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Summary

This research work is mainly concerned with the service and ultimate load
behaviour of reinforced concrete slabs and deep beams designed wusing nonelastic
stress fields. The nonelastic stress fields, at design ultimate load were determined
using a finite element procedure using uncracked stiffness, along with von Mises
yield criteria. The orthogonal reinforcement was provided based on Wood—Armer
and Nielsen— Clark yield criteria, respectively for slabs and deep beams.

The experimental study consisted of six simply supported slabs, two of which were
additionally supported by a column in the middle and two simply supported deep
beams with different span depth ratios. The first and the third slab were designed
using 70 and 30% of plasticity stress distribution whereas the rest of the models
were designed using 100% plasticity stress distribution. The major parameter. varied
was the levels of plasticity to observe their effect on the behaviour of the

structures studied.

A nonlinear finite element program based on plate bending layer approach for slabs
and inplane formulation for deep beams was used to study the behaviour of the
designed models. The steel is modelled as embedded and smeared and assumed to
be elastic perfectly plastic or with allowance for strain hardening. Kupfer— Hilsdrof
criterion was adopted as the failure criterion for concrete. Smeared crack approach
was used to account for the development of concrete cracks. Good agreement

between experimental and numerical results was obtained.

Results indicate that all the models designed by this method showed, when tested,
satisfactory behaviour both at service load and ultimate load. Both deflections for
slabs and crack width for slabs and deep beams were within acceptable limits at
service loads. All the models failed in a ductile manner with cracks spread over
the structure. For all the models the failure load was above the design ultimate
load.

It is concluded that the proposed design procedure produces a natural smoothing
out of the stress peaks, leading to a reasonably uniform steel distribution over the
slab avoiding congestion in the critical areas of slabs, which is desirable in practice.
For simply supported deep beams it appears that no significant redistribution of

stresses takes place and the use of elastic stress field in the design is sufficient.

A nonlinear procedure which treats reinforced concrete as an elasto— plastic
material is developed. This is applied to the analysis of inplane and plate bending

problems. The results appear encouraging.
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Notations

Major symbols used in the text are listed below. Others are defined

when they first appear.

{a) Flow vector.

{ap) Flow vector for positive yield surface.

{ag) Flow vector for negative yield surface.

Ac Area of concrete section.

Ajq The equivalent area of steel of ith layer.
Ag Area of steel in the longitudinal direction.

A, Ay Area of steel in x and y directions respectively.

b Section breath.

bg Body forces.

[B] Strain matrix

[Bf] Strain matrix associated with flexural deformation.
[Bp] Strain matrix associated with inplane deformation.

[Bg] Strain matrix associated with shear deformation.

C1, Co Coefficient for tension stiffening.

D Flexural stiffness per unit width.

[D] Elasticity matrix for any material.

[D'] Instantaneous elasticity matrix.

[Der] Rigidity inplane matrix for cracked concrete.
[Dep] Elasto-plastic stress-strain matrix.

d Effective depth.

dn Depth of neutral axis.

{dj) displacement vector.

E Young's modulus.

Ec Young's modulus of concrete.

E; Instantaneous Young's modulus for concrete.

Young's modulus of steel.



Ex, Ey Young's modulus in X and Y directions respectively.

f' Cylinder compressive strength of concrete.
foc Intermediate yield surface strength of concrete.
feou Cube strength of concrete.
fq Equivalent biaxial compressive strength of concrete.
fe Tensile strength of concrete.
fy Yield strength of steel.
{F) Vector of nodal forces in the cartesian coordinate system.
{F') Vector of nodal forces in the local coordinate system (n,t).
G Shear modulus.
H Strain hardening parameter for steel.
Ier Second moment of area of a cracked section.
leff Effective second moment of area of a section.
Ig Second moment of area of gross concrete section
(steel neglected)
[K] Stiffness matrix.
Ly Length of the member in X direction.
Ly Length of the member in Y direction.
m Ratio of tensile to compressive strengths of concrete.
M Bending moment at any stage of loading.
Mcr Cracking moment.

M,, M¢, M, Applied moment components at a point in the local
coordinate system (n,t).

My, My, MXy Applied moment components at a point in the cartesian
coordinate system.

M;, M; Design moments in X and Y directions respectively.

Plastic moment.

M, M, Principal moments.

N total number of node points.

Nj Shape function associated with node i.

Ny, Ny, ny Applied inplane forces at a point in the cartesian



AU

AV

u, v, w

coordinate system.
Applied load.
First cracking load.
Design load.
Load at a crack width of 0.3 mm.
Load at the limit service deflection.
Ultimate load.
Load at first yield of steel.
Intensity of the uniform distributed load.
Shear force components in cartesian coordinate.
Loaded surface area.
Effective shear moduli in the x and y directions.
Transformation matrix for cracks.
Plate thickness.
The total internal strain energy.
The total external energy.

Displacements at a point in X,Y,Z directions respectively.

u,, V,, W, Displacements at a point in a reference plane of a plate.

X, Y, Z Rectangular cartesian coordinates.

X, Y, 2

Zi

dx

Y

Txz1 Yyz
{é)

€er

coordinates at a point in X, Y, Z system.

Distance from the reference plane to centre of the jth
layer.

Shear retention factor.

Shear retention factor at cracking strain of concrete.
Plastic multiplier.

Area shear factor.

Shear strain components in the cartesian coordinates.
Nodal displacement vector in the cartesian coordinates.

Crack strain of concrete.

Elastic strain.



‘p Plastic strain. .

€pk Peak strain.

{ef) Strain vector associated with flexural deformations.
{eg) Strain vector associated with shear deformations.
€x» €ys Txy Strain components in the cartesian coordinates.
€ys Yield strain of steel.

t,n Local coordinate system. )

9 Angle of the principal plane.

bcr Angle of crack with respect to X axis.

0y, Oy Rotations about x and y axis respectively.

0nh, 6t Rotations about n and t axis respectively.

v Poisson's ratio.

{0} Stress vector.

{g,) Initial stress vector.

o Stress at a point.

Aoy The ith incremental stress at a point.

Ooct The octahedral stress at a point.

On Normal stress.

op The peak stress.

Ox» oy, Oxy Stress components in a cartesian coordinates.

0,y O,

The principal stresses.

Txy: Txz» Tyz The shear stresses in xy, xz, yz planes respectively.

o

ty, Cu

Px» Py
¢

by, ¢y
¢1, 92

Curvature ratio defining ductiltity demand.

Curvature at yield and at ultimate capacity of the slab.
respectively.

Steel ratios in X and Y direction.

Reinforcement bar diameter.

Transversel shear rotations in the XZ and YZ planes
respectively.

Reduction factor related to Ig and ., respectively.



Chapter 1

Introduction

Reinforced concrete slabs and deep beams find extensive applications in
engineering practice. Slabs are used as floors and roofs of buildings, and as bridge
decks to carry traffic loads. Their main function is to transmit loading acting
normal to their plane. Deep beams appear frequently in complex structures in the
form of transfer girders, foundation walls etc. They are loaded in their plane in
which shear,is adominant feature.

Present design procedure of reinforced concrete structures is based on limit state
concepts. These concepts ensure that a structure has a suitable factor of safety
against failure, and in addition, it is serviceable when subjected to its design
working load. According to limit analysis, it is generally difficult to calculate the
exact value of limit load of a reinforced concrete structure. The methods in use

give either:

i— a stress distribution not violating the yield criterion and satisfying equilibrium
with the external load and the prescribed boundary conditions. A stress distribution
such as this is denoted safe and statically admissible stress distribution. The load
corresponding to this stress distribution will always be less than or equal to the
true collapse load of the structure, hence the name lower bound solution.

Hillerborg's strip method and direct design method are of this nature.

iim a valid collapse mechanism compatible with the boundary conditions of the



structure so that the internal dissipation of energy on yield lines must be equal to
the work done by the external loads. The load corresponding to this collapse
mechanism will always be greater than or equal to the true collapse load, thus the
name of upper bound solution. The true collapse load corresponds to the collapse
mechanism giving the least load. Yield line methods for slabs and deep beams fall
in to this category. Further details of the methods is the subject of the next
chapter.

Modern limit state design specifications require designers to consider the behaviour
of a structure as it reaches its limit of resistance, which includes nonelastic
response in most cases. To produce designs that éccount for this behaviour requires
the use of either conventional elastic analysis supplemented by semi— empirical or
judgemental allowances for nonlinearity, or more advanced methods of analysis.

The object of the present study is to explore the possibility of using nonelastic
stress fields in the direct design of reinforced concrete slabs and deep beams. The
direct design method is described in chapter three. The finite element method,
which is the object of chapter four, was used to design and analyse the models.
Nonlinear analysis of reinforced concrete slabs and deep beams was carried out
usingalayer approach by considering material nonlinearities as presented in chapter
five. The details of the test set—up and material properties for the tested models
are given in chapter six. Generation of nonelastic stress fields and design of slab
and deep beam models tested are described in chapter seven. The behaviour of the
models, at service and ultimate load, both experimentally and numerically based on
nonlinear finite element analysis, are examined in chapter eight. The possibility of
treating reinforced concrete as an elasto— plastic material obeying Wood— Armer and
Nielsen— Clarck yield criteria for both plate bending and inplane problems,

respectively, is the object of chapter nine.



Chapter 2

Analysis and Design of Slabs and Deep Beams

2.1 Introduction:

In practice, loads to which a structure will be normally subjected to, with in
certain bounds, are normally known. Design consists of finding the stress
distribution in the structure for the concrete section and calculating the required
reinforcement steel area. The stress distribution in any structure is dependent
upon the geometry, loading, boundary condition and the state of the material in
the structure, whether elastic or plastic. Accordingly the analysis and design
methods can be classified into two main categories, viz: elastic and plastic
methods of analysis and design.

The purpose of this chapter is to discuss the basis of the methods used for the

analysis and design reinforced concrete slabs and deep beams.

2.2 Elastic Methods of Analysis:

In these methods, classical elasticity theor’, {s used to obtain the stress

distribution.



2.2.1 Elastic Methods of Analysis for Slabs:

The behaviour of linearly elastic thin plates loaded normal to their plane was
investigated by Lagrange(90). In developing a satisfactory approximate theory of
bending, the following assumptions are made:

i— During bending, middle plane of the plate remains unstretched.

ii— Stresses perpendicular to the plane of the plate are ignored.

ili— Plane section remain plane before and after bending, figure 2.2.

iv— The deflections of the slab are small in comparison with its thickness.

By considering the equilibrium of forces acting on the slab element in figure 2.1
with dimensions dx and dy in the x and y directions respectively, the following

equation can be derived:

92M, aznxy 92My
- + 2.0 + = - q 2.1
ox? Oxdy dy?

This equation 2.1 is known as the plate equilibrium equation. If the plane
sections remain plane before and after bending, the strain due to the

displacement at any level Z are given by:

o6y BBy
€x = - Z ; €y = - z
ox oy
o8y 60y
and Txy = - Z ( + ) 2.2
oy ox

where ey, €y and vyy are the inplane strains at level Z from the neutral plane
of a given point in x,y cartesian system coordinates. 6y and fy are the rotations

of normals to neutral axis and can be written in Mindlin plate theory as:



ow ow
0y = —— + ¥ 0y = —mm + V¥ 2.3
ox y oy Y

where w is the deflection in Z direction.

In the classical plate theory ¥y and ¥, which are average rotations due to the
transverse shear effects in x and y respectively, are neglected. Thus, by replacing
equations 2.3 in equations 2.2 the normal and shearing strain at level Z can be

written, in terms of deflection w as follows:

92w 32w
€&x = - 2 ; €y = - Y4
ox? dy?
02w
and Yxy = 2.0 Z —— 2.4
dyox

Using Hooke's law for isotropic material, the stresses are related to the strains

by:

Oy E vE 0 €x

o = vE E 0 € 2.5
b Yy :
Txy 0 0 G Yxy

where E and G are the independent material constants defining the elastic
properties of the plate and » is the Poisson's ratio. The moments are given, by

integrating the stress over the thickness of the plate t.

t/, t/,
M, = oy, Z dZ = ( E e, + vE e, ) Z dZ
X X X y
_t/2 _t/2
02w 92w

+ vE
ox 2 oy?

y Z2 dz

t/2
Thus M, = - ( E
_t/z



/"/ T Mxy &x
e L

2= Moment per Unit Length

Pid 60
/’/// +—= dx
’/’, t
y/ . 1
S
y (Sy y

b— Shear Force per Unit Length

Fig. 2.1 Equilibrium of Slab Element



02w 02w

=- (D + »D ) 2.6a
ox2 dy?
Similarly:
92w 92w
My = - (D + »D ) 2.6b
dy? ox?
92w
Myy = 2.0 Dy
OxX3y
Where
E t3
D =
1 -»2 12
E t3
ny =

2(1 + ») 12

Substituting expressions 2.6 in the equilibrium equation 2.1 we obtain the

following expression:

where D= —4m48 ——
12(1 - »2)

and q is the normal loading intensity per unit area.

In the analytical procedures, the deflected surface of the plate is represented by
either a double infinite Fourier Series (Navier Solution) or by a single infinite
trigonometric series (Levy's solution). Detailed accounts of such methods can be

found in text books on plate theory(90).

2.2.2 Elastic Analysis Methods for Deep Beams:

Deep beam members in structural frame have always presented structural



analysts and designers an interesting dilemma. On the one hand, design codes
usually require the designers to account for the deep beam action and, on the
other hand, there are no available general solutions for the deep beam problem.
However, two types of solutions to the deep beam problems . are available in
literature, i.e., elasticity and finite element solutions. Timonshenko and
Goodier(91) presented elasticity solutions for inplane problems with different
loading and boundary conditions. A rigourous theory of elasticity solutions for the
case of the deep beam that is either simply supported or is resting on infinite
number of equally spaced support have been given for gravity as well as for
surface loading(92). Later Bhatﬁ(93) presented a general solution procedure to any
statistically indeterminate support of continuous deep beams. In the following, the
description of inplane solution development is discussed.

Consider the equilibrium of a small rectangular element in figure 2.3 and by
neglecting the body forces, the equations of equilibrium for two dimensional

problems are:

90y B'rxy
+ =0 2.8a

ox oy

-Tog Ty
Y + Y =0 2.8b

oy ox

These equations are not sufficient for determination of the three stress component
Ox, Oy and Oxy- Therefore the problem is statistically indeterminate. In order to
obtain the solution, the elastic deformation of the body must also be considered
by using the condition of compatibility of strain distribution with the deformations

u and v. For two dimensional problems this is presented as follows:

du ov

ox oy



Ju v
and 'ny = ] + 3
y X

Eliminating vy, from the above equations,

02ey d2%¢ 92y
+ Y = Y 2.9

ox? dy? oOxay

The above equation is called condition of compatibility which must be satisfied by
the strain components. By using Hooke's law for isotropic materials and equations

2.8, equation 2.9 can be written in terms of stress as follows:

J2 J2
( + ) (og + 0y ) =0 2.10
ox? dy?

Equations 2.8a, 2.8b and 2.10 are sufficient to solve for the stress components.
The solution must be compatible with the boundary conditions. To solve these
equations, usually a so called Airy's stress function ¢ is used from which the

stress components can be calculated as follows:

929 92 029
0‘x=———2——;ay=— and Tyy = - ——— 2.11
oy dy? Ixady

Substituting expressions 2.11 inkp equation of 2.9, thus the stress function ¢

must satisfy the equation:

944 94d 949
— + 2.0 + = 0.0 2.12
ox4 9x29y? oy*

A number of practical two dimensional problems can be solved using equation

2.12, for more details reference can be made to reference (91).
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nidplene

sctusl deformation

assumed deformation

normal to midsurfece

aftor deformetion

Fig. 2.2 Cross— Section Deformation of Mindlin Plate

or
X
Txy Txy + Y dx
ox o0
Oy +— — 0, + X dx
Ix
or
Xy
7 + dy
Xy oy da,,
7 Ty + ~ dy
v

Fig. 2.3 Equilibrium of an Element Under Inplane Stress



2.3 Plastic Methods of Analysis and Design:

Concrete is a brittle material in tension, but exhibits a little ductility in
compression. However, stress redistribution occurs in most reinforced concrete
structures. This means that the member sections are sufficiently ductile so that
the yielded sections continue to deform at constant strength, but the available
ductility, unlike steel section, is limited. This section discusses some of the plastic

1

methods applied 'to the analysis and |design of reinforced concrete slabs and deep

beams.

2.3.1 Plastic Methods for Slabs:

2.3.1.1 Upper Bound Analysis (Yield line Theory of Slabs):

Yield line theory is an upper bound method, introduced by Johansen(99). The
method determines upper bound load based on an assumed failure mechanism. It
is assumed that all the reinforcement crossing the yield line, defining the
postulated mechanism, yields. The moment at plastic ‘'hinges' (yield line) is equal
to the ultimate moment of resistance of. the section and the collapse mechanism
is compatible with the boundary conditions. To design by yield line theory a
layout of reinforcement must be selected and then various collapse mechanisms
are examined to find the one which corresponds to the lowest load. The shape of
the assumed mechanism depends on the slab geometry, support conditions and the
type of loading. If the collapse mechanism is incorrectly chosen this can leads to
unsafe design. Thus the designer is forced to seek all possible modes, for correct
analysis. This would create some difficulties for slabs with uncommon shapes.

The main advantage of the yield line theory for slab is that it requires relfatively
simple calculation. The method can be applied to any shape of slab, any load
and any edge condition but restricted in practice to slabs of constant thickness,

uniformly reinforced in each of the two orthogonal or skew directions. The

11



method suffers from some disadvantages. It does not give any information on the
best steel distribution within the slab, load distribution to supports and stress
distribution inside rigid regions. Moreover, the method provides no information on
the slab deflections or crack width at any stage of the loading. For slabs of
complex shape, it is difficult for the designer to find an appropriate collapse
mechanism, therefore the application of this method requires considerable

experience.

2.3.1.2 wer Bound Analysis (Hillerborg Strip Method for Slabs):

Other plastic methods of slab analysis are used, like strip method presented by
Hillerborg(59). Based on the lower bound approach, Hillerborg made use of the
strip action in slab, and choose his solution to equation 2.1 so that the torsional
moment M,{y is equal to zero, everywhere in the slab. Thus equation 2.1 reduces

to:

+ --q 2.13

The load q is divided into a component oq carried in x direction and (1— a)q in

y direction, so that equation 2.20 can be split into two equilibrium equations:

d2M 9 2My
= -aq and ——— = -(1l-a)q 2.14

ox? dy?

