .Draw Pane I;
i m p ort M PooS T.B e h av ioura I. U ti I Sty O bj eet M a
nager;

/«
uxspJL&y | Ex?*)** tr** CGlXaps* Tr** Hid* Help

F ig u re 5.3: C la ss sc h e m a brow ser w in d o w

Chapter 6

Conclusions and further research

6.1 Data model assessment

The early stages of the research, and mainly the analysis phase, posed the re­

quirements that had to be satisfied by the final outcome of the implementation.

Since the implementation was not fully deployed, the design of the MPOOST

data model is the key aspect that may determine the satisfaction degree of the

requirements. The following list contains those requirements and an explanation

on how they were satisfied by the design of the MPOOST data model and/or any

other aspects involved.

1. Effective m anipulation of spatial, tem poral, aspatial and com pos­

ite information as well as relevant behavioural aspects by a single

data m odel, in a single database. In chapter one it has been proved

that the relational model fails to efficiently address this issue. As it has been

thoroughly discussed in chapter two, the only appropriate approach guar­

anteed to meet these requirements is the object-oriented approach (with

features such as inheritance, polymorphism etc.). As it may be seen in

chapter four, the design of the MPOOST data model is such that incor­

porates all the above categories of information (2D and 3D geometries,

282

CHAPTER 6. CONCLUSIONS AND FURTHER RESEARCH 283

miscellaneous temporal references, attribute data, m etadata etc.). Each

type of information is contained in autonomous objects and higher level

composite real world entities are formed by aggregating the parts that are

of interest. All objects include behavioural aspects involved and are stored

in a single storage space in the conceptual level but may actually reside

in different physical locations enabling the distributed environment. This

holistic type of information embedding is essentially enabled by the con­

ceptual application of the object as it is defined by the object-oriented

methodology.

2. Support for different spatial representations. Different types of spa­

tial representations may be incorporated in the model, and this was achiev­

able because of:

(a) The usage of e-complexes as the core spatial conceptual model, which

were explicitly designed to handle a wide range of spatial complexity

and spatial modelling approach, from “spaghetti”-type linework to 3D

topologically enabled geometry with temporal references.

(b) The direct implementation using the object-oriented computational

model. The main features of this approach that enables the concep­

tual implementation of various spatial representations is modularity

and aggregation. Objects may form autonomous modules depending

on their conceptual classification while complex objects may be easily

formed without having to alter any of the model’s primary spatial

components (e.g. points, lines and surfaces). Should a new object be

modeled that does not belong to an already existing module, a new

one may be created and implemented as a Java package.

Although the above features are valid, the MPOOST data model is not

readily capable of such a support due to the lack of a model definition

language to facilitate the composition of a custom spatial representation.

CHAPTER 6. CONCLUSIONS AND FURTHER RESEARCH 284

However, this is achievable through Java implementation of any custom

spatial data model, meaning that a developer can conceptually construct

an extension to the MPOOST model and implement this by using the Java

programming language. For this to take effect, only the new code has to

be compiled leaving intact the base MPOOST code, in most cases. An

exception might be the case where two-way object references have to be

implemented which requires the compilation of the initial code as well.

3. Straightforward m odelling of structure and behaviour of geo-entities

that is not obstructed by the conceptual com putational m odel. In

the MPOOST design this is considered to be supported very straightfor­

wardly, since most concepts found in application domain models are in­

herently supported by the object-oriented methodology, e.g. uniqueness,

hierarchy, specialization, generalization, aggregation, inheritance, polymor­

phism and behaviour. Moreover, the implementation was also extremely

straightforward due to the object-oriented nature of the chosen program­

ming language (Java).

4. Support for a distributed and networked environm ent. The final

computational environment can be networked and distributed, since the im­

plementation language can support both requirements without sacrificing

the central management to the end-user, since objects appear to be stored

in a single virtual space. Moreover, as discussed in chapter two, the dis­

tributional aspect of the database is relied not only on the object-oriented

approach, according to which objects may reside on different network nodes,

but also on the physical computational model, namely the interoperability

standards involved (e.g. RMI) which enable the communication among ob­

jects on a physical level. Another less significant implementation feature

that fosters the network environment is the T C P /IP 1 protocol support by

the programming language (Java).

1 Transmission Control Protocol/Internet Protocol

CHAPTER 6. CONCLUSIONS AND FURTHER RESEARCH 285

5. Support for heterogeneous com putational environm ents. Regard­

ing the variety in hardware platforms this has been effectively addressed

by using Java as the implementation language. Java is the only program­

ming language that claims (and proves) to be of the “Write-Once-Run-

Everywhere” (WORM) type. In this way, it is not of concern what hard­

ware platform the applet (or application) is executed since the underlying

byte-code interpreter has been developed to run in a wide variety of pro­

cessors and electronics (including portable devices such as mobile phones).

Regarding the different software environments which can be used either to

implement the design (e.g. C ++) or simply act as the operating system

wrappers, any kind of executable code can be part of the overall networked

environment as a distributed object, which can be interoperable among

them as long as they employ an interoperability standard such as RMI or

CORBA. If no interoperability standards are involved, the Java code de­

veloped is guaranteed to execute in all software platforms supported by its

manufacturer (e.g. Unix, Linux, Windows, BeOS, MacOS to name but a

few). However, and as discussed in chapter five (Implementation) some

problems might be experience due to various “bugs” found in some software

versions of the Java bytecode compiler. It is only a m atter of time (and of

commercial benefits involved) until new bugfree versions will appear, which

will fully justify the WORM property of Java.

6. Support for expandability, code reuse and m inim al structure changes

necessary. The object-oriented approach in the design of the MPOOST

data model along with the selected interoperability standard reassures that

the code written can be straightforwadly reused for other purposes, either

within or outwith the MPOOST application. Moreover, the above combi­

nation guarantess the minimal changes in the structure of the model should

any code changes occur in the code level. Additionally, the architecture of

the model is both open and expandable because of its modular structure

and behaviour.

CHAPTER 6. CONCLUSIONS AND FURTHER RESEARCH 286

It is the author’s opinion that all of the satisfied requirements mentioned above

suggest that the object oriented methodology, as an evolution of the relational

approach, is of paramount importance for similar data modelling purposes, to the

point that no other modeling approach can be used to satisfy all requirements at

the same degree.

