
RISK ANALYSIS IN CONSTRUCTION

by

Saleh Bashir Awad Gaderbouh

A thesis submitted for the degree of

Master of Science

Department of Civil Engineering

University of Glasgow

January 1993

© Gaderbouh January 1993

ProQuest Number: 13834020

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 13834020

Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Thuscs9̂ /
GLASGOW
XJNIVEP-SI
UBRAK^

ACKNOWLEDGEMENTS

This work reported in this thesis was carried out in the Department of

Civil Engineering University of Glasgow.

The author wishes to express his special thanks and appreciation to his

supervisor Dr. K. J. Williams, for his valuable guidance and constant

encouragement throughout this work. Thanks should also go to him for

undertaking much of the 'graphic' work in PERTRA1 and PETRA2.

The author is also grateful to professor Muir Wood (Cormack professor and

Head of the Department) and professor D. Green (previous Head of the

Department) for allowing the use of the Department facilities.

The author is grateful to his fellow researchers Dr. Zhang, Dr. H. Jasem,

Dr. Mesavi, Dr. O. Famiyesin, M. Abdulkader, A. Bensalem, K. Belkhair, A.

Hamidon, George Frangopoulos, Giovainni Schlipoti, P. Addison and X. Leng

for their helpful discussions and constant encouragement.

The author is grateful to Ras Lanuf Oil and Gas Processing Company and

to Jawaby Oil Company for the financial support during the course.

Finally my thanks reserved for my Mother, my Father, my Sister my

Brothers, my Wife Taisser and my Daughters Hind and Orayda for their

patience and constant encouragement throughout my studies.

SUMMARY

The work reported in this thesis centres around the development of a risk

analysis computer software package which operates in conjunction with

PERTMASTER ADVANCE, a widely- used commercial project planning

software package.

The risk analysis technique used herein is the so— called 'Monte Carlo

simulation technique' whereby a number of project simulations, each of which

makes use of a set of project data values (such as task durations) chosen

randomly from within specified probability distributions, is carried out with a

view to producing a particular solution (such as the project duration) defined

by a single probability distribution. In such a way, the degree of uncertainty

associated with the particular solution, which results from the individual degrees

of uncertainty associated with each of the data values on which such solution

is based, can be determined.

The software package comprises the following programs:

PERTRA1 — an interactive program which abstracts specific project data

from a datafile generated by PERTMASTER ADVANCE.

PERTRA2 — an interactive program which facilitates the keyboard input of

task duration probability distribution data.

PERTRA3 — a 'number— crunching' program which carries out the risk

analysis on the basis of data generated by PERTRA1 and

PERTRA2. The results of the analysis are written to a

user— specified datafile in such a form as to enable subsequent

graphical presentation thereof by widely available commercial

'graphics' software packages.

All three programs are written in FORTRAN 77 and can be run on any

IBM—compatible personal computer using the M S-D O S version 3.3 or higher.

TABLE OF CONTENTS

CONTENTS PAGE NO

ACKNOWLEDGMENTS i

SUMMARY ii

TABLE OF CONTENTS iv

LIST OF FIGURES xiii

LIST OF TABLES xviii

CHAPTER 1: INTRODUCTION TO RISK ANALYSIS 1

1.1 Introduction 1

1.2 Sources of Uncertainties 3

1.2.1 Accuracy of the Data 3

1.2.2 Inherent Uncertainties 5

1.3 Risk Analysis 6

1.3.1 Risk Analysis Techniques 7

1.3.1.1 Sensitivity Analysis 7

1.3.1.2 Probability Analysis 9

CHAPTER 2: NETWORK ANALYSIS 12

2.1 Historical Background to Critical Path Analysis 12

2.2 The Network Model 14

2.2.1 Activity on Arrow Networks 14

V

2.2.2 Activity on the Node Networks 16

2.2.3 A Comparison Between the Two Networks 17

2.3 The Analysis of Simple Networks 18

2.3.1 The Forward Pass 19

2.3.2 The Backward Pass 20

2.4 Criticality and Float 21

2.5 Improvement to Realism 22

2.5.1 Complex Links 23

2.5.2 Project Close-down 26

2.5.3 Window Times 27

2.5.4 Calendar Dates 27

2.5.5 Seasonal Variations 28

CHAPTER 3: CASH FLOW FORECASTING 30

3.1 The Need for Cash Flow Forecasting 30

3.2 The Requirement for a Forecasting System 32

3.2.1 The Data Needed for Cash Flow Calculations 33

3.3 Capital Lock-up 39

3.3.1 Factors Affect Capital Lock-up 42

3.3.1.1 Margin 42

3.3.1.2 Retention 43

3.3.1.3 Claims 43

3.3.1.4 Front-end Rate Loading 45

3.3.1.5 Overmeasurment 46

3.3.1.6 Back-end Rate Loading 47

vi

3.3.1.7 Delay in Receiving Payments from clients 47

3.3.1.8 Delay in Baying Labour, Plant Hires,

Material Supplies and Subcontractors 49

3.3.1.9 Inflation 49

3.4 Internal Rate of Return (IRR) 52

CHAPTER 4: THE ANALYSIS OF UNCERTAINTIES 54

4.1 The Two Approaches 54

4.1.1 The Statistical Method 55

4.1.1.1 Interfering Critical Paths 58

4.1.2 Simulation Techniques 61

4.2 Monte Carlo Simulation 62

4.3 The Difficulties of Simulation 63

4.3.1 The Necessary Number of Simulations 64

4.3.2 Data Storage 64

4.3.3 Distribution Calculation 65

4.4 Triangular Probability Distribution 67

4.4.1 Calculation of the Parameters 67

4.5 Random Selection of Task Duration 71

4.5.1 Equiprobability Bands 72

4.5.2 Direct Calculation Method 73

4.5.3 Comparison 74

4.5.4 Selection of Task Duration Using the Direct

Calculation Method 75

vii

CHAPTER 5: THE COMPUTER PROGRAMS 76

5.1 Introduction 76

5.2 PERTRA1: Data reading and initialisation 78

5.2.1 Subroutine HEADER 80

5.2.2 Subroutine READEXP 81

5.2.2.1 Subroutine ABTASK 83

5.2.2.2 Subroutine ABTRD 85

5.2.2.3 Subroutine ABLINK 86

5.2.2.4 Subroutine ABRES 89

5.2.2.5 Subroutine ABSUBRES 90

5.2.2.6 Subroutine ABCAL 91

5.2.3 Subroutine DIMCHK 91

5.2.4 Subroutine CALWKS 92

5.2.5 Subroutine TCOSTS 93

5.2.6 Subroutine RESCOST 95

5.2.7 Subroutine LSORT 105

5.2.8 Subroutine QUIT 109

5.3 PERTRA2: Interactive input of task duration Data 110

5.3.1 Subroutine HEADER 113

5.3.2 Subroutines FDISPLAY, FILTER, TDISPLAY 114

5.3.2.1 Subroutine FDISPLAY 114

5.3.2.2 Subroutine FILTER 116

5.3.2.3 Subroutine TDISPLAY 118

5.3.3 Subroutine QDISPLAY 119

5.3.4 Input of Task Duration Data 121

viii

5.3.5 PERTRA2 Output 122

5.4 PERTRA3: Risk Analysis and Cash Flow Calculations 123

5.4.1 Calendar Subroutines and Functions 127

5.4.2.1 Subroutine CALEND 127

5.4.2.2 Function IDOTW 129

5.4.2 Subroutine ANALYS 129

5.4.2.1 Function LNKDRN 135

5.4.2.2 Function ISADD 135

5.4.2.3 Function ISDEDC 135

5.4.3 Subroutine TRIDIS 136

5.4.4 Subroutine DSELECT 137

5.4.4.1 Function RAND 137

5.4.5 Subroutine PCOSTS 138

5.4.6 Subroutine PSORT 140

5.4.7 Subroutine PRSTAT 140

5.4.8 Subroutine CASTAT 140

5.4.9 Subroutine RRSTAT 140

5.4.10 Subroutine RRSORT 141

5.4.11 Subroutine FREQUA 141

5.4.12 Subroutine FRQIRR 142

5.4.13 Subroutine FRQCAP 142

CHAPTER 6: PROGRAM OPERATION

6.1 PERTRA1

6.1.1 Screen Displays

143

143

143

ix

6.1.1.1 Data Input Line 144

6.1.1.2 Screen Display Table 145

6.1.1.3 Message Line 145

6.1.2 Operational Details 146

6.1.2.1 Initialisation 146

6.1.2.2 Reading of Data File 148

6.1.2.3 Input of Working Week Data 150

6.1.2.4 Input of Cost Component Data 152

6.1.2.5 Generation of Data Files and Program

Termination 156

6.2 PERTRA2 157

6.2.1 Screen Displays 157

6.2.2 Operational Details 157

6.2.2.1 Program Introduction 157

6.2.2.2 Reading Task Duration Data 160

6.2.2.3 Data Input 160

6.2.2.4 Input of Tasks with VARIABLE Durations 162

6.2.2.4.1 Filtration Parameters 163

6.2.2.4.2 Filtration Parameters Logic 168

6.2.2.4.3 Input of Optimistic and Pessimistic

Durations Factors 172

6.2.2.5 Input of Tasks with INVARIABLE Durations 175

6.2.2.6 Updating of Task Data File and Program

Termination 177

X

6.3 PERTRA3 178

6.3.1 Program Operation 178

6.3.2 Data Input 178

6.3.2.1 Random Number Series Type 178

6.3.2.2 Number of Simulations 179

6.3.3 Data Output 179

6.3.3.1 One Simulation Run Data Output 179

6.3.3.2 Multiple Simulation Runs Output 180

CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS 184

7.1 Conclusion 184

6.2 Recommendations 185

REFERENCES 187

APPENDICES 189

Appendix A Contents of PMA—Generated Export File 189

Appendix B Samples of Data Files Gnenrated by PERTRA1 200

Appendix B.l Sample of the General Data Written

to the File FLNAME.GEN 200

Appendix B.2 Sample of the Task Data Written to

the File FLNAME.TSK 201

xi

Appendix B.3 Sample of the Link Data Written to

the File FLNAME.LNK 202

Appendix B.4 Sample of the Cost Data Written to

the File FLNAME.CST 203

Appendix C Program PERTRA1 and Subroutines 204

Appendix C.l Program PERTRA1 204

Appendix C.2 Subroutine HEADER 208

Appendix C.3 Subroutine DIMCHK 212

Appendix C.4 Subroutine READEXP 215

Appendix C.5 Subroutine RECCOM 221

Appendix C.6 Subroutine ABTASK 222

Appendix C .l Subroutine ABTRD 224

Appendix C.8 Subroutine ABLINK 226

Appendix C.9 Subroutine ABRES 228

Appendix C.10 Subroutine ABSUBRES 229

Appendix C .ll Subroutine ABCAL 230

Appendix C.l 2 Subroutine CALWKS 231

Appendix C .l3 Subroutine TCOSTS 235

Appendix C .l4 Subroutine QUIT 244

Appendix C .l5 Subroutine RESCOST 248

Appendix C .l6 Subroutine SRSWOP 250

Appendix C .l7 Subroutine LSORT 251

Appendix C .l8 Subroutine LSWOP 253

xii

Appendix C.l 9 Subroutine CHRCNV 254

Appendix C.20 Subroutine CREAD 255

Appendix D Program PERTRA2 and Subroutines 257

Appendix D .l Program PERTRA2 257

Appendix D.2 Subroutine HEADER 260

Appendix D.3 Subroutine QDISPLAY 264

Appendix D.4 Subroutine FDISPLAY 271

Appendix D.5 Subroutine FILTER 282

Appendix D.6 Subroutine TDISPLAY 284

Appendix D.7 Subroutine CHRCNV 292

Appendix D.8 Function INTCHR 293

Appendix D.9 Subroutine CREAD 294

Appendix E Sample of the Updated Task Data Written to

the File FLNAME.TSK 296

Appendix F Program PERTRA3 and Subroutines 297

Appendix F .l Program PERTRA3 297

Appendix F.2 Subroutine CALEND 304

Appendix F.3 Function IDOTW 306

Appendix F.4 Subroutine ANALYS 307

Appendix F.5 Function LNKDN 321

xiii

Appendix F.6 Function ISADED 322

Appendix F.7 Function ISDEDC 323

Appendix F.8 Subroutine TRIDIS 324

Appendix F.9 Subroutine DSELECT 325

Appendix F.10 Function RAND 326

Appendix F .l l Subroutine PCOSTS 327

Appendix F.12 Subroutine PSORT 334

Appendix F.13 Subroutine PRSTAT 335

Appendix F.14 Subroutine CAST AT 337

Appendix F.15 Subroutine RRSTAT 339

Appendix F.16 Subroutine RRSORT 341

Appendix F.17 Subroutine FREQUA 342

Appendix F.18 Subroutine FRQIRR 344

Appendix F.19 Subroutine FRQCAP 346

Appendix F.20 Function ID AY 348

Appendix G One Run Data Output Written to the File

PERTRA3.RES 349

Appendix H Multiple Runs Output Written to the File

PERTRA3.RES 350

8

11

11

15

16

24

24

29

34

37

40

44

46

48

51

xiv

LIST OF FIGURES

Sensitivity Analysis Diagram (Spider Diagram)

Probability Distribution

Cumulative Probability Distribution

Activity on Arrow Network

Activity on Node Network

Complex Links

(a) The Fundamental Network

(b) Precedence Network

The Seasonal Variations in the Construction

Productivity in the U.K.

Project Pre— tender Program

Project Cost— Revenue Pattern

Project Cash Flow Diagram

The Effect of Main Capital Lock— up

The Effect of Front End Loading

Effect of Client Payment Delay

Project Cash Flow Chart with 8% Inflation

XV

FIG. (3.8) IRR Calculation Flow Chart 53

CHAPTER 4:

FIG. (4.1) The Beta Distribution 57

FIG. (4.2) A Unique Critical Path 60

FIG. (4.3) Interfering Critical Paths 60

FIG. (4.4) Zone of Equal Probability 62

FIG. (4.5) Triangular and Beta Ditribution Compared 66

FIG. (4.6) Distribution Parameters 67

FIG. (4.7) Distribution Parameters Calculation Flow Chart 71

FIG. (4.8) Equi—Probability Bands 72

FIG. (4.9) Direct Calculation 73

FIG. (4.10) Selection of Task Duration Using Direct

Calculation 76

CHAPTER 5:

FIG. (5.1) Program PERTRA1 Flow Chart 79

FIG. (5.2) Flow Chart for the Subroutine HEADER 80

FIG. (5.3) Subroutine READEXP Flow Chart 82

FIG. (5.4) Subroutine ABTASK Flow Chart 84

FIG. (5.5) Subroutine ABTRD Flow Chart 85

FIG. (5.6) Subroutine ABLINK Flow Chart 88

FIG. (5.7) Subroutine ABRES Flow Chart 89

FIG. (5.8) Subroutine ABSUBRES Flow Chart 90

FIG. (5.9) Subroutine CALWKS Flow Chart 92

xvi

FIG. (5.10) Subroutine TCOSTS Flow Chart 94

FIG. (5.11) Resource Hierarchy 95

FIG. (5.12) Program PERTRA2 Flow Chart 112

FIG. (5.13) Subroutine HEADER Flow Chart 113

FIG. (5.14) Subroutine FDISPLAY Flow Chart 117

FIG. (5.15) Subroutine TDISPLAY Flow Chart 118

FIG. (5.16) Subroutine QDISPLAY Flow Chart 120

FIG. (5.17) Program PERTRA3 Flow Chart 125

FIG. (5.18) Subroutine ANALYS Flow Chart 134

FIG. (5.19) Subroutine TRIDIS Flow Chart 136

FIG. (5.20) Subroutine PCOSTS Flow Chart 139

FIG. (5.21) Subroutine PRSTAT Flow Chart 141

FIG. (5.22) Subroutine FRQIRR Flow Chart 142

CHAPTER 6:

FIG. (6.1) Programs Screen Displays 144

FIG. (6.2) File Name Input Screen Display 147

FIG. (6.3) File Name Confirmation Screen Display 147

FIG. (6.4) Data Abstraction 1 Screen Display 148

FIG. (6.5) Data Abstraction 2 Screen Display 149

FIG. (6.6) Working Week Input Screen Display 150

FIG. (6.7) Working Week Confirmation Screen Display 151

FIG. (6.8) Cost Components Data Screen Display 153

FIG. (6.9) Cost Components Data Screen Display (2) 153

FIG. (6.10) Cost Components Data Screen Display (3) 154

xvii

FIG. (6.11) Cost Components Data Continuation

Screen Display (1) 154

FIG. (6.12) Cost Components Data Continuation

Screen Display (2) 155

FIG. (6.13) Termination Screen Display 156

FIG. (6.14) Program Introductory Screen 1 158

FIG. (6.15) Program Introductory Screen 2 158

FIG. (6.16) Program Introductory Screen 3 159

FIG. (6.17) Reading Data Screen 160

FIG. (6.18) Task Duration Data Screen 1 161

FIG. (6.19) Task Duration Data Screen 2 161

FIG. (6.20) Task Duration Data Screen 3 162

FIG. (6.21) First Filter Parameters Screen 1 163

FIG. (6.22) First Filter Parameters Screen 2 164

FIG. (6.23) First Filter Parameters Screen 3 165

FIG. (6.24) Second Filter Parameters Screen 1 166

FIG. (6.25) Second Filter Parameters Screen 5 167

FIG. (6.26) Filters Confirmation Screen 168

FIG. (6.27) Filters Logic Screen 169

FIG. (6.28) Filters Logic Confirmation Screen 170

FIG. (6.29) Sample of Tasks with VARIABLE Durations Display 171

FIG. (6.30) Optimistic Durations Factor Input Screen 172

FIG. (6.31) Pessimistic Durations Factor Input Screen 173

FIG. (6.32) Fetors Confirmation Screen 174

FIG. (6.33) Filtered Tasks Display Screen 175

xviii

FIG. (6.34) Coding Screen Display 176

FIG. (6.35) Program Termination Screen Display 111

FIG. (6.36) Project Durations Frequency Diagram 181

FIG. (6.37) Project Durations Cumulative Frequency Diagram 181

FIG. (6.38) Internal Rate of Return (IRR) Frequency Diagram 182

FIG. (6.39) IRR Cumulative Frequency Diagram 182

FIG. (6.40) CAPTIM Frequency Diagram 183

FIG. (6.41) CAPTIM Cumulative Frequency Diagram 183

LIST OF TABLES

TABLE (3.1) Project Direct Cost Breakdown 34

TABLE (3.2) Project Summary 35

TABLE (3.3) Cost/Revenue Summary 36

TABLE (3.4) Project Cash Flow 38

TABLE (3.5) Cash Flow for Frontend Loaded Project 45

TABLE (3.6) Inflationary Project Cash Flow 51

CHAPTER 1

INTRODUCTION TO RISK ANALYSIS

1.1 Introduction

Experience of many projects indicates poor performance in terms of

achieving time and cost targets. Many cost and time overruns are attributable

to either unforeseen events, which may or may not have been anticipated by

an experienced project manager, or foreseen events for which uncertainty was

not appropriately accommodated. It is suggested that a significant improvement

to project management performance may result from greater attention to the

whole process of risk management! 9L

Risk and uncertainties do not occur only on large projects! 91. While size

can be one of the major causes of risk, other factors include the complexity,

speed of construction and location of the project.

Various authors have attempted to distinguish between risk and uncertainty

and also between risk and speculative risk. However, in the practice of

construction risk management, such distinctions are usually unnecessary and may

even be unhelpful!9] .

1

Risk and uncertainty are inherent features of all construction projects and

it is suggested that the following are useful basic concepts:!9]

1. Risks and uncertainties are associated with specific events or activities

which can be individually identified.

2. A risk event implies that there is a range of outcomes of the event, with

each outcome having a probability of occurrence.

3. Some risks offer only the prospect of adverse consequences (loss), for

example: structural collapse, bankruptcy, war, sea or flood damage; these

may be of a low or high probability but are generally of high impact.

4. Many common construction risks offer the prospect of either loss or gain,

for example: productivity of labour and plant, variation, inflation. These

are typically of high probability but may be of low or high impact.

5. Because of the individual nature of construction projects, there is usually

insufficient objective data to calculate the probability of occurrence of

specific outcomes of risk events; some degree of subjective judgement is

usually required.

Risks and their effects should be considered in all key decision points

throughout the project and by all the parties involved in the decision making

process.

2

1.2 Sources o f Uncertainty

Construction is a process which takes place in conditions of extreme

uncertainty. Since each construction project, to all intents and purposes, is

unique, the planner of such a project is faced with problems which have never

before occurred in exactly the same form in which they are presented to him,

and he is thus obliged to make forecasts of actions and performance which

rely on limited data. This data will become available to him as the work

progresses, and the continuous flow of data is a prime reason for regarding

the planning and control functions of management as two phases of the same

operation. The continual flow of data brings the possibility of continual

addition of detail and results in project planst6!.

The planner can not, in the face of the uncertainty of the data available

to him, simply abandon decision making. The detailed data, on which he is

dependent, is generated only when the action is begun, and the action will not

start if all decision are postponed until all is clear and certain. The planner

must at least formulate a strategy for the project. In most cases he must do

significantly more than this and provide, for example, cost estimates of an

accuracy sufficient for the purpose of tendering. The planner is faced with the

worrying task of basing important decisions on what is, at best, incomplete

datat8].

1.2.1 Accuracy o f the Data

In most circumstances, the planner of a construction project can increase

the confidence with which the data may be regarded by initiating further study

3

of the problem. He could, for example, commission extra site investigation

studies or obtain more detailed information about the supplies of materials or

labour in the area of the site. However, this gathering of extra data may be

difficult to justify since it is expensive and time consuming. Investment in data

gathering is subject to severely diminishing returns because some uncertainties

are inherent in the construction process itself and, as accuracy in other data

areas is increased, these inherent uncertainties begin to swamp the estimate.

The cost of pre— project data gathering is an important constraint for the

planner. Under the competitive tendering system, there is a one in six chance

that a given tender will be successful. For five tenders out of six, therefore,

the planning work is likely to be abortive and the extra costs incurred thereby

can only be recovered by increasing the overheads included in the next tender.

If pre— project planning costs are too high, overheads will increase with respect

to those of competitors and the probability of success will fall correspondingly,

thus increasing the problem. The planner must, therefore, aim to optimise the

accuracy/cost equation and be prepared to work with data less than certain!6].

In addition to the cost constraints on pre— project planning, there is a

severe constraint upon the time available for such since the competitive

tendering system allows very little time for the gathering of additional data.

For few projects would the planner be allowed more than twelve weeks to

familiarise himself with the project and the area on which the site is located.

In these circumstances the planner must work with little more information than

that provided by the Client (or the Engineer on his behaf), and contained in

the contract documents, together with specialised knowledge of his craft that he

has gained through experience of similar projects!6].

4

Obviously the situation concerning the gathering of data is less difficult if

the project is being planned in an environment different from that of the

construction industry competitive tendering regime. Time and cost constraints

are less severe in these circumstances but they are still there, appearing as the

problem, familiar in other design disciplines, of knowing when to 'stop thinking

and start doing'. Even in this favourable environment, detailed deterministic

data is not available concerning every parameter for, as has been remarked,

some uncertainty is an inherent part of the construction processt6!.

1.2.2 Inherent Uncertainties

Although the quality of most data can be increased by the gathering of

more detailed information, the value of such an exercise is limited by the

inherent and irreducible uncertainty of some of the project parameters.

The presence of one uncertain component in a sum prevents the

elimination of uncertainty from the total and reduces the data enrichment value

of other components. In these circumstances there is a level of accuracy which

it is futile to exceed. Therefore, it is possible to increase the accuracy of

some of the data available to the planner but not the accuracy of all the data

and these inherent uncertainties affect the whole policy of pre— project

planning and cost estimationt6].

The most obvious source of inherent uncertainty in Great Britain!6] is the

weather. This is difficult to predict in the short term, impossible in the long

term and, although the planner can reflect broad expectations in his plans, the

unpredictability of detail must somehow be reflected in his plans. Similarly the

5

effects of erratic materials supply, labour unrest, and plant breakdown must be

included in the plans, even though the existence or extent of these events

cannot be known a priori.

In view of the presence of uncertainty, and the difficulty of its removal,

the planner must be aware of its effects. He may know the effects and chose

to ignore them, but this should be a decision consciously made and not one

made by default!6].

1.3 Risk Analysis

Many risks and uncertainties are quantifiable in terms of their effect on

cost, time or revenue. Such risks can be analysed by measuring their effects

on the parameters used to assess project or contract viability (profitability

indicators)! 9J.

The common principle behind any technique for the analysis of risk is to

allow a range of values to the input data. For example, durations and costs

for specific activities, or estimated revenues accruing from the project, are not

given single values, but are considered over a range of values within which the

decision maker believes they are likely to lie. An extension of this principle is

to apply some statistical probability to any values used, so as to weight the

possible outcomes to a more likely result!9].

However, for many construction risks there is insufficient objective data

upon which calculations can be made of the probability of occurrence of

outcomes. This leads some practitioners to be sceptical of the value of any

6

form of risk analysis since, by implication, the results must be dependent on

some degree of subjectivity regarding the input dataM .

1.3.1 Risk Analysis Techniques

Techniques for risk analysis have been theoretically established for a

number of years, but their practical application to construction projects has

been limited. Two of these are Sensitivity Analysis and Probability Analysis.

1.3.1.1 Sensitivity Analysis

Sensitivity analysisM seeks to place a value on the effect of a variation of

a single variable parameter within a project by analysing that effect on the

project plan. It is the simplest form of risk analysis.

Uncertainty and risk are reflected by defining a likely range of variation

for each component of the original base case estimate. In practice, such an

analysis is only done for those variables which have a high impact on cost,

time or economic return and to which the project will be most sensitive. The

effect of change of each of these variable on the final cost or time criteria is

then assessed in turn, across the assumed ranges.

If the effects of changes to several parameters are examined, a so called

'spider' diagramt9] (see Figure 1.1) constitutes the most useful method of

presenting the results such that the most 'critical' variables may be readily

identified.

7

3a
3
o
c
<1)O)c
03
.C
O
a>O)to
c0)ok_
a)a.

40

Tun nel

30

'20

20

30
Grou t ing

40

P e r c e n t a g e c h a n g e in c o s t of c o n t r a c t

Figure 1.1 Sensitivity Analysis Diagram (Spider Diagram)

One weakness of sensitivity analysis is that the variables are treated

individually!9]. This leads to severe limits on the extent to which combinations

of variables can be assessed directly from the data. A further weakness of such

an analysis is that the sensitivity diagram gives no indication of the anticipated

probability of occurrence of any event.

In spite of these weaknesses it has been found that considerable benefits

8

may derive from the use of this simple tool. Such benefits!9] includes:

(a) the powerful impact on management of the realization that there is a

range of possible outcomes for a project;

(b) enhanced reality of the decision— making process, despite the increased

complexity of the information on which such decisions are based;

(c) the ability to compare the robustness of projects to specific uncertainties;

(d) the relative importance of each variable becoming immediately apparent,

thus highlighting those areas which would most benefit from any attempts

to reduce or control uncertainty, or those areas which require further

development work;

1.3.1.2 Probability Analysis

Probability analysis is a more sophisticated form of risk analysis: it

overcomes the limitations of sensitivity analysis by specifying a probability

distribution of each variable and then considering situations where any (or all)

of these variables can change their initial values at any given time!9].

Defining the probability of occurrence of any specific value of a variable

may be a difficult problem: not only does every project have many unique

features, but political, commercial and fiscal environments change quickly.

Nevertheless, it has proved!9] possible to make tentative estimates of

probability distributions and ranges.

9

Essentially, a distribution profile is allocated to the range which has been

defined for the variable. A number of profiles are possible, but simple ones

are advocated in the absence of statistical data.

The problem of assessing how risks can occur in combination is usually

overcome by using a sampling approach, running the analysis a number of

times taking random values of each variable (for example the Monte Carlo

technique)!9].

The outcome of this full analysis is a range over which the final solutions

could lie, and the probability of achieving such solutions is often shown

diagrammatically. Examples of such are shown in Figures 1.2!9! and 1.3! 9h

Depending on the network model being used, and the results required, the

analysis can either be time— only, cost— only or, in view of the inherent

relationship between both parameters, integrated (time and cost).

Probability analysis has had some notable successes in terms of its

predictive ability and consequent assistance to managers in decision making!9].

10

Fr
eq

ue
nc

y
of

O
cc

ur
en

ce

%

Pe
r

pe
rc

en
t

IR
R

7

6

5

4

3

2

1

0
- 2 0 -10 0 10 2 0 3 0 4 0 5 0 6 0 7 0 8 0

Internal Rate of Return (IRR) %

Figure 1.2 Probability Distribution

100

90

80

70

« 60
OJ3
Z 50

<U 40 >

30

20

252 260 268 276 284 292 300 308 316 324

Project Duration (Days)

Figure 1.3 Cumulative Probability Diagram

11

CHAPTER 2

NETWORK ANALYSIS

2.1 Historical Background to Critical Path Analysis (CPA)

Before the advent of CPA, probably the best— known way of trying to plan

was by means of a bar or Gantt chart and, although this is extremely useful

in many cases, it suffers from inability to show the inter— relationship between

the various activities. Thus, it is not possible to deduce from a Gantt chart

that, say activity X must be completed before activity / can be started, or

that a delay between activity Y and activity Z is permissible but not essential.

In small projects this is not serious, as the planner can remember the various

links between activities, but in large projects such feats of memory are

impossible and the Gantt charting technique is then of very limited value[1 °].

The middle of the 1950s saw an explosion in interest in this problem. In

Great Britaint1 °], the Operational Research Section of the Central Electricity

Generation Board investigated the problems concerned with the overhaul of

generating plant a — task of considerable complexity which was increasing in

importance as new high— performance plant was being brought into service. By

1957, the O.R. Section had devised a technique which consisted essentially of

identifying the 'longest irreducible sequence of events' and, using this

12

technique, the time taken to carry out an experimental overhaul at a power

station was reduced to 42% of the previous average time for the same work.

Continuing to work upon these lines, the overhaul time was subsequently

further reduced by 1960 to 32% of the previous average time. The rather

clumsy name: 'longest irreducible sequence of events' was soon replaced by the

name, 'major sequence' and it was pointed out, for example, that delays in

the 'major sequence' would delay completion times, but that difficulties

elsewhere need not necessarily involve extensions of total time. This work of

the O.R. group was not made public, although comprehensive reports were

circulated internally which foreshadowed much later work carried out elsewhere.

At much the same time, work was being undertaken in the U.S.A. and, in

early 1958, the U.S. Navy Special Projects Office! 91 set up a team to devise a

means of dealing with the planning and subsequent control of complex work.

This investigation was known as Program Evaluation Research Task, which gave

rise (or possibly derived from) the code name PERT. By February 1958, Dr.

C.E. Clark, a mathematician in the PERT team, presented the early notions of

arrow— diagramming, doubtless deriving from his study of graphics. This early

work was rapidly polished and, by July 1958, the first report, PERT:

Summary Report Phase i t 1 °], was published. By this time, the full title of the

work had become Program Evaluation and Review Technique and the value of

the technique seemed well established. By October 1958, it was decided to

apply PERT to the Fleet Ballistic Missiles Programme [1 °1, where it was

credited with saving two years in the development of the Polaris missile.

Similar development work was being undertaken elsewhere, for example: in

the U.S. Air Force! 101 under the code name PEP. Also in 1958, the E.I. du

Pont de Nemours Company!1 °] used a technique called the Critical Path

13

Method (CPM) to schedule and control a very large project and, during the

first complete year's use of CPM, it was credited with saving the company

$1.0 million. Subsequent use underlined the basic simplicity and extraordinary

usefulness of this method, and by 1959, Dr. Mauchlyt10!, who had worked

with Du Pont project, set up an organization to solve industrial problems using

Critical Path Method.

Since 1958, considerable work has been carried out, mainly in the United

States of America, in consolidating and improving these techniques.

2.2 The Network Model

Two systems of representation of networks are used in project management:

the first is known as 'Activity on Arrow', examples being the well-known

CPM and PERT programs; the second is known as 'Activity on Node', and

PDM is an example of this.

2.2.1 Activity on Arrow Networks

Activity on Arrow networks, see Figure 2.1, were first used in the late

1950s when the two research teams coincidentally invented the very similar

techniques CPM and PERt M .

PERT and CPM are each based on the simplification of the fundamental

network which occurs if the events linked by 'zero time' arrows are combined.

If this is done, the arrows joining the nodes can be said to represent activities

14

while the nodes continue to represent events, although now the events are, in

fact, combinations of two or more simple events.

The simplification has, however, been bought at the price of some

ambiguity for the nodes representing more than one event. If, as is sometimes

the case, it is necessary to limit the events at the node, then the 'zero time'

arrows of the fundamental network must be re— introduced. Thus to represent

the exact situation the 'zero time' arrows (called dummy arrows), must be

shown in the network as ilustrated by the 'broken' arrow in Figure 2.1. As

the complexity of networks increases so does the proportion of dummy arrows

in the network, robbing the diagram of some of the simplicity which was won

by combining events.

Activity Activity Activity

Activity

Figure 2.1 Activity on Arrow Network.

15

2.2.2 Activity on Node Networks

A further simplification of the fundamental network entails combining the

two events which mark the beginning and end of an activity, and the arrow

which represent the activity itself. This combination leads to a technique known

as the Precedence Diagram Method (PDM) which was introduced in the

1960s! 61. PDM is used in the construction industry to an increasing extent,

although the ten— year lead by the Activity on Arrow diagrams has built a

considerable 'brand loyalty' for the older techniques. A section from an

Activity on Node Network is shown in Fig.2.2.

ACTIVITY B

ACTIVITY DACTIVITY A

ACTIVITY C

Figure 2.2 Activity on Node Network.

The simplification of the network, brought by the change to precedence

diagrams, is not bought at the cost of ambiguity in the diagram, for

conventionally the nodes of a precedence network are drawn in the elongated

form which makes it possible to visualise the left— hand end of the node as

16

the start of the activity and the right— hand end as the finish. Thus arrows

will enter from the left and leave from the right. There is no need for

dummy arrows or equivalent in precedence networks, for only one arrow, that

presenting the carrying out of the task, can ever occur between the beginning

and the end of the task.

2.2.3 A Comparison Between the Two Networking Systems

Although CPM and PERT have established a firm hold within the

construction industry planning environment, there are strong arguments in

favour of a change to the use of PDM. These arguments derive from the lack

of ambiguity in PDM and from the relative ease of the use of PDM within

computer programs! G1.

It has been pointed out above that the CPM simplification of the original

network introduces ambiguities. These ambiguities can be overcome by the use

of dummy arrows but this destroys some of the simplifications and introduces a

potentially dangerous dual status of arrows, some representing both logic and

activities while others, the dummies, representing logic alone. Whilst the

presence of dummy arrows may not be troublesome in simple networks, in

complex networks they will dominate the diagram and will become troublesome

when the analysis of the diagram is carried out. The precedence diagram, on

the other hand, utilises only one type of arrow, that representing the logical

link between activities, the activity arrow having been combined into the node.

The specification of the network for computer usage is much simpler if

PDM, rather than CPM, is used. In CPM, the nodes present rather ephemeral

17

events and the activities are defined as linking these. Thus, to code the

activities the operator of a computer program must first draw out the network,

numbering the nodes, and then use this network during the input stage of the

program. With PDM this is not so. In order completely to define the network

the user must merely have a list of activities and be in a position to specify

which activities are dependent on or precedent to other activities. No prior

drawing of network is necessary.

Thus although there are two networking systems available for use in the

construction industry, all the advantages, other than the familiarity of the

industry with CPM, favour change to the widespread adoption of PDM. All the

subsequent discussion and the subroutines developed for this research work will

be concentrated, therefore, on the use of the precedence diagram as the most

useful model of project.

2.3 The Analysis o f Simple Networks

It has been argued that a project is a series of activities and the model

which has been developed is such that the sequence of activities can be

predicted mathematically by forming the activities into a network. The next

concern is to develop a mathematical procedure whereby the network can be

analysed.

All the activities in the network could take place at any time but, given a

particular start date of the project, there is a limit to how early each activity

commence. The first part of the analysis of networks is concerned with the

identification of the earliest possible time for each activity in the network, this

18

operation being known as the forward pass.

If a forward pass is carried out for the whole network the, earliest possible

time for the last activity will be obtained, and, if the aim is to complete the

whole project in the shortest possible time, then this early time of the final

activity will also be the latest permissible time. The calculation of these latest

permissible times forms the second part of the analysis and is called the

'backward pass'.

2.3.1 The Forward Pass

In order to calculate the earliest possible time of an activity all the

activitiess which must, in accordance with the logic of the project, precede it

must be considered and allowance must be made for the durations which are

assigned to any of the network arrows. In the case of the precedence network,

where all the arrows have zero duration, the start time of an activity will be

set to the latest of the finish times of the preceding activities.

As this process continually looks backward to the precedents, it is most

efficient to carry out the calculations systematically, working from the start

activity, which has no precedents, to the end activity which has every event in

the network as its precedent. In this way the calculation is progressive and

cumulative: an activity times being determined only when all its precedents

have been themselves assigned an early time.

By convention, the upper part of the precedence network node is used to

show the early dates: the upper left showing the earliest start of an activity

19

the upper right showing the earliest finish. Starting from the first activity in

the network, setting each start time to the latest precedent finish time and

each finish time to the start time plus the duration and the values are the

earliest possible times for the various activities i.e. for, the Activity on Arrow

networks, the earliest possible times (EET) by which each event can be

reached is as follows:

EET(succeeding event) = EET(preceding event) + Activity Duration

Where more than one activity leads into an event, the EET is taken to be

the largest value of event time computed from any of the routes leading into

that event.

For the Activity on Node model, the ealiest start time (ES) of an activity

is the highest earliest finish times (EF) of preceding activities and

EF = ES + Activity Duration

2.3.2 The Backward Pass

If the end activity of the project is to take place at the earliest possible

time, then the times of all other activities in the network which affect it have

a time which they must not exceed. To calculate this latest permissible time a

process similar to that developed for the forward pass is required. In this case,

however, the analysis is concerned not with the activities between the start of

the project and the activity being considered, but with those between the

activity and the end of the project.

20

Once again the calculation proceeds in an orderly fashion, but in this case

the progression is backwards from the finish activity which have no dependent

activities to start, and hence the name 'backward pass'. For, Activity on

Arrow networks, the calculation of latest event times (LET) is carried out as

follows:

LET(preceding event) = LET(succeeding event) — Activity Duration

where more than one activity leads from an event, the (LET) is taken to

be the smallest value of event time computed using any of the routes leading

back into that event.

For the Activity on Node model, the latest finish time of an activity (LF)

is the lowest latest start time (LS) of their succeeding activities and

LS = LF — Activity Duration

2.4 Criticality and Float

The forward and backward pass through the network produce for each

activity a range of times at which the activity can take place without

jeopardising the completion date of the project. The limits of this range are

the earliest possible activity times, produced by the forward pass procedure,

and the latest permissible time, the product of the backward pass.

In some cases these two times will coincide, and the earliest possible time

will also be the latest permissible time, and then any slip will delay the

completion of the project. These activities are known as the critical activities,

21

and the path through the network containing them is called the 'critical path'.

Activities away from the critical path have a range of possible times, and

this range is known as float. Thus float, the difference between the early and

the late times of an activity, is a measure of the tolerance within the network,

and comparisons of the float of activities can help the manager of a project

to assess priority. In complex projects where, for example, expensive resources

are to be shared, the ability to delay the start of one activity, or through the

sharing of a common resource to extend its duration, can be of major

importance to the manager. Criticality and float make such decision possible.

2.5 Improvements to Realism

The validity of the analysis can be increased by making the model of the

project on which the planner is working as realistic as possible. The aim of

the developer of all interactive design programs should be to reduce to a

minimum the mental gymnastics which the designer has to perform as he takes

the presented results and assimilates them prior to deciding his next action!6].

Five techniques will be described, most of them being possible in the

non— computer environment when used individually. Their use in combination

would face the manual analyst with a complexity such that, at the least, the

analysis would lose the elegance which makes hand calculation of network

pleasant and that, in the worst case, would force the planner to make

mistakes.

22

2.5.1 Complex Links

One of the advantages of the precedence diagram method is that the

specification of links, which are more complex than the direct link, is possible.

These complex links, which, together with their equivalents in the fundamental

network model, are shown in Figure 2.3!6], enable the planner to describe

relationships which can only otherwise be described by the splitting of

activities, an exercise which would result a significant increase in the

complexity of the network. The complex links can be 'leads', which specify

that the start of an activity is in some way dependent on the start of its

precceeding activity, or 'lags', which specify a relation between the finish of

an activity and the finish of its preceding activity.

Complex links allow the planner to use larger activities than would be

possible otherwise, and so reduce the complexity of networks both for the

analyst and for the user of the results. Their use should be limited, however,

for it is tempting for the planner to form 'omnibus' activities which contain a

large number of sub— activities and which, because they are amorphous, make

detail control impossible!6].

Experience shows that, in a typical contruction network, 10 to 15% of the

links in a network may be complex. In some cases, however, particularly in

the building industry, wide use is made of very large activities and up to 80%

of the links may be complex (with corresponding control difficulties)!6]. The

incorporation of complex links into the analysis is not difficult. Referring to

Figure 2.3 it can be seen that, in the forward pass, the start of activity

'BACKFILL' is tied not to the completion of the previous activity but to the

partial completion thereof.

23

DRAINAGE

DAY 1 DAY 2 DAY 3

DAY 1 DAY 2 DAY 3

S t a r t

s t a r t

s t a r t

f in i s h

f in i sh '

f in i sh '

BACKFILL

(a) The Fundamental Network

5 DRAINAGE 8

6 3 8

0 EXCAVATE S

0 5 5

1 DAY
8 BACKFILL 9

6 3 9

(b) The Precedence Network.

Figure 2.3 Complex Links

24

Thus 'BACKFILL' can start after one day's work has been done on

'DRAINAGE', and thus its start is tied to the start of 'DRAINAGE'.

Similarly, the 'lag' link tying the start of the last day's work on 'BACKFILL'

to the completion of drainage. In each case the usual forward and backward

progression through the network is used as the basis of calculation.

Two points should be noted, the first of which is that, If the lag link in

Figure 2.3 were not present there would be no tie between the finish dates of

the activities and the rather strange situation would occur in which the earliest

possible completion of the 'DRAINAGE' was day 8, but the latest permissible

date was day 9, while the start of the activity remained critical. Consideration

of the fundamental network explains this, for the float occurs within the

second or third day's work on the 'DRAINAGE' activity leaving the first day's

work as critical. Secondly, the delay between the start of the 'DRAINAGE'

and the start of the 'BACKFILL' is not absolute. If the first day's drainage

work is interrupted, then the delay will be extended.

Complex links are one of the strengths of the precedence network method

in that they enable the planner to represent the network in the way that he

pictures it (that, for example, the 'BACKFILL' starts one day after the start

of the pipelaying) rather than forcing him to make rather artificial divisions in

a continuous operation. Whilst they should be available as an option in all

PDM programs, their use should be carefully monitored if difficulties in the

control phase of the project are to be avoided.

25

2 .5.2 Project Closedown

It is very unusual for projects to continue without a break other than the

usual stoppages for weekends; even the busiest project has to accommodate

national holidays. When these stoppages occur they obviously lengthen the

duration of the current activities.

One way of dealing with this is to construct plans in terms of project

days, the project day number being equal to the number of working days since

the beginning of the project. This approach is widely used in the

non— computer environment but has disadvantages. The major disadvantage is

that the construction of a separate project calendar divorces the project

activities from the outside world and makes interrelation between them more

difficult for the planner and the managert6!. A second problem caused by this

approach is that such an analysis method can not handle those activities which

are unaffected by close own; examples of these include the curing of concrete

and the consolidation of an embankment under surcharge, i.e. those which

continue whether there are men on site or not. An alternative to the project

calendar approach which avoids these difficulties, but at a cost of extending

the analysis time, is to consider the effect of closedown within the analysis

itself. As the duration of each activity is being incorporated into the network

(i.e. the calculation of finish times in the forward pass and start times in the

backward pass) the location of the activity in time is checked to see if it

coincides with a close-down period. If it does then the duration is extended

by a time equal to the length of the close— down.

26

2.5.3 Window Times

A very frequent constraint on the planner of the projects is the

requirement that an activity should fall within the specified period. Examples

of this are the 'possession times' provided by the railways for the carrying out

of work near their tracks and the 'weather windows' which have dictated the

launch and positioning of off— shore structures for the oil industry. This type

of constraint is easily built into the basic analysis method for the forward and

backward pass merely by setting the event times prior to analysis for the

forward and backward passes respectively to the start and finish of the time

window for the activity concerned and then only altering the event times if

they are to be increased (in the forward pass) or reduced (in the backward

pass).

Experience shows that very rarely are project plans free from constraints of

this typeM . The absence of the facility automatically to include them in the

program seriously inhibits the usefulness of planning programs, but their

inclusion is both easy and cheap.

2.5.4 Calendar Dates

The tying of project events to calendar dates has already been shown to

be important. The major advantage of the provision of calendar dates is that

it removes the need for the planner to carry two calendars in his head,

making the use of output much more easy. It is particularly valuable where

the project is tied to external events as when, for example, window times are

being used. The provision of calendar dates is one of the essential features of

27

a useful planning program.

Although the use of calendar dates is of great help to the planner, this

help is necessary only at the output stage. There is, therefore, merit in

delaying consideration of calendar dates until output data are being presented

and in using a project calendar within the analysis.

2.5.5 Seasonal Variations

The construction industry in the U.K. is particularly sensitive to adverse

weather conditions, and this sensitivity must be reflected by the planner as he

positions activities in time and estimates activity durations using forecasts of

production. Where this adjustment is made, it is made after the analysis of the

network by extending those activities which have been shown to occur during

the winter months and reducing the times of those which fall in the summer.

Many Contractors have curves of productivity which act as guides for the

planner and the site manager; one such is shown in Figure 2.4M . These

curves correct not only for the effects of bad weather but also for the shorter

working hours of the northern winter and the effect on the morale of the

labour force due to working in unpleasant conditions.

A computer technique which allows for the seasonal variations to

production is obviously of benefit, for all activities can then be estimated as if

the work were to be carried out at those times of the year (April and

September) when an average production can be assumed. Like the provision of

window times, this facility is very easily built into the analysis method.

28

<u00CQU
!>
C3

ao♦3o3
T3Oua.

2<->3O
s

1 4 4 1 4 4 1 4 4
139

105

79

116

85

72

59

Jan Feb Mar April May June July Aug Sept Oct Nov Dec

Figure 2.4 The Seasonal Variation in Construction Productivity in the UK.

The ability to adjust times automatically is advantageous not only to the

planner of projects but also to those responsible for the control phase and,

perhaps most lucratively, those concerned with the costing of disruption and

variations. This technique cannot of course be used in the absence of a

routine to calculate calendar dates. It consist simply of the identification of the

month in which the activity is programmed to take place and the application

of a suitable factor to the stored duration. It is a simple but remarkably

effective addition to the traditional analysis, but one which cannot be made

without the help of the computer.

29

CHAPTER 3

CASH FLOW FORECASTING

3.1 The Need fo r Cash Flow Forecasting

Each year the construction industry usually experiences a proportionally greater

number of bankruptcies than do other industriest4!. One of the final causes of

bankruptcy is a shortage of cash resources combined with a failure to convince

financial institutions and other creditors that this shortage is only temporary. This

sort of situation comes about for a variety of reasons, the most usual being a

tendency to concentrate more on the relative magnitudes of cash inflows and

outflows, i.e. profit, than on the relative timings thereof.

A cash flow is the transfer of money into or out of the company. The timing of

cash flow is important. There is always, whatever the industry, a time lag between

incurring the production or manufacturing costs of an article and receiving the cash

payment for the finished product.

In the context of the construction industry, even though the contractor is paid at

regular intervals throughout the project and not in a lump sum at the end, the

contractor is required to carry the cost for somewhere between one and two months

owing to the fact that work completed during any given month is not actually paid

30

for until the end of the following month.

It is worth mentioning that, even if the contractor has credit facilities with

suppliers of plant and materials, there are no credit facilities for paying labour, so

that, the contractor will always have to carry a proportion of the cost until such

time as he's paid.

It is this time lag between costs and receipts which is responsible for the most

common economic feature of construction project. Namely that, particularly with a

tight profit margin, most projects don't break even until they are virtually

completed.

Together with the risks associated with construction, this is probably the reason

why the construction industry experiences more bankruptcies in any given year than

the majority of other industries.

It can be conclude that, irrespective of the size of the company, the need to

forecast cash requirements is vital so that provisions can be made for these difficult

times before they occur.

Contractors who undertake cash flow forecasting do so at two levels: Project

level which is carried out at the tendering stage, for single projects and

company level, carried out at regular intervals, which involves the aggregation of the

cash flows for all active projects!4].

These two types of forecasts require different treatments. In the foremer case,

the estimator has all the project details at the estimating stage and, because the

forecast applies only to one project, the estimator can produce a carefully calculated

31

forecast based on these details by allocating bill items to 'activities' on the

pre— tender 'bar chart' or 'network'. This creates a direct link between the

estimators build— up for each item and the pre— tender construction program and

allows the production of value versus time and cost versus time curves from which

'cash in' and 'cash out' can be calculated. This calculation is too detailed to be

repeated for every project, every quarter or every month, so contractors often devise

short cuts when undertaking the company or divisional cash flow forecasts, such

shortcuts allowing cash flow forecasts to be made more regularly than just the one

detailed forecast at the estimating stage.

3.2 The Requirement fo r a Forecasting System

Cash flow forecasting is strongly advisable and, for it to be meaningful, must be

done regularly. It therefore follows that, for forecasting to be done regularly, the

method must be simple and yet accurate enough for the purpose. It is essential,

therefore, to reduce the data required for cash flow forecasting to the minimum

possible compatible with reliable forecasts and to streamline the necessary

calculations!4].

Cash flow forecasting is carried out for the following reasons:

(a) To ensure that sufficient cash is available to meet demands.

(b) To provide a reliable indicator to financing institutions, that, advances made can

be repaid according to an agreed programme.

(c) To determine the cost of financing .

32

(d) To ensure that cash resources are fully utilised to the benefit of the company.

3.2.1 The Data Needed for Cash Flow Calculations

In construction companies, the most appropriate approach is to calculate cash

flows on a project basis (which is the immediate concern of this research project)

and to aggregate the cash flows from all projects and head office to form the

overall company cash flow. This could be structured into divisions or areas for larger

companies. The data required for a project are:

1. The magnitude and timing of incurred costs (cash outflow).

i.e. the costs incurred by the contractor in carrying out the project, being based

on the estimator's cost build up and the pre— tender programme.

2. The magnitude and timing of receipts (cash inflow).

i.e. the payments by the client for the work completed, being based on incurred

costs, plus the appropriate profit margin, and the pre— tender programme.

The compilation of a project cash flow is illustrated by considering a small

construction project, the pre— tender programme and estimated financial breakdown

of which are shown in Figure 3.i t 1 A and Tables 3.i t 1 A and 3.2t1 A.

33

Month 1Activity

Figure 3.1 Project Pre—tender Programme.

ACTIVITY LABOUR MATERIALS PLANT S U B -C O N T . TOTAL

A 1 7 , 0 0 0 9 , 4 5 0 1 1 , 2 5 0 - 3 7 , 7 0 0

B 1 2 , 1 5 0 1 2 , 7 8 0 4 7 , 5 5 0 - 7 2 , 4 8 0

C 3 , 2 4 0 1 ,8 0 0 2 , 2 5 0 - 7 , 2 9 0

D 1 3 , 6 8 0 7 , 6 8 0 9 , 1 0 0 - 3 0 , 2 4 0

E 1 1 , 3 4 0 9 , 4 5 0 1 7 , 0 1 0 - 3 7 , 8 0 0

F 1 4 , 8 8 0 8 , 2 0 0 9 , 1 0 0 - 3 1 , 9 8 0

G 1 8 , 7 2 0 1 1 , 6 8 0 1 6 , 4 0 0 - 4 6 , 8 0 0

H 2 0 , 4 5 0 1 1 , 3 5 0 1 3 , 6 0 0 - 4 6 , 4 0 0

J 6 , 5 0 0 - 9 , 4 6 0 4 3 , 2 0 0 5 8 , 1 6 0

K 1 0 , 9 8 0 6 , 1 2 0 7 , 2 9 0 - 2 4 , 3 9 0

L 2 8 , 4 2 0 1 8 ,9 7 0 4 7 , 4 6 0 - 9 4 , 8 5 0

M 4 2 , 1 0 0 2 3 , 4 0 0 2 8 , 0 0 0 - 9 3 , 5 0 0

N 1 2 , 6 0 0 6 , 3 6 0 1 8 , 9 6 0 - 3 7 , 9 2 0

P - 1 0 , 5 0 0 - 4 8 , 1 0 0 5 8 , 6 0 0

Q 1 9 , 5 3 0 1 0 , 8 9 0 1 3 , 0 5 0 - 4 3 , 4 7 0

R 5 , 8 7 0 3 , 1 5 0 3 , 7 8 0 - 1 2 , 6 0 0

S 4 , 7 6 0 2 , 8 8 0 3 , 3 2 0 - 1 0 , 9 6 0

T 4 , 9 5 0 2 , 6 1 0 3 , 1 5 0 - 1 0 , 7 1 0

U 5 , 4 0 0 1 2 ,9 0 0 1 1 , 4 0 0 - 2 9 , 7 0 0

V 3 , 8 7 0 2 , 0 7 0 2 , 6 1 0 - 8 , 5 5 0

TOTALS 2 5 4 , 9 4 0 1 7 2 , 1 2 0 2 7 4 , 7 4 0 9 1 , 3 0 0 7 9 3 , 1 0 0

Table 3.1 Project Direct Cost Breakdown.

34

I
[Labour Total £ 254,940
i

Materials Total £ 172,120

Plant Total £ 274,740

Subcontractors Total £ 91,300
Direct Costs £ 793,100

General Overheads £ 81,800

Construction Costs £ 874,100

Profit (@ 5% margin) £ 43,705

Tender Sum £ 917,805

Table 3.2 Project summary.

Based on the pre— tender programme and the financial breakdown, the

cumulative cost and revenue pattern is shown in Table 3 .3 t1 7] and Figure 3.2[1 7l.

