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Abstract

We examine extensions of the Standard Model (SM), trying to base our as-
sumptions on what has already been observed. We consider our models to be the
most obvious extensions of the SM in the sense that we don’t consider anything
fundamentally different such as grand unification or supersymmetry which are not
directly suggested by the SM itself.

We use features of the SM to guide our extensions. This method has the
advantage that all our models will be based (at least in part) on experimental
observations. The disadvantage is that we cannot expect such models to give us
any fundamentally new explanations.

The main features we use from the SM are small representations and charge
quantisation. By small representations we mean fundamental or singlet represen-
tations of each non-abelian group and weak hypercharges close to zero. We use
generalisations of the weak hypercharge quantisation rule observed in the Standard
Model to specify the weak hypercharge modulo 2 for any given representation of
the non-Abelian part of the gauge group. When we combine these principles with
the requirement, for a theoretically consistent model, that there are no anomalies,
we are left with a very restricted choice of models.

For most of this thesis we concentrate on the possibility of additional low mass
fermions (relative to the Planck mass) and search for combinations of allowed
representations which don’t produce any gauge anomalies. We put strong experi-
mental constraints on these models by using the renormalisation group equations

to estimate fixed point masses for the new fermions in our models, and also to
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check that there is no U(1) Landau pole below the Planck scale. This is required
since we are assuming a desert up to the Planck scale.

In our most promising model we show that a fourth generation of quarks with-
out leptons is possible and can soon be tested experimentally. In this model we
replace the fourth generation of leptons (required in the SM to cancel anoma-
lies) with a generation of SU(5)-“quarks” which are a generalisation of the SM
quarks but coupling to a new SU(5) group instead of SU(3). We discuss how well
this model agrees with experiment and give estimates for the masses of the new
fermions.

In the final chapter we examine a different model where we don’t introduce any
new low mass fermions. Instead we try to explain the mass structure of the SM
in a natural way. The problem with the SM is that the masses require different
fermions to have different Yukawa couplings to the SM Higgs boson. The smallest
and largest couplings differ by a factor of about 10°. In this model all fundamental
Yukawa couplings are of order 1 (which we assume to be more natural). The range
of masses we observe are due to the different symmetry breaking scales associated
with this model breaking down to the SM. The results are compared to results for

a very similar model.
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Chapter 1

Introduction

The so-called Standard Model (SM) has been widely accepted as an accurate de-
scription of all observed physics other than the gravitational interaction. However,
not many people believe that the SM is a complete description of physics. The
main reason is the large number (~ 20) of free parameters in the model. There
is also the fact that current accelerators have not yet found a Higgs boson and
so many features of the SM have not even been observed. This means that it is
certainly possible that the SM is only the low energy part of another model. This
other model could be observed at scales higher than energies probed by todays
accelerators. In fact such a model could be at a scale as high as the Planck scale or
as low as the electroweak scale. In this thesis we wish to investigate some of these
models and check to ensure that they are self-consistent and agree with current
experimental data.

In order for any model to be valid it must be self-consistent. This is not trivial
for chiral gauge theories. When quantised, anomalies can arise which would spoil
the gauge symmetry and make the theory useless for calculations. The absence of
such anomalies provides many constraints on our models. These are discussed in
section 1.1.

Another requirement for self-consistency is that the gauge coupling constants



(the U(1) coupling constant in particular) remain finite over the range of energy
scales in which the model is supposed to be valid. This must be checked carefully
since the coupling ‘constants’ vary with the energy scale. We shall describe the
dependence of the coupling constants on the energy scale in section 1.2. In par-
ticular, in section 1.2.1, we will discuss the constraint that the finiteness of the
gauge coupling constants provides on the weak hypercharges of fermions in our
models.

The success of the SM means that it must almost certainly have great signifi-
cance to any attempt to produce any other model to describe nature. Therefore
we have chosen to base our models on the SM, extending and generalising features
of the SM to produce models as similar to the SM as possible. The basic ideas

and alternatives are outlined in section 1.4.

1.1 Anomalies

When calculating using quantum field theory, it is found that diagrams involving
loops introduce infinities and so would give infinite cross-sections. This is obvi-
ously not physically possible and to get round this the theory must be regularised.
In simple terms this means that some sort of momentum cut-off is introduced so
that the infinite terms (which arise from integrating over infinite momenta) are
made finite. This is equivalent to using a set of running parameters (running
because they depend on some energy or momentum scale) instead of the bare
parameters which appear in the Lagrangian. In a sense the infinities are put into
the bare parameters. It does not matter that they are then infinite since they are
not physical observables. This procedure is called renormalisation. However, this
is only possible for certain theories. One of the requirements is the absence of
some kinds of anomalies.

Anomalies are purely quantum effects. They correspond to some quantity

which is conserved classically not being conserved in the quantised theory. Some



anomalies are harmless such as the axial-vector current Ward identity anomaly in

current algebra which explains the high rate of the neutral pion decay:
0 — 2y

However, some anomalies are harmful in the sense that they spoil the renormali-
sation procedure, making it impossible to calculate anything meaningful from the
theory. In this section we shall discuss these types of anomalies and the constraints

imposed on our models by the requirement that such anomalies vanish.

1.1.1 Gauge Anomalies

In any chiral gauge theory, gauge anomalies can arise. These anomalies lead to
an inconsistent theory and so they must not be present in a good theory. Each
fermion representation makes its contribution to each type of anomaly. We say
that there is an anomaly present if the total contribution to an anomaly from all
the fermion representations is non-zero.

As we shall discuss in section 2.2.1 the models considered in this thesis have

gauge groups of the general form
Ul)® [[Su(w:)/D (1.1.1)

The discrete group D leads to charge quantisation but has no direct relevance to
the anomalies. We assume all fermions to be in N, N or singlet (1) representations
of each SU(N), as will be discussed in section 2.2.2. We define n to be the N-
ality of a representation (n = 1 (-1) for representation N (N) and n = 0 for
singlet representation). We can also define the size, S, of each representation
as the dimension of the representation (e.g. in the SM, S = 6 for the (2,3)
representation of SU(2) ® SU(3) which is equivalent to the fact that there are 6
left-handed quarks in each generation).

For gauge anomalies we sum the contribution for all left-handed fermions and

subtract the sum over all right-handed fermions. This is equivalent to summing
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Figure 1.1: For the theory to be anomaly-free, the amplitude of this Feynman
diagram must be zero for all choices of external gauge bosons after summing over

all possible fermions in the internal loop (triangle).

over left-handed fermions and left-handed anti-fermions. We have now introduced
all the necessary notation to write down general equations for all types of gauge
anomalies.

The requirement that there are no anomalies present in a theory is analogous
to the triangle Feynman diagram in fig. 1.1 with a fermion loop and three external
gauge bosons (labelled by G, G' and G") having zero amplitude for all possible
choices of gauge bosons G, G’ and G”. The contribution from each fermion repre-
sentation is calculated by making particular choices for the fermions in the internal
loop. These contributions must then sum to give zero amplitude if there is to be
no anomaly. When this is true we say that the anomaly has been cancelled. The

general condition for anomaly cancellation is,
Trl{Tf, T} TE) = Trl{Th TR} TH] (1.1.2)

where the ‘T’s are the transformation matrices for the fermions at the three



vertices. When we consider left-handed anti-fermions instead of right-handed

fermions, the condition becomes simply,
Tr[{T*,T*}T° =0 (1.1.3)

The trace corresponds to summing over all individual fermion representations and
we can split the condition into different conditions for each choice of external gauge
bosons. In our models we have the following type of anomalies which must be
cancelled by an appropriate choice of fermion representations.

If each of G, G’ and G" is an SU(N) gauge boson where N > 3 then each
representatibn gives a relative contribution of Sn® = Sn (sincen = —1, 0 or 1 in
our models). The total contribution is therefore }; Sin; where i labels each left-
handed fermion (and anti-fermion) representation. We label this type of anomaly
[SU(N)]® and require

> Sini=0 (1.1.4)

Another type of anomaly corresponds to the diagram with one U(1) gauge

boson and two SU(N) gauge bosons where N > 2, labelled as [SU(N)J*U(1).

Each representation gives a relative contribution Sn?y where y is the conventional

weak hypercharge ! . Therefore we require

ZSi(n,-)zyi =0 (1.1.5)

The final type of gauge anomaly corresponds to the diagram with all the gauge
bosons G, G’ and G” being U(1) gauge bosons. This is labelled as [U(1)]® and

each representation gives a relative contribution Sy*. Therefore we require

ZS.-y? =0 (1.1.6)

!Throughout this thesis we take the normalisation for the weak hypercharge that the right
handed electron has y = 2.



1.1.2 Other Anomalies

There is also a mixed gravitational and gauge anomaly [1] which corresponds
to one U(1) gauge boson and two gravitons in figure 1.1. We will label this as
G*U(1). Each representation gives a relative contribution Sy and so this leads to
the constraint

ZS,'yi =0 (1.1.7)

i

This anomaly comes from theories involving quantum gravity. At first this may
not appear important for our models since we are not considering quantum gravity.
But, since all such theories require this constraint in the low energy limit, we must
make sure this anomaly doesn’t exist in our models if we want them to be low
energy effective theories of a complete theory which includes gravity.

Another possible anomaly is the Witten discrete SU(2) anomaly [2]. This
states that if the number of left-handed SU(2) doublets is odd then the theory is
inconsistent. This is different from the other anomalies considered in the sense that
this is a global anomaly whereas the other are all local. The anomaly corresponds
to the requirement that the theory should be consistent with a global SU(2)
gauge transformation. However, if there are an odd number of Weyl doublets, it
is possible to perform such a transformation and introduce a change of sign in the
Lagrangian. This means that the theory cannot be used to calculate in a general
gauge. As we shall see later in section 2.4 we will always have an even number of

Weyl SU(2) doublets and so this anomaly does not give us any problems.

1.2 Renormalisation Group Equations

The renormalisation procedure introduces an arbitrary scale y and the value of
all the renormalised couplings depend on this scale. The renormalisation group
equations (RGEs) describe how to relate parameters at different scales. We use

these equations to calculate the running gauge coupling constants from the elec-



troweak scale up to the Planck scale. If one of these becomes infinite then there is
a Landau pole. If this happens then the model cannot be self-consistent up to the
Planck scale. Since we calculate the RGEs perturbatively this would mean that
the model was not perturbatively consistent up to the Planck scale. It is possible
that the theory may still make sense in this case if non-perturbative methods were
used but it is not clear whether or not this would happen. Therefore we will take
the view that a consistent theory must be perturbatively consistent.