One of the current drawbacks in the data model implementation is the rather

poor performance in terms of execution speed. As discussed in chapter two,

object-oriented software platforms require robust and fast hardware components

(processors, storage media etc.) in order that the overall performace can be sat-

isfactional. It is mainly apparent when a voluminous amount of information is

involved. This can only be tackled by using appropriate hardware equipment.

However, the Java code itself may be optimized so as to minimize the time nec­

essary to execute certain functions, such as queries. When indexing methods are

involved they can effectively address this issue.

6.2 Future work

Although that the MPOOST data model has been partially implemented (due to

the limited time available) however it is considered to be quite flexible since imple­

mented classes act as the spatial component to the application domain classes.

In order that the MPOOST data model is completely functional, future work

should mainly involve the full implementation of the MPOOST model design,

with priority to the following features:

1. Specialized algorithms to support the building and the maintenance of topo­

logical and temporal relationships, spatial analysis etc.

2. Modelling and optimization of complex user queries.

3. Spatial indexing of geometrical objects.

CHAPTER 6. CONCLUSIONS AND FURTHER RESEARCH 287

4. Creation of a CASE-like2 tool and an appropriate graphical user interface

to facilitate user interaction.

Priority should be given to the following functions:

(a) Design of customized class hierarchies, using either icons and dia­

grams or a textual interface.

(b) Building of queries using visual components as well as an object query

language.

5. Alternative exploitation of the functionality found in existing GIS plat­

forms, like LasrScan’s Gothic ADE.

Additionally, future research work might employ the design and development

of a textual language that will be used to capture requirements from various

application domains that are in need of geographical information support by the

MPOOST data model. This language should be primarily textual as well as

descriptive, and as close to a natural language (e.g. English) as possible so that

it will be comprehensible by humans to the higher possible degree. This language

should be well-defined, rule-based, formal and structured to be easily parsed and

executed by the computer.

2 Computer-Aided Software Engineering. It denotes the usage of a visual language to construct

software components.

Bibliography

[1] A. A. Abdallah. The design and implementation of a prototype geographic

information system. PhD thesis, University of Glasgow, 1990.

[2] K. K. Al-Taha. Temporal reasoning in Cadastral systems. PhD thesis,

University of Maine, Orono, ME,USA, 1992.

[3] K. K. Al-Taha, R. T. Snodgrass, and M. D. Soo. Bibliography on spatio-

temporal databases. International Journal of Geographical Information

Systems, 8(1):95—103, 1993.

[4] J. Albrecht. Semantic Net of Universal Elementary GIS Functions. In AU-

TOCARTO - 12th International Symposium on Computer Assisted Cartog­

raphy, pages 235-244, Charlotte, North Carolina, 1995. AUTOCARTO.

[5] J. Allen. Maintaining knowledge about temporal intervals. In Communi­

cations of the ACM , volume 26, pages 832-843, 1983.

[6] D. Arctur. Introduction to Object-Oriented GIS Technology. Technical

paper, Laser-Scan Ltd, 1998.

[7] D. Arctur and P. Sargent. The future of Object-Oriented GIS Technology.

Technical paper, Laser-Scan Ltd, Cambdridge, 1998.

[8] M. P. Armstrong, P. J. Densham, and D. A. Bennett. Object oriented loca­

tional analysis. In Proceedings of the G IS/LIS Annual conference, volume 2,

pages 717-726, Orlando, 1989. ASPRS/ACSM.

288

BIBLIOGRAPHY 289

[9] M. P. Atkinson, P. J. Bailey, K. J. Chisholm, W. P. Cockshott, and R. Mor­

rison. PS-ALGOL: A Language for Persistent Programming. In Proceedings

of the 10th Australian National Computer Conference, Melbourne, Aus­

tralia, pages 70-79, 1983.

[10] J. Aybet. The object-oriented approach: what does it mean to GIS users?

GIS Europe, 3(3):38-41, 1994.

[11] O. Balovnev, M. Breunig, and A. B. Cremers. From GeoStore to

GeoToolKit: The Second Step. In M. Scholl and A. Voisard, editors, Pro­

ceedings of the 5th International symposium in Spatial databases, 1997 Jul,

Berlin, volume 1262 of Lecture Notes In Computer Science, pages 223-237,

1997.

[12] R. Barrera, A. Frank, and K. K. Al-Taha. Temporal Relations in Ge­

ographic Information Systems: A Workshop at the University of Maine.

Technical Report 91-4, National Center for Geographic Information and

Analysis (NCGIA), Santa Barbara, CA, 1991.

[13] L. G. Batten. National Capital urban planning project: Development of a

three-dimensional GIS model. In Auto-carto 9,Baltimore, MD, pages 336-

340, 1989.

[14] P. Batty. Smallworld GIS: Object-Orientation - some objectivity please!,

http://www.smallworld.co.uk/, Accessed: Spring 1998. Smallworld Tech­

nical Paper No 7.

[15] L. Becker, A. Voigtmann, and K. H. Hinrichs. Developing applications with

the object-oriented GIS-kernel GOODAC. In M. J. Kraak, M. Molenaar,

and E. M. Fendel, editors, Proceedings of the 7th International symposium

in Spatial Data Handling (SDH 1996), Advances in GIS Research, no 2,

pages 227-244, Delft, the Netherlands, 1996. Taylor and Francis, London.

http://www.smallworld.co.uk/

BIBLIOGRAPHY 290

[16] M. Bertrand. Object-Oriented Software Construction. Englewood Cliffs -

Prentice Hall, 2nd edition, 1994.

[17] G. Birkhoff and J. Lipson. Heterogeneous Algebras. Journal of combinato­

rial theory, 8:115-133, 1970.

[18] Y. Bishr, M. Molenaar, and M. Radwan. A context sensitive model for

sharing distributed geospatial information. In Proceedings of the ISPRS

Conference, volume 32, pages 65-70, Stuttgart, 1998.

[19] R. B. Blaha, W. J. Premerlani, and J. E. Rumbaugh. Relational database

design using an object oriented methodology. Communications of the As­

sociation for Computing Machinery, 31(4):414-427, 1988.

