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Abstract
This thesis presents an analysis of radial waves in a helically structured cold plasma. 

The problem is solved by numerically integrating a set of coupled differential equa­

tions for the electric field. Results showing the conversion of energy between differ­

ent modes of propagation are presented. Relevance to plasma heating is discussed, 

and the merits and demerits of different solution methods are compared.

Chapter 1 surveys the ubiquity of the plasma state and focuses on two areas 

which motivate this work: coronal loops and tokamak heating.

In Chapter 2, the m athematics necessary for the description of the plasma state 

is introduced and the cold, multi-fluid equations used later in the thesis are derived. 

An overview of linear waves in a cold plasma is presented.

A general survey of the modelling of non-uniform plasma media is given in 

Chapter 3, where the WKB solutions and the notion of a local dispersion relation 

are introduced.

The specifics of our chosen system are introduced in Chapter 4. A consistent 

equilibrium field, of constant magnitude, but varying in direction is obtained and 

described. Linear wave solutions to the cold plasma equations for electrons are 

sought, and a set of coupled odes for the electric fields are derived, in the regime of 

negligible equilibrium flow. It is shown that asymptotic solutions may be obtained 

for these equations, and their form and range of validity is discussed. Wave equa­

tions for the electric field which include the full effects of equilibrium flow are then 

discussed.

Splicing the helical field onto a uniform one at a fixed radius gives a useful simple 

model of a number of relevant physical structures, whose solution is investigated in 

detail in Chapter 5. Expressions for amplitudes of converted and reflected waves 

are found in terms of the value of electric fields and their gradients at the boundary 

between the two regions. The values of these are found numerically for a variety of 

plasma parameters, and the implications of the results discussed The results are 

compared with the asymptotic approximations found earlier, and the agreement 

found to be very good.

The possibility of deriving WKB solutions to the model equations and of apply­

ing one other commonly used technique is considered in Chapter 6 .

Chapter 7 summarises the conclusions of this work, and gives suggestions for 

future research.

The original work of this thesis is contained in Chapters 4 to 6 .
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C h ap ter  1

T h e O ccurrence A nd  

Im p ortan ce O f P lasm as

The word ‘plasm a ’1 will be used to designate that part of an arc-type 

discharge in which the densities of ions and electrons are high but sub­

stantially equal.

I. Langmuir, L. Tonks, 1929

1.1 The Plasm a Universe

Plasm a Physics aims to describe the behaviour of highly ionised, quasi-neutral m at­

ter, and, in particular, its collective properties. Our immediate environment is too 

cold to be significantly ionised, and so the plasma state is considered an oddity. 

In the universe as a whole, it is the norm. Both direct measurements from space 

probes and inferred parameter values from remote observations combine to give a 

picture of a universe filled with magnetic and electric fields and currents, which 

can exchange momentum over large distances. The currents can become pinched 

to form lines or surfaces, dividing space up into cells, each with their own magnetic 

field values. In short, a plasma universe naturally becomes filamentary and inhomo- 

geneous (Alfven, 1990). The effects of such structure on physics on a cosmic scale 

have been neglected until recently. It is now being realised th a t an understanding of 

plasma physics is essential in many branches of astrophysics where it was previously 

considered a side-issue. Electromagnetic forces may have an im portant role to play

1The term was coined under the mistaken impression that it was Greek for jelly. Despite this 

inauspicious origin, the word has stuck.
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in the dynamics of galaxies (Peratt, 1986). The realisation that interstellar and in- 

tergalactic space may be filled with tenuous plasma, has led to new interpretations 

of red-shifts in term s of Compton scattering by the interstellar, or intergalactic, 

medium which have far-reaching consequences both for cosmology (Reber, 1986), 

and for the interpretation of data from a wide variety of objects in our own galaxy 

(M armet, 1990).

1.2 T he Sun

The Sun is a gravitationally bound sphere of fusing plasma, composed of 90% 

hydrogen, 10% helium, and 0.1% other elements. It is now known to be a complex 

and highly structured object. Several aspects of its behaviour are still obscure: 

the well-known discrepancy between observed and predicted neutrino fluxes is one 

example. More pertinent is the problem of coronal heating.

1.2.1 Coronal Plasm a Loops And H eating

The visible surface of the Sun (the photosphere) has a tem perature of about 6000K. 

Moving radially outwards, the next layer, the chromosphere, has a tem perature of 

between 6000K and 105 A'. This is followed by a rapid rise in tem perature over a few 

hundred kilometres to about 106A  at two solar radii. The reason for this heating 

is still unclear. More specifically, it is now known that a large part of the energy 

em itted from the corona comes from well-defined curved paths, known as loops. 

These structures may be consistently identified across a wide range of wavelengths 

in many of the large number of observations which have become available in the last 

twenty years or so. Loops are anchored to the solar surface by fooipoints (usually 

associated with sunspots) ~  1 0 7m apart, and rise about the same distance above 

the surface, with a thickness estimated to be from 105m to 106 m. They usually 

have a lifetime of a few minutes, although they are often observed in systems which 

can persist for hours and have tem peratures ranging from 1 0 4 A' (cool loops) to 

~  3 x 106 A' for hot loops. An exhaustive survey of this topic is given in Bray et al, 

1991. These general data apart, there is little agreement about the exact physical 

processes occurring in coronal plasma loops.

It is generally assumed that the observed loop structures act as tracers of equally 

well defined structures in the solar magnetic field, and that this field provides some 

sort of mechanism which contains and supports the denser plasma found there. This 

is a fairly compelling viewpoint, since it is hard to see what other source the struc­
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ture could derive from. However, it is worth remembering that there is no detailed 

information about magnetic field structure available, although there are more or 

less accurate estimates of the average values occurring in certain regimes. Even if 

we accept the general principle that the visible structures follow field lines, the lim­

ited definition of observations means that more complex topologies cannot be ruled 

out i.e. braided and tangled field lines may be present. These caveats aside, the 

notion that a coronal loop corresponds to a magnetic flux tube has become the ac­

cepted view. The lack of detailed observational data means that producing feasible 

magnetic field structures (usually within the MHD approximation) and finding their 

consequences has become a m ajor industry. Most work centres on finding force-free, 

or potential magnetic equilibria which mimic the structures thought to occur, and 

studying their stability and possible heating mechanisms which they may support. 

