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SUMMARY

This project looks at the signals that induce locomotion in resting B cell 

populations and in germinal centre B cells, both from human tonsil. Signals that 

induce locomotion in blood B cells compared with high-density tonsil B cells 

were also studied. Polarization studies of the response of cells from immunized 

mice to antigen are also included.

B cells were purified from tonsil by established procedures to yield a high- 

density fraction (resting cells out of cycle) and low-density (activated) fraction. 

Germinal centre cells were present in, and were purified from, the latter fraction. 

Cells from these fractions were assayed for locomotor activity.

Two methods were used to study the locomotor activity of B cells;

(1) Polarization assay. Measurement of shape-change from a spherical to a 

polarized shape on stimulation with an attractant. (2) Invasion of collagen gels. 

Lymphocytes overlaid on a collagen gel containing an attractant will migrate into 

the gel in larger numbers than into control gels.

Previous studies of T cells showed that the full development of the capacity for 

locomotion and chemotaxis in lymphocytes requires two stages, (a) Resting cells 

require to be cultured with a growth activator and move from Go into the Gi phase 

of cell cycle. After overnight culture, a locomotor population of cells is obtained,

(b) These cells are now capable of responses to chemoattractants and show 

immediate (<30 min) polarization and locomotion when incubated in their 

presence.



(1) High density B cells. These are small surface IgM+ and surface IgD+ cells 

which are not in cycle. When freshly purified from the tonsil, very few of these 

cells show locomotor capacities. The results presented here demonstrate that 

culture overnight in IL-4, aCD40 or IL-13 induces locomotor shape change in a 

high proportion of high-density B cells. The proportion of polarized cells 

increases slowly over a period of 24-48 hours suggesting that locomotor capacity 

is activated as the cells pass from Go to the Gi phase of growth. Anti-IL-4 and 

anti-IL-13 inhibit the locomotion induced by their respective cytokines. IFN-y 

inhibits the locomotion response induced by IL-4. Culture in combination of IL-4 

and aCD40 stimulates polarization of more cells than culture in either alone. A 

combination of IL-4, aCD40, and algM stimulates polarization of still more cells 

(up to 60-70% of the population). Adding algM to cultures with aCD40, or with 

IL-4 does not increase the polarization significantly compared with either aCD40 

or IL-4 alone.

In addition to study of the effect of locomotor activators on locomotion in 

overnight culture, the immediate (<30min.) effects of attractants on locomotion of 

the resting B cell fraction were studied, using either cells direct from the tonsil or 

cultured B cells. The polyclonal activators, algD and algM, were tested in short 

term assays (30 min. incubation) on freshly isolated cells and on cells cultured in 

IL-4. Both populations showed immediate polarization to anti-Ig, but cultured 

cells responded more strongly than cells direct from the tonsil. The optimum 

attractant concentration of anti-Ig was lOOng-lpg/ml. There was no response to
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the appropriate isotype controls, mouse IgG2a and sheep Ig. Cells cultured in IL-4 

also polarized in a short-term assay to aCD40 (lOOng-lpg/ml) within 30 minutes 

but not to isotype control mouse IgGl. The results suggest that in contrast to IL-4 

and IL-13, anti-CD40 acts not only as a locomotor activator but also as a 

chemoattractant. Cells direct from the tonsil showed no chemoattractant response 

to anti-CD40.

To measure locomotion itself, cells cultured in IL-4 were layered on top of 

collagen gels incorporating algM, algD, aCD40, and HBSS alone, and were 

allowed to invade for 18 hours. The number of cells invading gels incorporating 

any of the three stimuli was greater than that invading gels containing medium 

alone. FACS analysis on invaded cells show that 75 ± 12% of cells were IgM+ 

and 82% IgD+. The gel invasion assay selects the locomotor population and 

demonstrates clearly that small resting IgM+ and IgD+ B cells not only change- 

shape in response to anti-IgM and anti-IgD, but also show invasive locomotion in 

response to these antibodies.

To study the relation between locomotion and cell cycle, freshly isolated B 

cells and cells cultured in IL-4 were pulsed with uridine and thymidine. 

Autoradiography showed that there were very few cells heavily labelled (>10 grains 

per cell) with uridine before culture and this increased to about 40% after overnight 

culture in IL-4. Spherical (non-locomotor) cells were usually unlabelled or very 

lightly labelled, whereas the polarized cells were heavily labelled. Many such cells 

were seen after IL-4 culture, but even the few polarized cells before culture showed
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heavy uridine labelling. There was no labelling with thymidine in these 

experiments. These findings suggest that the cell population activated for 

locomotion also contains the cells most active in RNA synthesis but not DNA 

synthesis.

(2) Germinal centre B cells. Studies on germinal centre B cells showed that like 

resting B cells, they could be activated to locomotion by 6-12 hours culture in IL-4 

and aCD40. Cells in G0 phase of growth responded poorly to attractants until they 

became activated and entered into the Gt phase. Once again, autoradiography 

analysis shows that the cells which incorporated uridine were cells capable of 

polarization. Cells which incorporated thymidine were not polarized. Thus, 

proliferating cells (centroblasts) are not able to recognize attractants. Following 

culture of the germinal centre B cells in IL-4 and aCD40, the activated centrocytes 

were able to recognize alg as an attractant. They responded to algA (lng/ml) and 

algG (lOOng/ml) at very low concentrations, whereas cells responding to algM 

required higher concentrations of antibody (lpg/ml). This suggests that cells that 

have switched isotype in germinal centres are much more sensitive to locomotor 

activation by anti-Ig, and therefore probably by antigen, than non-switched cells. In 

overnight polarization, aCD40 induced polarization better than IL-4 and the former 

also increased the viability slightly, but combination of IL-4 and aCD40 not only 

rescued the germinal centre B cells but also induced a significant polarization 

response.
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(3) Blood B cells. Polarization studies on blood B cells showed similar responses to 

IL-4, IL-13, and aCD40 in overnight culture, but fewer cells responded, compared 

with the high-density B cells. Cells cultured overnight in IL-4 responded to anti-Ig 

in 30 minute assays, but freshly isolated cells did not.

(4) Mouse B cells. These studies were carried out to investigate the locomotor 

response of mouse spleen or lymph node B cells to antigen. In one out of three 

experiments, the immunized mice responded to the administered antigen 

(ovalbumin) significantly compared with non-immunized mice, but the preliminary 

experiments were not impressive and further work is required.
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CHAPTER ONE

INTRODUCTION

and

LITERATURE REVIEW



INTRODUCTION

Immunity is a term that applies to all mechanisms which protect the body 

against environmental agents that are foreign to the body, and leukocytes play the 

vital role in this protection. The functions of leukocytes in response against 

micro-organisms which have invaded differ, depending on the cell type. 

Leukocytes as a whole can be divided into two major groups- myeloid cells, and 

lymphoid cells. Cells of the myeloid system, chiefly, neutrophils and 

macrophages (the tissue-based form of monocytes) eliminate foreign materials that 

have passed through the physical and chemical barriers, by phagocytosis. These 

cells exist in all individuals from birth and are maintained throughout life. The 

second major group of leukocytes are the lymphocytes; T-lymphocytes, natural 

killer cells, and B-lymphocytes. These mediate acquired immunity, and their 

interactions by cell-cell contact and lymphokine production cause the humoral and 

cell-mediated immune responses.

Lymphocytes are the key cells of the immune system and millions of them are 

produced daily from the maturation and multiplication of stem cell and lineage- 

restricted progenitor cells of the bone marrow. B lymphocytes represent one arm 

of the acquired immune response in vertebrates. In the presence of antigen, the 

appropriate clones of cells are activated, and induced to proliferate and to mature 

into antibody secreting plasma cells. This process of differentiation controls the 

production of antibody of a particular class and isotype; the generation of memory 

cells and selLnon-self discrimination. The production of long lived memory cells
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depends on the nature of the antigens. In addition to production of Ig, these cells

can also act as antigen presenting cells (APCs), and can secrete cytokines such as 

IL-6, etc.

The humoral immune response can be either T-cell independent, such as those 

directed against bacterial surface polysaccharides, in which the differentiation 

process to plasma cells is independent of T-cell help, or T-cell dependent , for 

example the activation of B-cells by antigens such as proteins. This induces a 

much more complex sequence of reactions which require the help of T-cells for 

differentiation of the B-cell to a plasma cell or memory B-cell to occur (Parker,

1993). Furthermore, it seems that memory cells are not established in the B-cell 

independent response.

The aim of this thesis is to study the locomotor properties of human B cells;

(1) To define locomotor properties of different populations of B cells purified 

from human tonsils, namely-

(a) High-density B cells direct from tonsil. This is the resting cell population.

(b) High-density B cells after activation by a period of culture in vitro, e.g. in the 

presence of IL-4, anti-CD40 or other activating agents.

(c) Cells activated in vivo, both germinal centre B cells and those with non- 

germinal centre phenotype, e.g. IgD+ cells isolated from the low-density fraction.

(2) To define agents which control cell locomotion;

(a) Activating agents that change the B cell population from a non-locomotor to a 

locomotor phenotype. This requires a period of culture in vitro.



(b) Chemoattractants for B cells, acting either on the resting population or on cells 

following a period of culture with an activating agent.

(3) It is hoped that these in vitro experiments on B cell locomotion will help to 

understand B cell migration in vivo and to define a possible role for antigen in 

stimulating B cell locomotion. They may help to understand homing of B cells to 

sites of antigen or to accessory cells or FDCs. It will be shown that activation of 

locomotion in B cells is related to activation of their function judged by other 

parameters. To provide a background to this study, an outline of B cell 

development and of the factors that influence it is given below.

SECTION ONE 

1-1 ANTIGEN-INDEPENDENT PROLIFERATION OF B-CELLS

Proliferation of B-cells in humans occurs in two steps: The first step, the 

development of stem cells into mature IgM+ IgD+ B-cells is independent of 

antigens and occurs primarily in the bone marrow and/ or fetal liver. It is 

characterised by an orderly cascade of rearrangements of immunoglobulin 

variable region genes that encode antibody specificity and polyclonal 

proliferation. B cell development is the ordered progression of a stem cell through 

a number of stages, such as single productive immunoglobulin (Ig) gene 

rearrangement at the heavy and one of the two light chain loci, expression of a 

number of cell surface markers which can be used to define discrete stages along 

the pathway, finally resulting in a mature B cell. The second step, from the
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mature resting cell to plasma cells and memory B-cells, is antigen dependent and 

occurs mostly in secondary lymphoid organs such as lymph nodes, tonsils, spleen, 

and Peyer's patches.

1-1-1 HAEMATOPOIESIS

Haematopoiesis, the production of blood cells, begins in the yolk sac of the

th thhuman embryo from the 14 -19 day of gestation. Lymphopoiesis has not been 

observed in the yolk sac, but is present in lymph plexuses at 9 weeks, and in the 

lymph glands at 11 weeks, of gestation. Circulating lymphocytes have been seen in 

9 week oid embryos (Gilmor, 1942). The fetal liver becomes the main site of 

haemopoiesis in the second trimester of pregnancy. Lymphocyte subpopulations 

may be detected after 13 weeks of gestation. Finally the bone marrow plays the 

main role in haemopoiesis in the healthy adult individual. Haematopoietic stem cells 

(HSC) in fetal liver (FL) seem to differ from bone marrow (BM) HSCs. For 

example, molecular markers such as terminal deoxynucleotidyl transferase (TdT) 

are expressed on BM HSCs, but not on FL HSCs. Also in mouse B-cell 

development, FL cells are better able to give rise to B -la cells (formerly called 

CD5+ B-cells) than adult BM cells (Kantor et al, 1992). Haematopoietic stem cells 

(HSC) of the mouse as well as the human (Till and McCulloch in 1961) express 

very low levels or no surface markers for committed blood cell lineage such as: 

TER119 (an erythroid cell marker); B220 (a B-cell marker); Mac-1 (a monocyte 

marker); Gr-l(a granulocyte marker); and CD3, CD4 or CD8 (T-cell markers).
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These cells may be functionally heterogeneous in vivo as a result of exposure to 

different stimuli, cytokines and the microenvironment in which they reside. It is not 

clear precisely what is responsible for heterogeneity, but intrinsic changes in cells as 

a result of their passage through changing microenvironments may help to explain 

this. However, responses by cell surface receptors to cytokines or other ligands may 

also be important. HSCs are characterised by their capacity for self renewal and 

their ability to generate differentiated daughter cells of all haematopoietic linage.

Uchida, et al (1993) in their haemopoiesis model, suggest four stages of 

development of all blood cells: (1) quiescent HSC; (2) expanding HSC; (3) 

multipotent progeny; and (4) maturing blood cells. In this model, HSCs are 

subdivided into functional subsets by the microenvironments in which they reside. 

The quiescent HSCs are sessile and located in the “self-renewing stroma” (S) 

niche which occupies a limited space. When quiescent HSCs are activated into 

cell division, daughter cells may find themselves either within the same 

microenvironment, or in an adjacent environment-the expansion stroma (E). An 

expansion of cell numbers by division occurs there. Stem cells may divide either 

symmetrically to form two new stem cells, or asymmetrically to form one 

differentiating cell and one further stem cell. With each cell division, progenies 

are located at a greater and greater distance from the S niche and enter other 

microenviroments which promote lineage-committed progenitors to proliferate 

and differentiate. Thus proliferation in the expansion stroma (E) continues, 

daughter cells enter the next niche, the maturation stroma, (M) niche, to
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differentiate further. In adult life, primary stem cells are probably situated in the 

bone marrow, which is the main site of blood formation. The mechanisms 

controlling these processes in the bone marrow are still obscure. The 

morphological appearance of HSC is not defined but the existence of such a cell 

was demonstrated functionally in mice by Till and McCulloch in 1961.

T-cells and B-cells originate from a common lymphoid precursor cell which 

has differentiated along different developmental lines. One line matures in the 

thymus (T-cells), the other matures in the bone marrow in mammals (B-cells). 

The sites which are responsible for B-lymphocyte production are strikingly 

different among species. For example, in the chicken, B-lymphocytes 

differentiate from pluripotent stem cells only during embryonic life, and, 

thereafter a specific organ called the Bursa of Fabricius becomes the site of B- 

lymphocyte production, while in the mouse as well as human the bone marrow 

generates the haematopoietic stem cells continuously. In human being, like the 

mouse, colony forming units or CFU, have been identified and characterised 

which produce small colonies of one or more cell types in semi-solid media 

containing appropriate haematopoietic stem cells. The pluripotent lymphoid stem 

cells (PLSC) go through various stages of differentiation and give rise to 

lymphocyte progenitor cells that may eventually mature into all types of T, B, and 

non-T, non-B lymphocytes. Unlike the stem cells, the lymphoid progenitor cells 

have only a limited capacity for self-renewal. B-lymphopoiesis in the mouse and 

in human can be divided into two phases. In the first phase, the B-cell lineage
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arises from very few (0.05%) of the pluripotent HSCs, during embryonic and 

neonatal life. Fetal omentum, liver, and bone marrow are the primary site of B- 

cell development and are the first sites which the B-cell lineage can be found. 

The second (neonatal) phase of B-cell generation mainly occurs in the bone 

marrow, while the neonatal spleen is also important in B lymphopoiesis (Solvason 

& Kearney, 1992; Kantor et al, 1992; MacLennen and Chan, 1993). The 

differentiation of stem cells to pre-B cells, B lymphocytes and, finally, plasma 

cells and memory cells proceeds through multiple stages which can be identified 

by sequential immunoglobulin gene rearrangement, and the acquisition or loss of 

various B-lineage differentiation antigens. The sequence of B-cell differentiation 

in the bone marrow may be summarised as follows:

HSC — >PLSC — > pro B-cells — >Early pre B-cells —> late pre B-cells—> 

Immature B-cells — > Mature B-cells

1-1-2 Phenotype of bone marrow cells during differentiation

In humans, analysis of B-cells differentiation has benefited from the phenotypic 

characteristics of leukaemia cells which represent the various stages of the 

developmental pathway as well as B-cell precursors which were obtained from 

normal adult and fetal bone marrow. According to studies of Pontvert-Delucq 

(1993), the B-cell pathway in adult bone marrow can be divided into two 

subpopulations ; CD34+ and CD34- cells. CD34 is the earliest marker in the 

human for precursors of colony forming cells in the bone marrow and it is a marker
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for HSCs. CD34+ cells can be subdivided into three different groups: (1) CD34+ 

CD10- CD19- cells which are a heterogeneous population, and contain myeloid 

colonies; (2) CD34+ CD 10+ CD 19- cells that give rise to macrophage colonies. 

This population mainly expresses CD33. This finding suggests that CD 10 might be 

present on myeloid progenitor cells, and suggests the existence of a common 

progenitor to the macrophagic and lymphoid lineage in human bone marrow; and

(3) CD34+ CD10+ CD19+ cells which represent B-lymphoid committed 

progenitors. These cells were shown to have a blast morphology as do other CD34+ 

cells but were smaller in size and were more homogeneous. It was shown that 

CD10 was expressed before CD19 since no CD34+ CD10- CD19+ population was 

evident. CD 10 is expressed on early B cells, B blasts, macrophages, some 

granulocytes, bone marrow stromal cells and various epithelial cells. It is a type II 

integral membrane protein. It can be supposed that some of CD34+ are committed 

to the myeloid lineage and others represent a common progenitor to the 

macrophages and lymphoid lineage. The latter cells still have the ability to generate 

CD34+ CD 10+ macrophage and might coexpress either CD33 or T and B associated 

markers including CD7, CD19, and TdT. However 2% of CD34+ CD10- CD19- 

cells were also TdT+. These results suggest that TdT is either expressed before the 

acquisition of CD 19 and CD 10 antigens, or on CD34+ cells that probably include 

progenitor cells for both T and B lineages. Finally CD34+ CD 10+ CD 19+ cells 

which have an exclusively specific characteristic differentiation into CD34- CD10+ 

CD19+ cja+ pre B cells. Then cells by losing the CD10 marker differentiate to
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immature B cells (sIgM+, slgD-) and finally become mature (sIgM+, sIgD+) and 

flow into the circulating system.

1-1-3 MATURATION OF THE B-CELL ANTIGEN RECEPTORS

B-cell antigen receptors (BCRs), are integral membrane proteins. In 

developing B-cells, gene rearrangements follow a stringent order. The heavy and 

light immunoglobulin chains are encoded at least by three (V,D,J) and two (V,J) 

separate germline DNA elements, respectively. The assembly of a functional 

IgM heavy chain gene starts with the rearrangement of a single DH (diversity) 

region gene segment with a single JH (joining) region gene segment. The cells 

carrying only D-J rearrangements are referred to as early pre-B cells. The next 

stage of the B-cell differentiation pathway involves the rearrangement of the 

several hundred V (variable) region genes. These become juxtaposed to the D-J 

elements to give rise to pre-B cells which express IgM H-chain on the first allele 

and in the case of non-productive (VDJ-) rearrangements, on the second allele. 

Even more the B-cells or cell line which had generated two non-productive 

rearrangements are not able to express K light chain (probably 2/3 of VDJ H are 

non-productive; Yancopoulos & Alt, 1986). Since pre-B cells express p protein 

but not Ig light-chain, it became clear that the expression of the two Ig chains is 

not synchronous. It was also demonstrated that the expression of p protein is 

necessary for induction of light-chain (Reth, et al, 1985). According to several 

investigations (Reth, et al, 1985, Jongstra and Misener, 1993), it appears that the
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expression of p protein and its associated pseudo light chains (Lambda 5) and V- 

pre B are necessary for pre-B cells to develop into the mature mlg+ B-cells.

1-1-4 REGULATION OF B LYMPHOPOIESIS

The models of haemopoiesis in vitro derive from the development of long term 

bone marrow culture techniques (Dexter, et al, 1977) which established conditions 

for maintenance of multipotential stem cells and granulopoiesis. Subsequently, 

these techniques were adapted for selective growth of B lymphocytes (Whitlock 

and Witte, 1982). In such culture systems, pre-B cells grow on a complex layer of 

adherent cells composed of macrophages, endothelial cells, fat cells, fibroblasts, 

and various cell types collectively designated as 'stromal cells’. These cells have 

been shown to produce many different cytokines including M-CSF, GM-CSF, 

TGF 13, IL-4, IL-6, and IL-7 (Kincade et al, 1989). Control of B lymphopoiesis 

by cytokines is not completely understood. Some may have direct and some 

others indirect effects. For example, using various soluble growth factors to 

induce proliferation of B cell precursors^ some studies demonstrated that IL-3 was 

a growth factor for the earliest B cell progenitors (Palacios and Garland, 1984), 

but this study was inconsistent with others indicating that the IL-3 receptor was 

restricted to non-lymphoid cells (Ihle et al, 1983) and only a small proportion of 

cells could be differentiated to mature B cells. In humans, IL-3 could induce 

short-term proliferation of some CD 10+ progenitor B cells from foetal liver 

(Uckun and Ledbetter, 1988). However, the precise role of IL-3 in B
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lymphopoiesis is presently unclear and its effect may be indirect. IL-7 plays a 

major role in B lymphopoiesis. The early studies showed that this cytokine 

served as a growth factor for early lymphoid cells of both B- and T-cell lineage 

and because of its lack of activity towards myeloid cells, suggested that there may 

be a lymphoid stem cell under the regulatory control of IL-7. IL-7 caused 

proliferation of both pre-B and pro-B cells, but not mature B cells (Henney, 

1989). The functionally active IL-7 produced by bone marrow adherent cell 

layers was inhibited using neutralising anti IL-7 antibody in vitro and vivo (Ryan 

et al, 1994; Grabstein et al, 1993). IL-4 inhibited proliferation of fetal CD10+ B 

cell precursors cultured without a supportive adherent layer (Pandrau et al, 1992), 

but stimulated pro-B cell proliferation in mouse culture systems containing a 

supportive adherent layer (Peschel et al, 1989). King et al (1988) reported that 

stromal cell supernatants induced maturation of mouse pre-B cells into sIgM+ B 

cells, and this activity was blocked by an anti-IL-4 antibody. The blocking effect 

of anti IL-4 suggested that IL-4 could be involved in the maturation process. 

Taken together, these results suggest that IL-4 induces the differentiation of late 

pro-B cells into early pre-B cells or late pre-B cells into mature IgM+ B cells. This 

effect may be indirect by inducing a proliferation factor by stromal cells which in 

turn induces proliferation of progenitor B cells (Peschel et al, 1989). From these 

studies, it may concluded that (1) a single cytokine is not enough for full 

development, but a combination of cytokines is essential, (2) individual cytokines
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may have different functional effects on lymphopoiesis, (3) some cytokines may 

have an indirect effect by causing stromal cells to release soluble factors.

SECTION TWO 

1 -2 ANTIGEN-DEPENDENT PROLIFERATION

Millions of newly formed lymphocytes leave the bone marrow daily. Many of 

these cells (B-cells) immigrate in a short time days after production, passing by 

way of the blood to the spleen and after a further 1-2 days to the lymph nodes 

(Osmond, 1986). The microenvironment of secondary lymphoid organs plays an 

essential role in the regulation of B lymphocytes by antigen. The traffic and 

regulation of lymphocytes are controlled in part by the selective interaction of 

circulating lymphocytes with specialised high endothelial venule (HEV) cells at 

sites of lymphocyte exit from the blood (Jalkanen et al, 1986). Migration and 

homing receptors are important not only allowing the full repertoire of clonal 

lymphocyte specificity to be available to respond to antigen but also probably to 

facilitate the interactions between lymphocyte subsets and accessory cells that are 

required for effective expansion and regulation of antigen-specific immune 

responses. Most B cells found in secondary lymphoid organs live longer than a 

week. It has been shown that the bone marrow of adult mice produces about 

5x l07 B cells per day (Opstelten & Osmond, 1983). It follows that a high 

proportion of these newly formed B cells have a very short life-span, those which 

are not selected within a finite period die and formation of new cells balances the



loss of old ones (MacLennan and Gray, 1986). Specific recognition of foreign 

antigen by cell-surface immunoglobulin (Ig) induces B cells to proliferate and 

differentiate either into plasma cells, which produce soluble immunoglobulin to 

fight infection, or into memory B cells which can respond rapidly to subsequent 

encounters with the same antigen. Maturation of B-cells into the antibody- 

secreting cells is a complex process that requires antigen and the collaboration 

between B-cells, T-cells and antigen presenting cells which can themselves be B 

cells. Once T cells are activated, they in turn promote B cell activation by 

releasing T cell-derived cytokines such as IL-2, -4, -5 or by direct intercellular 

contact (Clark andLedbetter, 1994; Linsley, 1991; Banchereau, 1994).

1-2-1 Collaboration of Cells in Immune R esponse

Cellular collaboration is an important feature of the immune system and it 

involves the recognition of cell surface-associated molecules on one cell by 

specific receptors on another. Two well-characterised cellular interactions are 

those occurring between TH cells,/antigen presenting cells (APCs) and TH cells/B 

cells. These cellular interactions regulate cell activation, differentiation, and 

suppression.

Cognate interactions between antigen-presenting cells (APCs) and T cells play 

crucial roles in immunological responses. It is well known that T cells become 

activated only after recognising degraded fragments of native protein antigen 

(Allen, 1987). Professional antigen-presenting cells such as dendritic cells and
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macrophages are potent presenters of antigen to both virgin and memory T cells 

(Inaba and Steinman, 1984; Inaba and Steinman, 1985; Larsen et al, 1992). B cells 

also play an important role in antigen presentation. However, previous studies 

indicated that small resting B cells are poor APCs for primary responses, but may 

be effective after the responding T cell population has been activated (Inaba and 

Steinman, 1984; Inaba and Steinman, 1985). Thus, the presentation capacity of B 

cells has been controversial. Whereas some studies indicate that B cells (Abbas et 

al, 1985; Chesnut & Grey, 1981), especially activated B cells can present antigen 

to activated T cells and some fresh T cells (Larsen et al, 1992; Liu and Janeway, 

1991; Kakiuchi et al, 1983), others have reported situations in which B cells were 

unable to activate T cells (Inaba and Steinman, 1984; Lassila et al, 1988). Recent 

studies have shown that activation and differentiation of both T H and B 

lymphocytes are dependent upon direct intracellular interactions between these 

cell types. The signals required for a TH cell antigenic response are usually 

provided by APCs. The first signal is initiated by interaction of the T cell antigen 

receptor (TCR) complex with antigen presented as a processed peptide in the 

context of class II MHC molecules on the APCs (Allen, 1987). Recognition of 

antigen by T cell antigen receptor (TCR) is not only insufficient for activation but 

also may lead to clonal inactivation or anergy (Schwartz, 1990). The molecular 

nature of these second signals is not fully understood, although both soluble 

molecules, such as IL-1 (Mizel and Ben-zvi, 1980) and membrane-bound 

adhesion receptors can provide costimulatory signals in some systems.
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Costimulatory receptors on the T cells and their counter-receptors on the APCs 

involved in B-TH cell interactions include; intracellular adhesion molecule 1 

(ICAM-1) (CD54) and leukocyte function associated antigen-1 (LFA-1) 

(CD 11 a/CD 18), LFA-3 (CD58) and CD2, very late antigen 4 (VLA-4) (CDw49d) 

and vascular cell adhesion molecule 1 (VCAM-1), the B7/BB1 and CD28 family, 

and CD40-CD40L (Damle et al, 1992; Noelle et al, 1992a). As yet, it is not clear 

whether these molecules perform the equivalent functions or are expressed 

simultaneously on the surface of APCs.

1 -2-1-1 CD40 and CD40 Ligand

CD40 is a type I integral membrane glycoprotein which belongs to a cysteine- 

rich receptor family which includes nerve growth factor (NGF)-R, TNF-R, and 

Fas antigen. This mitogenic surface molecule was originally identified in B cells, 

some malignant cells and carcinoma cell lines (Clark and Ledbetter, 1986). CD40 

has also been detected in other cell types including FDCs, dendritic cells, 

interdigitating cells in T cell zones of secondary lymphoid organs , and thymic 

epithelial cells (Callard et al, 1993; Noelle et al, 1992b). The ligand for CD40, 

gp39, was found on CD4+ T cells, with an approximately equal distribution 

between CD45RA+ and CD45RO+ T cells. There was low expression of CD40L 

on CD8+ cells. CD40 ligand is a type II membrane protein which has significant 

sequence homology with tumour necrosis factor a  and p (TNF a.p) (Callard et al, 

1993; Noelle et al, 1992b). Signals via the TCR play a primary role in the
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upregulation of CD40L on T cells, since antibodies that block the contribution of 

CD4, LFA-1, and MHC class II completely block CD40L expression (Durie et al, 

1994). The expression of CD40L on activated T cells seems to be tightly 

regulated. B cells during T/B interactions also down regulate the expression of 

CD40L mRNA expression by releasing soluble CD40 which binds to surface 

CD40L. However, it is not clear that other cells expressing this marker have such 

an activity (Van Kooten et al, 1994). Studies with mAb to CD40 or CD40L have 

shown that CD40 plays a critical role in activation and proliferation of B cells, 

including IL-6 secretion (Clark and Shu, 1990) and rescue of GC B cells from 

apoptosis after somatic mutation in germinal centres (Liu et al, 1989). Anti CD40 

or activated T cells caused an increase in expression of B7/BB1 on B cells which 

was three times greater than the maximum expression of this surface antigen 

induced by crosslinking slgM or HLA-DR (Ranheim and Kipps, 1993). Anti- 

CD40 also enhanced the expression of CD54, and induced the activity of adhesion 

molecules such as LFA-1 (Barrett et al, 1991). B cells cultured with mAb to 

CD40 alone produce marginal levels of Ig, and B cell proliferation, suggesting 

that anti CD40 could not provide an activation signal for the B cells strongly by 

itself but it could costimulate with other activating stimuli (Gordon et al, 1988; 

Valle et al, 1989). CD40 on B cells is of critical importance for Ig heavy chain 

switching in culture with IL-4, Staphylococcus aureus (SA), IL-10 or 

transforming growth factor P(TGF-p) (Splawski et al, 1993; Defrance et al, 1992). 

Thus the combination of anti CD40 and cytokine and SA or alg provides both
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cognate and non-cognate stimulatory signals, which can substitute for T cell help 

to B cells. The recent study by Foy et al (1993) demonstrated that administration 

of anti gp39 reduced the primary as well as secondary response to exogenous TD 

antigens, but not T-independent (TI)-Type II antigen, in vivo. Therefore, it 

appears that the interaction of gp39 and CD40 are critical for the thymus- 

dependent response of B cells. The importance of CD40-CD40 ligand interactions 

in the generation of Ig secretion is highlighted by studies of patients with X- 

Linked hyper-IgM syndrome. This is a rare immunodeficiency disorder 

characterized by normal or elevated serum concentrations of polyclonal IgM and 

markedly decreased concentrations of IgA, IgE, and lgG with an absence of 

germinal centres (Conley, 1992). These patients show extremely low or no 

expression of CD40 ligand. Thu^ihese js a failure of activation of B cells by 

CD40 ligand-bearing T helper cells which results in an inability to switch from 

IgM/IgD+ cells to other Ig isotypes and/or failure to rescue switched B cells from 

apoptosis after affinity maturation in the germinal centre (Callard et al, 1993). 

Gray et al (1994) in extensive experiments demonstrated that blocking of CD40- 

CD40 ligand interaction by daily injection of soluble CD40 fusion protein 

(sCD40-yl) had a profound effect not only on quantity but also on quality of the 

primary antibody response. Finally, they proposed two pathways of immune 

response, one CD40-dependent and one CD40-independent.
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1-2-1 -2 Interactions Between the CD28 and the CD80 Receptor

Families

Two members of the CD28 gene family, CD28 and CTLA-4 (cytolytic T- 

lymphocyte associated antigen-4), have been described to date. The majority of 

human and mouse resting T-cells express CD28, whereas expression of CTLA-4 

depends on costimulation of CD28 and anti-CD3 or mitogens (June et al, 1994). 

CD80 family receptors, previously termed B7, are generally limited to 

professional APCs such as macrophages, dendritic cells, and activated B cells 

(Larsen et al, 1992). Resting B cells do not express B7, but the expression of this 

marker is enhanced by crosslinking of HLA-DR antigens within 6 hours (Koulova 

et al, 1991). Cytokines such as IL-2 and IL-4 also enhance the induction of B7 

expression on mitogen stimulated B cells (Valle et al 1991). Lack of expression 

of some counter-receptors such as CD54 and B7 on resting B cells may explain 

why these cells are not able to present antigen to T cells. Activated human B 

lymphocytes express at least three distinct B7 antigens termed B7-1, B7-2, and 

B7-3 whose expression depends on activation time (Freeman et al, 1993; June et 

al, 1994). Many studies show that B7 and related molecules are counter-receptors 

for activation of T cells through CD28 and CTLA-4. Interaction between the 

CD80 family and the CD28 family allows T cells to respond to activated B cells 

by producing cytokines required for T cell differentiation. The hallmark of B7 

mediated signal tranduction is the production of IL-2. This function was 

abolished using mAbs to both CD28 and B7 (June et al, 1994; Linsley et al, 1991).
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A reciprocal interaction can ensue as follows. Activated T cells expressing 

CD40L induce resting B cells to express CD80 and activated B cells expressing 

CD80 induce T cells to express CD40L. Thus, such stimulated B cells may 

engage non activated T cells specific for an antigen (s) presented by such cells. 

This, in turn, may induce CD40 ligand expression on these previously non­

activated antigen-specific T-cells, allowing for an amplification of both T and B 

cells in the immune response. Collectively, these surface phenotype studies show 

that activated T cells not only help B cells to differentiate into Ig secreting cells, 

but also may induce B cells to become stimulatory APCs of other resting T cells. 

Finally, this cellular interaction leads T cell to proliferate, to produce cytokine for 

isotype switching and in turn to cause B cells to proliferate and switch isotype 

(Clark & Ledbetter, 1994; Ranheim and Kipps, 1993; Linsley, 1991; Banchereau, 

1994).

1-2-2 B CELLS IN LYMPHOID TISSUE 

1-2-2-1 Primary Follicles

B cell follicles are found in secondary lymphoid organs throughout the body, 

including the spleen, lymph node, Peyer's patches, the appendix, tonsils, and other 

mucosa-associated lymphoid tissues. Follicles are always in contact with T- 

dependent areas which are meeting places at which antigens, T cells, and dendritic 

cells encounter and interact. B cells are probably activated in the T cell areas and 

then migrate to the centres (van den Eertwegh, 1993). The structure of primary
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follicles, those in which no antigen-driven processes are taking place, are 

relatively simple. Their chief cellular components are a network of follicular 

dendritic cells (FDCs), which are dispersed towards the periphery of the follicle, 

and the recirculating surface immunoglobulin + (sIgM+, and sIgD+) small cells 

(Gray et al, 1982). The recirculating B cells spend a transit time in the primary 

follicles unless exposed to antigens (Howard et al, 1972). Besides these cells a 

small number of CD4+ cells and some macrophages are also found in the primary 

follicles (Namikawa et al, 1986; Johnson et al, 1986). Primary follicles are 

present in lymph nodes as early as the second trimester of human foetal life 

(Namikawa et al, 1986).

1 -2-2-2 The Resident Cells of The Germinal C entres

The structural and cellular composition of the GC reflects its function, which 

is Ag-driven B-cell proliferation and differentiation. Secondary follicles, unlike 

primary follicles, are mainly populated with activated B-cells expressing different 

phenotypes and morphological characteristics such as clefted or non-clefted 

nuclei, division and maturation, etc. The GC B-cells bind peanut agglutinin 

strongly (PNA) (Coico et al, 1983). These cells bear CD45, CD20, CD21, CD38, 

CD77 (de-los-Toyos et al, 1989; Liu, et al, 1992; MacLennen, 1994; Holder et al, 

1991 & 1993a). They express low or absent levels of CD44 (de-los-Toyos et al, 

1989) and CD39 (Holder et al, 1993a). The FDCs represent the main non­

lymphoid resident cell in germinal centres and can be distinguished from other
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accessory cells by a characteristic set of cell surface markers such as complement 

receptors and adhesion molecules. Antigen-antibody complexes seems to be 

important for development of secondary immune responses (Kunkl and Klaus, 

1981). The trapping of immune complexes is mediated through the Fc receptor; 

accordingly several types of Fc receptors are present on FDC, such as the low 

affinity IgE receptor (CD23), type III IgG receptor (CD 16), type II IgG receptor 

(CD32). Complement factors such as C lq, C3(C3b, C3bi, C3d) are also present 

and may contribute to surface retention of immune complexes (Petrasch et al, 

1990; Maeda et al, 1988). FDC also express several adhesion molecules including 

CD54 (ICAM-1), and members of the (3j integrin family; VLA-3, VLA-4, VLA-5, 

and VLA-6, as well as a cell surface molecule termed INCAM-110 (Schriever et 

al, 1989; Petrasch et al, 1990) and these molecules have been shown to be 

involved in the interaction between FDC and activated B lymphocytes (Freedman 

et al, 1990). DRC-1 (R4/23) and KiM4 are human FDC-specific molecules. 

However these markers exist in B-cells and macrophages (Heinen and Bosseloir,

1994). Expression of la antigen on the surface of FDC is still controversial 

(Humphrey et al, 1984; Petrasch et al, 1990).