[20] P. Bofakos. An object-oriented approach to geo-referenced data modelling.

PhD thesis, Keele University, 1994.

[21] G. Booch. Object Oriented Analysis and design. Benjamin/Cummings,

Reading Mass. Harlow, 2nd edition, 1994.

[22] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modelling Language

User Guide. Object Technology Series. Addison Wesley, 1999.

[23] I. Bracken and C. Webster. Towards a typology of geographical information

systems. International Journal of Geographic Information Systems, 3(2):

137-152, 1989.

[24] K. Brassel, F. Bucher, E. M. Stephan, and A. Vckovski. Completeness,

chapter 5, pages 81-108. Volume 1 of , Guptill and Morisson [70], 1995.

[25] M. Breunig. Integration of Spatial Information for Geo-Information Sys­

tems, volume 61 of Lecture Notes in Earth Sciences. Springer-Verlag, Berlin,

1996.

[26] M. Breunig, T. Bode, and A. B. Cremers. Implementation of elementary

geometric database operations for a 3D-GIS. In T. Waugh and R. Healey,

BIBLIOGRAPHY 291

editors, Proceedings of the 6th symposium in Spatial Data Handling, Ed-

ingburgh, volume 1 of Advances in GIS research, pages 604-617, London,

1994. Taylor and Francis.

[27] M. L. Brodie. On the development of data models. In M. L. Broie et al.,

editors, On Conceptual Modeling, Perspectives from Artificial Intelligence,

Databases and Programming Languages. Springer Verlag, New York, 1984.

[28] M. Bundock. Integration of Object Oriented CASE with GIS. In En­

vironmental, Urban and Social planning: the winning vision. 21st Annual

Conference, Adelaide, Australia, pages 537-543, Sydney, 1993. Australasian

Urban and Regional Information Systems Association., AURISA.

[29] P. A. Burrough and A. U. Frank, editors. Geographical Objects with Inde­

terminate boundaries. Taylor and Francis, London, 1996.

[30] P. A. Burrough and R. A. McDonell. Principles of Geographical Informa­

tion Systems. Spatial Information Systems and Geostatistics series. Oxford

University Press, Oxford, 2nd edition, 1998.

[31] H. W. Calkins and D. F. Marble. The transition to automated production

cartography: design of the master cartographic database. American Car­

tographer: Journal of American Congress on Surveying and Mapping, 14

(2): 105—119, 1987.

[32] L. Cardelli and P. Wegner. On Understanding Type, Data Abstraction and

Polymorphism. In ACM Computing Surveys, volume 17, pages 471-522.

Baltimore MD, 1985.

[33] A. Chance, R. G. Newell, and D. G. Theriault. Smallworld GIS:

An overview of Smallworld Magik. http://www.smallworld.co.uk,

http://www.smallworld.co.uk/ Accessed: 1998. Smallworld Technical Pa­

per No 5.

http://www.smallworld.co.uk
http://www.smallworld.co.uk/

BIBLIOGRAPHY 292

[34] A. Chance, R. G. Newell, and D. G. Theriault. Smallworld GIS: An Object-

Oriented GIS - Issues and Solutions, http://www.smallworld.co.uk/ Ac­

cessed: Spring 1998. Smallworld Technical Paper No 3.

[35] A. Choi and W. S. Luk. Using an object-oriented database system to

construct a spatial database kernel for GIS applications. Computer System

Science and Engineering, 7:100-121, 1992.

[36] N. R. Chrisman. Topological information systems for geographic represen­

tation. In Proceedings of Second International Symposium on Computer

Assisted Cartography (Auto Carto 2), pages 346-351, Falls Church, 1975.

ASPRS/ACSM.

[37] N. R. Chrisman. The role of quality information in the long term func­

tioning of a geographic information system. Cartographica, 21 (2):79—87,

1984.

[38] E. Codd. Data Models in Database Management. SIGMOD RECORD , 11

(2): 112—114, 1981.

[39] H. Couclelis. Beyond the raster-vector debate in GIS. In A. U. Frank,

I. Campari, and U. Formentini, editors, Theories of Spatio-Temporal Rea­

soning in Geographic Space, volume 639 of Lecture Notes in Computer Sci­

ence, pages 65-77. Springer-Verlag, Berlin, 1992.

[40] B. J. Cox. Object Oriented Programming. Addison-Wesley, Reading Mass.

Wokingham, 1986.

[41] Dahlberg, J. D. McLaughlin, and Niemann, editors. Developments in Land

Information Management. Institute for Land Information USA, 1989.

[42] P. F. Dale and J. D. McLaughlin. Land Information Management. An

introduction with special references to cadastral problems in Third World

countries. Clarendon Press, Oxford, 1988.

http://www.smallworld.co.uk/

BIBLIOGRAPHY 293

[43] B. David, L. Raynal, G. Schorter, and V. Mansart. GeC^: Why objects in

a geographical DBMS? In D. Abel and B. Ooi, editors, Advances in Spatial

Databases. Proceedings of SSD 1993, volume 692 of Singapore Lecture notes

in Computer Science, pages 264-276, Berlin, 1993. Springer-Verlag.

[44] L. De Floriani, P. Marzano, and E. Puppo. Spatial queries and data models.

In A. U. Frank and I. Campari, editors, Spatial Information Theory, volume

716 of Lecture Notes in Computer Science, pages 113-138. Springer-Verlag,

Berlin, 1993.

[45] R. DeCosta. Object database technology in GIS. Mapping Awareness and

GIS in Europe, 7(3):44-55, 1993.

[46] H. M. Deitel and P. J. Deitel. C++: How To Program. Prentice Hall

International Editions, Englewood Cliffs, N.J., 1st edition, 1995.

[47] H. M. Deitel and P. J. Deitel. Java: How To Program. Prentice Hall

editions, Upper Saddle River, N.J., 2nd edition, 1998.

[48] J. E. Drummond. Positional Accuracy, chapter 3, pages 31-58. Volume 1

of , Guptill and Morisson [70], 1995.

[49] M. E. Easterfield, N. R. G., and D. G. Theriault. Smallworld

GIS: Version Management in GIS - Applications and Techniques,

http://www.smallworld.co.uk/ Accessed: Spring 1998. Smallworld Tech­

nical Paper No 4.