Of particular interest for this thesis, are the large number of models which have as 

their basis helical magnetic fields.

Clearly, predicting how and where heating occurs in the corona and, in particu­

lar, the generation mechanism for solar flares is a m ajor goal for solar physics. At 

the moment, a bewildering number of candidate schemes exist. Broadly speaking, 

these assume that some form of wave propagates up from the photosphere and is 

then damped, or steepens to form a shock, or undergoes mode conversion to form 

another mode which is then dissipated in some manner. However, if theories of 

coronal loop structure are uncertain, theories of coronal loop heating, relying, as 

they do, on the little known conditions in the photosphere, are even more specula­

tive, and only the broad forms of any conclusions obtained thus far are likely to be 

useful. A complete account of coronal loop heating is likely to involve a number of 

these mechanisms, together with an understanding of the way in which photospheric 

conditions interact with coronal physics.

The possible occurrence of helical fields in coronal loops, together with the po­

tentially im portant role which mode conversion may play in this context, motivates 

us to study waves in a helical field using a plasma model which is slightly more gen­

eral than the MHD approximation, with particular emphasis on mode conversion.

1.3 Laboratory Fusion Plasm as

Since about 1950, a vast amount of research has been devoted to the peaceful 

harnessing of fusion energy. The most favoured reaction (that with the highest cross- 

section) occurs between deuterium and tritium , which results in the production of
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a helium nucleus and a neutron. The energy released in such a reaction is greater 

per fusing nucleus than for fission involving a uranium isotope. This, and the easy 

availability of the fuel, makes fusion power an attractive proposition. For such 

a reaction to generate net power, however, the nuclear power produced must be 

enough to compensate for bremsstrahlung losses and heating the plasma. Assuming 

the ions and electrons have the same tem perature, and th a t some mechanism is 

available for ‘recycling’ lost energy and heating the plasma with it, then one can 

show that for there to be a net production of energy, the plasm a electron density 

n, confinement time r  and tem perature T  must satisfy

n T -  ’ (L31)

where a, b are positive quantities which depend only on nuclear reaction rate and 

the efficiency of the ‘recycling’. This is the Lawson criterion (Lawson, 1957). It is 

impossible to achieve breakeven for temperatures of less than 2keV, and the opti­

mum tem perature is around 30keV. To achieve ignition, that is to produce enough 

neutrons to sustain the reaction, one must satisfy a criterion of the same form, but 

with differing a, b. No ignition is possible below 2keV, and the optimum  tem pera­

ture is, again, about 30keV. Assuming we choose such favourable tem peratures, the 

Lawson criterion becomes, roughly

n r  > 102Ora-3 s . (1.3.2)

Clearly, a number of regimes are possible which satisfy this criterion. For instance, if 

very high densities are used the confinement time need only be very small: this is the 

principle behind inertial confinement fusion. If everyday densities (densities which 

can be sustained by standard engineering structures) are used, then n < 1 0 2Om - 3 , 

so that r  > Is. A number of candidates for such a containment exist, the most 

favoured being magnetic confinement in a tokamak. This is a Russian acronym for 

toroidal magnetic containment vessel -  the concept was invented and early trials 

carried out in the former Soviet Union. A purely toroidal magnetic field will not 

confine the plasma, as an electric field is set up which causes the particles involved 

to drift radially outwards. This field can be ‘shorted ou t’ by introducing a poloidal 

component, giving an overall magnetic field which twists around the toroidal flux 

surfaces. However, too large a twist can lead to instabilities, with consequent loss 

of confinement. Much theoretical and experimental effort has gone into studying 

and controlling these instabilities, and a  good deal of progress has been made. 

Major experiments (JET Team, 1992) have now achieved the required tem perature
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and n r  value separately, although not in the same experimental run. The T F T R  

experiment recently produced an output power of about 2 0 % of the power required 

to heat and m aintain their D-T plasma.

1.3.1 P lasm a H eating

The necessary heating is provided partly by the toroidal current which is used 

to produce the poloidal magnetic field. However, typical plasmas have a resistivity 

which is low and decreases with increasing tem perature, so th a t this ‘Ohmic’ heating 

must be supplemented. Firing high velocity beams of neutral particles into the 

plasma is one alternative. Another is to launch electromagnetic waves of some form 

into the tokamak. The trick of this technique is to pick the wave so that it mode 

converts effectively into a mode which is heavily damped and thus deposits most of 

its energy in the plasma interior. This, and other strategies, is considered in some 

detail in Cairns, 1991.

The basic concept is that a mode, considered to be well approximated by a 

cold plasma mode, propagates inwards until it meets a layer in the device where 

the spatially varying plasma parameters produce a resonance. According to  cold 

plasma theory this can result in either a reflection and/or absorption. The point is 

somewhat academic however, since, near a resonance, other effects dominate.

To obtain the cold plasma waves, particle collisions and thermal motion are ne­

glected and both of these can give rise to damping. Assuming the plasma to be 

collisionless is, in fact, a good approximation, which becomes better with increasing 

temperature, though a little non-resonant absorption is always present. The finite 

tem perature effects result in resonant interactions between the electron’s Larmor 

orbit and the wave field which become stronger as the tem perature rises. Firstly, 

if an electron travelling along a field line at velocity V|| sees a Doppler-shifted fre­

quency, u  — &||V||, which is close to an integer multiple of its cyclotron frequency, 

it is accelerated in its Larmor motion. This requires a circularly-polarised wave 

electric field at right angles to the magnetic field B 0 and so could result from the 

presence of an X-mode. Acceleration along B 0 can also happen because the finite 

size of the Larmor radius means the electron samples electric field, at gyrofrequency

over a range of positions. The wave electric field oscillates at its own frequency 

u>. If these satisfy the resonance condition u> = Q0 +  fc||W||, then E z averages to a 

non-zero value and parallel acceleration results. This mechanism is associated with 

an O-mode.