The origin of FDC is not fully understood and is still controversial. As yet, 

there is no totally convincing answer to this question. Some believe that FDC 

originate from a heamatopoietic cell lineage because of the surface phenotype of 

these cells. It was shown that FDC express antigens which are common to 

macrophages as well as B-cells, but lacked T and NK cell antigen (Schriever et al,
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1989; Petrasch et al, 1990). In contrast to the haematopoietic theory for FDC 

formation, there is some strong evidence that these cells originate from 

mesenchymal cells. As yet, there is no evidence that FDC cells are able to divide 

and it is believed that a subpopulation of myofibroblasts forms a stromal pool for 

generation of FDC during the formation of germinal centre cells, keeping in mind 

that fibroblasts are able to retain immune complexes (Heinen and Bosseloir, 

1994; Humphrey et al, 1984, Dijikstra et al, 1984).

There are not many T cells in the germinal centre (s 1-5%); these cells are 

mostly located in the surrounding mantle zone of the follicle at the edge of the 

germinal centre. Most of them are helper cells, specially CD4+ CD45RO+ 

(memory phenotype). The necessity for T cells is illustrated by observation that 

GC are virtually absent and can not be induced in athymic "nude" mice and rats 

(Klaus and Kunkl, 1982). Furthermore, T cell-independent antigens lead only to 

minimal GC development. T cells could possibly interact with a subpopulation of 

GC B-cells, and then provide the impetus for proliferation of B-cells by physical 

contact and secretion of cytokines (Poppema et al, 1981). Two mechanisms might 

explain this localisation; (1) recruitment of cells which have already migrated 

through this area; for instance, memory T cells, may be increased in frequency in 

the afferent lymph ( Mackay et al 1990). (2) Cytokines such as RANTES which 

has been reported to attract memory cells selectively, might explain the migration 

of T cells through the paracortex. (Schall et al, 1990). Macrophages are among the 

cells having access to the GC; tingible body macrophages are mainly cited (Kotani
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et al, 1977). CD5+ B cells, IgD+ B cells, interdigitating or dendritic cells, mast 

cells, polymorphonuclears are rare or absent in germinal centre. Thus the 

germinal centre, like the thymus, appears to be a closed environment. The entry 

into the centres is thus restricted to cell types expressing obligate phenotypes. 

Molecules reach the germinal centres in two ways. Either they are carried by 

cells, or by the intercellular fluids from the subcapsular sinus. However, the 

capillaries are developed inside the centres. Soluble substances, except for those 

filtered through the vascular endothelium, do not have easy access to the germinal 

centres. For example, primary injected non-antigenic (colloidal carbon or gold) or 

antigenic material (horse-radish peroxidase, bovine albumin) are not found in the 

centres, whereas they are located in neighbouring macrophages (sinus, reticular 

tissue)which have taken up this material (Heinen et al, 1983; Kamperdijk et al, 

1987). It was reported that lymphoid cells (mainly B cells) fix immune complexes 

via Fc receptors, migrate towards the centres and establish contact with follicular 

dendritic cells and transfer the immune complexes to the latter (Heinen et al 1986; 

Braun et al 1987).

1-2-2-3 Germinal Centre Formation

Germinal centres form in lymphoid tissue after injection of an antigen, starting 

at day 4 and reaching peak development by day 10. Antigen re-injection on day 

10 reactivates their development, but in the absence of a second antigen injection, 

or of adjuvant, the proliferation of germinal centres wanes by day 14. The
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maximal development of GC is later than the peak of primary antibody production 

(Coico et al, 1983). It is proposed that the PNA+ GC cells in response to antigen 

quickly develop into PNA- B cells (memory B cells) which are able to respond to 

the priming antigen move strongly than virgin B cells (Coico et al, 1983; Baine 

and Thorbecke, 1982). Antigens appear to have multiple functions in the 

induction of GC and this was confirmed in germfree animals (Thorbecke et al, 

1957). Once antigen is localised on the surface of FDC, it can stimulate B cells 

directly, particularly in the form of immune complexes together with C3 (Klaus 

and Humphrey, 1977; Kunkl and Klaus, 1981). C3 is required for retention of 

antigen-antibody-C3 complexes with no specificity by FDC. They bind immune 

complexes independently of the nature of the complexed antigen (Klaus and 

Humphrey, 1986). After a first antigen administration, a primary humoral 

immune response is initiated and immune complexes are formed as soon as 

antibodies appear in the circulation. Most of these antigen-antibody complexes are 

rapidly ingested and digested by cells of the mononuclear phagocyte system, but a 

small number are trapped on the surfaces and cell processes of follicular dendritic 

cells located in the follicles of lymph nodes and spleen (Humphrey and Frank, 

1967; Van Rooijen, 1990). It is only in this form that antigen may be preserved in 

the body for long periods of time up to one year after the onset of antibody 

production (Donaldson et al, 1986; MacLennan, 1994). The antibody-complexed 

antigens in the follicles are not internalised and degraded, but remain immobilised 

on the cell surfaces of follicular dendritic cells (Chen et al, 1978). The
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unprocessed form of antigen may be taken up from FDC by B cells, which can 

process this and re-present it to T cells (MacLennan, 1994). In the spleen, 

complexes move from sites of their initial localisation, e.g. in the marginal zone 

surrounding the follicles, toward the follicle centre (van Rooijen, 1973).

Resting B cells circulate in the blood, migrating across high endothelial 

venules to sites of trapped antigen in secondary lymphoid organs such as 

lymphoid nodes, spleen, tonsils, and Peyer's patches. In the primary response, B 

cells bearing immunoglobulin specific for trapped antigen enter the T cell-rich 

paracortical regions below the outer layer, or cortex, of lymphoid tissues (Liu et 

al, 1992). Analysis of the site of B cell activation in TD antibody responses shows 

that B-cells proliferate both in the T cell-rich zones in association with 

interdigitating cells and in the follicles (Liu et al, 1991b). Interdigitating cells 

(extra-follicular dendritic cells) show high constitutive expression of class II MHC 

and are known to be highly efficient at processing and presenting antigen to T- 

helper cells. These cells are found in T zones of all secondary lymphoid tissue 

(Knight et al, 1982). MacLennan et al (1992) proposed a sequence of maturation 

of B cells in GC. They divided the sequence into three stages based on 

immunohisto-chemical studies of the follicular response to two hapten-protein 

conjugates in carrier-primed rats; (1) follicles are colonised by fewer than five 

primary B cell blasts which proliferate rapidly to fill the spaces in the FDC 

network, to total about 104 cells within three days (Liu et al 1991b). This can only 

be activated with a cell cycle time of about six hours. (2) By around day four after
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antigenic challenge, the B cell blasts metamorphorse into centroblasts which 

express little or no surface immunoglobulin and express CD77. These cells 

migrate to one pole of the FDC network, forming the dark zone where the rapid B 

cell proliferation takes place. Centroblasts are in rapid cell cycle and give rise to 

centrocytes (maturing B cells) which do not increase in numbers and pass into the 

dense central part of the FDC network, forming the light zone of the germinal 

centre that contains abundant FDCs and some T cells. At this stage of 

differentiation, they re-express surface Ig, and interact with the FDC. This is the 

last judgement of B cells. Cells that interact with antigen expressed on the surface 

of the FDC are selected into the third stage of development. (3) At this stage, 

secondary follicular blasts are formed within the follicular network, leading to 

both memory cells and plasma cells. The light zone is divided into two 

compartments; the basal light zone near to proliferating centroblasts in the dark 

zone which lack CD23 and the apical light zone closer to the follicular mantle 

containing FDC which expresses large amounts of CD23. The FDC in both areas 

retain antigen as immune complexes. Centrocytes encounter antigen held on FDC 

and pass across the basal light zone to the apical light zone. Here, the subsequent 

signals differentiate them either toward the plasmacytoid pathway, depending on 

soluble CD23 and IL -la  signals, or with IL-2 (Holder at al, 1991), or to the 

memory B cell pathway, depending on ligation to surface CD40. Surviving 

memory cells emerging from the light zone reside in the follicular mantle. Cells 

that fail to interact with FDC and T cells die by apoptosis (Fig 1-2) and are
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eliminated by macrophages (Liu at al, 1991b; Armitage et al, 1993; Lane et al, 

1993). Another explanation, offered by Van Rooijen (1990), suggested that free 

antigen fixed in the form of immune complexes on the FDC acts synergistically to 

stimulate differentiation into plasma cells, whereas immune complexes alone 

would predominantly produce B memory clones. Several results show the vital 

role of the combination of anti CD40 and IL-4 for the expansion of the slgD- B 

cells in the apical light zone of GC (Holder et al, 1991; Butch et al, 1992). It is 

interesting that GC T cells both express IL-4 and a ligand for CD40 (Butch et al, 

1993; Butch at al, 1991; Holder et al, 1991; Liu et al, 1992). To address the 

phenotype of the precursors of memory cells, there is support for the idea that 

antigen-activated cells which turn off their IgD synthesis after activation are the 

precursors of memory cell generation and GC formation (Coico et al, 1988; 

Jacobson et al, 1981). GC formation as well as memory B-cell generation are T- 

dependent processes. Athymic mice lack GC, even after immunisation with T- 

independent antigens such as Brucella abortus, but are enabled to produce both 

GC and B2-cell memory to this antigen after reconstitution with T cells (Jacobson 

et al, 1974). The main function of the G.C may be to generate plasma cells 

destined to secrete Ig, as well as being the site of Ig heavy chain class switching, 

maturation of antibody affinity associated with V region somatic mutation, and the 

generation of memory B-cells, a series of events which make them able to 

response rapidly to re-challenge with the same antigen together with appearance 

of higher affinity antibodies of for example, IgG class (Butcher et al, 1982).
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1 -2-2-4 A poptosis and Clonal Selection

All cells die. In general, cell death can be accidental or programmed 

in a multicellular organism. Two major forms of cell death can be distinguished. 

(1) Necrosis which is associated with major perturbations in the cellular 

environment as a result of complement attack, hyperthermia, etc. The plasma 

membrane may be the major site of damage, losing its ability to regulate osmotic 

pressure. (2) Apoptosis (programmed cell death), a morphologically distinct 

process of cell death that seems to be important in controlling immune responses. 

Dependence on specific survival provides a simple way to eliminate unwanted 

cells and select the fittest ones. The mechanism of these phenomena differs from 

one cell to another and still is not fully understood. Cell death is triggered by the 

appearance or loss of an external signal, leading to the activation of an internal 

cell death program. Moreover, the stimulus that initiates the apoptotic signal at 

one developmental stage may activate an entirely different response in the same 

cells at a different time. It follows that the same signal transduction pathway can 

be linked to a different effector system. Apoptosis is different from necrosis since 

it requires new gene expression. This has been demonstrated using inhibitors of 

RNA or protein synthesis (Raff, 1992; Schwartz & Osborne, 1993).

GC B cells like other mammalian cells undergo apoptosis (Maclennan & Gray, 

1986). These cells may commit suicide because of antiself receptor expression, 

faulty gene rearrangement or lack of stimulation. In T-dependent immune 

responses, B cells seem to need signals from other cells in order to proliferate.
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F ig u r e  1-2 shows schematic and functional compartments in germinal

centres.
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Thus they need signals from other cells in order to survive, and in the absence of 

such a signal, the cells kill themselves or commit suicide. These signals may be 

provided by FDCs and T cells (Liu et al, 1991). In contrast to necrosis, the 

hallmark of apoptosis is the collapse of the nucleus by activation of an 

endonuclease which cuts DNA at different intervals. The morphological features 

of these cells can be identified using conventional and electron microscopy that 

demonstrate chromatin condensation with nuclear fragmentation (Liu at al 1989). 

A relation between loss of expression of Bcl-2, a protooncogene intimately linked 

to haematopoietic cell survival (Korsmeyer, 1992), and apoptosis has been 

reported (Raff, 1992; Liu et al, 1991a). In many tissues apoptotic cells are 

phagocytosed before they lyse. This might be related to changes in the expression 

of sugar residues upon the cell surface that are recognised by endogenous 

macrophage 'lectins' (Duvall & Wyllie, 1986). There is a high death rate among 

centrocytes and centroblasts in vitro after culturing for few hours at 37°C. This 

process can be delayed using immobilised polyvalent antibody to surface antigen 

receptors, or soluble mAb to the CD40 molecules, or a combination of both (Liu 

et al, 1989). Induction of Bcl-2 seems to be a secondary product to the survival 

signal, since the Bcl-2 induction appears after the second day of culture (Holder et 

al, 1993b), using a combination of recombinant soluble CD23 (sCD23) and 

interleukin-la (Liu et al, 1991a). These observations are believed to reflect events 

that, in vivo, would allow for the selection of centrocytes which have undergone 

somatic mutation of Ig V-region genes to generate antigen receptor of high
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affinity. Transforming growth factor-p (TGF-p) was found to inhibit slg- 

mediated rescue of GC cells but had no effect on survival promoted through 

CD40. Both routes of rescue were blocked by the glucocorticoid, prednisolone 

(Holder at al, 1992). Recently it was reported that a subset of CD21 antibody 

(BU-33) promotes the survival of GC cells by up-regulating Bcl-2 expression 

(Bonnefoy et al, 1993). The latter report is consistent with the effect of sCD23 

and IL -la , since the CD23 can specifically interact with membrane-bound CD21 

(Aubry et al, 1992). Finally, studies by Zupo et al (1994) demonstrate that a 

subset of anti-CD38 (IB4) can rescue GC cells from apoptosis by up-regulating 

Bcl-2 expression.

SECTION THREE 

1-3 ACTIVATORS OF B-CELLS

In general, helper T cells provide stimulatory signals that induce B cell 

proliferation and differentiation into Ig producing cells. These stimulatory signals 

are transmitted through cognate interactions with direct physical contact between 

B and T cells by means of accessory molecules which are known to play a pivotal 

role in initiating B cell activation during antibody responses to T-dependent 

antigens. The bioactivity expressed on activated T helper cells is now believed to 

be largely due to the ligand for CD40, interacting with CD40 on the surface of B 

cells (Noelle et al, 1992a). The mAbs to CD40 have been shown to mediate 

direct activation of resting human B cells (Gordon et al, 1988). These signals act
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in synergy with those delivered via cytokines such as IL-4 and IL-5 (noncognate 

mechanism) produced by T helper cells. Both cognate and noncognate stimuli 

most probably are necessary to activate and differentiate resting B cells into 

terminal Ig secreting cells (Noelle et al, 1990; Van den Eertwegh et al, 1993; 

Parker, 1993). In vivo, the activation of native B cells is initiated by antigens 

which are important for heavy chain switching in the germinal centres. However, 

the accessory molecules then play their role in the ongoing process. Following 

activation of IgD+ and IgD- cells in vitro by anti CD40 and IL-4, the latter, but 

not the former cells, proliferate but do not exhibit GC features and keep their slgD 

profile (Galibert et al, 1994). Wheeler et al (1993) proposed two models of 

activation; (1) A processed antigen on B cells is recognized by a T helper cell 

which in turn activates B cells through ligation of CD40 and CD40 ligand, (2) 

Interaction of interdigitating cells presents antigens to the slg of native B cells and 

possessed antigens to the T helper cells. Antigen-specific B cells and T helper 

cells are then brought into physical interaction through CD40 receptor on B cells 

and its ligands on T helper cells. Anatomical sites of B cell activation revealed 

that B cells are triggered to respond to activated T helper cells in the outer 

periarteriolar lymphocyte sheath (outer PALS) and around the terminal arterioles 

(TA) of the spleen. Following antigen recognition, naive surface IgM+/IgD+ B 

cells or memory B cells (IgD- cells) proliferate in the T cell rich areas of the 

secondary lymphoid organs and mature in the medulla to become plasma cells. 

This process, called extrafollicular reaction, yields a few B cells blasts which enter
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primary follicles to form the germinal centres. The CD40 ligand and cytokine 

producing cells are also found in close proximately to antigenic B cells (Van den 

Eertwegh et al, 1993). It has been shown that, in the secondary immune response 

as well as the primary response, differentiation of antibody forming cells in the 

spleen is localized to the outer parts of the PALS. In the case of normal protein 

antigens, memory cells migrate from the marginal zone into the PALS, where they 

further develop into antibody-forming cells (Van Rooijin, 1990; Liu at al, 1988; 

Blanchard et al, 1994). Thus the process of B cell activation can be divided into 

two different forms. The first forms by cognate interaction and the second by T 

cell derived signals such as cytokines.

1-3-1 SURFACE ANTIGENS RECEPTORS ON B CELLS

In addition to the B cell antigen receptor, it is clear that a number of B cell 

associated surface molecules such as CD19, CD20, CD21, CD22, CD23, CD40, 

CD45, CD80 and other differentiation CD antigens have been identified which 

may regulate activation and adhesion of B cells (Clark and Lane, 1991). Many of 

these CD antigens are receptors for known ligands and others do not have defined 

ligands.

1-3-1-1 B CELL ANTIGEN RECEPTOR (mlg)

The specificity of a humoral immune response depends on each B lymphocyte 

binding and responding to a particular antigen determinant. For this purpose B
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cells express an antigen receptor composed of a membrane immunoglobulin 

molecule complexed with several other molecules, the two best-defined of which 

are products of the mb-1 and B29 genes. The mb-1 gene product is a 32-KDa 

phosphoprotein found in association with mlgM and mlgD and is termed Ig-a 

(CD79a). The B29 gene is expressed throughout B cell development as at least 

two differentially processed proteins, one called Ig~p (CD79b) and a small fraction 

of the Ig/p molecules are present as slightly low apparent molecular weight forms 

(37 kDa) and termed Ig-y that associate with mlg, forming a disulphide-linked 

dimer. Because of the short cytoplasmic tails of mlgM and mlgD, the Ig-a and 

Ig-P/y have been shown to be important in B cell activation and entry into the cell 

cycle (Reth, 1995; Reth, 1992). Most mature B cells coexpress the IgM-BCR and 

IgD-BCR on their cell surface. Whether the two BCR classes have different 

functions on B cells is still controversial. Several early studies suggest that the 

engagement of mlgM and mlgD induces similar responses (Sieckmann, 1980; 

Mond et al, 1981). Other studies, however, show that mlgM, but not mlgD, can 

induce negative responses in B cells, such as anergy and apoptosis (Bell & 

Goodnow, 1994; Carsetti et al, 1993). The two BCR classes are heterogeneously 

expressed on normal mature B cells with IgD-BCR generally being more abundant 

than IgM-BCR (Havran, 1984).

Crosslinking of surface Igs by antigens plays a major role in the antigen 

specific activation and differentiation into antibody secreting plasma cells as well 

as survival, since activation of immature B cells (mIgM+ cells) results in either
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clonal unresponsiveness or in deletion of the clone which seems to be important to 

eliminate self-reactive clones (Hasbold and Klaus, 1990; Ales-Martinaze et al, 

1991). But mature B cells (IgM+/IgD+ cells) respond positively to ligation of the 

antigen receptor and in the case of a thymus-dependent antigen, the nature of the 

response is shaped by T cell-derived cytokines. However, it was recently reported 

that hyper-cross-linking of surface IgM and IgD receptors on mature B cells 

induces apoptosis (Parry, 1994). The induction of apoptosis is apparently 

dependent on the absence of T helper cell signals, because it can be partially 

reversed by either IL-4 or ligation of CD40 and almost completely abrogated by 

these two stimuli together (Parry et al, 1994). It has also been reported that the 

inhibition effect of anti-CD40 depends on expression of LFA-l/ICAM-1 adhesion 

molecules (Barrette et al, 1991). The same result is obtained from activation of 

the DND-39 human B lymphoma cell line which resembles mature B cells in 

respect of their slgs (IgM+/IgD+ cells) (Sumomoto et al, 1994). The B cell 

receptor for antigen, membrane-associated immunoglobulin (mlg), serves two 

functions: To deliver an antigen-induced signal through mlgM and mlgD and to 

internalize bound antigen via its endocytic receptor function. The antigen and 

membrane Ig are then degraded (processed) by protease in the late endosome or 

lysosome into peptide fragments. Some of these processed peptides are bound to 

MHC class II molecules and such peptide/MHC complexes are then transported to 

the cell surface and subsequently presented to helper T cells, which in turn 

activate T cells. T cell activation leads to expression of CD40 ligand, which
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provides a cell contact-dependent activation signal to the B cell for synthesis and 

secretion of cytokines that promote B cell activation and differentiation into 

antibody secreting cells (Clark & Lebetter, 1994; Campbell and Sefton, 1990). 

Membrane IgM but not mlgD appears to be important for internalization of 

antigen particles. This function is absolutely dependent on the presence of IL-4 or 

IL-2 (Luxembourg and Cooper, 1994).

1 -3-1 -2 Other Surface Differentiation A ntigens

Antigen receptors allow lymphocytes to bind to foreign antigens, but 

additional molecules are still required to ensure efficient signal transduction and 

appropriate cellular responses subsequent to the binding of antigens by antigen 

receptors. An array of accessory molecules has been identified on the surface of T 

and B cells (Clark & Ledbetter, 1994; Parker, 1993; Clark & Lane, 1991). Most 

accessory molecules also participate in cell adhesion by interacting with specific 

ligands present on other cells. These non-specific antigen receptors are involved 

in activation, proliferation, or tolerance. Table 1-2 summarizes the expression of 

many of these antigens during B lymphocyte development. The key role of CD40 

and CD80 family receptors in interaction with T cells was discussed earlier, other 

surface molecules include the following:

CD19 is a B cell specific member of the immunoglobulin gene superfamily. 

CD 19 is expressed from about the time of Ig H chain rearrangement until plasma 

cell differentiation. It is an accessory molecule that has been shown to associate
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with mlg and act as a co-stimulatory molecule. Anti-CD 19 antibodies also reduce 

the dose of anti-Ig necessary for optimal stimulation of human B cell proliferation 

(Carter & Fearon, 1992).

CD20: The expression of CD20 in pre-B cells occurs later than that of CD 19 

CD20 antibodies have both stimulatory and inhibitory effects on B cell activation, 

depending on the monoclonal antibody used. The CD20 mAb (IF5), induces B 

cells to transit from G0 to the G! phase of the cell cycle (Golay et al, 1985), 

whereas another CD20 mAb (B l) inhibits B lymphocyte proliferation. However, 

both of these antibodies inhibit B cell differentiation into Ig-secreting cells 

(Tedder et al, 1985). Anti-CD20 together with anti-CD40 has been shown to 

initiate both B cell growth and differentiation (Valle et al, 1989).

CD21 is a receptor for complement fragments C3d and iC3b (complement 

receptor 2) and the Epstein Barr Virus, as well as ligand for CD23. Triggering of 

CD21 either with an anti-CD21 antibody or with recombinant soluble CD23 

increases the interleukin-4 induced IgE production in human peripheral blood B 

cells (Aubry et al, 1992). In addition, CD21 mediates Ca2+ mobilization after 

cross-linking with surface Ig (Carter et al, 1988).

CD22, a B cell-specific receptor is expressed in the cytoplasm of pre-B cells 

and on the surface of mature B lymphocytes. CD22 is an adhesion molecule and 

is important in communication with other cells in regulation of the immune 

response. At least one of its ligands on T cells seems to be CD45 including 

CD45RO, and it was reported that CD22 stimulates T cells in association with the
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T cell receptor interaction (Aruffo et al, 1992). Recent studies show that CD22 on 

B cells induces an increase in proliferation and increases intracellular free calcium 

upon cross-linking the slgM/BCR ( Pezzutto et al, 1988).

CD23, the low affinity receptor for IgE (FceRII), is mainly expressed on 

activated B lymphocytes and FDCs and involved in isotype switching of IgE 

(Gordon et al, 1989a). Following appropriate activation and subsequent 

proteolysis, B cells release the soluble form of CD23 (sCD23) which possesses 

multiple biological activities (Gordon et al, 1989a).

Human CD38, is a 45-Kda glycoprotein expressed by a variety of cell types 

(Maiavasi et al, 1994), in T and B lymphocytes. CD38 represents a differentiation 

marker, being found on cells at different stages of maturation (Table 1-2). In 

human, immature B cells, GC B cells and plasma cells express abundant CD38, 

whereas mature B cells are either negative or weakly positive for this marker. 

Anti CD38 mAb is unable to induce GC B cell proliferation although it prevents 

cell apoptosis (Zupo, et al, 1994).

1-3-2 CYTOKINES

Cytokines are a diverse group of small or medium size proteins or 

glycoproteins which show potent biological activity. This activity is mediated by 

interaction with specific receptors on cell surfaces which trigger intracellular 

events. Cytokines are rarely released singly. An individual cytokine is able to 

stimulate the product of many others, generating a network that interacts with
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Table 1-2 

B cells antigen recep tors

Pro Pre sIgM+ slgM &sIgD+ Act Blast PC

HLA class H

CD10 __________  _________

CD19 ________________________________________________________

CD20

CD21 __________________________________

CD22

CD23

CD38

CD39

CD40

B7/BB1

Fig 1-2 Expression of major B cell surface antigens on B lymphocytes at various stages 

of development (positive is shown by continuous line). The broken line designates 

expression only in cytoplasm. Act = activated PC = plasma cells
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other cell regulators such as hormones, and neuropeptides. In addition, a specific 

receptor is often found on more than one cell type which makes it difficult to 

analyse the function of cytokines in the network. Cytokines are secreted by many 

different cell types into the extracellular fluid where they exert their effects on the 

same cells (autocrine) or on the neighbouring cells (paracrine). A classification 

scheme introduced by Mosmann et al (Mosmann et al, 1986; Mosmann and 

Coffman, 1989) divides mouse CD4+ T cells into two distinct subpopulations, TH1 

and TH2 based on the arrays of secreted lymphokines. Recent studies indicate that 

this scheme applies in the human as well (Parronchi et al, 1991; Haanen et al, 

1991). Tm cells produce mainly IL-2, IFN-y, TNF a  and p. These cytokines are 

involved in activation of macrophages and induce delayed hypersensitive 

responses (Kuchroo et al, 1995). TH2 cells secrete IL-4, IL-5, IL-6, IL-10, 

strongly promote and regulate B cell responses, and stimulate the production of 

mast cells and eosinophils (Powrie and Coffman, 1993). The mechanism which 

determines the differentiation of TH precursor cells into Tm and TH2 cells is not 

fully understood, but IFN-y and IL-4 were reported to have an autoregulatory 

effect on differentiation of TH precursor cells into either Tm or TH2 effector cells. 

IFN-y enhances the Tm type of response and inhibits the TH2 response, while IL-4 

has the opposite effect (Kuchroo et al, 1995; Rabin et al, 1986; Powrie and 

Coffman, 1993; Finkelman et al; 1986). I will give a brief description of the 

cytokines which were used in this project.
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1-3-2-1 Interleukin 4 (IL-4)

IL-4, was initially known as B-cell growth factor-1 (BCGF-1) because of its 

ability to act with anti-IgM antibody to induce proliferation of resting B-cells 

cultured at high density (Howard, 1982). It was known later as B-cell stimulatory 

factor 1 (BSF-1) when it was shown to act on resting B-cells to induce expression 

of class II MHC molecules and to enhance their subsequent responsiveness to 

anti-IgM antibodies (Oliver et al, 1985; Rabin et al, 1985). Finally these names 

were replaced by the name IL-4 (Lee et al, 1986). IL-4 is made in response to 

immunological recognition by T-lymphocytes (Ben-Sasson et al, 1990) and is 

involved in T-cell-B-cell collaboration. IL-4 production is a property of TH2 cells 

and T-cells isolated from the tonsil are also capable of producing IL-4 (Secrist et 

al, 1994). Another major set of cells which are capable of producing IL-4 in 

response to cross linkage of immune recognition receptors are mast cells (Plaut et 

al, 1989; Brown, 1993), and basophils (Brunner, 1993). The high affinity receptor 

for IL-4 is present on many cells including T- and B-cells (Ohara & Paul 1987; 

Zola et al, 1993). IL-4 is a very pleiotropic molecule that induces responses in a 

wide variety of cell types, including both haematopoietic and non-haematopoietic 

cells (Paul, 1991). In addition to many activities in other cell types IL-4 has 

multiple effects on resting and activated B-cells. The expression of IL-4 receptors 

on resting B-cells and T-cells in contrast to very limited expression of IL-2 

receptors on such cells, is consistent with the demonstration that resting B 

lymphocytes are a major target of IL-4 activity (Roehm et al, 1984; and Oliver, et
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al, 1985). In the context of the work in this thesis, reports that IL-4 acts on 

resting (G0) B cells, and causes them to move into the Gj stage of the cell cycle 

are of special interest (Defrance at al, 1987). IL-4 has a regulatory role in the 

generation of the T-cell dependent humoral response (Fernandez-Botran et al, 

1986) and acts on B-cells at several phases during their activation and 

differentiation (Isakson et al, 1982; Noelle et al, 1984; Roehm et al, 1984, Sideras 

et al, 1985; Oliver et al, 1985 and Rabin et al, 1985). On resting cells IL-4 

induces an increased expression of class II MHC antigens (Noelle et al, 1984 and 

Roehm et al, 1984), prepares the cells to enter the S phase of the cell cycle 

following stimulation with Ig antibodies (Oliver et al, 1985 and Rabin et al, 1985). 

IL-4 induces class switching to IgGl (Yuan et al, 1985) and IgE ( Coffman and 

Carty, 1986) and upregulates adhesion molecules such as ICAM-1 and LFA-1 

(Branden & Lundgren, 1993; Bjorck, 1992; Bjorck, 1993a).

1-3-2-2 INTERLEUKIN 13 (IL-13)

Interleukin 13 is a cytokine secreted by activated T cells including CD8+ and 

CD4+ cells and is a potent modulator of human monocyte and B cell function 

(Mckenzie at al, 1993). Human IL-13 has been cloned and has 66% nucleotide 

sequence identity to mouse IL-13 cDNA and about 30% homology to human IL-4 

(Zurawski & de Vries, 1994). Several studies on mouse TH cells lines indicated 

that mIL-13 mRNA was produced by TH2 cells, but not by most Tm cells 

(Cherwiniski et al, 1987). A kinetic study of production of these cytokines shows
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that IL-4 mRNA expression levels in most T cell clones peaks after 24 hours of 

activation and are transient (Yssel et al, 1992), whereas expression of mRNA for 

IL-13 is much earlier and peaks after 2 hours of activation and lasts to up 72 hours 

(Zurawski & de Vries, 1994). IL-13 has anti-inflammatory activities and shares 

many biological activities with IL-4, such as morphological and cell surface 

phenotype changes on human monocytes. It induces proliferation, differentiation, 

and also facilitates immunoglobulin production by human B cells (Zurawski & de 

Vries, 1994; de Waal Malefyt et al, 1993; Defrance et al, 1994). Despite the 

similarities between IL-4 and IL-13, IL-13 fails to activates human T cells. In 

contrast to IL-4, IL-13 induces IFN-y production by large granular lymphocytes 

cells, whereas IL-4 inhibits this function (Minty, 1993; Zurawski & de Vries, 

1994).

1 -3-2-3 INTERFERONS (IFNs)

The interferons belong to a heterogeneous family of proteins that were 

discovered and measured on the basis of their anti-viral activity. Three types of 

interferon have been identified in human and their genes have been characterized. 

IFN-a and IFN-P are classified as type I and IFN-y is classified as a type IIIFN . 

IFN-y has little antiviral activity, in contrast to IFN-a and IFN-p which have 

strong antiviral activity and are produced by different cell types as a result of viral 

or LPS activation. Like other cytokines IFN-y must first bind to specific, high 

affinity cellular receptors in order to exert its regulatory effects. IFN-y interacts
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with unique type II receptors expressed on a wide range of cells including T cells, 

B cells, macrophages, polymorphonuclear leukocytes, Platelets, and many other 

somatic and tumour cells (Valente et al, 1992). IFN-y is a pleiotropic cytokine 

that is important in regulation of immune responses, cell mediated immunity, non­

specific responses in host defence against bacterial and parasitic infection, 

inflammatory responses and autoimmune diseases. The multiple functions of 

IFN-y were reviewed by Trinchieri & Perussia (1985) and by Farrar & Schreiber 

(1993). Besides activation of macrophages (Bancroft et al, 1992), it also blocks 

the upregulation of surface class II MHC expression and cell size induced by IL-4 

( Rabin et al, 1986). IFN-y and IL-2 have been found to

stimulate polyclonal IgM secretion in vitro by activated human B cells 

(Nakagawa et al, 1985). IFN-y inhibits both IgGl and IgE secretion induced by 

IL-4 and LPS, has no effect on IgM production but enhances IgG2a production 

(Snapper and Paul, 1987; Finkelman et al, 1988).

IFN-y is produced by all CD8+ cells and the TH1 subset of CD4+ cells 

following activation by antigen (Mosmann et al, 1986; Mosmann and Coffman, 

1989). NK cells are another source of IFN-y producing cells following activation 

by IL-12 and TN F-a (Bancroft et al, 1992).

SECTION FOUR: Cell Motility and Locomotion

In this project, it was mostly tried to define the locomotor properties of the 

tonsillar B cells. Tonsil cells were chosen because the proportion of B cells in
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tonsil was higher than that in blood and it was easier to purify them. We were 

able to compare the locomotor behaviour of tonsillar B cells with that of B cells in 

blood.

1-4-1 Locomotion of lym phocytes

In general the success of the immune system is dependent on the intrinsic 

ability for locomotion present in immune cells. All leukocytes are capable of 

locomotion. However, the locomotor capacity of leukocytes differs from one cell 

type to another. More than 95% of blood neutrophils respond to stimuli 

immediately (McKay et al, 1991; Keller et al, 1983), whereas the proportion of 

responding lymphocyte is low until the cells are activated (Wilkinson and 

Newman, 1992; Wilkinson and Islam, 1989). The locomotor capacity of 

individual cells is also related to different stages of cell development and 

differentiation. Many studies both in vivo and in vitro suggest that the locomotor 

capacity of small lymphocytes from blood or unprimed lymph nodes is not fully 

expressed. Most cells isolated from blood or lymph nodes are non-motile unless 

activated following challenge with antigen in vivo or with mitogen in vitro 

(Wilkinson, 1988; Wilkinson and Newman, 1992; Wilkinson and Islam, 1989).

Cellular locomotion may be stimulated by chemical substances. These 

substances determine both the direction of locomotion, a reaction known as 

chemotaxis, and the speed of locomotion, a reaction known as chemokinesis. In 

addition physical properties of the surfaces that cells move on can determine the



direction of locomotion (contact guidance). In the presence of a chemotactic 

gradient, cells migrate towards the gradient source. In the presence of the same 

substance at uniform concentration, the cells show random locomotion 

(Devereotes and Zigmond, 1988; Wilkinson, 1990a; Wilkinson 1990b). All types 

of leukocytes show chemotaxis. Chemotactic factors are usually soluble and 

diffusible and can thus form concentration gradients up which the cells migrate. 

The same substance could be both chemokinetic and chemotactic, depending on 

whether a good gradient is established or not (Haston and Wilkinson, 1988b). In 

order to show these responses, a cell must be capable of locomotion and must be 

capable of recognizing the attractant. Since resting lymphocytes may not have 

this capacity, and may require to be activated before they acquire it, a second 

group of agents with action on leukocyte locomotion consists of locomotor 

activators, which are not chemotactic factors, but whose effect is to confer 

locomotor capacity on previously non-motile lymphocytes. Studies of 

lymphocyte locomotion in vitro are important; (a) for recirculation and the 

traversing of high endothelial venules in lymphoid tissue; (b) for recruitment of 

lymphocytes into inflammatory sites (In the latter situation, activated lymphocytes 

are more active as locomotor cells than resting lymphocytes); (c) in cell-cell 

interactions in initiation of immune response (Springer, 1994; Wilkinson and 

Newman, 1992; El-Naggar et al, 1980). All these studies suggest that following 

activation in vitro or vivo, the lymphocyte populations become more motile than 

the preactivated population. This is consistent with other studies showing that
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lymphocyte locomotor capacity is growth-dependent, since resting cells that are in 

the G0 phase of growth require to begin protein and RNA synthesis but not DNA 

synthesis before they show full locomotor activity ( Wilkinson, 1986; Masuyama 

et al, 1992; Komai-koma et al, 1995; Islam and Wilkinson, 1992). These studies 

suggest that the proportion of cells in Gj responding to attractants is higher than in 

G0. However, this is in contrast to some reports that found a similar proportion of 

responding cells in Gj and G0 and also that small number of cells in G2 and M 

phase of cell cycle were also capable of responses ( Ratner, 1992).

1-4-2 Previous Studies of B Cell Locomotion in Vitro

To date, very few reports exist on B cell chemotaxis. The first successful 

report describing stimulated locomotion of B cells was made in the early 1970s 

when Russell et al (1975) showed that both human lymphoblasts from B cell lines 

and mouse lymphoblasts migrated into filters toward chemoattractants, such as 

endotoxin-activated plasma and casein. In contrast to human B cell lines, T 

lymphocytes taken from immunized mice did not show directional locomotion. 

