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Abstract

We examine extensions of the Standard Model (SM), trying to base our as­

sumptions on what has already been observed. We consider our models to be the 

most obvious extensions of the SM in the sense that we don’t consider anything 

fundamentally different such as grand unification or supersymmetry which are not 

directly suggested by the SM itself.

We use features of the SM to guide our extensions. This method has the 

advantage that all our models will be based (at least in part) on experimental 

observations. The disadvantage is that we cannot expect such models to give us 

any fundamentally new explanations.

The main features we use from the SM are small representations and charge 

quantisation. By small representations we mean fundamental or singlet represen­

tations of each non-abelian group and weak hypercharges close to zero. We use 

generalisations of the weak hypercharge quantisation rule observed in the Standard 

Model to specify the weak hypercharge modulo 2 for any given representation of 

the non-Abelian part of the gauge group. When we combine these principles with 

the requirement, for a theoretically consistent model, that there are no anomalies, 

we are left with a very restricted choice of models.

For most of this thesis we concentrate on the possibility of additional low mass 

fermions (relative to the Planck mass) and search for combinations of allowed 

representations which don’t produce any gauge anomalies. We put strong experi­

mental constraints on these models by using the renormalisation group equations 

to estimate fixed point masses for the new fermions in our models, and also to



check that there is no U( 1) Landau pole below the Planck scale. This is required 

since we are assuming a desert up to the Planck scale.

In our most promising model we show that a fourth generation of quarks with­

out leptons is possible and can soon be tested experimentally. In this model we 

replace the fourth generation of leptons (required in the SM to cancel anoma­

lies) with a generation of SU(5)-“quarks” which are a generalisation of the SM 

quarks but coupling to a new SU(5) group instead of 517(3). We discuss how well 

this model agrees with experiment and give estimates for the masses of the new 

fermions.

In the final chapter we examine a different model where we don’t introduce any 

new low mass fermions. Instead we try to explain the mass structure of the SM 

in a natural way. The problem with the SM is that the masses require different 

fermions to have different Yukawa couplings to the SM Higgs boson. The smallest 

and largest couplings differ by a factor of about 105. In this model all fundamental 

Yukawa couplings are of order 1 (which we assume to be more natural). The range 

of masses we observe are due to the different symmetry breaking scales associated 

with this model breaking down to the SM. The results are compared to results for 

a very similar model.
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Chapter 1

Introduction

The so-called Standard Model (SM) has been widely accepted as an accurate de­

scription of all observed physics other than the gravitational interaction. However, 

not many people believe that the SM is a complete description of physics. The 

main reason is the large number (~  20) of free parameters in the model. There 

is also the fact that current accelerators have not yet found a Higgs boson and 

so many features of the SM have not even been observed. This means that it is 

certainly possible that the SM is only the low energy part of another model. This 

other model could be observed at scales higher than energies probed by todays 

accelerators. In fact such a model could be at a scale as high as the Planck scale or 

as low as the electroweak scale. In this thesis we wish to investigate some of these 

models and check to ensure that they are self-consistent and agree with current 

experimental data.

In order for any model to be valid it must be self-consistent. This is not trivial 

for chiral gauge theories. When quantised, anomalies can arise which would spoil 

the gauge symmetry and make the theory useless for calculations. The absence of 

such anomalies provides many constraints on our models. These are discussed in 

section 1.1.

Another requirement for self-consistency is that the gauge coupling constants

1
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(the U(l) coupling constant in particular) remain finite over the range of energy 

scales in which the model is supposed to be valid. This must be checked carefully 

since the coupling ‘constants’ vary with the energy scale. We shall describe the 

dependence of the coupling constants on the energy scale in section 1.2. In par­

ticular, in section 1.2.1, we will discuss the constraint that the finiteness of the 

gauge coupling constants provides on the weak hypercharges of fermions in our 

models.

The success of the SM means that it must almost certainly have great signifi­

cance to any attem pt to produce any other model to describe nature. Therefore 

we have chosen to base our models on the SM, extending and generalising features 

of the SM to produce models as similar to the SM as possible. The basic ideas 

and alternatives are outlined in section 1.4.

1.1 Anomalies

When calculating using quantum field theory, it is found that diagrams involving 

loops introduce infinities and so would give infinite cross-sections. This is obvi­

ously not physically possible and to get round this the theory must be regularised. 

In simple terms this means that some sort of momentum cut-off is introduced so 

that the infinite terms (which arise from integrating over infinite momenta) are 

made finite. This is equivalent to using a set of running parameters (running 

because they depend on some energy or momentum scale) instead of the bare 

parameters which appear in the Lagrangian. In a sense the infinities are put into 

the bare parameters. It does not m atter that they are then infinite since they are 

not physical observables. This procedure is called renormalisation. However, this 

is only possible for certain theories. One of the requirements is the absence of 

some kinds of anomalies.

Anomalies are purely quantum effects. They correspond to some quantity 

which is conserved classically not being conserved in the quantised theory. Some
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anomalies are harmless such as the axial-vector current Ward identity anomaly in 

current algebra which explains the high rate of the neutral pion decay:

7r° —> 27

However, some anomalies are harmful in the sense that they spoil the renormali­

sation procedure, making it impossible to calculate anything meaningful from the 

theory. In this section we shall discuss these types of anomalies and the constraints 

imposed on our models by the requirement that such anomalies vanish.

1.1.1 Gauge Anomalies

In any chiral gauge theory, gauge anomalies can arise. These anomalies lead to 

an inconsistent theory and so they must not be present in a good theory. Each 

fermion representation makes its contribution to each type of anomaly. We say 

that there is an anomaly present if the total contribution to an anomaly from all 

the fermion representations is non-zero.

As we shall discuss in section 2.2.1 the models considered in this thesis have 

gauge groups of the general form

tf(l)® n5£/(JV i)/Z >  (1.1.1)
t

The discrete group D leads to charge quantisation but has no direct relevance to 

the anomalies. We assume all fermions to be in N, N  or singlet (1) representations 

of each S U (N ), as will be discussed in section 2.2.2. We define n to be the N- 

ality of a representation (n =  1 (-1) for representation N  (N) and n =  0 for 

singlet representation). We can also define the size, S , of each representation 

as the dimension of the representation (e.g. in the SM, 5  =  6 for the (2,3) 

representation of SU(2) (g) SU(3) which is equivalent to the fact that there are 6 

left-handed quarks in each generation).

For gauge anomalies we sum the contribution for all left-handed fermions and 

subtract the sum over all right-handed fermions. This is equivalent to summing
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Figure 1.1: For the theory to be anomaly-free, the amplitude of this Feynman 

1 diagram must be zero for all choices of external gauge bosons after summing over

all possible fermions in the internal loop (triangle).

over left-handed fermions and left-handed anti-fermions. We have now introduced 

all the necessary notation to write down general equations for all types of gauge 

anomalies.

The requirement that there are no anomalies present in a theory is analogous 

to the triangle Feynman diagram in fig. 1.1 with a fermion loop and three external 

gauge bosons (labelled by G , G' and G") having zero amplitude for all possible 

choices of gauge bosons G, G' and G". The contribution from each fermion repre- 

; sentation is calculated by making particular choices for the fermions in the internal

loop. These contributions must then sum to give zero amplitude if there is to be 

| no anomaly. When this is true we say that the anomaly has been cancelled. The

| general condition for anomaly cancellation is,

! T r [ { T l ,T bL}Ti] = T r \ {T ‘R>T bR} T ‘R] (1.1.2)
|

where the ‘T ’s are the transformation matrices for the fermions at the three
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vertices. When we consider left-handed anti-fermions instead of right-handed 

fermions, the condition becomes simply,

T r [ { T \ T b}T c] =  0 (1.1.3)

The trace corresponds to summing over all individual fermion representations and 

we can split the condition into different conditions for each choice of external gauge 

bosons. In our models we have the following type of anomalies which must be 

cancelled by an appropriate choice of fermion representations.

If each of G, G' and G" is an SU(N)  gauge boson where N  > 3 then each 

representation gives a relative contribution of S n 3 =  Sn  (since n = —1, 0 or 1 in 

our models). The total contribution is therefore YliSini where i labels each left- 

handed fermion (and anti-fermion) representation. We label this type of anomaly 

[5'C/(A )̂]3 and require

£ S ; n ;  =  0 (1.1.4)
t

Another type of anomaly corresponds to the diagram with one U( 1) gauge 

boson and two S U (N ) gauge bosons where N  > 2, labelled as [SU(N)]2U(1). 

Each representation gives a relative contribution S n 2y where y is the conventional 

weak hypercharge 1 . Therefore we require

£ 5 i ( 0 22/; =  o (1.1.5)
i

The final type of gauge anomaly corresponds to the diagram with all the gauge 

bosons (7, G' and G" being U( 1) gauge bosons. This is labelled as [{/(l)]3 and 

each representation gives a relative contribution S y3. Therefore we require

E $ 0 ?  =  ° h - 1-6)
i

1 Throughout this thesis we take the normalisation for the weak hypercharge that the right 

handed electron has y  =  2.
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1.1.2 Other Anomalies

There is also a mixed gravitational and gauge anomaly [1] which corresponds 

to one U( 1) gauge boson and two gravitons in figure 1.1. We will label this as 

G2U( 1). Each representation gives a relative contribution Sy  and so this leads to 

the constraint

£ S ; y , = 0  (1.1.7)
i

This anomaly comes from theories involving quantum gravity. At first this may 

not appear important for our models since we are not considering quantum gravity. 

But, since all such theories require this constraint in the low energy limit, we must 

make sure this anomaly doesn’t exist in our models if we want them to be low 

energy effective theories of a complete theory which includes gravity.

Another possible anomaly is the W itten discrete SU(2) anomaly [2]. This 

states that if the number of left-handed SU(2) doublets is odd then the theory is 

inconsistent. This is different from the other anomalies considered in the sense that 

this is a global anomaly whereas the other are all local. The anomaly corresponds 

to the requirement that the theory should be consistent with a global SU(2) 

gauge transformation. However, if there are an odd number of Weyl doublets, it 

is possible to perform such a transformation and introduce a change of sign in the 

Lagrangian. This means that the theory cannot be used to calculate in a general 

gauge. As we shall see later in section 2.4 we will always have an even number of 

Weyl SU(2) doublets and so this anomaly does not give us any problems.

1.2 Renormalisation Group Equations

The renormalisation procedure introduces an arbitrary scale y, and the value of 

all the renormalised couplings depend on this scale. The renormalisation group 

equations (RGEs) describe how to relate parameters at different scales. We use 

these equations to calculate the running gauge coupling constants from the elec-
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troweak scale up to the Planck scale. If one of these becomes infinite then there is 

a Landau pole. If this happens then the model cannot be self-consistent up to the 

Planck scale. Since we calculate the RGEs perturbatively this would mean that 

the model was not perturbatively consistent up to the Planck scale. It is possible 

that the theory may still make sense in this case if non-perturbative methods were 

used but it is not clear whether or not this would happen. Therefore we will take 

the view that a consistent theory must be perturbatively consistent.

We also use the RGEs to calculate the Yukawa couplings at different scales. 

Here we go in the opposite direction to the calculation of the gauge coupling 

constants by calculating the Yukawa couplings at the electroweak scale from values 

chosen at the Planck scale. The reason we do this is that if the value of a Yukawa 

coupling at the Planck scale is increased, normally the resultant value at the 

electroweak scale is increased. However, there is a quasi-fixed point limit on 

the Yukawa couplings at the electroweak scale. This occurs when the Yukawa 

coupling at the Planck scale reaches a certain value (typically of order 1), and 

when increased further the value at the electroweak scale becomes fairly insensitive 

to the precise value at the Planck scale. This can be taken to be an upper limit 

on the Yukawa coupling at the electroweak scale. However, there is not a precise 

limit for each fermion and when there are several heavy fermions the limit on any 

one depends on the relative values of the other Yukawa couplings.

We use first order (1-loop) RGEs. More accurate results are available in the 

literature but further corrections only change predictions by a few percent. This 

will not affect the existence or otherwise of a Landau pole in the models we 

consider. Also, since the quasi-fixed point limits for the Yukawa couplings are 

only used to give approximate upper limits for the electroweak Yukawa couplings 

(and corresponding masses) of fermions, the error introduced by neglecting 2-loop 

corrections is not significant.

We will now describe the 1-loop RGEs for the gauge couplings and the Yukawa 

couplings. We use these to check that there are no Landau poles and to give
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estimates of the Yukawa couplings at the electroweak scale. Then we will describe 

the RGE for the Higgs quartic coupling which is related to the Higgs mass. Finally 

we discuss the definitions of mass for fermions; relating the Yukawa coupling to 

the running mass and the pole mass.

1.2.1 Gauge Couplings

The Lagrangian density of the gauge fields in a quantum field theory with a simple 

gauge group G is given by,

C = (1.2.8)

where the anti-symmetric field tensor is defined as:

F ^  = d^Av -  -  ig[A^ A v] (1.2.9)

g is the bare gauge coupling and is defined in terms of the gauge fields, 

and the adjoint representation of generators of G , T a, by:

= T aA* (1.2.10)

The commutation relations of the generators are given in terms of the group 

structure constants, f abc:

[Ta, T b] = i f abcT c (1.2.11)

and are normalised so that:

T r ( T aT b) = h a6 (1.2.12)

For semi-simple groups the Lagrangian density is simply a sum of the La­

grangian densities for each of the simple factors. For a U( 1) factor the gauge field 

tensor is simply defined as:

F'v, = dpA„ -  dyAp (1.2.13)
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When quantum field theories defined by these Lagrangian densities are renor­

malised, the physical gauge couplings depend on an arbitrary scale. To 1-loop

order the equation describing the running gauge coupling of the gauge group

S U ( N ), <7jv» at scale /z is:

= Pn (9n ) (1.2.14)

where t =  ln(/z) and the first order beta function, ftvfev)? is given by:

Pn (qn) = 9%^n  (1.2.15)

The constant Kjq is defined as [3]:

1I \n  = - j C 2(G) + j« S 2(F) +  is2(S) (1.2.16)167r2

The group factors are; the eigenvalue of the quadratic Casimir operator acting 

on the adjoint representation (the representation of the gauge bosons), 0 2 (G) 

and the Dynkin indices for fermion and scalar representations, S 2 (F) and S 2 (S) 

respectively, /c =  \  for 2-component fermions (Weyl fermions) and k = 1 for 

4-component fermions. In all our models the fermions are 2-component and will 

be in fundamental or singlet representations of each SU(N)  gauge group. The 

only scalar will be the SM Higgs boson. So we have:

C2{G) = N  (1.2.17)

S2(F) = nF (1.2.18)

S2{S) = ns (1.2.19)

« =  \  (1.2.20)

where nF (ns) is the number of fermions (scalars) in fundamental representations 

of SU(N).  Since the only scalar we have is the SM Higgs boson, ns = 1 for the 

SU(2) subgroup of the S M G  and ns  =  0 otherwise.

We can integrate eqs. (1.2.14) and (1.2.15) analytically by writing them as,

J9N\V o) VN J t0
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This leads to the result

2fl&(A*o) 2 g2N(fi) \ f i 0

We now use the definition of the fine structure constants,

1 = K n  l n(  — ) (1.2.22)

(1-2-23)

along with the definition of K n  to write:

+  ——(22N — iriF — ns) In ( — J (1.2.24)
ayv(^o) 12tt \fx0

This equation allows us to calculate the fine structure constant at any scale fi 

provided we know it’s value at some scale /i0.

The U( 1) fine structure constant at scale //, o:i(/i), can be calculated in a 

similar way and to 1-loop order we have:

- 1 1 -  1 '(Y 2 +  Yg) In ( Y \  (1.2.25)
oc^fi) ai(fi0) 127r \/z0

where Y 2 is the sum of weak hypercharges squared over all fermions and Y$ =  1 

for the SM Higgs boson.

However, a more usual convention is to use the normalisation for the U(l)

gauge coupling constant used in grand unified theories (GUTs). This is because

the coupling constant would be normalised differently if the (7(1) group was the 

subgroup of a simple group. In particular, for U( 1) C SU(N)  we have the follow­

ing normalisation:

( ^ ) gut =  jjteiJsiM (1.2.26)

(a]"1) gut =  - ( « r 1)sM (1.2.27)5

This then leads to a modification of eq.(1.2.25):

1 1  1 ( y 2 +  ys2)ln  ( T )  (1.2.28)
ai(fi) cxi(fio) 207T \fj,0
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Landau Poles

A Landau pole is a point where the value of a gauge coupling constant becomes 

infinite. This corresponds to a -1 becoming zero. It is only for the U( 1) gauge 

group that the value of a -1 necessarily decreases when run from low to high scales. 

Therefore it is the U( 1) sector that is likely to have a Landau pole. In fact there 

must be a Landau pole at some scale; what we are interested in is whether this 

occurs above or below the Planck scale. Above the Planck scale we do not expect 

our model to be a good description of physics so we do not worry about effects 

above the Planck scale. However, a Landau pole below the Planck scale would 

not be acceptable since the model would not then be (perturbatively) consistent.

We can use eq. (1.2.28) to calculate an upper limit on Y 2. This is because 

the requirement of no U( 1) Landau pole below the Planck scale means that 

a(Mpianck) ^  This then provides a limit on Y 2 for any choice of thresholds 

where new particles are introduced. We will use this in section 4.2.2 to rule out 

several models.

Thresholds

The equations given in this section for the running of the gauge coupling constants 

involve numbers of fermions or Higgs bosons coupling to the groups or sums over 

all fermions or Higgs bosons of weak hypercharges squared. These numbers depend 

on all fermions or Higgs bosons in the theory whatever their masses. However, we 

should really include threshold effects which mean that particles do not contribute 

significantly unless the scale, /z, is of the same order of magnitude as, or greater 

than, their mass. A full calculation of such effects is complicated so we will use a 

very simple approximation. We will include all particles with pole masses below 

the scale in the RGEs. When the scale is the same as a pole mass, that particle 

will be included in (removed from) the RGEs if we are running from low to high 

(high to low) scales.
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This method is accurate enough for our purposes since we are really only 

interested in finding out if there is a U( 1) Landau pole below the Planck scale. 

In all the models we consider the existence or otherwise of a Landau pole below 

the Planck scale is not dependent on small changes in the low energy value of a i 

caused by incomplete threshold analysis.

1.2.2 Yukawa Couplings

Let us consider the simplest case of two fermions, p and m, getting a mass via

the SM Higgs mechanism. In order for this mechanism to work we must have a
/ \

P
left-handed SU(2) doublet, Fl = , and two right-handed SU(2) singlets,

Pr  and rriR. p r  must have a value of weak hypercharge, yPR =  yVL +  1, and ttir 

must have a value, ymR = ymL — 1 {jpi and rriL must obviously have the same 

value). Otherwise the fermions must couple to the gauge group in the same way. 

The Lagrangian density is given by:

C =  - F LypiT2$*pR -  F Lym$ m R +  h.c. +  ( /^ ^ (Z V * # )  -  V(<I>) (1.2.29)

where yv (ym) is the Yukawa coupling of fermion p (m) and the Higgs potential is 

defined by:

Y($) =  +  A($f$ )2 (1.2.30)

If we parameterise the complex scalar doublet by 4 real fields:

$ =
1

V2

( \  
4>\ +  *^2

V <f>i +  *>5

(1.2.31)

then after the electroweak symmetry breaking one of the fields gets a vacuum 

expectation value (VEV):

< <$ > =  v (1.2.32)
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where

” =  \ / y  (1-2.33)

We label this VEV, < <f>ws >•

The fermion interactions with the Higgs then lead to fermion masses. After the 

symmetry breaking the running mass of fermion / ,  m /, is related to its Yukawa 

coupling, y/, by:

nrif =  <  <j>ws >  (1.2 .34)

Here we present the RGEs for the Yukawa couplings to order 1-loop for fermion 

/ .  We label its left-handed SU(2) doublet partner by / ' .

t  = ihMt) (L2-35)
where, to 1-loop, /?/(£) is defined by [4]:

0f(t)  =  y/W  [ |  (»?(*) ~ »/'(*)) +  ^(SO M  -  <?/(<)]

f 2(5 )(<) = rr(yt(<)y(t)) (1.2.36)

Gf( t )  =  6 E s n ( < ) C 2w( / )  (1.2.37)
N

gN(t) is the SU(N) (U( 1) for A  =  1) gauge coupling constant, Y(£) is the Yukawa 

coupling matrix and C^if) is the quadratic Casimir operator for the fermion 

representations of gauge group A. For S U ( N ), we have the definition:

A2 — 1
C?U) = ~ 2 ^ -  (1-2-38)

and for U( 1) we replace g \ C \ { f ) with:

I  ((<?/)2 +  W ? ) 2) g\  (1-2.39)

where we have used QL (QR) for the weak hypercharge of the left- (right-) handed 

fermions. Using the conventional GUT normalisation this becomes:

^ ( ( Q / ) 2 +  (Q ?)2)</i2 (1-2.40)
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Y  is the Yukawa coupling matrix and in this case is a diagonal matrix containing 

the Yukawa couplings of the fermions. There is (an identical) Yukawa coupling 

for each of the N  fermions in each N representation of SU(N)  (N  > 3). For 

example, if the p and m fermions were the up and down quarks we would get 

Y2(S) = 3y2r + 3y2m.

If we have several fermions getting a mass in this way then we can simply 

generalise the above Lagrangian density by adding more terms. If several fermions 

have the same quantum numbers then they can mix together and so the gauge 

eigenstates are different from the mass eigenstates. In the SM this happens for 

the three generations of quarks. However, the mixing is a small effect and in this

thesis we shall ignore it for simplicity. Therefore the Yukawa coupling matrix, Y,

will remain diagonal and the above equations will remain unchanged.