X

It is usual to choose o between zero and unity (0£a4l). The load is thus carried
by bending action created by parallel strips spanning in two direction x and y.
One important drawback of the strip method is that, in pursuit of simple
solution, the designer may choose stress distributions which might depart far from
those required for a good serviceability behaviour. This may seriously impair the

function of the slab at early stages of loading.
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2.3.2 Plastic Method for Deep Beams:

The solution of deep beam type problems using plasticity concepts was
developed by Nielsen. He derived some solutions for deep beams considered as
wall elements. An extensive work on the method was presented by Nielsen(74),
Jensen(57) and Braestrup(58). The authors assumed that concrete has no
resistance in tension and introduced an effectiveness factor X\ to account for
limited ductility of concrete in compression, so that fz = X f(':. Where f is the
concrete effectiveness strength and fé is concrete cylinder strength. The strength
of reinforcement under compression was neglected.

Consider an yield line in a plane concrete element separating two rigid parts of
the body figure 2.6. The relative displacement rate of the rigid part is &,
inclined at an angle o to the yield line figure 2.6. In the local displacement zone

A we have:

) 6
e =0, e = sina, ypt = cosu 2.15
A A
Thus the principal strain rates are as follows:
) o
€, = (1 + sina), €, = - (1 - sina) 2.16
24 24

For —7/2 £ a £ /2 it can be seen that ¢, > 0 and ¢, £ 0. According to the

associated flow rule, the only state of stress in concrete for which

deformations can occur is when o, = 0 and 0, = — fz = — A fc', figure 2.7,

where N is the effectiveness factor accounting for limited ductility of concrete.
The internal work per unit length of the yield line of plain concrete and over

the element of thickness b is:

13
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Wei = A Jb(o,e1 + 0,¢,) db 2.17
5
Wej =ADb [ O+ f% (1 - sina) ] 2.18
24
1
“Wej = — b f§ 6 (1 - sin) 2.19
2

It is clear that if the relative displacement § is perpendicular to the yield line,
that is o« = #/2, the work W; = 0. This reflects the assumption of zero tensile
concrete strength. However as soon as & has a tangential comporent that is o <
n/2 the resistance increases. If o = 0, that means pure shear where 7 = fg/2.
For pure crushing ¢ = — #/2, the compressive resistance ¢ is equal to the
factored concrete strength fz

The total rate of internal work dissipated in the plain concrete along the yield

line of length L is:

1
Wei = ~ Lb s ff (1 - sina) 2.20

For a reinforced bar crossing an yield line at an angle + figure 2.6, the

contribution of steel to the internal work rate is:

Wgi = Ty cos(y-o) & 2.21

Ty is the longitudinal reinforcement yield force.

In the following, both upper and lower bound solutions are discussed.

2.3.2.1 Upper Bound Analysis:

Figure 2.7 shows an admissible failure mechanism of a deep beam with an

yield line running at an inclination (@ from the edge of the load platen. The
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relative displacement rate is 6 inclined at an angle o to the yield line. The rate

of the work done by the load V is:

We = V sin(at+B) o

With reference to equation 2.20 the internal work dissipated in the plain

concrete, along the yield line L = h/sing is:

1 h
Weij = —
2 sinf

b s ff (1 - sina)

The reinforced bar is assumed to yield in tension so that in figure 2.7 o+ (3 2
/2. The contribution of reinforced bar, crossing the yield line, of longitudinal

yield force Ty, is:

Wgi = - Ty cos(o+fB) &
Thus the total internal work is calculated as follows:
1 h

Wi = Wej + Wgj = —
2 sinf

b 6 fg (1 - sina) - Ty cos(e+B)s 2.22

The upper bound solution is given by the work equation of external and internal

work: W; = W, which gives the upper bound solution:

h b fg (1 - sina) - 2 Ty cos(a+B)sing
V= 2.22
2 sin(o+B)sinf

The lowest upper bound solution is found by minimising equation 2.22 with

respect to the variable o. A minimum is found for dV/de= 0.0, which gives:

bhfg cos(e+f) = - (bhfg - 2Ty) sinf 2.23

With longitudinal reinforcement under tension, thus o+ § 2 #/2. This means that

16



(bhf: - 2Ty) in equation 2.23 must be greater than zero. That is 2Ty/bh £ fz,
thus: & £ N2, where & is the ratio of longitudinal reinforcement force to
concrete compressive force ¢ = Ty/bhfé and \ = f:/fé.

By replacing the resulting value of o and cot@ = a/h in equation 2.22, the

minimum is:

V=1/2 b\ fé {(/[a? + 4h2B(A-d)/N2]- a) 2.24

valid for & £ N2.

If reinforced bar is under compression, thus o+ f £ #/2 for which dV/da £0.0,

The lowest upper bound solution is obtained when: o+ 3 = /2, thus :

V=1/2 b\ f; [/(a2 + h2)- a] 2.25
valid for & > M2,

2.3.2.2 Lower bound Analysis:

Nielsen and Braestrup(57) assumed the stress distribution in the shear span as
shown in figure 2.8. The load was assumed to be running along the compressive
strut between the load and the support, and inclined at an angle ¢. The
triangular shaded areav)‘(‘clsonsidered to be under biaxial hydrostatic compression. The
force in the tensile reinforcement is T. The stress state is statistically admissible
in the sense that it satisfies the equilibrium equations and the statical boundary
conditions on the upper and lower face. The anchored reinforcement at the
support transmits a compressive force on concrete of intensity T distributed over
the depth Y as shown in figure 2.8. The width of x and y, defining the region

in biaxial compression under the point load and on the support area figure 2.8,

are determined by considering vertical and horizontal equilibrium:

V=bxo 2.26

17
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T=byo 2.27

where o is the compressive stress of concrete. In general the length of the load

platen t is equal to x. The dimension s is determined so that equilibrium

condition at the support is guaranteed, that is:

V (s/2 - x) =T (y/2 - c) 2.28

From figure 2.8, the inclination 6 satisfies the geometrical relation:

cotf = y/x = (a + x)/(h-y) 2.29

and using equation 2.26 and 2.27, the lower bound solution can be written as:

V = 1/2 {(/ [(bac)? + 4T(bho-T)] - bac) 2.30

The highest lower bound is determined by maximising equation 2.30 with respect

to the statical parameters ¢ and T. It appears that:

oV
2 0 always.
o0
oV
2 0 for T § bho/2
oT

Therefore the highest lower bound is obtained with the maximum concrete stress.
ie. 0 = fz = kﬂ;

For T < 1/2 bhf; the highest lower bound is obtained with the maximum
reinforcement force (T = Ty). Thus, by introducing the same constants as

defined for the upper bound solution; the highest lower bound solution is given

by the following equation:

V=1/2b\ f, {/[a2 + 4h2d(A-d)/\2]- a) 2.31



valid for & £ \/2.

For T 2> 172 bhfz the highest lower bound is obtained with T = 1/2 bhfz,

thus:

V=1/2b\ fy [/(a? + h?2)- a] 2.32

valid for & > N2.
In general the methods are used to find the ultimate load of an existing beam.
For more detailed explanation of the methods and their practical applications

reference should be made to references (77,74,58).

It is clear that the lower bound solution equations 2.31 and 2.32 are identical
with the upper bound solution, equations 2.24 and 2.25. Thus the method is an
exact plastic solution for deep beams subjected to point loading.

The problem with this method is finding the effectiveness parameters )\, which at
first instance was taken to reflect the limited ductility of concrete which depends
on the strength fé‘ However this factor must account for other neglected features,
notably the size effect, the tensile concrete strength, and the state of stresses at
failure(58). Many workers have compared the plastic solution to the existing
published test results. An attempt to find relationships between certain parameters
of the tested beam and the effectiveness factor A was carried out by Stewart and
Watt(118). They concluded that more results should be analysed from different
sources. By analysing nearly a hundred beams, Bhatt(60) concluded that the
results appear very promising with N\ = 0.44. Braestrup(58) reported that a
comprehensive investigation of published test results has been carried out by
Chen(61) and yielded the following formula of X\, for rectangular non— prestressed
beams.

A = (1-0.25)(2-0.25h)(2-0.4a/h) (2+100p) O.60//fé 2.33

with h £ Im; h/a £ 2.5 and the steel percentage p £ 0.02.

Nielsen and Braestrup(57) reported a series of five rectangular simply supported
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prestressed beams under two point loading. The beams had different shear span
ratio a/h. The authors concluded that the results were in excellent agreement with

the solution, with an effective factor N\ = 0.46.

For design engineery all the methods described above are not design orientated,
and simplified methods have always been employed, unless of course design tables

and charts are available.

2.4 Current Simplified Methods of Design and Analysis:

2.4.1 Simplified Method for Slabs::

For slabs Rankine— Grashof method, which generally approximates the slab to a
set of parallel beams resisting the load by bending actions and where torsional
moments are ignored, is used. The condition of compatibility is only
approximately satisfied. For a given uniform load q, the proportion of the load
carried by orthogonal strips in x and y directions are such that

ax + dy = 4. 2.34
The value of qy and qy are determined from the condition of deflection

compatibility at the centre strips. Thus using simple beam deflections:

5q, 14 qul“
= 2.35
384E, I 384Ey 1y

By assuming equal rigidities in the two strips, and solving for gy and qy using

equations 2.34 and 2.35, it results in:

Qy = ————— g 2.36
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Ly
- q 2.37

Ly + Ly®

Ay

Thus the maximum bending moments in x and y directions can be obtained as:

Ly4 qLy?
My = = agy qLy? 2.38
Ly® + Ly® 8
szLyz gLy 2 2
My = = gy qL 2.39
L% + Ly4 , 8

Coefficient ogy and ogy depend on aspect side ratio, and are given in table 3.14
of BS8110(1). This method applies for rectangular simply supported slabs under

uniform load.

2.4.2 Simplified Method for Deep Beam, CIRIA Guide 2:

For a shallow beam subjected to concentrated loading, the capacity is governed
by either the strength in flexure of the maximum moment section or the strength
in shear of the span. However, foradeep beam, the ultimate load is determined
by transfer of forces between load and support. Usually for shallow beams,
bending, shear and axial forces are considered separately. This becomes less
appropriaté in beams with span/depth ratio less than 2.5, because of the
interdependence and interaction of vertical and horizontal stresses. It was Kaar(94)
who concluded, by testing homogenous and isotropic materials, that when the
span to depth ratio was less than 1.5 the use of flexural formula for measuring
the stresses was seriously in error. By using elastic stress distribution in deep
beams CIRIA Guide 2(98) revealed that:

i— Plane sections of the beam do not remain plane after deformation.
ii— Areas over the supports are highly stressed. Therefore splitting forces arise
more frequently in deep beams.

iii— The distance between the centroids of the tensile zones wvaries along the
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length of the beam and is greatest at mid span.

iv— In deep beams vertical and shear strains are largely comparable with bending
strains.

CIRIA Guide 2 report(98) was intended to provide designers guidance on the
design of reinforced concrete deep beams. Its rules were mainly based on the
published information which had been assessed critically and presented in a form
suitable for application(97). The guide applies to beams having an effective
span/depth ratio l/h less than 2 for single span and 2.5 for continuous beams.
This guide was intended to be used in conjunction with British code CP110(95).
However Kong et al.(96) concluded that CIRIA Guide could safely be used with
BS8110(1). Of all the currently used main design documents, CIRIA Guide gives
the most comprehensive recommendations(85). In the following some sections of
the Guide are discussed, in conjunction with the reinforced concrete code of
practice BS8110(1).

The effective span length ! and the active hight h, are determined with reference

to figure 2.9 as follows:

[ =1, + [lesser of (c1/2 and 0.11)

+ lesser of (c2/2 and 0.11,)] 2.40

hy= minimum of (h, ) 2.41

The part of the beam which is above this active hight h, acts as a load— bearing

wall.

The flexural and shear strength of the beams are determined as follows:

a— flexural strength:

i— Calculate the ultimate moment capacity of concrete section:
Mu = 0.12 f,, bh,? 2.42

where f;, is the concrete characteristic strength and b is the beam thickness.
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ii— If I/hy > 1.5, the applied moment must not exceed Mu.

iii— Calculate the area of the main longitudinal reinforcement:

M
Ag = —— 2.43

0.87 fy Z

fy is the steel characteristic strength and Z the lever arm calculated as follows:
For single span beams;

Z=0.21+0.4 hy 2.44a
For continuous beams;

Z=0.21+0.3 hy 2 44b
iv— The calculated reinforcement area Ag must be distributed over a depth of

0.2 h, and appropriately anchored at the end.

b— Shear strength:

For a given beam under concentrated load and with reinforcement A {(horizontal

and vertical), the applied shear force must not exceed the limit imposed by

equation 2.45 ie:

Ar yy sin?26,

+ X, 5 100.0 B 2.45

where x, is the clear shear span of the point load (in figure 2.10 x, = x).

A;= 0.44 and 0.32 for normal and light weight concrete respectively. x, = 1.95
and 0.58 N/mm? for deformed and plain bars respectively. y, is the depth at
which the typical web bar intersects the critical diagonal crack Y—Y in figure

2.10. 6, is the angle between the bar being considered and the line Y—Y in

figure 2.10. The rest of the parameters in equation 2.45 are as defined
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previously.

Equation 2.45 is essentially the Kong et al.(97) equation where X\,, \, are
modified to introduce the necessary safety factors for design purposes. According
to CIRIA Guide2(98) this equation applies only for x¢/h, over the range 0.23 to
0.7. However later Kong et al.(96) concluded that equation 2.45 can be applied
to an extended range of x¢/h, from 0 to 0.70. In equation 2.45 the first factor
of the right side is the concrete contribution to the shear capacity. The second
term is the steel contribution to the shear capacity. The total contribution of the
steel reinforcement must not be less then 0.2 V., If it is less than this value, the
web reinforcement must be increased up to 0.2 V. The shear force also must not
be greater than the shear capacity of concrete defined in section 3.4.2 of CIRIA

Guide 2(98) as:

\

£1.3 )\, J fey 2.46
bh,

All these methods of analysis and design, whether plastic, elastic or based on
experimental test results, fail to be general and independent of the shape,
boundary and loading conditions. However numerical methods have been found to
be more convenient to overcome most of these limitations. In these methods
stress distribution, deflections and other informations on slabs and deep beams can
be calculafed easily.

2.5 Numerical Methods:

2.5.1 Finite Element Method:

The finite element method is the most versatile method used, in the design
and analysis of slabs and deep beams. The method can be wused to analyse
variable thickness slabs and deep beams with curved, stepped or inclined edges.

Edge stiffening, openings and loading at any location can be easily dealt with,
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and different material properties of the constituent materials, concrete and steel
can be included. The continuum is replaced by an equivalent idealized structure
composed of discrete elements connected together at a finite number of nodes.
The conditions of equilibrium are applied at every node of the idealized structure
and the solution of the set of equilibrium equations yields nodal displacements,
which in turn are used to calculate the internal strains and stresses. Further
details of the method are given in chapter 4. The method is extensively used in
the present work both for the analysis and design of slabs and deep beams. The
direct design method, which is a lower bond method and described in the next
chapter, is used in the design of the present models using a nonelastic stress

fields generated by finite element procedures.

27



Chapter 3

Direct Design of Reinforced Concrete

3.1 Introduction:

In chapter two, various methods for the design of concrete slabs and deep
beams were described. Most of these methods concentrated on the calculation of
the ultimate loads, and no other information is given. It is desirable that the
method of design itself must not be a complicated task for the designer and
capable of handling any geometry, boundary and loading conditions with minimum
difficulties. The direct design method is one attractive method which is design
orientated and in addition pays attention to serviceability limit states as well. The
method will be described in the following sections for both plate bending and
inplane problems.

Currently, the recommendations in British practice for reinforced concrete are
based on limit state design and are given in British Standard Code of Practice BS

8110(1). In practice any structure must satisfy the following two limit sates:

a— Ultimate limit state (ULS):

This state is associated with the maximum load carrying capacity of the
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structure. The collapse of the structure or part of it, may arise from rupture of
one or more critical sections, from the loss of static equilibrium (transformation
into mechanism) or from buckling due to elastic or plastic instability. In practice
the designed structure must have a security margin, assured by an appropriate

load factor.
b— Serviceability limit state (SLS):

This condition requires that the structure should not exceed certain limitations
in terms of deflections, crack widths, steel strains and for some structures
vibration under service loads.

In general, reinforced concrete structures are designed for the ultimate limit state

and checked for the serviceability limit state.

3.2_Direct Design Approach:

The speed of developments in computer technology have diverted the
attention of the designers from using conventional design methods in conjunction
with code prescribed rules to a more highly sophisticated computer aided design
(CAD) procedures. The advances in finite element techniques has also increased
the need to find an automatic design procedure. In other words a computer
design orientated method, so that a structure can be designed with minimum
intervention by the designer. 'Direct Design' is one attractive‘ method. This

method combines analysis and design into a single continuous operation.

The direct design method satisfies theoretically all the basic classical plasticity
theory requirements, viz equilibrium, yield condition, mechanism and ductility

demand.
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Equilibrium condition:

In classical approaches, the distribution of stress in reinforced concrete
structures are determined using elastic theory. In fact any stress distribution, in
equilibrium with the applied loads, can be used. In this study the stress fields are
obtained using finite elements of the unreinforced concrete structure with the
uncracked properties of concrete, so the equilibrium condition is automatically

satisfied.

Yield condition:

Using direct design procedure, the steel of reinforced concrete structure is
determined directly from yield criteria so that the resistance provided by concrete
and the steel, at each point, must be equal to, or greater than the applied

f{,(c
stresses. In Ydirect design technique, the resistance of the structure at each point
is matched as closely as possible to the applied stress. This will let all points of

the structure, theoretically, » yield simultaneously.

Mechanism condition:

Since the steel area, at any point of the structure, is obtained directly by
satisfying the vyield condition, thus at ultimate load all the points attain their
ultimate strength with a minimum of redistribution of stresses converting the

structure into mechanism.

Ductility demand:

It is assumed, in the classical plasticity theory, that the material possesses
unlimited ductility. This means that the early yielded region in the structure will
continue to deform without any reduction in their strength. However, this
requirement can be avoided if the difference between the load at first yielding
and the ultimate load of the whole structure is made as small as possible, so that

the early yielded points or regions can deform at constant stress before reaching
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the descending branch of stress—strain of material. Theoretically using this
method, this condition will be satisfied automatically as the required steel is
determined directly from the yield criterion, thus all the points of the slab will

yield simultaneously.