[50] J. Egenhofer and R. Colledge. Spatial and Temporal Reasoning in Geo­

graphic Information Systems. Oxford University Press, New York Oxford,

1998.

[51] J. M. Egenhofer and R. Golledge. Time in Geographic Space. Report on

the Specialist Meeting of Research Initiative 10 94-9, National Center for

Geographic Information and Analysis, Santa Barbara, CA, 1994.

http://www.smallworld.co.uk/

BIBLIOGRAPHY 294

[52] M. Egenhofer and K. K. Al-Taha. Reasoning about Gradual Changes of

Topological Relationships. In A. Frank, I. Campari, and U. Formentini,

editors, Theory and Methods of Spatio-Temporal Reasoning in Geographic

Space, volume 639 of Lecture Notes in Computer Science, pages 196-219.

Springer-Verlag, Pisa, Italy, 1992.

[53] M. Egenhofer and A. Frank. PANDA: An Object-Oriented Database Based

On User-Defined Abstract Data Types. Technical Report 67, University of

Maine, Department of Civil Engineering, Surveying Engineering Program,

Orono, ME, 1986.

[54] M. Egenhofer and A. Frank. Object-Oriented Software Engineering Consid­

erations for Future GIS. In International Geographic Information Systems

(IGIS) Symposium, Baltimore, 1989.

[55] M. Egenhofer, D. Mark, and J. Herring. The 9-Intersection: Formalism

and Its Use for Natural-Language Spatial Predicates. Technical Paper 94-1,

National Center for Geographic Information and Analysis (NCGIA), Santa

Barbara, CA, 1994.

[56] M. J. Egenhofer. A formal definition of binary topological relationships.

In W. Litwin and H. Schek, editors, Proceedings of the Third International

Conference on Foundations of Data Organization and Algorithms (FODO),

in Paris, volume 367 of Lecture Notes in Computer Science, pages 457-472,

Berlin, 1989. Springer-Verlag.

[57] M. J. Egenhofer and A. Frank. Object-oriented databases: Database re­

quirements for GIS. In Proceedings of the International GIS symposium:

The Research Agenda, volume 2, pages 189-211, Washington DC, 1987. US

Government Printing Office.

[58] M. J. Egenhofer and A. Frank. Object oriented modeling in GIS: Inher­

itance and propagation. In Proceedings of Auto Carto 9, pages 588-598,

Baltimore, Maryland, U.S, 1989.

BIBLIOGRAPHY 295

[59] M. J. Egenhofer and A. Frank. Object-oriented modeling for GIS. Journal

of the Urban and Regional Information Systems Association, 4:3-19, 1992.

[60] M. J. Egenhofer, A. Frank, and J. Jackson. A topological data model for

spatial databases. In 0 . Gunther and T. Smith, editors, Proceedings of

SSD ’89: Design and Implementation of Large Spatial Databases, volume

409 of Lecture Notes in Computer Science, pages 271-286, Santa Barbara,

CA, 1989. Springer-Verlag.

[61] M. J. Egenhofer and A. U. Frank. LOBSTER: combining AI and database

techniques for GIS. Photogrammetric Engineering and Remote Sensing, 56

(6):919-926, 1990.

[62] M. J. Egenhofer and R. G. Golledge, editors. Spatial and temporal reasoning

in geographic information systems. Spatial Information Systems. Oxford

University Press, 1998.

[63] R. A. Elmasri and S. B. Navathe. Fundamentals of database systems. World

Student Series. Benjamin/Cummings Publishing Company Inc., Redwood

City, Calif. Wokingham, 2nd edition, 1994.

[64] A. Frank and M. Egenhofer. Object-Oriented Databases for GIS. In ftli

International Symposium on Spatial Data Handling, GIS/LIS, San Antonio,

TX, 1988.

[65] A. U. Frank. An object-oriented, formal approach to the design of cadas­

tral systems. In M. J. Kraak, M. Molenaar, and E. M. Fendel, editors,

Proceedings of the 7th International symposium on Spatial Data Handling

(SDH’96), volume 2 of Advances in GIS Research, pages 245-262, Delft,

the Netherlands, 1996. Taylor and Francis, London.

[66] A. U. Frank and M. J. Egenhofer. Computer cartography for GIS: an object-

oriented view on the display transformation. Computers and Geosciences,

8(8) :975—987, 1992.

BIBLIOGRAPHY 296

[67] G. Golod and J. Shochat. Theoretical and Practical Issues in Developing a

Nationwide Cadastral GIS. In Proceedings of the Thirteenth Annual ESRI

User Conference, volume 2, pages 171-177, Palm Springs, CA, 1993.

[68] M. Goodchild. Attribute accuracy, chapter 4. Volume 1 of , Guptill and

Morisson [70], 1995.

[69] S. Guptill and M. Stonebraker. The Sequoia 2000 approach to manag­

ing large spatial object databases. In E. Corwin and D. Cowen, editors,

Proceedings of the 5th International Symposium on Spatial Data Handling,

pages 642-651, Columbus, OH, 1992. International Geographical Union.

[70] S. C. Guptill and J. L. Morisson, editors. Elements of Spatial Data Quality.

Pergamon Press, Oxford, 1995.

[71] T. Hamre. An object-oriented conceptual model for measured and derived

data varying in 3D space and time. In T. Waugh and R. Healey, editors,

Proceedings of the 6th symposium in Spatial Data Handling, Edinburgh,

volume 2 of Advances in GIS research, pages 868-881, London, 1994. Taylor

and Francis.

[72] P. Hardy and P. Woodsford. Mapping with live features:

Object-oriented representation. White paper, Laser-Scan ltd.,

http://www.laserscan.com/papers/livefeatures.htm Accessed: 2nd Decem­

ber 1998.

[73] F. Harvey. Improving Multi-Purpose GIS Design: Participative Design. In

S. Hirtle and A. Frank, editors, Spatial Information Theory: a theoretical

basis for GIS, International Conference CO SIT’97, Laurel Highlands, Pen-

sylvania, USA, volume 1329 of Lecture Notes in Computer Science, pages

314-328, Berlin London, 1997. Springer-Verlag editions.