To obtain qualitative predictions of damping decrement, the hot plasma disper­
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sion relation must be solved. Exact solutions are usually not possible or necessary 

and treating tem perature as a small correction via an expansion in ^ 7 7  (to lowest 

order this gives cold plasma modes) is quite adequate.

Because of the interest in such heating techniques, this is clearly another area 

where the study of wave propagation in a helical field will be an informative exercise.
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C h ap ter  2

T h e M ath em atica l 

D escr ip tio n  O f A  P lasm a

2.1 L iouville’s Equation And T he Chain O f K i­

netic Equations

In what follows, the main ideas used in the m athem atical analysis of the plasma 

state are introduced and it is shown that numerous levels of description exist, from 

the comprehensive but unworkable, to the crude, but easily solved. In particular, 

the derivation of the plasma fluid equations, which are extensively used later, is 

given.

Consider a system composed of N  interacting bodies in a volume V,  where N  

is a very large number. The motion of such a system may be described by the 

coordinates qi, ■ ■. ,qk,Pi,  ■ ■ ■ ,Pk, where the qs are coordinates for each degree of 

freedom of the N  bodies and the ps are the corresponding momenta. In our case, 

we wish to model the interaction of particles, so there are 3 degrees of freedom for 

each particle, and hence 6N  coordinates in total. The totality of such points is 

referred to as the phase space for the system. As time advances, the system will 

trace out a trajectory in phase space which is determined by Newton’s Laws. This 

can be taken as the first (and only exact) description of a plasma. It is clearly of 

no practical use: even if the necessary calculations could be carried out, we would 

never have precise enough knowledge of the initial conditions, and the detail of the 

description would be superfluous.

To obtain models of greater utility, much of the existing information must be

7



somehow ‘averaged o u t’. To do this, the system is replaced by an ensemble of similar 

systems, each of which will evolve as discussed above. Rather than having definite

average over the ensemble. A generic N  particle distribution function f x  can now 

be defined, such that f a  (JYi,. . . ,  Xjv) dX\  .. .gLYjv is the probability that particle 

i, or any particle of the same type as i is within d X i . . .  d X jv , at time t, where we 

have taken X{ =  (x,-,Vj) as shorthand for the coordinates for the ith particle. For 

a single species plasma, / n  is normalised such that,

since there are TV! permutations of the N  particles. As a result, the expectation 

value of a physical quantity Q, is:

By using Hamiltonian mechanics, f a  may be found to satisfy the Liouville equation, 

viz.:

where a; is the acceleration of the ith particle due to the other N  — 1 particles. It 

will be, in general, a formidably complex function of X \ , . . . ,  X ,_ i, X ,-+i,. . . ,  X/v, 

and of fields applied externally to the plasma.

The averaging process outlined above has still not reduced the problem in com­

plexity, in the general case. When the system is in thermodynamic equilibrium, 

however, it can be shown that:

where W  is the total energy for state X i , . . . ,  X n , k is Boltzmann’s constant, and 

T  is the tem perature of the system. The problem of macroscopic modelling of 

the plasma would then come down to evaluating integrals like Eq. 2.1.2, with /at 

given by Eq. 2.1.4. To model non-equilibrium processes, we must try to construct

outlined in the case of one species of particle. The method can also be applied, with 

only a little modification, to multi-species plasmas, at the cost of rather greater 

complexity.

Firstly, we integrate over N  — s sets of phase space variables to produce reduced

values, physical quantities now have probable (or expectation) values, defined by the

J  f N d X l (2 .1 .1)

{ Q ( X l l . . . , X N ,t)) = J  . . . J  f N ( f l , . . . , X N , t ) Q ( X l , . . . , X N , t ) d X 1 . . . d X N .

(2 .1.2)

(2.1.3)

f N = C e x p [ - W ( X i  X N ) / kT] (2.1.4)

‘equations of m otion’ for the physical quantities required. This procedure is now



distribution functions f s, defined as

1 r  N
f , ( X l , . . . , X „ t ) =  r  - ~  /  f N n  d X i .  (2.1.5)

This represents the probability of finding a particle at X \ ,  a particle at X2, . . . ,  a

particle at X s , and assumes that particles do not occupy the same position. We

now proceed to integrate the Liouville equation over the space of all but s particles, 

a t the same time multiplying by °btain  an evolution equation for

The first term becomes d f a/dt .  In the other terms, all contributions for which 

s +  1 < j  < N  may be transformed into surface integrals which can be assumed to 

vanish, since / ,  is non-zero over a bounded volume of phase space. The result is:

(2 , .6 )
j = 1 j v j = 1 »=«+i

To complete the derivation, rewrite aj as

ai =  E ai ° -  (2 1 -7>
1 = 0

where is the acceleration of the particle j  due to the presence of particle 

*, and a ^  is the acceleration due to any external forces. This expression may 

be substituted into the third term in Eq. 2.1.6. On noting that the terms for 

s +  1 <  i < N  are identical (for given j )  by the symmetry of f a  with respect to 

permutations of like particles, Eq. 2.1.6 becomes:

f  + t  r r + 1  ±  4° • £  + E /  = 0 . (2.1.8)
j=l J j= l i=0 * i=i

This set of N  coupled equations is known as the BBGKY hierarchy (named after 

Bogoliubov, Born, Green, Kirkwood and Yvon). The first three terms describe the 

interaction of s particles, while the last includes the forces due to the other N  — s. 

