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Study of the neuropsychological functioning of the cerebral hemispheres and the 

transfer of information between them, can be achieved by presenting visual stimuli for 

processing, to one or other (or both) visual field(s), using a tachistoscope. Research 

of this kind has been applied to the study of schizophrenic disorders but the results 

remain inconclusive because of methodological problems in the execution of such 

studies. In this thesis, three novel tests were devised in an attempt to build upon and 

clarify this work. The tests were designed to have useful properties such as feasibility 

in the testing of psychotic patients and the ability to elicit clear lateralised 

asymmetries in performance by normal subjects. A series of experiments were 

undertaken to examine the effect that psychiatric disorders had on the performance of 

these tests. The bulk of the subjects who participated in this research included 52 

normal controls, drawn mainly from the nursing, technical and ancillary staff of the 

Maudsley Hospital. The patients comprised of 46 schizophrenics at various stages of 

their illness, most of whom were in-patients. A psychiatric control group was also 

included and this consisted of 22 patients with affective disorder, 10 of whom were 

bipolar. Again, the majority were in-patients. All the patients were assessed using 

standardised semi-structured interviews and questionnaires, and diagnoses were made 

according to agreed international criteria. Essentially, all of the patients did all of the 

tests. A sub-group of 30 schizophrenics had CT scans and of these, 21 had magnetic 

resonance imaging (MRI).

The first test involved the processing of pictorial stimuli. The test had two 

components: one required the classification of the item depicted as being either living 

or non-living, which produced a left hemisphere (LH) advantage. The other, using the 

same stimuli, required a judgement of size in comparison with a standard referent 

using mental imagery; this produced a right hemisphere (RH) advantage provided the 

size comparison was sufficiently taxing. When the patients performed these tasks, 

they showed the expected RH advantage for the size comparison, although their 

reaction time was slowed, presumably due to non-specific effects of illness and 

medication. However, the schizophrenic group, while showing no abnormality of
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mental imagery in the RH, failed to demonstrate an LH advantage on the 

categorisation task and this was particularly so for those who had experienced visual 

hallucinations. This was interpreted as a deficit in visual semantic memory in the LH.

The second test employed chimeric face drawings in which half of the face 

looked happy and the other looked sad. It was shown that normal right handers were 

biased in their judgements of whether the composite face looked happy or sad by the 

affective valence of the half-face to their left. The effect was highly significant, 

robust and reliable. This was not found in non-right handers. The perceptual bias 

evoked by the stimuli was interpreted as a function of the normal RH’s role in 

directing spatial attention. The influence of affect, also thought to involve the RH, 

was examined by inducing different moods in a sub-group of normal subjects and 

found to be insignificant. When the same stimuli were presented tachistoscopically, 

to a different group of normal controls, the same perceptual bias was elicited. Patients 

with manic or depressive illness showed an increase and decrease in the strength of 

the bias, respectively. Schizophrenic patients showed a significantly reduced bias 

suggesting RH impairment in attentional processes. A proportion of the subjects also 

performed on a test of selective attention. The normal pattern of correlations between 

this, and bias and reaction time on the chimeric faces test, appeared to break down in 

the schizophrenics, suggesting widespread disruption of attentional systems. Distinct 

patterns of inter-correlations were observed for each of the subject groups.

The third test was designed to determine the extent and nature of 

interhemispheric transfer of information, across the corpus callosum. A tachistoscopic 

version of the Stroop colour-word test was used in which the 2 elements were 

separated across the-mid-line. A "control", intrahemispheric version was also 

administered. In normals subjects, interference and facilitation of colour naming by 

colour-words was reduced in the interhemispheric condition relative to the 

intrahemispheric condition. This situation was exaggerated in subjects with agenesis 

of the corpus callosum. When patients with schizophrenia were administered this test, 

they showed a unique pattern of results. As a group, the amount of Stroop 

interference and facilitation which occurred across the corpus callosum was greater
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than within the hemispheres. Otherwise, their performance was comparable to the 

controls. This did not appear to be related to clinical variables including, age, IQ, the 

severity of psychotic symptoms or a positive family history, although there was a 

trend for recovered patients to show the effect to a greater degree. The 

interhemispheric Stroop effect was positively correlated with anterior callosal width, 

as measured from mid-sagittal MRI scans when the appropriate corrections were made 

for intracranial volume, but was unrelated to ventricle:brain ratio. Anterior callosal 

width was also found to be inversely related to auditory hallucinations.

It may be concluded that there is a specific abnormality of corpus callosum 

(interhemispheric) function in schizophrenia, in the form of increased transfer or 

perhaps decreased filtering of high-level information. This appears to be related to 

a relative increase in anterior callosal size. The finding is consistent with previous 

psychological studies and recent MRI data. However, there may be other 

neuropsychological deficits in other brain areas. The RH’s attentional system also 

appears to be dysfunctional in schizophrenia and, to a lesser extent in affective 

disorder. Furthermore, while the RH imagery mechanism would seem to be intact, 

there is evidence of impairment in the LH visual semantic system. Further research 

should aim to clarify more precisely the structural basis of these functional 

abnormalities and also their relationship to important clinical and phenomenological 

variables.
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In 1844, Arthur Ladbroke Wigan (see Clarke, 1987), a general practitioner working 

in the South of England, suggested that insanity might be due to the failure of the two 

cerebral hemispheres to work in together in harmony. He believed that the 

hemispheres were essentially duplicates and, in keeping with the knowledge of the 

day, had little concept of cerebral localisation, other than that provided by phrenology. 

After all, this was some 20 years before Paul Broca’s landmark description of a 

disturbance of speech consequent upon lesions of the left but not right side of the 

brain. Wigan’s thesis remained ignored until the early 1970’s when questions were 

raised as to whether this idea might be relevant to the understanding of abnormal 

mental phenomena (Lishman, 1971; Galin, 1974). This was facilitated thanks to 

advances in psychology and the growth of a new branch, namely neuropsychology. 

These advances included an impressive body of research illuminating the role of the 

corpus callosum (CC) from studies of individuals who had undergone 

commissurotomy or the "split-brain" operation (Gazzaniga et al., 1965; Sperry, 1968) 

or who had become "disconnected" by naturally occurring lesions (Geschwind, 1965). 

The function of this the CC, a broad band of more than 200,000,000 myelinated fibres, 

was inferred from the effects of its transection and this in turn led to speculation 

regarding the cerebral basis of the unity of conscious experience, the unconscious, and 

other questions related to the mind-body problem (see Sperry, 1968). Furthermore, 

the activity of the right hemisphere was "unlocked" from the domination by its partner 

on the left and this too fuelled the imagination of neurophilosophers and psychologists 

alike.

Psychopathology entered the stage with a report of thickening of the CC in the 

post-mortem brains of 10 chronic schizophrenics (Rosenthal & Bigelow, 1972). This 

provided the impetus to study interhemispheric transmission in patients with 

schizophrenia. Neuropsychologists Stuart Dimond and Graham Beaumont were the 

first to apply the sort of divided visual field (DVF) techniques used in split brain 

research to psychiatric patients (Beaumont & Dimond, 1973). Their paper, brief and 

inconclusive as it was, (see later) provoked a minor explosion of studies using these 

and other techniques. By the 1980’s this sort of work began to fade with several



17

reviewers expressing frustration at the lack of consistency to the results (Walker & 

McGuire, 1982; Colbourn, 1982; Gruzelier, 1981; Cutting, 1985; Robertson & Taylor, 

1987). The main reasons for this were methodological and can be placed into 3 broad 

categories:

a) technical problems

- in DVF (tachistoscopic)/dichotic listening/haptic techniques

b) subject factors

- inadequate care over psychiatric diagnosis

clin ical heterogeneity, especially w ith regard to 

schizophrenia

- medication effects

lack of control subjects and failure to take into

account such variables as IQ, education and

psychopathology etc:

c) experimental design

- failure to separate intra-hemisphere effects from

inter-hemisphere effects

- failure to match subjects on a control task

This thesis deals with studies in the visual domain so the following discussion will be 

limited to DVF techniques and their application in psychiatric research.

1.2 (a) Technical problems

The basic principle underlying DVF studies is that visual information in one hemifield 

is projected entirely to the opposite cerebral hemisphere. This is unlike the auditory

and tactile pathways which have ipsilateral as well as contralateral projections. To

take advantage of the anatomical arrangement, presentation duration must be short 

(<150 msec) so as to avoid reflex visual scanning, and stimuli should be outside the 

foveal region (<1.2°) where there may be bilateral cerebral connections (see Young,
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1982 for review).

Accurate fixation can be achieved in a variety of ways from simply urging the 

patient to look straight ahead (Clooney & Murray, 1977; David, 1987), to requiring 

the subject to recall a central digit (Gur, 1978; Magaro & Page, 1983) or by visual 

monitoring (Eaton et al., 1979). Though ensuring fixation is important in preventing 

information entering the "wrong" visual field, the use of a central stimulus may add 

to the cognitive load and so interfere with the cognitive processing of the test 

stimulus. Electro-occulographic measures or video monitoring are precise methods for 

ensuring fixation but these are intrusive and cumbersome and may reduce a patient’s 

willingness to cooperate with testing. Direct observation is a perfectly acceptable 

method and has the added bonus of being inexpensive and relatively free from 

technical failure (Young, 1982). Poor fixation will result in unreliable "noisy" data, 

though it should not give rise to errors in one visual field rather than the other, unless 

asymmetries in the direction of gaze exert an effect.

Numerous studies (see Beaumont, 1982; Bradshaw & Nettleton, 1981; Beaton, 1985) 

have shown that verbal stimuli (e.g. letters, words, letter strings) are better recognised, 

named and matched when presented to the right visual field/left hemisphere 

(RVF/LH). Non-verbal stimuli (e.g. dot location, line orientation, form and facial 

recognition) tend to produce a left visual field/right hemisphere (LVF/RH) advantage, 

but results are less consistent. However, human experimental psychology cannot be 

reduced to a simple stimulus-response equation and must take into account such 

factors as cognitive strategy, response bias, attention and task demands. When this 

is not done, many "left hemisphere tests" turn out to produce left visual field 

advantages under some circumstances, and similarly, "right hemisphere tests" may 

produce unexpected right visual field advantages. For all but the most rudimentary 

task, both hemispheres cooperate in subtle complex ways, involving many synapses 

(Moscovitch, 1986). Sergent (1983) has examined the effects of psychophysical 

properties of visual input (e.g. stimulus duration, luminance, retinal eccentricity, 

stimulus size) as well as task difficulty and familiarity. All these have been shown 

to exert a profound influence on hemispheric asymmetries.
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13 (b) Subject factors

Subject differences including sex, age, handedness and intelligence are potentially 

confounding variables. These variables are especially relevant when DVF techniques 

are applied to a psychiatric population since such factors are not distributed evenly 

among patients in comparison to the normal population.

Controls

Selection of control groups is highly problematic. Chapman and Chapman (1977) 

have argued cogently that psychiatric controls as well as normals should be used in 

this kind of work so that factors pertaining to hospitalisation may be controlled. 

However the matter does not end there. Cognitive tests should be given to subjects 

(including normals) matched for IQ; for schizophrenics this often means "low-normal". 

The deleterious effect schizophrenia has on IQ (Goldstein, 1986) may be obviated by 

using tests which to tap premorbid abilities (Nelson & O’Connell, 1978), or by 

including data on educational attainment. Despite taking pains to select appropriately 

matched controls, it may still prove difficult design a test which avoids reaching the 

schizophrenics’ performance "ceiling" whilst remaining firmly on the controls’ "floor". 

One appealing way round this, is to determine a threshold level for each subject by 

altering the presentation time (Gur, 1978; Colbourn & Lishman, 1979) or some other 

stimulus parameter. While this enhances the sensitivity of the test in question, 

alteration in for example, exposure duration may have, as previously mentioned, 

differing effects on each hemisphere’s efficiency, so confounding the results.

Which psychiatric patients should be used as controls? The study of "typical" 

hospitalised affective disorder patients may be fruitful in its own right but in 

comparison to schizophrenics they will tend to be older, predominantly female 

(inpatient schizophrenics are more often male) and are likely to have been in hospital 

for a shorter time (Wing & Wing, 1982). Therefore, accurate matching may lead to 

the inclusion of atypical cases which may reduce the generalisability of any findings. 

Also, attempts to match groups for degree of psychopathology creates another problem 

due to the lack of reliability and validity of clinical diagnosis. As non-schizophrenic 

controls approach schizophrenics on degree or even nature of psychopathology, for



20

example schizoaffectives, so they are bound to include "true" schizophrenics wrongly 

classified. As a result, the control group’s performance will begin to approximate that 

of the schizophrenics. This emphasises the need to improve the reliability of 

diagnoses by using standardised assessments and criteria, supplemented by quantitative 

and qualitative ratings of symptoms.

An alternative strategy may be to compare groups on the basis of specific 

symptoms alone rather than their diagnoses, such as hallucinations or thought disorder. 

This may prove rewarding in determining possible psychological mechanisms for those 

symptoms. Along the same lines, dividing schizophrenic patients into subgroups 

according to symptoms (e.g. with or without Schneiderian first rank symptoms (David, 

1987)) may be informative, given the accepted heterogeneity of "the schizophrenias" 

(Bleuler, 1911). Another subdivision might be between cases with predominantly 

"positive symptoms" versus those with "negative symptoms" (Andreasen, 1987; see 

also Liddle, 1987). Care must be taken that "severity" is independently controlled. 

In addition, these groupings are not mutually exclusive. Nevertheless, some of these 

clinically familiar categorisations may yet prove to reflect lateralised cerebral 

dysfunction (Gruzelier, 1984; Weiner et al, 1990).

Subdivisions in terms of acute and chronic may reveal qualitative differences 

in hemispheric function but the latter group of patients tend to have more severely and 

globally impaired performance (see Cutting, 1985). Changes in the pattern of test 

performance over time may cloud the differences between groups, although these 

differences will be of interest in themselves.

Medication

Medication is a potential source of unsystematic bias in studies of psychiatric 

populations. Most schizophrenics available for testing will be on neuroleptic drugs. 

Those who are not, are by definition atypical and are likely to be less severely 

disturbed or so disturbed as to be untestable. There are exceptions such as those 

admitted to specialised research units. Some chronically ill patients with affective 

disorder may be treated with neuroleptics but these too are somewhat atypical. 

Although parkinsonism and other neuroleptic induced extrapyramidal side effects may
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significantly hamper motor speed, overall performance, including speed of visual 

information processing (Braff & Saccuzzo, 1982; Spohn & Strauss, 1989) is improved 

by neuroleptics. Eaton et al., (1979) found that neuroleptics improved both left and 

right hemisphere performance but not uniformly for different cognitive tasks. 

Hammond & Gruzelier (1978) showed that left hemisphere functioning was 

differentially improved compared to right. Caution must be exerted in interpreting 

these claims: if an experimental design has revealed an LH deficit, it is predictable 

that after treatment, it may be attenuated, due to regression to the mean. Also, "state 

dependant" abnormalities may disappear with clinical improvement regardless of 

whether the improvement is spontaneous or pharmacologically mediated. Testing 

patients during the acute illness and again after a period of treatment, whether or not 

they have responded, might shed light on this (see Wexler, 1986; Johnson & Crockett, 

1982; Tomer & Flor-Henry, 1989).

1.4 (c) Experimental design

There is a truism: "give any test to a schizophrenic and he will perform it more poorly 

than a normal control." Further, the more difficult the test the worse he will do. This 

leads to the so-called "differential deficit problem" whereby an apparently specific 

deficit is in fact due to a failure to match tests on difficulty and hence discriminating 

power (Chapman & Chapman, 1973). A spurious deficit may not only emerge in a 

comparison of schizophrenics and controls, but also between hemispheres within the 

patient group if say, the "LH task" is more difficult than that of the RH.

In neuropsychological research, the aim is often to reveal a deficit in one 

hemisphere as opposed to the other. Commonly, two roughly equivalent tasks are 

chosen, one designated a LH and the other, a RH task. Ensuring equivalence at the 

perceptual level for example between letters and shapes, is necessary and may be 

difficult. One way round this is to use the same stimuli but alter the task instructions, 

thus producing in effect two, different but matched tests, each producing opposite 

hemisphere advantages. Internationally agreed criteria for what constitutes a reliable, 

hemisphere-specific test do not exist. At the least, it is necessary to show that normal 

subjects produce the expected, statistically significant asymmetries using the identical



22

stimuli and apparatus intended for the psychiatric patients. Ideally, data from subjects 

with known unilateral brain lesions on the same or similar tests should show the 

predicted lateralised deficits that are predicted from normal data.

When the corpus callosum is the target of investigation, the experiment must 

be designed in such a way that performance can be related to interhemispheric transfer 

alone and not to an intra-hemispheric processing stage. One method is to compare 

matching across the visual fields with matching within a visual field. Again, 

concurrent validity may be provided by work done on patients with callosal sections 

or agenesis.

Table 1.1 summarises the results and methodologies of all the published divided visual 

field studies on schizophrenic patients.
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Table 1.1. Summary of divided visual field studies of schizophrenic patients

Investigators Subjects 
(Medication) 
Diag criteria

Controls Task
(dependant var - 
response mode)

Results Comment

Beaumont & 
Dimond (1973)

12 Sz (M) 
"active"
No criteria

12 mixed 
psych pts 
12 general 
hospital pts

Matchingrletters 
shapes and digits 
Across & within VFs 
(accuracy - vocal)

Poor Xmatching 
of shapes & 
letters 
Sz vs Cs

Poor LH letter matching 
Sz vs Cs; poor RH digit/ 
shape matching, Sz vs 
psychiatric patients

Clooney & 
Murray (1977)

12 para Sz 
12 non para 
(M)
No criteria

12 normals Matching; letter 
combinations (LJU) 
Across & within VFs 
(R & L manual RT)

Poor matching 
across & within, 
Sz vs Cs 
LH=RH

Para Sz t  RT with f 
number of letters for 
’same’ judgment only 
(R hand response)

Gur (1978) 12 para Sz 
12 nonpara 
(M)
No criteria

24 normals Dot location & 
syllable recognition 
within Vfs 
(accuracy - vocal)

Sz 1 on syllable 
test vs Cs; Sz 
RH advantage 
for dots

Sz j  on dot location 
vs Cs. RH verbal 
task scores relatively 
good vs Cs

Colboum & 
Lishman (1979)

13 Sz
(M)
PSE

9 affectives 
11 psych pts- 
non-psychotic 
19 normals

Word & complex 
shape recognition 
within Vfs 
(accuracy - vocal)

No LH 1 word 
task in male Sz 
only. No RH 
deficit

No RH |  in Sz or 
Cs in non-verbal task. 
Only 5 male Sz showed 
abnormal laterality

Connolly 
et al (1979)

15 Sz (M) 
PSE

6 affectives 
14 psych pts- 
non-psychotic 
20 normals

Dot pattern & alpha­
numeric recognition 
in R or L VF 
(vocal RT)

LH deficit for 
lexical & spatial 
tasks, Affs & Sz 
vs other Cs

Sz and Affs poor 
overall. Lexical task 
failed to produce LH 
advantage in Cs

Hillsberg
(1979)

5 Sz (M) 10 normals- 
5 students 
5 hospital 
workers

Matching of arrow 
directions
Across & within VFs 
(bimanual RT)

LH 1 vs RH 
in Sz. All 1 
in bilateral vs 
single VF match

Sz much slower vs Cs. 
Trend for Sz ’across’ 
VFs match to be most 
i  of all

Eaton (1979) 
&
Eaton
et al (1979)

51 Sz 
RDC 
24 Sz 
Feighner

18 normals

(pre/post
treatment)

Matching: letters 
digits & shapes 
Across & within VFs 
(manual RT/accuracy)

Sz less accurate 
on verbal task. 
Poor Xmatching 
of shapes

General improvement 
posttreatmenL LH f 
more for digit task, 
RH t for verbal task

Pic’l
et al (1979)

10 para Sz 
10 nonpara 
Chronic (M) 
No criteria

10 psych in­
patients 
10 normals

Dot enumeration & 
identification of 
4 letter strings 
(accuracy - vocal)

LHf for lexical 
task all groups 
Nonparas RH |  
for on dot task

All pts poorer vs 
normals on LH (& RH) 
tasks Nonparanoids 
worst of all

Schweitzer
(1982)

16 Sz (M) 
DSM-III

16 normals Shape/word STM 
matching, within 
R or L VF 
(accuracy - vocal)

LH shape-task 
performance=Cs 
RH shape-task [ 
vs Cs

Word task accuracy 
Sz=Cs, regardless of 
VF
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Table 1.1. Summary of divided visual field studies of schizophrenic patients (cont).

Investigators Subjects 
(Medication) 
Diag criteria

Controls Experimental Task 
(dependant var - 
response mode)

Results Comment

Connolly 
et al (1983)

12 Sz 
(no M)

16 normals Identification of 
dot patterns and 
letters, R or L  VF 
(R & L manual RT)

L H | (RH t )  for 
letters, Sz vs Cs 
RHf for dots Sz 
& Cs; Normal 
IHTT time

Sz I on all tasks.
R hand f for dots. 
Weak LH advantage on 
Verbal task in Cs

Maearo & Page 
(1983)

8 para Sz 
8 nonpara 
(M)
DSM-III/RDC

8 mixed 
psych in-pts 
8 normals 
(accuracy - vocal)

Matching: letters 
shapes and faces 
Across & within VFs

Nonpara [ for 
all RVF stimuli 
& Xmatching of 
letters

Para Sz poor at X 
matching of shapes. 
RH f for matching in 
all subjects

Shelton & 
Knight (1984)

12 Sz 
(M)
DSM-III

12 mixed 
psych in-pts

Identification of 
inverted U 
R or L VF 
(R & L manual RT)

Sz=Cs for IHTT 
No VF or hand 
advantage in 
either group

No reliable estimate 
of IHTT obtained in 
Sz or Cs. RHd response 
poor in Sz

Schwartz 
et al (1984)

10 Sz
Chronic (M) 
DSM-III & 
Feighner

9 normals Temporal discrimina­
tion of 2 dots (SOA) 
Across & within VFs 
(vocal)

L H t, Sz & Cs 
Slower IHTT in 
Sz vs Cs

Sz responses slower 
throughout; No 
difference for bi vs 
uni-lateral, Sz & Cs

George & 
Neufeld (1987)

14 para Sz 
14 nonpara 
(M)
RDC

14 mixed 
psych in-pts 
14 students 
14 normals

Matching: target 
(face/word) followed 
by stimulus in VF 
(manual RT/accuracy)

L H | on words 
RHf for faces, 
Sz and Cs; Sz j 
generally vs Cs

Nonpara Sz most j  
affected by increased 
cognitive load. Effect 
different in R & L Vfs

Merriam & 
G ardner(1987)

16 Sz
Chronic (M) 
DSM-III

16 normals Matching: bilateral 
word/dots followed 
by same in R or L VF 
(manual RT/accuracy)

Poorer matching 
X Vfs, Sz & Cs 
Sz slow & less 
accurate than Cs

LHt f°r word & dot 
matching accuracy in 
Sz & Cs. Within VF 
matches, Sz j vs Cs

David
(1987)

22 Sz
(M)
RDC

14 affectives 
16 normals

Naming of colours in 
R or L VF. Matching 
Across & within VFs 
(vocal - accuracy)

Poor LVFcolour 
naming Sz vs 
Cs. S z j colour 
matching X Vfs

R&  LVF matching and 
RVF colour naming not 
j Sz vs Cs. suggests 
J callosal transmission
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Table 1.1. Summary of divided visual field studies of schizophrenic patients (cont).

Investigators Subjects 
(Medication) 
Diag criteria

Controls Experimental Task 
(dependant var - 
response mode)

Results

Eccleston &
Eccleston
(1988)

36 Sz
DSM-m
(?M)

15 Normals Dot & syllable
localisation
(accuracy)

JR H for both 
stimuli in Sz

Posner et 
al (1988)

12 Sz
(9 M, 3 non-M) 
DSM-ni

30 normals Detection of star 
valid/invalid cues 
(manual RT)

JRT for target 
in LH when 
not cued

Schwartz 
et al (1990)

Min & Oh 
(1992)

19 Sz 
(M)
DSM-IIIR

33 Sz 
(drug free 
for 5 days) 
DSM-IIIR

6 schizoaffs 
12 depressives 
11 normals

33 affectives 
33 normals

Gratings of low/high 
spatial freq. R, L 
& foveal 
(detection of dis­
continuity between 
successive gratings

Matching Hangul words 
in R/L VF with central 
target
(manual RT/accuracy)

t visible 
persistence in Sz 
& schizoaffects

IL H R T in  Sz 
JRH RT in Affs 
fRH errors in affs

Key to abbreviations:

Sz: schizophrenics 
VF: visual field
RDC: Research Diagnostic Criteria (1975) 
(M): medication
X Matching: matching across visual fields
RH: right hemisphere
nonpara: non paranoid schizophrenics
para: paranoid schizophrenics
Cs: controls
pts: patients
DSM-III: Diagnostic and statistical manual 
IHTT: interhemispheric transmission time

RT: reaction time
Feighner: Feighner diagnostic criteria (1972) 
PSG: Present State Examination (1974)
LH: left hemisphere 
SOA: stimulus onset asynchrony 
Rhd: right hand 
t :  superiority 
I : impairment 
Affs: affectives 
psych: psychiatric 
Schizoaffects: schizoaffectives 
STM: short term memory

Comment

Main deficit was loss 
of normal lateralisation

Failure to make use 
of valid cues in RH. 
Second expt showed f 
bias to non-language 
cues (arrows)

No asymmetries in 
any group.
Sz more susceptible 
to high spatial freqs

No L H | in normals 
Sz RT > aff > Cs
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1.5 Clinical Variables

Of the 20 studies reviewed (see Table 1.1), only 9 included a psychiatric control 

group. Explicit, standardised diagnostic criteria were used in 15 studies. Handedness 

and sex were usually controlled for. Few studies attempted to match individuals on 

an estimate of IQ in addition to a record of length of schooling. Of those that did, 2 

were able to match the schizophrenics with the normal controls (George & Neufeld, 

1987; David, 1987) against 2 that did not (Colboum & Lishman, 1979; Magaro & 

Page, 1983). Only 2 projects recruited unmedicated patients (Eaton et al., 1979; 

Connolly et al., 1983) the results of which do not point to dramatic drug-induced 

lateralised differences of cerebral function as they are consistent with similar studies 

of medicated patients.

1.6 Left Hemisphere Abnormality

The results of DVF studies in schizophrenia have been interpreted as showing 

hemisphere overactivation, underactivation and/or dysfunction; altered or reduced 

asymmetry, lack of integration or impaired interhemispheric transfer. Sometimes a 

superiority in one hemisphere is interpreted as abnormal overactivation in that 

hemisphere or an abnormal underactivation of the opposite hemisphere. Such 

explanations may suit almost any hypothesis and are therefore irrefutable. At this 

stage in our understanding of models of hemisphere interaction, it is perhaps wiser to 

resist unbridled speculation on the basis of equivocal data and instead confine 

ourselves to modest statements about the nature of the abnormality we believe we 

have uncovered.

An LH abnormality in the broadest sense has been found in the majority of 

DVF studies to date (see Table 1.1). This has manifested in: 1) impaired RVF 

matching of letters (Beaumont & Dimond, 1973; Magaro & Page, 1983); 2) impaired 

RVF identification of letters, in schizophrenics and manic depressives (Connolly et al., 

1979) and unmedicated schizophrenics (Connolly et al., 1983); 3) impaired RVF
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identification of 3-letter syllables, arranged vertically (Gur, 1978), and 4-letter nouns 

in European (Colboum & Lishman, 1979) and Korean scripts (Min & Oh, 1992). 

Posner et al., (1988) described slower RT to targets in the RVF when preceded by an 

invalid visual cue or no cue at all, similar to the performance of patients with known 

LH damage.