We also use the RGEs to calculate the Yukawa couplings at different scales.
Here we go in the opposite direction to the calculation of the gauge coupling
constants by calculating the Yukawa couplings at the electroweak scale from values
chosen at the Planck scale. The reason we do this is that if the value of a Yukawa
coupling at the Planck scale is increased, normally the resultant value at the
electroweak scale is increased. However, there is a quasi-fixed point limit on
the Yukawa couplings at the electroweak scale. This occurs when the Yukawa
coupling at the Planck scale reaches a certain value (typically of order 1), and
when increased further the value at the electroweak scale becomes fairly insensitive
to the precise value at the Planck scale. This can be taken to be an upper limit
on the Yukawa coupling at the electroweak scale. However, there is not a precise
limit for each fermion and when there are several heavy fermions the limit on any
one depends on the relative values of the other Yukawa couplings.

We use first order (1-loop) RGEs. More accurate results are available in the
literature but further corrections only change predictions by a few percent. This
will not affect the existence or otherwise of a Landau pole in the models we
consider. Also, since the quasi-fixed point limits for the Yukawa couplings are
only used to give approximate upper limits for the electroweak Yukawa couplings
(and corresponding masses) of fermions, the error introduced by neglecting 2-loop
corrections is not significant.

We will now describe the 1-loop RGEs for the gauge couplings and the Yukawa

couplings. We use these to check that there are no Landau poles and to give



estimates of the Yukawa couplings at the electroweak scale. Then we will describe
the RGE for the Higgs quartic coupling which is related to the Higgs mass. Finally
we discuss the definitions of mass for fermions; relating the Yukawa coupling to

the running mass and the pole mass.

1.2.1 Gauge Couplings

The Lagrangian density of the gauge fields in a quantum field theory with a simple
gauge group G is given by,

1
L= —§Tr(F,wF‘“’) (1.2.8)
where the anti-symmetric field tensor is defined as:
F,=0,A —0A,—19[A, A)] (1.2.9)

g is the bare gauge coupling and A, is defined in terms of the gauge fields, A3,

and the adjoint representation of generators of G, T*, by:
A, =T"A; ' (1.2.10)

The commutation relations of the generators are given in terms of the group
structure constants, fob:

[T®,T% = ifebeTe (1.2.11)
and are normalised so that:
armb 1 ab
Tr(T*T’) = 56 (1.2.12)

For semi-simple groups the Lagrangian density is simply a sum of the La-
grangian densities for each of the simple factors. For a U(1) factor the gauge field

tensor is simply defined as:

F,, =0,A, —8,A, (1.2.13)



When quantum field theories defined by these Lagrangian densities are renor-
malised, the physical gauge couplings depend on an arbitrary scale. To 1-loop
order the equation describing the running gauge coupling of the gauge group
SU(N), gn, at scale p is:

dgn

S — Bu(on) (1.2.14)

where t = In() and the first order beta function, By(gn), is given by:

An(gn) = gn KN (1.2.15)

The constant K is defined as [3]:

1

Ky =
N 1672

11 4 1
—5 02(G) + 3xS5(F) + 652(5)] (1.2.16)

The group factors are; the eigenvalue of the quadratic Casimir operator acting
on the adjoint representation (the representation of the gauge bosons), Ci(G)
and the Dynkin indices for fermion and scalar representations, Sz(F') and Sy(S)
respectively. £ = J for 2-component fermions (Weyl fermions) and « = 1 for
4-component fermions. In all our models the fermions are 2-component and will
be in fundamental or singlet representations of each SU(N) gauge group. The

only scalar will be the SM Higgs boson. So we have:
C(G) = N (1.2.17
So(F) = nr (1.2.18
S53(S) = ns (1.2.19

K =

)
)
)
)

(1.2.20

N =

where np (ng) is the number of fermions (scalars) in fundamental representations
of SU(N). Since the only scalar we have is the SM Higgs boson, ns = 1 for the
SU(2) subgroup of the SMG and ng = 0 otherwise.

We can integrate eqs. (1.2.14) and (1.2.15) analytically by writing them as,

an(e) d ¢
/N YN _ Ky [ dt (1.2.21)
gn(ro) 9N to
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This leads to the result

1 1 7 )
- = Kyln | = 1.2.22
293 (o) 2% (n) N (uo ( )

We now use the definition of the fine structure constants,

an(p) = (1.2.23)

along with the definition of Ky to write:

L 1 1l 9N —dnp—ng)in (i) (1.2.24)

an(p)  an(po) = 127 Ho
This equation allows us to calculate the fine structure constant at any scale u
provided we know it’s value at some scale pq.
The U(1) fine structure constant at scale p, a;(p), can be calculated in a

similar way and to 1-loop order we have:

1 1
ar(p)  oa(po) 12

where Y? is the sum of weak hypercharges squared over all fermions and Y2 =1

for the SM Higgs boson.

(Y +¥)In (-5;) (1.2.25)

However, a more usual convention is to use the normalisation for the U(1)
gauge coupling constant used in grand unified theories (GUTSs). This is because
the coupling constant would be normalised differently if the U(1) group was the
subgroup of a simple group. In particular, for U(1) C SU(N) we have the follow-

ing normalisation:

(9D)our = g(gf)SM (1.2.26)
(ai)eur = g(afl)sm (1.2.27)

This then leads to a modification of eq.(1.2.25):

1 1 1 7
= - Y2 +Y3I1 (—) 1.2.28
207r( 5)In o ( )
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Landau Poles

A Landau pole is a point where the value of a gauge coupling constant becomes
infinite. This corresponds to ! becoming zero. It is only for the U(1) gauge
group that the value of o~ necessarily decreases when run from low to high scales.
Therefore it is the U(1) sector that is likely to have a Landau pole. In fact there
must be a Landau pole at some scale; what we are interested in is whether this
occurs above or below the Planck scale. Above the Planck scale we do not expect
our model to be a good description of physics so we do not worry about effects
above the Planck scale. However, a Landau pole below the Planck scale would
not be acceptable since the model would not then be (perturbatively) consistent.

We can use eq. (1.2.28) to calculate an upper limit on Y2. This is because
the requirement of no U(l) Landau pole below the Planck scale means that
a_(M_Plla_1TIc) > 0. This then provides a limit on Y2 for any choice of thresholds
where new particles are introduced. We will use this in section 4.2.2 to rule out

several models.

Thresholds

The equations given in this section for the running of the gauge coupling constants
involve numbers of fermions or Higgs bosons coupling to the groups or sums over
all fermions or Higgs bosons of weak hypercharges squared. These numbers depend
on all fermions or Higgs bosons in the theory whatever their masses. However, we
should really include threshold effects which mean that particles do not contribute
significantly unless the scale, 4, is of the same order of magnitude as, or greater
than, their mass. A full calculation of such effects is complicated so we will use a
very simple approximation. We will include all particles with pole masses below
the scale in the RGEs. When the scale is the same as a pole mass, that particle
will be included in (removed from) the RGEs if we are running from low to high

(high to low) scales.
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This method is accurate enough for our purposes since we are really only
interested in finding out if there is a U(1) Landau pole below the Planck scale.
In all the models we consider the existence or otherwise of a Landau pole below
the Planck scale is not dependent on small changes in the low energy value of oy

caused by incomplete threshold analysis.

1.2.2 Yukawa Couplings

Let us consider the simplest case of two fermions, p and m, getting a mass via

the SM Higgs mechanism. In order for this mechanism to work we must have a

left-handed SU(2) doublet, Fy = g , and two right-handed SU(2) singlets,
m

pr and mpg. pr must have a value of wegk hypercharge, y,, = yp, + 1, and mpg

must have a value, Yym, = Yym, — 1 (pr and my must obviously have the same

value). Otherwise the fermions must couple to the gauge group in the same way.

The Lagrangian density is given by:
L= —Fry,irs®pr — Frym®mp + h.c. + (D,®)(D*®) — V(@) (1.2.29)

where y, (ym) is the Yukawa coupling of fermion p (m) and the Higgs potential is
defined by:
V(®) = — 20 + A\(®10)? (1.2.30)

If we parameterise the complex scalar doublet by 4 real fields:

1| o +idd
= — (1.2.31)

1 + 143
then after the electroweak symmetry breaking one of the fields gets a vacuum

expectation value (VEV):
<P >=w (1.2.32)



13

where

v =

2
"7 (1.2.33)

We label this VEV, < dws >.

The fermion interactions with the Higgs then lead to fermion masses. After the
symmetry breaking the running mass of fermion f, my, is related to its Yukawa
coupling, yy, by:

my = % < ¢ws > (1.2.34)

Here we present the RGEs for the Yukawa couplings to order 1-loop for fermion

f. We label its left-handed SU(2) doublet partner by f'.

dyf _ 1
L= 167r2ﬁf(t) (1.2.35)

where, to 1-loop, B¢(t) is defined by [4]:

Bi) = wr(®) [3 (u30) — v20)) + %a(8)(®) ~ Gy )]
Y2(S)(t) = Tr(YY(t)Y (1)) (1.2.36)

Gs(t) = 63 gn(t)CT(f) (1.2.37)
N
gn(t) is the SU(N) (U(1) for N = 1) gauge coupling constant, Y (¢) is the Yukawa

coupling matrix and CJ'(f) is the quadratic Casimir operator for the fermion

representations of gauge group N. For SU(N), we have the definition:

N NP1
Cy (f) = SN (1.2.38)
and for U(1) we replace ¢g?C3(f) with:
S (@ + @) g (1:239)

where we have used QL (QF) for the weak hypercharge of the left- (right-) handed

fermions. Using the conventional GUT normalisation this becomes:

= (@0 + @) gt (1:2.40)
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Y is the Yukawa coupling matrix and in this case is a diagonal matrix containing
the Yukawa couplings of the fermions. There is (an identical) Yukawa coupling
for each of the N fermions in each N representation of SU(N) (N > 3). For
example, if the p and m fermions were the up and down quarks we would get
Y3(S) = 3y; + 3y

If we have several fermions getting a mass in this way then we can simply
generalise the above Lagrangian density by adding more terms. If several fermions
have the same quantum numbers then they can mix together and so the gauge
eigenstates are different from the mass eigenstates. In the SM this happens for
the three generations of quarks. However, the mixing is a small effect and in this
thesis we shall ignore it for simplicity. Therefore the Yukawa coupling matrix, Y,

will remain diagonal and the above equations will remain unchanged.