The sth  member of the set gives an equation for f ,  , but also involves / ,+ i-

This description is equivalent to the Liouville equation, but our intention was 

to provide a simpler picture. Consider Eq. 2.1.8 for s =  1,

dfi  , „ ^/l , _(o) 0 / i  , [  (2) d/2 , , n (f) .aT+Vl ■ â7 + ai + J  ai ' frT1dv>dx> =0 • P-1-®)
This would provide a suitable equation for f \  were it not for the presence of / 2  in the 

last term. The next section shows that this term may be approximately rewritten 

in terms of / 1 , for most cases of physical interest.



2.2 Uncorrelated Particles: The D ebye Length

If the particles in question are non-interacting and thus the only forces are external, 

then the last term  in Eq. 2.1.9 can be neglected. In fact, in this case the Liouville 

equation can be solved by taking

NTV/'* -r-r-
! n ( x    x N, t )=  ■

n n
(2 .2 .1)

j =i

where / i  is the solution of Eq. 2.1.9 with the integral term set to zero. In this 

approximation, the probability of finding a second particle in a particular position 

in phase space is independent of where the first was located. This method of solution 

can be justified as follows. Consider a species with charge q and mass m, then

(o) a,- = ±
m

[e (o) +  Vj x B<°>

=  ^ [ B f  +  V j x B f ]  , (2.2.2)

where Eo, Bo are the externally applied fields. E j*\ B ^  are the electric and 

magnetic fields felt by particle j  through the presence of particle i, and are given 

by Coulomb’s Law and the Biot-Savart Law respectively:

9E}° =

B<.° =

x, -  x.
47TC0 |X j  -  X . f  

/i0q v,- x Xj
4x x v  -  Xv

(2.2.3)

It should be noted that retarded potentials have not been used here, since we have 

assumed that the effect of changes in the velocity or position of a source particle 

are felt instantaneously at the field point. The light travel time is thus assumed to 

be much less than the timescale over which physical quantities of interest vary.

We now consider the result of a process in which the particles in the volume V, 

are subdivided in such a way th a t n = N / V  —► oo,g —► 0, m —*• 0, but the total 

mass and charge stay constant and, consequently, q /m  is constant also. Now switch 

to dimensionless variables by using the plasma frequency as time scale, and the 

thermal velocity as a characteristic speed. This gives, for time, velocity and length 

scales,
1 b « m l1/2 r t n 1/2 r ^ l - T l 1/ 2

(2.2.4)
1 Co m' 1/2 'kT ' 1/2 Co k T---  = n , Vth = , h = qUp n 9 m n 9

where h is the Debye length. The new variables, denoted by a bar, are defined by:

x  =  hx  , t = t / u p ,v  =  hwpV

(2.2.5)

, n ’f ,  = (hup)3s / , ,  d X  = h6t f d X

10



And, since

a (0 -  
j ~ 4tt e0m

the BBGKY hierarchy becomes,

X; ~  Xj J 1_  p Kj -  x,

_|xj -  x t |3_ Airnh2 Jx j -  x ; |3_
=  p ^  

nh 2 >
( 2 .2 .6 )

+  • ^ -  +  V a (0) • —  +  —  V  • —  +dt 3 dxj J d \ j  nh3 ; dv** j — X J 1—1 t — 1 *j =i j —i i=i

E  /  s $,+1) ■ % t id X '+ i =  0 • <2-2-7)

If the process mentioned above is taken to its limit we will have ‘smoothed o u t’ 

the charges, and can expect a corresponding change in the m athem atical description. 

The number of particles in a cube of side h is nh3, and as n —► oo, this number tends 

to infinity also. The double summation term in Eq. 2.2.7 may then be neglected 

since it is 0 ( l / n 5/ 2). Physically, the interactions of individual particles become 

less im portant than the self-consistent, bulk fields. This property, namely th a t the 

number of particles in a Debye sphere should be very large, is usually regarded as 

an essential prerequisite for the term ‘plasm a’ to be used. Specifically, we require 

that,

nh3 =  N £) =
’ eakT 3 /2

> 1 .

Dropping the double summation term, and putting

S

j =1

(2 .2 .8 )

(2.2.9)

in accordance with the assumption of uncorrelated particles, it can be shown that 

all the equations in the set 2.1.8 can be satisfied, provided that

d f i ( X u t)d f i ( X i , t )  , d h { X u t) ,
■+vi  --------- f-

dt <9xi dvi

On dropping the subscripts, this may be compactly written

d f- _ _ n  
dt +  V ' <9x dv ’

= 0 . (2 .2 .10)

( 2 .2 . 11 )

where

a  [E +  v x B ] / ( x ',v , ,/)d x 'd v ' +  ^  [ e ^  + v  x B<°>] , (2.2.12)

and E and B are the fields produced by particles at (x ',v ') .

Eq. 2.2.11 is the Vlasov equation, which describes the evolution of a plasm a’s 

distribution function under the influence of the fields given by Eq. 2.2.3.

11



2.3 M om ents Of The V lasov Equation: The Fluid  

Picture

The complexity of the Vlasov model is still considerable: a set of highly non-linear 

coupled pdes must be solved before the plasma motion may be extracted. Models 

of great utility may be found by reducing still further the information content of the 

description used. This is done by multiplying the kinetic equation by appropriate 

functions of velocity and then integrating over velocity space. Appropriate in this 

case means of a form such that we can easily relate the integrals thus found to 

physical quantities. Initially, the distribution function is renormalised so that

n(x,<) =  J  f ( x , v , t ) d v  , (2.3.1)

where n is the number density of particles at (x,f).  Hence the ensemble average of 

a physical quantity Q,  becomes:

(Q(x, t)) = i  J  / (x ,  v, t )Q(x,  v , t ) d v  . (2.3.2)

To find the zeroth moment equation, multiply Eq. 2.2.11 by 1, and integrate over 

velocity space, then:

/  % d v + S V lhcdv + J a ' d v dv  =  0 ' (2 '3 3)

The first term becomes dn/dt ,  by definition. The second may be written

/ v ^ dv = l r / v/dv = lr<"v) • (2-3 4)
In the third term, the part of a  due to velocity independent forces, a / ,  say can be 

written

J  a /  • T ^ d \  =  a / • J  =  a /  • f d S  =  0 , (2.3.5)

where we have used the divergence theorem and assumed that /  —► 0 as |v | —► oo.