3.2.1 Assumptions and Definitions:

Simplifying assumptions are further made and can be summarized as follows:

i— The reinforcing bars carry only uniaxial stress in their original directions. So
kinking and dowel actions are neglected.

iim For inplane problems the reinforcement is taken to be positioned
symmetrically with respect to the middle surface of the section and to be in two
orthogonal directions (fig. 3.2 and 3.8).

iii— The reinforcing bars are assumed to be elastic perfectly plastic with yield
stress fg in tension and fg' in compression (fig. 3.5).

iv— The bars are considered in terms of area per unit length rather than as
individual bars, because it is assumed that the bar spacing is small in
comparison with the overall dimensions of the structure.

v— The concrete is assumed to have no resistance in tension, to satisfy a square
yield criterion in inplane stress (fig. 3.6) and to be perfectly plastic. This last
assumption obviously does not reflect the true behaviour of the concrete.

vi— Instability failure and bond failure are assumed to not happen, by proper

choice of the section and reinforcement.

3.2.2 Plate Bending:

It was Hillerborg(65) who first proposed a method for the reinforcement of

slabs and shells designed according to the theory of elasticity. This method was



later reconsidered by Kemp(82) and finally Wood(71) reexamined and enlarged the
idea of Hillerborg by establishing simple rules and equations for the optimum
steel in slab elements subjected to the moment field (Mx,My,Mxy) without
membrane forces. Wood's equations for the design of orthogonal steel of slab
elements at the top and bottom faces have been extended by Armer(72) to cover
skew reinforcement.

In the following sections, the derivation of the yield criterion and design

equations of reinforced concrete slabs, will be briefly described.

3.2.2.1 Derivation of the yield criteria:

The yield criterion for any material is a mathematical relationship between a set
of applied stress and strength of the material. The yield condition is satisfied if
the strength of the material at any point is equal to the applied stress.

Consider an element of a slab subjected to bending moments M,, My and
torsional moment Mxy as shown in figure 3.1. The slab element can provide a
flexural strength of M *, My* in x and y directions (fig. 3.4). The yield criterion

can be written as:
F(My, My Mgy, M, M%) = 0.0 3.1

Consider as shown in figure 3.3, at any point in the slab element, a line wit«h a
normal n and tengent t. The normal applied moment M, must not exceed the
value of the moment of resistance that the reinforced section in the slab could
develop in direction n. This is called a normal moment criterion.

Taking the normal to the yield line at an angle 6 to the x axis and considering

the equilibrium of the element shown in figure 3.3 we have :

Mp = My cos?6 + My sin26 - 2.0 Mxy sinf cosé 3.2
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M = My sin?6 + My

Mpt = (Mx - My) sin6 cosf + My, (cos?6 - sin?9) 3.

The resisting normal moment at the yield line can be expressed as:

My = M* cos26 + My* sin?o 3.

The value of M; in equation 3.5 must always be greater than that

calculated from equation 3.2, that is:

M,™ - My = 0.0 3.

Substituting equation 3.2 and 3.5 in 3.6, thus:

) % : z
(My™ - My)cos26 + (My - My)51n26 + 2.0 Mxysnaecost’) = 0.0 3.

If we take:
A =M - M 3
B = My" - My 3
C = MXy 3

equation 3.7 will be in the form:

A cos?f + B sin2f + 2.0 C cosfsinf = 0.0 3.

Dividing by cos2¢, equation 3.11 reduces to:

cos?6 + 2.0 Mxy sinf cos# 3.

3

5

for My

.10
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F(8) = A + B tan2¢ + 2.0 C tanf » 0.0 3.12

For optimum steel, excess strength must be a minimum, that is to say:

dF(#6)
= 0.0 3.13
dtané
d2F(6)
> 0.0 3.14
dtan?6
dF (8) C
= B tanf + C = 0.0 =2 tanf = - 3.15
dtané B
My
tanf = - Y 3.16
My™ - My
d2F(9)
=B >0.0 > My* > My 3.17
dtan?6

Substituting equation 3.15 in equation 3.11 then:

C C
A+B(-——)2+20C(-——)=0.0 3.18
B B

or AB - C? 0.0 3.19

Replacing A, B and C by their values, one gets:

- (M- M) (MY - M)+ My 2 = 0.0 3.20

y Xy

This is the vyield criterion for reinforced concrete slabs, known as Wood
criterion(71). Armer(72) extended the work of Wood to take account of skew

reinforcement.

For the yield criterion in the negative steel at the top of the slab, similar
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procedure can be adopted. The yield condition for negative steel ( top steel )

can be written as:

- (MRt + M) (My*t + My) + Myy? = 0.0 3.21

The wvalidity of the criterion was confirmed for the case of orthogonal steel by
extensive experimental work carried out by many research workers such as
Lenschow and Sozen(66), Cardenas and Sozen(67) and Jain et al(68). Cardinas
and Sozen(67) concluded from an extensive experimental investigation that in
nonisotropically reinforced slabs, the yield lines do not necessarily coincide with
the principal direction of either the applied or resisting moments. Consequently,
twisting moments do exist at the yield line in addition to the flexural moments.
Later Hago and Bhatt(69), and Bhatt et al.(70) used elastic stress field, in
conjunction with Wood— Armer yield criterion, for the design of slabs with
orthogonal and skew reinforcement and concluded that it is a highly practical
design procedure which leads to lower bound solution of reinforced slabs. Bhatt
and Benredouane(13,14) also investigated theoretically the possibility of using
nonelastic stress fields in the design of reinforced concrete slabs in conjunction

with the above yield criterion.

3.2.2.2 Design Equations:

From the yield condition derived previously, the following equation can be used
for the design of slabs.

a— Positive moment field: (Bottom steel)

Referring to equation 3.20:

The total amount of bottom steel MX* + My* at any point, is presented by the



following equation:

MX 2
y
* * *
Mc™ + My = O + My + My
y ~ Y
d(M* + M)
So that for minimum steel =0
d My*

Hence

%*

My My T My

Since in equation 3.17 My* > My

My* = My 4 Mgyl 3.22

By substituting equation 3.22 in 3.20 we get:

M™ = My + Mgyl 3.23

b—_ Negative moments fields:(Top Steel)
Similar procedure can be adopted to the negative yield criterion, equation 3.21,
to get the following equations:

M, ¥t

< My — IMyyl 3.24

M,*t = M 3.25

y y - IM

xyl

¢— Mixed moment fields:
When calculating with the previous equations 3.22 and 3.23 if:
M,* < 0.0; My* is considered to be equal to zero and from the yield

y

condition 3.20 the following expression can be obtained:

M =M + | —— 3.26a

39



and if My* ¢ 0.0 , from equation 3.20 the following equation can be written

as:

My* - My 4 _ 3.26b

The same procedures can be adopted for the negative moment fields, and the

corresponding expressions are:

Mxy
*
My t= My - — 3.27a
My
2
Mxy
*
My t = My - | ———— 3.27b
My

3.2.2.3 Rules for Placing Reinforcement:

At any point of the slab, given the trial stress field (M,, My, Mxy) the
reinforcement in x and y directions will be placed according to the following

rules:

a— Bottom steel:

i— Compute the design moment Mx* and My* from equation 3.23 and 3.22

respectively.

ii— If both Mx* and My* are negative, then no reinforcement is needed at the
bottom.

iii— If both Mx* and My* are positive, the calculated values are adopted as the

resistant moments.

ik

iv— If Mx:F < 0.0 then set MX* = 0.0 and compute My' from equation 3.260.



v— If My* < 0.0 then set My* = 0.0 and compute M," from equation 3.26a.
b— Top steel:

The same procedure is adopted for top steel by changing negative sign to
positive.

i— Compute the design moment MX*t and My"‘t from equation 3.24 and 3.25
respectively.

ii— If both M,*t and My*t are positive, then no reinforcement is needed at the
top.

iii— If both M, and My"=t are negative, the calculated values are adopted as
the resistant moments.

iv— If M,*t > 0.0 then set M,*t = 0.0 and compute My*t from equation 3.27b.
v— If Mt » 0.0 then set M,*' = 0.0 and compute M,*! from equation

y y
3.27a.

3.2.3 Inplane Problems:

With regard to the problem of inplane forces, Nielsen(73) has presented the
yield criterion for a section having known orthogonal isotropic or orthotropic
reinforcement which can carry either tension or compression and is symmetrically
placed with respect to the middle surface of the section. He derived the equations
for the determination of the orthogonal tension reinforcement to resist a particular
inplane force triad. Nielsen(75) has also considered the case of skew tension
reinforcement. In his work he assumed that the concrete has sufficient
compressive strength such that no compression reinforcement is required. If the

the
compressive strength of the concrete section is violated,vConcrete section must be
increased. Subedi(76) presented a graphical approach to design compression

reinforcement. It was Clark(78) who finally presented equations for proportioning

skew or orthogonal tension and/or compression reinforcement to resist a triad of
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an
inplane forces. Usinqulastic stress field, Clark's equations were used by Lin(79),

Memon(80) and Khaskheli(81) for the design of deep beams, perforated deep

beams and transfer girders respectively.

3.2.3.1 Derivation of Yield Criteria:

Let the principal stresses in the concrete element be o1 and op (fig. 3.8)
with the major principal stress at 6 to the x axis. Let the area of reinforcement,
per unit length in the x and y direction, be Ay and Ay and their associated
stresses fy, and fy. From equilibrium of the reinforced concrete element, (fig.
3.8), of thickness t under the external inplane normal and shear forces per unit
length ny Ny Nyy (fig. 3.7) the three following equations can be written for

orthogonal reinforcement as:

ng = Ay fyy + 07 t cos?6 + gy t sin?6 3.28
ny = Ay fy + 01 t sin?6 + 0y t cos?6 3.29
Nyy = - 0] t cosfsinf + o9 t cosfsind 3.30
If we take:

ny ny Nyy

O'X = , o'y = N TXy =
t t t
A, T A, T
% x Ix % y Y
and Ox =——, Oy =
t t

Where oy, oy and Tyy are the normal and shear stresses.

* %

Ox , Oy~ are the resistant stresses provided by steel

reinforcement in x and y directions respectively.

Equations 3.28 to 3.29 can be presented as follows:

0y = 01 cos?20 + 09 sin20 + ()’X* 3.31



oy = 01 sin?6 + o9 cos?f + Uy* : 3.32
Txy = (09 - o1)cosfsind 3.33
Now if tensile steel is to be provided, then o1 = 0.0, hence the above equations
become:
Oy = 09 sin28 + 0 3.34
gy = 0 cos?6 + oy¥ 3.35
Txy = 02 cosfsind 3.36
thus:
0" - 0y = 09 sin2¢
Uy* - Oy = 02 cos?6

Txy = 09 cosfsiné

Eliminating o9 and 6 from the above equations we have:

(0x* - 0x)(ay™ = 0y) - Txy? = 0.0 3.37

This is the yield criterion derived by Nielsen(73) for a section having known
orthogonal isotropic or orthotropic reinforcement carrying tension forces and
symmetrically placed with respect to the middle surface of the section. Nielsen
assumed that the concrete had sufficient compressive strength so as not to require
compression reinforcement. Nielsen also developed design equations for four
different cases of reinforcement design. Later Clark(78) introduced the compressive
reinforcement by extending these later four cases to nine cases for different
combination of stresses. Table 3.1 shows the possible combination of
reinforcement. From this table it can be noticed that all the cases can be solved
by direct solution except for cases 1 and 4 where the minimisation of the total

reinforcement in both directions of the member is necessary. The principal stress
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o1 is considered equal to zero when tension reinforcement is required and o)
equal to the concrete compressive strength f. when the compressive reinforcement
is required. The way, the design equations were developed, is presented in the

following section.

3.2.3.2 Derivation of Design Equations:

a— Cases where tensile steel is to be provided:

Case 1: UX* and ory* >0

. . Txy’
Since in equation 3.37, oy" = 0y +

(0y* - oy)

The total provided steel in x direction is minimum when:

d
*, ok
———*(Ux +0y ) =0
doy
d Tyy? Tyy?
Thus: ( ox* + oy + Y ) = 1- Y =0
do,* (0y* - 0y) (0 - 0y)?
Since 0,* > gy, 0yF = oy + I7Txyl
The steel ratio is: py = 1/fg (0x + |7xyl)
Similarly Py = 1/fg (ay + ITxyl)
. * *
Case 2: 0y” = 0 and oy” >0
* Txy2
Directly form equation 3.37 we get oy~ = 0Oy -
Ox

Hence px = 0

Py = 1/f¢ (Uy -



Case 3: 0" > 0 and oy* =0

2
Txy

)

Similar to case 2: px = 1/fg (o -
Ty
px = 0
b— Cases where compression steel is to be provided:

In this case the minor principal stress in the concrete reaches the concrete

strength, thus 07 = —f.,; and o1 < 0.0. Equations 3.31 to 3.33 can be written

as follows:

0y = 01 cos20 - fo, sin26 + o.* 3.38
oy = 01 sin?6 - f,,, cos?6 + ay* 3.39
Txy = (= fou - 01)cosfsiné 3.40
thus:

oy + fou = 01 cos28 + fo, cos26 + o,* 3.41
oy + foy = 01 sin?26 + fgy sin?6 + ay* 3.42
Txy = (- foy - 01)cosfsing 3.43
hence:

oy + feoy - ax* = (01 + foy) cos?6

gy + fou - 0y* = (01 + fcy) sin?é
Txy == (01 4 foy) cosfsing
* *
-(ox + fo - 0y")(oy + fo - 0y") + Txy2 = 0.0 3.44

In the following: oy = 0y + fo and oyr = oy + f¢

Case 4: ox* < 0 and ay* <0

T 2
F ti 3.44 * o4 Y
rom equa 10N . , O'y = O'yf -

(Oxf = o)



Case 3: 0, > 0 and Uy* =0

Similar to case 2: px = 1/fg (0 -

b— Cases where compression steel is to be provided:

In this case the minor principal stress in the concrete reaches the concrete

strength, thus o = —f;, and 01 < 0.0. Equations 3.31 to 3.33 can be written
as follows:

0y = 0] cos28 - f, sin26 + o.* 3.38

Oy = 0] sin?6 - fo cos?f + ay* 3.39

Txy = (- fou - 01)cosébsing 3.40
thus:

Oy + fou = 01 cos28 + fo cos20 + o, 3.41

oy + foy = 01 sin?6 + foy sin?6 + o,* 3.42

Txy = (- fou - 01)cosfsing 3.43
hence:

oy + foy - 0y (07 + foy) cos?8

oy + fou - Uy* = (01 + foy) sin?6
Txy == (01 4 fcy) cosésind
. *
-(oy + f¢o - 0x°)(ay + fo - Ty )y + Txyz = 0.0 3.44

In the following: oyf = 04 + fo and oyf ~ Oy + f¢

Case 4: 0y" < 0 and oy“ <0

2
x TXy

From equation 3.44, Oy" =+ oyf - —
(Oxf - 0x7)



d

Minimum provided steel when: _ (UX*+Gy*) =0
dox*
Txyz
Thus: 1- ——m8— =0

(Oxg = 0x)?2
Since UX* < Oxf, ax* = Oxf - ITxyI
The steel ratio is: py = l/f; (oxf - l7xyl)

Similarly Py = 1/f¢ (ggg = I7xyD)

Case 5: ox* = 0 and ay* <0

. Ty
Directly form equation 3.44 we get Uy* = Oyf - Y
Oxf
Hence px =0
o2
' Xy
Py=1/fs (ny‘ )
' Oxf
. * *
Case 6: 0y < 0 and oy = 0
Txy
Same as case 5: px = 1/fg (oxf - )
Oyf
Py_o

c— Mixed cases: JX* and oy~ are of different signs:

Case 7: ax* > 0 and oy* <0

0, =0 and 0, = f, thus equations 3.31 to 3.33 become:
oy = fo sin?20 + oy = [£./2.0] (1-cos26) + oy~ 3.45
oy = fo cos?6 + oy* = [f./2.0] (l+cos29) + oy* 3.46
T = f. sinfcosé = [fo/2.0]) sin26 3.47
Xy c c

27xy2
From equation 3.41 8 = cos26 = /[1 - ———].
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Fig. 3.7 Sign Convention for Inplane Normal and Shear

Forces per Unit Length

i

Fig. 3.8 Principal Concrete Stresses and Reinforcement

Directions.
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Case Reinforcement description Known values Method of solution
1 Both tension fx=fa=fs,0,=0 Minimization of (px + pa)
£
No x . .
2 . =fo,ex=0,0,=0 Direct solution
« tension Ju=ts ox vt
No a . .
3 . = fs, =0,0,=0 Direct solution
x tension fx = Js ea 1 ect solutio
4 Both compression fe=fa=f, 0,=fe Minimization of (px + pa)
No x . .
. =f/,ex=0,0, = i 1
5 a compression fo=f, ex = fe Direct solution
No = . .
6 . = f5 =00, = Difrect solution
X compression Jx =S5 ea 2= /e ect so
x tension . .
7 . =f,f=f,0 =00, = Direct so
« compression fx=tf=f\0 2= Je lution
Xx compression , . .
8 N tensi?.)n fe=ff=f,0=0,0,=fc Direct solution
9 No reinforcement cx=¢x=10 Direct solution

49

Table 3.1 Possible Combinations of Reinforcement.
Curve Equation Curve Equation
a
1 Y = 4o
[ =xy | 7 - ='1'( £ ( . )~_4)
Poep | 2 U gy | | Tay |
s | e AT
lfxyl 2 I‘nyl lTxyl 8 Ox = —1
|Txy|
a
3 2= — ]
| wxy 9 Oxf oyt =1
|Txy|l‘l-'xy|
- ..
4 |1'yl=l*:Lc|+1 x 2
xy Xy 10 |
I’xyl'fxy'
s Sy ____l(ﬂ:_/(fc )2_4)
lTxyl 2 ITxyI 'Txyl 11 9x E fC + 1
|T,\'y| "xy’
6 ¥ -
ITxyI 12 x =l( fe + ( Je )__4)
[ ey | 2N =gy Txyl

Table 3.2 Boundary Curve Equations

Reinforcement .

for Orthogonal
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Eliminating 6 from equations 3.45 and 3.46 we get:

oyF = ax'— (fc/2.0)(1 - B)

¥ oo, - (£:/2.00(1 + B)

Ty y
The steel ratios are : py = 1/fg [0y - (fc/2)(1 - B)]
py = 1/fe oy - (fc/2) (1 + B)]
Case 8: 0,* < 0 and ay* > 0
Similarly to case 7: py = 1/fg [0y - (£c/2)(1 + B)]
py = 1/fs loy - (£c/2)(1 = B)]

Case 9: No steel is needed. py = Py = 0

3.2.3.3 Derivation of the boundary curves:

To know which set of equations in table 3.3 is to be used in design, knowing
the stresses (oy, Oy, Txy) at any point, it is necessary to establish the equations
of the boundary between the different case surfaces in stress space of horizontal
axis ox/lrxyl and vertical axis oyllrxyl. Figure 3.9 shows the different case
surfaces. The circled numbers in the figure represent the cases numbers. All the

boundary curves were derived by equating the design equations of two considered

cases. Example: for curve separating case 1 and 2 :

All points belonging to the curve between case 1 and 2 must have equal values

in these two correspondent equations. Thus:

Pxl = Px2 == 0y =

The same equation can be obtained by equating the expressions steel ratios of the

other direction:

Pyl = Py2 == Oy + I7xyl = 0y -

Ox

“ITxyl —
]7xyl

- 2
Xy Ox

Oy ITXyI
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which is the equation of a straight line marked as number s in figure 3.9. In
this way all the cases intersection boundaries were determined. Table 3.2 shows

the boundary equations for orthogonal reinforcement,.