However, the remaining studies which claim to show an RH abnormality or no 

lateralised deficit, also show generally poor performance on tasks including those 

presented to the RVF/LH. The Posner study (Posner et al., 1988) is open to the 

interpretation that the most striking deficit is a failure of the schizophrenics, especially 

those unmedicated, to benefit from the valid cue when presentation was to the 

LVF/RH. Also, in a subsequent experiment, a sub-group of the schizophrenics were 

more susceptible to verbal direction cues (i.e., left or right) than symbolic cues 

(arrows), which the authors interpret as further evidence for LH dysfunction because 

RT was slower with verbal cues. Equally, the failure of the arrows to influence 

performance could be taken as evidence for RH dysfunction. In other words, the LH 

abnormality has not been an isolated finding. The pattern of asymmetry was the same 

in both schizophrenics and controls in Clooney & Murray’s study, (1977), and 

schizophrenics showed the anticipated LH advantage for verbal tests in studies by 

Pic’l et al., (1979), George & Neufeld, (1987) and Merriam & Gardner, (1987). In 

an effort to be more specific about the nature of the LH abnormality workers have 

examined the accuracy and/or speed of processing of "non-verbal" stimuli presented 

to the RVF/LH. There is a hint that RVF/LH performance on non-verbal tasks may 

be less impaired than on verbal tasks (Pic’l et al., 1979; Connolly et al., 1979; 

Connolly et al., 1983; Gur, 1978; Eaton et al., 1979). Connolly et al., (1979) argue 

that this indicates intact RH along with CC functioning, in that spatial percepts must 

be transferred to the RH for processing. Given the dimensional nature of hemisphere 

asymmetries already mentioned (Bradshaw & Nettleton, 1981) relative sparing of LH 

non-verbal processing is an equally plausible explanation. Hillsberg (1979) found an 

RVF/LH deficit in a non-verbal matching task which is somewhat contradictory, but 

her schizophrenic group were considerably slower than controls overall, so that this 

plus the small sample size raises the possibility of a Type II error.
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Failure to find an expected hemisphere advantage in normal controls has 

undermined the basic assumptions of many studies since the presence of just such an 

asymmetry or its opposite in the patient group is almost impossible to interpret. In 

3 studies, the "lexical" task revealed only minimal or absent asymmetry in normal 

subjects (Connolly et al., 1979; Connolly et al., 1983; Magaro & Page, 1983; Min & 

Oh, 1992), in this case LH superiority, and in other studies, an RH advantage for 

shapes (Colboum & Lishman, 1979) and faces (Magaro & Page, 1983) was not 

elicited in controls. Merriam & Gardner (1987) in an across VF matching paradigm 

found an LH advantage for both words and dots, the latter being contrary to 

prediction. One reason for the inconsistency in determining lateral advantages may 

be that the "verbal" and "non-verbal" tasks may differ considerably in difficulty (see 

Gur, 1978; Connolly et al., 1979) as discussed earlier.

In summary there is support for a left sided intrahemispheric abnormality in 

most schizophrenics but further comparisons with psychiatric controls and more 

careful matching of tasks on level of difficulty is required before definitive statements 

can be made.

1.7 Right Hemisphere Abnormality

A degree of impairment in the processing of stimuli presented to the LVF/RH is 

shown in the majority of DVF studies though, as in the case of RVF/LH stimuli, this 

has been a reflection of generalised deficit (see Table 1.1). Three studies have found 

RH abnormalities to be more significant than those pertaining to the LH. Pic’l et al., 

(1979) and Eccleston and Eccleston (1988), demonstrated poor RH performance on 

a dot enumeration experiment in at least some schizophrenics, which was in contrast 

to LH performance on a verbal task, which may also have been impaired. Schweitzer

(1982), using a complicated design which consisted of a single stimulus (shape or 

word) followed at differing intervals by an additional stimulus for matching, found 

that schizophrenics’ RVF/LH accuracy approximated that of a normal control group 

whereas the patients’ performance on shape matching was impaired. Finally, Schwartz 

et al (1990) found generalised slowing in schizophrenic and schizoaffective patients 

in a test which required them to decide whether there was a time gap between the 

presentation of linear gratings. There were no hemisphere differences and
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furthermore, the expected RH superiority for low spatial frequencies was not seen in 

any of the groups including normals.

Some authors (e.g. Gur, 1978; Connolly et al., 1983; Magaro & Page, 1983) 

have stressed the relatively preserved RH superiority for spatial tasks although it must 

be remembered that Gur (1978) showed the stimuli for a longer duration to 

schizophrenic subjects compared to controls and Connolly et al., (1983) subtracted 

"response time" from "processing time" which exaggerated the similarity between 

patients and controls.

A combination of right and left hemisphere dysfunction, or an imbalance 

between the two sides of the brain, forms the basis of theories explaining many of the 

typically schizophrenic features described by Bleuler (1911) including thought disorder 

and emotional disturbance (see Cutting, 1985; Gur, 1979).

1.8 Corpus Callosum Abnormality

Experimental designs which present visual stimuli to both Vfs simultaneously and 

require the subject to make a same-different judgement depend on a degree of 

cooperation between the cerebral hemispheres and ipso facto communication between 

them (see Table 1.1). Beaumont & Dimond (1973) used this paradigm in their 

original study and found that the matching of shapes and letters was performed 

significantly more poorly across Vfs than within them, though within VF matching 

was also defective. This mixed picture of less accurate matching within and across 

Vfs was also found in other studies (Clooney & Murray, 1977; Eaton et al., 1979; 

Hillsberg, 1979; Magaro & Page, 1983). Merriam & Gardner (1987) modified the 

matching procedure by beginning with bilateral stimuli followed 2 seconds later by 

a single lateralised stimulus, with the subject asked to decide whether the latter 

matched the former in either the right or left VF. Matches where the single stimulus 

was the same as the one of the pair in the opposite VF were more difficult for all 

subjects and so the schizophrenics’ impairment on this task could not have been due 

to a "differential deficit". In contrast, a colour matching task (David, 1987) revealed 

superior "across" as opposed to "within" VF matching in affective and normal 

controls, compared to schizophrenics who found the "across" matching more difficult.
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From the studies available, there appears to be a slight trend towards cross matching 

of non-verbal stimuli to be most impaired in schizophrenia (Eaton, et al., 1979; 

Hillsberg, 1979; David, 1987) with one study showing this tendency in paranoid 

schizophrenics only (Magaro & Page, 1983). These authors also found a cross 

matching deficit for verbal stimuli in nonparanoid schizophrenics which they attributed 

to poor LH verbal functioning rather than a CC abnormality.

Interhemispheric transmission time (IHTT) has been estimated by subtracting 

manual reaction time (RT) obtained when stimulus and response involve different 

hemispheres (e.g. RVF/left hand) (crossed), from RT following stimulus and response 

in the same hemisphere (e.g. RVF/right hand) (uncrossed) (Bashore, 1981). Using this 

method, Connolly et al., (1983) failed to demonstrate increased IHTT in 

schizophrenics. As a group, they produced a faster RT for the hand ipsilateral to the 

VF of stimulation compared to the contralateral hand by approximately the same 

margin as controls («4 msec). However as individuals, this was not a consistent 

finding pointing to unreliability of the method and the confounding effect of (in this 

study) generally slow left hand responses. Shelton & Knight (1984) using a more 

simple visual stimulus did not show prolonged IHTT in their schizophrenic sample. 

Again this conclusion is suspect since the expected IHTT delay was not found in the 

normal group, and considerably slower right hand responses regardless of VF in the 

schizophrenics, may have obliterated the IHTT component of the total RT.

Response hand may be employed as an independent variable in laterality 

research with central presentations of visual stimuli. Simple studies of RT for 

different hands provide an indirect measure of hemisphere functioning. Fishman et 

al., (1991) compared simple RT to a central light flash and RT on the same task but 

with a concurrent short-term auditory memory load, in 20 schizophrenics with 26 

affectively ill patients. They found no right-left differences. Psychotic symptom 

scores negatively correlated with left dual-task RT and positively with right dual-task 

RT. This might be interpreted as showing LH hyperfunction and RH hypofunction, 

a pattern suggested by Cutting (1990).
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A novel procedure was utilised to measure IHTT in schizophrenia by Schwartz 

et al., (1984) in which 2 dots were flashed in either one or both Vfs with a small 

delay between them. The authors marshal previous work which suggests that the LH 

is responsible for temporal analysis and detection of successive stimuli. Therefore, 

information from the LVF/RH must be transferred via the CC to the LH for analysis. 

By delaying the RVF/LH stimulus until the subject reports apparent simultaneity, a 

measure of IHTT is obtained. The authors found that the LH advantage for temporal 

sequential analysis was present in both schizophrenics and normal controls, though the 

schizophrenics’ response time was slower overall, but that IHTT was significantly 

longer (10 msec vs 4 msec) in the patient group. This is another example of a 

non-verbal stimulus revealing a CC defect. No study published to date has attempted 

to discover qualitative disturbances in callosal transfer and how these might relate to 

schizophrenic symptoms (for reviews see Doty, 1989; Coger & Serafetinides, 1990).

1.9 Other Studies

A more sophisticated approach to specifying the nature of information processing 

dysfunction in schizophrenia using DVF techniques has been attempted (Clooney & 

Murray, 1977; Pic’l et al., 1979; George & Neufeld, 1987). By increasing the size of 

array of letters, Clooney & Murray, (1977) found that paranoid schizophrenics’ RT 

increased (for "same" judgements only). This was interpreted as reflecting a reliance 

on LH serial processing as opposed to RH parallel processing. Increasing the display 

size (number of dots) seemed to impair paranoid schizophrenics performance more 

than non-paranoids (as classified by the Maine Scale (Magaro et al., 1981)) and this 

too was said to indicate an inappropriate reliance on serial processing by the 

paranoids. Since the non-paranoids’ performance was less influenced by the size of 

the array, the authors proposed that this indicated parallel processing. A more 

parsimonious explanation would be that the non-paranoids, who were the most 

impaired sub-group, were performing at ceiling even with low cognitive loads and 

hence their performance could hardly get worse. George & Neufeld (1987) increased 

the cognitive load by introducing 4 levels of complexity to each of their 

hemisphere-specific tasks. They found that the schizophrenics, especially 

non-paranoids, declined in their performance as the attentional demands increased but
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there was no obvious pattern with respect to the differential sensitivity of the 

hemispheres. Exceptions to this were that non-paranoids responded significantly more 

slowly than paranoids only at the fourth level for RVF stimuli and displayed a marked 

increase in response latency at the third load level for LVF stimuli.

Research of this kind has not so far been particularly rewarding but is more 

likely to yield useful data than more tests showing that schizophrenics are slow and 

make mistakes. Longitudinal rather than cross-sectional data has led to interesting 

hypotheses from dichotic listening (Johnson & Crockett, 1982; Wexler, 1986) and 

non-lateralised visual information processing experiments (Nuechterlein & Dawson, 

1984; Holzman, 1987) and there is no reason why these methods should not apply to 

DVF studies. Questions relating to whether the abnormalities detected are a 

consequence of a "trait" or "state" could be tackled by testing first degree relatives of 

schizophrenics as well as patients who have recovered.

1.10 CONCLUSIONS

A review of DVF studies in schizophrenia has revealed a bewildering mass of 

contradictory results. Many projects, none of which have exactly replicated their 

predecessors, each with their own methodological flaws, have contributed to an 

undifferentiated pool of data. Nevertheless, certain consistencies emerge:

1) Schizophrenics’ performance is impaired in comparison to normal controls on tasks 

which present stimuli to the right or to the left visual fields.

2) Cognitive tasks presented tachistoscopically to the LH have been performed less 

well more often than those involving the RH, but dysfunction in both has been 

recorded.

3) Verbal tasks presented to the LH give rise to the largest performance decrement 

compared to non-verbal tasks, though both types are impaired.

4) Experiments requiring integration of stimuli presented across the VFs, which 

presumably relies on an efficient CC, show impairment in schizophrenics, and this is 

especially so for non-verbal stimuli.
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What then, remains to be done in this field? First of all researchers need to refine 

their techniques in terms of subjects selection, matching and evaluation. Second, the 

test materials need a firmer grounding in terms of cerebral localisation. Third, the 

psychological processes contained within these tests need to be specified in terms of 

current information processing models. For example, rather than the test being 

labelled, say, "right hemisphere", it would be more informative if it could be described 

as a "right hemisphere imagery task". Similarly, it is insufficient to assume a non­

verbal test is also a RH test. Fourth, tests of interhemispheric transfer should attempt 

to specify the nature of the information to be transferred, since this seems to be an 

important variable in studies done to date. Fifth, more attention should be paid to the 

functional significance of any intra- or inter-hemispheric abnormalities detected. For 

example, do they relate to current psychotic symptoms or persistent disabilities (see 

lpert et al., 1976)? Finally, the power of neuropsychological research can now be 

enhanced by advances in functional and structural neuroimaging techniques. Neither 

X-ray computerised tomography and magnetic resonance imaging (MRI), nor single 

photon and positron emission tomography were imaginable when the first experimental 

neuropsychology studies were being carried out. The author has already demonstrated 

tentatively, a relationship between cerebral atrophy and tests of callosal function as 

well as characteristic symptoms of schizophrenia (David, 1987). It is now possible 

to map almost any aspect of psychological functioning onto the size and activity of 

specific brain areas. Nevertheless, such a combination could just as easily magnify 

the methodological inadequacies of the neuropsychological and imaging approaches.

This thesis describes the attempt to examine interhemispheric (corpus callosum) and 

intrahemispheric functioning in schizophrenia while avoiding the pitfalls evident in the 

foregoing review of the literature.

Tests were conceived on the basis of a contemporary understanding of the 

information processing differences within the cerebral hemispheres, and the nature of 

information transfer between them. These tests were devised and validated on normal
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subjects. The limitations inherent in the testing of psychiatric patients was taken into 

account in the design of the materials. Three tests were employed in order to examine 

left, right and interhemispheric or corpus callosal function. One was a non-verbal 

imagery test intended to show both left and right hemisphere advantages under 

different test instructions. The other intra-hemispheric test used chimeric faces, and 

reliably taps into RH functioning. The interhemispheric test, which forms the core 

element to the thesis, is a new version of the Stroop paradigm, designed so as to allow 

the measurement of semantic inhibition and facilitation across the CC. As well as 

preliminary studies on normals, the Stroop procedure was used on 3 cases of callosal 

agenesis.

The patients were diagnosed using international criteria and their 

psychopathology assessed using standardised rating scales. Schizophrenic subjects 

were compared with patients with affective disorder and also normal controls. 

Background variables such as IQ and education were recorded and taken into account 

in the analyses. In a proportion of schizophrenic patients, ventriclerbrain ratio was 

calculated from CT scans and in a smaller sub-sample, corpus callosum dimensions 

were obtained from MRI scans. These structural measures were related to 

neuropsychological test results.

The format of this thesis is as follows. Part I (chapters 1 to 4), comprises this 

introduction plus the description of each of three tests given alongside its application 

on normal control subjects. Part II (chapters 5 to 9), describes the test results in 

schizophrenic patients all of whom performed on all of the neuropsychological tests, 

with psychiatric and normal controls for comparison. Chapter 6 also includes the 

relationship between, two of the tests since both examine aspects of a single 

psychological function (namely, attention). Chapter 8 contains results on the 

relationship between psychological test data pertaining to interhemispheric transfer, 

and structural measures from MRI scanning of the corpus callosum as well as CT 

measures of cerebral atrophy. The summary and conclusions are given in chapter 9. 

An appendix is added which charts the number of subjects used in each experiment.
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(CMAFIFIEIR. 2

CATEGORICAL-SEMANTIC AND SPATIAL-IMAGERY JUDGEMENTS OF 

NON-VERBAL STIMULI IN THE CEREBRAL HEMISPHERES



2.1 INTRODUCTION
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A frequent preoccupation of neuropsychology has been to discover the fundamental 

difference between information processing in the two cerebral hemispheres. Beginning 

with the dominant - non-dominant and later, verbal - non-verbal, to the analytic - 

holistic dichotomies, the search has been for the most parsimonious division of 

faculties (see Bradshaw & Nettleton, 1981). Kosslyn in 1987 moved the debate 

forward significantly by attempting to relate the necessary properties of a useful, 

computational visual system to observations on human object recognition, normal and 

disordered. He concluded that a minimum of two distinct sub-systems exist: one for 

categorical representations, that is how elements are arranged topographically in 

relation to each other. The other sub-system operates upon dimensional 

characteristics, and is necessary to determine where an entity or its elements lie in 

terms of spatial coordinates. Kosslyn (1987) was the first to propose that these 2 

operations underlie the processes of the left and right hemispheres respectively on the 

basis of clinical and experimental evidence.

To test this theory, Kosslyn et al., (1989) devised a series of tachistoscopic 

divided visual field tests using novel stimuli consisting of simple shapes or lines with 

adjacent dots. Groups of subjects were required to decide whether the dot was on or 

off the line/blob - a categorical task, or, whether the dot was near to or far from the 

same, a task requiring a metric computation. The experiments confirmed the cerebral 

laterality predictions and have been replicated using a within subjects design (Hellige 

& Michimata, 1989).

The purpose of the present study was to extend Kosslyn et al’s findings by 

examining whether meaningful stimuli are processed in a similar way and whether the 

categorical versus dimensional distinction can be generalized to a broader range of 

cognitive operations. Cutting (1990) has recently argued that the left hemisphere (LH) 

is particularly adept at determining whether or not an entity belongs to a category or 

class, while the right hemisphere (RH) is specialized in judgements concerning 

individual members within a class. This view is arose from the pattern of deficits 

observed in brain damaged patients and might explain various psychopathological
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phenomena. One motivation for the current study was to develop tests which could 

be readily applied to psychiatric patients so that these ideas could be tested 

empirically.

At this point it may be instructive to retrace some of the experimental evidence 

which led Kosslyn to formulate his model. Early interest grew out of rather more 

naturalistic studies on mental imagery (see Kosslyn, 1984). The idea of an "internal 

psychophysics" was invoked by Moyer (1973) who found that when subjects were 

asked to judge, from their names, which of two animals was the larger, reaction time 

(RT) increased systematically by an inverse log-linear function of the estimated 

difference in size between them. Paivio (1975) later produced evidence in support of 

an imagery basis for this example of mental chronometry, including relatively faster 

responses to size comparisons from pictures versus words; and an interference effect 

with pictures but not words, when the physical size of the presented stimulus 

conflicted with its size in real life (e.g. a large lamp compared to a small zebra). 

Kosslyn et al (1977) developed this research further in a series of experiments in 

which size comparisons between 2 classes of items, designated "big" and "small", 

were made by a group of subjects, half of whom had had the opportunity to memorize 

the correct class of the item. Predictably, the memorization manipulation improved 

performance generally. However, of more note, the results showed that prior learning 

of the size category abolished the usual relationship between size-difference and RT, 

only in comparisons between these categories but not within them. This work was 

interpreted in relation to a functional model in which the question "Which is larger?" 

is answered by 2 systems working in parallel, one using prepositional or categorical 

representations and the other making use of imagery to calculate dimensions. 

Whichever system comes up with the answer first wins the race to the output stage. 

The result is a flexible and efficient operation which uses all the information available 

in the best possible way.

The notion that memory can be encoded visually or verbally and that these 

have different anatomical locations, has been accepted for several years (e.g. Milner, 

1971). However, there has been little interest in attempting to further separate the 2 

processes described above in terms of hemisphere asymmetries (c.f. Warrington &
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Taylor, (1978) for discussion on object recognition; Paivio & Te Linde, (1982)). On 

this theme, Farah (1984) reappraised published reports in which specific deficits in the 

various sub-components of mental imagery could be inferred. She concluded that the 

ability to generate images was the exclusive domain of the left hemisphere (though 

this has been challenged by Sergent, (1990a)) and this was confirmed in a test 

requiring the generation of lower case letters from their upper case equivalents in 

callosotomy patient, J.W. (Farah et al, 1985). The same subject was tested for the 

ability to "generate multipart images", i.e. deciding on whether an animal’s ears 

protrude above its head, and was found to be able to do so only with his left 

hemisphere (Kosslyn et al, 1985). Processes involving the calling up of visual 

representations from memory for inspection, such as those required to decide which 

of two animals is the larger, could be carried out by either disconnected hemisphere 

(Kosslyn et al, 1985). Data from commissurotomy patient, L.B., is somewhat 

contradictory since his right hemisphere appears to be superior on most imagery tasks 

(Corballis & Sergent, 1988; Corballis & Sergent, 1989; see also Nebes, 1972) though 

his left hemisphere could generate images accurately (e.g. lower case letters from 

upper case and a clock face from a time presented digitally) but considerably more 

slowly than the right.

Data from normal subjects is less clearcut still (see Ehrlichman & Barrett

(1983) for a review). Corballis & McLaren (1984) suggest that for normals especially, 

the nature of the stimulus may influence the hemisphere advantage in imagery tasks, 

with non-linguistic stimuli favouring the RH. This might go some way in explaining 

the opposite pattern of visual field advantage seen in a large sample of normal 

subjects who showed a LH, compared with L.B.’s substantial RH superiority on the 

same letter rotation test (Corballis & Sergent, 1989; see also Fischer & Pellegrino, 

1988). However, generation of letter images produced a LVF/RH advantage in one 

study (Sergent, 1989), and the clock face task a RVF/LH advantage in another (Hatta, 

1978).

Sergent (1989; 1990a) has attempted to explain some of these discrepancies on 

the basis of hemisphere differences concerning the psychophysical properties of the 

stimuli used. Another interpretation might be that, if Kosslyn’s competitive parallel 

model operates, with the propositional route housed in the left hemisphere and the
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coordinate system in the right, the resultant hemisphere advantage might be less 

predictable than at first thought, depending as it does upon whether a given stimulus 

is processed faster by one system or the other, which in turn will be exquisitely 

sensitive to such idiosyncratic factors as familiarity, ease of image formation and 

cognitive style, etc (Voyer & Bryden, 1990). Indirect support for this dual route 

model comes from the speed/accuracy trade-off seen in L.B. (Corballis & Sergent, 

1988), the more rapid increase in error rate with angle of orientation on LH compared 

with RH presentations in a visual rotation experiment involving shapes in normals 

(Jones & Anuza, 1982), and loss of the LH accuracy advantage in rotating nonsense 

figures compared to alphanumeric stimuli (Fischer & Pellegrino, 1988).

In view of this frustrating lack of consensus it was decided to look for cerebral 

asymmetries on one of the more traditional non-rotation imagery experiments in 

normals, namely size comparison. It was predicted that such a task would not require 

left hemisphere processes of defining and manipulating categorical relationships 

between parts of multipart images, so would not produce an LH advantage (after 

Kosslyn, 1987; Kosslyn et al, 1985), or, taking into account data from L.B. and given 

the use of non-linguistic stimuli, it would favour the right hemisphere. On the other 

hand, should the LH preference for categorical judgements involve wider aspects of 

cognition: the decision as to whether an entity belongs to a superordinate category, 

should hence produce an LH advantage (see Hatta, 1977; Wilkins & Moskovitch, 

1978).

The particular categorization chosen in the present study was "living" versus 

"non-living". This was not arbitrary since it seems that it is a distinction which may 

have a strong neuropsychological basis. For example, Warrington & Shallice (1984) 

have found patients with bilateral brain lesions, with dissociable abilities in naming 

and recognising foodstuffs and animals (broadly speaking "living") and inanimate 

(mostly non-living) entities. The prosopagnosic patient with bilateral (right more than 

left) hemisphere damage described by Farah et al., (1989) also had a particular 

difficulty answering questions pertaining to living things using "visual semantic 

memory", such as, "Are the hind legs of a kangaroo larger than the front legs?"
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The studies reported here used picture stimuli and required subjects to i) 

classify items according to living/non-living categories, and ii) carry out a size 

judgement - perhaps using a mental imagery routine.

2.2 EXPERIMENT 1

This experiment consisted of i) a categorical-semantic task - (living/non-living) 

and ii) a spatial-imagery task - (bigger/smaller). Judgements were made on 

standardized pictorial stimuli, presented tachistoscopically to the right or left visual 

field. Left and right hemisphere advantages respectively, were predicted for the two 

tasks.

Materials and Method 

Subjects

Twenty-two normal subjects drawn from academic and ancillary staff of the Institute 

of Psychiatry were tested. 12 were male; all were right-handers according to Annett’s 

classification (1970). Mean age was 34.8 years (range 26-58). IQ was estimated 

using the National Adult Reading Test (NART) (Nelson & O’Connell, 1978): mean 

IQ=118, (range 100-125).

Stimuli

These consisted of 24 items from the Snodgrass and Vanderwart (1980) line drawings, 

standardized for familiarity and complexity. High complexity items were avoided 

given the brief duration of presentation to be employed. A previous study (Davidoff 

& Ostergaard, 1988) had shown that these pictures are eminently suitable for 

living/non-living judgements and decisions concerning relative size (in that instance, 

bigger or smaller than a trumpet) [see Figure 2.1]. A more familiar referent was
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chosen for comparison, namely the (domestic) cat (see Warrington, 1975). A panel 

of 6 colleagues classed the 24 items in free vision, as bigger or smaller than a cat and 

living or non-living, with unanimous agreement. The "bigger" items were (in 

descending order of size): mountain (Non-Living), windmill (NL), house (NL), tree, 

sailing boat (NL), truck (NL), camel, zebra, cow, bed (NL), lion, leg. The "smaller" 

items were (in descending order of size): bird, glass (NL), envelope (NL), spoon (NL), 

comb (NL), bulb (NL), ear, mouse, leaf, mushroom, whistle (NL), snail.

Each of the stimuli was presented to the left or right visual field, with the 

medial edge 3° lateral to a fixation cross. Pictures were between 2 cm and 6 cm 

across on the screen (approx 2° to 7°). Each stimulus was presented a total of 4 

times, once to each visual field for each condition: bigger/smaller and living/non­

living. Hence there were 96 presentations in all. The number of stimuli was kept low 

so as not to introduce the confounding effects of practice and fatigue but also with a 

view to using the same tests on clinical populations. The 2 conditions were done in 

blocks, the order of which was balanced across subjects. 8 practice stimuli were 

shown prior to each block.

The stimuli were presented in the form of slides for use with the back- 

projection tachistoscope, at a rate of approximately 1 every 2.5 seconds, as determined 

by the experimenter.
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Apparatus

This consisted of a Kodak S-AV 2050 projector with custom built shutter attachment, 

controlled by an Electronic Developments tachistoscope timer panel. Slides were 

projected onto a perspex screen with a central fixation spot. Subjects were seated with 

their chins resting on a padded support, a fixed distance from the screen (50 cm). 

Responses were made by pressing one of two circular buttons separated by 15 mm, 

mounted on a box, between the subject and the screen. Each button was 20 mm in 

diameter and was supported by a spring. A weight of 270 grams was required to 

depress the button and produce a response. Reaction time in milliseconds was 

recorded and entered directly into a personal computer for analysis. The maximum 

time allowed for a response was 2500 msec after which an error was recorded for that 

stimulus. The projector beam was passed though a polaroid filter to reduce glare. A 

constant background illumination was maintained throughout the testing sessions.

Procedure

Subjects were instructed to look at the central fixation spot at all times. A warning 

tone would sound over the subject’s headphones, followed 500 msec later by the 

visual stimulus which would remain for 120 msec. Prior to testing, subjects were 

given a standard set of instructions.

i) Living/non-living task: "You are going to see pictures of common things flashed up 

on either side of the screen. I would like you to decide as quickly and as accurately 

as possible whether the picture is of a living thing, such as an animal, plant, or part 

of the body or a non-living thing, such as a car, table etc."

ii) Size task: "You are going to see pictures of common things flashed up on either 

side of the screen. I would like you to decide, as quickly and as accurately as 

possible whether the thing in real life is bigger or smaller than a domestic cat. 

Imagine the thing next to a cat and decide whether it would be bigger or smaller."

Subjects were then instructed to press one of two buttons marked appropriately, 

with the middle or forefinger of one hand. Response hand was changed after every 

24 stimuli, the order balanced across subjects.
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23 Results

Statistical analyses were carried out using SPSS/PC software. The data from one 

subject for part (ii) of the experiment were lost due to a technical error. Subject-based 

analysis of variance (ANOVA) was performed with reaction time (RT) as the 

dependent variable.

The analysis was 3-way with condition (category or size), and visual field (VF) 

as the within-subject variables and sex as a between-subject variable. There was no 

main effect for condition [F120=2.04; p=0.17]: the mean RT for the categorization or 

semantic task (living/non-living) for the 22 subjects was 765.9 msec, S.D. 148 msec; 

and for the dimensional or imagery task (bigger/smaller than a cat), 740.7 msec, S.D. 

150 msec, though the trend is for quicker RT on the dimensional task. Nor were there 

main effects for visual field or sex. There was a suggestion of an interaction between 

field and condition [F^20=2.32; p=0.14], but none between sex and the other factors. 

Figure 2.2 shows RTs for each visual field (VF). Analyzing RT for each condition 

separately employing planned comparisons using t-tests (2 tailed) does, however, 

suggest that there may be a LH advantage on the categorization task as predicted 

[751.1 msec vs 782.3 msec, t=1.42; df=20, p<0.05] but there is clearly no difference 

between the Vfs for the size judgement task [742.8 msec vs 740.1 msec, t=0.16; 

p=0.87].
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There was a weak negative correlation between the LH advantage - speed of RH 

minus LH presentations - on the semantic categorization task and age (Pearson’s r=- 

0.32), and a weak positive one between LH advantage and IQ (r=0.34), suggesting that 

verbal intelligence but not experience of the world may be factors which might 

enhance performance.

While no clear hemispheric advantage emerged for the dimensional (size) task, it 

seemed plausible that the nature of some of the judgements such as "Is a mountain 

bigger (or smaller) than a cat?" or "Is a snail smaller (or bigger) than a cat?" may 

have been too easy, thereby calling upon readily accessible semantic information 

without the necessity to call upon the RH’s putative imagery system. It was therefore 

decided to re-analyze the data comparing, on the one hand those "easy" items, whose 

size was either above the median for bigger items and below the median for smaller 

items, with, on the other hand, those "difficult" items the sizes of which fell in 

between the two extremes.