35

A P T I \ / I T V
M O N T H

A C 1 1 V 1 1 Y
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

A 3 7 . 7 0 0 - - - - - - - * - - -

B - 4 6 . 3 2 0 2 4 . 1 6 0 - - - - - -

C - - 7 , 2 8 0 - - - - - -

D - - 1 6 . 1 2 0 1 6 , 1 2 0 - - - - - * -

E * - 1 2 . 6 0 0 2 6 , 2 0 0 - - - - - - -

F - - 1 6 . 8 8 0 1 6 . 8 8 0 - - - - - -

G - - - 1 1 , 7 0 0 2 3 . 4 0 0 1 1 . 7 0 0 - * - - - '
H - - - 8 , 0 6 0 1 8 , 1 6 0 1 6 . 1 6 0 - - - - -
J - * - 2 8 . 0 8 0 2 8 . 0 8 0 - - - ' -
K - - - - 1 6 , 2 6 0 8 . 1 3 0 - - - -
L - - * - 1 3 . 6 6 0 2 7 . 1 0 0 2 7 . 1 0 0 2 7 . 1 0 0 - * -
M - - - - - • - 4 8 . 7 6 0 4 6 , 7 6 0 - - - -

N - - - - - - 6 . 3 2 0 1 2 . 6 4 0 1 2 . 6 4 0 6 , 3 2 0 - -

P - - - - - - - - 2 3 . 4 4 0 2 3 . 4 4 0 1 1 . 7 2 0 -

Q - - - - - - - - 1 4 , 4 8 0 1 4 . 4 8 0 1 4 . 4 8 0 -

R - * - - - - - - - 1 2 . 0 0 0

S * - - - - - - - - 6 . 4 6 0 5 . 4 8 0 -
T - - - - - - - 7 . 1 4 0 3 . 6 7 0

U - - - - - - - - - 8 . 8 0 0 1 8 . 8 0 0

V - - - - - - - - - - 8 . 6 5 0

O V E R H E A D S 0 . 7 6 0 6 , 7 6 0 6 . 7 6 0 6 . 7 6 0 6 , 7 6 0 6 . 7 6 0 6 . 7 6 0 6 , 7 6 0 6 . 7 6 0 6 . 7 6 0 6 . 7 6 0 6 . 7 5 0

CUMU L A T I V E
C O S T 4 4 . 4 6 0 8 6 . 6 2 0 1 6 6 . 4 4 0 2 4 8 . 2 6 0 3 4 2 . 6 6 0 4 3 6 . 1 6 0 6 3 3 . 2 1 0 6 2 6 . 4 6 0 7 1 0 , 8 7 0 7 7 8 , 8 8 0 6 3 6 , 4 3 0 8 7 4 , 1 0 0

CUMU L A T I V E
R E V E N U E 4 6 , 6 7 3 1 0 4 , 4 8 6 1 7 3 . 7 1 2 2 6 1 . 7 4 4 3 6 8 . 7 8 3 4 6 0 , 0 6 8 6 6 8 . 8 7 1 8 8 7 . 7 7 3 7 4 6 , 4 14 8 1 8 . 8 4 8 8 7 7 , 2 0 2 8 1 7 . 8 0 6

Table 3.3 Cost/Revenue Summary.

The cost/revenue data has been compiled subject to the following assumptions:

1. The costs associated with each activity are evenly spread over the duration of

the activity.

2. Overheads are evenly spread over the project duration.

3. Each activity carries the same profit margin.

4. Revenue is earned immediately each item of work is completed

The cost and revenue curves in Figure 3.2I17] represent the commitment of the

contractor, to pay the necessary costs, and the client, to pay for the completed

items of work, they do not represent the actual monetary transactions required to

produce the project cash flow.

The project cash flow as given in Table 3 .4 t1 7\ is compiled in accordance with

the following assumptions in regard of receipts and incurred costs:

Cm

£ 9 1 7 , 8 0 5

£ 8 7 4 , 1 0 0

0.8

Revenue0.6
C o s t

0.4

0.2

C o n t r a c t

TIME (mo n t h s)C o m p l e t i o n

102 6 8 16 184 12 14

Figure 3.2 Project Cost— Revenue Pattern.

37

A C T I V I T Y
M O N T H

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 8

L

A “

t T . 0 0 0
9 . 4 6 0

1 1 . 2 6 0 j [j
j j

j
j j

j
j

L

B “
j

8 . 1 0 0 4 . 0 6 0
8 , 5 2 0

3 1 ,7 0 0

4 . 2 6 0
1 6 . 6 6 0

j : j
j j

j
j

j
j

L

C p j
j

3 . 2 4 0
1 .6 0 0
2 , 2 6 0

j
:

j j j j j

L

D “ j j
8 . 7 0 0 6 . 7 9 0

3 . 7 8 0
4 , 6 6 0

3 . 7 8 0
4 . 6 6 0 :

j
j

j j

u

E “
s

j
3 . 7 8 0 7 . 6 6 0

3 . 1 6 0
6 . 6 7 0

6 . 3 0 0
1 1 . 3 4 0 :

j
j

j I \ j

L

F p
s

j
j

7 . 3 4 0 7 . 3 4 0
4 . 1 0 0
4 , 6 6 0

4 , 1 0 0
4 . 6 6 0

j j \ j

L

G “ j
j

4 . 6 6 0 9 . 3 8 0
2 . 9 2 0
4 . 1 0 0

4 . 6 6 0
6 . 6 4 0
8 . 2 0 0

2 . 9 2 0
4 . 1 0 0

j \ j j \ j
j

L

H “ j
4 . 0 9 0 8 . 1 8 0

2 . 2 7 0
2 . 2 7 0

8 . 1 8 0
4 . 5 4 0
6 . 4 4 0

4 . 6 4 0
6 . 4 4 0 j \ j j

j

L - - - 2 . 7 6 0 2 . 7 6 0 - - - - - - * -

J “ - -
- I

4 . 7 3 0
2 1 , 6 0 0

4 . 7 3 0
2 1 . 6 0 0 I -

- - - - *

L

K “
j

\ j
7 . 3 2 0 3 . 6 6 0

4 , 0 6 0
4 . 6 6 0

2 . 0 4 0
2 . 4 3 0 \ j j

L

L “ j [j
j

j

4 , 0 6 0 6 , 1 2 0
2 . 7 10
6 . 7 8 0

8 .1 2 0
5 . 4 2 0

1 3 . 6 6 0

8 . 1 2 0
6 . 4 2 0

1 3 . 5 5 0
6 , 4 2 0
1 3 . 6 6 0

j
j

j

L

M “
s j j

j j
j

2 1 . 0 6 0 2 1 . 0 5 0
1 1 , 7 0 0
1 4 . 0 0 0

1 1 , 7 0 0
1 4 . 0 0 0 j

j j

L

N “ j
j j

]

2 1 , 1 0 0 4 . 2 0 0
1 . 0 6 0
3 . 1 8 0

4 . 2 0 0
2 . 1 2 0
6 . 3 2 0

2 , 1 0 0
2 , 1 2 0
8 . 3 2 0

1 , 0 6 0
3 . 1 6 0 j

j

L - - - - : - - - - * -

6 I -
“ I I I I ”

2 3 , 4 4 0 2 3 . 4 4 0 1 1 , 7 2 0 - :
L

Q “ [j j
6 . 5 1 0 6 . 6 1 0

3 . 6 8 0
4 . 3 5 0

6 . 6 1 0
3 . 6 3 0
4 , 3 6 0

3 . 6 3 0
4 . 3 6 0

j

L

R “ j j
j j

j j
- j

6 . 6 7 0
3 , 1 6 0
3 . 7 6 0

j
j

L

S p j j j
j

j
2 . 3 8 0 2 . 3 8 0

1 . 4 4 0
1 .6 6 0

1 . 4 4 0
1 . 6 6 0 j

L

T p j j j ; j

3 . 3 0 0 1 . 6 6 0
1 , 7 4 0
2 . 1 0 0

8 7 0
1 .0 6 0

L

u p
s j

j]
;

j j j
1 . 6 0 0 3 . 6 0 0

4 . 3 0 0
3 . 8 0 0

6 . 6 0 0
7 , 8 0 0

j

l

V “

3
j j

j I 3
j j

3 . 8 7 0
2 . 0 7 0
2 . 6 1 0

j

OVERHEA DS 6 . 7 6 0 8 , 7 6 0 6 . 7 6 0 6 . 7 5 0 6 . 7 6 0 6 . 7 6 0 6 . 7 5 0 8 . 7 5 0 6 . 7 5 0 8 . 7 6 0 6 , 7 8 0 6 . 7 6 0 - -

CUMULATIVE
COST 2 3 . 7 6 0 5 0 . 3 0 0 1 2 4 . 1 3 0 2 0 2 , 6 5 0 2 6 3 . 6 6 0 3 7 6 . 4 0 0 5 7 3 . 3 3 0 6 6 2 . 0 3 0 7 3 4 . 2 8 0 8 0 0 . 6 9 0 8 6 1 . 3 0 0 8 7 4 . 1 0 0 -

O R O SS
R E C E I P T 3 - 4 6 . 6 7 3 5 7 . 8 2 4 6 9 . 2 1 8 8 8 . 0 3 2 9 8 . 0 4 9 1 0 0 , 2 7 6 9 9 . 8 0 3 9 7 . 9 0 2 6 8 , 6 4 1 7 2 . 6 3 4 5 8 . 2 6 4 4 0 . 6 0 4 -

RET E N T IO N - - 2 . 3 3 4 • 2 . 8 9 1 • 3 , 4 8 1 • 4 . 4 0 2 - 4 . 9 0 2 - 5 , 0 1 4 - 4 , 5 3 0 ' - - - •1 3 , 7 8 7 ♦1 3 . 7 8 7

CUMULATIVE
RE C E I P T S - 4 4 . 3 3 0 9 0 . 2 7 2 1 6 6 . 0 2 7 2 4 8 , 8 6 7 3 4 1 .8 0 4 4 3 7 . 0 6 5 5 3 2 . 3 3 8 6 3 0 . 2 4 0 7 1 8 . 8 8 1 7 9 1 , 4 1 6 8 4 9 , 6 6 9 9 0 4 . 0 4 0 9 1 7 . 8 0 7 4

Table 3.4 Project Cash Flow.

38

(a) Receipts from the Client

1. Work completed in any given month is certified for payment at the end of that

month and paid for at the end of the following month.

2. 5% retention is deducted from each monthly valuation, up to a cumulative

maximum of 3% of the tender total.

3. 50% of retention is to be refunded on completion.

4. 50% of retention is to be refunded on expiry of the maintenance period of 5

months.

(b) Incurred Costs

1. Labour paid as required.

2. Payment for plant and materials subject to one month's credit.

3. Subcontractors are paid in monthly 'single payment' increments immediately

following receipts of the appropriate certified payment from the client.

3.3 Capital Lock—up

The negative cash flow in the early stages of projects represents 'locked—up'

capital which must either be supplied from the contractor's cash reserves or

borrowed from financial institutions. If the required capital is borrowed the interest

39

payable should be charged to the project; if the required capital is supplied from

the contractors reserves the company is being deprived of its interest— earning

capability and should therefore charge the project accordingly. A measure of the

interest payable is represented by the area between the cash outflow and cash inflow

curves, given the units CAPTIM (capital x time). Figure 3 .3 t17l. shows the cash

flow diagram for the project together with the calculated negative captim.

Em
E 917,805

E874.100

0.8

0.6

Negative Captim
- 688,803 Cmonths0.4

Costs

Receipts0.2

Contract

Completion TIME (months)

106 12 186 14 162 4

Figure 3.3 Project Cash Flow Diagram.

This compound measure, say 688,803 £ x month, represents the volume of

borrowing from the extremes of £688,803 for one month to £1 for 688,803

months.

40

A simple interest calculation is all that is required to convert captim into an

interest charge, if it is assumed that the required finance is borrowed at an annual

interest rate of 13£%, then:

C hargeab le i n t e r e s t = 688,803 x [(1 .1 3 5)^ - 1] — £7,307

where
l / l 2

[(1 .1 3 5) - 1] i s th e m onthly e q u iv a le n t o f 13£% p .a .

If the required margin is to be maintained, the interest charges may be passed

on to the client in one of the following forms:

(a) An additional lump in the BoQ Adjustment item.

(b) A general increase of item rates.

(c) A combination of both.

While if the tender sum is remain unchanged by absorbing the interest charges

as additional overhead costs, the margin is reduced thus:

T o ta l c o s t = £874,100 + £7307 = £881,407

E f f e c t iv e M argin = Tender Sum - T o ta l Cost
T o ta l Cost

917,807 - 881,407
881,407 x 100%

= 4.13%

41

The maximum required cash resource can be determined directly from the

project cash flow, which is equal to £136,265 at the end of month eight.

Interest calculation are usually based on the negative captim only, assuming that

the cash released by the project does not earn interest, or the interest earned by

the positive captim is subtracted from the interest paid on the negative captim. It is

likely that the interest paying rate will be different and probably greater than the

interest earning rate. The use of this captim measure enables the effect of interest

charges to be evaluated.

3.3.1 Factors A ffecting Capital Lock-up

The factors that affect the capital lock— up for an individual project or contract

are as follows.

3.3.1.1 Margin

The margin, whether profit margin or contribution (profit plus head office

overheads) margin, is amongst the most important because it determines the excess

over costs and is this excess that control the capital lock— up. Quite simply, the

larger the margin, the less capital that is locked up: conversely, the smaller the

margin, the more capital that is locked up in the contract.

The margin that should be used in calculating contract cash flows should be the

'effective' margin that is being achieved at the time of executing the contract. This

effective margin is neither the margin included at the tender stage nor the margin

42

achieved at the end of the contract when all claims are settled. For example if the

tender panel included a margin of 9% and due to variations and other client

interference the cost rose by 4%, this would reduce the 'effective' margin to only

5%. Even if the contractor recovered another 6% in claims, making his overall

achieved margin at the end of the contract 10%, the 'effective' margin at the time

of executing the contract and thus determining the cash flow, would still be only

5%.

Most contractors use the tender margin when calculating contract cash flows and

this leads to an optimistic forecast. Although the margin is an important factor in

determining a contract's cash flow the tender margin is usually chosen for market

reasons rather than cash flow reasons. The effects on the project under consideration

are shown in Figure 3 .4 1 A.

33 .1 .2 Retention

In the U.K. the system of retention simply reduces the effective margin during

the execution of the contract and the effect of retentions can be included in the

calculations as shown. In times of very low margins the retention can reduce the

effective margin to zero or less. As retentions are fairly standard in public sector

contracts there is little scope for negotiation to reduce retention and improve cash

flows.

33 .1 .3 Claims

As explained above under the section of margins, claims can return a contract to

43

its original intended level of profit. However, as the settlement of claims is normally

subject to some delay the actual settlement does not improve a contract's cash flow

and the circumstances given rise to a genuine claims are likely to worsen the

contract's cash flow. The settlement of claims is, of course, important to the

company's cash flow and therefore it is important that claims are settled as quickly

as possible.

I I

I

----------- l
; i

I

----------- /

y AI i

i i

V

Effective Margin (%) / /
/

/y

/

!
i

/
✓

!
/

✓

/

/

/
✓

/

✓
i

/
✓ I

/

✓

/
✓

*

/

"4

s•
Tender Margin (%)

0 5 10 15

100
Effective Margin

<%)Tender Margin
90

80

70

60

Tender Margin (%)
50

15100 5

Figure 3.4 The Effect of Margin on Capital Lock—up.

44

3.3.1.4 F ro n t-en d Rate Loading

Front end rate loading is the device whereby the earlier items in the bill carry a

higher margin than the later items. This has the effect of improving the effective

margin in the early stages of the contract while keeping the overall margin at a

competitive level. It is in these early stages that capital lock up is at its worst. The

degree to which front end rate loading can be done depends on the client's

awareness.

The effects on project under consideration is shown in Table 3.5C1 71 and

Figure 3.5t1?] in which the overall tender margin of £43,705 (Table 3.2) is carried

'p ro - ra ta ' by activities A to J (Figure 3.1) which are completed in the first six

months of the project.

MONTH
1 2 3 4 5 6 7 8 9 1 0 1 1 12 13 18

C u m u l a t i v e
C O S T S 2 3 . 7 5 0 5 9 . 3 0 0 1 2 4 . 1 3 0 2 0 2 . 6 5 0 2 6 3 , 6 6 0 3 7 6 . 4 0 0 4 7 9 . 8 4 0 5 7 3 . 3 3 0 6 6 2 . 0 3 0 7 3 4 . 2 6 0 6 0 0 . 6 9 0 6 6 1 , 3 0 0 6 7 4 , 1 0 0 -

VALUE * 4 6 , 9 2 9 6 0 . 6 11 7 2 . 9 6 0 9 3 . 0 0 0 1 0 3 , 6 7 3 1 0 2 , 6 0 3 9 6 , 0 6 0 9 3 . 2 4 0 6 4 , 4 2 0 6 9 . 0 6 0 6 6 , 4 8 0 3 8 . 6 7 0 -

R E T E N T IO N - - 2 . 4 4 6 - 3 . 0 4 1 - 3 . 6 4 8 - 4 , 6 6 0 • 6 . 1 8 4 - 5 . 1 2 9 - 3 . 4 3 6 - - - * •1 3 , 7 6 7 •1 3 . 7 6 7

CUMULATIVE
R E C E I P T S

4 6 . 4 6 3 1 0 4 . 2 5 3 1 7 3 . 6 6 8 2 6 1 . 9 0 6 3 6 0 . 3 9 3 4 5 7 . 7 6 7 6 4 9 , 3 6 1 6 4 2 . 6 2 1 7 2 7 . 0 4 1 7 9 6 . 1 2 1 8 6 1 , 6 0 1 9 0 4 . 0 3 6 9 1 7 . 8 0 6

Table 3.5 Cash Flow for Front end Loaded Project.

45

1.0
£m

£917,805

£874,100

0.8

0.6

Negative Captim
■ 576,414 £months

0.4

Receipts
Costs0.2

Contract

Completion TIME (months)

16 1810 148 12642

Figure 3.5 The Effect of Front End Loading.

3.3.1.5 Overmeasurement

Overmeasurement is the device whereby the amount of work certified in the

early months of a contract is greater than the amount of work done. This is

compensated for in later measurements. Thus, overmeasurement has the same effect

as front end rate loading; it improves the 'cash in' in the early stages and reduces

the capital lock— up.

46

3.3.1.6 B a ck -en d Rate Loading and Undermeasurement

Back end rate loading is the opposite to front end rate loading. Back end rate

loading is the device whereby the later items in the bill carry a higher margin than

the earlier items. Undermeasurement is the situation whereby the amount of work

certified in the early months of a contract is less than the amount actually done.

Both these devices have the effect of increasing the capital lock— up and, in most

circumstances, these situations are not sought by contractors. However in

index— linked price adjustment contracts these devices enhance the monies recovered

from price fluctuations in times of inflation. If inflation is high in comparison to the

cost of money the contractor may get a better return by funding a larger capital

lock— up and gaining on price fluctuations rather than minimising the capital

lock— up in the more traditional way. This circumstances existed in the United

Kingdom in 1975 and 1976M.

Thus, only when inflation is very high, which is generally difficult to predict,

and borrowing limitations are not critical, can the approach of back end rate loading

be countenanced at the tender stage. However, monthly over or undermeasurement

gives a contractor a flexibility of policy over the duration of a contract such that

changes can be made quickly in response to the predicted movements in the inflation

indices and money markets. The effectiveness of this policy also depends on the

client's awareness.

3.3.1.7 Delay in Receiving Payment from Client

The time between interim measurement, issuing the certificate and receiving

payment is an important variable in the calculation of cash flows. Although monies

47

out goes to many destinations, e.g. labour, plant hirers, materials suppliers and

subcontractors, the monies in comes only from one source (the client). Thus any

increase in the delay in receiving this money delays all the income for the contract

with a resulting increase in the capital lock— up. The time allowed for this payment

is specified in the contract and normally interest is charged if payment is late. This

may act as incentive to the client but if he is slow in paying it is the contractor

who has to find the cash. The effect of delays on receiving payments on the project

under consideration is shown in Figure 3 .6 t1 71.

100

Effective Margin90
(%) fTender Margin

60

70

60

Tender Margin (%)
50

0 5 10 1 5

 Payment immedia te ly f o l l ow i n g c e r t i f i c a t i o n

 Payment one month a f t e r c e r t i f i c a t i o n

Figure 3.6 Effect of Client Payment Delay.

48

3.3.1.8 Delay in Faying Labour, Plant Hirers, Materials Suppliers and

Subcontractors

The time interval between receiving goods or services and paying for these is the

credit the contractor receives from his suppliers. A one week delay is normal in

paying labour and any thing between three to six weeks is normal in paying plant

hirers and material suppliers. Any increase in these would reduce the capital required

to fund a contract. However these items evolve as part of the normal commercial

trading arrangements and any increase in these times may undermine commercial

confidence in the company. Hence, these factors are not usually seen as suitable for

controlling capital lock— up in a contract.

3.3.1.9 Inflation

The effects of inflation on the project cash flow under consideration is shown in

Table 3.&' 71 and Figure 3.7t17], which have been compiled using the following

data:

1. Tender Margin: 5% at current prices.

2. Inflation Rate: 8% p.a.

3. Interest Rate: 13£% p.a.

4. Increased costs reimbursed using the CPF clause in the I.C.E. conditions of

contract.

49

The parameters in Table 3.6 have been calculated as follows!1 71:

1. Average Cost Increase Factor for costs incurred the n^1 month,

(ACIF)n -
n / i 2 (n - i) / i 2

(1 .08) - (1 .08)

2. Actual costs incurred during the n**1 month

= (Cost)n x (ACIF)n

3. Price Fluctuation Factor for work carried out during the n**1 month,

(PFF)n - 0 .9 { (1 . 08) - l }

4. Payment of increased costs incurred for work completed during the n^

= (Value)n x (PFF)n .

The calculated financial effects are as follows:

Tender Sum: Remains unchanged.

Interest on borrowed capital (@ 1 3 p.a.): £7743

Total Cost: £912,047 + £7743 = £919,790

m • 935,015 - 919,790 _ , 10/E f f e c t i v e Margin = ------- -— ygQ—------- “ 3.61%

Maximum Cash Requirement: £143,607 at the end of month eight.

month,

50

MONTH
1 2 3 4 5 6 7 8 9 10 1 1 12 13 18

COST
IN CR EM EN T 2 3 . 7 6 0 3 5 . 6 5 0 6 4 . 8 3 0 7 6 . 6 2 0 8 1 . 0 1 0 9 2 , 7 4 0 1 0 3 . 4 4 0 9 3 . 4 9 0 7 8 . 7 0 0 6 2 . 2 6 0 6 6 . 4 10 6 0 , 6 1 0 2 2 . 6 0 0 -

AV COST
INCREASE

FACTOR
1 0 0 3 2 2 1 . 0 0 9 6 7 1 . 0 1 6 1 7 1 . 0 2 2 7 1 1 0 2 9 2 9 1 0 3 6 9 1 1 0 4 2 6 7 1 . 0 4 9 2 6 1 . 0 6 6 0 3 1 . 0 6 2 8 3 1 . 0 6 9 6 7 1 . 0 7 6 6 6 1 0 8 3 4 7 -

ACTUAL
CUMULATIVE

CO ST S
2 3 . 8 2 6 5 9 . 7 20 1 2 5 . 5 9 9 2 0 5 , 9 0 2 2 8 9 . 2 8 5 3 6 6 . 3 6 5 4 9 3 . 1 9 0 6 9 1 . 2 9 5 6 7 4 . 4 0 6 7 6 1 , 8 2 3 8 3 2 . 6 6 0 6 6 7 . 3 4 4 9 1 2 . 0 4 7 -

VALUE 4 6 . 6 7 3 6 7 . 8 2 4 6 9 . 2 1 6 6 6 . 0 3 2 9 6 . 0 4 8 1 0 0 , 2 7 4 9 9 . 0 0 3 9 7 . 9 0 2 6 8 . 6 4 1 7 2 . 6 3 4 6 6 . 2 6 4 4 0 , 6 0 4 - -

PFF 0 0 0 6 7 9 0 . 0 1 16 2 0 . 0 1 7 4 6 0 . 0 2 3 3 4 0 0 2 9 3 3 0 . 0 3 6 3 1 0 . 0 4 1 3 3 0 . 0 4 7 3 8 0 . 0 6 3 4 6 0 0 6 9 6 1 0 . 0 6 6 7 6 0 . 0 7 2 0 0 - -

I NCREASED
CO ST S 2 7 0 6 7 2 1 .2 1 0 2 . 0 6 6 2 . 8 7 0 3 .6 4 1 4 . 1 2 6 4 . 6 3 6 4 . 7 4 1 4 , 3 2 4 3 . 8 3 3 2 . 6 2 3 - -

RF TENTION • 2 . 3 3 4 - 2 . 8 9 1 - 3 . 4 6 1 - 4 . 4 0 2 - 4 . 9 0 2 - 6 . 0 1 4 - 4 , 6 3 0 - - - - *1 3 . 76 7 - • 1 3 .7 67

CUMUL ATI VE
R E C E I P T S - 4 4 . 6 0 9 1 0 0 . 2 1 4 1 0 7 . 1 7 9 2 6 2 . 6 6 4 3 4 6 . 8 6 7 4 4 7 . 6 6 6 6 4 7 . 0 6 6 6 4 6 . 6 2 7 7 4 3 . 0 0 6 6 1 9 . 6 6 7 6 6 1 . 6 6 4 6 3 6 . 2 4 6 9 6 3 . 0 1 6

Table 3.6 Inflationary Project Cash Flow.

£m
£ 9 5 3 ,0 1 5
£ 9 1 2 ,0 4 7

0.8

0.6

Negative Captim
■ 729,906 £months

0.4

Costs

Receipts0.2

Contract

TIME (months)Completion

2 4 6 8 10 16 1812 14

Figure 3.7 Project Cash Flow Chart with 8% Inflation.

51

3.4 Internal Rate o f Return (IRR)

The internal rate or return of a project is the discount rate that make a serious

of cash flows both negative and positive, costs and receipts, discount net, Net

Present Value, equal to zero, Mathematically defined:

n At
I ------- — r - ~ 0t - o (l + r) 1

where At — cash f lows in and out

r = i n t e r n a l r a t e o f r e t u r n

t =* t ime p e r i o d

n = p r o j e c t d u r a t i o n

In order to find the IRR, it is necessary to establish the value of the interest

that will just equate the present worth of all of the future cash flows both positive

and negative considered over the full period of the project.

The IRR can only be determined by using trail and error. This achieved by

estimating a value of r, the required IRR, the present worth of the future net cash

flow, is then calculated using this value, it is obviously saves time and calculation if

the initial guess is reasonably close to the true rate of return.

If the resulting calculation gives a positive answer, then a second higher rate is

chosen. This will smaller discount factor and hence a smaller discounted cash flow.

If the net answer is now negative, the actual rate of return can be by interpolation

between the two assumed rates. If the second answer is still positive, a further

assumption of a higher discount rate needs to be made and the calculation repeated

until two interest rates are reached that give one negative net summation and one

52

positive net summation.

Interpolation between interest rates is carried out ass though the relationship

between the interest factors and the present worth is linear in form. This is not in

fact the case and therefore a small but not overly significant error occurs in the

final interest rate calculated by linear interpolation. The closer are the two interest

rates between which interpolation will take place, the smaller will tend to be the

error. Using the computer in calculation the IRR under this research will overcome

this problem and that's by using the method illustrated in the flow chart in

Figure 3.8.

A r = 0.01

Calculate
NPV

r - A r

A r = r / 1 0

N _ < Z \ r < 0 . 00001

Y

(STOP)

Figure 3.8 IRR Calculation Flow Chart

53

CHAPTER 4

THE ANALYSIS OF UNCERTAINTIES

Chapter 1 has shown that in some circumstances the analysis of uncertainty

as part of the general analysis process is desirable and that, at the least, the

confidence of the planner in his results is increased if he has available the

means to apprise the risk. This chapter will review the two techniques which

have been developed to handle the analysis of uncertainties, and will

concentrate on finding solutions to the difficulties facing the chosen method for

the development of the computer programs for this research project.

4.1 The Two Approaches

Statistics could be said to be the science of risk, and thus it is natural that

a solution to the problem of handling risk should be sought there. The early

network analysis packages did not, in general, provide facilities for the

handling of uncertainty, but those which did adopted the PERT technique and

used elementary statistics and a simple arithmetical process for the analysis.

As been mentioned previously, PERT was devised in the 1950s with one

particular project in mind: the research and development required for the

54

production of the Polaris missilet6]. Those responsible for the Polaris project

were realistic enough to realise that a deterministic approach to the planning

of the project would not be satisfactory. Since the uncertainty involved in such

a research— centerd project is so great that it quickly swamps the analysis and

makes deterministic forecasts literally incredible. To overcome this difficulty the

developers of the PERT system built into their analysis not only a value for

the expected duration of each activity but also a parameter representing the

expected variation of the duration. These two variables were then carried

through the analysis and all results were presented in terms of these

parameters.

An alternative approach which, because it relies on the power of modern

computer, was adopted rather later than PERT, is the so-called 'Monte-Carlo'

simulationt 61. This technique, previously described, uses the power and patience

of the computer to analyse the project model many times, each time allowing

the project variables to vary randomly within their allotted distribution. The

results are stored as a list of recorded values on which statistical operations

can be carried out. This technique has the advantage over the PERT technique

of flexibility, but it buys this advantage at the price of computer aid.

4.1.1 The Statistical Method

The techniques of statistics can be used to combine uncertain numbers, and

these techniques were used by the developers of thr PERT system to enable

them to produce useful answers from data which, because of the nature of the

research and development task, were very uncertaint el. Their method relied on

the central limit theorem, which shows that the mean and the variance of the

55

sum of a number of uncertain numbers can be easily predicted and that the

distribution of the sum tends to be Gussian in form.

Using the central limit theorem it is possible, if the value of the mean

and the variance for each component is known, quickly to calculate the mean

and the variance of the sum. Knowing the values of the mean and the

variance and knowing the form of the resulting distribution, the assessment of

risk is trivial.

The central limit theorem holds for any shape of component distribution

and thus the approach used in PERT is applicable to the asymmetrical

duration distributions for activities which are typically found in project

planning.

PERT was built around the'Beta' distribution as the standard for the

component distribution. There is, however, no theoretical justification for this

choice, merely the pragmatic reason that it provides a wide variety of

distribution forms and the calculation associated with it are very simple.

The Beta distribution is of the form:

Y = Xa (1 - X)b

which, depending on the values adopted by a and b, produces a range of

distributions both skew and symmetrical (Figure 4.1)M .

The beta distribution has the advantages over other distributions of

simplicity and flexibility.

56

X ■ 0 X - 1

Figure 4.1 The Beta Distribution.

The distributions are defined in PERT not by the specification of statistical

parameters, which would be foreign (and frightening) to most planners, but by

the specification of three values of duration, the most optimistic estimate, the

estimate of the most likely duration, and the most pessimistic estimate. The

optimistic and pessimistic estimates have a 10% chance of being optimistic (in

the case of the pessimistic values) or pessimistic (in the case of the optimistic

values). Denoting these values as u, b and c, the parameters of the activity

distribution can be calculated as

X - a + 4b + c

57

Thus it is possible very quickly to move from estimates of duration, which

are familiar ground to the planner, to the statistical parameters required for

use in the statistical analysis. These parameters can then be used within the

analysis of the network which, using the central limit theorem, can merely add

the values of the activities on the critical path in order to produce the

parameters for the distribution of completion date.

This approach is powerful and allows the planner even without the aid of

computer very quickly to produce distributions of event times and thus

estimates of risk overrun. The calculations required of the planner are simple

and the planner is, for most of the calculation, working with numbers which

are significant to him (an important advantage if errors are to be avoided).

The approach does, however, have an important difficulty, the handling of

parallel critical paths.

4.1.1.1 Interfering Critical Paths

For a simple network with a unique critical path and considerable float

elsewhere in the network the simple addition of the values of mean duration

and of variance for each activity on the critical path is accurate. Such a

situation is shown in Figure 4.2t6] . In this simple network there are no

circumstances in which path A can become critical; the length of the project

is always governed by path B.

Difficulties arise if there are parallel paths which may each be critical in

different circumstances. This situation is shown in Figure 4.3t6]. In this case it

is possible for the network path which is normally critical (path B) to become

58

subcritical because another path (path A) exceeds it. Either of the paths can

now be critical and the distribution of completion date must include both

possibilities, because duration of less than 36 days can be produced with either

A or B critical and each possibility must contribute to the probability of

completion within a given time.

It is, of course, possible to handle this problem of interfering critical paths

using the methods of classical statistics. For this case the distribution can be

shown to be given byt6]

f (X) - f A(X) / (f B((0 » X))dX) A i s c r i t i c a l

+ fB<x) / (f A(<° ► X))dX) B i s c r i t i c a l

but this calculation becomes onerous for large and complex networks where the

number of possible interferences is much larger than the two described here.

The difficulty associated with the use of PERT for complex networks

dictates the need for an alternative approach in such situations. This does not

imply that PERT is not a useful tool, merely that in complex networks it loses

the simplicity which is its major strengtht6], One alternative to PERT, the

'Monte Carlo simulation', has been available for many years but is becoming

increasingly attractive as the cost of computer power, on which it is

dependent, is reduced.

59

path A

path B

D i s t r i b u t i o n

of p a th l e n g t h

10 3020 40
p r o j e c t t i me

Figure 4.2 A Unique Critical Path.

path A

path B

D i s t r i b u t i o n

of p a t h l e n g t h

30 4010 20
p r o j e c t t i me

Figure 4.3 Interfering Critical Paths.

60

4.1.2 Simulation Techniques

The analysis of uncertainty described before relies on carrying the

parameters of uncertainty through the analysis and, using the method of

statistics, combining them to provide parameters of uncertainty of the result.

PERT carries out this calculation using the same method as would have been

used in a purely deterministic analysis, but the analysis is done once only and

the range of possible answers is represented in the result.

An alternative approach is to create the uncertainty of the result not by

carrying uncertainty through a single analysis but by carrying a large number

of analyses using data values chosen at random from the original ranges. Thus

the distribution comes not from the carrying of uncertainty through a single

analysis but from the combination of the results of a large number of

deterministic analyses. This alternative technique is known as Monte Carlo

simulation.

It is obvious that the distribution produced by a simulation analysis is

dependent upon the data values of the component parts. The analysis seeks to

model many repetitions of the project and thus must take, as input, values of

the variable (in this case duration) which are chosen from a menu of equally

probable values going into analysis must consist not only of the choice at

random of a value from within the specified range, but must also weight the

choice towards the most probable values. This weighted choice is made by

dividing the distribution of the variable into equal areas (that is area of equal

probability) and then by chosing at random between these areas. Figure 4.4t 61

shows how, assuming a menu of ten values and a beta distribution, this would

be done manually.

61

X-0 X-1

Figure 4.4 Zones of Equal Probability.

When the distribution of each component data value has been specified and

divided in this way, a random choice is made between the equiprobable zones

for each component and one cycle of the simulation analysis is carried out by

allotting a value for the duration of each activity to that which represents the

chosen zone. Many cycles are carried out and the results of the analyses are

combined to provide distributions for specified events.

4.2 Monte Carlo Simulation

This technique is based on experimentation and simulation and is used in

situations where a solution in the form of an equation would be difficult or

impossible. The basic steps are:

(a) The range of values of the risk being considered are assessed, together

with the probability distribution most suited to each risk.

62

(b) A value for each risk within its specified range is selected; this value

should be randomly chosen and must take account of probability

distribution.

(c) The outcome of the project is calculated using the combination of values

selected for each one of the risk.

(d) The calculation is repeated a number of times to obtain the probability

distribution of the project outcome; the iterations required depends on the

number of variables and the degree of confidence required, but typically

lies between 100 and lOOOt9].

4.3 The D ifficulties o f Simulation
J

A simulation analysis is a useful part of an interactive design system only

if it is fast. This need for speed must be recognised in the writing of the

computer programs and, at times, it may be necessary to sacrifice accuracy on

this particular altar. The saving in calculation time can be achieved, without

serious loss of accuracy, by reducing the number of simulation cycles and by

storing cumulative rather than individual values of data. The third area of

saving is the generation of the individual distribution prior to the selection of

deterministic duration values. The implication of these recommendations to the

development of a computer program must now be considered.

63

4.3.1 The Necessary Number o f Simulations

If the analyst wishes accurately to predict the distribution of any event in

the network then he will require a very large number of simulation cycles to

produce it. Reducing the number will produce progressively less satisfactory

result. If, however, the analyst requires an estimate of mean event time and is

satisfied with an assumption of a normal distribution and an estimated value of

standard deviation, then the number of simulation cycles can be enormously

reduced!6].

4.3.2 Data Storage

Even in large computers the problem of data storage can be troublesome if

both the number of events in a network and the number of simulation cycles

is high. This problem can be overcome by combining the data as they are

produced and carrying forward a cumulative total. This technique, bringing the

advantage of reducing the amount of memory required or of increasing the

speed of operation of the program, has the disadvantage that it destroys the

shape of the distribution and imposes a normal distribution on the result.

Previous studies!6] have shown that this is not a serious error at least for

events away from the early events near the start of the network.

64

4.3.3 Distribution Calculation

It has become usual to present the distribution of activity duration by a

Beta distribution given by the formula

Y = X a (1 - X)b

There is no theoretical basis for this choice; it is chosen merely because

the curve can be moulded, by the selection of the parameters a and b, to fit

the curve to a shape that experienced planners would draw to describe the

distribution of durations. The curve can be symmetrical or asymmetrical, flat

or sharp. Where manual calculations are being carried out, particularly within

the PERT program, the distribution provides easy formula for both mean and

standard deviation and is thus convenient.

When the method of analysis is changed to a Monte Carlo simulation, as

is being described here, and when the means of doing the work is moved

from the manual environment to the computer, then the Beta distribution

becomes rather less convenient. No direct use is now made of the mean and

standard deviation of the component distributions; instead the centroids of the

zones of equal probability must be identified.

Clearly this calculation does not present any difficulty: given the three

duration values as is usual in PERT (and assuming a value b) the value of a

can be calculated. Progressive numerical integration of the curve can then be

used to produce the positions of the various centroids and these can be used

as the menu items from which the random choice is made prior to each

simulation cycle. While this calculation is simple, it is also cumbersome and

65

time consuming, especially when it must be repeated for each activity for each

simulation cycle. There is merit, therefore, in identifying a distribution which

allows the direct calculation of the centroids of equiprobable zones.

It has been proved from previous studies! 61 that the results of simulation

analyses are insensitive to the shape of the individual activity duration

distribution if the number to be combined is greater than two or three, and

that this condition applies to all the events in the network apart from those

very near the beginning of the forward pass. In view of this insensitivity it

seems to be unnecessarily pedantic to insist on the use of a traditional but not

theoretically derived beta distribution, for any distribution which approximates

to the general shape of the expected duration could be used. When this is

considered along with the need for a geometrically simple shape, it seems that

a triangular distribution could form a compromise between simplicity, giving

fast calculation times, and shape, giving a realistic representation. Figure 4.5t6]

contrasts the triangular distribution recommended with the beta distribution it

replaces.

Triangular
Distribution

Beta
Distribution

0 1.0

Figure 4.5 Triangular and Beta Distribution Compared.

66

4.4 Triangular Probability Distribution

4.4.1 Calculation o f the Parameters

From Figure 4.6 f0, fm and fp are the probability values at the

durations d0, dm and dp respectively.

Known parameters:

Optimistic duration d0

Most likely duration dm

Pessimistic duration dp

dQ and dp are chosen such that there is respectively a 99% and 1%

probability of exceedence.

Overall area = 1.0

 * ---------------------- 52--------------------

Figure 4.6 Distribution Parameters.

67

*fm(5 i + 5 2+S3+54) = 1*0 (1)

Shaded a re a = 0 .01

0.01

4 f p 0.01

(2)

(3)

L in ea ri ty

5, + 52
f m5i
5 1 + 5 2

(4)

m
53+54 53+64 (5)

from e q u a tio n (2)

0.02

68

S u b s t i tu te in equat ion (4)

M i _ fm8,
51 5 1 + 5 2

f mV - 0 - 025 , 0 . 02 5 2 - 0 (6)

E q u a tio n (6) i s a q u a d ra t ic which may be so lv e d fo r 6,

0 .02±7 (0 .0 2) 2+ 0 . 0 8 fm5
2 f

mu2 (7)
m

But

J 0 .0 2 2+ 0 .0 8 fm52 > 0 .0 2 fo r a l l f m,

S ince 5, must be > 0 fo r a l l c a s e s :

from:

69

B 0.02+y 0 .0 4 + 0 .0 8 f m5, /Q^
1 2 fm

~ 0 . 02From e q u a tio n (3) r p= — -----
* 0 a

S u b s t i tu te in e q u a tio n (5)

f m54- 0 .02 hA- 0 .0 2 5 3 = 0 (9)

U sing s im i la r re a so n in g as above, t h i s y ie ld s

0 . 02+y 0 .0 4 + 0 .0 8 f m6o / i n \5 4 -------------------------------- t t - = -------------- m _ a _ (1 0)
z r m

Calculation of the distribution parameters is carried out in accordance with

the flow chart in Figure 4.7

70

(s t o p

Convergence

Calculate fm

from Equation (1)

Test for convergence
Area : 1

61 ■ ■ (
<5 a - dm - do
5a ■ dp - dm

Total Area ■— fm (s »•+■ 62+ 63+ 64)

Calculate 61 6 a

from
Equations (2) , (3)

Figure 4.7 Distribution Parameters Calculation Flow Chart

4.5 Random Selection o f Task Duration

The essence of so-called 'Monte Carlo' simulation technique is that, for

each task, a duration is randomly selected from the range of durations defined

by the appropriate probability distribution, with the selection being weighted

towards the most probable value.

There are two approaches by which this can be achieved, both of which

71

make use of a pseudo random number generator which outputs a series of

uniformly distributed random numbers within a specified range.

The two approaches are detailed hereunder for the particular case of a

triangular probability distribution. It may be assumed that the principles remain

the same for any distribution provided that the parameters of that distribution

are known.

4.5.1 Equi—probability Bands

The overall zone of probability (i.e. the distribution area) is subdivided into

N zones of equal probability as shown in Figure 4.8

D 0 d 1 d2d 3 d4 d5 d 6 d 7 d 8 Dd

Figure 4.8 Equi— probability Bands

For convenience, each equi— probability band is associated with a single

duration (dj ,i = 1,N) which is taken to be the duration value corresponding

to the band centroid.

72

Owing to the non linear native of the equations used to determine the

band limits and centroidal values, the band parameters are evaluated

(N + l)1*1 band parameters.

In any given instance, the task duration dj is selected on the basic of a

uniformly distributed random in the range 1 < i < N .

4.5.2 Direct Calculation Method

Consider the triangular probability distribution shown in Figure 4.9

progressively, using the N^1 band parameters as a basis for evaluating the

Figure 4.9 Direct Calculation

For a randomly selected duration d in the range D 0 < d < D 1 :

P(d < dj) = Aj

where Aj = 0 for dj = D 0

Aj = 1 for dj =

73

Thus a given value of Aj in the range 0 < Aj < 1 may be associated with

a value of dj in the range D 0 < dj < D v

A few calculations shoe that if values of Aj are randomly selected from a

uniformly distributed series of values 0 < Aj < 1 , the resultant distribution

of dj is of the form shown.

In any instance, therefore, the task duration may be calculated directly

from a uniformly distributed random number in the range 0.0 < A < 1.0

4.5.3 Comparision

By comparing the two approaches, it has been found that:

In terms of computational requirement the 'Equiprobability' band approach

has two major disadvantages

(a) A significant amount of calculation is required to define the bands for

each task.

(b) Once defined, the centroidal duration for each task require storage for

subsequent use. This require significant memory space.

In terms of flexibility the Equiprobability band approach precludes the use
i

of integer tasks duration. Thus given rise to a number of disadvantages:

(1) Operations with floating point numbers are substantially slower than

operations with integers.

74

(2) Fractional tasks durations introduces unnecessary complications into the

'Cash Flow' computations which would not arise with integer task

(3) In reality, although a task may very well be completed in, say 10.30 days

it is unlikely that the succeeding task will commence until the start of day

12. Thus, the duration of the task is effectively expanded to 11 days i.e

an integer duration.

The above leads to select the 'Direct calculation' method for the

development of the computer subroutine required.

4.5.4 Selection o f Task Duration Using the Direct Calculation Method

durations.

From Figure 4.10

Overall area = 1

S D,'m D

75

S o

DDo Dm D 1

Figure 4.10 Selection of Task Duration Using The Direct Calculation

Case 1 (0 < A < A 0)

dj = D 0 + 2A

J S

Case 2 (A a < A < 1)

dj = D , - 2(1- A)

J S,

76

CHAPTER 5

THE COMPUTER PROGRAMS

5.1 Introduction

As suggested in chapter 4, the analysis of uncertainty in a large and complex

project is best carried out by performing a large number of project simulations,

based on data values (such as activity durations) chosen at random from within

specified probability distribution, resulting in a range of possible solutions (such as

project durations) defined by a single probability distribution.

In order to apply this technique, known as 'Monte Carlo' simulation, the suite of

PERTRA programs was developed to operate on the basis of project data (task

durations, logical dependencies, resource usage etc.) output, in the form of a text

file, by PERTRMASTER ADVANCE — one of the most widely used commercial

software packages for construction planning.

The PERTRA suite comprises three separate programs as follows:

1. PERTRA1: Data Reading and Initialisation;

2. PERTRA2: Interactive Input of Task Duration Data;

3. PERTRA3: Risk Analysis and Cash Flow Calculations;

77

All three programs are written in FORTRAN 77 and, in order to utilise the

graphic support provided thereby, PERTRA1 and PERTRA2 compiled using some of

the 'C ' language graphics subtoutines.

The programs will now be discussed in turn.

5.2 PERTRA1— Data Reading and Initialisation

The essence of the program is as follows:

1. Reading of selected data from a user-specified file containing project data

output by PERTRMASTER ADVANCE.

2. Initialisation of this data to convert it to a form suitable for use by PERTRA2

and PERTRA3.

3. Creation of intermediate data files for use by PERTRA2 and PERTRA3.

The program flow chart is shown in Figure 5.1 and the program listing is given

in Appendix C .l.

78

SUBROUTINE DIMCHK
C h e c k a d e q u a c y of a r r a y a d i m e n s i o n s ;

t e r m i n a t e p r o g r a m If d i m e n s i o n s i n a d e q u a t e

START

SUBROUTINE HEADER
i n t r o d u c t o r y d i s p l a y , a l l owing i n p u t

of d a t a f i l e n a m e f rom k e y bo ar d

SUBROUTINE CALWKS
Ke y b o a r d e n t r y of w o r k i n g w e e k a p p r o p r i a t e

to e a c h c a l e n d a r u s e d by t h e p r o j e c t

SUBROUTINE READEXP
Read t h e fol l owi ng d a t a f rom u s e r - s p e c i f i e d f i l e:

G e n e r a l d a t a , Tas k d a t a . Link d a t a . R e s o u r c e d a t a
S u b r e s o u r c e d a t a an d C a l e n d a r d a t a

C o n v e r t r e s o u r c e n a m e s into i n d i c e s

1
SUBROUTINE TCOSTS
Ca l c u l a t e u s e r - s p e c i f i e d c o s t

c o m p o n e n t s for e a c h t a s k

D e f i n e d u r a t i o n of n o n - z e r o S - S l inks
a s a p e r c e n t a g e of s o u r c e t s s k d u r a t i o n

STOP

SUBROUTINE QUIT
Wri t e d a t a to s p e c i f i e d d a t a f i l es ;

D i s p l ay c o n c l u d i n g m e s s a g e .

SUBROUTINE LSORT
S o r t l og i ca l l i nks into a s u i t a b l e o r d e r

to f a c i l i t a t e a n a l y s i s of t h e p r o j e c t n e t w o r k

Figure 5.1 PERTRA1 Flow Chart

79

The main program -routines, subroutines and functions are now discussed:

5.2.1 Subroutine HEADER

The purpose of this subroutine is to generate an introductory screen display

which provides general information, pertaining to the use of PERTRA1, and to

enable keyboard input of the PERTMASTER export data file name.

The above is carried out as shown in the flow chart in Figure 5.2. The program

listing is given in Appendix C.2.

SUBROUTINE HEADER
I n t r o d u c t o r y d i s p l a y for PERTRA1;

k e yb oa r d I nput of PMA e x p o r t f i l e NAME: FLNAME

C l e a r s c r e e n ;
Draw d i s p l a y t a b l e ;

Di s p l ay d a t a I npu t l ine;
Read FLNAME from k e yboa r d ;

C o n v e r t FLNAME to u p p e r - c a s e c h a r a c t e r ;

SUBROUTINE CHRCNV

C h e c k If c o r r e c t n a m e h a s b e e n e n t e r e d

NO FLNAME
c o r r e c t ?

YES

RETURN

Figure 5.2 Flow Chart for the Subroutine HEADER.

80

5.2.2 Subroutine READEXP

This subroutine reads data from the user— specified export file (FLNAME.EXP)

generated by PERTMASTER.

The contents of the data export file are formatted as shown in Appendix... The

abstraction of data from the file is carried out in accordance with the flow chart

shown in Figure 5.3. The subroutine listing is given in Appendix C.4.

As can be seen in Appendix A, the contents of each record in the export file

contain a number of parameters which may or may not be required by the PERTRA

programs. Each of these parameters is 'comma delimited'. Selective data abstraction,

therefore, is carried out on the basis of the 'comma— related' position of the

relevant parameters in each record. This is achieved by calling subroutine RECCOM,

immediately after reading any given record, which determines the number of commas

(NCOMMA) in the record and the positions thereof (ICOMMA(I), I=l,NCOMMA).

Selective data abstraction is carried out by the following subroutines called by

subroutine READEXP, with the choice of subroutine being determined by type of

record (denoted by the initial character of the record) required to be read.

81

Figure
5.3

Subroutine
R

E
A

D
E

X
P

Flow
C

hart.

S
U

B
R

O
U

T
IN

E

R
E

A
D

E
X

P

5.2.2.2 Subroutine ABTASK

This subroutine abstracts the required Task data, from a given Task record in

the export file and codes tasks according to their position in the network as follows:

Start task : SFCODE = 0

Normal task : SFCODE = 1

Finish task : SFCODE = 2

The steps of the above are shown in the flow chart in Figure 5.4 and the listing

of the subroutine is given in Appendix C.6.

Task data abstracted by subroutine ABTASK is as follows:

1. Task type (TTY P E).

2. Task name (T N A M E).

3. Task work breakdown structure (TWBS).

4. Task calendar (TC A L).

5. Task duration (T D U R N).

6. Task code (SFCODE).

83

Rea d o u t p u t r e c o r d

RETURN

A b s t r a c t START/FINI SH c o d e s

A b s t r a c t t h e d a t a a f t e r c o m m a
n u m b e r 14 a s t a s k c a l e n d a r

A b s t r a c t f i r s t c h a r a c t e r in t h e
r e c o r d a s t a s k t y p e (T TYPE)

D e t e r m i n e c o m m a s p o s i t i o n s
SUBROUTINE RECCOM

A b s t r a c t d a t a b e t w e e n s e v e n t h
an d e i g h t h c o m m a s a s t a s k

d u r a t i o n (TDURN)

A b s t r a c t d a t a b e t w e e n s e c o n d a n d
Th i rd c o m m a s a s t a s k n a m e (TNAME)

A b s t r a c t d a t a b e t w e e n f ou r t h
an d f i f t h c o m m a s a s t a s k

wor k b r e a k do w n s t r u c t u r e (TWBS)

D e t e r m i n e c o m m a s p o s i t i o n s in t h e r e c o r d
SUBROUTINE RECCOM

SUBROUTINE ABTASK
A b s t r a c t s t a s k d a t a f rom e x p o r t r e c o r d (REC)

A b s t r a c t s START/FINISH c o d e f rom o u t p u t r e c o r d

Figure 5.4 Subroutine ABTASK Flow Chart.

84

52 .2 .2 Subroutine ABTRD

This subroutine abstracts the following Task Resource Demand data from the

Task Resource demand records:

1. Task resource name (CTRES).

2. Task resource quantity (CTRESQ).

The subroutine flow chart is shown in Figure 5.5 and the listing is given in

Appendix C.7.

RETURN

A b s t r a c t da t a a f t e r t h e f o u r t h c o m m a
a s r e s o u r c e q u a n t i t y TRESQ

D e t e r m i n e c om m a s p o s i t i o n s in (REC)

SUBROUTINE RECCOM

SUBROUTINE ABTRD
A b s t r a c t s t a sk r e s o u r c e d e m a n d

d a t a f rom e x p o r t f i l e r e c o r d (REC)

A b s t r a c t da t a b e t w e e n t h i r d and
f o u r t h c o m m a s a s r e s o u r c e n a m e CTRES

Figure 5.5 Subroutine ABTRD Flow Chart.

85

5.2.2.3 Subroutine AB LIN K

This subroutine abstracts the following link data from a link record:

1. Source Task Name (CLFROM);

2. Target Task Name (CLTO);

3. Link Type (CLTYPE);

4. Link Duration (LDURN).

As can be seen in Appendix A, the first three of the above parameters are

alphanumeric variables and require to be abstracted as such. In FORTRAN programs,

however, operations involving alphanumeric variables are considerably slower and less

efficient than those involving numeric data. It is, therefore, preferably to use the

latter wherever possible. This being the case, subroutine ABLINK converts

source/target task names to indices and link types to numbers. As an example the

Export File link data is shown below:

CLEAR1 SETUP F - S 0

CLEAR2 FINISH F - S 0

CMPRESS SSEPCO F - F 0

CMPRESS SSWPCO F - F 0

CPESC1 CPC1FW F - S 0

CPESC1 CPC1RF s-s 2

86

Converted link data will be as follows:

1 209 1 0

2 40 1 0

3 248 3 0

4 258 3 0

15 6 1 0

15 8 2 2

The subroutine flow chart is shown in Figure 5.6, with the listing being given in

Appendix C.8.