1.2.3 The SM Higgs Self-Coupling

We will present the RGEs to 1-loop order for the SM Higgs boson self-coupling, 

A. To first order this parameter is related to the Higgs mass by the equation,

Mfj = =  A < <j)ws >2 (1.2.41)

where GM is the coefficient of the effective four fermion interaction in an effective 

low energy model of the weak interactions:

^ |P e 7 /3(l -  7s)e][/l7/3(l -  7sK ]  (1.2.42)

From the measured value of the muon lifetime [5],

r„ =  2.19703 ±  0.00004 x 10-6 s (1.2.43)

we can calculate,

G„ =  1.16637 ±  0.00002 x 10-5 GeV-2 (1.2.44)
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There is no experimental value for A at any scale since the Higgs has not yet 

been observed. However, as for the Yukawa couplings of new fermions, we can 

observe a quasi-fixed point for A(/i = M z ) ‘ We can use this to put upper limits 

on the Higgs mass in our models.

The equation for the running of A(//) is given by,

^  =  M t )  (1-2-45)

where, to 1-loop [4]: 

=
i

167T2
9 / 3

12A2 — ( ^9 i  +  ^

4 (2 5 s '  +  +  4V2(S)A ~  4i;f(5)] (L2-46)

where the conventional (GUT type) normalisation is used for g\. and H(S)

are defined in terms of the Yukawa coupling matrix Y  by,

Y3(S) =  Tr(Y*Y)  (1.2.47)

H(S) = T r ( Y ' Y Y ' Y )  (1.2.48)

1.3 Definitions of Mass

For heavy quarks the experimentally measured mass is the pole mass. The mass 

calculated from the Yukawa coupling by,

m / =  < <f>ws > (1.3.49)

is known as the running mass. We wish to relate these two definitions of mass 

so that we can compare running Yukawa couplings to experimentally measured 

masses.

To first order the pole mass, M, is related to the running mass at scale /i, 

m(/i), by simply:

M  = m(M)  (1.3.50)
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However there are further corrections arising from loop diagrams. We shall cal­

culate the leading correction to this formula for fermions in fundamental repre­

sentations of the gauge group SU(N).  For N  = 3 this is a good approximation 

for quarks in the SM since the corrections due to the strong force are much larger 

than those due to QED. This is simply because as aQED•

We use dimensional regularisation where the number of dimensions is,

D = 4 -  2e (1.3.51)

We define m0 to be the bare mass and go to be the bare SU(N)  gauge coupling. 

The renormalised SU(N)  gauge coupling at scale g is g(g) and we define the 

running fine structure constant,

/ \ _ 92{v) «(„) =  — (1.3.52)

Working to 1-loop order will allow us to calculate the corrections to eq. (1.3.50) 

to order a(g). To this order the following equations hold:

M  =  mo 1 + 

m0 =  rn(fi)

9o
(4tt)? M 2i

< ( / ) £ — k ( e)D -  3

1 -

9o l^e1
Aire 

a(n)
Air \  Air

For fermions in the fundamental representation of S U (N ),

c ? U )  =
N 2 -  1 

2 N

(1.3.53)

(1.3.54)

(1.3.55)

(1.3.56)

The constant 7 «  0.5772 is Euler’s constant. We use the approximation for the 

gamma function for small e,
1r(e) ~ -----7 (1.3.57)

It is now straightforward to eliminate all the bare couplings and relate the pole 

mass to the running mass.

M
m(g)

3a(g) N( . 
Aire 2 1 + 9o D -  1

(A i rp M 2*
(1.3.58)
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Expressing D in terms of e and neglecting terms of order a:2(//) gives the following 

equation.

M  ,
m(fi) ' 47r 

Now we take the limit e —> 0. For small e,

3 - 2 e

3 / //2e7\  3 — 2e
-?+ V  r ^ r(£)

1 - 2 e
(3 — 2e)(l +  2e) « 3  +  4e

and
//2e7
~M2

«  1 +  £ In
V e 7
M 2

(1.3.59)

(1.3.60)

(1.3.61)

Combining these we get, 

(  ̂ 2e2p7\ £ 3 _  2e
M 2 1 -  2e r(e) 1 +  £ In

- 3 7  +  -  
£

V e 7'
M 2 [3 +  4c]

3 “|- 4£ 3c In

Le
/i2e7
M 2"

7

_3 7 +  l  +  4 +  3 1 n ( ^ )  +  37

!+4+31nte) (1.3.62)

Therefore, in the limit e —» 0, to order a(/i), we can relate the pole mass to the 

running mass of fermion /  by:

Mf  =  m/(/z)

and in the special case where fi =  M:

Mj  =  rrif(M)
7r

In particular:

Mj  =  rrif(M) 

M f = rrif(M)

1 + 

1 +

4a3(M)
37T 

12a5(M )
57T

(1.3.63)

(1.3.64)

(1.3.65)

(1.3.66)

for fermions in fundamental representations of the gauge groups 57/(3) and 57/(5) 

respectively. Eq. (1.3.65) agrees with [6].
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1.4 Choosing the Type of M odel

We have now discussed the basic theory behind model building. In section 1.1 we 

have described the constraints imposed on a chiral gauge theory by the require­

ment of anomaly cancellation. In section 1.2.1 we have discussed the requirement 

in our models of no U( 1) Landau pole below the Planck scale. We have also 

presented the RGEs necessary to examine quasi-fixed point Yukawa couplings, 

in section 1.2.2. We can use these as upper limits on the Yukawa couplings of 

the fermions in our models. Then in section 1.3 we showed how to convert these 

Yukawa couplings to running masses and pole masses. This will be used to pro­

vide upper limits on the mass of new fermions in our models. Now we must 

decide what sort of models we wish to examine. In this section we will outline our 

requirements for extending the SM.

First we shall briefly describe some other methods of extending the SM and 

then describe our method and compare it to some of these other methods. Over 

the years there have been numerous attempts at extending the SM. Some of these 

models have been proposed with the purpose of explaining some particular feature 

of the SM. For example, GUTs ‘explain’ the convergence of coupling constants 

at some energy (typically of order 1015GeV) as a manifestation of a single fun­

damental unified interaction. Other models such as supersymmetry (SUSY) have 

been proposed for mainly aesthetic reasons; SUSY introduces a symmetry between 

bosons and fermions. But so far none of these attem pts has been entirely success­

ful, although SUSY GUTs are phenomenologically consistent with the unification 

of the SM gauge coupling constants and do not suffer from the gauge hierarchy 

problem (why the electroweak scale is so small compared to expected radiative 

corrections from the more fundamental theory which should be of the order of the 

GUT or Planck scale).

Another approach to extending the SM is to look at the SM itself and look for 

distinctive features which could be generalised or assumed to hold in an extended

I
i
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theory. The SM has been so successful that, within our experimental and calcula- 

tional accuracy, it has proved to be a perfect description of nature (except for the 

gravitational interaction). So we have good reason to say that taking guidance 

from the SM is akin to “listening to God”.

Having accepted this point of view we must now try and interpret the message 

of the SM. By this we mean that we must look for fundamental features in the 

SM which could distinguish it from similar and, without experimental evidence, 

equally plausible models. We propose that one such feature is charge quantisation. 

This can be expressed as

|  + ^ “duality” +  i “triality” =  0 (mod 1) (1.4.67)
Z Z 0

where y is the conventional weak hypercharge. The duality has value 1 if the 

representation is an SU(2) doublet (2) and 0 if it is an SU(2) singlet (1). The 

triality has value 1 if the representation is an SU(3) triplet (3), 0 if it is an SU(3) 

singlet (1), and -1 if it is an SU(3) anti-triplet (3). In general we can define the 

N-ality of a representation of SU(N)  to be the minimum number of N-plet rep­

resentations of SU(N)  which must be combined to construct the representation. 

In particular N-ality has value 1 if a representation is an SU(N)  N-plet (N), 0 if 

it is an SU(N)  singlet (1), and -1 if it is an SU(N)  anti-N-plet (N). Note that in

SU(2) the 2 representation is equivalent to the 2 representation. We expect that

in an extension of the SM this charge quantisation relation or some generalisation 

of it will hold.

An obvious way of extending the SM is to extend the gauge group. The 

Standard Model Group (S M G ) is [7, 8]:

S M G  = S(U(2) ® C/(3)) =  U( 1) ® SU{2) (8) SU{3)/D3 (1.4.68)

where the discrete group

(1.4.69)
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ensures the quantisation rule eq. (1.4.67) (In  is the identity of SU(N)) .  We 

argue that the most obvious extension is to add more groups to the sequence 

U(l)® SU (2)<g> SU (3) and to use a different discrete group so that the quantisation 

rule is generalised to involve all the group components. One of the groups we 

consider is

G5 = U( 1) <g> SU(2) <8) 577(3) ® SU(5)/Ds (1.4.70)

where the discrete group D5 is defined as

A  =  {(ei2' /% , - / 2, e**/3I3, ei2™=/5/ 5)" : n € Z Ni} (1.4.71)

where Ns =  30 (= 2 x 3 x 5) and m5 is an integer which is not a multiple of 5. 

This group gives a generalised quantisation rule,

— + - “duality” -f i “triality” +  “quintality” =  0 (mod 1) (1.4.72) 
2 2 3 5

which is the most obvious generalisation of the SM charge quantisation rule. Fur­

ther generalisations are obtained by extending the sequence U(l)<g> SU(2)® SU(3) 

with a set of SU(N)  factors, where the ‘TV’s are greater than 3 and mutually prime

[7]-

We will consider the fundamental scale to be the Planck mass (Mpianck) and 

our models will be a full description of physics without gravity below this scale. 

The assumptions we make about our models essentially lead to the conclusion 

that all new fermions with a mass significantly below Mpianck must have a mass 

below the TeV scale as explained in section 3.2. Therefore our models all describe 

low energy physics (below the TeV scale) and have a desert up to the Planck scale 

where new physics will occur. We don’t specify any details about the Planck scale 

physics since it is largely irrelevant to low energy physics.

We shall describe the gauge groups considered in this thesis and the motivation 

for choosing such groups in more detail in section 2.2.1. We shall consider general 

types of gauge groups and also give specific examples, concentrating on the group 

Gs defined by eqs. (1.4.70) and (1.4.71). When we also impose the condition that
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all fermions are in fundamental representations, as in the SM, we are limited to 

the models which we shall consider in this thesis. After choosing the gauge group 

we want to examine which low mass fermions (low relative to the Planck scale) 

can exist in the model. We must check that the model is then consistent, both 

theoretically and experimentally.

The main theoretical constraint is that there are no anomalies as described in 

section 1.1. This greatly limits the choice of fermions and their weak hypercharges 

in our models.

There is one important fact to keep in mind when proposing any extended 

model which has extra non-Abelian gauge groups such as SU(N).  As we already 

know from the SM, the SU(3) group acts as a technicolour group [9] and gives a 

contribution to the W ± and Z° masses. In the SM this contribution is very small 

but when confining groups with N  > 3 are considered we must carefully consider 

the effect this will have. Since we are not wanting the complications of extended 

technicolour in order to generate quark and lepton masses, we assume that there 

is a Higgs doublet and that the masses of the weak gauge bosons are generated 

by a combination of the Higgs sector of the theory and the technicolour effects 

of the gauge groups. This happens in exactly the same way as in the SM where 

QCD gives a small contribution to the and Z° masses.

For our models to be perturbatively valid, all Yukawa couplings at the elec- 

troweak scale must be not much greater than 1 and consequently none of the 

fermions can have a mass much greater than the electroweak scale. This means 

that we would expect the thresholds for including the new fermions into the RGEs 

to be approximately at the electroweak scale. However, we will sometimes take 

a somewhat higher threshold scale for all the new fermions when checking to see 

if a model could be perturbatively valid up to the Planck scale. For example, we 

can calculate the running gauge coupling constants, assuming that all the new 

fermions can be included in the RGEs at the TeV scale. Thus we can check to 

see if any gauge coupling constant becomes infinite below the Planck scale (i.e.
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if there are any Landau poles, especially for the U( 1) coupling). If the threshold 

was lower then the new fermions would affect the coupling constants even more 

but this would only be a small effect. Obviously we do not want the coupling 

constants to become infinite or the theory will be inconsistent. When we do this 

we find that there are few self-consistent models allowed by our assumptions, in 

the sense that for any particular gauge group only a few combinations of fermions 

which cancel the anomalies do not cause the U( 1) gauge coupling to diverge.

We will show that in the model with gauge group G5 we can add new fermions 

with masses accessible to present or planned future accelerators, in particular a 

fourth generation of quarks without any new leptons. Although the model is 

consistent and can be tested experimentally in the near future, it is not called 

for theoretically and does not resolve any of the outstanding problems of the 

SM. Nevertheless it is the simplest alternative to the SM which has the same 

characteristic properties as the SM itself.

1.5 Outline of thesis

In chapter 2 we will discuss our method of constructing models and describe in 

detail the types of models our method leads us to consider. We shall compare 

these models to some alternatives and try to justify our approach in comparison 

to these others. We will also compare our method of choosing the fermion content 

of our models to previous methods of deriving the SM generation of quarks and 

leptons. We shall see that our methods provide a consistent derivation of the SM 

generation without introducing any phenomenological arguments.

In chapter 3 we shall discuss the experimental constraints which arise from the 

consistency of the SM with experiments. This includes the experimental limits on 

the mass of the top quark and the masses of new, undetected fermions. We will 

show that current experimental limits provide lower limits for new quark masses. 

We will also show that no more massless fermions are allowed in our models and
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so we are justified in using the simplification of the anomaly constraints when 

all fermions get a mass via the SM Higgs mechanism, derived in section 2.4. 

We will also consider the technicolour-like effects of fermion condensates in new 

non-abelian groups and the resultant reduction of the SM Higgs VEV relative 

to its SM value. This will lead to a corresponding reduction in fermion masses. 

Finally we will discuss the constraints imposed by the effects of loop corrections 

in the electroweak theory. The deviations from tree-level relations are measured 

by precision electroweak measurements and can be parameterised in such a way 

that we can derive some simple constraints on the number of new fermion SU(2) 

doublets in our models.

; In chapter 4 we shall show the difficulty of constructing a model where all the

new fermions are in 5-plet or anti-5-plet representations of SU(5). We will begin 

by considering the general problem of producing an anomaly-free set of fermions 

when we make no simplifying assumption about the fermions getting a mass via 

the SM Higgs mechanism. Then we shall consider the simpler case where we find 

anomaly-free sets of massive fermions but cannot satisfy the condition that there 

is no U(l) Landau pole below the Planck scale.

In chapter 5 we will see how the difficulties of chapter 4 can be overcome by 

also adding fermions which are 5(7(5) singlets; in particular a fourth generation 

of quarks but no fourth generation of leptons. We will also show how such a 

solution can be formulated in a more general gauge group. Once we have produced 

an acceptable model we then investigate in detail how well it agrees with the 

precision electroweak data and experimental limits on quark masses. We show 

that the model can be chosen in such a way that it is acceptable using current 

experimental data but that it is very close to current limits and will soon be 

confirmed or rejected by new data.

In chapter 6 we will discuss a different type of model. In some ways this model 

' is similar to the others discussed in this thesis. However, the type of group is quite

i different and cannot really be claimed to be suggested by the SM. We will still
j
I[

I

i
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have a charge quantisation rule (in fact 4 rules) but we will not introduce any 

more low mass fermions. The gauge group is an extension of the S M G  but in 

this model the SM G  is a diagonal subgroup of the full group. The SM fermion 

Yukawa couplings to the SM Higgs boson are viewed as effective couplings in a low 

energy effective theory. The fundamental Yukawa couplings to the Higgs bosons 

responsible for the symmetry breaking down to the S M G  are assumed to be of 

order 1. The details of this symmetry breaking are parameterised and we vary the 

parameters to obtain the best order of magnitude fit to the SM fermion masses 

and mixing angles. We compare our results to a very similar model.

In chapter 7 we shall sum up the results of this thesis and discuss the overall 

merits of such models.



Chapter 2

Building a Consistent Extension  

of the Standard M odel

2.1 Typ es of Extensions

There are many ways to extend the SM so the first step is to decide what type 

of extensions to consider. To do this we have decided to use the SM itself as 

a guide. By this we mean that we shall only consider extensions with features 

similar to the SM. This does, of course, rule out many popular models. Some of 

the models ruled out by our approach are; GUTs, SUSY models and any model 

which includes quantum gravity. GUTs are ruled out because the idea of coupling 

constant unification is not directly suggested by the SM. It is true that the gauge 

coupling constants almost converge at an energy of approximately 1015 GeV but 

it is now known that they do not meet exactly. It can be argued that this is a 

sign that there is unification and the reason it is not apparent is that the SM and 

simple GUTs are not correct and so do not give the correct RGEs. Indeed it is 

now known that SUSY GUTs can allow unification consistent with the current 

experimental measurements of the gauge coupling constants.

However, we do not consider SUSY theories because there is no evidence for

25
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such theories, either from experiment or the structure of the SM itself. Introducing 

SUSY to explain the gauge hierarchy problem (why the electroweak scale is so 

much smaller than expected radiative corrections from a fundamental theory at 

the GUT or Planck scale) or to allow coupling constant unification is not justified 

in our approach of using known features of the SM which are apparent at low 

energies (energies accessible to current accelerators).

Models involving quantum gravity must be considered at some stage since it 

is widely accepted that the existence of classical relativity requires the existence 

of a fundamental quantum theory of gravity. Superstring theory is the current 

candidate for a theory that combines quantum field theory and quantum gravity 

in a consistent way. However, so far no-one has managed to solve the theory to 

predict physics below the Planck scale. So even if this theory is accepted, there 

are still many possibilities for models below the Planck scale. So our approach 

is to start from the SM and try to extend this accepted model to other possible 

models below the Planck scale. We will assume that our models are valid up to 

the Planck scale and that some fundamental theory such as string theory will then 

unify the model with quantum gravity.

In this chapter we will discuss in detail the type of extensions we do consider 

and try to justify our method. Then we shall discuss how our extensions fit in 

with the theoretical constraints of anomaly cancellation. Finally we shall discuss 

how our methods can be used to reproduce the generation of quarks and leptons 

within the SM itself. This can be seen as a check that our methods are consistent 

with the idea of using only fundamental features of the SM.

2.2 Extrapolations From the SM

In this section we discuss aesthetic extrapolations from the SM. These are fea­

tures of the SM which have no obvious explanation but in some way can be used 

to specify the model almost uniquely. We try to pick out these features and carry
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them over to or generalise them in our extended models. This is a method of 

selecting a particular type of model and our view is that this is the most log­

ical method although the features chosen may of course be subject to personal 

prejudice.

2.2.1 Extending the Gauge Group and Charge Quantisa­

tion

As stated in section 1.4, an obvious way of extending the SM is to extend the 

gauge group. The S M G  is:

S M G  = £7(1) <8> 677(2) ® SU(3)/D3 (2 .2 .1)

where the discrete group

D  3 =  {(e'2*/6, - I t ,  ei2' / 3I3)n : n € Z e } (2.2.2)

ensures the quantisation rule, eq. (1.4.67). We believe that the most obvious 

extension is to add more special unitary groups to the sequence £7(1) ® SU(2) ® 

57/(3) and to use a different discrete group so that the quantisation rule above is 

generalised. In [7] it is argued that the group should be of the form

Gp e e  £7(1) <8) 5 £7(2) ® 5 £7(3) (8) SU(5) ® • ■ ■ ® SU(p)/Dp (2 .2 .3)

where the product is over all SU(q) where q is a prime number less than or equal 

to the prime number p. The discrete group Dp is defined as

D„ = {(e<2T/JV',  - I 2, ei2’ /3I3, ei2”mi/sh , . . . ,  ei2*m’’/pIp)n : n e  Z Np) (2.2.4)

where 7Vp =  2 x 3 x 5 x - - - x p  and mjq is an integer which is not a multiple 

of N.  In fact we can obviously choose 0 < rriN < N  — 1 since is really only 

defined modulo N. We also have the freedom to choose that there are, for example, 

at least as many SU(2) doublets which are N  representations of SU(N)  as N
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representations since we can conjugate S U ( N )  and set m^v —*• —tun  (mod N ).  

We will use this fact later to eliminate duplicate solutions where all N-plets and 

anti-N-plets have been interchanged. This also allows us to fix m3 =  1 rather than 

2 as in the SM.

The group D p gives a generalised quantisation rule:

|  +  t  “duality” +  | “triajity”+

^ ■ “quintality” +  • • • +  ^ ^ “p — ality” =  0 (mod 1) (2.2.5)
5 p

We will also consider the more general groups defined as:

S M G 2NlN2...Nk = U( 1) ® 5*7(2) ® S U ( N i )  ® • • • ® S U ( N k) / D 2Nl...Nk (2.2.6) 

where

D 2Nl...Nk = : m 6 (2.2.7)

Here iV =  2xiV ! x • • • x Nk and the N{ are odd and mutually prime (we can ob­

viously assume they are arranged in ascending order). So the charge quantisation 

rule is:

2 +  \ d +  ~N\ni +  " '  +  l ^ nk ~ 0 (m od ^  ̂ 2 '2 '8^

where we have defined d to be the duality and rii to be the 7Vt-ality of a represen­

tation. The groups S M G 2zn are the minimal extensions of the S M G  (=  S M G 2z) 

which are inspired by the S M G , in the sense that each is also a cross product of 

*7(1) and a set of distinct special unitary groups, with a charge quantisation rule 

involving all the direct factors, and contains the S M G  as a subgroup.

It has been suggested that a defining property of the SMG is that it has few 

outer automorphisms relative to the rank of the group [10]. This can be described 

by saying that it is very skew. If we accept this principle, which is suggested 

by random dynamics [7], then the groups S M G 2N1N2...Nk are naturally suggested 

as alternatives to the S M G .  In particular, the requirement that all the Ni be



29

mutually prime and the definition of the discrete group D 2N1N2...Nk follow from 

this principle. In fact, the stronger requirement that all should be prime 

is suggested [11]. Alternatively we can derive eq. (2.2.8) directly as a natural 

generalisation of the SM charge quantisation rule, eq. (1.4.67).