ANOVA, with VF and difficulty (easy/hard) as within subject measures, was 

calculated. There were no main effects for VF or for degree of difficulty. However, 

there was a significant interaction between difficulty and VF [Fx 19=4.16, p=0.05]. For 

easy items, RVF/LH vs LVF/RH processing speed (± S.E.) was 728.5 (33.3) msec vs 

747.0 (38.4) msec [t=0.87, df=20; p=0.4]; while for difficult items, RVF/LH vs 

LVF/RH processing speed (± S.E.) was 756.8 (35.1) msec vs 720.7 (29.5) msec 

[t=2.29, df=20; p=0.03] (see Figure 2.3). In other words there was a distinct RH 

advantage for the more taxing size comparisons, these being processed more quickly 

in the RH than even the easy items.

Errors were too few to permit meaningful analyses.
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The results show that despite the use of pictorial stimuli, an LH advantage can be 

elicited on a task requiring categorical or semantic judgements (see Seamon & 

Gazzaniga, 1973). An RH advantage on a task requiring judgements concerning the 

relative spatial dimensions of common entities proved more elusive. However, 

dividing the stimuli according to whether or not a correct response required a more 

fine-grained analysis did produce the predicted RH advantage. This is consistent with 

the dual route model implied by Kosslyn et al (1977), in which over-learned 

categorical information will override the more time-dependent calculation of spatial 

relationships and hence with easy size comparisons, the RH loses its advantage.

More generally, the results also show that the stimuli and apparatus are suitable 

for the needs of the experiment and that the two conditions are not substantially 

different in terms of overall difficulty. Furthermore, while the test is sensitive to 

stimulus variables it is reasonably free from such potential confounders as gender, age 

and IQ.

2.5 EXPERIMENT 2

This experiment, like the one above, consisted of i) a categorical-semantic task 

- (living/non-living) and ii) a spatial-imagery task - (bigger/smaller). Judgements were 

made on similar standardized pictorial stimuli, presented tachistoscopically to the right 

or left visual field, but with the "easy" items replaced by more difficult ones, i.e. those 

whose sizes were closer to that of the referent.

Materials and Methods

Subjects

Thirty new normal subjects drawn from academic and ancillary staff of the Institute 

of Psychiatry were tested. 17 were male; all were right-handers according to Annett’s 

classification (1970). Mean age was 32.1 years (range 19-44).
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IQ was estimated using the NART (Nelson & O’Connell, 1978): mean IQ=115, 

(range 90-125). Hence this group is younger and has a broader range of IQ than that 

of Expt 2.

Apparatus. As in Expt 1.

Stimuli

24 items from the Snodgrass and Vanderwart (1980) standardized line drawings as in 

Expt 1.

The same panel of 6 colleagues classed the 24 items, as bigger or smaller than 

a cat and living or non-living, with unanimous agreement. The "bigger" items were 

(in descending order of size): tree, sailing boat (NL), truck (NL), camel, cow, bed 

(NL), grand piano (NL), couch (NL), cooker (NL), zebra, lion, leg. The "smaller" 

items were (in descending order of size): kettle (NL), bunch of grapes, flower, bird, 

glass (NL), envelope (NL), spoon (NL), comb (NL), bulb (NL), ear, mouse, leaf.

The mean familiarity and visual complexity ratings (± S.D.) for these items, 

taken from the Snodgrass and Vanderwart norms on a 1 to 5 scale, were 3.72 (1.0) 

and 3.06 (0.9) respectively.

Each of the stimuli was presented to the left or right visual field, with the 

medial edge 3° lateral to a fixation cross. Pictures were between 2 cm and 6 cm 

across on the screen (approx 2° to 7°). Each stimulus was presented as in Expt 1. a 

total of 4 times, once to each visual field for each condition: bigger/smaller and 

living/non-living. Hence there were 96 presentations in all.

The 2 conditions were done in blocks, the order of which was balanced across 

subjects. 8 practice stimuli were shown prior to each block.

Procedure. As in Expt 1.



2.6 Results

Analysis of variance (ANOVA) was performed with reaction time (RT) as the 

dependent variable. The analysis was 3-way with condition (category or size) and 

visual field (VF) as the within-subject variables, and sex as a between-subject variable. 

There was no main effect for condition [F128 =0.73; p=0.4]: the mean RT for the 

categorization or semantic task (living/non-living) for the 30 subjects was 682.4 msec, 

S.D. 112 msec; and for the dimensional or imagery task (bigger/smaller than a cat),

692.9 msec, S.D. 105 msec; though, unlike Expt 1, the dimensional task is marginally 

slower, suggesting that the attempt to improve the discriminating power of this 

condition by excluding easy size comparisons was successful. There were no main 

effects for visual field or sex. There was a significant interaction between field and 

condition [F^28 =10.86; p=0.003] (see Figure 2.4). Planned comparisons examining 

RTs in the RVF/LH vs LVF/RH for the living/non-living categorization task showed 

a significant LH advantage [(RT ± S.E.): 674 (19.8) msec vs 690 (21.3) msec; t=3.03; 

df=29, p=0.005]. Equivalent analysis for the bigger/smaller dimensional task revealed 

a RH advantage [703.0 (21.5) msec vs 682.4 (17.7) msec; t=2.16; df=29, p=0.04]. 

Furthermore, comparing the two tasks, the LH was clearly superior on the living/non­

living versus the bigger/smaller task [t=2.38, p<0.05] while the RH advantage on the 

size versus category task did not reach significance. There were no interactions 

between sex and the other factors.
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The correlation between the LH advantage on the category task and the RH advantage 

on the imagery task was weakly negative (Pearson’s r=-0.12), suggesting at least the 

partial independence of the two processes. Correlations between the LH advantage 

on the categorization task and both age (r=0.13) and IQ (r=0.09) were negligible while 

those for the RH advantage on the imagery task were -0.06 and 0.29 for age and IQ 

respectively, suggesting that for this more demanding version, intelligence begins to 

exerts a slight positive influence.

Looking at accuracy revealed that the mean error rate by subject was 1.8/48 (3.75%) 

for the living/non-living versus 1.7/48 (3.54%) for bigger/smaller judgements; this 

difference was non-significant. 6 subjects were error-free on each condition. Again, 

overall error rates were considered too low to permit more detailed analyses.

Having established an RH advantage on the dimensional task in both experiments, 

provided judgements about relative size are at least minimally taxing, the next step is 

to confirm whether this is indeed a consequence of mental imagery. The criterion for 

this, as noted in the introduction, is traditionally taken as a significant correlation 

between RT and the spatial element, subject to manipulation by the imagery system, 

such as angle of rotation or, in this case, size (see Paivio, 1975).



Figure 2.5
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Figure 2.5 illustrates the relationship for each hemisphere, for the size difference 

between the probe item and the standard referent (a cat) along the x axis and RT 

along the y axis. Although the graph does not show a smooth correspondence, which 

is understandable given the small number of items and responses, there is a discernible 

relationship for LVF/RH presentations, between RT and the rank order of size of the 

items starting with the largest size difference, be it bigger or smaller, and ending with 

the item whose size was deemed nearest to that of a cat [RH: rank order 

correlation=0.48; p<0.05. LH: correlation^. 06; NS]. Figures 2.6 and 2.7 show the 

regression lines for RT by size difference for the right and left hemispheres, 

respectively. Similar analyses were carried out using a logarithmic transformation of 

RT (c.f. Moyer, 1973), which yielded an impressive correlation for RH presentations 

(0.61) but not for the LH (0.26). The effect of other stimulus parameters, namely 

familiarity and visual complexity, were also investigated. The results are shown in 

the table.

SIZE frank) SIZE Hog RT) FAMILIAR COMPLEX SIZE :SIZE

living non-living

RH 0.48* 0.61*** 0.01 0.28 0.61** 0.16

LH 0.06 0.26 0.02 -0.12 0.14 -0.09

Table 2.1: Correlations between Reaction Time and Stimulus Parameters for the Left 

and Right Hemisphere.

* p<0.05; ** p<0.01***; p<0.001 (1 tailed).

Note there were 24 stimuli for the size judgement task presented to each hemisphere. 

Of these 12 were living and 12 non-living; the significance of the correlation takes 

this into account.

The data show that familiarity and complexity do not influence RT, although the range 

of values was relatively restricted to avoid unfamiliar highly complex pictures. The 

effect of size was significant only for the RH but this was influenced by whether or 

not the item was ’living’.
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FIGURE. 2.6 Reaction time by size for biqqer and smaller items 
presented to the right hemisphere
Reaction Time (msec)

7 5-

700-

525-

1 3 6 9 12

Items in inverse rank order of size-difference
(12=size most close to cat; l=size most distant from cat)

Regression statistics:
Correlation 0.62: R Squared 0.38: p=0.0014
Intercept(S.E.) 599.4 (28.4) Slope(S.E.) 14.14 (3.9)

FIGURE. 2.7 Reaction time by size for bigger and smaller items 
presented to the left hemisphere

Reaction Time (msec)

7 5-

700

525-

1 3 6 9 12

Items in inverse rank order of size-difference
(12=size most close to cat; l=size most distant from cat)

Regression statistics:
Correlation 0.12: R Squared 0.014: p=0.59
Intercept(S.E.) 679.3 (46.5) Slope(S.E.) 3 .59 (6.56)
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2.7 Discussion

Experiment 2 confirmed on a second group of subjects that there is a reliable LH 

advantage on a test of semantic categorization, i.e. living or non-living. In addition, 

the RH advantage on the spatial test requiring the judgements of relative size was 

confirmed, provided stimuli are used which cannot obviously be classed as bigger or 

smaller than a standard, from semantic knowledge alone. The hypothesis that this 

latter task requires the use of visual imagery is supported by the inverse linear (and 

log-linear) relationship between the size difference and RT in the RH only, as shown 

by the correlation statistics. The fact that the majority of the variance is accounted 

for by the items within a single category (i.e."living things"), is consistent with 

Paivio’s model (1975). Given that the standard referent used in the above experiment 

was a cat, direct comparison with another living thing, say a zebra (which shares 

membership of the same subordinate category, in this case Tour-legged animals’) need 

not involve any intervening across-category processing. That it is the RH in particular 

which is most adept at within-category decisions is suggested by Cutting (1990), on 

the basis of patterns of impairment following unilateral brain damage noted in the 

neuropsychological literature.

Inspecting Figure 2.5 a number of features stand out. First, the item ’grand 

piano’ appears to require more processing time than would be expected given its size 

in comparison to a cat. Perhaps one explanation for this is its high complexity score 

of 4.58 (according to normative data), the highest of any picture used. There is a 

suggestion that visual complexity does affect RT, though the correlation just failed to 

reach conventional levels of significance, as shown in the table. Secondly, the stimuli 

whose sizes were most close to that of a cat produce a massive increase in RT, 

particularly for the LH, which is mirrored by an increase in errors. This will be 

discussed further below.
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The results of the experiments described above, add support to the notion that a task 

requiring categorization of a picture stimulus according to semantic information, or 

knowledge about the item, is performed more efficiently by the left hemisphere. One 

explanation for this is that the LH has a richer semantic system than its counterpart, 

another would be more radical, namely that knowledge of class membership, including 

the classes living and non-living, simply does not exist in the RH and hence the 

problem information must be shunted to the LH for analysis, manifesting 

behaviourally in an increased RT. The usual factors which predict a LH superiority 

on tachistoscopic tasks, such as the use of linguistic stimuli and task difficulty, cannot 

be invoked as explanations, since pictorial stimuli were used and task difficulty, as 

assessed by RT and error rate, was matched in the corresponding task which produced 

a RH superiority.

The latter task made use of identical pictures and experimental procedures, but 

instead, required subjects to make a judgement about relative size. When the task 

used items in which this judgement could be reached by a variety of routes, no 

hemisphere difference emerged (Expt 1). However, when items which required more 

fine discrimination with regard to size were analysed separately, the RH advantage 

began to emerge. This was replicated in a separate experiment with a new and larger 

group of subjects. Furthermore, there appeared to be a direct relationship between RH 

processing speed and the size difference in the real world between the probe stimulus 

- a picture of a common object, plant or animal - and the stored representation of the 

reference item, in this case, a cat. Although the precise mental mechanisms 

underlying this task are hidden from direct observation, it is plausible that the stored 

representation of the cat was called up in the form of an internal visual image. This 

seems the most obvious way by which a subject could gain access to its relative 

dimensions. Subsequently, the probe stimulus, say a kettle, would be incorporated 

into the frame of the same internal display, directly from its picture without any 

abstract code-to-analogue stage being required (as would be necessary if the stimulus 

was the word KETTLE (Paivio, 1975)). Next the appropriate scaling would be carried 

out - calling upon visual memory. Finally the picture would be compared by "the
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mind’s eye", or to use Kosslyn’s term, the visual search controller, specialized in the 

analysis and calculation of spatial coordinates (Kosslyn, 1987). The last stage would 

be a simple two-choice motor command to press the correct button.

The observation that the stimuli depicting items whose size was most close to 

that of a cat produced marked increases in RT, particularly for the LH, leads to the 

following conjectures upon possible mechanisms. Semantic information is sufficient 

for the LH to perform size judgements in most instances, albeit slightly less efficiently 

than the RH. However with presentation to the RVF/LH of an item such as a human 

leg or a kettle, this knowledge is inadequate for the task. There are then a number of 

hypothetical courses of action open, given the time constraints imposed by the 

experimenter. The LH can guess on the basis of the information it has, with a 

correspondingly high risk of error, or it may use its own rudimentary image analyzer, 

or finally, it may transfer the information across the corpus callosum to the RH, at 

considerable cost in terms of speed and fidelity. Such a model, though speculative, 

appears to explain the pattern of the data obtained here. Unfortunately, the number 

of responses per subject was insufficient to allow further analyses of hand X field 

interactions which might have shed more light on this issue. It is also consistent with 

clinical reports of a division of "visual memory" from "verbal" or "semantic" memory 

across the 2 cerebral hemispheres (Milner, 1971; Wilkins & Moscovitch, 1978; Zaidel,

1987) and reports of another imagery function, visual rotation, being more disrupted 

by RH lesions (Ratcliff, 1979; Ditunno & Mann, 1990).

The lack of consensus as to hemisphere differences in imagery tasks in general 

(Sergent, 1990a; Ehrlichman & Barrett, 1983) may reflect hemispheric sensitivity to 

stimulus parameters (Voyer & Bryden, 1990). The use of non-linguistic yet 

meaningful stimuli in the studies reported here may have helped to reveal a RH 

superiority (Corballis-& McLaren, 1984) on a task which, arguably requires a form 

of visual imagery. Further research using these non-rotational imagery tasks on brain 

damaged individuals would serve to validate or refute some of the claims with respect 

to cerebral organization made above. Single case studies, in which specific deficits 

in the functional sub-components of the processes described are evident, are necessary 

to illuminate further the nature of the cognitive activities currently subsumed under 

the label "visual imagery".
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2.9 Summary

A divided visual field task was given to two groups of normal subjects to investigate 

hemisphere differences in the processing of standardised pictorial stimuli. There were 

two conditions: subjects were asked to decide whether an entity represented by a 

picture was living or non-living, a task involving a categorical judgement based on 

semantic information, or, in the second condition, whether these depictions represented 

entities which were bigger or smaller than a cat. This latter task, it is suggested, 

requires visual imagery to compare spatial dimensions. The first, categorical task 

produced an LH advantage in reaction time. The second, imagery task, produced an 

RH advantage provided the comparison involved items whose sizes were relatively 

close to that of a cat. Furthermore, the size difference was inversely related to 

reaction time, only when items were presented to the RH. The data obtained are 

consistent with the notion that there are at least two systems for processing visual 

information, one specializing in categorical and semantic distinctions related to LH 

functions, and the other, specialized in spatial coordinates, an aspect of visual imagery, 

related to the RH.
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CMAFFEIR 3

PERCEPTUAL ASYMMETRY FOR HAPPY-SAD CHIM ERIC FACES:

EFFECTS OF MOOD



3.1 INTRODUCTION
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A number of recent studies have established the importance of right cerebral 

hemisphere (RH) specialization in the perception of faces (see, e.g. Ellis, 1983). This 

specialization includes recognition of faces per se (Hilliard, 1973; Rizzolati et al.,

1971) and facial expression (Ley & Bryden, 1979; Strauss & Moscovitch, 1981). 

Studies on clinical populations with unilateral brain damage support the role of the RH 

in facial identity and affect recognition (Benton, 1980; Borod et al., 1986; Cicone et 

al., 1980; DeKosky et al., 1980).

Further evidence has come from studies using versions of the split-face 

technique devised by Wolff in 1933. Here facial composites or chimeras are made by 

placing together one or other side of the photograph of a face with its mirror image. 

Gilbert and Bakan (1973) required subjects to judge which of two composites most 

resembled a full face photograph. The authors found that the composite with two left 

halves (that is the side of the face to the viewer’s left hereafter referred to as the Left 

Hemiface (LHF)) was judged to be more similar than the right-right composite. To 

test the extent to which the LHF Bias (LHFB) reflects a left visual field (LVF)/RH 

advantage for facial processing based on structural rather than attentional or arousal 

mechanisms, the authors manipulated certain test and subject variables. For instance, 

the same LHFB was found in Israeli subjects, accustomed to reading from right to left 

whereas left-handed subjects failed to show a lateral bias. Lawson (1978) using the 

same task confirmed these results with a larger sample but found no consistent 

differences between left-handers with different handwriting postures. Bennett et al., 

(1987) again replicated the LHF bias in perception and in addition found that the bias 

held when the comparison was made between the chimera and the stored 

representation of the whole face retrieved from memory. Also, instructions requiring 

different cognitive strategies including taking emotional expression into consideration, 

had no influence. Schwartz and Smith (1980) used chimeric faces consisting of two 

halves from different faces (similar to those used with split-brain patients (Levy et al.,

1972)). The subjects performed a match to sample task of, chimeras presented 

tachistoscopically and whole face photographs in free vision. There was a strong LVF 

recognition accuracy superiority which was uninfluenced by auditory cues such as
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music, poetry and a tapping sound, suggesting that attentional mechanisms play a 

minimal role in the LVF/RH advantage.

Another variant of the split-face technique was introduced by Campbell (1978). 

She presented half-smiling half-neutral composites tachistoscopically, hence emotional 

expression was brought in as a new variable. Subjects had to judge which of two 

chimeras was the happier and they consistently chose combinations in which the 

smiling half was to their left. The effect was independent of the greater expressivity 

of the left half of the posers face. Levy and co-workers (1983a) have developed a 

similar task using chimeras combining open-mouthed smiles with neutral facial 

expressions (Heller & Levy, 1981). Dextrals perceived faces as happier when the 

smile was to their left and this applied regardless of whether the faces were viewed 

in free vision from a booklet or slides, or tachistoscopically. Sinistrals however, 

showed a much smaller bias with the free vision faces and no bias to either side with 

tachistoscopic presentation. Again, handwriting posture was not clearly related to the 

magnitude of perceptual bias. Levy’s test has been applied extensively to normal 

subjects across the life span (Levine & Levy, 1986) and it appears that the LHFB 

persists through all ages.

The robustness and validity of the LHFB effect is supported by experiments in normal 

dextrals and in sinistral and clinical populations respectively. As already mentioned, 

several variations in stimulus materials and the manner in which they are administered 

have not altered the perceiver bias. Grega and colleagues (1988) systematically 

manipulated other test parameters in order to clarify this further. For example, they 

found that altering exposure duration, fixation control and by passing the image behind 

a central slit still did not minimise the bias, supporting the notion that it is not a visual 

field (VF) effect but, they conclude, though an image is scanned in both visual fields 

it is the internal representation of the image which is "weighted" asymmetrically. 

Levy and her group (1983b) proposed that the effect was due to an individual’s stable 

pattern of hemispheric arousal and that leftward bias on the chimeric face task is 

related to reduced left hemisphere relative to right hemisphere arousal as reflected by 

a syllable-identification task.
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The lack of or reduction in overall bias found repeatedly in left handers is in 

line with their diverse hemispheric specialization (Hecaen & Sauguet, 1971). The 

clinical populations studied with chimeric faces include commissurotomy patients 

(Levy et al., 1972) and those with focal resections (Kolb et al., 1983). Using 

dissimilar face chimeras, Levy et al (1972) found that the half-face available to only 

the disconnected RH was "chosen" in matching tasks irrespective of the responding 

hand. Kolb et al (1983), using the Gilbert and Bakan faces found that the usual LHFB 

was present in patients with left sided lesions regardless of site, but not right posterior 

lesions.

A combination of happy and sad faces has seldom been employed yet there are 

theoretical reasons why such stimuli may elicit clear cut lateral asymmetries. The 

dichotic listening paradigm, by providing competing inputs, seems to lead the 

specialized hemisphere to assert its dominance more fully. Using positive and 

negative emotions might also shed light on the proposed though disputed differing 

sensitivities of the two hemispheres for different emotions (Dimond & Farrington, 

1976; Etcoff, 1984; Natale et al., 1983; Sackeim et al., 1982) [see, Campbell, 1982; 

Gal in, 1974; Silberman & Weingertner, 1986; for reviews], Reuter-Lorenz and 

Davidson (1981), by presenting two full faces simultaneously, one emotional (happy 

or sad) in one VF, and the other neutral in the opposite field, were able to demonstrate 

shorter reaction times (RT) for happy faces in the RVF and for sad faces in the LVF. 

This study has been replicated successfully (Reuter-Lorenz et al., 1983) but was not 

confirmed by a different group (Duda & Brown, 1984). In Natale et al’s experiment 

III (1983) happy-sad chimeras were used and it was discovered that subjects rated 

them more positively when they appeared in the RVF but equally positive and 

negative in the LVF. Data are not given as to whether the half-face to the left exerted 

more influence on judgements than its counterpart to the right.

Another example of the use of a happy-sad combination is the schematic 

drawing of a face used by Jaynes (1976) (see also Roszkowski & Snelbecker, 1982). 

He claimed that when this drawing and its approximate mirror image are compared 

for degree of happiness, 80% of subjects choose the face whose smile is to their left.
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The present study uses similar stimuli but differs in three important respects. First, 

several different faces are used which are less schematic and contain more detail so 

that judgements based on the presence of one feature, perhaps favouring a left 

hemisphere strategy (Patterson & Bradshaw, 1975) cannot be relied upon. Second, 

true mirror images are presented to control for asymmetries in the drawings (see 

Hellige, 1983). Thirdly, instead of comparing faces, subjects have to decide whether 

each face in turn is either happy or sad thus providing a means for examining the 

salience of these affects in the right and left visual spaces.

In addition, the possible interaction between the subject’s mood and these 

judgements is examined in two ways. Initially by recording resting or "baseline" 

mood during testing and later by inducing depression and elation and comparing 

judgements in these two states. Techniques for inducing mood have been shown to 

influence cognition in subtle and measurable ways such as the speed of recall of 

pleasant and unpleasant memories (Teasdale & Fogarty, 1979). Mood induction in the 

laboratory has the advantage of being controlled and systematic and also allows the 

researcher to perform within-subject comparisons in different mood states (see Clark, 

1983; for review). In one experiment, induced sadness appeared to interfere 

differentially with RT mediated by the RH (Ladavas et al., 1980). Neurophysiological 

evidence suggests that negative affect causes increased right frontal activation (Tucker 

et al., 1981) whereas positive affect increases activity in the left frontal cortex 

(Davidson et al., 1979); in both cases it is assumed that altered frontal activation 

modulates the arousal characteristics of the whole hemisphere (Tucker, 1988). It 

could therefore be hypothesized that these two mood states would exert opposite 

influences on the LHFB in viewing chimeric faces if the presence of the bias is related 

to arousal. Conversely, if it is assumed that the bias reflects structural properties of 

the RH, the parieto-occipital cortex in particular, a view supported by the literature, 

then altering mood should have no effect.
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Experiment 1

The purpose of the first and main experiment was to a) confirm the presence of a LHF 

perceptual bias with happy-sad chimeric faces; b) examine this effect in non-right 

handers; c) explore the influence of subjects’ current mood.

Subjects

Sixty normal right handed subjects (30 male, 30 female, mean age 33.4±10.0) and 

eighteen non-right handers (10 male, 8 female, mean age 35.9±10.3) drawn from a 

wide range of hospital staff were tested. Handedness was classified according to the 

Annett questionnaire (1970). Subjects who used their right hands habitually for all of 

Annett’s "primary" items (writing, throwing, striking a match; using a racket, hammer 

and toothbrush) were designated right-handers. None were converted left-handers. 

Non-right-handers included mixed- and left-handers and were so classified if they used 

their left hands for any of the primary items with or without "secondary" items. 

Subjects with a history of psychiatric or neurological disorder were excluded.

Materials

Twelve half-happy, half-sad line drawings of faces measuring approximately 5 X 4cm. 

were used. Faces differed in the amount of detail particularly around the mouth and 

eyes. Some had mouth-open, others mouth-closed expressions. Happy half-faces had 

an up-turned smile and a wide open eye while sad half-faces had down-turned mouths 

with a frown over the eye and brow (Figure 3.1). A precise mirror image was made 

of each.

Faces were presented in booklet form, with one face to a page. Each face was shown 

twice giving a total of 48 stimuli, and the order of presentation randomised.
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Procedure

Subjects were told they would be looking at drawings of faces which would appear 

a little strange at first and were required to say whether they looked happy or sad. To 

answer "don’t know" was not permitted in this "forced choice" design. Subjects were 

encouraged to report their first impression and not to spend too much time on each 

picture. Initially, many subjects were inclined to describe the faces as "anxious" or 

"quizzical" and so were directed to say whether the face was, for example "anxious 

in a positive or negative sense" and to respond accordingly. Rarely (less than 5% of 

subjects in each group), individuals felt they could not decide in which case they were 

instructed to close their eyes for a few seconds and on re-opening, respond 

immediately with whichever of the two emotions came into their mind. Testing took 

less than 10 minutes. Afterwards, subjects rated their mood at that moment, by 

marking their position on a 10 cm. visual analogue scale with "most depressed ever" 

at the extreme end to their left (scoring zero) and "most happy ever" to the right 

(scoring 100). The midpoint was not indicated on the scale.



Figure 3.1
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Subject variables

The two groups were well matched for age and current mood (Table 3.1(a,b)).

(a) Variable Right-handers Non-right-handers /

mean (s.d) N=60 mean (s.d.) N=18

Age 33.37 (10.0) 35.94 (10.3) 1.17 NS

Mood 53.10 (14.7) 62.56 (12.7) 1.35 NS

(b)
Left bias(%)* 20.42 (18.8) 3.25 (18.0) 3.34 P=0.001

Sad bias(%)# 17.35 (28.9) 14.58 (21.9) 0.38 NS

*(Number Left Correct Nt minus Number Right Correct Nr X 100)/48 

#(Number Sad Ns minus Number Happy Nh X 100)/48

Table 3.1(a,bV Comparison between handedness groups 

non-right-handers. (Unpaired t-tests, 2-tailed")

right
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Perceiver bias

A bias towards judging emotion from the Left Hemiface can be expressed in slightly 

different ways. One way is score happy/sad choices as "left correct" if they coincide 

with the LHF of the stimulus (range 0-48, 24=no bias). Figure 3.2 shows the 

distribution of raw left bias scores for right and non-right handers. Another method 

is to subtract the total "right correct" (Nr) from "left correct" (N,) (choices which 

coincide with the left Hemiface) for each subject, and divide by the number of 

stimuli [48]. This proportion (%) yields a "% left bias" score; 100% max left bias; 

-100% max right bias; 0=no bias). Results will be reported using the latter method 

as it conveys more simply the magnitude and direction of perceiver bias.

It soon became clear that subjects regarded the faces as sad more often than 

happy so this sad response bias was measured in a similar way. That is by simply 

recording the total number of sad" responses (0-48) or by calculating a "Sad Bias" 

by subtracting the number of happy (N J from the number of sad responses (Ns) and 

expressing this as a proportion.

The distribution of left bias scores for right handers is approximately normal 

(mean=9.80 (20.42%), S.D.=9.02 (18.79%); skewness=0.14). The mean for females 

was 11.60 (24.2%) and males 8.00 (16.7%) (NS). The mean from non-right handers 

was 1.56 (3.25%), S.D.=8.64 (18%). The difference between the observed bias and 

chance, i.e. zero bias, has been calculated in two ways: the binomial (sign) test (Table

3.2) which takes into account the presence, absence and direction of bias; and one 

sample t-test, which treats the bias as a continuous variable thus taking account of the 

size of the bias.
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Figure 3.2
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Right-Handers Non-Right-Handers

NQ of Ss N° of Ss

Left Bias NL > Nr = 49 NL > Nr = 9

Right Bias NL < Nr = 7 NL < Nr = 7

No Bias NL = Nr = 4 NL = Nr = 2

Total 60 18

Z=5.48*, P<0.00001 (2-tailed) P=0.80 (2-tailed)

*Sign test

Table 3.2. Binomial tests for Left Bias in right- and non-right-handers

The result of the one sample t-tests was for right-handers: t(59)=8.41,P<0.0001; 

non-right-handers: t(17)=0.76; P«0.5.