For the general case of combinations of moment and inplane forces, a sandwich
method of design was proposed by Brgndum— Nielsen(84), where the Nielsen's
equations are applied separately to the two layers of a sandwich model of the
real slab element. Morley and Gulvanessian(83) presented a general filled
sandwich method for optimum design of reinforcement in a concrete slab element
required to resist given combinations of membrane forces a;1d bending moments.
The method allows for concrete of the filling between the outer layers of a

sandwich to resist compressive forces.

3.3 Multiple Load Cases:

The previous design equations for both plate bending and inplane probiems
apply only when the structure is subjected to a stress field resulting from a single
load case. In practice structures are subjected to multiple load casesfnadvantage
of direct design method is that it can also handle multiple load cases easily.

Here, the method is presented in general for plate bending and inplane problems:

1— For any load case i with the applied stresses Syj, Syi and Syyj, (with i
=1,n and n is the total number of loading cases), compute the corresponding
resistant stress Sx"f and Sy’f using the appropriate equations. Sx’;, Sy"{ can be
resistant moments (bottom or top) for plate bending problems or resistant inplane

stress for inplane problems, in x and y direction respectively.

2— At each point compute the maximum of all Sx’; and SyT for i=1,n. Let

these be Sy max S;_ max- Obviously if we use these values as the design
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Fig. 3.9 Different Case Surfaces in Stress Space for

Orthogonal Reinforcement. fcu = - 4

(S§—Tmax’ S;—max)

T

* %*
(Sx-emax: Sy-emax)

T *

*
«(Sx-max: S;—max)

[7xyl

*
(Sk-max- Sy1max)

Fig. 3.10 Simple Search Technique
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x
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stresses, then we will get a safe design but not necessarily an economic one. So

to move to an optimum design the following procedure can be adopted.

3— Assume that in x direction we provide Sy— .y, but in y direction we
provide S; so to satisfy the corresponding yield criterion in each case. For
example for bottom steel of plate bending problems the yield criterion to be used
is equation 3.20.

Calculate the maximum of all these S;,i, let it be S;_ emax- Evidently a safe

design is produced if we use Sy_ .y in conjunction with Sy_ emax-

4— The same procedure as (3) can be adopted for S;_ max to calculate the
corresponding maximum S;_ emax SO to satisfy the appropriate yield criterion, for
each load case. Therefore a better design is to choose a set of design moment
where the sum (Sy + S;,) is the smallest.

We can stop at this stage but if need be we can improve on this by assuming
that other possible combinations are possible and use a simple search technique
by examining the feasible design region as shown in figure 3.10.

For each load case, we see if the design stress at the grid points is a better
minimum. If it is not, we reject it. If it is check to see if it violates the vyield
criteria. If it does, reject it, if not we see at which grid point in figure 3.10 is
better minimum of (S; + S;). This definitely gives us the optimum design steel

volume.
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Chapter 4

The Finite Element Method

4.1 Introduction:

In the previous chapter, rules have been established for designing  of
reinforced concrete plate bending and beam inplane problems for a given stress
triad. The stress triad is obtained using a finite element program. In this chapter
the finite element method will be described. Nowadays there are numerous texts
(2,3,4,5,6,7), which describe finite element methods and their applications. For
reinforced concrete in particular, the phenomena of cracking, nonlinear multiaxial
behaviour and other effects can now be considered more rationally. In this work,
the method is used not only for designing of slabs and deep beams but also to

carryout a detailed nonlinear analysis of the experimental models.

4.2 Finite Element Concept and Formulation:

As the standard procedure of finite element analysis is well known only a brief

review of the method is presented.

4.2.1 Discretisation by Finite Element:

In any numerical approach an approximate solution is attempted by assuming
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that the continuum can be represented by finite number of element of simple
geometric shapes. The elements are connected at a finite number of points. This
process is known as discretisation. In the finite element displacement approach, the
displacements at any point within an element are dependent only upon the

unknown nodal displacements as follows:
{8} = [N} (6%) 4.1

[N] denotes a rectangular matrix containing the shape functions that relate

displacements {6} at any point within an element to its nodal displacements {&€}.

For structural applications, the governing equilibrium equations can be obtained by
minimizing the total energy of the system. The total potential energy can be

expressed as:

ng = —% JV ()T (€) dv - JV ()T (b} dv - JS (6)T (q) ds

- ()T (p) 4.2

where {0} and {e} are the stress and strain vectors respectively, {b} is the body
forces per unit volume, {q} is the applied surface load and {p} are concentrated
forces. v and s stands for volume and surface respectively. rg represent the total
potential energy.

The first term of the right hand side of equation 4.2 represents the strain energy
of internal stresses, the second, the third and thefourthare the loss of potential of
body forces, distributed surface load and éoncemrated loads respectively.
Integrations are taken over the whole structure and will be the energy contribution

of each individual element, thus:
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Me represents the total potential energy of the ith element which can be written

as:

1
Me = —5— Jve{ﬁe}T[B]T[D}[B]{ée) - Jve{ée)T[N]T{b) dv

- Jse{ae)T[N]T(q) ds - {5y {P} 4.4

where ve and se are volume and surface of element respectively. [B] is the strain
matrix generally composed of derivatives of shape functions. [D] is linear elastic or
elsto— plastic material stress strain matrix.

Minimizing the potential energy results in:

= L BITiDyBI ey av - [ (NITib) av

- Jse[N]T{q} ds - {r} 4.5

The total potential energy mg of the system is minimum, when:

ol
— = 0.0 4.6
96

The equivalent nodal forces for the element are:

{(Fe) = + Jve[N]T{b} dv + Jse[N]T(q} ds + {P} 4.7

and the element stiffness matrix is:

The summation of the terms in equation 4.5 over all elements results in:



Mg
— = [Kg](8) - (Fg) 4.9
35

where {F¢} and [Kg] are the global loading vector and structural stiffness matrix

respectively.

Equating the right side of equations 4.6 and 4.9, gives the following expression:

[Ks](8) - [Fg] = 0.0 4.10

After the insertion of the necessary boundary conditions, equation 4.10 is then

solved by any standard technique to yield the nodal displacements.

(8) = [Kg)™1 (Fg) 4.11

Once the displacement are determined, the strain and thereafter the stress in each

element can be evaluated using the following equations:

{€) [(B](s} 4.12a

{c} = [D]{e} 4.12b

4.2.2 Layer Approach:

For flexural deformation, material property variation through the thickness must
be taken into account. This can be accomplished in a discretized fashion via a
layering approach, where the plate thickness is divided into a finite number of
layers parallel to the middle plane of the plate fig. 4.1, or by the introduction of
numerical integration points through the thickness.

The layer concept was adopted in the literature by many research workers,

Johnarry(42), Hago and Bhatt(69) using a rectangular element with five degrees of
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freedom (u,v,w, ()x,()y). Later Abdel Hafez(43) used an isotropic eight noded
element with five degree of freedom. All reported good agreement with

experimental results. So the last model was adopted in this present study.

4.2.2.1 Basic Assumptions:

In this model, each layer is supposed to be in a state of plane stress condition,
and a linear strain variation with the depth is assumed based on the small
deflection theory. The layers are allowed to resist the transverse shear stress fig
4.2. The variation of the stress through the thickness of a layer is ignored. Each
layer can be of a different material, thus for a reinforced concrete element, each
constituent material is assigned a different layer. Perfect bond between all layers is

normally assumed.

For plate bending cases these assumptions are made:
i— Displacement are small compared to the dimension of the plates.
iim The stress normal to the plate are negligible.
iii— The Normal to the reference surface deformation remains straight but

not necessarily normal to the reference surface after deformation fig. 4.3.

4.2.2.2 Displacement Representation:

Using the above assumptions, displacements u, v, w at any point in the

structure with coordinates (x, y, z) can be expressed as:

u [ UO(X,)’) -z OX(X,)’)
Y = Vo (x,y) - z (?y(x,y) 4.13
w wo(Xx,y)

where u,, v,, w, are the displacement at the plate reference surface, figure 4.3.

in the x, y, z directions respectively. 0y, ¢y are the rotations of the normal in
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M:dplane

Actual deformation

Normal to midsurface after deformation

Fig. 4.3 Cross Section Deformation of Mindlin Plate.
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A Typical Mindlin Plate (Positive as shown).
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xz and yz plane respectively. =z is the distance from the reference surface to the

mid— plane of the layer under consideration.

The rotations are determined as follows:

2]

0y __Wa(§+y) + B (%,y) .
ow(x,y)

0y T+ a0y

¢y and &y denote the shear deformations, figure 4.3,
Since in this study the same finite element program was adopted for both plate
bending and inplane nonlinear analysis problems, the displacement vector, for

inplane problems, is composed only of u and v with z kept equal to zero.

4.2.3 Shape Functions:

Using the finite element idealization, the displacement vector at any point in an

eight node isoparametric element is given by the expression:

Where N; is the shape function of node i and ¢é; is the vector of the nodal
displacements at node i. The shape functions are given in terms of the local
coordinates (&,n), where on the edges of an isoparametric element the values of ¢
and n are 1, figure 4.5. Therefore the displacement § at any point within the
element can be expressed as follow:

8

6CE,m= > Nj(&,m) & 4.16
i=1
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4.2.4 Strain Displacement Relationship:

Once the nodal displacement are expressed in terms of shape functions, the
strain within the element can be expressed in terms of displacements or their
derivatives. In the two dimensional analysis based on the Mindlin plate bending
and plane stress assumption, the strain displacement relationship may be written

as:

€y -g—:l 0 : 0 —Zg—gi uj
ey 0 g—;'-i : 0 0 -zggi vi
Ty | = %i __ggi : %gi _‘;gi 4.17
s re 6_"153131__:&: _____ o | oy
Yyz 0 0 :Cg_l;ll 0 -CN; Gyi
|

in which ey, €y and yyy are the inplane strains components. <y, and vy, are the
transversal shear strain components. Z is the distance from the reference plane to
the layer centre, as shown in figure 4.1. C is the shear strain coefficient which
depends on the shape of the cross section(5), and assumed to be equal to 1.0.

Strain displacement can be presented in a simple form:

n
(e} =5 Bjls;) 4.18
i=1

where B; is the 5x5 matrix which contains cartesian derivatives of the shape

functions. Bj can be written as:

B,,; “is the strain matrix associated with plane stress deformation. It is the one

pi
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which is used for plate bending and inplane problems. By is the strain matrix
associated with the flexural deformation. Bg; is the strain matrix associated with
the shear deformation. The two strain matrices By and Bg; are used for plate

bending only.

4.2.5 Cartesian Derivatives of Shape Functions:

Since the shape function N; are defined in terms of local coordinates { and 7
of the element, transformation from local to global coordinates is required to
obtain the strain matrix [B]. This is done by wusing the chain rule for

differentiation to give Jacobian transformation as follows:

aNi aNi ox aNi oy
- + 4,20
ot ox at oy ot

aNi aNi Ix aNi oy

= + 4.21
on ox 97 dy 97
in matrix form:
BN]- ox ov aN]-
a¢ ot of ox
ON; ox oy ON;
on on on oy
(
aNj
ox
= [J] 4.22
aN]-
oy
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ON; ON;
ox of
- (971
9Ny Ny
oy o |
where [J] is:
ox oy
o o¢
(J] =
ox dy
on o
J
Since we are following isoparametric formulation,
x =YX Nj xj and y = L Nj yj
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where x; and y; are the nodal coordinates.
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The cartesian derivatives of the shape functions can thus be calculated from
equation 4.23. They are used for the computation of the strain matrix [B] as

shown in equation 4.17.

4.2.6 Stress Strain Relationship:
Using the basic theory of elasticity, the stress strain relationship, for each layer
may be written in the form:

{e} = [D] (e} 4.28

where [D] is the elasticity matrix given by:

1 . 0 : 0 0
, 1 0 : 0 0
. |
D] = —— | 0 o L1l o 0 4.29
1-12 2 :
B - & P S
0 0 o 25~ o
|
5(1-1)
0 0 0 : 0 >4 |

E and » represent young's modulus and poisson’s ratio of the concrete.

[D] matrix can also be written in the form:

where Dpi is related to plane stresses and D,; is related to the transverse shear

stresses.
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Reinforcing steel layer is assumed to be smeared into a thin layer of thickness
equivalent to its total area. This smeared layer of steel is assumed to have
unidirectional stiffness corresponding to the direction of its physical layout. [D]

matrix is given by:

1 0 0
[D] = E¢ | ©O 0 0 4.31
0 0 0
J

If the steel is disposed at an angle o counter clockwise, from the x— axis, the

local modulus matrix is transformed to the global cartesian axis.

4.2.7 Element Stiffness Matrix and Force Vector:

For elastic material behaviour, all the information required to evaluate the

element stiffness matrix [K] has been given previously so that it will be as

follows:

(K]

™3

[ | 5170y (8] ax ay <y 4.32
1

i

where t; is the thickness of the ith Jayer, n is the total number of layers, [B] is
the strain matrix and [D] is the material constitutive matrix depending on the type
of the material ( concrete or steel ) and the state of the stress (elastic, cracked,
plastic etc...). In the next chapter the material constitutive matrix in the nonlinear
range will be described.

Numerical integration is used to evaluate the stiffness matrix given by the above
expression and Gauss integration rules are chosen to carryout the integration over

the element area as follows:

67




11
n
K] = T J J (B1T[D] [B] det J dt dn t; 4.33
= -1 -1

and numerically can be written as:

m m T
I I W; Wy [B] [D] [B] det J tj 4.34

[K] = i
1 j=1 k=1

i

F ™3

m is the number of Gauss point in each direction, n is the number of layer.

W:

i Wy are the weight coefficient corresponding to the specified Gauss point with

local coordinates (&,n).

The equivalent load vector at the nodes due to the effect of uniformly distributed

element surface load is :

{F) = J [N]T{q} ds 4.35
s

which can be written in the form:

Wi [N]T (q) det J 4 .36

4.3 Nonlinear Solution Techniques:

If the applied loading is small compared with the ultimate load, it may be
assumed that the structure behaves elastically and a linear elastic analysis can be
performed to give the stress distribution in different part of the structure. If
nearly full ultimate loading is considered then it is necessary to establish a full
nonlinear analysis. Three procedures are usually used namely incremental, iterative

and mixed.
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4.3.1 Incremental Procedure:

In this procedure the load is divided into a number of equal or unequal load
increment. At each step only one increment of load is added to the structure. At
each stage of loading the stiffness of the structure may have a different value
depending on the deformation reached and constitutive law adopted for the
material as well as the method for estimating the stiffness at that stage.

The total load and displacement at any stage is given by the sum of the
increments of all the loads and displacements of the previous stages. The process
is repeated until the ultimate or the total load is reached. This method has the
advantage that it is simple to apply but the accuracy is rather low unless the load
increments are very small. The method has a serious drawback that at each step
the stiffness matrix has to be assembled and the solution procedure for the linear
equation has to be performed at each time. This is uneconomical in terms of

computational efforts.

4.3.2 Iterative Procedure:

In the iterative procedure, the load is applied to the structure and then the
displacement is adjusted in accordance with the constitutive laws until equilibrium
is attained. In this method either the stiffness matrix remains constant or varies
throughout a solution. One distinct advantage of this method is that the same
stiffness matrix can be used at each step of iteration which involves a small
amount of computing effort in each subsequent iteration step for the determination
of the corresponding displacement. Other methods with variable stiffness matrix [K]
such as the secant method and Newton— Raphson method may have a faster
convergence rate but only at the expense of having to reassemble and solve a new

system of linear equations at each iteration.
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4.3.3 Mixed Procedure:

In practice, usually a combination of both the incremental and iterative
procedures is used. The total load is divided into a number of load increments.
At every increment of load, iterative procedure is applied until convergence is
obtained under that load increment. The constant stiffness procedure can be used.
For nonlinear analysis of reinforced concrete structures, experience seems to
indicate that relatively small load increments with fairly frequent updating of the
stiffness for just a few iteration steps are required to produce the best
results(36,89). In this work the modified Newton— Raphson(2) approach is used to
evaluate the stiffness matrix by updating the stiffness at some chosen iteration.
This algorithm gives satisfactory results for reasonable computational effort.
Developments in numerical analysis and applied mathematics can be used to
further improve the efficiency of solution techniques at low additional coast.
Recently, a number of techniques have been introduced in order to accelerate the
rate of convergence, such as the accelerated method and arc length

methods(86,87,88).

4.4 Convergence Criteria:

Since in a numerical process, equilibrium conditions are unlikely to be satisfied
exactly, criteria to determine convergence have to be established for objective
analysis. The main purpose for reliable convergence criterion is to monitor the
gradual elimination of the out—of— balance residual forces until the desired
accuracy has been achieved. The convergence criteria, usually used, is based on
displacement or out— of— balance forces norm and sometimes on internal strain
energy. In the present work, convergence is based on out— of— balance force
norms. They indicate directly how well equilibrium requirements are met(36). Since
it is difficult and expensive to check the decay of residual forces for every degree

of freedom, an overall evaluation of convergence is preferable. This is achieved by
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using norms as follows:

%
ARi
* 100 £ T, 4.41
F¥
1

where

T. : A user prescribed convergence tolerance.

AR’;’ : Norm of the residuals
*
ARY = / (Rj)T(R;)
{Ry) is the residual force vector at ith iteration given

by equation 4.40.

F’f : Norm of the total applied load.

-/ (FpTFp

{Fi} is the total applied load vector.

Fine tolerances are theoretically desirable but can be very expensive to obtain
because they quite often require a large number of iterations. Steep discontinuities
in material laws (cracks, yielding ...) can cause large residuals and these residuals
need to be distributed. However this redistribution will cause more discontinuities
in other parts of the structure and hence residuals in subsequent iterations. In
such cases the rate of accumulation of residuals can be higher than the rate of
distributing them. An intermediate solution is to choose a tolerance value at initial
stages and increase it towards the later part of the load history. In the present

study, the load increment is reduced in the cracking stages.

4.5 Basic Steps in_the Nonlinear Program:

The major steps in the linear and the nonlinear analysis of a typical finite

element program are:

71



1— Subdivision of the structure and representing different parts by appropriate

types of finite elements.