The velocity dependent part, v#  becomes

j  a  D • = J  ̂ - ( a  Df)dw =  £  / a D • dS = 0 , (2.3.6)

on noting that (v x B)j does not contain u,- and then repeating the argument above

(this time, |a£>/| —*■ 0). Thus the zeroth moment of the Vlasov equation may be

written

^  +  V ( n v ) = 0 .  (2.3.7)

This is the continuity equation, which expresses the fact that the flux of particles 

into a volume must be balanced by change of density in that volume.

12



We now proceed to take the first moment of Eq. 2.2.11,

/ v ^ v +  / v v . £ £ ( i v + / v a . | / (iv =  0 .  (2.3.8)
J at J  <9x J dv

The first term gives (^v). The second may be rewritten as

/ v v  • =  ‘ ^ v v / d v  =  V • (nvv) . (2.3.9)

The transformation of the third term can best be understood if we give it in full,

viz.:

j v { ±  [e<°> +  v x  B ^ ]  + ~  J  [E +  v x  B ] / ( x ',v ',0 d x 'd v / } • ^ ^ v  ,

(2.3.10)

where E  is the electric field felt by the particle at x due to the particle at x '. 

is dealt with in the same way as the velocity independent forces above, as is the 

term involving the integral. The v x B (0) term is dealt with as above, and so Eq.

2.3.10 becomes

^  | e (o) +  v  x B (o) +  J  [E +  v  x B ] / ( x / ,v #,f)dx /d v 'j  . (2.3.11)

To be consistent with the analysis above, and to avoid having to perform complex 

integrals in order to find the acceleration term, we do the integral over v ' in Eq.

2.3.11 and obtain

~~ [E +  v x B] ,m
E  =  E « o +  f  J E J l 2 E ^ . d x 'J  4 t €0 |x — x '|

B =  b <*> +  /  / M g v x ( x ~ f ) d>> . (2.3.X2)J  4;r |x — x/1 V J
The first moment of the Vlasov equation is thus:

(nv) +  V • (nvv) =  —  [E +  v x B] . (2.3.13)
ot m

This is the momentum equation and can be viewed as expressing Newton’s sec­

ond law for a differential element of a fluid. The time rate of change and flux of 

momentum across the surface of the element are balanced by the electromagnetic 

fields, which act as sources of momentum. Taken along with Eq. 2.3.7, we have a

simplified picture of a plasma. Eq. 2.3.7 can be viewed as an equation for n (zeroth

moment), given v(first moment), while Eq. 2.3.13 determines v given vv  (second 

moment). The process described above could be continued to third moments and 

beyond, but in no case would there arise a closed set of equations. The system 

of two equations derived above will, in fact, be sufficient for the study of plasma 

waves later in this thesis, once we have added some extra assumptions concerning 

the plasma structure.

13



2.4 The Cold Plasm a A pproxim ation

If thermal motion is neglected, then the plasma is said to be cold, which means that 

all particles move at the fluid velocity, so that the distribution function contains a 

delta function:

/ ( x , v , < )  =  n ( x , t ) 6 ( v  -  v ,)  . (2-4.1)

Then the momentum equation becomes, on using the subscript s to denote the

species of interest;

S ; (n sv s) -1- V • (n ,v ,v ,)  =  ^ ^ - [ E  +  v a x B] . (2.4.2)
at m,

Expanding the divergence term and using the continuity equation, gives Eq. 2.4.2

its more normal form, viz.

y  +  ( v , ' V) v ,  =  ^ [ B  +  v , x B ] .  (2.4.3)

To complete this plasma model we need an easier description of the evolution of the 

electromagnetic field than th a t encapsulated in Eq. 2.2.3, which requires knowledge 

of the positions of all particles; precisely the level of detail which we were trying to 

avoid. This description is provided by Maxwell’s equations:

„  ^  dB  „  „  ,  <9EV x E =  , V x B = /z0J + /i0e0—  ,

V • E  =  — , V • B =  0 , (2.4.4)
€ 0

where e0 and /i0 are, respectively, the permittivity and permeability of free space 

and the speed of light in vacuo, c =  (e0//0)-1 / 2. To employ these for a plasma 

containing M  species, we must also note that the charge density and current are 

given by
M  M

P = ' ^ 2 q sn s , J  =  . (2.4.5)
3 = 1 3=1

The m athem atical description of a cold plasma is now complete and comprises 

equations 2.3.7, 2.4.3, 2.4.4, 2.4.5. This description will be used extensively in what 

follows.

2.5 Waves: The Cold Plasm a D ispersion R ela­

tion

Waves in a cold, uniformly magnetised plasma are a benchmark for analysing and 

understanding other, more complex wave modes, and provide in themselves a useful 

illustration of much pertinent physics.

14



To perform this derivation, we seek linear wave solutions to the cold plasma 

model. Assuming a spatially and temporally uniform magnetic field , B 0, pointing 

in the z-direction at every point in space, and setting all solutions proportional to 

exp i (k • x  — u>t), the two Maxwell curl equations may be combined to obtain

, .2
k x k x E  =  iuiu0 J  — r-E , (2.5.1)

where E  and J  now denote small perturbations to the equilibrium situation. Eq.