Comparisons between handedness groups

These are given in Table 3.1(b). The only significant between-group differences were 

in Left Bias, [t(76)=3.34, P=0.001]. Both groups exhibited an equal tendency to report 

sad more than happy. In each group, the Sad Bias was significantly greater than 

chance: right-handers, t=4.64, P<0.001; non-right-handers, t=2.82, P<0.02. An 

ANOVA with Left Bias as the dependent variable and Handedness and Sex as the 

independent variables revealed significant main effects for Handedness [F(l,77)=11.66, 

P=0.001] and for Sex, [F(l,77)=5.45, P<0.05], with females generally tending to show 

greater Left Bias, although male non-dextrals showed a mean right (negative) bias of 

-2.0 (-4.16%) S.D.=9.04 (18.8%), and female non-dextrals showed a small but positive 

bias of 6.0 (12.5%), S.D.=5.95 (12.4%), there was no significant Sex X Hand 

interaction overall (P«0.3). There were no other significant effects for sex nor any 

significant interactions with other variables.
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Left-biased responses could be happy or sad. The proportion (%) of "happy 

correct (CJ" i.e. the number of correct (leftward) happy responses / total happy 

responses, was compared with the proportion (%) "sad correct (Cs)" calculated 

similarly, for each handedness group separately (paired t-test, 2-tailed), right-handers, 

Q  (x=63.24% ±13.9); Cs (x=59.10% ±11.2) [t(59)=2.60, P<0.02)]: left handers, Ch 

(x=55.87% ±15.1); Cs (x=50.45% ±9.2) [t(17)=2.21, P<0.05]. This indicates that for 

both groups, happy choices, though less frequent than sad, were more often "correct" 

(left sided).

Since the basic observations have a binomial distribution (happy or sad, left or right), 

the variance will vary with the mean (Winer, 1971). In view of this, further 

comparisons were made between handedness groups, on the raw N, (left correct) and 

also left Bias score following an arcsin transformation. The results in both cases 

remained significant at the P=0.001 level.

Correlations between age, current mood, sad and left biases were examined (Table

3.3). Age did not influence LHFB. As predicted, mood influenced subjects' choice 

of facial expression in obvious ways namely, the happier (greater) the mood, the 

greater the tendency to choose "happy" and vice versa. The hypothesis that resting 

mood would have no influence on bias towards the left side of space was upheld by 

the lack of correlation between Left bias and either self-rated mood or Sad Bias.

Mood Left Bias Sad bias

Age 0.147 0.017 -.021

Mood - 0.177 -.352*

Left bias - - -.181

*P<0.01, 2-tailed.

Table 3.3. Correlation (Pearson's r) matrix of subject variables and test scores.
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Reliability

The internal consistency and test-retest reliability of the chimeric faces test was 

measured amongst the dextrals in a number of ways. A fairly high correlation was 

found with Cronbach’s a=0.60 and the Guttman split-half coefficient r’=0.68. A 

single factor, repeated measures ANOVA was used to test the hypothesis that there 

was no change in the proportion of successful items over time. For dichotomous 

variables this generates a value for Cochran’s Q=726.97, PcO.OOOl, supporting the 

hypothesis and confirming the internal consistency of the test (Winer, 1971).

Ten normal subjects, chosen at random were retested after one week. Left Bias 

scores were highly inter-correlated, r=0.854.

3.4 DISCUSSION

The results show that happy-sad chimeric face drawings elicit a strong and consistent 

LHFB in right-handed males and females, regardless of their current mood. Females 

tended to show a greater bias. This sex effect is consistent with a divided VF study 

by Ladavas et al., (1980) in which matching of expressive faces with a target emotion 

was found to be performed quicker and more accurately by females especially with 

LVF/RH presentations. This greater lateral asymmetry as compared to males, would 

be expected to give rise to a greater bias (i.e. the N, - Nr difference). However, Safer 

(1981), while confirming the slight superiority of females over males especially with 

RVF/LH faces, found that females unlike males showed no asymmetry. Levy’s group 

(Levy et al., 1983a) found a slightly greater left bias in females but this was not 

significant. These contradictory studies used different experimental designs and 

stimuli such that comparisons are extremely difficult. However, a tentative suggestion 

could be made, that the right hemisphere is more specialised for facial affect 

judgements in females than in males or that its "arousal" (Levy et al., 1983b) is set 

at a higher point.
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Non-right handers as a group did not show a significant lateral bias though when 

analysed separately, males showed a slight right hemifacial bias (RHFB) and females 

a rather weak LHFB. This is compatible with data showing reduced or atypical 

asymmetries in left-handed males particularly (Piazza, 1980). It should be stressed 

that the Sex X Handedness interaction did not reach significance so that larger 

numbers of non-right handers would need to be studied to confirm or refute this 

possible sex effect. Furthermore, such a trend is not evident in LEVY’S work (Heller 

& Levy, 1981; Levy et al., 1983a) despite the more conservative selection of pure 

left-handers.

There was a tendency for all subjects to make sad responses more often than 

happy. This trend, if taken to its extreme would be bound to reduce the LHFB score, 

i.e. if all responses were sad the left bias would equal zero. However, within the 

range of responses collected, there was only a weak, non-significant, negative 

correlation between the two measures. Low mood, though increasing the likelihood 

of a subject responding "sad" did not reduce the overriding bias towards the LHF to 

any appreciable degree. The effect of mood will be examined further in the next 

experiment.

3.5 Experiment 2

Subjects

Twelve normal right-handed volunteers (7 females, 5 males) mostly psychiatric 

nursing and medical staff were studied. It was anticipated that this group would 

respond readily to a mood induction procedure because of their empathic 

understanding of emotional disorders. The same exclusion criteria were applied as in 

the previous experiment. Mean age was 30.9 years, S.D.=10.5.

Materials

These were the same as in Experiment 1.
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Procedure

This was the same as in Experiment 1 with the additional information given to 

subjects that they would be tested twice, in two different moods, depression and 

elation. The Velten mood induction procedure (Velten, 1967), the most widely used 

and validated technique (Clark, 1983), was then explained. Subjects were required to 

read silently, 20 cards containing self-referential statements for each mood such as, 

"Tve doubted that I ’m a worthwhile person" and "I’m discouraged and unhappy about 

m yself for depression, or "I feel cheerful and lively" and "Life is so much fun" for 

elation. They were encouraged to dwell on each card for 20-30 secs and to experience 

the emotion suggested. After each mood induction, the faces test was administered 

followed immediately by self-rating of mood on a visual analogue scale (as above). 

The measurement of the time taken to count to 10 was also noted as this has been 

found to correlate with both induced and endogenous depressed mood (Clark, 1983). 

A minimum difference of 20 points (out of 100) between the two mood states was 

taken as criterion for successful mood induction. Two male subjects failed to meet 

this and so their data were discarded. The order of moods induced was balanced 

across subjects.

3.6 RESULTS

Self-rated mood differed on average by 26.8 points between the two conditions (mean 

(depressed)=44.6±12.6 vs mean (elated)=71.4±8.8, P<0.0001). If 50 is taken to denote 

neutral mood, the induced depression mood score of 44.6 just fails to differ 

significantly (one sample t-test: P=0.1). However, if the resting mood score actually 

obtained from the 60 right handers in experiment 1 is used (53.1) as a reference point 

then induced depression clearly differs from it (t(9)=2.13; P<0.05). Induced elation 

produced a markedly elevated mood score regardless of whether the 50 or 53.1 

reference point was used (P<0.001). Counting time fell from mean (depressed) 

=6.47secs to mean (elated) =5.76, although the change was not significant (P=0.4).
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Figure 3.3 illustrates the influence of the mood induction procedure on sad and 

left-correct (N,) responses.

The procedure exerted a significant influence on sad responding with a mean (±S.D.) 

of 60.4±8.7(%), during depressed mood and 46.0±8.3(%), during elated mood 

[t(18)=5.11, P<0.0001, two-tailed]. However mean N, was 28.9(%) ±3.8 and 29.6 (%) 

±4.9, for the two moods respectively, [t(18)=0.36, P=0.7]. There were no significant 

changes in the proportions of sad and happy correct responses in the two mood states.
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Figure 3.3
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Experiment 2 shows that wide variations in mood induced in normal adults, especially 

elation, do not influence the LHFB, which remains remarkably stable. Mood did exert 

a major influence on the valency of affective judgement. It may be that the 

transparent nature of the mood induction procedure exaggerated this effect in 

compliant subjects but nevertheless self-rated mood and to a lesser extent counting 

time both support the validity of the method. No support was found for the claim that 

depressed mood differentially compromises RH function (Ladavas et al., 1980; Tucker,

1988). However, the induction procedure was less successful in lowering than 

elevating mood, so that the possibility remains that more pronounced depression would 

alter LHFB.

It could be contended that the verbal mood induction method by stimulating 

the LH, may have counteracted the activation of the RH produced by mood, though 

this does not seem to have been the case in other experiments (Ladavas et al., 1984; 

Tucker et al., 1981). It is also conceivable that a different induction procedure, such 

as listening to sad music, may have produced different effects. Unfortunately, music 

would be expected to stimulate RH processes independently of mood change (although 

see Schwartz & Smith, 1980) thereby introducing a confounder. Further studies using 

a variety of induction procedures are necessary in order to substantiate the 

interpretation of the results given here.
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The data presented confirm that happy-sad chimeric faces viewed in free vision, elicit 

a strong perceiver bias towards the LHF during judgements of facial affect by 

right-handers, regardless of subjects’ mood. In comparison with Levy et al’s research 

(1983b) using happy-neutral photograph chimeras the magnitude of the bias found in 

this study was somewhat smaller: 17% vs 29% for males and 24% vs 33% for 

females. Nevertheless, despite the use of the rather liberally defined non-right-handed 

group the difference between the two handedness groups in this study was equally 

striking. Levy’s sinistrals, males and females, displayed LHFBs of 16% and 9.5% 

respectively, in contrast to the 6% for females and -2% for males (3% overall) shown 

in Experiment 1. It may be that sad-happy chimeras are more able to elicit atypical 

lateralization but such a conclusion must be tempered against the small number of 

non-right-handers in this study.

Current mood did not appear to alter LHFB though it did influence sad/happy 

choices, with lower mood increasing the Sad Bias. It could be argued that the Sad 

Bias tendency reflects the intrinsically lower mood of the right hemisphere (LeDoux 

et al., 1977; Sackeim et al., 1982) or its inclination to rate expressions more negatively 

(Natale et al, 1983; Reuter-Lorenz & Davidson, 1981). Although this may be so, it 

does not explain the unexpected finding that the proportion of happy responses which 

were "left correct" (Q ) that is, coincided with the expression of the LHF, was greater 

than the proportion of sad "left correct" responses (Cs). In other words, although 

happy responses were made less often, they were more often left biased. Perhaps the 

explanation is simply one of reliability given the "forced choice" design of the study. 

If a subject is unsure how to respond when confronted with a strange looking face, it 

appears he/she will usually answer "sad" so reducing the accuracy of those responses. 

In any event, it is clear that hemifaces, be they derived from photographs or drawings, 

elicit a perceiver bias to the left whether or not they are smiling. This finding, while 

not addressing directly the issue of right and left hemisphere contributions to affective 

valency, fails to support a specific association between the LH and positive affect.
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The lack of effect on LHFB of lowered or raised mood, both spontaneous and 

induced, runs contrary to the study by Ladavas et al., (1984). However, it is possible 

that the effect is only manifest through slower RTs so would not have been detected. 

Measuring vocal RT and comparing left and right biased responses individually might 

clarify this discrepancy. Recently, Levy’s test has been given to depressed patients 

in whom the LHFB though present appeared to be attenuated compared to normal 

controls (Jaeger et al., 1987). This was attributed to an alteration in RH arousal which 

has been demonstrated electroencephalographically in normals when their mood is 

negative and in clinically depressed populations (see Tucker, 1988). By way of 

contrast, the present study could be taken as supporting a distinction between normal 

and pathological mood states. Research with psychiatric patients using happy-sad 

chimeric faces has been undertaken to clarify this issue (see chapter 6).
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3.9 Summary

Happy-sad chimeric face drawings were viewed in free vision by normal subjects. A 

significant and reliable perceiver bias toward the left hemiface when judging facial 

expression was found in right-handers whereas no consistent bias was found in 

non-right handers. This bias tended to be more pronounced in females. Subjects’ 

current mood influenced their choice of facial affect but not their perceptual bias. In 

a further experiment, subjects were tested during induced elation and once more 

during induced depression. Again, though these moods increased the number of happy 

and sad choices respectively, the magnitude of the left hemifacial bias remained 

unchanged. The results are best explained by stable properties of the right hemisphere 

rather than arousal mechanisms. The implications of these findings are discussed in 

the light of the proposed hemispheric asymmetries in emotional perception and the 

possible lateralised effects of depressed mood on cognition.
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STUDIES IN NORMALS AND ACALLOSALS



4.1 INTRODUCTION
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John Ridley Stroop’s colour-word test has become one of the most widely used in 

experimental psychology, since it was invented in 1897 (Stroop, 1935; Jensen & 

Rohwer, 1966; MacLeod, 1991). Its use has reflected the preoccupations of the day 

such as the study of racial differences, intelligence, personality, and more recently, 

information processing, hemisphere asymmetries (Dyer, 1973a) and artificial 

intelligence (Cohen et al., 1990). The essence of the paradigm is the presentation of 

two stimuli in combination where the one to be reported - that is colour in the 

classical Stroop test - conflicts with the other - in this case, a colour word. The 

standard form of the test comprises of a colour word printed in a colour ink which is 

either congruent (e.g., the word RED written in red ink) or incongruent (e.g., the word 

RED in blue ink). Under these conditions, colour naming with the incongruent 

combination is consistently slower in comparison to the congruent combination. This 

"Stroop effect" is remarkably robust though subject to attenuation in the face of 

manipulations such as separating the two stimuli in time (Glaser & Glaser, 1982) and 

space (Kahneman & Chajczyk, 1983), and it generalises to other types of stimuli such 

as picture-word combinations (Glaser & Glaser, 1989).

Detailed examination of the Stroop effect has revealed at least two 

components: facilitation and inhibition. Facilitation refers to the speed advantage of 

colour naming in the congruent colour-word condition compared with a control 

condition such as a non-word - colour combination (Hintzman et al., 1972), a row of 

Xs (Dyer, 1973a) or a neutral word (Kahneman & Chajczyk, 1983). Similarly, 

inhibition refers to the speed disadvantage of colour naming in the incongruent, versus 

a neutral or control condition. The inhibition effect tends to be the slightly larger and 

more reliable of the two, accounting for around 60% of the combined Stroop effect 

(CSE) (e.g., Long & Lyman, 1987; Schmit & Davis, 1974).

The current study introduces a novel use of the Stroop effect in an effort to examine 

the transmission of information across the corpus callosum (see also Dyer, 1973b). 

In order to allow meaningful comparison, the CSE within each hemisphere and 

between the two hemispheres is contrasted. There has been work, using the divided
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visual field methodology to study the influence of hemisphere specialisation on the 

analysis of Stroop stimuli (Schmit & Davis, 1974). This showed that (manual) 

reaction time (RT) for colour naming of congruent colour-word stimuli was the same 

in both hemispheres whereas the incongruent stimuli produced the most slowing of RT 

when presented tachistoscopically to the left hemisphere (LH) (c.f. Dyer, 1973a). The 

analyses were complicated by a hand X field X congruence interaction (Guiard, 1981) 

but the overall results were interpreted as supporting the claim that the left hemisphere 

is pre-eminent in processing verbal information. Tsao et al., (1979) found an increase 

in errors to incongruent colour-word stimuli in the right visual field (R VF)/LH but not 

verbal RT. A series of careful studies by Hugdahl and colleagues (Hugdahl & 

Franzon, 1985; Franzon & Hugdahl, 1986; Franzon & Hugdahl, 1987) have taken 

these findings further. They have confirmed the increase in errors with RVF/LH 

incongruent colour-words, in male dextrals but not females or sinistrals. A 

corresponding increase in RT has proved more elusive and is influenced by speed- 

accuracy trade-offs (Franzon & Hugdahl, 1987). While the differences between male 

dextrals and sinistrals offers good support for the role of cerebral lateralisation in 

producing the LH error rates, a few inconsistencies remain. Firstly, other researchers 

have produced contradictory results which failed to show hemisphere asymmetries 

using comparable procedures (Warren & Marsh, 1978), although they found a trend 

for longer RTs for both congruent and incongruent colour-word combinations 

presented to the RH. Simon et al., (1985) found an overall LH advantage i.e., shorter 

RTs, for congruent and incongruent Stroop stimuli in both right- and left-handers, men 

and women. Hatta (1981) found Stroop interference for Japanese logographic 

characters in the RH but not for phonetic symbols in the LH. All three studies made 

use of manual RT as the dependent variable which may reduce the Stroop effect 

(Prichatt, 1968). This, in addition to other procedural differences, such as vertical 

versus horizontal presentation of words, and retinal eccentricity may limit direct 

comparison between studies. Secondly, the lack of an asymmetrical advantage 

favouring either hemisphere on the congruent condition has yet to be explained 

adequately given the fact that if a mechanism exists in one hemisphere, which renders 

it more susceptible to Stroop interference, the same mechanism would be expected to 

produce greater facilitation. So far, this has not been demonstrated (Franzon &
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Hugdahl, 1986; Schmit & Davis, 1974; Simon et al., 1985). Therefore, there is still 

doubt as to whether apparent hemisphere differences,' especially with regard to RT, 

have anything to do with the Stroop effect, as opposed to merely reflecting the speed 

of colour naming, under certain conditions, in the visual fields.

The use of Stroop interference/facilitation to examine interhemispheric 

transmission has received little attention apart from pioneering early work by Dyer 

(1973b). He described an experiment in which a colour stripe was separated from a 

colour word by 4 deg., straddling the mid-line. Incongruent colour words prolonged, 

and congruent colour words reduced vocal RT with respect to a control condition (a 

row of Xs). Mean interference and facilitation effects were +48 msec and -26 msec 

respectively. Dyer found that response times for the different visual fields were 

"almost identical" for both congruent and incongruent combinations giving 

"equivalent" combined Stroop effects (CSEs) regardless of the side on which the 

colour stripe was positioned. Further details are not given. Two other studies shed 

light on inter-hemispheric transfer. In one of a series of experiments manipulating 

stimulus onset asynchrony (SOA), Goolkasian (1981) presented colours at retinal 

eccentricities up to 7 deg., along with distracter colour words presented foveally. 

Facilitation effects persisted whereas interference diminished, suggesting a selective 

suppression of conflicting information during the processing of colour from either side. 

In an analogous group of experiments, Long and Lyman (1987) found a very different 

pattern of responses to SOA (though remarkably similar to a previous report by Glaser 

and Glaser, 1982), as well as to retinal eccentricity. They presented colour squares, 

3 deg. lateral to the mid-line, along with a colour word at central fixation. The 

authors found that both inhibitory and facilitative effects persisted, on average +62 

msec and -30 msec respectively, while both of these declined at SOAs outside a -100 

to +100 msec window. While there was no overall hemisphere advantage, a lateral 

asymmetry emerged, namely, slower RTs to LVF/right hemisphere (RH) colours 

paired with incongruent words only. One interpretation of this finding is that the 

speed of RH colour naming reflects callosal transmission of the percept to the 

speaking LH (Geschwind & Fusillo, 1966; Levy & Trevarthen, 1981; Zihl & von 

Cramon, 1980), and hence is slower than LH naming (see also McKeever & Jackson,
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1979) and that this difference is most manifest when there is an additional cognitive 

load.

Dyer’s simpler methodology lends itself more readily to interpretations 

invoking callosal function. Additionally, the Stroop paradigm allows for the 

measurement of the transfer of both facilitative and inhibitory information across the 

callosum and whether the tract acts as a selective filter in any way. One means of 

examining this further, is to test subjects without a functioning corpus callosum. To 

my knowledge Stroop stimuli have not been used in commissurotomy cases in this 

way but given the obvious difficulty such patients have in matching items across the 

hemifields (e.g., Gazzaniga, 1970), and the evidence for hemispheric independence 

(Franco, 1977), the a priori assumption would be that Stroop effects do not occur 

under these circumstances. Studies of cross-integration have shown that affectively- 

laden (Sperry et al., 1979) and category information (Cronin-Golomb, 1990), as well 

crude sensory features including colour (Johnson, 1984; Sergent, 1986), are 

transferable from one hemisphere to the other through subcortical routes. There are 

also some tentative data on priming which suggest that some semantic information can 

be transferred between the hemispheres through nerve tracts other than the corpus 

callosum (Sidtis et al, 1981; Zaidel, 1983). More recent studies by Sergent 

(1986;1987;1990b) looking at the integration of numerical and facial identity 

information have extended the limit of sub-callosal transfer after commissurotomy to 

information that does not require translation into a specific verbal code. Returning to 

the Stroop test, clearly, it is the precise colour name which is necessary to bring about 

the effect so that interference/facilitation would not be expected across disconnected 

hemispheres.

Another approach to understanding the phenomenon of interhemispheric integration 

is to examine subjects with congenital absence of the corpus callosum. While such 

individuals do not as a rule exhibit the typical features of cerebral disconnection 

(Milner, 1983), and can match colours and forms presented bilaterally, they do so, 

somewhat less well than controls, in terms of accuracy and speed (Jeeves & Milner, 

1987; Lassonde et al., 1988). This presumably reflects the limited efficiency of 

subcortical pathways and/or the isolated anterior commissure, present in many
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acallosals. One might therefore predict that while Stroop effects may be observed in 

such subjects with cross-field stimuli, they should be considerably less than in normal 

controls. Whether there is any selectivity in terms of interference versus facilitation 

within these pathways is not predictable on the basis of the available evidence.

The present study aimed to clarify some of these problems. First of all by comparing 

measures reflecting the combined Stroop effect (CSE) within the right and left visual 

fields of normal right-handed subjects, in an attempt to replicate the asymmetries 

observed by some authors. Second, to compare subjects’ colour naming performance 

using lateralised and centrally presented Stroop stimuli, where in the latter, the two 

elements of the stimulus were separated across the fovea. Thirdly, the same 

procedures were used with 3 cases of agenesis of the corpus callosum in order the test 

the extent to which cross-field Stroop effects are carried by non-callosal fibres.

4.2 METHOD

Subjects

Forty-six normal subjects drawn from academic and ancillary staff of the Institute of 

Psychiatry were tested. 25 were male; all were right-handers according to Annett’s 

classification (1970). Mean age was 33.2 years (S.D. 7; range 19-58). IQ was 

estimated using the National Adult Reading Test (NART) (Nelson & O’Connell, 

1978): mean IQ=116, (S.D. 9; range 90-125). All subjects performed perfectly with 

the Ishihara colour blindness plates and had normal or corrected visual acuity. [16 of 

these were drawn from the 22 who participated in the first visual imagery experiment 

(no 1), chapter 2, and these were combined with the 30 subjects who participated in 

the second imagery experiment (chapter 2, experiment 2). 15 of the 30 subjects from 

experiment 2, chapter 2 also performed the tachistoscopic chimeric faces test (chapter 

6). See appendix I].
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Stimuli

Each of the stimuli was presented to the left or right visual field, with the medial edge 

3 deg. lateral to a fixation cross, or centrally with the word on one side and the colour 

on the other. All stimuli consisted of a vertical colour strip approximately 1 deg. 

across and 3 deg. high, and a vertical colour-word in upper case letters in Helvetica 

Medium type, and with the same dimensions. In all stimuli, the word and colour strip 

were separated by 1.4 deg. In the central or "bilateral" condition, an X marked central 

fixation and was flanked by the word on one side and the colour on the other, 

separated by 1.4 deg. Three colours were used, red, blue and green; approximate 

Munsell numbers were 7.5R 4.5/16, 5PB 3/8 and 5G 5/10 respectively. Therefore 

each colour could be matched with a congruent word or one of 2 incongruent words. 

There were 72 stimuli in total, 24 left, 24 right and 24 central. Half were congruent 

and half incongruent. In each condition, 12 had the colour to the right of the word 

and 12 were the opposite way round. The number of stimuli was kept low so as not 

to introduce the confounding effects of practice and fatigue but also with a view to 

using the same tests on clinical populations. 8 practice stimuli were shown prior to 

each block. All subjects had to demonstrate their ability to read all the colour words 

and name all the colours, under test conditions, before proceeding to the test proper.

The stimuli were presented in the form of slides for use with a back-projection 

tachistoscope, at a rate of approximately 1 every 2.5 seconds, as determined by the 

experimenter.
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Apparatus

Apparatus consisted of a Kodak S-AV 2050 projector with custom built shutter 

attachment, controlled by an Electronic Developments tachistoscope timer panel (as 

described in chapter 2, section 2). Slides were projected onto a perspex screen with 

a central fixation spot. Subjects were seated with their chins resting on a padded 

support, a fixed distance from the screen (50 cm). Responses were made by the 

subject’s verbal report activating a voice key. Reaction time (RT) in milliseconds was 

recorded and entered directly into a personal computer for analysis. The maximum 

time allowed for a response was 2500 msec after which an error was recorded for that 

stimulus. The projector beam was passed though a polaroid filter to reduce glare. A 

constant background illumination was maintained throughout the testing sessions.

Procedure

Subjects were instructed to look at the central fixation spot at all times. A warning 

tone would sound over the subject’s headphones, followed 500 msec later by the 

visual stimulus which would remain for 120 msec. Prior to testing, subjects were 

given a standard set of instructions, in which they were asked to name the colour as 

quickly and as accurately as possible.

43  RESULTS

Results were analysed using subject-based analysis of variance (ANOVA) with RT as 

the dependent variable. The analyses were 3-way with congruity and visual field 

(right, left, central or "bilateral") as within-subject variables and sex as a between 

subject variable.

There were significant main effects for congruent versus incongruent colour- 

word combinations (F(l,44)=349.2, P<0.0001), and for visual field (F(2,88)=43.9, 

P<0.0001). The former is accounted for by the greater RT for incongruent stimuli 

(742 msec vs 616 msec) giving a combined Stroop effect (CSE) (incongruent minus 

congruent difference) of 126 msec; the latter, is to be anticipated in the light of studies 

showing a direct relationship between latency and retinal eccentricity (Eriksen &
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Schultz, 1977). The field effect results from a combination of an advantage in the 

central condition versus the lateral conditions and a smaller RVF/LH advantage over 

LVF/RH presentations (see Figure 4.1). When central stimuli are excluded from the 

analyses, there is still of course a main effect of congruity (P<0.0001) as well as a 

main effect of field (F(l,44)=5.28, P<0.05) due to faster responses in the LH. 

However, a field X congruity interaction did not emerge, showing that conflicting and 

concurring Stroop stimuli are both responded to more quickly by the LH than the RH.



LA
TE

RA
LI

SE
D 

ST
RO

OP
 

ST
IM

U
LI

Re
ac

tio
n 

Tim
e 

(m
se

c)
Figure 4.2

92

o  o  o  o  o  o
O  LO O  LO O  LT)
CO h -  Is" - CD CD LO

Pr
es

en
ta

tio
n 

(n
or

m
al

s)



93

Of particular interest is the congruity X field interaction (F(2,88)=3.96, P<0.02) 

when all 3 positions are considered. This reflects the reduced CSE in the central 

versus lateral conditions and can be illustrated by comparing the CSEs in msec for 

left, right and central conditions, which are 135.5, 131.3 and 112.5 respectively. 

While left and right do not differ (t(46)=0.42, P=0.7), each side differs significantly 

from the central condition [left vs centre; (t=2.8, P<0.01), right vs centre: (t=2.4, 

P<0.02)]. Thirty of the 46 subjects had central CSEs less than or equal to their lateral 

CSEs (P=0.055, binomial test, 2-tailed). Since the central condition yields faster RTs, 

it is important to demonstrate that this, in itself, does not account for the reduced CSE. 

The Pearson correlation coefficient of mean RT with CSE was 0.16 (NS). 

Furthermore neither age nor IQ correlated significantly with CSE.

REACTION TIME (MSEC)

Incongruent Congruent All

LH RH BILAT Total LH RH BILAT Total

Females

(N=21)

751 767 705 741 615 615 581 598 669

Males

(N=25)

754 763 716 744 640 641 614 632 687

Total 752 764 711 742 621 629 599 616 679

(N=46)

Table 4.1. Reaction limes for colour naming of congruent and incongruent Stroop 

stimuli in the right and left visual fields and bilaterally/centrally, for males and

females.
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Sex

Results are summarised in Table 4.1. There was no main effect for sex but the sex 

X congruity interaction reached significance (F (1,44)=5.03, P<0.05) when all stimuli 

and when only lateral stimuli are analysed (F (1,44)= 5.24, P<0.05). This is explained 

by an overall larger Stroop effect in females. While females tended to make slightly 

faster responses, the mean CSE (msec) was 143 for females compared to 112 for 

males. Females had equivalent RTs (msec) for incongruent stimuli but appeared to 

benefit slightly more from congruent colour-word combinations than males. However, 

there were no significant sex X field (F=l.l, P=0.4) or sex X field X congruity 

interactions (F(2,88)=0.47, P=0.6).