We can also consider the charge quantisation rules and the condition that the 

Ni should be mutually prime to be suggested by the SM charge quantisation rule. 

This is because the generalised quantisation rule shares the property with the SM 

rule, eq. (1.4.67), that a given allowed value of J implies a unique combination 

of ./V-alities: (duality, triality, . . . ,  A,-ality, . . . )  h This is true provided we also 

make the assumption about small representations which we discuss in the next 

section.

Of course it is possible that the apparent charge quantisation rule in the SM 

is simply due to chance; i.e. the fermions in the SM just happen to obey that 

particular rule. However we believe that the quantisation rule is a fundamental 

feature of the SM; so we argue that it is very difficult to see how there cannot be 

! a generalisation of this rule in an extended model, while still retaining the general

features of the SM. In fact the form of the generalised charge quantisation rule 

is suggested from the SM and there seems to be little choice in selecting the 

rule since the SM rule appears to be the one which involves all the direct factors 

equivalently. It could even be argued that the choice of the most complicated 

charge quantisation rule in some way defines the SMG.  This is why we have 

divided out the discrete groups Dp and

2.2.2 Small Representations

In the SM, for each SU(N)  group, the fermion representations are either N-plet 

(N), anti-N-plet (N) or singlet (1). This can be described by saying that all the

1This corresponds to the global group, associated with the generalised charge quantisation 

rule, having a connected centre [7].

i
r

|

!i
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fermions lie in fundamental representations of each SU(N)  group to which they 

couple. We pick this as a feature of the SM which we shall extend to our models. 

We note here that this is in contrast to some other attem pts to extend the SM. 

For example in SUSY there are fermions in other representations (e.g. gauginos 

in adjoint representations). Fundamental representations are also suggested in 

[12] since these make the Weyl equation most stable when considering random 

dynamics 2.

Another feature is that the weak hypercharge is in some way minimised in 

the SM, subject of course to the constraints of anomaly cancellation and charge 

quantisation, as we shall show in section 2.5. So in our extended model we will 

choose hypercharge values close to zero whenever possible. More precisely, we 

choose to minimise the sum of weak hypercharges squared over all fermions. This 

will also minimise the running of the U( 1) gauge coupling constant and so give 

each model the best chance of being consistent up to the Planck scale, which we 

require as stated in section 2.2.3.

2.2.3 Higher Energies - Desert H ypothesis

The SM has been tested at energies up to a few hundred GeV. There have been 

many theories proposed which would be valid at energy scales ranging from 1 

TeV up to the Planck scale around 1016 TeV. Many of these theories have a large 

range of energy where no new physics occurs. One example is GUTs where there 

is typically no new physics from the SM energy scale up to the grand unification 

scale around 1012 TeV. An alternative is that there is no new physics until the 

Planck scale where we can be almost certain that quantum gravity will have a

2In fact, from this point of view, each representation of the full gauge group should only be 

non-singlet with respect to one non-Abelian factor. This is not true for the left-handed quarks 

but is true for all other fermions in the SM. However the left-handed quarks are required in 

order that there are no gauge anomalies. So we can consider that the Weyl equation is as stable 

as possible if we only have small representations.
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significant effect. We shall adopt this view for our extended models. This means 

that once we have set the mass scale for the fermions in the extended model, we 

can calculate the running coupling constants and check to see if there is a Landau 

pole below the Planck scale, i.e. whether the U(l) gauge coupling becomes infinite 

below the Planck scale. If there is a Landau pole then we will conclude that such 

a model is not consistent.

2.3 Alternative Groups

In this section we shall describe some alternative extensions of the SM. We will 

consider groups similar to those we are examining in the main part of this thesis in 

the sense that they contain the S M G  and additional special unitary group factors. 

This obviously does not include models which unify the individual components 

of the S M G  or models which involve SUSY. There have been many such models 

and the additional symmetries are usually used to explain; coupling constant 

unification, the number of families in the SM, or the fermion mass hierarchy, in a 

fairly natural way.

In the models described in section 2.2.1 the SM fermions cannot couple to any 

new gauge fields because of the charge quantisation rule. This is due to the fact 

that all values of |  in the SM are multiples of |  and so the charge quantisation 

rule, eq. (2.2.8), forces the SM fermions to be singlets of all SU(N)  groups where 

N  > 3 due to our assumption about small representations.

However the situation is more complicated if we allow more than one SU(N)  

gauge group for any particular N.  Where we have N  =  2 or 3 there are two 

distinct cases. In the first case the SM group SU(N)  is an invariant subgroup of 

the extended group. We then call the extra SU(N)  groups a horizontal symmetry. 

In the other case the SU(N)  group in the S M G  is not an invariant subgroup and 

is generally a diagonal subgroup of the extended group.
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2.3.1 Invariant Subgroup Case: Horizontal Symmetries

If we have one more 5(7(2) or 5(7(3) group then we can have a horizontal sym­

metry (a non-abelian symmetry which places fermions from different generations 

in the same multiplet). The idea of a gauged horizontal symmetry is not new 

and has been used to try and explain the mass hierarchy of the SM fermions [13]. 

However, an SU(N)  group with N  > 3 is not a possible horizontal symmetry 

without introducing many more fermions because there are only 3 generations of 

SM fermions and the smallest non-trivial representation of SU(N)  is the N-plet. 

For example if =  5 we would have an 5(7(5) horizontal symmetry and so we 

would need at least 5 generations of SM fermions. Even with 5 generations this 

would not fit into our type of models since the SM fermions could not then obey 

the charge quantisation rule,

|  +  ^  +  |  +  ms |  =  ° (m o d i) (2.3.9)

where q =  quintality =  5-ality. Therefore we will only consider 5(7(3) and 5(7(2) 

groups as candidates for a horizontal symmetry.

If the horizontal symmetry gauge group is 5(7(3)// then we must place fermions 

from different generations in the same triplet (or anti-triplet). It turns out that 

the only way to do this, avoiding anomalies (see section 1.1) and not introducing 

any new fermions, is to put all fermions in the same (or conjugate) representation 

of 5(7(3)// as they are in the colour group, SU(3)c,  of the SM; so that all three 

generations of left-handed quarks are put in a triplet (or anti-triplet) of 5(7(3)// 

etc. However, the SM fermions would not then obey the charge quantisation rule 

which might be expected, similar to eq. (2.2.8):

2 +  \ d +  \ tc  +  \ tH ^  ° m̂° d ^  (2.3.10)

If the horizontal symmetry group is 5(7(2)// then we can make some or all 

SM fermions triplets of 5(7(2)//. This would allow the fermions to satisfy the 

charge quantisation rule but triplets are not the smallest representations of 517(2)
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and so we do not favour this as explained in section 2.2.2. We could place some 

fermions in doublets of SU(2)h • This could be done, without introducing any 

anomalies, by placing two generations of quarks in the same doublet or taking 

two generations and placing the fermions in the same representation of SU{2)h 

as they are in the electroweak group SU(2)l . Different doublets could connect 

fermions from a different pair of generations. For example left-handed quarks 

from the first and second generations could be in the same doublet, right-handed 

‘up’ quarks from the first and third generations could be in the same doublet and 

right-handed ‘down’ quarks from the second and third generations could be in the 

same doublet. This would not give any anomalies though it is difficult to see how 

this could be used to explain the fermion masses.

The main problem with these types of models is that fermions in different 

generations with very different masses are put in the same multiplet. This means 

that the fermions would naturally get the same mass. It is difficult to break the 

symmetry in such a way that the masses of all the different fermions are split by 

realistic amounts [13].

To sum up, we do not consider these possibilities in this thesis because triplets 

of SU(2) are not fundamental representations and the other possibilities, with 

fermions in fundamental representations of the gauge groups SU(2)u  or 5£/(3)h, 

mean that the fermions could not obey the extended charge quantisation rule. 

Of course models involving horizontal symmetries do not enforce such charge 

quantisation rules or require small representations of SU{2)u .

2.3.2 Non-invariant Subgroup Case: S M G  as Diagonal Sub­

group

In the case where, for example, the SU(3)c subgroup of the S M G  is not an 

invariant subgroup of the full gauge group, the only possibility is that it is a 

diagonal (or anti-diagonal) subgroup of SU(3)n for some integer n. In this type of
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model different generations can couple to different 5/7(2) and 5/7(3) gauge groups 

in the full gauge group. There would then be symmetry breaking to produce the 

S M G  in such a way that SU(3)c could be said to be a diagonal subgroup of all the 

5/7(3) groups in the full group which exists at energies higher than the symmetry 

breaking scale. In other words, SU(3)c is then the subgroup in which all the 

5/7(3) groups undergo the same transformations. In this way it is trivial to cancel 

all the anomalies since each generation of quarks and leptons cancel all anomalies 

separately and couple to a t/( l)  ® SU(2) ® 5/7(3) subgroup of the full group in 

the same way as they couple to the SMG.  This is in contrast to the invariant 

subgroup case where the SM fermions had to couple to the S M G  and also to other 

subgroups of the full gauge group. Also, in the diagonal case, the dimension of 

each representation is the same as in the SM, whereas, in the invariant subgroup 

case, the dimensions were larger since different SM representations were combined 

under the horizontal symmetry.

This type of model has been proposed [14] as an alternative to horizontal 

symmetries or grand unification. Examples include topcolour models [15] and the 

anti-grand unification model [16], where the group S M G 3 =  SM G ®  SM G ®  S M G  

has been used to successfully predict the values of the gauge coupling constants. 

The anti-grand unification model has also been analysed as a model to explain the 

hierarchy of SM fermion masses [17]. Here the extended model with gauge group 

S M G 3 ® U(l)f  has been fairly successful at reproducing the observed fermion 

masses in an order of magnitude approximation (reproducing all SM fermion 

masses within a factor of 2 or 3). The extra Z7(l)/ gauge symmetry is called a 

flavour symmetry and is required to produce the observed mass differences within 

the second and third generations, e.g. mj, <C m*.

We note that the fermions in some of these models obey the extended charge 

quantisation rules which we would expect. For example the fermions in the S M G 3
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model obey the charge quantisation rules:

^  +  ^di +  =  0 (mod 1) (2.3.11)

where the three copies of the S M G  are labelled by i = 1, 2 and 3. With three 

separate charge quantisation rules, this is not truly a straightforward extrapolation 

of the SM charge quantisation rule. However it is similar in the sense that these 

rules are required to produce the group S M G 3 which has as large a value of x 

3 as the S M G  itself. The quantity x measures how strongly intermingled the 

U( 1) subgroups are with the semi-simple part via dividing discrete groups (i.e 

equivalently via the quantisation rule(s)). It happens that groups of the form 

S M G n have the largest possible value of this measure; x =  W (6)/4 . The charge 

quantisation rules:

~  +  ^di +  =  0 (mod 1) (2.3.12)

ijf =  0 (mod 1) (2.3.13)

are chosen to maximise x for the group S M G 3 among all those with the

same algebra although this group does not have as large a value of x as the SMG.  

In fact x =  ln(63)/13 =  Y§ln(6)/4 for the group S M G 3 <8> U( 1)/.

However, the symmetry breaking scale of the group S M G 3 is taken to be just 

below the Planck scale in the anti-grand unification model and in most of this 

thesis we wish to study the possibilities of new physics at much lower energies; 

energies of the same order of magnitude as the electroweak scale rather than the 

Planck scale. This is still possible in such a model but it then loses its ability 

to predict the gauge coupling constants. Topcolour models do introduce new 

dynamics at the TeV scale but in this thesis we shall not consider such models.

3The quantity x  is defined in [11] for any group G  as x (^ )  =  ln(q,(Gr))/7*(Gr) where r ( G)  is the

rank of the group G.  Further, q(G)  is defined as the order of the factor group, obtained by divid­

ing the group of all abelian charge combinations (j/i, t/2 , . . . ,  yr ) allowed for any representations 

of the group G,  by the group of those abelian charge combinations allowed for representations 

trivial under the semi-simple part of the group G.
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We will discuss the model with gauge group S M G 3 <g> £7(1)/ in chapter 6 where 

we will use it to try to explain the fermion masses and mixing angles in the SM. 

However, this is only a small part of this thesis so we will continue with our main 

approach where we look for models with new low mass fermions.

2.4 Fermion Mass and Anomaly Cancellation

In the SM fermions get a mass via the SM Higgs mechanism. To do this in a 

general gauge group of the form

17(1) <g> SU(2)  ® G / D

where G  is any Lie group and D  is a discrete group, a left-handed fermion repre­

sentation (y, 2, R) should occur together with the left-handed anti-fermion repre­

sentations (—[y -f 1], 1, R) and (—[y — 1], 1, R). We shall refer to this as the mass 

grouping {y,R} where R  is a representation of G  (irreducible in our models). As 

explained in section 3.1.1 we assume that all fermions in our models, other than 

1 the leptons which have already been observed, get a mass by this mechanism. We

shall now describe what consequences this has for anomaly cancellation in our 

models, where G  is a product of SU (N i)  groups with 7VX- > 3.

We consider the grouping {y,R} for the gauge group

k
U ( l ) ® S U { 2 ) ® Y [ S U ( N i) /D 2Nl...Nk

1 =  1

where the irreducible representation R  is made up of fundamental (N x or N;) 

or singlet representations of each factor SU(Ni) .  The contribution to each type 

of anomaly from this grouping, {y,R}, is easily calculated, using the results of
j

|
i
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section 1.1, to be as follows.

[SU(Ni)]3 -> 2S Rn + S R( - n )  + S R( - n )  = 0

[SU(Ni)]2 U{1) -  2SRn2y -  SRn \ y  +  1) -  S Rn \ y  -  1) =  0

[Grav]1 U(l)  -* 2SRy + SR( - y  -  1) +  SR( - y  +  1) =  0

[t/(l)]3 -> 2SRy3 +  SR( - y  -  l )3 +  S R( - y  +  l)3 =  - 6 SRy

[5(7(2)]2 U( 1) 2 SRy

Here n t- is the A^-ality of the representation R  and SR is its dimension (size).

So we can see that the above grouping which is necessary to give a mass to 

the fermions also simplifies the anomaly constraints. In particular, if we take all 

fermions to be grouped in this way then we are only left with the single constraint 

for the absence of the mixed gauge-gravitational and gauge anomalies

£ $ W  =  ° (2-4.14)
j

where j labels each grouping {yj, Rj}.

There will also be no Witten anomaly, since we must have an even number of 

S U(2) doublets to satisfy eq. (2.4.14). This follows from the charge quantisation 

rule (2.2.8), the fact that N{ are all odd and the assumption of fundamental or

singlet representations for each SU(Ni)  subgroup. Using the charge quantisation

rule and defining

?  = (2-4-15)
aj  * =  1

we can write

f  =  c, +  I  +  g  (2-4-16)

where Cj,dj and ej are integers and dj are odd. Therefore, since eq. (2.4.14) 

can be written as =  0, we must have Ylj S j  ̂ =  0 (mod 1). In other
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words Ylj Sj =  0 (mod 2), which means that there are an even number of SU(2) 

doublets and so no W itten anomaly.

2.5 Deriving the SM Generation

In this section we shall first give a short description of the SM quarks and leptons 

which form all the known elementary fermions. We shall then show how the appli­

cation of anomaly cancellation and some other assumptions can be used to derive 

a SM generation of quarks and leptons without making any specific assumptions 

about the fermion representations in the SM gauge group. We can derive not 

only the non-abelian representations but also the abelian representations (weak 

hypercharge) by using a charge quantisation rule. This is one of the reasons we 

consider the charge quantisation rule to be a fundamental feature of the SM and 

so justify generalising it in our extended models. Also, the assumptions required 

to derive the SM generation are used to derive the properties of fermions in our 

extended models.

Finally we compare our derivation to alternative methods of deriving the SM 

generation. The main difference is our use of the charge quantisation rule as a 

fundamental property of the gauge group rather than simply a consequence of 

the SM fermion representations. We consider this to greatly simplify the other 

assumptions needed to derive the SM generation.

2.5.1 The SM Generation

In the SM there are 3 generations of fermions which are identical except for their 

masses. Each generation consists of 15 Weyl fermions and can be divided into a 

lepton generation and a quark generation. The quarks couple to the SU(3) gauge 

group whereas the leptons are SU(3) singlets and so do not ‘feel’ the strong force. 

The properties of these fermions are shown in table 2.1. The fermions are labelled
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as in the first (lightest) generation.

Table 2.1: The lightest SM generation.

Generation Fermion

Label

Representation of

S U ( 2 ) <g> S U ( 3)

Representation 

of U (l), J

Electric Charge

Q

Quark

/  \
u

T,

2,3 1
6

( \  
2
3

1
^ 5

ul 1,3 2
3

2
3

d-L 1,3 1
3

1
3

Lepton

( > 

 ̂ e  V

2,1 1
2

(  \  

0

V - 1  )

CL 1,1 1 1

The quark generation is formed by the representations ( | ,2 ,3 ) l ,  (—|,1 ,3 ) l  

and ( | ,  1 ,3 ) l  of the gauge group i/( l)  ®5£/(2) 05(7(3). This is precisely the mass 

grouping { |,  3} (where the representation 3 is of the gauge group S U (3)) described 

in section 2.4. All the quarks get a mass by the Higgs mechanism. The lepton 

generation is formed by the representations (—1,2 ,1  )l and (2,1, 1 )l of the same 

gauge group. However, this is not the same as the mass grouping {—1,1} because 

there is no right-handed neutrino (no anti-neutrino representation (0,1, 1 )l) in 

the SM. This means that the neutrino is massless in the SM but the electron can 

still get a mass by the Higgs mechanism. However, the lepton generation gives 

the same contribution to all anomalies as the mass grouping { — 1,1} would, since
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the right-handed neutrino would be totally neutral (i.e. would not interact with 

any gauge fields).

2.5.2 Derivation of the SM Generation

In fact, we can derive the SM generation using the following assumptions:

(i) The SM gauge group: S M G  = S(U(2) ® £7(3)). This includes the charge 

quantisation rule eq. (1.4.67).

(ii) Mass protection: This means that we cannot have left- and right-handed 

fermions with the same representation of the SMG.  Also we cannot have a right- 

handed neutrino since it can get a Majorana mass.

(iii) Anomaly cancellation: In addition to the cancellation of gauge anomalies, the 

W itten global SU(2) anomaly and the mixed gauge and gravitational anomaly 

must also be absent.

(iv) Small representations: This means (c.f. section 2.2.2) that all fermions are in 

either fundamental or singlet representations of the SU(2) and SU(3) subgroups 

and the sum of weak hypercharge squared for all fermions is as small as possible.

So our aim is to minimise the value of Si (where Si is the dimension 

of representation i with weak hypercharge ?/;) for all possible choices of mass 

protected fermions in fundamental or singlet representations of SU(2) and SU(3), 

assuming the charge quantisation rule, eq. (1.4.67), and cancelling all relevant 

anomalies. We note that for one SM generation (which satisfies assumptions (i) 

to (iii))

?*(?)'-? ( M i 7 )

and we show that there is no other mass protected solution of the anomaly con­

straints with

E S . ( | ) 2 < f  (2-5.18)

So we shall prove that one SM generation also satisfies assumption (iv) and thus

we will show that assumptions (i) to (iv) define the SM generation. Note that
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Table 2.2: Contributions of S  for all fundamental and singlet representations 

of SU(2) and SU(3) for any value of weak hypercharge which satisfies eq. (1.4.67). 

All ‘ATs are integers so that the charge quantisation rule, eq. (1.4.67), is satisfied. 

S is the dimension of the non-abelian representation.

Type

Representation of

SU(2) (8) SU{3) y.2 5 GO2

a 2,3 tf .  +  i 6 N f  +  2Na + |

b 2 ,3 Nb - \ 6N i  -  2Nk + |

c 1,3 N c - | 3N? -  2NC + |

d 1,3 M  + § 3 N 2d +  2Nd +  i

e 2,1 J V e - l 2Nl - 2 N '  + \

f 1,1 N , N t

in order to satisfy assumption (iv) we must satisfy eq. (2.5.18) 4. So in the 

following analysis we will implicitly assume eq. (2.5.18). Table 2.2 shows all 

allowed representations and their contribution of S  .

4This requirement of small values of weak hypercharge is different from other approaches 

where the aim is usually to find the minimum number of fermions. The charge quantisation rule 

means that all fermions will have non-zero weak hypercharge (we don’t consider right-handed 

neutrinos) and so the solution will not have a large number of fermions, but it will not necessarily 

be the minimum number. When considering groups with S U ( N )  where N  >  5 we will look for 

the minimum number of fermions since this is simpler and will usually produce the solution with 

minimum sum of weak hypercharges squared.
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In order to satisfy eq. (2.5.18) we must choose N a = Nb = 0, N c £ {0,1}, 

Nd £ {—1,0}, N e £ {0,1} and N f  € { — 1,1}. (We don’t consider N f  = 0 

because this would be a right-handed neutrino which would not contribute to any 

anomalies and would be expected to get a Majorana mass of the order of the 

Planck mass). This means that we cannot have mass protected fermions of both 

types a and 6. So we can choose, without loss of generality, that there are no 

fermions of type b 5. So we get table 2.3 which shows all allowed fermions and 

contributions to some anomalies.

For mass protection we cannot have any of the following combinations; types 

Ci and di, types C2 and d2, types e! and e2, or types f \  and / 2 (all defined in 

table 2.3). Also note that all the types of representations in table 2.3 contribute 

to the mixed anomaly, Yji Siyi. This means that we cannot use only type /  

fermions to produce an anomaly-free set of mass protected fermions. Therefore, 

if no fermions couple to the SU(3) group, we would require some fermions of 

either type ei or e2. But then there would be no way to cancel the [6'C/(2)]2C/(1) 

anomaly. So we can conclude that some fermions must couple to SU(3).