[74] N. W. J. Hazelton. Integrating time, dynamic modelling and geographical

http://www.laserscan.com/papers/livefeatures.htm

BIBLIOGRAPHY 297

information systems: Development of four-dimensional GIS. PhD thesis,

University of Melbourne, Australia, 1991.

[75] J. Herring. TIGRIS: A data model for an object-oriented geographic infor­

mation system. Computers and Geosciences, 18:443-452, 1991.

[76] C. M. Hoffman. Geometric and solid modelling - An introduction. Morgan-

Kaufmann, San Mateo, 1989.

[77] K. Hornsby and M. J. Egenhofer. Qualitative Representation of Change.

In S. Hirtle and A. Frank, editors, Spatial Information Theory: a theoret­

ical basis for GIS, Proceedings of the International Conference C O SIT’97,

Laurel Highlands, Pensylvania, USA, Lecture Notes In Computer Science,

Berlin London, 1997. Springer-Verlag editions.

[78] G. Hunter and I. Williamson. The development of a historical digital cadas­

tral database. International Journal of Geographical Information Systems,

4(2):169-179, 1990.

[79] A. N. S. Institute. Object Oriented Database Task Group Final Re­

port. Technical Report X3/SPARC/DBSSG OODBTG, American National

Standards Institute, 1991.

[80] I. Jacobson, M. Christenson, and G. Overgaard. Object Oriented Software

Engineering: A Use Case Driven Approach. Addison-Wesley Publishing

Company, Wokingham, England, 1992.

[81] C. Jensen. A consensus glossary of temporal database concepts. Association

for Computing Machinery SIGMOD Record, 23(1):52—64, 1994.

[82] C. Jones. Geographical Information Systems and Computer Cartography.

Longman editions, Harlow, 1997.

[83] W . Kainz, M. J. Egenhofer, and I. Greasley. Modelling Spatial relations

and operations with partially ordered sets. International Journal of Geo­

graphical Information Systems, 7(3):215—229, 1993.

BIBLIOGRAPHY 298

[84] A. Kay. Computer Software. Scientific American, 251 (3):53—59, 1984.

[85] G. Kendrick and P. Batty. Smallworld GIS: Use of an integrated

CASE tool for GIS customisation. Technical Report 11, Smallworld,

http://www.smallworld.co.uk/ Accessed: Spring 1998. Smallword Tech­

nical Paper No 11.

[86] S. Khoshafian. Object Oriented Databases. John Wiley editions, New York

Chichester, 1993.

[87] S. Khoshafian and R. Abnous. Object Orientation: Concepts, Languages,

Databases and Interfaces. Wiley editions, New York, 1990.

[88] W. Kim. Introduction to Object-Oriented Databases. The MIT Press, Cam­

bridge, Mass. London, 1990.

[89] D. Kjerne. Modelling location for cadastral maps using an object oriented

computer language. In Papers from the 1986 Annual Conference of the

Urban and Regional Information Systems Association, volume 1, pages 174-

189, Denver, Colorado, 1986. URISA.

[90] G. Kosh and K. Loney. Oracle, The complete reference. Oracle Press, 1995.

[91] G. Kosters, B. Pagel, and H. Six. GIS-application development with

GeoOOA. International Journal of Geographical Information Science, 11

(4):307-335, 1997.

[92] G. Langran. Accessing spatiotemporal data in a temporal GIS. In Auto-

Carto 9 Symposium, pages 191-198, Baltimore, MD, 1989.

[93] G. Langran. Dilemmas of implementing a temporal GIS. In Pro­

ceedings of the International Cartographic Association, pages 547-555,

Bournemouth,UK, 1991.

[94] G. Langran. Time in Geographic Information Systems. Technical issues in

Geographic Information Systems. Taylor and Francis, London, 1992.

http://www.smallworld.co.uk/

BIBLIOGRAPHY 299

[95] G. Langran. Issues of implementing a spatiotemporal system. International

Journal of Geographical Information Systems, 7(4):305-314, 1993.

[96] R. Laurent, D. Benoit, and S. Guylaine. Building an OOGIS prototype:

Some experiments with Ge02- In AUTOCARTO 12-Twelfth International

Symposium on Computer-Assisted Cartography, volume 4, pages 137-146,

Charlotte, North Carolina, 1995.

[97] R. Laurini and D. Thompson. Fundamentals of Spatial Information Sys­

tems. The A.P.I.C. series, number 37. Academic Press Ltd, London, 1992.

[98] P. Leach, B. Stumpf, J. Hamilton, and P. Levine. UIDS as internal names

in a distributed file system. In Proceedings of the First Symposium On

Principles Of Distributed Computing, Ottawa, Canada, 1982.

[99] B. Liskov. Data Abstraction and Hierarchy. SIGPLAN Notices, 23(5),

1988.

[100] H. J. Lucas. The Analysis, Design, and Implementation of Information

Systems. McGraw-Hill, 4th edition, 1990.

[101] N. Mattos, K. Meyer-Wegener, and B. Mitschang. Grand tour of concepts

for object-orientation from a database point of view. Data and Knowledge

Engineering, 9:321-352, 1993.

[102] J. D. McLaughlin and S. Nichols. Parcel based land information systems.

Surveying and Mapping, 47(1): 11-30, 1987.

[103] P. Milne, S. Milton, and J. Smith. Geographical object-oriented databases:

A case study. International Journal of Geographical Information Systems,

7(1) :39—56, 1993.

[104] H. Moellering. A draft proposed standard for digital cartographic data.

Technical report, National Committee for Digital Cartographic Standards,

1987.

BIBLIOGRAPHY 300

[105] E. Moise. Geometric Topology in Dimension 2 and 3. Springer, New York,

1977.

[106] M. Molenaar. Object hierarchies and uncertainty in GIS or why is stan­

dardisation so difficult? Geo-Informations-System, 6(4):22—28, 1993.

[107] E. Moss. Nested Transactions: An approach to Reliable Distributed Com­

puting. PhD thesis, M.I.T., Cambridge, MA, 1981.

[108] National Research Council. Need for a multipurpose cadastre. National

Academy Press, Washington D.C., USA, 1980.