87

RETURN

A b s t r a c t d a t a a f t e r f i f t h c o m m a
a s l i n k d u r a t i o n L DUR N

A b s t r a c t d a t a b e t w e e n t h i r d a n d f o u r t h
c o m m a s a s t a r g e t t a s k n a m e CLTO

A b s t r a c t d a t a b e t w e e n f o u r t h a n d f i f t h
c o m m a s a s l i nk t y p e C L T Y P E

A b s t r a c t d a t a b e t w e e n s e c o n d a n d t h i r d
c o m m a s a s s o u r c e t a s k n a m e C L F R O M

C h a n g e S o u r c e an d Targe t t a s k
n a m e s to i nd i ce s :

S o u r c e Tas k Index • LFROM
Ta r ge t Task Index • LTO

D e t e r m i n e c o m m a s p o s i t i o n s in r e c o r d

SUBROUTINE RECCOM

C h an g e l ink t y p e f rom a lp h a n u m e r i c
va r i a b l e to I n t e g e r var i abl e :
Link Type Index ■ LTYPE

SUBROUTINE ABLINK
A b s t r a c t s l i nk d a t a f r o m e x p o r t f i l e r e c o r d (R EC)
C h a n g e s s o u r c e t a s k L F R O M a n d t a r g e t t a s k LTO

f r o m n a m e s t o i n d i c e s
O u t p u t s l i n k t y p e L T Y P E in i n t e g e r f o r m

Figure 5.6 Subroutine ABLINK Flow Chart.

88

5.2.2.4 Subroutine ABRES

This subroutine abstracts the following resource data from a resource record.

1. Resource Name (RNAME).

2. Resource Type (RTYPE).

The abstraction of the resource data is carried out as illustrated in the subroutine

flow chart in Figure 5.7. The subroutine listing is given in Appendix C.9.

RETURN

A b s t r a c t d a t a b e t w e e n f i r s t and s e c o n d
c o mm a s a s a r e s o u r c e n a me (RNAME)

A b s t r a c t t h e f i r s t c h a r a c t e r a f t e r t he
th i rd c o m m a a s a r e s o u r c e t y p e (RTVPE)

De te r mi n e c o m m a s p o s i t i o n s In t h e REC

SUBROUTINE RECCOM

SUBROUTINE ABRES
A b s t r a c t s r e s o u r c e d a t a f rom e x p o r t

f i le r e c o r d (REC)

Figure 5.7 Subroutine ABRES Flow Chart.

89

5.2.2.5 Subroutine ABSUBRES

Abstracts the following SUB— RESOURCE data from a sub— resource record:

1. Resource Name (CRTOP).

2. Sub—resource Name (CRSUB).

3. Sub—resource Quantity (RSUBQ).

The flow chart of the subroutine ABSUBRES is shown in Figure 5.8. Listing of

the subroutine is given in Appendix C.10.

D e t e r m i n e c o m m a s p o s i t i o n s in t he REC

SUBROUTINE RECCOM

SUBROUTINE ABSUBRES
A b s t r a c t s s u b - r e s o u r c e d a t a from

t h e e x p o r t f i le r e c o r d (REC)

A b s t r a c t d a t a b e t w e e n f i r s t an d s e c o n d
c o m m a s a s a r e s o u r c e (CRTOP)

A b s t r a c t t h e f i r s t c h a r a c t e r a f t e r t he
t h i rd c o mm a a s a s u b - r e s o u r c e (CRSUB)

A b s t r a c t t h e t e n d i g i t s f l oa t i ng p o in t n u m b e r s a f t e r
t h e t h i r d c o m m a a s s u b r e s o u r c e q u a n t i t y (RSUBQ)

RET URN

Figure 5.8 Subroutine ABSUBRES Flow Chart.

90

5 2 .2 .6 Subroutine ABCAL

This subroutine abstracts the Calendar Name (CAL) from a calendar record. The

listing of the subroutine is given in Appendix C.10.

5.2.3 Subroutine DIMCHK

One of the major disadvantages associated with the use of FORTRAN, in the

context of reading data files of varying lengths, is the requirement that array

dimensions should be specified at the time of compiling the program. In the event

that the amount of data, being read by a FORTRAN program from such a file,

exceeds the specified capacity of the arrays, however, the program continues to read

the 'excess' data and overwrites (to the appropriate extent) the previously—filled

arrays. Since no error message is displayed, the user is blissfully unaware of such

happening.

To prevent such a possibility occurring in PERTRA1, the subroutine DIMCHK

has been included in the program immediately before subroutine READEXP.

Subroutine DIMCHK operates in a similar manner to subroutine READEXP, but

reads only the first character of each record, determines its type and accumulates

the numbers of each type of record. Should these numbers exceed the specified

array dimensions, an error message is displayed and the program is terminated. The

subroutine listing is given in Appendix C.3.

91

5.2.4 Subroutine CALWKS

This subroutine determines working week length (ICWK) for each task by

facilitating keyboard input of the working week length for each calendar. This is

carried out in accordance with the subroutine flow chart in Figure 5.9. Listing of

the subroutine CALWKS is given in Appendix C.12.

NO , YES
\ l o o p

RETURN

For e a c h c a l e n d a r

De f i ne wor k i ng we ek for e a c h t a sk

Rea d work i ng we ek l e n g t h
f rom keyboar d

Draw d i s p l a y t a b l e for i npu t i ng of
c a l e n d a r wor k i ng w e ek d a t a on s c r e e n

SUBROUTINE CALWKS
Keyboar d i n p u t of wor k i ng we ek l e n g t h

for e a c h c a l e n d a r and d e t e r m i n e s wor k i ng
we e k l e n g t h for e a c h t a s k a cc o r d i n g l y

Figure 5.9 Subroutine CALWKS Flow Chart.

92

5.2.5 Subroutine TCOSTS

This subroutine enables keyboard input of cost— component data in order to

determine the following cost components for each task in the network:

Labour cost

Material cost

Plant cost daily

Plant cost front end

Plant cost back end

Subcontract cost

Overheads daily

Overheads front end

Task price

For each component, the following data is input from the keyboard:

1. Component Code (e.g. XLC for labour cost).

2. Paymeny Accumulation (Monthly/Weekly)

3. Payment Delay (Days/Weeks/Months).

The subroutine flow chart is shown in Figure 5.10 and the subroutine listing is

given in Appendix C.13.

93

YESNO
C o m p o n e n t a p p l i c a b l e ?

YES NO
or e c o m p o n e n t s ?

Go to n e x t
c o m p o n e n t

RETURN

Di s p l ay c o s t c o m p o n e n t

Read c o s t c o m p o n e n t n a me
and a p p l i c a b i l i t y f rom s c r e e n

Ke yb o a r d i n p u t of p a y m e n t
d a t a for c o m p o n e n t

C a l c u l a t e c o s t c o m p o n e n t
for e a c h t a s k

SUBROUTINE RESCOST

SUBROUTINE TCOSTS
Ke yboa r d I nput of c o s t c o m p o n e n t s

D e t e r m i e s c o s t c o m p o n e n t for e a c h t a s k

Figure 5.10 Subroutine TCOSTS Flow Chart.

94

5.2.6 Subroutine RESCOST

One of the noteworthy features of PERTMASTER is the use of a resource

'hierarchy' whereby any given resource may call upon a number of sub— resources

which may, themselves, call upon sub— sub— resources and so on. The system is

illustrated in Figure 5.11 for the resource BFG (Backfill Gang) which consists of:

1 Bomag 35 (B35) @ £75 p e r day;

2 JC B 's (JCB) @ £150 p e r day;

4 L abourers (LAB) @ £46 .5 p e r day;

2 7 Ton T ip p er Trucks (TIP) @ £80 p e r day;

and each tipper truck

make use of a driver (DRV) @ £50 per day.

(BFG)

I ' I I
JCB (2) LAB (4) TIP (2)

1 I I
E150 p l a n t c o a t £ 4 6 . 5 l a b o u r c o a t | |

DRV (1) £ 8 0 p l a n t c o s t

I
£ 5 0 l a b o u r c o s t

Figure 5.11 Resources Hierarchy.

The hierarchy of the resource BFG will appear in the export file in alphabetic

order as follows:

95

B35 (1)

£ 7 5 p l a n t c o s t

R,B35,"Bomag 35 ",D,0, ALLDAYS
U,B35,XPC,75

R.BFG,"Backfill Gang" ,D ,0, ALLDAYS
U,BFG,B35,1
U, BFG, JCB, 2
U,BFG,LAB,4
U,BFG,TIP,2

R, DRV, "Driver", D,0, ALLDAYS
U,DRV,XLC,50

R,JCB,"JCB 3c",D,0,ALLDAYS
U,JCB,XPC,150

R,LAB, "Labourer " ,D ,0, ALLDAYS
U,LAB,XLC,46.5

R,TIP,"7 Ton Tipper Truck",D,0,ALLDAYS
U,TIP,DRV,1
U,TIP,XPC,80

On the basis of the resource hierarchy, subroutine RESCOST determines the total

quantities of a specified cost component used by each 'top— level' resource (where a

top— level resource is one which is directly utilised by a task). It is then a straight

forward matter, by considering each top— level resource used by a given task, to

calculate the total quantity of the specified cost component associated with that task.

The operation of subroutine RESCOST is best explained by considering the

operations involved in determining, say, the total labour cost component (XLC)

associated with Backfill Gang (BFG).

96

The subresources array generated by subroutine ABSUBRES, corresponding to the

export file data previously shown, will be as shown below.

RTOP(I) RSUB(I) RSUBQ(I)

B35 XPC 75

10
11
12
13

BFG
BFG
BFG
BFG

B35
JCB
LAB
TIP

17 DRV XLC 50

25 JCB XPC 150

28 LAB XLC 46.5

33
34

TIP
TIP

DRV
XPC

1
80

Foe ease of understanding, the variables RTOP(I) and RSUB(I) have been shown

as a containing resource codes as opposed to resource indices, although the latter

will be the case in reality.

97

1. RESCOST identifies each of the above records where RSUB(I) = XLC. The

arrays are then re— ordered such that these records are brought to the 'top ' of the

array, thus:

RTOP(I) RSUB(I) RSUBQ(I)

DRV
LAB

XLC
XLC

50
46.5

B35 XPC 75

10
11
12
13

BFG
BFG
BFG
BFG

B35
JCB
LAB
TIP

25 JCB XPC 150

33
34

TIP
TIP

DRV
XPC

1
80

98

RESCOST searches the re— ordered array RSUB (starting from 1 = 3) for those

resources (in this case LAB) in RTOP which have been identified as making

direct use of XLC. The arrays are then re— ordered as shown.

I RTOP(I) RSUB(I) RSUBQ(I)

1 DRV XLC 50
2 LAB XLC 46.5
3 TIP DRV 1
4 BFG LAB 4

3. Array RSUB is now searched for subresource which make use of DRV and

LAB, namely TIP and BFG respectively. The arrays are sorted accordingly.

I RTOP(I) RSUB(I) RSUBQ(I)

1 DRV XLC 50
2 LAB XLC 46.5
3 TIP DRV 1
4 BFG LAB 4
5 BFG TIP 2

As can be seen, the process terminates when the searching of RSUB reveals no

more relevant sub— resources.

4. The array variable RCOST(J) is initialised thus:

RCOST(RTOP) =1 for RTOP = XLC

RCOST(RTOP) = 0 for RTOP # XLC

100

5. For I = 1,5, where I is the number of the re—ordered arrays, the

following algorithm is used.

RCOST(RTOP(I)) = RCOST(RTOP(I)) + RCOST(RSUB(I)) x RSUBQ(I)

Thus, the sequence of calculations in this case is as follows:

1=1 RCOST(DRV) = RCOST(DRV)+RCOST(XLC) x RSUBQ(l)

= 0 + 1 x 50 = £50

1=2 RCOST(LAB) = RCOST(LAB)+ RCOST(XLC) x RSUBQ(2)

= 0 + 1 x 46.5 = £46.5

1=3 RCOST(TIP) = RCOST(TIP)+ RCOST(DRV) x RSUBQ(3)

0 + 5 0 x 1 = £50

1=4 RCOST(BFG) = RCOST(BFG)+ RCOST(LAB) x RSUBQ(4)

0 + 46.5 x 4 £186

1=5 RCOST(BFG) = RCOST(BFG)+RCOST(TIP) x RSUBQ(5)

= 186 + 50 x 2 £286

Thus, the total labour cost component associated with the Backfill Gang = £286

per day.

Such calculation will be performed for the other cost components associated with

BFG.

101

Continuing the example, the calculations of the total Daily Plant cost (XPC)

associated with the same resource BFG will be performed as follows:

1. Rescost identifies each of the records where RSUB(I) = XPC and brought it to

the top, thus the arrays will be as follows

I RTOP(I) RSUB(I) RSUBQ(I)

1 B35 XPC 75
2 JCB XPC 150
3 TIP XPC 80

10 BFG B35 1
11 BFG JCB 2
12 BFG LAB 4
13 BFG TIP 2

17 DRV XLC 50

28 LAB XLC 46.5

33 TIP DRV 1

102

2. RESCOST searches the re— ordered array RSUB (starting from 1= 4) for the

resources in RTOP which has been identified as making direct use of XPC (in

this case B35, JCB and TIP). The arrays are re—ordered as shown:

RTOP(I) RSUB(I) RSUBQ(I)

12

17

28

33

B35
JCB
TIP
BFG
BFG
BFG

BFG

DRV

LAB

TIP

XPC
XPC
XPC
B35
JCB
TIP

LAB

XLC

XLC

DRV

75
150

80
1
2
2

50

46.5

3. Array RSUB is searched (starting from 1=7) for subresources which make direct

use of B35, JCB and TIP namely BFG, which in this example will not be

found and the process terminates when the search of RSUB revels no more

relevant sub— resources.

103

4. The array variable RESCOST(J) is initialised thus:

RCOST(RTOP) = 1 for RTOP = XPC

RCOST(RTOP) = 0 for RTOP # XPC

5. For I = 1 , 6 where I is the number of Swopped arrays, the same algorithm in

the previous example is used. Thus the calculations in this case as follows:

1=1 RCOST(B35) = RCOST(B35)+ RCOST(XPC) x RSUBQ(l)

0 + 1 x 75 = £75

1=2 RCOST(JCB) = RCOST(JCB)+RCOST(XPC) x RSUBQ(2)

0 + 1 x 150 £150

1=3 RCOST(TIP) = RCOST(TIP)+RCOST(XPC) x RSUBQ(3)

0 + 1 x 80 = £50

1=4 RCOST(BFG) = RCOST(BFG)+RCOST(B35) x RSUBQ(4)

0 + 75 x 1 = £75

1=5 RCOST(BFG) = RCOST(BFG)+RCOST(JCB) x RSUBQ(5)

= 75 + 150 x 2 £375

1=6 RCOST(BFG) = RCOST(BFG)+RCOST(TIP) x RSUBQ(6)

= 375 + 80 x 2 £535

Thus the total Daily Plant cost component associated with the Backfill Gang is

£535 per day.

Listing of the subroutine RESCOST is given in Appendix C.15.

104

5.2 .7 Subroutine LSORT

Link data abstracted by the subroutine ABLINK are listed in the designated array

in alphabetic order and, in order to perform the analysis calculations, this data

requires to be arranged into an order suitable for carrying out the forward and

backward passes through the network. Arranging the data into the above orders is

carried out by the subroutine LSORT and the swopping subroutine LSWOP.

As with the subroutine RESCOST, the working of subroutine LSORT are best

explained by the following example. The following network will be used for the

explanation:

START FINISH

105

1. The variables of the link data abstracted by subroutine ABLINK from the

export file will be stored in an alphabetic order as shown below:

LFROM(I,l) LTO(I,l) LTYPE(I,1) LDURN(I.l)

A

B

C

C

D

E

F

START

D

F

B

E

FINISH

A

D

C

F - S

F - S

F - S

F - S

F - S

F - S

F - S

F - S

For ease of understanding, the variables LFROM, LTO and LTYPE have been

shown as containing alphanumeric names rather than indices, although the latter will

be the case in reality (see section 5.2.2.3).

2. To re— order the link data for the Forward Pass, subroutine LSORT identifies

the records where the variable LFROM(I,l) is the first task in the network

(having SFCODE=0), using the subroutine LSWOP the arrays are re—ordered

such that these records are brought to the 'top ', thus:

106

LFROM(I,l) LTO(I,l) LTYPE(I,1) LDURN(U)

START C F - S 0

A D F - S 0

B F F - S 0

C B F - S 0

C E F - S 0

D FINISH F - S 0

E A F - S 0

F D F - S 0

3. Lsort identifies the relevant target task (in this case: C) and searches the array

LFROM(I,l) for all instances where this task appears. As each instance is

identified, the relevant link record is brought to the 'top' of the array thus:

LFROM(I,l) LTO(I,l) LTYPE(U) LDURN(I.l)

START

C

C

A

B

D

E

F

C

B

E

D

F

FINISH

A

D

F - S

F - S

F - S

F - S

F - S

F - S

F - S

F - S

107

4. The process is repeated for each of the target tasks appropriate to c — and so

on. The final result is as shown below:

LFROM(I,l) LTO(I,l) LTYPE(I.l) LDURN(I.l)

START

C

C

B

E

F

A

D

C

B

E

F

A

D

D

FINISH

F - S

F - S

F - S

F - S

F - S

F - S

F - S

F - S

5. The procedure of sorting the (1,2) arrays into 'Backward Pass' order is the

exact reverse of that for the 'Forward Pass' order but starting with the last

task in the network (SFCODE=2). The final result is as shown below:

LFROM(I,2) LTO(I,2) LTYPE(I,2) LDURN(I,2)

D

F

A

B

E

C

C

START

FINISH

D

D

F

A

B

E

C

F - S

F - S

F - S

F - S

F - S

F - S

F - S

F - S

108

The subroutine LSORT listing is given in Appendix C.17. and listing of the

subroutine LSWOP is given in Appendix C.18.

5.2.8 Subroutine QUIT

This subroutine writes data to the following files for later subsequent use by

PERTRA2 and PERTRA3:

1. FLNAME.GEN, general data file. See Appendix B .l.

2. FLNAME.TSK, tasks data file. See Appendix B.2.

3. FLNAME.LNK, link data file. See Appendix B.3.

4. FLNAME.CST, cost data file. See Appendix B.4.

Following a screen display to that effect the subroutine terminate the operation

of PERTRA1. Listing of the subroutine is given in Appendix C.14.

109

5.3 PERTRA2: Interactive Input o f Task Duration Data

For the purpose of carrying out the Risk Analysis, the various tasks

involved in the project may be categorised as follows:

(a) Tasks with VARIABLE durations:

These are those tasks whose durations are variable in accordance with a

probability distribution defined by:

1. 'Optimistic duration': 99% exceedance probability.

2. 'Most likely duration': used in PMA calculations.

3. 'Pessimistic duration': 1% exceedance probability.

(b) Tasks with INVARIABLE durations:

These are those tasks whose durations are invariable and not subject to the

probability distribution mentioned above. Milestone and Hammock tasks, by

their nature, are both included automatically in this category.

The purpose of PERTRA2, therefore, is to update the information

contained in FLNAME.TSK; to include for:

(a) a code which identifies each task as having either a 'VARIABLE' or

'INVARIABLE' duration;

(b) the 'optimistic' and 'pessimistic' durations of each 'VARIABLE' duration

task.

110

Since the purpose of PERTRA2 is essentially the same as that of

PERTRA1, namely: the initialisation of data for use by PERTRA3, the

operations performed thereby should logically have been included as part and

parcel of PERTRA1.

It was felt, however, that such an arrangement would introduce an

unnecessary element of rigidity in that it would require the relevant task

duration data to be entered, in its entirety, in a single session. Additionally, it

would preclude the updating of the task duration data , following an analysis

using one particular set of values for 'optimistic* and 'pessimistic' durations, to

facilitate a subsequent analysis on the basis of a different set of values thereof.

Consequently, PERTRA2 was designed as a separate module which could be

used at any stage in the Risk Analysis process.

A flow chart of the PERTRA2 is shown in Figure 5.12 and a listing of

the program is given in Appendix D .l.

I l l

QUIT INPUT
I n p u t o r Qu i t ?

YES NO
F i l t r a t i o n O.K.?

Invariable Variable
igks ' Va r i a b l e ' or ' I nv a r i a b l e !

RETURN

U p d a t e FLNAME. TSK

Read t a s k d a t a f r om FLNAME. TSK

U p d a t e OPTIMI STI C
a n d PE S S I MI S TI C d u r a t i o n s

U p d a t e v a r i a b i l i t y c o d e
for e a c h d i s p l a y e d t a s k

PCODE(I) • 0

U p d a t e v a r i a b i l t y c o d e
for e a c h d i s p l a y e d t a s k

PCODE(I) ■ 1

Di s p l a y p r o g r a m I n t r o d u c t i o n
SUBROUTINE HEADER

In p u t f i l t r a t i o n p a r a m e t e r s

SUBROUTINE FDISPLAY

Read FLNAME f rom t h e fi le P E RT R A. FL S
g e n e r a t e d by t h e p r o g r a m PERTRA1

Fi l t e r t a s k s in a c c o r d a n c e
wi t h f i l t r a t i o n p a r a m e t e r s

SUBROUTINE FILTER

PROGRAM PERTRA2
I n t e r a c t i v e i n p u t of TASK DURATION for
u s e by Ri sk A n a l y s i s p r o g r am P E RT R A 3

D i s p l ay s c r e e n i nqu i r y :
(a) I n pu t d a t a ?
(b) Q u i t ?

SUBROUTINE QDISPLAY

Di s p l a y f i l t e r ed t a s k s ;
I n pu t o p t i m i s t i c a n d p e s s i m i s t i c
d u r a t i o n f a c t o r s if r e qu i r e d .
SUBROUTINE TDISPLAY

Figure 5.12 Program PERTRA2 Flow Chart

The main program routines, subroutines and functions are now discussed:

5.3.1 Subroutine HEADER

The purpose of this subroutine is to generate an introductory screen display

which provides general information pertaining to the use of PERTRA2.

A flow chart of subroutine HEADER is shown in Figure 5.13 and a listing

of the subroutine is given in Appendix D.2.

SUBROUTINE HEADER
I n t r o d u c t o r y d i s p l a y for P E RT R A2

Cl e ar s c r e e n ;
Draw d i s p l a y t a b l e

Display t e x t in s e t s
of IS l i nes p e r s e t

NO YES
d i s p l a y

Di s p l ay c o n c l u d i n g m e s s a g e

RETURN

Figure 5.13 Subroutine HEADER Flow Chart.

113

5.3.2 Subroutines FD ISPLAY, F ILTER , TD ISP LA Y

The input of task duration date (i.e. 'optimistic' and 'pessimistic' durations)

can be a somewhat tedious and time consuming exercise if carried out on a

'task by task' basis.

The time spent on the exercise, however, can be much reduced by taking

advantages of a particular feature of many construction projects, namely that

such projects contain groups of tasks which are identical in both nature and

duration. Thus being the case, it may reasonably be inferred that the

variability of the duration of the tasks within each such group is identical. If a

given group may be identified, therefore, only one set of task duration

parameters need to be input from the keyboard and will apply to each task

within that group.

The above subroutines provide a facility whereby the overall task list may

be 'filtered' to display selected tasks, with the subsequent input of task

duration data applying to each of the displayed tasks and only to those tasks.

5.3.2.1 Subroutine FDISPLAY

This subroutine enables the keyboard input of up to six levels of the

following four parameters:

CODE (Name, Type or Work Breakdown Structure of the tasks).

POSITION (The position in the CODE which defines the 'start' of the

114

SELECTION parameter)

OPERAND ('Equal to ' or 'Not Equal' to)

SELECTION (A maximum of 9 characters on which selection will be

based).

For example, the filtration parameters:

CODE POSITION OPERAND SELECTION

NAME 3 EQ CONC

will convey an instruction to PERTRA2 to display only those tasks having

names which contain the alphanumeric string 'CONC' starting at position 3

therein.

Where more than one level of parameters is specified, FDISPLAY allows

the input of a further parameter (AND or OR) which will determine the

filtration logic.

If OR is selected, only one of the filtration criteria need be satisfied for a

task to be displayed. If AND is selected, all of the filtration criteria require to

be satisfied for a task to be displayed.

Amplifying the previous example, the filtration parameters:

CODE POSITION OPERAND SELECTION

NAME 3 EQ CONC

TYPE 1 NE H

LOGIC: AND

will result in the display of only the 'non— hammock' tasks whose names

contain the alphanumeric string 'CONC' at position 3.

The subroutine flow chart is shown in Figure 5.14. Listing of the

subroutine is given in Appendix D.4.

53.2 .2 Subroutine FILTER

This subroutine carries out the actual filtration of tasks according to the

parameters input via subroutine FDISPLAY. A listing of the subroutine is given

in Appendix D.5.

116

"SU BRO U TIN E FDISPLA Y i
i 8 c ra s n dlso*ay for in p u t of

ta sk s n i t r a t io n d a ta

Y E S NO

Oraw n o a d in f
T asks w ith u m u a s l c d u ra tio n s*)

Oraw n s a d in f
| 'T a sk s w itn IMVARIA9LI d u ra tio n s* I

Y E S NO

.Y ES

NO

NO

NO

YES NO

Y ESNO

N OY E S

YES N O NOY ES

Y E S NO

NO Y ES

NO Y ES

RETURN

Figure 5.14 Subroutine FDISPLAY Flow Chart.

117

S.3.2.3 Subroutine TD ISPLAY

This subroutine scrolls the selected tasks to enable the user to check

whether the required filtration has been successfully carried out. A flow chart

of the subroutine is shown in Figure 5.15 and a listing of the subroutine is

given in Appendix D.6.

C l e a r s c r e e n a nd d i s p l a y t able)

YESNO

NOYES All t a s k s
d i s p l a y e d ?

NO YES
Op t i o n is OK?

NO YES
J CO D E < 1

YES NO
n p u t OK?

< C ! q p t l o n is c o n t i n u e ? .

S e t c o d e :
ICODE • 1

RETURN

S e t c o d e :
ICODE • 0

Di s p l a y d u r a t i o n s t r i n g ;
R ea d i n p u t f rom k e y b o a r d

D is p l ay c o n t i n u a t i o n m e s s a g e ;
Rea d o p t i o n f rom k e y bo ar d

For e a c h t a s k , d i s p l a y t h e fo l l owi ng d a t a :
Tas k Type (T TYPE)
Tas k N a me (TNAME)
Tas k Work B r e a k d o wn S t r u c t u r e (TWBS)
Tas k D u ra t i o n (TDURN)

SUBROUTINE TDISPLAY
Di s p l a y s f i l t e r ed t a s k s d a t a in s e t s of 15 t a s k s ;
R e t u r n s t h e fol lowing c o d e s :
ICODE*0 : S a t i s f c t o r y d i s p l a y of t a s k s ;
ICODE*1 : U n s a t i s f a c t o r y d i s p l a y of t a s k s ;

Figure 5.15 Subroutine TDISPLAY Flow Chart

118

5.3.3 Subroutine Q DISPLAY

This subroutine performs a double functions, namely:

(a) To generate the 'input of task duration data1 screen display appropriate to

the 'variability' (i.e. 'Variable' or 'Invariable') of the tasks displayed by

TDISPLAY.

(b) To generate a 'quitting' screen display if the user desires to quit

PERTRA2 following the input of task duration data.

The subroutine flow chart is shown in Figure 5.14 and a listing of the

subroutine is given in Appendix D.3.

119

C l e a r s c r e e n a n d d i s p l a y t a b l e

NO YESO p t i o n is QUIT?

NO YES U p d a t e c o d e l
J C O D E - 2 i

Opt i on Is INPUT7

Di s p l ay TASK DURATIONS o p t i o n s
Task D u r a t i o n VARIABLE/INVARIABLE

NO . / O p t i o n i s \ v YES
■ ■ 1 ■■ V A R I A B L E ? / ' --------------

U p d a t e c o d e I
J CO D E • 1N O / " ' O p t i o n Is \ YES

 / N V A R I A B L E / 1

Up d a t e c o d e
J CODE • 0

Di s p l a y c o n t i n u i n g m e s s a g e
Rea d o p t i o n f rom k e y b o a r d

Di s p l a y q u i t i n g m e s s a g e

NO YESO p t i o n is
CONTI NUE?

RETURN

Wrong op t i o n
s o u n d wa r n i ng

Wrong o p t i o n
S o u n d wa rn i n g

Wr i t e d a t a to FLNAME. TSK

Di s p l a y d a t a i n p u t l ine
Read o p t i o n f r om k e y bo ar d

SUBROUTINE QDISPLAY
In t e r a c t i v e i n q u i r y d i s p l a y r e t u r n s t h e fol l owi ng

JCODE>0 I npu t d a t a for INVARIABLE d u r a t i o n t a s k s
JC0DE*1 I npu t d a t a for VARIABLE d u r a t i o n t a s k s
J CODE*2 No mor e d a t a to i n p u t QUIT p r o g r a m

Figure 5.14 Subroutine QDISPLAY Flow Chart.

120

5.3.4 Input o f Task Duration Data.

Task duration data, for VARIABLE duration tasks, is input in the form of

factors by which the 'Most Likely Duration' of task or group of tasks, may be

multiplied to obtain the 'Optimistic' and 'Pessimistic' durations thereof.

(a) 'Optimistic duration' factor: ranges from 0.00 to 1.00;

(b) 'pessimistic duration' factor: ranges from 1.00 to 1000.00.

The input of task durations using factors have been chosen because of the

following reasons:

(a) In reality 'Optimistic' and 'Pessimistic' durations are usually estimated and

expressed as a percentage of the 'Most likely' duration (i.e. half, twice

etc.).

(b) Allows the input of task durations in groups which is more efficient and

less time consuming

121

5.3.5 PERTRA2 Output.

By running the program PERTRA2 the file FLNAME.TSK will be updated

to include the following data for each task:

VARIABILITY CODE (= 0 for INVARIABLE; = 1 for VARIABLE).

OPTIMISTIC DURATION (In Days).

PESSIMISTIC DURATION (In Days)

An Example of the Updated file is given in Appendix E.

122

5.4 PERTRA3: Risk Analysis and Cash Flow Calculations.

Risk analysis (Time and Cost) using the Monte Carlo simulation technique

is the reason behind the development of PERTRA suite of programs of which

PERTRA3 is the program which carries out the analysis. The essence of

PERTRA3 is as follows:

1. Reading of the data from the files generated by PERTRA1 and

PERTRA2.

2. Performance of the following:

(a) Time analysis of the project network using the Most Likely

Durations to calculate the project duration.

(b) Cost analysis to determine the project IRR and CAPTIM.

3. Determination of the Duration distribution for each task with a

VARIABLE duration.

4. Performance of the following for each simulation:

(a) Random selection of the duration for each task based on the

Triangular Probability distribution (see Section 4.5.2).

(b) Performance of the Time Analysis of the project network (based on

the selected durations) to determine the project duration.

123

(c) Performance of the Cost Analysis to determine IRR and CAPTIM.

5. Sorting of project durations, IRR and CAPTIM into rank order and

performance of statistical analysis thereon.

6. Writing of data to file PERTRA3.RES.

A flow chart and listing of PERTRA3 is given in Figure 5.16 and

Appendix F .l. respectively.

124

Re a d n u m b e r of s i m u l a t i o n s (NRUNS) a n d
t y p e of r a n d o m g e n e r a t i o n RGCODE f r om k e y b oa r d

Rea d d a t a f i l e s n a m e (FLNAME) f r om t h e f i l e P E RT RA. FL S

YES NO
NRUNS > 1

STOP

P e r f o r m p r o j e c t c o s t a n a l y s i s
SUBROUTINE PCOSTS

P e r f o r m Ti me a n a l y s i s c a l c u l a t i o n s

SUBROUTINE ANALYS

C h a n g e p r o j e c t s t a r t d a t e to d a y n u m b e r
SUBROUTINE CALEND

PROGRAM PERTRA3
Risk An a l y s i s u s in g Mon t e C a r l o s im m u l a t i o n

C h a n g e p r o j e c t f i n i sh d a y n u m b e r s to c a l e n d a r d a t e s

________ SUBROUTINE CALEND________

Wr i t e r e s u l t s Into t h e f i le P E RT R A3 . R E S

Read d a t a f rom f i l e s g e n e r a t e d by PERTRA1 a n d P E R T R A 2

Figure 5.16 Program PERTRA3 Flow Chart.

125

Figure 5.16 (Continue)
C a l c u l a t e T r i a n g u l a r D i s t r i b u t i o n p a r a m e t e r s

for t a s k s w i t h VARIABLE d u r a t i o n s

SUBROUTINE TRIDIS

YESNO
End of l oop

P e r f o r m s t a t i s t i c a l a n a l y s i s on t h e p r o j e c t d u r a t i o n s

________SUBROUTINE FREQUA

STOP

For e a c h s i mu l a t i o n 1*2,NRUNS
I n i t i a l i s e t h e SEED

Wr i t e d a t a into t h e f i l e P E R T R A3 . RE S

P e r f o r m c o s t a n a l y s i s

SUBROUTINE PCOSTS

S o r t p r o j e c t d u r a t i o n s Into r a nk o r d e r

SUBROUTINE PSORT

S e l e c t an i n t e g e r t a s k d u r a t i o n

SUBROUTINE DSELECT

P e r f o r m t i me a n a l y s i s for t h e s e l e c t e d t a s k s
SUBROUTINE ANALYS

C a l c u l a t e minimum, ma x i mu m, me an , m e d i a n IRR
SUBROUTINE RRSTAT

P e r f o r m s t a t i s t i c a l a n a l y s i s on t h e s o r t e d IRR
SUBROUTINE FRQIRR

P e r f o r m s t a t i s t i c a l a n a l y s i s on t h e CAPTIM r e s u l t s
SUBROUTINE FRQCAP

C a l c u l a t e Minimum, Max i mum, Mea n , M e d i a n
CAPTIM, S t a n d a r d d e v i a t i o n a n d S k e w n e s s

SUBROUTINE CASTAT

S o r t I n t e r n a l Rat e of R e t u r n a n d CAPTIM Into r a n k o r d e r
SUBROUTINE RRSORT

C a l c u l a t e Minimum, Maxi mum, Mea n , M e d i a n
p r o j e c t d u r a t i o n s ;

C a l c u l a t e s t a n d a r d d e v i a t i o n a n d S k e w n e s s
SUBROUTINE PRSTAT

126

5.4.1 Calendar Subroutines and Functions

In order to perform the time analysis of the project network, and to

facilitate the performance of cash flow calculations, the following subroutines

and functions have been included:

5.4.1.1 Subroutine CALEND

This subroutine converts an alphanumeric date (e.g. 05/DEC/92 — as

generated by PERTMASTER) into an integer day number (relating to the

'Julian' day number commonly used in astronomy) and vice-versa, as follows:

(a) Conversion of date to day number:

(i) Conversion of alphanumeric date to numeric date ID,IM,IY:

for example: 05/DEC/92 =* ID = 5; IM = 12; IY = 1992

(ii) Conversion of numeric date to day number using the following

algorithm:

Day Number = INT(365.25 x Y) + INT(30.6001 x M) + D

where:

127

IY - 1

IY

if IM = 1 or 2

if IM > 2

M = IM + 13

IM + 1

if IM = 1 or 2

if IM > 2

(b) Conversion of day number to alphanumeric date:

(i) Conversion of day number to numeric date, ID, IM, IY, using

the following algorithm:

Y = INT Day Number — 122.1]
355^5 J

M t x t ' t r D a y Number - INT(365.25 x Y) 1
L 30.6001 J

D - Day Number - INT(365.25 x Y) - INT(30.6001 x M)

where:

IM = M - 13 If M = 14 , 15

= M - 1 If M < 14

IY = Y If IM > 2

= Y + 1 If IM = 1,2

ID = D

128

(ii) Conversion of numeric date to alphanumeric date. For

example: 02/09/1992 to 02/SEP/1992

Listing of the subroutine is given in Appendix F.2.

5 A .1.2 Function IDOTW

This function calculates the day of the week from the day number using

the following algorithm:

Day of the Week = 7 x MOD [(Day Number + 5) ,7]

The day of the week is represented by integers 0 to 6 where 0 represents

Sunday. For ease of calculation the function changes Sunday from 0 to 7. The

listing of the function is given in Appendix F.3.

5.4.2 Subroutine ANALYS

This subroutine performs the time analysis of the network and calculates

the following for each task:

(a) Earliest start day number;

(b) Earliest finish day number;

(c) Latest start day number;

(d) Latest finish day number;

129

It also calculates Hammock tasks durations and identifies critical tasks in

the network.

Calculation of the above task schedules is performed in accordance with the

following algorithms:

(a) Calculation of Earliest Start day number (ES):

1. If the link type is F— S ;

ES(Succeeding task)= EF(preceding task)+ Link Duration

2. If the link type is S— S ;

ES(succeeding task)= ES(preceding task)+ Link Duration

(b) Calculation of Earliest Finish day number (EF):

1. If the link type is F— F ;

EF(succeeding task)= EF(preceding task)-+- Link Duration

2. If the link type is S—S or F—S;

EF(succeeding task)= ES(succeeding task)-+- Duration of

succeeding task

(c) Calculation of Latest Start day numbers (LS):

1. If the link type is S— S;

LS(preceding task)= LS(succeeding task)— Link Duration

2. If the link type is F—F or F—S;

LS(preceding task)= LS(succeeding task)— Duration of preceding task

(d) Calculation of Latest Finish day numbers (LF)

1. If the link type is F— F ;

LF(preceding task)= LF(succeeding task)— Link Duration

2. If the link type is F—S;

LF(preceding task)= LS(succeeding task)— Link Duration

It should be noted that, since the task and link durations are specified in

'working' days, use of the above algorithms will result in the schedule dates

being in the form of 'working' day numbers — which are of strictly limited use

schedule— wise where a task's 'working' week differs from the standard

'calendar' week of 7 days.

To ensure that the above dates are in the form of 'actual' day numbers

(as opposed to 'working' day numbers), the following procedures and

131

algorithms have been included in the subroutine:

(A) Forward Pass:

Tasks and/or link durations are adjusted to include for 'down time' by

adding the number of non— working days (TLADD) given by the following

algorithm:

TLADD - I NT

where;

(DURN + IESDOW - 2)1 (? _ Jm,)
TWK

DURN = Task or Link duration;

TWK = Task working days/week;

IESDOW = Link or Task Earliest start day of the week

Subsequently— calculated Earliest Start/Finish is adjusted to ensure that it

will fall on a working day by adding the integer IS ADD calculated as follows:

If IESDOW > TWK;

ISADD - 8 - IESDOW

(B) Backward Pass:

The task and/or link duration (as the case may be) is adjusted to include

132

for 'down time' by adding the integer TLADD calculated by the following

algorithm:

TLADD - I NT [(D^N-LFDOW^WjC-^)] (7_TWK)

where;

DURN = Task or Link duration;

LFDOW = Task or Link Latest Finish day of the week;

TWK = Task working days/week

Calculated Latest Finish/Start should be adjusted to fall in a working day

by subtracting the integer ISDDCT calculated as follows:

If LFDOW > TWK;

ISDDCT - LFDOW - TWK

N O T E :

Using of the above algorithms is varying in accordance with the type of

link and the calculated schedule date, this variation can be seen in the listing

of the subroutine ANALYS given in Appendix F.4.

The subroutine flow chart is shown in Figure 5.17.

133

SUBROUTINE ANALYS
P e r f o r m s n e t w o r k t i me a n a l y s i s c a l c u l a t i o n s ;

C a l c u l a t e s H a m m o c k t a s k s d u r a t i o n s ;
I d e n t i f i e s C r i t i c a l t a s k s in t h e n e t w o r k

Ca l cu l a t e , t a r g e t t a s k , e a r l i e s t f i n i sh d a y n u m b e r
an d e a r l i e s t f i n i sh d a y of t h e w e ek n u m b e r

NO YES
End of loop

I d e n t i f y t h e n u m b e r of t h e l a s t t a s k NFINISH

YES NO
End of l o o p

RETURN

For e a c h l ink r e c o r d
in t h e Fo r wa r d P a s s

For e a c h l ink r e c o r d
In t h e F o r wa rd P a s s

Ca l c u l a t e p r o j e c t d u r a t i o n IPRDRN

C a l c u l a t e H a m m o c k t a s k s d u r a t i o n s

I n i t i a l i s e t a s k s l a t e s t s t a r t a nd
l a t e s t f i n i s h d a y n u m b e r s

Up d a t e t a s k s c r i t i c a l i t y i nde x ICRIT

Ca l c u l a t e , t a r g e t t a s k , e a r l i e s t f i n i s h d a y n u m b e r
an d e a r l i e s t f i n i s h d a y of t h e w e e k n u m b e r

Ca l c u l a t e t h e a b s o l u t e I n t e g e r l ink d u r a t i o n
FUNCTION LNKDRN

C a l cu l a t e p r o j e c t f i n i s h d a y of t h e w e e k n u m b e r ;
Ad j us t p r o j e c t f i n i sh d a y n u m b e r I PFDNO

Ca l c u l a t e t h e a b s o l u t e i n t e g e r l ink d u r a t i o n

FUNCTION LNKDRN

A c co r d i n g to t h e l ink t y p e , c a l c u l a t e
t a r g e t t a s k e a r l i e s t s t a r t d a y n u m b e r

a n d e a r l i e s t s t a r t d a y of t h e w e e k n u m b e r

Ac co r d i n g to t h e l ink t y p e , c a l c u l a t e
t a r g e t t a s k e a r l i e s t s t a r t d a y n u m b e r

a nd e a r l i e s t t s t a r t d a y of t h e w e e k n u m b e r

I n i t i a l i s e p r o j e c t f i n i sh d a y n u m b e r IPFDNO;
I d e n t i f y t h e n u m b e r of t h e f i r s t t a s k NSTART;

n i t i a l i s e T a s k s E a r l i e s t s t a r t d a y n u m b e r IESDNO;
I n i t i a l i s e t a s k s e a r l i e s t f i n i s h d a y n u m b e r IEFDNO

Figure 5.17 Subroutine ANALYS Flow Chart

134

5.4.2.1 Function LIND RN

Since the link duration in the case of S— S link type is given always by a

percentage of the preceding task, this function is called by the subroutine

ANALYS to change the (S-S) link type duration from a percentage to an

absolute Integer duration. It also changes all other type of link duration to

Integer durations. Listing of the function is given in Appendix F.5.

5.4.2.2 Function IS ADD

This function is called by the subroutine ANALYS to calculate the number

of non— working days, week— ends, to be added to the task Earliest start day

number in order to prevent it from falling in a non— working day. Listing of

the function is given in Appendix F.6.

5 .4 .23 Function ISDEDC

It is called by the subroutine ANALYS to calculate the number of

non— working days to be deducted in order to prevent the calculated Latest

Finish day number of falling in a non— working day. Listing of the function is

given in Appendix F.7..

5.4.3 Subroutine ■TRID IS

Calculates the triangular distribution parameters for any given

VARIABLE duration. It performs the calculation in accordance

algorithms (1), (2), (3) in Section 4.4.1. The subroutine flow chart i:

Figure 5.18. Listing of the subroutine is given in Appendix F.8.

D e f i n e c a l c u l a t i o n c o n v e r g e n c e CONVER
D e c l a r e ini t i a l v a l u e s of d i s t r i b u t i o n p a r a m e t e r s

NO YES
c o n v e r g e n c e ?

RETURN

Teat for c o n v e r g e n c e
_______ Area ■ 1_______

C a l c u l a t e Fm
C a l c u l a t e d i s t r i b u t i o n p a r a m e t e r s

c a l c u l a t e t o t a l a r e a

SUBROUTINE TRIDIS
C a l c u l a t e s T r i a n g u la r d i s t r i b u t i o n

p a r a m e t e r s for a g iven t a s k

Figure 5.18 Subroutine TRIDIS Flow Chart.

task with

with the

shown in

136

5.4.4 Subroutine DSELECT

Randomly selects an Integer task duration on the basis of the duration

distribution parameters calculated by the subroutine TRIDIS. Listing of the

subroutine is given in Appendix F.9.

5.4.4.1 Function RAND

This function is called by the subroutine DSELECT to return a random

real number, calculated on the basis of a 'seed', in the range 0.0 to 1.0.

The 'seed' requires initialisation prior to the function being called.

If a Repeatable series of random numbers is required, the 'seed' initialised

in the main program should be a fixed number. If a non— repeatable series of

random numbers is required, the seed is initialised by using the variable

IHUN, hundred of a second, in the MICROSOFT FORTRAN compiler

bu ilt-in function GETTIM(IHR,IMIN,ISEC,IHUND) and the 'seed' initialised

should range from 0.0 < SEED < 259200. Listing of the function is given in

Appendix F.10.

137

5.4.5 Subroutine PCOSTS

This subroutine performs the second part of the overall analysis: Cost

Analysis. This is carried out as follows:

1. By distributing the tasks cost components on the project working

duration.

2. Calculates the daily costs and adjust them according to the method

of payment intervals and payment delays read from the cost file

(FLNAME.CST) generated by the program PERTRA1.

3. Based on the above modified data, it calculates the project CAPTIM

and Internal Rate of Return.

Steps of carrying out the above are shown on the subroutine flow chart in

Figure 5.19. Listing of the subroutine is given in Appendix F . l l .

138

C a l c u l a t e p r o j e c t c o a t d a y s ICDAYS; |
D i s t r i b u t e c o a t s o n t h e p r o j e o t d a y s j

NO YES
WEEKLY?

NO YES
WEEKLY?

YES NO
MONTHLY?

NOYES
DAILY?

NO YES

No d e l a y is
r e q u i r e d

RETURN

C a l c u l a t e t h e CAPTIM

C a l c u l a t e t h e IRR

C h e c k P a y m e n t d e l a y

A c c u m u l a t e c o s t s on t h e
l a s t d a y of t h e w e e k

Go to n e x t c o s t c o m p o n e n t

A d ju s t p a y m e n t
n o t to b e on w e e k e n d s

C h a n g e t h e m o n t h s i n to da y s
a nd a c c u m u l a t e t h e p a y m e n t

For e a c h C o s t C o m p o n e n t
C h e c k p a y m e n t m e t h o d

C h a n g e t h e w e e k s Into d a y s
an d a c c u m u l a t e t h e p a y m e n t

C a l c u l a t e t h e n u m b e r of d a ys
an d a c c u m u l a t e t h e p a y m e n t

P a y m e n t m e t h o d Is MONTHLY
A c c u mu l a t e c o s t s on t h e

l a s t d a y of t h e m o n t h

C a l c u l a t e t o t a l d a i l y c o s t s ;
A c c u mu l a t e t o t a l da i l y c o s t s ;
Ac c u m u l a t e t o t a l t a s k p r i c e s

SUBROUTINE PCOSTS
D i s t r i b u t e s c o s t s on t h e p r o j e c t d a y s

a c c o r d i n g to t h e p a y m e n t m e t h o d a n d d e l a y ;
C a l c u l a t e s t h e CAPTIM an d IRR

Figure 5.19 Subroutine PCOSTS Flow Chart.

139

5.4.6 Subroutine PSORT

Sorts the project durations, resulting from each 'simmulation run', into

rank order in order to perform statistical analysis on the results. Results are

shown in Appendix.. Listing of the subroutine is given in Appendix F.12.

5.4.7 Subroutine PRSTAT

Performs statistical analysis on the project durations after sorting them in

rank order as shown in the flow chart in Figure 5.20. Listing of the

subroutine is given in Appendix F.13.

5.4.8 Subroutine CAST AT

Performs the same steps of subroutine PRSTAT for the sorted CAPTIM

results. Listing of the subroutine is given in Appendix F.14.

5.4.9 Subroutine RRSTAT

Performs the same steps of subroutines PRSTAT and CAST AT for the

sorted IRR results. Listing of the subroutine is given in Appendix F.15.

140

SUBROUTINE PRSTAT
P e r f o r m s s t a t i s t i c a l a n a l y s i s t o a

n u m b e r of r u n s NRUNS p r o j e c t d u r a t i o n s

C a l c u l a t e Minimum, Maxi mum, S u m
a n d Sum s q u a r e of p r o j e c t d u r a t i o n s

MINPDU, MAXPDU, ISUM, ISUMSQ

C a l c u l a t e M ea n p r o j e c t d u r a t i o n PRMEAN
an d t h e S t a n d a r d d e v i a t i o n PROSI O

C a l c u l a t e M e d i a n p r o j e c t i
d u r a t i o n MEDIAN

C a l c u l a t e t h e r e s u l t s
d i s t r i b u t i o n s k e w n e e s

PSKEW

| RETURN I
l I

Figure 5.20 Subroutine PRSTAT Flow Chart.

5.4.10 Subroutine RRSORT

Sorts the values of Internal Rate of Return (IRR) and CAPTIM, as

calculated by each 'simmulation run',into rank order. Listing of the subroutine

is given in Appendix F.16.

5.4.11 Subroutine FREQUA

Divides the number of runs of project durations into bands, calculate the

frequency and cumulative frequency for each band and determine the bands

midpoints to allow presenting the results in a graphical mode. Listing is given

in Appendix F.17.

141

5.4.12 Subroutine FRQIRR

Performs the same steps as subroutine FREQUA, but, for the number of

runs of IRR. The flow chart of the subroutine is shown in Figure 5.21. Listing

of the subroutine is given in Appendix F.18.

5.4.13 Subroutine FRQCAP

Performs the same steps of subroutines FREQUA and FRQIRR for the

CAPTIM results. Listing of the subroutine is given in Appendix F.19.

Ca l c u l a t e t h e minimum p a r a m e t e r AMIN
 (t h e s m a l l e s t va lue of IRR)

S e t b a n d w i d t h a n d i n i t i a l i s e
mlnmum a n d ma x i mu m p a r a m e t e r s

AMIN , AMAX

SUBROUTINE FRQIRR
Di v i de s t h e IRR r e s u l t s Into b a n d s

C a l c u l a t e s f r e q u e n c y a n d c u m u l a t i v e
_____________ for e a c h ba n d_____________

Ca l c u l a t e t h e ma x i mu m p a r a m e t e r AMAX
(t h e l a r g e s t va lue of IRR) i

C a l c u l a t e n u m b e r of b a n d s IBAND
C h a n g e f r e q u e n c y Into p e r c e n t a g e

RETURN

C a l c u l a t e c u mu l a t i v e f r e q u e n c y
C a l c u l a t e b a n d s m i d p o i n t s

D e t e r m i n e u p p e r a n d lower d i s t r i b u t i o n p a r a m e t e r s

Figure 5.21 Subroutine FRQIRR Flow Chart.

142

CHAPTER 6

PROGRAM OPERATION

6.1 PERTRA1

6.1.1 Screen Displays

With a view to ensuring that the program is user-friendly and

straightforward to operate — two of the prime requirements of any computer

program — PERTRA1 generates a number of screen displays to facilitate the

interactive input of data from the keyboard and to keep the user abreast of

exactly what the program is doing at any given time. Each screen display is of

the form shown in Figure 6.1

143

Data Input Line

Screen

Display

Table

Message Line

Figure 6.1 Programs Screen Display

6.1.1.1 Data Input Line

In cases where alphanumeric data is required to be input, the data input

line will display details of the data required and will contain a pair of brackets

[—], containing a flashing cursor, indicating the maximum permissible length

of the input string. Mistakes may be rectified in the normal way by using the

'backspace' key.

If the input string exceeds the maximum permissible length, a warning

bleep is sounded.

In cases where the required input consists of selection of a number of

options, the data input line will display a menu of available options

highlighting the first character of each option. Selection of the required option

is carried out by pressing the required key.

144

6.1.1.2 Screen Display Table

The screen display table has two functions, namely:

(a) To display introduction or termination information when entering or

'quitting' the program.

(b) To display, in tabular form (for clarity), data which has been input

by the user.

6.1.1.3 Message Line

The message line displays either of two types of message:

(a) A message briefing the user (when appropriate) as to what the

program is doing at any given time.

(b) A messages containing information (when appropriate) pertaining to

the input of data by the user.

145

6.1.2 Operational Details

6.1.2.1 Initialisation

Program operation is commenced, in the usual manner, by typing the

program name PERTRA1.

The resultant screen display — shown in Figure 6.2 — indicates for the

user to input the name (with no extension) of the PM A— generated export file

which the program is required to read.

The input name is displayed as shown in Figure 6.3 (which assumes the

input file name to be BRIDGE) and the user is given the option of

confirming the file name or repeating the exercise in the event of an error in

the input. The appropriate options are displayed in the data input line,

selection of which is made by typing Y or N.

146

File n a m e (no ex tens ion) : [_

Program PERTRA1

I n te ra c t iv e ini t i a l isa t ion p r o g r a m for

t h e M o n t e - C a r l o s imula t ion c a r r i e d ou t

by P r o g r a m PERTRA3

PMA E x p o r t File

Figure 6.2 File Name Input Screen Display

OK? YES N O

P r o g r a m PERTRA1

Inter ac t iv e in i t ia l isa t ion p r o g r a m for

th e M o n t e - C a r l o s imula t ion c a r r i e d ou t

by P r o g r a m PERTRA3

PMA E x p o r t File : BRIDGE.EXP

Figure 6.3 File Name Confirmation Screen Display.

147

6.1.2.2 Reading o f Data File

Typing the letter Y will result in the display of the data abstraction screen

as shown in Figure 6.4. The status of the data abstraction will be changing on

the screen as the program finishes the relevant data reading.

Data A b s t r a c t i o n

RECORD TYPE STATUS

HEADER COMPLETED
PROJECT COMPLETED
TASK COMPLETED
LINK IN P R O G R E S S
RESOURCE
CALENDAR

Figure 6.4 Data Abstraction 1 Screen Display

148

When all data is abstracted, a message (ALL DATA ABSTRACTED) will

appear on the message line and the screen display will be as in Figure 6.5.

At this stage the user is requested to hit any key for continuation.

■ ■ Data A b s t r a c t i o n —

RECORD TYPE STATUS

HEADER
PRO JECT
TASK
LINK
RESOURCE
CALENDAR

CO MPLETED
COMPLETED
COMPLETED
COMPLETED
COMPL ETED
COM PLETED

ALL DATA ABSTRACTED

Hit any key to c o n t i n u e

Figure 6.5 Data Abstraction 2 Screen Display

6.1.2.3 Input o f - Working Week Data

Hitting any key will result the display of the working week data screen

(see Figure 6.6). The number of working days for each displayed calendar

should be input from the keyboard.

DAILY : Week len gth [-]

Working w e e k d a t a ■

CALENDAR WORKING WEEK
(Days)

ALLDAYS 7
DAI LY |

Figure 6.6 Working Week Input Screen Display

Finishing the- input of all such data, the user is given the option of

confirming the displayed data or repeating the exercise in the event of an

error in such. These options are given in the confirmation screen shown in

Figure 6.7.

ALL OK? Y E S NO

"■Working w e e k d a t a ■■■

CALENDAR WORKING WEEK
(Days)

ALLDAYS 7
DAI LY 5

Figure 6.7 Working Week Confirmation Screen Display

151

6.1.2.4 Input of-C ost Component Data

Confirmation of the correctness of working— week data will result in the

cost component data screen display as shown in Figure 6.8.