Mouse lymphocytes showed polarization or migration in response to anti-Ig, but 

not to anti-histocompatibility antibodies or anti-lymphocyte serum (Schreiner & 

Unanue, 1975), who reported that anti-Ig stimulates random but not directional 

movement. These authors also reported that locomotor shape-change in rat spleen 

B cells was induced by anti-Ig. A later paper suggested that a chemotactic 

response is found at relatively low doses (around lOOng) of anti-Ig, whereas high
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concentrations of anti-Ig gave random migration (Ward et al, 1977). Wilkinson et 

al (1977) reported that lymphocytes derived from immunized mice gave a positive 

chemotactic response to the immunizing antigen, but that non-immunized mice 

showed no response. The cells responding to antigen at three days of challenge 

were large lymphocytes. The first definitive description of the locomotor capacity 

of human B cells was a study made by Wilkinson and Islam (1989). They 

demonstrated that B cells responded overnight by polarization in culture in IL-4 

and IFN-y. Clinchy et al (1991 & 1994) showed a similar response of mouse 

spleen cells to IL-4. The response of these cells to IL-4 was fibronectin and Pt 

integrin dependent (Elenstrom-Magnusson, et al, 1994). This group also reported 

that the effect of IL-4 on motility of human and murine B-cells could be inhibited 

using IL-10 (Clinchy, et al, 1994). They also showed that a lot of other cytokines 

such as IL-1, IL-2, IL-3, IL-5, IL-6 did not induce migration either in small or in 

large B cells (Clinchy et al, 1993). A recent report (Burton et al, 1995) has shown 

that physical contact between FDCs and high-density B cells mediates maximal 

signals for both chemokinetic and chemotactic responses and that these responses 

were independent of T-cells. It is now evident that B cell activation is optimal in 

response to multiple signals, and it was therefore of interest to see if the locomotor 

response like other activation responses could also be optimized using multiple 

signals (e.g. IL-4 + CD40 etc).

The following cytokines and other stimuli have been reported to stimulate 

locomotion of B cells. IL-4 (Bacon et al, 1990; Wilkinson and Islam, 1989;



Clinchy et al, 1991), IL-6 (Bacon et al, 1990), IL-10 (Jinquan et al, 1993; Clinchy 

et al, 1993), IFN-y (Issekutz and Stoltz, 1989; Wilkinson and Islam, 1989), MIP- 

l a  (Taub et al, 1993, Schall et al, 1993), anti-Ig (Unanue et al, 1974), LPS 

(Issekutz and Stoltz, 1989), Protein A (Wilkinson et al, 1976), Fibronectin (Davies 

et al, 1990), C5a (Kupp et al, 1991; El-Naggar et al, 1980) and FMLP (El-Naggar 

et al, 1980). About many of these, there is disagreement and a consensus has not 

been reached about which are the important B cell attractants.

1-4-3 M ethods For Study of Lymphocyte Locomotion in vitro

Study of locomotion in vitro goes back more than a century. Most of the 

investigators before 1950 used some kind of visual assay to observe the 

movement of cells (Lewis & Webster, 1921; McCutcheon, 1923). Boyden (1962) 

introduced the filter assay, which did not require direct observation of cells, using 

cellulose ester filters about 100-150pm thick and consisting of pores of different 

diameters depending on cell type (3- 12pm). This technique was used to separate 

the cells above from the attractant below the filter. The use of this assay for 

defining chemotactic responses was controversial, since it did not give direct 

evidence for a chemotactic response (Keller et al, 1972). Zigmond and Hirsch 

(1973) introduced the checkerboard assay, based on calculation of the velocity of 

cells in different gradients and uniform concentrations of attractants, to 

demonstrate directional migration in filters. A number of assays are available to 

study leukocyte locomotion and chemotaxis, each of which is based on different



principles (Haston and Wilkinson, 1988a). The choice of methods depends on the 

nature of the cells and the kind of questions being asked. Early studies usually 

used time-lapse cinematography, but other assay systems which have also been 

used, are the polarization assay, filter assay, and the collagen gel invasion assay. 

All these methods except time-lapse cinematography, are indirect assays in which 

the paths taken by cells and their speed and direction are not examined. In the 

filter and collagen assays, the end-point distribution of the cell population after 

exposure to the attractant is determined.

1-4-3-1 Time Lapse Cinem atography

Time-lapse cinematography allows a visual demonstration of leukocyte 

motility as well as orientation towards the source of chemotactic gradients and can 

provide unequivocal evidence of the leukocyte response to chemoattractants. This 

assay allows direct measurement of the direction of chemotaxis or chemokinesis. 

The number of cells which can be sampled in these assays is smaller than in the 

indirect assays. This technique has been successfully used for many years to 

study the chemotactic responsiveness of both human blood neutrophils and 

lymphocytes ( Islam at al, 1985; Wilkinson, 1985). This is most frequently done 

on flat surfaces (e.g. protein coated glass) or the chemical substance can be placed 

in or on collagen gels and the chemotactic response of leukocytes towards the 

attractants incorporated in the gel can be studied visually.
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1 -4-3-2 Polarization A ssay

The polarization assay (Haston & Shields, 1985) is the simplest method 

available for measuring lymphocyte locomotion. Addition of the attractant results 

in a change in shape from a spherical to a polarized morphology of cells in 

suspension. Unstimulated cells have a spherical morphology. When spherical 

non-motile leukocytes are stimulated by a attractant, the cells form a pseudopod 

towards the gradient source and then if they are on a surface, they move in the 

direction of pseudopod formation within a few minutes due to the localization of 

polymerized actin at the head of the cell (Zigmond, 1974; Allen and Wilkinson, 

1978). It was reported that some of the membrane proteins and receptors for 

chemotactic factors become concentrated toward the head of the cell (McKay et 

al, 1991). It was reported that cells in suspension respond to uniform 

concentrations of attractants by taking up a similar polarized morphology (Smith 

et al, 1979; Keller et al, 1983; Haston & Shields, 1985). This is a useful and 

accurate assay to score the proportion of locomotor cells, and the degree to which 

they become polarized. It also provides a rapid assessment of the immediate 

locomotor response to attractants. This is easy, independent of adhesion, and 

gives excellent dose-response data. The disadvantage of this method is that it 

does not give direct information about the locomotor events which follow 

polarization, nevertheless, it correlates well with other more direct methods like 

the collagen assay (Haston & Wilkinson, 1988b). The polarization assays was 

used in two different ways; (a) in a short term assay (<30 min. incubation) which
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was used to study the immediate response of cells on addition of attractants either 

directly after separation from biological sources or after overnight culture. This 

provides valuable information about the locomotion of cells towards 

chemoattractants before and after culture, (b) in a long term assay (24-72h) which 

shows the effect of growth-activators on locomotion. These studies show that 

long term culture enables a high proportion of cells to respond to 

chemoattractants, and also that chemoattractants are secreted into the culture 

medium during long-term incubation of peripheral blood mononuclear cells 

(Wilkinson & Higgins, 1987, Wilkinson and Newman, 1992).

1 -4-3-3 Collagen Gel A ssay

The polarization assay measures shape-change, but not locomotion directly. 

The locomotor capacity of polarized cells was determined by using 3-D gels of 

fibrillar proteins such as collagen (Haston and Wilkinson, 1982; Schor et al, 1983) 

or fibrin (Wilkinson & Lackie, 1983). This technique allows the relationship 

between polarization and locomotion to be investigated. Type I collagen from rat 

tail tendons was used in this thesis as has been described earlier (Haston, Shields, 

Wilkinson, 1982). In contrast to protein-coated glass or plastic which is ideal for 

studies of locomotion of more adherent cells such as monocytes and neutrophils, 

locomotion in collagen gels does not require strong adherence. Thus lymphocytes 

which do not attach to most 2-dimensional tissue culture substrates, may locomote 

readily through the matrices of type I collagen gels (Haston et al, 1982; Schor et
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al, 1983). The collagen assay is similar to the micropore filter assay, but more 

physiological and provides a 3-dimensional collagen matrix in which cell 

migration in response to diffusing gradients of attractant can be observed (Haston 

et al, 1988; Schor, 1983; Wilkinson, 1986). In contrast to the filter assay, the 

collagen gel allows more accurate study of the locomotion of leukocytes and also 

the invasive cells can be recovered for phenotyping using collagenase. Thus this 

assay is ideal to study locomotion behaviour in mixed populations.

1-4-4 Cell Motility and its Im portance in Regulation of Immune 

R esponse

Most mature lymphocytes spend the majority of their time in transit, and the 

circulation and accumulation of lymphocytes are not random. Both T and B 

lymphocytes recirculate continuously from blood into the lymph nodes and back 

again. Some studies have indicated that the recirculation speed of B cells is 

slower than that of T cells (Sprent, 1973) and B cells present in germinal centres 

do not recirculate (Reichert et al, 1983). Furthermore, activated or memory cells 

show different migration pathways from inactivated or virgin cells. The 

inactivated cells are the recirculating population. After activation by antigen, 

lymphocytes no longer recirculate, but are able to migrate into inflammatory sites 

(Springer, 1990; Bevilague, 1993). In vitro assays show that activated T cells 

respond more vigorously to chemoattractants than naive T cells (Wilkinson et al, 

1976; Wilkinson and Newman, 1992; Schall et al, 1990). In vivo, labelled
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lymphocytes injected into the circulation go back to the same tissue from which 

they were originally derived (Shimizu etal, 1992). Mucosal lymphocytes 

preferentially return to mucosa associated lymphoid organs and lymphocytes 

from peripheral lymph nodes home back to lymph nodes (Kraal et al, 1983). 

Recirculation between the blood and lymphatics is predominantly a property of 

small lymphocytes (Gowans and Knight, 1964). Activated lymphocytes appear 

capable of relocation in the tissue in which they were activated (Gowans and 

Knight, 1964; Shimizu et al, 1992). Tissue restricted homing migration may be 

one way to enhance the efficiency of the immune response keeping in mind that 

each type of leukocyte responds to a particular set of traffic signals and the nature 

of the stimulus determines which cells predominate (Springer, 1994). The 

continuous traffic of recirculating B cells increases the chances for encounter with 

the antigen for which any B cell is specific and ensures many cell-cell interactions 

which are important in regulation of immune responses.

The molecular explanation for these distinct migration patterns lies in the 

interaction of lymphocytes with endothelial cells living the blood vessels. 

Gowans and Knight (1964) identified specialised endothelium, high endothelial 

venules (HEV), as the specialized site of entry of small lymphocytes into the 

lymph nodes (tonsils, Peyer's patch and appendix) from blood. The small virgin 

lymphocytes which circulate from blood across HEV into lymph nodes then back 

via lymphatics to the blood consists mainly of small nonactivated cells (Gallatin et 

al, 1987). These recirculating lymphocytes do not cross nonspecialized endothelia



or migrate into inflammatory sites, whereas activated lymphocytes have been 

reported to lose their markers for HEV (Dailey et al, 1983) but acquire a capacity 

to cross inflammatory endothelia (McGregor & Logie, 1974). The lymphocyte- 

HEV interaction was studied by Stamper and Woodruff (1976) in vitro using 

frozen sections of endothelial cells. It was suspected that unique adhesion 

receptors on lymphocytes and endothelial cells provided the sorting mechanism by 

which only selected lymphocytes were allowed to adhere and subsequently pass 

(Butcher et al, 1980). Since the lymphocyte endothelial interaction has become 

the focus of intensive research, an increasing number of monoclonal antibodies 

(mab) specific for adhesion receptors has become available. It is worth noticing 

that passage through HEV in lymphoid organs is only permitted for lymphocytes 

and not for macrophages or granulocytes. However, binding to HEV may not be 

an absolute requirement for extravasation since lymphocytes pass through spleen 

lacking HEV even faster than through lymph nodes (Pabst and Binns, 1989).

Extravasation of lymphocytes and endothelial cells is governed by adhesion 

receptors on lymphocytes and its ligands on the endothelial cells and the 

mechanisms controlling such interactions are currently being investigated 

intensively. (Harris, 1995; Shimizu et al, 1992; Springer, 1994; Bevilacaua, 1993). 

All of the identified adhesion receptors can be classified into three major groups 

of molecules; selectins, integrin and members of the Ig supergene family 

(springer, 1990; Shimizu et al, 1992). Besides these groups, another broadly 

distributed adhesion molecule of importance in lymphocyte migration is CD44



(de-los-Toyos et al, 1989) which does not fit to any of the above groups but is 

related to cartilage protoglygan core proteins and binds to hyaluronic acid, 

collagen and fibronectin.

The current hypothesis of molecular mechanisms underlying leukocytes 

extravasation proposes a multiple step, sequential chain of events based on 

adhesion receptors (Shimizu et al, 1992; Springer, 1994). According to this 

scenario four steps were recognized; (1) Tethering which is the initial interaction 

mediated by selectins binding to their carbohydrate ligands; (2) Rolling along the 

vessel until the cells finally stop and adhere firmly. This adhesion step is still 

mediated by selectins. It allows the leukocytes to slow down sufficiently to sense 

activation signals from chemoattractants. When the chemoattractants bind to their 

specific receptors the lymphocytes became activated (Bargatze and Butcher, 

1993). This triggers up-regulation and conformational changes in integrins, 

leading to increased adhesiveness. Integrins, here exemplified by LFA-1 and 

VLA-4, bind to their ligands ICAM-l/ICAM-2 and VCAM-1, respectively. These 

steps may result within several minutes or hours; (3) Flattening, Integrin receptor- 

ligand interactions are strong and arrest the rolling of lymphocytes. Since the 

activation of integrins is transient, the adhesion will reverse and allow 

lymphocytes to transmigrate; (4) Diapedesis, migration out of the vessel through 

the pores between endothelial cells. The lymphocytes pass through the space 

between endothelial cells and the basement membrane, then enter into the 

extracellular matrix.
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CHAPTER TWO:

Materials and Methods
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1- Preparation of reagents.

1-1 Cytokines

Lyophilized recombinant human IL-l<*(lmg) was obtained from R & D 

(British Biotechnology Products Ltd, Oxford, UK). This was dissolved in 

HBSS/HSA and stored at -20°C. Human recombinant IL-2 was a gift from Dr. D.I. 

Stott (Dept, of Immunology, Western Infirmary, Glasgow, UK), and was 

originally obtained from Glaxo (Geneva, Switzerland) and also from R&D. IL-4 

was a generous gift from Dr W. Niedbala (Dept, of Immunology Western 

Infirmary, Glasgow, UK) and was originally obtained from Immunex (Seattle, 

Washington, USA). It was stored at lOOOU/ml at -20°C. To avoid a repeated 

freezed/thaw cycle, IL-4 was diluted at 8,000 u/ml in HBSS/HSA and stored at - 

20°C in several aliquots. A fresh working solution at an appropriate concentration 

was made up in Hanks/HSA. Mouse IL-4 was a kind gift from Prof. F.Y. Liew 

(Dept, of Immunology, Western Infirmary, Glasgow). It was stored at lOOmg/ml 

with a specific activity in excess of 1X107 U/mg. Polyclonal rabbit anti-human 

IL-4 was purchased from Genzyme Corporation (Cambridge, UK) in 0.5mg. This 

was dissolved in 0.5ml of HBSS and stored in aliquots at -20°C before use. Anti 

mouse IL-4 (11B11) was also used to block the effect of IL-4 on B-cell activation. 

Lyophilized human recombinant IL-5, IL-6, and mouse aIL-4 (11B11) were 

donated by Prof. F.Y. Liew and the former two were originally obtained from
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NIBSC (South Mimms, UK) at approximately 500ng per ampoule (5,000 units) 

and 1.25mg per ampoule (6250 units), respectively. The total content of the IL-5 

ampoule was dissolved in 0.5ml of distilled water, then the ampoule was rinsed 

with PBS to make up the total volume to 1ml. Aliquots were made and stored at - 

70°C. IL-6 was reconstituted in 0.5ml of HBSS and stored at -70°C. Lyophilized

recombinant human IL-7 was purchased from NBS (Hatfield, UK) (5mg) with a

8 •  * specific activity of 2-4 xlO units/mg. This was reconstituted in HBSS at

lOmg/ml and stored at -20°C in several aliquots. Lyophilized human recombinant

IL-8 was purchased from R+D Systems (Abingdon, UK). This was dissolved in

lm i of PBS and stored at -20°C in aliquots. IL-13 & aIL-13 were a kind gift from

DNAX Research Institute (Palo, Alto, CA, USA) at 25mg/ml and 0.37ng/ml,

respectively. IL-15 was a gift from Prof. F.Y Liew. Recombinant (E.coli-derived)

human interferon gamma (IFN-y), with more than 99% purity and with a specific

activity equal to 2xl07 IU/ml, was obtained from Dr G.R. Adolf (Bender Wien).

This was reconstituted with 1ml sterile normal saline and stored at -20°C in

several aliquots. Recombinant (E.coli-derived) human TNF-a was from Bender

Wien, with more than 99% purity and with specific activity equal to 5 x l0 7. This

was aliquoted and stored at -20°C. It was diluted immediately prior to use.

Purified recombinant sCD23 was a kind gift from Dr. J.Y. Bonnefoy (Glaxo). This

was aliquoted and stored at -20°C. Human M IP-la (LD78) & MIP-1J3 were a gift

from Dr. G. Graham (Beaston Institute, Glasgow). RANTES was purchased from

Peprotech Inc (Rocky Hill, N.Y./USA) and prepared at lOmg/ml, stored at -20°C.



1-2 Anti-Immunoglobulins

The antibodies shown in Table 2-1 were used for functional studies on human 

B-cells and were prepared as monoclonal anti-human antibodies except anti­

human IgD & anti human IgG,A and M, both from the Binding Site, which were 

polyclonal. All the antibodies containing sodium azide were dialysed against 

several changes of HBSS for three days to remove the preservatives. For further 

dilution, all reagents were carried out in a protein containing medium (HBSS/ 

HSA) to avoid loss of bioactivity of reagents. Mouse IgGj purified 

immunoglobulin, mouse IgG2a purified immunoglobulin, and sheep IgG purified 

immunoglobulin were purchased from Sigma and were used to show any non­

specific response as a negative control. These were applied at the same 

concentration as the corresponding test antibodies. A variety of antibodies were 

used to differentiate subpopulations of B-cells, and other mononuclear cells. 

Different antibodies were used to identify different B-cell populations in terms of 

their activation and maturation. Some of these primary antibodies were 

conjugated and those which were not conjugated were used in conjugation with 

appropriate secondary antibodies (Fluorecein-conjugated F(ab')2 fragments of 

rabbit immunoglobulins against mouse immunoglobulins, Dako). The primary 

antibodies were obtained from different sources and species shown in Table 2-2. 

CD 14 and CD56 were used as markers for monocytes and natural killer cells, 

respectively. All antibodies derived from mice were detected using FITC- 

conjugated rabbit anti-mouse immunoglobin[(Fab)2 fragment, Dako] at 1:50
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Table 2.1

Antibody Source Isotype species

ahIgG,A and M Binding Site © IgG Fraction Sheep

ahlgD Binding Site IgG Fraction Sheep

ahlgD Dako A IgG,, Kappa Mouse

ahlgG Dako IgM, Kappa Mouse

ahlgA Dako IgG,, Kappa Mouse

ahlgM Binding Site IgG2a, Mouse

ahCD20 Coulter Mouse

ahCD21 SAPU IgG,, Kappa Mouse

ahCD32 Immunotec © 'gG,, Mouse

ahCD40 Serotec ❖ IgG„ Kappa Mouse

ahCD40 Prof J.Gordon * IgG, Mouse

Addresses of sources of antibodies

©Binding site (Birmingham, UK) *  Coulter (Hialeah, FL, USA)

❖ Serotec (Kidlington, Oxford, UK) © Immunotec (Binding Site, Birmingham, UK)

* Department of Immunology, University of Birmingham 

tV Dako (Bucks, UK)
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dilution in PBS/azide. FITC-conjugated aCD3 and PE-conjugated aCD19 were 

used as pan T- and B-cell markers, respectively.

The following antibodies were used to study mouse B cells: goat anti mouse Ig 

(polyvalent) biotin-labelled (Crawley Down, Sussex, UK) was diluted to 

200jug/ml and dialysed against PBS for functional studies and phenotyping of 

mouse spleen B cells. Biotin conjugated hamster anti mouse CD3 monoclonal 

antibody (Pharmingen, UK), FITC conjugated anti mouse CD8 a (Ly-2, 

Pharmingen), and PE conjugated anti mouse CD4 (L3T4, Pharmingen) were used 

to phenotype T-cells, T helper cells, and CTL T-cells, respectively. Non­

conjugated antibodies were then labelled with fluorescein streptavidin - FITC 

(Vector Laboratories, Peterborough, UK). This was diluted 1 in 100 of staining 

buffer. FITC conjugated F 4/80 antigen (Serotec) was used to identify 

macrophages in mouse spleen cell populations. Mouse monoclonal antibodies to 

mouse Thy-1.2 (Serotec) was used to lyse T-cells. It was diluted 1:20 in RPMI 

containing 15% FCS, then aliquoted at 0.2ml and stored at -70°C.

1-3 A ntigens and other reagents

LPS was obtained from Sigma and was made up to a lOmg/ml dilution in 

Hanks. Pneumovax II which contains 23 different Polysaccharides was donated 

by L.G. Smart (Ruchill Hospital, Pneumococcal reference, Glasgow). 

Lyophilized protein A from Staph aureus (Cowan strain) cell walls, (lm g, Sigma) 

was diluted with Hanks at lmg/ml. Ovalbumin, grade V was obtained from
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Table 2-2

Antibody Conjugated Source Antibody Conjugate

d

Source

ahlgD None Dako ahCD20 None Coulter

ahlgM None Binding

Site

ahCD21 None SAPU

ahlgA None Dako ahCD22 None Dako

ahlgG None Dako ahCD23 None Dako

ahCD3-CD19 FITC-PE Dako ahCD32 None Immunotec

ahCD4 PE Dako ahCD38 None Immunotec

ahCD8 PE Dako ahCD39 None Birmingham

ahCDIO None SAPU ahCD45 FITC Becton

Dickinson

ahCD14 None SAPU ahCD56 None Dako

ahCD19 PE Dako ahCD69 None Becton

Dickinson

Table 2-2 Primary antibodies for phenotyping of human B cells.

69



Sigma. ISCOMS ovalbumin was donated by Dr A., Mowat. (Dept. Immunology, 

Western Infirmary, Glasgow). Low-tox rabbit complement was obtained from 

Cedarlane (Hornby, Ontario, Canada). Each lyophilized vial was reconstituted in 

one ml of ice cold distilled water on the day of experiment. Type I collagenase 

derived from Clostridium histolyticum (clostridiopeptidase A) with a specific 

activity of 280 units/mg was obtained from Sigma . This was dissolved in HBSS 

at 5000U/ml and stored at -20°C. To find the optimal time and dose for digestion, 

the collagenase was incubated with collagen at different concentrations with 

various intervals. Collagenase dissolved collagen gels completely at 20u/ml in 

20-30 minutes. [5,6 'HJuridine was purchased from Amersham International 

PLC (Buckinghamshire, UK). Its activity per dose was 9.25MBq (equal to 

250pCi) and it was stored at 4°C. [3 H]-thymidine TRA 120, was purchased from 

the Dept, of Clinical physics and Bio-engineering, Western Infirmary, Glasgow, 

with an activity per dose of 37 MBq equal to lOOOpCi and was stored at 4°C.

2 : Preparation of buffers 

2-1 Hanks balanced salt solution :

HBSS (ICN Flow Ltd, High Wycombe, UK) was obtained as a 10 x strength 

solution without sodium bicarbonate, and mixed 1:9 with distilled water. MOPS 

(Morpholinopropane Sulfonic Acid, Sigma, Poole, Dorset, UK) was used as a 

buffer for HBSS. 1M MOPS was prepared by dissolving 209.3g MOPS in one
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litre of distilled water. The solution was sterilized by filtration through 0.22\xm 

filters (ICN Flow) and stored at 4°C before use. It was then diluted 1 in 100 in 

Hanks to a final dilution of lOmM. The pH was adjusted to 7.4 by either 2M HC1 

or NaOH. This solution, is designated as Hanks throughout this project. 

Hanks/HSA was prepared by adding lOmg/ml of HSA (Behringwerke AG, 

Marburg, Germany) to the Hanks. RPMI 1640 (ICN Flow) was the most common 

medium used to study mouse B cell locomotion. The high-glucose formulation of 

this media was supplemented shortly before use with lOmg/ml HSA. It was 

supplied as a 1 X strength solution containing sodium bicarbonate, but not L- 

glutamine.

2-2 Normal S a lin e :

was prepared as a 10 X strength solution by dissolving 85g NaCl (BDH) in one 

litre of distilled water. The working solution was prepared from this by a 1:10 

dilution in distilled water.

2-2 Phosphate buffered saline (PBS):

PBS was prepared by mixing 140mM NaCl, 9.2mM Na2 H P04, and 1.3mM 

NaH2 P 0 4  (BDH), and the pH was adjusted to 7.4.

2-4 PBS-Azide:

Sodium azide (BDH) was prepared at 10% (w/v) in distilled water and stored at
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4°C. This solution was diluted in PBS at 1 in 100.

2-5 Lysing B uffer:

Ammonium chloride in the presence of potassium bicarbonate (155mM NH4 CI, 

lOmM KHCO3 '» anc* EDTA)at pH 7.4 causes specific lysis of erythrocytes.

Lysis does not affect the leukocytes, if the temperature is maintained at 4°C thus 

minimising the diffusion. This was mixed and sterilised by filtering through 

0 .2 2 pm filters.

3- Siliconization of G lassw are

Glass universal bottles and test tubes were cleaned before dipping into 

Repelcote (Hopkin and Williams, Chadwell Health, UK) for 1-2 minutes and 

allowed to dry inside a fume cupboard for one hour at room temperature. After 

complete evaporation of fluid, the glassware was washed twice in tap water and 

finally with distilled water to remove the small quantity of hydrochloric acid 

formed during hydrolysis of the Repelcote to silicone. The glassware was dried 

overnight at room temperature and sterilised by autoclaving (Islam, 1986).

4- D iscontinuous Density Gradient Centrifugation

Percoll was obtained from Pharmacia LKB, Biotechnology AB (Uppsala, 

Sweden). A stock solution was made by mixing the following substances; 90ml 

Percoll, 8.965ml 10 X HBSS, 1ml 1M MOPS, and 455 ml IN HCL. The physico­
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chemical properties of this stock solution are as follows; density = 1.1230 g/ml, 

osmolarity = 301 mosm/kg, pH=7.3. By the equation given below, any desired 

density can be obtained from the stock solution. 70%, 6 6 %, 60%, and 50% 

Percoll were made to separate high and low density of mouse B cells. All 

gradients were kept on ice in order to have ideal separation. 70% Percoll was 

prepared by mixing 290ml Percoll with 170ml percoll mix solution (45ml 10 X 

PBS, 3ml 0.6N HC1, 132ml H2 0 , the pH was adjusted to 7-7.2, and the mix 

solution was sterilized using a 0.22p,m filter, Flowpore, ICN). The gradient was 

prepared by adding 2.5ml of 70% Percoll to a 15ml tube, then 2.5ml of 6 6 %, 60%, 

and 50% Percoll were added gently over 70%, 6 6 %, 60% Percoll, respectively. 

Prepared gradients were kept on ice for 15 minutes before adding cells and 

centrifugation.

50%, 60%, and 6 6 % Percoll were prepared as follows;

55% 60% 6 6 %

70% Percoll, ice cold (ml) 21.42 24.74 28.29

HBSS, ice cold (ml) 8.58 4.26 1.71

5 - Culture conditions

Culture was carried out in HBSS/HSA supplemented with lOOIU/ml penicillin 

(Gibco, Life Technologies Ltd, Paisley, U.K.), lOOmg/ml streptomycin (Gibco),
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Table 2-3

Density Stock Percoll Hanks/MOPS

1.055 43ml 57ml

1.060 47.1ml 52.9ml

1.065 51.4ml 48.6ml

1.072 57.2ml 42.8ml

1.077 61.5ml 38.5ml

1.080 64.0ml 36.0ml

Table 2-3 shows the preparation of working Percoll
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2mM L-glutamine (Gibco), 0.075% Sodium Bicarbonate (Gibco), in a 37°C 

incubator with 5% C 0 2. Mouse B-cells were cultured in RPMI/ lOmg/ml HSA 

under the same conditions. Culture supernatants (SN) were prepared by culturing 

resting and activated cells in IL-4 at lOOu/ml for 20 hours. After centrifugation, 

the supernatants of high-density B cells cultured in IL-4 at lOOu/ml were collected 

and retained at -20°C for assays.

6- Preparation of Fixative

Two fixatives were used in this project as follows:

(1) Glutaraldehyde, grade II, was obtained from Sigma as a 25% aqueous 

solution. The working solution (2.5%) was prepared by mixing 1:9 with normal 

saline and was stored at 4°C. An equal volume of this solution was used to fix the 

cells in polarization and collagen assays.

(2) 1% paraformaldehyde (BDH) was prepared by dissolving one gram in

100ml of PBS at 60-70°C for approximately one hour. The pH was adjusted to

7.4, and the solution stored at 4°C. This solution was used as a fixative in 

immunoflourescent assays.

7- Preparation of Collagen

Type I collagen was prepared from adult rat tails. The method was based on 

that of Elsdale & Bard (1972), and modified by Haston & Wilkinson (1988a). 

Adult rat tails were collected and stored at -20°C. 6-12 tails were thawed at room
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temperature and sprayed by alcohol. The skin was stripped from the tails. The 

bundles of tendons were removed (each tail contains 4 bundles) and soaked with 

stirring, in 250ml of 3% (0.5M) acetic acid in water, overnight at 4°C. The 

collagen dissolved and tropocollagen was released in the solution. If the solution 

was too concentrated more 3% acetic acid was added and the solution incubated at 

4°C overnight. The solution was filtered through Monofilament-Nylon filter cloth 

( R.Cadisch & Sons, London, UK) to remove any undissolved materials and was 

centrifuged at 3,000 X g for 45 minutes at 4°C to deposit any debris. This solution 

was mixed with 10% NaCl (w/v) and incubated at 4°C overnight to precipitate the 

collagen. The supernatant was removed and the pellet was centrifuged at 3,000 X 

g for 45 minutes at 4°C. The precipitated collagen was transferred into a sterile 

flask and 250ml of 3% acetic acid was added, and this was incubated at 4°C. All 

processes from dissolving in 10% NaCl onward were repeated once more. The 

collagen then was dialysed against water with several changes for three days and 

the pH was adjusted to 4 with HC1. This solution was aliquoted in 20ml universal 

tubes and stored at -20°C until used. The concentration of collagen was 

determined as follows: An empty universal tube was weighed and 10ml of 

collagen was added to the tube. The collagen was freeze-dried overnight, and the 

tubes reweighed. The concentration of collagen was calculated by measuring the 

optical density at 230nm using a U-V spectrophotometer (LKB, Biochrom, 

Ultrospec 4050). The result was compared with that obtained using a freeze-dried 

sample from which a standard curve was drawn.
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8- Preparation of collagen gels

The stock collagen solution was prepared as above at 4.8 mg/ml and stored at - 

20°C. For assay three dimensional collagen gels were prepared at 1.5 mg/ml 

throughout this project. Collagen was thawed at room temperature, then placed on 

ice to delay the gelling time. To return it to physiological osmolarity and pH, it 

was diluted appropriately with 10 X HBSS, 1M MOPS and water. The gel was 

prepared at twice the final concentration required. The collagen gel was added to 

the mixture of 10 X HBSS at 1 in 10 final volume, penicillin/streptomycin at 1 in 

100, L-glutamine at 1 in 100, 7.5% of sodium bicarbonate at 1 in 100, and distilled 

water up to the final volume. The pH was adjusted to 7.4. The solution was 

mixed quickly and equal volumes of appropriate locomotor stimulants were added 

immediately. After mixing well, 0.5ml volume of this was transferred to the wells 

of 24-well plates (NUNC, Roskilde, Denmark). The gels set in approximately 15- 

20 minutes at room temperature. The gel surface was covered by 400ml of HBSS 

to prevent gels drying and formation of an impenetrable surface skin (Haston et al, 

1982).

9- A ssessm en t Of Cell Viability

Before any functional studies were performed on the isolated and purified cells 

the viability of the suspensions were established. The most popular current 

viability assessment is by means of vital dye exclusion studies. Most of these 

techniques used to assay cell viability examine late events. Thus trypan blue was
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not ideal to show apoptotic cells in culture. Therefore, morphological criteria and 

Kimura stain were used to identify these cells.

9-1 Trypan Blue Method

Stock trypan blue at 0.2% (w/v) in distilled water and 5 x normal saline [4.25% 

(w/v) NaCl] was prepared. For use, four parts of 0.2% trypan blue were mixed 

with one part of 5 x saline. The cell suspensions were prepared at 2-5 x 105  

cells/ml. One part of cell suspension was diluted with one part of trypan blue/ 

saline solution. After mixing well, the cells were examined on chambers or slides 

under 40 x objective and a 10 X eyepiece lens.

Viable cells exclude the dye initially, while nonviable cells take up the dye, 

thereby enabling a direct visual distinction between unstained viable cells and 

blue-stained non-viable cells. After staining the cells, they must be counted 

within 3 minutes, because after that time the viable cells begin to take up dye.

9-2 Eosin Y Method

Eosin Y (BDH) was prepared at 0.2% in saline and stored at room 

temperature. If a precipitate forms, it could be removed by passing the solution 

through Whatman number 1 filter paper (Whatman International Ltd. Maidstone, 

UK). A cell suspension was prepared at 2-5 x 106 cells/ml and one part was 

mixed with one part of 0.2% eosin Y. Dead cells take up the dye and become 

reddish in colour. The advantage of this technique is that the time is less critical

78



than for trypan blue staining and viable cells remain unchanged even 1 0  minutes 

after staining. Since both dyes have a great affinity for proteins, it is best to 

eliminate serum from the cell suspension.

9-3 Morphological criteria

Phase contrast microscopy was used to investigate viability of cultured tonsillar 

cells especially GC B cells. After cells were cultured overnight, they were fixed 

with 2.5% glutaraldehyde. The dead and live cells were differentiated by their 

morphological appearance under a x40 objective using phase contrast microscopy.

9-4 Kimura stain

0.05% toluidine blue solution was prepared by dissolving 0.05g of toluidine 

blue (Merck) in 50ml of 1.8% NaCl in distilled water and 22ml of ethyl alcohol. 

After mixing well, distilled water was added to make the final volume 100ml. 

Kimura stain was prepared by mixing of 11ml of 0.05% toluidine blue solution, 

0.8 ml of 0.03% light green (Merck) solution in water, 5ml of 1/15M phosphate 

buffer (pH 6.4), and 0.5ml of a saturated solution of saponin (Saponin white, 

Merck) in 50% ethyl alcohol. The 1/15M phosphate buffer was prepared at 

150mM by mixing 8.0g NaCl, 1.21g dipotassium hydrogen orthophosphate 

(BDH), and 0.34g potassium dihydrogen orthophosphate. This was diluted in 

distilled water to the final concentration of 0.067M (1/15M). A saturated solution 

of saponin was prepared by dissolving saponin white in 50% ethylalcohol in
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distilled water on a stirrer till a visible precipitate formed which no longer 

dissolved. The stain was filtered using Whatman filter paper. This was used to 

check the viability of germinal centre cells, since it was an excellent method to 

recognize the apoptotic cells. This method gave a ideal image of polarized, 

spherical and apoptotic cells in GC studies. Following fixing cells with an equal 

volume of 2.5 glutaraldehyde, they were washed twice in normal saline. The 

pellet (about lOOpl), after decanting the second wash solution was mixed with an 

equal volume of kimura stain, following incubation for 2-5 minutes at room 

temperature. This was used to make slide and coverslip preparations which were 

studied under a x40 objective using a light microscope.

10 : Preparation of treated  SRBC

10-1 Preparation of SRBCs

Whole sheep blood was obtained from SAPU (Carluke, UK). 1.5ml volumes 

of whole blood were layered onto 3ml volumes of separating medium - 

Lymphoprep (Nycomed UK Ltd, Birmingham) in 110 x 16mm conical-based 

tubes (McQuilkin & company, Glasgow, UK). Mononuclear cells, plasma and 

separating medium were removed after centrifugation at 400g for 30 min. The 

pellet containing SRBCs and some polymorphonuclear cells (PMN) was collected 

from the bottom of the tube (Boyum, 1968). SRBCs were washed three times in 

PBS at 1700 rpm for 5 min. 10% SRBCs were prepared by mixing 1ml of packed 

SRBCs in 9ml of phosphate free saline.
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10-2 Preparation of Neuram inidase Treated SRBCs

GET (Gelatine, EDTA, Tris buffer) buffer was prepared by mixing 3.72g 

disodium EDTA 2H20  (Sigma), and 6 g NaCl, in one litre of distilled water. The 

pH was adjusted to 7.2 with 12% Tris buffer. 12% Tris buffer was prepared by 

dissolving 12g tris (hydroxy methyl) methylamine (BDH) in 100ml of distilled 

water. One gram of gelatin (Sigma) was added to the solution. The solution was 

stored at 4°C after sterilization by autoclaving.