2.5.1 could be written down for any medium; to solve for the situation in hand, the 

remaining model equations must be used to express the current in terms of electric 

field. The contribution to the velocity from species s is

m s (
iuq. („  Qs „  „
—  T 1 E +  ~ E X Z _  ~ f zEuP — S2~) ( iuj uP

(2.5.2)

where we have introduced the algebraic gyrofrequency for species s, defined as = 

so that Qs has the same sign as q3. It is conventional to introduce the 

refractive index, n , such that n  =  k c/ oj, and to express its direction in terms of 9, 

the angle between the propagation vector and the z-axis. Then the wave equation 

may be expressed as

S  — n 2 cos2 6 —iD n2 cos 9 sin 9 E x

iD S - n 2 0 Ey =  0 , (2.5.3)

n2 cos 9 sin 9 0 P — n 2 sin2 9 E z

where we have used the notation of Stix (1992), in which,

*  = ‘ - E r £
pj__

u>“- — Q2 J '  u  (u>2 -  Q ] )

toPJ*  = 1-E
j

R  = S  + D , L = S  — D  .

Here, the plasma frequency for the j th  species has been defined as u>p =

(2.5.4)

n °i1i
e0mj

The symbols R, L , S', D, P  are not arbitrary. R  and L stand for right and left, since 

equating these terms to zero gives, respectively, right and left circularly polarised 

waves, S  and D  stand for sum and difference (of R  and L ), while P  stands for 

plasma, since requiring this term to be zero gives the dispersion relation for plasma 

oscillations. For future convenience, note that the dielectric tensor is given by

e =

S - i D  0 

iD S  0 

O O P

(2.5.5)
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This tensor is Hermitian ( e t = e ), and does not depend on k.
For a non-trivial solution of the cold plasma equations, we must set the determi­

nant of the m atrix on the right-hand side of Eq. 2.5.3 equal to zero. This condition 

leads to a quartic equation for the allowed values of n, given u; (the sixth degree 

terms cancel out). The equation is, in fact, biquadratic, so that roots occur in pairs 

of the same magnitude, corresponding to two otherwise identical waves travelling in 

opposite directions. There can be no surprise about this conclusion, since our model 

contained no dissipation mechanisms. The medium is anisotropic, however, with 

the equilibrium magnetic field giving a preferred direction. Because of this, two ob­

vious special cases present themselves; propagation parallel to, and perpendicular 

to, B 0. In the parallel case, the determinant condition becomes,

S  — n 2 — iD  0 

iD S  — n2 0 

0 O P

=  0 . (2.5.6)

Expanding by the last row gives P  =  0 as one solution, while, after a little reduction, 

the other factor gives n 2 =  R, L. For perpendicular propagation,

5  - i D  

iD S  — n 2 

0 0

0

0

P - n 2

=  0 . (2.5.7)

Expanding as before, the solutions are n 2 = P , and n2 =  R L / S .  It is easy to 

see from Eq. 2.5.3 that the first solution corresponds to E x and E y being zero. 

Therefore, this mode has only E z non-zero, and from Eq. 2.5.2, the velocity of all 

species is also along the z axis, so that the plasma experiences no magnetic forces, 

and the dynamics are unaffected by the magnetic spine. This mode is called the 

ordinary mode (or O-mode). The other solution has E z =  0, and the other two 

components non-zero. This is the extraordinary mode.1

2.6 Waves: The CM A Diagram

The possible forms of wave motion in a uniformly magnetised cold plasma can be

conveniently summarised using the CMA (Clemmow, Mullaly, Allis) diagram. This

is a map of parameter space for the plasma model we have just discussed. For an

electron plasma, the space is two-dimensional, and the two independent parameters

1 Compared to more elementary forms of wave m otion, this m ode is indeed extraordinary, since 

it is both transverse and longitudinal!
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Figure 2.1: The CM A diagram for an electron plasma
3

P=0

L=0
2

1

S=0

R=0

0
0 1 2  3 4

X=c0p/a)2

(density and magnetic field strength) can be neatly plotted in dimensionless form 

as Wp/w2 and 0,/w (other choices are sometimes used). The solutions described 

in section 2.5 may be expected to occur only in certain regions of this parameter 

space, each type of solution having conditions which must be satisfied if it is to 

propagate. Regions of propagation and evanescence are separated by boundaries on 

which some of the quantities in Eq. 2.5.3 change sign. 2 The CMA diagram for an 

electron plasma is given in Figure 2.1.

2More pedantically, the boundaries enclose regions in which the wave normal surface is topo­

logically invariant.
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C h ap ter  3

A n alyses O f N on -U n iform  

P lasm as

3.1 Overview

The analysis of waves in non-uniform media is hard. Familiar procedures no longer 

apply and methods to replace them are rare and applicable only to special cases. 

In this chapter, existing methods are critically examined and the work of the rest 

of this thesis is placed in context.

In the first chapter, a number of situations were examined where plasmas were 

far from uniform. We wish to know the behaviour of waves in such media, and in 

particular, the manner in which a wave may convert into a physically distinct mode. 

Mode conversion is the process by which one type of wave, in passing through a 

non-uniform medium, may change its characteristics until, at some point it closely 

resembles another mode in wavelength (at that point). This may result in an 

admixture of the second mode, even though there was none in the original wave. 

It should be emphasised that the mode conversion studied in this thesis is based 

011 purely linear processes. Owing to coupling between field components, normal 

modes of the plasma are position dependent. Any effects caused by nonlinearities of 

the dependent variables in the governing equations will appear in addition to those 

studied here.

We may identify as a recurring theme the problem of obtaining appropriate 

ordinary differential equations 1 to model the propagation of non-uniform waves.

1 Hereinafter referred to as odes.
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3.2 The D ispersion R elation

This is the result of Fourier transforming the governing equations for waves in a 

medium, (equivalently, it may be assumed that quantities vary as exp i (k • x — u>t)) 

so th a t differential equations are transformed into algebraic ones which are, in gen­

eral, easier to solve. From a more practical point of view, a dispersion relation gives 

either the allowed wavenumbers of waves of a given frequency, or shows whether per­

turbations of a certain wavelength will be damped or grow (depending on the sign 

of the imaginary part of oj ). The underlying mathem atical fact which makes this 

technique work is that Fourier transforming a derivative gives a term proportional 

to the variable transformed to. Linearity then tells us that we may transform any 

linear differential operator with constant coefficients, and obtain a polynomial in 

the new variable. It is fortunate that so many physical situations may be described 

by linear differential equations with constant coefficients. It is unfortunate that 

when more complex or detailed situations are modelled, we frequently encounter 

non-constant coefficients in the equations.