1.2.3 The SM Higgs Self-Coupling

We will present the RGEs to 1-loop order for the SM Higgs boson self-coupling,
A. To first order this parameter is related to the Higgs mass by the equation,

A
M} = =A< >2 1.2.41
1= G, Pws ( )

where G, is the coeflicient of the effective four fermion interaction in an effective

low energy model of the weak interactions:
511 = )1~ 250 (12.42
V2

From the measured value of the muon lifetime [5],
7, = 2.19703 £ 0.00004 x 107¢ s (1.2.43)

we can calculate,

G, = 1.16637 £ 0.00002 x 10~° GeV 2 (1.2.44)
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There is no experimental value for A at any scale since the Higgs has not yet
been observed. However, as for the Yukawa couplings of new fermions, we can
observe a quasi-fixed point for A(u = Mz). We can use this to put upper limits
on the Higgs mass in our models.

The equation for the running of A(x) is given by,

d\
- = Ba(t) (1.2.45)
where, to 1-loop [4]:
1 2_ (9 4 2
B0) = 5z 120 - (5o +967) ¢
973 2
7 (oot + caiad +0) + (A —aH(S)|  (1246)

where the conventional (GUT type) normalisation is used for g;. Y2(S) and H(S)

are defined in terms of the Yukawa coupling matrix Y by,

Y2(S) = Tr(Y'Y) (1.2.47)
H(S) = Tr(Y'YY'Y) (1.2.48)

1.3 Definitions of Mass

For heavy quarks the experimentally measured mass is the pole mass. The mass

calculated from the Yukawa coupling by,

ys
= =< > 1.3.49
my =75 dws ( )

is known as the running mass. We wish to relate these two definitions of mass
so that we can compare running Yukawa couplings to experimentally measured
masses.
To first order the pole mass, M, is related to the running mass at scale y,
m(u), by simply:
M =m(M) (1.3.50)
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However there are further corrections arising from loop diagrams. We shall cal-
culate the leading correction to this formula for fermions in fundamental repre-
sentations of the gauge group SU(N). For N = 3 this is a good approximation
for quarks in the SM since the corrections due to the strong force are much larger
than those due to QED. This is simply because as > agpp.

We use dimensional regularisation where the number of dimensions is,
D=4-2 (1.3.51)

We define mg to be the bare mass and go to be the bare SU(N) gauge coupling.
The renormalised SU(N) gauge coupling at scale p is g(u) and we define the

running fine structure constant,

e (1.3.52)

Working to 1-loop order will allow us to calculate the corrections to eq. (1.3.50)

to order a(y). To this order the following equations hold:

2
_ 90 NepD—1
M = mg ll + (47r)32M2502 (f)D — 3I‘(e)] (1.3.53)
3o
mo = miu 1 - ey () (1354
% _ ()
o= ( - ) a(p) (1.3.55)
For fermions in the fundamental representation of SU(N),
N? -1
N —
Gy (f) = 5N (1.3.56)

The constant v ~ 0.5772 is Euler’s constant. We use the approximation for the

gamma function for small ¢,

1
D(e) ~ = = (1.3.57)

It is now straightforward to eliminate all the bare couplings and relate the pole

mass to the running mass.

Mo 3o(k) v 9 v nD—1
m(n) ll Ime O2 (f)] [1 R Vp3he) a3
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Expressing D in terms of € and neglecting terms of order o(u) gives the following

equation.
a(p) N 3 [u?e"\ 3 -2
_ _3 1.3.
m(p) + 4r 2 (f) [ € + M?2 ) 1- 26F(€) (1.3.59)
Now we take the limit ¢ — 0. For small ¢,
-2
372 (3= 2e)(1+2) ~ 3 +4c (1.3.60)
1—12¢
and
2,7\ ¢ 2,7
ule ue
(MZ) z1+61n<M2) (1.3.61)

Combining these we get,

(;ﬁ;)si:% () = [1+eln<‘j\2;:)][3+45[ 7]

r =3y + - [3+4s+351n(‘u )]

M?2
3 u
= —3’y+ +4+4+3In e + 3y
3 2
= —+4+3l <M2) (1.3.62)

Therefore, in the limit ¢ — 0, to order a(u), we can relate the pole mass to the

running mass of fermion f by:

My = my(p) [1 + c;v(f)@ (1 + %m (;%))] (1.3.63)

and in the special case where p = M:

M, = my(M) [1 + C;V(f)“(f)} (1.3.64)
In particular:

My = my(M) [1 + 4—“?,)(#&] (1.3.65)

My = myM) [1 + &"E—fi—M—)] (1.3.66)

for fermions in fundamental representations of the gauge groups SU(3) and SU(5)

respectively. Eq. (1.3.65) agrees with [6].
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1.4 Choosing the Type of Model

We have now discussed the basic theory behind model building. In section 1.1 we
have described the constraints imposed on a chiral gauge theory by the require-
ment of anomaly cancellation. In section 1.2.1 we have discussed the requirement
in our models of no U(1l) Landau pole below the Planck scale. We have also
presented the RGEs necessary to examine quasi-fixed point Yukawa couplings,
in section 1.2.2. We can use these as upper limits on the Yukawa couplings of
the fermions in our models. Then in section 1.3 we showed how to convert these
Yukawa couplings to running masses and pole masses. This will be used to pro-
vide upper limits on the mass of new fermions in our models. Now we must
decide what sort of models we wish to examine. In this section we will outline our
requirements for extending the SM.

First we shall briefly describe some other methods of extending the SM and
then describe our method and compare it to some of these other methods. Over
the years there have been numerous attempts at extending the SM. Some of these
models have been proposed with the purpose of explaining some particular feature
of the SM. For example, GUTs ‘explain’ the convergence of coupling constants
at some energy (typically of order 10'*GeV) as a manifestation of a single fun-
damental unified interaction. Other models such as supersymmetry (SUSY) have
been proposed for mainly aesthetic reasons; SUSY introduces a symmetry between
bosons and fermions. But so far none of these attempts has been entirely success-
ful, although SUSY GUTs are phenomenologically consistent with the unification
of the SM gauge coupling constants and do not suffer from the gauge hierarchy
problem (why the electroweak scale is so small compared to expected radiative
corrections from the more fundamental theory which should be of the order of the
GUT or Planck scale).

Another approach to extending the SM is to look at the SM itself and look for

distinctive features which could be generalised or assumed to hold in an extended
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theory. The SM has been so successful that, within our experimental and calcula-
tional accuracy, it has proved to be a perfect description of nature (except for the
gravitational interaction). So we have good reason to say that taking guidance
from the SM is akin to “listening to God”.

Having accepted this point of view we must now try and interpret the message
of the SM. By this we mean that we must look for fundamental features in the
SM which could distinguish it from similar and, without experimental evidence,
equally plausible models. We propose that one such feature is charge quantisation.

This can be expressed as

1 1
% + 5 “duality” + 3 “triality” =0 (mod 1) (1.4.67)

where y is the conventional weak hypercharge. The duality has value 1 if the
representation is an SU(2) doublet (2) and 0 if it is an SU(2) singlet (1). The
triality has value 1 if the representation is an SU(3) triplet (3), 0 if it is an SU(3)
singlet (1), and -1 if it is an SU(3) anti-triplet (3). In general we can define the
N-ality of a representation of SU(N) to be the minimum number of N-plet rep-
resentations of SU(N) which must be combined to construct the representation.
In particular N-ality has value 1 if a representation is an SU(N) N-plet (N), 0 if
it is an SU(N) singlet (1), and -1 if it is an SU(N) anti-N-plet (N). Note that in
SU(2) the 2 representation is equivalent to the 2 representation. We expect that
in an extension of the SM this charge quantisation relation or some generalisation
of it will hold.

An obvious way of extending the SM is to extend the gauge group. The
Standard Model Group (SMG) is [7, 8]:

SMG=SU?2)®U3))=U(1)® SU(2) ® SU(3)/Ds (1.4.68)
where the discrete group

A

Ds = {(e*™8, I, PL)" : n € Z6)} (1.4.69)
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ensures the quantisation rule eq. (1.4.67) (In is the identity of SU(N)). We
argue that the most obvious extension is to add more groups to the sequence
U(1)@SU(2)®SU(3) and to use a different discrete group so that the quantisation
rule is generalised to involve all the group components. One of the groups we

consider is

Gs = U(1) ® SU(2) ® SU(3) ® SU(5)/Ds (1.4.70)

where the discrete group Dj is defined as
D5 = {(eizﬂ/Ns, —127 8i27r/313, ei21rm5/5]5)n ne ZNS} (1471)

where N5 = 30 (= 2 x 3 x 5) and ms is an integer which is not a multiple of 5.

This group gives a generalised quantisation rule,

% + %“duality” + %“triality” + %é“quintality” = 0 (mod1)(1.4.72)

which is the most obvious generalisation of the SM charge quantisation rule. Fur-
ther generalisations are obtained by extending the sequence U(1)®@SU(2)Q SU(3)
with a set of SU(N) factors, where the ‘N’s are greater than 3 and mutually prime
[7].

We will consider the fundamental scale to be the Planck mass (Mpignck) and
our models will be a full description of physics without gravity below this scale.
The assumptions we make about our models essentially lead to the conclusion
that all new fermions with a mass significantly below Mpj,,.x must have a mass
below the TeV scale as explained in section 3.2. Therefore our models all describe
low energy physics (below the TeV scale) and have a desert up to the Planck scale
where new physics will occur. We don’t specify any details about the Planck scale
physics since it is largely irrelevant to low energy physics.

We shall describe the gauge groups considered in this thesis and the motivation
for choosing such groups in more detail in section 2.2.1. We shall consider general
types of gauge groups and also give specific examples, concentrating on the group

G5 defined by egs. (1.4.70) and (1.4.71). When we also impose the condition that
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all fermions are in fundamental representations, as in the SM, we are limited to
the models which we shall consider in this thesis. After choosing the gauge group
we want to examine which low mass fermions (low relative to the Planck scale)
can exist in the model. We must check that the model is then consistent, both
theoretically and experimentally.

The main theoretical constraint is that there are no anomalies as described in
section 1.1. This greatly limits the choice of fermions and their weak hypercharges
in our models.

There is one important fact to keep in mind when proposing any extended
model which has extra non-Abelian gauge groups such as SU(N). As we already
know from the SM, the SU(3) group acts as a technicolour group [9] and gives a
contribution to the W* and Z° masses. In the SM this contribution is very small
but when confining groups with N > 3 are considered we must carefully consider
the effect this will have. Since we are not wanting the complications of extended
technicolour in order to generate quark and lepton masses, we assume that there
is a Higgs doublet and that the masses of the weak gauge bosons are generated
by a combination of the Higgs sector of the theory and the technicolour effects
of the gauge groups. This happens in exactly the same way as in the SM where
QCD gives a small contribution to the W* and Z° masses.