Lyophilized neuraminidase (Sigma) was reconstituted at lOU/ml in PBS. after 

mixing, and aliquots of 15p i were made. 5ml of PBS, 0.3ml of packed SRBCs 

and 15 pj of neuraminidase (lOU/ml) were incubated for 30 min at 37°C with 

intermittent mixing. The treated cells were washed at least three times with PBS, 

until the supernatant became clear, and the treated cells were resuspended in GET 

buffer (approximately 20ml). Treated cells can be kept for a week at 4°C. For 

preparing blood B-cells, the GET buffer was removed the day after and the cells 

were washed in Hanks to avoid possible damage of the B-cell membrane by GET 

buffer.

10-3 Preparation of AET-Treated SRBCs

5% AET (Sigma) was prepared by dissolving one gram of AET in 20ml of 

distilled water. The pH was adjusted to 8.3 with 5M NaOH (BDH).

10ml of 10% SRBCs at 1700 rpm (approximately 518g) were centrifuged for 5 

minutes and the supernatant were removed. 10ml of 5% AET that1,
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were sterilized using a 0.22mm syringe filter, were addad to SRBC • After mixing 

well, cells were incubated for 15 minutes at 37°C. Cells were washed at least five 

times in Hanks, and resuspended in 4ml of Hanks.

10-4 Preparation of aCD39 (AC2)-Coated SRBCs

A stock solution of chromic chloride (BDH) was prepared at 1 mg/ml in sterile 

saline and allowed to mature for >2 months. The pH was adjusted to 5 by 1M 

NaOH. AC2 (aCD39, 5mg/ml) was a generous gift from Prof. John Gordon 

(Dept, of Immunology, University of Birmingham, UK). One ml of 10% SRBCs 

was centrifuged at 1700 rpm for 5 minutes and the supernatant was removed. 

60/i 1 of anti CD39 was added to the packed SRBCs and mixed well. Then 1ml 

0.1 mg/ml of chromic chloride in saline was added to the solution. After adding 

lm l of sterile saline, it was mixed and incubated overnight at 4°C. Antibody 

coating occurs immediately, but irreversible coating requires time. The cells were 

washed twice in Hanks at 1700 rpm for 5 min and resuspended in 4ml Hanks.

10-5 Preparation of Anti IgD-Coated SRBCs

Polyclonal Sheep Anti-human IgD was obtained from the Binding Site Ltd 

(Birmingham, UK) at 12mg/ml. It was diluted 1:1 in Hanks/HSA and dialysed 

against Hanks to remove sodium azide. The procedure is the same as mentioned 

above except that 50pl of algD was added to the packed SRBCs.
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10-6 Preparation of Anti CD14-Coated SRBCs

Anti CD14 was obtained from SAPU. The concentration varied between 6 - 8  

mg/ml. The procedure is the same as above except that 60yjl of anti CD14 was 

used.

11 Perparation of B Cells

Four sources of B-cells were used in this project and the separation methods for 

each were slightly different. These sources were human blood; human tonsillar 

high and low density cells; GC B cells derived from the low density fraction of 

human tonsillar cells; and finally mouse spleen and lymph node B cells.

11-1 : Blood M ononuclear Cells From Normal Individuals

Peripheral blood B-cells, for functional studies, were prepared from either 

heparinized venous blood from colleagues or from buffy coats (BC), from the 

Blood Transfusion Centre - St Vincent Street, Glasgow - by density gradient 

separation (Boyum, A. 1968). Blood was collected into plastic universal tubes 

containing 3-4U of heparin (CP Pharmaceutical Ltd, Wrexham, UK) per 1ml of 

blood. 5ml volumes of blood were layered over 2.5ml of separating medium at a 

density of 1.077 g/ml (20°C)- Lymphoprep - before centrifugation at 1100 rpm 

(approximately 220g) for 30 min at room temperature in 110 x 16mm conical- 

based tubes. Following removal of the interface fraction which is composed of 

mononuclear cells (MNC), basophils, and platelets, the cells were washed three
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times with Hanks at 900 rpm for 10 min in order to eliminate the majority of 

contaminating platelets. Then the cells were counted in a Neubauer counting 

chamber to determine the concentration of cells and the percentage of monocytes 

and lymphocytes by Kimura stain. In contrast to blood, buffy coat was very 

concentrated. Care was taken to avoid overloading the gradient, which causes 

'streaming'(bulk sedimentation) and gradient disturbance, due to the fact that at 

high concentration the cells are influencing the specific gravity of the medium. 

Also the cells may first collect at the boundary and then massively enter the 

denser layer, thus causing streaming. To avoid this buffy coat was diluted to 1:10 

v/v. However, an excellent result was obtained when the concentration was 

adjusted to 3-4 x 106 cells/ml with Ca++ and Mg++ -free Hanks. The 

mononuclear cell separation was the same as mentioned above except that 35ml 

volumes of diluted blood were layered onto 15ml of separating medium in 50ml 

tissue culture centrifuge tubes. Two methods were used to separate B cells from T 

cells in blood;

11-1-1 N euram inidase Treated SRBC Method

The mononuclear cells were resuspended in Hanks and mixed at approximately 

5 x 106  cells/ml with neuraminidase treated SRBCs in a siliconised glassware tube 

to prevent further adhesion of B-cells to plastic. Then an equal volume of 

neuraminidase treated SRBC was added to the cell suspension which was mixed 

well, gently inverting for 1-2 minutes by hand. Rosette formation was induced by
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preincubation of the cell suspension for 15 minutes, followed by spinning at 1500 

rpm (approximately 400g) for 5 min and incubation of cells on ice for 1 hour 

(Ownby, et al, 1983). The cells were resuspended in the same supernatant very 

gently. Then 6 ml volumes of treated cells were layered onto 6 ml volumes of 

separating medium - Lymphoprep. The cells were spun at 1100 rpm for 25 min in 

order to collect B-cells and monocytes from the interface. Human T-cells and 

some NK cells express cell surface CD2 antigen (Robertson et al, 1990) which 

binds to specific receptors on sheep erythrocytes (E) resulting in the formation of 

E-rosettes. E-rosette forming cells (E+) were separated from non-rosette forming 

cells (E-) by density gradient centrifugation. The non- rosetting cells were 

collected from the interface and washed twice.

To remove monocytes, the cell suspension was incubated in a plastic petri-dish at 

37°C for 1.5 Hrs. The adherent cells adhered to the dish and non-adherent cells 

were washed three times in Hanks and removed by gentle pipetting. Alternatively 

monocytes were depleted together with T-cells by using aCD14-treated SRBCs 

along with the neuraminidase method. Roughly 1ml of aCD14 treated cells were 

used per 20 x 106 MNCs. The procedure from then on was followed as mentioned 

above.

11-1-2 AET Treated SRBC Method

10 x 107  MNCs were mixed with 1ml of AET-treated SRBCs. After 

centrifugation at 1500 rpm for 3 minutes, the cells were incubated on ice for one
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hour. Then cells were resuspended in the same supernatant, gently. Roughly 4ml 

of cell suspension (approximately 30 x 107 cells) were layered onto 6 ml of 

separating medium in universal tubes and were centrifuged at 1 1 0 0  rpm for 

30min. The cells were collected from the interface carefully. After washing 

twice, the cells were mixed again with 0.5ml of AET treated SRBCs to purify 

further (Gordon, Guy & Walker, 1985). Finally the cells were collected as before 

and were prepared for assays.

11-2 Tonsil B-Cells

The tonsils that we received were removed by routine tonsillectomy from 

children with recurrent infections in Yorkill, Royal Hospital for Sick children, 

Glasgow (age range 6-15 years). Therefore they usually contained many activated 

B-cells and were enriched in germinal centre (GC) cells as well as containing non- 

GC B-cells such as recirculating cells, marginal zone cells, and antibody-forming 

plasma cells. The whole preparation including centrifugation steps was done on 

ice or at 2°C, in order to prevent spontaneous apoptosis of cells. The tonsils were 

transported and then rinsed twice in HBSS/MOPS supplemented with 100 IU/ml 

penicillin and 100 mg/ml streptomycin to prevent bacterial growth. This medium 

was used for washing throughout this project. The tonsils were prepared in pairs 

and diced completely in medium several times in a petri-dish, and the spill was 

transferred to an universal tube which allowed large clumps to settle out under 

gravity for 2-3 min. The spill was washed twice at low speed to reduce the normal
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flora (bacteria and fungi). The cells were resuspended in 20ml medium. 

Carefully 10ml of cell suspension were layered onto 10ml of separating medium - 

lymphoprep - in an universal tube and spun at 1100 rpm for 30 min. The cells 

were harvested from the interface and washed twice in medium. The cell 

suspension was prepared in 1 0 ml of medium and was mixed with 2 0 ml of 

neuraminidase treated SRBCs. The treatment followed was the same as 

mentioned before in the separation of blood B-cells. In contrast to blood B-cells 

which are mostly at a resting stage in the circulation, tonsillar B-cells are 

heterogenous not only in phenotype of the cells but also in density. To investigate 

cell interactions of different cell subsets with different chemoattractants, the cells 

were partially separated into distinct populations by density gradient 

centrifugation. Thus, the tonsil B-cells were layered on the top of a two-step 

discontinous Percoll gradient with specific gravity of 1.080 (65%) and 1.071 

(60%), respectively. The gradients were made in universal tubes by gently 

overlaying 5ml volumes of 1.071 Percoll on the top of 5ml volumes of 1.080 

Percoll. The B-cell population was resuspended in 10ml of medium and 5ml were 

layered on the top of each of two gradients. The gradients were centrifuged at 

2000 rpm for 20 min to separate two major B-cell enriched fractions. High density 

cells (BH), which are enriched for small resting B-cells, were collected from the 

top of the 1.080 Percoll, while medium density cells (BM) which contain germinal 

centre cells were removed from the top of the 1.071 Percoll interface, but may 

also be distributed throughout the 1.071 Percoll as well.
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11-3 Germinal Centre B-Cells

The GC B-cells were isolated by fractionation of medium-density cells 

(activated cells). Activated cells were resuspended in 2ml of medium, then, were 

mixed with 3ml of aCD39-coated SRBCs and 2ml of polyclonal algD-coated 

SRBCs. The cell suspension was mixed gently and centrifuged at 800 rpm for 3 

min, followed by incubation on ice for 30 min. Then the cells were resuspended 

in the same supernatant and layered onto 2 x 6 ml separating medium. The 

gradient were centrifuged at 1900 rpm for 20 min to isolate GC cells from the 

interface (Holder, et al, 1991). Finally, the cells were washed twice in medium 

and were used in assays.

11-4 M ouse B Cells

Different methods of immunization were used to study the specific locomotion 

response to antigens. Firstly, three mice ( C57 BL/ 6  & BALB/c) per group were 

immunized using lOpg of Ova ISCOMS (0.19mg/ml) by intraperitoneal injection 

and mice then were killed 8 , 14 or 21 days after immunization and three non­

immunized mice were used as a control. In one experiment, a second challenge, 

lOpg of soluble antigen in saline, was given intraperitoneally. The mice were 

killed after 10 days by cervical dislocation. The animals were immobilized on a 

dissection board and the abdomen was wiped with alcohol. The skin and muscles 

were incised and stripped laterally to expose the peritoneal membranes. The 

freshly isolated spleen was removed and transferred to a 60 X 15-mm petri-dish
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containing 20ml cold RPMI/HSA, then was divided at the midpoints with a 23- 

gauge needle. The uncut end of the spleen capsule was held and pieces of spleen 

were pressed against the cut end until mostly fibrous tissue remained. This 

expresses most of the spleen cells. The suspension was repeatedly drawn up and 

expelled several times through a 5-ml plastic syringe to break up cells clumps, 

then transferred to a 50ml centrifuge tube. After 10 minutes large clumps of 

debris settled out and the supernatant was transferred into a 50ml plastic tube. 

The cells were washed twice with cold RPMI by centrifugation at 4° C for 10 

minutes at 300g. The cell pellet was resuspended vigorously, as clumping can 

occur, in 2ml of cold RPMI. The red blood cells (RBC) were removed using 

ammonium chloride before counting the total number of lymphocytes in the 

suspension of spleen cells. For lysis, 2ml of cells suspension were mixed with 

8 ml of lysing solution and incubated on ice for 5-10 minutes, then cold RPMI was 

added and centrifuged. Enrichment of B cells was achieved by complement- 

mediated lysis of T cells using T cell specific anti Thy-1.2 antibodies. Spleen 

cells were resuspended at 107 cells/ml in RPMI and 5mg/ml HSA containing 

200;^g/ml anti Thy-1.2mAb and incubated for 60 minutes on ice. After two 

washes in RPMI/HSA and centrifuging for 10 minutes at 300g, the cells were 

resuspended at 5 x 106  cells/ml in RPMI/HSA containing 10% (v/v) Low-Tox 

rabbit complement and incubated for 60 minutes at 37°C. The cells were washed 

twice in RPMI. The cell suspension (2.5ml) was layered on the top of gradients, 

and then spun at 1900rpm for 25 minutes at 4°C. Cells at the 6 6 % / 70% interface
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were collected as small resting cells, whereas those at the 50% / 60% interface 

were large activated cells. Cells in the intermediate regions of 60% / 6 6 % and 

HBSS / 50% Percoll were not used in this project. Cells were washed twice at 

1200rpm for 10 minutes before running any experiments. In the second studies, 

CBA/BALB/c mice were divided into three groups of 8  animals. The first group 

were primed by interaperitoneal injection of 0.5mg of ovalbumin and 2x l0 9  heat 

killed Bordetella Pertussis ( 25mg of antigen was mixed with killed bacteria to a 

final volume of 1ml, and 0.2ml were injected per animal). The second group were 

primed by food pad injection of 0.5mg of ovalbumin in complete Freund's 

adjuvant (antigen was prepared at 2 0 0 mg/ml and mixed vigorously with an equal 

volume of complete Freund's [sigma] to get a homogeneous emulsion. 0.05ml of 

this was injected per animal). The third group received no primary injection. 30 

days after immunization, all animals were challenged with antigen (0.5mg) in 

incomplete Freund's adjuvant (Bacto, Difco laboratories, Detroit, Michigan, 

USA). This was prepared exactly like complete Freund's adjuvant and 0.05ml 

was injected per animal. At a suitable time, 4 days after challenge, the mice were 

killed and B cells were separated from the popliteal lymph nodes. The lymph 

nodes were transferred into RPMI and then mashed through a filter. The debris 

was removed using sterile Monofilament-neylon filter clothes. Folowing 

centrifugation, the T cells were eliminated as mentioned above for splenocytes.
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12- Phenotyping of Cells

Different methods were used to phenotype cells which responded to 

chemoattractants. The Alkaline phosphatase anti-alkaline phosphtase (APPAP) 

technique as described by Newman and Wilkinson (1992) was used to identify 

responsive cells using aCD19 and aCD22, but blood B cells failed to stain with 

aCD19 and aCD22 was not a pan B cell marker for blood cells. Tonsillar B cells 

did not express markers such as slg homogeneously. Therefore, it was difficult to 

separate positive from negative cells. The phenotype of the cell populations was 

investigated using immunofluorescence & cytological staining, to determine the 

purity and identity of freshly isolated and responsive cells. This was not always 

easy to achieve, because of the low proportion of B-cells in blood and the 

heterogeneity of the B-cell populations among tonsillar and spleen cells.

12-1 May Grunwald - Giem sa Method

Cells were diluted to 1 x 106  /ml in Hanks solution and 0.5ml volumes were 

poured into cytofunnels (Shandon Southern Instruments, Sewickley, P.A, U.S.A). 

Cells separated directly from tonsils were spun at 500 rpm in a cytocentrifuge 

(Shandon) for 5 min, whereas cells cultured in IL-4 were spun at 100 rpm to 

prevent possible damage to the cell membrane. The slides were allowed to dry 

completely at room temperature. The cells were fixed by dipping in absolute 

methanol for 4 min and dried at room temperature. The fixed cells were stained 

with May-Grunwaldv stain (BDH) for 4 min, then washed in tap water and
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immersed in water for a further 4 minutes, followed by staining the slides in 

Giemsa stain (BDH) diluted 1:9 in water for 30 min. Slides were then washed in 

tap water. After the slides were dried at room temperature, they were mounted in 

DPX (BDH). The slides were investigated under a X100 oil immersion objective 

using light microscopy.

12-2 Kimura Staining

Beside checking the viability, this method was also used to calculate the total 

counts of blood, tonsillar, and mouse cells. The cell suspensions were diluted 

1:10 in Eppendorf tubes (Sarstendt, Niimbrecht, Germany) and mixed well. Cells 

were counted in an improved Neubauer chamber. Using this stain lymphocytes 

and monocytes had a bluish nucleus and pale blue cytoplasm whereas the 

cytoplasm of eosinophils were stained a yellowish colour.

12-3 Im m unofluorescence Labelling

All membrane receptors can be detected easily and quantitated by using 

fluorescently labelled ligands or anti-receptor antibodies. Immunofluorescence 

was studied using either flow cytometry on a FACScan, or by microscopy. 

Controls for non-specific fluorescence used either FITC- or PE-labelled mouse 

monoclonal immunoglobulins with no known specificity, but with the same 

isotype as that used for phenotyping. However defining the division between 

positive and negative cells in a heterogeneous population of tonsillar B cells was
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often difficult, especially using alg, or with some CD markers such as CD38 and 

CD23. Poor expression of these markers at certain stages of B cell differentiation 

may explain the weak staining. Thus determination of the percentage of cells 

positive for these markers is less straightforward than for those for which cells 

express either high marker densities, or none at all, e.g., CD3 (T-cells) and CD 19 

(B-cells). On the other hand, when low surface marker densities cause a low level 

fluorescence, cell autofluorescence may set a limit on our ability to estimate 

specific fluorescence. Autofluorescent activity is a function of cell type and size, 

and seems to be related to cell constituents such as flavins and cytochromes which 

tend to be found in greater quantity in larger cells. Cultured and dead cells tend to 

be more autofluorescent than freshly separated cells (Benson, et al, 1979.). The 

same problem exists in immunofluorescence microscopy, but the weakly stained 

cells were ignored in counting.

12-3-1 FACS Staining and A nalysis

The FACScan is well established as a method used to quantify and correlate 

multiparameter measurements on individual cells. Cells are suspended in liquid, 

and pass through the focused laser beam of the FACS, and produce fluorescent 

and scattered light. The scattered light provides extremely valuable information in 

flow analysis and sorting. Forward scatter (FSC) is proportional to overall cell 

size, but is less sensitive to internal structure. Side scatter (SSC) provides useful 

data on granularity of the cell. FSC & SSC allow distinction of B-cell
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subpopulations among tonsillar cells, and discrimination of blood monocytes from 

lymphocytes. They also allow discrimination of dead and live cells, and provide a 

useful method to discriminate apoptotic cells from live cells. Double staining was 

employed in attempts to stain two antigens within the same cell populations. For 

example to identify germinal centre B-cells, aCD38 and aCD19 (Dako) 

conjugated to PE were used. The cells were stained with aCD38 , then were 

labelled with FITC-conjugated rabbit anti mouse immunoglobulin. After washing, 

the same population was stained with PE-conjugated aCD19. lOijul of all the 

above antibodies were used per test except for alg antibodies, the negative control, 

and aCD3-aCD19, for which 5 l4  was used. Cells were incubated with 

appropriate antibodies for 20-30 minutes on ice. Freshly separated or cultured 

cells were stained at 5 x 105  cells per tube and cells which had invaded collagen 

gels were stained at 2 x 105 cells per tube. After washing with PBS/Azide, the 

non-conjugated antibodies were labelled with an appropriate FITC-conjugated 

secondary antibody for a further 20-30 minutes. FITC-conjugated rabbit anti 

mouse Ig (Dako) was diluted 1:50 in PBS/azide and 50ipl were used in labelling 

each tube. Following a final washing, the cells were fixed in an equal volume of 

1% paraformaldehyde in PBS. The fixed cells can be stored at 4°C for a week. 

On the day of analysis, the volurrie of the cell populations was increased to 2 5 0 ^  

using a 1:1 dilution of PBS and 1% paraformaldehyde. The cell suspension was 

then analyzed by a FACScan using the lysis II program. 10,000 events were
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analyzed for freshly isolated cells, and cells which were washed from the gels. 

5 , 0 0 0  events were scored for cells which had invaded collagen gels.

Propidium iodine (PI) was used to mark dead or apoptotic cells so that they 

could be distinguished from live cells. As a last step before FACS analysis, the 

cells were washed in medium containing about lpg  PI per ml. Several minutes 

exposure to the dye results in distinct labelling of the dead cells with no detectable 

effect on live cells. Mouse spleen cells were prepared by washing twice in 

staining buffer (2% FCS in saline). 3 :^  of appropriate antibodies were added to 

the 50ml of packed cells (5xl0 5  cells each) and incubated for 30-40 minutes, 

followed by washing in staining buffer twice. The non-conjugated antibodies 

were labelled using 50fd of diluted fluorescein streptavidin for 30-40 minutes, 

followed by washing twice in staining buffer. The staining procedure was carried 

out on ice in darkness. The cell were fixed with 1% paraformaldehyde and placed 

at 4°C. Cells were then washed in FACSflow and were analysed by FACScan.

Cells were initially gated by size and granularity (side scatter and forward 

scatter), but gating differed from one sample to another, depending on the source 

of samples. Positive cells were selected by gating whereby the negative control 

gave less than 0.5% positive staining.

12-3-2 Im m unofluorescence M icroscopy

This technique allows a direct phenotype visualization of polarized cells. Poly- 

L-lysine (Sigma, MW >200,000) was prepared at 2mg/ml in distilled water.
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Slides and coverslips were immersed in absolute alcohol and were dried at room 

temperature and the coverslips were coated with polylysine by dipping in this 

solution for 15-30 minutes. One side was cleaned and allowed to dry at room 

temperature. Cells were fixed with 1% paraformaldehyde for 10-15 minutes, then 

washed once in HBSS and 5 x 105 cells were transferred onto the prepared 

coverslips to adhere for 15-30 minutes. After removal of the fluid from the top of 

the coverslip, one drop of Hanks was added. 10|h1 of FITC-labelled aCD38 

(Immunotech S.A., Marseille, France), 5^1 of ahlgM, or 10|d of FITC- 

conjugated CD3 plus PE-conjugated CD19 antibody (Dako) were added and 

coverslips incubated at room temperature for 15-20 minutes. The coverslips were 

washed by dipping into HBSS several times. The anti-human-IgM-coated 

coverslip was then stained with FITC-conjugated rabbit anti mouse 

immunoglobulin (Dako) at 1:50 dilution in PBS/azide for a further 15-20 minutes, 

then the coverslips were washed. Finally the coverslips were transferred to the top 

of slides and mounted using nail-varnish. The proportion of polarized and non­

polarized cells positive for each marker was visually investigated using a X 40 

phase contrast objective and X 10 eyepiece lens on a Zeiss Axioskop fluorescence 

microscope (Wilkinson & Higgins, 1987). 200 - 250 cells were counted per slide. 

The prepared slides were stable for 2-5 days at 4°C in the dark. To study the 

modulation of mlgD, the high-density cells were cultured in IL-4 (20u/ml) 

overnight. Following washing twice in HBSS, cells were exposed to anti-IgD or 

HBSS and cells after appropriate time were fixed in 3.7% formaldehyde in PBS
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for 15 minutes. Following washing twice in PBS, they were transferred to 

polylysine (2mg/ml) coated slides. The slides then were dipped into 0.2% Triton 

x 100 in PBS for 10 Min., and washed twice in PBS. Cells were then stained with 

anti-IgD (Monoclonal Ab, Dako) for 20min. washed and exposed to FITC- 

conjugated secondary antibody. The slides were mounted and analyzed under 

fluorescent microscopy.

13 Polarization A ssay

The polarization assay was used to measure the shape-change response of B 

cells in suspension in the presence of a uniform concentration of chemotactic 

factor (Haston & Shields, 1984). A wide range of reagents was tested at different 

concentrations either alone or in combination. The polarization assays were 

performed in two different ways; (1) firstly in Short Term assays (<30 min. assay, 

immediate shape-change) on freshly isolated and cultured cells to study the effect 

of attractant on locomotion of cells.

(a) Freshly isolated cells (blood, high-density, low-density, and GC tonsillar B 

cells from human sources or B cells separated from spleen and lymph nodes of 

mice). B cells were suspended at 5x l0 5 cells/tube in a final volume of 0.2 ml/tube 

in 110 x 16mm conical-based tubes. The tubes were then transferred to a water- 

bath at 37°C for 30 minutes with appropriate attractants to allow polarized 

morphology to develop. They were then fixed by adding an equal volume of 

2.5% glutaraldehyde (Sigma) immediately and incubated for 10-15 minutes at
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room temperature. Cells were washed twice using normal saline and centrifuged 

at 1300rpm for 10 minutes. The pellet (in about lOOtxl) remaining after decanting 

the solution was used to make slide and coverslip preparations. The proportion of 

cells scored as either spherical (non-motile) or polarized (motile) was counted 

directly using either a x40 phase-contrast objective or Kimura stain. Cells were 

stained for two minutes then transferred onto a cover slide and the morphology of 

cells were investigated under bright light using either a x40 or xlOO oil immersion 

objective. The Kimura method shows the morphology of cells well, and is useful 

in the study of mixed populations. The distinction between motile, non-motile, 

and dead cells was usually straightforward (Fig 2-1). The non-responding cells 

keep their spherical shape, whereas the polarized cells showed a distinct head-tail 

polarity with distinct ruffling at one edge. Apoptotic cells clearly shows 

fragmentation of nuclei. Direct examination is more reliable than dye exclusion. 

250-300 cells were counted blind and polarization was expressed as a percentage 

of viable cells.

(b) Cultured cells. Cells were cultured in different reagents for 20 hours in 

polystyrene, round-bottom tubes (17 x 100mm) (Becton Dickinson, New Jersey, 

USA) at 2X106 cells/ml. Following removal of the supernatant, the cells were 

washed twice in HBSS/HSA and exposed to different chemoattractants in various 

concentrations. Cells were then incubated at 37°C for a further 30 minutes. Cells 

were fixed, and the procedure followed was as described above.



(2) Long Term assay (overnight culture) shows the effect of locomotor 

activators on locomotion. Cells were cultured in different reagents in various 

concentrations for 20 hours at 5x lO5 cells/ml at a final concentration 0.5ml/tube. 

They were then fixed in their own supernatant using 2.5% glutaraldehyde and the 

percent polarized cells was calculated as described above. In time-dependent 

experiments, cells were cultured at 2.5xjl06 cells/ml and after mixing 200pl of 

medium was harvested at appropriate intervals and fixed with an equal volume of 

2.5 glutaraldehyde. They were then prepared for counting as above.

14- Collagen Gel A ssay

These assays were used in the study of both high and low-density B cells and 

GC B cells. The following locomotor stimuli were used in high and low-density B 

populations; algD at lug /m l, algM at lpg/m l, anti-CD40 at lpg/ml, 

supernatant from IL-4 cultured B cells mixed at 1:1 with collagen, combinations 

of these, their appropriate isotype controls, and HBSS/HSA alone as a control. 

Cells that had been cultured in IL-4 (100U) for 20 hours were removed and were 

transferred without washing onto the pre-incubated collagen gel at 5 X 105 

cells/well. Supernatant was added to gels as indicated above. Gels were 

incubated at 37°C in a humidified atmosphere containing 5% C 0 2 and cultured 

overnight (18 hours) to let the cells invade the gels. To count the percentage of 

invading cells, gels were then fixed with 2.5% glutaraldehyde and the numbers of 

cells invading the gel were counted using an inverted phase contrast microscope
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Figure 2-1

A

a

b

Fig 2-1 Photograph showing human tonsillar B cells in overnight culture in IL-4 and IL- 

13.

a) morphology of polarized and non-polarized cells by Phase contrast x40 objective in 

IL-4. The majority of the cells are polarized.

b) morphology of polarized and non-polarized cells by Kimura stain (xlOO oil 

immersion) in IL-13. In contrast to IL-4, fewer cells responded.
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(Nikon) at 40' X magnification with an eyepiece graticule grid.

Cells on the surface of the gel in a randomly-chosen field were counted and the 

cells which had invaded the gel below this in the same field were counted by 

focusing down at different planes through the gel (Shields, et al. 1984). By these 

means, the percentages of cells which had invaded the gels was calculated. 200- 

250 cells were counted in several fields for each sample. To phenotype cells on 

the surface of the gel and those which had invaded, the cells on the surface of 

unfixed gels were removed gently and washed twice with Hanks. The gels were 

then overlaid with collagenase (20U/ml) at room temperature for 10 minutes to 

remove any remaining adherent cells from the top of the gel and washed three 

times with Hanks. Gels were then gently broken up by suction using Pasteur 

pipettes. Gels were transferred to conical tubes and incubated at 37°C for 30 

minutes with collagenase at 20U/ml (Shields et al., 1984), then the liberated cells 

were washed in Hanks and used for phenotyping on the FACScan. The cells were 

washed three times with HBSS and retained on ice. The cells washed from the gel 

surface and cells which were recovered using collagenase, were counted 

using Neubauer counting chambers. Thereby, the percentage of cells which had 

invaded into the gel and the proportion of dead cells in each fraction was 

determined using Propidium iodine and phase contrast microscopy. These cells 

were also used for phenotypic analysis on FACS. The same procedure was used 

for investigation of GC B cells except that freshly isolated cells were transferred 

to the top of gels containing anti-IgG,A,M (lpg/m l), anti-CD40 (lpg/ml), IL-4
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(50U/ml), and combination of these/or their appropriate isotype controls, and 

HBSS/HSA as a control. The cells on the top of gels were cultured with or 

without IL-4 (50U/ml) for either 6 or 12hours. The invaded cells after 12 hours 

incubation were analysed for phenotype on the FACS. The cells were harvested 

exactly as mentioned above for high-density B cells.

15- Time Lapse Cinem atograpgy

This technique was used to study cell locomotion. It was interesting to know 

how the B cells really move. A television camera, a time lapse video tape 

recorder, a television monitor, and a time / date indicator give a record of real time 

for analysis. The advantage of this technique is that it allows the film to be moved 

forward or backward in either speeded up or real time and it is not necessary to 

wait for the film to be developed. It also makes it possible to investigate many 

cells per field in each individual experiment. Several sequences of different fields 

were filmed over periods of 15 minutes each. FUJI super HG videotape (E-180 

colour plus professional videocassette) was used for filming.

Naturally, human leukocytes including B-cells move best at or near 37°C. To 

maintain this temperature during the filming, the microscope stage was kept at a 

constant 37°C using a fan heater which was coupled with miniature thermistor ( R 

S Components, Corby, UK) and a thermometer on the microscope stage. For 

filming purposes, a stainless steel chamber with good heat-conducting properties 

was used. This chamber has a central circular hole (16mm) of 0.7 mm depth

102



(Allen & Wilkinson 1978). 22 X 32mm coverslips were cleaned in alcohol and 

were sealed on one side of the hole using high vacuum grease (Dow Corning 

GMBH, Miinchen, Germany) to form a shallow chamber. Collagen 1.5mg/ml 

(0.35ml) incorporating appropriate attractants was poured into the chamber and 

allow to set. Gels were prepared with appropriate chemoattractants as will be 

discussed latter. The transparent nature of the gels allowed for direct observation 

of cells. The remaining space was filled up with Hanks and 5 xlO5 high-density 

tonsillar B-cells were transferred to the top of the gel. To prevent evaporation of 

medium, a second coverslip was sealed on the top of the chamber avoiding the 

formation of air-bubbles. Two slides were prepared for each experiment. The 

chamber was transferred to the prewarmed inverted phase-contrast microscope 

stage (Nikon) for filming at low magnification (x 20) since a large field was 

preferred with enough cells for statistical sampling. Cells could be filmed 

immediately after the gel set while they were still on the gel surface. Alternatively 

they could be allowed to invade by incubating the chambers overnight in a 

humidified box at 37°C. Next day, both cells within the gel and those on its 

surface could be filmed.

16- Pepsin Digestion of Immunoglobulins

16-1 : Preparation of 0.07M A cetate Buffer.

0.2M acetate buffer, pH = 4, was prepared by mixing 41ml of acetic acid
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solution (Fisons.; 11.55ml of glacial acetic acid in one litre of distilled water) and 

9ml of sodium acetate solution (BDH.; 16.4g of sodium acetate in one litre of 

distilled water). 0.07M acetate buffer was prepared by dissolving of 7 volumes of 

0.2 acetate buffer, plus 10 volumes of 0.1M NaCl (5g NaCl in one litre of distilled 

water), and 3 volumes of distilled water.

16-2 Digestion of algD

Sheep polyvalent anti human IgD (IgG fraction) was digested with pepsin for 

further functional studies. The proteolytic enzyme, pepsin, cleaves IgG at the 

carboxyl end of the hinge region and liberates a 95,000 MW bivalent fragment, 

termed F(ab')2 and fragments the remaining Fc portion of the molecule to give 

products ranging in MW from 5,000 to 27,000 which lack antibody activity, 

depending on the condition of digestion. The F(ab')2 fragment contains 

approximately two-thirds of the original molecule, with intact antigen-binding 

activity. Digestion was carried out at pH 4. The concentration of algD was 

measured using a spectrophotometer (Ultrospec 4050, LKB Biochrom) at 280nm 

before digestion. The original concentration was 15mg/ml and lOmg/ml of HSA 

was added to avoid losing protein during the process. Anti IgD was dialysed 

against acetate buffer several times at 4°C. The effect of pepsin on IgG is related 

to concentration. The optimum result is obtained at 8-10mg/ml of the antibodies. 

Thus the algD was diluted to lOmg/ml after dialysing with acetate buffer. 

0.375mg of pepsin (Sigma) then was added to algD at ratio of 1:40 (w/w). After



mixing well, the solution was incubated at 37°C overnight (18 hours). Digestion 

was terminated by adjustment of pH to 8 with 1M NaOH. The preparation was 

centrifuged at 3,000 rpm for 10 minutes to remove any precipitate. The 

supernatant was dialysed against PBS (pH 8) for several days.

16-2 Digestion of alL-4

Anti IL-4 also was digested to abolish the possible effect of binding to Fc 

receptors on activation of B-cells. The same process was followed as for algD 

except that aIL-4 was diluted to 200,lAg/ml by acetate buffer at 1:5 and lOmg/ml 

HSA was added. Digestion was carried out directly by pepsin without dialysing.

17- SDS - Polyacrylamide Gel E lectrophoresis (SDS-PAGE) 

17-1 Preparation of R eagents and Buffers for SDS-PAGE. 

17-1-1 Preparation of Stock Solutions

The following stock solutions were made up and used for the separating gel, 

stacking gel, and other working reagents:

10% SDS (Sodium Dodecyl Sulphate.; FSA Laboratory Supplies, Loughborough, 

UK) was dissolved in lOg per 100ml of distilled water. 0.75M Tris (BDH) was 

prepared by dissolving 90.9g in one litre of distilled water. The pH of the solution 

was adjusted to 6.8 and 8.8 using concentrated HC1. 0.86M Glycine was prepared 

by dissolving 32.2g of glycine (Sigma) in 500ml of distilled water.
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Acrylamide solution, prepared by mixing 30g of acrylamide powder (BRL Life 

Technology Inc, Gaithersbury, UK), was added to 0.8g of N N'-methylene bis 

acrylamide (BDH) and dissolved in up to 100ml in distilled water avoiding 

heating. The powder dissolves slowly. This solution remains stable for four 

weeks, if stored in the dark at 4°C.

17-1-2 Sam ple Buffer

To prepare the sample buffer, the following stock solutions were mixed to a 

final volume of 100ml in distilled water; 30ml of 10% SDS, 8.5ml of 0.75M Tris 

pH 6.8, and 10ml of glycerol (BDH). This solution was boiled for two minutes 

and then lOmg of bromophenol blue (Sigma) was added to the solution.

17-1-3 Well Buffer

The well buffer was prepared by mixing 10ml of 10% SDS, 33ml of 0.75 Tris 

pH 8.8, 220ml of 0.86M glycine, and 737ml of distilled water. The pH was 

adjusted to 8.3. The buffer was stored at 4°C.

17-1-4 Gel R ecipes

To run electrophoresis, two gels were prepared, (a) the separating (lower) gel 

and (b) the stacking (upper) gel. The separating gels were prepared and used at 

two different concentrations (7% & 10%). They were mixed completely and 

TEMED (N N N'N'-Tetramethylethyienediamine; Sigma) and ammonium
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persulphate (BDH) were then added. The gels were poured onto the glass plates 

immediately to polymerize. The separating, and the stacking gel were prepared as 

shown below:

Stock solution Separating gel Stacking gel

7% 10%

Acrylamide 10ml 10ml 1.8ml

Distilled water 9.6ml 4.7ml 13ml

Tris, pH 8.8 20ml 15ml —

Tris, pH 6.8 —  —  3ml

10% SDS 0.40ml 0.30ml 0.18ml

TEMED 20ml 15ml 9ml

Ammonium persulphate 40mg 30mg 18mg

17-1-5 Staining and Destaining/fixing solution

125ml of methanol (Fisons), 25ml of glacial acetic acid, and 100ml of distilled 

water were mixed well and 0.25g of coomassie brilliant blue stain (Sigma) was 

then added.

Destaining/fixing solution was made by mixing 30ml methanol, 30ml of acetic 

acid, and 240ml of distilled water.