Suppose there are no fermions of type a. Then the above arguments mean 

that, to cancel the [5C/(3)]3 anomaly, we must have equal numbers of either types 

Ci and d2 or types c2 and d\. But then there is no way to cancel the [SU(3)]2U(1) 

anomaly. So we have a contradiction which, means that there must be at least 

one type a.

The [SU(2)]2U(l)  anomaly must be cancelled by having as many type ei as 

type a. So there are no type e2 due to the principle of mass protection. Again 

using the principle of mass protection, the only way to cancel the [5t/(3)]3 and 

[SU(3)]2U(1) anomalies is by having the number of types a, d\ and d2 the same. 

So we can now cancel the [C/(1 )]3 and mixed anomalies using table 2.4.

So we can see that the anomaly-free set of mass protected fermions which

5 Choosing no fermions of type a would lead to an equivalent solution with opposite chirality.
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Table 2.3: All allowed representations of fermions which could be used to satisfy 

eq. (2.5.18) and their contributions to some anomalies.

Type

Representation of 

SU{2) <g> SU(3) y.
2 s ( ! ) 2 [5f/(3)]3 [ s u m 2u ( i ) [SU(2)]2U(l)

a 2,3 i
6

l
6 2 1

3
1
2

Cl 1,3 i
3

1
3 1 1

3 0

c2 1,3 2
3

4
3 1 2

3 0

di 1,3 1
3

1
3 - 1 1

3 0

d>2 1,3 2
3

4
3 - 1 2

3 0

Cl 2,1 1
2

1
2 0 0 1

2

e 2 2,1 1
2

1
2 0 0 1

2

/ l 1,1 - 1 1 0 0 0

/ 2 1,1 1 1 0 0 0
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Table 2.4: Allowed combinations of fermions and their contribution to the remain­

ing anomalies.

Types G2U( 1) [C/(l)]3 s © 2

o, T- d\ T d2 +  e\ 1 +  1 — 2 — 1 =  —1 £  +  J - § - i  =  - i
7
3

h - 1 - l 1

u 1 i 1

minimises the sum of the weak hypercharges squared is one of type a, d2, e\ 

and / 2. This is one SM quark-lepton generation.

2.5.3 Alternative Derivations of the SM Generation

There have been other attempts to derive the SM generation using various as­

sumptions. Most notably Geng and Marshak [18] have tried to derive the SM 

generation using the constraints due to cancellation of anomalies. They also as­

sume mass protection but not the charge quantisation rule eq. (1.4.67). Instead of 

minimising the sum of weak hypercharges squared they try to find the minimum 

number of fermions required to satisfy these assumptions.

The smallest number of Weyl fermions found by Marshak is 14. This solution 

consists of the following representations of the gauge group U(l)®SU(2)(g)SU(3): 

(0,2,3)^, (2/,1,3)l, (—?/, 1 ,3 ) and (0 ,2 ,1 )l. Geng and Marshak rule out this 

solution because the S U (2) doublet cannot acquire a Dirac or Majorana mass, even 

with the spontaneous symmetry breaking of the gauge group. However, we know 

from the SM that the neutrino is massless and so there doesn’t appear to be any 

reason why massless fermions should be excluded from such an analysis. (We could 

obviously use phenomenological arguments but that would defeat the purpose of



45

trying to derive the SM generation). They also object to this solution because they 

feel it trivialises the cancellation of the mixed gravitational and gauge anomaly. 

In what sense the anomaly condition is trivial is not entirely clear since not all 

fermions have zero weak hypercharge; but also why should it m atter if a constraint 

is trivially satisfied? In our derivation this solution does not occur because of the 

charge quantisation rule. So by enforcing the charge quantisation rule, which we 

have taken as one of the defining properties of the S M G  in section 2.2.1, we can 

avoid this solution without introducing dubious arguments about fermion masses 

or not allowing ‘trivial’ cancellation of anomalies.

So, if we add the assumption of the charge quantisation rule, we would expect 

to find that the SM generation is the smallest possible number of Weyl fermions. 

However, there are smaller solutions which have not been considered by Geng 

and Marshak. These solutions have 12 Weyl fermions and do not couple to the 

SU(3) subgroup. The fermions belong to 6 SU(2) doublets with values of weak 

hypercharge given by, for example, —9, —9,1,1,5,11. This set of 12 Weyl fermions 

has a huge sum of weak hypercharges squared but this could obviously be changed 

by scaling all the weak hypercharges to smaller values. Without assuming the 

charge quantisation rule this would be possible. This solution appears to have 

been ignored because Geng and Marshak implicitly assumed that at least one 

fermion must couple to each part of the gauge group. However, we wish to find a 

consistent method of deriving the SM generation and so this must be considered 

as an additional assumption.

So if we then also add the assumption that all subgroups must have some 

fermion coupling to them, we can almost derive the SM generation. The problem 

is that we can scale all values of weak hypercharge for the SM fermions by a 

factor of (6n +  1) where n is any integer 6. The SM generation is obviously the

6W ithout the charge quantisation rule we could scale the weak hypercharges by an arbitrary 

amount. Then we couldn’t use the procedure of minimising the sum of hypercharges squared 

since this would obviously force all values to zero. There is then no way to fix the scale other
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solution with the values of hypercharge closest to zero. We can express this by 

choosing to minimise the sum of hypercharges squared for this solution. But since 

we must introduce such an assumption why not use it from the start?! This then 

allows us to drop two of the above assumptions; that all subgroups must have 

a fermion coupling to them and that we should look for the smallest number of 

Weyl fermions. We are then left with the four assumptions used in section 2.5.2 

which we have already tried to justify in this thesis. This seems more reasonable 

than introducing more assumptions with no justification.

than by assuming the fermions get a mass by the Higgs mechanism and fixing the scale to the 

weak hypercharge of the Higgs boson. So the charge quantisation rule effectively introduces a 

scale for the weak hypercharge independent of any Higgs bosons.



Chapter 3

Experim ental Constraints on 

N ew  Fermions

In this section we shall discuss the constraints on our models which are due to 

experimental evidence. In particular we are concerned with the possibilities for 

the existence of more fermions and what restrictions can be imposed both directly 

and indirectly on their mass. Some difficulty arises since fermions may be confined 

and so not directly observable. This means that direct experimental restrictions 

will refer to the mass of particles which are combinations of these fermions, like 

hadrons in the case of quarks.

3.1 Experimental Limits on Fermion M asses

First we shall discuss the constraints on fermion masses due to the fact that so 

far no non-SM fermions have been observed. We shall show that this rules out 

any extra massless fermions and then give current limits on the masses of different 

type of new fermions.

47
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3.1.1 M assless Fermions

Only three massless fermions have been observed and they are the three mass­

less neutrinos described in the SM (even if the neutrinos do have a small mass 

we know that there are only 3 with a mass less than | M z )• Any other mass­

less fermions, which had any significant coupling to the SM fermions or gauge 

bosons, would have been observed if they were not confined. When we assume 

fermions belong only to fundamental and singlet representations (as postulated 

in section 2.2.2), the charge quantisation rule in our models ensures that the only 

possible fermions which would not be electrically charged would be neutrinos. A 

left-handed neutrino without a right-handed neutrino would be massless as in the 

SM. We already know that there are only three such neutrinos and so we cannot 

consider this as a possibility for new fermions. A right-handed neutrino would be 

completely decoupled from the gauge group and so it could get a gauge invariant 

Majorana mass. So we would expect that it would have a mass ~  Mpianck and so 

it is excluded as a low mass fermion in our models. Therefore any new massless 

fermions in our models must be electrically charged and so must also be confined 

by a new interaction well above the QCD scale, on phenomenological grounds.

If there is a confined gauge group then we assume that fermion condensates 

will be formed as in QCD. If a fermion doesn’t have a chiral partner with respect 

to some confined group H , the condensates formed will break the group H. So 

if we assume that there is no spontaneous gauge symmetry breaking, other than 

that of the electroweak symmetry group, no fermions can be chiral w.r.t. G where 

the full gauge group is 17(1) <8> SU(2)®G / D (where D  is some discrete group). In 

our models the extra SU(N)  gauge groups are all confining (with negative beta 

functions), so that G =  H. This leads to the phenomenological requirement that 

all new fermions with a mass much lower than the fundamental scale (Planck 

scale) should get a mass via the SM Higgs mechanism.

If the left- and right-handed fermions occur with the same representations of
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the full gauge group U(l)<g>SU(2)<g)G/D, then the fermions can form a Dirac mass 

term in the Lagrangian. So they would be expected to get a mass comparable 

to the fundamental scale, which we take to be the Planck mass in our models. 

Such fermions would not contribute to any anomalies and would not be observable 

because of their high mass. We shall therefore ignore them in our models. If a 

fermion cannot form such a fundamental Dirac (or Majorana) mass term then 

we say it is mass protected, since it would be fundamentally massless and could 

only get a mass indirectly through some interaction such as the Higgs mechanism. 

All the fermions considered in our models are mass protected by the electroweak 

interactions.

We conclude that all new fermions in our models must get their mass from the 

Higgs mechanism. Furthermore, they must couple to the usual SM Higgs particle 

in the same way as the SM fermions. In other words, the fermion condensates 

must have the same quantum numbers as the SM Higgs boson; otherwise their 

contributions to the W ± and Z° masses, via the usual technicolour [9] mechanism, 

would be analogous to those from the vacuum expectation values of Higgs particles 

with non-standard weak isospin and hypercharges. This would lead to a significant 

deviation of the p parameter (p =  ĵ yco%e ~) from unity [19] in contradiction with 

precision electroweak data.

3.1.2 M assive Fermions

In the SM there are two different types of fermions, quarks and leptons, which 

differ by the fact that quarks couple to the SU(3) gauge fields and so are confined, 

whereas leptons have no direct coupling to the SU(3) gauge fields and are not 

confined. There are experimental limits on the masses of any quarks and leptons 

which have not yet been observed. If there are any more leptons then they must 

have a mass greater than 45 GeV [5]. We shall assume that there are no more 

leptons, since even the neutrino would have to get a mass larger than this and it
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is difficult to see how a neutrino could naturally be given a mass greater than 45 

GeV but still much lower than the fundamental scale (which is the Planck scale 

in our models). This is because a right-handed neutrino, as already discussed in 

section 3.1.1, would naturally get a Majorana mass and so the see-saw mechanism 

[20] would leave the left-handed neutrino with a very small mass. For this reason 

we cannot allow any more generations of SM leptons. However the limits on the 

quark masses are dependent on the type of quark and its decay modes.

The top quark has recently been observed by the CDF [21] and DO [22] collab­

orations. The mass is in the range 150-220 GeV. We will assume that Mt ~  170 

GeV, with a lower limit of 160 GeV which agrees well with the CDF analysis 

which is statistically better than the DO analysis. For the purpose of this thesis 

we take the limit on possible fourth generation quarks, t' and to be

> 130 GeV

from the dilepton analyses of the CDF [23] and DO [24] groups (less restrictive 

limits apply if other decay modes are dominant). Note that experimental limits 

are taken to apply to the pole masses for heavy quarks.

The above experimental limits do not apply to new fermions which are not 

singlets of the additional S U (N ) gauge groups. These fermions would be more 

difficult to detect experimentally and would anyway be confined inside ‘hadrons’ 

with a confinement scale (generically at the electroweak scale) much higher than 

the QCD scale. For this reason we will concentrate on the masses of new SM 

fermions and not make any precise assumptions about experimental lower limits 

for fermions coupling to SU(N)  subgroups with TV > 3.

We require our models to remain perturbative in the desert from the TeV 

scale to the Planck scale. So we can use the RGEs to examine how the Yukawa 

couplings evolve from the Planck scale down to the electroweak scale. In particular 

we study the infra-red quasi-fixed-point structure of the RGEs. In the SM the 

fixed point values provide upper limits on the mass of the top quark, Af*, and
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the Higgs scalar, Mh . Similarly in extended models we get upper limits on the 

masses of the heaviest fermions, though the precise values depend on the relative 

masses of these fermions and also the unknown gauge coupling strength, gw, of 

the SU(N)  groups to which the fermions couple. Also we must be careful to 

point out that the RGEs describe the running of the Yukawa couplings and, as 

we discuss in section 3.2, the actual masses will be less than naively expected, 

due to the technicolour-like contribution from SU(N)  to the electroweak VEV, 

v = 246 GeV. As we shall see, this will enable us to quite accurately predict the 

masses of some of the fermions we introduce in our model in chapter 5, since we 

have theoretical upper limits and experimental lower limits.

3.2 Technicolour Contributions

Technicolour theories [9] have been proposed as an alternative to the Higgs mech­

anism to provide a mass for the weak gauge bosons. This is based on the fact 

that QCD would provide a (very small) mass for these bosons without any Higgs 

scalars. Similarly any other confining SU(N)  gauge groups, with fermions which 

are in non-trivial representations of U(l)  ® 5C/(2), are expected to form fermion 

condensates which would contribute to the W ± and Z° masses. In our models 

the charge quantisation rule ensures that all fermions (except a right-handed neu­

trino) would be non-trivial under U( 1). Thus all SU(N)  groups in our models, 

which are coupled to fermions, will contribute to the weak boson masses.

We stress that we are not proposing a technicolour model as such, but simply 

taking into account the unavoidable effect that adding an SU(N)  group has. We 

are assuming that the Higgs sector of our models is the same as in the SM, i.e. one 

Higgs doublet and that the fermion condensates have the same quantum numbers 

as the Higgs doublet. Then the VEV due to the Higgs field, < <f>ws > , is related t o . 

the total VEV, v, and the contribution from SU(N)  due to fermion condensates,
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FnN, by the relation

< <t>ws  > 2 + F 2n =  V2 = (246.22 GeV)2 (3.2.1)

which is exactly the same as in technicolour models with a scalar [25],

The fermion running masses, m /, are related to the Higgs field VEV in the 

usual way:

m f  =  < <f>ws > (3.2.2)

where yj is the Yukawa coupling constant for the fermion f (y is used for both

Yukawa coupling and weak hypercharge but it should be obvious from the context

which is being referred to). The running masses of the SM quarks and general 

SU(N)~“quarks” are related to the pole masses by eqs. (1.3.65) and (1.3.64) re­

spectively. For SM quarks with a mass of order M z ,

Mj  «  1.05m/(Mz ) (3.2.3)

where M j  is the pole mass and m j(M z)  is the running mass at y. =

In order to avoid any significant suppression of the top quark and other fermion 

masses, due to the reduction of < <pws > below its SM value, we usually imagine 

taking

F^n < 75 GeV (3.2.4)

and thus

<(j)ws> > 234 GeV (3.2.5)

In fact we shall quote limits on fermion pole masses based on taking,

Fvn = 75 GeV (3.2.6)

<<j>ws> = 234 GeV (3.2.7)

This means that we expect the SU{5) gauge group to have a confinement scale

above the electroweak scale. By confinement scale we mean the mass of the 

lightest ‘hadrons’ other than Goldstone bosons. We can estimate this scale either
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by scaling QCD or using the estimates of [26]. We would expect the confinement 

scale to be approximately 5 7 ^  «  400 GeV. In fact [26] suggests that this estimate 

should be inversely proportional to y/N  so we have given the estimate for N  = 5.

Eq. (1.3.65) gives the following relation for the pole mass of quark / :

(„ 8)

In the approximation Mj  «  M z  we get,

M f  «  174yf (Mz ) GeV (3.2.9)

This gives a quick guide to the value of the pole mass of a quark with mass of 

order M z  but we will, of course, use eq. (3.2.8) when quoting the actual values of 

the pole mass for given values of Yukawa coupling.

For SU (N)-“quarks” (with N  > 3) we will quote the pole masses based on the 

reduced value of < <f)ws > but this will not make much difference compared to 

the difference between two choices of SU(N)  gauge couplings. Also, we will not 

be too concerned about the masses of SU (N)-“quarks” since they will be confined 

and the SU(N)  confinement scale may be much higher than the electroweak scale. 

In this case the pole masses may not even be relevant.

Upper limits for fermion masses are obtained by using quasi-fixed-point values 

for the Yukawa coupling constants, y/, as determined from the RGEs in viable 

models with a desert above the TeV scale. These infra-red fixed point Yukawa 

couplings are of order unity which would lead to thresholds for including these 

fermions in the RGEs at the electroweak scale. However for the purposes of 

investigating the behaviour of the gauge coupling constants, and especially to 

demonstrate that the U( 1) coupling constant develops a Landau pole in our model 

without new SM fermions (chapter 4), we take a more generous single threshold 

of ten times the electroweak scale ~  1.7 TeV for all new fermions in that model. 

For our discussion in chapter 5 of the model with a fourth generation of quarks we 

take the more stringent lower threshold value of M z , to demonstrate the absence 

of Landau poles in this case.
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3.3 Precision Electroweak Data

Measurements of electroweak interactions are now accurate enough to be sensitive 

to loop corrections to propagators and vertex corrections. These effects are model 

dependent and can be sensitive to the values of some parameters such as fermion 

and Higgs masses. So far the SM seems to be consistent with the precision elec­

troweak measurements and there is no experimental evidence that the SM is not 

correct. Obviously any other viable model should also agree with the data and 

in this section we discuss the experimental measurements of radiative corrections 

and the theoretical methods of calculating them.

There are many ways of parameterising the precision electroweak data. We 

choose the parameters 5, T  and U [27] which fully parameterise the precision 

data in the limit that all new fermions have infinite masses. However, these 

parameters are detailed enough provided none of the new fermions have masses 

less than the electroweak scale. These three parameters correspond to different 

types of radiative corrections.

The three parameters can be calculated perturbatively. If we consider an 

SU{2) doublet QQ with fermion masses mu  and mo,  in the limit:

8m =  |mu — mu\  <C mu  , mo (3.3.10)

and

m =  mu  ~  mo m z  

we obtain the following relations:

1_ 
67r

1
127T52C2

(8m):
m>

157T

{8m)'4
m 4

(3.3.11)

(3.3.12)

(3.3.13)

(3.3.14)

where s =  sin Qw and c =  cos 0w-
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These equations are really only valid when m m z  but are a good approxima­

tion when m > m z . The main uncertainty comes from the fact that they are per- 

turbative calculations and there is evidence from scaling known QCD effects that 

the contributions from new fermions may be larger than these estimates. How­

ever, it is by no means clear how to calculate these parameters non-perturbatively 

and so we shall assume that the perturbative calculation will be accurate enough. 

If we assume that the perturbative calculations are a lower limit then we can at 

least be sure that any model which appears to contradict experimental data is in 

fact ruled out.

The T  parameter is a measure of the loop corrections to the p parameter. 

Contributions from each massive fermion are proportional to the difference of 

the masses squared between the fermions in the SU(2) doublet. Since the SM 

(including the top quark) is consistent with the measured value of T, we want the 

contribution from the new fermions, Tnew to be small. We can arrange Tnew «  0 

by choosing the masses of the new fermions to be degenerate within each 5*17(2) 

doublet.

The SM is also consistent with the experimental value of U. So we want 

Unew ~  0. Usually the U parameter is unimportant and can be assumed to be 

close to zero provided the model does not introduce anomalous W  interactions
m2[28] since it is suppressed relative to the T  parameter by a factor of -^f. Our 

models do not introduce such interactions but we will not always be considering 

m m z • However, as is the case for Tnew, a non-zero value of Unew requires a 

mass splitting in the 5*17(2) doublets. We are already making this small so that 

Tnew ~  0. Therefore we can safely consider the U parameter to be consistent with 

experiment for all our models provided the T  parameter is, and so neglect it in 

our analysis.

So we are left to consider the 5* parameter. This parameter does not vanish 

in the limit of 6m = 0 and m mz-  In fact, in this limit, the 5* parameter gets
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a contribution of gb from each SU(2) doublet. So if we introduce NDoublets new 

SU(2) doublets, the contribution to S  is given by,

r r  Doublets  / n  n  -« k \
d n e w  — 7* ( o .o . l O J

07T

An analysis of the precision electroweak data gives [29]:

S„ev, = -0.21 ±  0.24;S$ (3.3.16)

where the second error is from the Higgs mass M h - The central value is for

M h = 300 GeV, the upper second error for M h — 1000 GeV and the lower one

for M h = 60 GeV. So if we take the lower limit M h =  60 GeV,

Snew «  0± 0 .2 4  (3.3.17)

and so Nooubiets new SU(2) doublets would differ from the mean value by ap­

proximately 0.2,2,NDoublets standard deviations. Note here that the perturbative 

calculation of Snew predicts a positive contribution from the new fermions and so 

there is no way to cancel these contributions with other fermions. Therefore we 

can limit Nooubiets by choosing how many standard deviations we are prepared 

to allow the model to differ from precision electroweak data. For example, if we 

wish our model to agree with the data for the S  parameter to within 2 standard 

deviations, we must ensure that Nooubiets < 9.



Chapter 4 

The SMG235 M odel W ithout N ew  

SM Fermions

Here we will examine the model based on the gauge group S M G 235 = G5 defined 

by eqs. (1.4.70) and (1.4.71), since it is the absolute minimal extension to the SM 

among all the possible groups we have proposed in section 2.2.1. In chapter 5 we 

will consider models based on the more general groups S M G 23N of eqs. (2.2.6) and 

(2.2.7), including new SM fermions to highlight the general features of all such 

extensions to the SM. However we will only analyse the consequences in detail for 

the group S M G 2 3 5 -

In this section we will discuss the two possibilities: (i) that there are no new 

fermions beyond those of the SM and (ii) that there are new fermions which all 

couple to the SU(5) gauge group. This latter possibility may seem to be tanta­

mount to adding a completely separate sector to the SM rather than extending the 

SM, since the new fermions will be confined under a new gauge group. However, 

it is really no more a separate sector than the SM is three separate sectors (one for 

each generation), since these extra fermions will still couple to the electro-weak 

group due to the charge quantisation rule. We will discuss the other possibility, 

that there are new fermions, some coupling to the SU(5) gauge group and others
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not, in chapter 5

4.1 No New Fermions

There is of course the possibility that there are no extra fermions associated with 

this enlarged group. If this is so then the only possible observations would be 

the detection of 5 t/(5 )-“glueballs” . In this case the SU(5) gauge group would be 

decoupled from the S M G  and so the only way to observe these “glueballs” would 

be through their gravitational interactions. They could have been produced in the 

very early universe and the lightest state would be essentially stable since they 

could only decay via the gravitational interaction. Therefore they would only be 

observable as dark matter.