Code: [_] (Hit <CR> if c o m p o n e n t not appl icab le)

--C o s t C o m p o n e n t Data —

COMPON ENT LOADING CODE PAYMENT PAYMENT DELAY

LABOUR Normal H I
MATERIALS Front
PLANT Normal
PLANT Front
PLANT Back
SUBCONTRACT S p r e a d
OVERHEADS Normal
OVERHEADS Front

TASK PRICE S p r e a d

Figure 6.8 Cost Components Data Screen Display

152

At this stage- the user is requested to input the cost component code as

defined by PMA or hitting the < CR> key if the cost component is not

applicable. If the input code is not defined, a message will appear in the

message line informing the user that the cost component code is not found

and should try again to input the correct code.

Screens display for the input of the CODE, PAYMENT (weekly or

monthly) and PAYMENT DELAY (days or weeks or months) are shown in

Figure 6.9, Figure 6.10 and Figure 6.11 respectively.

Payme nt : WEEKLY MONTHLY

C o s t C o m p o n e n t Data

COMPONENT LOADING CODE PAYMENT PAYMENT DELAY

LABOUR
MATERIALS

Normal
Front
Normal
Front
Back

XLC

PLANT
PLANT

PLANT

SUBCONTRACT
OVERHEADS
o v e r h e a d s

S p r e a d
Normal
Front

TASK PRICE S p r e a d

Figure 6.9 Cost component Data Screen Display (2)

153

P a y m e n t delay: [

COMPONENT

LABOUR
MATERIALS
PLANT
PLANT

PLANT

SUBCONTRACT
OVERHEADS
OVE R H E ADS

TASK PRICE

1 (Hit <CR> if no p a y m e n t delay)

—— C o s t C o m p o n e n t Data ——

LOADING

Normai
Front
Normal
Front
Back

S p r e a d
Normal
Front

S p r e a d

CODE PAYMENT PAYMENT DELAY

XLC WEEKLY

[e.g. 2 8 d z 28 days ; 6 w r 6 weeks ; 1m z 1 month;]

Figure 6.10 Cost Component Data Screen Display (3)

C o n t in u e ? YES NO

COMPONENT

LABOUR
MATERIALS
PLANT
PLANT

PLANT

SUBCONTRACT
OVERHEADS
OVERHEADS

TASK PRICE

C o s t C o m p o n e n t Data

LOADING

Normal
Front
Normal
Front
Back

S p r e a d
Normal

Front

S p r e a d

(ODE PAYMENT PAYMENT DELAY

XLC WEEKLY

Figure 6.11 Cost Component Data Continuation Screen Display (1).

154

By finishing the data input of a cost component as shown in Figure 6.11,

the user is given the option of confirming the accuracy of the data input for

the relevant cost component or repeating the exercise in the event of any

error in the input. Selection of the option is made by typing Y or N.

The same process is continued for the other components bearing in mind

that, for the cost components PLANT (FRONT and BACK) and OVERHEADS

(FRONT), the user will not have the option for the input of their PAYMENT

and PAYMENT DELAY as they will be assumed and displayed as the input of

the NORMAL cost component for each of them.

Finishing the above, a continuation screen as in Figure 6.12 will be

displayed given the user the option to continue or repeat the exercise once

again. Continuation options is made by typing Y or N.

C o n t i n u e ? YES NO
--- C o s t C o m p o n e n t Data - ^

COMPONENT LOADING CODE PAYMENT PAYMENT DELAY

LABOUR Normal XLC WEEKLY
MAT E R1ALS Front XMC MONTHLY 28 d a y s
PLANT Normai XPC MONTHLY 1 m o n th
PLANT Front XPF MONTHLY 1 m on th
PLANT Back XPB MONTHLY 1 m o n th
SUBCONTRACT S p r e a d XSC MONTHLY 4 w e e k s
OVERHEADS Normal XOD MONTHLY _

OVERHEADS Front XOF MONTHLY -

TASK PRICE S p r e a d XTP MONTHLY 1 m o n th

Figure 6.12 Cost Component Continuation Display (2).

155

6.1.2.5 Generation o f Data Files and Program Termination

Typing the option Y will result in the 'termination' screen display shown in

Figure 6.13 which will show the data files written and to be used by the

programs PERTRA2 and PERTRA3.

When all the data is written to the relevant files a termination message

will appear in the message line.

Qui t t ing PERTRA1 !!

The following
b e e n c r e a t e d

GENERAL data:
TASK data:
LINK data:
COST data :

d a t a files have

BRIDGE.GEN
BRIDGE.TSK
BRIDGE.LNK
BRIDGE.CST

Run PERTRA2 for i n te rac t i ve input
of TASK DURATION d a t a

P ro g ra m te r m in a te d

Figure 6.13 Termination Display Screen

156

6.2 PERTRA2

6.2.1 Screen Displays

PERTRA2 generates the same screen types as generated by the program

PERTRA1 (see Section 6.1.1).

6.2.2 Operational Details

6.2.2.1 Program Introduction

Program operation is commenced, in the usual manner, by typing the

program name PERTRA2.

The resultant is the 'introductory' screen shown in Figures 6.14 to 6.16

which displays information about PERTRA2.

Program PERTRA2

I n t e r ac t iv e input of TASK DURATION d a t a for the M o n t e - C a r l o
s imula t ion c a r r i e d ou t by Pr o g ram PERTRA3,

Bas ic t a s k d a t a is read from th e a p p r o p r i a t e ,TSK file
g e n e r a t e d by P ro g ra m PERTRA1. Following input of t h e t a s k
d u ra t io n da ta , th i s file will b e up da te d , th u s providing th e
faci l i ty of pe r fo rm in g i n te r m e d ia te c h e c k s on th e d a t a file.

For c o n v e n i e n c e , PERTRA2 fac i l i t a te s SELECTIVE di sp l a y of
t a s k s on the b a s i s of:

(a) Task NAME;
(b) Task WORK BREAKDOWN STRUCTURE;
(C) Task TYPE;

| Hit any key to continue j

Figure 6.14 Program Introductory Screen 1

Program PERTRA2

For thr p u r p o s e of d a t a input , t a s k s may b e c a t e g o r i s e d a s
follows:

TYPE 1: T h o s e w h o s e d u r a t i o n s a re VARIABLE in a c c o r d a n c e
with a probabi l i ty d i s t r ib u t io n d e f in e d by:

(a) OPTIMISTIC d u ra t io n (99% e x c e e d a n c e probabi l i ty) ;

(b) MOST LIKELY d u r a t i o n (u s e d in PMA ca lc u l a t ion s) ;

(c) PESSIMISTIC du ra t i o n (1% e x c e e d a n c e probabi l i ty);

TYPE 2: T h o s e w h o s e d u r a t i o n s a r e INVARIABLE a n d a r e not
s u b j e c t to a p rob abi l i t y d i s t r ib u t io n a s above;

Hit any key to continue

Figure 6.15 Program Introductory Screen 2

158

Program PERTRA2

Mote 1: MILESTGN t t a s k s will au to m a t ic a l ly b e i n c l u d e d w i t n i n
c a t e g o r y 2;

Note 2: By v i r tu e of their na ture , HAMMOCK t a s k s will a l s o b e
a u to m a t ic a l ly inc luded wi th in c a t e g o r y 2;

Hit any key to continue

Figure 6.16 Program Introductory Screen 3

159

6.2.2.2 Reading Task Duration Data

Hitting any key after the program introduction result in the display of

reading data screen as shown in Figure 6.17 which is briefing the user of what

the program is doing at that stage.

Program PERTRA2

Mote 1: MILESTONE t a s k s will au to m a t i c a l l y b e inc lu ded wi th in
c a t e g o r y 2;

Mote 2: By v i r tu e of their na ture , HAMMOCK t a s k s will a l s o be
au to m at ic a l l y in c lude d wi th in c a t e g o r y 2;

Reading Task Dura tion d a t a from file: BRIDGE.TSK

Figure 6.17 Reading Data Screen

6.2.2.3 Data Input

Automatically the program will display the task duration data screen as

shown in Figure 6.18 giving the user the option to input the task duration

data or quit the program. The appropriate option is selected by typing the

160

letter I or Q. Selection of the INPUT option results in the screen

shown in Figure 6.19 giving the user the option to select the type

duration to input (VARIABLE/INVARIABLE). The option is selected

usual manner by typing the one of the highlighted letters V or I.

Option: INPUT QUIT

TASK DURATION DATA

Task Duration: VARIABLE/INVARIABLE

Figure 6.18 Task Duration Data Screen 1

Task Duration: VARIABLE INVARIABLE

TASK DURATION DATA

Task Duration: VARIABLE/INVARIABLE

Figure 6.19 Task Duration Data Screen 2

display

of task

in the

161

6.2.2.4 Input o f - Tasks with VARIABLE Durations

Selecting the option V will result in the display of the screen shown in

Figure 6.20 giving the user the option of confirming the input of task duration

data for tasks with VARIABLE durations (see Section 5.3.(a))by typing the

letter Y or going back to the previous screen by typing the letter N and

repeating the exercise again.

C o n t i n u e ? YES NO

TASK DURATION DATA

Task Duration: VARIABLE /INVARIABLE

Figure 6.20 Tasks Duration Screen 3

6.2.2.4.1 Filtration Parameters

Continuing will result in the display of the first filtration parameters screen

as shown in Figure 6.21. The user is given the option of selecting one of the

following filtration parameters (see Section 5.3.2):

1. Task Name (NAME);

2. Task Type (TYPE);

3. Task Work Breakdown Structure (WBS);

or the option of quitting the input of data (QUIT).

Ta sks wi th VARIABLE d u r a t i o n s I

FILTER 1; CODE: NAME WBS TYPE QUIT

--------------------------------- F i I t e r ----------------------------------

FILTER CODE POS OPRN SELECTION

LOGIC:

Figure 6.21 First Filter Parameters Screen 1

163

In case of selection of the code TYPE , the user will not be required to

input the parameter POS as, the program will automatically display, as shown

in Figure 6.22, the number 1 highlighting the third filtration parameter

OPERAND giving the user the options equal (EQ) or not equal (NE).

T a sk s wi th VARIABLE d u r a t i o n s

FILTER 1; OPERAND: EQ NE
------------------F i l t e r ------------------------------------

FILTER
1
2

CODE POS OPRN SELECTION
t y p e m

3
4

5
6

LOGIC:

Figure 6.22 First Filter Parameters Screen 2

164

Selection of -the option EQ by typing the highlighted letter E will result

in the display of the SELECTION as shown in Figure 6.23 and the user is

required to input the type of tasks to be selected. Typing mistakes can be

corrected by using the backspace key as indicated in the message line.

Task s wi th VARIABLE d u r a t i o n s

FILTER 1; SELECTION: [_

------------------Fil ter

FILTER CODE POS OPRN SELECTION
[TYPE 1

2

3
4

5

6

LOGIC:

U s e BACKSPACE key to e r a s e

Figure 6.23 First Filter Parameters screen 3

165

Typing the task type, for example, T and hitting the < C R > key will

result in the display of the second filter parameters screen shown in

Figure 6.24.

Task s wi th VARIABLE d u r a t i o n s

FILTER 2; CODE: NAME WBS TYP E QUIT

------------------F i l t e r ------------

FILTER CODE POS OPRN SELECTION
1 TYPE 1 EQ T
2 Hi
3

4

5
6

LOGIC:

Figure 6.24 Second Filter Parameters Screen 1

166

Repeating the same exercise, for example, selection of all tasks with work

breakdown structure, starting from the fourth character, not equal to DELAY

will result in the display of the screen shown in Figure 6.25.

Ta sks with VARIABLE d u r a t i o n s

FILTER 3; CODE: NAME W BS T Y PE QUIT

------------------F i l t e r ------------

FILTER CODE POS OPRN SELECTION
1 TYPE 1 EQ T
2 WBS 4 NE DELAY

3 ■ ■

4

5

6

LOGIC:

Figure 6.25 Second Filter Parameters Screen 5

167

Following the input of the requisite number of filtration parameters, up to

a maximum of six, the QUIT option should be chosen to allow the user to

input the logic parameters.

62.2.4.2 Filtration Parameters Logic

At this stage (see Figure 6.26), the user is giving the option of confirming

the displayed parameters (Y) or repeating the exercise (N) in the event of an

error being detected.

Ta sks wi th VARIABLE d u r a t i o n s

CONTINUE ? YES NO

----- F i l t e r ------------

FILTER CODE POS OPRN SELECTION
1 TYPE 1 EQ T
2 WBS 4 NE DELAY

3 H I
4

5

6

LOGIC:

Figure 6.26 Filters Confirmation Screen

168

If Y is selected, the logic input screen (see Figure 6.27) is displayed,

giving the user the option of input AND or OR. If AND is chosen, each of

the displayed filtration criteria must be met for a task to be selected. If OR is

chosen, only one of the displayed criteria must be met for a task to be

selected.

T a s k s wi th VARIABLE d u r a t i o n s

LOGIC: AND OR
----- Filter

FILTER CODE POS OPRN SELECTION
i TYPE 1 EQ T
2 WBS 4 NE DELAY

3
4

5
6

LOGIC: H i

Figure 6.27 Filters Logic Screen

169

For this example, both of the filtration criteria should be met and selection

of the option AND will result in the screen display shown in Figure 6.28.

T ask s wi th VARIABLE d u r a t i o n s

GO CANCEL

i----------------------------------- Fil ter

FILTER CODE POS OPRN SELECTION
1 TYPE 1 EQ T
o WBS 4 NE DELAY

4

5

6

LOGIC: AND

Figure 6.28 Filters Logic Confirmation Screen

170

Selection of * the option CANCEL will delete the previously selected

filtration parameters and logic and the exercise is to be repeated again.

Selection of the option GO will result in the display of the selected tasks as

shown in the sample given in Figure 6.29.

T a sk s wi th VARIABLE d u r a t i o n s

CONTINUE ? YES NO
“ ■ Fi l t e r ed Ta sks

NAME TYPE WBS DURATION
CLEAR T RW-CLEAR 1.00
S1BCONC T RW-C ONC 1.00
S1BEXC T RW-EWK 1,00
S1BFILL *rI RW-EWK 7.00
S1BFW T RW-FW 2.0 0
S1BFWS T RW-FW 1.00
S1BRF T RW-RF 4 .0 0
SlUNITS T RW-UNITS 3 .0 0
S 2B CO NC T R W -C ONC 1.00
S2BEXC T RW-EW 1.00
S2BFILL T RW-EWK 7.00
S2 BF W T RW-FW 2 .0 0
S2BF WS T RW-FW 1.00
S2BRF T RW-RF 4 .0 0
S2UNITS T RW-UNITS 3. 00

OPTIMISTIC d ur a t io n factor:
PESSIMISTIC du ra t io n factor:

Figure 6.29 Sample of Tasks With VARIABLE Duration Display

171

6.2.2.43 Input o f Optimistic and Pessimistic Durations Factors

Confirming the accuracy of the displayed tasks will result in the display of

the screen shown in Figure 6.30 and the input of the Optimistic duration

factor (see Section 5.3.4) will be highlighted. The data input line is showing

the range of the factor to input.

Tasks with VARIABLE d u r a t i o n s

Fac tor (0 < f < . !) : [-

------------------------------F i l t e r ed Ta sk s
NAME TYPE WBS DURATION
S4UNITS T RW-UNITS 3.00
S5B CO NC T R W -C ON C 1.00
S5BEXC T RW-EWK 1.00
S5BFILL T RW-EWK 7.00
S 5BF W T RW-FW 2.0 0
S 5B F W S T RW-FW 1.00
S5BRF T RW-RF 4. 00
S5UNITS T RW-UNITS 3.00
S 6BC ONC T RW -C ON C 1.00
S6BEXC T RW-EW 1.00
S6BFILL T RW-EWK 7,00
S 6B F W T RW-FW 2. 00
S 6BF W S T RW-FW 1.00
S6BRF T RW-RF 4.00
S6UNITS T RW-UNITS 3 .00

OPTIMISTIC d ura t io n factor: H
PESSIMISTIC d u ra t io n factor:

Figure 6.30 Optimistic Duration Factor Input Screen

172

Typing the Optimistic Duration factor and hitting the < CR> key will

result in the display of the screen shown in Figure 6.31, indicating the input

of the Pessimistic Duration factor and showing the range of the factor in the

data input line.

T ask s wi th VARIABLE d u r a t i o n s

Fac tor (1 <_ f < 1000) : [_

i— -— Fi l t e r ed Tasks
NAME TYPE WBS DURATION
S4UNITS T RW-UNITS 3 ,00
S5 B C O N C T RW-CONC 1,00
S5BEXC T RW-EWK 1.00
S5BFILL T RW-EWK 7,00
S5 B F W T RW-FW 2.0 0
S 5B F W S T RW-FW 1.00
S5BRF T RW-RF 4.00
S5UNITS T RW-UNITS 3 .00
S 6BCO NC T RW-C ONC 1.00
S6BEXC T RW-EW 1.00
S6BFILL T RW-EWK 7.00
S6 B F W T RW-FW 2.00
S6 B F W S T RW-FW 1.00
S6BRF T RW-RF 4 .0 0
S6UNITS T RW-UNITS 3. 00

OPTIMISTIC du ra t i o n factor: . 5 0 0 0
PESSIMISTIC du ra t io n factor: H H j

Figure 6.31 Pessimistic Duration Factor Input Screen

173

The user is, 'once again, having the option of confirming the accuracy of

the data input as can be seen in the screen display shown in Figure 6.32.

T a sk s wi th VARIABLE d u r a t i o n s

F a c t o r s OK? YES N O
■■ - ■ ■ F i l te red Tasks

NAME TYPE WBS DURATION
S4UNITS T RW-UNITS 3 .00
S5 BC ONC T RW- CON C 1.00
S5BEXG T RW-EWK 1,00
S5BFILL T RW-EWK 7.00
S5 BFW T RW-FW 2,00
S 5B FW S T RW-FW 1.00
S5BRF T RW-RF 4 .0 0
S5UNITS T RW-UNITS 3. 00
S6 BC ONC T RW -C ONC 1.00
S6BEXC T RW-EW 1.00
S6BFILL T RW-EWK 7.00
S6 BF W T RW-FW 2.00
S6B FW S T RW-FW 1.00
S6BRF T RW-RF 4.00
S6UNITS T RW-UNITS 3.00

OPTIMISTIC d ur a t io n factor: . 5 0 0 0
PESSIMISTIC d ur a t io n factor: 2 . 0 0 0 0

Figure 6.32 Factors Confirmation Screen

174

6.2.2.5 Input o f1 Tasks with IN VARIABLE durations

The selection of the tasks with INVARIABLE durations, for example,

concrete curing, consolidation of an embankment under surcharge etc. (see

Section 5.3.(b)), is carried out in the same manner as for the selection of

tasks with variable durations, but the input of optimistic and pessimistic

durations factors is not required. The result of the selection exercise is shown

in Figure 6.33.

Ta sks wi th INVARIABLE d u r a t i o n s

i l t ra t ion OK? YES NO
r I

NAME TYPE WBS DURATION
S1BF WSD T RW-DELAY 5 .0 0
S2B FW SD T RW-DELAY 5 .0 0
S3 BF W SD T RW-DELAY 5 .0 0
S4 BF W SD T RW-DELAY 5 .0 0
S5B FWSD T RW-DELAY 5 .0 0
S6B F WSD T RW-DELAY 5 .0 0

Figure 6.33 Filtered Tasks display screen

175

Confirming the accuracy of the displayed tasks will result in the display of

the screen shown in Figure 6.34. The user is required to hit any key and the

program will coded all the displayed tasks accordingly.

T ask s wi th INVARIABLE d u r a t i o n s

Fi l t e r ed Ta sks
NAME TYPE WBS DURATION
S1BFWSD T RW-DELAY 5 .0 0
S2BF WSD T RW-DELAY 5.00
S3 B FW SD T RW-DELAY 5.00
S4 B FW SD T RW-DELAY 5 .0 0
S5 BF WSD T RW-DELAY 5 .0 0
S6 BF WSD T RW-DELAY 5.00

Ta sk s will b e c o d e d a c c o rd in g ly
Hit an y key to c o n t i n u e

Figure 6.34 Coding Screen Display

I
176

6.2.2.6 U pdating-of Task Data File and Program Termination

Finishing the coding the program automatically will update the Task data

file (see Section 5.3.5) and the screen shown in Figure 6.35 will be displayed

with a program termination message in the message line.

Quitting PERTRA2 !!!

-ou may now c n e c k your input d a ta in

File: d RIDGE.TSK

Task Dura t ion Data may b e a m e n d e d
or u p d a t e d by r e - runn ing PERTRA2;

The M o n t e - C a r l o s imula t ion may be
c a r r i e d ou t by running PERTRA3;

P r o g r a m te r m in a t e d

Figure 6.35 Program Termination Screen

177

6.3 PERTRA3

6.3.1 Program Operation

PERTRA3 is considered to be the "number— crunching" program in the

suite of the PERTRA programs and its interaction with the user is very

limited. For this reason the program was written without the use of the screen

displays used in the programs PERTRA1 and PERTRA2.

Program operation is commenced, in the usual manner, by typing the

program name PERTRA3.

6.3.2 Data Input

6.3.2.1 Random Numbers series Type

The user is required to input the type of random number series to be

generated by the program.

If a REPEATABLE series of random numbers is required

(see Ssction 5.4.4.1), the letter R should be typed followed by < C R > . If a

NONREPEATABLE series is required, the letter N should be typed, followed

by < CR> .

In the event of typing any letters other than R or N, a warning message

will be displayed and the correct code should be typed again.

178

63 .2 .2 Number o f Simulations

The next data input required is the number of simulation runs required

(see Section 4.3.1). The program is capable of performing up to 1000 runs.

Following the input of the above data the program commences the analysis

calculations and writes the results in the file PERTRA3.RES.

By means of appropriate screen messages, the user is kept abreast of the

operations currently being performed by the program.

6.3.3 Data Output

6.3.3.1 One Simulation Run Data Output

If a single simulation run is chosen (see above), the following results will

be written to the file PERTRA3.RES.

(a) Project Start Date.

(b) Project Finish Date.

(c) Project Duration (days)

(d) Project Internal Rate of Return (IRR).

179

(e) Project CAPTIM.

A sample of the results is given in Appendix G.

63.3 .2 Multiple Simulation Runs Output

If more than one simulation run is required, the results will be written into

the file PERTRA3.RES as given in the sample in Appendix H.

Presenting the results graphically can be carried out using any interactive

graphics software. The output shown in Figures 6.36 to 6.41 was achieved

using the software pakage: HARVARD GRAPHICS.

180

Frequency (%)

50 r---
N u m b e r of Runs ■ 1 0 0 0 Runs

M i n i m u m P r o j e c t D u r a t i o n • 3 0 5 Days

M a x i m u m P r o j e c t D u r a t i o n • 3 5 4 Days

. M e a n P r o j e c t D u r a t i o n • 3 3 3 Days
4 0 r

S t a n d a r d D e v i a t i o n » 9 Days

30

20

3603 5 03403 3 032 0310300
Project Duration (Days)

Figure 6.36 Project Durations Frequency Diagram

Cumulative Frequency (%)

1 0 0

90
N u m b e r o f R un s ■ 1 0 0 0 R uns

80

70

60

50

40

30

2 0

10

0 —

290 3603 3 0 340 350300 320310

Project Duration (Days)

Figure 6.37 Project durations Cumulative Frequency Diagram

181

Frequency (%) .

30

N u m b e r o f R u n s • 1 0 0 0 Ru ns
Minimum IRR - 61 %
M a x i m u m IRR • 1291
M e a n IRR • 3 6 8
S t a n d a r d D e v i a t i o n - 2 3 6

2 0 0 4 0 0 600 8 0 0 1000
Internal Rate of Return (IRR) %

1 2 0 0

Figure 6.38 Internal Rate of Return (IRR) Frequency Diagram

Cumulative Frequency (%)

100

90

80
N u m b e r o f R u n s - 1 0 0 0 R un s

70

60

50

40

30

20

0 2 0 0 400 600 800 1000 1200 1400

IRR (%)

Figure 6.39 IRR Cumulative Frequency Diagram

182

Frequency (%)

4 0 ---
N u m b e r o f R u n s • 1 0 0 0 R u n s
Minimum CAPTIM - 3 . 2 6 MC.DAY
M a x i m u m CAPTIM • 8 . 7 2 MC.DAY

M e a n CAPTIM ■ 5 . 3 9 MC.DAY
S t a n d a r d D e v i a t i o n ■ 1.21 MC.DAY30

20

3 4 5 6 7 8 9
CAPTIM (MILION £.DAY)

Figure 6.40 CAPTIM Frequency diagram

Cumulative Frequency (%)

100
N u m b e r o f R u n s • 1 0 0 0 R un s90

80

70

60

50

40

30

20

0 1 2 3 54 6 7 8 9 10

CAPTIM (Milion £.Day)

Figure 6.41 CAPTIM Cumulative Frequency Diagram

183

CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

The usual techniques of including the most likely duration in the analysis

and producing a single most likely result tends to underestimate the risks in a

project. It neglect most of the information that bears in future possibilities.

For this reason, risk analysis programs have been developed to report a range

of outcomes for the project; including possible worse outcomes as well as

desired profitable ones.

By their very nature, risk analysis programs require substantial computing

power. In the past, this restricted their use to large organisations and projects.

However, the last decade has seen rapid improvements in the capabilities of

microcomputers to the extent that it became feasible to develop risk analysis

programs for use on personal computers.

The PERTRA programs were therefore developed to quantify the effect of

risks on cost and duration of projects. However it should be emphasized that

the results are based on estimates to tasks durations (optimistic, pessimistic and

most likely) and the accuracy and the confidence in it are very well depend

184

upon the original estimates.

7.2 Recommendations

As the computer results are usually taken to be accurate and the

confidence in these results are very high, it should be emphasised here that,

especially for the Cost Analysis case, this results should be taken as a guide

and the following should be taken into consideration to increase the confidence

in these results:

1. The analysis is based only on logical linkage between tasks and does

not take into consideration the rescheduling of tasks, for the

purpose of maximising the efficiency of resource usage, which

usually takes place in reality, therefore a mechanism to consider

that should be incorporated in the development of the analysis

routines.

2. The costs used by the program are based on the tasks demand for

resource while in reality the majority of resource costs are based on

the supply thereof. It is there fore recommended that such a facility

be included in the program.

3. The inclusion of project close-down and seasonal variations (see

Section 2.5.2 and Section 2.5.5).

4. The inclusion of a facility to consider the project maintenance

period in the cost analysis subroutines.

185

5. A facility to take account of the retention money should be

included.

6. A facility to consider the effects of the inflation and particularly the

rise in the prices during the contract period is to be developed.

7. FORTRAN 77 is a programming language recommended for the

"number— crunching" programs, for example PERTRA3, but not for

the programs which deals extensively with character operations as

the case of PERTRA1 and PERTRA2.

8. FORTRAN programs restricting the user of specifying the arrays

dimensions before compiling an linking this limits the program only

to the project in hand, therefore, a second thought about the

programming language is to be considered.

9. In the case of using the FORTRAN language the compilation of the

program PERTRA3 using the compiler SALFORD is recommended

because of the advantages of using the graphics support of this

compiler which allows the presentation of the results in graphics, on

the screen or in hard copy, directly. The reason for not using the

above mentioned compiler is its availability at a later stage of this

project.

186

R E F E R E N C E S

1. C. CHAPMAN, L a r g e E n g i n e e r i n g P r o j e c t R i s k A n a l y s i s , Transactions on

Engineering Management, IEEE, Vol. EM—26, No. 3, August 1979

2. DAVID CORMICAN, C o n s t r u c t i o n M a n a g e m e n t P l a n n i n g a n d F i n a n c e ,

Construction Press, 1985

3. BURTON V. DEAN, P r o j e c t M a n a g e m e n t M e t h o d s a n d S t u d i e s , Elsevier

science publishers B. V., 1985

4. HARRIS & McCAFFER, M o d e r n C o n s t r u c t i o n M a n a g e m e n t , Collins, 1983

5. R. HAYES, J. PERRY, P. THOMPSON, G. WILLMER, R i s k

M a n a g e m e n t i n E n g i n e e r i n g C o n s t r u c t i o n , Implecation for Managers,

SERC, December 1986

6. M. J . JACKSON, C o m p u t e r s i n C o n s t r u c t i o n P l a n n i n g a n d C o n t r o l ,

Allen, Unwin (Publishers) Ltd., 1986

7. J. KENEDY & A. NEVILL, B a s i c S t a t i s t i c a l M e t h o d s f o r E n g i n e e r i n g

a n d S c i e n t i s t s , International Textbook Company, Sept. 1968

8. D. J. LEECH, E c o n o m i c s a n d F i n a n c i a l S t u d i e s f o r E n g i n e e r s , Ellis

Horwood Ltd., 1982

9. PERRY AND HAYES, R i s k a n d i t s M a n a g e m e n t i n C o n s t r u c t i o n

P r o j e c t s , Proc. Instn. Civ. Engrs, Part 1, 1985,78, Jun., 499—521

187

10. K. J. LOCKYER, A n I n t r o d u c t i o n t o C r i t i c a l P a t h A n a l y s i s , Pitman

Ltd., 1969

11. R. OXLEY and J. POSKITT, M a n a g e m e n t T e c h n i q u e s A p p l i e d t o t h e

C o n s t r u c t i o n I n d u s t r y , 4 ^ ed., Collins, 1986

12. ROY PILCHER, P r i n c i p l e s o f C o n s t r u c t i o n M a n a g e m e n t , Third Edition,

Me Graw— Hill Book Company,

13. T. STRICKLAND and E. GRADY, C a p i t a l B u d g e t i n g i n P r o j e c t

E v a l u a t i o n , Part: 1,2, Hydrocarbon Processing, March, April 1981

14. PETER THOMPSON, O r g a n i z a t i o n a n d E c o n o m i c s o f C o n s t r u c t i o n ,

Me G raw -H ill, 1992

15. R. WALPOLE, P r o b a b i l i t y a n d S t a t i s t i c s f o r E n g i n e e r s a n d S c i e n t i s t s ,

Macmillan, Inc., 1985

16. RICHARD E. WESTNEY, M a n a g i n g T h e E n g i n e e r i n g a n d C o n s t r u c t i o n

o f S m a l l P r o j e c t s , MARCEL DEKKER INC., 1985

17. K. J. WILLIAMS, P l a n n i n g / W o r k S t u d y N o t e s f o r S t u d e n t s , Department

of Civil Engineering, University of Glasgow, 1989

18. G. WILLMER, T i m e a n d R i s k C o s t A n a l y s i s , Department of Civil

Engineering, UMIST, Manchester, 1989

188

Appendix A: Contents of PMA—Generated Export File.

1. General Format.

The general order of records contained within the export file is as follows

Header Record

Project Record

Task Record
Output Record
Task Resource Demand Record 1
Task Resource Demand Record 2 TASK 1

Task Resource Demand Record N

Task Record
Output Record
Task Resource Demand Record 1
Task Resource Demand Record 2 TASK 2

Task Resource Demand Record N

Task Record
Output Record
Task Resource Demand Record 1
Task Resource Demand Record 2 TASK N

Task Resource Demand Record N

Link Record (Link 1)
Link Record (Link 2)

Link Record (Link N)

Resource Definition Record
Resource Demand Record 1
Resource Demand Record 2

Resource Demand Record N
Sub— resource Record 1
Sub— resource Record 2

Sub— resource Record N

RESOURCE 1

Resource Definition Record
Resource Demand Record 1
Resource Demand Record 2

Resource Demand Record N
Sub— resource Record 1
Sub— resource Record 2

Sub— resource Record N

RESOURCE 2

Resource Definition Record
Resource Demand Record 1
Resource Demand Record 2

Resource Demand Record N
Sub— resource Record 1
Sub— resource Record 2

Sub— resource Record N

RESOURCE N

Calendar Record
Working Week Record CALENDAR 1

Calendar Record
Working Week Record CALENDAR 2

Calendar Record
Working Week Record CALENDAR N

190

2. Record Format

The contents and format of the data contained within each type of record are as

follows, with data required by PERTRA programs being annotated *:

Header Records

H

Plan Name

Left Header *

Right Header *

Work Breakdown

Plan Type

Units Number

Calendar Name

Codes Name

Subtime Units

Version Number *

Plan Start Date

Plan Finish Date

Time— now

Record Type

Up to 9 characters

Quote delimited

Quote delimited

Up to 12 characters

Single character (A = arrow, P = precedence)

(Unused)

Up to 8 characters

Up to 8 characters (Unused)

Number between 1 and 80

Number between 0 and 999

Date string ("DD/MMM/YY[:SS]")

Date string ("DD/MMM/YY[:SS]M)

Date string ("DD/MMM/YY[:SS]")

(Note: In date strings [:ss] refers to subtime units if they are in use within the plan.

The brackets[] refer to an optional item and are not present in the field.)

191

Example of Header Record:

H, "BRIDGE", "Construction Management IV","Model Solution","N— NN— ",P,0,"DAILY"

,"",1,0," 7/JUN/92","12/APR/93"," 7/JUN/92

Project — defines each sub— project within the plan.

Project Name *

Parent Name

Project Header *

Project Start Date *

Project Finish Date

Record type

Up to 9 characters

Up to 9 characters

Quote delimited

Date string ("DD/MMM/YY[:SS]")

Date string ("DD/MMM/YY[:SS]")

Example of Project Record:

P,"BRIDGE","","Road over Road Bridge"," 7/JUN/92","12/APR/93"

Task — defines a task as an input by the user.

T/M/K/X/S *

Project Name

Task Name *

Task Description

Work Breakdown

Structure *

Record type — Task, Milestone, Hammock, Sub—project

Up to 8 characters

Up to 9 characters — Quote delimited

Quote delimited

Up to 12 characters

192

Original Duration * Unsigned integer

Remaining Duration Unsigned integer

Preferred Start Date String ("DD/MMM/YY[:SS]")

Scheduled Start Date String ("DD/MMM/YY[:SS]")

Scheduled Finish Date String ("DD/MMM/YY[:SS]")

Actual Start Date String ("DD/MMM/YY[:SS]")

Actual Finish Date String ("DD/MMM/YY[:SS]")

Target Start Date String ("DD/MMM/YY[:SS]")

Target Finish Date String ("DD/MMM/YY[:SS]")

Calendar Name * Up to 8 characters

Percent Complete Unsigned integer as a string

Note: Percent complete only appears if percent complete is set 'Enter'

Example of Task Records:

T,"BRIDGE","CLEAR1 "."Clear S ite","A - GN-CLEAR","0","2’\ " 7/JUN/92"," 7/JUN/92

," 8/JUN/92"," 7/JUN/92"," 8/JUN/92"," 7/JUN/92"," 8/JUN/92 "."DAILY"

Output Record — defines the schedule of the task as calculated by PERTMASTER

Advance

Z Record type

Project Name Up to 9 characters

Task Name Up to 9 characters — Quote delimited

Calculated Preferred

Start Date String ("DD/MMM/YY[:SS]")

193

Preferred Finish Date String ("DD/MMM/YY[:SS]")

Early Start Date String ("DD/MMM/YY[:SS]")

Early Finish Date String ("DD/MMM/YY[:SS]")

Late Start Date String ("DD/MMM/YY[:SS]")

Late Finish Date String ("DD/MMM/YY[:SS]")

Total Preferred
*

Start Float Long integer as string — Quote delimited

Total Preferred

End Float Long integer as string — Quote delimited

Free Preferred

Start Float Long integer as string — Quote delimited

Free Preferred

End Float Long integer as string — Quote delimited

Derived Duration Long integer as string — Quote delimited

Percent Complete Unsigned integer as string — Quote delimited

Start Task * Integer as string — 0 = No, 1 = Yes

Finish Task * Integer as string — 0 = No, 1 = Yes

Example of Output Record:

Z,"BRIDGE","CLEAR1"," 7/JUN/92"," 8/JUN/92"," 7/JUN/92"," 8/JUN/92"," 8/JUN/92

"," 9/JUN/92"," 1"," 1"," 0"," 0", 2","0

,"0","0"

194

Task Resource Demand — gives details of the demand for resources made by the task

as defined by the user.

D

Project Name

Task Name

Resource Code *

Resource Demand *

Record type

Up to 8 characters

Up to 9 characters — Quote delimited

Up to 3 characters

Double precision number

Example of Task Resource Demand Records:

D , "BRIDGE H, "CLE AR1 V D R T ’\1

D , "BRIDGE ", "CLE AR1 "."LAB",!

D , "BRIDGE H, "CLE AR1 V T IP",1

Link — gives details of precedence logic links as defined by the user

Project Name

Preceding Task *

Succeeding Task *

Link Type *

Link Duration *

Record type

Up to 9 characters

Name 9 characters

Name up to 9 characters

3 characters — See Note below

Unsigned integer

Note: The link type appears in the file as "S—S, "F—S", "S—F", "F—F".

195

Example of Link Records:

L, "BRIDGE", "CLE AR1 "/'SETUP ","F-S","0"

L,"BRIDGE","CLEAR2 "."FINISH ","F-S","0"

L,"BRIDGE","CMPRESS "."SSEPCO ","F-F","0"

Resource Definition — defines the resources in use on the plan as defined by the user

R

Resource Code *

Resource Name

Resource Type *

Storage Type

Resource Calendar

Record type

Up to 3 characters

Quote delimited

Single character (D/F/B/S) — See Note below

Number describing whether limited, unlimited, actual,cost

or budget

Up to 8 characters

Note: Character corresponds respectively to an integer value. D= Daily, F = Front

loading, B = Back loading, and S = Spread.

Example of Resource Definition Records:

R ,"621","Cat 621 Scraper",D,0,"ALLDAYS"

196

Resource Supply — defines the availability for each resource as defined by the user.

S Record type

Resource Code Up to 3 characters

Time Offset Date string("DD/MMM/YY[:SS]")

Supply Quantity Type defined by 'storage type' above

Subresource Supply — defines demands made by one resource for another in a

resource hierarchy as defined by the user.

U Record type

Resource Code * Up to 3 characters

Subresource Code * Up to 3 characters

Resource Demand * Double precision number

Example of Sub—resource Supply

U,"BFG","B35",1

U ,"BFG'\"JCB",2

U , "BFG ", "LAB" ,4

U,"BFG","TIP">2

197

Resource Demand — defines the demand for each resource as calculated by

PERTMASTER ADVANCE.

Q Record type

Resource Code Up to 3 characters

Start of Demand Date String ("DD/MMM/YY[:SS]")

End of Demand Date String ("DD/MMM/YY[:SS]")

Demand Level Double precision number

Example of Resource Demand Records:

Q,"BFG ","20/ JUN/91 ","20/ JUN/91 ",1

Q,"BFG"," 4/JUL/91"," 4/JUL/91 ",1

Q,"BFG"," 3/SEP/91"," 3/SEP/91",2

Calendar — gives details of the calendars in use on the plan as defined by the user.

C Record type

Calendar Name * Up to 9 characters

Example of Calendar Records:

C,"ALLDAYS"

C, "DAILY"

198

Working Week — defines the typical working week.

W Record type

Calendar Name Up to 9 characters

Working Week spec. Two integers separated by commas describing start to

finish of a working week spec, in subunits.

Example of Working Week Record:

W,DAILY,1,5

Holiday — defines a holiday period within the last mentioned calendar as defined by

the user. There will be a list of these records for each calendar.

O Record type

Calendar Name Up to 8 characters

Start Date Date String ("DD/MMM/YY[:SS]")

End Date Date String ("DD/MMM/YY[:SS]")

Working Day — Defines a work day period within a calendar as defined by the user.

There will normally be a list of these records for each calendar.

Y Record type

Calendar Name Up to 8 characters

Start Date Date string ("DD/MMM/YY[:SS]")

End Date Date string ("DD/MMM/YY[:SS]")

199

APPENDIX B: Samples of Data Files Generated by PERTRA1

Appendix B .l: Sample of the general dat writen to the file FLNAME.GEN

BRIDGE 0 (1)

Case Study No. 1 (2)

Road over Road Bridge (3)

Construction Management IV (4)

15/ APR/91 (5)

Definiton of rows:

(1): Project Nmae; Project Version.

(2): Left Header.

(3): Project description.

(4): Right Header.

(5): Project Start Date.

2 0 0

Appendix B.2: Sample of the Task Data writen to the File FLNAME.TSK

274 (Number of tasks in the project)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

T CLEAR1 GN-CLEAR 5 1 0 0.00 2.00 0.00

T CLEAR2 GN-CLEAR 5 1 0 0.00 5.00 0.00

H CMPRESS GN-CMPRESS 5 1 0 0.00 136.00 0.00

T CPC1CO PR-CONC 5 1 0 0.00 1.00 0.00

T CPC1D1 PR-DELAY 7 1 0 0.00 1.00 0.00

Defintion of Columns are:

(1): Task Type.

(2): Task Name.

(3): Task Work Breakdown Structure.

(4): Number of Working Days/Week

(5): Task Code (Start, Finish or Normal Task)

(6): Dummy Array to be Used Later for Variable/Non variable duration

Task Codes.

(7): Dummy array to be Used Later for Optimistic Durations.

(8): Task Duration (Most Likely Duration).

(9): Dummy Array to be Used Later for Pessimistic Durations.

2 0 1

Appendix B.3: Sample of Link Data writen to the File FLNAME.LNK

437 (Number of links)

(1) (2) (3) (4)

268 1 1 oo

268 158 1 oo

1 209 1 .00

158 40 3 .00

209 49 1 oo

(5) (6) (7) (8)

158 40 3 oo

2 40 1 oo

268 158 1 .00

270 2 1 .00

96 2 1 oo

Defintion of Columns:

(1): Source Task Number (Forward Pass)

(2): Target Task Number (Forward Pass)

(3): Link Type (Forward Pass)

(4): Link Duration (Forward Pass)

Columns 5 to 8 is the same as the above, but, for the Backward pass.

2 0 2

Appendix B.4: Sample of the Cost Data writen to the file FLNAME.CST

(1) (2) (3) (4)

XLC W 0 0
XMC M M 1
XPC M M 1
XPF M M 1
XPB M M 1
XSC M M 1
XOD M 0 0
XOF M 0 0
XTP M M 1

The above four columns defintions is as follows:

(1): Cost component

(2): Payment Interval (W= Weeks, M= Months)

(3): Delay of payment (D= Days, W= Weeks, M= Months, 0= No delay)

(4): Number of Months or Weeks of delay.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

143.00 .00 200.00 .00 .00 .00 .00 .00 797.06
238.00 .00 200.00 .00 .00 .00 .00 .00 .00

.00 .00 40.00 .00 .00 .00 .00 .00 .00
145.00 209.79 .00 .00 .00 .00 .00 .00 381.19

.00 .00 .00 .00 .00 .00 .00 .00 .00

Definition of the above columns is as follows:

(1): Labour Cost. (2): Material Cost.

(3): Daily Plant Cost. (4): Front— end Plant Cost.

(5): Back— end Plant Cost. (6): Subcontract Cost.

(7): Daily Overheads Cost. (8): Fron— end Overheads Cost

(9): Task Price.

203

APPENDIX C: Program PERTRA1 and S u b ro u t in e s

Appendix C.l Program PERTRA1

C * * * *

c** Program PERTRA1.FOR **
c** **
c** Reads project data from user-specified export file **
c** FLNAME.EXP generated by PERTMASTER ADVANCE **
c** **
c** Writes selected data to files for subsequent use by **
c** Risk Analysis Programs PERTRA2.FOR and PERTRA3.FOR **
c** **
c** GENERAL data: FLNAME.GEN **
c** TASK data: FLNAME.TSK **
c** LINK data: FLNAME.LNK **
c** COST data: FLNAME.CST **
c** **
c** Writes FLNAME to file PERTRA.FLS for subsequent use **
c** **

C

COMMON/TASKS/TTYPE(400),TNAME(400),TDURN(400),TRES(400,10),
&TRESQ(400,10),TCAL(400),NTRES(400),SFCODE(400),TWK(400),
&CTRES(400,10),TCOST(400,9),TWBS(400)
COMMON/LINKS/LFROM(500,2),LTO(500,2),LTYPE(500,2),
&LDURN(500,2)
COMMON/RES/RNAME(100),RTYPE(100),RCOST(100)
COMMON/S UBRES/CRTOP(110),CRSUB(110),RSUBQ(110),RTOP(110),
&RSUB(110)
COMMON/CALS/CAL(5),ICWK(5)
COMMON/PROJ/PHEAD(3),PVER,PNAME,PSTART
COMMON/COSTS/CCODE(9),CPAY(9),CARR(9),CARRQ(9)
COMMON/RECORD/REC,ICOMMA(16)
COMMON/COUNTS/IT,ID,IL,IR,IU,IC,I DM

C
CHARACTER*1 TTYPE,RTYPE,Cl,PVER,CPAY,CARR
CHARACTER*3 RNAME,CTRES,CRTOP,CRSUB,RCODE,CCODE
CHARACTER*8 CAL,TCAL,PNAME
CHARACTER*9 TNAME,PSTART
CHARACTER*12 FLNAME,TWBS
CHARACTER*30 PHEAD
CHARACTER*185 REC

C
REAL LDURN
INTEGER SFCODE,TWK,TRES,RTOP,RSUB,CARRQ

C
C...Set TEXT mode
C

CALL SETMODE(O)

204

u
u

u

u
u

u
u

u

u
u

...Display introduction; Input file name from keyboard

CALL HEADER(FLNAME,NCHRFN)

...Set maximum value of counters according to dimensions

...Note: Dimensions mut be exactly divisible into 64K

ITMAX=400
ILMAX=500
IRMAX=100
IUMAX=110
ICMAX=5
IDMAX-10

...Check adequacy of dimensions

WRITE(6,28)
28 FORMAT(/,/,' Carrying out preliminary check on dimensions')

CALL DIMCHK(FLNAME)
ICODE=0
WRITE(6,30) IT

30 FORMAT(/, ' No. of TASKS: *, 113)
IF(IT.CT.ITMAX)THEN
WRITE(6,40)

40 FORMAT(' Dimensions exceeded !!')
IDIM=(IT-MOD(IT,50))+50
WRITE(6,50)IDIM

50 FORMAT(' Increase dimensions to ',13,' and re-compile')
ICODE=l

ENDIF
WRITE(6,60)IDM

60 FORMAT(/, ' Max. No. of TR DEMANDS: ',13)
IF(IDM.CT.IDMAX)THEN
WRITE(6,40)
IDIM=(IDM-M0D(IDM,5))+5
WRITE(6,50)IDIM
ICODE=l

ENDIF
WRITE(6,70)IL

70 FORMAT(/,' No. of LINKS: ’,113)
IF(IL.CT.ILMAX)THEN
WRITE(6,40)
IDIM=(IL-MOD(IL,50))+50
WRITE(6,50)IDIM
ICODE=l

ENDIF
WRITE(6,80)IR

80 FORMAT(/,' No. of RESOURCES: ’,19)
IF (IR.CT.IRMAX)THEN
WRITE(6,40)
IDIM=(IR-MOD(IR,10))+10
WRITE(6,50)IDIM
IC0DE=1

ENDIF

205

u
u

u
u

u
u

u
u

u

u
u

u

WRITE(6,90) IU
90 FORMAT(/,' No. of SUB-RESOURCES: ’,15)

IF(IU.GT.I UMAX)THEN
WRITE(6,40)
IDIM=(IU-M0D(IU,10))+10
WRITE(6,50)IDIM
I CODE-1

ENDIF
WRITE(6,100) IC

100 FORMAT(/,' No. of CALENDARS: ',19)
IF(IC.GT.ICMAX)THEN
WRITE(6,40)
IDIM=(IC-MOD(IC,5))+5
WRITE(6,50)IDIM
ICODE-1

ENDIF
IF(ICODE.LT.1)THEN
WRITE(6,102)

102 FORMAT(/, /, ' ALL DIMENSIONS OK !!')
ELSE
GO TO 999

ENDIF

...Read data from FLNAME

CALL READEXP(FLNAME)

...Determine working week ICWK for each calendar

CALL CALWKS

...Convert TRD resource names into resource indices

DO 410 1=1,IT
IF(NTRES(I).LT.1)GO TO 410
DO 400 K=1,NTRES(I)

DO 390 L-l,IR
IF(CTRES(I,K).EQ.RNAME(L))THEN
TRES(I,K)=L
GO TO 400

ENDIF
390 CONTINUE
400 CONTINUE
410 CONTINUE

...Convert SR resource names into resource indices

DO 450 1=1,IU
DO 420 J=1,IR

IF(CRTOP(I).EQ.RNAME(J))THEN
RTOP(I)=J
GO TO 430

ENDIF
420 CONTINUE
430 DO 440 J=1,IR

206

U
U

U

U
U

U
U

V
O

U
U

U

u
u

u

IF(CRSUB(I).EQ.RNAME(J))THEN
RSUB(I)=J
GO TO 450

ENDIF
440 CONTINUE
450 CONTINUE

...Calculate cost components for each task

CALL TCOSTS

...Define durations of NON-ZERO S-S LINKS as fractions of

...SOURCE TASK durations;

DO 600 1=1,IL
IF(LTYPE(I,1).EQ.2.AND.LDURN(1,1).NE.0.0)THEN
J=LFR0M(1,1)
LDURN(1,1)=LDURN(1,1)/TDURN(J)

ENDIF
00 CONTINUE

...Sort links into FORWARD/BACKWARD PASS order

CALL LSORT

...Write data to datafiles; display concluding message;

CALL QUIT(FLNAME,NCHRFN)
999 END

207

Appendix C .2: S u b ro u t in e HEADER

SUBROUTINE HEADER(FLNAME,NCHR)
c** **
c** Subroutine HEADER **
c** **
c** Introductory display for program PERTRA1 **
c** **
c** Keyboard input of PMA export file name FLNAME **
c** **
C *

c
CHARACTER*1 CHR1
CHARACTER*12 FLNAME
CHARACTER*42 TABREC(15),BLANK

C
C...Initialise display table strings
C

DO 20 1-1,15
TABREC(I)(1:1)=CHAR(186)
TABREC(I)(42:42)=CHAR(186)
DO 10 J-2,41
TABREC(I)(J:J)-' '

10 CONTINUE
20 CONTINUE

BLANK-TABREC(1)
BLANK(1:1)=' '
BLANK(42:42)-' ’
TABREC(1)(1:1)-CHAR(201)
TABREC(1)(42:42)-CHAR(187)
TABREC(5)(1:1)-CHAR(204)
TABREC(5)(42:42)-CHAR(185)
TABREC(11)-TABREC(5)
TABREC(15)(1:1)-CHAR(200)
TABREC(15)(42:42)-CHAR(188)
DO 30 J-2,41
TABREC(l)(J:J)=CHAR(205)
TABREC(5)(J:J)=CHAR(205)
TABREC(11)(J:J)-CHAR(205)
TABREC(15)(J:J)=CHAR(205)

30 CONTINUE
TABREC(3)(14:28)='Program PERTRA1'
TABREC(7)(3:40)='Interactive initialisation program for'
TABREC(8)(3:40)='the Monte-Carlo simulation carried out'
TABREC(9)(13:30)='by Program PERTRA3'
TABREC(13)(8:23)='PMA Export File:'

C
C...Specify option highlight delay
C

NDEL-30

208

u
u

u

u
u

u

uu
u

u

u
u

u

u
u

u
u

u
u

. . . D e f i n e t a b l e p o s i t i o n

NLTL=6
NCTL=20
NLT OP=NLTL-1
NCTOP=NCTL

...Clear screen; draw table

CALL SCLEAR
CALL TXTCLR(15,1)
DO 40 1=1,15
CALL TMOVETO((NLTL+I-1),NCTL)
IF(I.LT.2.OR.I.CT.4)THEN
CALL OUTEXT(TABREC(I))

ELSE
CALL OUTEXT(TABREC(I)(1:1))
CALL TXTCLR(0,6)
CALL OUTEXT(TABREC(I)(2:41))
CALL TXTCLR(15,1)
CALL OUTEXT(TABREC(I)(42:42))

ENDIF
40 CONTINUE

...Display FILE NAME input line

50 CALL TXTCLR(15,0)
CALL TMOVETO(NLTOP,NCTOP)
CALL OUTEXT(BLANK)
CALL TMOVETO(NLTOP,NCTOP)
CALL OUTEXT(lFile name (no extension): []')

...Read file name from keyboard;

...convert to upper case if required;

NCHR=8
FLNAME='
CALL CREAD(NLTOP,(NCTOP+2 7),FLNAME,NCHR)
CALL CHRCNV(FLNAME)

...Remove unwanted spaces from FLNAME

FLNAME((NCHR+1):(NCHR+4))='.EXP'

...Update table

CALL TXTCLR(7,1)
CALL TMOVETO((NLTL+12),(NCTL+24))
CALL OUTEXT(FLNAME)

209

u
u

u
u

u

u
u

u

u
u

u

u
u

u

u
u

u

...Display CONTINUATION line; highlight

...first character of options;

CALL TXTCLR(15,0)
CALL TMOVETO(NLTOP,NCTOP)
CALL OUTEXT(BLANK)
CALL TMOVETO(NLTOP,NCTOP)
CALL OUTEXT('OK? YES NO')
CALL TXTCLR(4,0)
CALL TMOVETO(NLTOP,(NCTOP+5))
CALL OUTEXT('Y')
CALL TMOVETO(NLTOP,(NCTOP+10))
CALL OUTEXT('N')

...Hide cursor

CALL TXTCLR(0,0)
CALL TMOVETO(25,70)
CALL OUTEXT(' ')
CALL TMOVETO(25,70)

...Read option from keyboard; convert to upper case if required;

6 0 CALL KBREAD(0,CHR1)
CALL CHRCNV(CHR1)
IF(CHR1.EQ.'Y')THEN

...Option is CONTINUE; highlight option; exit routine

CALL TXTCLR(0,7)
DO 70 M=1,NDEL
CALL TMOVETO(NLTOP,(NCTOP+5))
CALL OUTEXT('YES')

70 CONTINUE
GO TO 999

ELSEIF(CHR1.EQ.'N')THEN

...Option is DISCONTINUE; highlight option;

...out table entry; Input correct file name;

CALL TXTCLR(0,7)
DO 80 M=1,NDEL
CALL TMOVETO(NLTOP,(NCTOP+10))
CALL OUTEXT('NO')