17-1-6 Preparation of Sam ples

Rainbow TM protein molecular weight markers (Amersham, Arlington
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Heights, Illinois, USA), at 200, 97, 69, 46, 30, 21, 14, were mixed 1:1 with 

sample buffer at 20mg/well. Digested algD or undigested algD were mixed 1:3 

with sample buffer at 30mg per well. Digested aIL-4 and undigested aIL-4 were 

mixed at 1:1 with sample buffer at 3.5mg/well and 5mg/well, respectively. BSA 

and HSA were mixed 1:3 with sample buffer at 25mg/well, as a control.

17 SDS-PAGE ASSAYS

7% and 10%acrylamide solutions were made up as indicated before. The glass 

plates were attached with high vacuum grease. The glass plates were placed in 

vertical position and the separating gels were poured between the plates with 

about 2cm gap at the top of the gels. The surface of the gel was then overlaid with 

water or isopropanol to produce a smooth surface. After polymerisation, the 

isopropanol and water were removed completely and the stacking gels were 

poured into the glass plates on the top of separating gel. The comb was inserted 

between the plates. After polymerisation of stacking gel, the bottom blade was 

removed and the glass plates were transferred into the electrophoresis apparatus. 

The lower and upper tanks were filled up with well buffer to cover the gel and 

also to circulate the electric current. The comb was removed gently and the 

samples were loaded into the wells. The upper tank and lower tank were 

connected to the negative and positive terminal of the power supply. The system 

was run at a constant current of 40mA until the front dyes reached the bottom of 

the gel. The system was disconnected and the gel gently transferred into the
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staining dish for 1-2 hours. The stained gel then was transferred into the destain 

dish for hours with several changes. The gels were dried in gel dryer and the 

samples were analysed.

18- Autoradiography

18-1 Preparation of Emulsion :

Autoradiography emulsion type NTB2(Kodak) was obtained from IBI, 

Ltd(Cambridge, UK). This is actually in solid form and liquefied before use by 

dipping in a water bath between 43-45°C . Liquefaction takes about 45-60 

minutes by gentle movement under safelight condition in the dark-room. Too 

much agitation can lead to the formation of microscopic bubbles in the emulsion 

which can be difficult to remove.

18-2 Preparation of Kodak Dektol Developer:

The developer ( Kodak Dektol, IBI) was diluted by adding the contents of the 

packet with sufficient stirring in 828 ml of pre-warmed distilled water (32-38°C) 

until the solution became uniform. Enough water was added to the solution to 

make a final volume of one US quart (946ml)at 32-38°C. This was diluted one-to- 

one with distilled water before use.

18-3 Preparation of Kodak F ix e r:

The fixer (Kodak, IBI) was added to 710ml distilled water (26.5°C) slowly 

with rapid and continuous stirring. When the powder was dissolved completely,
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distilled water was added to bring the total volume to one US quart.

18 Method

Autoradiography was used to investigate the relation between expression of RNA 

or DNA and locomotion using [ HJuridine and [ H]-thymidine. Incorporation of 

uridine in B cells was studied in freshly isolated cells and cultured cells ; (1) resting 

cells isolated from tonsil were pulsed with uridine for 30 minutes at 37°C by adding 

of 5p,Ci of [3H] uridine per lxlO6 cells/ml, the free uridine was removed by washing 

twice in Hanks, then resuspended in hanks alone, algD, or algM for 30 minutes at 

37°C (immediate shape-change); (2) cells were cultured in IL-4 (20 and lOOU/ml), 

pulsed with uridine, fixed using 2.5% glutaraldehyde and washed twice; (3) cells 

were cultured in IL-4 (20U/ml), pulsed with uridine and washed twice. These cells 

were not fixed but were resuspended in different chemoattractants for 30 minutes 

(immediate shape-change) at 37°C. At the end of this period the cells were fixed 

with 2.5% glutaraldehyde and washed. The fixed cells were then transferred to 

polylysine (2mg/ml) coated slides. The slides were dried at room temperature. 

Under safelight condition, these were embedded into the liquefied emulsion and 

allowed to drain for 4-5 seconds. The backs of the slides were wiped and they were 

placed horizontally to retain a uniform thickness in a light-tight (but not air-tight) 

box for 1-2 hours or until completely dry. The dried slides were placed into slide 

boxes and transferred into a dessicator containing silica gel. The dessicator was 

sealed with Sleek and placed in a black polyethylene bag. This was left for two
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weeks at 4°C. The exposed slides were developed by using Kodak Dektol developer 

for one minute under safelight. The developing process was stopped by dipping the 

slides into distilled water for 10 seconds and fixed by placing the slides in the 

Kodak fixer for 5 minutes. The slides were washed in distilled water for 5-10 

minutes and dried slowly in a dust free atmosphere. These were then stained with 

1:50 diluted Giemsa in water for 20 minutes, and examined using a xlOO oil- 

immersion objective. The numbers of silver grains per cells and the percentage of 

cells which took up the uridine were determined. 200-250 cells were counted on 

each slide. To study incorporation of thymidine and locomotion, the same 

procedure was used. High-density B cells were studied in overnight culture. The 

cells were cultured in IL-4 for overnight and then pulsed with thymidine. The 

procedure followed was exactly as described for uridine incorporation. The same 

technique using uridine and thymidine was also used to study GC cells either freshly 

isolated or cultured with IL-4 and anti-CD40.
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RESULTS

CHAPTER THREE

LOCOMOTOR PROPERTIES AND PHENOTYPIC

ANALYSIS

OF

HIGH AND LOW DENSITY TONSILLAR B-CELLS
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SECTION ONE : P hen o ty p ic  A nalysis of Cell P o p u la tio n s

3-1-1 Tonsillar Cells

Tonsils were minced and mononuclear cells were recovered by centrifugation 

on Lymphoprep. The cellular components of tonsils varied from one individual to 

another, depending on age, type and frequency of infection. The chief cellular 

components of inflamed tonsils are monocytes, FDC, T-cells and B-cells. 

Mononuclear cells were analyzed on the FACS using CD3 as a pan T-cell marker, 

CD4 as a TH cell marker, CD8 as a CTL cell marker, CD19 as a pan B-cell 

marker, CD14 as a monocyte and FDC marker (Schriever et al, 1989; Petrasch et 

al, 1990). CD14+ cells may be present on both cell types, and the B cells may 

also express this marker ( Labeta et al, 1991), but double staining using PE- 

conjugated CD19 and FITC-conjugated CD14 was not detected by the FACS.

Investigation by FACS analysis showed that before purification of B-cells, the 

tonsillar cells in three experiments contained 53.5 ± 1.4% CD19+ cells, 40.8 ±  

3% CD3+ cells, 33.5 ±  0.9% CD4+ cells, 9.5 ±  0.7% CD8+ cells, 1.1 ± 

0.45% CD14+ cells, and 97.75 ±  0.25% CD45+ cells (leucogate).

3-1-2 Tonsillar B-cells

T-cells were separated using neuraminidase-treated SRBC followed by 

centrifugation on Lymphoprep, and the non-T cells were then harvested from the 

interface and analyzed by FACS. The data show that the proportion of B cells
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expressing CD 19 in this population in three experiments was 94.4 ± 2%. The 

contaminating cells were 1.77 ± 0.5 % CD3+ cells, and 4 ± 0.65 % CD14+ cells.

B-cells were found to be heterogeneous in size, density, and functional 

behaviour. Density gradients (60% and 65% Percoll) were used to fractionate this 

population. The low density cells collected from the interface of 60% / 65% 

Percoll were termed "activated cells’. The high density cells were harvested from 

the top of 65% Percoll/medium and termed "resting cells’.

3-1 -2-1 Phenotyping of Freshly Isolated Tonsillar B-Cells

The two fractions of cells (resting & activated) were phenotyped directly after 

separation. Cells were gated by side scatter Vs forward scatter into three regions 

based on size as shown in Figure 3-1. Region one (R]) represents small cells, R2 

shows larger cells, and R3 is a combination of Rj and R2. Cells were analysed and 

the data obtained are shown in tables 3-1 and 3-2. Further analysis demonstrated 

that cells in R] and R2 differ not only in size but also in phenotype. This analysis 

indicated that R2 cells are likely to be GC B cells rather than mantle zone or virgin 

cells, since most of them express CD38 strongly (Fig. 3-2), in comparison with 

cells from the Rj fraction, which express this receptor weakly. IgD+ cells are rare 

in R2 and expression of IgM is lower on R2 cells than on Rj cells (Fig 3-1). As 

is shown in Figure 3-3, some markers such as slgM and slgD are expressed 

weakly compared with expression of CD 19 or CD20. The same results were 

obtained from the activated fraction, i.e. Rj cells from the activated fraction
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Figure 3-1
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Fig 3-1 Distribution o f high and low density B cells in various regions, (la ) gating of  

high-density cells, (lb ) gating o f low-density B cells. (2a) distribution IgM+ cells from 

high density fraction in various regions. (2b) distribution IgM+ cells from low density 

fraction in various regions.(3a) distribution IgD+ cells from high density fraction in 

various regions. (3b) distribution IgD+ cells from low density fraction in various regions
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Table 3-1

Percentage of cells positive for different markers in the resting fraction.

Cell Region one Region two Region three

Marker Mean Range4 M2ean Range Mean Range

CD3(lu>t | 1.46 0.21-3.5 0.88 0 .0 -2 1.31 0.18-3.2

CD10(M 9.7 9.7 24 24 4.3 4.3

CD14W 1.72 2.74-0.8 6.73 10.3-3.2 1.8 1.4-2.2

CD19*IZ> 95.9 8 9 -99 95.6 91 -100 95.7 8 9 -99

CD20W 77.9 50-93.9 83.7 3 8 -9 9 75.3 49-93.9

CD21'"1 85.7 81-90.3 78.4 64-92.7 82.5 77-88

CD22U) 96 96 96.7 96.7 94.7 94.7

CD23^ 70.7 66.2-74 85 79-91 63.4 57.2-71

CD32^; 22.1 22-22.2 25.9 26-25.6 14.2 18.3-10

CD38l/J 71.5 4 5 -89 91.5 85-95 63.2 50-78

CD39W 29.3 18.6-40 19.6 15-24.3 12.5 10-15

IgMw 68.5 55.7-81 29.3 15.6-87 59.3 38-79

IgDl1) 64.2 66.1-71 15.59 12.5-24 60. 1 58.7-64

IgGw 33.4 27-30.2 54.5 50-59 19.5 18-21

IgAw 20.8 18-23 34.1 31-40 15.6 12.4-17

This table does not distinguish weakly-positive from strong-positive cells (see Fig. 3-3) 

t  Number in parentheses shows number of experiments.

$ Indicated the lowest and highest of percentage events.
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Table 3-2

Percentage of cells positive for different markers in the activated fraction.

Cell Region One Region Two Region Three

Marker Mean Ranget Mean Range Mean Range

CD3(10) t 1.31 0.0-3.6 0.29 0.0-0.4 1.12 0.0-3

CD14 (Z) 10.2 7.4-13 16.6 10.3-23 8.4 6.7-10

CD19W 96 91-98 92.7 84-97 95 89-98

CD20u; 98.7 98.7 100 100 99.3 99.3

CD2PI) 91.9 91.9 81.3 81.3 89 89

CD22(Z) 90.8 84- 96.4 73.7 59.5-88 84.3 74.5-94

CD23 w 75.5 72-79 83.8 85-82.8 74 84-64

CD38p; 73 65-82.8 89.5 84-96 74 62.5-98

CD39(zr 9.8 8.6-11 18 18.9-17 5.8 4.9-6.6

IgMw 73 61-80 41 35-60.6 57 29-70

IgD(̂ 47.5 31.5-64 16 12-23 37.1 26.3-56

\ gG(Z} 41.3 41.6-41 44.5 51-38 32.3 37.5-27

IgA^ 14.9 13.8-16 22 17-27 11.8 12.6-11

This table does not distinguish weakly-positive from strong-positive cells (see Fig. 3-2 ) 

t  Number in parentheses shows number of experiments, 

t  Indicates the lowest and highest percentage of events.

ND = not detected
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Figure 3-2
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Fig. 3-2 Expression of CD38 on high and low-density fractions in region one and region 

two:

(Fig. 1 A) Expression o f CD38 in region one in high-density fraction.

(Fig. 2A) Expression o f CD38 in region two in high-density fraction.

(Fig. IB) Expression o f CD38 in region one in low-density fraction.

(Fig. 2B) Expression o f CD38 in region two in low-density fraction.
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Figure 3-3
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Fig 3-3 Phenotype characteristic of high and low-density tonsillar B cells. Expression of 

CD 19+ & CD3+ (la), IgM+ (2a), IgD+ (3a), CD20+ (4a) cells in high-density fraction. 

Expression of CD 19+ & CD3+ (lb), IgM+ (2b), IgD+ (3b), CD22+ (4b) cells in low density 

fraction.
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behaved like R, cells in the resting fraction. Table 3-1, and 3-2 show the 

phenotype of resting and activated B-cells enriched by density gradient from the B 

cell population. The values shown are the mean values for the percentage of cells 

positive, based on different experiments (in parentheses), with the range in 

different regions. Phenotypic analyses suggest that cells in region one in resting 

and activated fractions are similar and the latter may be activated in vivo. As a 

result of activation, their density may decrease and hence they settle in the low 

density fraction. In ten experiments, 84 ± 8% (resting cells), and 80 ± 10% 

(activated cells) of the total population were found in Rj. The viability of freshly 

isolated resting and activated cells using either trypan blue or eosin Y was 

determined and in all cases was more than 98%.

3-1 -2-2 Phenotyping of Cultured Cells and Responding Cells

The resting and activated cells were cultured in IL-4 for 20 hours and stained 

and analyzed by FACS. The cell population was gated into four regions, of which 

region one (Rj) contained small live cells, and most probably those which were 

able to respond to chemoattractants. Region two (R2) should contain larger cells. 

Region three (R3) represented the whole population (Rj + R2 + R4), and finally 

cells in region four (R4) had high autofluorescence and thus were probably dead 

cells. As shown in Figure 3-4, after culture there were few cells in region R2. 

These cells were most probably in R4 where dead cells were located. The 

percentage events in two experiments for region one in the resting and activated
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fractions was 68 ±  3% and 54 ±  2%, respectively. Region one cells are 

characteristically responsive cells in both the long-term polarization assay in IL-4 

and the short-term assay (immediate shape-change) after culture of the resting and 

activated fraction. Most of these cells are IgM+ and IgD+. The CD23 phenotype 

is strongly associated with locomotor capacity. This was confirmed by analysing 

the invasive cells within the collagen gel. The phenotypic analysis using different 

markers is shown in Table 3-3 for high-density cultured cells in IL-4 after 20 

hours and for low-density B cells in Table 3-4. There are differences in 

expression of markers in isolated high and low density cells before and after 

culture in IL-4. For example, the expression of slgG in both fractions is 

decreased after culture in IL-4 whereas the expression of CD 19 and CD20 in high 

density cells or expression of CD23 in low density cells is increased after culture 

in IL-4.

3-1 -2-2-1 Collagen Gel Invasion

To phenotype locomotor cells, the cells were first cultured in IL-4 overnight, 

then spun to separate the cells from the culture supernatant. The cells were then 

layered onto top of collagen gels to which the supernatant had been added (1/2 

diluted with collagen), and allow to invade. Non-invasive cells were recovered 

from the top of the gel, and the invasive cells recovered by digestion of the gel 

matrix using collagenase. To demonstrate the possible effects of collagenase on 

cell markers, collagenase was incubated with cells at 37°C for 20-30 minutes at
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20U/ml. The collagenase treatment had a negligible effect on expression of cell 

membrane markers. Morphological studies (shape-change) on the non-invasive 

fraction showed that 62% of cells were polarized. This finding will be discussed 

under time-lapse cinematograpy. For phenotypic analysis of the invasive and non- 

invasive cells, they were gated using the same criteria as for cultured cells. The 

number of events in each region is shown in Figure 3-4. Phenotypic analysis of 

these cells is shown in Table 3-5. The viabilities of invasive cells and those which 

were recovered from the top of the gel in two experiments were 86.5 ± 6.5% and 

44 ± 3% respectively, for the resting cells, 62% and 8.1%, for activated cells. 

The percentage of invasive and non-invasive cells, either from the resting or from 

the activated fractions are similar to those found in R4 of these fractions (Fig 3-4). 

Furthermore, most R4 cells which had been cultured in IL-4 took up propidium 

iodide (PI) and the percentage of these cells was equal to percentage of dead cells 

in whole population. Thus most cells in R4 are apoptotic (dead) cells. The 

percentage of cells in R3 and R4 was not scored because of autofluore scence of 

dead cells in R4 The percentage total events for invasive and non-invasive 

fractions for Rj in resting fraction in two experiments were 93% and 35 ± 5%, 

respectively. The percentage total events for invasive and non-invasive fraction 

for R, in activated fraction were 81 ± 8% and 11%, respectively. After culture, 

cells that were in R2 when freshly isolated, moved to R4 (dead cell fraction).

122



Table 3-3

Percentage of cells positive for different markers in the resting cell fraction

after overnight culture in IL-4.

Cell Region One Region Three Region Four

Marker Mean Ranged Mean Range Mean Range

IgMw t 75.9 70.5-79 58 48.7-77 31.9 22-42

IgD'2' 72.9 66.8-79 44.3 39.5-49 32.7 32-23.3

IgG'1' 2.4 2.4 ND ND ND ND

IgA'2' 24 12-36 9 6 -12 6

001
T

T

CD23'2’ 91.4 89-93.9 66 65-66.9 43.7 36-55.7

CD19'° 99.4 99.4 100 100 98.1 98.1

CD20li' 96.4 96.4 95.2 95.2 91.2 91.2

CD38(2' 74.4 65.8-83 61.2 42.3-80 47.8 31.6-64

CD39'1’ 61.4 61.4 83.6 83.6 23.2 23.2

t  Number in parentheses shows the number of experiments. 

$ Indicates the lowest and highest percentage.

ND not detected
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Table 3-4

Percentage of cells positive for different markers in the activated cell fraction

after overnight culture in IL-4.

Cell Region One Region Three H Region FourU

Marker Mean Range $ Mean Range Mean Range

IgM'1' t 79 79 ND ND ND ND

IgD'1' 60 60 16 16 4 4

IgG'2' 31 24-38 7 2-12 5 4-6

IgA'2' 8.5 13-4 ND ND ND ND

CD23'2' 81 94-68 ND ND ND ND

CD38'1' 73 73 ND ND ND ND

H Region four (apoptotic cells) was not studied, because of autofluorescence of dead 

cells.

t  Number in parentheses shows the number of experiments.

$ Indicates the lowest and highest percentage.

ND not detected
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Table 3-5

Percentage of cells positive for different markers in the invasive and non-

invasive cell fractions from collagen gels.

Resting fraction Activated fraction

Cell Marker Invasive Non-invasive Invasive Non-invasive

CD3 0.2% 2.5% ND ND

CD19 97% 96% ND ND

CD23 80.5 ± 13.5% 11 94% 60% 72%

CD38 43 ± 8.5% U 44 ± 11.5% U 24% 70%

IgM 74.5 ± 12.5%U 82.5 ± 3.5%U 66% 82%

IgD 82% 81% 75% 55%

IgG 15% ND | 19% 10%

U Percentage of mean is derived from two experiments. 

ND not detected
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Figure 3-4
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Fig 3-4 Distribution of freshly isolated. Invasive and non-invasive cells in different regions in high 

and low-density populations.

(la) Freshly isolated cells in high-density fraction, (lb) Freshly isolated cells in low-densitv 

fraction. (2a) Invasive cells in high-density fraction. (2b) Invasive cells in low-density

fraction.

(3a) non-invasive cells in high-density fraction. (3b)non-invasive cells in low-density fraction.
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3-1 -2-2-2 Polarization A ssay

Fluorescence microscopy was used to investigate phenotypic characteristics of 

resting cells cultured in either IL-4 or medium alone (HBSS/MOPS) for 20 hours 

in long term polarization assays. Cells were prepared for fluorescence microscopy 

using anti-IgM and anti-CD38 as markers. The data obtained from cells cultured 

in IL-4 show that 65-86% of cells were IgM+ and 43-37% CD38+. The majority 

(75%) of IgM+ and 42% of CD38+ cells were polarized after culture in IL-4, 

whereas the responsive cells cultured in HBSS alone were 14% (IgM+) and 30% 

(CD38+), respectively. These data showed that IL-4, but not HBSS alone, 

increases the polarization of slgM bearing cells, while the response of CD38+ 

cells was the same in either IL-4 or medium alone.

3-1-3 Visual Phenotyping Using May- Grunwald-Giemsa Staining

Studying of cell morphology using May-Griinwald Giemsa-stained 

preparations was a useful preliminary to phenotype tonsillar cells since it 

distinguishes large from small cells, and centrocytes with clefted nuclei were 

readily distinguished from small non-germinal centre cells. Cytospins were 

prepared from freshly isolated resting and activated fractions and from cells 

cultured in IL-4 for 20h. These populations contained three different 

subpopulations in each fraction; (1) small non-clefted cells which are mantle zone 

and virgin cells, (2) small clefted cells which are centrocytes, and (3) large clefted 

cells which are centroblasts. The proportions of cells were different in the resting
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and activated fractions. Small-and large-cleaved cells underwent apoptosis when 

cells were cultured in IL-4, and comprised less than 10% of the whole population 

in each fraction. Small non-clefted cells from both fractions survived in culture, 

and were able to respond to chemoattractants. The data are shown in Table 3-6. 

A minority of CD38+ germinal centre cells with clefted nuclei were also present 

before culture in the resting fraction and 50% of the cells in the activated fraction 

were CD38+, but most of these did not survive overnight: 95% and 92% of resting 

and activated cells in culture after 20h were small cells with unclefted nuclei. 

Thus live cells from both fractions are similar not only in surface phenotype but 

also in morphological characteristics. The apoptotic cells mostly were destroyed 

during spinning in cytospin preparations, whereas they were visible in wet 

preparations under phase contrast microscopy or using Kimura stain. The 

morphological appearance of high density cells before and after culture in IL-4 is 

shown in Fig 3-5. In contrast to cultured cells, freshly isolated high-density B 

cells has a condensed chromatin of the nucleus, indicating low activation, 

relatively little cytoplasm, and were smaller in size. Fig 3-6 shows a photograph 

of low density cells before and after culture. Non-clefted small cells in both 

fractions have a relatively scanty cytoplasm, whereas the cultured cells were 

larger with more abundant cytoplasm.

SECTION TWO : LOCOMOTION ASSAYS

The locomotion of resting and activated B cells was measured using; (1)
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Table 3-6

Morphological differences among high and low-density B cell before and after

culture.

Cell counts

1 Cell fractions Culture

condition

Large clefted 

cells

Small clefted 

cells

Small non- 

clefted cells

High density Before

culture

15.1% 21.3% 63.6%

cells After

culture

1% 3.5% 95%

I Low density Before

culture

38.5% 20.5% 41%

cells After

culture

3% 5% 92%

Table 3-6 Differentiation of resting and activated cells before and after culturing in 

IL-4 by morphological criteria. Following cytocentrifuge preparation, the slides were 

stained using May-Grunwald-Giemsa and studied at a magnification of xlOO. 150- 

200 cells were scored and the results are presented as a percentage events.
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Figure 3-5
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Figure 3-5 Morphologic appearance of high density cells before and after culture in IL- 

4. Following cytocentrifuge preparation, the slides were stained using May-Grunwald- 

Giemsa and photographed at a microscope magnification of xlOO.
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B e f o r e
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Figure 3-6
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Figure 3-6 Morphologic appearance of low density cells before and after culture in IL-4. 

Following cytocentrifuge preparation, the slides were stained using May-Grunwalds - 

Giemsa and photographed at a microscope magnification of xlOO.
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polarization assays, (a) in overnight culture which measures the gradual 

acquisition of locomotor capacity as the cell population becomes activated, and 

(b) in short-term (30 min) assays which measure the ability of the cells to respond 

to a chemoattractant. Short-term assays were done on cells either directly after 

separation or after overnight (20h) culture followed by washing. (2) Collagen gel 

invasion assays were used to measure the locomotion of B cells directly, and (3) 

time-lapse cinematography to analyse details of cell movement.

3-2-1 The Shape-Change R esponse to IL-4, IL-13 & Anti-CD40 in 

Overnight Culture

The resting and activated cells were cultured in different concentrations of IL-4 

and IL-13 for 20h. Figure 3-7 and 3-8 shows the proportion of polarized cells in 

IL-4 (Fig 3-7) and IL-13 (Fig 3-8) in the resting and activated fractions. The 

majority of cells in both fractions were IgM and IgD positive, as discussed 

previously. IL-4 stimulated locomotor shape-change in a high proportion of cells 

(30 - 40% above control). The dose response curve for IL-13 in both fractions 

was similar to that of IL-4 but fewer cells responded. Culture in both IL-4 and 

IL-13 also improved cell survival. This effect was not related to cytokine 

concentration. In IL-4 and IL-13, overnight survivals were 75 ± 2.7% (n = 6), and

75.5 ± 2% (n = 6), compared with 63 ± 5 % (n = 9) in medium alone without 

cytokines (high-density fraction). Anti CD40 also was able to enhance the 

locomotion response of resting tonsillar B cells in overnight culture (20h). The
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response was significant compared with isotype control mouse IgGl. The dose- 

dependent response to anti CD40 and IgGl is shown in Fig 3-9. Anti-CD40, like 

IL-4 and IL-13 enhances cell survival in a dose-dependent manner. In a high 

concentration of anti-CD40 (10-lpg/ml), overnight survival was 78 ± 1.8 % (n = 

3). The same polarization response was observed in low-density B cells using IL- 

4, anti-CD40 or, more weakly, IL-13. The phenotype of responsive cells in the 

low-density fraction is shown in Table 3-5. The cells were mostly IgD+ and IgM+ 

and did not have features of GC cells. However, GC cells undergo apoptosis 

during prolonged culture. Cells from high and low density fractions showed 

similar responses in culture in IL-4, IL-13, and anti-CD40. The time course of 

polarization during 48h in response to IL-4 (50U) and IL-13 (1 pig/ml and 

lOng/ml) for the resting and activated fractions (lOOng/ml) is shown in Figure 3- 

10 & 3-11, respectively. The slow increase in locomotor activity was most 

marked in IL-4, less so in IL-13, and still less in medium without cytokines. A 

maximum was reached after 18-20h. The same time-dependent response was 

observed using anti-CD40 (5pg/ml, Fig. 3-12). This development of locomotor 

morphology was evident after a few hours and maximal after 18-20h. At later 

times of culture, little further increase in the proportion of polarized cells was seen 

and this was much slower than would be expected using chemotactic factors 

which stimulate shape-change and locomotion within minutes of exposure, and the 

results suggests that, rather than acting as immediate stimulants, IL-4, IL-13 and 

anti-CD40 initiate differentiation from a non-locomotor to a locomotor phenotype.
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The polarization seen after culture appears to be related to unidentified attractants 

released into the medium during culture rather than to IL-4 itself. Cell 

concentrations were also important in the percent polarization response to IL-4 

and determined the amount of attractant released into the medium. Concentrations 

between 1.25 xlO6 - 10 x 106 cells/ml were used and the best response was seen at

2.5 x 106 cells/ml. The effects of specific antibodies to IL-4 and IL-13 were tested 

and both were shown to inhibit the capacity of their respective ligands to activate 

shape-change (table 3-7). Cells were incubated for 20h with IL-4 or IL-13 with or 

without their respective antibodies, then locomotor shape-change was scored. 

Percent inhibition was derived from 100 - {(% shape-change in [cytokine + ab] 

minus medium control/ % shape-change in cytokine alone minus medium 

control)x 100}. The experiments with anti-IL-4 were carried out using F(abv)2 

fragments since the whole antibody itself stimulates polarization. The 

concentration of mouse anti-IL-4 was unknown, thus serial dilutions of antibody 

were used. The best inhibition (up to 61%) was observed at 1/100 dilution. These 

results shows that both anti-human and anti-mouse IL-4 inhibited the effect of 

human IL-4. The cells were cultured with IL-4 (20u) and anti IL-13 (200ng- 

4ng/ml) to check for possible cross-inhibition. Anti-IL-13 not only had no effect 

but enhanced locomotion, except at 200ng which gave a partial inhibition up to 

17%. Based on observation that engagement of CD40 may be required to activate 

the B cell receptor for activation-related functions (Banchereau et al, 1994), 

experiments were performed to investigate the effect of combining IL-4, anti-
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CD40, and anti-IgM as locomotor activators in overnight culture. The results 

together with those for the anti-CD40 isotype control IgGl are shown in Fig 3-13. 

IL-4 (20u/ml) together with anti-CD40 (lpg/m l) stimulated polarization of more 

cells than either alone. A combination of IL-4 with anti-CD40 and anti-IgM 

(lpg/m l) stimulated polarization of still more cells (60-70% of the total viable 

population). In the absence of IL-4, anti-CD40 + anti-IgM did not induce 

significantly more polarization than anti-CD40 alone. Mouse IgG2a, the isotype 

control for anti-IgM had no effect on polarization (data not shown). Anti-IgD also 

was used in the same combination with IL-4, anti-CD40 or with appropriate 

controls and a slightly higher response was seen (one experiment, data not 

shown). Resting B cells showed no polarization response to IL-5 (n = 1) between 

4-200 U/ml, IL-6 (n = 1) between 4-200 U/ml, IL-7 between 0.16-800 U/ml (n = 

3), IL-15 (n = 2) between lp,g-100pg/ml and sCD23 (n = 2) between lOpg- 

lOOpg/ml, and finally IL -la  (n = 1) between 50ng-10ng/ml after 20h culture (data 

not shown). There was no response when these cells were cultured with anti-IgM 

(n = 3) and anti-IgD (n = 2), or antigens such as protein A (n = 2), Pneumovax II 

(composed of 23 different Polysaccharides) between lOmg-lOpg (n = 1), or heat

7 7inactivated Staphylococcus aureus (cowan A strain) between 1.5x 10 and 1x10 

bacteria/ml (n = 1), except with anti-IgM at lpg/ml which give a small response 

(12 ± 2%, n = 3). Anti-Ig caused cell death after overnight culture (20h) in a dose- 

dependent manner. This was more significant using anti-IgM rather than anti-IgD. 

Cell death become apparent at a concentration of lpg/ml and reached
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Figure 3-7

Polarization to IL-4

(a) Hlgh-denslty fraction
b) Low-density fraction
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Figure 3-7 Polarization of high-density (Resting) and low-density (Activated) tonsillar B cells to 

IL-4 (a) Dose responsive curve of high-density B cells, (b) dose responsive curve of low-density B 

cells. The data are expressed as (test-control) values.

Upper curves: Cells cultured overnight in IL-4 (20H) and fixed in their own supernatants. (Left 

Fig.) high-density cells (mean ± SEM, n=6). Polarization in medium alone was 20.6 ± 4.8 % : P 

values: test cf. cytokine-free control; IL-4 20 & 50U/ml P : <0.05> 0.01 : 100 & 200U/ml P : 

<0.01 . (Right Fig) Low-density cells (mean ± SEM, n=3) polarization in medium alone was 29.5 

± 4.2. P value for 100 & 200U/ml P <0.05>0.03.

Lower curve: 30 min. assay (immediate shape-change) Cells exposed to IL-4 directly after 

separation (a) High-density B cells (mean ± SEM, n = 2) Polarization in medium alone was 6.4 ±

1.3. Differences are not statistically significant using Student T-test. (b) Low-density B cells in 

one experiment. Polarization in medium alone was 15.5.
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Figure 3-8

Polarization to IL-13

(a) High density fraction (b) Low density fraction
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Figure 3-8 Polarization of high-density (Resting) and low-density (Activated) tonsillar B cells to 

IL-13 (a) Dose responsive curve of high-density B cells, (b) dose responsive curve of low-density 

B cells. The data are expressed as (test-control) values.

Upper curves: Cells cultured overnight in IL-13 (20H) and fixed in their own supernatants. (Left 

Fig) high-density cells (mean ± SEM, n=6). Polarization in medium alone was 20.0 ± 2.6 % : P 

value: test cf. cytokine-free control; IL-13 >10ng/ml P : <0.05> 0.01. (Right Fig) Low-density 

cells (mean ± SEM, n = 2) polarization in medium alone was 27.8 ± 3.8. Differences are not 

statistically significant.

Lower curve : 30 min. assay (immediate shape-change) Cells exposed to IL-13 directly after 

separation (a) High-density B cells (mean ± SEM, n = 2) Polarization in medium alone was 6.4 ±

1.3. Differences are not statistically significant using Student T-test. (b) Low-density B cells in 

one experiment. Polarization in medium alone was 15.5.
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Figure 3-9

Polarization to anti-CD40 & its isotype control mlgGl

(a) High-density fraction
(b) Low density fraction

80

aCD4070

mlgGl

50

20

0 .00010.001 0.01 0.1 1 10

60

-o -O v e rn ig h t cu ltu re

50

4 0

30

20

10

0
100ng  1000ng10ng0.1ng 1ng

anti-CD40(ng/ml)

anti-CD40(pg/ml)

Figure 3-9 Polarization of high-density (Resting) and low-density’ (Activated) tonsillar B cells to 

anti-CD40 (a) Dose responsive curve of high-density B cells, (b) dose responsive curve of low- 

density B cells. The data are expressed as (test-control) values.

Upper curves: Cells cultured overnight in anti-CD40 (20H) and fixed in their own supernatants. 

(Left Fig) high-density cells (mean ± SEM, n = 3). Polarization in medium alone was 21.6 ± 2.2 

% . P : <0.01; anti-CD40 at > O.Olpg/ml cf medium control. B) Low-density cells (mean ± 

SEM, n = 2). Polarization in medium alone was 30.9 ±0.1 %. There was not enough data for 

estimation ofP value.

Lower curve : Isotype control mouse IgGl. Result from a single experiment in high-density 

fraction.
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Figure 3-10

Time course polarization to IL-4
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Figure 3-10 Time-course for polarization of high-density and low density B cells cultured in IL- 

4 (50U/ml) together with medium alone without cytokine. Data from one experiment.
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Figure 3-11

Time course polarization to IL-13

(a) High-density fraction (b) low-density fraction
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Figure 3-11 Time-course for polarization of high-density and low density B cells cultured in IL- 

13 together with medium alone without cytokine. Data from one experiment.

(a) High-density B cells in IL-13 (lpg/ml and lOng/ml), (b) Low-density B cells (lOOng/ml).
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Figure 3-12

Time course polarization to anti-CD40
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Figure 3-12 Time-course polarization of high-density B cells cultured in anti-CD40 (5p,g/ml) 

together with medium alone without antibody. Data from one experiment.



Table 3-7

Inhibition by antibody of locomotor activation by IL-4 & IL-13. 

% inhibition after 20h culture in

IL-4 (lOOU/ml)

anti-human IL-4 %inhibition mouse anti IL-4(11B11) %inhibition

4 (ng/ml) 100 1/5 7.5

2 95 1/25 14.5

1 42 1/50 33

0.5 2 1/100 61

1/500 25

1/1000 11

IL-13(100ng/ml) EL-13(10ng/ml)

aEL-13 (ng/ml) %inhibition alL-13 (ng/ml) %inhibition

200 90% 200 100

40 89% 40 89

20 62% 20 58

16 54% 16 54

8 34% 8 21
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Figure 3-13

Multiple effect of IL-4, anti-CD40, and anti-IgM in overnight culture

Medium-

lgG1 -

aC D 40-
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IL-4+aCD40+lgG2a-
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% Lymphocytes Polarized after 24h

Figure 3-13 Overnight polarization of high density tonsil B cells in combination of IL-4 

(20U/ml), anti-CD40 (lpg/ml), and anti-IgM (lOOng/ml) or mouse IgGl (lOOng/ml). Mean ± 

SEM for 7-9 experiments. Where no standard error bar is shown, N <3: t-test: *P : <0.01 cf. 

medium control; ** P : < 0.01 cf. both medium control and anti-CD40; *** P <0.01 cf. medium 

control, IL-4, anti-CD40 or anti-IgM alone. Mouse IgG2a was used as an isotype control for anti- 

IgM and gave no activity (data not shown)
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up to 85% at lOpg/ml. Induction of cell death by anti-IgM could be overridden by 

co-culturing with either IL-4 or anti-CD40. Although anti-IgM by itself had no 

significant effect on the locomotor response in a long term assay, anti-IgM plus 

IL-4 in appropriate concentration enhanced the response compared with IL-4 

alone (Fig 3-14). There was no response using mouse IgG2a, mouse IgGl, or 

sheep Ig between lOmg-lng/ml which were used as controls for the antibodies. 

LPS also was tested and gave no effect at concentrations between lOpg-lOng/ml 

(n = 2). TNF-a neither polarized the B cells nor had any effect on polarization 

induced by IL-4 when they were co-cultured. In contrast to TNF-a, another Tm 

cytokine, IFN-y, inhibited polarization induced by IL-4 but itself had no effect on 

B cells in a long term assay (n = 3, Fig 3-13A). The inhibitory effect of IFN-y on 

the response to IL-4 was slightly enhanced by culturing the cells for one hour in 

IFN-y before adding IL-4 (one experiment, data not shown). No polarization was 

observed when activated cells were cultured in IL-5 (n = 1), IL-6 (n = 1), IL-7 (n 

= 3), sCD23 (n = 3), anti-IgM (n = 3), anti-IgD (n = 2) at the same concentration 

as resting cells except with anti-IgM at lpg/ml (14 ± 3). It was concluded that 

IL-4, and IL-13, but not other B cell cytokines tested, confer locomotor capacity 

on B cells during a 24h period so that the cells change shape in response to 

attractants present in their own supernatants. This was true for anti CD40 as well. 