For our models to be perturbatively valid, all Yukawa couplings at the elec-
troweak scale must be not much greater than 1 and consequently none of the
fermions can have a mass much greater than the electroweak scale. This means
that we would expect the thresholds for including the new fermions into the RGEs
to be approximately at the electroweak scale. However, we will sometimes take
a somewhat higher threshold scale for all the new fermions when checking to see
if a model could be perturbatively valid up to the Planck scale. For example, we
can calculate the running gauge coupling constants, assuming that all the new
fermions can be included in the RGEs at the TeV scale. Thus we can check to

see if any gauge coupling constant becomes infinite below the Planck scale (i.e.
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if there are any Landau poles, especially for the U(1) coupling). If the threshold
was lower then the new fermions would affect the coupling constants even more
but this would only be a small effect. Obviously we do not want the coupling
constants to become infinite or the theory will be inconsistent. When we do this
we find that there are few self-consistent models allowed by our assumptions, in
the sense that for any particular gauge group only a few combinations of fermions
which cancel the anomalies do not cause the U(1) gauge coupling to diverge.

We will show that in the model with gauge group G5 we can add new fermions
with masses accessible to present or planned future accelerators, in particular a
fourth generation of quarks without any new leptons. Although the model is
consistent and can be tested experimentally in the near future, it is not called
for theoretically and does not resolve any of the outstanding problems of the
SM. Nevertheless it is the simplest alternative to the SM which has the same

characteristic properties as the SM itself.

1.5 Outline of thesis

In chapter 2 we will discuss our method of constructing models and describe in
detail the types of models our method leads us to consider. We shall compare
these models to some alternatives and try to justify our approach in comparison
to these others. We will also compare our method of choosing the fermion content
of our models to previous methods of deriving the SM generation of quarks and
leptons. We shall see that our methods provide a consistent derivation of the SM
generation without introducing any phenomenological arguments.

In chapter 3 we shall discuss the experimental constraints which arise from the
consistency of the SM with experiments. This includes the experimental limits on
the mass of the top quark and the masses of new, undetected fermions. We will
show that current experimental limits provide lower limits for new quark masses.

We will also show that no more massless fermions are allowed in our models and
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so we are justified in using the simplification of the anomaly constraints when
all fermions get a mass via the SM Higgs mechanism, derived in section 2.4.
We will also consider the technicolour-like effects of fermion condensates in new
non-abelian groups and the resultant reduction of the SM Higgs VEV relative
to its SM value. This will lead to a corresponding reduction in fermion masses.
Finally we will discuss the constraints imposed by the effects of loop corrections
in the electroweak theory. The deviations from tree-level relations are measured
by precision electroweak measurements and can be parameterised in such a way
that we can derive some simple constraints on the number of new fermion SU(2)
doublets in our models.

In chapter 4 we shall show the difficulty of constructing a model where all the
new fermions are in 5-plet or anti-5-plet representations of SU(5). We will begin
by considering the general problem of producing an anomaly-free set of fermions
when we make no simplifying assumption about the fermions getting a mass via
the SM Higgs mechanism. Then we shall consider the simpler case where we find
anomaly-free sets of massive fermions but cannot satisfy the condition that there
is no U(1) Landau pole below the Planck scale.

In chapter 5 we will see how the difficulties of chapter 4 can be overcome by
also adding fermions which are SU(5) singlets; in particular a fourth generation
of quarks but no fourth generation of leptons. We will also show how such a
solution can be formulated in a more general gauge group. Once we have produced
an acceptable model we then investigate in detail how well it agrees with the
precision electroweak data and experimental limits on quark masses. We show
that the model can be chosen in such a way that it is acceptable using current
experimental data but that it is very close to current limits and will soon be
confirmed or rejected by new data.

In chapter 6 we will discuss a different type of model. In some ways this model
is similar to the others discussed in this thesis. However, the type of group is quite

different and cannot really be claimed to be suggested by the SM. We will still
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have a charge quantisation rule (in fact 4 rules) but we will not introduce any
more low mass fermions. The gauge group is an extension of the SMG but in
this model the SMG is a diagonal subgroup of the full group. The SM fermion
Yukawa couplings to the SM Higgs boson are viewed as effective couplings in a low
energy effective theory. The fundamental Yukawa couplings to the Higgs bosons
responsible for the symmetry breaking down to the SMG are assumed to be of
order 1. The details of this symmetry breaking are parameterised and we vary the
parameters to obtain the best order of magnitude fit to the SM fermion masses
and mixing angles. We compare our results to a very similar model.

In chapter 7 we shall sum up the results of this thesis and discuss the overall

merits of such models.



Chapter 2

Building a Consistent Extension

of the Standard Model

2.1 Types of Extensions

There are many ways to extend the SM so the first step is to decide what type
of extensions to consider. To do this we have decided to use the SM itself as
a guide. By this we mean that we shall only consider extensions with features
similar to the SM. This does, of course, rule out many popular models. Some of
the models ruled out by our approach are; GUTs, SUSY models and any model
which includes quantum gravity. GUTs are ruled out because the idea of coupling
constant unification is not directly suggested by the SM. It is true that the gauge
coupling constants almost converge at an energy of approximately 10'5 GeV but
it is now known that they do not meet exactly. It can be argued that this is a
sign that there is unification and the reason it is not apparent is that the SM and
simple GUTs are not correct and so do not give the correct RGEs. Indeed it is
now known that SUSY GUTs can allow unification consistent with the current
experimental measurements of the gauge coupling constants.

However, we do not consider SUSY theories because there is no evidence for

25
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such theories, either from experiment or the structure of the SM itself. Introducing
SUSY to explain the gauge hierarchy problem (why the electroweak scale is so
much smaller than expected radiative corrections from a fundamental theory at
the GUT or Planck scale) or to allow coupling constant unification is not justified
in our approach of using known features of the SM which are apparent at low
energies (energies accessible to current accelerators).

Models involving quantum gravity must be considered at some stage since it
is widely accepted that the existence of classical relativity requires the existence
of a fundamental quantum theory of gravity. Superstring theory is the current
candidate for a theory that combines quantum field theory and quantum gravity
in a consistent way. However, so far no-one has managed to solve the theory to
predict physics below the Planck scale. So even if this theory is accepted, there
are still many possibilities for models below the Planck scale. So our approach
is to start from the SM and try to extend this accepted model to other possible
models below the Planck scale. We will assume that our models are valid up to
the Planck scale and that some fundamental theory such as string theory will then
unify the model with quantum gravity.

In this chapter we will discuss in detail the type of extensions we do consider
and try to justify our method. Then we shall discuss how our extensions fit in
with the theoretical constraints of anomaly cancellation. Finally we shall discuss
how our methods can be used to reproduce the generation of quarks and leptons
within the SM itself. This can be seen as a check that our methods are consistent

with the idea of using only fundamental features of the SM.

2.2 Extrapolations From the SM

In this section we discuss aesthetic extrapolations from the SM. These are fea-
tures of the SM which have no obvious explanation but in some way can be used

to specify the model almost uniquely. We try to pick out these features and carry
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them over to or generalise them in our extended models. This is a method of
selecting a particular type of model and our view is that this is the most log-
ical method although the features chosen may of course be subject to personal

prejudice.

2.2.1 Extending the Gauge Group and Charge Quantisa-
tion

As stated in section 1.4, an obvious way of extending the SM is to extend the

gauge group. The SMG is:

SMG =U(1) ® SU(2) ® SU(3)/Ds (2.2.1)

where the discrete group

Ds = {(e*™6, — I, PL)" : n € 24} (2.2.2)
ensures the quantisation rule, eq. (1.4.67). We believe that the most obvious
extension is to add more special unitary groups to the sequence U(1) ® SU(2) ®
SU(3) and to use a different discrete group so that the quantisation rule above is

generalised. In [7] it is argued that the group should be of the form
G,=U1)® SU(2)® SUB)® SU(5)® ---® SU(p)/D, (2.2.3)

where the product is over all SU(q) where ¢ is a prime number less than or equal

to the prime number p. The discrete group DP is defined as
Dy, = {(e%Ne, — I, €23 L;, €™ S, . &P e 2y} (2.24)

where N, = 2 x 3 x5 x --- X p and my is an integer which is not a multiple
of N. In fact we can obviously choose 0 < my < N — 1 since my is really only
defined modulo N. We also have the freedom to choose that there are, for example,

at least as many SU(2) doublets which are N representations of SU(N) as N
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representations since we can conjugate SU(N) and set my — —my (mod N).
We will use this fact later to eliminate duplicate solutions where all N-plets and

anti-N-plets have been interchanged. This also allows us to fix m3 = 1 rather than
2 as in the SM.

The group Dp gives a generalised quantisation rule:

1 1
% + 5“duality” + g“triality”+

%“quintality” 4ot -I%p-“p —ality” = 0 (mod 1) (2.2.5)
We will also consider the more general groups defined as:
SMGamnyN,..n, =U(1) @ SU(2) @ SU(N) ® - @ SU(Ny)/Dan,y..ve (2.2.6)
where
Doy, = {(€N — I, e2™mm/Mipy | Pmmn/Ne [ ™ m o€ 24} (2.2.7)

Here N =2 x N; x --- x Ny and the N; are odd and mutually prime (we can ob-
viously assume they are arranged in ascending order). So the charge quantisation

rule is:

y 1 My my
24 -d 1 k = di 2.
5 + 5 + N, n o+ -+ N, ng =0 (mod 1) (2.2.8)

where we have defined d to be the duality and n; to be the N;-ality of a represen-
tation. The groups SMGyan are the minimal extensions of the SMG (= SMG»3)
which are inspired by the SMG, in the sense that each is also a cross product of
U(1) and a set of distinct special unitary groups, with a charge quantisation rule
involving all the direct factors, and contains the SMG as a subgroup.

It has been suggested that a defining property of the SMG is that it has few
outer automorphisms relative to the rank of the group [10]. This can be described
by saying that it is very skew. If we accept this principle, which is suggested
by random dynamics [7], then the groups SMGyn, N,..N, are naturally suggested
as alternatives to the SMG. In particular, the requirement that all the NN; be
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mutually prime and the definition of the discrete group Dan,n,..n, follow from
this principle. In fact, the stronger requirement that all N; should be prime
is suggested [11]. Alternatively we can derive eq. (2.2.8) directly as a natural
generalisation of the SM charge quantisation rule, eq. (1.4.67).