[109] NCDCDS, FICCDC-SWG, and DCDSTF. The proposed standard for dig­

ital cartographic data. The American Cartographer, 15(1):11—140, 1988.

[110] R. Newell and D. Theriault. Smallworld GIS: Ten difficult prob­

lems in building a GIS . Technical Report 1, Smallworld,

http://www.smallworld.co.uk/ Accessed: Spring 1998.

[111] V. Oliver. Digital Cadastral Mapping: Design and development considera­

tions. Master’s thesis, Department of Surveying Engineering, University of

New Brunswick, Fredericton, N.B., Canada, 1985.

[112] P. v. Oosterom. Reactive Data Structures for Geographic Information Sys­

tems. Spatial Information Systems. Oxford University Press, Oxford, New

York, 1993.

[113] E. Oxborrow and Z. Kemp. An Object-Oriented Approach to the Manage­

ment of Geographical Data. In Managing Geographical Information Systems

and Databases. Lancaster University, 1989.

[114] F. I. Pearson. Map projection methods. Sigma Scientific, Inc., Blacksburg,

Virginia, USA, 1984.

[115] J. Peckham and F. Marianski. Semantic data models. ACM Transactions

on Database Systems, 20(153), 1988.

http://www.smallworld.co.uk/

BIBLIOGRAPHY 301

[116] D. Peuquet. A conceptual framework and comparison of spatial data mod­

els. Cartographica, 21:66-113, 1984.

[117] D. Pullar and M. Egenhofer. Towards formal definitions of spatial rela­

tionships among spatial objects. In Proceedings of the 3rd International

Symposium on Spatial Data Handling, pages 225-242, Sydney, Columbus,

OH, 1988. International Geographical Union.

[118] L. Raynal, B. David, and G. Schorter. Building an OOGIS Prototype: Some

Experiments with Ge02- In 12th International symposium in Computer-

assisted cartography, Charlotte, NC , pages 137-146, 1995.

[119] C. Roussilhe and J. Peloux. OGQL: Object Geographic Query Language

for Object GIS. In M. Rumor, R. McMillan, and H. F. L. Ottens, editors,

Proceedings of the JE C -G I1996, 2nd Joint European conference, Barcelona,

Spain, pages 53-62, 1996.

[120] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object

Oriented Modelling and Design. Prentice Hall editions., London, 1991.

[121] R. Snodgrass. Temporal databases. In A. Frank, I. Campari, and

U. Formentini, editors, Theories of Spatio-temporal reasoning in Geographic

Space, volume 639 of Lecture Notes in Computer Science, pages 22-64.

Springer-Verlag, Berlin, 1992.

[122] P. Story. Designing spatio-temporal information systems: an object-oriented

approach. PhD thesis, Keele University, 1996.

[123] L. Valet. An object-oriented approach to the modelling of time-varying

spatial data. PhD thesis, Leeds University, 1996.

[124] M. Wachowicz. Integrating space and time in an object-based GIS: a case

study of public boundary evolution. PhD thesis, University of Edinburgh,

1996.

BIBLIOGRAPHY 302

[125] M. J. White. Technical requirements and standards for a multipurpose

geographic data system. American Cartographer, 11(1): 15-26, 1984.

[126] R. Whittington. Database Systems Engineering. Oxford University Press,

Oxford, 1988.

[127] P. Woodsford. Object Orientation, Cartographic Generalisation

and Multi Product Databases. White paper, Laser-Scan Ltd.,

http://www.lsl.co.uk/papers/cartogen.htm Accessed: 2nd December 1998.

[128] P. Woodsford. The significance of Object Orientation for GIS,

http://www.lsl.co.uk/papers/ooforgis.htm Accessed: 2nd December 1998.

[129] P. Woodsford and D. Arctur. Data conversion and update

in the Object Paradigm. Technical report, Laser-Scan Ltd,

http://www.lsl.co.uk/papers/datacon.htm Accessed: 2nd December

1998.

[130] M. Worboys, H. Hearnshaw, and D. Maguire. The IFO Object-

Oriented Data Model. In Managing Geographical Information Systems and

Databases. Lancaster University, 1989.

[131] M. F. Worboys. A generic model for planar geographic objects. Interna­

tional Journal of Geographical Information Systems, 6(5):353-372, 1992.

[132] M. F. Worboys. Object oriented models of spatio-temporal information. In

Proceedings LIS/G IS 92, pages 824-835, San Jose California, 1992.

[133] M. F. Worboys. A unified model of spatial and temporal information.

Computer Journal, 37(1):26—34, 1994.

[134] M. F. Worboys. Object oriented approaches to geo-referenced information.

International Journal of Geographical Information Systems, 8(4):385-399,

1994.

http://www.lsl.co.uk/papers/cartogen.htm
http://www.lsl.co.uk/papers/ooforgis.htm
http://www.lsl.co.uk/papers/datacon.htm

BIBLIOGRAPHY 303

[135] M. F. Worboys. GIS. A computing perspective. Taylor and Francis, London,

1995.

[136] M. F. Worboys. A generic model for spatio-bitemporal geographic informa­

tion, chapter 2. Volume 1 of , Egenhofer and Golledge [62], 1998.

[137] M. F. Worboys. Modelling changes and events in dynamic spatial systems

with reference to socio-economic units. In ESF GISDATA Conference on

Modelling Change in Socio-Economic Units, 1998.

[138] M. F. Worboys and P. Bofakos. A canonical model for a class of areal spa­

tial objects. In D. Abel and B. Ooi, editors, Advances in Spatial Databases,

Proceedings of SSD 1993, Singapore, volume 692 of Lecture Notes in Com­

puter Science, pages 36-52, Berlin, 1993. Springer-Verlag.

[139] M. F. Worboys, H. Hearnshaw, and D. Maguire. Object-oriented data and

query modeling for geographical information systems. In Proceedings of the

4th International Symposium on Spatial Data Handling, pages 679-689,

Zurich, 1990.

[140] M. F. Worboys, H. M. Hearnshaw, and D. J. Maguire. Object-oriented

data modelling for spatial databases. International Journal of Geographical

Information Systems, 4(4):369-383, 1990.