Central (Bilateral) presentations

Analyzing central presentations separately, revealed the expected main effect of 

congruity (F(l,44)=258.7, PcO.OOOl). There was also a significant effect for side, that 

is colour left versus colour right: (F(l,44)=5.0, P=0.03) with colours in the right 

hemifield (LH) being named more quickly (661 vs 649 msec, see Figure 4.3). There 

was no side by congruity interaction. Gender produced no significant effects or 

interactions.

Errors

Error rates were low: mean 1.8/72 (2.5%) S.D. 1.52, range 0-8%. The mean error rate 

on congruent trials was 0.87/36 (2.4%) compared to 1.17/36 (3.25%) on incongruent 

trials (P=0.07, Wilcoxon test, 2-tailed). Total error score did not correlate with RT 

for either congruent (r=-0.08) or incongruent (r=-0.02) stimuli, nor did it correlate with 

IQ or age. (IQ and RT were correlated significantly (r=0.39, PcO.Ol)).
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Test retest reliability

Five subjects were tested a second time after a 2 week interval. Correlation 

coefficients between RTs in the various conditions in terms of stimulus position and 

congruity ranged from 0.82 to 0.97. There was an overall improvement in RT of 89 

msec, between the first and second test sessions.

4.4 DISCUSSION

There are 5 main conclusions to be drawn from this study: 1) Stroop effects can be 

reliably obtained from stimuli whose two dimensions are separated spatially. 2) There 

are no reliable hemisphere asymmetries in the manifestation of Stroop effects though 

there was a general LH advantage in this study. 3) Colour naming is faster when the 

target is in the RVF. This applies regardless of whether the colour is paired with a 

distracting or facilitating word in the same or opposite visual field. 4) Stroop effects 

carry over the mid-line when bilateral stimuli are used, colour to one side and colour- 

word to the other. 5) The size of the CSE is smaller in the central, compared with the 

lateral conditions. (See General Discussion 4.8).
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METHOD

Subjects

Case 1. M.J. is a 14 year old boy. Pregnancy and delivery were normal and birth 

weight was 81bs 5oz (3770 gms). As a baby his head circumference was noted to be 

abnormally large and a computerised tomography (CT) scan subsequently indicated 

agenesis of the corpus callosum. This has been confirmed by a recent magnetic 

resonance imaging (MRI) scan, which showed complete callosal agenesis with well 

developed longitudinally extending callosal bundles. The presence of the anterior 

commissure could not be confirmed. Other abnormalities included a minor degree of 

incomplete neuronal migration in the parietal white matter and deformity of the 

superior cerebellar vermis. EEG revealed no gross abnormalities and there is no 

history of epilepsy. Visual acuity is 6/9 in each eye.

M.J.’s intellectual level was assessed at age 11 on the Weschler Intelligence 

Scale for Children-Revised (WISC-R), and the following scores obtained.

Verbal Scale Performance Scale

Information 10 Picture Completion 6

Similarities 9 Picture Arrangement 8

Arithmetic 15 Block Design 5

Vocabulary 9 Object Assembly 1

(10 is an average subtest score; range 1-19; S.D.=0.3)

Verbal IQ 105 Performance IQ 68

Verbal intelligence is normal but there is impairment on non-verbal tasks with a 

constructional component. Reading and spelling were above age levels.

M.J.’s right hand (Rh) was preferred on all of Annett’s primary items; writing 

was markedly superior with the Rh compared to the left hand (Lh). This is consistent
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with L hemisphere dominance for language. In tests of tactile naming he was correct 

with 3/7 common objects with his Lh and 4/7 with his right. Tactile cross-localisation 

was near perfect (22-24/24) for within-hand trials but he scored 19/24 correct on Rh 

to Lh trials and 14/24 on Lh to Rh trials, suggestive of some impairment of 

interhemispheric communication.

Case 2. S.B. is an 11:6 year old girl. Pregnancy and delivery were essentially 

normal, and birth weight was 71bs 14oz (3575 gms). She has the hypermelanosis 

syndrome of Ito (features in her case include: horizonal and rotary nystagmus, bilateral 

optic nerve hypoplasia, linear hypermelanotic streaks of the forearm, facial naevus and 

complete agenesis of the corpus callosum, the latter confirmed by CT scan at age 9 

which showed the typical appearances of callosal agenesis). Near vision is normal 

while distance vision is impaired. She has some problems with lateral ocular fixation.

S.B.’s intellectual level was assessed at age 9 on the WISC-R, and the 

following scores obtained.

Verbal Scale Performance Scale

Information 12 Picture Completion 11

Similarities 12 Picture Arrangement 9

Arithmetic 10 Block Design 11

Vocabulary 9 Object Assembly 11

Verbal IQ 105 Performance IQ 104

S.B.’s Rh was preferred on all of Annett’s primary items. This is consistent 

with L hemisphere dominance for language. In tests of tactile naming she was correct 

with 2/8 common objects with her Lh and 3/7 with her right. Tactile cross­

localisation was perfect (12/12) for within-hand trials but she scored 6/12 correct on 

Rh to Lh trials and 8/12 on Lh to Rh trials, suggestive of some impairment of 

interhemispheric communication.
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Case 3. E.W. is a 31 year old woman. Pregnancy and delivery were complicated by 

hyperemesis. At age 3 she had a febrile convulsion and went on to have frequent 

seizures thereafter. She went to a school for the educationally subnormal and left 

without qualifications. She lives at home with her parents and younger brother and 

works part-time as a nursery nurse. There is no family history of note. The patient 

experiences seizures approximately twice yearly. These consist of premonitory 

dizziness followed by sudden twisting of her body to the left and loss of 

consciousness. On 2 or 3 occasions she has experienced left sided numbness after an 

attack, improving over a few days.

On examination she has slight facial asymmetry and shows slight left limb 

weakness. Tendon reflexes are brisker on the left and the plantar response equivocal 

on that side. Sensation is altered over the left side of her body. The visual fields are 

full to confrontation. No other physical anomalies are present. Current medication 

is phenytoin, 350 mg daily. Examination of the mental state is unremarkable. She 

is cheerful and cooperative, establishing a normal rapport though she becomes anxious 

when stressed by cognitive assessment. Her speech is normal in form and prosody. 

She spends her days working, looking after the family pets, listening to music on the 

radio and watching television. She does not complain of any specific difficulties with 

memory, orientation, recognising objects or faces or with language.

CT scan was first performed at age 29 to investigate the prolonged numbness 

following convulsions and this revealed agenesis of the corpus callosum and gross 

dysgenesis of the RH.

EEG showed intermittent 10 Hz alpha activity of modest amplitude over 

posterior regions. There were frequent, intermittent sharp and slow waves with a right 

frontal emphasis, sometimes occurring as brief trains of 12 Hz activity. This provided 

evidence of epileptiform activity arising form the right frontal region.

E.W.’s intellectual level was assessed on a shortened version of the Weschler 

Adult Intelligence Scale-Revised (WAIS-R), and the following scores obtained.
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Verbal Scale Performance Scale 

Picture Completion 

Picture Arrangement 

Block Design

Digit Span 

Similarities

5

4

4

6

Arithmetic 4 5

Vocabulary 4

Verbal IQ 69 Performance IQ 67

On the Warrington Recognition Memory Test, her performance was average for words 

(47/50) but poor for faces (23/50). On tests of recall, using the Wechsler Memory 

Scale, her performance was weak on the verbal part (5/24, 3/24: Logical Memory, 

Story A, immediate and delayed, respectively), and poor on the visual part (2/14, 0/14: 

Visual Reproduction, immediate and delayed, respectively. Her object naming and 

performance on a fragmented letters perception task were normal.

Intelligence is in the mental retardation range. Literacy skill were not 

selectively impaired (more detailed cognitive testing will be reported in a later 

publication).

E.W.’s right hand (Rh) was preferred on all of Annett’s primary items; In tests 

of tactile naming she was correct with 4/5 common objects with her Lh and 5/5 with 

her right. Tactile cross-localisation was tested by asking her to retrieve objects with 

one hand after they had been felt by the opposite hand and her performance was good 

(6/6 correct) despite left hand sensory impairment. Tests of motor sequencing such 

as the fist-edge-palm task, were copied with great difficulty and could not be 

performed by the patient alone.

Tachistoscopic testing of each visual field showed that E.W. could read colour 

words (RVF 9/10; LVF 7/10) and name colours (RVF 8/8; LVF 7/8) relatively well 

but was on average around 400 msec slower with LVF items (see below).
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METHOD

The same testing procedure was used for the 3 acallosals as with the normal subjects, 

with the exception that M J. and S.B. were given the 72 stimuli twice and their 

responses averaged over 2 trials. As before, all three subjects were tested initially to 

confirm that they could reliably identify colours and read colour words presented 

tachistoscopically.

4.6 RESULTS

The results are summarised in Table 4.2. All subjects showed Stroop effects overall 

i.e., slower RT to incongruent stimuli (M.J. P=0.008; S.B. P=0.1; E.W. P=0.06). Error 

rates were low (range: 3-9%). M.J. showed little difference between his RT for 

congruent stimuli in the three test positions (ANOVA: P=0.9); while RT to 

incongruent stimuli was lowest in the central compared with the lateral positions, this 

interaction did not reach statistical significance (P=0.15). In other words, the trend 

was for CSE to be lowest with central (bilateral) presentations (Table 4.3). Although 

this pattern holds for all the acallosals it is complicated by lateral asymmetries. S.B. 

showed very little Stroop interference when colour-word combinations were presented 

in the RVF/LH suggesting that her LH is not competent for reading. Subject E.W.’s 

RH is clearly abnormal and this was reflected in impaired RH processing of simple 

colours and words as well as Stroop stimuli. Her data show no

interference/facilitation whatsoever with RH colour-word pairs, moderate effects in the 

central condition while the effects in the LH were very large indeed.
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Incongruent Congruent All

LH RH BILAT Total LH RH BILAT Total

M.J. 967 944 863 917 859 792 801 803 864

S.B. 1166 1192 1035 1120 1118 999 986 1044 1081

E.W. 1111 1308 961 1125 693 1418 766 950 1032

Total 1081 1148 953 1054 890 1070 851 932 992

Table 4.2. Reaction times for colour naming of congruent and incongruent Stroop

stimuli in the right and left visual fields and bilaterally/centrally, for 3 acallosals.

LH RH BILATERAL "CALLOSAL INDEX"*

Normals (mean) 131 136 112 -21 (-34 to -8)

(n=46)

Acallosals

M.J. 108 152 62 -68

S.B. 48 193 49 -71.5

E.W. 418 -110 195 41

*"C A L L O S A L  I N D E X "  =  C E N T R A L  S T R O O P -(L H  S T R O O P + R H  S T R O O P /2 )  w ith  9 5 %  c o n f id e n c e

in te r v a ls .

Table 4.3. Combined Stroop effect (CSE) (incongruous minus congruous reaction

times') for right, left and bilateral/central presentations, in normals and 3 acallosals.

Also shown is the "Callosal Index".. the difference between the CSE in the central

position minus the mean of the CSE’s in the 2 lateral positions.
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Looking at the central/bilateral condition: CSEs did not significantly differ when the 

colour was left and the word was right for M.J. and S.B. Both showed a small 

(statistically insignificant) advantage of 21 msec and 20 msec respectively, when the 

colour was to the RVF/LH, similar to normals. E.W. showed a marked CSE for 

colour left - word right combinations in contrast to the opposite configuration (391 

msec vs 15 msec; t=4.65; P<0.01). This can be interpreted as follows: when the 

colour goes to the malfunctioning RH and the word goes to the LH, E.W. makes her 

decision on the basis of the verbal information primarily. When the combination is 

congruent, it appears that verbally coded colour-word information can be transferred 

at speed interhemispherically, to confirm the response; when the stimuli are 

contradictory a more laborious process seems to take place which eventually produces 

the correct verbal response. Put another way, there was an advantage for "same" 

versus "different" responses in cross field matching. (N.B. Patient E.W. produced 

5/72 errors in total all with incongruent stimuli, 3 central and 2 with RH presentation. 

With the central ones, she read the word rather than naming the colour).

4.7 DISCUSSION

The acallosals’ performance requires cautious interpretation. M.J. gave the clearest 

results, in that the Stroop effects, which were of a similar order of magnitude as the 

normals, were approximately equal for both RH and LH trials. However, as predicted, 

the CSE was considerably reduced with central presentations implying that without the 

callosum (and in M.J.’s case, the anterior commissure), the transfer of the precise 

semantic information necessary for interference/facilitation of colour naming across 

the mid-line is impeded. The other cases’ data are less easily explained since the 

within-hemisphere Stroop effects were unusual, in the LH for S.B. and the RH for 

E.W. The lack of word interference/facilitation in S.B.’s LH is not consistent with her 

cerebral dominance as inferred from her handedness, but may instead be related to 

difficulties in lateral gaze fixation. E.W. poor performance with RH stimuli is not 

surprising given her dysgenic RH as seen on the CT scan. If comparison is made
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between central and her more ’normal’ RVF/LH performance, the reduced CSE when 

colour-word and colour strip are separated across the midline is impressive (195 vs 

418; see Table 4.3).

4.8 GENERAL DISCUSSION

Normal subjects exhibited reliable Stroop effects with stimuli in which the two 

elements were separated in space (Kahneman & Chajczyk, 1983); indeed the size of 

effect (mean=126 msec) is very close to that of the previous authors (121 msec) for 

their central displays. It is however somewhat greater than the 74 msec found by 

Dyer (1973b) and presumably reflects the larger angle of separation in that study. The 

slightly larger effect found in females was not anticipated as it was not found in 

previous studies (Franzon & Hugdahl, 1987; Jensen & Rohwer, 1966; Simon et al., 

1985) and will not be discussed further.

Overall RT in the present study is rather slow while error rates are low. It 

appears that the subjects may have concentrated on accuracy at the expense of speed. 

This may in part explain the second main conclusion, namely a lack of lateralised 

asymmetry for Stroop processing, since when Franzon and Hugdahl (1987) varied their 

task instructions to maximise accuracy, the asymmetry, which was clear for errors 

only, disappeared. However, the results can be taken as positive confirmation of two 

other studies (Simon et al., 1985; Warren & Marsh, 1978), neither of which showed 

asymmetry. Both congruent and incongruent colour-word pairs were named more 

quickly with LH presentations. This again is consistent with some studies (Simon et 

al., 1985; Warren & Marsh, 1978), but not others (Schmit & Davis, 1974; Franzon & 

Hugdahl, 1986; Hugdahl & Franzon, 1985). The finding is explained most 

parsimoniously with reference to studies on colour naming (Geschwind & Fusillo, 

1966; Zihl & von Cramon, 1980; McKeever & Jackson, 1979), which suggest that the 

speed advantage is due to ready access to the LH naming system while colours 

presented to the RH require interhemispheric transfer, at some time cost, prior to 

naming.
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The same line of reasoning explains the RT advantage with the central 

(bilateral) stimuli when colours are presented to the LH, and words to the RH. It 

might have been predicted that the CSE would be greater in the reverse condition, 

since the colour-word could have been anticipated to exert stronger effects (both 

facilitative and inhibitory) when directed to the LH while the RH attempted to deal 

with assigning a name to the colour strip. As can be seen most clearly by reference 

to Figure 4.3, there was no interaction of this sort: the incongruent and congruent 

’lines’ remain parallel as they pass from right to left. Interhemispheric transmission 

therefore appears to be bi-directional with respect to Stroop effects (essentially 

confirming Dyer’s original observation; see also Nettleton & Bradshaw, 1983 for 

further discussion of this issue). This bidirectionality seems to be limited by both the 

capacity of the interhemispheric pathways and the normal functioning of the 

hemispheres. Case E.W. showed that the speed of colour naming in her abnormal RH 

was exquisitely sensitive to verbal information presented to the opposite hemisphere - 

presumably conveyed subcortically. On the other hand, the LH performed 

adequately, apparently oblivious to the word in the RH - presumably because it was 

only weakly represented. S.B. showed a degree of abnormal processing of RVF/LH 

Stroop stimuli but this did not disrupt performance in the central condition.

The distance between the lines in Figure 4.3, corresponds to the central CSE 

which, while substantial in normal subjects, is slightly less than the lateral CSEs 

derived from Figure 4.2 and given in Table 4.3. The difference between the lateral 

versus central CSE - the "Callosal Index" - implies that interhemispheric transmission, 

presumably via the corpus callosum, acts as a partial barrier to Stroop effects while 

intra-hemispheric interference/facilitation is relatively unconstrained and symmetrically 

distributed (see Friedman & Poison, 1981; Moscovitch & Klein, 1980) for related 

discussion). This picture is exaggerated in acallosal M.J. He is unable to benefit from 

the congruity between word and colour in the central/bilateral condition while he is 

less distracted by incongruity. Thus, the relevance of the callosum and possibly the 

anterior commissure, in this transmission, is supported. The other acallosals provide 

further support for this but their data are more equivocal given their asymmetrical 

processing speed with lateralised Stroops.
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The question as to whether this barrier is selective in any way is less clear. 

Inspection of Figure 4.2 displays the sharp "V" of the upper, incongruent curve in 

comparison with the gentler concavity of the lower, congruent curve. This suggests 

that although interfering colour-word information is more successfully filtered than in 

the within-hemisphere condition, the same is true for congruent information. These 

differences cannot be resolved since the experiment reported here, unfortunately, did 

not included a neutral condition against which interference and facilitation could be 

quantified. The safest assumption (extrapolating from Dyer, 1973a) is that the cross- 

callosal Stroop effect, like its lateral counterpart, is a combination of both of these 

influences, in roughly the proportions 3:2 respectively.

One additional caveat must be inserted, concerning the effects of the position 

of visual presentation with respect to distance from the fovea, which were not entirely 

controlled. The selectivity of the "attentional spotlight" may differ according to visual 

angle (Downing & Pinker, 1985) and this could explain some of the lateral versus 

central effects noted. Further experiments which manipulate visual angle in the 

vertical plain are needed to clarify this. Nevertheless, an argument invoking 

differences in attention is not incompatible with and may even compliment the more 

neurologically based argument presented here.

In conclusion, the present study suggests that colour-words influence the speed of 

colour naming equally in both cerebral hemispheres. This influence is attenuated 

when the colour and its word partner are in separate visual hemifields, and is probably 

mediated by commissural tracts. Finally, the methodology described above appears 

suitable for testing the functional characteristics of interhemispheric transmission in 

acallosals, and may -be useful in the study of other clinical conditions where 

abnormalities in this realm have been postulated (David, 1987; Nasrallah, 1985). This 

will be pursued in chapters 7 and 8.
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4.9 Summary

Interference and facilitation of tachistoscopically presented colour stimuli by adjacent 

incongruent and congruent colour-words (the Stroop effect) was examined in the right 

and left visual fields, and centrally, in normal subjects and three acallosals. In the 

central condition, the word and colour were separated across the fovea. Normal 

subjects showed a small left hemisphere advantage for colour naming. The combined 

Stroop effect (CSE), that is the reaction time difference between incongruent and 

congruent pairs, was the same in both visual fields but reduced centrally. 

Furthermore, in the central condition, the CSE was the same regardless of the side on 

which the word or colour appeared. One of the acallosals, showed an exaggeration 

of this pattern, suggesting that the corpus callosum, by acting as a partial barrier, 

mediates the inter-hemispheric Stroop effects. The other acallosals while providing 

some tentative support for this, showed evidence of lateralised dysfunction so that 

their performance was less easily interpreted. The methodology described would 

appear to have applications in studying the functional characteristics of the corpus 

callosum in a variety of clinical groups.
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CMAFlimS

VISUAL IMAGERY AND VISUAL SEMANTICS IN THE CEREBRAL 

HEMISPHERES IN SCHIZOPHRENIA



5.1 INTRODUCTION
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The deviation from the normal asymmetries in brain structure and function in 

schizophrenia has lead to a number of theories concerning brain development and 

physiology, and how these may become disordered (Flor-Henry and Gruzelier, 1983; 

Cutting, 1985; Crow, 1990). In the case of functional asymmetries, the failure to 

demonstrate the predicted psychological processing superiority of one or other 

hemisphere on a given task, is often used to explain the manifest phenomena of 

schizophrenia. For example the absence of the expected left hemisphere (LH) 

advantage may be linked to disorders of language production, while a right hemisphere 

(RH) deficit may be linked to affective or body image disturbance (Gruzelier, 1984; 

Cutting, 1990; see also Liddle, 1987).

Visual imagery is a psychological operation which has recently attracted 

considerable attention from neuropsychologists (Paivio and Te Linde, 1982; 

Ehrlichman and Barrett, 1983) particularly with respect to cerebral asymmetries 

(Kosslyn 1987; Kosslyn, et al., 1989). "Imagery" can be broken down into a series 

of component parts (Kosslyn 1987; Farah, 1984) which have been found to be 

distributed unequally in the cerebral cortex. There appear to be at least two systems 

for processing visual information, one specializing in categorical and semantic 

distinctions related to LH functions, and the other, specialized in spatial coordinates, 

more usually associated with the conventional notion of visual imagery, related to the 

RH. The present study employed tachistoscopic tests of visual processing, previously 

shown to produce reliable field and hence hemisphere superiorities in normals, in a 

group of schizophrenic and affective disorder patients. These processes underlying 

visual cognition (Humphreys and Bruce, 1989) were chosen since a disorder in this 

realm is a plausible basis for hallucinations (McGhie and Chapman, 1961; Seitz and 

Molholm, 1974; Slade and Bentall, 1988), a cardinal feature of schizophrenia, as well 

as other psychotic phenomena (see Cutting and Ryan, 1982). The study of imagery 

is therefore of obvious clinical relevance.

The tachistoscopic visual tests chosen were developed by the authors (David and 

Cutting, 1992; see chapter 2) with a view to their application on clinical subjects, and
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have a number of advantages in this regard. First, standardized picture stimuli were 

used which were familiar and easily identified even when presented tachistoscopically. 

Second, tasks which produce reliable RH advantages are hard to come by in 

experimental neuropsychology (Bradshaw and Nettleton, 1981; Davidoff, 1982). One 

visual imagery task, mental rotation, has been studied using divided visual techniques 

but the results with respect to hemisphere asymmetries have been contradictory 

(Fischer and Pellegrino, 1988; Ditunno and Mann, 1990; Sergent, 1990a). The tests 

employed in the current study have been shown to reveal lateralized differences, one 

producing a right and the other a left hemisphere advantage, on two independent 

samples (David and Cutting, 1992). The same stimuli were used for both tests, the 

only difference being the nature of the task requirements (c.f. Seamon and Gazzaniga, 

1973). In one, subjects are asked whether or not the item depicted is a living thing - 

a visual semantic task, and in the other, whether it is bigger or smaller than a cat - 

a visual imagery task. Hence any observed hemisphere differences on the two tasks 

cannot be due to un-matched perceptual features of the stimuli, a problem when word 

and shape identification tasks are compared (Gur, 1978; Colbourn and Lishman, 1979; 

Eaton et al., 1979; see chapter 1 for discussion). Third, the use of non-linguistic 

stimuli reduces the confounding effects of education and literacy (Lezak, 1983) which 

may exaggerate any deficits found in schizophrenic patients in relation to controls (see 

chapter 1). Finally, the tasks were also designed to address the hypothesis proposed 

by Cutting (1990) that many of the features of schizophrenia can be reproduced by 

dysfunction of the right hemisphere.

Cutting (1990) argues that the primary function of the RH is to support the 

cognitive operations underlying judgements of individuality within a class of similar 

members, while that of the LH is to determine whether or not an entity belongs to a 

category or class. When the balance of activity between the hemispheres is disturbed, 

a range of perceptual disorders may ensue. The nature of these disorders will depend 

on which hemisphere is underactive relative to its partner. Cutting believes that much 

of the phenomenology of schizophrenia is best explained by relative RH underactivity.
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The current study examined this hypothesis by measuring performance on 

visual cognitive tasks in a mixed group of patients with schizophrenia, suffering from 

a range of abnormal experiences. The relationship of hemisphere differences, to 

normal subjects’ experiential vividness of visual imagery was also examined.

The purpose was two-fold: the first aim was simply to see whether the 

expected hemisphere asymmetries were maintained in schizophrenic patients and 

psychiatric controls. Of particular interest was whether advantages on visual semantic 

and visual imagery tasks would emerge in the schizophrenic group, for the LH and 

RH respectively, and if not, whether any deficit was specific to the disorder. The 

second aim was to explore the possible relationships between visual imagery, normal 

and disordered, and hemisphere functioning.

Hallucinations may be regarded as a consequence of disordered imagery a 

position from which at least two possible explanatory models may be proposed. The 

first is that hallucinations arise from internal images stored in semantic memory and 

which intrude into consciousness because of overactivation of certain elements or lack 

of supervisory control (see also Hoffman, 1986; Hemsley, 1987). In the second 

model, hallucinations may be seen to result from the direct manipulation of external 

images (as in visual illusions), as a consequence of an uncontrolled or malfunctioning 

visual imagery system.

5.2 METHOD

Subjects

Controls: Thirty normal subjects drawn from academic and ancillary staff of the 

Institute of Psychiatry were tested (details of their performance have been reported in 

chapter 2 and appendix I).

Patients: 46 schizophrenic patients from the Bethlem Royal and Maudsley Hospitals, 

London, who were mainly in-patients (n=29) though some out-patients were studied. 

Twenty-two affective disorder patients from the same hospital group were also
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recruited (These same patients participated in the experiments described in chapters 

6, 7 and 8. See appendix I) Subjects with a history of brain disease, mental 

impairment or significant substance abuse, were excluded.

Patients were diagnosed according to DSM-III-R criteria (American Psychiatric 

Association, 1987) based on symptoms at interview - using the Present State 

Examination (PSE) (Wing, Cooper and Sartorius, 1974) - and those recorded in the 

case notes.

The schizophrenic patients were classified by their illness course, following 

DSM-III-R as: acute (8); sub-chronic with acute exacerbation (13); chronic (12); 

subchronic (7); and, in remission (6). Twenty one schizophrenics were on 

anticholinergics, 4 on antidepressants and 1 was on lithium.

The affective disorder patients comprised 12 with major depression and 10 with 

bipolar affective disorder. Ten patients were on lithium and 10 on antidepressant 

medication. All but 6 schizophrenics and 12 affectives were receiving neuroleptic 

drugs.

Tests o f Visual Cognition

This experiment consisted of 2 tasks: in the first, subjects had to make a categorical 

judgement based on fundamental knowledge stored in semantic memory - namely 

whether an item depicted was living or non-living. Normals show quicker reaction 

time (RT) on this task when items are presented to the right visual field (RVF) 

compared with the left visual field (LVF) (Wilkins and Moscovitch, 1978). This 

distinction appears to have a strong neuropsychological basis in that focal brain lesions 

may produce dissociable impairments in naming and recognising living and non-living 

things (Warrington and Shallice, 1984). In this task, access to this knowledge store 

is via picture stimuli hence the term, visual semantics (Humphreys and Bruce, 1989; 

Farah et al., 1989).

The second task required the subject to make a relative size judgement. A 

picture of a common item was shown and the subject asked to state whether the item 

in real life was bigger or smaller than a domestic cat. Normals show quicker RT on
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this task when items are presented to the LVF/RH compared with the RVF/LH. 

Although it may be possible to make this judgement on the basis of visual semantics, 

close comparisons require the subject to form a visuo-spatial representation or "mental 

image", to scale, of the item sitting next to a cat, and then reach a decision. This calls 

upon RH specialisation. Support for this mechanism and its location comes from the 

finding that the closeness of the size difference is highly correlated with reaction time 

(RT) when items are shown in the LVF but not RVF (David and Cutting, 1992; see 

also Paivio, 1975; chapter 2).

Stimuli These consisted of 24 items from the Snodgrass and Vanderwart (1980) as 

described in chapter 2, experiment 2 (see Figure 2.1).

Apparatus and Procedure (as in chapter 2).

i) Visual semantic task: "You are going to see pictures of common things flashed up 

on either side of the screen. I would like you to decide as quickly and as accurately 

as possible whether the picture is of a living thing, such as an animal, plant, or part 

of the body or a non-living thing, such as a car, table etc."

ii) Visual imagery task: "You are going to see pictures of common things flashed up 

on either side of the screen. I would like you to decide, as quickly and as accurately 

as possible whether the thing in real life is bigger or smaller than a domestic cat. 

Imagine the thing next to a cat and decide whether it would be bigger or smaller."

Subjects were then instructed to press one of two buttons marked appropriately, 

with the middle or forefinger of one hand. Response hand was changed after every 

24 stimuli, the order balanced across subjects.

Ratings

All subjects were administered the National Adult Reading Test (NART) (Nelson and 

O’Connell, 1978) to give an estimate of IQ and their years of education recorded. All 

were right-handers according to Annett’s classification (1970).

Normal subjects completed a questionnaire for hallucinatory predisposition (Launay
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and Slade, 1981), which consists of a 12-item scale measuring vividness of auditory 

and visual imagery (e.g., "On occasions I have seen a person’s face in front of me 

when no-one was in fact there").

Overall psychopathology was rated on the modified Brief Psychiatric Rating 

Scale (BPRS) (Bech, Kastrup and Rafaelson, 1986); range 0-36. The number of 

hospital admissions was also recorded. Depressives were given the Beck Depression 

Inventory (BDI) (Beck et al., 1961).