So this case is essentially uninteresting (at least from the point of view of 

extending the SM) and will not be considered further. Instead we turn to the pos­

sibility that there exist more types of fermions than have been currently observed 

and consider whether or not they can be incorporated into a consistent model.

4.2 New Fermions Coupling to 517(5)

Of course fermions all contribute to anomalies which must be cancelled. The 

fermions in the SM cancel all anomalies on their own; so the extra fermions must 

cancel all anomalies amongst themselves. There are two cases examined in this sec­

tion. Firstly the general case where massless fermions are allowed. In section 3.1.1 

we have already argued that there should be no more massless fermions. However, 

we shall examine this general case for completeness since the argument against 

massless fermions was phenomenological. We will proceed with the analysis as far 

as possible but it will become clear how difficult it is to find the minimum solution 

in this case.

As we have discussed in section 2.4, the anomaly conditions are much simpler
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in the case where all fermions must get a mass by the SM Higgs mechanism. 

This is also expected to be the only phenomenologically viable type of model as 

discussed in section 3.1.1. We will find the smallest number of fermions which 

cancel all anomalies and then show what happens to the running gauge coupling 

constants. We will see that this model contains a Landau pole and will also prove 

that all other models of this type also contain a Landau pole below the Planck 

scale.

4.2.1 General Case Including M assless Fermions

We have studied the case where we do not make the requirement that all fermions 

can get a mass via the SM Higgs mechanism. We used the general equations 

for anomaly cancellation and, by making assumptions of maximum numbers of 

fermions, we used some simple techniques to derive constraints on the number 

and types of fermions allowed. We also derived constraints on the allowed values 

of weak hypercharge. The detailed analysis is shown in appendix A.

The general constraint for the absence of the [[/(l)]3 anomaly is complicated. 

All the other constraints are linear and can be easily manipulated and simplified. 

So what we ended up with was some simple linear constraints and a complicated 

[f/(l)]3 anomaly constraint. This meant that we could not find any solutions of 

the anomaly equations. However, we did put several restrictions on the possible 

types of solution. We could solve the equations using a computer but since we 

don’t think that solutions with massless fermions are likely to be phenomenolog­

ically acceptable we didn’t proceed any further. Instead we will now examine 

the phenomenologically acceptable case where all fermions get a mass via the SM 

Higgs mechanism.
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4.2.2 Only Massive Fermions

As explained in section 2.4 the anomaly equations in our models are greatly sim­

plified when all the fermions are massive due to the SM Higgs mechanism. In fact 

they are reduced to just one equation, SiUi =  0- If we label each mass-grouping 

of fermion representations by the label {y, R} where R  is the representation of the 

group 5(7(3) ® 5(7(5), then table 4.1 shows all six possible groupings, a to / ,  and 

their relative contributions, 5^-, to the anomaly equation. We use eq. (1.4.72), 

with the definition m =  m5 to simplify the notation, giving us the charge quanti­

sation rule,

|  i  “duality” +  i “triality” +  ^  “quintality” ee 0 (mod 1) (4.2.1)
2 2 3 5

where the integer m is fixed in any given m odell . So we can determine (mod 1) 

for any given representation R.

For a solution to the anomaly equation SiJJi =  0, we must obviously com­

bine the fractions f- so that the 5 is cancelled in the denominator since all Ns  are 

integers. We must also have an even number of groupings so that the ĉ ’s com­

bine to give an integer. This automatically ensures that there can be no W itten 

anomaly as explained in section 2.4. This can be done by using equal numbers of 

type a and type b groupings. The two smallest solutions are in fact: (i) one type 

a grouping and one type b grouping and (ii) two groupings of type a and two of 

type b. The smallest solution, (i), is not possible without giving the fermions a 

fundamental Dirac mass, since the anomaly constraints require that N a -f Nb = 0 

giving pairs of representations, (y ,2 ,l ,5 )  and (—y ,2 ,l ,5 )  etc., which are not 

mass protected.

The smallest allowed solution with mass protected fermions is therefore solu­

tion (ii) with two groupings of type a and two of type b. This solution is shown

1In fact we can limit m to be 1 or 2 since it is only defined modulo 5 and, by replacing m 

with — m  (mod 5) and all representations of S U (5) with their conjugates, we are left with an 

equivalent model.
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Table 4.1: Allowed mass groupings {y , R} of new fermions in the S M G 235 model, 

using the charge quantisation rule, eq. (4.2.1), and fundamental representations 

of SU(5). Their relative contributions to the anomaly equation, eq. (2.4.14), are 

given in the final column. A particular mass grouping of type t is given by choosing 

a particular value of weak hypercharge, i.e. by choosing a particular value of the 

integer N t.

Type R y.2 w s y

a 1,5 /V _—__-5 2 N a -  f  -  §

b 1,5 N„ + f  + 1 Nb + f  + 1

c 3,5 3NC -  +  1

d 3,5 n + ?  + i 3Nd + 2 f  +  \

e 3,5 M _  EL _  IiVe 5 6 ZNc - * f - \

/ 3 ,5 _L ™ — 11 j ' 5  6 3JV/ +  to  _  1

in detail in table 4.2. All anomalies cancel provided ]C?=i Ni — 0- We can now 

choose values of the N{.

The fermion contribution to the (first order)beta function for the U(l)  running 

gauge coupling constant is proportional to Y y 2- We therefore want to choose 

values of TV,- so as to minimise Y y 25 in order that any U( 1) Landau pole is at 

as high an energy as possible. This gives us the best chance that the solution 

of table 4.2 will be perturbatively valid up to the Planck scale and hence that 

our model will be self-consistent. However, this condition of minimising Y y 2 is 

also suggested by the small representation structure of the SM, as explained in



Table 4.2: Smallest anomaly-free (subject to the constraint Nr + Nj + Nz+Nt  

set of mass protected fermions which all couple to SU(b).

Representation under 

SU(2) <8) SU(3) (8) SU(b)

U( 1) Representation

V.
2

2,1,5 iYi — — — -iV1 5 2

1,1,5 - M  +  ?

1,1,5 - N x + f  + 1

2,1 ,5 iV2 -  f  -  1

1,1,5 -JV2 +  f

1 ,1 ,5 -iV 2 +  f  +  1

2,1 ,5 N3 +  f  +  1

1,1,5 -iV 3 -  f  -  1

1,1,5

2,1 ,5 N4 +  f  +  1

1,1,5 I 1̂3 1

1,1,5 1£1
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section 2.2.2. Keeping in mind that the N{ are integers, ]Ci=i Ni — 0? an(  ̂

the particles must be mass protected, we find that the minimum value of ]T) y2 is 

given by

N 1 = N 2 = l N3 =  o N4 =  - 2  

or

N 3 =  N4 = - 1  N x = 0 N 2 = 2

where m = 2. These values of N{ give J2 y2 =  203.2, for the solution of table 4.2, 

which is much larger than the y  per generation of the SM particles.

In section 3.2 we explained that it was reasonable to consider that all new 

fermions could be included at a threshold no higher than 1.7 TeV. This should 

provide an accurate enough upper limit for the threshold for our purposes. There­

fore, since the fermions will have the least effect on the running coupling constants 

if they are included at the highest possible threshold, we will assume that all these 

extra fermions can be included with a simple threshold at 1.7 TeV. We can now 

check whether or not this model has a Landau pole below the Planck scale.

There are four fine structure constants which we shall label by au, a 2, 0:3 

and as corresponding to the four gauge groups £7(1), SU(2), 517(3) and SU(5)

respectively. The fine structure constants, a;, are related to the gauge coupling
2

constants, gi, by the relation a; =  The equations governing the running 

coupling constants to first order in perturbation theory (a good discussion of 

RGEs in the SM is given in [30]) can be integrated analytically (see section 1.2.1) 

to give

— TT =  +  » » ) * « ( — )  (4-2-2)ai( f i )  « i ( / i o )  127r  ̂ '  \ f i 0 )

1 -  1 +  — (44 — 'In-ij — tin) In ( — ) (4.2.3)
a 2{fi) a 2(y0) 12?r \ g 0

1 -  1 +  t T  (66 -  2n3/) In ( i i ) (4.2.4)a 3(/i) <x3(hq) 12tt \ f i 0
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(4.2.5)

where we calculate cti(n) (the running coupling constants at the energy scale 

H > f i o )  in terms of o:t(/zo)- Y 2 = Y ly2 1S sum °f the weak hypercharges squared

for all fermions included at a threshold below fio and nmf  are the number of 

fermion m  and m  representations of SU(m)  included at a threshold below Ho• n H  

is the number of Higgs doublets included at a threshold below fio. These equations 

assume that there are no fermions or Higgs scalars included at a threshold between 

Ho and /z. In order to calculate the value of a t(/z) when there are fermions or Higgs 

bosons included at a threshold between Ho and h we must do the calculation in 

steps, calculating the value of a; up to the included at a threshold each particle. 

So we use the experimental values of the fine structure constants at M z  (including 

the top quark and Higgs boson in the beta functions at this scale) to calculate 

the coupling constants at 1.7 TeV, where we include the new fermions, and then 

run the coupling constants up to the Planck scale. This is a crude method since 

there would really be complicated threshold effects as each fermion was included. 

However these effects can reasonably be assumed to be small, relative to the 

changes in the coupling constants caused by the running from the electroweak 

scale to the Planck scale, and so we will use this much simpler method. Second 

order RGEs [31] could be used but the improvement over the first order RGEs 

would not be significant when compared to the error introduced by the naive 

assumptions made about threshold effects.

From [5] we find

We can now use the above equations to examine how the coupling constants

a i x{Mz ) = 98.08 ±0.16 

a ^ l (Mz ) = 29.794 ±0.048 

c q l (Mz ) = 8.55 ±0.37

(4.2.6)

(4.2.7)

(4.2.8)

behave up to the Planck scale. Since there is no experimental value for a$ at any
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energy scale we shall assume that a J 1(Mz) = 2, so that the SU(5) interaction 

is stronger than QCD at M z  and confines above the electroweak scale. Fig. 4.1 

shows what happens for each group. For the graphs, we normalise the U( 1) gauge 

coupling as if the U(l)  group were embedded in a simple group. This essentially 

corresponds to redefinition of g\.

( ^ ) gut =  g(#?)sM (4.2.9)

(^i”1 ) g u t  =  - ( O s m  (4.2.10)

as explained in section 1.2.1. So henceforth we use the standard GUT normalisa­

tion. Eqs. (4.2.2) and (4.2.6) now become,

— r r  =  ~ +  1 (4.2.11)ai(fji) ai(no) 20?r V '  \ f i0J
a ^ { M z ) = 58.85 ± 0.10 (4.2.12)

As we can see from fig. 4.1, ^  becomes negative at about 107 GeV which means 

that there is a U( 1) Landau pole. So we can conclude that this theory would 

be inconsistent, at least as far as perturbation theory is concerned, without new 

interactions below 107 GeV.

In fact we can show that there is no anomaly-free model, having all new

fermions getting a mass via the SM Higgs mechanism and belonging to funda­

mental representations of 517(5), with a desert above the TeV scale, which does

not have a Landau pole below the Planck scale. The condition for no Landau pole

below the Planck scale is ai^ f pi  ̂ > 0- Therefore eq. (4.2.11) can be rearranged to 

give

y2 + n»  < ------- 2° 7 iu  \ (4.2.13)

Since, for the SM, YgM = 40 and nn  — 1,

Y 2 + n„  > 41 (4.2.14)



66

200

100 SU(5)

SU(3)

0

- 1 0 0

- 2 0 0
5 10 15 200

lo g 10(/x/GeV)

Figure 4.1: a -1 from M z  to the Planck scale for each component group in the 

S M G 235 model without new SM fermions. There is clearly a U(l)  Landau pole at 

f1, ~  107 GeV and 517(2) also loses asymptotic freedom. a$ x(Mz) = 2 has been 

chosen as a specific example.
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above the electroweak scale and so we can use eqs. (4.2.11) and (4.2.12) to calculate 

an upper limit for ai(1 l7TeVy

<  57 (4.2.15)
£4(1.7 TeV)

We then use Y 2 = YgM +  Y 2ew in eq. (4.2.13) with /i0 =  1.7 TeV and conclude 

that

Y 2ew < 57.5 (4.2.16)

assuming the new fermions can be included naively at a threshold no higher than 

1.7 TeV.

For each mass grouping {?/, R}, with P r  =  4S r  fermions, we can calculate the 

value of Y 2:

Y 2 = SR[2y2 +  (y + l ) 2 +  (y -  l ) 2] =  S*(4y2 +  2) (4.2.17)

Therefore we have,

Y 2 >  2 S R =  l- P R (4.2.18)

If there are several mass groupings, Y 2 > \ ^ P r  =  \ P  where P is the total 

number of fermions. So if we define Pnew to be the number of non-SM fermions, 

we can conclude,

P ™  <  2 Y 2ew <  115 (4.2.19)

So now we have shown that there must be less than 115 extra fermions. How­

ever the smallest solutions, subject to the constraints in this section, larger than 

two type a and two type b representations are three type a and one type c repre­

sentations etc. which contain 120 fermions and so must cause a Landau pole below 

the Planck scale 2. Therefore there are no possible anomaly-free models without

2Using second order RGEs or a more complete analysis of thresholds would obviously change 

the precise lim it in eq. (4.2.16). However, the charge quantisation rule in our model means that 

y  cannot be zero and so it is not possible to attain the lim it of eq. (4.2.18). So in fact, the 

value of Y„ew will generally be much greater than this lim it. For example, three type a and one 

type c lead to Y^ew >  «  114 which is much greater than the required maximum given by

eq. (4.2.16).
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a Landau pole, where all the new fermions couple to the SU(5) gauge group.

We will now examine the case where we allow some new SU(5) singlet fermions, 

as well as some fermions which couple to ££7(5), in order to cancel the anomalies. 

We shall show that it is possible to have more SM fermions in such a model.



Chapter 5 

The 5MG235 M odel W ith  N ew  

SM Fermions

In this chapter we shall first examine sets of fermions (which are generalisations 

of the SM quarks) in groups, S M G 2M and S'MG^a/at, defined by eqs. (2.2.6) 

and (2.2.7), similar to the SMG.  We shall then examine the particular case of 

a 4th generation of SM quarks along with a generation of 5C/(5)-“quarks” in a 

model with gauge group S M G 2 3 5- After showing this model to be self-consistent 

(with no Landau poles below the Planck scale), we will discuss the possibility 

of experimental evidence for and against the model. Finally, we will discuss the 

more general models with gauge group S M G 23MN with a generation of SU(M)-  

and SU{N)-'“quarks” .

5.1 Fermions in the groups S M G 2M and S M G 2MN

In section 5.1.1 we shall examine the group S M G 2M• The S M G  is an example of 

this type of group, with the particular choice of M  = 3. We shall show that this 

general group allows anomaly-free sets of fermions which consist of a generation of 

SM leptons and a generation of SU(M)~ “quarks” which are a simple generalisation

69
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of the SU(3) quarks in the SM.

We shall then show in section 5.1.2 that we can have anomaly-free sets of 

fermions in the group S M G ^ m n  without any leptons. We shall then examine 

the particular case of the group S M G 235 which we shall discuss in detail since 

it contains the S M G  and with =  5 it is the smallest extension to the S M G  

allowed by our method.

5.1.1 Fermions in the Group S M G 2M

In the SM, each generation is formed by taking the two mass groupings { |,  3} and 

{—1,1} (where the representations 3 and 1 are of the group SU(3)) as explained 

in sections 2.4 and 2.5. We will now consider a more general situation where we 

have the gauge group S M G 2M defined in section 2.2.1 (where M  > 3 is an odd 

integer) and the fermions are in the groupings and {?/2, 1} (where the

representations M and 1 are of the group SU{M)).

From section 2.4 all the gauge anomalies will cancel if

^2/i +2/2 =  0 (5.1.1)

Since we also have the charge quantisation rule

|  +  1 “duality” +  -  ality” =  0 (mod 1) (5.1.2)

we can write

yi 1 m M
2 = - 2 - ~ M +Cl (5-L3)
V2 1 / E 1 /I \
J  = —2 (5'L4)

where C\ and c2 are integers. We now have the condition that for no anomalies to

be present
M  + l

   m M +  Mci  +  c2 =  0 (5.1.5)
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In the SM a lepton generation is formed (with the addition of a right-handed 

neutrino which can be removed without affecting any anomalies) when we have 

c2 = 0 as explained in section 2.5. If we insert this value into eq. (5.1.5) then we 

find,

Ci = h  ( M2~1 + ) 5̂'1'6^
This can always be solved by setting ttim =  and c\ = 1. In fact if M  =  3 

then this is simply one of the anomaly-free SM quark-lepton generations.

However, this is not a good solution for an extension of the SM (which would be 

obtained by considering S M G 2M C S M G 23M) since it contains an extra massless 

neutrino which has already been ruled out by experiment. It is difficult to produce 

a neutrino with a mass so large that it wouldn’t already have been detected, as 

explained in section 3.1.2. We could choose not to set c2 =  0 or 1 above, which 

would force all the extra leptons to be massive (by leptons we mean any fermions 

which are only coupled to the electroweak subgroup, 5/7(2) <g> U( 1)). This is 

because there would then be two 5/7(2) singlets which were charged (and at least 

one would have an electric charge of magnitude two or more, which is against 

our principle of small representations) and so both would be required to cancel 

anomalies unlike the case of a hypothetical right-handed neutrino. They would 

both then get a mass by the usual SM Higgs mechanism since neither could get 

a Majorana mass. But even if we assumed that these leptons had masses higher 

than experimental limits this solution is not really favoured by our postulate of 

small values of weak hypercharge discussed in section 2.2.2. So in order to find a 

satisfactory solution we shall look at a similar, more general, case.

5.1.2 Fermions in the Group S M G 2MN

Suppose we have the gauge group S M G 2MN, where both M  and N  > M  > 3 are 

mutually prime odd integers, which has the charge quantisation rule

|  +  i “duality” +  ^ “M -a l i ty ” +  ^ “N - a l i ty ” =  0 (m o d i)  (5.1.7)
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Then with fermions in mass groupings {? / i , (M ,l )}  and {?/2, ( l , N ) }  (where the 

representations ( M , l )  and (1 ,N )  are of the group SU (M )<g>SU(N)) the condition 

for no anomalies is

M yi + N y 2 = Q (5.1.8)

The charge quantisation rule means that we can write

2/i 1 rnM
2 2 M
2/2 1 rnN

+  d  (5.1.9)

+  c2 (5.1.10)
2 2 N

where c\ and c2 are integers. We then find that the condition for no anomalies 

becomes

2 N c2 =  N  +  [2(mM +  m N) +  (1 -  2d)M ] (5.1.11)

Since N  and M  are both odd there will always be a solution since we can choose 

mM and mjy so that (mM +  t̂ n ) =  M  and c\ so that (3 — 2ci) is an odd multiple 

of N.  In general there will also be other solutions.

In particular, for the gauge group G5 =  S M G 2 35 we can have a fourth genera­

tion of quarks without any extra leptons by choosing M  = 3, N  = 5, ra3 =  1 and 

ci =  1 above. Then

10c2 =  5 +  [2(1 +  m5) -  3] (5.1.12)

or equivalently

5c2 =  2 +  m 5 (5.1.13)

So we have a solution with c2 =  1 and m 5 =  3.

The representations of the left-handed fermions which couple to the S U ( 5) 

subgroup are shown in table 5.1. This is a generalisation of the quarks in the SM, 

coupling to S U ( 5) rather than S U ( 3).

In fact we have a solution with a fourth generation of quarks for the general 

case, where N  is any odd integer greater than 3 by choosing c2 =  1 and mjv =  

^(A  ̂ -f 1). This means that if a fourth generation of quarks without leptons
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Table 5.1: Left-handed fermions coupling to SU(5) in the mass grouping

{ — | ,  (1 ,5)}. The electric charges are in units of |  due to the charge quanti­

sation rule. These SU(5)-“quarks” form an anomaly-free set of fermions together 

with a fourth generation of SM quarks.

Representation under 

SU{2 ) 0  SU(3) 0  5/7(5)

Type Z7(l) Representation

y.
2

Electric Charge

Q

( \ /  \
5 u 2

5
2,1,5 l

10
5 d _3

\ T, V 5 /

1,1,5 5 uL 4
10

2
5

1,1,5 5dL 6
10

3
5
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Table 5.2: Fermions coupling to SU(N)  which would form an anomaly-free set of 

fermions together with a fourth generation of quarks. These fermions form the 

mass-grouping { - ^ ,( 1 ,N )} .

Representation under 

SU{2) ® SU{3) <g> SU{N)

Type U( 1) Representation

y.2

Electric Charge

Q

2,1 , N

( \
Nu

T,

1
2N

( \
N-l  
2 N

N+1
\  2N y

1 ,1 ,N N ul N- 1 
2 N

N-l  
2 N

1 ,1 ,N WdL N+1 
2 N

N+1 
2 N

was detected, there would be no immediate way of deducing the value of N.  