2— Generation and assembly of the load vector {F}.

3— Generation of the element stiffness [Kg].

4— Assembly of the structure stiffness [K].

5— Solution for the nodal displacements {6;} = [K]~1 {F;} and hence the strain:
{e¢ = s [BIT {5}

6— Determination of element stresses {¢} = [D] {¢}

For nonlinear analysis:

7— Check for cracking, yielding, and failure.

8— Determination of unbalanced nodal forces.

9— Check for convergence.

10— (a) If not converged apply the unbalanced nodal forces again to the structure
and go to step 3 if the stiffness is to be updated and to 5 if constant
stiffness solution is adopted.

(b) If converged apply the next load increment and go to step 2.
11— Stop when failure occurs or when full loading has been applied.
Figure 4.6 shows the main steps of the finite element nonlinear analysis

procedure.
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Chapter 5

Material Modelling and Numerical Applications

5.1 _Introduction:

In the present state of development of finite element computer programs, the
problem of modelling the mechanical behaviour of concrete for use for analytical
studies of reinforced concrete structures remains one of the most difficult challenges
in the field of structural concrete. The analysis of the complete response of
structural systems of steel and concrete requires consideration of a number of
nonlinear effects. The most important effects include tensile cracking, yielding of
steel, nonlinear material behaviour, compressive crushing of concrete, aggregate
interlock, bond between concrete and steel and dowel action of reinforcing bars.
The basic information required is the multidimensional stress— strain relationships
describing adequately the characteristics of reinforced concrete materials. These are
called constitutive laws which describe mathematically the behaviour of constituent
materials approximating closely the real behaviour. These laws are based on
experimental data and allow the formulation of relationship between applied
multiaxial stress state and the resulting strains. Currently the constitutive properties

of concrete have not yet been universally defined and there is no generally
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accepted material law which fully describes the concrete behaviour in combined
stress conditions(8). The scatter of the results can be attributed to wvariations in
three principle factors namely: i— materials tested. ii— the test method it self and
iii— the loading systems.

In the following sections, the behaviour of concrete and steel is described as well
as the model adopted and its applications to experimental tests for both plate

bending and inplane problems.

5.2 Mechanical Behaviour of Concrete:

This section summarizes some of the facts of the experimental behaviour of

plain concrete under uniaxial and biaxial states of stress.

5.2.1 Uniaxial Compressive Stress— Strain Response:

The comprehension of the behaviour of plain concrete under uniaxial
stress— strain response is a useful starting point for a discussion of more complex
conditions. A typical stress strain relationship for concrete under wuniaxial
compression is shown in figure 5.1a. The main experimental observations can be

summarized as follows:

i— The concrete has nearly linear behaviour up to 30 percent of its maximum

. A
compressive strength f..

ii— Stress above 0.3 fc' shows a gradual increase in deformation up to about 0.75
fc' to 0.90 fc', whereupon it bends more sharply when approaching the peak

strength fc' .

iti— Beyond the peak strength fc', the stress strain curve has a descending branch

until crushing failure occurs at some ultimate strain (¢,). This strain is in the
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range of 0.003 and 0.004 approximately.

Figure 5.1b shows that the initial modulus of elasticity of concrete is highly
dependent on the compressive strength. Also a high strength concrete behaves in a
linear fashion to a relatively higher stress level than low strength concrete, but all
peak points are located close to 0.002 strain. On the descending portion of the
stress— strain curve, high strength concretes tend to behave in a more brittle
manner, and the stress dropping off more sharply than it does for concrete with
low strength.

Numerous mathematical expressions based on the above experimental data have
been used to predict uniaxial compressive stress— strain response using curve fitting
techniques. An excellent and comprehensive summary of these efforts have been

presented by Popvics(10).

5.2.2 Uniaxial Tensile Stress— Strain Response:

Figure 5.2 shows the stress strain relationship for different concrete specimens
tested in wuniaxial tension(11). The curves are relatively linear up to a high
percentage of its ultimate tensile strength f;. Three testing methods are generally
used to measure the tensile strength. They are direct, flexural and indirect, figure
5.3. Of all the indirect methods used, cylinder splitting test , figure 5.3, is the
most commonly used. In this test, a concrete cylinder is laid horizontally between
the loading platens of a testing machine and compressed until the specimen splits a
long a vertical diameter.ical plane.

In general the effective tensile strength of concrete is difficult to determine, despite
its importance in tracing the history and the behaviour of reinforced concrete
structures. It is considered as the most important criterion for the onset of

cracking and the development of constitutive models.
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5.2.3 Biaxial Concrete Behaviour:

Many important classes of structures can be approximated as being in a state of
biaxial plane stress, such as beams, panels, and thin shells. Concrete, under
different combinations of biaxial loading, exhibits stress and strain behaviour
different from that under uniaxial conditions. @A large amount of research has
been done in recent years regarding determination of mechanical properties of
concrete in biaxial loading. At present, considerable experimental data are available
regarding the strength, deformational characteristics, and microcracking behaviour of
concrete under biaxial stresses(15,16,17).

Figure 5.4 illustrates a typical biaxial strength envelop for concrete subjected to
proportional biaxial loading. In general the maximum concrete compressive strength
increases for the biaxial compression stress state fig. 5.5a. Also for biaxial
compression, concrete exhibits an increased initial stiffness that may be due to
Poisson's effect. Under biaxial tension, concrete exhibits a constant(17) perhaps a
slightly increased(16), tensile strength, compared with values obtained under
uniaxial. Under combination of compression and tension state, concrete exhibits a
noticeably reduced strength. The compressive strength decreases almost linearly as

the tensile strength is increased, figures 5.4 and 5.5b.

5.3 Constitutive Formulations of Concrete Modelling:

To date, procedures for the analysis and design of reinforced concrete structures
have been based mainly on empirical expressions, or on some simplified rules of
material properties. Constitutive laws for reinforced concrete are simple analytical
formulations to fit numerically the complicated behaviour and relations between
stress and strain in concrete. A large number of numerical models and techniques
has been developed in an attempt to analyse different reinforced concrete structures
(22,23,24,25). The state of the art ASCE 1982(22) classified the present constitutive

models into the following models:
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i— Elasticity based models (linear/nonlinear).
ii—  Plasticity based models.

iii— Plastic— Fracture type models.

iv—  Endochronic models.

A brief description of the above models will be given in the following:

5.3.1 Elasticity based models:

During the past three decades, a relatively large number of elasticity— based
constitutive models have been developed to represent the behaviour of concrete
under general types of loading. In this model the stress strain behaviour can be
expressed as either

{o} =[D] (e) 5.1

or {do) = [D] {de) 5.2
Where [D] represents either the secant or tangential constitutive matrix. {o} and {e¢}
are the stress and the strain vectors, respectively.
From a purely formal point of view there is no basic difference between elasticity
based models and the other models. They all result in variable increment material
stiffness matrix. In the elasticity— based models, the tangential constitutive matrix is
obtained or ;induced directly by intuitive or approximate considerations that do not
use more sophisticated concepts such as flow rules, intrinsic time, etc. In general,
two different approaches are employed in the formulation of the nonlinear elastic
models for characterizing the degradation of concrete stiffness under loading. They
are: i— finite or total material characterization in the form of secant stress— strain
formulation, where the current state of stress is assumed to be uniquely determined
as a function of the current state of strain. ii— Incremental or different material
description in the form of tangential stress—strain models. It is often used to
describe the behaviour of materials in which the state of stress depends on the
current state of strain as well as on the stress path followed to reach that state.

In the present work, the elasticity— based model was adopted.

83



5.3.2 Plasticity based models:

Initially, the theory of plasticity was developed for metals. It has been extended
recently to predict the behaviour of reinforced concrete structures. In general,
models based on the theory of plasticity describe concrete as an elastic— perfectly
plastic material or with allowance for some hardening as an elasto— plastic
hardening material. The elastoplastic matrix is determined by specifying a yield
function F, a flow rule (associated or non— associated) and a hardening rule
(isotropic, kinematic or mixed). The yield function specifies the state of stresses
corresponding to the beginning of plastic flow. This method hac been used by
many researchers by altering the von Mises criterion (26,27). Later new failure
theories were therefore developed with specific application to concrete (28). It was
demonstrated that the use of non— associated flow rule is necessary (29). The
application of non— associated flow rule has been introduced and showed to be
successful in controlling the main aspects affecting the behaviour of concrete

structures(30).

5.3.3 Plastic— Fracturing Models:

The application of normality flow rule used for plastic flow of concrete does not
reflect the observed behaviour in the case of fractured concrete (32). This
conclusion by Andenaes (32) led to constitutive models based on the
plastic— fracturing theory. This theory requires two loading surfaces depending on
both stresses and strains (33). It combines plastic strain increments and fracturing
stress decrements, which reflect microcracking and accounts for the degradation of
elastic moduli, internal friction etc.. The disadvantage of the method is that it
requires six inelastic parameters. The theory was verified (34) and gives good

agreement with the experimental results.
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5.3.4 _Endochronic Modelling:

The endochronic theory was proposed by Valinas (18) and applied to predict the
mechanical response of metals under complex strains histories. The basic concept
underlying the endochronic formulations is the characterisation of the material strain
state in terms of an intrinsic time. Valinas termed the materials for which the
stress is a function of the strain history with respect to an intrinsic time scale as
endochronic (Greek: end = inner, chronic = time). The intrinsic time is a
non— decreasing scalar variable used to measure the extent of the irreversible
damage of the internal structure of the concrete material, when subjected to
deformation histories.

The endochronic theory was first applied to concrete by Bazant and Bhat (19,20)
by extending the formulation of metals, developed by Valinas (18), to include many
nonlinear features of concrete. Reddy and Gopal (21) stated that, the endochronic
theory is the only constitutive theory which can model most of the nonlinear
features of concrete at the present time. However Al— Manaseer(36) concluded that
the method is complicated and simplifications need to be introduced so that the

theory becomes more accessible.

5.4 Cracking Models:

As is well known, concrete has a low strength in tension, resulting in a cracking
type of failure at early stages of loading before steel starts yielding. Therefore, the
brittleness of concrete in tension and the formation of the cracks is the most
important nonlinear phenomena which governs the behaviour of concrete. In the
finite element analysis of concrete structures, three different crack models have

been employed by researchers, depending on the purpose of the analysis:

1— Smeared cracking models.

2— Discrete cracking models.
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3— Fracture mechanics models.

In this study the smeared crack approach was adopted. Most structural engineers
adopt this model for its simplicity. In general, if overall load cdeflection behaviour
is desired, without regard to completely realistic crack patterns and local stresses,
the smeared crack model is probably the best choice. For special problems in

which fracture mechanics is the appropriate tool, a specialised fracture model might

be necessary.

5.4.1 Smeared Cracking Model:

In this model the cracked solid is imagined to be a continuum fig. 5.6a. The
behaviour of cracked concrete can then be described in terms of stress— strain
relationship and it is sufficient to switch from the initial isotropic to an orthotropic
stress— strain relationship after cracking. In this model the topology of the original
finite element mesh remains preserved which is computationally convenient. It is
for this reason that this model is widely used and quickly replaced the early
discrete crack model. This model was first introduced by Rashid (35).

Smeared crack concepts can be modelled as either fixed or rotating cracks. With
the fixed crack concept the orientation of the crack is fixed during the entire
computational process, whereas a rotating concept allows the orientation of the
crack to co—rotate with the axes of principal strains. To account for aggregate
interlock on the cracked concrete plane interface, a reduced shear modulus can be
assumed. For stiffness calculation it is necessary to transform the local material
stiffness matrix into global coordinates, by using the well known transformation

matrix relating crack direction to global direction.

5.4.2 Discrete Cracking Model:

The discrete cracking model was introduced by Ngo and Scordellis(7) in 1967



when analysing the behaviour of beams with predefined cracks. The discrete crack
is modelled by disconnecting the nodes for adjoining elements along the length of
the crack. Almahaidi (37) improved the model by introducing a new definition, so
that at a single point, continuity is preserved by two or four nodes tied together
by stiff linkage elements until cracking occurs in one or two directions respectively,
figure 5.6b. In general the crack directions and locations are not known in advance
and with geometrical restrictions imposed by the preselected finite element mesh it
is obvious that this approach suffers difficulties, so that the crack is constrained to
follow a predefined path along the element edges. The second disadvantage is that,
after cracking there is a continuous change in nodal connectivity which does not fit
the nature of finite element method which requires a narrow band width on the
structural stiffness matrix. Because of its lack of generality in a possible crack
direction and redefinition of element nodes, this concept has resulted in very
limited acceptance in structural application. Only in very special problems involving
a few dominant cracks or predefined cracks, is the discrete crack model a realistic

choice.

To date, there is not yet a consensus on the question of which type of approach
should be preferred for a given problem (38). Crisfield(39) concluded that there is
a danger of spurious mechanisms which can blow up the entire iterative procedure
in smeared model. To sum up, both approaches presently seen to have their own

merits and demerits.

5.4.3 Fracture Mechanics Model:

This model is used in solving various types of cracking problems in metals,
ceramics and rocks. Chen(23) concluded that, the use of fracture mechanics model
for reinforced concrete is still questionable and much remains to be done. In its
current state of development, the practical applicability of fracture mechanics to

reinforced concrete materials is still under investigation by several researchers(40).
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5.5 Present Model for Concrete:

An international competition putting into test the different theories, described
previously, organised by Collins and Vicchio(41) concluded that there is no
correlation between the complexity of the analytical models and the accuracy of
the resulting predictions. Very simple models can produce predictions that are just
as good or just as bad as those arrived at by very complex models.

The model used in this study is simple but capable of simulating the nonlinear
behaviour of slabs and deep beams. This model was used by Johanry(42) and

Adel— Hafez43) in the analysis of reinforced concrete slabs.

5.5.1 Yield Criterion:

There have been a number of failure theories proposed and used by various
investigators. Recently, investigations have been made towards developing a
consistent failure theory for concrete(22,24). In any well designed reinforced
concrete structure, the cracking of concrete in tension, and compressive and tensile
yielding of steel are the major source of nonlinearity. In this study the octahedral
shear stress, linearised in term of the octahedral normal stress, is used, to fit the

yield surfaces for concrete under biaxial stress states fig. 5.7, in the form:

TOCt=a+b0-OCt 5.3

Where 7,o¢ is the octahedral shear stress given by:

J 2
2

Toct (O‘X2 + OyS - Ox0y + 3 Txy2)1/2 5.4

and 05.¢ is the octahedral stress given as:
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1

Ooct = —;— (o + 0y) 5.5

Taking fé as the uniaxial compressive strength of concrete, fy as the equivalent
compressive strength under biaxial compression, assumed to be 1.16 fc' and m =

ft/f(';, constants a and b in equation 5.3 are determined as follows:

5.5.1.1 Compression yvielding:

i- For uniaxial compression: oy = - fo oy = Txy = 0.0
J 2 ' fe
Toct = fo and Ooct =
3 3

Substituting in equation 5.3 we get:

J 2 fq b f.
= - + a 5.6
3 3
ii- For biaxial compression: o, = Oy = - fq =-1.16 fé, Txy = 0.0
/2 ' 2 fe
Toct = 1.16 fe and Ooct = 1.16
3 3

Thus equation 5.2 can be written as:

Solving for a and b, the biaxial compression yield criterion is given by:

Toct Toct
+ ( 0.1714 ————— - 0.4143 ) = 0.0 5.8



5.5.1.2 Tension— Compression:

1+m fe 3 1+m

5.5.1.3 Tension— Tension:

For biaxial tension the simple circular criterion is adopted.

-1.0=0.0 5.10

fe fy

where o, and o, are the standard principal stresses.

5.6 Concrete Nonlinearity:

5.6.1 Concrete under Compression:

To account for nonlinear stress— strain relationship of concrete in the principal

stress direction, equation describing concrete in elastic stage ( ¢ = D € ) is

adopted as proposed by Saenz(45) and modified by Liu et al.(46), to account for

biaxial effects. It takes the form:

A+ B E. ¢
g = 5.11
(1-ra)(1+Ce+De2)
where « is the ratio of the principal stresses. @ = o, / o¢,, v is the Poisson's

ratio and A, B, C and D are parameters which depend on the shape of the
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stress— strain curve. They were calculated from the following conditions:

i— At the initiation of loading, that is ¢ = 0.0:

do

= E./(l-va) and c=20.0
de

ii— At the peak stress of concrete Op the corresponding strain is €p and the slope

of the stress— strain curve become zero, thus at ¢ = €p we have:
do
= 0.0 and o = 0p
de

The above conditions provide four equations sufficient to define the unknown

parameters A, B, C and D of equation 5.11. After solving for the constants we

have:
E. ¢
o = S
1 Ec € € 12
1 -ra)y| 1 + ( -2) +[———]
1 - ra Ege €p €p
where:

Tp is the ultimate strength of concrete in compression, equal to fc'.

€p is the strain at maximum concrete compression stress, taken as equal to 0.002S5.
E. is the initial modulus of elasticity of concrete for uniaxial loading.

Ege is the secant modulus of elasticity at the peak stress and given by the
expression Ege = 0p / €p-

o is the ratio of the principal stresses. o = o, / o,

r Poisson's ratio.

0 and € are stress and strain in biaxial loading.

Equation 5.12 is used to generate the stress— strain behaviour of concrete in biaxial

compression up to peak strain (p> after which this equation ceases to be valid due



to the strain softening deformation. In this work softening is neglected by assuming
perfectly plastic behaviour up to the ultimate strain ¢.

To accommodate the early changes in stiffness of concrete, equation 5.12 is
incrementally linearized during loading by assuming intermediate surfaces similar to
that used by Bell and Elms(47) and Chen et al.(48). Such surfaces are shown in
figure 5.7. The first loading surface corresponds to the initial discontinuity in the
stress— strain diagram. The subsequent loading surfaces are assumed to have the
same shape of limiting yield surface. Accordingly, the intermediate surfaces will be
represented by equation #.3 but with an intermediate concrete strength fgc

replacing the ultimate strength fé. Jol"Pérry(42) proposed the following equation:

E'C
fee= feo - f¢ + f¢ 5.13
Ej
Where
feo = 0.5 f¢

fy : Tensile strength of concrete.

E. : Modulus of elasticity of concrete.

Abdel— Hafez(43) used the above equation and concluded that it is a useful
proposition.

Up to the peak strain €ps the concrete instantaneous modulus is computed using
equation 5.12 and for strain above this value the following expression was used up

to the assumed crushing strain (0.0035).