80 CONTINUE
CALL TXTCLR(0,1)
CALL TMOVETO((NLTL+12),(NCTL+24))
CALL OUTEXT(BLANK(1:12))
GO TO 50

ELSE

2 1 0

u
u

u

u
u

u

...Inappropriate character; try again

CALL SPCHAR(l)
CO TO 60

ENDIF

...Exit rout ine

999 CALL TXTCLR(7,0)
CALL SCLEAR
RETURN
END

2 1 1

Appendix C .3: S u b ro u t in e DIMCHK

SUBROUTINE DIMCHK(FLNAME)
C * * * * * * * * * * * * * ★ * * * ★ * * * * * * * * * * * ■ s ^ r ★ * ’**'5^^*,* '* '* * '* ’* '* * * '* '* ,* * * * * * * * * * * * * * *

c** **
c** Subroutine DIMCHK **
c** **
c** Performs check on adequacy of PERTRA1/PERTRA2 dimensions **
c** **
C *

c
COMMON/COUNTS/IT,ID,IL,IR,IU,IC,IDM
CHARACTER*1 Cl
CHARACTER*12 FLNAME

C
C...Initialise control statements
C

ASSIGN 20 TO LABIF
C
C...Zero array counters
C

IT=0
IL=0
IR=0
IU=0
IC=0
I DM=0

C
C...Open file on unit 3
C

OPEN(UNIT=3,FILE=FLNAME)
C
C...Skip first two records
C

READ(3,15)C1
READ(3,15)C1

C
C...Read 1st character of record
C

10 READ(3,15)C1
15 FORMAT(Al)

GO TO LABIF
C
C...Check if TASK record
C
20 IF(C1.EQ.1T'.OR.Cl.EQ.'M'.OR.Cl.EQ.1K'.OR.Cl.EQ.'S’)THEN

C
C...TASK record; Update counter;
C

IT=IT+1
C
C...Zero TASK RESOURCE DEMAND counter
C

I D=0

2 1 2

u
u

u

u
u

u

u
u

u

u
u

u

u
u

u
u

u

u
u

u

u
u

u

u
u

u

u
u

u

u
u

u

u
u

u

...Skip OUTPUT record; Read next record

READ(3,15)Cl
GO TO 10

...Check if TASK RESOURCE DEMAND record

ELSEIF(C1.EQ.'D')THEN

...TASK RESOURCE DEMAND record; Update counter

ID=ID+l
IF (ID. GT. I DM) I DM=I D
GO TO 10

ENDIF

...Check if LINK record

30 IF(C1.EQ.'L')THEN

...LINK record; All TASK type records abstracted;

...Change label LABIF to avoid unneccessary testing

ASSIGN 30 TO LABIF

...Update counter;

IL-IL+1
GO TO 10

ENDIF

...Check if RESOURCE record

40 IF(C1.EQ.'R')THEN

...RESOURCE record; All TASK/LINK records abstracted;

...Change label LABIF to avoid unneccessary testing;

ASSIGN 40 TO LABIF

...Update counter;

IR=IR+1
GO TO 10

...Check if (unrequired) RESOURCE DEMAND record

ELSEIF(C1.EQ.'Q'.OR.Cl.EQ.’S')THEN

...Unrequired record; Read next record

GO TO 10

213

u
u

u

u
u

u

u
u

u

u
u

u
u

u

u
u

u

u
u

u

u
u

. . .C h e c k i f SUB-RESOURCE re c o rd

ELSEIF(C1.EQ.' U')THEN

...SUB-RESOURCE record; Update counter

IU=IU+1
CO TO 10

ENDIF

...Check if CALENDAR record

50 IF(C1.EQ.'C')THEN

...CALENDAR record; All TASK/LINK/RESOURCE records abstracted;

...Change label LABIF to avoid unneccessary testing

ASSIGN 50 TO LABIF

...Update counter;

IC=IC+1
CO TO 10

ELSE

...All data abstracted; Close file

CLOSE(3)
ENDIF

...Exit

RETURN
END

214

Appendix C .4: S u b ro u t in e READEXP

SUBROUTINE READEXP(FLNAME)
C *

C * * * *

c** Subroutine READEXP **
c** **
c** Reads data from user-specified export file FLNAME **
c** generated by PMA **
c** **
C * ' * " *

C

COMMON/TASKS/TTYPE(400),TNAME(400),TDURN(400),TRES(400,10),
&TRESQ(400,10),TCAL(400),NTRES(400),SFCODE(400),TWK(400),
&CTRES(400,10),TCOST(400,9),TWBS(400)
COMMON/LINKS/LFROM(500,2),LTO(500,2),LTYPE(500,2),
&LDURN(500,2)
COMMON/RES/RNAME(100),RTYPE(100),RCOST(100)
COMMON/S UBRES/CRTOP(110),CRSUB(110),RSUBQ(110),RTOP(110),
&RSUB(110)
COMMON/CALS/CAL(5),ICWK(5)
COMMON/PROJ/PHEAD(3),PVER,PNAME,PSTART
COMMON/RECORD/REC,ICOMMA(16)
COMMON/COUNTS/IT,ID,IL,IR,IU,IC,IDM

C
CHARACTERS TTYPE,RTYPE,Cl,PVER
CHARACTER*3 RNAME,CTRES,CRTOP,CRS UB
CHARACTER*8 CAL,TCAL,PNAME
CHARACTER*9 TNAME,PSTART
CHARACTER*11 STATUS(2)
CHARACTERS2 FLNAME,TWBS
CHARACTER*28 TABREC(12)
CHARACTER*30 PHEAD
CHARACTERS 8 5 REC

C
REAL LDURN
INTECER S FCODE,TWK,TRES,RTOP,RS UB

C
C...Initiallse display table records
C

DO 510 1=1,12
TABREC(I)(1:1)=CHAR(186)
TABREC(I)(28:28)=CHAR(186)
DO 500 J=2,27
TABREC(I)(J:J)=' •

500 CONTINUE
510 CONTINUE

TABREC(1)(1:1)=CHAR(201)
TABREC(l)(28:28)=CHAR(187)
TABREC(12)(1:1)-CHAR(200)
TABREC(12)(28:28)-CHAR(188)
DO 520 J-2,27
TABREC(l)(J:J)=CHAR(205)
TABREC(12)(J:J)=CHAR(205)

215

u
u

u

u
u

u
u

u
u

u

u
u

u

u
u

u
u

u

520 CONTINUE
TABREC(l)(7:22)-'Data Abstract ion'
TABREC(3)(3:13)=*RECORD TYPE'
TABREC(3)(19:24)=’STATUS’
TABREC(5)(4:9)='HEADER’
TABREC(6)(4:10)=’PROJECT’
TABREC(7)(4:7)=’TASK’
TABREC(8)(4:7)=’LINK’
TABREC(9)(4:11)=’RESOURCE’
TABREC(IO)(4:11)=’CALENDAR’
STATUS(1)=’IN PROGRESS’
STATUS(2)=’ COMPLETED’

...Draw display table (BRIGHT WHITE on BLUE)

CALL SCLEAR
CALL TXTCLR(15,1)
NLTL=5
NCTL=27
DO 530 1-1,12
CALL TMOVETO((NLTL+I-1),NCTL)
CALL OUTEXT(TABREC(I))

530 CONTINUE

...Set text colour for ’STATUS’ entries (WHITE on BLUE)

CALL TXTCLR(7,1)

...Initialise control statements

ASSIGN 80 TO LABIF
ASSIGN 90 TO LABTW
ASSIGN 130 TO LABLW
ASSIGN 170 TO LABRW
ASSIGN 210 TO LABCW

...Zero array counters

IT=0
IL—0
IR=0
IU=0
IC=0

...Open export file FLNAME on unit 3

OPEN(UNIT=3,FILE=FLNAME)

...Read HEADER record

READ(3,20)REC
20 FORMAT(A185)

CALL TMOVETO((NLTL+4),(NCTL+15))
CALL OUTEXT(STATUS(1))

216

u
u

u

u
u

u

u
u

u
u

u

u
u

u

u
u

u

u
u

u

u
u

u

u
u

u

u
u

u
u

u

u
u

u

. . .D e te rm in e comma p o s i t i o n s in r e c o rd

CALL RECCOM(10)

...Zero character variable

DO 50 1=1,3
DO 40 J-1,30
PHEAD(I)(J:J)=1 '

40 CONTINUE
50 CONTINUE

...Abstract character variables

...Left header

PHEAD(1)—REC((ICOMMA(2)+2):(ICOMMA(3)-2))

...Right header

PHEAD(3)=REC((ICOMMA(3)+2):(IC0MMA(4)-2))

...Project version number

PVER=REC((ICOMMA(10)+1):(ICOMMA(10)+1))
CALL TMOVETO((NLTL+4),(NCTL+15))
CALL OUTEXT(STATUS(2))
CALL SPCHAR(l)

...Read PROJECT record

READ(3,20)REC
CALL TMOVETO((NLTL+5),(NCTL+15))
CALL OUTEXT(STATUS(1))

...Determine comma positions in record

CALL RECCOM(5)

...Zero character variable

PNAME='

...Abstract character variable

...Project Name

PNAME=REC(4:(IC0MMA(2)-2))

...Project Description

PHEAD(2)=REC((ICOMMA(3)+2):(ICOMMA(4)-2))

217

u
u

u

u
u

u

uuu
u

u
u

u

u
u

u

uu
u

u
u

u

u
u

u

u
u

u

u
u

u

. . .P r o j e c t S t a r t Date

PSTART=REC((ICOMMA(4)+2):(IC0MMA(5)-2))
CALL TMOVETO((NLTL+5),(NCTL+15))
CALL OUTEXT(STATUS(2))
CALL SPCHAR(l)

...Read record and abstract 1st character

70 READ(3,20)REC
C1=REC(1:1)
CO TO LABIF

...Check if TASK record

80 IF(C1.EQ.' T'.OR.Cl.EQ.' M ' .OR.Cl.EQ.' K ' .OR.Cl.EQ.' S ')THEN

...TASK record; Write screen message on FIRST task record only

CO TO LABTW
9 0 CALL TMOVETO((NLTL+6),(NCTL+15))

CALL OUTEXT(STATUS(1))
ASSIGN 110 TO LABTW

...Update counter; Abstract data

110 IT-IT+1
CALL ABTASK

...Zero TASK RESOURCE DEMAND counter and read next record

I D=0
GO TO 70

...Check if TASK RESOURCE DEMAND record

ELSEIF(C1.EQ.'D')THEN

...TRD record; Update counter; Abstract data and read next record

I D=I D+l
NTRES(IT)=ID
CALL ABTRD
GO TO 70

ENDIF

...Check if LINK record

120 IF(C1.EQ.'L')THEN

...LINK record; All TASK type records abstracted;

...Change label LABIF to avoid unneccessary testing

ASSIGN 120 TO LABIF

218

n
on

n

on

n
on

n

on

o
n

n
n

n
n

o
n

n
n

n

o
n

n

o
n ...Write screen message on FIRST link record only

GO TO LABLW
130 CALL TMOVETO((NLTL+6),(NCTL+15))

CALL OUTEXT(STATUS(2))
CALL SPCHAR(l)
CALL TMOVETO((NLTL+7),(NCTL+15))
CALL OUTEXT(STATUS(1))
ASSIGN 150 TO LABLW

...Update counter; Abstract data and read next record

150 IL=IL+l
CALL ABLINK
GO TO 70

ENDIF

...Check if RESOURCE record

160 IF(C1.EQ.'R')THEN

...RESOURCE record; All TASK/LINK records abstracted;

...Change label LABIF to avoid unneccessary testing;

ASSIGN 160 TO LABIF

...Write screen message on FIRST resource record only

GO TO LABRW
170 CALL TMOVETO((NLTL+7),(NCTL+15))

CALL OUTEXT(STATUS(2))
CALL SPCHAR(l)
CALL TMOVETO((NLTL+8),(NCTL+15))
CALL OUTEXT(STATUS(1))
ASSIGN 190 TO LABRW

...Update counter; Abstract data and read next record

190 IR=IR+1
CALL ABRES
GO TO 70

...Check if (unrequired) RESOURCE DEMAND record

ELSEIF(C1.EQ.'Q'.OR.Cl.EQ.1S')THEN

...Unrequired record; Read next record

GO TO 70

...Check if SUB-RESOURCE record

ELSEIF(C1.EQ.'U')THEN

219

u
u

u

u
u

u

u
u

u
u

u

u
u

u

u
u

u

u
u

u

u
u

. . . S - R re c o rd ; Update c o u n te r ; A b s t r a c t d a t a and r e a d nex t r e c o rd

IU=IU+1
CALL ABSUBRES
CO TO 70

ENDIF

...Check if CALENDAR record

200 IF(C1.EQ.'C')THEN

...CALENDAR record; All TASK/LINK/RESOURCE records abstracted;

...Change label LABIF to avoid unneccessary testing

ASSIGN 200 TO LABIF

...Write screen message on FIRST calendar record only

CO TO LABCW
210 CALL TMOVETO((NLTL+8),(NCTL+15))

CALL OUTEXT(STATUS(2))
CALL TMOVETO((NLTL+9),(NCTL+15))
CALL OUTEXT(STATUS(1))
ASSIGN 230 TO LABCW

...Update counter; Abstract data and read next record

230 IC=IC+1
CALL ABCAL
GO TO 70

ELSE

...All data abstracted; Close file

CLOSE(3)
ENDIF

...Display concluding message

CALL TMOVETO((NLTL+9),(NCTL+15))
CALL OUTEXT(STATUS(2))
CALL TXTCLR(15,1)
CALL TMOVETO((NLTL+12),NCTL)
CALL OUTEXT(' ALL DATA ABSTRACTED ')
CALL SPCHAR(l)
CALL TXTCLR(0,4)
CALL TMOVETO((NLTL+13),NCTL)
CALL OUTEXT(' Hit any key to continue ')
CALL TXTCLR(0,0)
CALL TMOVETO(25,70)
CALL OUTEXT(' ')
CALL TMOVETO(25,70)
CALL KBREAD(0,C1)

2 2 0

c
C...Exit
C

CALL TXTCLR(7,0)
CALL SCLEAR
RETURN
END

Appendix C.5: Subroutine RECCOM

SUBROUTINE RECCOM(NCOMMA)
C * * * * * " * ,* ,* * * * ,* * ' * * * * * * * * * ,* * ,* * * " * * ,*"*,* ,jlr

C * * * *

c** Subroutine RECCOM **
c** **
c** Determines comma positions in PMA export file record REC **
c** **
c** NCOMMA - Number of commas in record **
c** **
C***,****'**********'******'**•**,************,**,******************■*,*■*'*
c

COMMON/RECORD/REC,ICOMMA(16)
CHARACTER*185 REC

c
J=1
DO 10 1-1,185

IF(REC(I:I).NE.',')CO TO 10
ICOMMA(J) = I
J=J+1
IF(J.GT.NCOMMA)CO TO 20

10 CONTINUE
c
c...Exit
c
20 RETURN

END

2 2 1

Appendix C .6: S u b ro u tin e ABTASK

SUBROUTINE ABTASK
c***
c** **
c** Subroutine ABTASK **
c** **
c** Abstracts TASK data from export file record REC **
c** **
c** Abstracts START/FINISH code from OUTPUT record **
c** **
c** START task: SFCODE - 0 **
c** NORMAL task: SFCODE - 1 **
c** FINISH task: SFCODE - 2 **
c***
c

COMMON/TASKS/TTYPE(400),TNAME(400),TDURN(400),TRES(400,10),
&TRESQ(400,10),TCAL(400),NTRES(400),SFCODE(400),TWK(400),
&CTRES(400,10),TCOST(400,9),TWBS(400)
COMMON/RECORD/REC,ICOMMA(16)
COMMON/COUNTS/IT,ID,IL,IR,IU,IC,I DM

C
CHARACTER*1 TTYPE,SCODE,FCODE
CHARACTER*3 CTRES
CHARACTER*8 TCAL
CHARACTER*9 TNAME
CHARACTER*10 FMT
CHARACTER*12 TWBS
CHARACTER*18 5 REC

C
INTEGER SFCODE,TWK,TRES

C
C...Determine comma positions in record
C

CALL RECCOM(14)
C
C...Zero character variables
C

TNAME(IT)='
TCAL(IT)='
SFCODE(IT)=,N'

C
C...Abstract character variables
C
C...Task Type
C

IF(REC(1:1).EQ.’K')THEN
TTYPE(IT)=1H'

ELSE
TTYPE(IT)=REC(1:1)

ENDIF

2 2 2

o
n

n
n

n
o

n
on

o

n
o

o
n

n
n

o
n

n
o

n
n

o . . . Task Name

TNAME(IT)=REC((ICOMMA(2)+2):(IC0MMA(3)-2))

...Task Work Breakdown Structure

TWBS(IT)=REC((ICOMMA(4)+2):(IC0MMA(5)-2))

...Task Calendar

TCAL(IT)=REC((IC0MMA(14)+1):(ICOMMA(14)+8))

...Abstract numerical variables

...Task Duration

NX=ICOMMA(6)+1
NC=ICOMMA(7)-(l)-(NX+1)
WRITE(FMT,10)NX,NC

10 FORMATC (',12,'X,r ,13,')')
READ(REC,FMT)IDURN
TDURN(IT)-REAL(IDURN)

...Read OUTPUT record

READ(3,20)REC
20 FORMAT(A185)

...Abstract START/FINISH code

CALL RECCOM(16)
SCODE-REC((ICOMMA(15)+2):(ICOMMA(15)+2))
FCODE-REC((ICOMMA(16)+2):(ICOMMA(16)+2))
SFCODE(IT)=l
IF(SCODE.EQ.'1')THEN
SFCODE(IT)=0

ELSEIF(FCODE.EQ.'1')THEN
SFCODE(IT)=2

ENDIF

...Exit

RETURN
END

223

Appendix C .7: S u b ro u tin e ABTRD

SUBROUTINE ABTRD
C *

C * * * *

c** Subroutine ABTRD **
c** **
c** Abstracts TASK RESOURCE DEMAND data **
c** from export file record REC **
c** **
C *

C

COMMON/TASKS/TTYPE(400),TNAME(400),TDURN(400),TRES(400,10),
&TRESQ(400,10),TCAL(400),NTRES(400),SFCODE(400),TWK(400),
&CTRES(400,10),TCOST(400,9),TWBS(400)
COMMON/RECORD/REC,ICOMMA(16)
COMMON/COUNTS/IT,ID,IL,IR,IU,IC,IDM

C
CHARACTER*1 TTYPE
CHARACTER*3 CTRES
CHARACTER*8 TCAL
CHARACTER*9 TNAME
CHARACTER*11 NUMB
CHARACTER*12 TWBS
CHARACTER*18 5 REC

C
INTEGER SFCODE,TWK,TRES

C
C...Determine comma positions in record
C

CALL RECCOM(4)
C
C...Zero character variables
C

CTRES(IT,ID)='
C
C...Abstract character variables
C
C...Resource Name
C

CTRES(IT,ID)=REC((ICOMMA(3)+2):(IC0MMA(4)-2))
C
C...Abstract numerical variables
C
C...Resource Quantity
C...Check whether INTEGER or FLOATING POINT number
C

NUMB=REC((ICOMMA(4)+1):(IC0MMA(4)+11))
DO 30 1=1,11

IF(NUMB(I:I).EQ.'.')THEN

224

n
on

n

n
n

n

n
o

n

...FLOATING POINT number; A b s t r a c t u s in g 'F ' form at

READ(NUMB,10)TRESQ(IT,ID)
10 FORMAT(FI1.4)

GO TO 40
ELSEIF(NUMB(1:1).EQ.* 1)THEN

...INTEGER number; Abstract using 'I'

...format and convert to FP number

READ(NUMB,20)IRESQ
20 FORMAT(16)

TRESQ(IT,ID)=REAL(IRESQ)
GO TO 40

ENDIF
30 CONTINUE

...Ex i t

40 RETURN
END

225

Appendix C .8: S u b ro u tin e ABLINK

SUBROUTINE ABLINK
C * * * *

c** Subroutine ABLINK **
c** **
c** Abstracts LINK data from export file record REC **
c** **
c** Outputs SOURCE task (LFROM) and TARGET task (LTO) **
c** as task INDEX **
c** **
c** Outputs Link Type (LTYPE) in INTEGER form **
c** **
c** F-S: LTYPE - 1 **
c** S-S: LTYPE - 2 **
c** F-F: LTYPE - 3 **
c** S-F: LTYPE - 4 **
c** **
C *

C

COMMON/TASKS/TTYPE(400),TNAME(400),TDURN(400),TRES(400,10),
&TRESQ(400,10),TCAL(400),NTRES(400),SFCODE(400),TWK(400),
&CTRES(400,10),TCOST(400,9),TWBS(400)

C
COMMON/LINKS/LFROM(500,2),LTO(500,2),LTYPE(500,2),
&LDURN(500,2)
COMMON/RECORD/REC,ICOMMA(16)
COMMON/COUNTS/IT,ID,IL,IR,IU,IC,I DM

C
CHARACTER*1 TTYPE
CHARACTER*3 CLTYPE,CTRES
CHARACTER*8 FMT.TCAL
CHARACTER*9 TNAME,CLFROM,CLTO
CHARACTERS 2 TWBS
CHARACTER*18 5 REC

C
REAL LDURN
INTEGER SFCODE,TWK,TRES

C
C...Determine comma positions in record
C

CALL RECCOM(5)
C
C...Zero character variables
C

CLFROM='
CLTO=f

C
C...Abstract character variables
C
C...Source task
C

CLFROM=REC((ICOMMA(2)+2):(ICOMMA(3)-2))

226

u
u

u

u
u

u

u
u

u

u
u

u

u
u

u

. . .T a rg e t t a s k

CLTO=REC((I COMMA(3)+2):(IC0MMA(4)-2))

...Link type

CLTYPE=REC((ICOMMA(4)+2):(ICOMMA(5)-2))

...Abstract link duration as a numerical variable

NX=ICOMMA(5)+1
J=NX+3
WRITE(FMT,20)NX

20 FORMATC (' , 12,'X, 13)')
21 READ(REC,FMT,ERR=2 2)1DURN

CO TO 23
22 IF(REC(J:J).EQ.'"')THEN

FMT(7:7)=121
ELSE
FMT(7 : 7) =' 11

ENDIF
GO TO 21

23 LDURN(IL,1)=REAL(IDURN)

...Change SOURCE/TARGET task names to task indices

DO 30 1=1,IT
IF(CLFROM.EQ.TNAME(I))THEN
LFROM(IL,1)=I
GO TO 40

ENDIF
30 CONTINUE
40 DO 50 1=1,IT

IF(CLTO.EQ.TNAME(I))THEN
LTO(IL,1)=I
GO TO 60

ENDIF
50 CONTINUE

...Change Link Type to an integer

60 IF(CLTYPE.EQ.1 F-S')THEN
LTYPE(IL,1)=1
GO TO 70

ELSEIF(CLTYPE.EQ.1S-S')THEN
LTYPE(IL,1)=2
GO TO 70

ELSEIF(CLTYPE.EQ.' F-F’)THEN
LTYPE(IL,1)=3
GO TO 70

ELSE
LTYPE(IL,1)=4

ENDIF

227

c
C...Exit
C
70 RETURN

END

Appendix C.9: Subroutine ABRES

SUBROUTINE ABRES
C * ,* M* ' * * * * * * * * * * ,* ,) l r * * ,) * r * * * * * * * * *

C * * * *

c** Subroutine ABRES **
c** **
c** Abstracts RESOURCE data from export file record REC **
c** **

c
COMMON/RES/RNAME(100),RTYPE(100),RCOST(100)
COMMON/RECORD/REC,ICOMMA(16)
COMMON/COUNTS/IT,ID,IL,IR,IU,IC,I DM

C
CHARACTER*1 RTYPE
CHARACTER*3 RNAME
CHARACTER*18 5 REC

C
C
C...Determine comma positions in record
C

CALL RECCOM(5)
C
C...Zero character variables
C

RNAME(IR) = *
C
C...Abstract character variables
C
C...Resource name
C

RNAME(IR)=REC((ICOMMA(l)+2):(ICOMMA(2)-2))
C
C...Resource type
C

RTYPE(IR)=REC((ICOMMA(3)+1):(ICOMMA(3)+l))
C
C...Exit
C

RETURN
END

228

Appendix C.10: S u b ro u t in e ABSUBRES

SUBROUTINE ABSUBRES
C * ' * ' * * * * * * * * ,*'5|t * : k ,* '* ,* '* ,j>nllr:fr***,)lr*****'5fc'jfc*'5k*'5'r

C * * * *

c** Subroutine ABSUBRES **
c** **
c** Abstracts SUB-RESOURCE data from export file record REC **
c** **
C *

c
COMMON/SUBRES/CRTOP(110),CRSUB(110),RSUBQ(110),RTOP(110),
&RSUB(110)
COMMON/RECORD/REC,ICOMMA(16)
COMMON/COUNTS/IT,ID,IL,IR,IU,IC,I DM

C
CHARACTER*3 CRTOP.CRSUB
CHARACTER*11 NUMB
CHARACTER*18 5 REC

C
INTEGER RTOP,RSUB

C
C...Determine comma positions in record
C

CALL RECCOM(3)
C
C...Zero character variables
C

CRTOP(IU) = '
CRSUB(IU) = '

C
C...Abstract character variables
C
C...Resource
C

CRTOP(IU)=REC((ICOMMA(l)+2):(ICOMMA(2)-2))
C
C...Sub-resource
C

CRSUB(IU)-REC((ICOMMA(2)+2):(ICOMMA(3)-2))
C
C...Abstract numerical variable
C
C...Sub-resource quantity
C...Check whether INTEGER or FLOATING POINT number
C

NUMB=REC((ICOMMA(3)+1):(IC0MMA(3)+11))
DO 30 1=1,11

IF(NUMB(I:I).EQ.'.')THEN
C
C...FLOATING POINT number; Abstract using 'F' format
C

READ(NUMB,10)RSUBQ(IU)
10 FORMAT(FI1.4)

229

GO TO 40
ELSEIF(NUMB(I:I).EQ.' ')THEN

C
C...INTEGER number; Abstract using ’I'
C...format and convert to FP number
C

READ(NUMB,20)ISUBQ
20 FORMAT(16)

RSUBQ(IU)=REAL(ISUBQ)
GO TO 40

ENDIF
30 CONTINUE

C
C...Exit
C
40 RETURN

END

Appendix C.ll: Subroutine ABCAL

SUBROUTINE ABCAL

c** **
c** Subroutine ABCAL **
c** **
c** Abstracts CALENDAR data from export file record REC **
c** **

c
COMMON/CALS/CAL(5),ICWK(5)
COMMON/RECORD/REC,ICOMMA(16)
COMMON/COUNTS/IT,ID,IL,IR,IU,IC,IDM

C
CHARACTER*8 CAL
CHARACTER*18 5 REC

C
C...Zero character variable
C

CAL(IC)='
C
C...Abstract character variable
C

DO10 1=4,20
IF(REC(I:I).EQ.'"')GO TO 20

10 CONTINUE
20 CAL(IC)=REC(4:(I-1))

C
C...Exit
C

RETURN
END

230

Appendix C.12: S u b ro u tin e CALWKS

SUBROUTINE CALWKS

c** Subroutine CALWKS **
c** **
c** Keyboard input of working week length **
c** for each calendar; **
c** **
c** Determination of working week length **
c** for each task; **
c** **
C *

C

COMMON/TASKS/TTYPE(400),TNAME(400),TDURN(400),TRES(400,10) ,
&TRESQ(400,10),TCAL(400),NTRES(400),SFCODE(400),TWK(400),
&CTRES(400,10),TCOST(400,9),TWBS(400)
COMMON/CALS/CAL(5),ICWK(5)
COMMON/COUNTS/IT,ID,IL,IR,IU,IC,I DM

C
CHARACTER*1 TTYPE,CHR
CHARACTER*3 CTRES
CHARACTER*8 CAL,TCAL
CHARACTER*9 TNAME
CHARACTER*12 TWBS
CHARACTER* 2 7 TABREC(12),BLANK

C
INTEGER SFCODE,TWK,TRES

C
C...Initialise display table records
C

DO 20 1=1,12
TABREC(I)(1:1)=CHAR(186)
TABREC(I)(27:27)=CHAR(186)
DO 10 J=2,26
TABREC(I)(J:J)=T '

10 CONTINUE
20 CONTINUE

DO 30 J=2,26
TABREC(l)(J:J)=CHAR(205)
TABREC(12)(J:J)=CHAR(205)
BLANK(J:J)=' '

30 CONTINUE
TABREC(l)(1:1)=CHAR(201)
TABREC(l)(6:22)='Working Week data'
TABREC(l)(27:27)=CHAR(187)
TABREC(3)(3:10)='CALENDAR'
TABREC(3)(14:25)='WORKING WEEK'
TABREC(4)(17:22)='(Days)'
TABREC(12)(1:1)=CHAR(200)
TABREC(12)(27:27)=CHAR(188)
DO 40 1=1,IC
J=I+5
TABREC(J)(3:10)=CAL(I)

231

u
u

u

u
u

u

u
u

u

u
u

u

uuu
u

u
u

u

u
u

u

u
u

40 CONTINUE

...Draw display table (BRIGHT WHITE on BLUE)

NLTL=8
NCTL=2 7
NLTOP=NLTL-l
CALL TXTCLR(7,0)
CALL SCLEAR
CALL TXTCLR(15,1)
DO 50 1-1,12
CALL TMOVETO((NLTL+I-1),NCTL)
CALL OUTEXT(TABREC(I))

50 CONTINUE

...Define option highlight delay

NDEL=30

...Input calendar working week data from keyboard

60 DO 80 1=1,IC

...Highlight entry slot in table (BROWN)

CALL TXTCLR(0,6)
CALL TMOVETO((NLTL+I+4),(NCTL+18))
CALL OUTEXT(' •)

...Display input line (BRIGHT WHITE)

CALL TXTCLR(15,0)
CALL TMOVETO(NLTOP,NCTL)
CALL OUTEXT(CAL(I)//': Week length []')
CALL TMOVETO(NLTOP,(NCTL+2 3))

...Read working week length from keyboard

70 CALL KBREAD(0,CHR)
ICHR=ICHAR(CHR)
IF(ICHR.LT.49.OR.ICHR.GT.57)THEN

...Inappropriate character; try again

CALL SPCHAR(l)
GO TO 70

ENDIF

...Appropriate character; update table and variable ICWK

CALL TXTCLR(7,0)
DO 75 M=1,NDEL
CALL TMOVETO(NLTOP,(NCTL+2 3))
CALL OUTEXT(CHR)

75 CONTINUE

232

u
u

u
u

u
u

u

uu
u

u

u
u

ICWK(I)=ICHR-48
CALL TXTCLR(7,1)
CALL TMOVETO((NLTL+I+4),(NCTL+18))
CALL OUTEXT(CHR)

80 CONTINUE

...Display CONTINUATION message;

...highlight 1st character of options

CALL TXTCLR(15,0)
CALL TMOVETO(NLTOP,NCTL)
CALL OUTEXT(BLANK(2:26))
CALL TMOVETO(NLTOP,NCTL)
CALL OUTEXT('All OK? YES NO')
CALL TXTCLR(4,0)
CALL TMOVETO(NLTOP,(NCTL+9))
CALL OUTEXT('Y')
CALL TMOVETO(NLTOP,(NCTL+14))
CALL OUTEXT('N')
CALL TXTCLR(0,0)
CALL TMOVETO(25,70)
CALL OUTEXT(' ')
CALL TMOVETO(25,70)

...Read options from keyboard

90 CALL KBREAD(0,CHR)
CALL CHRCNV(CHR)
IF(CHR.EQ.'N')THEN

...Option is UNSATISFACTORY; Erase table data and try again;

CALL TXTCLR(0,7)
DO 110 M=1,NDEL
CALL TMOVETO(NLTOP,(NCTL+14))
CALL OUTEXT('NO')

110 CONTINUE
CALL TXTCLR(0,1)
DO 120 1=1,IC
CALL TMOVETO((NLTL+I+4),(NCTL+18))
CALL OUTEXT(' ')

120 CONTINUE
GO TO 60

ELSEIF(CHR.EQ.'Y')THEN

...Option is SATISFACTORY; Continue

CALL TXTCLR(0,7)
DO 130 M=1,NDEL
CALL TMOVETO(NLTOP,(NCTL+9))
CALL OUTEXT('YES')

130 CONTINUE
GO TO 140

ELSE

233

u
u

u

u
u

u

u
u

u

u
u

u

...Inappropriate character; try again

CALL SPCHAR(l)
CO TO 90

ENDIF

...Erase input display line; Display 'initialisation' message;

140 CALL TXTCLR(0,0)
CALL TMOVETO(NLTOP,NCTL)
CALL OUTEXT(BLANK(2:26))
CALL TXTCLR(15,0)
CALL TMOVETO((NLTL+12),NCTL)
CALL OUTEXT('Commencing data initialisation')

...Define length of working week for each task

DO 160 1-1,IT
DO 150 J=1,IC

IF(TCAL(I).EQ.CAL(J))THEN
TWK(I)=ICWK(J)
CO TO 160

ENDIF
150 CONTINUE
160 CONTINUE

...Exit

RETURN
END

234

Appendix C.13: S u b ro u t in e TCOSTS

SUBROUTINE TCOSTS
C * ' * " *

C * * * *

c** Subroutine TCOSTS **
c** **
c** Keyboard input of cost component data; **
c** **
c** Determination of cost components for each task; **
c** **
c***
c

COMMON/TASKS/TTYPE(400),TNAME(400),TDURN(400),TRES(400,10) ,
&TRESQ(400,10),TCAL(400),NTRES(400),SFCODE(400),TWK(400),
&CTRES(400,10),TCOST(400,9),TWBS(400)
COMMON/RES/RNAME(100),RTYPE(100),RCOST(100)
COMMON/COUNTS/IT,ID,IL,IR,IU,IC,IDM
COMMON/COSTS/CCODE(9),CPAY(9),CARR(9),CARRQ(9)

C
CHARACTER*1 TTYPE,RTYPE,CPAY,CARR,CHR
CHARACTER*3 RNAME,CTRES,CCODE
CHARACTER*4 FMT,CHR4
CHARACTER*8 TCAL
CHARACTER*9 TNAME
CHARACTER*10 CRDEL
CHARACTER*12 TWBS
CHARACTER*54 TABREC(16),BLANK

C
INTECER S FCODE,TWK,TRES,CARRQ

C
C . ..Initialise display table strings
C

DO 20 1=1,16
TABREC(I)(1:1)=CHAR(186)
TABREC(I)(54:54)=CHAR(186)
DO 10 J=2,53
TABREC(I)(J:J)=' '

10 CONTINUE
20 CONTINUE

DO 30 3= 2 ,53
TABREC(1)(J:J)=CHAR(205)
TABREC(16)(J:J)=CHAR(205)
BLANK(J : J) =' '

30 CONTINUE
TABREC(1)(1:1)=CHAR(201)
TABREC(l)(18:36)='Cost Component Data1
TABREC(l)(54:54)=CHAR(187)
TABREC(3)(3:37)='COMPONENT LOADING CODE PAYMENT'
TABREC(3)(40:52)='PAYMENT DELAY'
TABREC(5)(3:21)='LABOUR Normal'
TABREC(6)(3:21)='MATERIALS Front '
TABREC(7)(3:21)='PLANT Normal'
TABREC(8)(3:21)='PLANT Front '

235

uuu
u

u
u

u
u

u

uuu
uuu

u
u

u

TABREC(9)(3:21)='PLANT Back *
TABREC(10)(3:21)-'SUBCONTRACT Spread'
TABREC(11)(3:21)-'OVERHEADS Norma1’
TABREC(12)(3:21)='OVERHEADS Front '
TABREC(14)(3:21)='TASK PRICE Spread'
TABREC(16)(1:1)=CHAR(200)
TABREC(16)(54:54)=CHAR(188)

...Initialise task cost component arrays

DO 50 1=1,IT
DO 40 J=1,9
TCOST(I,J)=0.0

40 CONTINUE
50 CONTINUE

...Specify option highlight delay

NDEL=30

...Specify table position parameters

NLTL=4
NCTL=14
NLT OP-NLTL-1
NCTOP=NCTL
NLBOT=NLTL+16
NCBOT=NCTL

...Draw display table (BRIGHT WHITE on BLUE)

CALL TXTCLR(7,0)
CALL SCLEAR
CALL TXTCLR(15,1)
DO 60 1=1,16
CALL TMOVETO((NLTL+I-1),NCTL)
CALL OUTEXT(TABREC(I))

60 CONTINUE

...Input cost component data from keyboard

DO 240 1=1,9
65 NLT AB=NLTL+1+3

IF(I.GT.8)NLTAB=NLTAB+1

...Display CODE input line;

CALL TXTCLR(15,0)
CALL TMOVETO(NLTOP,NCTOP)
CALL OUTEXT('Code: [] ')
CALL OUTEXT('(Hit <CR> if component not applicable)')

236

u
u

u
u

u

u
u

u

u
u

u
u

u

u
u

u

u
u

u
u

...Highlight table entry position;

...Input component code from keyboard;

CALL TXTCLR(0,6)
CALL TMOVETO(NLTAB,(NCTL+24))
CALL OUTEXT(' ')

70 NCHR=3
CCODE(I)—'
CALL CREAD(NLTOP,(NCTOP+7),CCODE(I), NCHR)

...Erase any existing error messages

CALL TMOVETO(NLBOT,NCBOT)
CALL OUTEXT(BLANK(2:53))
IF(NCHR.EQ.0)THEN

...Component not applicable; erase input line;

...Update table and variables accordingly and

...proceed to next component;

CALL TXTCLR(0,0)
CALL TMOVETO(NLTOP,NCTOP)
CALL OUTEXT(BLANK(2:53))
CALL TXTCLR(7,1)
CALL TMOVETO(NLTAB,(NCTL+24))
CALL OUTEXT(' - ’)
CALL TMOVETO(NLTAB,(NCTL+32))
CALL O U T E X T)
CALL TMOVETO(NLTAB,(NCTL+4 3))
CALL O U T E X T)
CCODE(I)='000'
CPAY(I) =' 0'
CARR(I)=101
CARRQ(I)=0
CO TO 205

ENDIF

...Component applicable; convert code to upper case if required;

...Search for cost component index

CALL CHRCNV(CCODE(I))
DO 80 J-l,IR

IF(RNAME(J).EQ.CCODE(I))THEN
ICOST=J
GO TO 90

ENDIF
80 CONTINUE

...Cost component index not found; display error message;

...try again;

CALL TXTCLR(15,0)
CALL TMOVETO(NLBOT,NCBOT)
CALL OUTEXT('Component code not found; Try again!!')

237

u
u

u

u
u

u

u
u

u
u

u

u
u

CALL SPCHAR(l)
CALL TMOVETO(NLTOP,(NCTOP+7))
CALL OUTEXT(' ')
GO TO 70

...Cost component code found; Update table (WHITE on BLUE)

90 CALL TXTCLR(7,1)
CALL TMOVETO(NLTAB,(NCTL+24))
CALL OUTEXT(CCODE(I))

...Hide cursor while calculating

CALL TXTCLR(0,0)
CALL TMOVETO(25,70)
CALL OUTEXT(' ')
CALL TMOVETO(25,70)

...Calculate appropriate cost component for each task;

...Avoid calculation if a task has no resource demands;

CALL RESCOST(ICOST)
DO 110 J=1,IT

IF(NTRES(J).GT.0)THEN
DO 100 K=1,NTRES(J)
L=TRES(J,K)
TCOST(J,I)=TCOST(J,I)+RCOST(L)*TRESQ(J,K)

100 CONTINUE
ENDIF

110 CONTINUE

...Avoid repetitive input for PLANT and OVERHEADS components

IF(I.NE.4.AND.I.NE.5.AND.I.NE.8)GO TO 115
IF(CCODE(I-l).EQ.'000')GO TO 115
CALL TMOVETO(NLTOP,NCTOP)
CALL OUTEXT(BLANK(2:53))
CPAY(I)=CPAY(I-1)
CARR(I)=CARR(I-1)
CARRQ(I)=CARRQ(I-1)
CALL TXTCLR(7,1)
IF(CPAY(I).EQ.'W')THEN
CALL TMOVETO(NLTAB,(NCTL+3 0))
CALL OUTEXT('WEEKLY ')

ELSE
CALL TMOVETO(NLTAB,(NCTL+30))
CALL OUTEXT('MONTHLY')

ENDIF
IF(CARR(I).EQ.'O')THEN
CALL TMOVETO(NLTAB,(NCTL+40))
CALL OUTEXT(' - ’)
GO TO 205

ENDIF
GO TO 202

238

n
n

n
n

n

on

o
n

o

n
on

n

n
n

n ...Blank out existing input line; Display PAYMENT input line
...Highlight first character of options

115 CALL TXTCLR(15,0)
CALL TMOVETO(NLTOP,NCTOP)
CALL OUTEXT(BLANK(2:53))
CALL TMOVETO(NLTOP,NCTOP)
CALL OUTEXT('Payment: WEEKLY MONTHLY')
CALL TXTCLR(4,0)
CALL TMOVETO(NLTOP,(NCTOP+10))
CALL OUTEXT('W')
CALL TMOVETO(NLTOP,(NCTOP+18))
CALL OUTEXT('M')

...Highlight table entry position; Hide cursor

CALL TXTCLR(0,6)
CALL TMOVETO(NLTAB,(NCTL+30))
CALL OUTEXT(' ')
CALL TXTCLR(0,0)
CALL TMOVETO(25,70)
CALL OUTEXT(' ')
CALL TMOVETO(25,70)

...Read option from keyboard; convert to upper case if required;

120 CALL KBREAD(0,CPAY(I))
CALL CHRCNV(CPAY(I))
IF(CPAY(I).EQ.'W')THEN

...Option is WEEKLY; Highlight option; Update table; Update CPAY;

CALL TXTCLR(0,7)
DO 130 M-l.NDEL
CALL TMOVETO(NLTOP,(NCTOP+10))
CALL OUTEXT('WEEKLY')

130 CONTINUE
CALL TXTCLR(7,1)
CALL TMOVETO(NLTAB,(NCTL+3 0))
CALL OUTEXT('WEEKLY ')

ELSEIF(CPAY(I).EQ.'M')THEN

...Option is MONTHLY; Highlight option; Update table;

...Updat e CPAY;

CALL TXTCLR(0,7)
DO 140 M=1,NDEL
CALL TMOVETO(NLTOP,(NCTOP+18))
CALL OUTEXT('MONTHLY')

140 CONTINUE
CALL TXTCLR(7,1)
CALL TMOVETO(NLTAB,(NCTL+30))
CALL OUTEXT('MONTHLY')

ELSE

239

u
u

u

u
u

u

u
u

u

u
u

u

u
u

u
u

u

u
u

u

. . . I n a p p r o p r i a t e c h a r a c t e r ; t r y a g a in

CALL SPCHAR(l)
GO TO 120

ENDIF

...Display PAYMENT DELAY input line + E.G.line

150 CALL TXTCLR(15,0)
CALL TMOVETO(NLTOP,NCTOP)
CALL OUTEXT('Payment delay: [] ')
CALL OUTEXT('(Hit <CR> if no payment delay)1)
CALL TMOVETO(NLBOT,NCBOT)
CALL OUTEXT('[e.g. 28d '//CHAR(240)//' 28 days; ')
CALL OUTEXT('6w ’//CHAR(240)//' 6 weeks; ')
CALL OUTEXT('lm '//CHAR(240)//' 1 month;]')

...Highlight table entry position

CALL TXTCLR(0,6)
CALL TMOVETO(NLTAB,(NCTL+40))
CALL OUTEXT(' ')

...Read PAYMENT DELAY from keyboard; erase input + E.G.line

NCHR-4
CHR4-'
CALL CREAD(NLTOP,(NCTOP+16),CHR4,NCHR)
CALL TMOVETO(NLTOP,NCTOP)
CALL OUTEXT(BLANK(2:53))
CALL TMOVETO(NLBOT,NCBOT)
CALL OUTEXT(BLANK(2:53))
IF(NCHR.EQ.0)THEN

...Payment delay NOT APPLICABLE; Update table;

...Update CARR and CARRQ accordingly;

CALL TXTCLR(7,1)
CALL TMOVETO(NLTAB,(NCTL+40))
CALL OUTEXT(' - ')
CARR(I)='0'
CARRQ(I)=0
GO TO 205

ENDIF

...Payment delay APPLICABLE; convert to upper case if required

...Check suitability of input

CALL CHRCNV(CHR4)
DO 160 J=1,NCHR
CHR=CHR4(J:J)
K=ICHAR(CHR)
IF(K.CT.47.AND.K.LT.58)GO TO 160
IF(CHR.EQ.'D'.OR.CHR.EQ.'W'.OR.CHR.EQ.'M')THEN

240

u
uu

u
u

u

u
u

u

u
u

u

u
u

u
u

L=J-1
GO TO 180

ENDIF
160 CONTINUE

...Unsuitable input; display error message and try again;

CALL TMOVETO(NLBOT,NCBOT)
CALL OUTEXT(BLANK(2:53))
CALL SPCHAR(l)
CALL TXTCLR(15,0)
DO 170 M=1,NDEL
CALL TMOVETO(NLBOT,NCBOT)
CALL OUTEXT('Inappropriate input; try again!!')

170 CONTINUE
GO TO 150

...Suitable input; abstract data

180 WRITE(FMT,190)L
190 FORMAT('(I' , 11, ')')

READ(CHR4,FMT)CARRQ(I)
CARR(I)=CHR4(J:J)

...Define table display string

CRDEL='
WRITE(CRDEL(1:3),200)CARRQ(I)

200 FORMAT(13)
IF(CARR(I).EQ.'D')THEN
CRDEL(5:7) = 'day'
IF(CARRQ(I).GT.1)CRDEL(8:8)=1s'

ELSEIF(CARR(I).EQ.'W')THEN
CRDEL(5:8)-'week'
IF(CARRQ(I).GT.1)CRDEL(9:9)—'s'

ELSE
CRDEL(5:9) = 'mont h'
IF(CARRQ(I).GT.1)CRDEL(10:10)='s'

ENDIF

...Update table

202 CALL TXTCLR(7,1)
CALL TMOVETO(NLTAB,(NCTL+40))
CALL OUTEXT(CRDEL)

...Display CONTINUE? input line

...Highlight first character of options

205 CALL TXTCLR(15,0)
CALL TMOVETO(NLTOP,NCTOP)
CALL OUTEXT('Cont i nue ? YES NO')
CALL TXTCLR(4,0)
CALL TMOVETO(NLTOP,(NCTOP+11))
CALL OUTEXT('Y')

241

CALL TMOVETO(NLTOP,(NCTOP+16))
CALL OUTEXT('N')

C
C...Hide cursor
C

CALL TXTCLR(0,0)
CALL TMOVETO(25,70)
CALL OUTEXT(' ’)
CALL TMOVETO(25,70)

C
C...Read option from keyboard; convert to upper case if required;
C

210 CALL KBREAD(0,CHR)
CALL CHRCNV(CHR)
IF(CHR.EQ.'Y')THEN

C
C...Option is CONTINUE; Highlight option;
C...Proceed to next component;
C

CALL TXTCLR(0,7)
DO 220 M=1,NDEL
CALL TMOVETO(NLTOP,(NCTOP+11))
CALL OUTEXT('YES')

220 CONTINUE
CO TO 240

ELSEIF(CHR.EQ.'N')THEN
C
C...Option is DISCONTINUE; Highlight option;
C

CALL TXTCLR(0,7)
DO 230 M=1, NDEL
CALL TMOVETO(NLTOP,(NCTOP+16))
CALL OUTEXT('NO')

230 CONTINUE
C
C...Erase table entries and input new entries
C

CALL TXTCLR(7,1)
CALL TMOVETO(NLTAB,(NCTL+24))
CALL OUTEXT(BLANK(25:50))
GO TO 65

ELSE
C
C...Inappropriate character; try again
C

CALL SPCHAR(l)
CO TO 210

ENDIF
240 CONTINUE

C
C...Erase any input or error lines; Display COMPLETION message
C

CALL TXTCLR(15,0)
CALL TMOVETO(NLTOP,NCTOP)
CALL OUTEXT(BLANK(2:53))

242

n
n

o
CALL TMOVETO(NLBOT,NCBOT)
CALL OUTEXT(BLANK(2:53))
CALL TMOVETO(NLBOT,NCBOT)
CALL OUTEXT('Comp 1eting data initialisation')

...Exit

RETURN
END

243

Appendix C.14: S u b ro u t in e QUIT

SUBROUTINE QUIT(FLNAME,NCHR)
C *

c** **
c** Subroutine QUIT **
c** **
c** Concluding display for program PERTRA1 **
c** **
c** Writes data to data files for subsequent **
c** use by PERTRA2 and PERTRA3 **
c** **
C *

C

COMMON/TASKS/TTYPE(400),TNAME(400),TDURN(400),TRES(400,10),
&TRESQ(400,10),TCAL(400),NTRES(400),SFCODE(400),TWK(400),
&CTRES(400,10),TCOST(400,9),TWBS(400)
COMMON/LINKS/LFROM(500,2),LTO(500,2),LTYPE(500,2),
&LDURN(500,2)
COMMON/PROJ/PHEAD(3),PVER,PNAME,PSTART
COMMON/COSTS/CCODE(9),CPAY(9),CARR(9),CARRQ(9)
COMMON/COUNTS/IT,ID,IL,IR,IU,IC,IDM

C
CHARACTER*1 TTYPE,PVER,CPAY,CARR
CHARACTER*3 CTRES,CCODE
CHARACTER*8 TCAL,PNAME
CHARACTER*9 TNAME,PSTART
CHARACTER*12 FLNAME,TWBS
CHARACTER* 3 0 PHEAD
CHARACTER*37 TABREC(20)

C
REAL LDURN
INTECER S FCODE,TWK,TRES,CARRQ

C
C . ..Initialise display table strings
C

DO 20 1=1,20
TABREC(I)(1:1)=CHAR(186)
TABREC(I)(37:37)=CHAR(186)
DO 10 J=2,36
TABREC(I)(J:J)=* '

10 CONTINUE
20 CONTINUE

TABREC(l)(1:1)=CHAR(201)
TABREC(1)(37:37)=CHAR(187)
TABREC(5)(1:1)=CHAR(204)
TABREC(5)(37:37)=CHAR(185)
TABREC(20)(1:1)=CHAR(200)
TABREC(20)(37:37)=CHAR(188)
DO 30 J=2,36
TABREC(l)(J:J)=CHAR(205)
TABREC(5)(J:J)=CHAR(205)
TABREC(20)(J:J)=CHAR(205)

30 CONTINUE

244

u
u

u

u
u

u

u
u

u
u

u
u

u
u

u

u
u

TABREC(15)=TABREC(5)
TABREC(3)(10:28)=’Quitting PERTRA1 !!'
TABREC(7) (5 : 33)-*'The following data files have1
TABREC(8)(5:17)='been created:'

...Define table position

NLTL=3
NCTL=22

...Clear screen; draw table

CALL TXTCLR(0,0)
CALL SCLEAR
CALL TXTCLR(15,1)
DO 40 1=1,20
CALL TMOVETO((NLTL+I-1),NCTL)
IF(I.LT.2.OR.I.GT.4)THEN
CALL OUTEXT(TABREC(I))

ELSE
CALL OUTEXT(TABREC(I)(1:1))
CALL TXTCLR(0,4)
CALL OUTEXT(TABREC(I)(2:36))
CALL TXTCLR(15,1)
CALL OUTEXT(TABREC(I)(37:37))

ENDIF
40 CONTINUE

...Write data to datafiles

...Define GENERAL file

FLNAME((NCHR+1):(NCHR+4))-'.GEN'

...Open file on Unit 4; Write GENERAL data

OPEN(UNIT=4,FILE=FLNAME)
WRITE(4,50)PNAME,PVER

50 FORMAT(A8,IX,A2)
WRITE(4,60)(PHEAD(I),1=1,3)

60 FORMAT(A30)
WRITE(4,70)PSTART

70 FORMAT(A9)
CL0SE(4)

...Update table

CALL TXTCLR(15,1)
CALL TMOVETO((NLTL+9),(NCTL+5))
CALL OUTEXT('GENERAL data: ')
CALL TXTCLR(14,1)
CALL OUTEXT(FLNAME(1:(NCHR+4)))

245

u
u

u

u
u

u

u
u

u

u
u

u
u

u
u

u

u
u

u

u
u

u
u

u

. . . D e f i n e TASKS d a ta f i l e

FLNAME((NCHR+1):(NCHR+4))='.TSK'

...Open file on Unit 4; Write TASKS data;

OPEN(UNIT=4,FILE=FLNAME)
WRITE(4,80)IT

80 FORMAT(14)
DUM=0.0
IDUM=1
WRITE(4,90)(TTYPE(I),TNAME(I),TWBS(I),TWK(I),SFCODE(I),IDUM,
&DUM,TDURN(I),DUM,1=1,IT)

90 FORMAT(IX,A1,IX,A9,IX,A12,312,3F7.2)
CLOSE(4)

...Update table

CALL TXTCLR(15,1)
CALL TMOVETO((NLTL+10),(NCTL+5))
CALL OUTEXT('TASK data: ')
CALL TXTCLR(14,1)
CALL OUTEXT(FLNAME(1:(NCHR+4)))

...Define LINKS data file

FLNAME((NCHR+1):(NCHR+4)) ='.LNK'

...Open file on Unit 4; Write LINKS data

OPEN(UNIT=4,FILE=FLNAME)
WRITE(4,80)IL
WRITE(4,100)((LFROM(I,J),LTO(I,J),LTYPE(I,J),
&LDURN(I,J),J-1,2),1=1,IL)

100 FORMAT(2(314,F7.2))
CL0SE(4)

...Update table

CALL TXTCLR(15,1)
CALL TMOVETO((NLTL+11),(NCTL+5))
CALL OUTEXT(1 LINK data: ')
CALL TXTCLR(14,1)
CALL OUTEXT(FLNAME(1:(NCHR+4)))

...Define COSTS data file

FLNAME((NCHR+1):(NCHR+4))='.CST'

...Open file on Unit 4; Write COSTS data

OPEN(UNIT=4,FILE=FLNAME)
WRITE(4,110)(CCODE(I),CPAY(I),CARR(I),CARRQ(I),1=1,9)

110 FORMAT(A3,IX,Al,IX,Al,14)

246

u
u

u

uuu
u

u
u

u

u
u

WRITE(4,120)((TCOST(I,J),J=1,9),1=1,IT)
120 FORMAT(9F10.2)

CLOSE(4)

...Update table

CALL TXTCLR(15,1)
CALL TMOVETO((NLTL+12),(NCTL+5))
CALL OUTEXT('COST data: ')
CALL TXTCLR(14,1)
CALL OUTEXT(FLNAME(1:(NCHR+4)))