Table 5.2 shows the properties of the left-handed fermions which couple to the 

SU(N)  subgroup. Note that this is a generalisation of the SM quarks, coupling 

to SU(N)  with the specific choice of =  ^(N  -f 1). If we set N  = 3 we would 

in fact get a generation of quarks with the opposite chirality to those in the SM. 

This is to be expected since we are using these fermions to cancel the anomaly 

contribution of a 4th generation of SM quarks (with the usual chirality).

This solution, with a fourth generation of quarks and the fermions of table 5.1, 

for the gauge group S M G 235 is analogous to one SM quark-lepton generation in 

the gauge group S M G , in the sense that it is the smallest anomaly-free set of 

mass protected fermions which couple non-trivially to all the gauge fields. The 

SM quark-lepton generation has been shown to be the smallest such set of fermions 

for the S M G  in section 2.5. Note that although a generation of SM leptons and the 

fermions conjugate to those in table 5.1 is a smaller anomaly-free set of fermions in
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the gauge group S M G 2 3 5 , none of these fermions couples to the SU(3) subgroup. 

However, as in section 2.5, we do not feel that requiring some fermions to couple 

to all parts of the gauge group is necessary. So this is not a valid reason for 

choosing this solution in comparison to the one with leptons and so the choice is 

really made on a phenomenological basis.

As stated in section 3.1.2, we take the limits for the masses of a fourth gener­

ation of quarks to be Mb' > 130 GeV, M t> > 130 GeV and for the top quark mass 

to be Mt ~  170 GeV. We can now use the RGEs, first to show that these addi­

tional fermions do not cause any inconsistencies such as gauge coupling constants 

becoming infinite below the Planck scale, and then to estimate upper limits on 

the values of the Yukawa couplings to the SM Higgs field of these fermions. This 

will lead to upper limits on the masses indicating that the t' and b' quarks would 

be almost within reach of present experiments.

5.2 No Landau Poles

As in chapter 4 we can investigate how the gauge coupling constants vary with 

energy up to the Planck scale. Here we set the thresholds for all the unknown 

fermions (4th generation quarks and fermions coupling to SU(5)), as well as for 

the top quark and Higgs boson, to Mz-  The absence of Landau poles in this 

case will guarantee their absence if some of the thresholds are set higher than 

M z . From experimental limits we would expect that all these thresholds should 

be greater than M z .

We use eqs. (4.2.3)-(4.2.5) and (4.2.11) with Y 2 =  q j  to run the gauge coupling 

constants up to the Planck scale as shown in fig. 5.1. Now we see that with a 

fourth generation of quarks and the fermions in table 5.1, with far fewer fermions 

than the model in section 4.2.2 where all the new fermions coupled to SU(5), 

there are no problems with Landau poles below the Planck scale. So our S M G 235 

model with new SM fermions appears to be consistent.
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Figure 5.1: a -1 from M z  to the Planck scale for each component group in the 

S M G 235 model with a fourth generation of quarks and the fermions of table 5.1 

which couple to 517(5). The initial value of a$ 1 (Mz)  =  2 was chosen so that the 

SU(5) group would confine above the electroweak scale. There are obviously no 

Landau poles between m z  and the Planck scale so this model is self-consistent.
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5.3 Upper Limits for Yukawa Couplings and Higgs 

Mass

Now we can choose initial values for the Yukawa couplings at the Planck scale and

use the RGEs to see how they evolve as they are run down to the electro-weak

scale. Assuming no mixing for the quarks and neglecting the masses of all SM

fermions except the top quark (a good approximation), the RGEs are, to one loop

order in perturbation theory as described in section 1.2.2:

dyt 
dt 

dyt>
dt

dyb>
dt

dysu
dt

dy5d

y‘ l67T2 (
Yi{S) -  g 3„) (5.3.14)

Vt'l67r2 1( § « - - vl) + y»(S) - g 3„) (5.3.15)

yb‘ l6 * 2 (!«■-  yl) + Y2(S) - G3j) (5.3.16)

1
y5“ l6ir2 (|(»5u -  yld) + y2(S) — Gsu) (5.3.17)

1
J/5d 16t t2 -  vl )  + y2(S) — Gsdj (5.3.18)dt

where the SU(5) fermions have been labelled 5u and 5d as generalisations of the 

naming of SU(3) quarks, as shown in table 5.1. The other variables are defined 

as

Y2(S) =  hy\u +  hy\d +  3y2 +  3yl  +  3y2 (5.3.19)

Gzu =  — g\ +  ~gl +  Sgl (5.3.20)

G3d — ~g\ +  ~g2 +  %gl (5.3.21)

153 2 9 2 72 2
”  500 ̂  +  4^2 + Y 9s (5.3.22)
_  333 2 , 9 2 , 72 2 /(. o c)o\
~  500 1 +  4 2 +  T ^ 5 (5.3.23)

Here ^(-S) is really Tr(Y^Y)  where Y  is the Yukawa matrix for all the fermions. 

We have used the above approximation since the Yukawa couplings of the other 

fermions (SM fermions other than the top quark) are much less than the Yukawa 

couplings of the new fermions.
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We can also examine the quasi-fixed point limit of the Higgs self-coupling, 

A(//), using eq. (1.2.46) with the above definition of p2(5) and,

H(S) = 5 y l  +  5 y\d +  3 y* +  3 y l  +  3 y* (5.3.24)

We can choose values for the Yukawa couplings at the Planck scale and then 

use the RGEs to see what values the Yukawa couplings will have at any other 

scale. We have chosen the low energy scale to be Mz-  We observe quasi-fixed 

points similar to the case for the top quark in the SM [32] and these will provide 

upper limits on the fermion masses. However, the resulting Yukawa coupling for 

any fermion at M z  depends on the Yukawa couplings of the other fermions. But 

there is an approximate infrared fixed point limit on 12(5) and so one Yukawa 

coupling can be increased at the expense of the others. This limit on 1^(5) is 

quite precise if there is only one strong interaction at low energies, such as QCD 

in the SM T We observe numerically that 1^(5) «  7.7 ±0.3, provided the Yukawa 

couplings of the three heavy quarks are greater than 1 at the Planck scale and 

that the Yukawa couplings of the fermions coupling to the SU(5) gauge group are 

less than the Yukawa couplings of the heavy quarks at the Planck scale. See, for 

example, figure 5.6.

First we shall discuss the quasi-fixed points in detail for this model. We shall 

examine the limits on the Yukawa couplings when we consider only the quarks 

and when we consider only the 5£7(5)-“quarks” as well as the more general case 

when all the new fermions have significant Yukawa couplings.

Then we shall go on to discuss upper limits on the Yukawa couplings from 

quasi-fixed point values when all fermions get a mass consistent with experimental 

limits. This will provide strong constraints on the allowed masses of these new 

fermions.

d e ta ile d  results for a general number of heavy SM generations are derived in [33].



79

5.3.1 Examples Of Quasi-Fixed Points

In this section we shall give various examples of quasi-fixed points in this particular 

model. The simplest examples are to set either, all SM quark Yukawa couplings 

to zero at the Planck scale, or all SU(5)-“quark” Yukawa couplings to zero at the 

Planck scale. Since we wish our models to be consistent with precision electroweak 

data we will set the Yukawa couplings of fermions in the same SU{2) doublet to 

the same value at the Planck scale. This will ensure that to a good approximation 

Tnew =  Unew = 0, as required by experimental results described in section 3.3.

Only the Top Quark: The SM Case

First we shall examine the familiar case of fixed points in the SM. The top quark 

is the only fermion with a significant Yukawa coupling and all the fermion mixing 

angles are small so we are justified in neglecting the effects due to the other 

fermions. So we can examine the Yukawa coupling of the top quark, yt, and the 

Higgs boson self-coupling, A, alone. Since there are only 2 parameters we are 

interested in, the simplest way to examine the fixed point behaviour is to plot 

yt v A as the couplings are run from chosen initial values at the Planck scale down 

to the electroweak scale. Figure 5.2 shows how several different initial values of yt 

and A all converge to the same value at the electroweak scale. We have used 2-loop 

RGEs for this case since they are well known for the SM (see [30] for example). 

This should make this section consistent with previous calculations although for 

the other sections we shall simply use the 1-loop RGEs for convenience and also 

because the effect of varying the unknown value of the SU(5) gauge coupling 

constant will cause a much greater difference than that between 1-loop and 2-loop 

calculations.

We can clearly see that the final values of yt and A at the electroweak scale 

are not sensitive to the values at the Planck scale provided yt(Mpianck) > 1. For 

yt(Mpianck) =  1 we can see that there is a small difference at the electroweak
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Figure 5.2: Fixed point of yt and A in the SM. The lines show the running of 

different initial values at the Planck scale down to the fixed point values at the 

electroweak scale.
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scale. For yt(Mpianck) < 1 the values at the electroweak scale are clearly sensitive 

to the initial values at the Planck scale. This is an important point. If the Yukawa 

coupling is not large enough at the Planck scale then the fixed point will not be 

reached at the electroweak scale. In this example the cases with yt{Mpianck) < 1 

would eventually reach a fixed point below the electroweak scale if we continued 

to run the equations. However, the exact value of yt and A at the fixed point 

depends on the scale of the fixed point. This is because of the dependence of the 

RGEs for yt and A on the gauge coupling constants. Therefore, if a set of initial 

conditions does not converge on the fixed point at the electroweak scale, it will 

reach a different fixed point at a lower scale. But in this case that will mean that 

the resultant pole masses of the top quark and Higgs boson will be different since 

they depend on the values of yt and A at the electroweak scale. So here we can 

say that fixed points below the electroweak scale have no physical relevance. This 

will also be true for our model with a generation of SU(5)~ “quarks” since they 

can attain fixed point pole masses of the same order as the electroweak scale.

We can see that the lines with yt{Mpianck) > 1 converge before reaching the 

fixed point at the electroweak scale. This is because the fixed point values of y% 

and A depend on the gauge coupling constants, <7,. These in turn depend on the 

scale since they are running coupling constants. So what we are observing is the 

dependence of the fixed point on the scale. The change in direction of the lines 

just before the fixed point at the electroweak scale is due to the rapid increase 

in <73 near the electroweak scale which increases the top quark Yukawa coupling. 

We will see clearer examples of this behaviour when analysing the SU(h)~ “quark” 

Yukawa couplings since we choose g*>{Mz) > gz{Mz)>

The fixed point values of yt and A can be read off figure 5.2. We get,

yt(Mz ) »  1.30 

A(Mz ) «  0.96

(5.3.25)

(5.3.26)
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When we use the SM VEV,

<<j>w s > = v = 246.22 GeV (5.3.27)

the corresponding pole masses are, using eqs. (1.3.65) and (1.2.41),

Mt »  232 GeV (5.3.28)

Mh »  236 GeV (5.3.29)

For comparison with the next sections, when we use the value of < </)ws > 

reduced by the technicolour-like contribution to the VEV from the condensates of 

SU(b)-“quarks” , < (j>ws > =  234 GeV, we get,

Mt «  221 GeV (5.3.30)

M h w 225 GeV (5.3.31)

Only the Top and 4th Generation Quarks

Now we shall include the 4th generation quarks and examine the quasi-fixed point 

behaviour for various values of Yukawa couplings at the Planck scale. The choice 

of Yukawa couplings is simplified by our requirement that the masses of the fourth 

generation quarks should be equal so that the model can be consistent with the 

precision electroweak data; i.e. Tnew «  0 and Unew «  0. For simplicity we choose 

yt'(M Planck)  =  yb>(MPlanck) .  This will produce a splitting of the pole masses of 

about 3%. This will give a negligible contribution to the T  and U parameters. 

We will now show some graphs of the running Yukawa couplings to illustrate the 

quasi-fixed point behaviour and to show the resultant masses without the SU(5)-

“quarks” .

First we show the fourth generation quarks alone without the top quark in 

figure 5.3. This will give an estimate of the maximum possible mass of the fourth 

generation quarks. The inclusion of the top quark will reduce this estimate. From
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Figure 5.3: Fixed point of yt> and yv without the top quark or any SU(b)-“quarks”.
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this graph we can calculate the pole masses of the fourth generation quarks. They 

are,

M v = 200 GeV (5.3.32)

M b, =  196 GeV (5.3.33)

We can certainly assume that these masses are upper limits since the effect of 

including more fermions is to reduce the average Yukawa coupling. This effect 

can be observed in the graphs where the top quark alone (figures 5.4 and 5.5) or 

the top quark with the SU(b)~“quarks” (figures 5.10 and 5.11) are included. We 

can see that the t' and b' end up with almost the same Yukawa couplings. This is 

because the RGEs are the same apart from a small difference due to the different 

coupling of the quarks to the U( 1) gauge group.

Now we show the fixed point behaviour when we consider all three heavy 

quarks, still without the SU(5)~“quarks” , in figure 5.4. It is obvious that, al­

though they start with equal Yukawa couplings at the Planck scale (yt(Mpianck) =  

yp{Mpianck) =  yb'(Mpianck) = 3.0), the top quark Yukawa coupling is reduced at

the electroweak scale because its doublet partner, the bottom quark, has a much

smaller Yukawa coupling (approximated to 0 here). This effect is obviously much 

larger than the small change between the t ' and b' Yukawa couplings due to their 

different weak hypercharges. The resultant pole masses are,

Mt = 130 GeV (5.3.34)

M f  =  177 GeV (5.3.35)

M b. = 172 GeV (5.3.36)

Because the top tends to get a smaller Yukawa coupling than the fourth generation 

quarks, it is necessary to give it a much larger Yukawa coupling at the Planck scale 

so that it can attain a pole mass within the current experimental limits.

In figure 5.5 we can see that the three quarks will get a similar mass at the
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Figure 5.4: Running Yukawa couplings for the top and fourth generation quarks. 

All Yukawa couplings are chosen to be 3.0 at the Planck scale.
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Figure 5.5: Running Yukawa couplings for the top and fourth generation quarks. 

The top quark gets a pole mass of 160 GeV, near the bottom end of the experi­

mental range. The fourth generation quarks end up with a similar mass.
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electroweak scale if we choose,

yt(MPlanck) = 3.0 (5.3.37)

yt>(Mpianck) = 1.9 (5.3.38)

yb'{Mpianck) =  1.9 (5.3.39)

These values lead to the following pole masses:

M t = 160 GeV (5.3.40)

M f  =  159 GeV (5.3.41)

Mv =  155 GeV (5.3.42)

The initial values of the Yukawa couplings at the Planck scale were chosen so that 

the top quark would just lie within the experimental range for its measured pole 

mass. Since the fourth generation quarks then got roughly the same mass, we can 

assume that they cannot be heavier than the top quark. This is certainly the case 

when we consider that the inclusion of the SU(5)-“quarks” will further reduce the 

average Yukawa coupling at the electroweak scale.

In figure 5.6 we can see the value of T^*?) f°r the three cases considered in this 

section. We see that although the different cases produced different quark masses, 

the value of ^(-S) was practically the same in all three cases. This demonstrates 

that for a fixed number of fermions we can increase the mass of some at the 

expense of others since the total sum of Yukawa couplings squared must remain 

approximately the same.

O nly SU(5)-“Q u ark s”

We shall now examine the S U (5) quasi-fixed point without any heavy SM fermions. 

This will show the similarity between the quasi-fixed point for the S U (5)-“quarks” 

and a generation of SM quarks. We can also see how the value of the quasi-fixed 

point depends on the strength of the SU(5) gauge coupling constant at the elec­

troweak scale. Since there is no experimental limit on the coupling constant we
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Figure 5.6: Fixed point value of for figures 5.3, 5.4 and 5.5.
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are free to choose any value we wish. However, since no 5(7(5)-“quarks” have been 

observed we must ensure that either they have masses large enough to avoid detec­

tion or that the 5(7(5) confinement scale is so high that the lightest SU(5) bound 

states would have masses beyond the limits of current accelerators. Again we will 

choose the fermions within the SU(2) doublet to be almost degenerate so that 

'Unew ~  0 and UjiQuj w 0. To do this simply we choose Planck) — y^d^^^Planck)

as we did for the fourth generation quarks in the last section.

In figure 5.7 we start with the Yukawa couplings equal to 3.0 at the Planck 

scale and choose a~x(Mz) = 2.0. We can see that between the Planck scale and 

the electroweak scale the Yukawa couplings are about 0.8 but at the electroweak 

scale they are about 1.5. This is because the value of the quasi-fixed point Yukawa 

couplings depends on the strength of the gauge coupling constants. The SU(5) 

gauge coupling constant is relatively small at energies considerably higher than 

the electroweak scale and so the fixed point values at these scale are not very large. 

It is only when the 5(7(5) gauge coupling dramatically increases in strength near 

its confinement scale (of the same order of magnitude as the electroweak scale) 

that the quasi-fixed point values increase 2. Since in this example we have chosen 

a 5(Mz) ctz(Mz) the 5(7(5)-“quarks” attain larger Yukawa couplings than the 

quarks in the corresponding example with only a fourth generation of SM quarks 

(More precisely, this difference is due to the fact that y 91{Mz ) > &9l(Mz) which 

is the main difference between the RGEs for the 5(7(5)-“quarks” and the fourth 

generation of SM quarks in eqs. (5.3.15)-(5.3.23) ). In this example the pole 

masses of the 5(7(5)-“quarks” are, using eq. (1.3.66),

M 5u = 233 GeV (5.3.43)

2The (7(1) and 5(7(2) gauge coupling constants are much smaller than the 5(7(5) gauge 

coupling constant and so do not have much effect. The 5(7(3) gauge coupling constant has no 

effect since the 5(7(5)-“quarks” do not couple to the 5(7(3) group, though in the general case 

it would affect the 5(7 (5 )-“quark” Yukawa couplings indirectly through its effect on the quark 

Yukawa couplings
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M 5d = 236 GeV (5.3.44)

In figure 5.8 we can see the difference caused by the choice of a weaker 57/(5) 

interaction. With a ^ x{Mz )  = 10.0 we have a 5( M z )  ~  a ^ M z ) .  We observe 

the same behaviour for the Yukawa couplings above the electroweak scale as in 

figure 5.7 but now the weaker 517(5) coupling at the electroweak scale means that 

there is not such a sudden increase in the quasi-fixed point values. This leads to 

the following 57/(5)-“quark” pole masses,

M 5u = 160 GeV (5.3.45)

M 5d = 162 GeV (5.3.46)

Figure 5.9 shows the value of Y2(5) for the 57/(5)-“quark” fixed points with

the different choices of o 5(Mz). We can see that the value of 12(5) is almost the 

same in both cases until close to the electroweak scale where it increases greatly 

for the case where 1( M z )  = 2.0 and only increases a little for the case where 

c* 5 1( Mz )  =  10.0. This is simply due to the fact that a 5 «  0 in both cases at scales 

above the electroweak scale but the difference between the two cases is much more 

significant at lower scales. Therefore we cannot give accurate predictions of the 

masses of the 57/(5)-“quarks” because the choice of a 5( M z )  is arbitrary and the 

masses are so sensitive to this value.

All N ew  Fermions and Top Quark w ith Equal Yukawa Couplings

We will now set the Yukawa couplings of all new fermions and the top quark to 

be equal and examine their relative values at the electroweak scale. We choose 

the value for the 57/(5) fine structure constant to be

a l \ M z ) =  2.0 (5.3.47)

In figure 5.10 we can see that when we choose all the Yukawa couplings of 

the 57/(5)-“quarks”, fourth generation quarks and the top quark to be 2.0 at
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Figure 5.7: Fixed point value of the Yukawa couplings of the 5(7(5)-“quarks” 

when they are set to 3.0 at the Planck scale. The 5(7(5) fine structure constant 

is chosen to be ol$1(Mz ) =  2.0.
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Figure 5.8: Fixed point value of the Yukawa couplings of the SU(5)~ “quarks” 

when they are set to 3.0 at the Planck scale. The SU(5) fine structure constant 

is chosen to be a J 1(Mz) = 10.0.
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Figure 5.10: Quasi-fixed Yukawa couplings at the electroweak scale when all 

Yukawa couplings are chosen to be 2.0 at the Planck scale and a ^ ( M z )  = 2.0.
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the Planck scale, the 5(7(5)-“quarks” get much larger masses at the electroweak 

scale due to the fact that g$(Mz) > gz(Mz)> This is to be expected from the 

comparison figures 5.4 and 5.7 where the 5(7(5)-“quarks” got a much larger mass 

than the SM quarks. The actual pole masses in this case are,

Msu — 184 GeV (5.3.48)

— 187 GeV (5.3.49)

Mt> = 116 GeV (5.3.50)

M v = 112 GeV (5.3.51)

Mt = 98 GeV (5.3.52)

Obviously the top quark gets a mass much lower than its experimental limit and 

so we must choose the Yukawa coupling of the top quark to be larger than the 

Yukawa couplings of the 5(7(5)-“quarks” at the Planck scale. The top quark also 

ends up with a Yukawa coupling less that those of the fourth generation quarks 

as in figure 5.4. In some sense the small mass of the top quark makes the model a 

bit unnatural, especially when we consider the fact that we end up choosing the 

Yukawa coupling of the top quark to be much larger than the Yukawa couplings 

of all the other fermions to fit in with experimental limits.

5.3.2 Limits on M asses Consistent w ith Experim ental Lim­

its

In this section we shall try to choose Yukawa couplings at the Planck scale for all 

the heavy fermions in order to get an experimentally acceptable model. We will 

use the examples in section 5.3.1 to guide us. We also comment on the consistency 

of the model with precision electroweak data.

The values of the Yukawa couplings at the Planck scale in fig. 5.11 have been 

chosen so that the top quark pole mass is consistent with current experimental 

limits (Mt «  170 GeV) and the fourth generation quark pole masses are above



96

the current experimental lower limit of 130 GeV. Also Mb> ~  M t> and M^u ~  M$d 

have been chosen so that there is only a small contribution to the p parameter 

described in section 3.3.