E; = 5.14

The concrete is considered to be crushed if one of the two conditions are violated:
i— if the failure criteria of equation 5.8 is violated or,
ii— if the principal compressive strain exceeds the ultimate compressive strain ¢,

= 0.0035.
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5.6.2 Concrete in Tension:

Cracking of concrete, under tension is the major source of nonlinearity in
reinforced concrete structures . The main features, accounted for concrete in

tension, are summarized:

i— Cracking in one or two directionsis allowed.

iim Cracks are allowed to transmit the shear to account for aggregate
interlock.

iii— Different crack direction is allowed for each layer.

iv— Tension stiffening is included.

5.6.2.1 Singly cracked Concrete:

The crack is supposed to open, if one of the yield criterion of equations 5.9
and 5.10 are violated, depending on the state of stress is in tension— compression
or in tension— tension state. The direction of the crack is taken as normal to the
major principal tensile stress. For fixed crack direction analysis, the direction of
the first crack is fixed. The stiffness perpendicular to the crack is assumed to be
equal to zero (if tension stiffening is neglected). However, material parallel to the
crack, is still capable of carrying stress prevailing at the crack, and some shear
force can be transferred along the rough surfaces of a crack. Accordingly the
material stiffness of concrete, in the local coordinate system (n,t) fig. 5.6a, is

given as:

[D']Cl' — 0 0 0 5.15
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A reduced shear modulus GG is assumed to account for aggregate interlock ( 0 £
B £ 1 ). G is the shear modulus. The Poisson's effect is neglected due to the
assumption that there is no interaction between the two principal directions after

concrete cracking.

i— Calculate the principal stress using the following standard expression:

2

N =

Ty + Oy ox - Oy
Ov,2 = ——— s ———E————- + Txy2 5.16
2

ii— Compute the principal angle 4, with report to x axis, in the form:

27xy
tan 26 =~ —4—m8 — 5.17

0x = Oy
The angle 6 given in the above equation lies between — 450 and + 450 therefore it
can lead to confusion on the principal direction. To determine the correct principal

angle, the following step is used.

ili— Calculate the normal stress associated with the angle 6 using the following

expression:

On = Oy cos26 + Oy sin26 + 2 Txy Sinfcosé 5.18

iv— Compare the values of ¢, and ¢, with the above normal stress oy,.

— If oy = 0, then o, in inclined at # +90° to x axis. Therefore the crack
angle is at 6 to x axis.

- If o = o

,» then the crack is normal to ¢,. Hence the crack angle is 0 +

900.



5.6.2.2 Doubly Cracked Concrete:

The presence of shear retention and tension stiffening if not neglected at the
previously formed crack will cause subsequent cracking and effectively produces
changes in the crack orientation. In fact, accounting for aggregate interlock implies
that the primary crack direction does not coincide with the principal direction and
consequently the second cracks may not be necessarily orthogonal to the previous
crack. Thus the orthogonal fixed crack approach results in conflict with the
assumption of the principal planes. It has been confirmed experimentally by Vécchio
and Collins(49) that changes in crack orientation takes place especially for panels
not equally reinforced.

For the previously uncracked concrete, smeared cracks occur in two orthogonal
directions when both the principal stresses exceed the tensile strength of concrete

f,. In this case, the material stiffness matrix in the local coordinates (n,t) becomes:

0 0 0
[D']er = | O 0 0 5.19
0 0  6GC

The first two diagonal terms in the above matrix may be updated if tension
stiffening is considered.

Since the material stiffness matrix [D']., is expressed in local coordinates system
(n,t), it is, therefore, transformed to the global coordinates system (x,y) using the

standard transformation matrix [T] as fellows:

(Dler = [TIT [D']ep [T) 5.20
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Where [T] = | S2 cZ2  -cs 5.21

-2CS 2¢S ¢2-s2

Where C = cosfcr and S = sinf;

5.6.2.3 Shear Transfer: .

Along reinforced concrete crack interfaces, aggregate interlock (fig. 5.8a) and to
some extent dowel action (fig. 5.8b) are the main mechanisms of load transfer(50).
The aggregate interlock is caused by the nature of the concrete crack roughness,
where as dowel action occurs due to stee} bars crossing cracks. These bars tend to
resist sliding shear movement and resist opening of the crack. Experimental results
have shown that the aggregate interlock resist more shear than dowel action(51,52).
Because large amount of deformation is required to develop significant dowel
action, and to reach that amount the concrete surrounding the bars may have
already deteriorated.

Based on many experimental studies, various analytical models of shear transfer
have been developed, figure 5.8. Hand et al.(53) proposed the shear modulus
approach to overcome some numerical difficulties, where they used a constant value
of 8 after cracking of concrete. A variable shear retention factor, which decreases
linearly with a fictious strain normal to the crack, was later introduced by Cedolin
and Deipoli(54). Al— Mahaidi(37) has also suggested a hyperbolic variation of shear
stiffness G with the fictious strain normal to the crack fig. 5.8c. In this work the

Al— Mahaidi's model was used with a value of reduced shear modulus as follows:

B = ———r0 5.22
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Where:

0 £ B£1 and ¢ is the fictious strain normal to the crack and expressed as:

€F = €y sinzé?Cr + ey cos:zf)cr - Txy sinf., cosf.p 5.23

€cr is the concrete cracking strain, e, .= ft/Ec

€x,» €y and vyy are the inplane strains.

fcr is the angle of the crack to x axis figure 5.6a.

In this work dowel action of the bars, crossing crack interfaces, was neglected.

5.6.2.4 Tension Stiffening:

As the cracks form, the tensile strength of that particular region drops to zero
and the residual stresses are transferred to steel, figure 5.9a. However, between
cracks, load is shared between steel and concrete due mainly to bond between steel
and the surrounding concrete. Tension stiffening is introduced to model the ability
of concrete between two adjacent cracks, to assist steel in carrying tensile stress.
The use of tension stiffening is not only more realistic, but tensile forces released
from cracked zones are gradually redistributed into the structure. It was Scanlon
and Murray(55) who introduced a descending branch, for the stress strain curve,
beyond the cracking strain. Later Clark and Speirs(56) showed, from the results for
beams and one way spanning slabs with different steel ratios, that the effect of
tension stiffening decreases with an increase in the steel ratios and steel strain.
The results suggest that tension stiffening can be ignored for steel ratio above
1.5% and for steel strains greater than about 0.0016. A simple form of tension

stiffening was adopted in the present work, figure 5.9b, as follows:

If €1 < €or g =Ej; €4
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(C2 ecr - €4)

q
i

If ecr < €5 < C2 €cp Cl f¢

€cr(C2 - 1)
If C2 €5 > C2 ecyp o=20
where ¢, is the concrete cracking strain (e.= ft/Ec), o and ¢ are local stress
and strain orthogonal to the crack, f; is the tensile strength of concrete. The
coefficients C1 and C2 are taken as: 0.5 ¢ Cl ¢ 1.0 and 10.0 ¢ C2 ¢ 20.0.
Discussion on the values chosen for Cl1 and C2 in the present work will be

presented later.

5.7 Modelling of steel:

In contrast to concrete, steel bar behaviour is comparatively well understood, and
since, steel reinforcement elements in concrete construction are mostly one
dimensional, it is generally not necessary to introduce a complex multiaxial
constitutive relationships. Generally steel bars exhibit an initial elastic portion, a
yield plateau at which the strain increases with a little or no increase in stress, a
strain hardening range in which stress again increases with strain, and finally a
range in which stress drops until fracture occurs. In the present study a simple
bilinear idealisation of figure 5.10 is incorporated, simulating the behaviour of
reinforcing steel as elastic perfectly plastic or with allowance of some hardening as

follows:

i— At elastic stage, the incremental stress strain is given by:

Ao = Eg Ae 5.24

ii— When the stress in the steel bar reaches its yield value fy, the incremental

elastic— plastic stress relationship takes the form:

Ac = Eg (1 - Es/ ( Eg + H)) Ae 5.25
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Where H is the hardening parameter and Eg is the Young's modulus of steel.
Generally for mild steel an elastic— perfectly plastic model is quite adequate,

whereas for high yield steel bars, the strain hardening effect, may be important.

5.7.1 Finite Element Representation of Steel Bars:

To account for the effect of steel reinforcements in stiffness calculations, three

alternative approaches can be used namely smeared, embedded and discrete.

5.7.1.1 Smeared Model:

In the smeared model, reinforcements are assumed to be distributed over the
element, figure 5.11. This model is convenient for structures where a large number
of reinforcing bars are placed. Due to this feature it is rather difficult to model
each reinforcing bar individually. This model is widely used in reinforced concrete
plate and shell structures, in which the structure is divided into layers. This
approach was first adopted by Wegmuller in 1974(100) and improved by
others(101,102). In this model the stress strain relationship for each layer is given

by:

{o) = [Dg] (e) | 5.26

where DS' is the constitutive relationship for steel.

For steel layer the behaviour is first described in the local coordinate direction of
the steel so that the bar can be orientated at any angle to the global axes (x,y),
then the constitutive relationship is transformed from the local to the global axes

in terms of the angle (g between the local axes and the global axes.



1.2 Emb Model:

Over the past decade, a number of embedded representation for reinforcement
have been published. Phillips and Zeinkiewicz(103) developed embedded
representation in which virtual work integration is performed along the reinforcing
bar. In their formulation, the reinforcement was restricted to lie ’u.]ong one of the
local coordinate lines, figure 11b.

Chang et al.(104) recently published the embedded representations that allows for a
reinforcing bar to be placed at an angle to the local isoparametric element axes
but restricted to problems having straight reinforcing and rectilinear meshes. Elwi
and Hrudey(105), and Phillips and Wu(106) developed a formulation presenting a
general oriented and curved embedded reinforcement.

The advantage of using embedded model is that the geometry of the finite element
mesh can be constructed independently of the reinforcement layout and every bar
is modelled in its correct position. Since we are following the usual procedure for
isoparametric mapping, and full compatibility between the bar and basic element is
assumed, the displacements {u,v} of any point on the bar are obtained from the

displacement field of the basic element as:

= [N(E,m (8¢

For bars only one component of strain contributes to the strain energy and is
defined locally as:

¢p = ou'/ox'
where x' and y' are the local coordinate system at any point on the bar with y'
being normal to the bar, and u', v' are the corresponding displacements.
In this work, only reinforced bars laying parallel to the coordinate lines x or y are
considered. If a bar is laying along &, all points of the bar have a constant 5= 75,
and vise versa.

The element stiffness matrix of steel reinforcement has the following form:
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[Ks] = Ag Jl 81T (D] [B] dI 5.27

Where Ag is the cross sectional area of reinforcement. [D] is the elasticity matrix
determined as follows:

If the bar is laying in x direction: D(1,1) = Eg

While in y direction D(2,2) = Eq.

[B] is the nodal displacement— strain matrix .for isoparametric element but
accounting only for one degree of freedom in the direction of the reinforced bar.
dl is the segment along the reinforcement.

The integration in equation 5.27 is performed over the whole bar length crossing
the element. A two Gauss point system was used.

Both smeared and embedded formulations are adopted in the present work by
assuming perfect bond between steel and concrete. Thus the overall constitutive
relationship is simply evaluated by adding the material matrices for concrete and

steel together, as follows:
[Kel = [Kc] + [Kg] 5.28

In which [K.] is the stiffness matrix of the composite element, [K:] and [K{] are
the element concrete and steel stiffness matrices respectively.

In fact the name embedded can be given for all models when full bound between
steel and concrete is assumed. The so called embedded model could be better
named as partially discrete model, since the strains of steel are calculated in their
exact position on the bar, whereas its stiffness is distributed between the nodal
points of the parent element, depending on the position of the bar within the

element.

5.7.1.3 Discrete _model:

In the discrete model, figure 5.11c, a one dimensional bar element is

superimposed on the two dimensional parent element by assuming that the bar is
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pin connected with two degrees of freedom at nodal points. Alternatively, discrete
beam elements can be used, in which the steel is assumed to be capable of
resisting axial force, shear force and bending moment. The use of the beam
elements, with three degrees of freedom per node, may be suitable and necessary
in the case of heavy bars for which bending is a significant effect. The discrete
model was first used by Ngo and Scordelis(7) in the analysis of beams.

In either case, bar or beam element, steel— concrete interaction can be represented
by linkage element to account for possible relative displacement of the
reinforcement to the surrounding concrete. In this model the stiffness and the
strains are calculated exactly on the bar position. In spite of its simplicity, the
discrete model has one major disadvantage in that the finite element mesh patterns
are restricted by the locations of the reinforcement, which leads to an increase in

the size of the stiffness matrix.

5.8 Numerical Applications:

In this section some practical application of the model adopted are presented.
The main purpose is to verify the applicability and the accuracy of the numerical
model, for reinforced concrete structures classified as plate bending and inplane
problems. This is done by testing the model against various carefully conducted
experimental tests involving different types of reinforced concrete structures
exhibiting various modes of failure. The load deformation response, cracking history
and crack locations and directions, steel yielding, ultimate load were recorded as
well as the mode of failure. In the nonlinear solution, the combined algorithm is
adopted in which the stiffness is updated at 2nd, Sth, 10th iterations and so on
until convergence or collapse of the structure is obtained. A convergence force
tolerance of 4% was adopted for the analysis, the maximum number of iteration of
30 and 50 were fixed for the analysis of slabs and deep beams respectively. The
reason for increasing the number of iteration for beams is that, they show a slow

rate of redistribution of the residual stress, at the first stages of cracking of the
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structure, but, unlike slabs, with a small increase in deformations. Also in order to
keep costs down, small load increments are applied only for highly nonlinear parts
of the solution. It was concluded(43) that there is not much difference in results
using different load increment sizes. By analysing slabs, Abdel— Hafez(43) also
showed that the results and the cost of the analysis are only slightly influenced by

the number of layers used. A total of 10 layers, including steel layers, were fixed

for slab analysis.
5.8.1 HAGO's slabs:

Two slabs with different types of support conditions were chosen from the six
slabs tested by Hago (115). The analysis of these slabs, with various degrees of

orthotropy of reinforcement, allows the effect of the amount of steel reinforcement

to be tested as well as different types of support conditions.

a— Simply supported slab (Model N. 3)

This example is a square simply supported slab, designed for a total load of 210
KN, applied as four point loads. The thickness of the slab is 100 mm, with

orthotropic reinforcement as shown in figure 5.12. The material properties used are

as follows:

foy = 44.2 N/mm2 ; fy = 460.0 N/mm2
E, = 21500.0 N/mm2 ; Eg = 214000.0 N/mm2

ff = 34 N/mm?2

A quarter of the slab was analysed as shown in figure 5.12a. To study the
effect of the finite element mesh size, different mesh arrangements were used.
Figure 5.13 shows that a more flexible deformation was obtained when a larger

number of elements were used. The time cost of the analysis was significantly
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influenced by the number of element used. A 4x4 finite element mesh gives an
acceptable solution at a reasonable cost. The time increases by almost four times
when using 8x8 element mesh instead of 4x4. The slab was loaded using 0.2 Pd
for the first increment, where Pd is the design ultimate load, and a load increment
of 0.05 Pd was adopted in the first stage where cracking starts. A load increment
of 0.1 Pd was fixed beyond this last stage until design load was reached after
which it was reduced to 0.05 Pd.

Generally slabs, failing flexurally, start cracking in the range of 20 to 35% of their
ultimate strength. A maximum of 18 iteration was recorded, during the analysis, at
the early stages of cracking. Different value of the shear retention factor ( B =
0.0, 0.4, 0.7 and 1.0) have been used to study the effect of shear transfer to
simulate variations from very smooth to very rough concrete crack faces. Load
deflection curves of the central point of the slab are illustrated in figure 5.14.
From the results only small difference can be noticed between the deflections for
the different values of B chosen. A little improvement in the ultimate load can be
seen when B was increased to the value of 0.4, while above this value there is no
difference in the ultimate load. A simple model for tension stiffening was used
with values of C2 equal to 10.0, 15.0 and 20.0 ( the factor C2 determines the
descending branch in figure 5.10b). Figure 5.15 shows that deflection values are
sensitive to the tension stiffening especially at service load, where predictions are
better predictions. In terms of ultimate load, using high values of C2 leads to

higher ultimate load.

b— Hago's two adjacent edges simply supported and one corner supported slab N.4:

This is a 2100 x 2160 mm square slab with two adjacent sides simply supported
and one corner on column support. The thickness of the slab is 100mm with
orthotropic reinforcement as shown in figure 5.16. The slab had the following

material properties:
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few = 37.3 KN/mm?2 ; fy = 473 KN/mm2
fp = 2.97 KN/mm?2 ; Eg = 214000 KN/mm2
E. = 20400 KN/mm?2

Since the slab was not symmetric, a 6x6 finite element mesh is used over the
whole plate as shown in figure 5.17. The cross section of the slab was divided into
six concrete layers and four steel layers when top and bottom steel were present.
Figure 5.18 compares the load— deflection curve obtained by experimental and
numerical results. The numerical results were obtained using a shear retention
factor B of 0.4. A better correlation between the experimental and the numerical
deflection was obtained using tension stiffening, where as in term of ultimate load
there is no difference, figure 5.18.

Tension stiffening had a significant influence on the convergence rate of the
solution at working load. Taking tension stiffening into consideration, a maximum
of 9 iterations was required at the first stages of cracking, while analysis without
tension stiffening increases the maximum number of iterationsto 24.

The incremental load size was reduced to 2.5 % of the design load near the
ultimate load. Figure 5.19 shows crack pattern comparison between the
experimental results and the numerical, for both top and bottom concrete faces, at
ultimate load.

The bottom steel yielded numerically at 0.9 Pd, in both analysis with or without
tension stiffening, where as experimentally the steel yielded at the design load.
Numerical failure took place at 98 % of the experimental ultimate load. The

predicted mode of failure was flexural as was the experimental.

5.8.2 McNeice corner support slab{116):

This example was a 914.0 mm square corner supported slab, loaded with a
central concentrated force. This slab was chosen to assess the present model for

the two— way bending and corner supported slabs. Material properties are given as
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follows:

fou = 32.4 N/mm2 ; fy = 345 N/mm?2

fi = 3.2 N/mm2 : Eg = 200000 N/mm?2
E., = 29000 N/mm2

v = 0.15

A mesh of 4x4 elements over a symmetric quadrant was used as shown in figure
5.20. The experimental failure load was at 14.3 KN. Two results of analysis are
given here, one considering tension stiffening ( with C1 = 0.5 and C2 = 10.0 )
and the other without tension stiffening. The agreement, between analytic with
tension stiffening and experiment, is good at working load of the slab but the
numerical results are stiffer beyond 0.7 of the ultimate load. Results without
tension stiffening gives large deflection at working load range. The slab failed at
1.10 and 1.125 of the experimental ultimate load excluding and including tension

stiffening, respectively.