We can also consider the charge quantisation rules and the condition that the
N; should be mutually prime to be suggested by the SM charge quantisation rule.
This is because the generalised quantisation rule shares the property with the SM
rule, eq. (1.4.67), that a given allowed value of ¥ implies a unique combination
of N-alities: (duality, triality, ..., N;-ality, ...) !. This is true provided we also
make the assumption about small representations which we discuss in the next
section.

Of course it is possible that the apparent charge quantisation rule in the SM
is simply due to chance; i.e. the fermions in the SM just happen to obey that
particular rule. However we believe that the quantisation rule is a fundamental
feature of the SM; so we argue that it is very difficult to see how there cannot be
a generalisation of this rule in an extended model, while still retaining the general
features of the SM. In fact the form of the generalised charge quantisation rule
is suggested from the SM and there seems to be little choice in selecting the
rule since the SM rule appears to be the one which involves all the direct factors
equivalently. It could even be argued that the choice of the most complicated
charge quantisation rule in some way defines the SMG. This is why we have

divided out the discrete groups D,, and Dyn,. N,

2.2.2 Small Representations

In the SM, for each SU(N) group, the fermion representations are either N-plet

(N), anti-N-plet (IN) or singlet (1). This can be described by saying that all the

1This corresponds to the global group, associated with the generalised charge quantisation

rule, having a connected centre [7].
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fermions lie in fundamental representations of each SU(N) group to which they
couple. We pick this as a feature of the SM which we shall extend to our models.
We note here that this is in contrast to some other attempts to extend the SM.
For example in SUSY there are fermions in other representations (e.g. gauginos
in adjoint representations). Fundamental representations are also suggested in
[12] since these make the Weyl equation most stable when considering random
dynamics 2.

Another feature is that the weak hypercharge is in some way minimised in
the SM, subject of course to the constraints of anomaly cancellation and charge
quantisation, as we shall show in section 2.5. So in our extended model we will
choose hypercharge values close to zero whenever possible. More precisely, we
choose to minimise the sum of weak hypercharges squared over all fermions. This
will also minimise the running of the U(1) gauge coupling constant and so give

each model the best chance of being consistent up to the Planck scale, which we

require as stated in section 2.2.3.

2.2.3 Higher Energies - Desert Hypothesis

The SM has been tested at energies up to a few hundred GeV. There have been
many theories proposed which would be valid at energy scales ranging from 1
TeV up to the Planck scale around 10'® TeV. Many of these theories have a large
range of energy where no new physics occurs. One example is GUTs where there
is typically no new physics from the SM energy scale up to the grand unification
scale around 10'2 TeV. An alternative is that there is no new physics until the

Planck scale where we can be almost certain that quantum gravity will have a

2In fact, from this point of view, each representation of the full gauge group should only be
non-singlet with respect to one non-Abelian factor. This is not true for the left-handed quarks
but is true for all other fermions in the SM. However the left-handed quarks are required in
order that there are no gauge anomalies. So we can consider that the Weyl equation is as stable

as possible if we only have small representations.
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significant effect. We shall adopt this view for our extended models. This means
that once we have set the mass scale for the fermions in the extended model, we
can calculate the running coupling constants and check to see if there is a Landau
pole below the Planck scale, i.e. whether the U(1) gauge coupling becomes infinite
below the Planck scale. If there is a Landau pole then we will conclude that such

a model is not consistent.

2.3 Alternative Groups

In this section we shall describe some alternative extensions of the SM. We will
consider groups similar to those we are examining in the main part of this thesis in
the sense that they contain the SMG and additional special unitary group factors.
This obviously does not include models which unify the individual components
of the SMG or models which involve SUSY. There have been many such models
and the additional symmetries are usually used to explain; coupling constant
unification, the number of families in the SM, or the fermion mass hierarchy, in a
fairly natural way.

In the models described in section 2.2.1 the SM fermions cannot couple to any
new gauge fields because of the charge quantisation rule. This is due to the fact
that all values of £ in the SM are multiples of % and so the charge quantisation
rule, eq. (2.2.8), forces the SM fermions to be singlets of all SU(NN) groups where
N > 3 due to our assumption about small representations.

However the situation is more complicated if we allow more than one SU(N)
gauge group for any particular N. Where we have N = 2 or 3 there are two
distinct cases. In the first case the SM group SU(N) is an invariant subgroup of
the extended group. We then call the extra SU(N) groups a horizontal symmetry.
In the other case the SU(N) group in the SMG is not an invariant subgroup and

is generally a diagonal subgroup of the extended group.
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2.3.1 Invariant Subgroup Case: Horizontal Symmetries

If we have one more SU(2) or SU(3) group then we can have a horizontal sym-
metry (a non-abelian symmetry which places fermions from different generations
in the same multiplet). The idea of a gauged horizontal symmetry is not new
and has been used to try and explain the mass hierarchy of the SM fermions [13].
However, an SU(N) group with N > 3 is not a possible horizontal symmetry
without introducing many more fermions because there are only 3 generations of
SM fermions and the smallest non-trivial representation of SU(N) is the N-plet.
For example if N = 5 we would have an SU(5) horizontal symmetry and so we
would need at least 5 generations of SM fermions. Even with 5 generations this
would not fit into our type of models since the SM fermions could not then obey
the charge quantisation rule,

AN
2+2+3+m55_0 (mod 1) (2.3.9)

where ¢ = quintality = 5-ality. Therefore we will only consider SU(3) and SU(2)
groups as candidates for a horizontal symmetry.

If the horizontal symmetry gauge group is SU(3)y then we must place fermions
from different generations in the same triplet (or anti-triplet). It turns out that
the only way to do this, avoiding anomalies (see section 1.1) and not introducing
any new fermions, is to put all fermions in the same (or conjugate) representation
of SU(3)y as they are in the colour group, SU(3)¢, of the SM; so that all three
generations of left-handed quarks are put in a triplet (or anti-triplet) of SU(3)x
etc. However, the SM fermions would not then obey the charge quantisation rule
which might be expected, similar to eq. (2.2.8):

1 1
+yd+stotstn=0 (mod1) (2:3.10)

y
2

If the horizontal symmetry group is SU(2)y then we can make some or all
SM fermions triplets of SU(2)y. This would allow the fermions to satisfy the

charge quantisation rule but triplets are not the smallest representations of SU(2)
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and so we do not favour this as explained in section 2.2.2. We could place some
fermions in doublets of SU(2)y. This could be done, without introducing any
anomalies, by placing two generations of quarks in the same doublet or taking
two generations and placing the fermions in the same representation of SU(2)y
as they are in the electroweak group SU(2)r. Different doublets could connect
fermions from a different pair of generations. For example left-handed quarks
from the first and second generations could be in the same doublet, right-handed
‘up’ quarks from the first and third generations could be in the same doublet and
right-handed ‘down’ quarks from the second and third generations could be in the
same doublet. This would not give any anomalies though it is difficult to see how
this could be used to explain the fermion masses.

The main problem with these types of models is that fermions in different
generations with very different masses are put in the same multiplet. This means
that the fermions would naturally get the same mass. It is difficult to break the
symmetry in such a way that the masses of all the different fermions are split by
realistic amounts [13].

To sum up, we do not consider these possibilities in this thesis because triplets
of SU(2) are not fundamental representations and the other possibilities, with
fermions in fundamental representations of the gauge groups SU(2)y or SU(3)n,
mean that the fermions could not obey the extended charge quantisation rule.
Of course models involving horizontal symmetries do not enforce such charge

quantisation rules or require small representations of SU(2)y.

2.3.2 Non-invariant Subgroup Case: SMG as Diagonal Sub-
group

In the case where, for example, the SU(3)c subgroup of the SMG is not an
invariant subgroup of the full gauge group, the only possibility is that it is a
diagonal (or anti-diagonal) subgroup of SU(3)™ for some integer n. In this type of
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model different generations can couple to different SU(2) and SU(3) gauge groups
in the full gauge group. There would then be symmetry breaking to produce the
SMG in such a way that SU(3)c¢ could be said to be a diagonal subgroup of all the
SU(3) groups in the full group which exists at energies higher than the symmetry
breaking scale. In other words, SU(3)¢ is then the subgroup in which all the
SU(3) groups undergo the same transformations. In this way it is trivial to cancel
all the anomalies since each generation of quarks and leptons cancel all anomalies
separately and couple to a U(1) ® SU(2) ® SU(3) subgroup of the full group in
the same way as they couple to the SMG. This is in contrast to the invariant
subgroup case where the SM fermions had to couple to the SMG and also to other
subgroups of the full gauge group. Also, in the diagonal case, the dimension of
each representation is the same as in the SM, whereas, in the invariant subgroup
case, the dimensions were larger since different SM representations were combined
under the horizontal symmetry.

This type of model has been proposed [14] as an alternative to horizontal
symmetries or grand unification. Examples include topcolour models [15] and the
anti-grand unification model [16], where the group SMG® = SMGRSMGRSMG
has been used to successfully predict the values of the gauge coupling constants.
The anti-grand unification model has also been analysed as a model to explain the
hierarchy of SM fermion masses [17]. Here the extended model with gauge group
SMG? ® U(1); has been fairly successful at reproducing the observed fermion
masses in an order of magnitude approximation (reproducing all SM fermion
masses within a factor of 2 or 3). The extra U(1l); gauge symmetry is called a
flavour symmetry and is required to produce the observed mass differences within
the second and third generations, e.g. my, < m;.

We note that the fermions in some of these models obey the extended charge

quantisation rules which we would expect. For example the fermions in the SMG®
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model obey the charge quantisation rules:

yi 1 1
=4 =d;+ -t = 2.3.11
5 T 2dt + 3tz 0 (mod1) (2.3.11)

where the three copies of the SMG are labelled by : = 1, 2 and 3. With three
separate charge quantisation rules, this is not truly a straightforward extrapolation
of the SM charge quantisation rule. However it is similar in the sense that these
rules are required to produce the group SMG® which has as large a value of x
3 as the SMQG itself. The quantity x measures how strongly intermingled the
U(1) subgroups are with the semi-simple part via dividing discrete groups (i.e
equivalently via the quantisation rule(s)). It happens that groups of the form
SMG™ have the largest possible value of this measure; x= log(6)/4. The charge
quantisation rules:

Yi 1 1
=+ sdi+ St
5 T2%73

ysf = 0 (mod1) (2.3.13)

0 (mod1) (2.3.12)

are chosen to maximise x for the group SMG® ® U(1); among all those with the
same algebra although this group does not have as large a value of x as the SMG.
In fact x = In(6°)/13 = 21n(6)/4 for the group SMG®* @ U(1);.