In principle, other properties of Fourier transforms can be brought into play so 

th a t the integrals involved may be re-written in a way which leads once more to 

an equation more easily solved than the original. This approach has been used by 

Brownell(1973), who uses the fact that the Fourier transform changes polynomials 

in configuration space into derivatives in wavenumber space, of order equal to the 

degree of the polynomial. This technique can be applied to a number of problems, 

but is clearly limited in scope. It is likely to be successful in cases where the 

original equation has coefficients which contain only low powers, since the resulting 

equation will be of low order and more likely to be easily solved. However, this is 

precisely the case where the original equation is most likely to be soluble directly 

(by a hypergeometric function, for instance). In many cases the exact coefficients 

are complex and a polynomial fit is chosen in order to use this method, but being 

limited to a low-degree obviously makes the approximation poor. In particular, 

polynomials are not good at approximating the singularities which may occur in 

the exact coefficients and which may be essential to physical understanding.

3.3 The Local D ispersion R elation

This is an approach introduced by Stix (1965), who used it to analyse the conversion 

of a cold plasma wave into a hot mode at a cold plasma resonance, and which has
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been greatly used in much recent work. It starts from the plausible assumption 

that, if the plasma parameters vary sufficiently slowly then, locally, the governing
k.

differential equation has approximately constant coefficients, the gradient terms 

being small. In this case, a local dispersion relation can be introduced.

The technique normally used is to obtain a relevant dispersion relation, by judi­

cious approximation of the appropriate version of the dielectric tensor. This often 

involves using the full Maxwell-Vlasov dielectric tensor and expanding in the Lar- 

mor radius p l 2, or in ratios of characteristic frequencies which are assumed to be 

small. This leads to a dispersion relation which is a polynomial in the components 

of the wavenumber and is valid in a certain region of space and range of parameters, 

and, strictly, is limited to cases where an exact Fourier transform of the differential 

equation can be found. This is then transformed into an ode using the mapping

kj —► —id/dxj  , (3.3.1)

where Xj is the propagation direction of interest. This assignment is known as 

the inverse Fourier transform, and it enables a simple set of odes to be derived, 

representing the coupling of a chosen set of modes.

This is clearly a powerful and straightforward method, but the basic argument, 

though compelling, is flawed. A mode conversion process owes its existence to 

gradients of plasm a parameters, precisely the feature om itted in this model. The 

re-introduction of variable parameters later in the analysis does not allow gradient 

terms to be taken account of. A term [a(a:)y] in the model becomes iak in the 

local dispersion relation, and then a ( x ) ^  when the inverse Fourier transform  is 

applied, rather than the correct form +  y

In the light of objections to the simplistic application of Eq. 3.3.1, two ap­

proaches of rather more complexity have evolved, which are usually named after 

their progenitors.

3.3.1 Fuchs, Ko, Bers

This approach takes the local dispersion relation as its starting point. This can 

be written as D (k ,  z ) =  0, where the dispersion relation in the physical variable x 

has been analytically continued to produce an n-valued function, mapping z onto 

k (physically, there are several distinct modes at each position). Mode conversion 

here is the redistribution of energy between the different branches of k. Usually,

2 Actually in p^,/A and P i /L ,  where A is the wavelength of the perturbed fields and L  is the 

inhomogeneity scale length
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attention is restricted to a pair of modes, with the coupling of other waves to these 

two being taken as negligible, and an embedded d ispers ion relat ion  is extracted, 

which we denote by D (k , z ) .  The authors show that a mode conversion point 

occurs when we have a saddle point of D (k ,  z), which satisfies

D ( k ( z ) , z )  = 0 ,  8D{k8(*),Z) =  0 ,  *  0 • (3-3 2 )

W ithin this picture, the ode obtained by the transform Eq. 3.3.1 is

y" +  Q(z)y  =  0 , Q(z) = - 2 D ( k ( z ) , z ) / ^ -  . (3.3.3)

The m athem atical detail is considerable because of the involved complex analysis 

used, (see Fuchs, Ko, Bers, (1981)), however the starting point is still the local 

dispersion relation and so an inconsistency enters at the very outset of the argument.

3.3.2 Cairns, Lashmore-Davies

This technique assumes that there are differential equations governing the propa­

gation of any two modes, which are independent, except in a region of space where 

a mode conversion event is likely to occur (i.e. where local wavenumbers are nearly 

equal). Again, the starting point is the local dispersion relation, which is written, 

in the vicinity of the conversion region as,

[w -  wi (k , *)] [w -  u)2 (k, a?)] =  77 (k , x) , (3.3.4)

where we have taken one dimensional motion for clarity, and 77 is a quantity arising 

from the approximate factorisation: it contains information about the other modes 

and is only significant in the conversion region. Suppose that, for frequency u>o, 

at xq, there is a mode conversion point, where the value of k is ko. Then, Taylor 

expanding about this point, with

k = k0 + 6 , x = xo +  £ , (3.3.5)

we obtain

uq ~  UJ0 +  \Xo lCo 6 +  — |Xoi*.o£ =  U0 +  aS +  b£ ,

U 2 ~ u 0 + - j ^  \Xotko6 + \Xotkg £ = u>0 +  f S  +  . (3.3.6)

Substituting this into Eq. 3.3.4 and using Eq. 3.3.1, gives the operator equation



It is now possible to assign wave amplitudes and to distribute the coupling sym­

metrically between the two equations so obtained:

d(j>\ b \—  -  l I k0 -  1 01 = 7.A02 ,

^  - >' ( * .  - j i \  $ 2  = i M  i , (3.3.8)

where are the wave amplitudes and A =  y/r]0/ a f . tj0 is the value of the coupling 

function at the mode conversion point. The coupled set of equations 3.3.8 can be 

combined into a second order equation, which can be transformed into the Weber 

equation (for details see Cairns, Lashmore-Davies (1983)). Asymptotic solutions 

of the Weber equation are then used to show how energy has been redistributed 

among the available channels.