However, overnight culture experiments do not provide evidence about which 

attractants cause B cells to change shape and to migrate towards a gradient source 

immediately (<30 min) following stimulation.
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F ig u re  3-14

Polarization using IL-4 and anti-IgM in overnight culture
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%Polarized cells

Figure 3-14 Polarization of high-density (Resting) tonsillar B cells to IL-4 + anti-IgM fixed in 

their own supernatants after overnight culture (20H) (mean ± SEM, n = 3). P values: test cf. 

cytokine-free control; IL-4 20U/ml plus 10-100ng/ml of anti-IgM P : <0.04> 0.01 : IL-4 

lOOU/ml plus lOOng/ml of anti-IgM P : <0.01 > 0.003.
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Figure 3-13A

Inhibition effect of IFN-y on polarization
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Figure 3-13A Effect of IFN-y on polarization induced by IL-4. The resting cells were cultured 

with IL-4 and IFN-y. The data are expressed as (test-control) values, (a) inhibitory effect of 

different concentrations of IFN-y on IL-4 (20U/ml) (mean ± SEM, n = 3). Polarization in 

medium alone was 20.6 ± 0.6 %. The percent inhibition was 38.2 ± 2.7%; 51 ± 4.9%; 25.5 ± 

2.3% for 1U, 10U, and 100U of IFN-y, respectively . P values: test cf. cytokine control; IFN-y 1 

& l()U/ml P : <0.03> 0.05.

(b) Inhibition curve using lOU/ml of IFN-y and different concentrations of IL-4 (n = 1). The 

percent inhibition was 100, 81, 52, 53, 40% for IL-4 1, 4, 20, 50, lOOU/ml, respectively. Percent 

inhibition was calculated as before (Table 3-7).
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3-2-2 The R esponse of High and Low-density B Cells to 

C hem oattractants in Short-Term Shape-Change A ssays. 

3-2-2-1 R esponse to Cytokines, to Anti-CD40, and to Supernatan ts 

from Cultured Cells.

In addition to studying the gradual effects of locomotor activators on 

locomotion of B cell in overnight culture, we also studied the immediate (<30 

minutes) effects of attractants on B cell polarization and locomotion, using either 

cells direct from the tonsil or cultured B cells. This provides valuable information 

about the response of cells before and after culture to chemoatractants. Cultured 

cells were washed twice to remove the attractants released into the medium during 

culture. After washing, most of the cells rounded up and could be retested against 

freshly added attractants. Thus, the supernatant medium was removed from B 

cells cultured in IL-4 or anti CD40, and the cells were washed to allow them to 

regain spherical morphology. They were then re-exposed for 30 minutes either to 

pure cytokine, to anti-CD40, or to their own supernatants. B cells that had been 

cultured in IL-4 and anti-CD40 showed rapid shape change in their own 

supernatants (Figure 3-15), and to a lesser extent in supernatants from B cells to 

which no cytokine had been added. They showed no response to either 

supernatants of T cell cultured in IL-4 or to supernatants of B cells cultured in 

FCS 25% alone. These cells were also tested for immediate shape change in IL-4 

and IL-13. A small response was seen when cells that had been cultured in IL-4
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(20u) and IL-13 (lOOng/ml) were re-exposed to an equivalent amount of IL-4 and 

IL-13 for 30 minutes {3.2 ± 1.5 (n = 6) and 2.2 ± 0.2 (n = 2), respectively}. The 

best response was seen using IL-4 (lOOU/ml), and this was below 10%. Cells 

were cultured in anti-CD40 for 20 hours then washed and tested for a short-term 

response to IL-4. These cells gave no response to IL-4. The supernatants from 

IL-4 and IL-13 cultures but not IL-4 and IL-13 themselves, induced shape-change 

of cells within 30 minutes, suggesting that supernatants contain attractants 

released by the cells themselves in response to culture with cytokine. This finding 

was supported by addition of anti-IL-4 to these supernatants, which caused only 

partial inhibition of their activity (Table 3.8). Fig 3-7 (lower curve Fig 3-7a) 

shows that the immediate response of freshly isolated resting cells was 

considerably lower than that of cells from long-term culture in IL-4 (bottom curve 

compared with top curve).

Overall, these results demonstrate that IL-4 does not account for the response 

of pre-cultured cells to the supernatants. No response was observed when cells 

freshly isolated from the tonsil were exposed to these supernatants. This finding 

suggests that in order for freshly isolated cells to become capable of locomotion, 

they require to be cultured in locomotor activators such as IL-4, IL-13, and anti- 

CD40. Cells pre-cultured in IL-4, but not cells directly from the tonsil (not 

shown), responded by immediate polarization in response to anti-CD40. Fig 3- 

15A shows the dose response of B cells which had been cultured in IL-4 

overnight, then washed, exposed to anti-CD40 and its isotype control IgGl in a
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short term assay. Anti-CD40 had no effect on pre-culture resting cells in anti-IgD 

(lpg/m l for 30 min.). These results shows that anti-CD40 acts both as a long 

term activator (Fig 3-9) and as a chemoattractant (Fig 3-15A) for B cells. No 

response was seen in short-term assays to a number of other cytokines viz. IL-7 

between 0.5-400U (n = 5), M IP-la , MIP-16, IL-8, IL-2, IL-15, RANTES all 

tested at between lpg-1 ng/ml (n = 1), or sCD23 tested at between lpg-lOOpg/ml 

(n = 7). No IL-2R was detected when cultured cells were stained using anti-IL-2R 

antibodies (CD25 & CD 122). B cells purified directly from the tonsil were also 

tested against IL-4 and IL-13 in short term assays. In contrast to the cultured 

cells, these failed to respond. There was no response with other cytokines such as 

IL-2, IL-7, IL-8, IL-15, M IP-la , MIP-16, and sCD23 at the same concentrations 

which were used before on cultured cells.

3-2-2-2 Effect of Treatm ent of Cells with Anti-Immunoglobulins on 

Polarization

The majority of B cells in the resting fraction were sIgM+, sIgD+ , and since B 

cell shape-change on exposure to anti-Ig may provide a model for a locomotor 

response to antigen (Ward et al, 1977; Gray et al, 1994), the effect of anti-IgM and 

anti-IgD was tested in short-term assays. A proportion of high-density B cells 

both before and after culture in IL-4 showed a shape-change dose-response in the 

presence of anti-IgM (Fig. 3-16) but did not respond to the isotype control mouse 

IgG2a (data not shown). The response was more marked after overnight culture
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Figure 3-15

Polarization to supernatants
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Figure 3-15 Cells were cultured in IL-4, anti-CD40, and HBSS alone, washed, and resuspended 

in dilutions of their own supernatants. (Upper curve) Dose response curve for cells cultured 

overnight in IL-4( 20U/ml), and exposed to supernatants derived from overnight cultures of B 

cells in IL-4 (lOOU/ml). (mean ± SEM, n = 3). Control values (medium alone : Polarization in 

medium was 32.9 ± 3.3 %.) have been subtracted. Neat supernatant cf. control:_P <0.02. 

(Middle curve) Dose response curve of cells cultured in anti-CD40 (lOOng/ml) to its own 

supernatants. Polarization in medium alone was 30% (n = 1). (Lower curve) Dose response 

curve of cells cultured in HBSS alone to its own supernatants. Polarization in medium alone was 

17% (n = 1).
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Figure 15A 

30 Min. assay to anti-CD40
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Fig. 15A Response to anti-CD40 and its isotype control IgGl of B cell after overnight 

culture in IL-4 (20u/ml). Mean ± SEM, n = 3. P <0.01 Vs isotype control. Cells direct 

from the tonsil showed no response to anti-CD40 (data not shown).
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Table 3-8

Inhibition of locomotor activation of supernatants by aIL-4.

anti-human IL4 (pg/ml) % Inhibition

4 24

2 34

1 24

0.5 0

Resting cells were cultured in IL-4 (20 & 100U) overnight and the cells cultured in 

IL-4 (20U) were then washed twice and re-exposed to supernatants from cultures in 

IL-4 (100U) alone or to the same supernatants plus anti-IL-4 in 30 minutes assay. The 

percent inhibition was calculated as mentioned for table 3-7 .
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Figure 3-16

Polarization to anti-IgM & anti-IgD
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Figure 3-16 Dose response of B cells to anti-IgM and anti-IgD in a 30 minute shape-change 

assay. Open symbols: cells direct from tonsil; Filled symbols : cells after overnight culture in IL-4 

(20U/ml) (mean ± SEM, n = 4). Control values (medium alone : cells direct from Blood, 7.5 ± 0.7 

% polarized cells; cells after overnight culture, 23.8 ± 1.2 %) have been subtracted. All P values 

(test compared to control) at lOOng/ml and lpg/ml <0.05.
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in IL-4 than in cells direct from the tonsil. The IL-4 cultured B cells were also 

tested for shape-change in the presence of polyclonal sheep anti-human IgD (Fig. 

3-16). These responses were stronger than that with anti-IgM and a similar 

response was seen using monoclonal mouse anti human IgD. These results 

suggest that anti-IgM and anti-IgD act as a chemoattractants for B cells and that 

anti-IgD has a stronger effect than anti-IgM. A time-course study showed that 

polarization in response to anti-IgD was almost fully developed in 10 minutes (Fig 

3-17) which is characteristic of a response to a chemoattractant and contrasts with 

the slow polarization shown in Fig 3-7, 3-8, 3-9. After 60 minutes, the proportion 

of polarized cells began to decrease slowly to baseline levels. Control sheep IgG 

had no effect on shape-change. The high-density B cells were cultured in IL-4 

(20u/ml) overnight. Following washing twice, they were exposed to anti-IgD 

(monoclonal Ab, Dako) or HBSS alone. Cells were then analysed; firstly after 30 

min. when the response is maximum and then after 7h when the response has 

returned to baseline. Fluorescent microscopy analysis showed that cells after 30 

min. in anti-IgD were strongly positive compared with its isotype control FITC- 

conjugated mouse IgGl. Cells were cultured in anti-IgD and HBSS alone for 7h. 

Those exposed to HBSS alone showed strong fluorescent activity for surface IgD 

compared with IgG l isotype control, whereas those cultured in anti-IgD were 

absolutely negative. However cells permeabilized in 0.2% Triton x 100 failed to 

show any fluorescent activity inside the cells. This result was confirmed by FACS 

(Fig. 3-17A). Thus B cells are capable of recognizing anti-Ig as a chemoattractant
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and culture in IL-4 increases the proportion of cells responsive to anti-Ig. Table 3- 

9 shows data obtained from the combination of anti-IgM and anti-IgD in the 

immediate shape-change response (30 minutes assay). These experiments do not 

show an additive effect of these antibodies used at high concentration, but at lower 

concentrations, the polarization response was slightly higher than that seen with 

either antibody alone. This difference in locomotion may be due to the increase in 

total anti-Ig concentration rather than to a combined effect. The same results were 

seen with cells pre-cultured in IL-4 (data not shown). However, combination of a 

supernatant from IL-4 cultured cells with either anti-IgM or anti-IgD increased the 

percentage of responsive cells (Fig 3-18). No further response was observed by 

adding anti-CD40 to the supernatant. However the response slightly decreased 

(data not shown). A polyvalent sheep antiserum against IgG,M,A also induced 

immediate shape-change in B cells (Fig. 3-19). Control sheep IgG had no effect 

on shape-change. Thus B cells are capable of recognizing anti-Ig as a 

chemoattractant and culture in IL-4 increases the proportion of cells responsive to 

anti-Ig. To confirm this, high-density B cells were cultured either in 25% FCS, 

anti-CD40 (lp,g/ml), lFN-y (lOu/ml), and or HBSS/MOPS alone. Following 

washing, they were exposed to anti-IgD. The results are shown in Fig 3-20. 

Following culture in FCS, cells showed no response to any of the above attractants 

(data not shown). This suggests that cells cultured in HBSS alone might be 

activated through adhesion to the plate surface, though less so than cells 

cultured in IL-4. Thus overnight culture in IL-4 not only increases the
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Figure 3-17

Time course of polarization to antilgD60

HBSS/HSA
50 anti-IgD

40

30

20

10

0
300 360 420 4800 60 180 240120

Time(Min.)

Figure 3-17 Cells were cultured in IL-4 (20u/ml) overnight, washed ans 
retested against anti-IgD (lOOOng/ml) or HBSS-HSA.
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Figure 3-17A
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Cells were cultured in IL-4(20u/ml) overnight, washed and exposed to anti-IgD (lpg/ml) 

and HBSS alone, (a) Cells exposed to anti-IgD after 30 Min. and stained, (b) Cells 

exposed to anti-IgD after 7h. and stained, (c) ) Cells exposed to HBSS alone after 7h. 

and stained.
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Table 3-9

Effect on polarization of anti-IgM and anti-IgD

Hanks/MOPS algD(lpg) algD(lOOng) algD(lOng)

Hanks/MOPS 6.9 ± 0.6(3) 21 ± 8.3(3) 19.2 ± 9(3) 12 ± 4.2(3)

algM(lpg) 7.8 ± 2.5(2) 21.5 ± 1.4(2) 26.1 ± 15.4(2) 18.8 ±3.1(2)

algM(lOOng) 11.1 ±3.6(2) ND ND 21.7 ± 11.9(2)

algM(lOng) 10.9 ± 2.6(2) 16.5 ± 0.4(2) 16.4 ± 2.2(2) 16 ± 2(3)

Table 3-9 Polarization assays using combinations of anti-IgM and anti-IgD. The 

freshly isolated high-density B cells were exposed to these attractants for 30 minutes. 

The percent polarizations are presented as mean ± SEM. The numbers in parentheses 

show the number of experiments.

ND = not detected

158



Figure 3-18

Polarization to supernatant and anti-Igs

C hem oattractants

Figure 3-18 Cells cultured overnight in IL-4 ( 20U/ml), washed, and resuspended in 1/2 

dilutions of supernatants from overnight cultures of B cells in IL-4 (lOOU/ml) alone and in 

combination with anti-IgM and anti-IgD. (mean ± SEM, n = 2).
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Figure 3-19

Polarization to anti-IgG,A>M
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Figure 3-19 Polarization responses to different concentrations to anti-IgG,A,M in a 30 minutes 

shape-change assay, (a) Cells direct from tonsil (mean ± SEM, n = 3), Control values (medium 

alone : Polarization in medium alone was 6.8 ± 0.7 %) have been subtracted.: P value: test ef. 

medium alone; anti-IgG,A,M >l(jig/ml P : 0.03, anti-IgG,A,M lO îg/ml P <0.001.

(b) Cells cultured overnight in IL-4 ( 20U/ml), washed, and retested to anti-IgG,A,M (mean ± 

SEM, n = 4). Polarization in medium alone was 24.5 ± 1.9%. (mean ± SEM, n = 4). Control 

values have been subtracted. All P values (test compared to control) at lOng/ml and 50ng/ml 

were <0.05>0.01. .
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Figure 3-20

Effect of anti-CD40 & IFN-y on polarization to anti-IgD
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Figure 3-20 Polarization responses of B cells to anti-IgD in a 30 minute shape-change assay. 

The high-density B cells were cultured overnight in either anti-CD40, IFN-y, or HBSS alone for 

20h, washed and retested. Control values (medium alone : Polarization in anti-CD40, IFN-y, and 

medium alone was 24 ± 0.7 %, 10.5 ± 0.5%, 12 ± 3.6%, respectively, mean ± SEM, n = 2) have 

been subtracted.

(a) Cells were cultured in anti CD40 (lpg/ml): P value: test c£. medium alone; anti-IgD 

>10pg/ml P : 0.01. (b) Cells were cultured in IFN-y (lOU/ml). (c) cells were cultured in HBSS. 

Polarization response in either HBSS or IFN-y was not significant.
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locomotion of resting cells but also increases the responsiveness of the cells 

toward the above attractants. It is interesting that cells cultured in IFN-y after 

overnight culture did not respond to anti-IgD as a chemoattractant and the 

proportion of polarized cells was even lower than that found in cells cultured in 

HBSS alone. Therefore, summarizing the results from these experiments, it can 

be concluded that those stimuli (IL-4 or anti-CD40) which push the cells from 

G0 to Gj also increase their responsiveness toward anti-Ig.

3-2-3 A ssessm en t of the Purity and Activity of F(ab')2 F ragm ents of 

anti-IgD

Following the observation that mouse IgGl, but not IgG2a is recognized by the 

human FcyRII (Van de Winkel & Anderson, 1991), sheep anti human IgD was 

digested by pepsin to remove the Fc fragment. F(ab')2 fragments were prepared to 

control for Fc receptor-mediated activation of locomotion. This was tested in the 

polarization assay and as seen in Fig 3-21, the F(abv)2 dimer was slightly less 

active than the whole antibody. In terms of titre, F(ab')2 dimer was equivalent to 

whole antibody. In parallel experiments, the Fc receptor was blocked with either 

hlgG (lpg/ml) or anti- CD32(lpg/ml). The data show that blocking of the Fc 

receptor by hlgG decreased the shape-change response slightly. Different 

concentrations of hlgG had no effect (lOpg-lOng, data not shown), whereas anti- 

CD32 polarized the cells (Fig 3-22). These data suggest that in contrast to anti- 

CD32, hlgG blocks the Fc receptor on B cells without having an effect on the
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locomotion response. It was reported previously that IL-4 abolishes the effect of 

Fc receptor on activation of B cells ( CTGarra et al, 1985). Thus, the cells were 

cultured in HBBS and then exposed to anti-IgD and digested anti-IgD, but as is 

shown in Fig 3-22, HBSS causes some cell activation alone, and is therefore not 

an entirely satisfactory control.

Following digestion of sheep anti IgD and anti human IL-4 with pepsin, the 

protein was layered on SDS-PAGE electrophoresis to determine molecular 

weights and efficiency of digestion. 7% and 10% separating gels were used. 

When the concentration of separating gel was decreased, these changes resulted in 

better resolution of the protein bands. The calibration curves are depicted in Fig 

3-23 and photographs of the gels are shown in Fig 3-24. In the gels illustrated in 

Fig 3-24 the bands for anti-IgD (30p,g/ml), digested anti-IgD (30pg/ml), anti 

human IL-4 (15p.g/ml), and digested anti IL-4 (lOpg/ml) were compared with 

markers of known molecular weight. Bovine serum albumin (BSA) and human 

serum albumin (HSA) were used as controls of known molecular weight. The 

molecular weights of the protein bands were calculated from the molecular weight 

markers. An approximately linear curve was obtained using known molecular 

weight markers and known controls (BSA & HSA). This curve shows that anti- 

IgD and anti-IL-4 (IgG fraction) are located at 155 Kd and the digested fragment 

of these antibodies at 105 Kd (Fig 3-23). No band was detected at 150 Kd in 

digested fragments from either anti IgD or anti IL-4.
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Figure 3-21

Polarization to anti-IgD & F(ab')2 fragments
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Figure 3-19 Polarization response of B cells cultured overnight in IL-4 (20u/ml). 
washed, and retested in whole algD or algD F(ab')2 fragments (Left), or in a 
combination of either hIgG(lug/ml) + algD or anti-CD32 (lug/ml)+ algD (Right). 
Control values (polarization in medium controls for human IgG and anti-CD32 were 
25.3 ±3% and 27.5 ± 7%, respectively, mean ± SEM, n = 3)
All part of same experiment. algD in Left hand graph is a control for the curves in 
the Right hand graph.
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Figure 3-22

Polarization to anti-CD32
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figure 3-22 Immediate shape-change and overnight Polarization of high-density B cells to anti- 

CD32 (a) Dose response of cells cultured overnight in IL-4 ( 20U/ml), washed, and retested in 

anti-CD32 (mean ± SEM, n = 2). Control values (medium alone : Polarization in medium alone 

was 20.5 ± 1.8%). have been subtracted (b) Dose responsive curve of freshly isolated cells in 

one experiment, polarization in medium alone was 6.6%. (c) Cells were cultured overnight in 

anti-CD32(20H) and fixed in their own supernatants in one experiment, polarization in medium 

alone was 23%.
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Figure 3-23 

Calibration curve for antibodies
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Calibration curve using Rainbow marker, RPN756. Undigested anti-Ig was detected at 155KD 

and the bands for digested form were precipitated at 105KD. No bands for digested antibody

were detected at 155KD.
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Figure 3-24
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Fig. 3-24 SDS-PAGE analysis of antibodies used to study B cell locomotion. Various protein 

loads of (a) molecular weight markers, (b) anti-IgD, (c) digested anti-IgD, (d) anti -IL-4, 

(e)digested anti-IL-4, (f) supernatant of resting cells after overnight culture in IL-4, (g) BSA, 

and (h) HSA. Gels were stained using Coomassie brilliant Blue R-250. Different concentration 

of separating gels were used. Fig A : 7% separating gel; Fig B : 10% separating gels .
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3-2-4 Locomotion into Collagen Gels

While measurement of shape-change is a reliable correlate of locomotion, the 

assay does not measure locomotion itself. To do this, we overlaid lymphocytes on 

a three-dimensional collagen gel incorporating attractants and allowed them to 

invade the gel . Firstly, B cells cultured in various ways were placed on collagen 

gels (1.2mg/ml) to which no attractant had been added. Of cells cultured in 

medium alone, 27.1% invaded the gel; of IL-4 cultured cells, 38.1%; and of IL-13 

cultured cells, 42.7%. Secondly, cells that had been cultured overnight in IL-4 

were placed on gels containing culture supernatants or purified antibodies such as; 

anti-IgM, anti-IgD, anti-CD40, their appropriate isotype controls or combinations 

of these agents. The cells then were allowed to invade for a further 18 hours. 

These gels were denser than those used above (collagen 1.5mg/ml) and 

consequently fewer cells invaded the gels in the medium control. The number of 

cells invading gels incorporating any of the stimuli was greater than that invading 

gels containing medium alone and was much greater when stimuli were combined 

(Table 3-10). The gel invasion assay selects the locomotor population and 

demonstrates clearly that small resting sIgM+ B cells not only change shape in 

response to anti-IgM, anti-IgD, and anti-CD40, but also show invasive locomotion 

in response to these antibodies and to attractants released into the supernatant 

during culture. In similar experiments, low density B cells (activated cells) were 

also overlaid on collagen gels made of culture supernatants (1/2 dilution), 

combination of supernatant + anti-IgM (lp,g/ml)+ anti-CD40(lfxg/ml), and HBSS-
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MOPS alone. After 18 hours incubation 35.2% of cells had invaded gels 

contaning supernatants, 33% of cells invaded gels containing anti-IgM, and 

23,7% of cells had invaded into the gels containig HBSS/HSA. These cells were 

not GC B cells, since most expressed slgD (Table 3-4) and also GC B cells 

undergo apoptosis during culture.

3-2-5 Time-Lapse C inem atography

Following the observation that cells with motile morphology were present on top 

of collagen gels after overnight culture, time-lapse videomicroscopy was used to 

study the locomotion of responsive tonsillar resting B cells placed on the upper 

surface of gels containing attractants. Different source of attractants such as anti- 

IgM and the supernatant from resting cells cultured in IL-4 were incorporated into 

the gels. Freshly isolated resting cells were layered over gels containing anti-IgM 

(lpg/ml). After 30 minutes incubation, 12% of cells showed motile morphology but 

did not show translocation because the cells were not adherent to the gel. In the 

next experiments, the resting cells were cultured in IL-4 overnight and, after 

washing, cells were layered on the top of a collagen gel containing culture 

supernatant (1/2 dilution, 1.5mg/ml). The preparation was filmed following 

incubation for 30 minutes. Obervation of locomotion indicated that 57.2% of cells 

showed motile morphology, but these cell remained sessile because they did not 

adhere to the gel. No invasion was seen within 30 minutes either of the freshly 

isolated population or in the cells precultured in IL-4, probably because this is too
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Table 3-10

Invasion of collagen gels by IL-4 cultured tonsillar B cells

Attractant % cells invading the gel (mean ± SEM) 

(collagen 1.5mg/ml)

HBSS-HSA 18.5 ± 2.7 (n=6)

anti-IgM (1 ng/ml) 35.0 ± 4.2 (n=3)

anti-IgD (1 ng/ml) 40.3 ± 2.9 (n=3)

anti-CD40 (1 ng/ml) 32.2 ± 3.6 (n=3)

SN (1/2 dilution) 36.5 ± 4 (n=3)

anti-IgM + anti-CD40 35.6+ 3.8 (n=4)

anti-IgD + anti-CD40 36 (n=l)

SN + anti-IgM + anti-CD40 49.5 ± 3.8 (n=2)

IgGl (1 ng/ml) 17.7 ± 2.1 (n=2)

IgG2a (1 ng/ml) 19.5 (n=l)

sheep Ig (1 ng/ml) 16.6 (n=l)

P for anti-IgD and combination of SN+anti-IgM+anti-CD40 vs HBSS-HSA <0.01: P for 

SN, anti-IgM, anti-CD40 and anti-IgM + anti-CD40 vs HBSS-HSA <0.05>0.01.

SN = supernatant of high-density B cells cultured in IL-4 (lOOU/ml) harvested after 20h.
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early for significant invasion to be evident. The gels were then incubated for 15 

hours and cells from the top of the gels as well as those which had invaded were 

filmed. The data shows that 40.3% of cells on the top of the gels were motile, and 

most of them were adherent to gel. Many cells invaded the gel overnight 

(proportions are given in Table 3-10), and filming of these cells showed continual 

shape change and movement within the gel matrix. Gel invasion is therefore 

dependent on the cells being able to make attachment to the gel surface.

3-2-6 Polarization Related to Growth M easured by Uridine

Incorporation

It was demonstrated previously that high density B cells cultured in IL-4 for 20 

hours (long term assay), not only increase their capacity to respond to 

chemoattractants, but also gradually acquire motile morphology (shape change). 

These cells also show an immediate response to their own supernatants and to 

polyclonal activators such as anti-IgM and anti-IgD. Here, we studied the relation 

between shape-change and growth by measuring ['H]-uridine incorporation by 

resting B cells direct from the tonsil and after culture in IL-4. Table 3-11 shows 

the results of autoradiography after [' H]-uridine incorporation. 200-250 cells per 

sample were scored. There were very few labelled cells (lightly labelled cells ^ 

10 grains per cell 8.3 ±  4.1%, and heavily labelled cells ^10 grains per cell 5.5 

±  0.35%) before culture. The small proportion of these cells that polarized in 

short term assay, either spontaneously or in response to anti-IgM and anti-IgD
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showed greater uptake of uridine than the cells that did not respond. The number 

of grains was increased after cells were cultured in IL-4 (20u/ml or lOOu/ml) 

(lightly labelled cells ^ 10 grains per cells 33.5 ±  0.5%, and heavily labelled 

cells s> 10 grains per cells 44.8 ±2.3% ). After culture overnight in IL-4, the 

proportion of heavily labelled cells had increased to about 40%. The proportion 

of polarized cells showing heavily uridine labelling after culture was higher (70 - 

80%) than the proportion among the spherical cells or in the whole population. 

This was also true for the polarized cells responding to anti-IgM, anti-IgD, or to 

culture supernatants as chemoattractants. Analysis of the results from immediate 

shape-change assays using either freshly isolated cells or cells cultured in IL-4, 

demonstrated that heavily labelled cells had more capacity to respond to 

chemoattractants than lightly labelled or non-labelled cells. Therefore, these 

experiments demonstrated that the responsive cells are mostly among the heavily 

labelled population. This was concluded from the response of cells to different 

concentrations of anti-IgD, anti-IgM, and supernatant compared with medium 

alone. In a parallel experiment, high density cells were cultured overnight in IL-4, 

20 and lOOu/ml, then was pulsed with [3H]-thymidine and slides were prepared 

for microscopic analysis. The results obtained shows that there was no thymidine 

labelled cells among them. The results of autoradiography are shown in Table 3- 

11a and 3-1 lb. These findings suggest that the cell population activated for 

locomotion and for responses to chemoattractants are also the cells most active in 

RNA, but not DNA synthesis. The autoradiographes show a relation between
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Table 3-11a

Autoradiography: [3H]-uridine incorporation by spherical and polarized B cells

30 minute assay on cells direct from tonsil:-

Source of cells and 

stimuli

% polarized cells in 

population

Percent of cells showing >10 grains per 

cell

Spherical Polarized All cells

HBSS/HSA 9.2 3 25 5.1

algM (lOOng/ml) 12.7 1.5 31 5.2

algD (lpg/ml) 15.9 1.6 31 6.9

For short term assay on cells from the tonsil, cells were pulsed with uridine for 30 

minutes, then washed twice and exposed to different polarizing stimuli for 30 minutes.

Long term assay: Cells cultured of overnight

IL-4 (20u/ml) 33 22 79.6 40

IL-4 (lOOu/ml) 37.6 10 78 38

In long term assay cells were cultured in IL-4 for 20h, then pulsed with uridine, fixed,

and washed twice.
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Table 3-11b

Autoradiography:[3H]-uridine incorporation by spherical and polarized B cells

30 minute assay on cells cultured in IL-4:-

Source of cells and 

stimuli

% polarized cells 

in population

Percent of cells showing >10 grains per 

cell

Spherical Polarized All cells

HBSS/HSA 16.2 37.6 75 43.7

algM (lOOng/ml) 18.6 38.1 85.2 46.9

algD (lpg/ml) 27.5 26.7 86.3 43.1

algD (lOng/ml 16.8 32.7 73 55.1

SN (neat) 37.8 20 74.6 41

SN (1/10 dilution) 26.3 31 62.2 39.2

Cells were cultured in IL-4 (20u/ml) for 20 hours, pulsed with uridine, washed and 

retested with above attractants for 30 minutes 

SN : Supernatant from high-density B cells cultured in IL-4 (lOOu/ml)
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Figure 3-25

Fig 3-25 Upper Fig. Autoradiographs showing [3H]-uridine incorporation in high-density 
B cells after overnight culture in IL-4. High-density B cells did not incorporate [3H[- 
thymidine. Lower Fig. Autoradiographs showing [3H]-thymidine incorporation in GC B 
cells after overnight culture in IL-4 and anti-CD40. Note that the cells with high grain 
count for uridine but not for thymidine are also the polarized cells.
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locomotion and [3H]-uridine but not [3H]-thymidine incorporation (Fig. 3-25). 

SECTION THREE : D iscu ssion

Previous studies suggested that resting lymphocytes have a poor locomotor 

capacity, but that this capacity can be enhanced by a period of culture with growth 

activators such as mitogens or antigens (Wilkinson, 1990; Wilkinson, 1986). 

These studies mainly concerned T cells, and in the present study, a similar 

approach was adapted to define (a) stimuli that confer locomotor capacity on B 

cells in overnight culture, and (b) chemoattractants for B cells achieved within 30 

minutes. The locomotor properties of a subpopulation of small, high density, 

sIgM+, sIgD+ B cells from tonsil, a phenotype which suggests that they belong to 

the recirculating population are reported here. A small minority of these cells 

showed locomotor activity when tested directly after separation, but their 

locomotor capacity was considerably enhanced by a period of overnight culture in 

IL-4, anti-CD40 or IL-13. Using the definitions in the introduction to this project, 

IL-4 and IL-13 are good activators of locomotor capacity, while anti-IgM and 

anti-IgD are chemoattractants. It was reported earlier that IL-4, an early 

activation signal for B cells, would induce locomotor capacity in resting cells 

during overnight culture (Wilkinson & Islam, 1989; Clinchy et al, 1991). It is 

reported here that IL-13 and anti-CD40 behaved similarly. Also the present study 

defines both the phenotype of the responding cells and the importance of 

cytokines as activators of locomotor activity in B cells more precisely. Both IL-4 

and IL-13 are cytokines whose capacity to activate B cells is well documented
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(McKenzie et al, 1993; Minty et al, 1993; Howard et al, 1982; Isakson et al, 1982; 

Paul & Ohara, 1987). The activities of the two cytokines are very similar, but IL- 

4 has been shown to be the more potent of the two (Punnonen et al, 1993; 

Defrance et al, 1994). These observations of the superior capacity of IL-4 over 

IL-13 as an activator of B cell locomotion are consistent with differences between 

these cytokines in other properties. IL-4, IL-13 and CD40L act early in B cell 

differentiation. Thus, it was conjectured that acquisition of locomotor capacity 

was an early event which accompanied the transition from G0 to Gj. For further 

progress through the cell cycle, other cytokines are necessary. Both the present 

study on tonsil B cells and the previous studies on blood B cells demonstrate that 

early signals appear to be the crucial ones for activating the locomotor capacity of 

B cells. Cytokines acting later in B cell maturation did not activate locomotion in 

this project or in those of others (Wilkinson & Islam, 1989; Clinchy et al, 1993), 

even using B cells that had already been cultured in IL-4.

Much evidence has accrued recently to suggest that full activation of B cell 

differentiation and proliferation requires multiple signals working through 

different receptors (Brines and Klaus, 1993; Gordon et al, 1989; Van den 

Eertwegh et al, 1993). Ligation of CD40 with anti-CD40 induces B cell 

proliferation (Gordon et al, 1988, Clark et al, 1989; Wheeler et al, 1993) and the 

antibody mimics the action of the natural CD40L present on T cells early after 

activation (Banchereau et al, 1994). The available evidence therefore strongly 

implicates CD40 as a pivotal molecule in regulation of B cell locomotion.
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Blocking the CD40-CD40L interaction inhibits the development of memory B 

cells (Gray et al, 1994). Early gene expression and later proliferation of B cells 

are enhanced by culture in combinations of anti-CD40 or of CD40L with IL-4 

(Gordon et al, 1989; Clark et al, 1989). Activation signals in B cells are also 

generated through engagement of the antigen receptor either by antigen or by anti- 

Ig. Locomotor stimulation by anti-Ig has been observed in B cells (Schreiner et 

al, 1975; Ward et al, 1977), and CD40 has been reported to lower the threshold for 

stimulation of B cells by anti-Ig (Wheeler et al, 1993).

This finding suggests that, like the proliferation response, the capacity for 

locomotion is optimal after B cells have been stimulated through more than one 

receptor. More locomotor cells were present after culture in both anti-CD40 and 

IL-4 than in either alone. Overnight culture in anti-IgM or anti-IgD alone did not 

increase the proportion of locomotor cells but addition of anti-IgM to anti-CD40 

and IL-4 gave maximal locomotor activation. Since anti-Ig by itself does not 

induce the locomotion response and keeping in mind that surface Ig is the only 

receptor that transmits Ag-specific signals to B cells, it can be postulated that anti- 

Ig (Ag) stimulation provides the initial signal that renders Ag-specific B cells 

more receptive for the subsequent helper signals anti-CD40 and IL-4 or IL-13.

B cells have receptors for both IL-4 (Zola et al, 1993) and IFN-y (Valente et al, 

1992). In contrast to the previous finding on blood cells (Wilkinson and Islam, 

1989) IFN-y did not induce a locomotion response in tonsillar B cells in overnight 

culture, neither were the supernatants from IFN-y-cultured cells active. Possible
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explanations are as follows; Possibly the IFN-y used in the earlier study was not 

100%. Secondly, the purity of tonsil B cells was much higher than that from blood 

and non-B cells might have been responsible for the earlier response either by 

releasing locomotor activators for B cells or by themselves responding to IFN-y. 

Here, IFN-y, a TH1 type cytokine, was able to inhibit the locomotion induced by IL- 

4 in B cells. This finding suggests that B cells might receive two different signals 

from these two cytokines: a positive signal through the IL-4R and a negative signal 

through IFN-yR. The result reported here directly demonstrates that IFN-y is one of 

the physiological factors that can influence the locomotion of B cells induced by IL- 

4. Inhibition by IFN-y of the response to IL-4 together with down-regulation of the 

immediate shape-change response of IFN-y cultured cells to anti-IgD suggests that 

the suppression of the TH2 type response by IFN-y might be initiated at the 

beginning of the immune response even before the cells enter Gj cycle, keeping in 

mind that both cytokines act as an early stage of B cell differentiation (Defrance et 

al, 1987; Boyd, 1987). IL-10, a TH2 type cytokine, is another cytokine which has 

been reported to inhibit the locomotion response of B cells to IL-4 (Clinchy et al, 

1994). This result is consistent with a model in which the inhibitory effect of IFN-y 

on B cell locomotion would adversely affect the TH2 but not the Tm type of 

immune response..

In a normal individual, each B cell clone possesses an unique receptor for 

antigen. Given this frequency, an attempt to detect a specific locomotor response 

using antigen to stimulate the B cell antigen receptor may be unrealistic in this
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model. The majority of studies in this project have been performed using 

polyclonal activators such as anti-IgD or anti-IgM to ‘mimic’ the effect of antigen. 