However, the symmetry breaking scale of the group SMG?® is taken to be just
below the Planck scale in the anti-grand unification model and in most of this
thesis we wish to study the possibilities of new physics at much lower energies;
energies of the same order of magnitude as the electroweak scale rather than the
Planck scale. This is still possible in such a model but it then loses its ability
to predict the gauge coupling constants. Topcolour models do introduce new

dynamics at the TeV scale but in this thesis we shall not consider such models.

3The quantity y is defined in [11] for any group G as x(G) = In(¢(G))/r(G) where r(G) is the
rank of the group G. Further, ¢(G) is defined as the order of the factor group, obtained by divid-
ing the group of all abelian charge combinations (y1, ¥z, - - ., ¥ ) allowed for any representations
of the group G, by the group of those abelian charge combinations allowed for representations

trivial under the semi-simple part of the group G.
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We will discuss the model with gauge group SMG®®U(1); in chapter 6 where
we will use it to try to explain the fermion masses and mixing angles in the SM.
However, this is only a small part of this thesis so we will continue with our main

approach where we look for models with new low mass fermions.

2.4 Fermion Mass and Anomaly Cancellation

In the SM fermions get a mass via the SM Higgs mechanism. To do this in a

general gauge group of the form
U(1)® SU(2)®G/D

where G is any Lie group and D is a discrete group, a left-handed fermion repre-
sentation (y, 2, R) should occur together with the left-handed anti-fermion repre-
sentations (—[y 4+ 1],1,R) and (—[y —1],1,R). We shall refer to this as the mass
grouping {y, R} where R is a representation of G (irreducible in our models). As
explained in section 3.1.1 we assume that all fermions in our models, other than
the leptons which have already been observed, get a mass by this mechanism. We
shall now describe what consequences this has for anomaly cancellation in our
models, where G is a product of SU(N;) groups with N; > 3.
We consider the grouping {y, R} for the gauge group

k
U(1) ® SU(2) ® [I SU(N:)/Dan, ..N,
i=1
where the irreducible representation R is made up of fundamental (N; or N,-)

or singlet representations of each factor SU(N;). The contribution to each type

of anomaly from this grouping, {y, R}, is easily calculated, using the results of



37

section 1.1, to be as follows.

[SU(N)? — 2Sgn + Sgp(—n) + Sr(—n) =0

[SUWN)PPUQ) — 2Spn’y — Spn*(y +1) — Sgn*(y—1) = 0

[Grav]?U(1) — 2Sry+ Sr(—y—1)+ Sr(-y+1) =0
Uy — 2Spry®+ Sr(—y —1)°+ Sr(-y +1)* = —6Sgy
[SU@PPvQ) - 2SRy

Here n; is the N;-ality of the representation R and Sg is its dimension (size).

So we can see that the above grouping which is necessary to give a mass to
the fermions also simplifies the anomaly constraints. In particular, if we take all
fermions to be grouped in this way then we are only left with the single constraint

for the absence of the mixed gauge-gravitational and gauge anomalies
> S;y;=0 (2.4.14)
J

where j labels each grouping {y;,R;}.

There will also be no Witten anomaly, since we must have an even number of
SU(2) doublets to satisfy eq. (2.4.14). This follows from the charge quantisation
rule (2.2.8), the fact that N; are all odd and the assumption of fundamental or
singlet representations for each SU(N;) subgroup. Using the charge quantisation

rule and defining

& MmNy

4 = ;:1 N, (ns); (2.4.15)
we can write

Y 1 e

H =it -+ = 24.1

9 = Ci + 2 + 4, ( 6)

where c¢j,d; and e; are integers and d; are odd. Therefore, since eq. (2.4.14)

can be written as 3-; S;% = 0, we must have °; S;2 = 0 (mod 1). In other
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words 3°;5; =0 (mod 2), which means that there are an even number of SU(2)

doublets and so no Witten anomaly.

2.5 Deriving the SM Generation

In this section we shall first give a short description of the SM quarks and leptons
which form all the known elementary fermions. We shall then show how the appli-
cation of anomaly cancellation and some other assumptions can be used to derive
a SM generation of quarks and leptons without making any specific assumptions
about the fermion representations in the SM gauge group. We can derive not
only the non-abelian representations but also the abelian representations (weak
hypercharge) by using a charge quantisation rule. This is one of the reasons we
consider the charge quantisation rule to be a fundamental feature of the SM and
so justify generalising it in our extended models. Also, the assumptions required
to derive the SM generation are used to derive the properties of fermions in our
extended models.

Finally we compare our derivation to alternative methods of deriving the SM
generation. The main difference is our use of the charge quantisation rule as a
fundamental property of the gauge group rather than simply a consequence of
the SM fermion representations. We consider this to greatly simplify the other

assumptions needed to derive the SM generation.

2.5.1 The SM Generation

In the SM there are 3 generations of fermions which are identical except for their
masses. Each generation consists of 15 Weyl fermions and can be divided into a
lepton generation and a quark generation. The quarks couple to the SU(3) gauge
group whereas the leptons are SU(3) singlets and so do not ‘feel’ the strong force.

The properties of these fermions are shown in table 2.1. The fermions are labelled
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as in the first (lightest) generation.

Table 2.1: The lightest SM generation.

Generation | Fermion | Representation of | Representation | Electric Charge
Label SU(2) @ SU(3) of U(1), ¥ Q@
u 5
2,3 &
: -
L
Quark ur, 1,3 — % - %
dr 1,3 : 1
Ve 0
Lepton 2,1 -1
e -1
L
er 1,1 1 1

The quark generation is formed by the representations (3,2,3)z, (—3,1,3);
and (2, 1,3)y of the gauge group U(1)® SU(2)®SU(3). This is precisely the mass
grouping {3,3} (where the representation 3 is of the gauge group SU(3)) described
in section 2.4. All the quarks get a mass by the Higgs mechanism. The lepton
generation is formed by the representations (—1,2,1)r, and (2,1,1)r, of the same
gauge group. However, this is not the same as the mass grouping {—1,1} because
there is no right-handed neutrino (no anti-neutrino representation (0,1,1)z) in
the SM. This means that the neutrino is massless in the SM but the electron can
still get a mass by the Higgs mechanism. However, the lepton generation gives

the same contribution to all anomalies as the mass grouping {—1, 1} would, since
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the right-handed neutrino would be totally neutral (i.e. would not interact with

any gauge fields).

2.5.2 Derivation of the SM Generation

In fact, we can derive the SM generation using the following assumptions:
(1) The SM gauge group: SMG = S(U(2) ® U(3)). This includes the charge
quantisation rule eq. (1.4.67).
(i1) Mass protection: This means that we cannot have left- and right-handed
fermions with the same representation of the SMG. Also we cannot have a right-
handed neutrino since it can get a Majorana mass.
(ii1) Anomaly cancellation: In addition to the cancellation of gauge anomalies, the
Witten global SU(2) anomaly and the mixed gauge and gravitational anomaly
must also be absent.
(iv) Small representations: This means (c.f. section 2.2.2) that all fermions are in
either fundamental or singlet representations of the SU(2) and SU(3) subgroups
and the sum of weak hypercharge squared for all fermions is as small as possible.
So our aim is to minimise the value of Y_; S; (%‘)2 (where S; is the dimension
of representation : with weak hypercharge y;) for all possible choices of mass
protected fermions in fundamental or singlet representations of SU(2) and SU(3),
assuming the charge quantisation rule, eq. (1.4.67), and cancelling all relevant
anomalies. We note that for one SM generation (which satisfies assumptions (i)
to (iii))

xS (%)2 = 13—0 (2.5.17)

and we show that there is no other mass protected solution of the anomaly con-
straints with

2
10

(%
s (2) <3 (2.5.18)
So we shall prove that one SM generation also satisfies assumption (iv) and thus

we will show that assumptions (i) to (iv) define the SM generation. Note that
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Table 2.2: Contributions of S (32‘)2 for all fundamental and singlet representations
of SU(2) and SU(3) for any value of weak hypercharge which satisfies eq. (1.4.67).
All ‘N’s are integers so that the charge quantisation rule, eq. (1.4.67), is satisfied.

S is the dimension of the non-abelian representation.

Representation of

2

Type | SU(2) @ SU(3) ¥ S (%)
a 2,3 Na+ 5 |6N2 42N, + 5
9 1 2 1
b 2,3 Nb_g 6Nb—2Nb+§
c 1,3 Ne—L1|3N2—2N.+1
d 1,3 Ny+ 3 |3N}+2Ns+3
e 2,1 N.—1|2N2-2N.+1

in order to satisfy assumption (iv) we must satisfy eq. (2.5.18) . So in the
following analysis we will implicitly assume eq. (2.5.18). Table 2.2 shows all

2
allowed representations and their contribution of S (32‘) .

4This requirement of small values of weak hypercharge is different from other approaches
where the aim is usually to find the minimum number of fermions. The charge quantisation rule
means that all fermions will have non-zero weak hypercharge (we don’t consider right-handed
neutrinos) and so the solution will not have a large number of fermions, but it will not necessarily
be the minimum number. When considering groups with SU(N) where N > 5 we will look for
the minimum number of fermions since this is simpler and will usually produce the solution with

minimum sum of weak hypercharges squared.
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In order to satisfy eq. (2.5.18) we must choose N, = N, = 0, N, € {0,1},
N; € {-1,0}, N. € {0,1} and Ny € {-1,1}. (We don’t consider Ny = 0
because this would be a right-handed neutrino which would not contribute to any
anomalies and would be expected to get a Majorana mass of the order of the
Planck mass). This means that we cannot have mass protected fermions of both
types @ and b. So we can choose, without loss of generality, that there are no
fermions of type b °. So we get table 2.3 which shows all allowed fermions and
contributions to some anomalies.

For mass protection we cannot have any of the following combinations; types
c; and d;, types c; and ds, types e; and e;, or types fi and f; (all defined in
table 2.3). Also note that all the types of representations in table 2.3 contribute
to the mixed anomaly, }°; S;y;. This means that we cannot use only type f
fermions to produce an anomaly-free set of mass protected fermions. Therefore,
if no fermions couple to the SU(3) group, we would require some fermions of
either type e; or e;. But then there would be no way to cancel the [SU(2)]?U(1)
anomaly. So we can conclude that some fermions must couple to SU(3).

Suppose there are no fermions of type a. Then the above arguments mean
that, to cancel the [SU(3)]® anomaly, we must have equal numbers of either types
¢1 and d; or types c; and d;. But then there is no way to cancel the [SU(3)]*U(1)
anomaly. So we have a contradiction which, means that there must be at least
one type a.