53 RESULTS

Means and standard deviations for age, IQ, years of education and BPRS scores are 

given in Table 5.1 for the 3 groups.

Normals Affectives Schizophrenics

Sex, M/F 17/13 8/14 30/16

Age, yrs 33.1 ± 6.1 37.4 ± 13.7* 30.9 ± 7.6

IQ (NART) 115.5 ± 8.5 113.1 ± 9.2 107.2 ± 11.7#

Education 16.6 ± 3.2 14.3 ± 3.5 12.4 ± 2.9#

BPRS - 15.9 ± 4.7 17.0 ± 6.9

Hospital - 2.9 ± 2.6 3.7 ± 2.9

admissions

Table 5.1. Comparison of normal controls, patients with affective disorder and

schizophrenia for background characteristics: MeanslSD.

Comparison of groups using ANOVA and the Least Significant Difference procedure: 

* Affectives differ from both normals and schizophrenics at P<0.05. #Schizophrenics 

differ from affectives and normals at P<0.05. Patient groups not significantly different 

on BPRS (P=0.5) or number of hospital admissions (P=0.3).
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Statistical analyses were carried out using SPSS/PC software. Subject-based 

analysis of variance (ANOVA) was performed with reaction time (RT) as the 

dependent variable. The analysis was 2X2X2X3, with condition (category or size), 

and visual field as the within-subject variables and sex and diagnosis as between- 

subject variables. There was no main effect for gender (F=.80, df 2,92; P=0.4). The 

main effect of visual field approached significance (F=3.03, P=0.08). Diagnosis 

produced a highly significant effect (F= 19.47, P<.001). There was also a significant 

main effect of condition (F=4.39, P=0.04). The only significant interactions were 

condition X field (F=7.18, P<0.01) and of most interest, the interaction, diagnosis X 

condition X field (F=3.51, P=.03) see Figure 5.1).
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Figure 5.1
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From Figure 5.1 it is evident that both patient groups show slowed RT with 

the schizophrenics slowest of all. This was presumably a consequence of non-specific 

illness related factors. Neuroleptic medication did not produce any systematic effects. 

The main effect of condition was due to the generally longer RTs for the imagery 

task. The diagnosis X condition X field interaction was due to the schizophrenics’ 

loss of the expected LH advantage for the visual semantic task; in fact the data point 

to a RH advantage. However, the expected RH advantage for the imagery task was 

maintained.

Having established an RH advantage on the size task, the next step was to 

examine the relationship between size difference and RT for each hemisphere (Paivio, 

1975; David and Cutting, 1992; chapter 2). There was a clear relationship for RH 

presentations, between RT and the rank order of size of the items starting with the 

largest size difference, be it bigger or smaller, and ending with the item whose size 

was deemed nearest to that of a cat (RH: rank order correlation=0.43; P=.04. LH: 

correlation=0.0; NS). Similar analyses were carried out using a logarithmic 

transformation of RT (Moyer, 1973), which yielded a stronger correlation for RH 

presentations (r=.48, P=.02) but no correlation for the LH.

Error rates were uniformly low (<10%). ANOVA performed with errors as the 

dependent variable revealed no main effects or interactions with diagnosis. Error rate 

correlated with RT (r=.37, P<.01) excluding speed-accuracy trade-off.

Among the normals alone, IQ and age exerted little effect on the performance of either 

the imagery or visual-semantic task (all Pearson’s r<.29).

Taking the subjects as a whole, overall RT correlated with IQ (-.32, P<01), age 

(.12) and (patients only) BPRS scores (.58, P<.001) and number of admissions (.34, 

P<.01).

Since the groups were not matched for some of these variables it was decided to 

derive simple indices for hemisphere advantage for the 2 tasks and use these as the 

dependent variables rather than raw RT. The LH advantage for the visual semantic
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task (living/non-living) was calculated by subtracting the RVF RT from the LVF RT. 

The RH advantage for the visual imagery task (bigger/smaller than a cat) was 

calculated by subtracting the LVF RT from the RVF RT. The index of LH advantage 

on the categorical-semantic task did not correlate significantly with RT on any of the 

subject variables including age and education, within the normal or psychiatric groups. 

The index of RH advantage on the spatial-imagery task showed a negative correlation 

with IQ (r=-.28) and error rates (r=-.3) but none of the other variables. BPRS and 

BDI did not correlate with any of these new measures.

When comparing the 3 diagnostic groups on these variables, there was no 

difference for the RH advantage (imagery task); ANOVA, F=1.25, P=.3; while the LH 

advantage (semantic task) approached significance; ANOVA, F=2.8, P=.06. Planned 

comparisons using the least significant difference test showed that the schizophrenics 

differed significantly from controls (P<.05).

5.4 Hallucinatory Predisposition and Hallucinations

Normal subjects’ scores on the Launay-Slade hallucinatory predisposition scale did not 

correlate significantly with RT for the imagery task for either hemisphere but showed 

a modest but significant negative correlation with LH semantic RT (r=-.25, P<.05, 2- 

tailed) but not LVF/RH semantic RT (r=-.19, NS). This points to LH activity being 

relevant to hallucinations rather than RH activity.

In the schizophrenics, the presence of auditory hallucinations or first rank 

symptoms, as classified by the PSE (Wing et al, 1974), did not influence RT on any 

of the tasks, for either hemisphere. Fifteen patients had experienced visual 

hallucinations in the previous month. ANOVA with condition, and field as within- 

subject factors and hallucination status as the between-subject factor, showed 

significant or near significant main effects for all three factors (Figure 5.2). While the 

hallucination X condition X field interaction failed to reach significance (F=1.4, P=.2) 

post-hoc t-tests revealed that visual hallucinators had faster RT than non-hallucinators 

on the semantic task (t-test, P=.06) but not on the imagery task (P=.2) (they were 

generally faster responders). This was more pronounced for RH (p=.04) vs LH (P=.2) 

presentations (see Figure 5.2).
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CT Scanning

Brain CT scans were performed on 31 schizophrenics. The scanned patients did not 

differ from the remaining 15 on mean IQ, age, years of education or BPRS score, (all 

P>0.5 by t-test, 2 tailed). The size of the lateral ventricles and intracranial space was 

determined by manual planimetry from the slice showing the largest lateral ventricular 

area by a colleague (Dr Peter Jones) blind to the psychological test results. 

Ventricle:brain ratio (VBR) was then calculated (Synek et al, 1976). VBR showed 

weak negative correlations with RT on both visual tasks r=-.18 for the living/non­

living task and r=-.25 for the size judgment task. VBR was not related to hemisphere 

differences.

5.5 DISCUSSION

It was possible to carry out tachistoscopic testing of visual cognition in a relatively 

large group of operationally defined schizophrenic and affective disorder patients. 

While schizophrenics showed the poorest performance as determined by RT, they were 

not in general more impaired in comparison to psychiatric controls many of whom 

shared the same medication, and who as a group, had similar levels of 

psychopathology and number of hospital admissions. The study showed that a RH 

advantage on a task requiring visual imagery in order to make a judgement of relative 

size, though small, was confirmed. The assumption that this task requires the use of 

visual imagery is supported by the inverse linear (and log-linear) relationship between 

the size difference and RT in the RH only, as shown by the correlation statistics. This 

finding is entirely consistent with the situation seen in the normal sample, reported in 

detail in chapter 2.

Surprisingly, the expected LH advantage for categorical judgements using 

semantic memory was not seen in the schizophrenic patients. This asymmetry was 

present in psychiatric controls and is a robust effect in normals (David and Cutting, 

1992). This differential deficit seen in the schizophrenics is unlikely to be due to task
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difficulty in that semantic categorisation was, if anything, the less taxing of the two 

tasks, as reflected in faster RTs (see chapter 1). Similarly, the lack of relationship to 

cerebral atrophy as measured from CT scans also suggests that the finding is not a 

consequence of global neuropsychological impairment (Owens et al., 1985) seen in 

some schizophrenic patients. Whether this lack of functional asymmetry is related to 

lateralised structural abnormalities must await investigation in which details of brain 

morphology such as those obtained from magnetic resonance imaging are coupled with 

data from divided visual field and similar techniques.

The lack of asymmetry on the visual semantic task suggests some impediment 

to gaining access to the LH semantic system from an external visual image in 

schizophrenia. The fact that error rates were generally low and did not differ between 

the three groups, points to a problem of access rather than degradation of the store of 

information in schizophrenia (see Shallice, 1988, for more on this distinction). This 

accords with recent reports of memory functioning in chronic schizophrenia (Tamlyn 

et al., 1992).

Level of psychopathology did not strongly affect the pattern of results obtained 

in either clinical group although it caused a diffuse slowing of RT. In the depressives, 

higher Beck depression scores were not related to attenuated function of either 

hemisphere as has been suggested using attentional paradigms (David and Cutting, 

1990; see chapters 3 and 6). The exception to this overall impression was 

hallucinations. The pattern of data hint that the LH may be responsible for vivid 

visual imagery in normals but that an imbalance between the hemispheres, with the 

RH relatively overactive, underlies visual hallucinations in schizophrenics. The results 

from both normals and schizophrenics point to the visual semantic system as seat of 

"hallucinations" in both cases rather than the system which underlies visuo-spatial 

imagery. However, further inspection of Figure 5.2 points to the loss of the expected 

RH advantage on the imagery (size) task amongst hallucinators. It may therefore be 

the combination of a poor imagery system and an overactive RH semantic system 

which leads to the visual hallucinations. It must be acknowledged that these 

speculations based upon presumed imbalances allow for more degrees of freedom in
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comparison to hypotheses based on absolute deficiencies. They must therefore be 

regarded for the moment as avenues for further research rather than definitive findings.

In conclusion, the study reported shows a specific deficit in a task requiring access to 

the LH semantic system from pictorial stimuli in schizophrenia. The RH visual 

imagery system appears to be intact. Such an imbalance may be implicated in the 

production of certain abnormal phenomena such as visual hallucinations.
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5.6 Summary

Divided visual field tasks were given to normal subjects, and patients with 

schizophrenia and affective disorder, to investigate hemisphere differences in the 

visual processing of standardised pictorial stimuli. There were two conditions: in the 

first, subjects were asked to decide whether a common entity represented by a picture 

was living or non-living, a task involving a categorical judgement based on semantic 

information; a left hemisphere task. In the second condition, subjects judged whether 

these depictions represented entities which were bigger or smaller than a cat; a right 

hemisphere task requiring visual imagery to compare spatial dimensions. It was found 

that the patient groups, while showing slower reaction time (RT) overall, both 

displayed a right hemisphere (RH) advantage on the imagery task. Furthermore, the 

schizophrenics’ RHs showed the normal relationship between closeness of size 

comparison and RT, additional evidence that the visual imagery mechanism is intact. 

However, these patients failed to show the expected left hemisphere advantage on the 

visual-semantic task. Performance on the semantic task was related to the experience 

of vivid imagery in normals and visual hallucinations in the schizophrenics. The 

possible contribution of hemispheric imbalance in the production of visual 

hallucinations from a disordered semantic system is discussed.
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CHAF1TM. <S>

SPATIAL AND SELECTIVE ATTENTION IN THE CEREBRAL 

HEMISPHERES IN DEPRESSION, MANIA AND SCHIZOPHRENIA



6.1 INTRODUCTION
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Neuropsychological research in psychiatry is concerned with the physiological basis 

and cerebral localisation of disordered psychological processes, for example, attention, 

and states such as depression and psychosis. Work to date has uncovered different 

contributions by the two cerebral hemispheres to affective disorder and schizophrenia 

(Cutting, 1985; Flor-Henry, 1986). Some research points to a link between disordered 

affect in general and the right hemisphere (RH) (Taylor & Abrams, 1987) while other 

work looking at the effects of brain lesions suggests that mania and depression are the 

result of left and right hemisphere dysfunction respectively (Sackeim et al., 1982; 

Silberman & Weingertner, 1986) (c.f. Robinson et al., 1988). Most authors favour the 

LH as the site of disturbance in schizophrenia (Flor-Henry, 1986; Crow, 1990) 

although others recognise the likelihood that both hemispheres may be involved 

(Gruzelier, 1984), perhaps because of corpus callosum dysfunction (David, 1987), 

some emphasising RH disturbance (Cutting, 1990). EEG Studies of mood and arousal 

show a similar lack of consensus (Tucker et al., 1981; Davidson et al., 1985; Ahern 

& Schwartz, 1985).

The techniques of experimental neuropsychology such as divided visual field 

studies, have shown an RH advantage in perceiving sad facial expressions and an LH 

advantage for happy expressions, (Reuter-Lorenz et al., 1983) while other studies have 

shown an RH advantage regardless of the valence of the affect in both normal (Ley 

& Bryden, 1979; Strauss & Moscovitch, 1981) and brain damaged populations (Borod 

et al., 1986). Facial perception, facial affect recognition in particular, has been found 

to be impaired in schizophrenic and depressed patients (Morrison et al., 1988; Zuroff 

& Colussy, 1986). There is doubt as to the specificity of this deficit, particularly in 

schizophrenia. Some have argued that it is due to global cognitive impairment across 

a range of tasks, regardless of which hemisphere is being probed (Novic et al., 1984), 

while others propose that poor facial processing is secondary to psychological deficits 

localised to the RH (Magaro & Chamrad, 1983; Cutting, 1990).
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In order to clarify some of these issues, particularly the contribution of lateralised 

hemisphere dysfunction leading to abnormal attention, arousal and affect, in 

psychiatric disorders, a chimeric faces test was employed (Campbell, 1978; Levy et 

al., 1983a; David, 1989c). When right-handers are required to judge whether a 

chimeric face is happy or sad, a consistent bias towards the composite whose half-face 

falls to their left, a "left hemi-facial bias (LHFB)" is observed. The effect of mood 

was studied by David (1989c) using schematic happy-sad chimeric face drawings. 

Induced depression and elation in normal volunteers resulted in substantial effects on 

sad and happy choices respectively but did not affect the LHFB (see chapter 3). 

Jaeger et al., (1987) gave depressed patients photo chimeras with one half neutral and 

the other smiling (Levy et al., 1983a) and found that the normal LHFB, though present 

was attenuated, supporting RH dysfunction. David and Cutting (1990) confirmed the 

reduced LHFB in clinically depressed patients, and in addition, hypomanic and manic 

patients were shown to have an increased bias. A schizophrenic group showed no 

significant bias in either direction.

What is the LHFB due to? There is evidence that this attentional bias is due 

to RH "dominance" in spatial organisation (Grega et al., 1988) which is evoked only 

by faces (Rhodes et al., 1990) and is a stable property of that hemisphere (Schwartz 

& Smith, 1980; Bennett et al., 1987; Hoptman & Levy, 1988; Luh et al., 1991). 

Evidence supporting the RH’s role in this phenomenon includes the observation that 

non-right handers do not show a consistent bias to either side of space (Levy et al., 

1983a; David, 1989c; Lawson, 1978; see chapter 3), and studies on patients with focal 

brain resections (Kolb et al., 1983) have revealed that only right posterior lesions alter 

the bias. Thus the work by David and Cutting (1990; plus see chapter 3) may be 

interpreted as showing RH hypofunction in depression and schizophrenia, and RH 

hyperfunction in mania. Given the RH’s role in the overall control and distribution 

of attention (Heilman & Van Den Abell, 1979; Weintraub & Mesulam, 1987), this 

may shed light on the disturbances of perceptual processing seen in psychiatric 

patients (McGhie & Chapman, 1961).
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Recent research in normal subject has explored the relationships between 

LHFB and performance on other tests of hemisphere function in several sensory 

modalities. The results show an association with other indices of RH arousal, usually 

limited to the visual modality, in some studies (Levy et al., 1983b; Luh et al., 1991; 

Hellige et al., 1988) though not all (Kim & Levine, 1992). Wirsen et al., (1990) 

found that subjects with reduced LHFB were slower on an independent measure of 

RT, pointing towards the RH’s role in cerebral activation and arousal.

The present study used a tachistoscopic version of the happy-sad chimeric faces 

test on a new group of patients and controls since the test, though simple, appears to 

be a powerful method for showing lateralised disturbances. As well as attempting to 

replicate David and Cutting’s results using a different means of stimulus presentation, 

the aim was to study the pattern of correlations between this and another test of visual 

attention, the Stroop test (see MacLeod, 1991 for review), in the same group of 

patients. A novel version of the Stroop paradigm was used (David, 1992; chapters 5,7 

& 8)) whereby a colour, and a colour word which may be congruent or incongruent, 

were separated by a fixed visual angle. Both elements were presented in one of three 

positions: both to the RVF, both to the LVF and bilaterally, with the word going to 

one visual field and the colour going to the other. Differences were found for 

schizophrenics in the bilateral condition which produced larger Stroop effects 

(described in detail in chapter 7). Since the same patients also performed both this 

and the faces test it is possible to examine the relationship between Stroop interference 

and spatial attentional bias, in normals and psychiatric patients.

The purpose of the current study was therefore to combine the psychological 

approaches to psychiatric phenomena which posit disorders of attention, with 

neuropsychological approaches, which attempt to localise such dysfunction in the 

brain.
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Subjects

Patients were diagnosed according to DSM-III-R criteria (American Psychiatric 

Association, 1987) based on symptoms at interview - using the Present State 

Examination (PSE) (Wing, Cooper and Sartorius, 1974) - and those recorded in the 

case notes.

Forty-five schizophrenic patients from the Bethlem Royal and Maudsley 

Hospitals, London, were studied. (These were the same as those described in chapter 

5 with the exception of one case who failed to complete the chimeric faces test).

Twenty-two affective disorder in-patients and day patients from the same 

hospital group were also recruited. Ten were suffering from hypomania or mania, (8 

of whom were on Lithium) and 12 from major depression (10 of whom were on 

antidepressant medication). All but 6 schizophrenics and 12 affectives were receiving 

neuroleptic drugs. Exclusion criteria are described in chapter 5.

Twenty-three normal right-handed subjects drawn from hospital staff served 

as controls (these were drawn from the normal subjects described in chapter 2, 

experiments 1 and 2. 15 also performed on both the faces and Stroop tasks. See 

below and appendix I).

Ratings: All subjects were administered the National Adult Reading Test (NART) 

(Nelson & O’Connell, 1978) to give an estimate of IQ and their years of education 

recorded. All were pure right-handers according to Annett’s classification (1970).

Overall psychopathology was rated on the modified Brief Psychiatric Rating 

Scale (BPRS) (Bech, Kastrup & Rafaelson, 1986); range 0-36. The number of 

hospital admissions was also recorded. Depressives were given the Beck Depression 

Inventory (BDI) (Beck et al., 1961).
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Stimuli

Chimeric faces test

Twenty-four happy-sad chimeric face drawings (12 in standard orientation and 12 

reversed) were presented in turn, centrally, so that each hemiface occupied a hemifield 

(see chapter 3.2 and figure 3.1). Pictures were approximately 6 cm by 10 cm across 

on the screen (approx 7° to 12°). Four practice stimuli were shown prior to testing.

Lateralised Stroop test

(see chapter 4, Figure 4.1 and section 2 for full description of stimuli and testing 

conditions). Each of the stimuli was presented to the left or right visual field, with 

the medial edge 3° lateral to a fixation cross, or centrally with the word on one side 

and the colour on the other. There were 72 stimuli in total, 24 left, 24 right and 24 

central. Half were congruent and half incongruent.

Apparatus

This consisted of a Kodak S-AV 2050 projector with custom built shutter attachment, 

controlled by an Electronic Developments tachistoscope timer panel. Slides were 

projected onto a perspex screen with a central fixation spot (see chapter 2 section 2 

and chapter 4 section 4 for details of apparatus).

Procedure

(See chapter 2 section 2, and chapter 4 section 4 for details). A warning tone would 

sound over the subject’s headphones, followed 500 msec later by the visual stimulus 

which would remain for 120 msec. Stimuli were presented at a rate of approximately 

1 every 2.5 seconds, as in the previous experiments.

For the chimeric faces, subjects had to state whether the face was happy or sad. 

Left Bias was scored by subtracting the number of responses which coincided with the 

half-face to the (viewer’s) right (min=0, max=12) from those which corresponded to 

the half-face to the left (min=0, max=12). The possible range for Left Bias scores



131

was therefore +12 to -12. For Stroop stimuli, subjects responded by saying the colour 

of the strip. The Stroop Effect was calculated by subtracting the RT for congruent 

stimuli from incongruent. This was done for all presentations combined and also for 

the both lateral positions. Testing took approximately 3/4 hour.

63  RESULTS

Table 6.1 shows the age, IQ, and clinical information on patients and controls plus 

scores on the chimeric faces test including mean Left Bias scores. Normals and 

manics showed a clearly significant Left Bias when calculated in either of two ways: 

binomial test and one sample t-test. Depressives showed a weaker bias which failed 

to reach significance. Schizophrenics showed no significant bias in either direction 

regardless of statistical method.

Chimeric faces

Analysis of variance (ANOVA) showed that there were main effects by diagnosis for 

Left Bias: (df=3,86, F=12.5; PcO.OOOl); RT for left-hemiface responses: (F=2.76; 

P<.05); and age: (F=4.3; PcO.Ol); and IQ: (F=3.3; P=0.02). There were no main 

effects or interactions with gender. Although the groups were not perfectly matched 

for age and IQ, re-analysis with these factors as covariates did not alter the results 

appreciably.
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Normals
(n=23)

Depressives
(n=12)

Manics
(n=10)

Schizophrenics
(n=45)

F Sig

Age (SD) 
Sex

33.9 (6.3) 
12F 9M

41.3 (12.9) 
8F 4M

32.8 (13.8) 
6F 4M

30.9 (7.6) 
15F 30M

4.3 .01H

IQ
BPRS

115.3 (10.3) 113 (8.4) 
14.6 (3.9)

113 (10.6) 
17.4 (5.4)

107 (11.6) 
17.0 ± 6.9

3.3
.76

•02§
.5

Hospital
Admissions - 2.8 3.0 3.7 .54 .6

*Left Bias 
No of cases

7.91 (4.4) 2.08 (6.5) 8.8 (5.5) 0.0 (6.4) 12.5 .000

>0: 22 7 10 22
<0: 1 3 0 17
=0: 0 2 0 6

Binomial Test: P<.0001 P=.3 P=.002 P=0.5
One Sample 
t-test : P<.001 NS Pc.Ol NS

Left RT 
Right RT 
R-L D iff

1065 (231) 
1182 (299) 
P=.01

1384 (486) 
1442 (530) 
NS

1132 (351) 
1135 (376) 
NS

1277 (383) 
1279 (336) 
NS

2.76
1.81

.05«

.15

#Sad Bias 2.61 (4.6) 3.25 (7.0) 1.9 (7.8) 2.13 (5.9) .14 .9

*Left Bias equals the number o f responses which correspond to the Left hemiface minus the 
number which respond to the right hemiface (the mean for each group is shown). Normals 
differ significantly from depressives and schizophrenics; manics differ significantly from 
depressives and schizophrenics (all P<.05, Least Significant Difference procedure).
#Sad Bias equals the number o f sad responses minus the number o f happy responses.
11 Depressives differ from other 3 groups (P<.05)
§ Normals and schizophrenics differ (P<.05)
«  Normals differ from depressives and schizophrenics (P<.05)

Table 6.1. Comparison of psychiatric patients with normal controls. Demographic and 

Chimeric Faces test variables.
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Regarding Left Bias, the Least Significant Difference procedure showed that 

normals differed significantly from depressives and schizophrenics as did the manics. 

Schizophrenics therefore did not differ significantly from depressives and the manics 

did not differ from normal controls. Looking at RT, left sided responses were slower 

for depressives and schizophrenics versus normals while right sided responses did not 

differ significantly between the groups (see Figure 6.1). Although ANOVA showed 

a non-significant trend for a diagnosis X side interaction, within the normal group, left 

biased responses were significantly faster than right (paired t-test, P<.01). A similar 

trend was noted for the depressives while the remaining patients groups clearly did not 

show a right/left RT difference.

Age, IQ and years of education did not correlate with Left Bias or any of the 

RT measures for individual groups although there was a weak positive correlation 

between IQ and left bias (r=.25. P<.05) for the sample as a whole. Amongst the 

patients, BPRS did not correlate significantly with any of the measures although there 

were trends towards decreased bias and slower RT with higher scores in the 

schizophrenics and depressives but increased bias and faster RT in the manics. 

Subdividing the schizophrenic group on the basis of course did not reveal significant 

differences.

All groups on average displayed a positive Sad Bias (a tendency to say sad more 

often than happy), the magnitude of which did not differ significantly between them, 

although the extent of the Sad Bias was greatest in the depressives and lowest in the 

manic patients. In the depressed group there was no correlation between Sad Bias and 

BDI (Pearson’s r=-0.13; mean 14.0, SD 6.0) although RT increased with increasing 

depression (both left-and right-face RT: r=.42; P=.02) and Left Bias showed a non­

significant tendency to be reduced (r=-.28).
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Stroop tests

ANOVA of the Stroop effect - the incongruent-congruent difference - revealed no 

main effects for diagnosis or visual field (right and left) or significant interactions, 

when either RT or error rate was the dependent variable (Table 6.2), although RT was 

slowest in the schizophrenic group. Correlations between the chimeric faces test and 

Stroop effects for each visual field were not different from combined Stroop effect so 

only the latter are presented (Table 6.3). The association between Left Bias, left 

response RT and the Stroop effect are shown for each diagnostic group (see 

discussion).

STROOP Normals* Depressives Manics Schizophrenics F Sig

(n=15) (SD) (n=12) (n=10) (n=45)

#Reaction time (msec):

Incongruent 781.7 (91.4) 855.7 (185.5) 810.1 (186.7) 927.8 (196.8) 3.1 •03§

Congruent 656.2 (98.0) 729.7 (164.9) 684.9 (129.2) 795.1 (176.3) 5.6 .0 2 -

Stroop effect (msec):

Overall 125.5 (46.9) 126.1 (74.6) 125.2 (78.0) 132.7 (71.8) .07 .9

L hemisphere minus R hemisphere RT difference (msec):

7.8 (34.1) 0.7 (46.0) 13.1 (13.8) -0.8 (56.1) .30 .8

Errors (%) 2.7 (2.8) 2.9 (2.9) 2.4 (2.2) 5.1 (5.1) 2.4 .07

§ Normals and schizophrenics differ (P<.05)

-  Schizophrenics differ from manics and normals (P<.05)

*15 Normals did both Stroop and face tests

#Correct responses only

Table 6 .2 . Com parison o f  psychiatric patients with normal controls. Stroop test

variables.
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RIGHT HEMISPHERE LEFT HEMISPHERE

L Bias Left face-RT Right face-RT

Normals (n=15) 

STROOP# .33 

Left RT -.36

*i 
t

-.10

.75***

Depressives (n=12) 

STROOP -.32 

Left RT -.50*

.21 -.03

* *

Manics (n-10) 

STROOP .03 

Left RT -.11

.51* .60* 

“jq** *

Schizophrenics (n=45) 

STROOP .11 

Left RT -.16

.10 .07
88***

#STROOP: Stroop effects (incongruent iminus congruent RT)

*P<.05

***P<.005

Table 6.3. Correlations (Pearson’s r) betw een  Stroop effects, and perceptual bias and

vocal reaction tim e to each half-face on the chim eric faces test.
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Tachistoscopic presentation of happy-sad chimeric face drawings provoked the 

anticipated LHFB in normal, right-handed subjects (Heller and Levy, 1981). The data 

also confirm prior reports of reduced LHFB in clinically depressed patients (Jaeger et 

al., 1987; David and Cutting, 1990) and point to RH hypofunction in depression. In 

addition, hypomanic and manic patients showed a strong LHFB consistent with RH 

hyperfunction, although the small number of manics and normals may have precluded 

the emergence of a significant difference between them. The schizophrenic group 

showed no significant bias, pointing to RH hypofunction (Cutting, 1985; Magaro & 

Chamrad, 1983) and indicating that schizophrenia is quite unlike mania in this respect. 

These results are entirely in keeping with a previous report using the same stimuli 

viewed in free vision (David and Cutting, 1990) and are supported by cerebral blood 

flow studies (Uytdenhoef et al., 1983; Gur et al., 1985).

The present study was able to measure RT to each stimulus. In normals, left 

biased judgements correlated with faster RT (see also Wirsen et al., 1990). A similar 

pattern was seen in the depressives but with the lateral RT asymmetry reduced. 

Surprisingly, the manic and hypomanic patients, while showing a strong Left Bias did 

not differ in their RT according to whether they were responding to the left or to the 

right hemiface. The schizophrenics showed little perceptual bias and no lateral 

asymmetry of RT. In other words, results from the chimeric faces showed that neither 

RT nor Left Bias alone can be regarded as a measure of hemisphere "activation", since 

they may be dissociated in pathological states.