[141] M. F. Worboys, K. Mason, and B. R. P. Dawson. The object-based

paradigm for a geographical database system: modelling, design and imple­

mentation issues. In P. Mather, editor, Geographical Information Handling

- Research and Applications, pages 91-102. John Wiley editions, Chichester,

1993.

[142] H. Yang et al. Implementation of Object Oriented GIS Using Formal

Data Structure with Planar Topology-Some Considerations. International

archives of photogrammetry and remote sensing, 29(3): 151-154, 1992.

Appendix A

Object Oriented Programming

Languages

A .l Smalltalk

Smalltalk is an object oriented programming language that was first created in

1972 by the members of the Xerox Palo Alto Research Center Learning Research

Group as a software component of the Dynabook project. Smalltalk’s main influ­

ence was Simula. It is a pure object oriented language and everything is viewed

as an object. Smalltalk is responsible for influencing many other successors 0 0

languages. There are five identifiable releases of Smalltalk, namely Smalltalk-72,

-74, -76, -78, and the most current version Smalltalk-80, which has been ported

to a variety of machine architectures. Smalltalk is built upon the idea that ev­

erything is an object and objects communicate via message passing.

A.2 PS-ALGOL

PS-ALGOL is the first language in a family that introduces the concept of persis­

tence as a property of data. It originates from the procedural language ALGOL.

The idea that it is based on is that all data with no regard to their type should
304

APPENDIX A. OBJECT ORIENTED PROGRAMMING LANGUAGES 305

have equal rights for persistence or transience. It has been developed jointly at

the University of Glasgow and St. Andrews and it is based on three principles:

data type completeness, abstraction and correspondence.

A.3 C + +

C + + is an object oriented programming language, which was first designed by

Bjarne Stroustrup of AT&T Laboratories in the early 1980’s. It originates from a

language called C with Classes, which in turn was influenced by the languages C

and Simula. The major characteristic of C + + is that it adds features like type-

checking, overloaded functions, and mainly object-oriented concepts not found

in its ancestor, the C language. No matter how many different development

environments have been released so far (like Visual C + + for Microsoft Windows),

language artifacts, features and mechanisms remain the same. It is only the

provided class libraries that differ, which are used to support specific computing

environments (mostly operating systems) wherein the final application will be

executed. Moreover to operating systems, C + + may be used as a development

language in many software packages. C + + has gained popularity for the past

two decades, and it is being used in most large-scale computing projects, because

of the rich functionality it offers.

A.4 Java

Java is the most recent pure object oriented programming language available,

known to introduce the concept of "write once, run everywhere". It originally

came from a 0 0 language called Oak, part the Green research project, of Sun

Microsystems, a language based on C and C ++. Java was first introduced in

1993, when the World Wide Web gained significant popularity and ever since

it is being used vastly within the WWW, since it is tool that introduced real

portable programming as well as dynamic contents in pages and sites. Unlike

APPENDIX A. OBJECT ORIENTED PROGRAMMING LANGUAGES 306

with the other languages examined that were developed within an academic en­

vironment, Java was created mainly for commercial reasons. Java is based on

C + + , but more compact as many of the complex and awkward features of C ++

(like pointers and operator overloading)1 have been eliminated, mainly for sim­

plification reasons. Although the unique features it offers, many authors believe

that it still remains in a developing stage and it cannot be used in the same

way that C + + has been for the past two decades. However, it remains perhaps

the only language whose code can run in almost all operating systems available,

without any alteration necessary. Java is used to create either applets, that is

programs that are runnable only through a web browser, or applications, which

are executed in the operating system, without the context of a browser. In the

first case many security constraints apply, therefore restrictring the degree up to

which Java applets can access local resources (like hard disks). This is not the

case with applications, where full-blown file system functionality is present. A

Java compiler creates bytecodes (.class files) as a mediator bewteen the actual

code written in plain ASCII format(.java files) and the machine code eventually

executed by a computer. This is mainly because the executable code remains in­

dependent of the target computing environment (namely the operating system)

and it is being produced “on-the-fly’, every time that a class is loaded. It is

obvious though that this imposes extra computation time, due to the required

class loading. The most recent Java version is 1.2, which has a built-in advanced

set of GUI classes called the Java Foundation Classes (JFC or Swing). One of

the major shortcomings in Java is that it does not support multiple class inheri­

tance, meaning that a class can have only one parent class. This is beacuse Java

was designed to be a simple and easy to use 0 0 programming language. How­

ever, a class can realize more than one interfaces, and interfaces can have more

than one parent interfaces, design A few workarounds can be suggested so as to

overcome the problem occured when the object-oriented design involves multi­

ple inheritance (we assume for simplicity reasons that the higher level design is

A lthough these features make C + + the most powerful programming language

APPENDIX A. OBJECT ORIENTED PROGRAMMING LANGUAGES 307

documented in UML):

- Modeling of multiple parent classes with Java interfaces instead of using

Java classes. This approach denotes that parent classes which are modelled

via interfaces, will lack of variable attributes and code implementation,

since interfaces include constant attribute values and method declarations

only.

- Linear re-ordering of the multiple parent classes so that multiple inheritance

is eliminated. This solution cannot be applied in all cases, especially when

parent classes belong to different packages (figure A.l-III).

- Modification of the higher level 0 0 design so that it does not involve mul­

tiple inheritance situations. This denotes that across the UML class dia­

grams, all classes should have one at the most parent classes. If there are

cases where multiple parents are necessary, then one specialization relation­

ship can be kept, while the remaining can be turned into simple association

or aggregation relationships. This solution can be used only if it has been

anticipated in the early stages of 0 0 design. Access to ex-parent class

members that are no longer inherited is still feasible via the association or

aggregation relationship. A visual example is given in figure A.l-II.

- A more extreme and complicated solution, but very effective, since it does

not require any higher level design alteration, is when another programming

language is used, additionally to Java, and an interoperability standard

has been incorporated (such as CORBA). Then a Java class can inherit

from a parent class, which in turn is written e.g. in C + + , where multiple

inheritance is a built-in feature. This C + + class may be inheriting from

more than one super-classes, regardless of the language that these might be

declared and compiled in, as long as they can provide their services through

an interoperability standard. However, as it is obvious, this requires the

usage of a language that supports multiple inheritance in addition to Java.