The [SU(2)]?U(1) anomaly must be cancelled by having as many type e; as
type a. So there are no type e; due to the principle of mass protection. Again
using the principle of mass protection, the only way to cancel the [SU(3)]® and
[SU(3)]2U(1) anomalies is by having the number of types a, d; and d; the same.
So we can now cancel the [U/(1)]* and mixed anomalies using table 2.4.

So we can see that the anomaly-free set of mass protected fermions which

5Choosing no fermions of type a would lead to an equivalent solution with opposite chirality.



43

Table 2.3: All allowed representations of fermions which could be used to satisfy

eq. (2.5.18) and their contributions to some anomalies.

Representation of
Type| SU@)@SUG) | ¥ |S(4)" |[SUGP |ISUGIFUQ) [ SU@PUQ)
: 23 || b | 2 % %
“ 1,8 —3| 3 1 ~1 0
2 1,3 2 : 1 2 0
dy 1,3 1 1 -1 : 0
dy 1,3 =1 -1 -2 0
e1 2,1 -1 L 0 0 -1
es 2,1 : : 0 0 L
fi 1,1 -1 1 0 0 0
fa 1,1 1 1 0 0 0
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Table 2.4: Allowed combinations of fermions and their contribution to the remain-

ing anomalies.

Types G*U() wayp |s(s)
at+di+dyte|l+1-2-1=-1|L+1-8_1-_7/| I
fi -1 -1 1
fa 1 1 1

minimises the sum of the weak hypercharges squared is one of type a, d;, d, €

and f,. This is one SM quark-lepton generation.

2.5.3 Alternative Derivations of the SM Generation

There have been other attempts to derive the SM generation using various as-
sumptions. Most notably Geng and Marshak [18] have tried to derive the SM
generation using the constraints due to cancellation of anomalies. They also as-
sume mass protection but not the charge quantisation rule eq. (1.4.67). Instead of
minimising the sum of weak hypercharges squared they try to find the minimum
number of fermions required to satisfy these assumptions.

The smallest number of Weyl fermions found by Marshak is 14. This solution
consists of the following representations of the gauge group U(1)®SU(2)® SU(3):
0,2,3), (v,1,3)r, (—y,1,3)r and (0,2,1);. Geng and Marshak rule out this
solution because the SU(2) doublet cannot acquire a Dirac or Majorana mass, even
with the spontaneous symmetry breaking of the gauge group. However, we know
from the SM that the neutrino is massless and so there doesn’t appear to be any
reason why massless fermions should be excluded from such an analysis. (We could

obviously use phenomenological arguments but that would defeat the purpose of
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trying to derive the SM generation). They also object to this solution because they
feel it trivialises the cancellation of the mixed gravitational and gauge anomaly.
In what sense the anomaly condition is trivial is not entirely clear since not all
fermions have zero weak hypercharge; but also why should it matter if a constraint
is trivially satisfied? In our derivation this solution does not occur because of the
charge quantisation rule. So by enforcing the charge quantisation rule, which we
have taken as one of the defining properties of the SMG in section 2.2.1, we can
avoid this solution without introducing dubious arguments about fermion masses
or not allowing ‘trivial’ cancellation of anomalies.

So, if we add the assumption of the charge quantisation rule, we would expect
to find that the SM generation is the smallest possible number of Weyl fermions.
However, there are smaller solutions which have not been considered by Geng
and Marshak. These solutions have 12 Weyl fermions and do not couple to the
SU(3) subgroup. The fermions belong to 6 SU(2) doublets with values of weak
hypercharge given by, for example, —9,—9,1,1,5,11. This set of 12 Weyl fermions
has a huge sum of weak hypercharges squared but this could obviously be changed
by scaling all the weak hypercharges to smaller values. Without assuming the
charge quantisation rule this would be possible. This solution appears to have
been ignored because Geng and Marshak implicitly assumed that at least one
fermion must couple to each part of the gauge group. However, we wish to find a
consistent method of deriving the SM generation and so this must be considered
as an additional assumption.

So if we then also add the assumption that all subgroups must have some
fermion coupling to them, we can almost derive the SM generation. The problem
is that we can scale all values of weak hypercharge for the SM fermions by a

factor of (6n + 1) where n is any integer ®. The SM generation is obviously the

SWithout the charge quantisation rule we could scale the weak hypercharges by an arbitrary
amount. Then we couldn’t use the procedure of minimising the sum of hypercharges squared

since this would obviously force all values to zero. There is then no way to fix the scale other
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solution with the values of hypercharge closest to zero. We can express this by
choosing to minimise the sum of hypercharges squared for this solution. But since
we must introduce such an assumption why not use it from the start?! This then
allows us to drop two of the above assumptions; that all subgroups must have
a fermion coupling to them and that we should look for the smallest number of
Weyl fermions. We are then left with the four assumptions used in section 2.5.2
which we have already tried to justify in this thesis. This seems more reasonable

than introducing more assumptions with no justification.

than by assuming the fermions get a mass by the Higgs mechanism and fixing the scale to the
weak hypercharge of the Higgs boson. So the charge quantisation rule effectively introduces a

scale for the weak hypercharge independent of any Higgs bosons.



Chapter 3

Experimental Constraints on

New Fermions

In this section we shall discuss the constraints on our models which are due to
experimental evidence. In particular we are concerned with the possibilities for
the existence of more fermions and what restrictions can be imposed both directly
and indirectly on their mass. Some difficulty arises since fermions may be confined
and so not directly observable. This means that direct experimental restrictions
will refer to the mass of particles which are combinations of these fermions, like

hadrons in the case of quarks.

3.1 Experimental Limits on Fermion Masses

First we shall discuss the constraints on fermion masses due to the fact that so
far no non-SM fermions have been observed. We shall show that this rules out
any extra massless fermions and then give current limits on the masses of different

type of new fermions.
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3.1.1 Massless Fermions

Only three massless fermions have been observed and they are the three mass-
less neutrinos described in the SM (even if the neutrinos do have a small mass
we know that there are only 3 with a mass less than %M z). Any other mass-
less fermions, which had any significant coupling to the SM fermions or gauge
bosons, would have been observed if they were not confined. When we assume
fermions belong only to fundamental and singlet representations (as postulated
in section 2.2.2), the charge quantisation rule in our models ensures that the only
possible fermions which would not be electrically charged would be neutrinos. A
left-handed neutrino without a right-handed neutrino would be massless as in the
SM. We already know that there are only three such neutrinos and so we cannot
consider this as a possibility for new fermions. A right-handed neutrino would be
completely decoupled from the gauge group and so it could get a gauge invariant
Majorana mass. So we would expect that it would have a mass ~ Mpjgncr and so
it is excluded as a low mass fermion in our models. Therefore any new massless
fermions in our models must be electrically charged and so must also be confined
by a new interaction well above the QCD scale, on phenomenological grounds.

If there is a confined gauge group then we assume that fermion condensates
will be formed as in QCD. If a fermion doesn’t have a chiral partner with respect
to some confined group H, the condensates formed will break the group H. So
if we assume that there is no spontaneous gauge symmetry breaking, other than
that of the electroweak symmetry group, no fermions can be chiral w.r.t. G where
the full gauge group is U(1) ® SU(2) ® G/ D (where D is some discrete group). In
our models the extra SU(N) gauge groups are all confining (with negative beta
functions), so that G = H. This leads to the phenomenological requirement that
all new fermions with a mass much lower than the fundamental scale (Planck
scale) should get a mass via the SM Higgs mechanism.

If the left- and right-handed fermions occur with the same representations of
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the full gauge group U(1)®SU(2)®G/ D, then the fermions can form a Dirac mass
term in the Lagrangian. So they would be expected to get a mass comparable
to the fundamental scale, which we take to be the Planck mass in our models.
Such fermions would not contribute to any anomalies and would not be observable
because of their high mass. We shall therefore ignore them in our models. If a
fermion cannot form such a fundamental Dirac (or Majorana) mass term then
we say it is mass protected, since it would be fundamentally massless and could
only get a mass indirectly through some interaction such as the Higgs mechanism.
All the fermions considered in our models are mass protected by the electroweak
interactions.

We conclude that all new fermions in our models must get their mass from the
Higgs mechanism. Furthermore, they must couple to the usual SM Higgs particle
in the same way as the SM fermions. In other words, the fermion condensates
must have the same quantum numbers as the SM Higgs boson; otherwise their
contributions to the W* and Z° masses, via the usual technicolour [9] mechanism,
would be analogous to those from the vacuum expectation values of Higgs particles
with non-standard weak isospin and hypercharges. This would lead to a significant
deviation of the p parameter (p = —;M‘%’——) from unity [19] in contradiction with

MZ cos?0yy

precision electroweak data.

3.1.2 Massive Fermions

In the SM there are two different types of fermions, quarks and leptons, which
differ by the fact that quarks couple to the SU(3) gauge fields and so are confined,
whereas leptons have no direct coupling to the SU(3) gauge fields and are not
confined. There are experimental limits on the masses of any quarks and leptons
which have not yet been observed. If there are any more leptons then they must
have a mass greater than 45 GeV [5]. We shall assume that there are no more

leptons, since even the neutrino would have to get a mass larger than this and it
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is difficult to see how a neutrino could naturally be given a mass greater than 45
GeV but still much lower than the fundamental scale (which is the Planck scale
in our models). This is because a right-handed neutrino, as already discussed in
section 3.1.1, would naturally get a Majorana mass and so the see-saw mechanism
[20] would leave the left-handed neutrino with a very small mass. For this reason
we cannot allow any more generations of SM leptons. However the limits on the
quark masses are dependent on the type of quark and its decay modes.

The top quark has recently been observed by the CDF [21] and D0 [22] collab-
orations. The mass is in the range 150-220 GeV. We will assume that M; =~ 170
GeV, with a lower limit of 160 GeV which agrees well with the CDF analysis
which is statistically better than the D0 analysis. For the purpose of this thesis

we take the limit on possible fourth generation quarks, ¢’ and ¥, to be
My, My > 130 GeV

from the dilepton analyses of the CDF [23] and DO [24] groups (less restrictive
limits apply if other decay modes are dominant). Note that experimental limits
are taken to apply to the pole masses for heavy quarks.

The above experimental limits do not apply to new fermions which are not
singlets of the additional SU(N) gauge groups. These fermions would be more
difficult to detect experimentally and would anyway be confined inside ‘hadrons’
with a confinement scale (generically at the electroweak scale) much higher than
the QCD scale. For this reason we will concentrate on the masses of new SM
fermions and not make any precise assumptions about experimental lower limits
for fermions coupling to SU(N) subgroups with N > 3.