The effect of anti-IgM and anti-IgD as chemoattractants is of interest and relates 

to observations made during the 1970s. It was reported that B cell lines showed 

chemotactic responses (Russell et al, 1975) and that lymphocytes from the lymph 

nodes of mice migrated into filters in response to gradients of the immunizing 

antigen but not towards control proteins (Wilkinson et al, 1977). In retrospect, it 

seems certain that only B cells could have responded in such a way to soluble 

antigen. Observations were made at about the same time that non-isotype specific 

anti-Ig could cause capping accompanied by uropod formation in mouse B cells 

and that mouse and rat B cells would migrate into filters towards anti-Ig 

(Schreiner & Unanue, 1975; Ward et al,1977). The cultured cells responded better 

than cells prior to culture to attractants present in their own supernatants as well as 

to anti-IgM, anti-IgD, and to the combinations of anti-Igs with their own 

supernatants. Experiments using supernatants of cultured cells in IL-4 or anti- 

CD40 in locomotion of B cells may suggest an of autocrine effect on B cell 

locomotion following activation in T-dependent immune responses. This finding 

is consistent with others showing that under appropriate conditions, B cells may 

produce their own regulatory molecules for growth (Gordon, Gay & Walker, 

1985). Both anti-IgM and anti-IgD proved to be good attractants for B cells, with 

a more powerful effect on IL-4 cultured cells than on those direct from the tonsil. 

In all of our experiments, anti-IgD was a stronger attractant than anti-IgM and this
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may suggest a differences in behaviour between these two mlgs. The difference 

in the locomotion response using anti-IgD and anti-IgM is consistent with several 

differences in behaviour between these two antibodies (Luxembourg and Cooper, 

1994). This is possibly because mature resting B cells generally express a much 

higher level of mlgD than mlgM (Havran et al, 1984). Anti-CD40 was not an 

attractant for resting cells direct from the tonsil, but in contrast to IL-4 and IL-13, 

anti-CD40 induced immediate shape change in B cells that had been activated by 

overnight culture in IL-4 following by washing. CD40L is a T cell surface 

molecule which might not be expected to form chemotactic gradients. However, 

cultured T cell lines may release soluble CD40L (Armitage et al, 1992), and 

soluble CD40L can activate B cells (Lane et al, 1993). There are also reports that 

lymphocyte locomotion can be activated not only by gradients of soluble 

molecules but also by surface contact. For example, L selectin-dependent 

polarization of lymphocytes on contact with high endothelial cells has been 

demonstrated in vitro (Harris & Miyasaka, 1995). Possibly binding to CD40L on 

the surface of T cells activates shape change in the B cells which are then capable 

of migrating towards other attractants.

The effect of anti-Igs on locomotion was observed both in polarization assays 

and in collagen gel assays. The response to both was dose-dependent, optimal at 

lOOng-lpg/ml of antibody, and less apparent at higher concentrations (Fig 3-16). 

The polarization response to anti-IgD was maximal within 30 Min. (Fig 3-17), and 

gradually dropped after one hour (Fig. 3-17A). This type of dose response is
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frequently seen with chemoattractants which, at high concentrations, bind rapidly 

to the receptors all over the cell, preventing the cells from polarizing efficiently, 

whereas at lower concentrations, cells can integrate a head-tail polarization 

response by detecting non-homogenities of ligand binding (Mckay et al, 1991; 

Tranquillo et al, 1988). It is likely that the locomotor response to anti-Ig mimics a 

response to antigen. Gradients of soluble antigens probably exist in vivo and may 

attract B cells. Taken together, the earlier findings and those reported here support 

the scenario outlined earlier, in which recirculating B cells can show chemotactic 

responses to antigen but migration of B cells to foci of such antigens would not on 

its own lead to proliferation in the absence of T cell-derived signals. Locomotor 

activity associated with clustering of B cells with T cells and accessory cells may 

be induced by a combination of signals from native antigen, either in solution or 

present on the surface of accessory cells in clusters with T cells, with signals (e.g. 

through CD40L) generated on contact with helper T cells bearing processed 

antigen. Anti-CD40 and to a lesser extent IL-4 and anti-Ig induce homotypic 

aggregation which seems to be important in B cell contact and facilitates the 

exchange of autocrine factors (Bjorck et al, 1992). This observation may be related 

to expression of LFA-l/ICAM-1 adhesion molecules by activation of B cells 

through mlg and CD40 receptor (Barrette et al, 1991; Dang and Rock, 1991) and 

interaction of CD23 and CD21 (Bjorck et al, 1993a).

The kinetic studies on locomotor activators and chemoattractants clearly 

demonstrate that in contrast to attractants, B cells gradually responded to locomotor
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activators. Freshly isolated cells are mostly in the G0 phase of cycle and require 

time to transit from G0 to Gj and to respond to attractants. Attractants may be 

gradually released into the supernatant during culture, but their nature has not been 

determined. Cells cultured in cytokines such as IL-4, then washed responded 

strongly to their own supernatants but not to the cytokine with which they had been 

cultured. In mixed populations of spherical and polarized B cells after culture in 

IL-4, the locomotor cells showed increased uridine uptake, but not thymidine 

uptake, compared to the spherical cells. These cells also increased in size. This 

finding strongly suggests that the locomotor subpopulation represents the cells 

that have moved into the G1 phase of growth, as was reported earlier for cultured 

T cells (Wilkinson, 1986).

The findings reported here suggest that efficient B cell locomotion towards 

attractants such as anti-immunoglobulin requires a population that has been 

activated to progress from G0 into the early stage of the Gj phase of cell cycle. 

The signals for this activation are products of T cells (IL-4, IL-13, and agents that 

bind CD40) which themselves are expressed as a result of contact with antigen. 

Recirculating lymphocytes are mainly resting G0 cells and these experiments do 

not address the question how such cells migrate from the blood to lymphoid 

tissue. The signals for this step, both adhesive and locomotor, may be generated 

by contact with appropriate molecules on high endothelial cells (Harris & 

Miyasaka, 1995). It is more likely that the locomotor signals studied here come 

into play once B cells meet antigen and that they are T cell-dependent. After
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activation, B cells would leave the recirculating pool and follow the migratory 

pathways which lead to germinal centre formation and the production of memory 

cells. It will be interesting to investigate how the locomotion of B cells at later 

stages of maturation is directed.
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CHAPTER FOUR

LOCOMOTOR PROPERTIES AND PHENOTYPIC

ANALYSIS

OF

GERMINAL CENTRE B CELLS
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SECTION ONE : Phenotypic Analysis

4-1-1 G erm inal C en tre  B C ells

Following from the observations of locomotor responses of high and low density 

B cells described in the previous chapter, it became clear that most of the responsive 

cells in both the high density and low density B cell fractions were IgD+ and IgM+. 

These studies were extended by isolating GC B cells from the low density fraction 

using anti-CD39 (AC2) and anti-IgD coated sheep red blood cells (SRBCs). The 

non-rosetting CD39- IgD- GC cells were then isolated from the rosetting (CD39+ 

IgD + fraction) using Lymphoprep density gradient separation. The identity of GC 

B cells was determined on the basis of their phenotypic characteristics. These cells 

mostly co-express CD 19 and CD38 strongly. Investigation on FACScan analysis in 

three experiments show that this fraction contained 81 ± 1.7 % CD19+, CD38+ 

cells and 3.4 ± 0.33 % CD14 bearing cells. To eliminate CD14 bearing cells, this 

fraction was treated with anti-CD 14 coated SRBCs and GC cells were harvested 

from the interface fraction after centrifugation on Lymphoprep.

4-1-2 A nalysis of F resh ly  Iso lated  GC B C ells

The majority of cells found in mature GC are of two types: (1) Centroblasts 

expressing little or no smlg which made up about 20-35 % of the whole population 

of GC cells based on autoradiography using [ H]-thymidine and analysis of cytospin
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preparations. These are large cells with clefted nuclei that proliferate within the 

dark zone; (2) Centrocytes, which form a non-dividing progeny, are mostly located 

in the light zone and may express IgA, IgG, or CD38 strongly. In this population, 

membrane IgD is no longer present and small number of cells express IgM (Holder 

et al, 1993a; Holder at al, 1991). These are smaller in size and might still have 

clefted nuclei. The morphology of freshly isolated GC B cells is shown in Fig. 4-1. 

Since these cells express CD38 strongly, double staining using anti-CD38 and anti- 

C D ^  was applied to identify them. The phenotypic characteristics of GC B cells 

using different markers are shown in Table 4-1. Morphological examination of GC 

cells cultured in IL-4 and anti-CD40 showed that these reagents not only increase 

the motility and survival but also morphologically differentiate them towards a 

distinct type when compared with the starting population. The cultured cells (which 

are centrocytes, because centroblasts undergo apoptosis in culture period) became 

larger with a central nucleus and more cytoplasm, and they had almost lost the 

nuclear cleft which was more prominent in freshly isolated cells. Fig. 4-2 shows 

GC B cells on FACS, and expression of CD38 on GC was compared with that on 

high-density and low-density B cell fractions. Expression of this marker on high- 

density B cells is low and low-density cells express this marker heterogeneously, 

while GC B cells show homogenous expression. The majority of cells co-expressed 

CD38 and CD 19 strongly and expression of IgD was almost absent. Despite their 

size differences the GC cells, in contrast with high and low density cells, showed a 

homogenous phenotype. All separation was carried out at 4°C to prevent apoptosis
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Table 4-1

Phenotype characteristic of freshly isolated GC B cells

Cell Markers Mean Range

C D 38-C D 19^; 83 ± 2.1 90-78

CD3(2) 0.75 ± 0.25 1-0.5

CD 10(2) 10 ± 3 13-7

CD14(2) 2 ± 1 3 -1

CD 19(4) 97.3 ± 0.5 97-95

CD20(4) 88.3 ± 1.9 92-85

CD21(3) 86 ± 0.6 87-85

CD22(2) 86.5 ± 0.5 87- 86

CD23(3) 67 ± 3.5 73-61

CD32(2) 21.5 ± 10 32-11

CD38 (4) 88.8 ± 2.3 97-85

CD69(1) 93 93

IgA(2) 36 ± 1 35-37

IgG(2) 13 ± 4 17-9

IgM(3) 15 ± 6 2 1 -3

IgD(3) 1.5 ± 0.2 2 -1

The GC B cells were prepared by negative selection using anti-CD39 and anti-IgD, 
following depletion of CD14 bearing cells using anti-CD14 coated sheep red Blood 
cells. Numbers in parentheses show the number of experiments. Range shows high 
and low events.
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Figure 4-1

a

b

Fig 4 -1 Morphology of germinal centre (GC) cells before and after 12 hours culture. 

Following cytocentrifugation, preparations were stained using May-Grunwald-Giemsa and 

photographed at a microscope magnification of xlOO. (a) Freshly isolated cells, (b) 

cultured cells in IL-4(50u/ml) and anti-CD40 (lpg/ml).
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Figure 4-2
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Fig 4-2 Analysis of germinal centre cells on FACS. (Fig. A) Expression of CD 19+ & CD38+ 

in germinal centre B cells. There is strong expression of CD38+ in GC B cells (Fig. B) 

compared with high-density B cells (Fig. C) and low-density B cells (Fig. D).
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and the viability was determined frequently and was more than 97% in freshly 

isolated cells. Since trypan blue only shows late events of cell death, it was not 

ideal for studying death in GC cells. Thus viability of GC B cells was determined 

by either phase contrast microscopy using a x40 objective or by Kimura stain in wet 

preparations using a x40 or x 100 objective. This method gives good visualization 

of both apoptotic cells and polarized cells in either normal light or phase contrast 

and was ideal to study the morphology of cells. A photograph of these cells is 

shown in Fig 4-1.

4-1-3 C h a rac te ris tic s  of C ultured  GC B C ells

GC cells were cultured in IL-4 (50u/ml) and anti-CD40 (lpg/ml) for twelve 

hours. Following washing, the cells were stained with different markers. Two 

distinct regions were identified on the FACS of which region one (R l) represents 

the live population and region two (R2) the apoptotic population with high 

autofluoresence (dead cells). The data obtained from two experiments show that 54 

± 4 % cells strongly express CD38 and CD 19. Percentage positive cells for other 

markers were as follows : CD20 ( 86 ± 1 %), CD21 ( 65 %), CD23 (50.5 ± 4.5 %), 

IgM (16 ± 6 %), IgG (25%), and IgA (25%). The low expression of CD38 on 

cultured cells compared with freshly isolated cells might be due to the effect of the 

incubation period on expression of this marker and also, since it was difficult to 

separate dead and live cells completely on FACS, the high autofluoresence activity
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of dead cells increased the negative background. It has been reported that GC B 

cells undergo apoptosis when they are cultured in vitro (Liu at al, 1989) and death 

rate was related to the culture conditions. It was found (see below) that a six-hour 

culture period was enough for inducing a locomotor GC population and the 

characteristics of these cells were therefore defined. Firstly cytospins from freshly 

isolated cells and from cells cultured in different media were examined. The results 

obtained (Table 4-2) indicate that the large cells with centroblast features, are absent 

after culture and have undergone apoptosis. Secondly results from autoradiography 

analysis (Table 4-6) demonstrate that 15-20% of freshly isolated cells took up [3H]- 

thymidine and this drops to 4-5% in cells cultured in IL-4 (50U/ml) in combination 

with anti-CD40 (lpg/ml) for six hours. The apoptotic cells are large and appear to 

be centroblasts which are still in cycle and have not received survival signals in vivo 

or in vitro. To study the responsive cells further, they were cultured in HBSS alone, 

in IL-4(20u/ml) + anti-CD40 (l^g/ml), or in IL-4 (50u/ml) + anti-CD40 (ljxg/ml) in 

time course assays. The cells were then fixed in 1% paraformaldehyde and stained 

using anti-CD38 (Table 4-3). The results show that the responsive cells in all media 

strongly express CD38. The proportion of these cells is in agreement with results 

obtained from wet preparations in polarization assays. Investigation by FACS 

analysis of the cells which had invaded collagen gels after 12 hours revealed that 

after collagenase treatment 65% of the invasive cells were positive for CD38+, 

CD 19+ and 75% positive for CD23. The morphology of freshly isolated and 

cultured cells is shown in Fig 4-1. Fig 4-3 shows the morphological features of
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Table 4-2

Percentage of GC cells in different morphologies

Slide preparation Large clefted cells Small clefted cells Small non-clefted

Freshly isolated 

GC cells

34.5 ± 4.511 54 ±611 11.5 ± 1.511

GC cells cultured 

in HBSS

10 51 37

GC cells cultured 

in anti-CD40 

(lUg/ml)

12 59 29

GC cells cultured 

in IL-4 (50u/ml)

10.5 ± 0.5H 55 ±611 34.5 ± 5.511

GC cells cultured 

in IL-4 + anti- 

CD40

15 62 23

If mean of two experiments
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Table 4-3

Effect of culture conditions on CD38 phenotype of polarized cells

% CD38 + polarized cells

Culture condition 3H 6H 12H

HBSS alone 10 18.7 25.9

IL-4(20u/ml) + aCD40 15.3 29.2 52.5

IL-4(50u/ml) + aCD40 21.9 32.1 55.5

The GC B cells were cultured in different media for 3, 6,12 hours, then they were then 

fixed in paraformaldehyde. The cells were stained with anti-CD38 and studied under 

flourescence microscopy using a x40 objective. 150-200 cells were counted and 

percent CD38+ polarized cells are shown in this table.

194



Figure 4-3

a

Fig 4-3 Morphological features of polarized, spherical, and apoptotic cells after culture. 
Following Kimura stain preparation, the slide was photographed at a microscope 
magnification of x 100 and x40. (a) GC cells morphology after 18 hours in IL-4 and anti- 
CD40 showing polarized cells, spherical cells, and apoptotic cells with fragmentation of 
nuclei which is the hallmark characteristic of apoptotic cells at xlOO using light 
microscopy, (b) Phase contrast preparation of same sample at x40.
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spherical, polarized, and apoptotic GC cells.

SECTION TWO : LOCOMOTION ASSAYS

The locomotion of GC B cells was studied as described in the previous chapter, 

using polarization assays, collagen invasion assays.

4-2-1 Time-Dependent R esponses of GC B Cells

According to the model introduced by Liu et al (1989), the GC cells undergo 

apoptosis unless they receive two signals through FDC, and through T cells. 

Isolated GC B cells underwent rapid and spontaneous apoptosis when they were 

cultured in vitro (Liu et al, 1989). This self destruction could be arrested by cross- 

linking of the surface antigen receptors on GC B cells with immobilized anti-Ig and 

additional survival signals were provided by engaging surface CD40 on T-cells (Liu 

et al, 1989). IL-4 together with anti-CD40 also enhanced GC B cell survival by 

delaying spontaneous apoptosis in GC cells. In preliminary experiments, the GC B 

cells were cultured with different concentrations of IL-4 (20, 50, and lOOU/ml) in 

combination with anti-CD40 (lpg/ml) in overnight culture. The results obtained 

showed that IL-4 at 50U/ml (the optimal dose) not only enhanced the locomotor 

response of GC cells but also increased their viability. Neither IL-4 nor anti-CD40 

alone induced an immediate shape-change response in freshly prepared cells. 

Therefore, a time course assay was used to study the gradual effects of these
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reagents and others for 24 hours. The data obtained are shown in Fig 4-4, 4-5, 4-6, 

4-7. The percent polarization response was analysed as a proportion of the live cell 

population, and of the total (live + dead cells) population. 400-600 cells were 

scored for each test. Data are presented in the upper figures (4-4, 4-5, 4-6, 4-7), 

showing counts of the percent polarized cells in the whole population in the absence 

of rescue signals. The locomotor response is evident after three hours and reaches a 

maximum after six hours, then dropping gradually because an increasing proportion 

of the cells became apoptotic. In contrast to this finding, in the presence of reagents 

which can promote the survival of the cells the response curve remains constant. 

The percentage difference between the viability in IL-4 (50U/ml) plus anti-CD40 

(lp,g/ml) with or without anti-IgG,M,A (lpg/ml) on the one hand and HBSS alone 

on the other parallels the percentage difference in the proportion of polarized cells. 

This may suggest that the survival and locomotion signals are identical and those 

cells that receive the survival signal become motile while those cells which are not 

able to respond by polarization undergo apoptosis spontaneously. The data suggest 

that CD40, especially together with IL-4, is of importance not only in delay of 

apoptosis but also for induction of locomotion in GC B cells . The viability of cells 

in HBSS alone is the same as in IL-4, anti-IgG,M,A, a supernatant derived from 

overnight culture of high density cells in IL-4, or combinations of these reagents as 

shown in Fig 4-4, 4-5. This suggests that a distinct population survived and those 

may receive the survival signal in vivo. A slow increase in locomotor activity was 

seen in these populations compared with HBSS alone in the live fraction (more than
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40% difference with control). This was stronger within 18 hours in the supernatant 

derived from high-density cells than in IL-4. In contrast to combination of IL-4 and 

anti-CD40, combinations of other substances such as supernatant derived from high- 

density cells, anti-IgG,A,M, with either IL-4 or anti-CD40 did not rescue the GC. 

Once again, this finding demonstrates the importance of IL-4 and anti-CD40 in 

locomotion and survival of GC B cells. Anti-CD40 alone could rescue a small 

proportion of cells from death, but maximal rescue was seen in the combination of 

anti-CD40 with IL-4 and /or anti-IgG,M,A (up to 30-40%). Multiple activation not 

only rescued the cells from apoptosis but also promoted the locomotor response of 

the GC population. As in the previous chapter anti-CD40, anti-Ig, and IL-4 induce 

homotypic aggregation and this was more significant in GC B cells. The effect of 

these reagents on aggregation of GC cells was studied by culturing these cells in 

HBSS, IL-4 (50u/ml), anti-Ig (lpg/ml), anti-CD40 (lpg/ml), and in combinations of 

these reagents for 12 hours. The cells were fixed and the numbers of clusters were 

counted per field using an inverted microscope (x40 objective). Clustering was seen 

by three hours of culture and the size, and number of clusters depended on the 

culture period and the condition of culture. The data obtained revealed that IL-4, 

anti-Ig and anti-CD40 alone induce homotypic aggregation which was marked in 

anti-CD40, less so in IL-4, and still less so in anti-Ig and medium alone. An 

interesting finding was that aggregated GC B cells were alive and mostly non-motile 

whereas dead cells were mostly among the separated population. Combinations of 

anti-CD40 and anti-Ig with or without IL-4 did not promote clustering, but
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Figure 4-4 Time-course for polarization of GC B cells cultured in anti-CD40 (1 mg/ml) 
(mean ± SEM, n = 4), anti-CD40 (1 mg/ml) and IL-4 (50u/ml) (mean ± SEM, n= 4). 
and HBSS alone (mean ± SEM, n= 4).. (a) time curve for polarization of GC B cells 
as % of cells in whole population (dead and live cells), (b) time curve for polarization 
of GC B cells as % of cells in live population, (c) Viability of GC B cells. P values: test 
cf. reagents-ffee control; polarization assays: using anti-CD40 after 12,18,24h in live 
population P: <0.003> 0.007: after 6,12,18,24h in whole population P: <0.002> 0.007: 
polarization assays: using anti-CD40+EL-4 after 6,12,18,24h in live population P: 
<0.004> 0.005: after 6,12,18,24h in whole population P: <0.002> 0.005: P: for 
Viability; after 6,12,18,18,24h P: <0.007>0.02.
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Figure 4-5 Time-course for polarization of GC B cells cultured in anti-IgG,A,M (lpg/ml) 
(mean ± SEM, n = 3), anti-IgG,A,M (lpg/ml) and IL-4 (50u/ml) (mean ± SEM, n= 2). 
anti-IgG,A,M (lpg/ml) + anti-CD40 (lpg/ml) and IL-4 (50u/ml) (mean ± SEM, n= 3), 
and HBSS (mean ± SEM, n= 3 ). (a) time curve for polarization of GC B cells as % of 
cells in whole population (dead and live cells), (b) time curve for polarization of GC B 
cells as % of cells in live population, (c) Viability of GC B cells._P values: test cf. 
reagents-ffee control; polarization assays: using anti-IgG,A,M after 12,18,24h in live 
population P: <0.007> 0.07: P value for polarization in whole population and for 
viability was not significant: using anti-IgG,A,M+IL-4 after 12,24h in live population 
P: <0.04> 0.03: P value for polarization in whole population and for viability was not 
significant: using anti-IgG,A,M+IL-4+anti-CD40 after 12,18,24h in live population P: 
<0.007> 0.05: after 6,12,18,24h in whole population P: <0.05: P: for Viability; after 
6h P: = 0.005.
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Figure 4-6
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Figure 4-6 Time-course for polarization of GC B cells cultured in supernatant 
derived from high-density cells cultured in IL-4 (mean ± SEM, n = 3), supernatant + 
anti-CD40 (1 mg/ml) (mean ± SEM, n= 2), and HBSS alone (mean ± SEM, n=3).
(a) time curve for polarization of GC B cells as % of cells in whole population (dead 
and live cells), (b) time curve for polarization of GC B cells as % of cells in live 
population, (c) Viability of GC B cells. P values: test cf reagent-free control; 
polarization assays: using anti-supernatant alone after 12,18h in live population P: 
<0.03> 0.01: after 6,12h in whole population P: <0.05: P value for for viability was 
not significant: using supernatant + anti-CD40 after 12,18,24h in live population P: 
<0.005>0.009: P value for polarization in whole population and for viability was not 
significant.
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Figure 4-7

a
■S
—"o
ftn

J5©a,N®

30

25

20

15

10

5

0

(a) % Polarized cells in whole population

5 10 15 20

TIME/HOUR

25

(b) % Polarized cells in live 
population

HBSS/HSA
IL-4
SN+aIgG,A,M

100

80

•2 60
1
>
x©
^  40

20

5 10 15 20

TIME/HOUR

25

■HBSS/HSA

IL-4

■ SN+aIgG,A,M

(c) % Viable cells

5 10 15 20

TIME/HOUR

25

Figure 4-7 Time-course for polarization of GC B cells cultured in IL-4 (50u/ml) (mean ± SEM, n = 
3), supernatant derived from high-density cells cultured in EL-4 supernatant + anti-IgG,A,M(l jig/ml) 
and IL-4 (50u/ml) (mean ± SEM, n= 1), and HBSS alone (mean ± SEM, n= 3). (a) time curve for 
polarization of GC B cells as % of cells in whole population (dead and live cells), (b) time curve 
for polarization of GC B cells as % of cells in live population, (c) Viability of GC B cells. P 
values: test cf. reagent-free control was not significant except for IL-4 after 24 hours in live 
population (P0.05)
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Table 4-4

Number of clusters per field in overnight culture

Number of clusters

Medium <10 cells >10 cells

HBSS alone 1.6 0.7

Anti-IgG, A,M(1 pg/ml) 2 3.7

IL-4 (5Ou/ml) 2.2 7.9

Anti - CD40 (1 pg/ml) 1.1 12.3

IL-4 + anti-IgG,A,M 1.1 10.4

Anti- CD40+anti-IgG,A,M 2.3 11.9

IL-4 + anti-CD40 + anti-IgG,A,M 0.4 11.5

Table 4-3 GC B cells were cultured in different stimuli for 12 hours at 2xl06 

cells per ml. Fifteen fields per sample was scored and percentage cluster was calculated. 

< 10 cells = Cluster is made of more than 5 and less than 10 cells 

>10 cells = Cluster is made of more than 10 cells
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combinations of IL-4 and anti-Ig enhanced aggregation slightly (table 4-4).

4-2-2 Immediate Shape-Change A ssays (short term assays)

Besides investigating the time course of activation of GC cell locomotion, the 

immediate (<30 min) effect of attractants on GC B cells was also investigated. This 

was carried out exactly as described in chapter three. Observation of freshly 

isolated GC B cells demonstrates that the small cells (centrocytes) are mostly in G0 

and are not able to respond to attractants properly unless cultured. Monoclonal 

mouse antibodies against human IgM, IgG, IgA, and polyclonal sheep anti-human 

IgG,M,A were used as chemoattractants which mimic the function of antigen. 

These antibodies acted as attractants for GC B cells, but, the antibodies which were 

active were different from those active on resting B cells. Freshly isolated GC B 

cells were exposed to different concentrations of these anti-Igs (Fig 4-8 and 4-9). 

With either anti-IgM or anti-IgG,A,M, the best response was seen using high doses 

of antibody (lpg/ml). On the other hand, high concentrations down-regulate the 

polarization response to anti-IgG or IgA and the best response was revealed at a 

lower concentration (lng/ml). This finding may suggest that a low concentration of 

antigen is required for initiation of the locomotion response in IgA and IgG bearing 

cells. No responses were seen using isotype control sheep Ig, mouse IgGl and 

IgG2a. IL-4 alone at different concentrations ( 4-200U/ml), had no effect on the 

immediate response but combinations (lOOu/ml) with different concentrations of 

anti-Igs promote the locomotion response slightly (n = 2, data not shown). The
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effects of locomotor activators in promotion of polarization were investigated. GC 

B cells were cultured in these reagents for either 6 or 12 hours. Firstly GC B cells 

were cultured in HBSS, anti-CD40, or IL-4 for six hours. Following washing in 

HBSS, cells were exposed to anti-Igs and medium alone. Cells cultured in medium 

alone were not able to respond to anti-Igs, except that anti-IgG,A,M at ljxg/ml gave 

a partial response compared with medium alone (11 ± 1.8, n = 2). The immediate 

effects of anti-Ig on cells cultured in IL-4 or anti-CD40 alone for 6 hours are shown 

in Fig 4-8, 4-9, 4-10. Once again GC B cells respond to anti-IgA and anti-IgG at 

low concentration whereas the responses were significant at high concentrations 

using anti-IgG,A,M. Anti-IgA and anti-IgG had the same result on cells cultured in 

IL-4 for 6 hours (data not shown). To study further the effect of incubation time in 

promotion of responsiveness of cells, the GC B cells were cultured in IL-4 for 12 

hours. Following washing, cells were exposed to anti-Igs. Fig. 4-8 shows the curve 

for anti-IgG,A,M and Fig 4-9 shows the curve using anti-IgM (n = 1). As is shown 

in Fig 4-9, increasing the incubation period does not enhance the polarisation 

response to anti-IgM. No significant response was observed using anti-IgG and 

anti-IgA. This may suggest that IL4 alone might not have any effect on IgA and IgG 

bearing cells which had already switched their slgs or that these cells might undergo 

apoptosis during the period of incubation .

Based on the finding that stimulation of B cells through more than one receptor 

promotes the locomotor response of high-density B cells, a combination of IL-4 and 

anti-CD40 was used to investigate the effect of locomotor activators on GC B cells.

205



The data are shown in Fig. 4-11. Cells bearing IgG, and especially those bearing 

IgA responded at low concentrations whereas at high concentrations (>100ng/ml) 

the response was negative, compared to controls (data not shown). Variation of 

response in these experiments was due to different proportions of positive cells in 

the different samples (Table 4-1). Exposure to anti-CD40 did not induce any 

immediate response in cells cultured in either HBSS, anti-IgG,A,M, or IL-4.

Since high-density B cells released unknown attractants in overnight culture, GC 

B cells cultured in CD40 with IL-4 after six hours were re-exposed to their own 

supernatant, following washing. No response was observed towards these 

supernatants, but the cells responded to supernatants derived from high-density B 

cells cultured in IL-4. GC B cells cultured for 12 hours responded better than those 

cultured for 6 hours ( Fig. 4-12). This result is in agreement with our finding that 

IL-4 cultured GC B cells after 12 hours gave better responses to anti-Igs than cells 

which were cultured for six hours (Fig 4-8 and 4-9). Anti-CD32 also induced a 

polarization response in cells cultured in anti-CD40 with IL-4 or in HBSS alone 

(Fig. 4-12). This difference is correlated with the previous finding that GC cultured 

in HBSS alone after 6 hours could not promote the locomotor capacity of these cells 

toward anti-Igs. Thus, anti-CD40 plus IL-4 not only enhanced the survival but also 

promoted the locomotor response of GC cells to attractants and this effect was 

higher than for cells cultured in either IL-4 or CD40 alone. Cells cultured in IL-4 

and anti-CD40 responded better than those cultured in HBSS alone. The response 

curves to CD32 and anti-Igs (anti-IgA and anti-IgG) are similar. Both attractants
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Figure 4-8

30 min. Polarization assay of GC B cells to anti-IgG,A,M before and after culture

in IL-4
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Figure 4-8 Dose response curves of GC B cells in a 30 minute shape-change assay before and 
after culture for 6 and 12 hours culture in IL-4 (50u/ml) to anti-IgG,A.M. (a) dose response curve 
after separation (mean ± SEM, n = 2). Control values (medium alone : Polarization in medium for 
HBSS was 7.9 ±0.1 %) have been subtracted.(b) dose response curve after 6 hours culture, Since 
the proportion of cells was varied in different samples, the upper and lower curve show two different 
experiments and the middle curve shows the mean (thick line). Control values (medium alone : 
Polarization in medium was 24 ± 5.5 %) have been subtracted; (c) dose response curve after 12 
hours culture, Since the proportion of cells was varied in different samples, the upper and lower curve 
show' two different experiments and the middle curve shows the mean (thick line). Control values 
(medium alone : Polarization in medium was 28 ± 12%) have been subtracted.
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Figure 4-9

30 min. Polarization assay of GC B cells to anti-IgM before and after culture in

IL-4

A.Direct from tonsil(lower), 6H culture(upper) B: 12H culture
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Figure 4-9 Dose response curves of GC B cells in a 30 minute shape-change assay before and 
after 6 and 12 hours culture in IL-4 (50u/ml) to anti-IgM. (a) dose response curve before and 
after culture. Filled symbols : cells after 12 hours culture (n = 1). Open symbols: cells direct 
from tonsil (n = 2). Control values (medium alone : Polarization in medium for culture cells 
was 35 and for freshly isolated cells was 7.9 ± 0.1) have been subtracted, (b) dose response 
curve after 6 hours culture, Since the proportion of cells was varied in different samples, the upper 
and lower curve show two different experiments and middle curve shows the mean (thick line). 
Control values (medium alone : Polarization in medium was 24 ± 5.5 %) have been subtracted.
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Figure 4-10

30 min. Polarization assay of GC B cells to anti-Ig before and after 
culture in aCD40
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Figure 4-10 Dose response curves of GC B cells in a 30 minute shape-change assay 
before and after 6 hours culture in anti-CD40 (1 mg/ml) to anti-IgG,A,M, anti-IgG and 
anti-IgA. (a) dose response curve after separation to anti-IgG (mean ± SEM, n = 2) 
and anti-IgA (mean ± SEM, n = 2). Control values (polarization in medium alone was 
8+1). (b) dose response curve after culture in anti-CD40(lmg/ml) to anti-IgG,A,M 
(anti-IgG and anti-IgA (n =1). Polarization in medium alone was 27%.
Note : Difference in scale on Y-axis between the two groups.
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Figure 4-11

30 min. Polarization assay of GC B cells to anti-Ig after culture in IL-4 &
aCD40
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Figure 4-11 Dose response of GC B cells to anti-lg in a 30 minute shape-change assay after 
cells were cultured for six hours in anti-CD40 (lpg/ml) and IL-4 (50u/ml). (a)dose response 
curve to anti-IgG,A,M (n =3); P values (test compared to control) at lOOng/ml and lOng/ml were 
< 0.05. (b) anti-IgM (n =2); P values (test compared to control) at lOOng/ml and lpg/ml were < 
0.4> 0.02. (c) anti-IgG (n =3); P values (test compared to control) at lOOng/ml was < 0.08, and 
(d) anti IgA (n =3), P values (test compared to control) at 1 ng/ml was < 0.04. Control values 
(medium alone : Polarization in medium alone for HBSS alone was 32 ± 2.3%) have been 
subtracted. Since the proportion of cells was varied in different samples, the thin curve shows the 
single experiments and the thick line represents the mean.
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Figure 4-12

30 min. Polarization assay of GC B cells to anti-CD32 and supernatant after
culture
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Figure 4-12 Dose response of GC B cells in a 30 minute shape-change assay, (a)dose response 
curve to anti-CD32 after culture in IL-4 (50u/ml) and anti-CD40 (ljig/ml)(Filled squares) and 
HBSS alone( Open squares) after six hours. Control values (medium alone : Polarization in 
medium for cells cultured in IL-4+ anti-CD40 39%, and for HBSS (25%, n = 1) have been 
subtracted (b) Dose response curve to supernatant derived from high-density cells cultured in IL-4 
after GC B cells were cultured after 12 hours (Filled squares) and after 6 hours (Open square). 
Control values (medium alone : Polarization in medium for cells cultured in IL-4 after 12 was 
25% and after 6hours was 19 %, n = 1) have been subtracted.
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gave better responses at low concentration and this is in contrast to our findings 

using anti-IgM and anti IgG,A,M with GC cells and also to the finding with high- 

density cells. Higher concentrations of attractants were needed in the latter 

cases(figure 3-16, 3-20, 3-21 previous Chapter). This may suggest; Firstly that 

somatically mutated cells (slgG or slgA bearing cells) are more sensitive than virgin 

cells, or, secondly, that anti-IgG and anti-IgA at high concentration give a negative 

signal to GC cells. This negative response may be due to the Fc fragment of the 

antibody, since anti-CD32 gave a better response at low concentration with GC B 

cells than it gave with high-density cells which respond to high concentrations of 

anti CD32. Variation in responses to anti-Igs as chemoattractants for cultured cells 

may reflect the different proportions of cells positive for these slgs in the isolated 

population. The polarization response towards anti-Igs is especially significant 

bearing in mind that the proportion of GC cells bearing slgA, slgG, and slgM is not 

high on separated cells. There was no response to sCD23 between l|mg - lOng/ml (n 

= 2), to anti-CD21(n = 1), to IL-2 between lpg  - lng/ml(n = 2), and to IL-7 between 

400 - 0.5u/ml (n = 2).

4-2-3 Locomotion of GC B Cells into Collagen Gels

Isolated GC B cells were overlaid on three dimensional collagen gels (1.2mg/ml) 

into which various reagents or medium alone were mixed. Firstly cells in medium 

alone on the top of the gels were cultured with different attractants in the gels. 

Secondly cells were cultured in IL-4 (50u/ml) on the top of the gels with different
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Table 4-5 A

Invasion of collagen gels by GC B cells after 6 Hours 

Attractants % cells invading the gels (mean ±

SEM) (collagen 1.2 mg/ml)

Cells above gel in HBSS Cells above gel in IL-4 

alone (50/ml)

HBSS-HSA 13 ± I t 12.2 ± 0.8+

IL-4 (50u/ml) 21.9 ± 3.I t 12.7 ± 2.3+

anti-CD40 (lpg/ml) 18.4 ± 0. 7 t 21.5 ±0.5+

Mouse IgGl (lpg/ml) 16.1 11.6

IL-4 + anti-CD40 10.2 16.1

IL-4 + mouse IgGl 8.5 10.2

ND = not detected

t  = Mean + SEM of two experiments
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Table 4-5 B

Invasion of collagen gels by GC B cells after 12 Hours

Attractants % cells invading the gels (mean ± 

SEM) (collagen 1.2 mg/ml)

Cells above gel in HBSS Cells above gel in IL-4

alone (50/ml)

HBSS-HSA 17.4 ± 1.4t 16.6 ± 0.9+

IL-4 (50u/ml) 37.5 ± 4.5t 30.3 ± 1.3+

anti-CD40 (lpg/ml) 36.6 ± 1.4+

4-+100o

anti-IgG, A,M (lpg/ml) 41.8 ± 3.8+ 40

Mouse IgGl (lpg/ml) ND 18.5 ± 2.5+

IL-4 + anti-CD4Q 30 23

IL-4 + mouse IgGl 25.3 17

This and the previous table show that the optimal time for reading collagen gel 

assays is different between 12 and six hours.