...Write FLNAME to file PERTRA.FLS on Unit 4

OPEN(UNIT=4,FILE='PERTRA.FLS')
WRITE(4,130)FLNAME(1:NCHR)

130 FORMAT(A8)
CLOSE(4)

...Display concluding message

CALL TXTCLR(15,1)
CALL TMOVETO((NLTL+16),(NCTL+2))
CALL OUTEXT('Run PERTRA2 for interactive input')
CALL TMOVETO((NLTL+17),(NCTL+8))
CALL OUTEXT('of TASK DURATION data')
CALL TXTCLR(7,0)
CALL TMOVETO(23,22)
CALL OUTEXT('Program terminated')

...Exit routine

RETURN
END

247

Appendix C.15: S u b ro u t in e RESCOST

SUBROUTINE RESCOST(ICOST)
C *

C * * * *

c** Subroutine RESCOST **
C * * * *

c** Calculates individual cost components of resources **
c** **
c** ICOST — Index of cost component under consideration **
c** **
C *

C

COMMON/RES/RNAME(100),RTYPE(100),RCOST(100)
COMMON/SUBRES/CRTOP(110),CRSUB(110),RSUBQ(110),RTOP(110),

&RSUB(110)
COMMON/COUNTS/IT,ID,IL,IR,IU,IC,IDM

C
CHARACTER*1 RTYPE
CHARACTER* 3 RNAME,CRTOP,CRS UB

C
INTEGER RTOP,RSUB

C
C...Initialise cost array
C

DO 10 1=1,IR
RCOST(I)=0.0

10 CONTINUE
RCOST(ICOST)=l.0

C
C...Initialise control statement LAB
C

ASSIGN 35 TO LAB
C
C...Initialise calculation indices
C

IND=ICOST
11=1
12=0

C
C...Rearrange SUB-RESOURCE arrays
C
20 ISTART=I1

DO 30 1 = 1 START,IU
IF(RSUB(I).EQ.IND)THEN
CALL SRSWOP(1,11)
1 1 = 1 1 + 1

ENDIF
30 CONTINUE

C
C...Test (First time only) if cost
C...component exists as a sub-resource
C

GO TO LAB

248

u
u

u

u
u

u
u

u

u
u

u

u
u

35 IF(I1.LT.2)THEN

...It does not exist; Exit subroutine;

GO TO 50
ELSE

...It exists; Update control statement

...to avoid unnecessary testing

ASSIGN 37 TO LAB
ENDIF

37 12=12+1
INB=RTOP(12)
IF(12.LT.11)G0 TO 20

...Calculate cost component for each resource

DO 40 1=1,(12-1)
J=RT0P(I)
K=RSUB(I)
RCOST(J)=RCOST(J)+RCOST(K)*RSUBQ(I)

40 CONTINUE

...Exit

50 RETURN
END

249

Appendix C.16: S u b ro u tin e SRSWOP

SUBROUTINE SRSWOP(I,Il)

C** -s*nSr
c** Subroutine SRSWOP **
c** **
c** Sub-resource swopping routine used by Subroutine RESCOST **
C** **

c
COMMON/S UBRES/CRTOP(110),CRSUB(110),RSUBQ(110),RTOP(110),
&RSUB(110)

C
CHARACTER*3 CRTOP,CRSUB

C
INTECER RTOP,RSUB,TEMPI,TEMP2

C
TEMPl=RTOP(I1)
TEMP2=RSUB(II)
TEMP3=RSUBQ(I1)
RTOP(Il)=RTOP(I)
RSUB(I1)=RSUB(I)
RSUBQ(I1)“RSUBQ(I)
RTOP(I)=TEMP1
RSUB(I)=TEMP2
RSUBQ(I)=TEMP3

C
C...Exit
C

RETURN
END

250

Appendix C.17: S u b ro u t in e LSORT

SUBROUTINE LSORT
C * * * * * * * * * * * * * * * * * * ' *

C * * * *

c** Subroutine LSORT **
c** **
c** Rearranges links into the appropriate order for **
c** the forward/backward pass through the network **
c** **
C *

c
COMMON/TASKS/TTYPE(400),TNAME(400),TDURN(400),TRES(400,10),
&TRESQ(400,10),TCAL(400),NTRES(400),SFCODE(400),TWK(400),
&CTRES(400,10),TCOST(400,9),TWBS(400)
COMMON/LINKS/LFROM(500,2),LTO(500,2),LTYPE(500,2),
&LDURN(500,2)

C
CHARACTER*1 TTYPE
CHARACTER*3 CTRES
CHARACTER*8 TCAL
CHARACTER*9 TNAME
CHARACTER*!. 2 TWBS

C
REAL LDURN
INTEGER SFCODE,TWK,TRES

C
C...Rearrange links in FORWARD PASS order
C
C...Zero link counter
C

11=1
C
C...Search for START tasks
C

DO 10 1=1,IL
J=LFROM(1,1)
IF(SFCODE(J).EQ.0)THEN
CALL LSWOP(I,11,1)
11=11+1

ENDIF
10 CONTINUE

C
C...Sort remaining links into order
C

DO 30 12=1,IL
ISTART=I1
IF(I START.GE.IL)GO TO 40
DO 20 1 = 1 START,IL

IF(LFROM(I,1).EQ.LTO(12,1))THEN
CALL LSWOP(I,11,1)
11=11+1

ENDIF
20 CONTINUE

251

u
u

u

u
u

u
u

u
u

u
u

u

u
u

u

u
u

30 CONTINUE

...Set up BACKWARD PASS array

40 DO 50 1=1,IL
LFROM(I,2)=LFR0M(I,1)
LTO(I,2)=LTO(I,1)
LTYPE(I,2)=LTYPE(1,1)
LDURN(I,2)=LDURN(I,1)

50 CONTINUE

...Rearrange links in BACKWARD PASS order

...Zero link counter

11=1

...Search for FINISH tasks

DO 60 1=1,IL
J=LTO(I,2)
IF(SFCODE(J).EQ.2)THEN
CALL LSWOP(I,II,2)
11 = 11+1

ENDIF
60 CONTINUE

...Sort remaining links into order

DO 80 12=1,IL
I START-II
IF(I START.CE.IL)GO TO 90
DO 70 1 = 1 START,IL

IF(LTO(I,2).EQ.LFROM(12,2))THEN
CALL LSWOP(I,11,2)
11 = 11+1

ENDIF
70 CONTINUE
80 CONTINUE

. . .Exit

90 RETURN
END

252

Appendix C.18: S u b ro u tin e LSWOP

SUBROUTINE LSWOP(I,II,J)

C** **
c** Subroutine LSWOP **
c** **
c** Link swopping routine used by Subroutine LSORT **
c**

k'k'Jrk'k'k’k'k'k'k'k'k'k'k'k'k'k'jc'k'k'k'k'k'k'k'k-k'k'k'k-Jrk'k'k-jc'k'kicik'k'k'k'k'kirk

C

COMMON/LINKS/LFROM(500, 2) ,LTO(500,2),LTYPE(500,2),
&LDURN(500,2)
COMMON/COUNTS/IT,ID,IL,IR,IU,IC,I DM

C
REAL LDURN
INTECER TEMPI,TEMP2,TEMP3

C
TEMPl=LFROM(I,J)
TEMP2=LTO(I,J)
TEMP3-LTYPE(I,J)
TEMP4=LDURN(I,J)
LFROM(I,J)=LFROM(I1,J)
LTO(I,J)=LTO(I1,J)
LTYPE (I , J) =*=LTYPE (11, J)
LDURN(I,J)=LDURN(I1,J)
LFROM(I1,J)=TEMP1
LTO(I1,J)=TEMP2
LTYPE(I1,J)=TEMP3
LDURN(I1,J)=TEMP4

C
C . . . Ex i t
C

RETURN
END

253

Appendix C.19: S u b ro u t in e CHRCNV

SUBROUTINE CHRCNV(CHRVAR)

C** **
c** Subroutine CHRCNV **
c** **
c** Converts any lower case characters in CHRVAR to upper case **
c** **

C

CHARACTER CHRVAR*(*)
C

NCHR-LEN(CHRVAR)
DO 10 1=1,NCHR
N=ICHAR(CHRVAR(1:1))
IF(N.GT.9 6.AND.N.LT.12 3)THEN
N=N-32
CHRVAR(I:I)=CHAR(N)

ENDIF
10 CONTINUE

C
C...Exit
C

RETURN
END

254

Appendix C.20: S u b ro u tin e CREAD

SUBROUTINE CREAD(NL,NC,CHRVAR,NCHR)

C * * * *

c** Subroutine CREAD **
c**
c** Reads a character variable CHRVAR, of maximum length **
c** NCHR characters, from the keyboard at screen **
c** position NL,NC. **
c** **
c** Returns the actual number of characters NCHR in the **
c** variable. **
c** **
c** Uses ’C subroutines. **
c**

c
CHARACTER CHRVAR*(*)
CHARACTER*1 CHR

C
CALL TXTCLR(7,0)

C
C...Move cursor to required position
C

CALL TMOVETO(NL,NC)
1=1

10 IF(I.GT.NCHR)GO TO 30
IC=NC+I-1

C
C...Read input character (no echo)
C
20 CALL KBREAD(0,CHR)

J=ICHAR(CHR)
IF(J.EQ.13)THEN

C
C...Character is CARRIAGE RETURN;
C...Determine length of character variable; Exit routine;
C

N=IC-NC
GO TO 50

ELSEIF(J.EQ.8)THEN
C
C...Character is BACKSPACE; Delete preceding character;
C...Protect against over-deletion
C

IC=IC-1
1 = 1 - 1
IF(I.GT.0)GO TO 25
1 = 1+1
IC=I+1
CALL SPCHAR(l)
GO TO 20

25 CALL TMOVETO(NL,IC)

255

CALL OUTEXT(' 1)
CALL TMOVETO(NL,IC)
CO TO 20

ELSEIF(J.EQ.32)THEN
C
C...Character is SPACE; Ignore
C

CALL SPCHAR(l)
CO TO 20

ELSE
C
C...Character is acceptable; Update
C...character variable and continue
C

N=(IC-NC)+1
CHRVAR(N: N)=CHR
CALL OUTEXT(CHR)

ENDIF
I - I + l
CO TO 10

c
C...Hide cursor
C

30 CALL TXTCLR(0,0)
CALL TMOVETO(25,70)
CALL OUTEXT(' ')
CALL TMOVETO(25,70)

40 CALL KBREAD(O.CHR)
J=ICHAR(CHR)
IF(J.EQ.13)THEN
GO TO 50

ELSEIF(J.EQ.8)THEN
CALL TXTCLR(7,0)
CALL TMOVETO(NL,IC)
CALL OUTEXT(' ')
CALL TMOVETO(NL,IC)
I=NCHR
CO TO 10

ELSE
CALL SPCHAR(l)
GO TO 40

ENDIF
C
C...Exit
C
50 NCHR=N

RETURN
END

256

APPENDIX D: Program PERTRA2 and S u b ro u t in e s

Appendix D.l: Program PERTRA2

C *

C * * * *

c** Program PERTRA2.FOR **
c** **
c** Interactive input of TASK DURATIONS for use by **
c** Risk Analysis Program PERTRA3.F0R **
C * * * *

c** TDURN(1,1): OPTIMISTIC duration; **
c** TDURN(1,2): MOST LIKELY duration; **
c** TDURN(1,3): PESSIMISTIC duration; **
c** **
c** Reads initial data from user-specified file: FLNAME.TSK **
c** generated by initialisation program: PERTRA1.F0R **
c** **
c** Appends FLNAME.TSK to include data input from keyboard **
c** **

c
COMMON/TASKS/TNAME(400),TWBS(400),TTYPE(400),TDURN(400,3),
&TWK(400),SFCODE(400),FTASK(400),PCODE(400),DFACT(2)

COMMON/FILDAT/CODE(6),POS(6),OPR(6),SELECT(6),NCHR(6),
&LOCIC,IFLT,NTEST

C
CHARACTER*1 TTYPE.YES
CHARACTER*9 TNAME,SELECT
CHARACTER*12 TWBS,CVAR,FLNAME

C
REAL TDURN
INTECER FTASK,PCODE,CODE,POS,OPR,NCHR,SFCODE,TWK,IFLT,NTEST

C
C . . .Read FLNAME from f i l e : PERTRA. FLS on Uni t 3
C

OPEN(UNIT=3,FILE='PERTRA.FLS')
READ(3,10)FLNAME

10 FORMAT(A8)
CLOSE(3)

C
C . . . S e t TEXT mode; d i s p l a y program i n t r o d u c t i o n
C

CALL SETMODE(0)
CALL HEADER(FLNAME)

257

n
n

n
n

on

n
on

n

on

no
n

n
on

n

on

n
o

n

n
on

n

o
n

. . .Read TASK d a ta from FLNAME on Unit 3

FLNAME(9:12)='.TSK'
OPEN(UNIT= 3,FILE=FLNAME)
READ(3,*)NTASK
READ(3,20)(TTYPE(I),TNAME(I),TWBS(I),TWK(I),SFCODE(I),
&PCODE(I),(TDURN(I,J),J=l,3),1=1,NTASK)

20 FORMAT(IX,A1,IX,A9,IX,A12,312,3F7.2)
CLOSE(3)

...Set HAMMOCK/MILESTONE task codes set to zero

DO 30 1=1,NTASK
IF(TTYPE(I).EQ.’H'.OR.TTYPE(I).EQ.'M')PCODE(I)=0

30 CONTINUE

...Display screen enquiry

40 CALL QDISPLAY(JCODE,FLNAME,NTASK)

...Quit program if so desired; Otherwise continue

IF(J CODE.GT.1)CO TO 999

...Input filtration parameters from keyboard

50 CALL FDIS PLAY(J CODE)

...Filter tasks in accordance with filtration parameters

CALL FILTER(NTASK)

...Display filtered tasks on screen

CALL TDISPLAY(ICODE,JCODE)

...If filtration unsatisfactory, input new filtration parameters

IF(ICODE.GT.0)CO TO 50

...Filtration satisfactory; Update the appropriate variables

IF(J CODE.EQ.0)THEN

...INVARIABLE duration tasks; Update task codes PCODE

DO 60 1=1,IFLT
J=FTASK(I)
PCODE(J)=0

60 CONTINUE
ELSE

258

n
on

n

on

n
o

n

...VARIABLE d u r a t i o n t a s k s ; Update OPTIMISTIC/PESSIMISTIC d u r a t io n s

DO 70 1=1,IFLT
J=FTASK(I)
TDURN(J,1)=TDURN(J,2)*DFACT(1)
TDURN(J,3)=TDURN(J,2)*DFACT(2)

70 CONTINUE
ENDIF

...Repeat for next set of tasks

CO TO 40

...Program ends

999 END

259

Appendix D.2: S u b ro u tin e HEADER

SUBROUTINE HEADER(FLNAME)

C * * * *

c** Subroutine HEADER **
c** **
c** Outputs program introductory message **
c** to screen **
c** **
C *

C

CHARACTER*1 CHR
CHARACTER*!. 2 FLNAME
CHARACTER*61 TXTREC(45)
CHARACTER*6 5 TABREC(21)

C
C...Initialise TABLE records
C

DO 20 1-1,23
TABREC(I)(1:1)=CHAR(186)
TABREC(I)(65:65)=CHAR(186)
DO 10 J=2,64
TABREC(I)(J:J)=' '

10 CONTINUE
20 CONTINUE

TABREC(l)(1:1)=CHAR(201)
TABREC(l)(65:65)-CHAR(187)
TABREC(5)(1:1)=CHAR(204)
TABREC(5)(65:65)-CHAR(185)
TABREC(21)(1:1)-CHAR(200)
TABREC(21)(65:65)-CHAR(188)
DO 30 J=2,64
TABREC(l)(J:J)-CHAR(205)
TABREC(5)(J:J)-CHAR(205)
TABREC(21)(J:J)=CHAR(205)

30 CONTINUE
TABREC(3)(24:38)='Program PERTRA2'

C
C...Initialise TEXT records
C

DO 40 1=1,35
DO 35 J-1,61
TXTREC(I)(J:J)=' '

35 CONTINUE
40 CONTINUE

TXTREC(l)(1:43)='Interactive input of TASK DURATION data for'
TXTREC(l)(45:59)='the Monte-Carlo'
TXTREC(2)(1:42)='simulation carried out by Program PERTRA3.'
TXTREC(4)(1:44)='Basic task data is read from the appropriate'
TXTREC(4)(46:54)=’.TSK file'
TXTREC(5)(1:29)='generated by Program PERTRA1.'
TXTREC(5)(31:57)='Following input of the task'

260

50

60
70

TXTREC(6)(1:46)-'
TXTREC(6)(48:60)=
TXTREC(7)(1:43)-'
TXTREC(7)(45:61)=
TXTREC(9)(1:36)='
TXTREC(9)(38:57)=
TXTREC(IO)(1:22)=
TXTREC(12)(15:28)
TXTREC(13)(15:48)
TXTREC(14)(15:28)
TXTREC(16)(1:43)=
TXTREC(16)(45:58)
TXTREC(17)(1:8)='
TXTREC(19)(1:42)=
TXTREC(19)(44:56)
TXTREC(20)(9:51)=
TXTREC(22)(9:31)=
TXTREC(22)(33:61)
TXTREC(24)(9:32)=
TXTREC(24)(34:60)
TXTREC(26)(9:32)=
TXTREC(26)(34:61)
TXTREC(28)(1:44)=
TXTREC(28)(46:56)
TXTREC(29)(9:55)=
TXTREC(31)(1:42)=
TXTREC(31)(44:61)
TXTREC(32)(9:19)=
TXTREC(34)(1:34)=
TXTREC(34)(36:61)'
TXTREC(35)(9:49)-
DO 50 1-1,61
TXTREC(3)(I:I)=
TXTREC(8)(I:I)=
TXTREC(15)(I:I)
TXTREC(30)(1:1)
TXTREC(36)(I:I)
CONTINUE

DO 70 1=37,45
DO 60 J-1,61
TXTREC(I)(J:J
CONTINUE

CONTINUE

duration data, this file will be updated, thus'
'providing the'
facility for performing intermediate checks'
'on the data file.'
For convenience, PERTRA2 facilitates'
'SELECTIVE display of’
'tasks on the basis of:'
='(a) Task NAME;'
-'(b) Task WORK BREAKDOWN STRUCTURE;'

(c) Task TYPE;'
'For the purpose of data input, tasks may be'
='categorised as'
follows:'
'Type 1: Those whose durations are VARIABLE'
='in accordance'
'with a probability distribution defined by:'
'(a) OPTIMISTIC duration'
='(99% exceedance probability);'
'(b) MOST LIKELY duration'
='(used in PMA calculations);'
'(c) PESSIMISTIC duration'
='(1% exceedance probability);'
'Type 2: Those whose durations are INVARIABLE1
-'and are not'
'subject to a probability distribution as above
'Note 1: MILESTONE tasks will automatically'
='be included within'
'category 2;1
'Note 2: By virtue of their nature,'
='HAMMOCK tasks will also be'
'automatically included within category 2;'

CHAR(196)
€HAR(196)
=CHAR(196)
=CHAR(196)
=CHAR(196)

)=CHAR(176)

261

uuu
u

u
u

u
u

u

. . .Draw t a b l e

CALL SCLEAR
CALL SETWIN(1,1,25,80)
CALL TXTCLR(15,1)
DO 80 1-1,21
CALL TMOVETO(1,8)
IF(I.LT.2.OR.I.GT.4)THEN
CALL OUTEXT(TABREC(I))

ELSE
CALL OUTEXT(TABREC(I)(1:1))
CALL TXTCLR(0,6)
CALL OUTEXT(TABREC(I)(2:64))
CALL TXTCLR(15,1)
CALL OUTEXT(TABREC(I)(65:65))

ENDIF
80 CONTINUE

...Set text window

CALL SETWIN(6, 10,20,71)

...Output text to screen in 15 line sets

DO 90 1=1,45
IF(MOD(I,15).CT.0)THEN
CALL OUTEXT(TXTREC(I)//CHAR(10))

ELSE
CALL OUTEXT(TXTREC(I))
CALL SETWIN(1,1,25,80)
CALL TMOVETO(22,8)
CALL TXTCLR(0,4)
CALL OUTEXT(' Hit any key to continue ')
CALL TXTCLR(0,0)
CALL TMOVETO(25,75)
CALL OUTEXT(' ')
CALL TMOVETO(25,75)
CALL KBREAD(0,CHR)
IF(I.EQ.45)GO TO 100
CALL TXTCLR(15,0)
CALL TMOVETO(22,8)
CALL OUTEXT(TABREC(6)(2:64))
CALL TXTCLR(15,1)
CALL SETWIN(6,10,20,71)
CALL TMOVETO(15,62)
CALL OUTEXT(CHAR(10))

ENDIF
90 CONTINUE

262

n
n

n

...All text output; Display concluding message and exit routine

100 CALL TXTCLR(7,0)
DO 110 1=1,8
J=8-(I-1)
IF(FLNAME(J:J).NE.' ')CO TO 120

110 CONTINUE
120 CALL TMOVETO(22,8)

CALL OUTEXT('Reading Task Duration data from file: ')
CALL TXTCLR(15,0)
CALL OUTEXT(FLNAME(1:J)//'. TSK')
RETURN
END

263

Appendix D.3: S u b ro u tin e QDISPLAY

SUBROUTINE QDISPLAY(JCODE,FLNAME,NTASK)
(; * • * * * * * * * * * * * * ' * ' * • * * * * * * * * * * * * * * *

C * * * *

c** Subroutine QDISPLAY **
c** **
c** Intermediate enquiry display **
c** **
c** JCODE = 0: Input data for INVARIABLE duration tasks; **
c** JCODE - 1: Input data for VARIABLE duration tasks; **
c** JCODE = 2; No more data to input; Quit program; **
c** **

C

COMMON/TASKS/TNAME(400),TWBS(400),TTYPE(400),TDURN(400,3),
&TWK(400),SFCODE(400),FTASK(400),PCODE(400),DFACT(2)

C
CHARACTER*1 CHR1,TTYPE
CHARACTER*9 TNAME
CHARACTER*12 FLNAME,TWBS
CHARACTER*40 TABREC(22)

C
INTEGER FTASK,PCODE,SFCODE,TWK

C
C...Specify highlight delay
C

NDEL=30
C
C...Initialise TABLE records
C

DO 20 1=1,9
TABREC(I)(1:1)=CHAR(186)
TABREC(I)(38:38)=CHAR(186)
DO 10 J=2,37
TABREC(I)(J:J)=1 '

10 CONTINUE
20 CONTINUE

TABREC(l)(1:1)=CHAR(201)
TABREC(l)(38:38)=CHAR(187)
TABREC(5)(1:1)=CHAR(204)
TABREC(5)(38:38)=CHAR(185)
TABREC(9)(1:1)=CHAR(200)
TABREC(9)(38:38)=CHAR(188)
DO 30 J=2,37
TABREC(l)(J:J)=CHAR(205)
TABREC(5)(J:J)=CHAR(205)
TABREC(9)(J:J)=CHAR(205)

30 CONTINUE
TABREC(3)(11:28)='TASK DURATION DATA'

264

o
n

n
n

o
n

n

on

n
n

n

. . .Draw t a b l e

CALL SCLEAR
CALL SETWIN(1,1,25,80)
CALL TXTCLR(15,1)
NLTL=7
NCTL=22
DO 40 1=1,9
CALL TMOVETO((NLTL+I-1),NCTL)
IF(I.LT.2.0R.I.GT.4)THEN
CALL OUTEXT(TABREC(I)(1:38))

ELSE
CALL OUTEXT(TABREC(I)(1:1))
CALL TXTCLR(0,6)
CALL OUTEXT(TABREC(I)(2:37))
CALL TXTCLR(15,1)
CALL OUTEXT(TABREC(I)(38:38))

ENDIF
40 CONTINUE
45 CALL TXTCLR(15,1)

CALL TMOVETO((NLTL+6),(NCTL+2))
CALL OUTEXT('Task Duration: ')
CALL TXTCLR(7,1)
CALL OUTEXT('VARIABLE/INVARIABLE')

...Display 'OPTION' message with highlights; Hide cursor;

NLTOP=NLTL-l
NCTOP=NCTL+l
CALL TXTCLR(15,0)
CALL TMOVETO(NLTOP,NCTOP)
CALL OUTEXT('Opt ion: INPUT QUIT')
CALL TXTCLR(4,0)
CALL TMOVETO(NLTOP,(NCTOP+9))
CALL OUTEXT('I')
CALL TMOVETO(NLTOP,(NCTOP+16))
CALL OUTEXT('Q')
CALL TXTCLR(0,0)
CALL TMOVETO(25,75)
CALL OUTEXT(' ')
CALL TMOVETO(25,75)

...Read input from keyboard; Convert to upper case if required;

50 CALL KBREAD(0,CHR1)
CALL CHRCNV(CHR1)
IF(CHR1.EQ.'I')THEN

...Option is INPUT; Highlight and proceed;

CALL TXTCLR(0,7)
DO 60 M=1,NDEL
CALL TMOVETO(NLTOP,(NCTOP+9))
CALL OUTEXT('INPUT')

265

u
u

u
u

uuu

uuu
u

u
u

u
u

u

60 CONTINUE
ELSEIF(CHR1.EQ.'Q')THEN

...Option is QUIT; Highlight; Update JCODE

...Move to 'quitting' routine;

CALL TXTCLR(0,7)
DO 70 M=1,NDEL
CALL TMOVETO(NLTOP,(NCTOP+16))
CALL OUTEXT('QUIT')

70 CONTINUE
JCODE=2
CO TO 140

ELSE

...Inappropriate character; sound warning and try again;

CALL SPCHAR(l)
GO TO 50

ENDIF

...Display TASK DURATION message with highlights

CALL TXTCLR(15,0)
CALL TMOVETO(NLTOP,NCTOP)
CALL OUTEXT('Task Duration: VARIABLE INVARIABLE')
CALL TXTCLR(4,0)
CALL TMOVETO(NLTOP,(NCTOP+16))
CALL OUTEXT('V')
CALL TMOVETO(NLTOP,(NCTOP+2 6))
CALL OUTEXT('I')
CALL TXTCLR(0,0)
CALL TMOVETO(25, 75)
CALL OUTEXT(' ')
CALL TMOVETO(25,75)

...Read input from keyboard; Convert to upper case if required;

80 CALL KBREAD(0,CHR1)
CALL CHRCNV(CHR1)
IF(CHR1.EQ.'V')THEN

...Option is VARIABLE; Highlight; Update JCODE

CALL TXTCLR(0,7)
DO 90 M=1,NDEL
CALL TMOVETO(NLTOP,(NCTOP+16))
CALL OUTEXT('VARIABLE')

90 CONTINUE
JCODE=l

266

u
u

u

u
u

u

u
u

u

uuu
u

u
u

u

u
u

...Highlight tabular display and proceed

CALL TXTCLR(0,4)
CALL TMOVETO((NLTL+6),(NCTL+17))
CALL OUTEXT('VARIABLE')

ELSEIF(CHR1.EQ.'I')THEN

...Option is INVARIABLE; Highlight; Update JCODE;

CALL TXTCLR(0,7)
DO 100 M=1,NDEL
CALL TMOVETO(NLTOP,(NCTOP+26))
CALL OUTEXT('INVARIABLE')

100 CONTINUE
J CODE=0

...Highlight tabular display and proceed

CALL TXTCLR(0,4)
CALL TMOVETO((NLTL+6),(NCTL+26))
CALL OUTEXT(’INVARIABLE')

ELSE

...Inappropriate character; sound warning and try again;

CALL SPCHAR(l)
CO TO 80

ENDIF

...Display CONTINUE message; Highlight options

CALL TXTCLR(0,0)
CALL TMOVETO(NLTOP,NCTOP)
CALL OUTEXT(TABREC(2)(2:37))
CALL TXTCLR(15,0)
CALL TMOVETO(NLTOP,NCTOP)
CALL OUTEXT('Cont i nue ? YES NO')
CALL TXTCLR(4,0)
CALL TMOVETO(NLTOP,(NCTOP+11))
CALL OUTEXT('Y1)
CALL TMOVETO(NLTOP,(NCTOP+16))
CALL OUTEXT('N')
CALL TXTCLR(0,0)
CALL TMOVETO(25,75)
CALL OUTEXT(' ')
CALL TMOVETO(25,75)

...Read input from keyboard; Convert to upper case if required;

110 CALL KBREAD(0,CHR1)
CALL CHRCNV(CHR1)
IF(CHR1.EQ.'N')THEN

267

uuu
u

u
u

uuu

uuu
u

u
u

. . . O p t i o n i s DISCONTINUE; H ig h l ig h t and s t a r t a g a in

CALL TXTCLR(0,7)
DO 120 M=1,NDEL
CALL TMOVETO(NLTOP,(NCTOP+16))
CALL OUTEXT('NO')

120 CONTINUE
GO TO 45

ELSEIF(CHR1.EQ.'Y')THEN

...Option is CONTINUE; Highlight and exit routine

CALL TXTCLR(0,7)
DO 130 M=1,NDEL
CALL TMOVETO(NLTOP,(NCTOP+11))
CALL OUTEXT('YES')

130 CONTINUE
CALL TXTCLR(7,0)
GO TO 999

ELSE

...Inappropriate character; sound warning and try again;

CALL SPCHAR(l)
GO TO 110

ENDIF

...Quitting routine

140 CALL TXTCLR(7,0)
CALL SCLEAR

...Initialise display table records

DO 160 1=1,22
TABREC(I)(1:1)=CHAR(186)
TABREC(I)(40:40)=CHAR(186)
DO 150 J=2,39
TABREC(I)(J:J)=' '

150 CONTINUE
160 CONTINUE

TABREC(l)(1:1)=CHAR(201)
TABREC(l)(40:40)=CHAR(187)
TABREC(5)(1:1)=CHAR(200)
TABREC(5)(40:40)=CHAR(188)
TABREC(6)(1:1)-CHAR(201)
TABREC(6)(40:40)=CHAR(187)
TABREC(12)(1:1)=CHAR(199)
TABREC(12)(40:40)=CHAR(182)
TABREC(17)(1:1)=CHAR(199)
TABREC(17)(40:40)=CHAR(182)
TABREC(22)(1:1)=CHAR(200)
TABREC(22)(40:40)=CHAR(188)
DO 170 J=2,39

268

u
u

u

TABREC(1)(J:J)=CHAR(205)
TABREC(5)(J:J)=CHAR(205)
TABREC(6)(J:J)=CHAR(205)
TABREC(12)(J:J)=CHAR(196)
TABREC(17)(J:J)=CHAR(196)
TABREC(22)(J:J)=CHAR(205)

170 CONTINUE
TABREC(3)(11:30)='Quitting PERTRA2 !!!'
TABREC(8)(3:38)='You may now check your input data in'
DO 180 1=1,8
J=8-(I-1)
IF(FLNAME(J:J).NE.' ')THEN
GO TO 190

ENDIF
180 CONTINUE
190 TABREC(10)(12:(J+21))='File: '//FLNAME(1:J)//'.TSK'

TABREC(14)(4:36)='Task Duration Data may be amended'
TABREC(15)(4:36)='or updated by re-running PERTRA2;'
TABREC(19)(4:36)='The Monte-Carlo simulation may be'
TABREC(20)(4:34)='carried out by running PERTRA3;'

...Draw 'quitting' display; write data to FLNAME on Unit 4

CALL TXTCLR(15,4)
NLTL=1
NCTL=21
DO 200 1=1,5
CALL TMOVETO((NLTL+I-1),NCTL)
IF(I.LT.2.0R.I.GT.4)THEN
CALL OUTEXT(TABREC(I))

ELSE
CALL OUTEXT(TABREC(I)(1:1))
CALL TXTCLR(0,4)
CALL OUTEXT(TABREC(I)(2:39))
CALL TXTCLR(15,4)
CALL OUTEXT(TABREC(I)(40:40))

ENDIF
200 CONTINUE

CALL TXTCLR(0,0)
CALL TMOVETO(24,75)
CALL OUTEXT(' ')
CALL TMOVETO(24,75)
OPEN(UNIT=4,FILE=FLNAME)
WRITE(4,210)NTASK

210 FORMAT(14)
WRITE(4,220)(TTYPE(I),TNAME(I),TWBS(I),TWK(I),SFCODE(I),
&PCODE(I),(TDURN(I,J),J=1,3),1=1,NTASK)

220 FORMAT(IX,A1,IX,A9,IX,A12,312,3F7.2)
CLOSE(4)
CALL TXTCLR(15,1)
DO 230 1=6,22
CALL TMOVETO((NLTL+I),NCTL)
CALL OUTEXT(TABREC(I))

230 CONTINUE
CALL TXTCLR(7,0)

269

n
o

n
CALL TMOVETO((NLTL+2 3),NCTL)
CALL OUTEXT('Program terminated1)

...Exi t rout ine

999 RETURN
END

270

Appendix D.4: Su b ro u t in e FDISPLAY

SUBROUTINE FDISPLAY(JCODE)
C •k&Jrk'k'k'k'k'k'k'k'k'JrJrk'k'k'k'k'k'k'k'k'kirk'k'kicrk'k'k'k'k'jrkick'k'kick'kicirkirjrk'Jc'jrJc'&'k

C * * * *

c** Subroutine FDISPLAY **
c** **
c** Screen display for input of task filtration data **
c** *•*

C

COMMON/FILDAT/CODE(6),POS(6),OPR(6) , S ELECT(6),
&NCHR(6),LOGIC,IFLT,NTEST

c
CHARACTER*1 CHR,I NTCHR
CHARACTER*9 SELECT,BLANK
CHARACTER* 3 8 TABREC(11),TOPREC(7)

c
INTEGER CODE,POS,OPR,NCHR,LOGIC,IFLT,NTES T

C
C...Specify display colours
C
C...Table borders and headings (BRIGHT WHITE)
C

ICLR1-15
C
C...Table background (BLUE)
C

ICLR2=1
C
C...Table text (WHITE)
C

ICLR3=7
C
C...Table location highlight (BROWN)
C

ICLR4=6
C
C...'Backspace' display (RED)
C

ICLR5=4
C
C...Specify 'reverse video' delay
C

NDEL=30
C
C...Initialise display strings
C

TOPREC(l)=>' FILTER
TOPREC(2)='FILTER
TOPREC(3)='FILTER
TOPREC(4)='FILTER
TOPREC(5)='CONTINUE ? YES NO
TOPREC(6)='LOGIC: AND OR

CODE: NAME WBS TYPE QUIT
POSITION: []
OPERAND: EQ NE
SELECTION: [1

271

u
u

u

u
u

u
u

u
u

u
u

u

T0PR EC (7)= 'C 0 CANCEL

...Initialise table strings

DO 20 1=1,11
TABREC(I)(1:1)=CHAR(186)
TABREC(I)(38:38)=CHAR(186)
DO 10 J-2,37
TABREC(I)(J:J) = * '

10 CONTINUE
20 CONTINUE

TABREC(1)(1:1)=CHAR(201)
TABREC(l)(38:38)=CHAR(187)
TABREC(9)(1:1)=CHAR(199)
TABREC(9)(38:38)=CHAR(182)
TABREC(ll)(1:1)=CHAR(200)
TABREC(ll)(38:38)=CHAR(188)
DO 30 1=2,37
TABREC(l)(1:1)=CHAR(205)
TABREC(9)(I:I)=CHAR(196)
TABREC(ll)(I:I)=CHAR(205)

30 CONTINUE
TABREC(l)(17:22)='Filter'
TABREC(2)(3:36)='FILTER CODE POS OPRN SELECTION'
TABREC(10)(15:20)='LOGIC:'
DO 60 1=1,6
TABREC(1+2)(5:5)=INTCHR(I)

60 CONTINUE
BLANK='

...Define text window

CALL SETWIN(1,1,25,80)

...Define position of display

NLTL-6
NCTL=22

...Draw appropriate heading (BLACK on CYAN)

CALL TXTCLR(7,0)
CALL SCLEAR
CALL TXTCLR(0,3)
IF(JCODE.EQ.0)THEN
CALL TMOVETO(1,(NCTL+3))
CALL OUTEXT(' Tasks with INVARIABLE durations ')

ELSE
CALL TMOVETO(1,(NCTL+4))
CALL OUTEXT(' Tasks with VARIABLE durations ')

ENDIF

272

o
n

n
n

on

n
on

n

on

n
n

n

n
o

n

. . .D ra w f i l t r a t i o n t a b l e

CALL TXTCLR(ICLR1,ICLR2)
DO 70 1-1,11
CALL TMOVETO((NLTL+I -1) ,NCTL)
CALL OUTEXT(TABREC(I))

70 CONTINUE

...Write out input line (BRIGHT WHITE on BLACK)

80 NLTOP=NLTL-l
NCTOP=NCTL
DO 160 1-1,6
NLTAB=NLTL+I+1
DO 150 J-1,4
TOPREC(J)(8:8)=INTCHR(I)
CALL TMOVETO(NLTOP,NCTOP)
CALL TXTCLR(15,0)
CALL OUTEXT(TOPREC(J))
IF(J.GT.1)GO TO 100

...CODE display; Highlight first character of options (RED on BLACK)

NCT AB=NCTL+10
NB=4
CALL TXTCLR(4,0)
CALL TMOVETO(NLTOP,(NCTOP+17))
CALL OUTEXT(1N1)
CALL TMOVETO(NLTOP,(NCTOP+2 3))
CALL OUTEXT('W')
CALL TMOVETO(NLTOP,(NCTOP+2 8))
CALL OUTEXT(1T')
CALL TMOVETO(NLTOP,(NCTOP+34))
CALL OUTEXT('Q')

...Highlight table location

CALL TMOVETO(NLTAB,NCTAB)
CALL TXTCLR(0,ICLR4)
CALL OUTEXT(BLANK(1:NB))

...Hide cursor

CALL TXTCLR(0,0)
CALL TMOVETO(25,70)
CALL OUTEXT(' ’)
CALL TMOVETO(25,70)

...Read keyboard input; convert to upper case if required

90 CALL KBREAD(0,CHR)
CALL CHRCNV(CHR)
IF(CHR.EQ.'N')THEN

273

u
u

u
u

u

u
u

u

u
u

u
u

u

u
u

u

...Option is ’NAME'; Define CODE(I);

...Highlight option (BLACK on WHITE); Update table;

CODE(I)=1
CALL TXTCLR(0,7)
DO 92 M=1,NDEL
CALL TMOVETO(NLTOP,(NCTOP+17))
CALL OUTEXT('NAME')

92 CONTINUE
CALL TMOVETO(NLTAB,NCTAB)
CALL TXTCLR(ICLR3,ICLR2)
CALL OUTEXT('NAME')

ELSEIF(CHR.EQ.'W')THEN

...Option is 'WBS'; Define CODE(I);

...Highlight option (BLACK on WHITE); Update table;

CODE(I)=2
CALL TXTCLR(0,7)
DO 94 M-l,NDEL
CALL TMOVETO(NLTOP,(NCTOP+23))
CALL OUTEXT('WBS')

94 CONTINUE
CALL TMOVETO(NLTAB,NCTAB)
CALL TXTCLR(ICLR3,ICLR2)
CALL OUTEXT('WBS ')

ELSEIF(CHR.EQ.'T')THEN

...Option is 'TYPE'; Define CODE(I); Default POSITION is 1

...Highlight option (BLACK on WHITE); Update table;

CODE(I)=3
POS(I)-l
CALL TXTCLR(0,7)
DO 96 M-l,NDEL
CALL TMOVETO(NLTOP,(NCTOP+2 8))
CALL OUTEXT('TYPE')

96 CONTINUE
CALL TMOVETO(NLTAB,NCTAB)
CALL TXTCLR(ICLR3,ICLR2)
CALL OUTEXT('TYPE 1')

ELSEIF(CHR.EQ.'Q')THEN

...Option is 'QUIT1; Highlight option (BLACK on WHITE);

...Move to 'quitting' routine

CALL TXTCLR(0,7)
DO 98 M-l,NDEL
CALL TMOVETO(NLTOP,(NCTOP+34))
CALL OUTEXT('QUIT')

98 CONTINUE
CALL TMOVETO(NLTAB,NCTAB)
CALL TXTCLR(0,ICLR2)
CALL OUTEXT(BLANK(1:4))

274

u
u

u

uu
u

u

u
u

u

u
u

u

u
u

u

GO TO 170
ELSE

...Inappropriate character; try again

CALL SPCHAR(l)
GO TO 90

ENDIF
GO TO 150

100 IF(J.GT.2)GO TO 120
IF(CODE(I).EQ.3)GO TO 150

...POSITION display;

NCTAB-NCTL+17
NB=1

...Highlight table location

CALL TMOVETO(NLTAB,NCTAB)
CALL TXTCLR(0,1CLR4)
CALL OUTEXT(BLANK(1:NB))

...Read data input from keyboard; Update table

CALL TMOVETO(NLTOP,(NCTOP+2 2))
110 CALL KBREAD(0,CHR)

ICHR=ICHAR(CHR)
IF(ICHR.LT.49.OR.ICHR.GT.57)THEN
CALL SPCHAR(l)
GO TO 110

ELSE
CALL OUTEXT(CHR)

ENDIF
POS(I)=ICHR-48
CALL TMOVETO(NLTAB,NCTAB)
CALL TXTCLR(ICLR3,ICLR2)
CALL OUTEXT(CHR)
GO TO 150

120 IF(J.GT.3)GO TO 140

...OPERAND display; Highlight first character

...of options (RED on BLACK)

NCT AB=NCTL+2 2
NB=2
CALL TXTCLR(4,0)
CALL TMOVETO(NLTOP,(NCTOP+2 0))
CALL OUTEXT('E')
CALL TMOVETO(NLTOP,(NCTOP+24))
CALL OUTEXT('N')

275

c
C...Highlight table location
C

CALL TMOVETO(NLTAB,NCTAB)
CALL TXTCLR(0,1CLR4)
CALL OUTEXT(BLANK(1:NB))

C
C...Hide cursor
C

CALL TXTCLR(0,0)
CALL TMOVETO(25,70)
CALL OUTEXT(' ')
CALL TMOVETO(25,70)

C
C...Read keyboard input; convert to upper case if required
C
130 CALL KBREAD(0,CHR)

CALL CHRCNV(CHR)
IF(CHR.EQ.'E')THEN

C
C...Opt ion is ’EQUAL TO'; Define OPR(I);
C...Highlight option (BLACK on WHITE); Update table;
C

OPR(I)=1
CALL TXTCLR(0,7)
DO 132 M-l,NDEL
CALL TMOVETO(NLTOP,(NCTOP+20))
CALL OUTEXT('EQ')

132 CONTINUE
CALL TMOVETO(NLTAB,NCTAB)
CALL TXTCLR(ICLR3,ICLR2)
CALL OUTEXT('EQ')

ELSEIF(CHR.EQ.'N')THEN
C
C...Option is 'NOT EQUAL TO'; Define OPR(I);
C...Highlight option (BLACK on WHITE); Update table;
C

OPR(I)=2
CALL TXTCLR(0,7)
DO 134 M=1, NDEL
CALL TMOVETO(NLTOP,(NCTOP+24))
CALL OUTEXT('NE')

134 CONTINUE
CALL TMOVETO(NLTAB,NCTAB)
CALL TXTCLR(ICLR3,ICLR2)
CALL OUTEXT('NE')

ELSE
C
C...Inappropriate character; try again
C

CALL SPCHAR(l)
CO TO 130

ENDIF
GO TO 150

276

u
u

u
u

u
u

u
u

u

u
u

u

. . .SELECTION d i s p l a y ;

...Highlight table location

140 NCTAB=NCTL+27
NB=9
CALL TMOVETO(NLTAB,NCTAB)
CALL TXTCLR(0,ICLR4)
CALL OUTEXT(BLANK(1:NB))

...Read data input from keyboard; update table

CALL TMOVETO((NLTL+11),NCTL)
CALL TXTCLR(0,ICLR5)
CALL OUTEXT(1 Use BACKSPACE key to erase ')
NCHR(I)=9
CALL CREAD(NLTOP,(NCTOP+2 3),S ELECT(I),NCHR(I))
CALL CHRCNV(SELECT(I))
CALL TMOVETO(NLTAB,NCTAB)
CALL TXTCLR(ICLR3,ICLR2)
NB=NB-NCHR(I)
IF(NB.GT.0)THEN
CALL OUTEXT(SELECT(I)(1:NCHR(I))//BLANK(1:NB))

ELSE
CALL OUTEXT(SELECT(I)(1:NCHR(I)))

ENDIF
CALL TMOVETO((NLTL+11),NCTL)
CALL TXTCLR(7,0)
CALL OUTEXT(' ')

150 CONTINUE
160 CONTINUE

...'Quitting' routine; write CONTINUE display (WHITE on BLACK);

...Highlight first character of options (RED on BLACK)

170 NTEST=I-1
IF(NTEST.LT.2)THEN
LOCIC=l
CO TO 200

ENDIF
CALL TMOVETO(NLTOP,NCTOP)
CALL TXTCLR(15,0)
CALL OUTEXT(TOPREC(5))
CALL TXTCLR(4,0)
CALL TMOVETO(NLTOP,(NCTOP+12))
CALL OUTEXT('Y')
CALL TMOVETO(NLTOP,(NCTOP+17))
CALL OUTEXT('N')

277

u
u

u

u
u

u

u
u

u

u
u

u

u
u

u

u
u

u
u

. . .Hide c u r s o r

CALL TXTCLR(0,0)
CALL TMOVETO(25,70)
CALL OUTEXT(' ')
CALL TMOVETO(25,70)

...Read keyboard input; convert to upper case if required

180 CALL KBREAD(0,CHR)
CALL CHRCNV(CHR)
IF(CHR.EQ.'N')THEN

...Option is 'NO’; highlight option (BLACK on WHITE); Start again

CALL TXTCLR(0,7)
DO 182 M-l,NDEL
CALL TMOVETO(NLTOP,(NCTOP+17))
CALL OUTEXT('NO')

182 CONTINUE
CALL TXTCLR(ICLR3,ICLR2)
DO 183 M-l,NTEST
CALL TMOVETO((NLTL+M+1),(NCTL+8))
CALL OUTEXT(BLANK//BLANK//BLANK)

183 CONTINUE
GO TO 80

ELSEIF(CHR.EQ.'Y')THEN

...Option is 'YES'; highlight option (BLACK on WHITE); Continue

CALL TXTCLR(0,7)
DO 184 M-l,NDEL
CALL TMOVETO(NLTOP,(NCTOP+12))
CALL OUTEXT('YES')

184 CONTINUE
ELSE

...Inappropriate character; try again

CALL SPCHAR(l)
GO TO 180

ENDIF

...Write LOGIC display (WHITE on BLACK);

...Highlight first character of options (RED on BLACK)

NLTAB-NLTL+9
NCTAB-NCTL+21
NB-3
CALL TMOVETO(NLTOP,NCTOP)
CALL TXTCLR(15,0)
CALL OUTEXT(TOPREC(6))
CALL TXTCLR(4,0)
CALL TMOVETO(NLTOP,(NCTOP+8))

278

n
o

o
n

o

o
o

o

o
o

o

n
o

n

n
o

n
CALL OUTEXT('A1)
CALL TMOVETO(NLTOP,(NCTOP+13))
CALL OUTEXT(‘0‘)

...Highlight table location

CALL TMOVETO(NLTAB,NCTAB)
CALL TXTCLR(0,1CLR4)
CALL OUTEXT(BLANK(1:NB))

...Hide cursor

CALL TXTCLR(0,0)
CALL TMOVETO(25,70)
CALL OUTEXT(' ')
CALL TMOVETO(25,70)

...Read keyboard input; convert to upper case if required

190 CALL KBREAD(0,CHR)
CALL CHRCNV(CHR)
IF(CHR.EQ.'A')THEN

...Option is ’AND’; Define LOGIC(I);

...Highlight option (BLACK on WHITE); Update table;

LOCIC=l
CALL TXTCLR(0,7)
DO 192 M=1,NDEL
CALL TMOVETO(NLTOP,(NCTOP+8))
CALL OUTEXT('AND')

192 CONTINUE
CALL TMOVETO(NLTAB,NCTAB)
CALL TXTCLR(ICLR3,ICLR2)
CALL OUTEXT('AND')

ELSEIF(CHR.EQ.'O')THEN

...Option is ’OR'; Define LOGIC(I);

...Highlight option (BLACK on WHITE); Update table;

LOGIC=2
CALL TXTCLR(0,7)
DO 194 M=1,NDEL
CALL TMOVETO(NLTOP,(NCTOP+13))
CALL OUTEXT('OR')

194 CONTINUE
CALL TMOVETO(NLTAB,NCTAB)
CALL TXTCLR(ICLR3,ICLR2)
CALL OUTEXT('OR ')

ELSE

279

uuu
u

u
u

u

uu
u

uuu
u

u
u

. . . I n a p p r o p r i a t e c h a r a c t e r ; t r y a g a i n

CALL SPCHAR(l)
CO TO 190

END IF

...Write GO/CANCEL display (WHITE on BLACK)

...Highlight first character of options (RED on BLACK)

200 CALL TMOVETO(NLTOP,NCTOP)
CALL TXTCLR(15,0)
CALL OUTEXT(TOPREC(7))
CALL TXTCLR(4,0)
CALL TMOVETO(NLTOP,NCTOP)
CALL OUTEXT('G')
CALL TMOVETO(NLTOP,(NCTOP+4))
CALL OUTEXT('C')

...Hide cursor

CALL TXTCLR(0,0)
CALL TMOVETO(25,70)
CALL OUTEXT(' ')
CALL TMOVETO(25,70)

...Read keyboard input; convert to upper case if required

210 CALL KBREAD(0,CHR)
CALL CHRCNV(CHR)
IF(CHR.EQ,'C')THEN

...Option is 'CANCEL'; highlight option (BLACK on WHITE); Start again

CALL TXTCLR(0,7)
DO 212 M=1,NDEL
CALL TMOVETO(NLTOP,(NCTOP+4))
CALL OUTEXT('CANCEL')

212 CONTINUE
CALL TXTCLR(ICLR3,ICLR2)
DO 213 M=1,NTEST
CALL TMOVETO((NLTL+M+1),(NCTL+8))
CALL OUTEXT(BLANK//BLANK//BLANK)

213 CONTINUE
CALL TMOVETO(NLTAB,NCTAB)
CALL OUTEXT(BLANK)
CO TO 80

ELSEIF(CHR.EQ.'G')THEN

280

u
u

u

u
u

u

u
u

u

. . . O p t i o n i s 'GO'; h i g h l i g h t o p t i o n (BLACK on WHITE); Continue

CALL TXTCLR(0,7)
DO 214 M=1,NDEL
CALL TMOVETO(NLTOP,NCTOP)
CALL OUTEXT('GO')

214 CONTINUE
ELSE

...Inappropriate character; try again

CALL SPCHAR(l)
GO TO 210

END IF

...Exit

CALL TXTCLR(7,0)
RETURN
END

281

Appendix D.5: S ub rou t ine FILTER

SUBROUTINE FILTER(NTASK)
C * ' *

C * * **
c** Subroutine FILTER **
C * * **
C * * Filters NTASK tasks for screen display and data input; **
C * * **
C * * Performs a maximum of 6 (NTEST) levels of filtration **
C * * according to specified characteristics (SELECT) of: **
C * * **
c** Task Name (CODE - 1) **
C * * Task WBS (CODE - 2) **
c** Task Type (CODE - 3) **
C * * **
c** Filtration parameters are: LOGIC: 1 for .AND. **
C * * 2 for .OR. **
C * * **
C * * OPR: 1 for .EQ. **
c** 2 for .NE. **
C * * **
C *

C

COMMON/TASKS/TNAME(400),TWBS(400),TTYPE(400),TDURN(400,3),
&TWK(400),SFCODE(400),FTASK(400),PCODE(400),DFACT(2)

COMMON/FILDAT/CODE(6),POS(6),OPR(6),SELECT(6),NCHR(6),
&LOCIC,IFLT,NTEST

C
CHARACTER*1 TTYPE
CHARACTER*9 TNAME,SELECT
CHARACTER*12 TWBS,CVAR,FLNAME

C
REAL TDURN
INTECER FTASK,PCODE,CODE,POS,OPR,NCHR,SFCODE,

&TWK,IFLT.NTEST
C
C...Set counter for filtered task array FTASK
C

IFLT=0
C
C...Carry out filtration
C

DO 90 1=1,NTASK
DO 70 J=l,NTEST

C
C...Define LH operator in equality/non-equality tests
C

Nl=POS(J)
N2=N1+(NCHR(J)-1)
CO TO (10,20,30) CODE(J)

10 CVAR=TNAME(I)
CO TO (50,60) OPR(J)

282

u
u

u

u
u

u

u
u

u

20 CVAR=TWBS(I)
GO TO (50,60) OPR(J)

30 CVAR=TTYPE(I)
GO TO (50,60) OPR(J)

C
C .. .P e r fo rm a p p ro p r ia te t e s t accord ing to va lue o f OPR
C . . . P o s t - t e s t pa th determ ined by va lue o f LOGIC
C
C . . .EQUALITY t e s t
C

50 IF(CVAR(N1: N2). EQ.SELECT(J) (1 : NCHR(J)))GO TO (70,80) LOGIC
GO TO (90,70) LOGIC

. . .NON-EQUALITY t e s t

60 IF(CVAR(N1:N2).NE.SELECT(J)(1 :NCHR(J)))GO TO (70,80) LOGIC
GO TO (90,70) LOGIC

70 CONTINUE
GO TO (80,90) LOGIC

. . .T a s k s a t i s f i e s f i l t r a t i o n c r i t e r i a ; Update f i l t e r e d ta s k array

80 IFLT=IFLT+1
FTASK(IFLT)=I

90 CONTINUE

. . .E x it

RETURN
END

283

Appendix D.6: S ub rou t ine TDISPLAY

SUBROUTINE TDISPLAY(ICODE,JCODE)
C * * * *

c** Subroutine TDISPLAY **
c** **
c** Writes filtered task data to screen in sets of 15 **
c** **
c** ICODE - 0: Satisfactory display of tasks; **
c** ICODE - 1: Unsatisfactory display of tasks; **
c** **
c** JCODE — 0: Display of INVARIABLE duration tasks; **
c** JCODE — 1: Display of VARIABLE duration tasks; **
c** **
C * ”* * '* ' * ' * * * * ' j l r * * * * * * * * * * *

c
COMMON/TASKS/TNAME(4 0 0) ,TWBS(400),TTYPE(400),TDURN(400,3) ,

&TWK(400), SFCODE(400),FTASK(400),PCODE(400),DFACT(2)