5.8.3 VICCHIO and COLLINS Panels:

Two panels were chosen from an experimental research program, conducted by
Viechio and Collins(111). The program involved testing reinforced concrete panels
under a variety of well—defined and uniform stresses in a specially designed test
rig, figure 5.21. These two panels were part of an international competition(41)
organised to compare analytical methods for predicting the response of reinforced
concrete elements subjected to general two dimensional stress states. Twenty seven
predictions from thirteen contries were submitted. The predictions were concerned
with the ultimate strength and deformation using different analytical methods. This
competition was organized to highlight the difficulties in assessing numerically the
behaviour of reinforced concrete structures. Figure 5.23 shows the scatter in the

predicted ultimate strengths of the panels.



The panels have the same dimensions as shown in figure 5.22, 890mm square and
70mm thickness. They are reinforced by two layers of isotropic reinforcement
(py= py) and parallel to the edges.

Panel A was loaded under pure shear, whereas panel B was subjected to combined
biaxial compression and shear. The panels were heavily reinforced and hence
failure could be expected by concrete crushing. Material properties, reinforcement
ratio, and loading details are summarized in table 5.1 and the remaining
parameters are adopted as given by Chang et al.(104). The concrete elastic
modulus and the tensile strength were taken as 0.2x105 MPa and 0.1 f¢
respectively. The steel reinforcement was assumed to be perfectly elastic— plastic
material with E¢ = 0.2x100 MPa.

The panels were analysed using 4x4 finite element mesh as shown in figure 5.22.
The response of the panels A and B in terms of the applied shear stress V versus
shear strain Yxy is shown in figures 5.24 and 5.25 respectively. Figure 5.24a and
5.25a show that the variation of the shear retention factor had no effect on the
panels behaviour both at working load and at ultimate load of the panels. Taking
tension stiffening into account, for panel A, made no difference in the shear
deformation obtained at cracking load, figure 5.24b. This is mainly due to the
uniformly sudden cracking of the panels. In contrast, panel B shows higher
stiffening when tension stiffening constant C2 increased, figure 5.25b. This is may
be explained by the presence of compressive forces. In term of ultimate load
tension stiffening had no effect for both panels.

The presence of the compressive forces in the second panel increased the cracking
load of the panel.

Panel B was designed to answer the question, if a panel is failing in crushing of
the concrete, will the addition of biaxial compression weaken the panel or
strengthen the panel?. Both the experimental and numerical results show that the
presence of biaxial compression increase the ultimate shear strength of the panel,
so that the failure shear strength in panel B was increased by almost 50%

experimentally and by 15% numerically over that of panel A. Comparisons also,
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Table

Specimen Concrete Reinforcement Loading
f.' MP Rati fy
c a atio MPa
L 5 £
Panel A 20.5 Px=Py= 0£r £y
442
Ox = Oy = 0
0.01785
£ 71 £
Panel B 19.2 Px=py= 0711y
446
Oy = Oy =
0.01785
0.7 74
1 MPa = 1 N/mm?
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were made with Chang et al.(104) numerical results and show good agreement in
the predictions for panel A, figure 5.24c, while the present prediction for panel B
are better both at working load and at ultimate load, figure 5.25c. Figure 5.23 a
and b show that the present results are in the scatter range, where most
competitors (41) predicted the ultimate strength of the panels. The crack pattern at
collapse load are presented in figure 5.26. In both the panels steel did not yield in
the experiment and this was true in the case of numerical results also. The
crushing of the concrete was noted on the last increment and convergence could

not be attained at this level.

5.8.4 CERVENKA Panel W2:

The panel was chosen from finite element investigation(26) of several shear
panels which Cervenka had tested experimentally., The panels were studied
numerically by many investigators(102,110). Dimensions, loading, reinforcing scheme
and method of loading are shown in figure 5.27. The experimental failure load
took place at Pu = 230 KN.

Different finite element meshes, of 4x4, 6x6 and 8x7, were used in the numerical
analysis. Figure 5.28a shows that as the number of element decreased the stiffness
of the panel increased especially as approaching the failure load of the 4x4 mesh
analysis. The predicted ultimate load was almost fhe same for all the meshes used.
Both smeared and embedded representation of steel reinforcement give good
correlation with the experimental results, figure 5.28b. When taking into account
tension stiffening, the panel stiffened at working load, while the ultimate load was
almost the same as the one given excluding tension stiffening. Shear retention
factor variation, simulating smooth to rough concrete crack interface, seems to have
little influence on the behaviour of the panel as well as its ultimate load, figure
5.28c. This may be due to the flexural behaviour of the panel and the presence of
important vertical steel reinforcement. Crack patterns, both experimental and

numerical at failure load, are presented in figure 5.29 and shows the ability of this
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Reinforcement: #3 4 X 4 mesh

*2}’ L Steel ratios
F ?ﬁ urTw

Hh . 1, =0.0092
30" Hi

M 11 J

i } py =0.0183

FP Steel ratio, p,, = 0.0092 + P

Elevation

—

A [ S—
=== = 0

L

H 8

Concrete: f7 =268MPa f,= 3.6 MPa

E. = 2.0 X 10 MPa

Steel: S, = 353 MPa E, = 1.9 X 10° MPa

Fig. 5.27 Dimensions, reinforcement, loading and material properties.
Cervenka Panel W2,




133

6z|G yse| iuewe)] €1/U]

1INVD TIVA VINIAYIT  3AdN3 NOIL3J37430-0V0T ®8T'S "Big
(Ww) NOILJ37430

St

Zl 6 0
* }
8 vCUEOd FJ Ol e \~
giuswe] QF —-—-—-—- IM
SIUBWOY J GO  vveremscsecmeene N
INHIY¥AdX3 —,
b o

t Qy07 3LYNILIN "¥3dX3/0Y07 0317ddY




ap]

St

(W&)  NOILJ371430

d01J3V4 NOISNILIY YVIHS
13NVd TIVA YANIAYFD  3A¥NT NOILI3T430-0Y07

qgz's ‘8ig

cl é 0 .
| w t 0%
2°0=8 YaIn 1E0j00ny -------- P
4°0=8 Y3IA (8D 1I0ENN —-msmem b
1 ‘08 Ya!A js0)Jeeny s
id 1Y INGHIN3d3 4
(4
.................. ———
g

?°l

QY01 3JLVWILIN "¥3dX3/0V0T Q31ddY



ap}

1

TINYd TIVA YINIAYID 3A8NI NOIL331430-0Y07 °8T'S 3iud

(W) NOILJ31d430

z1 4 0 . o
p ' — + 400
‘3139 BUBY YIIA 38 QWF -cc--cec-e b
19038 pessews —-—-—-— -
1w -2°0
IHIEaE ———7F

~%0

~9 %0

—8°0

—0°t

T

fVUW JLYRILIN *¥3dX3/0Y0T Q317ddY




136

Numerical

Experimental

e 7
s S]

N s ——]

N~ ——— —
N~ ———
NN NN~ ————]
NN\ N N S————

NN NN NN S——

NN NN SN ~———]
NONCNN AN SSN—]

NONONN NN N
NONONN NN NS

NONN NN NN

NONNNN\ -
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model to duplicate the experimental crack patterns. The panel failed flexurally by

yielding of longitudinal steel corresponding with experimental mode of failure.

5.8.5 Khaskheli Transfer Girder:

Four two span continuous deep beams TRGRAS1, TRGRAS2, TRGRAS3 and
TRGRAS4 were chosen from the test program carried out by Khaskheli(81). The
purpose of the experimental work was mainly to validate the direct design
procedures for designing deep beams in general and continuous deep girders in
particular, for serviceability and ultimate conditions.

The aim of analysing these beams was to check the performance of the present
analytical model, both at service and ultimate loads, in predicting the behaviour of
such structures, which had different reinforcement distribution and span depth ratio.
The geometry of the first three beams were the same with span to depth ratio of
1.07. The span to depth ratio of the fourth beam TRGRAS4 was 1.61. All the
beams were designed according to direct design rules. The difference between
beams TRGRAS1 and TRGRAS2 was in the amount of shear reinforcement
provided, which was greater in TRGRAS1, while the main reinforcement was the
same. The analysis of these two beams will evaluate the effect of the shear
reinforcement on the ultimate load of the beams. The difference between tﬁe beam
TRGRAS2 and beam TRGRAS3 was in the longitudinal reinforcement, while the
shear reinforcement was the same. The design load, Pd = 1100KN, of TRGRAS3
was higher than that of TRGRAS2. The design ultimate load of TRGRAS4 was the
same as that of the first two girders and was equal to 810KN. The overall depth
and the thickness of all the beams was kept constant equal to 900mm and 100mm
respectively. The span between the centres of the support bearings was 960mm for
the first three beams whereas for the forth beam it was increased to 1450mm.
Figures 5.30 show the steel layout and the dimensions of the beams. The material

properties of the beams are presented in table 5.2.




Shear
Concrete
Properties Span- Span- Design
Depth Depth Load
Ratio Ratio Pd
Ec fcu ft
KN/mm2 [|KN/mm?2 | KN/mm?2 KN
TRGRAS1 19.3 63.0 3.2 1.07 0.42 810
TRGRAS2 23.2 61.0 3.7 1.07 0.42 810
TRGRAS3 20.8 61.0 3.4 1.07 0.42 1100
TRGRAS4 19.2 52.0 2.6 1.61 0.69 810

Steel diam. émm fy = 513 N/mm2, Eg _199000 N/mm’

Steel diam. 8mm fy = 520 N/mm2, Eg =195000 N/mm?2

Table 5.2 Khaskheli Beams properties

Taking advantage of symmetry, only one span of the beams was analysed using 8x7
finite element mesh. Beam TRGRAS1 was analysed using both smeared and
embedded steel formulations. The first crack opened in the two numerical analysis
at the same level of loading (0.4 Pd) while experimentally, it was reported to have
appeared at 0.3 Pd in the same location as in the numerical analysis, at the soffit
of the beam in the mid—span. The first yielding of longitudinal steel, in the
middle span of the beam soffit, was experimentally recorded at 1.30 Pd, whereas
numerically it was at 1.0 Pd. A little enhancement in the ultimate load, using
embedded bar analysis, was recorded as presented in figure 5.31. Clioser
examination of the load displacement curve reveals an important loss of stiffness of

the beam at 1.075 Pd caused by a sudden shear cracks. It is instructive to plot
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the crack pattern just before this irregularity (at 1.05 Pd) and after (at 1.075 Pd),
figures 5.32a and 5.32b. Note that this load level roughly coincide with the
experimental load of the inclined shear cracks which opened in the internal shear
span of the beam at 1.16 Pd. It can be seen that no inclined shear cracks in the
interior span of the beam opened at 1.05 Pd(figure 5.32a), while suddenly at 1.075
all the interior span was covered by cracks. Notice that there is almost no
difference in crack pattern at this level and the one where failure load was
considered, figure 5.32b and 5.32c. This explains that the cracks opened at 1.075
Pd had an important effect on the ultimate behaviour of the beam.

Figure 5.31c shows different load deflection curves corresponding to different shear
retention factor B ranging from 0.1 to 1.0. Using low value of B (0.1) gives low
uitimate load and equal to the load where the shear cracks opened in the interior
span of the beam. This confirms that the cracks opened at 1.075 Pd were caused
by high shear stresses. The other values of B gives almost the same ultimate load,
although B = 0.4 resulted in higher ultimate load. For steel strain of the
longitudinal bar at the soffit of the beam, a reasonable agreement can be seen
between the numerical and the experimental results, figure 5.31b. The curves show
that no significant strain prior cracking of concrete was recorded. Numerically the
steel yielded at 1.075 Pd. At failure, good agreement between experimental and
numerical crack patterns was obtained as shown in figure 5.32c. The experimental
failure load (Pu) took place at 1.56 Pd. The Numerical failure load was of 0.92 of
the experimental one, using embedded formulation, while using smeared the
ultimate load was of 0.87 Pu. No vertical steel yielded both experimentally and
numerically.

The load deflection curves for beam TRGRAS2 and TRGRAS3 are shown in
figures 5.33a and 5.33b respectively and are similar to beam TRGRAS1. The
difference was in the load where the inclined cracks of the interior shear span
opened. For TRGRAS2 this crack opened at 0.975 Pd (828.5 KN) lower than the
corresponding load of the first beam, which was at 1.075 Pd ( 914 KN). The

failure took place numerically at 1.375 Pd (1164 KN) and at 1.43 Pd (1216 KN)
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experimentally. Both numerical and experimental results gave a lower ultimate load
for this beam TRGRAS2 than the one of the previous beam. For TRGRAS3 the
load corresponding to the shear cracking of the interior shear span of the beam,
was at 0.8 Pd (880 KN). The failure load took place numerically at 1.275 Pd
(1402.5 KN) while experimentally it was at 1.36 Pd (1500 KN). Beam TRGRAS4
was chosen to ascertain the effect of the span—depth ratio on the beam behaviour
and failure mechanism, sine its span— depth ratio was greater than that of the
previous beams. The design load was the same as for the first and the second
beam (Pd = 850 KN). The beam was loaded using the same load increments as
for the previous beams. The first crack was detected at 0.3 of the design load at
the soffit of the beam, whereas experimentally it opened at 0.12 Pd. As the load
increased the cracks propagate towards the loading point. The cracks opened at the
top of the intermediate support at 0.65 Pd numerically and at 0.70 Pd
experimentally. Up to this level of loading the load deflection relationship was
almost linear, figure 5.34. As for previous beams, at 0.725 Pd a large number of
cracks, in the interior span of the beam, opened (compare figure S5.35a and
5.35b). A maximum of 43 iteration require to achieve convergence at this load
increment. The inclined shear crack was reported experimentally at 1.05 Pd. The
steel yielded earlier numerically (0.80 Pd) than experimentally (0.92 Pd). The
failure took place at 1.15 Pd and 1.34 in the numerical and experimental results,
respectively. The load deflection and load strain curves, both numerical and
experimental, show that the beam behaved more flexurally than the previous
beams, although failure took place experimentally in shear. In this beam the strain
in horizontal steel was several time of its yield strain. It is unfortunate that in the
the experiment, the strain gage was failed before the ultimate load of the beam
was reached, thus providing no comparison with experimental values. At failure no

vertical steel had yielded both experimentally and numerically.
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Fig. 5.32a Crack pattern at 1.05 Pd. Beam TRGRAS1
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Fig. 5.32b Crack pattern at 1.075 Pd. Beam TRGRASI1
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5.8.6 Gijesbers and Smit Beam:

This beam which was tested by Gijesbers and smit(112) and described by Rots et
al.(114) as a challenging beam to be analysed. The beam was subjected to a
uniformly distributed load, while the majority of test report in the literature has
concentrated on a finite number of point loading systems. As shown in figure
5.36a, the beam was relatively small compared with large supporting end— blocks
that had been added in order to fix the desired moment shear ratio. By varying
the sizes a, e, and 1 in figure 5.36a, this moment/shear ratio as well as the
slenderness of the beam could be varied. In this way a wide range of shear failure
mechanism have been investigated(112), such as diagonal tension failure and shear
compression failure. This beam contained both tensile and compressive
reinforcement, but no stirrups. The dimensions and finite element mesh adopted

are shown in figure 5.36b. The material properties of the beam were as follows:

E. = 25000 KN/mm2 ; fy = 415 KN/mm2
f; = 2.0 N/mm2 : E; = 210000 KN/mm2
vy = 0.2

Since the compressive strength of concrete was not given, it was calculated from

the empirical equation as given by ACI code 318— 77(113).

Ec = 33 Wl/2 / £, 5.29

where W = unit weight in pounds per cubic foot and E. and f(; are expressed in
pound per square inch.

This beam was studied by Rots et al.(114) by adopting a very sophisticated model
based on plastic— fracturing model. They used 120 elements. In this analysis only
64 elements were used, as shown in figure 5.33b, and seems to give reasonable
results.

The experimental result shows almost elastic behaviour up to a loading level of q

= 68 KN/m when there was an abrupt loss of stiffness due to the sudden



4 X 45

160

160

J A/
AN
el

N

/

q-load

mﬂ'm!HHHHHH}HUH

Fig. 5.36a Loading and dimension configuration.

721.0 254.0 675.0
. I ETYTEEEIITEMI I ETEYEETIE YR
i3 14

i/
o
Y
]
o7

- % I/

\3:;614
3@ 14
A 400 N 200‘ 121.5411001‘001
t = 150mm.

Fig. 36b  Finite element idealization.



14#*"6#(!
O g
< )
< 2.7
S6#H*"
< . 14#*"6#(! (& 86#*" * M 4 1# 6

I #14#*"6# (! T 8*# % & 70 < 26



153

(261 ' LINS 3 SY3GSCI9 ) 3A8NI NOILIT1430-avo] SE'S Sid
(W) NOILI3143a

¢l at 8 14 Y [4

0
. . } } t } 0
66°0=g Yeo1JeEny —.—e—g
¥ °0=g 1801 ey -cconeseee h
1 °0~g 1801y —imememe— €
66°0~d 1® 3@ 830y Y ——g
I3 ———}

(W/N) QY01 @317ddY



development of diagonal tension crack. Figure 5.37 shows good duplication of the
numerical and experimental crack patterns at experimental failure load (q = 75
KN/m). Although the type of failure mechanism is reproduced quite well, it is
rather disappointing that the numerical analysis does not predict well the
corresponding ultimate load. Beyond the experimental ultimate load, numerically the
beam behaved elastically until the numerical ultimate load. To simulate rough,
smooth and almost frictionless of concrete crack surfaces, different shear retention
factors ( B = 0.99, 0.4 and 0.1 ) were used in the analysis. Figure 5.38 reflects
the effect of the variation of the shear retention factor on the load displacement
relationship. The influence of the shear retention B, up to certain values, was
found to be significant for this beam. As B increased there was an increase in
stiffness, but in terms of ultimate load there is no difference for B greater than
0.4. No steel yielded until the ultimate load was reached. Experimentally no steel

yielding was reported. In comparison with the numerical results presented by Rots

et al.(114), the present model gives acceptable predictions.

5.9 CONCLUSIONS:

1— The present computational model is capable of providing a good prediction of
the overall behaviour of reinforced concrete slabs and deep beams, both at working

and ultimate load. The mode of failure is in general well predicted.

2— A mesh of 4x4 is adequate to produce acceptable results for the range of slabs

used, whereas for beams an average of 7x7 can be adopted.

3— Tension stiffening has a significant influence on the accuracy of the predictions
at working load. However as approaching the ultimate load, the predictions are
stiffer. In addition, tension stiffening has a significant effect on the convergence at
early cracking of the structure. In fact tension stiffening is affected by many

factors such as the amount of steel, type of tension stiffening curve, type of



structure and its behaviour. So it is difficult to suggest a fixed values but in
general a value of 0.5 and 10.0 for the constants Cl1 and C2 can be adopted,

respectively.