ND = not detected

+ = Mean + SEM of two experiments

214



attractants in the gels. The percent invasion was measured at six and twelve hours 

of incubation. The results shown in table 4-5 indicated that cells invaded gels 

containing attractants to a greater extent than gels containing medium alone. 

However the percent invasion was lower when anti-CD40 was combined with IL-4 

in all cases. These differences may be due to cluster formation induced by these 

reagents. However, the number of clusters induced was identical in these reagents 

in long term incubation (after 12 hours, Table 4-4). Cells invaded better when no 

IL-4 was added to the top of the collagen gels. The proportion of cells that invaded 

the gels within twelve hours was greater than within six hours.

4-2-4 Polarization Related to Growth Measured by Uridine and 

Thymidine Incorporation

Centrocytes are derived from centroblasts in secondary follicles after several cell 

divisions. Centrocytes do not divide, and re-enter the G0 stage. G0 cells respond 

poorly to attractants but do respond when they move into Gj. We therefore 

investigated the relation between stage of cell cycle and locomotion. To study this, 

[ H]-uridine and [ H]-thymidine incorporation were measured in freshly isolated GC 

B cells directly after separation and culture in IL-4 (50u/ml) and anti-CD40 

(lpg/ml). The data demonstrate that 30 ± 2.8 % of freshly isolated cells take up 

uridine and 15.6 ± 4 % take up thymidine. The result of autoradiography after [3H]- 

uridine and [' H]-thymidine incorporation is shown in Table 4-6 and 4-7. The 

positive cells took up thymidine very strongly and were heavily labelled after
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incorporation. These cells were among the large population whereas those that took 

up uridine were distributed in both large and small cells. The interesting finding is 

that the cells that took up thymidine were not polarized. This finding suggests that 

centroblasts are not able to recognize attractants but that they are able to do so when 

they develop into centrocytes. The numbers of cells which were labelled with 

thymidine decreased to 4 ± 0.5% after culture in IL-4 and CD40 for six hours, 

whereas, the proportion of uridine labelled cells increased significantly. The 

proportion of polarized cells showing uridine labelling after culture was higher than 

the proportion among spherical cells or among the whole population. This was also 

the case for polarized cells responding to anti-Igs including anti-IgM, anti-IgG, anti- 

IgA, and anti-IgG,A,M, in contrast to the few percent of thymidine labelled cells 

which did not respond to attractants. This finding clearly reveals that the large cells 

(centroblasts) are not the responsive population and that they undergo apoptosis 

during the incubation time. A photograph of uridine and thymidine labelled cells is 

shown in Fig 3-25.
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Table 4-6
- i

Autoradiography: [ Hjuridine incorporation by spherical and polarized GC B cells

30 minutes assay direct from tonsil in:-

Source of cells and 

stimuli

Percent of 

polarized cells in 

population

Percent of cells showing >10 grains 

per cell

Spherical Polarized All cells

HBSS/HSA 10.9 13 32 12.4

IL-4(50u/ml) + anti- 13.5 6.5 39 11

IgG,A,M (lpg/ml)

IL-4 (50u/ml) + 11.6 11 46 16

anti-CD40 (lpg/ml)

IL-4 + anti-CD40 + 13.6 10.8 40 16

anti-IgG,A,M

30 minutes assay on GC B cells cultured in IL-4(50u/ml) + anti-CD40(lpg/ml)in:-

Source of cells and 

stimuli

Percent of polarized 

cells showing grains

Percent of cells showing >5 grains 

per cell

Spherical Polarized

BSS/HSA 54 49.1 50.9

anti-IgG,A,M 63 32 68

(lpg/ml)

anti-IgM (lpg/ml) 69 31 69

anti-IgG (lOOng/ml) 56 44.5 55.5

anti-IgA (lOng/ml) 57 44.2 55.8
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Table 4-7

Autoradiography[ HJThymidine incorporation by spherical and polarized GC B cells

30 minutes assay direct from tonsil in:-

Source of cells and 

stimuli

Percent of 

polarized cells in 

population

Percent of cells showing >10 grains 

per cell

Spherical Polarized All cells

HBSS/HSA 10.3 16.6 0 14.5

IL-4(50u/ml) + anti- 

IgG, A,M (lpg/ml)

14.4 18.5 0 163

IL-4 (50u/ml) + 

anti-CD40 (lpg/ml)

11.4 18.6 0 15.7

IL-4 + anti-CD40 + 

anti-IgG,A,M

15.4 18.4 0 15.6

30 minutes assay on GC B cells cultured in IL-4(50u/ml) + CD40(lpg/ml)in:-

HBSS/HSA ND 3 0 ND

anti-IgG,A,M

(lpg/ml)

ND 5.7 0 ND

anti-IgM (lpg/ml) ND 4 0 ND

anti-IgG (lOOng/ml) ND 4 0 ND

anti-IgA (lOng/ml) ND 4 0 ND

Freshly isolated GC B cells were pulsed with thymidine and then exposed to attractants for 

30 min., fixed and studied under light microscopy. 200-250 cells were counted for each 

sample. Since it was difficult to recognize apoptotic cells (Giemsa counter-stain should be 

diluted in order to see the grains), the cells without grains were not counted in cells after 

culture.
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4-2-5 Discussion

It was shown in the previous chapter that small high-density B cells acquired 

locomotor capacity following activation by anti-CD40, IL-4 and IL-13 and transit 

from the G0 to the G} phase. These cells were then able to recognize the anti-Igs 

as an attractant. The fluorescent phenotyping analysis clearly demonstrated that 

the responsive cells were slgM and slgD positive. These cells after activation 

translocate from T areas into the follicles and form the GC where the rapid 

antigen-driven proliferation takes place and a few high affinity variants selectively 

develop into memory cells or plasma cells (Liu et al, 1989 & 1992; Maclennan, 

1994). Following the study of high-density B cells which represent cells which 

have not recently met antigen, it was interesting to compare this with locomotor 

properties of GC B. Centrocytes, like the high-density B cells, are not in cycle 

and mostly are in the G0 phase. Thus, the same protocol was applied to study their 

behaviour. As before, IL-4 and anti-CD40 were used as locomotor activators and 

anti-Igs as attractants. The cells directly after separation from tonsil responded 

poorly to stimuli, but the proportion of responsive cells increased following 

culture in IL-4 and anti-CD40. The results presented here indicate that IL-4 in 

combination with anti-CD40 not only promotes the survival but also increases the 

locomotor capacity of GC B cells. Since GC T-cells express both IL-4 and the 

CD40 ligand (Buch et al, 1993;Buch et al, 1992; Liu et al, 1992; Holder at al, 

1991) it seems plausible that GC T cells can send appropriate signals for 

locomotion to B cells. Anti-CD40 and to lesser extent IL-4 also induced
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homotypic aggregation which is reported to be important for B cell contact and 

proliferation by autocrine factor exchange (Bjorck, 1993b). The cultured cells 

were next tested in short-term assays for their response to anti-Igs. All anti-Igs 

such as anti-IgG,A,M, anti-IgM, anti-IgG, and anti-IgA were demonstrated to 

have chemoattractant activity for centrocytes. The most interesting finding was 

that centrocytes responded to anti-IgG and anti-IgA at very low (ng/ml) 

concentrations in contrast to anti-IgM. This finding suggests that cells capable of 

high affinity binding may recognize antigen at very low concentration. Cells 

cultured in IL-4 and anti-CD40 were more capable of locomotion than freshly 

isolated cells. This finding suggests that for activation of locomotion in the 

secondary response T cell-derived signals are required. The result obtained from 

autoradiography clearly revealed the high death rate among the centroblasts. The 

percentages of thymidine labelled cells dramatically dropped within 6 hours and 

these cells had almost disappeared after 12 hours of culture. The most interesting 

finding was that the cells that took up thymidine were not polarized. This finding 

suggests that centroblasts are not able to recognize attractants but that they are able 

to do so when they develop into centrocytes. This is consistent with the observation 

that the highest death rate is in the border between the dark zone where 

proliferation occurred and the light zone where most centrocytes are located 

(MacLennan, 1994). Therefore, those centrocytes which still can not recognize the 

immune complex on FDCs because of failure in affinity maturation will die. There 

are many observations that cells of many types, when undergoing mitosis, stop
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moving, because the cytoskelton is needed for the events of cell division and 

cytokinesis.
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CHAPTER FIVE

LOCOMOTOR PROPERTIES AND PHENOTYPIC

ANALYSIS

OF

BLOOD B CELLS
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SECTION ONE: Phenotypic analysis of cell population

5-1-1 Mononuclear Cells

Mononuclear cells were separated from healthy individuals on lymphocyte! 

separating medium. They were then analysed on FACS using CD3 as a pan T cell 

marker, CD19 as pan B cell marker, CD14 as a pan monocyte marker, and CD45 

as a general leukocyte marker. The data obtained from cells freshly isolated from

blood showed that the mononuclear fraction contained 65 ±  

5.6% (n = 5) CD3+ cells, 6.8 ±  0.7% CD19+ (n = 5) cells, 8.5 ±  0.5% CD14+ (n 

= 2) cells and about 96% of the cells within the lymphocyte gate expressed CD45.

5-1-2 Blood B Cells

Two methods were used to eliminate T cells using either neuraminidase-treated 

SRBCs or AET-treated SRBCs followed by centrifugation on separating medium. 

After trying both systems for purification of B cells the AET-treated SRBC 

protocol was selected because it gave a higher yield of blood B cells. Analysis of 

the interface fraction from separating medium showed that 29.7 ±  3.3% of the 

cells carried CD14. Monocytes were then eliminated using either CD14 treated 

SRBCs or by incubation at 37° C in a tissue culture dish for 1-2 hours, followed 

by removal of non-adherent cells. In contrast to tonsillar B cells, purification of B 

cells was difficult, because of the low percentage of B cells in the blood
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mononuclear fraction,. The viability of the isolated cells was determined before 

each experiment using eosin Y and was greater than 98%. Cells were then 

analysed on FACS and the data obtained are presented in Table 5-1. After 

purification, some CD3+, CD14+, CD56+ cells were still present as well as some 

negative cells which were not identified. These negative cells might be B cells 

which lost their CD19 receptor during the separating process. For example, it was 

shown that lysing buffer decreases the expression of CD 19 or in the 

neuraminidase protocol, that the number of negative cells was higher than in the 

AET protocol. The result given here demonstrates that CD19 is the best marker 

for B cells. The number of CD19+ cells is equal with the sum of Lambda+ and 

Kappa+ cells in a given experiment (Table 5-1). B cells in blood do not express 

other B cell markers such as CD20, CD21, CD22 in high percentage (Table 5-1).

5-1-3 Phenotyping of R esponsive Cells

Fluorescence microscopy was used to identify the phenotype of polarized cells. 

The cells were cultured in IL-4 and IL-13, then were stained with FITC- 

conjugated CD3 and PE-conjugated CD 19. The result obtained is presented in 

Table 5-2. The phenotypic analysis revealed that IL-4 and IL-13 had no effect on 

polarization of T cells and most of the polarized cells were B cells.

SECTION TWO: Locomotion Assays

Most of the locomotion assays in blood B cells were carried out using the
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Table 5-1

Phenotype characteristic of freshly isolated blood B cells

Cell Markers Mean Range

CD3(I6)t 8.9 ± 1.9 2-22

CD14W 10.6 ± 2 4-16

CD190<m 37.3 ± 4.4 16-69

CD20"' 20 ± 6^-5±7.5);J; 14-26

CD21t0 4<lo> 4

CD22P) 13.7 ±  2 (28'8±7;t 9-22

CD45'1' 97 97

CD56W 4.5 ± 1.8 2-13

Lambda chain11 15 ± 3^29 d±0-3̂ 12-18

Kappa chain|J) 15 ± 2 ^ 9-5±b-5;t 13-17

+ Number in parentheses shows number of experiments.

t  number in parentheses shows the population of cells in these experiments which 

were CD19+.
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Table 5-2

A : Phenotyping of cells responsive to cytokines in purified B cell fraction

Source 

of stimuli

percent polarized cells using 

fluorescence microscopy

1 Percent polarized cells in 

normal wet preparation

CD3+ cells CD19+ cells

HBSS/HSA 8.3 31.8 22.8

IL-4 (50u/ml) 8.5 42.2 36

IL-4 (lOOu/ml) I2.I 47.7 38.7

IL-13 (lug/ml) 4.6 39.7 36.7

B = Phenotyping of cells responsive to cytokines in whole mononuclear

fraction

1 Source of stimuli percent polarized cells using 

fluorescence microscopy

Percent polarized cells in 

normal wet preparation

CD3+ cells CD19+ cells

HBSS/HSA 9.7 15 12.5

IL-4 (50u/ml) 10.6 22.5 14.2

IL-4 (lOOu/ml) 11.9 30.3 17.8

IL-13 (lOOng/ml) 8.7 24.4 22.1

IL-13 (lpg/ml) 7 39.7 17.4
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polarization assay in overnight culture or using the 30 minute assay before and 

after culture. In a preliminary experiment to find a suitable medium, the B cells 

were cultured in RPMI or HBSS alone in overnight culture. RPMI gives a very 

high polarization on its own compared with HBSS. The proportions of cells 

polarized in overnight culture were as follows; 46.2% in RPMI/HSA, 33% in 

RPMI/FCS, 23.6% in HBSS/FCS, and 18.3% for HBSS/HSA. Thus, blood B 

cells were cultured in HBSS/HSA and other reagents were added to this to 

determine the specific effect of stimuli on locomotion.

5*2-1 Polarization a ssay s

Firstly, the mononuclear fraction was exposed to different concentrations of 

IL-4 and IL-13 in overnight culture. The polarization response was then 

investigated in normal wet preparation and phenotype of the cells was studied by 

fluorescence microscopy using FITC-conjugated CD3 and PE-conjugated CD19. 

200-250 cells were scored for each and the results are presented in Table 5-2B. 

Secondly, the B cells were then purified and exposed to various concentrations of 

IL-4, IL-13, and anti-CD40 in overnight culture. IL-4 and IL-13 induced 

polarization at about 17% above the control. Anti-CD40 induced significant 

polarization compared to its isotype control mouse IgGl. The dose response curve 

for anti-CD40 was similar to that for IL-4 and IL-13 (Fig 5-1). There was no 

response to IL-4, IL-13 and anti-CD40 in a 30 minute assay on cells separated 

freshly from blood. B cells were then cultured in IL-4 (20u/ml) in overnight
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culture to study the behaviour of cells after culture. Following washing, they were 

exposed to cytokines or anti-CD40 in a 30 minute assay to see if the cytokines or 

anti-CD40 acted as chemoattractants. No response was seen (n = 2). IL-7 at 

between lu-200u/ml and sCD23 at between lOOpg-lpg/ml did not induce any 

polarization response in 30 minute assays either before (n = 1) or after overnight 

culture in IL-4 (20u/ml) (n = 2). This was also true for overnight assays using IL- 

7 and sCD23 at different concentrations (n = 2).

Freshly isolated B cells gave no response to different concentrations of anti- 

IgM or anti-IgD at between lOng-lOpg/ml in 30 minute assays. B cells responded 

poorly to anti-Igs in overnight culture (Fig 5-2), but in contrast to high-density 

tonsillar cells, the viability of cells was more than 92% even at high concentration. 

Blood B cells were then cultured in IL-4 (20u/inl) overnight, washed and exposed 

to anti-IgM and anti-IgD (Fig 5-2). The polarization induced by anti-IgD was 

higher than with anti-IgM. Cells cultured in IL-4 were also re-exposed to their 

own supernatant after washing and about 28% of cells were polarized above the 

control value.

5-2-2 CONCLUSION

The effect of IL-4, IL13, anti-CD40, and anti-Igs on high-density tonsillar B 

cells was described in chapter three and it was therefore of interest to know 

whether these reagents had the same effects on blood B cells. To address this 

question, blood B cells were separated and exposed to these stimuli under the
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Figure 5-1

Polarization of blood B cells to cytokines and anti-CD40
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Figure 5-1 Dose response curves of blood cells to IL-4 (mean+SEM, n = 2), IL-13 
(mean+SEM, n = 2), and anti-CD40 (n = 1) in overnight culture.
Left figure: Dose response curve to IL-4. Control value (polarization in medium 
alone was 26.5 ± 4. 5%) has been subtracted.
Right figure: Dose response curves to IL-13 and anti-CD40. Control values 
(polarization in medium alone to IL-13 was 26.5 ± 4.5% and to aCD40 was 31%) 
have been subtracted.
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Figure 5-2

Polarization of blood B cells to anti-Ig
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Figure 5-2 Dose response of blood B cells to anti-IgM & anti-IgD.
Left figure. In overnight culture. Control value (Polarization in medium alone was 
13.5) has been subtracted.
Right figure in a 30 minute assay. Cells were cultured in IL-4(20u.ml) for 20H, 
washed and retested. Control value (polarization in medium alone was 4.5) has been 
subtracted.
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same conditions as described for the tonsil cells. The percent response of blood B 

cells to all stimuli was lower than that of high-density tonsillar cells. Freshly 

isolated blood B cells did not response in a 30 minute assay to IL-4, IL-13, anti- 

CD40, or anti-Igs. However, like tonsil B cells, they polarized overnight in 

response to IL-4, IL-13 or anti-CD40, and cells that had been cultured in IL-4 

responded to anti-IgD in a short-term assay. The percentage of blood cells 

responding to these agents was lower than that of high-density tonsil B cells. Two 

possibilities can explain these differences; Firstly, blood B cells were not pure and 

were contaminated with other cells and this decreased the specific response of B 

cells to these stimuli. Secondly, blood B cells most probably are at G0 phase of 

cycle, whereas 5-6% of high-density tonsillar B cells were heavily labelled with 

uridine and about 6-9% of cells were lightly labelled (less than 10 grains per cells, 

data not shown).

The death rate in blood B cells using anti-Igs such as anti-IgD and specially 

anti-IgM at as high as lOpg/ml was not significant compared with that in high- 

density tonsillar B cells. This may be due to signals delivered through the 

physical contact between B and contaminating cells (e.g. Monocytes or T cells) 

during the culture period, since B cells in tonsils were completely pure and were 

unable to receive such signals from T cells unless co-cultured with IL-4 or anti- 

CD40.
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CHAPTER SIX

THE LOCOMOTOR RESPONSE OF 

MOUSE B CELLS TO ANTIGEN
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6-1 INTRODUCTION

The response of B cells to pathogens and other foreign substances is mediated 

through the clonally distributed membrane-bound immunoglobulins (mlg) on their 

surface, which are receptors for specific antigens. Cross-linking of these mlgs of 

resting B cells by antigens or anti-Ig antibodies generally activates B cells to enter 

the Gt phase of the cell cycle. The other proliferative signals are normally 

provided by helper T cells. The nature of the response of B cells to antigen 

depends upon the differentiation state of the B cell and the nature of additional 

signals delivered by helper T cells. In the studies reported in previous chapters the 

role of mlgD and mlgM in locomotion of resting B cells was shown and the 

similar role for mlgA, mlgG, and mlgM in a distinct type of mature B cell, the 

germinal centre B cell, locomotion was also shown. Contact with these mlgs is 

necessary to prevent programmed cell death (Liu et al, 1989). The locomotor 

responses of B cells to anti-Ig strongly suggest that it would be important to look 

at specific locomotor response to antigens. To do this, a standard immunization 

procedure was used employing antigen together with adjuvant. This required a 

change of species, from human to the mouse. The rationale for this study was 

based on the following findings that 1) Human and rat B cells can recognize anti- 

Ig as chemoattractants (Komai at al, 1995; Ward et al, 1977). It was also reported 

that mouse B cells recognize antigen as attractants (Wilkinson et al, 1976). 2) The 

development of germinal centres and recruitment of B cells into them, is antigen- 

dependent (Coico at al, 1983). 3) Primed B cells accumulate in the germinal
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centre after 3-4 days of challenge. This investigation is still at an early stage, and 

the results reported here are those of preliminary experiments.

6-2 Splenocytes

C57 BL/6 and BALB/c mice were immunized by peritoneal injection using 

ovalbumin and ISCOMs. The immunized animals together with control animals 

(three animals per group) were killed 8, 15, and 21 days (10 days after challenge) 

after primary immunization or 10 days after challenge. The cells were harvested 

from spleen and lymph nodes. T cells were eliminated by lysis using monoclonal 

anti-Thy-1.2 antibody with low-tox rabbit complement as described in chapter 

two. The splenocytes but not lymph node B cells were then layered on a three- 

step discontinuous Percoll gradient to separate high and low density B cells. The 

phenotypic characteristic of the cells obtained is shown in Table 6-1. F4/80 is a 

marker for mouse activated macrophages and showed that these cells were mostly 

located at the top of 1.055 Percoll gradients, so the high or low-density fraction 

does not include this marker.

6-3 Polarization A ssays

6-3-1 30 minute Polarization Assay Directly After Separation

Both high and low-density B cell fractions were exposed to different 

concentrations of ovalbumin ranging between lOng-lmg/ml (n = 2), and mouse 

rIL-4 ranging between 0.8u-100u/ml (n = 2). There was no response to ovalbumin
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Table 6-1

Phenotypic analysis of sp lenocytes on FACS

Sample Immunizatio 

n period

Percent positive 

cells in whole mononuclear 

fraction

Percent positive 

cells in purified B 

cell fraction

CD3+ CD4+ CD8+ Ig+ F4/80+ CD3+ Ig+ F4/80+

Sample Control 43 24 16 49 ND 3 90 ND

One 8 days 31 15 11 45 ND 2.4 78 ND

Sample Control 36 ND ND 49 ND 2 90 ND

Two 8 days 41 ND ND 47 ND 2 90 ND

challenged 36 ND ND 47 ND 2 88 ND

control 47.5 30.7 17.6 43 10 4.6 86 6

Sample 8 days 46 20 14 48 9 3.5 88 20

Three 14 days 45 24 13 48 7 3.4 91 15

challenged 45 27 14 48 7 3.6 91 10

ND = N o t d e t e c t e d
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in either immunized mice, non-immunized mice or in challenged mice. Clinchy et 

al (1991) have reported that rIL-4 induces a significant increase in the number of 

polarized cells within 30 minutes using purified B cells. On the contrary, both 

small high-density and large low-density B cells gave no response to mouse IL-4 

within 30 minutes in both immunized and non-immunized mice, but did respond 

in overnight culture. This finding is consistent with our pervious findings (Komai 

et al, 1995; Wilkinson & islam, 1989) which showed that IL-4 had a gradual effect 

on human B cell locomotion and acts as a locomotor activator, but not as a 

chemoattractant.

6-3-2 Overnight Culture

The mononuclear fraction and the high-density B cell fraction were cultured 

overnight in the presence of ovalbumin (lOpg/ml), IL-4 (20u/ml), anti-Ig 

(polyclonal), or combinations of ovalbumin and IL-4 or in RPMI/HSA. The 

percent polarization responses are shown in Table 6-2. In contrast to human high- 

density B cells, IL-4 did not induce a significant response in purified mouse B cell 

populations, but did so in mixed populations (T & B cells). This finding suggests 

that additional signals may be required for such a response and these signals are 

probably provided by T cells via physical contact during the culture period. The 

result becomes more significant bearing in mind that about 50% of the cell 

populations carry slg. T cell may also be required for the response of 

mononuclear cells towards the polyclonal anti-Ig in these studies, because
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Table 6-2

Percent polarization of splenocytes in overnight culture

Time of 

harvesting of 

cell after 

Immunization

Stimuli Percent polarized cells

Mononuclear fraction B cell fraction

Ovalbumin(10ng/ml) 23.5 20

After IL-4 (20u/ml) 38 20+3.2 *

8 days anti-Ig (lpg/ml) 25 30

OvaIbumin+IL-4 29.3 30

RPMI 18 14±1*

Ovalbumin (lOpg/ml) 22.6 24

After IL-4 (20u/ml) 37.5 25

15 days anti-Ig (l^g/ml) 25.9 33

Ovalbumin+IL-4 27 25

RPMI 21 18

Ovalbumin(10pg/ml) 22.4 15

No IL-4 (20u/ml) 40 21.7±3.1*

Immunization anti-Ig (lug/ml) 36 27

OvaIbumin+IL-4 27 24

RPMI 20 12.7±1.2*

*  Mean of three experiments

237



viability of B cells purified from the T cells in overnight culture was about 25- 

30% in the high-density fraction, whereas the proportion of viable cells increased 

to more than 90% in mononuclear fractions containing T cells. This finding 

suggests that physical contact between cells in mixed populations not only 

increases the proportion of responsive cells but also can abolish the negative 

signals induced by anti-Ig and antigen.

6-3-3 30 Minute Polarization A ssay After Overnight Culture

High-density B cells from the immunized and non-immunized mice were 

cultured in IL-4 (20u/ml) overnight, washed and retested with different 

concentrations of ovalbumin, polyclonal anti-Ig, anti-IgM, and in their own 

supernatants. The results obtained from three experiments are shown in Fig 6-1,

6-2 and Fig 6-3. In the different groups, identical symbols are used to denote each 

individual experiment to show the dose response curves to antigen.

Taken together, B cells derived from immunized mice, specially those taken 8 

days after immunization, responded better than those from control mice. 

However, the response was significant in only one study. High-density B cells 

cultured in IL-4 from the immunized mice (8 days) responded better to anti-Ig and 

anti-IgM than those from control mice. High-density B cells were also cultured 

in IL-4 (20u/ml), washed twice and re-exposed to their own supernatants. 23% of 

B cells derived from 8 days immunized, or challenged mice responded to their 

own supernatants (the percent polarized cells in medium alone was subtracted),
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Figure 6-1

Polarization to ovalbumin after 8 days immunization
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Fig 6-1 Dose response Polarization curves to ovalbumin of B cells taken after 8 days 
immunization and from non-immunized mice. Control values have been subtracted. 
Polarization in medium alone was 25 ± 2%.
Note: Difference in scale on Y-axis between three groups.
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Figure 6-2

Polarization to ovalbumin after 15 & 21 days immunization
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Fig 6-2 Dose response curves to ovalbumin of B cells taken from control 
mice and from mice 15days and 21 days after immunization. Control 
value has been subtracted. Polarization in medium alone was 26.5.
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Figure 6-3

Polarization of splenocytes to anti-Ig
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Fig 6-2 Dose response curves to anti-IgM (Squares, n = 1) & anti-IgG,A,M 
(Circles, n = 1) . Control values have been subtracted. Polarization in medium alone 
was 23 ± 2%.
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in contrast to 16.5% for B cells derived from non-immunized mice.

In a parallel experiment, CBA/BALB/c mice were divided into three groups (6- 

8 animals per group). One group was immunized with ovalbumin and complete 

Freund adjuvant by food pad injection. Another group was immunized using 

killed Bordetella pertussis by intraperitoneal injection. After 30 days these two 

groups together with control mice were challenged with antigen and incomplete 

Freund by food pad injection. The mice were killed after 4 days and B cells were 

purified from lymph nodes. Fligh-density B cells were cultured in IL-4 overnight, 

Following washing twice, they were exposed to different concentrations of 

ovalbumin. There was no response to antigen in all cases. This was also true for 

cells isolated directly from the lymph nodes. Since most primed cells leave the 

germinal centre within 3-4 days after the challenge, in most of the experiments 

reported above, the high-density B cells fraction was used. However, results in 

chapter four suggested that isotype switching of tonsillar germinal centre B cells 

made them more sensitive to low dose of anti-Ig. Thus, the experiments described 

above should be repeated using the low-density fraction or using purified germinal 

centre B cells.

6-4 D iscussion

In previous chapters, we used anti-Igs that may mimic the function of antigen 

in vivo and demonstrated that high-density tonsillar B cells, blood B cells, and GC 

B cells can recognize anti-Igs as an attractant. Therefore, the antigen, ovalbumin,
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was used in various experimental systems in mice to study specific antigenic 

response in vitro.

Coico et al (1983) reported that after a soluble antigen injection, the germinal 

centre reaction was initiated within 4 days and reached a peak of development by 

day 10. Antigen re-injection on day 10 reactivates their development and finally 

the proliferation of germinal centres wanes by day 14. It was tried to use the same 

model to investigate specific B cell locomotor responses. The best response was 

observed 8 days after primary immunization. Mice immunized for 15 days or 

challenged mice did not respond significantly.

MacLennan et al (BSI, March, 1995) reported that 3-4 days after challenge is 

the best time to get specific B cells in germinal centres, and after 4 days specific B 

cells leave the centres. Therefore, the B cells were purified from the lymph nodes 

after 4 days. However, there was no specific locomotor response to the antigen 

administered.

The results obtained so far are very preliminary and are not impressive. Further 

work is needed to stabiles a response. There may be several reason why our 

preliminary investigation was unsuccessful. Firstly, we looked at high-density B 

cells, while the specific B cells might be among larger cells in the low-density 

fraction as suggested by the earlier study (Wilkinson et al, 1976). Secondly, it is 

also quite important to know the proportion of specific B cells in the whole 

population. Thirdly, other factors such as amount of antigen and route of
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immunization should also be considered and, more investigation is required to 

address the question about the behaviour of antigen-specific cells.
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CHAPTER SEVEN

GENERAL DISCUSSION
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The results reported here revealed the effect of cytokines and physical contact in B 

cell locomotion. Taken together several interesting points emerge from these data: 

(1) Interactions of IL-4, IL-13 and anti-CD40 increase the locomotor capacity of 

resting B cells (IgD+ & IgM+ cells) from the high-density fraction and of 

activated B cells (IgD+ & IgM+, non-germinal centre cells) derived from the low- 

density fraction. Small resting B cells in G0 phase show little locomotor capacity 

unless they enter Gj. This is also true for germinal centre B cells. (2) Overnight 

culture in IL-4 and most probably in anti-CD40 and IL-13 causes cells to enter the 

G1 phase of growth, and induces a locomotor phenotype in the resting B cells 

when they can recognize attractants such as anti-IgM and anti-IgD. This induction 

is maximal using combinations of stimulants; e.g. IL-4 + anti-CD40 + anti-Ig. IFN- 

y suppresses this function. Circulating blood B cells show the same behaviour as 

high density tonsil B cells towards these reagents.

Further works on germinal centre B cells revealed that in contrast to 

centroblasts, centrocytes are able to recognize anti-Igs as attractants, and 

especially after 6-12 hours culture in IL-4 and anti-CD40, they respond to anti-Igs 

(anti-IgG,A,M or anti-IgG and anti-IgA) more strongly than freshly isolated cells. 

Centrocytes respond to anti-IgA at very low concentrations compared with the 

response to anti-IgM in germinal centre B cells or in resting B cells.

(3) Culture in anti-Ig (anti-IgM, anti-IgD and anti-IgG.M.A) alone not only did 

not activate the B cells to become a locomotor population but also, in high 

concentration, caused apoptosis in resting cells due to hyper cross linking, (4)
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There is a direct relation between viability of high-density cells and germinal 

centre cells and locomotion. Those reagents which induce locomotion can also 

increase the viability.

This project was limited in time and there is still more to do. Some 

unanswered questions are listed below. The most important is to highlight the 

specific antigenic-locomotor response. Polyclonal B cell activators such as LPS 

are reported to induce locomotion of mouse B cells (Clinchy et al, 1991), but these 

workers did not directly show antigen-specific locomotor responses. Such 

responses can be compared in immunized and non-immunized mice. Further 

studies are required for antigen-specific locomotion, which has only been studied 

here in high-density cells, and it is required to look at preactivated populations, i.e. 

large Gj cells, which may be more sensitive to signals through slg. More work on 

the method of immunization and the time of harvesting cells, as well as 

comparisons of the primary and secondary responses is needed. Anti-CD32 

enhances locomotion, so can locomotion be signalled through FcR? Experiments 

are needed to test this. Since B cells especially centrocytes, interact with immune 

complexes expressed on FDCs and these complexes play an important role in 

rescuing of high affinity B cells in germinal centres, immune complexes might 

also be important stimulants of locomotion. Accessory molecules such as CD20 

(IF5) that are reported (Golay et al, 1985) to cause resting B cells to enter into G1 

phase might be important in locomotor activation of B cells. The other molecules 

such as CD 19, CD21 and CD23 which have also been reported to be important in
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cross-linking of BCR in differentiation of B cells might also be important in B cell 

locomotion. More work is required on cytokine control on locomotion of B cells. 

!FN-y, a Tm cytokine inhibits activation by IL-4, a TH2 cytokine. What do other 

cytokines do, e.g. Tm cytokines such as IL-2?. The work with IFN-y needs to be 

expanded. For example, does anti-IFN-y block the inhibitory effect of IFN-y?. 

Finally the relation between locomotion and clustering needs more study. Our 

preliminary data suggest that aggregated GC B cells are live whereas isolated 

cells died when stimulated with anti-CD40 and IL-4. This preliminary result may 

suggest that cell aggregation induced by anti-CD40 and IL-4 inhibits cell death. It 

was also true that most of the aggregated cells were non-motile. What is the 

relation of locomotion and clustering and what is the relative time-course of the 

two events? Does locomotion precede clustering or vice versa?. What cells are 

present in the cluster? FDCs? or T cells? The answers to these questions are not 

known, but investigation of the relation between clustering and locomotion should 

be straightforward.

One other question that needs to be answered is whether anti-Ig induces a true 

chemotactic response in B cells, i.e. a directional locomotor response, rather than 

simply inducing the cells to migrate randomly. Random locomotion would not be 

an effective mechanism for cell accumulation at a site of antigen deposition. This 

can be studied using an orientation assay (Zigmond, 1977) or a checkerboard 

assay (Zigmond & Hirsch, 1973).
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The migration of lymphocytes including B cells through the body is an effector 

function that facilitates the regulation of immune responses. In vivo, during the 

T dependent immune response a considerable amount of B cell movement takes 

place within the lymphoid tissues. The mechanisms controlling this B cell traffic 

are largely unknown. However, directed locomotion is almost certainly necessary 

to permit the close physical contact between antigen-specific T and B cells during 

the T dependent immune response.

How might in-vitro observations in this project relate to the events occurring in 

the microenvironment of lymphoid tissue in which memory B cells develop? 

What are the locomotor attractants that regulate each of these steps? B cells 

recirculate by crossing HEV (in lymph nodes but not in spleen). These 

recirculating cells are G0 small resting cells. What regulates the locomotion of 

these G0 cells? Are there specific adhesion molecules for HEV on the B cells as 

there are on T cells (e.g. L-selectin)? Following from this, the important 

migrations of B cells may be those in lymphoid tissues. As the T cells become 

activated by APCs, and depending on whether they take the TH1 or TH2 pathway, 

they secrete cytokines such as IL-4, IL-13 and express CD40L. It is possible that 

T cell signals via IL-4 and CD40 ligand assist in directing this movement in GC B 

cells. The cytokines and CD40 ligand induce the locomotion of B cells in addition 

to their other effects related to the recognition of antigen by the B cell population. 

As a result of this, appropriately activated B cells will migrate towards the site of 

antigen deposition. Since germinal centre formation is T cell dependent, it is
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proposed that a combination of signals from antigen, CD40L and T cell-derived 

cytokines such as IL-4 will induce locomotion in germinal cells allowing B cells 

to traverse the follicles and to mature into plasma cells or memory cells. After a 

massive proliferation of B cells in the dark zone, anti-CD40 + IL-4 activation was 

initially proposed to account for the B cells in the apical light zone of germinal 

centre (Holder et al, 1991). Therefore it was not surprising that cultured GC B 

cells in anti-CD40 + IL-4 responded to anti-Ig more strongly than cells direct after 

separation. In this compartment, CD40 triggering induced rescue of the B cells 

from apoptosis (Liu et al, 1989) and therefore play a role in generation of memory 

B cells. During this process, IL-4 could be secreted by activated T cells (Buch et 

al, 1993). The effect of anti-CD40 on locomotion of resting B cells and germinal 

B cells is consistent with other findings that CD40L is important in initiation and 

termination of the T dependent response (Clark and Shu, 1990; Liu et al, 1989). 

Why do antibody forming cells move out of the germinal centre and why are the 

memory cells concentrated in the marginal zone (MacLennan, 1994)? These 

questions remained to be answered. The results reported here, revealed that anti- 

Igs play a vital role in locomotion of B cells. The locomotor properties of other B 

cell activators such as LPS (only in the mouse, as LPS does not work in man), or 

T independent antigens, or other cell surface molecules, e.g. CD20 have not been 

studied. Is antigen the most important chemoattractant for B cells? Are the 

chemokines chemoattractants for B cells? The latter cytokines probably induce T 

cells to move into inflammatory sites in large numbers. On the other hand, it is
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possible that inflammatory attractants are not important for B cells, because once 

they have made antibody, it is the antibody and not the B cell that acts locally. All 

these points remain to be investigated.
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