We have discussed the radiative corrections in section 3.3 and this model ap­

pears to be consistent with current experimental data since we have arranged 

Tnew and Unew to be approximately zero. The only non-zero contribution to the 

three parameters used to describe the precision electroweak data is the contri­

bution to the S  parameter from the 8 new SU(2) doublets. This causes the S  

parameter to deviate from the experimental mean value by slightly less than 2 

standard deviations. However, as noted in section 3.3, it is difficult to calcu­

late the theoretical contributions and the perturbative estimates used may not be 

very accurate. Nevertheless we would consider this model to be consistent with 

the current experimental precision electroweak data.

Table 5.3 gives the values of the Yukawa couplings at M z  and the corre­

sponding pole masses using eq. (1.3.65) for the quarks and eq. (1.3.66) for the 

SU(5)~“quarks” . These masses should be considered upper limits on the masses 

of the fermions only for this particular choice of Yukawa couplings at the Planck 

scale. For other choices of Yukawa couplings at the Planck scale we could, for 

example, increase the mass of the fourth generation of quarks but this would have 

to be compensated for by a reduction in the mass of some of the other fermions.

These values for the masses are consistent with current experimental limits but 

are not so high that the new fermions could remain undetected for long. In fact 

the quark masses may even be within the limits of current accelerators. It is not 

clear whether the fermions coupling to SU(5) could be observed, since they would 

obviously be confined by the SU(5) gauge interaction which we take to confine 

above the electroweak scale. So even if they have masses of about 100 GeV, they 

would be much more difficult to detect than quarks with greater masses. For 

this reason we consider the clearest evidence for this model would come from the 

detection of a fourth generation quark. The masses of some of the new fermions
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Table 5.3: Infrared fixed point Yukawa couplings and corresponding running 

masses (for Fw = 75 GeV) for a particular choice of Yukawa couplings at the 

Planck scale.

Fermion Yukawa Coupling Pole Mass (GeV)

Vt 1.00 175

w 0.77 135

yv 0.75 131

y§u 0.38 94

ysd 0.40 97

could be increased, but not by much, since this would mean a reduction in the 

mass of other fermions. This means that this model is consistent and relatively 

easy to test.

For completeness we present the fixed point value of A which determines the 

mass of the Higgs boson. Figure 5.12 shows how the value of A is large near the 

Planck scale when we choose X(Mpianck) =  3.0 but decreases at lower energies. 

The final value of A(Mz)  is only about 0.5. This is a fixed point value since we 

would obtain this low energy value of A for a wide range of initial choices of A at 

the Planck scale. This leads to a Higgs running mass of,

M h »  172 GeV (5.3.53)

We would consider this to be a maximum limit on the Higgs mass if this model 

is to be perturbatively valid up to the Planck scale. Notice that the effect of the 

extra fermions is to reduce the limit on the Higgs mass relative to its SM limit,
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eq.( 5.3.29). Part of this effect is due to the reduction of the Higgs VEV but the 

limit of eq. (5.3.53) is still much less than the value given by eq.( 5.3.31). Since 

we are at the fixed point for the fermion masses, we can assume that the Higgs 

must have a mass very close to the mass given in eq. (5.3.53). This is because a 

lower mass would mean that when running A from the electroweak scale up to the 

Planck scale it would become negative and so the vacuum would be unstable. If 

we are exactly at the fixed point for the Yukawa couplings the Higgs must get this 

mass. But if the Yukawa couplings are slightly lower then there will be an upper 

bound on A(Mz)  above which A will become infinite when run up to the Planck 

scale and a lower bound below which it will become negative when run up to the 

Planck scale.

5.4 Conclusions

We have shown that we can have a self-1 consistent model with a fourth generation 

of quarks and a generation of SU(N)-“quarks” where N  > 5 is odd. By examining 

precision electroweak data we have limited the models to the one with N  — 5. We 

can then produce a model which also appears to be consistent with experiment. 

However, there are several difficulties with this model.

We can produce masses of new fermions so that they are heavier than current 

experimental limits but it is not easy to do so. We must carefully choose the 

Yukawa couplings of all the heavy fermions at the Planck scale. One of the main 

problems is that it is not easy to produce a large enough top mass. To do this we 

must choose the Yukawa coupling of the top quark at the Planck scale to be greater 

than all the other Yukawa couplings. The variables are constrained so much by 

experiment that it could reasonably be argued that there isn’t much room left for 

the model. However, even with the choice of parameters made in the last section 

of this chapter, the model would not be very difficult to test experimentally and 

so we would claim that it does at least have the advantage of being easily testable.
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Another example of the limited range of parameters in our model is the fact 

that we have required the masses of the t' and V as well as the masses of the S U (5)- 

“quarks” to be similar. This is required so that our model doesn’t contribute to 

the T  and U parameters and also so that all these fermions are more massive than 

the experimental limits. In some ways it could be argued that it is natural for 

fermions in the same SU(2) doublet to have similar masses but this is not what 

is observed in the SM.

Perhaps the weakest point in our argument that this model could be consistent 

with experiment is that the S  parameter differs from its measured value by 2 

standard deviations. On its own this wouldn’t be too bad but if we consider 

that most non-perturbative estimates of contributions to the S  parameter are 

greater than the perturbative estimates then we can conclude that the S  parameter 

predicted by our model probably differs by more than 2 standard deviations from 

the measured value.

So overall we could say that our model is consistent with experiment but 

only just. The only reason we would not consider investigating the agreement 

with precision electroweak data in more detail is that the masses for the fourth 

generation of quarks are so close to the current experimental limits that direct 

evidence for or against the model should soon be available.
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Figure 5.11: An example of running Yukawa couplings for all fermions with a mass 

the same order of magnitude as the electroweak scale. The values were chosen at 

the Planck scale and run down to M z  so that all the fermions would have a mass 

allowed by current experimental limits.
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Figure 5.12: Fixed point value of A, the Higgs quartic coupling. This graph, along 

with the estimated value of < (f>ws > =  234 GeV, leads to the approximate upper 

bound on the Higgs mass of 172 GeV.



Chapter 6 

Fermion M asses from Diagonal 

Sym m etry

6.1 Introduction

This chapter is about a slightly different type of model. In the previous chapters 

we have been examining models with new physics close to the electroweak scale. 

But now we turn our attention towards a model where we do not introduce any 

new low mass fermions and where all new physics will occur near the Planck scale. 

One model examined in [17] has gauge group,

S M G 1 ® S M G 2 <8> S M G 3  ® tf ( l) /  (6.1.1)

The SMG will emerge as a diagonal subgroup. In the full group the zth SM 

generation was considered to transform only under SMG{.  The U( 1)/ charges 

are not determined for the SM fermions and can be chosen freely, provided all 

anomalies are cancelled.

As in the other models in this thesis, we have a charge quantisation rule. For 

this group there are, in fact, 4 charge quantisation rules. As we have already 

discussed in section 2.3.2, the charge quantisation rules are chosen to maximise 

the x  parameter. The four rules are; a SM charge quantisation rule for each S M G

102
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factor and a quantisation of the U(l) f  charges:

^  =  0 (mod 1) (6.1.2)

yj = 0 (mod 1) (6.1.3)

To simplify the notation we will normalise all charges to be integer by defining:

Q i  = 3 Vi  (6.1.4)

Q f  =  V f  (6.1.5)

This model was used to provide an explanation of the vast range of fermion 

masses in the SM without requiring such a range of fundamental Yukawa cou­

plings. This was done by assuming that the fermion masses (apart from the top 

quark) were suppressed by different amounts due to the details of the symmetry 

breaking down to the SMG.  This suppression is due to the fermion transforma­

tion properties under the full gauge symmetries which are assumed to be partially

conserved at low energies. These symmetries are called partially conserved chiral 

symmetries (PCCSs). The details depend on the complete symmetry breaking 

mechanism but an order of magnitude estimate of the amount of suppression of 

each Yukawa coupling can be obtained from the ratios of each symmetry break­

ing scale to the fundamental scale. We assume that the fundamental scale is the 

Planck scale. Essentially, the Yukawa couplings of the fermions to the SM Higgs 

are viewed as effective couplings in a low energy effective theory. The fundamen­

tal Yukawa couplings are couplings to the heavy Higgs bosons responsible for the 

diagonal symmetry breaking and these couplings are assumed to be of order 1.

We can write the part of the low energy Lagrangian responsible for fermion 

mass generation as,

C = Ur M u Ul -f D r M q D l +  Ir M iIl +  h.c. (6.1.6)

where U, D and I are the three generations of up quarks, down quarks and electron-
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like leptons. In other words:

t  \
u

U =  c 

K * /

( \ 
d

D = 1 =

V /

/  \
e

\ T J

(6.1.7)

The mass matrices are related to the Yukawa matrices by,

< <t>ws >M t = Yt- (6 .1.8)

where t =  £/, D or /.

Using the notation of [17] we define Si to be the ratio of the symmetry breaking 

scale of SU(3)i  to the fundamental scale. Similarly we use et- for SU(2)i.  We then 

estimate the values of the Yukawa matrices by assuming that all elements are of or­

der 1 unless suppressed. We make the assumption that each entry is suppressed by 

a factor of Si if it connects a triplet of SU(3)i  to a singlet of S U (S ) i , and similarly 

by e, for elements which connect doublets of SU(2)i  to singlets of SU(2)i.  We use 

a general metric to parameterise the suppression due to the abelian symmetries. 

This suppresses each element Yap by a factor, exp(—yJ(Q^a — Qip)gij(Qfa — Qfp), 

where gij is a metric and a sum over i and j  which run over 1, 2, 3 and /  is implicit. 

Qi'a (Qkx) 1S U( 1  ),■ charge of the left- (right-) handed fermion in generation a  

(type £/, D or / depending on which Yukawa matrix is being considered).

The Yukawa matrices are diagonalised algebraically to give an order of mag­

nitude estimate for the masses and mixing angles of all the SM fermions. Nu­

merical methods for diagonalising the matrices cannot be used because we are 

only estimating the order of magnitude of each entry in the matrices and we have 

no information about the relative phases of the entries which would be complex 

numbers.

The masses obtained from the Yukawa matrices are assumed to be the running 

masses at the Planck scale. We compare the order of magnitude estimates for
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the masses and mixing angles to the experimental masses run up to the Planck 

scale. However, in order to make the results more meaningful we will present 

the approximate values at 1 GeV except for the c and b quarks where we will 

present the pole masses. For simplicity, since everything is calculated only order 

of magnitude, we don’t use the full RGEs to calculate our estimates at 1 GeV from 

our estimates at the Planck scale. Instead we simply multiply each fermion mass 

by a factor which approximates its observed ratio of running masses at 1 GeV 

to the Planck scale for the values of the experimental masses. The mixing angles 

don’t vary much with scale as shown in [30] and so we assume that the estimates we 

obtain from the mass matrices are directly comparable to experimentally measured 

values. We use all SM fermions (except the top quark) and the mixing angles; 

Kis? K& and Vu6, in the fit. We use a computer program to find the best choice 

of the parameters and 6 k (where i and j  run over 1, 2, 3 and /  and k runs

over 1, 2 and 3) so that we minimise,

x 2 =  £ M ™ n  -  ln (m 7 )]2 + E M V T )  -  ln (V ^ )]a (6.1.9)
s

where est refers to the estimated values from the mass matrices and exp refers 

to the experimentally measured values. Also, /  labels all 8 massive SM fermions 

other than the top quark and / '  labels us , cb and ub corresponding to the three 

mixing angles stated above. For the top quark, we use the value of the pole mass:

M t =  174 GeV (6.1.10)

The top mass affects the fit in two ways. Firstly, the RGEs for the Yukawa 

couplings of all fermions depend on the large Yukawa coupling of the top quark. 

But, since the same methods and a modified version of the computer program 

used for the analysis of [17] was used, another effect is present. This is due to 

the fact that the Yukawa matrices were normalised so that all the entries were 

given relative to the top Yukawa coupling. The top Yukawa coupling has been 

chosen not to be suppressed but that still means that it is of order 1, not exactly
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1. Therefore, by defining it to be exactly 1, the precise value has to be absorbed 

into all the other entries. This will bias the fit depending on whether the top 

quark Yukawa coupling happens to be greater than or less than 1. Therefore, 

we can only really compare different models where we have chosen the same top 

mass. The top mass used means that the Yukawa coupling is approximately 1 at 

the electroweak scale and so the fit should be roughly the same as a fit where this 

normalisation is not used. We will give all the results for the top mass chosen to 

be, M t = 174 GeV.

6.2 M odel

One of the models considered in [17] was based on the gauge group of eq. (6.1.1). 

The U(l) f  group had been added to the simpler group, S M G \  £) S M G 2 <8> S M G 3 , 

also examined in [17], in order to produce a splitting of masses within each genera­

tion. Since this was not necessary for the first (lightest) generation, it was assumed 

that all fermions in the first generation did not couple to the U(l) f  group, i.e. 

Qf = 0 for all first generation fermions. It was found in [17] that the only way to 

cancel all anomalies was to give the second and third generation fermions values of 

Q j  that were proportional to their values of conventional weak hypercharge or the 

values shown in table 6.1. Since the values of weak hypercharge couldn’t produce 

the correct mass structure, the latter alternative obviously had to be used.

The number of free parameters was reduced by the requirement that the top 

mass should not be suppressed. Since it was assumed that the top mass would 

come from the entry (M[/)32, the following seven conditions were required:

e3 =  1 (6.2.11)

82 =  1 (6 .2 .12)

8 3 =  1 (6.2.13)

9 a ( Q j , - Q ? c )  =  0 (6.2.14)



107

Table 6.1: Values of Qf  for the second and third generation fermions in the model 

of [17]. The first generation fermions have Q f  =  0 .

Fermion Q f Fermion Q f

c l 0 t L 0

c r 1 t R -1

s r -1 bR 1

HL 0 t l 0

Hr -1 t r 1

The last condition allows us to eliminate 4 of the 10 parameters from the metric. 

We choose to eliminate <713, #23? #2/  and <73/ . In fact it was also found that the 

best fit was always for e2 = 1.

However, the conditions on the parameters; e2? 3̂, 2̂ and £3, mean that essen­

tially the PCCSs were considered to be:

S U { 3 ) j  (8) S U { 2 )1 (8) U{ 1)1 <8> U(  1 ) 2 0  U(  1 ) 3 0  U(  1 ) /  ( 6 . 2 . 1 5 )

rather than the full group given in eq. (6.1.1). There are two ways to look at this. 

Firstly, if we imagine that the group of eq. (6.1.1) is the full group in this model 

then it is not surprising that the symmetry breaking scales for different parts of 

the group are different. By chance some parts will break at higher energies than 

others. This means that they would not contribute to suppression of elements in 

the mass matrices since these symmetries would not be partially conserved. The 

alternative view is that the fact that the top quark mass is not suppressed and 

€2 = 1 is due to the fact that the full group of PCCSs is not in fact the group
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Table 6.2: Values of Qf  for the second and third generation fermions in the model 

with group given by eq. (6.2.15). The first generation fermions have Qf = 0 as in 

the model of [17].

Fermion Qf Fermion Qf

c l 0 0

c r 3 t R - 3

s r - 3 1>r 3

VL - 4 t l 4

VR - 5 t r 5

of eq. (6.1.1) but only the subgroup given by eq. (6.2.15). If we accept the latter 

point of view, we can then choose different values of the U(l) f  charges since there 

are not as many anomaly constraints for the subgroup as for the larger group. In 

particular, we can choose the U(l)f  charges given in table 6.2.

We will now examine both models. If the full gauge group is not S M G 3<g>U(l)f 

then we would not expect the U(l) f  charges which are required to cancel the 

anomalies in this larger group to give a better fit than another set of charges 

which also cancels the anomalies in the smaller group. So, by fitting both models 

to the data, we would expect the best fit in both cases to be reasonably good. If 

it turns out that the original set of U(l) f  charges gives a much better fit then we 

would suspect that the full gauge group was in fact S M G 3 <g) U(l)f .  Obviously 

if the second choice of £7(1)/ charges gives a better fit then we would prefer this 

model and conclude that the full group was not in fact S M G 3 ® U(l)f .
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6.3 Results

In the model with t / ( l ) / charges given in table 6.1, we obtained a good fit with 

the experimental measurements of the fermion masses and mixing angles. The 

value of x 2 was:

x 2 =  5.2 (6.3.16)

and the estimated masses and mixing angles are given in table 6.3. As in [17], it 

was found that some of the parameters were not required for the best fit. In fact 

we could choose; either 8i or ti to be equal to 1 and either g\2 or gif  to be zero 

as well as e2 =  1. This means that the fit to the 11 parameters was actually made 

using only 6 parameters.

In our new model with U(l) j  charges given in table 6.2, we obtained the 

following fit with the larger value of x 2-

x2 =  6.9 (6.3.17)

and the estimated masses and mixing angles are given in table 6.3.

In the original model, the important elements in the mass matrices were:

m u 0 0

Mu = 0 0 m t (6.3.18)

0 m c 0

rrid 0 0

Md = 0 m , 0 (6.3.19)

0 0 mt
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Table 6.3: Masses and mixing angles fitted using the U(l) f  charges given in 

table 6.1.

Quantity Fitted Value ExperimentalValue

me(l GeV) 1.0 MeV 0.5 MeV

mM( 1 GeV) 156 MeV 105 MeV

mT( 1 GeV) 1.51 GeV 1.78 GeV

m d( 1 GeV) 4.9 MeV 9.2 MeV

m u{ 1 GeV) 4.9 MeV 5.2 MeV

ms(l GeV) 758 MeV 194 MeV

M c 0.76 GeV 1.5 GeV

Mb 5.7 GeV 4.9 GeV

v us 0.21 0.22

v cb 0.013 0.042

v ub 0.0027 0.0027
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Table 6.4: Masses and mixing angles fitted using the U(l) f  charges given in 

table 6.2.

Quantity FittedValue ExperimentalValue

me(l GeV) 0.82 MeV 0.50 MeV

mM( 1 GeV) 580 MeV 105 MeV

mT(l GeV) 4.6 GeV 1.78 GeV

m d( 1 GeV) 4.0 MeV 9.2 MeV

mu(l GeV) 4.0 MeV 5.2 MeV

m3(l GeV) 1060 MeV 194 MeV

M c 1.3 GeV 1.5 GeV

M b 3.4 GeV 4.9 GeV

v us 0.22 0.22

v cb 0.012 0.042

v ub 0.0028 0.0027
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M t =

m, 0 0

0 0 mT

(6.3.20)

In this model the matrices has the same form except that the element in Mi asso­

ciated with mM was generally larger than the one associated with mT. Therefore, 

we assumed the lepton matrix to take the form:

Mi =

m 0 0

0 m T 0 

0 0 m,

(6.3.21)

The elements labelled 0 are not exactly zero but they are not significant for 

producing order of magnitude masses. The structure of these matrices leads to 

the following order of magnitude predictions for the masses (relative to the top 

mass) and mixing angles in terms of the free parameters used in the fit: for the 

original model:

(6.3.22)

(6.3.23)

(6.3.24)

(6.3.25)

(6.3.26)

(6.3.27)

(6.3.28)

(6.3.29)

(6.3.30)

m u rs-/ v 511

m c r g Q~y/45922+^933~^9ff

m t = 1

m d r s j m u

m s e~ y / -̂ 922 + ̂ 933 + ̂ 9 ff

m b rs-/rs-/ g —>/l 6322 +8533

m e m u

m M rs-/ m s

m T r s j
r v m b
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rs-/
ei^i ^—y/gw +64322+12533- 35^^-32512- 65!/
m c

(6.3.31)

VA rs-/ _1_ g- \ / 45522 + f 533 - 1’5//
m b

(6.3.32)

rsj
rs-/ Vus Vcb (6.3.33)

model:

m u rs-/ rs./ (6.3.34)

m c rs»/
rsu e~y/45522+ ̂ -533 -  ir5// (6.3.35)

m t = 1 (6.3.36)

m d rs«/ m u (6.3.37)

m s rs-/rs^ g -  \/~ 3322 + J533 + f5// (6.3.38)

m b rsjrs*/
g —-^48322+6333 — 183// (6.3.39)

m e CVr\-/ m u (6.3.40)

rs^rv
g —\/l6522+8333—83// (6.3.41)

mT rs-/rs«/ g -  v 5522 + 4 533 -  f 5// (6.3.42)

vus rsurs«/
€1̂ 1 g —•\l/5il+64322+12333—273//—32312 —1831 /
m c

(6.3.43)

Vcb rs<j rs-/ _ J _ g - \ / 45322+J533-^ 5 //
m b

(6.3.44)

vub rs-/rs-/ VusVcb (6.3.45)

These estimates give some explanation why this model does not provide such

a good fit to the experimental data. In comparison to the original model, we do

not immediately get the good Planck scale prediction:

m b ~  mT (6.3.46)

However, we find that we do, as in the original model, automatically get the fairly 

good relation between the mixing angles:

K* »  VusVcb (6.3.47)
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and the reasonable relation at the Planck scale that:

m u «  rrid ~  m e (6.3.48)

Overall, the fit is reasonably good but there are some problems. As in the 

original model, we find that the mass of the s quark is too large; even larger in 

this model. Also we now find that the g and r  leptons get a mass larger than 

expected. The fit to the mixing angles is good apart from Vcb which is a bit small.

However, another problem with this model is that it requires one more free 

parameter than the original model. In the original model we could remove the 

parameters, ei, 62 and gij  for example. Here we have already removed e2 by the 

definition of the gauge group. We can also set ei =  1 but we require all the 

remaining parameters for the fit. This is because we don’t automatically have the 

relations between the masses which were present in the first model algebraically:

(6.3.49)

(6.3.50)

If we really want to reduce the number of parameters, it is possible to set #i2 =  0 

and get a slightly worse fit but then the original model is even more obviously 

better. So this model really requires 7 parameters to fit the data and even so it 

doesn’t fit as well as the original model with only 6 parameters.