We require our models to remain perturbative in the desert from the TeV
scale to the Planck scale. So we can use the RGEs to examine how the Yukawa
couplings evolve from the Planck scale down to the electroweak scale. In particular
we study the infra-red quasi-fixed-point structure of the RGEs. In the SM the

fixed point values provide upper limits on the mass of the top quark, M;, and
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the Higgs scalar, My. Similarly in extended models we get upper limits on the
masses of the heaviest fermions, though the precise values depend on the relative
masses of these fermions and also the unknown gauge coupling strength, gn, of
the SU(N) groups to which the fermions couple. Also we must be careful to
point out that the RGEs describe the running of the Yukawa couplings and, as
we discuss in section 3.2, the actual masses will be less than naively expected,
due to the technicolour-like contribution from SU(N) to the electroweak VEV,
v = 246 GeV. As we shall see, this will enable us to quite accurately predict the
masses of some of the fermions we introduce in our model in chapter 5, since we

have theoretical upper limits and experimental lower limits.

3.2 Technicolour Contributions

Technicolour theories [9] have been proposed as an alternative to the Higgs mech-
anism to provide a mass for the weak gauge bosons. This is based on the fact
that QCD would provide a (very small) mass for these bosons without any Higgs
scalars. Similarly any other confining SU(N) gauge groups, with fermions which
are in non-trivial representations of U(1) ® SU(2), are expected to form fermion
condensates which would contribute to the W* and Z° masses. In our models
the charge quantisation rule ensures that all fermions (except a right-handed neu-
trino) would be non-trivial under U(1). Thus all SU(N) groups in our models,
which are coupled to fermions, will contribute to the weak boson masses.

We stress that we are not proposing a technicolour model as such, but simply
taking into account the unavoidable effect that adding an SU(N) group has. We
are assuming that the Higgs sector of our models is the same as in the SM, i.e. one
Higgs doublet and that the fermion condensates have the same quantum numbers
as the Higgs doublet. Then the VEV due to the Higgs field, < ¢ws >, is related to .
the total VEV, v, and the contribution from SU(N) due to fermion condensates,
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F,

™)

by the relation
< ¢ws > +F? = v® = (246.22 GeV)? , (3.2.1)

which is exactly the same as in technicolour models with a scalar [25].
The fermion running masses, my, are related to the Higgs field VEV in the
usual way:

Yy
=== > 3.2.2
m= s dws (3.2.2)

where y; is the Yukawa coupling constant for the fermion f (y is used for both
Yukawa coupling and weak hypercharge but it should be obvious from the context
which is being referred to). The running masses of the SM quarks and general
SU(N)-“quarks” are related to the pole masses by egs. (1.3.65) and (1.3.64) re-
spectively. For SM quarks with a mass of order Mz,

Mf ~ 1.05m_f(Mz) (3.2.3)

where My is the pole mass and my(Mz) is the running mass at p = M.

In order to avoid any significant suppression of the top quark and other fermion
masses, due to the reduction of < ¢ws > below its SM value, we usually imagine
taking

Fr,, <75GeV (3.2.4)

and thus
< pws > > 234 GeV (3.2.5)

In fact we shall quote limits on fermion pole masses based on taking,

F,, = 75GeV (3.2.6)

<¢ws> = 234 GeV (3.2.7)

This means that we expect the SU(5) gauge group to have a confinement scale
above the electroweak scale. By confinement scale we mean the mass of the

lightest ‘hadrons’ other than Goldstone bosons. We can estimate this scale either
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by scaling QCD or using the estimates of [26]. We would expect the confinement

scale to be approximately 5F,, ~ 400 GeV. In fact [26] suggests that this estimate

should be inversely proportional to v/N so we have given the estimate for N = 5.
Eq. (1.3.65) gives the following relation for the pole mass of quark f:

M, = (1 . 40:53(7—:‘/—’1')) yf%f) < bws > (3.2.8)

In the approximation M; ~ Mz we get,

Mf ~ 174y_f(Mz) GeV (329)

This gives a quick guide to the value of the pole mass of a quark with mass of
order Mz but we will, of course, use eq. (3.2.8) when quoting the actual values of
the pole mass for given values of Yukawa coupling.

For SU(N)-“quarks” (with N > 3) we will quote the pole masses based on the
reduced value of < ¢ws > but this will not make much difference compared to
the difference between two choices of SU(N) gauge couplings. Also, we will not
be too concerned about the masses of SU(N)-“quarks” since they will be confined
and the SU(N) confinement scale may be much higher than the electroweak scale.
In this case the pole masses may not even be relevant.

Upper limits for fermion masses are obtained by using quasi-fixed-point values
for the Yukawa coupling constants, ys, as determined from the RGEs in viable
models with a desert above the TeV scale. These infra-red fixed point Yukawa
couplings are of order unity which would lead to thresholds for including these
fermions in the RGEs at the electroweak scale. However for the purposes of
investigating the behaviour of the gauge coupling constants, and especially to
demonstrate that the U(1) coupling constant develops a Landau pole in our model
without new SM fermions (chapter 4), we take a more generous single threshold
of ten times the electroweak scale ~ 1.7 TeV for all new fermions in that model.
For our discussion in chapter 5 of the model with a fourth generation of quarks we
take the more stringent lower threshold value of Mz, to demonstrate the absence

of Landau poles in this case.
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3.3 Precision Electroweak Data

Measurements of electroweak interactions are now accurate enough to be sensitive
to loop corrections to propagators and vertex corrections. These effects are model
dependent and can be sensitive to the values of some parameters such as fermion
and Higgs masses. So far the SM seems to be consistent with the precision elec-
troweak measurements and there is no experimental evidence that the SM is not
correct. Obviously any other viable model should also agree with the data and
in this section we discuss the experimental measurements of radiative corrections
and the theoretical methods of calculating them.

There are many ways of parameterising the precision electroweak data. We
choose the parameters S, T' and U [27] which fully parameterise the precision
data in the limit that all new fermions have infinite masses. However, these
parameters are detailed enough provided none of the new fermions have masses
less than the electroweak scale. These three parameters correspond to different
types of radiative corrections.

The three parameters can be calculated perturbatively. If we consider an

SU(2) doublet (g) with fermion masses my and mp, in the limit:
ém = |mU - mD| L my, mp (3.3.10)

and

m=my X mp>mz (3.3.11)

we obtain the following relations:

1

S = o (3.3.12)
N 1 (6m)?

T ~ 12”262[ = ] (3.3.13)
o2 [(6m)?

A a0

where s = sin 8y and ¢ = cos fw.
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These equations are really only valid when m > mz but are a good approxima-
tion when m > mz. The main uncertainty comes from the fact that they are per-
turbative calculations and there is evidence from scaling known QCD effects that
the contributions from new fermions may be larger than these estimates. How-
ever, it is by no means clear how to calculate these parameters non-perturbatively
and so we shall assume that the perturbative calculation will be accurate enough.
If we assume that the perturbative calculations are a lower limit then we can at
least be sure that any model which appears to contradict experimental data is in
fact ruled out.

The T parameter is a measure of the loop corrections to the p parameter.
Contributions from each massive fermion are proportional to the difference of
the masses squared between the fermions in the SU(2) doublet. Since the SM
(including the top quark) is consistent with the measured value of T', we want the
contribution from the new fermions, Tye, to be small. We can arrange Ty, = 0
by choosing the masses of the new fermions to be degenerate within each SU(2)
doublet.

The SM is also consistent with the experimental value of U. So we want
Unew = 0. Usually the U parameter is unimportant and can be assumed to be
close to zero provided the model does not introduce anomalous W interactions
[28] since it is suppressed relative to the T' parameter by a factor of %%‘ Our
models do not introduce such interactions but we will not always be considering
m > mz. However, as is the case for T}y, a non-zero value of U, requires a
mass splitting in the SU(2) doublets. We are already making this small so that
Thew = 0. Therefore we can safely consider the U parameter to be consistent with
experiment for all our models provided the T parameter is, and so neglect it in
our analysis.

So we are left to consider the S parameter. This parameter does not vanish

in the limit of ém = 0 and m > myz. In fact, in this limit, the S parameter gets
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a contribution of 6—11; from each SU(2) doublet. So if we introduce Npoyplets new

SU(2) doublets, the contribution to S is given by,

NDoubleta
new — 3.1
S. 6r (3.3.15)

An analysis of the precision electroweak data gives [29]:
Snew = —0.21 £ 0.247097 (3.3.16)

where the second error is from the Higgs mass Mpy. The central value is for
My = 300 GeV, the upper second error for Mg = 1000 GeV and the lower one
for My = 60 GeV. So if we take the lower limit My = 60 GeV,

Smew 2 0% 0.24 (3.3.17)

and so Npoubiets new SU(2) doublets would differ from the mean value by ap-
proximately 0.22Np,usiets standard deviations. Note here that the perturbative
calculation of S, predicts a positive contribution from the new fermions and so
there is no way to cancel these contributions with other fermions. Therefore we
can limit Npouslets by choosing how many standard deviations we are prepared
to allow the model to differ from precision electroweak data. For example, if we
wish our model to agree with the data for the S parameter to within 2 standard

deviations, we must ensure that Npoysiets < 9.



Chapter 4

The SMGo3s Model Without New

SM Fermions

Here we will examine the model based on the gauge group SMGa3s = G5 defined
by eqgs. (1.4.70) and (1.4.71), since it is the absolute minimal extension to the SM
among all the possible groups we have proposed in section 2.2.1. In chapter 5 we
will consider models based on the more general groups SM G23n of egs. (2.2.6) and
(2.2.7), including new SM fermions to highlight the general features of all such
extensions to the SM. However we will only analyse the consequences in detail for
the group SMGagss.

In this section we will discuss the two possibilities: (i) that there are no new
fermions beyond those of the SM and (ii) that there are new fermions which all
couple to the SU(5) gauge group. This latter possibility may seem to be tanta-
mount to adding a completely separate sector to the SM rather than extending the
SM, since the new fermions will be confined under a new gauge group. However,
it is really no more a separate sector than the SM is three separate sectors (one for
each generation), since these extra fermions will still couple to the electro-weak
group due to the charge quantisation rule. We will discuss the othér possibility,

that there are new fermions, some coupling to the SU(5) gauge group and others
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not, in chapter 5

4.1 No New Fermions

There is of course the possibility that there are no extra fermions associated with
this enlarged group. If this is so then the only possible observations would be
the detection of SU(5)-“glueballs”. In this case the SU(5) gauge grou