The Stroop results add further complexity to this picture. For the normals (and 

the larger group reported elsewhere of which this is a sub-set (David, 1992; chapter 

4)), there was no significant difference between the combined effects of congruent and 

incongruent colour-words on colour naming for each group of subjects, or between 

right and left hemisphere presentations. This version of the Stroop paradigm permits 

a measure of selective attention. Specifically, if a subject is able to ignore the colour- 

word, a zero Stroop effect will be achieved. The ability to do this, or to use a
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common metaphor, to focus the spotlight of attention, seems to be equal in both 

hemispheres (c.f. Palmer & Tzeng, 1990) and in a variety of psychiatric groups. This 

contradicts some studies in normals using traditional Stroop stimuli and vocal RT 

(Franzon & Hugdahl, 1987) but confirms others (Warren & Marsh, 1978; Simon et 

al., 1985). A divided visual field study of negative priming using successive Stroop 

stimuli also showed no main effects of visual field, yet interactions were found with 

gender and measures of schizotypy (Claridge et al., 1992). The ability to deal with 

valid and invalid cues occurring in different spatial locations has been extensively 

investigated by Posner and his colleagues (Posner et al., 1984). One such study on 

schizophrenic patients revealed deficits in ignoring invalid cues, especially with the 

LH (Posner et al., 1988), although the data can be interpreted as showing a loss of the 

advantage for valid cues in the RH (Coppola & Gold, 1990; chapter 1, section 6). 

Normal subjects showed no main effects for visual field. Taken together, these reports 

render the lack of cerebral asymmetries in the current study of Stroop effects 

unsurprising.

Of interest, was the relationship between the two tests of hemisphere function 

in which attention plays significant but distinct roles. The pattern of correlations 

suggests that in normals and depressives, these two attentional systems remain 

coupled. However, with more severe psychological disturbances, namely mania and 

schizophrenia, performance on the two tasks and, indeed the direction of perceptual 

bias and time to respond on the faces task, become dissociated. In mania, the 

perceptual bias remains strong suggesting RH hyper-arousal. Faster RT for both sides 

is inversely related to this bias, and leads to a "widening of the attentional spotlight" 

(increased Stroop effect), perhaps the result of bilateral hemisphere activity. In 

schizophrenia, no relationship between RT and Left Bias is seen (the Left Bias itself 

is much reduced) and between these and the Stroop results. This suggests a more 

extensive disruption of attentional processes in the disorder.
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Although the overall picture can be accommodated with a range of complicated 

hypotheses involving hemisphere hyper- or hypo-function, singly or in tandem, the 

most parsimonious explanatory framework implicates the RH alone since clinical and 

experimental data point to its preeminence in the control of attention (Heilman and 

Van Den Abell, 1979; Weintraub & Mesulam, 1987). Schizophrenics appear to have 

the most dysfunction in this regard.

What might this dysfunction be due to? It is well known that dopamine has 

a profound influence on attentional systems in the human brain (Clark et al., 1989). 

Developmental disorders may result in asymmetric dopamine depletion with 

subsequent hemisphere differences of visual attention (Craft et al., 1992). Asymmetric 

dopamine imbalance remains a powerful theoretical impetus for schizophrenia 

researchers (Early et al., 1989) and has been implicated in affective disorders (Flor- 

Henry, 1986; Keshavan et al., 1986). This background would provide a rationale for 

neuroimaging using dopamine ligands (Sedvall, 1990) in conjunction with the 

neuropsychological testing described above, as well as psychopharmacological 

manipulations. The current study is not able to shed light on this issue since many 

of the schizophrenic patients were receiving dopamine antagonist drugs. Although it 

should be noted that medication did not appear to influence results across subjects. 

Alternatively, high resolution structural neuroimaging may reveal lesions which relate 

to these cognitive deficits.

In conclusion, avenues for further research into cognitive processes underlying 

psychopathology may employ usefully the psychological tests described, in 

conjunction with other physiological investigations.
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6.5 Summary

Two tachistoscopic tests examining distinct aspects of attention were administered to 

normal subjects and patients with depression, mania and schizophrenia. The first 

examined spatial attentional bias using happy-sad chimeric faces, known to elicit a 

perceptual bias to the left side of space in normal right-handers provided the right 

cerebral hemisphere is intact. The second used a lateralised version of the Stroop 

task, a traditional test of selective attention. Normals showed the expected leftward 

perceptual bias but showed equivalent susceptibility to the Stroop effect in both visual 

fields. As previously demonstrated with chimeric faces viewed in free vision, 

depression and mania were associated with weak and strong biases respectively with 

schizophrenics showing no bias to either side of space. The relationship between 

perceptual bias, as assessed by reaction time and absolute performance, and the Stroop 

effect, showed differences according to diagnosis. This points to the dissociability of 

attentional processes as well as lateralised differences in the pattern of cerebral 

activation in affective disorders and schizophrenia. The independence of performance 

variables on these tests in the schizophrenic group is interpreted as evidence for severe 

neuropsychological dysfunction.



(CHAFITEIR 7

CALLOSAL TRANSFER IN SCHIZOPHRENIA: 

TOO MUCH OR TOO LITTLE?



7.1 INTRODUCTION
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The corpus callosum has been implicated in the pathophysiology of insanity ever since 

Wigan’s observations in 1844 (see Clarke, 1987). These speculations received a 

considerable boost following a post-mortem study showing thickened corpus callosa 

in chronic schizophrenic patients (Rosenthal & Bigelow, 1972). This was followed 

by numerous behavioural, physiological and anatomical studies - particularly magnetic 

resonance imaging (MRI) - examining callosal function and size in psychiatric groups 

(for reviews see Cutting, 1985; David, 1989a; Doty, 1989; Coger & Serafetinides, 

1990; and chapter 1).

Raine and colleagues (Raine et al., 1990) reviewed 10 MRI studies and 

presented data on a new sample. In all, 6 out of 11 showed abnormal callosal 

dimensions in schizophrenics versus controls and of these, 4 had thicker or longer 

callosa, in at least a subgroup. As for functional measures, most researchers have 

looked specifically for evidence of disconnection. The reasons for this are, firstly, 

split-brain patients have occasionally been observed to exhibit "quasi-psychotic" 

behaviour - albeit fleetingly (Galin, 1974; David, 1989b) and second, a vast body of 

experimental research has been performed with these individuals providing a reliable 

data-base of the effects of cerebral disconnection (Gazzaniga, 1970; Benson & Zaidel, 

1985). While a few studies have suggested some limited disconnection as inferred 

from reduced transfer of visual and tactile information in schizophrenic patients 

(Beaumont & Dimond, 1973; Green, 1978; Carr, 1980; David, 1987), other authors 

have not found this (Merriam & Gardner, 1987; Raine et al., 1989).

There is at least one major limitation to the approach of looking only for signs 

of disconnection. The studies do not address the qualitative changes in 

interhemispheric transfer in schizophrenia postulated by some authors, such as 

misconnection (Randall, 1983), partial disconnection (Nasrallah, 1985), defective 

integration (Green, Hallet & Hunter, 1986), and increased transmission of emotionally 

laden material (Oepen et al., 1987). Indeed the notion of hyperconnection taken at 

face value, fits more readily with the relative increase in callosal size found at post­

mortem and using MRI. Furthermore, interest in neurodevelopment provides a
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mechanism whereby unnecessary or even aberrant connections may form and persist 

due to a failure in pruning (Goodman, 1989; Jones & Murray, 1991). It is therefore 

possible that the apparent disconnection effects noted may reflect inefficient or 

excessively "noisy" transfer. Finally, the notion of hyperconnectivity would appear 

to accord with models from information processing which have long put forward the 

view that schizophrenia is caused by difficulties in filtering and selecting relevant 

information (McGhie & Chapman, 1961; Braff & Geyer, 1989), with the adaptation 

that the filtering occurs during the flow of information from one part of the brain to 

another.

The current study entails the application of a novel, tachistoscopic, divided 

visual field technique for examining callosal connectivity. It employs a version of the 

Stroop test in which a colour patch is paired with a colour word which may be either 

congruent (the word RED with a red patch) or incongruent (the word BLUE with a 

red patch). The slowing of reaction time (RT) or interference in identifying the colour 

patch when accompanied by an incongruent word is known as the Stroop effect and 

has been extensively studied over decades (see MacLeod, 1991; for review). Similarly 

though less robust, is a speeding-up or facilitation of RT when the colour and colour- 

word match. The author has adapted the Stroop test by separating the colour and the 

colour-word across the mid-line, in order to measure interhemispheric transfer, since 

some transfer of information must take place for interference or facilitation to occur 

(Dyer, 1973; David, 1992; see chapter 4). To control for intra-hemisphere effects, the 

same Stroop stimuli can be presented to a single visual field. Research in normal 

subjects (chapter 4) has shown that the combined Stroop effect (CSE), that is the 

difference between RT for incongruent and congruent Stroop stimuli, is approximately 

equal in the left visual field (LVF) and the right visual field (RVF) but is reduced in 

the central or "bilateral" condition in which the colour and word are separated so that 

one element (e.g., the colour patch) goes one visual field and the other element (e.g., 

the colour word) goes to the opposite field. This was interpreted as indicating relative 

interhemispheric disconnection, and was supported by data from at least 2 out of 3 

subjects with callosal agenesis (chapter 4). A pattern of results where the CSE is 

greater centrally than laterally, could be taken as evidence for relative 

hyperconnection.
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This paper chapter the results of the application of this version of the Stroop 

test to a mixed group of schizophrenic patients. The results are compared with those 

from both normal subjects and psychiatric controls with affective disorder. The 

relationship between an index of callosal connectivity and clinical characteristics of 

both the patients and normals is also studied.

7.2 METHOD

Subjects

One hundred and fourteen subjects were tested. These included 46 schizophrenic 

patients from the Bethlem Royal and Maudsley Hospitals, London, who were mainly 

in-patients (n=29) though some out-patients and day patients were also studied. Also 

included were 22 in-patients and day patients with affective disorder from the same 

hospital group, and 46 normal controls drawn from the academic and ancillary staff 

of the Institute of Psychiatry, London. These subjects and rating scales used in their 

assessment, have been described in chapters 2 (normals) and 5 (patients). See 

appendix I

Patients were diagnosed according to DSM-III-R criteria (American Psychiatric 

Association, 1987) based on symptoms at interview - using the Present State 

Examination (PSE) (Wing, Cooper & Sartorius, 1974) - and those recorded in the case 

notes. The schizophrenic patients were classified by their illness course, following 

DSM-III-R as: acute or sub-chronic with acute exacerbation (21); chronic and 

subchronic (19); and, in remission (6). The affective disorder patients comprised 12 

with major depression and 10 with bipolar affective disorder. Prescribed medication 

is described in chapter 5.

Overall psychopathology was rated on the modified Brief Psychiatric Rating 

Scale (BPRS) (Bech, Kastrup & Rafaelson, 1986); range 0-36.

Family history of psychiatric disorder was determined from patient interview 

and case note review. A positive family history was defined as hospitalization for 

probable psychosis or suicide in a first degree relative.
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Normal subjects completed a questionnaire for hallucinatory predisposition 

(Launay & Slade, 1981), which consists of a 12-item scale measuring susceptibility 

to auditory and visual hallucinations. All subjects were administered the National 

Adult Reading Test (NART) (Nelson & O’Connell, 1978) to give an estimate of IQ 

and their years of education recorded.

Means and standard deviations for age, IQ, years of education and BPRS scores are 

given in chapter 5, Table 5.1 for the 3 groups.

Tachistoscopic Stroop Tests 

Stimuli and Apparatus

Details of stimuli and apparatus are given in chapter 4, Figure 4.1 and section 4.2.

There were 72 stimuli in total, 24 left, 24 right and 24 central. Half were 

congruent and half incongruent. In each condition, 12 had the colour to the right of 

the word and 12 were the opposite way round. All subjects had to demonstrate their 

ability to read all the colour words and name all the colours, under test conditions, 

before proceeding to the test proper.

Apparatus consisted of a custom built back-projection tachistoscope (as in 

chapters 2,4,5 and 6). As before, responses were made by the subject’s verbal report 

activating a voice key. Reaction time in msecs was recorded and entered directly into 

a personal computer for analysis.

Procedure

This was identical to.that described in chapter 4, section 2. Presentation was brief 

enough (120msec) to prevent voluntary saccades (Young, 1982). Occulographic 

methods of monitoring fixation are too intrusive for many acutely psychotic patients 

and techniques requiring identification of a digit or letter at fixation contribute an 

additional cognitive load (see chapter 1). Hence, perfect fixation could not be 

guaranteed. Prior to testing, subjects were given a standard set of instructions, in 

which they were asked to name the colour as quickly and as accurately as possible.
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73  RESULTS

Results were analysed using subject-based analysis of variance (ANOVA) with RT as 

the dependent variable. The analyses were 4-way with congruity and visual field 

(right, left, central) as within-subject variables and sex and diagnosis as between 

subject variables. Sex was included because of gender-related differences in callosal 

size noted in some published reports (Raine et al., 1990). Preliminary analyses 

examining the effects of neuroleptic treatment were also performed.

There were no main effects or interactions for sex nor for medication. The 

main effect of neuroleptics was F=.07, P=.8. These variables will no longer be 

considered in the analyses. There were significant main effects for congruent versus 

incongruent colour-word combinations (F(l,108)=407.8, P<0.0001), and for visual 

field (F(2,216)=54.2, P<0.0001). The former is accounted for by the greater RT for 

incongruent stimuli; the latter, is the result of the advantage in the central condition 

versus the lateral condition. Diagnosis also produced a significant main effect 

(F(2,108)=19.0, P<0.0001) with schizophrenic patients slower than affectives who in 

turn were slower than normals (see Table 7.1). The diagnosis X congruity interaction 

was not significant (F(2,108)=0.85, P=0.4), that is the different groups did not differ 

in their susceptibility to the Stroop effect in general. However, the diagnosis X 

congruity X field interaction was significant (F(4,216)=4.6, P=0.001). This is 

explained by the greater CSE for central/bilateral stimuli in the schizophrenic group 

as compared with controls. The effect of neuroleptic medication on the diagnosis X 

congruity X field interaction was examined within the patient group and found to be 

non-significant (F=1.8, P=.2). Subtracting congruent from incongruent RT, affords a 

control for the predictable general slowing in the patient groups. As can be seen 

illustrated in Figure 7.1, the CSE does not differ between the groups in the 2 lateral 

positions (left CSE: F(2,lll)=0.28, P=0.7: right CSE F(2,lll)=0.30, P=0.7) but does 

so centrally (central CSE F(2,lll)=5.1, P=0.0075: all statistics by one-way ANOVA).
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That is the schizophrenics differ in terms of the difference in RT between congruent 

and incongruent Stroops only when the facilitation and interference involve 

interhemispheric transfer. Within the normal group, the bilateral CSE is significantly 

smaller than the left and right field CSEs (paired t-test: t=2.82, Pc.Ol and t=2.35, 

P<.05, respectively), while in the schizophrenic group, the bilateral CSE is larger than 

the left and right CSEs (t=-2.45, P<.02 and t=-2.18, P<.05, respectively). The pattern 

of results for the affectives is similar to normals but the results are not statistically 

significant (see Figure 7.1).

In order to ensure that the CSEs were not simply related to "baseline" performance, 

Pearson correlation coefficients were calculated for congruent RT and right, left and 

bilateral CSEs. These were all non-significant: r = -0.05, 0.22, and 0.13, respectively.

An index of this increased callosal transfer, the "callosal index", can be 

derived from subtracting the mean of the 2 lateral CSEs from central CSE. The 

values for this for normals, affectives and schizophrenics are given in Table 7.1. 

Schizophrenic patients differ significantly from both control groups, (ANOVA: 

F(2,lll)=9.3, P=0.0002). The magnitude of the callosal index was not related to 

congruent RT (r=0.08).

Errors

Error rates were low (see Table 7.1), attesting to adequate fixation, and the ANOVA 

did not reveal an overall group difference (P=0.4). There was a trend for incongruent 

trials to induce more errors (P=0.16) and the interaction between diagnosis and 

congruity reached significance (P<0.05). This is accounted for by the higher error rate 

in the schizophrenics in the incongruent condition.
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Normals Affectives Schizophrenics

Reaction time (msec) 679 ± 84 772 ± 162 863 ± 182*

CONGRUENT RT 621 ± 84 709 ± 148 797 ± 175*

Right visual field 621 ± 83 710 ± 160 806 ± 186*

Left visual field 629 ± 84 718 ± 147 812± 175*

Bilateral 599 ± 85 682 ± 142 758 ± 170*

INCONGRUENT RT 737 ± 90 835 ± 183 930 ± 195*

Right visual field 752 ± 86 857 ± 195 941± 193*

Left visual field 764 ± 107 862 ± 188 940 ± 205*

Bilateral 711 ± 93 805 ± 181 926 ± 206*

Combined Stroop effect 116 ± 46 126 ± 74 133 ± 71

Errors (%) 1.8 ± 2.5 1.9 ± 4.7 3.7 ± 5.1#

UCallosal index -20.9 ± 42.9 -22.6 ± 54.3 36.8 ± 95.1#

Comparison of groups using ANOVA and the Least Significant Difference procedure: 

*Schizophrenics differ from normals and affectives at P<0.05; affectives also differ 

from normals at P<0.05. #Schizophrenics differ from affectives and normals at 

P<0.05. Subject groups not significantly different on combined Stroop effect (P=0.4).

UCallosal index = Cen CSE - (L CSE + R CSE)/2.

RT = Reaction time

Table 7.1. Comparison of normal controls, patients with affective disorder and 

schizophrenia on reaction time and percent errors with congruent and incongruent 

tachistoscopic Stroop stimuli: Means±SD.
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7.4 Relationship between test performance and clinical characteristics

Given that the groups were not matched for IQ, age, education, it is important to 

determine the influence of these factors on the dependant variables of interest. 

Pearson correlation coefficients for these 4 variables with test performance for stimuli 

in the 3 positions of presentation and also the callosal index were calculated on the 

subjects as a whole and within groups. These were all non-significant ranging from 

0.19 to -0.14. ANOVAs calculated on the CSEs and callosal index were essentially 

unaltered by covarying for IQ, age, education and BPRS, despite the wide range in the 

patients’ clinical state. Error rate was correlated with IQ, education and BPRS at - 

0.37, -0.35 and 0.30 respectively, but not age. There were significant correlations with 

overall mean RT at -0.20 and -0.24 for IQ and education, and 0.47 for BPRS, 

respectively.

Only 16/46 (34.7%) normal subjects and 8/22 (36.4%) of affectives had central 

CSEs greater than their lateral CSEs while 26/46 (56.5%) schizophrenics showed this 

distribution of scores (df 2, x 2=5.04, P=0.06). These 16 normals did not differ from 

the remainder on any of the background variables.

Hallucinatory predisposition (normal subjects)

Scores on the Launay and Slade scale (1981) ranged from 0 to 7 (mean 1.2±1.7). 

There was no significant association between this measure and RT or the CSEs. 

Thirteen subjects scored >1. When these were contrasted with the remaining 33 

subjects on the callosal index the scores were: -17.1±42.5 versus -30.6±44.1; 

[t(44)=0.34, P=0.3]. Left and right CSEs were not significantly affected by 

hallucinatory disposition.

7.5 Schizophrenic subgroups

There were no systematic differences between any of the schizophrenic subgroups on 

the tachistoscopic tests. Of some interest is the non-significant trend towards a greater 

callosal index in the recovered group (n=6) of 71.0 compared with 31.6 for the others 

(see Figure 7.2).
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Other clinical variables were examined for their influence on the callosal index 

including the presence of auditory hallucinations (n=29), first rank symptoms (as 

defined in the PSE (Wing et al., 1974); n=20) and a positive family history (n=15). 

None of these had significant effects. Similarly, those schizophrenic patients whose 

callosal index was >0 did not differ from the rest.

7.6 DISCUSSION

The results showed that for normal subjects and psychiatric controls, both interference 

and facilitation are reduced in the central condition suggesting a partial filtering of 

colour or word information interhemispherically, or relative disconnection. The 

schizophrenic patients showed the opposite pattern, suggesting a specific failure to 

regulate interhemispheric transmission or functional "hyperconnection". This double 

dissociation cannot be explained by non-specific effects such as hospitalization and 

level of symptoms since the affective disorder group, who had equivalent levels of 

psychopathology to the schizophrenics, resembled normals. Also, the central condition 

was "easier" then the two lateral conditions, as reflected in the shorter RTs, so that the 

difference between schizophrenics and the other groups is unlikely to be a 

consequence of task difficulty. Further support for this is the larger effect in 

recovered schizophrenic patients. Background characteristics such as age and IQ did 

not influence test results on the measures of callosal function in the sample as a whole 

or in the schizophrenic group in particular. Neuroleptic medication has been 

postulated to reduce callosal transfer (Myslobodsky, Mintz & Tomer, 1983) although 

no support for this was found. The lack of difference between patients on and off 

neuroleptics, both schizophrenics and non-schizophrenics, implies that the difference 

between groups is unlikely to be due to medication. Disturbance within one or other 

hemisphere is also unlikely to account for the data since the CSE did not differ 

between the LVF and RVF. Finally, a difficulty with processing Stroop stimuli per 

se (see Liddle & Morris, 1991) is excluded since the CSE, which takes into account 

non-specific slowing of RT, did not differ between the groups (Everett, Laplante & 

Thomas, 1988).
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These results can be seen as supporting previous work by the author employing 

tachistoscopic colour perception tests, only insofar as abnormal callosal function is 

implicated in both. The former study (David, 1987) measured only error rates, which 

were relatively high because of the brief duration of stimuli (30 msec), rather than RT, 

so may have been less sensitive. Also the design, which involved cross field colour- 

matching, was not capable of revealing hyperconnection only a global callosal deficit.

The earlier study did show a relationship between callosal transfer and 

symptom profile, namely the presence of first rank symptoms, consistent with 

Nasrallah’s partial disconnection model (Nasrallah, 1985), while the current study 

showed no relationship to these or other variables. In fact the trend pointed towards 

more callosal connectivity in relatively symptom free patients. In addition, the pattern 

of results in normal subjects who are prone to hallucination-like experiences was not 

in the direction of the schizophrenic patients. Can these findings be reconciled? It 

is important to consider the dynamic role of the corpus callosum in regulating 

hemisphere functioning (Cook, 1986; Zaidel, Clarke & Suyenobu, 1990). While the 

tract clearly has a major role in conveying information from one hemisphere to the 

other, it also appears to have a role in inhibiting hemisphere activity. It is therefore 

possible that while the data presented here show an increased flow of information 

across the callosum, this could reflect some compensatory strategy designed to obviate 

a primary disturbance within the hemispheres. Hence the lack of association with 

current hallucinatory symptoms in both psychotics and normals, and the suggestion of 

an association with recovery. However, this hypothesis would predict that the callosal 

index should be positively correlated with the lateral CSE. In fact the correlation is 

not significant (-0.14 for Stroop stimuli in the LVF and -0.06 for those in the RVF).

Alternatively, since the majority of the schizophrenic group showed the 

abnormality, it could be argued that excess callosal transfer is a vulnerability marker 

(Green et al, 1986), perhaps non-familial in this case, rather than being directly related 

to the production of psychotic symptoms. Further research which tests patients at 

different stages of their illness and non-affected relatives is necessary to clarify this. 

Another question that remains is whether the functional measures reported have a 

structural basis (Gunther et al., 1991), and if so, what region of the callosum is
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implicated. It might be predicted that the splenium would be involved given its role 

in colour transfer (David, 1987). On the other hand, since precise semantic 

information, in the form of a colour name, is also involved, the anterior portion would 

probably be site of transfer (Zaidel, Clarke & Suyenobu, 1990). A study using MRI 

on a sub-sample of the schizophrenic patients which addressed this issue will be 

described in the following chapter (chapter 8).

In conclusion, the evidence that the functioning of the corpus callosum may 

be abnormal in schizophrenia, and that this abnormality is one of hyperconnection, is 

gradually accumulating. Although some of the evidence is contradictory, it comes 

from diverse sources including neuroimaging (Raine et al., 1990), neuropsychology 

(Green et al., 1986; Doty 1989), cerebral blood flow (Gunther et al, 1991), EEG 

coherence (Merrin, Floyd & Fein, 1989), somato-sensory evoked potentials (Gulmann, 

Wildschiv0dtz & 0rbaek, 1982), and neurochemistry (Deakin, Slater & Simpson, 

1989). What remains to be determined is its precise role in the pathogenesis of 

schizophrenia.
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7.7 Summary

Evidence from diverse sources has pointed to an abnormality in callosal transfer in 

schizophrenia. To examine this further, a test was devised which measures Stroop 

interference and facilitation within and between the cerebral hemispheres. 46 

heterogeneous schizophrenic patients were tested and it was found that lateralised 

Stroop effects were equivalent in the left and right hemispheres and did not differ 

from normal or psychiatric controls with affective disorder. In controls, Stroop effects 

which required inter-hemispheric transfer of coded information, were reduced relative 

to those requiring intra-hemispheric transfer, while the schizophrenic group showed 

greater Stroop effects in the inter-hemispheric condition, presumably reflecting 

increased callosal connectivity. An index of callosal transfer did not correlate with 

gender, age or IQ in any of the groups, nor did it relate to clinical characteristics in 

the schizophrenic patients. The results support a specific functional abnormality of 

excessive callosal transfer in schizophrenia though its role in pathogenesis remains 

unspecified.
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CHAF1TEIE. 8

STRUCTURE AND FUNCTION OF THE CORPUS CALLOSUM 

IN SCHIZOPHRENIA: WHAT’S THE CONNECTION?



8.1 INTRODUCTION
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The corpus callosum (CC) has been the target of much structural brain research, ever 

since the post-mortem study showing thickening in chronic schizophrenic patients 

(Rosenthal and Bigelow, 1972; see also Bigelow et al., 1983), and functional 

neuropsychological research, since the divided visual field study showing impaired 

interhemispheric transfer (Beaumont and Dimond, 1973; see Doty, 1989; Coger and 

Serafetinides, 1990; for reviews; see chapter 1). Both approaches have tended to 

progress in parallel with few studies combining functional and structural measures, on 

the same group of subjects.

One such study (Raine et al., 1990) using magnetic resonance imaging (MRI), 

replicated previous work in showing increased anterior callosal thickness in female 

psychotic patients (see also Nasrallah et al., 1986; and Uematsu and Kaiya, 1988). 

Unfortunately, dichotic listening and tactile tests of intra- and inter-hemispheric 

function did not relate to callosal dimensions. Another recent report related increased 

callosal thickness with positive symptoms. (Gunther et al., 1991), but did not report 

neuropsychological tests of callosal function. Woodruff et al., (in press) reported a 

reduction in the mid-callosal area in schizophrenics versus normal controls, which they 

believe may relate to reduced temporal lobe volume which, in turn is related to 

auditory hallucinations (Barta et al., 1991). They also found an inverse correlation 

between mid-sagittal callosal and cerebral areas, and delusions.

While several studies have shown a relationship between global cognitive 

impairment in schizophrenia and cerebral atrophy (e.g. Johnstone et al., 1976), 

consistent brain-behaviour relationships between more specific, localizable cognitive 

tests and particular brain areas have proved more elusive (DeLisi et al., 1991). This 

pattern applies even more strongly to the corpus callosum. While it has an undoubted 

role in conveying information between, and modulating the activity within the cerebral 

hemispheres (Benson and Zaidel, 1985), it is a structure with considerable variation 

in size and shape (Demeter et al., 1988; Casanova et al., 1990). Hence, attempts to 

correlate reliably morphology with function in normal individuals, have proved 

difficult (Zaidel et al., 1990) even when relatively gross differences such as 

handedness were investigated (see Habib, et al., 1991).
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Previous work using a tachistoscopic test of colour naming and matching 

designed to tap callosal function in schizophrenia showed evidence of impaired 

interhemispheric connectivity. Further investigation suggested that this impairment 

was associated with first rank symptoms (Schneider, 1959) and inversely correlated 

with cerebral atrophy as estimated from CT scan ventricle-brain ratio (VBR) (David,

1987). A theoretical relationship between certain symptoms such as disturbances of 

the possession of thought and auditory hallucinations etc., with callosal dysfunction, 

has been proposed by a number of authors (Randall, 1983; Nasrallah, 1985).

The present study employed a novel version of the Stroop test to measure 

interhemispheric function (see chapters 4 & 7). The classical Stroop paradigm 

consists of a colour patch paired with a colour word which may be either congruent 

or incongruent. The slowing of reaction time (RT) or interference in naming the 

colour patch when accompanied by an incongruent word is known as the Stroop effect 

(see MacLeod, 1991; for review). Similarly there is often a speeding-up or facilitation 

of RT when the colour and colour-word, match. The Stroop test has been adapted by 

separating the colour and the colour-word across the mid-line, in order to measure 

interhemispheric transfer, since some transfer of information must take place for 

interference or facilitation to occur (Dyer, 1973b; David, 1992; chapters 4 & 7). 