6.4 Conclusions

We have shown that the masses and mixing angles of the SM fermions can be 

fitted using the idea of the S M G  being the diagonal subgroup of a larger group. 

The first model had already been analysed and was based on the largest group, 

S M G 3<8>U(l)f. The second model had not been analysed before and was based on 

the smaller group, with PCCSs, SU(3) i®SU(2) i®U( l ) i®U(l )2®U(l )3®U(l ) f .

mp «  m s 

m T ~  mf,
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It was obvious that the first model gave a better fit than the second model. 

Both in terms of \ 2 being lower and the number of free parameters being fewer, 

the original model is better. However, the fit was not so much better that we could 

conclude that the full group must be S M G 3 ® U(l)f .  The particular model ex­

amined (defined by the particular choice of 17(1)/ charges to cancel the anomalies 

in the particular subgroup of S M G 3 (8)17(1)/) was not as good but there are other 

possible choices of subgroup and (more relevant) more choices of 17(1)/ charges 

to cancel the anomalies. Without studying these to see how they compare it isn’t 

really possible to draw any strong conclusions. But we can perhaps conclude that 

this does at least point towards the full group, S M G 3 ® 17(1)/, being correct.



Chapter 7 

Summary and Conclusions

We have discussed extensions of the SM having a similar gauge group structure 

to the SM itself. In particular we have been guided by the requirement of an 

anomaly-free theory, with additional mass protected fermions satisfying a gen­

eralised charge quantisation rule. We were thereby led to extend the SM cross 

product group, 7/(1) 0  SU(2) 0  SU(3),  by adding extra SU(N)  direct factors, 

with the ‘JV’s greater than 3 and mutually prime. A generalised charge quan­

tisation rule, involving each direct factor was then obtained by dividing out an 

appropriate discrete group. Extending the SM in this fairly obvious way produces 

the groups S M G 23N , S M G 23MN etc. Another feature we take over from the SM 

is the principle of using only small (fundamental or singlet) fermion non-abelian 

representations. For the abelian representations we take the condition that weak 

hypercharges should be chosen to be close to zero. More precisely, we minimise 

the sum of weak hypercharges squared over all the fermions.

The extra SU(N)  groups introduced confine and form fermion condensates 

having the same quantum numbers as the SM Higgs doublet. It follows that the 

extra SU(N)  groups act as partial technicolour groups and must confine near 

the electroweak scale. However, the SM Higgs field is still responsible for all the 

fermion masses, albeit with a somewhat reduced VEV.

116
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We have studied in detail the conditions for anomaly cancellation in our mini­

mal extension of the SM gauge group, 5 M G235. It is not possible to construct an 

anomaly-free model using new mass protected fermions which are all non-singlet 

under 5(7(5), without encountering a Landau pole in the (7( 1) fine structure con­

stant well below the Planck scale. However it is possible to construct a consistent 

model with a fourth generation of quarks but, instead of an extra generation of 

leptons, with a generation of the fermions coupling to 5(7(5); the 5(7(5)-“quarks” 

given in table 5.1.

A similar solution with a fourth generation of quarks and a generation of 

S U( N) -“quarks” , as given in table 5.2, is possible for the gauge group S M G 23N- 

However the number of 5(7(2) doublets in the model increases with N  and hence 

their contribution to the electroweak radiative corrections becomes more impor­

tant. The S M G 235 model is just consistent with the precision electroweak data 

but S M G 2 3N models with N  > 5 are probably ruled out depending on how many 

standard deviations we allow the 5  parameter in our model to differ from exper­

iment (see section 3.3). Similarly the S M G 23MN models, with both M  and N  

greater than 3, would be inconsistent with the precision electroweak data.

The S M G 235 model with a fourth generation of quarks and a generation of 

5(7(5)-“quarks” seems to be phenomenologically consistent. However agreement 

with precision electroweak data is not certain. We have used the perturbative esti­

mate of the contribution to the 5  parameter and our model differs from the exper­

imental mean value by 2 standard deviations. If we accepted the non-perturbative 

estimate obtained by scaling QCD we would then differ by 4 standard deviations 

and conclude that none of our models could be consistent. However, we argue that 

there is no reason to prefer one method to the other. The only certain method is to 

calculate the 5  parameter non-perturbatively for this model which unfortunately, 

as with many strong interaction phenomena, cannot be reliably done.

Definite experimental evidence for or against this model will soon be avail­

able since it requires the existence of t ' and b' quarks at or below the top quark
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mass scale. This is consistent with current experimental limits but they could 

not remain undetected for long. However it is unlikely that the SU(5)~ “quarks” 

could be observed with current accelerators; they would be confined inside SU(5)- 

“hadrons” which would have a mass of the order of the SU(5) confinement scale. 

We take this to be greater than the electroweak scale. Also, they would have 

a small production cross section at present hadron colliders. Even if this model 

doesn’t turn out to be correct we hope that the derivation might at least highlight 

some of the important features of the SM and some of the unique qualities of the 

SM which appears (admittedly almost by definition) as the smallest case of our 

more general models.

In the final chapter we examined a different type of model. The original 

motivation was that the group S M G 3 could be used to predict the values of the 

gauge coupling constants. It was then used to explain the structure of the SM 

masses and mixing angles in a natural way. The group U( 1)/ was then added 

to greatly improve the fit. However, not all parameters and PCCSs were needed 

for the fit. So the natural step was to examine the subgroup which was needed 

for the fit and try a different set of U(l)f  charges. The charges could be chosen 

differently since there are not as many anomaly constraints in the subgroup as in 

the full group. However, it was found that the choice of charges used in this thesis 

did not improve on the choice for the full group. In fact it gave a worse fit. This 

could be said to provide evidence for the full S M G 3 ® U(l) f  group. However, 

this is an area where more work could be done since there are other choices of 

U(l) f  charges which cancel the anomalies. Only when all the models have been 

analysed will it be possible to provide a definite conclusion.



A ppendix A  

M assless Fermions All Coupling

to SU(5)

In this appendix we shall show what can be done in the general case where we do 

not assume that the fermions must get a mass via the SM Higgs mechanism. We 

examine the case where all the fermions are assumed to couple to the 5f/(5) gauge 

group. Our principle of small representations then forces all the fermions to be 

in 5 or 5 representations of SU(5). The condition for the absence of the [t/(l)]3 

anomaly is non-linear but all the other constraints are linear. So we ignore the 

[(/(l)]3 anomaly to start with and manipulate the equations for the cancellation 

of the other anomalies. Using the charge quantisation rule, eq. (1.4.72), we can 

express all the anomaly constraints in terms of integers. We then simplify the 

linear equations using simple techniques such as showing that certain combinations 

of variables must be divisible by 5. Then we can often constrain that combination 

of variables to be equal to zero provided we assume some limit on the total number 

of fermions. We finally end up with several simple constraints on the allowed types 

of fermions.

We shall start by writing all representations of the gauge group S M G 235 which 

are 5 or 5 representations of the SU(5) subgroup, are fundamental or singlet rep-
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resentations of the SU(2)  and SU(3)  subgroups and have weak hypercharge values 

obeying the charge quantisation rule, eq. (1.4.72). Tables A .l and A.2 show the 

relative contributions of each of these particle representations to each type of 

gauge anomaly. In this case the mixed gauge and gravitational anomaly is can­

celled whenever the [SU (5)]2£7(1) anomaly is since all fermions are in fundamental 

representations of S U ( 5). In tables A.l and A.2, each integer N  is different and 

there can be any number of each representation with the same or different values 

of N .  The notation AT is used to mean the sum of the A  values of N  for the A

(1,1,5) representations. Similar notation is used for the other representations of

S U (2) (g) SU(3)  ® S U (5). Keeping this in mind it is now easy to sum the columns 

except for the [C7(l)]3 anomaly. The resulting constraints are, apart from the 

[t/(l)]3 anomaly,

A  -  B  +  2C  -  2D  +  3 £  -  3F + 3G  -  377 +

67 —6J +  6Ar - 6 L  = 0 (A.l)

E  + F - G - H  + 2 I  + 2 J - 2 K - 2 L  =  0 (A.2)

10(AT -f AT + 3A -f- SNj  +  3N k  +  3AT)

+ 2 m (-C  +  D  -  37 +  3J -  ZI< +  37,)

+ 5 (-C  +  £> +  7 +  7 - 7 < - A )  =  0 (A.3)

10(Na +  N b +  2 AT +  2 AT)

- 2 m ( A  -  B  +  2C -  2D)  + 1 0 (-C  +  D) = 0 (A.4)

10(AT +  N b  +  2 N C +  2 N D +  W E +  3 N F +  3 N G +  3 N H 

+6AT +  6 N j  +  6 N k  +  6 AT)

- 2 m ( A  -  B  +  2C -  2D  +  3 £  -  S F  

+3G -  3i7 +  67 -  6 J  +  67^ -  6L)

-10 (C  -  D  + E  + F - G - H - I - J  + K  + L)  =  0 (A.5)
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Table A.l: All fundamental and singlet fermion representations of SU(2) and 

SU(S) which are fundamental representations of SU(5).  The weak hypercharges 

obey the charge quantisation rule, eq. (1.4.72) and the ‘TV’s are integers which 

need not be the same, even for two identical non-abelian representations. The 

relative contributions to the [C/(1 )]3 and [SU(2)]2U(1) gauge anomalies are shown 

for each type of representation.

Rep. No. y [£/(l)]3 [SU(2)]2[U(l)]

1,1,5 A 2 N  — 2m
5 S]

»
Tn 1 3, w 0

1,1,5 B 2 N  + 2m
5 ^(57V + m)3 0

2,1,5 C 2 N  - 2m i
5 1 ^r(10./V — 2m  — 5)3 ION -  2m -  5

2,1,5 D 2 N  + 2m i 
5 1 £(10JV + 2m + 5)3 107V + 2m + 5

1,3,5 E 2 N  — 2m 2 
5 3 2 2 5 (1 5 W -3 m -5 )3 0

1,3,5 F 2 N  + 2m 2 
5 3 2^(15^  + 3 m - 5 ) 3 0

1,3,5 G 2 N  - 2m _j_ 2
5 ' 3 2§g (15 N  — 3 m +  5)3 0

1,3,5 H 2 N  + 2m I 2
5 3 2§g(15A7 + 3m + 5)3 0

2,3,5 I 2 N  - 2m i 1
5 3 ^ (3 0 J V -6 m  +  5)3 SON — 6m + 5

2,3,5 J 2 N  + 2m i 1
5 ' 3 ^ ( S O N  + 6m +  5)3 SON +  6m + 5

2,3,5 I< 2 N  - 2m 1 
5 3 tJ it(30jV — 6m — 5)3 SON — 6m — 5

2,3,5 L 2 N  + 2m 1 
5 3 225(30A  ̂+ 6 m - 5 ) 3 SON + 6m — 5
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Table A.2: Types of representations A  to L shown in table A.l with their relative 

contributions to the [5{/(3)]2£7(l), [SU(5)]2U(1), [5C/(3)]3 and [5t/(5)]3 gauge 

anomalies. Since all the fermions are in fundamental representations of SU(5) the 

condition for the absence of the mixed gauge and gravitational anomaly, G2U( 1), 

is the same as for the absence of the [SU(5)]2U(1) gauge anomaly.

Rep. No. [ST/(3)]2[<7(1)] [St/(5)]2[C/(1)] [ s u m 3 [SU( 5)]3

1,1,5 A 0 107V — 2m 0 1

1,1,5 B 0 107V + 2m 0 -1

2,1,5 C 0 207V -  4m -  10 0 2

2,1,5 D 0 207V + 4m +  10 0 - 2

1,3,5 E 307V — 6m — 10 307V — 6m — 10 1 3

1,3,5 F 307V T 6m — 10 307V + 6m — 10 1 - 3

1,3,5 G 307V — 6m +  10 307V -  6m +  10 -1 3

1,3,5 H 307V -f 6m + 10 307V +  6m +  10 -1 - 3

2,3,5 I 607V — 12m -f 10 607V -  12m + 10 2 6

2,3,5 J 607V +  12m + 10 607V + 12m +  10 2 - 6

2,3,5 I< 607V -  12m -  10 607V — 12m — 10 - 2 6

2,3,5 L 607V +  12m -  10 607V + 12m — 10 - 2 - 6
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Also the total number of additional fermions is,

P  =  5(A +  B  +  2C +  2D +  3£  + 3F +  3G +  3H +  6 / +  6 J  +  dK  +  6L) (A.6)

Using the above equations, keeping in mind that all the variables are integers, it 

is fairly straightforward to find the smallest possible solutions using some simple 

numerical analysis.

First of all, using eqs. (A.l) and (A.5) we obtain,

Na +  Nb  +  2 Nc  +  2AT> + 3 Ne  +  37Vf + 3 Nq  +  37V// +  

6Ni  + 6AU + 6Nk  + QNl =

C - D  + E  + F - G - H - I - J  + K  + L (A.7)

From eq. (A.l), [A — B  +  2C — 2D) must be a multiple of 3, i.e.

3 |( A -  B  + 2C - 2 D )  (A.8)

Similarly, we can get the following equations; from eq. (A.4),

5 |( A -  B  + 2 C - 2 D )  (A.9)

from eq. (A.l),

2| (A - B  + 2 E - 3 F  + 3 G - 3 H )  (A.10)

from eq. (A.2),

2| {E + F - G - H )  (A.11)

and from eq. (A.3),

5 |(—C + D -  3 / +  3 J  -  3K  +  3L) (A.12)

and

2 |( -C  +  T> +  /  +  J - A : - I )  (A.13)

Now, using eqs. (A.8) and (A.9) we get,

1 5 \ ( A - B  + 2 C - 2 D )  (A.14)
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and using eqs. (A.10) and (A.11) we obtain,

2 | ( A - £ - 6 F  +  6G) (A.15)

which implies,

2| ( A - B )  (A.16)

Eqs. (A.14) and (A.16) then give,

3 0 | ( A - 5  +  2(7-2 I>)  (A.17)

Using eq. (A.17), if A — B  +  2C — 2D ^  0 then |A — B  + 2C — 2D\ > 30 and so

from eq. (A.l) \E — F  G — H + 21 — 2J +  2K  — 2L\ > 10. Eq. (A.6) then tells

us that the total number of additional fermions must be at least 300. Therefore, 

for any solution with P < 300,

A - B  + 2 C -  2D = 0 (A.18)

Eqs. (A.l), (A.2) and (A.4) now become,

E - H  + 2 I - 2 L  =  0 (A.19)

F  - G  + 2J - 2 K  =  0 (A.20)

N a + N b + 2Nc + 2Nd = C - D  (A.21)

while eqs. (A.3) and (A.7) can be rearranged to give,

N e + N f + N q + N h +

2Nt + 2Nj + 2Nk  + 2Nl = - I - J  + K  + L (A.22)

5 ( Na +  N b +  N e +  N f +  N q-\- 

N h — 4Â / — 4 N j  — 4 N k — ^N l ) = m(A — B  — 61 +

6J -  6K  +  6L) (A.23)

In order that there is no W itten discrete SU(2) anomaly,

2\(C +  D +  /  +  J  +  A: +  T) (A.24)
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This means that

2\(—C +  D -  37 4- 3 J  -  37f +  37,) (A.25)

So

4|[(—2C + 27)) -  67 4- 6 J  -  6 tf +  6L] (A.26)

and using eq. (A. 18),

4|(A -  B  -  6 / +  6 J -  6K  4- 6L) (A.27)

But, from eq. (A.23),

5|(A -  B  -  67 +  6 J  -  67C + 6L) (A.28)

Therefore

20|(A -  B  -  67 +  67 -  6I< +  6P) (A.29)

Again using eq. (A.6), for P < 200 we must have,

A  -  B  -  67 +  6J  -  67C + 67, =  0 (A.30)

or equivalently, using eq. (A. 18),

C -  D + 37 -  3 J  +  37T -  37, =  0 (A.31)

eq. (A.23) now becomes,

N a 4* ATg +  N e 4" Np  4~ N q +  Nu — 49V/ — 49Vj — — 49V/, =  0 (A.32)

From eq. (A.31), 3|(C — D). Now if \C — D\ > 6  then eqs. (A.31), (A.18),

(A.19), and (A.20) along with eq. (A.6) show that P </i 200. So we are left with

\ C - D \  = 0 o r  3.

If C — D = 3 then, using eq. (A.18), A  — B  = —6, and from eq. (A.31) 

7 — J  + K  — L = —1. Table A.3 gives the possible combinations which allow 

P  < 200 in this case. Here Pi =  120 4- 10(a 4- 2/9 +  37 4- 36),and a, /9, 7 , and 8
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Table A.3: Allowed combinations of fermion representations which could cancel 

all anomalies with less than 200 fermions for C — D  =  3.

I J K L A B C D E F G H P

1 0 0 2 OL a  +  6 3 0 2 0 0 0 180 +  10a

1 1 0 1 a a  +  6 3 0 0 0 2 0 180 + 10a

0 1 1 1 a a  -f 6 3 0 2 0 0 0 180 + 10a

0 2 1 0 OL a  +  6 3 0 0 0 2 0 180 + 10a

0 1 0 0 CL OL + 6 0 +  3 0 7 <5 <5 +  2 7 Pi

0 0 0 1 a a  +  6 0 + 3 0 (5 + 2 7 7 <5 Pi
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Table A.4: Allowed combinations of fermions representations which cancel all 

anomalies except the [C/(l)]3 gauge anomaly, with less than 200 fermions.

V q r s t u Minimum P

I 0 0 0 0 0 0 0

I I - 6 3 2 0 - 1 0 120

I I I - 6 3 0 - 2 0 1 120

I V 6 - 3 - 2 0 1 0 120

V 6 - 3 0 2 0 -1 120

are all whole numbers 1.

If C — D =  —3 then we have the same solutions as above with A  and B  

interchanged {A <-> B),  C <-> D, E  H  , F  G, I  «-> T, and J  <-> K.

If C =  D then, A = B  from eq. (A.18) and from eq. (A.31), I  +  K  = J  -f L. 

However, from eq. (A.21), 2\(Na +  N b )• Using this in eqs. (A.22) and (A.32) 

gives, 2\(I + J  — K  — L). But eqs. (A.18), (A.19), (A.20) and (A.31) along with 

eq. (A.6) show that if | /  +  J  — K  — L\ > 2 then P  200. Therefore 7-f J  = K  + L 

and so I  = L and J  — K.

Writing p = A — B,  q = C — D, r = E  — H, s = F  — G, t = I  — L, and 

u =  J  — K  the above results can be summarised in table A.4. Types I I  and I V  

are equivalent, as are types I I I  and V  by interchanging A  and B  etc. which is 

equivalent to relabelling representations 3, 3 and 5, 5.

We can also define Np = Na + N b and N q =  Nc + N d etc. Eqs. (A.19)-(A.22)

xWe use the convention that whole numbers are non-negative integers.
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and (A.30)-(A.32) can now be rewritten as

p =  6t — 6u (A.33)

q = —31 +  3 u (A.34)

r =  —21 (A.35)

s =  —2 u (A.36)

N q +  3 Np +  3 N jj =  —21 +  u (A.37)

Np  +  2 N q  — —31 -\- 3 u (A.38)

Ap +  Ns  +  2Np +  2 N jj = —t — u (A.39)

Now we must consider the [£/(l)3] anomaly. It can be shown that when 

eqs. (A.33)-(A.39) hold the [£/(l)]3 anomaly leads to the following constraint:

5[iVp3 +  2NQ3 +  3Nr3 +  3Ns3 +  6-/Vt3 +  6A173

— 3 ( N q 2 +  + N s 2 — N t 2 ~  Â t/2)

—3(2 +  2 N t +  2Nu)]

— 3 m [ N p 2  +  2 N q 2  + 3ArH2 — 3A52 +  6 N t 2  ~  6A[/2

+2(21 + u + 2Ns  +  6Nt +  4A[/)] =  0 (A.40)

where the following definitions have been used:

N ai =  X) A^ e ĉ- f°r z =  2 or 3.

Np3 = Na 3 +  Ajg3, Nq3 =  Nc 3 +  AD3 etc.

Np2 =  N a2 — N b 2, N q2 =  N c 2 ~  AD2 etc.

There is no obvious way of simplifying the above equations (especially eq. (A.40))

any further so we shall now assume that the fermions are all massive as discussed

in section 2.4 and continue with the massive case in section 4.2.2. The general

case could be solved by trial and error using a computer but we have not yet done

that. If we did this we could look for the solution of the anomaly constraints 

which minimised the sum of weak hypercharges squared. This would allow us to 

show whether any model could be perturbatively valid up to the Planck scale.
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However, this method would obviously be far too complicated for any progress to 

be made analytically.

We can show that the smallest solution has 30 fermions but a very large sum 

of weak hypercharge squared. To cancel the anomalies we must have the same 

number of 5 and 5 representations of SU(5). So the smallest solutions are: one 

5 and one 5, 10 fermions; two 5s and two 5s, 20 fermions. However, it is simple 

to show that in order to to cancel the anomalies these solutions cannot have mass 

protected fermions. The smallest set of fermions which can cancel the anomalies 

with mass protected fermions is three 5s and three 5s, 30 fermions. The solution 

with the smallest sum of weak hypercharges squared is:

( - f , 5 )  (B 5) ( f , 5 )

( -§ ,5 )  ( -§ ,5 )  ( | ,5 )

where only the representations of C/(l)(g)<S't/(5) are shown since they are all singlets 

of SU(2) ® SU(3). The sum of weak hypercharge squared is

$ > 2 =  252.8 (A.41)

As we showed in section 4.2.2 this would cause a U( 1) Landau pole below the 

Planck scale. So we really must search for the solution with the smallest sum 

of weak hypercharge squared if we want a solution which would be consistent. 

However, we don’t believe that massless fermions would be phenomenologically 

acceptable anyway and so we have not pursued this case any further.
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