COMMON/FILDAT/CODE(6) ,POS(6),OPR(6),SELECT(6),NCHR(6),
&LOGIC,IFLT,NTEST

C
CHARACTER*1 TTYPE, CHR1
CHARACTER*8 CFACT
CHARACTER*9 TNAME, SELECT, FMT
CHARACTER*12 TWBS
CHARACTER*37 TCHAR
CHARACTER*43 TABREC(2 1) ,DBLANK, HEAD

C
REAL TDURN
INTECER FTASK, PCODE, SFCODE, TWK, IFLT, CODE, POS, OPR, NCHR,

&LOGIC,NTEST
C
C . . .S p e c i f y d is p la y co lours
C
C .. .H ead in g (CYAN)
C

ICLR1=3
C
C . . .T a b le borders and headings (BRIGHT WHITE)
C

ICLR2=15
C
C . . .Table background (BLUE)
C

ICLR3=1
C
C . . .T a b le te x t (WHITE)
C

ICLR4=7

284

n
n

n
n

n
o

n

n
n

n
n

n . . . S p e c i f y ' r e v e r s e v ideo ' de lay

NDEL=30

. . . I n i t i a l i s e t a b le s t r i n g s

IF(J CODE. EQ.0)THEN
HEAD=' Tasks with INVARIABLE d u ra t io n s

ELSE
HEAI>=' Tasks with VARIABLE d u ra t io n s

END IF
DO 20 1=1,21

TABREC(I)(1:1)=CHAR(186)
TABREC(I)(43:43)=CHAR(186)
DO 10 J= 2 ,42

TABREC(I) (J : J)=' '
10 CONTINUE
20 CONTINUE

TABREC(1) (1 :1) =CHAR(201)
TABREC(l)(4 3 :43)=CHAR(187)
TABREC(2 1) (1 :1)=CHAR(200)
TABREC(21)(4 3 :43)=CHAR(188)
DO 30 1=2,42

TABREC(l)(I: I)=CHAR(205)
TABREC(21)(I: I)=CHAR(205)

30 CONTINUE
TABREC(l)(1 5 :2 8)= 'F i 1te re d T asks '
TABREC(2)(3 :4 1) = 'NAME TYPE WBS
IF (J CODE.EQ.0)THEN

TABREC(1 8) (1 :1) -CHAR(200)
TABREC(18)(4 3 :43)=CHAR(188)
DO 40 1=2,42

TABREC(18)(1 :1)=CHAR(205)
40 CONTINUE

ELSE
TABREC(18)(1 : 1)=CHAR(199)
TABREC(18)(4 3 :43)=CHAR(182)
DO 50 1=2,42

TABREC(18)(I: I)=CHAR(196)
50 CONTINUE

ENDIF
TABREC(19)(3 :2 9) = 'OPTIMISTIC d u ra t io n f a c t o r : '
TABREC(20)(3 :3 0) = 'PESSIMISTIC d u ra t io n f a c to r :
DBLANK= '

. . .C lea r screen

CALL SETWIN(1,1 ,25 ,80)
CALL SCLEAR

. . .D e f in e ta b le p o s i t io n

NLTL=4
NCTL=19

DURATION'

285

u
u

u

u
u

u

u
u

u

u
u

u

u
u

u

u
u

u

. . . D e f i n e p o s i t i o n o f d i s p l a y s t r i n g s

NLT0P=NLTL-1
NCTOP=NCTL

. . .Draw header

CALL TMOVETO(1,NCTL)
CALL TXTCLR(0 , ICLR1)
CALL OUTEXT(HEAD)

. . .Draw ta s k d is p la y ta b le

CALL TXTCLR(ICLR2, ICLR3)
IREC=18
IF(J CODE. GT. 0) IREC=21
DO 60 1=1,IREC

NL=NLTL+I-1
CALL TMOVETO(NL,NCTL)
CALL OUTEXT(TABREC(I))

60 CONTINUE

. . . S e t te x t window fo r ta s k s c r o l l i n g

NLWT L=NLTL+ 2
NCWTL=NCTL+2
NLWBR=NLWTL+14
NCWBR=NCWTL+3 7
CALL S ETWIN(NLWTL, NCWTL, NLWBR, NCWBR)

. . . S c r o l l f i l t e r e d ta sk s in s e t s o f 15

CALL TXTCLR(ICLR4, ICLR3)
DO 100 1=1,IFLT

K=FTASK(I)

. . .Convert ta s k reco rds to CHARACTER s t r i n g

DO 70 J -1 ,3 7
TCHAR(J: J)= ' '

70 CONTINUE
WRITE(TCHAR,80)TDURN(K,2)

80 FORMAT(31X,F6.2)
TCHAR(1: 9)=TNAME(K)
TCHAR(13: 13)=TTYPE(K)
TCHAR(18: 29)=TWBS(K)
IF (I.EQ.IFLT)THEN

CALL OUTEXT(TCHAR)
GO TO 100

ELSEIF(MOD(I,1 5) .CT.0)THEN

286

n
o

n

n
on

on

n

n
n

n
n

n

o
n

. . . C o n t i n u e u n t i l 15 th r e c o r d

CALL OUTEXT(TCHAR//CHAR(10))
CO TO 100

END IF

. . . 1 5 t h reco rd ; pause, hide c u rs o r , and d i s p la y CONTINUE message;

. . .H ig h l ig h t f i r s t c h a ra c te r o f o p tions (RED on BLACK);

CALL OUTEXT(TCHAR)
CALL SETWIN(1,1 ,25 ,80)
CALL TMOVETO(NLTOP, NCTOP)
CALL TXTCLR(15,0)
CALL OUTEXT('Continue? YES NO')
CALL TXTCLR(4 ,0)
CALL TMOVETO(NLTOP, (NCTOP+11))
CALL OUTEXT(' Y ')
CALL TMOVETO(NLTOP, (NCTOP+16))
CALL OUTEXT('N ')
CALL TXTCLR(0 ,0)
CALL TMOVETO(25,70)
CALL OUTEXT(' ')
CALL TMOVETO(25,70)

. . .Read input from keyboard; Convert to upper case

90 CALL KBREAD(0 ,CHR1)
CALL CHRCNV(CHR1)
IF(CHR1. EQ.' Y*)THEN

. . .O p t io n is CONTINUE; r e s e t window and con tinue s c r o l l i n g ta s k s ;

CALL TXTCLR(0 ,7)
DO 92 M=*l, NDEL

CALL TMOVETO(NLTOP, (NCTOP+11))
CALL OUTEXT('YES')

92 CONTINUE
CALL TXTCLR(7 ,0)
CALL TMOVETO(NLTOP, NCTOP)
CALL OUTEXT(DBLANK)
CALL S ETWIN(NLWTL, NCWTL, NLWBR, NCWBR)
CALL TXTCLR(ICLR4, ICLR3)
CALL TMOVETO(15,38)
CALL OUTEXT(CHAR(10))

ELSEIF(CHR1. EQ.' N')THEN

. . .O p t io n is DISCONTINUE; Set ICODE and e x i t r o u t in e ;

CALL TXTCLR(0 ,7)
DO 94 M=1, NDEL

CALL TMOVETO(NLTOP, (NCTOP+16))
CALL OUTEXT(' NO')

94 CONTINUE
ICODE=l

287

n
on

n

on

n
on

n

o
o

n

n
n

n

GO TO 999
ELSE

. . . I n a p p r o p r i a t e c h a r a c te r ; t r y aga in ;

CALL SPCHAR(l)
GO TO 90

END IF
100 CONTINUE

. . .D i s p l a y concluding message;

. . .H ig h l ig h t f i r s t c h a ra c te r o f o p tio n s (RED on BLACK); Hide cu rso r ;

CALL SETWIN(1,1 ,25 ,80)
CALL TMOVETO(NLTOP, NCTOP)
CALL TXTCLR(15,0)
CALL OUTEXT(' F i I t r a t ion OK? YES NO')
CALL TXTCLR(4 ,0)
CALL TMOVETO(NLTOP, (NCTOP+16))
CALL OUTEXT('Y')
CALL TMOVETO(NLTOP, (NCTOP+21))
CALL OUTEXT('N')
CALL TXTCLR(0 ,0)
CALL TMOVETO(25,70)
CALL OUTEXT(' ')
CALL TMOVETO(25,70)

. . .Read input from keyboard; Convert to upper case

110 CALL KBREAD(0 ,CHR1)
CALL CHRCNV(CHRl)
IF(CHR1.EQ.'N')THEN

. . .O p t io n is NOT OK; Set ICODE and e x i t r o u t in e

CALL TXTCLR(0 ,7)
DO 112 M=1, NDEL

CALL TMOVETO(NLTOP, (NCTOP+21))
CALL OUTEXT('NO')

112 CONTINUE
ICODE=l
GO TO 999

ELSEIF(CHR1.EQ.’Y’)THEN

. . .O p t io n is OK; Set ICODE;

CALL TXTCLR(0 ,7)
DO 114 M=1, NDEL

CALL TMOVETO(NLTOP, (NCTOP+16))
CALL OUTEXT('YES')

114 CONTINUE
ICODE=0

ELSE

2 8 8

o
n

o
n

n

on

n
n

n

. . . I n a p p r o p r i a t e c h a r a c t e r ; t r y a g a in ;

CALL SPCHAR(l)
CO TO 110

END IF

.. .C h eck i f DURATION d is p la y s re q u ire d ; I f n o t , e x i t r o u t in e ;

IF (J CODE. LT.1)THEN
CALL TMOVETO(NLTOP, NCTOP)
CALL TXTCLR(0 ,0)
CALL OUTEXT(DBLANK)
CALL TXTCLR(0 , ICLR1)
CALL TMOVETO((NLTL+18) , (NCTL+4))
CALL OUTEXT(' Tasks w il l be coded acc o rd in g ly ')
CALL TMOVETO((NLTL+19) , (NCTL+4))
CALL TXTCLR(0 ,4)
CALL OUTEXT(' Hit any key to con tinue ')
CALL TXTCLR(0 ,0)
CALL TMOVETO(25,70)
CALL OUTEXT(' ')
CALL TMOVETO(25,70)
CALL KBREAD(0 ,CHR1)
CO TO 999

END IF

. . .D isp lay DURATION s t r in g s and read d a ta from keyboard;

. . .Convert to REAL NUMBER i f input as INTEGER;

120 DO 180 1=1,2
CALL TXTCLR(15,0)
CALL TMOVETO(NLTOP, NCTOP)
CALL OUTEXTC Factor ')
IF (I . EQ.1)THEN
CALL OUTEXTC(0 < f '/ /CH AR(243)// ' 1): ')
IPOS=21

ELSE
CALL OUTEXTC(1 '//CH AR(243)// ' f < 1000): ')
IPOS=24

ENDIF
CALL OUTEXTC [] ')
CALL TXTCLR(0 ,6)
CALL TMOVETO((NLTL+17+I) , (NCTL+31))
CALL OUTEXTC ')

125 NCHAR=8
CALL CREAD(NLTOP, (NCTOP+IPOS),CFACT, NCHAR)
CALL TMOVETO((NLTL+21) , NCTL)
CALL OUTEXT(DBLANK)
FMT='
DO 140 K=l,NCHAR

IF(CFACT(K:K).EQ.' . ')THEN
L=NCHAR-K
WRITE(FMT,130)NCHAR,L

130 FORMATC(F' ,11, ' . ' , 1 1 , ') ')

289

U
U

U

m
U

U
U

U

U
U

U

U
U

READ(CFACT, FMT) DFACT(I)
GO TO 160

END IF
140 CONTINUE

WRITE(FMT,150)NCHAR
150 FORMATC (I 1 , 1 1 , ') ')

READ(CFACT, FMT) IDFACT
DFACT(I) =REAL(IDFACT)

160 WRITE(CFACT,170)DFACT(I)
170 FORMAT(F8.4)

. . .C h eck i f f a c to r w ith in l im i t s

IF (I . EQ. 1 . AND. DFACT(I) . GT. 0 . 0 . AND. DFACT(I) . LE.1 .0) GO TO 17

IF(I . EQ. 2 . AND. DFACT(I) .GT.1 . 0 . AND.DFACT(I) . LE.1000.0)CO TO
175

. . . F a c t o r out o f range; d is p la y e r r o r message and r e - e n t e r

CALL TXTCLR(15,0)
CALL TMOVETO((NLTL+21) , NCTOP)
CALL OUTEXT(' F ac to r out o f range; Try a g a i n ! ! ')
CALL SPCHAR(l)
CALL TMOVETO(NLTOP, (NCTOP+IPOS))
CALL OUTEXTC ')
GO TO 125

. . .D u r a t io n w ith in l im i t s ; update ta b le

175 CALL TMOVETO((NLTL+17+I) , (NCTL+31))
CALL TXTCLR(ICLR4, ICLR3)
CALL OUTEXT(CFACT(1 :8))

180 CONTINUE

.. .C h eck whether input i s s a t i s f a c t o r y

CALL TMOVETO(NLTOP, NCTOP)
CALL TXTCLR(0 ,0)
CALL OUTEXT(DBLANK)
CALL TMOVETO(NLTOP, NCTOP)
CALL TXTCLR(15,0)
CALL OUTEXT('Factors OK? YES NO ')
CALL TXTCLR(4 ,0)
CALL TMOVETO(NLTOP, (NCTOP+13))
CALL OUTEXT('Y')
CALL TMOVETO(NLTOP, (NCTOP+18))
CALL OUTEXT('N')
CALL TXTCLR(0 ,0)
CALL TMOVETO(25,70)
CALL OUTEXTC ')
CALL TMOVETO(25,70)

290

u
u

u

u
u

u

u
u

u

u
u

u

u
u

u

. . .Read input from keyboard; Convert to upper case

190 CALL KBREAD(0 ,CHR1)
CALL CHRCNV(CHRl)
IF(CHR1.EQ.'N')THEN

...Option is NOT OK; Input new durations

CALL TXTCLR(0 ,7)
DO 200 M -l, NDEL

CALL TMOVETO(NLTOP, (NCTOP+18))
CALL OUTEXT('NO')

200 CONTINUE
CALL TXTCLR(ICLR4, ICLR3)
CFACT(1 :8)= '
DO 205 1-1,2

CALL TMOVETO((NLTL+17+I) , (NCTL+31))
CALL OUTEXT(CFACT(1 :8))

205 CONTINUE
CALL TXTCLR(7 ,0)
CALL TMOVETO(NLTOP, NCTOP)
CALL OUTEXT(DBLANK)
CO TO 120

ELSEIF(CHR1.EQ.' Y')THEN

...Option is OK; Exit routine

CALL TXTCLR(0 ,7)
DO 210 M=1, NDEL

CALL TMOVETO(NLTOP, (NCTOP+13))
CALL OUTEXT('YES')

210 CONTINUE
ELSE

...Inappropriate character; try again;

CALL SPCHAR(l)
CO TO 190

END IF

...Exit rout ine

999 CALL TXTCLR(7 ,0)
RETURN
END

291

Appendix D.7: S ub rou t ine CHRCNV

SUBROUTINE CHRCNV(CHRVAR)

C** **
c** Subroutine CHRCNV **
c** **
c** Converts any lower case c h a r a c te r s in CHRVAR to upper case **
C * * * *

C

CHARACTER CHRVAR*(*)
C

NCHR=LEN(CHRVAR)
DO 10 1=1,NCHR

N=ICHAR(CHRVAR(1 :1))
I F (N. GT. 9 6 . AND. N. LT.12 3) THEN

N=N-32
CHRVAR(I: I)=CHAR(N)

END IF
10 CONTINUE

C
C . . .Exit
C

RETURN
END

292

Appendix D.8: F u n c t io n INTCHR

FUNCTION INTCHR(I)

C** ■**
c** Function INTCHR **
c** **
c** Converts a s in g le d i g i t NUMERIC INTEGER (I) **
c** in to an ASCII CHARACTER **
c** **

C

CHARACTER*1 INTCHR
c

IF(I . LT.1 0)THEN
N-I+48
INTCHR=CHAR(N)

END IF
RETURN
END

293

Appendix D.9: S u b ro u t in e CREAD

SUBROUTINE CREAD(NL,NC,CHRVAR,NCHR)
C * 1*

C * * * *

c** Subroutine CREAD **
c** **
c** Reads a character variable CHRVAR, of maximum length **
c** NCHR characters, from the keyboard at screen **
c** position NL,NC. **
c** **
c** Returns the actual number of characters NCHR in the **
c** variable. **
c** **
c** Uses 'C' subroutines. **
c** **

C

CHARACTER CHRVAR*(*)
CHARACTER*1 CHR

C
CALL TXTCLR(7,0)

C
C . . .Move c u r s o r t o r e q u i r e d p o s i t i o n
C

CALL TMOVETO(NL,NC)
1=1

10 IF(I.CT.NCHR)GO TO 30
IC=NC+I-1

C
C . . . R e a d i n p u t c h a r a c t e r (n o e c h o)
C
20 CALL KBREAD(0,CHR)

J=ICHAR(CHR)
IF(J.EQ.13)THEN

C
C . . . C h a r a c t e r i s CARRIAGE RETURN;
C . . . D e t e r m i n e l e n g t h o f c h a r a c t e r v a r i a b l e ; E x i t r o u t i n e ;
C

N=IC-NC
GO TO 50

ELSEIF(J.EQ.8)THEN
C
C . . . C h a r a c t e r i s BACKSPACE; D e l e t e p r e c e d i n g c h a r a c t e r ;
C . . . P r o t e c t a g a i n s t o v e r - d e l e t i o n
C

IC=IC-1
1 = 1 - 1

IF(I.GT.0)GO TO 25
1 = 1 + 1

IC=I+1
CALL SPCHAR(l)
GO TO 20

2 5 CALL TMOVETO(NL,IC)

294

u
u

u

u
u

u

u
u

u

u
u

u

CALL OUTEXTC ')
CALL TMOVETO(NL,IC)
GO TO 20

E L S E I F (J . E Q . 3 2) THEN

. . . C h a r a c t e r i s SPACE; I g n o r e

CALL SPCHAR(l)
GO TO 20

ELSE

. . . C h a r a c t e r i s a c c e p t a b l e ; U p d a t e c h a r a c t e r v a r i a b l e and c o n t i n u e

N - (I C - N C) + 1
CHRVAR(N : N)=CHR
CALL OUTEXT(CHR)

END IF
1 = 1+1
GO TO 10

. . . H i d e c u r s o r

30 CALL TXTCLR(0 , 0)
CALL TMOVETO(2 5 , 7 0)
CALL OUTEXTC ')
CALL TMOVETO(25, 7 0)

4 0 CALL KBREAD(0, CHR)
J=ICHAR(CHR)
I F (J .E Q .1 3)T H E N

GO TO 50
E L S E I F (J . EQ .8) THEN

CALL TXTCLR(7 , 0)
CALL TMOVETO(NL, IC)
CALL OUTEXTC ')
CALL TMOVETO(NL,IC)
I=NCHR
GO TO 10

ELSE
CALL SPCHAR(l)
GO TO 40

END IF

. . . E x i t

50 NCHR=N
RETURN
END

Appendix E: Sample of the Updated Task Data Written to the File

FLNAME.T3K

274 (Number of tasks in the project)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

T CLEAR1 GN-CLEAR 5 1 1 1 . 0 0 2 . 0 0 4 . 0 0

T CLEAR2 GN-CLEAR 5 1 1 2 . 5 0 5 . 0 0 1 0 . 0 0

H CMPRESS CN-CMPRESS 5 1 0 0 . 0 0 1 3 6 . 0 0 0 . 0 0

T CPC1CO PR-CONC 5 1 1 5 . 0 0 1 . 0 0 2 0 . 0 0

T CPC1D1 PR-DELAY 7 1 0 0 . 0 0 1 . 0 0 0 . 0 0

Defintion of Columns are:

(1): Task Type.

(2): Task Name.

(3): Task Work Breakdown Structure.

(4): Number of Working Days/Week.

(5): Task Code (Start, Finish or Normal Task).

(6): Variable/Invariable duration Task Codes (1= Invariable; 0= Variable)

(7): Optimistic Duration (Days).

(8): Most Likely Duration (Days).

(9): Pessimistic Durations (Days).

296

Appendix F: Program PERTRA3 and S u b ro u t in e s

Appendix F.l: Program PERTRA3

C * ,* ,,s l r ' * * * * ,* ,,*-*"5>r

C * * * *

c** Program PERTRA3.FOR **
c** **
c** Reads selected data from the files generated by the **
c** programs PERTRA1.FOR; PERTRA2.FOR and perform **
c** RISK ANALYSIS CALCULATIONS (Monte—Carlo simulation) **
c** **
C * ’* * * * * * * * * ' * * * * *

C

COMMON/FREQU1/ PCFREQ(IOO).PRBMPT(IOO), I P B A N D (I O O) ,P F R E Q (1 0 0) ,
&RCPWPD(100)

COMMON/FREQU2/CFREQ(1 0 0) ,BANMPT(100) , I BAND (1 0 0) , FREQ (1 0 0) ,
&ROPWRR(100)

COMMON/FREQU3/CCFREQ(1 0 0) ,CABMPT(100) , ICBAND(IOO) .CAFREQ(IOO) ,
&ROPWCAP(1 0 0)

COMMON/PDIST/DLIM(4 0 0 , 2) , FMODE(4 0 0)
COMMON/STATS/M INPDU, MAXPDU, PRMEAN, PSKEW, MED I AN, PROS IC
COMMON / S T AT 2 /RRMIN, RRMAX, RRMEAN, RRSKEW, RRMEDN, RRSIC
COMMON/STAT3/CAPMIN, CAPMAX, CAMEAN, CSKEW, CMEDI AN, CAPS IC
COMMON/PDCOST/DCOSTS(5 0 0 , 9) , COSPAY(5 0 0 , 9) , COSDLY(500 , 9) ,

&IDDA TE(500) ,M ACDAY(50) ,TO TCO S(500) ,AC TOT C(500) ,AC CTP R(500) ,
&CAPTIM(1000) , RATERN(IOOO)

COMMON/TASKS/TTYPE(4 0 0) ,TNAME(400) , TDURN(400 , 3) ,SFCODE(400) ,
&TWK(400) , TCOST(4 0 0 , 9) , TWBS(4 0 0) ,P C C O D E (4 00) , IDURN(400)

COMMON/LINKS/LFROM(500, 2) , L T O (5 0 0 , 2) , L T Y P E (5 0 0 , 2) , LDURN(5 0 0 , 2)
COMMON/FINSTA/ISTART(4 0 0) , I F I N I S H (4 0 0) , NDAYOW(IOOO)
COMMON/HEADS/PHEAD(3)
COMMON/COSTS/CCODE(9) , C P A Y (9) , CARR(9) ,CARRQ(9)
COMMON/CDATES/IDAYSD(400, 4) , MODATE(400, 4) , IY DATE(400, 4)
COMMON/DAYNOS/ IESDNO(4 0 0) , IESDOW(400) , I D U R N 2 (4 0 0) , L F D N O (4 0 0) ,

&LFDOW(400), IDURN3(4 0 0) , ILDURN(500, 2) , I C R I T (4 0 0) , A C R I T (4 0 0) ,
& IP R D R N (1000) , I E F D N O (4 00) , IEFDOW(400) ,LSDNO(400) ,LSDOW(400)

COMMON/STAFIN/NSTART, NFINISH,IPSDNO,IPFDNO,IPSDOW,NLINK,NTASK
c

CHARACTER*1 TTYPE, RCCODE, CPAY, CARR
CHARACTER*3 PSMOTH, CCODE, MODATE, PFMOTH
CHARACTER*8 PNAME
CHARACTER*9 TNAME
CHARACTER*12 FLNAME, TWBS
CHARACT ER* 3 0 PHEAD

c
REAL TDURN, LDURN, TCOST, MEDIAN, ACRIT
INTECER SFCODE, TWK, PCCODE, PVER, CARRQ, LFROM, LTO, LTYPE, ICRIT, N

297

c
c...Input data from terminal
c

WRITE(6,10)
10 FORMAT(/////,3OX,'PROGRAM PERTRA3.FOR',//,9X,'Reads selected data

&from the files generated by P r o g r a m s 9 x P E R T R A 1 .FOR ; PERTRA2.
&FOR and perform Risk Analysis calculations')

20 WRITE(6,30)
30 FORMAT(///,' Select the type of random generation

&/,1 (R) for a Repetable OR (N) for a non-repetable ',\)
READ(5,40)RGCODE

40 FORMAT(Al)
c
c...Check random generation code
c

IF(RGCODE.EQ.'R'.OR.RGCODE.EQ.'r'.OR.RGCODE.EQ.'N'.OR.RGCODE.EQ.'n
&')G0T055
WRITE(6,50)RGCODE

50 FORMAT(//, ' CODE WERE WRITING AS (\A1,')',/,’ UNIDINTIFIED CODE
&',/,' TRY AGAIN')
GOTO20

c
c...Input number of runs
c
55 WRITE(6,60)
60 FORMAT(///,' Number of runs required ?? ' ,\)

READ(5,70)NRUNS
70 FORMAT(14)

c
c...Read FLNAME from file: FILES.PRT on unit 4
c

OPEN(UNIT=4,FILE='PERTRA.FLS')
WRITE(6,80)

80 FORMAT(//,' Reading Project Name ')
READ(4,90)FLNAME

90 FORMAT(A8)
CLOSE(4)

c
c...De f i ne GENERAL dat a file
c

FLNAME(9:12)='.GEN'
c
c . . .O p e n GENERAL d a ta f i l e on u n i t 4 and read the d a ta .

OPEN(UNIT=4, FILE=FLNAME)
WRITE(6,1 0 0) FLNAME

10 0 FORMAT(/ / / , ' R e a d i n g GENERAL d a t a fr om f i l e ' , A12)
READ(4 , 1 1 0) PNAME, PVER

1 1 0 FORMAT(A8, I X , 12)
READ(4 , 1 2 0) (PHEAD(I) , 1 = 1 , 3)

1 2 0 FORMAT(A30)
REA D(4 ,1 3 0) I PSDAY,PSMOTH,IPSYR

1 3 0 FORMAT(12 , I X , A 3 , I X , 12)
CL0SE(4)

298

c...Adjust Project Start Year for day numbers calculations
c

IPSYR=IPSYR+1900
c
c...Define TASKS data file
c

FLNAME(9:12)='.TSK'
c
c...Open TASKS data file on unit 4 and read the data
c

OPEN(UNIT=4,FILE=FLNAME)
WRITE(6,140)FLNAME

140 FORMAT(///,' Reading TASKA data from file ',A12)
READ(4,*)NTASK
READ(4,150)(TTYPE(I),TNAME(I),TWBS(I),TWK(I),SFCODE(I),PCCODE(I),
&(TDURN(I,J),J-1,3),1=1,NTASK)

150 FORMAT(IX,A1,IX,A9,IX,A12,312,3F7.2)
CLOSE(4)

c
c...Define LINKS data file
c

FLNAME(9:12)='.LNK1
c
c...Open LINKS file on unit 4 and read the data.
c

OPEN(UNIT=4,FILE=FLNAME)
WRITE(6,160)FLNAME

160 FORMAT(///,' Reading LINKS data from file ',A12)
READ(4,*)NLINK
READ(4,170)((LFROM(I,J),LTO(I, J) ,LTYPE(I,J),LDURN(I,J),J=1,2),1=1,

&NLINK)
170 FORMAT(2(314,F7.2))

CLOSE(4)
c
c...Define COSTS data file
c

FLNAME(9:12)='.CST'
c
c...Open Ccosts file on unit 4 and read data.
c

OPEN(UNIT=4,FILE=FLNAME)
WRITE(6,180)FLNAME

180 FORMAT(///,' Reading COSTS data from file * ,A12)
READ(4,190)(CCODE(I),CPAY(I),CARR(I),CARRQ(I),1=1,9)
READ(4,200)((TCOST(I,J),J=1,9),1=1,NTASK)

190 FORMAT(A3,IX,Al,IX,Al,14)
200 FORMAT(9F10.2)

CLOSE(4)
c
c...Initi1ise Criticality Indix
c

D0210,1=1,NTASK
ICRIT(I)=0

210 CONTINUE

299

c
c...Set run without probability analysis to run
c...number one (Using Most Likely Task Duration)
c

N=1
c
c...Change tasks duration to Integers
c

D0220,1=1,NTASK
IDURN(I)=INT(TDURN(I,2))
IF(TDURN(I ,2) . GT . AI NT (TDURN (I , 2))) I DURN (I) = I DURN (I) +1

220 CONTINUE

c
c... Calculate project start day number
c

CALL CALEND(1, IPSDAY,PSMOTH,IPSYR,IPSDNO)
c
c...Calculate Project Start Day of the Week Number
c

I PSDOW-1DOTW(IPSDNO)
c
c...Check that the starting date of the project
c...is not a weekend and adjust if so
c

I F (IPSDOW. EQ. 7) THEN
c
c...Adjust if it is Sunday
c

IPSDNO=IPSDNOfl
IPSDOW=l

ELSEIF(IPSDOW.EQ.6)THEN
c
c...A d j u s t i f i t is S a tu r d a y
c

IPSDNO-IPSDNO+2
IPSD0W=1

ENDIF
c
c...Perform network Time analysis
c

WRITE(6,230)
230 FORMAT(/ / / ' P e r f o r m i n g n e t w o r k TIME ANALYSIS ')

CALL ANALYS(N)
c
c...Change Project Finish Day Number to Calendar Date
c

CALL CALEND(2,1PFDAY, PFMOTH, IPFYR, IPFDNO)
c
c...Distribute the costs on the project days,
c... calculate IRR and CAPTIM...............
c

WRITE(6,250)
250 FORMAT(///,' Performing network COST ANALYSIS *)

CALL PCOSTS(NSTART,NTASK,ICDAYS,N)

300

c...Quit the program if so desired; Otherwise continue
c

0PEN(UNIT=4,FILE='PERTRA3.RES')
WRITE(4,251)I PSDAY,PSMOTH,IPSYR
WRITE(4,252)IPFDAY,PFMOTH,IPFYR
WRITE(4,255)IPRDRN(N)
WRITE(4,253)CAPTIM(N)
WRITE(4,254)RATERN(N)

251 FORMAT(//,IX,'PROJECT START DATE: ' ,12,'/' ,A3,'/' ,14)
252 FORMAT(//,IX,'PROJECT FINISH DATE: ' ,I 2,'/' ,A3,'/' ,14)
253 FORMAT(//,IX,'Negative CAPTIM = ',F10.2,' .Day')
254 FORMAT(//,IX,'Internal Rate of Return (IRR) -',fl0.2,' %',//)
255 FORMAT(//,lx,'Project Duration =' ,16,2X,'Days')

CLOSE(4)
IF(NRUNS.EQ.1)G0T0900
WRITE(6,260)

260 FORMAT(///,' Calculating Triangular distribution parameters')
DO270,1=1,NTASK

c
c...Ignore Milestones and Hammock tasks
c

IF(PCCODE(I).EQ.0.OR.TTYPE(I).EQ.'H')COTO270
c
c... Calculate Triangular distribution Parameters,
c

CALL TRIDIS(I)
270 CONTINUE

c
c...Perform the required number of runs, taking into account run no. one
c

DO400,N=2,NRUNS
WRITE(6,280)N

280 FORMAT(///,' Performing run number:',14)
c
c... Calculate the seed for a repetable random generation
c

IF(RGCODE.EQ.'R'.OR.RGCODE.EQ.'r')THEN
SEED=129600.0

ELSE
c
c...Calculate the seed for non-repetable random generation
c

CALL GETTIM(IHR,IMIN,I SEC,I HUN)
SEED=REAL(IHUN*2592+1296)

END IF
c
c...Ignoring Milestones and Hammock tasks
c

DO290,1=1,NTASK
IF(PCCODE(I).EQ.0.OR.TTYPE(I).EQ.'H')GOTO290

301

c
c...Randomly select (INTEGER) Tasks durations
c

CALL DSELECT(I,SEED)
290 CONTINUE

c
c...Perform network time analysis for the selecte durations
c

CALL ANALYS(N)
c
c...Distribute the costs on the project days,
c... calculate IRR and CATIM................
c

CALL PCOSTS(NSTART,NTASK,ICDAYS,N)
400 CONTINUE
c
c...Change criticality index int percentages
c

DO410,1=1,NTASK
ACRIT(I)=FLOAT(ICRIT(I))/FLOAT(NRUNS)*100.0

410 CONTINUE
c
c...Write Screen Message
c

WRITE(6,500)
500 FORMAT(///,l x , 1 Performing Statistical Analysis on t h e R e s u l t s ')

c
c...Sort project durations into rank order
c

CALL PSORT(NRUNS)
c
c... Calculate minimum,maximum,mean,median project durations an d s k e w n e e s
c

CALL PRSTAT(NRUNS)
c
c...Divide the project durations into bands and calculate frequency
c

CALL FREQUA(NRUNS,NBANDS)
c
c...Sort IRR and CAPTIM into rank order
c

CALL RRSORT(NRUNS)
c
c... Calculate minimum,maximum,mean,median IRR and skewnees
c

CALL RRSTAT(NRUNS)
c
c... Calculate number of bands and frequency for the sorted IRR
c

CALL FRQIRR(NRUNS,INBAND)
c
c... Calculate minimum,maximum,mean,median CAPTIM and skewnees
c

CALL CASTAT(NRUNS)
c

302

c... Calculate number of bands and frequency for the sorted CAPTIM
c

CALL FRQCAP(NRUNS,ICNBAND)
c
c...Write the results into the file PERTRA3.RES
c

WRITE(6,600)
600 FORMAT(///,IX,'Writing Data to the File PERTRA3.RES',///)

0PEN(UNIT=3,FILE='PERTRA3.RES')
WRITE(3,700)NRUNS

700 FORMAT(//,' Number of runs =',14)
WRITE(3,710)

710 FORMAT(//,2X,'TASK',3X,'TASK',6X,'TASK',3X,'OPTIMISTIC',2X,'MOST L
&IKELY' ,2X, 'PESSIMISTIC' ,2X,'CRITICALITY' ,/,lX,'NUMBER' ,2X,’NAME’ ,6
6cX,'TYPE' ,4X,'DURATION' ,4X,'DURATION' ,5X,'DURATION' ,5X,'INDEX (%) 1)
WRITE(3,720)(I,TNAME(I),TTYPE(I),TDURN(I,1),TDURN(I,2),TDURN(I,3),
&ACRIT(I),1-1,NTASK)

720 FORMAT(2X,I 3,4X,A8,3X,Al,7X,F6.2,6X,F6.2,7X,F6.2,7X,F6.2)
WRITE(3,725)

725 FORMAT(///,IX,'1. PROJECT DURATIONS')
WRITE(3,730)MINPDU,MAXPDU,PRMEAN,MEDIAN,PROS IC,PSKEW

730 FORMAT(//,' Minimum project duration = ',14,4X,'DAYS',/,' Maximum p
&roject duration =',14,4X,'DAYS',/,' Mean Project duration =',F7
6c. 2, IX,'DAYS' ,/,' Median project durat ion =' ,F7.2,IX,'D A Y S S
&tandard Deviation =',F7.2,IX,'DAYS’,/,' Skewness =',F7.4,//)
WRITE(3,740)

740 FORMAT(/,5X,'MIDPOINT' ,5X,'FREQUENCY' ,3X,'CUM. FREQUENCY’ ,8X,’f(x)
&’ , /)
WRITE(3,750)(PRBMPT(I),PFREQ(I),PCFREQ(I),RCPWPD(I),1=1,(NBANDS-1)

&)
750 FORMAT(5X,F7.2,5X,F7.2,8X,F7.2,10X,F7.2)

WRITE(3,760)
760 FORMAT(///,1X,'2. INTERNAL RATE OF RETURN (IRR)')

WR I TE(3,770)RRMIN,RRMAX,RRMEAN,RRMEDN,RRSIC,RRSKEW
770 FORMAT(//,' Minimum IRR =',F12.3,IX,'%',/,' Maximum IRR =',F12.3,1

& X , M e a n IRR =',F12.3,I X , ' Median IRR =',F12.3,IX,
6c'%',//,' IRR Standard Deviation =',F12.5,I X , ' Skewness =',F9
&.5,///)
WRITE(3,740)
WRITE(3,780)(BANMPT(I),FREQ(I),CFREQ(I),ROPWRR(I),1=1,(INBAND-1))

780 FORMAT(2X,FI0.2,5X,F7.2,8X,F7.2,11X,F7.2)
WRITE(3,781)

781 FORMAT(//,IX,'3. Negative CAPTIM')
WR ITE(3,7 8 2)CAPMIN,CAPMAX,CAMEAN,CMEDIAN,CAPS IG,CSKEW

782 FORMAT(//,' Minimum CAPTIM =',F15.2,IX,'.DAY ',/,' Maximum CAPTI
6cM =' , F15 . 2 , IX, ' . DAY ',/,' Mean CAPTIM =' , F15 . 2 , IX, ' . DAY ' ,
6c/,' Median CAPTIM =' , F15 . 2 , IX, ' . DAY ',//,' CAPTIM Standard Devi
6cat ion =' , F12 . 2 , IX, ' . DAY ',/,' Skewness =', F9 . 5 ,//)
WRITE(3,740)
WRITE(3,785)(CABMPT(I),CAFREQ(I),CCFREQ(I),ROPWCAP(I),1=1,(ICNBAND
6c-l))

785 FORMAT(2X,FI5.2,2X,F7.2,8X,F7.2,11X,F7.2)
CLOSE(3)

900 STOP
END

303

Appendix F .2 S ub rou t ine CALEND

SUBROUTINE CALEND(ICODE,IDAY,MONTH,IYEAR,IDAYNO)

C * “* * *

c** Subroutine CALEND **
c** ICODE-1; Changes Project Start Date into Day Number **
c** ICODE-2; Changes Project Finish Day Number into **
c** Calendar Date **
c * * * *

C

CHARACTER*3 MONTH
c

PARAMETER(A=365.25,B=30.6001,C-122.1)
c
c...Check ICODE and perform Calculation Accordingly
c

IF(ICODE.EQ.1)THEN
c
c...Change the Month from Character Format to Integer
c

IF(MONTH.EQ.'JAN1)THEN
IMONTH-1

ELSEIF(MONTH.EQ.'FEB')THEN
IMONTH=2

ELSEIF(MONTH.EQ.'MAR')THEN
IMONTH-3

ELSEIF(MONTH.EQ.'APR')THEN
IMONTH—4

ELSEIF(MONTH.EQ.'MAY')THEN
IMONTH-5

ELSEIF(MONTH.EQ.'JUN')THEN
IMONTH-6

ELSEIF(MONTH.EQ.’JUL')THEN
IMONTH-7

ELSEIF(MONTH.EQ.'AUG')THEN
IMONTH-8

ELSEIF(MONTH.EQ.'SEP')THEN
IMONTH-9

ELSEIF(MONTH.EQ.'OCT*)THEN
IMONTH-10

ELSEIF(MONTH.EQ.'NOV')THEN
IMONTH-11

ELSEIF(MONTH.EQ.'DEC')THEN
IMONTH-12

ENDIF

304

c
c... Calculate the Day Number
c

IF(IMONTH.CE.1.AND.IMONTH.LE.2)THEN
IYEAR1=IYEAR-1
IMONTHl=IMONTH+13

ELSE
IYEAR1=IYEAR
IMONTHl=IMONTH+1

ENDIF
IDAYNO=I NT(A*IYEAR1) +1 NT(B*IMONTH1) +1 DAY

c
c...ICODE is G.T. One; Changing from Day Number to Date is Required
c

ELSE
c
c... Calculate the approximate year and month
c

IYEAR2=INT((IDAYNO-C)/A)
IMTH2=INT((IDAYNO-1 NT(A*IYEAR2))/B)

c
c...Calculate the exact day of the date
c

IDAY=IDAYNO-1 NT(A*IYEAR2)-1NT(B*IMTH2)
c
c...Calculate the exact month of the date
c

IF(IMTH2.LT.14)THEN
IMONTH—IMTH2-1

ELSE
IMONTH—IMTH2-13

ENDIF
c
c... Calculate the exact year
c

IF(IMONTH.LE.2)THEN
IYEAR=IYEAR2+1

ELSE
IYEAR=IYEAR2

ENDIF

305

c
c . . . Change the month from number to name
c

IF(IMONTH.EQ.1)THEN
MONTH-'J AN'

ELSEIF(IMONTH.EQ.2)THEN
MONTH='FEB'

ELSEIF(IMONTH.EQ.3)THEN
MONTH='MAR1

ELSEIF(IMONTH.EQ.4)THEN
MONTH='APR1

ELS EIF(IMONTH.EQ.5)THEN
MONTH-'MAY'

ELSEIF(IMONTH.EQ.6)THEN
MONTH='JUN'

ELSEIF(IMONTH.EQ.7)THEN
MONTH='JUL'

ELSEIF(IMONTH.EQ.8)THEN
MONTH='AUG'

ELS EIF(IMONTH.EQ.9)THEN
MONTH—'SEP'

ELSEIF(IMONTH.EQ.10)THEN
MONTH-’OCT'

ELSEIF(IMONTH.EQ.11)THEN
MONTH-'NOV'

ELS EIF(IMONTH.EQ.12)THEN
MONTH-'DEC'

ENDIF
ENDIF
RETURN
END

Appendix F .3 : Function IDOTW

INTEGER FUNCTION IDOTW(IDAYNO)
C'k-k-^c-k -̂Jck-Jck-k'fc'k-k-k-k'k '̂fc'k'kic'k'k'k'k'k'k'k'k'k'k'k'kic'k'k-k- f̂k'k'k'k '̂kik-k'k'k-k t̂'k-Jc'kick-k-kic
C** **
C** FUNCTION RETURNS THE DAY OF THE WEEK NUMBER **
C** FROM THE DAY NUMBER **
C** **
C** IDAYNO - DATE DAY NUMBER **
C** IDOTW - DATE DAY OF THE WEEK NUMBER **
C * * * *

C
M—IDAYNO+5
IDOTW—MOD(M,7)
IF(IDOTW.EQ.O)IDOTW—7
RETURN
END

306

Appendix F .4 : S u b ro u t in e ANALYS

SUBROUTINE ANALYS(N)
C k

c** **
C * * SUBROUTINE ANALYS **
C * * **
C * * Performs forward pass to determine tasks Earliest Start **
c** day numbers (IESDNO) , Earliest Start day of the week **
C * * numbers (IESDOW), Earliest finish day numbers (IEFDNO) **
C * * and Earliest Finish day of the week numbers (IEFDOW) **
C * * **
C * * Performs backward pass to calculate Latest Finish day **
C * * numbers (LFDNO), Latest finish day of the week number **
c** (LFDOW), Latest Start day number (LSDNO) and latest **
c** start day of the week numbers (LSDOW) **
c** **
C * * Calculate Hammock tasks durations and Identify kk
C * * Crit ical tasks in the network (ICRIT) **
c** **
C * * NSTART - Number of the first task in the network **
c** NFINISH - Number of the last task in the network **
C * * IPSDNO - Project start day number **
c** IPSDOW - Project start day of the week number **
C * * NLINK Number of links **
C * * NTASK Number of tasks •kk
C * * N Run number kk
C * * kk

C

COMMON/TASKS/TTYPE(4 0 0) ,TNAME(400), TDURN(400, 3) ,SFCODE(400),
&TWK(400), TCOST(4 0 0 ,9) ,TWBS(400),PCCODE(400), IDURN(400)

COMMON/LINKS/LFROM(500, 2) ,LTO(500,2), LTYPE(500, 2) , LDURN(500,2)
COMMON/DAYNOS/ IESDNO(4 0 0) , IESDOW(400), IDURN2(400),LFDNO(400),

&LFDOW(400), IDURN3(4 0 0) , ILDURN(500, 2) , ICRIT(400),ACRIT(400),
&IPRDRN(1000), IEFDNO(400), IEFDOW(400),LSDNO(400),LSDOW(400)

COMMON/STAFIN/NSTART, NFINISH,IPSDNO,IPFDNO,IPSDOW,NLINK,NTASK
CHARACTER*1 TTYPE
CHARACTERS TNAME
CHARACTER*12 TWBS

c
REAL LDURN
INTECER S FCODE,TWK, PCCODE

c
c . . . I n i t i a l i s e p ro je c t f i n i s h day number (IPFDNO)
c

IPFDNO=0
c
c . . . S e a r c h for START ta s k number (NSTART)
c

DO10,1=1,NTASK
IF(SFCODE(I) . EQ.0)NSTART=I

10 CONTINUE

307

c
c...Assign, project start, day number (IPSDNO) and day of
c. ..the week number (IPSDOW) to tasks (IESDNO),(IEFDNO) and
c...(IESDOW), (IEFDOW) respectively
c

D020,1=1,NTASK
IESDNO(I)=IPSDNO
IEFDNO(I)=IPSDNO
IESDOW(I)=IPSDOW
IEFDOW(I)=IPSDOW

20 CONTINUE
c
c...Set the number of non-working days
c...(IDURN2) for the start task to zero
c

IDURN2(NSTART)=0
c
c...Initialise repeating loop counter
c
30 K=0

c
c...Carry out forward pass to determine tasks
c...(IESDNO), (IESDOW) and (IEFDNO), (IEFDOW)
c

D050,1=1,NLINK
IFROM=LFROM(1,1)
ITO=LTO(1,1)

c
c...Ignore Hammock tasks
c

IF(TTYPE(I FROM).EQ. 'H' .OR.TTYPE(ITO).EQ.'H')COTO50
c
c...Identify the forward pass for later use
c

M=1
c
c... Calculate the absolute Integer link durations
c

ILDURN(I,1)=LINKDN(I,M,IFROM)
c
c...For (F-S) link type
c

IF(LTYPE(I,1).EQ.1)THEN
c
c...Find out the addition days, 0 or 1 (Because of using day numbers)
c

IADD=SFCODE(I FROM)
c
c... Calculate the, temporary, early start day number
c...(ITIME) and early start day of the week number (ITEMP)
c

ITIME=IEFDNO(IFROM)+IADD
ITEMP=IDOTW(ITIME)

308

c...Using the Function (ISADED), Calculate
c...the additional non working days
c

ISADD=ISADED(ITO,ITEMP)
c
c...Find out the early start day of the week number of the link duration
c

IESLD=ITIME+ISADD
IDOWL=IDOTW(IESLD)

c
c... Calculate the additional non working days to the link duration
c

ILADD=(I NT((ILDURN(I,1) +1DOWL-2)/TWK(I FROM)))*(7-TWK(I FROM))
c
c...Recalculate (ITIME), (ITEMP)
c

ITIME=IESLD+ILDURN(I,1)+ILADD
ITEMP=IDOTW(ITIME)

c
c... Calculate the additional number of non-working days
c

ISADD=ISADED(ITO,ITEMP)
c
c...Adjust (ITIME)
c

ITIME-ITIME+ISADD
c
c...For (S-S) link type
c

ELSEIF(LTYPE(I,1).EQ.2)THEN
c
c...Calculate the additional number of
c... non-working days to the link duration
c

ILADD= (INT((ILDURN(I,l) + IESDOW(IFROM)-2)/TWK(IFROM)))*(7-TWK(
&IFROM))

c
c...Calculate (ITIME), (ITEMP)
c

ITIME=IES DNO(IFROM) +1LDURN(I,1) + ILADD
ITEMP=IDOTW(ITIME)

c
c...Calculate the additional number of non-working days
c

ISADD=ISADED(ITO,ITEMP)
c
c...Adjust (ITIME)
c

ITIME=ITIME+ISADD
c
c...For (F-F) or (S-F) link types
c

ELSE

309

c
c...No calculation for these type of links
c

ITIME*=IESDNO(ITO)
ENDIF

c
c...Compare (ITIME) with succeeding task (IESDNO) and divert the program
c

IF(ITIME.LE.IESDNO(ITO))GOT040
c
c...Update the repeating loop counter
c

K=K+1
c
c...Assign ITIME to the succeeding task (IESDNO)
c

IESDNO(ITO)=ITIME
c
c...Update project finish day number (IPFDNO)
c

IF(ITIME.CT.IPFDNO)IPFDNO=ITIME

c
c...Calculate the early start day of the week number (IESDOW)
c... and the non working days (IDURN2) for the succeeding task
c

IESDOW(ITO)=IDOTW(ITIME)
IDURN2(ITO)=(INT((IDURN(ITO)+IESDOW(ITO)-2)/TWK(ITO)))*(7-TWK(IT

&0))
c
c...For each type of link, calculate tasks (IEFDNO),(IEFDOW)
c
c...For ’F-S' or 'S-S' link types
c
40 IF(LTYPE(1,1).EQ.1.OR.LTYPE(1,1).EQ.2)THEN

c
c... Calculate number of non-workingdays to be subtracted
c...(Because of the use of day numbers)
c

ITNADD=2-SFCODE(ITO)
c
c...Using the earliest start day number calculate
c...the temporary earliest finish day number (ITIME2)
c

ITIME2=IESDNO(ITO)+IDURN(ITO)+IDURN2(ITO)-ITNADD
c
c...For 'F-F* link type
c

ELSEIF(LTYPE(1,1).EQ.3)THEN
c
c. . .Calculate the additional non working days to the link duration
c

ILADD=(INT((IEFDOW(I FROM) +1LDURN(1,1)-2)/TWK(ITO)))*(7-TWK(I TO
&))

310

..Calculate the temporary earliest finish day number(ITIME2)

..and earliest finish day of the week number (ITEMP2)

ITIME2=IEFDNO(IFROM)+ILDURN(I,1)+ILADD
ITEMP2=IDOTW(ITIME2)

..Check if any more days to be added and calculate it

ISADD=ISADED(ITO,ITEMP2)

..Adjust (ITIME2)

ITIME2=ITIME2+ISADD

..For ' S-F' link type

ELSE

..Calculate the additional non-working days to the link duration

ILADD=(I NT((IESDOW(IFROM) + 1LDURN(I,1)-2)/TWK(ITO))) * (7 -TWK(I TO
&))

..Calculate (ITIME2)

ITIME2=IESDNO(I FROM) +1LDURN(I,1) + ILADD-1
ENDIF

..Compare (ITIME2) with succeeding task (IEFDNO); Divert

.. program to store the greatest and calculate (IEFDOW)

IF(ITIME2.LE.IEFDNO(ITO))GOTO50
IEFDNO(ITO)=ITIME2
IEFDOW(ITO)=IDOTW(ITIME2)

50 CONTINUE

..If counter updated; Repeat the loop

IF(K.GT.0)GOTO30

..Identify FINISH task number (NFINISH)

DO60,1=1,NTASK
IF(SFCODE(I).EQ.2)NFINISH=I

60 CONTINUE

..Initialise tasks latest finish day numbers (LFDNO), latest start

..day numbers (LSDNO), latest finish day of the week numbers (LFDOW)

..and latest start day of the week numbers (LSDOW)

DO70,1=1,NTASK
LFDNO(I)=IPFDNO
LSDNO(I)=IPFDNO
LFDOW(I)=IDOTW(IPFDNO)
LS DOW(I) = IDOTW(IPFDNO)

70 CONTINUE

..Initialise repeating loop counter

80 K=0

..Carry out backward pass to calculate tasks

..(LFDNO), (LFDOW) and (LSDNO), (LSDOW)

D0100,1=1,NLINK
IFROM=LFROM(I,2)
ITO=LTO(1,2)

..Ignore Hammock tasks

IF(TTYPE(IFROM).EQ.'H'.OR.TTYPE(ITO).EQ.'H')COT0100

..Name the backward pass

M=2

..Using the function (LINKDN) calculate the Integer link durations

ILDURN(1,2)=LINKDN(I,M,IFROM)

..Select the link type and perform calculations; For (F-S) link type

IF(LTYPE(I,2).EQ.1)THEN

..Identify the number of days to deducted

..(Because of using day numbers)

IDDCT=SFCODE(IFROM)

..Calculate temporary latest finish day number

..(ITIME) and day of the week number (ITEMP)

ITIME=LSDNO(ITO)-IDDCT
ITEMP=IDOTW(ITIME)

..Using the Function (ISDEDC), Calculate

..the number of days to be subtarcted

IS DDCT=IS DEDC(IFROM,ITEMP)

c
c...Adjust (ITIME) and Recalculate (ITEMP)
c

ITIME=ITIME-1S DDCT
ITEMP=IDOTW(ITIME)

c
c... Calculate the non-working days for the link duration
c

ILDDCT-(INT((ILDURN(I,2)-1TEMP+TWK(I FROM)-1)/TWK(I FROM)))*(7-T
&WK(IFROM))

c
c...Recalculate (ITIME) and (ITEMP)
c

ITIME=ITIME-ILDURN(I,2)-ILDDCT
ITEMP=IDOTW(ITIME)

c
c...Calculate the number of non-working days to be deducted
c

ISDDCT=ISDEDC(IFROM,ITEMP)
c
c...Adjust (ITIME)
c

ITIME-ITIME-ISDDCT
c
c...For (F-F) link type
c

ELSEIF(LTYPE(I,2).EQ.3)THEN
c
c... Calculate the non-working days of the link duration
c

ILDDCT=(INT((ILDURN(1,2)-LFDOW(ITO)+TWK(ITO)-1)/TWK(I TO)))*(7-
&TWK(ITO))

c
c...Calculate (ITIME) and (ITEMP)
c

ITIME-LFDNO(ITO)-ILDURN(I,2)-ILDDCT
ITEMP=IDOTW(ITIME)

c
c... Calculate the additional non-working days to be subtracted
c

IS DDCT=IS DEDC(IFROM,ITEMP)
c
c...Adjust the temporary latest finish day number (ITIME)
c

ITIME=ITIME-ISDDCT
c
c...For (S-S) or (S-F) link types
c

ELSE
c
C...NO calculation for this types of link is required
c

ITIME=LFDNO(IFROM)

ENDIF

313

c...Compare (ITIME) with the stored (LFDNO) and divert the program
c

IF(ITIME.CE.LFDNO(I FROM))C0T09 0
c
c...Update (LFDNO) and calculate (LFDOW)
c

LFDNO(IFROM)=ITIME
LFDOW(IFROM)=IDOTW(ITIME)

c
c...Update Repeating loop counter
c

K=K+1
c
c...Calculation of latest start day number (LSDNO)
c...and latest start day of the week number (LSDOW)
c
c...For 'F-S' or 'F-F' link types
c
90 IF(LTYPE(1,2).EQ.1.OR.LTYPE(I,2).EQ.3)THEN

c
c... Calculate the non-working days
c

IDDUCT-(INT((IDURN(I FROM)-LFDOW(I FROM)+TWK(I FROM)-1)/TWK(I FROM
&)))*(7-TWK(IFROM))

c
c...Calculate additional days 1 or 0 (because of using day numbers)
c

ITNADEHSFCODE(IFROM)
c
c...Using task (LFDNO); Calculate the temporary latest start
c...day number (ITIME2) and day of the week number (ITEMP2)
c