APPENDIX A. OBJECT ORIENTED 308

Geometric GeometricDrawable DrawableGeometricDrawable

originorigin o r i g i n

display!)move ()
resize()

display!)display!) move()
resize!)
d i s p l a y ()

move()
resize()

ShapeShape Shape

or i g i n o r i g i no r i g i n

move()
r e s i z e ()
d i s p l a y ()

move()
r e s i z e ()
d i s p l a y ()

move()
r e s i z e ()

III

Figure A.l: Workaround for multiple inheritance in the UML class diagram when not

supported by the implementation language. Text in italics denotes class members

inherited from the superclass(es). See text for explanation

Regardless of the approach chosen, it must be noted that multiple inheritance

situations should be avoided as much as possible, when using Java as the imple­

mentation language, since the functionality provided by any of the above solutions

is considered not to be equivalent to that of multiple inheritance. The latest Java

release offers a core application programming interface (API) to display 2D and

3D data. Third party attempts to incorporate Java within the GIS field are the

OpenMap project, the JShape project.(* add more) These attempts address the

problem of the GUI part mostly as a mediator between the user and the dataset,

and do not examine exhaustively how Java can be used to build a data model for

a GIS.

Laser Scan’s Gothic environment and applications built on top of this core pack­

age,

APPENDIX A. OBJECT ORIENTED PROGRAMMING LANGUAGES 309

Table A.l: Comparison of 0 0 programming languages. Based on comparison found

in Booch (1994), augmented with additional features and facts about Java.

Language-> Concept C + + S m a llta lk Java

Abstraction

Instance variables yes yes yes

Instance methods yes yes yes

Class variables yes yes yes

Class methods yes yes yes

Encapsulation of variables public / protected / private private public / protected / private

Encapsulation of methods public / protected / private private public / protected / private

Kinds of modularity file none file

Inheritance multiple single single

Generic Units yes no yes

Metaclasses no yes no

Strong typing yes no yes

Polymorphism single single single

Concurrency

Multitasking indirectly by class indirectly by classes built in multithreading

Persistence no no yes

Pure Object-Oriented no yes yes

Appendix B

Interoperability Standards In

Object Orientation

B .l CORBA

Objects in an object-oriented environment communicate via messages which have

a well and pre-defined format. These messages are sent through the class inter­

faces. Usually1, interfaces are only known to the classes themselves as well as

to the client classes that send messages according to the interface specification.

The designer, of course, is also aware of the interface format. In this way, for

two classes to communicate, they ought to know each other’s interface. If this

format has to be changed for any reason, objects fail to communicate. Then, ev­

ery message has to be re-formatted, which means extensive code alteration. As a

result, components will work together only if they have been designed and built

on standard interfaces which are independent of platforms, operating systems,

programming languages and network protocols (Siegel 1996). This is the status

of class communication without any interoperability standards. (Peckham and

Marianski 1988)

If somehow, client classes request the format of the messages from the server

]If no interoperability standards have been embedded in the implementation of the classes.
310

APPENDIX B. INTERO PERABILITY STANDARDS IN OBJECT 0RIENTATI0N311

classes before they actually send the message, then even if the interface of a

server class is altered, the client class will always be able to communicate properly

with any other class: in any case, each node in a distributed environment is an

object with a well-defined interface, identified by a unique handle. Messages pass

between a sending object and a target object; the target object is identified by its

handle, and the message format is defined in an interface known to the system.

This information enables the communications infrastructure to take care of all of

the details. In this way, interoperability results because clients on one platform

know how to invoke standard operations on objects on any other platform. This

is how standards like CORBA work.

The Common Object Request Broker Architecture (CORBA), introduced by the

Object Management Group (OMG) back in 1989, is an architecture that allows

applications to be broken up into components. Those components communi­

cate via a mediator software called Object Request Broker (ORB); it provides

language and platform independence, transparently converting client requests in

language X on platform A, to language Y and platform B at the server end. The

power of CORBA is that, rather than code to a communications API, a devel­

oper simply defines an abstract interface and the compiler generates the entire

communications routine.

Encapsulation enables CORBA to provide location transparency (Siegel 1996):

clients send the invocation to their local ORB, not to the target object itself; the

ORB routes the message to its destination through stored object references. In

this way, ORBs know about object’s physical addresses or where an application

resides so they automatically route messages to their proper targets. Inheritance

and polymorphism let CORBA work with object-oriented tools and languages.

In CORBA, an object’s interface is defined in OMG Interface Definition Language

(IDL). The interface definition specifies the operations the object is prepared to

perform, the input and output parameters they require and any exceptions that

may be generated along the way. Client and object implementation are then

APPENDIX B. INTEROPERABILITY STANDARDS IN OBJECT ORIENTATION312

isolated by at least threee components: an IDL stub on the client end, one or

more ORBs and a corresponding IDL skeleton on the object implementation

end. In this way, clients can only access an object as defined by its IDL interface,

as there is no way in the architecture to access the implementation directly.

The CORBA architecture separates the interface written in OMG IDL from the

implementation, which must be written in some programming language. The

object implementor must implement in some programming language all of the

operations specified in the interface, so that writing the interface in IDL and

implementing in a language are two different steps.

For every major programming language, an OMG standard language mapping

specifies how IDL types, method invocations, and other constructs convert into

language functions calls. This is how the IDL skeleton and the object implemen­

tation come together.

The ORB is responsible for storing interface definitions from server objects in

an interface repository (IR). In it, interface definitions can be added, modified,

deleted or retrieved. Its contents may be searched, and inheritance trees may be

traced to determine the exact type of an object.

Objects that conform to CORBA standard can be dynamically added within a

network. The Dynamic Invocation Interface (DII) is responsible for identifying

newly installed objects, during run-time stage. Moreover, a DII may:

- discover objects’ interfaces;

- retrieve their interface definitions;

- construct and dispatch invocations and

- receive the resulting response or exception information

Interoperability in CORBA is based on ORB-to-ORB communication. ORBs

form a network, where each one of them is responsible for sending requests to

local objects or forwarding requests to other ORB’s.

GLASGOW
U N fV L k.s iry
l i b r a K.y