Research in normal subjects (David, 1992) has shown that the combined Stroop effect 

(CSE), that is the difference between RT for incongruent and congruent Stroop stimuli, 

is approximately equal in the left visual field (LVF) and the right visual field (RVF) 

but is reduced in the "bilateral" condition in which the colour and word are separated 

so that one element (e.g., the colour patch) goes one visual field and the other element 

(e.g., the colour word) goes to the opposite field. This was interpreted as indicating 

relative interhemispheric disconnection in normals. The technique has been applied 

to a large group of schizophrenic patients and psychiatric controls and it was found 

that unlike normals and controls, the schizophrenics showed a greater mean CSE in 

the bilateral compared to the unilateral condition, which may be taken as evidence for 

relative callosal hyperconnection. This pattern of results, is consistent with theories 

which emphasise defective integration and misconnection (Green et al., 1986; Randall, 

1983; Nasrallah, 1985; Oepen et al., 1987; chapter 7) rather than dis-connection as the 

underlying callosal abnormality in schizophrenia (Beaumont and Dimond, 1973).



159

It has been possible to obtain CT and MRI scans on a sub-sample of these 

patients. The CT scans have been used to calculate VBRs and the mid-sagittal MRI 

scans, to acquire data on the dimensions of the CC. The measures from the structural 

imaging techniques were used to determine whether the functional abnormalities 

revealed by the interhemispheric Stroop test and inferred from symptoms profiles, had 

a structural basis.

8.2 METHOD

Subjects

31 subjects had CT scans (20 males, 11 females) of whom 20 had MRI scans (14 

males, 6 females). They represent an unselected subgroup of the 46 schizophrenic 

patients from the Bethlem Royal and Maudsley Hospitals, London, who participated 

in the earlier neuropsychological study (see appendix I and Chapters 5,6 & 7 for 

details).

The MRI group were part of an independent study of consecutive schizophrenic 

admissions, reported in detail elsewhere (Harvey et al., 1991).

Patients were diagnosed and assessed as described in chapter 5. The 

schizophrenic patients were classified by their illness course, following DSM-III-R. 

In this sub-sample, 2 were acute, 5 in remission and the remainder were chronic or 

subchronic. All but 2 were receiving neuroleptic drugs. Overall psychopathology was 

rated on the modified Brief Psychiatric Rating Scale (BPRS) (Bech et al., 1986); range 

0-36, and IQ on the NART. Family history of psychiatric disorder was determined 

from patient interview and case note review. A positive family history was defined 

as in chapter 7, section 2.

Stimuli and Apparatus

The lateralised and bilateral Stroop stimuli were presented as described in chapter 7 

section 2. Apparatus and procedure were as before.
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The measures of interest are: The magnitude of the Combined Stroop Effect (CSE) 

(incongruous RT minus congruous RT) in the LVF/right hemisphere, the "Left 

S t r o o p and the RVF/left hemisphere, the "Right Stroop". These give a measure for 

the Stroop effects within each hemisphere and so provide a comparison for the 

"between hemispheres" condition. Of most interest is the between-hemispheres or 

bilateral condition where the colour-word is in one visual field and the colour patch 

is in the other: the "Bilateral Stroop". From these can be derived indices of callosal 

function namely the "Callosal Index" which is the difference between the Bilateral 

Stroop and the mean of the two unilateral Stroop presentations [i.e. Callosal 

Index=Bilateral Stroop - (Left Stroop+Right Stroop)-r2]. The magnitude of this index 

is independent of RT (chapter 7 section 3).

In addition, the Bilateral Stroop can be broken down to 2 presentations 

corresponding to whether the colour is to the left or the right visual field. Studies in 

normals have shown that the colour-right position results in a small RT advantage 

presumably because the colour can be named directly by the left hemisphere 

(McKeever and Jackson, 1979) while the colour-left position requires an addition 

callosal transfer of the colour information from the right hemisphere to the left 

hemisphere. Hence a large difference in RT between the "colour-left minus colour- 

right" conditions would also reflect reduced callosal transfer and a small or negative 

value would reflect increased transfer (see chapter 4, Figure 4.3).

83 IMAGING

MRI

A single mid-sagittal'image was obtained over three minutes using a TL weighted 

sequence (SE200/300) on a 0.5 Tesla Picker scanner at the National Hospital, Queen 

Square, London. This was accurately positioned in the mid-sagittal plane through the 

use of two orthogonal pilot scans (McManus et al., 1989). Slice thickness was 10mm, 

with a matrix size of 256 x 256 pixels, and a 30 cm field of view (i.e. each pixel is 

1.37 mm2), and two excitations used. Geometric distortion on this scanner is 1% in 

each plane.
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Images were transferred on magnetic tape to an image display system (Sun 

Microsystems Inc., California) and identified by number alone to retain blindness 

during measurements. Image analysis was performed with the software package 

"Analyze" (Robb and Barillot, 1989). The CC was outlined using a semi-automated 

"region-growing" program, which could be altered interactively until it coincided 

visually with the callosal boundary; the area was then calculated automatically. All 

ratings were made by one person (Dr Ian Harvey,National Hospital, Queen Square), 

with satisfactory test-retest reliability (intra-class correlation coefficient of 0.76)

Given the variation in size and shape of the callosum (Demeter et al., 1988; 

Casanova et al., 1990) and the possibility of producing a type I error from the over- 

zealous selection of areas of interest for correlation with the behavioural data, it was 

decided to measure only the anterior portion as well as total area. This seemed logical 

given the fact that the interhemispheric Stroop effect depends on the transfer of 

precise semantic information (i.e a colour name) which is thought to rely on anterior 

callosal fibres (Zaidel et al., 1990). Also, the bulk of data from callosal studies in 

schizophrenia point to differences in the anterior portion (Bigelow et al., 1983; 

Nasrallah et al., 1986; Uematsu and Kaiya, 1988; Raine et al., 1990).

The anterior area portion was calculated using a radial rather than linear 

method (see Clarke et al., 1989), modified for the "Analyze" program. A line was 

drawn through the CC at its greatest anterior-posterior length and then a radius placed 

at 12° so that it intersected the CC approximately between the genu and body. The 

anterior callosal area was the area of the rostrum and genu enclosed by this line as 

indicated using the region-growing technique. Results from this method were 

compared to those from a linear method, namely measuring regions 1 and 2 as 

described by Witelson (1989), and found to be highly correlated (r=0.88). The radial 

method was adopted as it seemed to take better account of the curved callosal 

anatomy.

In order to minimise the confounding effects of gender, ethnicity and height (Harvey 

et al., in press), the callosal areas in cm2 were adjusted for intracranial volume (see 

also Nasrallah et al., 1986; DeLisi et al., 1991) by calculating a ratio of callosal area
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to intracranial volume. The latter measure was derived from an interleaved set of 24 

transverse 5 mm slices, covering the entire supratentorial volume and taken at the 

same time as the mid-sagittal slice. These structural measurements were then analysed 

with respect to the clinical, demographic and psychometric data.

CT

Brain CT scans were obtained on a Siemens CT9800 scanner. The intracranial and 

lateral ventricular areas were determined by semi-automated planimetry at the scanner 

console, soft tissue and fluid density being markedly lower (0-99 Hu) than surrounding 

bone (>1000 Hu). The slice showing the largest ventricular area, and all pixels with 

Hounsfield units of 0-25, equivalent to cerebrospinal fluid (Harvey et al., 1989), was 

used to calculate the Ventricleibrain ratio (VBR). Two raters (Dr Peter Jones and Dr 

Carine Minne, Institute of Psychiatry and Maudsley Hospital) rated the scans and 

intraclass correlation coefficient for intracranial and lateral ventricle area were 0.98 

and 0.89 respectively.

8.4 RESULTS

The 31 CT scanned patients did not differ from the remaining 15 of the original 

sample on mean IQ (108.3), age (30.7), years of education (12.4) or BPRS score 

(16.6), (all P>0.5 by t-test, 2 tailed) or any of the RT measures reflecting callosal 

function (all P>0.3). However, they tended to have a slower RT (±SD) overall [944 

(236) vs 824 (136); P=0.08]. Similarly, the MRI scanned patients were no different 

from those not scanned in terms of IQ, age or BPRS (all P >0.1) although they had 

more admissions to -hospital [4.8 vs 2.8; P=0.02] and had spent more years in 

education [13.3 vs 11.6; P=0.05]. RT overall and on measures reflecting callosal 

function was comparable for the two groups (all P>0.3).
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8.5 Relationship between test performance, clinical characteristics and 

neuroimaging

As previously shown, there was no significant association between IQ, age, education, 

number of admissions and BPRS and any of the callosal Stroop measures. As in the 

larger study (chapter 7), the sub-samples reported here both showed that the Bilateral 

Stroop condition gave the largest Stroop effect compared with the two unilateral 

positions which, in turn, did not differ significantly from each other (see Table 8.1). 

This yields positive Callosal Indices.

S tro op -L  S tro o p -R  B ila tera l C a llo sa l In d ex  Position X  C ong

F  P

V B R  P a tien ts  1 0 6 .9  (7 6 .5 )  1 2 6 .7  (8 0 .1 )  1 5 7 .2  (1 1 6 .0 )  4 0 .4  (9 1 .5 )  4 .6 9  0001

(n = 3 1 )

M R I P a tien ts  1 1 3 .0 ( 8 4 .2 )  1 3 6 .6  (9 0 .7 )  1 7 8 .9  (1 3 9 .1 )  5 4 .1  (1 1 5 .6 )  3 .2 2  0 .0 5

(n = 2 0 )

• A N O V A  p erform ed  w ith  R T  as th e  d ep en d en t v ar iab le  and p o s it io n  o f  stim u li p resen ta tion  ( le f t , r igh t, b ila tera l) 

and co n g ru ity  (co n g ru en t, in con g ru en t) a s  th e  in d ep en d en t v a r ia b les . T h ere  w a s  the e x p e c te d  s ig n if ic a n t  m ain  

e ffe c t  for c o n g ru ity , P < 0 .0 0 1  ( i .e .  th e  S tro o p  e ffe c t) . T h ere is  a s ig n if ic a n t  in teraction  b e tw e e n  p o s it io n  and  

con gru ity  a c co u n ted  for b y  th e  greater  S tro o p  e f fe c t  in the b ilateral co n d it io n .

Table 8.1. Stroop RT (±SD) in msec, with left and right visual field presentation, 

bilateral presentation, "Callosal Index" and results of ANOVA*.

CT Scanning

VBR did not correlate significantly with any clinical variable including IQ (r=-.04), 

age (0.16) and BPRS (r=-.06). There was a weak negative correlation with overall RT 

(r=-.14) and no significant correlation with the Stroop tests of callosal function 

including the Callosal Index (r=-.09) and "colour-L minus colour-R" (r=-.18).
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M R I Scanning

Mean total CC cross-sectional area (cm2) was 4.57 (0.72); anterior area was 1.02 

(24.2). Mean intracranial volume (cm3) was 1221 (118); mean total CC area adjusted 

for volume, 0.0377 (0.0067), and anterior area adjusted for volume, 0.0084 (0.0018). 

The results for Pearson correlation coefficients between morphometry, Stroop tests and 

demographic/clinical variables are given in Table 8.2. The Callosal Index correlated 

with adjusted anterior area at r=0.39. The "colour-L minus colour-R" measure 

correlated inversely with anterior callosal area when taken as a ratio of the whole CC 

(r=-0.44). That is, as would be predicted, the larger the anterior callosum relative to 

the whole CC, the smaller the RVF/left hemisphere advantage for colour naming. 

VBR did not correlate with callosal measures or intracranial volume.

A g e  IQ  B P R S  L -S tro o p  R -S tro o p  B ila t C a llo sa l In d ex  C olou r-L  m inus

C o lou r-R

C allo sa l A rea  

T otal - .1 9  - .1 3  .0 7  .2 5  .03 .18 .12 .15

A nterior : 

A nfctotal1 : 

A nterior  

- adju sted 2:

-.4 8 *  .0 5  .0 6  - .0 7  - .2 7  .1 4

-.41  .1 8  .0 1  - .2 9  - .2 9  -.0 1

-.4 4 *  - .0 5  .1 7  - .1 2  - .1 9  .21

.29

.20

.3 9 #

-.2 6

- .4 4 '

.2 4

1 A n terior  c a llo sa l area to tota l c a llo sa l area ratio.

2 A n terior  ca llo sa l area adju sted  fo r  in tracranial v o lu m e .

* S ig n ifica n t, P sO .0 5  

#trend , P = 0 .0 8

Table 8.2. Correlations fPearson’s r) between MRI measures of the corpus callosum 

and demographic, neuropsychological and clinical variables.
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Figure 8.1 PLOT OF ANTERIOR CROSS-SECTIONAL AREA
WITH INTERHEMISPHERIC STROOP EFFECT "CALLOSAL INDEX"

(Radial method - adjusted for intra-cranial volume)

.1375-

.0825-

.055-
300-60 60 180

0 120 240
CALLOSAL INDEX

20 cases plotted. Regression statistics: 
Correlation = 0.382
R Squared .14565 Sig. .0968
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Hallucinations

MRI patients with auditory hallucinations (n=10) had smaller anterior callosal areas 

than the rest and this difference was more pronounced when adjusted for intra-cranial 

volume (t=2.18; P=0.04) (see Table 8.3). Those with first rank symptoms did not 

differ from the other patients on any MRI brain measure. VBR was not related to 

these symptom complexes.

V B R  C a llo sa l C o lou r-L  C C  area A n t A rea  A n t A rea

(n = 3 1 )  In d ex  m in u s C o lou r-R  (T o ta l) (ad ju sted )

N o n -

h a llu d n a to r s  5 .6 4  (2 .6 )  

(n = 1 0 )

H a llu c in ators 6 .4 8  (3 .2 )  

(n = 1 0 )

8 4 .6 (1 3 5 )  6 .5  (9 6 )  4 .7 0  ( .7 2 )  

2 3 .5 (8 8 )  1 1 .1  (4 8 )  4 .4 5  (.7 3 )

1 .1 2  ( .2 7 )#  

.9 3  ( .2 1 )

.9 2 ( .0 2 )*  

.7 5  ( .0 1 )

#T ren d , P = 0 .0 7

♦ S ig n ific a n t, P = 0 .0 4

Table 8.3. Comparison of hallucinating and non-hallucinating schizophrenic patients on

functional and structural measures of the corpus callosum.

Family History and Sex Differences

MRI patients with a positive family history (n=7) tended to have slightly smaller 

callosa than the others [4.68 (0.75) vs 4.38 (0.65)] but this difference was not 

significant. The CT scanned group with a positive family history (n=12; 9 male, 3 

female) also tended to have smaller VBRs (i.e. less atrophy) than non-familial cases 

[5.08 (2.6) vs 6.83 (3.1); P=0.1]. This trend was accentuated when males only were 

analysed with respect to family history [5.26 (2.4) vs 8.00 (2.1); t=2.72; P<0.02].

Males tended to have larger VBRs (i.e. greater atrophy) [6.77 (2.6) vs 5.05 

(3.5)] and larger corpra callosa [4.61 (0.63) vs 4.49 (0.95)] than females, even when
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adjusted for intracranial volume. However, these differences were not statistically 

significant.

8.6 DISCUSSION

Two salient findings arose from this study. First, there was a near significant positive 

correlation of 0.39 between the key measure of callosal function the "Callosal Index", 

previously shown to be increased in schizophrenia, and the adjusted anterior callosal 

area. This was in line with prediction. The magnitude of the correlation is of the 

same order as that found in normal (Zaidel et al., 1990) and epileptic (O’Kusky et al.,

1988) subjects when attempts are made to map laterality indices on to CC dimensions. 

Second, a significant difference was found between hallucinating and non-hallucinating 

patients with the former having smaller anterior callosal areas, while a global rating 

of psychopathology, the BPRS, was not significantly associated with callosal size. 

The hallucinators also tended to show less functional connectivity as reflected in the 

smaller Callosal Index. This pattern was unexpected and difficult to interpret. 

However, it is consistent with preliminary work by Woodruff et al., (in press), who 

argue that callosal area reduction may be secondary to temporal lobe dysgenesis. It 

does not accord with the simple notion of Randall (1983) that hallucinations are the 

result of unwanted "cross-talk" between the hemispheres due to an excess of callosal 

fibres.

Similarly, the significant inverse correlation between the "colour-L minus 

colour-R" measure, obtained from presentations of the bilateral Stroop stimuli, and 

anterior callosal area, though consistent with increased callosal connectivity, is not 

straightforward. This .measure, unlike the Callosal Index, did not reveal differences 

between schizophrenic patients and controls in a previous study (chapter 7). It cannot 

therefore be assumed that a simple relationship exists between anterior callosal size, 

interhemispheric Stroop transfer and the clinical manifestations of schizophrenia. One 

possible explanation is that the increased callosal connectivity predisposes to 

schizophrenia but that once this has occurred, a relative reduction in anterior fibres 

dis-inhibits (Cook, 1986; Zaidel et al., 1990) those brain areas, perhaps in the right
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hemisphere, which produce hallucinations.

No significant findings emerged with respect to callosal area as a whole, or 

VBR. In particular neither VBR nor first rank symptoms related to tests of 

interhemispheric function (cf. David, 1987). This suggests that abnormalities on tests 

of callosal function are not the consequence of a generalised, perhaps acquired, brain 

disorder. Some interesting trends did arise out of comparisons between those with and 

without a positive family history of major psychiatric disorder. For instance, those 

with a family history appeared to have smaller callosa while they (especially males) 

had less cerebral atrophy as inferred from the VBR. This is consistent with the report 

of reduced cerebral volume in familial patients, in the absence of ventricular 

enlargement (Schwarzkopf et al., 1991). However the small size of the sample 

precludes firm conclusions on this score and results must be regarded as tentative. 

Further research which examines the genetic and environmental influences on CC 

development will be of value in generating hypotheses of relevance to schizophrenia 

(David et al, 1992).

No major sex differences were noted either on functional or structural 

measures. This is in contrast to previous work showing increase anterior callosal size 

in female schizophrenics (Raine et al., 1990; Nasrallah et al., 1986). Again, the few 

female cases in the present study prevents any secure judgement on this matter. There 

were some age effects namely the inverse correlation between age and anterior callosal 

size which must be borne in mind in future studies where subjects’ ages fall into a 

wide range.

In conclusion, the current study represents an initial attempt to correlate 

structural and functional aspects of the corpus callosum in schizophrenia. The small 

numbers make the findings somewhat preliminary. Nevertheless, there does appear 

to be a relationship between an index of callosal connectivity using a novel application 

of the Stroop paradigm, and anterior callosal size in schizophrenic patients. This may 

also relate to important clinical phenomena such as auditory hallucinations. However 

the precise nature of the links between these different measures will require further 

study.
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Summary 8.7

Tests of both structure and function of the corpus callosum have revealed 

abnormalities in schizophrenic patients. One such functional test employed lateralised 

Stroop stimuli presented tachistoscopically, to measure the transfer of interference and 

facilitation between the cerebral hemispheres. An attempt was made to relate indices 

of callosal transfer to clinical and demographic variables including family history, as 

well as to indices of brain morphology. The latter included ventricle:brain ratio 

(VBR) measured by CT scanning on 31 DSM-III schizophrenics, and the cross- 

sectional area of the corpus callosum from MRI, obtained from 20 of these patients. 

VBR did not relate to functional measures. However, anterior callosal area correlated 

with indices of callosal connectivity. Patients with auditory hallucinations had smaller 

anterior callosal areas and tended to show less connectivity. The results point to links 

between functional and structural measures of the corpus callosum but their precise 

nature remains unclear.
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This thesis began with a review of divided visual field studies in schizophrenia from 

which it was inferred that any statement locating the origin of schizophrenic 

disturbance to a particular brain region on the basis of neuropsychological tests, would 

be premature. Indeed, all brain regions examined, defined broadly as the left 

hemisphere (LH), the right hemisphere (RH) and the corpus callosum (CC), in at least 

some studies, had been shown to be dysfunctional in schizophrenics in comparison 

with controls. Many of these studies were open to criticism on the grounds of patient 

selection and diagnosis as well as inadequacies in experimental design.

One of the problems was that the individual tests may not have done what they 

purported to do. That is, there was doubt as to whether slow reaction time (RT) on 

say, the recognition of shapes presented to the left visual field, was a secure test of 

right hemisphere integrity. In chapters 2 to 4, the problem was attacked "from 

scratch" with the design and implementation of new tests, each of which had clear a 

rationale in terms of lateralised psychological processes or corpus callosum function, 

and which in themselves were anticipated to have relevance to the eventual 

understanding of psychotic disorders. Thus in chapter 2, visual imagery was tackled 

from the computational perspective advanced by Kosslyn (1987) and a test devised 

which separated left and right hemisphere contributions to the production and 

classification of visual images. When the test was applied to schizophrenic patients 

and psychiatric controls, it was found that, while generally lacking in "efficiency" in 

terms of processing speed, the schizophrenic group showed the normal RH advantage 

on the task requiring judgements on the relative size of mental images, and the normal 

relationship between the difficulty of size comparison and RT time in that hemisphere. 

However, the schizophrenic patients appeared to have lost the expected LH advantage 

in determining categorical relationships (chapter 5). This was especially so for those 

patients who had experienced visual hallucinations. The finding appeared to be linked 

with the experience of vivid visual imagery in normal subjects. Relating psychiatric 

disturbances to normal phenomena as well as to an anatomical substrate is arguably, 

the ultimate aim of neuropsychological research in psychiatry. However, the
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asymmetry of processing advantage elicited by the two visual cognitive tasks was not 

as robust as had been hoped and the range of performance or variance in the patient 

groups was large so that other important though subtle differences may have been 

obscured.

The next test to be developed involved the perception of facial affect from 

chimeric face drawings in which half of the chimera was sad and the other half, happy 

(chapter 3). Variations on this paradigm had been exploited in the study of cerebral 

laterality most notably, by Jerre Levy and colleagues (e.g. Levy et al, 1983a). The 

happy-sad version proved a reliable and sensitive measure of RH function. In addition 

it allowed the study of dynamic changes in hemisphere arousal in different mood 

states, which had been suggested by previous work. Although peripheral to the main 

thrust of the thesis, the distinction between hypomanics/manics and depressives, in the 

affective disorder group, allowed a more precise test of the specificity of the 

abnormalities uncovered in the schizophrenic patients. (The affective group was not 

sub-divided in the other experiments described in chapters 5, 7 & 8 since this would 

have detracted from the main purpose of the research on schizophrenia. However, 

post-hoc analysis of manics versus depressives on Stroop test performance and the 

tests of visual cognition did not reveal any significant differences.) The chimeric 

faces test evokes a perceptual bias which results in an increased salience to the half 

face to the viewers left - the left hemifacial bias (LHFB). This was not seen 

consistently in non-right handers, as predicted. Normal and induced variations in 

mood did not affect perceptual bias but abnormal variations in mood amounting to 

clinical disorder, did exert an effect (chapter 6). Manics tended to have increased 

LHFB, depressives, reduced bias, and schizophrenics, little or no bias. This 

tachistoscopic study replicated one using the same stimuli presented in free vision, to 

a different populatiomof patients (David & Cutting, 1990).

The mechanism of the perceptual bias shown in these and other studies, and 

its relationship to other measures of hemisphere functioning, is a topic of debate in 

the neuropsychology literature. In chapter 6, it was regarded simply and 

parsimoniously, as an index of directed visual attention. The use of this paradigm 

was an attempt to go beyond the application of tests merely because of some supposed 

allegiance to a single hemisphere, or to some unitary psychological construct such as
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"attention". Rather the aim was to address both psychological and anatomical 

concerns together. Just as chapters 2 and 5 were concerned with the LH’s visual 

semantic system, so chapters 3 and 6 focused on the RH’s visual attentional system. 

A further preliminary step was taken in chapter 6 which included analyses making use 

of data gathered using a divided visual field version of the Stroop test (see below). 

This was an effort to further refine the study of hemisphere-specific attentional 

processes by looking at Stroop performance - regarded as a test of selective (within 

a location), as opposed to directive (towards as location), attention. Such an approach 

is in its infancy, and the results reported are tentative, yet this is a direction for future 

study. In brief, selective attention as deduced from Stroop performance was not 

disturbed in either hemisphere in schizophrenia but the relationships between 

performance on this and the chimeric faces test appeared to have broken down, 

consistent with the view that there is a general disruption of the coordination of 

processing sub-components in schizophrenia. Less equivocally, the results from the 

chimeric faces confirm RH dysfunction in schizophrenia, in addition to the LH deficit 

demonstrated using visual semantic/imagery tasks (chapter 5).

Chapters 4, 7 and 8 dealt with the use of an adaptation of the Stroop test. In 

the traditional test, two conflicting (or concurring) elements, such as a colour strip and 

a colour-word, are combined into a single composite stimulus (see MacLeod, 1991). 

By separating the two elements so that the word and colour can be each presented to 

a different visual field/hemisphere, yet the word still exerts an influence on the 

retrieval of the colour’s name, it is possible to gain information on the flow of 

information between the hemispheres. Only precise, semantic information (that is the 

meaning of words in this case) is capable of producing Stroop interference/facilitation. 

Hence, it may be predicted that such high-level information requires the corpus 

callosum as its conduit (see Zaidel et al, 1990). Some empirical support for this was 

provided in chapter 4 on the basis of experiments in patients with callosal agenesis, 

who showed reduced interhemispheric Stroop effects. The design of the study allowed 

ready controls or comparisons at several levels. First, identical stimuli were presented 

"unilaterally" as were presented "bilaterally". A discrepancy between the two 

hemispheres’ individual performance would have rendered conclusions based on the
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interhemispheric condition, "unsafe". Fortunately, this did not occur. Secondly, a 

measure of the combined Stroop effect (CSE) can be derived by subtracting the 

invariably shorter RT for congruent stimuli from that of incongruent stimuli. This 

allowed the influence of response speed (significantly slowed in the patient groups) 

to be "partialled out". The results given in chapter 7 show that the schizophrenics 

exhibited a greater Stroop effect in the bilateral condition compared with the controls, 

while the within-hemisphere Stroop effect was very similar between all the subject 

groups. Is this then, a true differential deficit according to Chapman and Chapman’s 

criteria (Chapman and Chapman, 1973)? In one sense, the answer is "Yes", in that 

the schizophrenics were matched against psychiatric and normal controls with respect 

to Stroop performance when this was intra-hemispheric. However, it would not be 

strictly accurate to describe the increased Stroop effect as a deficit since it combines 

increased facilitation with inhibition. The contribution of each component could not 

be ascertained, given the design of the study, since there was no "neutral" condition 

(neither congruent nor incongruent) against which this could have been measured. 

This is clearly an avenue for further research.

Having found a performance index which appeared to distinguish 

schizophrenics from controls, there were two obvious directions in which to extend 

the finding. One was to look for clinical-performance correlations. For example, it 

was hypothesised that abnormally increased corpus callosal function would related to 

psychotic phenomena such as auditory hallucinations. This was not shown to be the 

case, indeed a trend in the opposite direction was noted. Similarly, an association 

with a positive family history of psychiatric disorder was sought but later excluded. 

Another direction was to look for correlations between performance and 

phenomenological variables, with structural measures of the corpus callosum (chapter 

8). The increased trans-callosal "traffic" implied by the greater bilateral Stroop effect 

in the schizophrenic patients, correlated with the anterior width of the corpus 

callosum, after corrections were made for intracranial volume, in a sub-group of 20 

schizophrenics. Ventricle:brain ratio was not related to performance, as had been 

suggested by an earlier study (David, 1987). Patients with auditory hallucinations 

scored low on functional and structural measures of "callosal connectivity", thus 

providing a complete chain of association between symptoms, neuropsychological
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performance and brain structure. However, the integrity of each link in the chain is 

not sufficient to support too much weight at present. The strength of association, 

represented statistically as a correlation coefficient, at each point in the chain 

accounted for only a modest, albeit significant proportion of the variance. Other 

additional factors must therefore be exerting an influence.

Future directions

The experimental work outlined above showed deficits in relatively well-defined 

psychological processes in the RH, the LH and the corpus callosum. It seems 

therefore that the continued search for a solitary dysfunctional process in a single 

cerebral site would be unproductive. Indeed the range and variety of manifestations 

seen in the schizophrenic disorders makes such an endeavour unpromising from the 

outset. That is not to say that schizophrenia is a diffuse cerebral malfunction which 

compromises all functions in all locations to the same degree. While the disorder can 

be viewed as the end result of many different aetiologies and pathogeneses, from 

genetically programmed maldevelopment to an acquired insult to the brain, it 

maintains a coherence as a syndrome (Wing et al., 1974). The approach taken in this 

thesis was to isolate different kinds of deficits allied to different cerebral locations and 

to attempt to relate these to the phenomena of the disorder. It may be that starting 

with the phenomena (e.g. auditory hallucinations), as seen in a pure form in rare cases 

- the cognitive neuropsychological approach - may be a useful way to proceed having 

established a general relationship between the phenomena and the psychological 

process in a heterogeneous group as a first stage. The localisation of the 

underpinnings to such disturbances in the brain will be progressively easier with the 

growing sophistication of neuroimaging techniques, both structural and functional. 

The ultimate understanding of the schizophrenic disorders will nevertheless depend on 

advances in knowledge relating to normal cognitive processes and their physical 

substrates, against which abnormal process can be gauged. This in turn will rely more 

on the ingenuity of the psychological investigator and the sophistication of his or her 

ideas than on the technical wizardry of the physicist.
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