ITIME2=LFDNO(IFROM)-IDURN(IFROM)-IDDUCT+ITNADD
ITEMP2=IDOTW(ITIME2)

c
c...Ckeck if any non-working days to be added and calculate it
c

ISADD= ISADED(IFROM,ITEMP2)
c
c...Adjust the temporary earliest start day number
c

ITIME2=ITIME2+ISADD
c
c...For a ’S-S* link type
c

ELSEIF(LTYPE(I,2).EQ.2)THEN
c
c... Calculate the number of non-working days
c

IDDUCT=(I NT((ILDURN(I,2)-LSDOW(ITO)+TWK(I FROM)-1)/TWK(I FROM)))
&*(7-TWK(IFROM))

314

c
c...Calculate (ITIME2) and (ITEMP2)
c

ITIME2=LSDN0(ITO)-ILDURN(I,2)-IDDUCT
ITEMP2=IDOTW(ITIME2)

c
c... Calculate the number of non-working days
c

IS DDCT=IS DEDC(I FROM,ITEMP2)
c
c...Adjust the temporary latest start day number (ITIME2)
c

ITIME2=ITIME2-ISDDCT
c
c...For ' S-F’ link type
c

ELSE
c
c... Calculate the number of non-working days
c

IDDUCT=(I NT((ILDURN(1,2)-LFDOW(ITO)+TWK(IFROM)-1)/TWK (I FROM)))
&*(7-TWK(IFROM))

c
c...Calculate (ITIME2)
c

ITIME2=LFDNO(ITO)-ILDURN(I,2)-IDDUCT+1
ENDIF

c
c...Compare the temporary with the stored (LSDNO) and divert program
c

IF(ITIME2.CE.LSDNO(IFROM))GOTOl0 0
c
c...Store (ITIME2) as precceding task (LSDNO) and calculate (LSDOW)
c

LSDNO(IFROM)=ITIME2
LSDOW(IFROM)=IDOTW(ITIME2)

100 CONTINUE
c
c...Counter updated; Repeat the loop
c

IF(K.GT.0)GOT080
c
c...Counter equal to zero (not updated)
c
c... Calculate the project finish day of the week number
c

IPFDOW=IDOTW(IPFDNO)
c
c...Project finish day is the first day of the week
c

IF(IPFDOW.EQ.1)THEN

315

c
c...Deduct the number of non-working days to calculate the
c...exact project finish day and day of the week numbers
c

IPFDNO=IPFDNO-(8-TWK(NFINISH))
I PFDOW=> I DOTW(I PFDNO)

c
c...Project finish day is not the first day in the week
c

ELSE
c
c... Calculate the exact project finish day and day of the week numbers
c

IPFDNO-IPFDNO-1
IPFDOW—IDOTW(IPFDNO)

ENDIF
c
c...Calculate the project duration (IPRDRN) in days
c

IPRDRN(N)-1PFDNO-1ES DNO(NSTART)+1
c
c...Initialise (IEFDNO) for hammock tasks
c

D0110,1=1,NTASK
c
c...Select hammock task
c

IF(TTYPE(I) .NE. 'H')COTOHO
IEFDNO(I)—IPFDNO

110 CONTINUE
c
c...Calculation of HAMMOCK tasks durations
c

DO140,1=1,NTASK
c
c...Select the hammock task
c

IF(TTYPE(I).NE.'H')GOTO140
DO120,J=1,NLINK

c
c...Using forward pass; Select the precceding task
c

IF(LTO(J,1).NE.I)COTO120
IFROM=LFROM(J,1)
ITO=LTO(J,1)

c
c...Identify the forward pass number
c

M=1
c
c... Calculate the absolute Integer link duration
c

ILDURN(J,1)=LINKDN(J,M ,IFROM)

316

c
c...Perform calculations for 'S-S' link type
c

IF(LTYPE(J,1).EQ.2)THEN
c
c... Calculate the non-working days to be added to the link duration
c

ILADD=(INT((ILDURN(J,1)+IESD0W(IFROM)-2)/TWK(IFROM)))*(7-TWK
&(IFROM))

c
c... Calculate tempeorary Earliest start day number
c

ITIME=IESDNO(IFROM)+ILDURN(J,1)+ILADD
c
c...Perform calculations for 'F-S' link type
c

ELSEIF(LTYPE(J,1).EQ.1)THEN
c
c... Calculate the tempeorary earliest start day number
c

ITSDNO-IESDNO(IFROM)+IDURN(IFROM)+IDURN2(IFROM)
ITSDOW=IDOTW(ITSDNO)
ISADD=ISADED(I,ITSDOW)
IESLD=ITSDNO+ISADD
IOWLIN=IDOTW(IESLD)

c
c... Calculate the additional days to the link duration
c

ILAD=(INT((ILDURN(J,l)+IOWLIN-2)/TWK(IFROM)))*(7-TWK(IFROM))
c
c...Recalculate the tempeorary earliest start day number
c

ITIME=ITSDNO+ILDURN(J,1)+ILAD
ENDIF

c
c... Calculate the temperoray earliest start day of the week number
c

ITEMP=IDOTW(ITIME)
c
c...Check if any days to be added and calculate
c

ISADD=ISADED(ITO,ITEMP)
c
c...Adjust (ITIME)
c

ITIME=ITIME+ISADD
c
c... Calculate the Earliest Start day number (IESDNO)
c...and Earliest start day of the week number (IESDOW)
c

IF(ITIME.LE.IESDNO(I))COTO120
IESDNO(I)=ITIME
IESDOW(I)=IDOTW(ITIME)

120 CONTINUE

317

c
c...Using the forward pass; Select the succeeding task
c

DOl30,K=1,NLINK
IF(LFROM(K, 1).NE.I)GOTO130
IFROM=LFROM(K,1)
ITO=LTO(K,1)
M=1

c
c...Calculate the Integer link duration,
c

ILDURN(K,1)=LINKDN(K, M,IFROM)
c
c...Perform calculations for 'F-F' link type
c

IF(LTYPE(K, 1).EQ.3)THEN
c
c...If the succeding task is 'FINISH' task
c

IF(SFCODE(ITO).EQ.2)THEN
c
c...Adjust the Earliest finish day number
c

ITEMP2=IEFDNO(ITO)-1
I TEMP3=* I DOTW(ITEMP2)
ISDDCT=ISDEDC(ITO,ITEMP3)
ITEMP2=ITEMP2-ISDDCT
IDOWT-IDOTW(ITEMP2)

c
c...Calculate the additional non working days to the link duration
c

IDDUCT=(INT((ILDURN(K,1)-1DOWT+TWK(ITO)-1)/TWK(I TO)))*(7-TWK
&(I TO))

c
c... Calculate the tempeorary earliest finish day number
c...and earliest finish day of the week number
c

IEFDNT=ITEMP2-ILDURN(K ,1)-IDDUCT
IEFDWT=IDOTW(IEFDNT)

c
c...For any other type of succeeding task
c

ELSE
c
c...Calculate the addtional non working days to link duration
c

IDDUCT=(INT((ILDURN(K,1)-IEFDOW(ITO)+TWK(ITO)-1)/TWK(ITO)))*
&(7-TWK(ITO))

c
c...Calculate the tempeorary earliest finish day number
c...and earliest finish day of the week number
c

IEFDNT=IEFDNO(ITO)-ILDURN(K,1)-IDDUCT
IEFDWT=IDOTW(IEFDNT)

ENDIF

318

c
c...For 'F-S' link type
c

ELSEIF(LTYPE(K,1).EQ.1)THEN
c
c...Calculate tempeorarily earliest finish day number
c...and earliest finish day of the week number
c

ITIME=IESDNO(ITO)-1
ITEMP=IDOTW(ITIME)

c
c...Check if any number of days to be subtracted and calculate it
c

IS DDCT=IS DEDC(I FROM,ITEMP)
c
c...Adjust earliest finish day and day of the week numbers
c

IEFDNT=ITEMP-ISDDCT
IEFDWT=IDOTW(IEFDNT)

c
c... calculate the additional number of non working days
c

IDDUCT=(I NT((ILDURN(K ,1)-1EFDWT+TWK(I FROM)-1)/TWK(I FROM)))*(
&7-TWK(IFROM))

c
c...Recalculate tempeorarily day and day of the week numbers
c

IEFDNT=IEFDNT-ILDURN(K,1)-IDDUCT
IEFDWT=IDOTW(IEFDNT)

ELSE
IEFDNT=IEFDNO(I FROM)
IEFDWT-IDOTW(IEFDNT)

ENDIF
c
c...Check if any non working days to be subtarcted and calculate it
c

IS DDCT=IS DEDC(I FROM,IEFDWT)
c
c...Calculate (IEFDNO), (IEFDOW)
c

IEFDNT=IEFDNT-ISDDCT
IF(IEFDNT.CE.IEFDNO(IFROM))COTOl3 0
IEFDNO(I)=IEFDNT
IEFDOW(I)-IDOTW(IEFDNO(I))

130 CONTINUE
c
c...Calculate the hammock task total duration
c...(including non working days)
c

IHTDRN=IEFDNO(I)-IESDNO(I)+1
c
c...Calculate the number of non working days
c

IDURN2(I)=(INT((IHTDRN+IESDOW(I)-l)/7))*(7-TWK(I))

319

c
c... Calculate Hammock task duration
c

IDURN(I)=IHTDRN-IDURN2(I)
140 CONTINUE
c
c...Update criticality Index (ICRIT)
c

DO150,1=1,NTASK
c
c...Ignore Hammock tasks
c

IF(TTYPE(I).EQ.'H*)COTO150
c
c...Calculate the float
c

IFLOAT=LFDNO(I)-(IES DNO(I) +1DURN(I) +1DURN2(I))+1
c
c...Check if task is critical
c

IF(IFLOAT.LE.0)ICRIT(I)=ICRIT(I)+l
150 CONTINUE
c
c...Ex i t
c

RETURN
END

320

Appendix F .5 : F u n c t io n LINKDN

INTEGER FUNCTION LINKDN(I,M,IFROM)
c***
C * * * *

c** FUNCTION LINKDN **
c** **
c** Changes (S-S) link duration to absolute durations **
c** Changes all types of link durations to Integers **
c** **
C * ' * * ' *

C

COMMON/TASKS/TTYPE(400),TNAME(400),TDURN(400,3),SFCODE(400),
&TWK(400),TCOST(400,9),TWBS(400),PCCODE(400),IDURN(400)
COMMON/LINKS/LFROM(500,2),LTO(500,2),LTYPE(500,2),LDURN(500,2)

c
CHARACTER*1 TTYPE
CHARACTER*9 TNAME
CHARACTER*]. 2 TWBS

c
REAL TDURN,LDURN,TCOST
INTEGER S FCODE,TWK,PCCODE

c
c...Change (S-S) link durations from percentage to absolute
c

IF(LTYPE(I,M).EQ.2)THEN
TEMP=LDURN(I,M)*FLOAT(IDURN(IFROM))

c
c...Change link duration to Integer
c

LINKDN-INT(TEMP)
IF(TEMP.GT.AINT(TEMP))LINKDN-LINKDN+1

ELSE
c
c...Change other types of link durations to Integers
c

LINKDN-1 NT(LDURN(I,M))
IF(LDURN(I,M).GT.AINT(LDURN(I,M)))LINKDN-LINKDN+1

ENDIF
c
c...Exit
c

RETURN
END

321

Appendix F .6 : F u n c t io n ISADED

INTEGER FUNCTION ISADED(I,IDOWNO)
C * ' * ' * * * ' * * * ' *

C * * * *

c** FUNCTION ISADED **
c** Returns the number of non—working days (weekends) **
c** to be added to the tasks durations to calculate the **
c** Ealiest start day number of a succeeding task(IESDNO) **
c** **
C * ' * * * * * * * ' *

C

COMMON/TASKS/TTYPE(400),TNAME(400),TDURN(400,3),SFCODE(400),
&TWK(400),TCOST(400,9),TWBS(400),PCCODE(400),IDURN(400)

c
CHARACTER*1 TTYPE
CHARACTER*9 TNAME
CHARACTER*12 TWBS

c
REAL TDURN
INTEGER S FCODE,TWK,PCCODE

c
c...Calculate the additional number of days
c

IF(IDOWNO.GT.TWK(I))THEN
ISADED=8-IDOWNO

ELSE
ISADED=0

ENDIF
RETURN
END

322

Appendix F .7 : F u n c t io n ISDEDC

INTEGER FUNCTION ISDEDC(1,1DOWNO)

C * *

c** FUNCTION ISDEDC **
c** Returns the number of non—working days (week-ends) **
c** to be deducted from the tasks durations to calculate **
c** the Latest Finisht day number of a precceeding task(LFDNO) **
c** **
C * '* " * ' * * * * * '* " * " * ,* * ,* ' * * * * * * * * * * * * * * * * * * -> t* * * * '3 lr*

C

COMMON/TASKS/TTYPE(400),TNAME(400),TDURN(400,3),SFCODE(400),
&TWK(400),TCOST(400,9),TWBS(400),PCCODE(400),IDURN(400)

c
CHARACTER*1 TTYPE
CHARACTERS TNAME
CHARACTER*12 TWBS

c
REAL TDURN
INTEGER S FCODE,TWK,PCCODE

c
c... Calculate the additional number of days
c

IF(IDOWNO.CT.TWK(I))THEN
ISDEDG= IDOWNO-TWK(I)

ELSE
ISDEDC=0

ENDIF
RETURN
END

323

Appendix F .8 : S u b ro u t in e TRIDIS

SUBROUTINE TRIDIS(I)
C *

C * * * *

c** SUBROUTINE TRIDIS **
c** **
c** Calculates triangular distribution parameters for the Ith task **
c** **
C *

C

COMMON/TASKS/TTYPE(400),TNAME(400),TDURN(400,3),SFCODE(400),
&TWK(400),TCOST(400,9),TWBS(400),PCCODE(400),IDURN(400)
COMMON/PDIST/DLIM(400,2),FMODE(400)

c
CHARACTER*1 TTYPE
CHARACTER*9 TNAME
CHARACTER*12 TWBS

c
REAL TDURN,TCOST
INTEGER S FCODE,TWK,PCCODE

c
c...Define calculation convergence criterion
c

CONVER=l.OE-6
c
c...Declare initial values of distribution parameters,
c

DEL1=0.0
DEL2=TDURN(1,2)-TDURN(1,1)
DEL3=TDURN(I,3)-TDURN(1,2)
DEL4=0.0

c
c...Update values of distribution parameters,
c
10 FMODE(I)-2.0/(DEL1+DEL2+DEL3+DEL4)

IF(DEL2.GT.0.0)THEN
DEL1=(0.02+SQRT(0.02**2+0.08*FMODE(I)*DEL2))/(2.0*FMODE(I))

ENDIF
DEL4=(0.02+SQRT(0.02**2+0.08*FMODE(I)*DEL3))/(2.0*FMODE(I))
PTOTAL=0.5*FMODE(I)*(DEL1+DEL2+DEL3+DEL4)
IF((ABS(1.0-PTOTAL)).GT.CONVER)GOTOl0

c
c...Calculations have converged; Define duration limits
c

DLIM(I,1)=TDURN(I,1)-DEL1
DLIM(I,2)=TDURN(1,3)+DEL4

c
c...Exi t
c

RETURN
END

324

Appendix F.9: Subroutine DSELECT

SUBROUTINE DSELECT(I,SEED)
C * -*"*"*

C * * * *

c** SUBROUTINE DSELECT **
c** **
c** Randomly selects an INTEGER task duration IDURN on **
c** the basis of the duration distribution parameters **
c** calculated by Subroutine TRIDIS **
c** **
C * * * * * * * * * * ,* ' * " * ,* * ,5!r

C

COMMON/TASKS/TTYPE(400),TNAME(400),TDURN(400,3),SFCODE(400),
&TWK(400),TCOST(400,9),TWBS(400),PCCODE(400),IDURN(400)
COMMON/PDIST/DLIM(400,2),FMODE(400)

c
CHARACTER*1 TTYPE
CHARACTER*9 TNAME
CHARACTER*!2 TWBS

c
REAL TDURN,TCOST
INTEGER SFCODE,TWK,PCCODE

c
c...Calculate RH slope of distribution
c

Sl=FMODE(I)/(DLIM(I,2)-TDURN(I,2))
c
c...Check whether duration can be less than modal duration
c

DLEFT=TDURN(I,2)-DLIM(I,1)
IF(DLEFT.GT.0.0)THEN

c
c...It can be; Calculate LH slope and area
c

S 0=FMODE(I)/DLEFT
A0=0.5*DLEFT**2*FMODE(I)

c
c...It can't be; Set LH area to zero
c

ELSE
A0=0.0

ENDIF
c
c...Randomly select an integer duration
c

A=RAND(SEED)
IF(A.LT.A0)THEN
DURN=DLIM(I,1)+SQRT(2.0*A/S0)

ELSE
DURN=DLIM(I,2)-SQRT(2.0*(1.0-A)/SI)

ENDIF
IDURN(I) = I NT(DURN)
IF(DURN.GT.AINT(DURN))IDURN(I)=IDURN(I)+1

325

c
c...Ex i t
c

RETURN
END

Appendix F.10: Function RAND

FUNCTION RAND(SEED)

C * * * *

c** FUNCTION RAND **
c** **
c** Returns a random REAL number in the range 0. to 1.0 **
c** **
c** Requires initialisation by 0.0 < seed < 259200 **
c** **

C

PARAMETER(IA-7141,IC=54773,IM=259200)
c

SEED=REAL(MOD(INT(SEED)*IA+IC,IM))
RAND=S EED/REAL(IM)
RETURN
END

326

Appendix F . l l : S u b ro u t in e PCOSTS

SUBROUTINE PCOSTS(NSTART, NTASK,ICDAYS.N)
C * ' 5 ' r * * * * ,* * ■ 5 t* • * ■

C * * * *

c** SUBROUTINE PCOSTS **
c** **
c** D is t r ib u te ta sk s c o s ts on the days o f the p r o je c t **
c** C a lc u la te s p ro je c t d a i l y c o s ts and ta s k s p r i c e s **
c** Accumulate and a rrange cos t and ta s k s p r i c e s and **
c** c a lc u la te s the CAPTIM and In te rn a l r a t e o f r e t u r n (IRR) **
C * * * *

C *

C

COMMON/TASKS/TTYPE(400) ,TNAME(400) ,TDURN(400 , 3) ,SFCODE(400) ,
&TWK(400),TCOST(400,9),TWBS(400),PCCODE(400),IDURN(400)
COMMON/DAYNOS/IESDNO(400),IESDOW(400),IDURN2(400),LFDNO(400),
&LFDOW(400),IDURN3(400),ILDURN(500,2),ICRIT(400),ACRIT(400),
&IPRDRN(1000),IEFDNO(400),IEFDOW(400),LSDNO(400),LSDOW(400)
COMMON/FINSTA/ISTART(400),IFINISH(400),NDAYOW(IOOO)
COMMON/PDCOST/DCOSTS(500,9),COSPAY(500,9),COSDLY(500 , 9),
&IDDATE(500),MACDAY(50),TOTCOS(500),ACTOTC(500),ACCTPR(500),
&CAPTIM(1000),RATERN(IOOO)
COMMON/COSTS/CCODE(9),CPAY(9),CARR(9),CARRQ(9)

c
CHARACTER*1 TTYPE,CPAY,CARR
CHARACTER*3 CCODE
CHARACTER*9 TNAME
CHARACTER*12 TWBS

c
REAL TDURN,TCOST,X
INTEGER S FCODE,TWK,PCCODE,CARRQ

c
c...Calculate the maximum payment delay
c

MAXDLY=0
D05,1=1,9

IF(CARR(I).EQ.'D')THEN
IF(MAXDLY.LT.CARRQ(I))MAXDLY=CARRQ(I)

ELSEIF(CARR(I).EQ.'W')THEN
NDAYS=CARRQ(I)*7
IF(MAXDLY.LT.NDAYS)MAXDLY=NDAYS

ELSEIF(CARR(I).EQ.'M')THEN
NDAYS=CARRQ(I)*30
IF(MAXDLY.LT.NDAYS)MAXDLY=NDAYS

ENDIF
5 CONTINUE

c
c...Add maximum payment delay to the project duration
c...Add 30 Days to cover the payment method........
c

ICDAYS=IPRDRN(N)+MAXDLY+3 0

327

c
c...Calculate start (ISTART) and finish
c...(IFINSH) day number for each task
c

DOIO,1=1,NTASK
ISTART(I)=IESDNO(I)-IESDNO(NSTART)+l
I FINISH(I)=ISTART(I) + IDURN(I)+IDURN2(I)-1

10 CONTINUE
c
c... Calculate the day of the week number (NDAYOW)
c...and date (IDDATE) for each day
c

IDAYNO=IES DNO(NS TART)
DO20,1=1,ICDAYS
NDAYOW(I)=IDOTW(IDAYNO)
IDDATE(I)=IDAY(IDAYNO)
IDAYNO=IDAYNO+1

20 CONTINUE
c
c...Find out the monthly accumulation days (MACDAY)
c

J=1
DO30,1=2,ICDAYS

IF(IDDATE(I).NE.l)COTO30
MACDAY(J)=I-1
J=J+1

30 CONTINUE
c
c...Initialise daily costs arrays
c

DO50,K=1,9
D040,1=1,ICDAYS
DCOSTS(I,K)=0.0
COSPAY(I,K)=0.0
COSDLY(I,K)=0.0

40 CONTINUE
50 CONTINUE

c
c...Ditribute tasks daily labour cost on
c...the project days (Normal loading)
c

DO70,1=1,ICDAYS
DO60,J=1,NTASK

IF(NDAYOW(I).GT.TWK(J))GOTO60
IF(I.GE.ISTART(J).AND.I.LE.IFINISH(J))DCOSTS(I,l)=DCOSTS(I,1)+

&TCOST(J,1)
60 CONTINUE
70 CONTINUE

328

c
c...Materials cost (Front loading)
c

D090,1=1,ICDAYS
D080,J=1,NTASK

IF(I.EQ.I START(J))DCOSTS(I,2)=DCOSTS(I,2)+TCOST(J,2)
80 CONTINUE
90 CONTINUE

c
c...Daily plant costs (Normal loading)
c

DO110,1=1,ICDAYS
DOIOO,J=1,NTASK

IF(NDAYOW(I).GT.TWK(J))GOTO100
IF(I.GE.I START(J).AND.I.LE.IFINISH(J))DCOSTS(I,3)=DCOSTS(I,3) +

&TCOST(J,3)
100 CONTINUE
110 CONTINUE
c
c...Front-end plant cost (Front loadin)
c

DO130,1=1,ICDAYS
DO120,J=1,NTASK

IF(I.EQ.ISTART(J))DCOSTS(I,4)=DCOSTS(I,4)+TC0ST(J,4)
120 CONTINUE
130 CONTINUE
c
c...Back-end plant cost (Back loading)
c

DO150,1=1,ICDAYS
DO140,J=1,NTASK

IF(I.EQ.IFINISH(J))DCOSTS(I,5)=DCOSTS(I,5)+TCOST(J,5)
140 CONTINUE
150 CONTINUE
c
c... Subcontracts cost (Spread loading)
c

DO170,1=1,ICDAYS
DO160,J=1,NTASK

IF(NDAYOW(I).CT.TWK(J))GOTO160
IF(TCOST(J,6).EQ.0.0)GOTO160
IF(I.CE.I START(J).AND.I.LE.IFINISH(J))DCOSTS(I,6)=DCOSTS(I,6) +

6e(TCOST(J , 6)/IDURN(J))
160 CONTINUE
170 CONTINUE

c
c...Daily overheads cost (Normal)
c

DO190,1=1,ICDAYS
DO180,J=1,NTASK

IF(NDAYOW(I).GT.TWK(J))GOTO180
IF(I.GE.ISTART(J).AND.I.LE.IFINISH(J))DCOSTS(I,7)=DCOSTS(I ,7) +

&TCOST(J,7)
180 CONTINUE
190 CONTINUE

329

c... Front-end overheads cost (Front loading)
c

D0210,1=1,ICDAYS
D0200,J=1,NTASK

IF(I.EQ.I START(J))DCOSTS(I,8)=DCOSTS(I,8)+TCOST(J,8)
200 CONTINUE
210 CONTINUE

c
c...Task prices (Spread loading)
c

D0230,1=1,ICDAYS
DO220,J=1,NTASK

IF(NDAYOW(I).CT.TWK(J))COTO220
IF(TCOST(J,9).EQ.0.0)COTO220
IF(I.CE.ISTART(J).AND.I.LE.IFINISH(J))DCOSTS(I,9)=DCOSTS(I,9)+

&(TCOST(J,9)/IDURN(J))
220 CONTINUE
230 CONTINUE

c
c...Accumulate Daily cost according to the payment method
c

DO320,K=1,9
c
c. . .Weekly payment
c

IF(CPAY(K).EQ.'W*)THEN
ACWCOS=0.0
DO240,1=1,ICDAYS

IF(NDAYOW(I).NE.5)THEN
ACWCOS=ACWCOS+DCOSTS(I,K)

ELSE
COSPAY(I,K)—ACWCOS+DCOSTS(I,K)
ACWCOS=0.0

ENDIF
240 CONTINUE

ELSE
c
c...Monthly payment
c

J=1
ACMCOS=0.0
D0250,1=1,ICDAYS

IF(I.NE.MACDAY(J))THEN
ACMCOS =ACMCOS+DCOS T S(I,K)

ELSE
COSPAY(I,K)=ACMCOS+DCOSTS(I,K)
J=J+1
ACMCOS=0.0

ENDIF
250 CONTINUE

ENDIF

330

c
c...Arrange Commulative Cost according to the given payment delay
c

IF(CARR(K).EQ.' O ')THEN
c
c...Payment delay not applicable
c

DO260,1=1,ICDAYS
COSDLY(I,K)=COSPAY(I, K)

260 CONTINUE
c
c...Payment de1ay in days
c

ELSEIF(CARR(K).EQ.'D')THEN
IARR=CARRQ(K)
DO270,1=1,ICDAYS
J =I +1ARR
COSDLY(J,K)=COSPAY(I,K)

270 CONTINUE
c
c...Payment delay in weeks
c

ELSEIF(CARR(K).EQ.'W*)THEN
IARR=CARRQ(K) * 7
D0280,1=1,ICDAYS
J=I+IARR
COSDLY(J,K)=COSPAY(I,K)

280 CONTINUE
c
c...Payment delay in months
c

ELSE
IF(CPAY(K).EQ.'W')THEN
IARR=CARRQ(K)*30
DO290,1=1,ICDAYS
J=I+IARR
COSDLY(J,K)=COSPAY(I,K)

290 CONTINUE
ELSE
J=1
M=J+CARRQ(K)
DO300,1=1,ICDAYS

IF(I.NE.MACDAY(M))GOTO300
COSDLY(I,K)=COS PAY(MACDAY(J),K)
J=J+1
M=M+1

300 CONTINUE
ENDIF

ENDIF

331

c
c...Adjust payments not to be in week-ends
c

DO310,1=1,ICDAYS
IF(COSDLY(I,K).EQ.0.0)GOTO310

IF(NDAYOW(I).EQ.6)THEN
COSDLY(I-1,K)=COSDLY(I,K)+COSDLY(I-1,K)
COSDLY(I,K)=0.0

ELSEIF(NDAYOW(I).EQ.7)THEN
COSDLY(I-2,K)=COSDLY(I,K)+COSDLY(I -2,K)
COSDLY(I,K)=0.0

ENDIF
310 CONTINUE
320 CONTINUE

c
c...Calculate Tolal cost (TOTCOS)
c

DO330,1=1,ICDAYS
TOTCOS(I)=COSDLY(I,l)+COSDLY(I,2)+COSDLY(I,3)+COSDLY(I,4)+

&COS DLY(1,5)+COS DLY(I,6)+COSDLY(I,7)+COSDLY(I,8)
330 CONTINUE

c
c...Intialise commulative total cost (ACTOTC)
c

DO340,1=0,ICDAYS
ACTOTC(I)=0.0

340 CONTINUE
c
c...Accumulate total cost
c

DO350,1-1,ICDAYS
ACTOTC(I)=ACTOTC(I-1)+TOTCOS(I)

350 CONTINUE
c
c...Initi1ise commulative Task prices (ACCTPR)
c

DO360,1=0,ICDAYS
ACCTPR(I)=0.0

360 CONTINUE
c
c...Accumulate Task Price
c

DO370,1=1,ICDAYS
ACCTPR(I)=ACCTPR(I-1)+COS DLY(1,9)

370 CONTINUE
c
c...Initialise CAPTIM
c

CAPTIM(N)=0.0
c
c...Calculate the CAPTIM
c

DO380 , 1 = 1 , ICDAYS
CAPTIM(N)=CAPTIM(N)+DIM(ACTOTC(I) , ACCTPR(I))

3 8 0 CONTINUE

332

c
c...Initialise annual interest rate (X)
c

X=-l.0
c
c...Set Increasing of annual Interest rate (DELX) to 10%
c

DELX-0.1
X=X+DELX

c
c...Initialise Net Present Value (ACCNPV)
c
390 ACCNPV=0.0

R»((1.0+X)**(1.0/365.0))-1.0
c
c... Calculate Net Present Value (ACCNPV)
c

D0400,1=1,ICDAYS
ACCNPV=ACCNPV+(COS DLY(1,9)-TOTCOS(I))/((1.0+R)**(I-1))

400 CONTINUE
c
c...Net preseent value is negative
c

IF(ACCNPV.CT.0.0)THEN
c
c...Increase Annual Intrest rate and Re-calculate (ACCNPV)
c

X=X+DELX
GOTO390

ELSE
c
c...Net Present Value is Positive
c...Deduct the previously seted DELX
c

X—X-DELX
c
c...Reset DELX to 10% of the previous one
c

DELX=DELX/10.0
c
c...Recalculate the annual Interest rate
c

X=X+DELX
ENDIF
IF(DELX.LE.1.OE-5)C0T0410
GOTO390

c
c... Calculate Internal Rate of return
c
410 RATERN(N)=X*100.0
c
c...Exit
c

RETURN
END

333

Appendix F .12 : S ub ro u t in e PSORT

SUBROUTINE PSORT(NRUNS)

C * * * *

c** SUBROUTINE PSORT **
c** Sorts NRUNS project durations into Rank order **
c** **

c
COMMON/DAYNOS/1ESDNO(400),IESDOW(400),IDURN2(400),LFDNO(400) ,
&LFDOW(400),IDURN3(400),ILDURN(500,2),ICRIT(400),ACRIT(400),
& IPRDRN(1000),IEFDNO(400),IEFDOW(400),LSDNO(400),LSDOW(400)

c
c . . . S o r t p ro je c t d u ra t io n s in to rank o rder
c

DO20,1=1,(NRUNS-1)
DO10,J=1,(NRUNS-I)
K=J+1
IF(IPRDRN(J).LE.IPRDRN(K))COTO10
ITEMP=IPRDRN(J)
IPRDRN(J)=IPRDRN(K)
IPRDRN(K)=ITEMP

10 CONTINUE
20 CONTINUE

c
c...Exit
c

RETURN
END

334

Appendix F .13 : S u b ro u t in e PRSTAT

SUBROUTINE PRSTAT(NRUNS)
C *

C * * * *

c** SUBROUTINE PRSTAT **
c** **
c** C a lcu la te s Minimum, Maximum, Median, Mean p r o je c t d u ra t io n s **
c** and P ro je c t Skewness **
c** **
C *

C

COMMON/TASKS/TTYPE(400) ,TNAME(400) , TDURN(400 , 3) ,SFCODE(400) ,
&TWK(400),TCOST(400,9),TWBS(400),PCCODE(400),IDURN(400)
COMMON/DAYNOS/1ESDNO(400),IESDOW(400),IDURN2(400),LFDNO(400) ,
&LFDOW(400),IDURN3(400),ILDURN(500,2),ICRIT(400),ACRIT(400),
&IPRDRN(1000),IEFDNO(400),IEFDOW(400),LSDNO(400),LSDOW(400)
COMMON/STATS/M INPDU, MAXPDU, PRMEAN, PSKEW, MED I AN, PROS IC

c
CHARACTER*1 TTYPE
CHARACTER*9 TNAME
CHARACTER*12 TWBS

c
REAL MEDIAN,TDURN,TCOST

c
INTEGER S FCODE,TWK,PCCODE

c
c...Initialise minimum, maximum, sum and sum square of project d u ra tio n s
c

MINPDU=1E6
MAXPDU=0
ISUM=0
I SUMSQ=0

c
c...Calculate minimum, maximum, sum and sum square
c

DO10,1=1,NRUNS
IF(IPRDRN(I).LT.MINPDU)MINPDU=IPRDRN(I)
IF(IPRDRN(I).GT.MAXPDU)MAXPDU=IPRDRN(I)
ISUM=ISUM+IPRDRN(I)
IS UMS Q= IS UMS Q+1PRDRN(I)**2

10 CONTINUE
c
c... Calculate Mean project duration and Standard deviation
c

PRMEAN=FLOAT(I SUM)/FLOAT(NRUNS)
PROS IC=SQRT((FLOAT(ISUMSQ)-FLOAT(I SUM)**2/FLOAT(NRUNS))/FLOAT(NRUN

&S-1))

335

c . . . C a l c u l a t e th e Median p r o j e c t d u r a t i o n
c

I=(NRUNS+l)/2
J=I+1
IF(MOD(NRUNS,2).LT.1)THEN
MEDIAN=FLOAT(IPRDRN(I)+IPRDRN(J))/2.0

ELSE
MEDIAN=FLOAT(IPRDRN(I))

ENDIF
c
c . . .C a lc u la te p ro je c t d u ra t io n s Skewnees
c

PSKEW=3.0*(PRMEAN-MEDIAN)/PROS IG
c
c . . .E x it
c

RETURN
END

336

Appendix F .14 : S u b ro u t in e CSTAT

SUBROUTINE CASTAT(NRUNS)

C * * * *

c** SUBROUTINE CASTAT **
c** **
c** C a lcu la te s Minimum, Maximum, Median, Mean CAPTIM **
c** and CAPTIM Skewness **
c** **

C

COMMON/TASKS/TTYPE(400) ,TNAME(400) , TDURN(400 , 3) ,SFCODE(400) ,
&TWK(400),TCOST(400,9),TWBS(400),PCCODE(400),IDURN(400)
COMMON/DAYNOS/ IESDNO(400) , IESDOW(400) , IDURN2(400) , LFDNO(400) ,
&LFDOW(400) , IDURN3(400) , ILDURN(500,2) , ICRIT(400) ,ACRIT(400) ,
&IPRDRN(1000),IEFDNO(400),IEFDOW(400),LSDNO(400),LSDOW(400)
COMMON/S T AT 3/CAPMIN, CAPMAX, CAMEAN, CSKEW, CMEDI AN, CAPS IC
COMMON/PDCOST/DCOSTS(500,9),COSPAY(500,9),COSDLY(500,9) ,

&IDDATE(500),MACDAY(50).TOTCOS(500),ACTOTC(500),ACCTPR(500),
&CAPTIM(1000),RATERN(IOOO)

c
CHARACTER*1 TTYPE
CHARACTER*9 TNAME
CHARACTER*12 TWBS

c
REAL TDURN,TCOST

c
INTECER S FCODE,TWK,PCCODE

c
c...Initialise minimum, maximum, sum and sum square of CAPTIM
c

CAPMIN=1.0E12
CAPMAX=0.0
SUM=0.0
SUMSQ=0.0

c
c...Calculate CAPTIM minimum, maximum, sum and sum square
c

DO10,1=1,NRUNS
IF(CAPTIM(I).LT.CAPMIN)CAPMIN=CAPTIM(I)
IF(CAPTIM(I).GT.CAPMAX)CAPMAX=CAPTIM(I)
SUM=SUM+CAPTIM(I)
S UMS Q=S UMS Q+CAPTIM(I)**2

10 CONTINUE
c
c...Calculate Mean CAPTIM and Standard deviation
c

CAMEAN=S UM/FLOAT(NRUNS)
CAPS IG=SQRT((SUMSQ-SUM**2/FLOAT(NRUNS))/FLOAT(NRUNS-1))

337

c . . . C a l c u l a t e the Median CAPTIM
c

I=(NRUNS+l)/2
J=I+1
IF(MOD(NRUNS,2).LT.1)THEN
CMEDIAN=(CAPTIM(I)+CAPTIM(J))/2.0

ELSE
CMEDIAN=CAPTIM(I)

ENDIF
c
c . . .C a lc u la te CAPTIM Skewnees
c

CSKEW-3.0*(CAMEAN-CMEDIAN)/CAPS IC
c
c . . .E x it
c

RETURN
END

338

Appendix F .15 : S ub rou t ine RRSTAT

SUBROUTINE RRSTAT(NRUNS)

C * * * *

c** SUBROUTINE RRSTAT **
c** **
c** C a lcu la te s Minimum, Maximum, Median, Mean fo r IRR **
c** and IRR Skewness **
c** **
c***
c

COMMON/TASKS/TTYPE(400),TNAME(400),TDURN(400,3),SFCODE(400),
&TWK(400),TCOST(400,9),TWBS(400),PCCODE(400),IDURN(400)
COMMON/DAYNOS/IESDNO(400),IESDOW(400),IDURN2(400),LFDNO(400),
&LFDOW(400),IDURN3(400),ILDURN(500,2),ICRIT(400),ACRIT(400),
&IPRDRN(1000),IEFDNO(400),IEFDOW(400),LSDNO(400),LSDOW(400)
COMMON/STAT2/RRMIN,RRMAX,RRMEAN,RRSKEW,RRMEDN,RRSIC
COMMON/PDCOST/DCOSTS(500,9),COSPAY(500,9),COSDLY(500,9),
&IDDATE(500),MACDAY(50),TOTCOS(500),ACTOTC(500),ACCTPR(500),
&CAPTIM(1000),RATERN(IOOO)

c
CHARACTER*1 TTYPE
CHARACTER*9 TNAME
CHARACTER*12 TWBS

c
REAL TDURN,TCOST

c
INTEGER S FCODE,TWK,PCCODE

c
c...Initialise minimum, maximum, sum and sum square of IRR
c

RRMIN-1.0E12
RRMAX=0.0
SUM=0.0
SUMSQ=0.0

c
c...Calculate IRR minimum, maximum, sum and sum square
c

DO10,I-1,NRUNS
IF(RATERN(I).LT.RRMIN)RRMIN=RATERN(I)
IF(RATERN(I).GT.RRMAX)RRMAX=RATERN(I)
SUM=SUM+RATERN(I)
SUMSQ=SUMSQ+RATERN(I)**2

10 CONTINUE
c
c...Calculate Mean Internal Rate of Return and Standard deviation
c

RRMEAN=S UM/FLOAT(NRUNS)
RRSIG=SQRT((SUMSQ-SUM**2/FLOAT(NRUNS))/FLOAT(NRUNS-1))

339

C alcu la te the Median IRR

I=(NRUNS+l)/2
J=I+1
IF(MOD(NRUNS,2).LT.1)THEN
RRMEDN=(RATERN(I)+RATERN(J))/2.0

ELSE
RRMEDN=RATERN(I)

ENDIF

Calculate IRR Skewnees

RRSKEW=3.0*(RRMEAN-RRMEDN)/RRSIG

Exit

RETURN
END

Appendix F.16: Subroutine RRSORT

SUBROUTINE RRSORT(NRUNS)

c** SUBROUTINE RRSORT **
C * * * *

c** Sorts Number of(NRUNS) Internal rate or return (RATERN), **
c** (CAPTIM) into Rank order **
c** **

C

COMMON/PDCOST/DCOSTS(500,9),COSPAY(500,9),COSDLY(500,9),
6eIDDATE(500),MACDAY(50),TOTCOS(500),ACTOTC(500),ACCTPR(500),
&CAPTIM(1000),RATERN(1000)

c
c...Sort IRR and corresponding CAPTIM into rank order
c

DO20,1=1,(NRUNS-1)
DO10,J=l,(NRUNS-I)
K=J+1
IF(RATERN(J).LE.RATERN(K))GOTOl0
TEMP=RATERN(J)
TEMP1=CAPTIM(J)
RATERN(J)=RATERN(K)
CAPTIM(J)=CAPTIM(K)
RATERN(K)=TEMP
CAPTIM(K)=TEMP1

10 CONTINUE
20 CONTINUE

c
c...Ex i t
c

RETURN
END

341

Appendix F.17: Subroutine FREQUA

SUBROUTINE FREQUA(NRUNS,NBANDS)
C'k'k'frk'k'k'k'k'k-Jcieirklrk’k'k'k'kirJrk'kic'kic'k'k'k'k'k'k'it'k'k'k'k'k'k'kirk'k'kic'kic'k'k'k'k'kic'k'k'k'k'k'k'k'k'k-k-k-k'k-k-k-k'k-k
C** **
c** SUBROUTINE FREQUA **
c**
c** Calculates number of bands, Frequency and commulative **
c** in each band for the number of runs project durations **
c** **

• k - k - k - k - k ' k - k ' k ' k *

C

COMMON/DAYNOS/IESDNO(400),IESDOW(400),IDURN2(400),LFDNO(400),
&LFDOW(400),IDURN3(400),ILDURN(500,2),ICRIT(400),ACRIT(400),
&IPRDRN(1000),IEFDNO(400),IEFDOW(400),LSDNO(400),LSDOW(400)
COMMON/FREQU1/PCFREQ(100),PRBMPT(100),IPBAND(IOO),PFREQ(100),

&RCPWPD(100)
COMMON/STATS/MINPDU,MAXPDU,PRMEAN,PSKEW,MEDIAN,PROS IG

c
IBW-10

c
c. . .Set minimtim and maximum parameters
c

AMIN=MINPDU
AMAX=MAXPDU

c
c...Change the band width to real number
c

BANDW=FLOAT(IBW)
c
c... Determine upper and lower distribution
c

A1=AMIN-AMOD(AMIN,BANDW)-bandw
A2=AMAX-AMOD(AMAX,BANDW)+BANDW

c
c... Calculate number of bands and zero each band frequency
c

NBANDS=(IFIX(A2)-IFIX(A1))/IBW+1
IPBAND(1)=IFIX(A1)
D040,1=2,NBANDS

IPBAND(I)=IPBAND(I-1)+IBW
PFREQ(I-1)=0.0

40 CONTINUE

342

c
c . . . C a lcu la te frequency for each band
c

D060,1=1,NRUNS
DO50,J=1,(NBANDS-1)

IF (I PRDRN (I).CT.IPBAND(J).AND.IPRDRN(I).LE.IPBAND(J+l))THEN
PFREQ(J)=PFREQ(J)+1.0
GOTO60

ENDIF
50 CONTINUE
60 CONTINUE

c
c...Initialise commulative frequency
c

D070,1=1,(NBANDS-1)
PCFREQ(I)=0.0

70 CONTINUE
c
c... Calculate frequency (%)
c

DO80,1=1,(NBANDS-1)
PFREQ(I)=PFREQ(I)*100.0/FLOAT(NRUNS)

80 CONTINUE
c
c...Calculate commulative frequency (%)
c

PCFREQ(1)=PFREQ(1)
DO90,1=2,(NBANDS-1)
PCFREQ(I)=PCFREQ(I-1)+PFREQ(I)

90 CONTINUE
c
c...Calculate bands midpoints
c

D095,1=1,NBANDS
PRBMPT(I)=FLOAT(IPBAND(I))+BANDW/2.0

95 CONTINUE
c
c...Calculate the Rate of Probability with Project Duration (f(x))
c

A=0.39894228/PROSIC
DO100,1=1,(NBANDS-1)
RCPWPD(I)=(A*EXP(-(((PRBMPT(I)-PRMEAN)**2)/(2.0*PROSIC**2))))*10

&0.00*BANDW
100 CONTINUE
c
c...Ex i t
c

RETURN
END

343

Appendix F.18: Subroutine FRQIRR

SUBROUTINE FRQIRR(NRUNS,INBAND)

c** SUBROUTINE FRQIRR **
c** **
c** Calculates number of bands, Frequency and commulative **
c** in each band for the number of runs IRR **
c** **

C

COMMON/PDCOST/DCOSTS(500,9),COSPAY(500,9),COSDLY(500,9) ,
&IDDATE(500),MACDAY(50),TOTCOS(500),ACTOTC(500),ACCTPR(500),
&CAPTIM(1000),RATERN(IOOO)
COMMON/STAT2/RRMIN,RRMAX,RRMEAN,RRSKEW,RRMEDN,RRS IC
COMMON/FREQU2/CFREQ(100),BANMPT(100),IBAND(IOO),FREQ(100) ,
&ROPWRR(100)

c
IBW=100

c
c...Initialise minimum and maximum parameters
c

AMIN=RRMIN
AMAX=RRMAX

c
c...Change the band width to real number
c

BANDW-FLOAT(IBW)
c
c...Dtermine upper and lower distribution
c

IF(AMIN.LE.O.O)THEN
Al-AMIN-AMOD(AMIN,BANDW)-BANDW

ELSE
Al-AMIN-AMOD(AMIN,BANDW)

ENDIF
A2=AMAX-AMOD(AMAX,BANDW)+BANDW

c
c... Calculate number of bands and zero each band
c

INBAND=(IFIX(A2)-IFIX(A1))/IBW+1
I BAND(1) = IFIX(A1)
DO40,1=2,INBAND

I BAND(I) = IBAND(I-1) + IBW
FREQ(I-1)=0.0

40 CONTINUE

344

c
c . . . C a lcu la te frequency in each band
c

DO60,1=1,NRUNS
D050,J=1,(INBAND-1)

IF(RATERN(I).GT.IBAND(J).AND.RATERN(I).LE.I BAND(J+l))THEN
FREQ(J)=FREQ(J)+1.0
GOTO60

ENDIF
50 CONTINUE
60 CONTINUE

c
c...Initialise commulative frequency
c

DO70,1=1,(INBAND-1)
CFREQ(I)=0.0

70 CONTINUE
c
c... Calculate frequency (%)
c

DO80,1=1,(INBAND-1)
FREQ(I)=FREQ(I)*100.O/FLOAT(NRUNS)

80 CONTINUE
c
c...Calculate commulative fequency (%)
c

CFREQ (1) ==FREQ (1)
DO90,1=2,(INBAND-1)
CFREQ(I)-CFREQ(I-1)+FREQ(I)

90 CONTINUE
c
c...Calculate bands midpoints
c

D095,1=1,INBAND
BANMPT(I)=FLOAT(IBAND(I))+BANDW/2.0

95 CONTINUE
c
c...Calculate the Rate of Probability with IRR (f(x))
c

A-0.39894228/RRSIG
DOl00,1=1,(INBAND-1)
ROPWRR(I)=(A*EXP(-(((BANMPT(I)-RRMEAN)**2)/(2.0*RRSIC**2))))*100

&.00*BANDW
100 CONTINUE

c
c...Exit
c

RETURN
END

345

Appendix F.19: Subroutine FRQCAP

SUBROUTINE FRQCAP(NRUNS,ICNBAND)
c** **
c** SUBROUTINE FRQCAP **
c** **
c** Calculates number of bands, Frequency and commulative **
c** in each band for the number of runs CAPTIM **
c** **

C

COMMON/PDCOST/DCOSTS(500,9),COSPAY(500,9),COSDLY(500,9),
6cIDDATE(500),MACDAY(50),TOTCOS(500),ACTOTC(500),ACCTPR(500),
6cCAPTIM(1000) ,RATERN(IOOO)
COMMON/FREQU3/CCFREQ(100),CABMPT(100),ICBAND(IOO),CAFREQ(100),
&ROPWCAP(100)
COMMON/STAT3/CAPMIN,CAPMAX,CAMEAN,CSKEW,CMEDIAN,CAPS IC

c
IBW=1E6

c
c...Initialise minimum and maximum parameters
c

AMIN=CAPMIN
AMAX=CAPMAX

c
c...Change the band width to real number
c

BANDW=FLOAT(IBW)
c
c...Dtermine upper and lower distribution
c

Al=AMIN-AMOD(AMIN,BANDW)-BANDW
A2-AMAX-AMOD(AMAX,BANDW)+BANDW

c
c...Calculate number of bands and zero each band
c

ICNBAND=(IFIX(A2)-IFIX(A1))/IBW+1
ICBAND(1)=IFIX(A1)
DO40,1=2,ICNBAND

ICBAND(I)=ICBAND(I-1)+IBW
CAFREQ(I-1)=0.0

40 CONTINUE

346

c
c . . . C a lcu la te frequency in each band
c

D060,1=1,NRUNS
DO50,J=1,(ICNBAND-1)

IF(CAPTIM(I).CT.ICBAND(J).AND.CAPTIM(I).LE.ICBAND(J+l))THEN
CAFREQ(J)=CAFREQ(J)+1.0
COTO60

ENDIF
50 CONTINUE
60 CONTINUE

c
c...Initlalise commulative frequency
c

DO70,1=1,(ICNBAND-1)
CCFREQ(I)=0.0

70 CONTINUE
c
c... Calculate frequency (%)
c

D080,1=1,(ICNBAND-1)
CAFREQ(I)=CAFREQ(I)*100.O/FLOAT(NRUNS)

80 CONTINUE
c
c...Calculate cumulative fequency (%)
c

CCFREQ(1)-CAFREQ(1)
DO90,1=2,(ICNBAND-1)
CCFREQ(I)-CCFREQ(I-1)+CAFREQ(I)

90 CONTINUE
c
c...Calculate bands midpoints
c

D095,1=1,ICNBAND
CABMPT(I)-FLOAT(ICBAND(I))+BANDW/2.0

95 CONTINUE
c
c... Calculate the Rate of Probability with CAPTIM (f(x))
c

A=0.39894228/CAPSIC
DO100,1=1,(ICNBAND-1)
ROPWCAP(I)=(A*EXP(-(((CABMPT(I)-CAMEAN)**2)/(2.0*CAPSIC**2))))*1

&00.00*BANDW
100 CONTINUE

c
c...Exit
c

RETURN
END

347

Appendix F.20: Function IDAY

INTEGER FUNCTION IDAY(IDAYNO)

c** **
c** FUNCTION RETURNS AN INTEGER DATE (DAY ONLY) **
c** FOR ANY GIVEN DAY NUMBER (DAYNO) **
c** **
c**
c

PARAMETER(A=365.25,B=30.6001,C=122.1)
c
c...Calculate the approximate year
c

IYEAR=I NT((IDAYNO-C)/A)
c
c...Calculate the approximate month
c

IMONTH=I NT((IDAYNO-1 NT(A*IYEAR))/B)
c
c... Calculate the day
c

c

IDAY=IDAYNO-1 NT(A*IYEAR)-1 NT(B*IMONTH)
c
c...Exit

RETURN
END

348

Appendix G: One Simulation Run Output Written to the File PERTRA3.RES

PROJECT START DATE: 7/JUN/1993

PROJECT FINISH DATE: 12/APR/1994

Project Duration = 310 Days

CAPTIM = 5332846.00 JC.DAY

Internal Rate of Return (IRR) = 562.22 %

349

Appendix H: Sample of the Multiple Runs Output Written to the File

PERTRA3.RES

Number of runs =1000

TASK TASK OPTIMISTIC MOST LIKELY PESSIMISTIC

NAME TYPE DURATION DURATION DURATION

CRITICALITY

INDEX %

AFFWM

AUSFWM

CLEAR1

CLEAR2

CPBPD14

T

T

T

T

T

1.20

1.20

.60

1.50

.00

4.00

4.00

2.00

5.00

14.00

5.60

5.60

2.80

7.00

.00

.00

.00

51.90

100.00

.00

CPFBLD

CPFCONC

CPFEX

CPFRF

T

T

T

T

CPSCAFF H

.30

.30

.60

4.50

.00

1.00

1.00

2.00

15.00

46.00

1.40

1.40

2.80

21.00

.00

.30

.30

.30

.30

.00

Note: Criticality index shows the percentage to the number of runs that

the task was a critical task.

350

Appendix H (Continue..)

1. PROJECT DURATIONS

Minimum project duration = 305 DAYS

Maximum project duration = 354 DAYS

Mean Project duration = 332.70 DAYS

Median project duration = 332.00 DAYS

Standard Deviation 8.85 DAYS

Skewness = .2367

MIDPOINT FREQUENCY CUM. FREQUENCY f(x)

295.00 .00 .00 .01

305.00 1.10 1.10 .33

315.00 7.20 8.30 6.09

325.00 30.40 38.70 30.88

335.00 47.80 86.50 43.60

345.00 12.10 98.60 17.15

355.00 1.40 100.00 1.88

Median project duration is the duration lies in the middle of the set

durations when arranged in oreder of magnitude.

f(x) is the rate of probability with project durations.

project

351

Appendix H (Continue..)

2. INTERNAL RATE OF RETURN (IRR)

Minimum IRR = 61.101 %

Maximum IRR = 1291.002 %

Mean IRR = 368.269 %

Median IRR = 289.961 %

IRR Standard Deviation = 236.04650 %

Skewness = .99525

MIDPOINT FREQUENCY CUM. FREQUENCY f(x)

50.00 6.10 6.10 6.81

150.00 25.20 31.30 11.02

250.00 20.40 51.70 14.91

350.00 5.20 56.90 16.85

450.00 19.60 76.50 15.92

550.00 11.20 87.70 12.57

650.00 3.60 91.30 8.29

750.00 3.50 94.80 4.57

850.00 2.70 97.50 2.11

950.00 .00 97.50 .81

1050.00 1.70 99.20 .26

1150.00 .00 99.20 .07

1250.00 .80 100.00 .02

352

Appendix H (Continue..)

3. Negative CAPTIM

Minimum CAPTIM =

Maximum CAPTIM =

Mean CAPTIM

Median CAPTIM

CAPTIM Standard Deviation

Skewness = .71313

3255526.00 £.DAY

8720172.00 £.DAY

5385784.00 £.DAY

5097613.00 £.DAY

= 1212286.00 £.DAY

MIDPOINT FREQUENCY CUM. FREQUENCY f(x)

2500000.00 .00 .00 1.94

3500000.00 13.00 13.00 9.81

4500000.00 31.90 44.90 25.20

5500000.00 26.20 71.10 32.76

6500000.00 16.10 87.20 21.57

7500000.00 9.90 97.10 7.19

8500000.00 2.90 100.00 1.21

353