4— For slabs and deep beams failing in flexure, the shear retention factor has
almost no influence on the results. In general a value 0.4 for the shear retention

factor at cracking strain can be used.



Chapter 6

Experimental Set—up and Instrumentation

6.1 Introduction:

The theory given in chapter 3 for the Direct Design of reinforced concrete slabs
and deep beams has been verified experimentally by many research
workers(43,115,79,80,81) using elastic stress field distribution. The object of this
experimental investigation is to study the behaviour of reinforced concrete slabs and
deep beams designed using nonelastic stress fields, at working and ultimate load. A
total of six slabs and two deep beams were tested. Three square slabs were simply
supported, designed using different levels of plasticity, two square slabs were simply
supported with mid— column support, and one was rectangular simply supported. The
deep beams were of different span— depth ratio and simply supported at their ends.
Tables 6.1 and 6.2 show the geometric details of all slabs and deep Dbeams
respectively. The method of determination of plasticity levels for both slabs and deep

beams are described in the next chapter.



Table 6.1 Tested slabs-designations and dimensions.

Test Designation| Support Conditions Dimensions
mm
1 | Mode1 5.1 | Sauare Simply 2140%2140x100
Supported
2 Model S.2 // 2140x2140x100
3 Model S.3 // 2140%x2140x100
//
+
Mid-Column
4 Model S.4 2140x2140x100
O
Rectangular Simply
Supported
5 Model S.5 3140x2140x100
Square simply
Supported + Mid-Col.
6 Model S.6 2140x2140x100
O

157



Table 6.2 Tested Deep Beams-designations and dimensions.

Test Designation| Support Conditions Dimensions
mm
1 Beam B.1 1050x500x100
4 A
2 Beam B.2 1050x900x100
A




6.2 Description of Experimental Parameters:

Since the design procedure gives a continuously varying reinforcement pattern, it is
necessary to use large scale models, in order that the wvariation in steel can be
properly represented. The thickness of the designed slab models were chosen to
comply with the limiting span— depth ratio and as required by sections 3.2.1.1 of
BS8110(1) Part 1. For all the slabs tested, a fixed span length of 2000mm is used.
The other length was changed only for model S.5, having an aspect ratio of 1.5.
The support conditions considered was simple support along the edges for all models.
A steel column support was used in the middle of slab Models S.4 and S.6. Models
S.1 and S.3 were designed using 70% and 30% plasticity level stress distribution
respectively. The other models were designed using 100% plasticity level. Figure 6.1
shows the slabs dimensions, support system and loading point locations.

Two different span— depth ratios were chosen for the tested deep beams. The first
beam had a ratio of 1.8 where as the second had 0.9. The beams had the same

thickness of 100mm and were designed using 100% plasticity stress level.

6.3 Loading Rig:

6.3.1 Slabs:

The rig for slabs was adopted from earlier research programs(43,115) involving
tests on square and rectangular reinforced slabs at a maximum dimensions of 3000mm
x 2000mm. The loading rig is shown in figures 6.2. The 2000mm span was fixed but
the other dimensions can be varied. The rig allows 1500mm headroom under the slab
so that the bottom concrete surface of the slabs can be examined during the tests
and the width of the cracks can be measured. The rig was designed to carry safely

600 KN.
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Loads are applied as concentrated loads, by using loading cables passing through holes
provided in the slab at the time of casting, and corresponding holes in the floor of

the laboratory.

6.3.1.1 Support System:

For all slabs, a simple support system was used along their edges. This support
system consisted of two mild steel flats of 12mm thick and 100mm wide separated by
a steel roller of 25mm diameter as shown in figure 63 This support was extended
over the whole length except near the corners and in the middle of two adjacent
sides of the slab, where a V plates— Roller were placed to stabilize the slab on the
rig. Since uplift forces were expected at the corners, which were held down using a
corner support shown in figure 6.4. The uplift forces are caused by the presence of
high twisting moments at the corner region. Load cells were used to measure the
corner uplift forces. The corner support was designed so to provide an equivalent
spherical support. A 6mm diameter high tension strength steel bar which passes
through the load cell, through the hole in the slab corner and then through a set of
flats and rollers system was finally anchored to the loading rig. For model S.4 and
S.6 a steel column was placed under the middle of the slabs. The head of the
column provided a spherical support in contact directly with the bottom concrete face

of the slab. Figure 6.5 shows the column support system used.

6.3.1.2 Loading System:

Two different Systems of loading were used for applying concentrated load on the

slab models They are:

1— Direct Point load.
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2— Indirect point load.

6.3.1.2.1 Direct Point Load System:

This system was adopted for all slabs except for model S.5. The loads were
applied by four prestressing cables symmetrically placed through four holes in the
slab, as shown in figure 6.6. The cables were anchored on the top of load cells
which were placed on the hydraulic jacks. The load cells were used to measure the
applied load on the slabs. At the other end, the cables were anchored under the
laboratory strong floor on to 60 ton Hydraulic jacks. The bottom jacks were operated
by bhand pumps, whereas the top ones were operated by an electrical motor pump.

The hand pumps were used to adjust the load applied at each point.

6.3.1.2.2 Indirect two point load system:

This was used for Model S.5 only and the load was applied through four 30mm
diameter prestressing cables passing through four holes in the slab. Each cable
transmits equal load on two point of the slab by a system of simply supported
spreader beams as shown in figure 6.7. A V— Roller support system was used at one

end of each spreader beam, while on the other end plates— roller system was placed.

6.3.2 Deep Beams:
Figure 6.8 shows the set up for deep beams tested. The Beams were

accommodated in a 10.000 KN Losenhausen Universal Testing Machine. The rig was

designed for a total loading capability of 2000 KN and comprised of:

1— Two Support Girders
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Square Slabs

S.1, S.2 and S.3
70%, 100% and 30%
Plasticity
% %
70 565.0 870.0 565.0 70
2140.0
Square slabs with
« * mid-column support
Model s .4 and S.6
O 100% Plasticity
* *
70 565.0 870.0 565.0
2140.0
~J
o
v
(o))
o Rectangular slab
© * * * Model number 5
N oo 100% Plasticity
~ ~
o|®°
o | ©
* * O Column
* Point load
S corner helt
815.0 500.0 370.0 500.0 815.0 70 down
3140.0

Fig. 6.1

Slabs Dimensions, Support and Loading System.
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Steel Square—

Roller 25mm

12

d—

100mm

-

Fig. 6.3 The Edge support System (Steel Plates and

«—— High tensile bar 6mm Dia.

¢————— Load Cell

ANV W

C\\\\A‘“ é——— Plate 12mm
- R .C. Slab

e —t

oo 9_; Q 04& o o‘ =3
- @ e 5 %27
& oa(—" -? -‘ . 2
: A 5 20 0% 5
o 6 o o >
4 K ) .-.Q\D ° o
B2 217777223 ' _ Plate 6mm
¢———— Roller 12mm Dia.
\\ ALLANY
¢———— Roller 12mm Dia.
—_—
777772 Plate 6mm
Flange of the Frame
l NP d «———— Pljate
Anchor

A

Fig.

6 .4 The Corner support system.

Roller).




% 0 P - ;
BORRY

% )(99"% & ?

Mg%l-k <’) 79
H" <
< P 9
wp oF 9P



.2 . %

-13* 8 *8 1 GI/1 Y/ B 5*



1

*

G/1

Y /



2— Supporting Bearings
3— Loading Point System

4— Losenhausen Platen

6.3.2.1 Support Girders:

Support girders of 250x250x16 Kg/m hollow square box cross section were used.

The girders were used a previous test program(81).

6.3.2.2 Support Bearings:

The support bearings were made of mild steel. One support was provided with
rollers to allow free horizontal translation and the second was made to be restrained
horizontally and vertically, with allowance of rotation. The support bearing plates
dimensions were 150x100x50mm and the 25 mm rollers were used. To restrain the

local bursting forces, steel plates of 200x150x15mm were used, fig. 6.8.

6.3.2.3 Loading point system:

The loading point system consisted of two mild steel plates of 200x100x50mm and
roller of 25mm diameter. Two mild steel plates of 200x200x15mm were used to

confine the concrete under the point load.

6.3.2.3 Losenhausen Machine Platen:

The two platens of the machine were used. One of them was on the top of the

machine to transmit the load on the beam, the second was in the bottom and moves

only in the horizontal direction to transport the test beam under the machine. This
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platen is restrained at the time of testing.

6.4 Formwork:

For all the slabs, the same formwork was used. It was adjusted as required by the
dimensions of the slabs. For beams, since they were cast simultaneously, it was
necessary to design two form works on one base.

The form works were made from 200mm thick polywood panels. To maintain the
stability and strength of the mould during casting, 50x50mm timber battens were
nailed at close spacing along the length of the mould. Prior to casting, the mould

was coated in oil in order to prevent the concrete sticking to the mould.

6.5 Material:

6.5.1 Concrete:

The same concrete mix was used for all the specimens. The mix consisted of

Rapid Hardening Portland Cement (RHPC), Hyndford uncrushed gravel of maximum
aggregate size of 10mm and Hyndford sand grading zone 2. The mix proportions by
weight were 1 : 1.48 : 2.61 (ie. cement : sand : gravel ) with a water cement ratio
of 0.48. The weighed quantities of cement, sand, gravel and water were mixed
thoroughly in a 3 cu.ft capacity pan mixer.
When the bending of steel and cementing of strain gages on the steel was completed,
the fabrication of steel reinforcement mat commenced by placing the steel bars in
their required locations for both slabs and deep beams. Plastic spacers were attached
to the bars, before casting at a certain intervals to ensure adequate cover to the
reinforcement on both sides of the specimens.

All the specimens were cast horizontally. The holes on the models were positioned in



their right places for loading the slab and also holding down the corners of the
slabs. Each model was cast in several batches and was properly compacted using a
12mm diameter poker vibrator. The vibration continued until a reasonably good
compactation was achieved. The models were left for about six hours to dry in the
open air of the laboratory. In addition to the main specimen, four 100x100 mm
cubes and six 150x300mm cylinders were cast as control specimens from different
batches. All the control specimens and the main specimen were kept under a
polythene cover for the first 24 hours. The cover was removed after this period and
50% of the control specimens were cured in the water tank, whereas the remaining
ones were kept under the laboratory conditions near the main specimen.

The cubes were used to determine the cube strength, two cylinders were used to
determine the tensile strength and the remaining four others were used to determine
modulus of elasticity of concrete.

The concrete tensile strength f; obtained from cylinder splitting test as follows:

ft-__—
nDL

Where L = 300mm is the length of the cylinder
D = 150mm is the diameter of the cylinder
P is the ultimate load.
Average value for concrete properties for each model were calculated and are given

in table 6.3.

6.5.2 Reinforcing Steel:

Figures 6.9a and 6.9b show the steel layout for slab and deep beam respectively.
High yield deformed bars of 6, 8 and 10mm diameter were used. The yield stress of

all different bar sizes were measured on samples taken from different batches of steel
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bars using a Tinius Olsen Universal Class A testing machine, fitted with an S—type
electronic extensometer. The testing procedure followed the manufacture's instruction
manual. Table 6.4 shows average steel properties measured.

The yield stress of the bars was taken as the stress at which a line starting from 0.2
% strain and parallel to the initial slope of the curve intersects the stress— strain

’

curve. Typical steel stress strain curve is presented in figure 6.10.

6.6 Instrumentation:

6.6.1 Deflections:

Deflections were measured using Linear Voltage Displacement Transducers (LVDT)
at the bottom concrete surface for slabs at chosen points, and at the bottom soffit
for the beams. Figure 6.10a to 6.10c show the chosen points position for slab
models. The transducers, capable of measuring S0 and 70 mm, were mounted on an
independently supported measuring frame. Each transducer was given an identification
number and was then connected to the data logger for data processing.

Beam deflections are very small and also the plaster between the supports plates and
the beam is subjected to a high stress causing extra deflections. Thus for beams the

deflections must be measured with a great care.

6.6.2 Steel strains:

Strains in steel bars were measured by 6mm electrical resistance strain gages. The
gages were cemented to the steel bars at a chosen points to record the strain history.
Prior to the fixing of strain gages, the surface of the steel bars were prepared by
filling and then smoothening with sand paper. During this process, care was taken

not to remove a considerable area which would weaken the steel bars. The surface
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was then treated with M— prep conditioner A and M—Prep neutraliser 5 to remove
any dirt and grease. After fixing the gauge on the bar, it is checked using an
voltmeter before cementing. The strain gage was protected from moisture and
mechanical damage during fabrication and casting, using an air drying protective
coating type M-—coated and epoxy resin was applied over the gage and terminal. At
all the strain gage position on a bar, a pair of strain ga“ges were fixed on

diametrically opposite sides.

6.7 Test Procedure:

When each specimen was fully cured, it was white painted. All the specimens were
taken to the test rig by crane. Once the specimens were installed properly, all the
strain gages, load cells and displacement transducers were connected to a 3530 Orion
data logger for automatic recording. All connections were checked before testing
started. Deflection transducers were checked to ensure that they were truly vertical,
and they would operate properly under test. The strain gages were also checked and
defective ones were immediately disconnected. The load cells were checked by
applying a small load to the slab and then unloaded.

At each load increment, results were printed and saved on a floppy disc to be
processed later. During testing, load displacement and load strain curves at a critical
points were plotted to follow and examine the behaviour of the specimen. The
concrete faces of each specimen was illuminated using powerful light sources. Crack
widths were measured at each load increment using a micro— crack reader for small
cracks and a crack ruler for large cracks. The cracks development were traced with a
black marker at each load increment. The whole procedure was repeated until the

ultimate load was reached.



Properties — Design feu fe E¢.
Designationl Load (KN) KN/mm2 N/mm2 KN,/mm2
Model S.1 210 51.30 4.30 20.70
Model S.2 210 56.30 3.40 21.50
Model S.3 210 60.50 3.50 22.80
Model S.4 320 58.77 3.07 22.45
Model S.5 210 59.26 3.46 23.12
Model S.6 320 57.62 3.59 22.73
Beam B.1 250 58.63 3.17 23.13
Beam B.2 500 58.63 3.17 23.13
Table 6.3 Concrete Properties.
fey: Concrete Cube Strength fi: Concrete Tensile Strength
E.: Concrete Elastic Young Modulus
Bar fy Eg €y
diameier N/mm2 KN/mmZ * 1073 H
® 6 mm 580.0 195.0 2.974 0.028
$ 8 mm 477.0 186.0 2.565 0.025
¢ 10 mm 483.0 203.0 2.379 0.000
Table 6.4 Steel Properties.
fy: Steel yield stress tg: Steel yield strain
E.,: Steel Young modulus H: Steel hardening parameter.

s -
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Chapter 7

Nonelastic Stress Fields and Design of Experimental Models

7.1 Introduction:

During the early development of analytical methods for stress analysis of
structures, the assumption that the system was linearly elastic was generally
accepted for nearly all structural systems. One reason for this simplified approach
was that the design stresses were expected to remain well within the elastic range
of the material. With the introduction of more complicated structures and
experimental evidence that most structural elements dissipate energy by exhibiting
nonelastic deformations, major effort was directed towards the development of
analytical methods that deal with the nonelastic behaviour of structures. In the
present work the use of nonelastic stress fields in the design of reinforced concrete
slabs and deep beams will be examined. In particular the effect of using nonelastic
stress fields on the distribution of steel reinforcement in slabs and simply supported

deep beams will be studied.
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7.2 Design Procedure For Slabs:

The design procedure is dependent on the nonlinear finite element Mindlin plate
analysis program(5) using von Mises yield criterion. The program uses an eight
node isoparametric element.

The major steps in the determination of nonelastic stress fields are as follows:

1— Treat the slab as a metallic plate, with any assumed properties and
determine the elastic stress distribution (M, My, Mxy) under ultimate

design load.

2— Determine the von Mises stress / (My? + My? — MyMy + 3M,J)
at the most highly stressed point at design ultimate load and set it as
plastic moment capacity Mp. ie.

M max of [/ (My? + My2 -~ MxMy + 3Mx§)] any where in the

p =
plate.

3— The material is assumed to be elasto— plastic obeying von Mises
criterion and normality rule and having the plastic moment capacity of
Mp. Accordingly for the fully yielded region the elastic material matrix
is replaced by an elasto— plastic material matrix so that tangent stiffness
matrix approach can be adopted. Figure 7.1 shows a typical
load— deflection curve. As can be seen, yielding starts exactly at the
applied load equal to the design ultimate load. At the start of yielding,
the percentage spread of plasticity is zero and at the true ultimate load,

spread of plasticity is designated as 100%.

4— Let the ultimate load be equal to (1+)) design load. At any
percentage of plasticity p, the stresses in equilibrium with the applied
load are given by 1/(1+pX) of the stresses at the chosen level of

plasticity percentage. The resistant moment M; and M; at this level of
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plasticity can now be determined using Wood— Armer criterion. M} and

M; are determined, for both top and bottom slab reinforcement using

equations of chapter 3.

7.3 Design of Slab Models and Discussion:

A total of six slab models were designed using different plasticity levels. For
more details reference can be made to section 6.2.

7.3.1 Models S.1, S.2 and S.3:

The slab models S.1, S.2 and S.3 were 2140mm (2000mm effective span) square
simply supported slabs. One quarter of the slab was analysed using a 4x4 (finite
element mesh. They were designed for a total load of 210 KN, using 70, 100 and
30% of plasticity stress distribution levels. The dimensions and the loading system
were described in the previous chapter in table 6.1 and figure 6.1. A typical
load— deflection curve, obtained from the elastoplastic analysis, is shown in figure
7.1. This curve is used to calculate the different percentage of plasticity spread
over the slab. The spread of the yielded points over the slab at different levels of
plasticity are shown in figure 7.2. The plastification of the slab started in the
corner and as the percentage of plasticity increases, the yield points spread towards
the applied point loads. At 100% of plasticity, the whole area of the corner of the
slab and the inner square between the point loads had yielded. Figure 7.3 and 7.4
show the distribution of bottom and top design moment over the slab as a function
of the degree of plasticity spread. It can be seen that the bottom design moment
surface peaks under the point load and in the corner at the elastic stage and tends
to flatten as the degree of plasticity level increases, figure 7.3. At 100% of
plasticity spread we can see that the maximum design moment peak shifted to the
middle of the slab and covers a large area.

As shown in figure 7.4, at elastic level the top design moment peaks at the corner
of the slab. As the percentage of plasticity reached 100%, the peak spreads along

the edges and towards the point load. Also the maximum design moment decreases,
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7.3 Bottom Design moment Distribution at Different Levels of Plasticity.
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