A number of objections may be raised to this procedure. The manner of assign­

ing the dependent variables is rather arbitrary, and is different from the approach of 

Fuchs, Ko and Bers. The structure of Eq. 3.3.8 is intuitively appealing, expressing 

as it does the idea of two interacting waves. However, the coupling term  is taken 

as constant in the coupling region, whereas we know that such coupling arises from 

non-uniform plasma parameters in that region, which are, of course, absent from the 

local dispersion relation, so that there would seem to be a basic inconsistency in this 

approach. One might also question the validity of using an asymptotic expansion 

to solve an equation which applies close to one particular point.

3.4 Later D evelopm ents

Driven by the progress in experimental programs over the last decade and fueled 

by the need for a non-Ohmic heating source, the local dispersion relation has been 

extensively used. Recent papers by Swanson and Hu (1993), for example, perpet­

uate this method without comment, and use it in the study of propagation near 

cyclotron harmonics. An alternative strategy is seen in the recent work of Cairns 

and Lashmore-Davies, who, with a number of co-workers, have produced a different 

analysis of this situation, using kinetic theory. (See Cairns et al, 1991, McDonald, 

Cairns, Lashmore-Davies, 1994.) This promising line of enquiry derives an integral 

equation for the Fourier transform of the vector potential. Using the approximation 

kpL 1 , one may derive a second order ode governing the electric field behaviour 

in this region, together with a conservation law, with no reference to any local dis­

persion relation. Higher order odes may be obtained by including more terms in the
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kp i  expansion. Unfortunately, the analysis at present only deals with equilibrium 

magnetic fields of the form B 0z(l +  x/L) .

Another noteworthy paper is Choudhury (1988), in which waves in a cylindrical 

plasma are analysed in the lower hybrid range of frequencies and with assumptions 

appropriate for tokamaks. Equilibrium flows are retained, and the model made 

manageable by expanding in B 0e / \ B 0\ (the toroidal field is small) and assuming 

Eg = 0  (high conductivity along magnetic field lines shorts out the electric field). 

Two coupled first order odes for field amplitudes are obtained. Again, the local 

dispersion relation concept is not used.

If progress is to be made in complex non-uniform wave propagation problems, 

the mindset involved in trying to reduce all cases to embroidered versions of the 

uniform case will have to be abandoned. In the light of the above experience, we 

adopt the following principle: that mode conversion processes should be tackled 

by deriving full and consistent equations within our chosen model framework, and 

that these equations should be solved numerically or analytically with, as far as is 

possible, no further approximations.

3.5 The W K B M ethod

This is a technique which is frequently used in the study of non-uniform wave 

propagation. It is named after Wentzel, Kramers and Brillouin, who used it in 

connection with problems in quantum mechanics, although it is, in fact, much older. 

Heading (1962) gives a detailed account, here the main points of the method are 

reviewed.

Briefly, the WKB method states that if y(z) satisfies

y,, + Q ( z ) y  = 0 ,  (3.5.1)

where 0  is a continuous function which tends to a finite constant as z —*■ oo, and 

which satisfies |0 V 0 | 1 and |0 " / 0 | <C 1 , for all \z\ > zc for some zc, then the

solutions of Eq. 3.5.1 are

2/1,2 =  I © -1 /4 exp j± i  J  0 1/2ds } { l  +  0 ( 0 7 0 , 0 " / 0 ) }  • (3.5.2)

In fact, a WKB solution is the first term in an asymptotic expansion of the solution 

of the ode in question, so that the WKB solutions can be made arbitrarily accu­

rate by choosing z sufficiently large. This is an enormously useful fact; it means 

that we can start with an accurate analytic form for a solution for z 0 , analyti­

cally continue this solution and trace it round to 2  C  0 , thus obtaining im portant
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information about the relationship between the modes entering a region where non­

uniformity exists, and the modes leaving. In particular, a connection formula may 

be derived, explicitly showing what mixture of asym ptotic solutions for z <C 0  an 

asymptotic solution for z 0 will turn into. The changes which a solution under­

goes on tracing it through the complex plane, arise from the Stokes phenomenon. 

The equation which we are attem pting to solve, has a unique Taylor series expan­

sion (in general, a Laurent series). This will have a different set of powers from the 

asymptotic expansion, and so, to remain close in value to the exact solution, the 

coefficients in the asymptotic expansion suffer a number of discontinuous jum ps in 

value (Stokes discontinuities). This is permissible in a solution which is supposedly 

continuous because there is an error involved in using the WKB solutions in the 

first place, which is larger than the jum p in value.

When the real part of the argument of the exponential in Eq. 3.5.2 is posi­

tive, then the solution contains a factor of the form exp(positive number) and is 

said to be dominant, if it is negative, the factor is exp(negative number) and the 

solution is subdominant. Clearly, the solution Eq. 3.5.2 changes from dominant to 

sub dominant when

9 { /  0l/2<is} =O- (3 5 3)
The curves in the complex plane which satisfy this condition are called Anti-Stokes

lines and, along them, neither solution is dominant. Also significant are Stokes

lines, which are found where

0 l/2 d s} = O - (3-5*4)

On these lines, the dominancy or subdominancy of a solution is very pronounced, 

and it is conventional to introduce the Stokes discontinuities in the sub dominant 

solution on these lines, in order to minimise the error involved. Therefore, crossing 

a Stokes line ‘switches on’ an admixture of the (currently) subdominant solution.

3.5.1 Labelling of M odes In Higher Order System s

There is some difficulty in labelling which mode is which in a complex propagation 

problem. When non-uniform media are involved, there is some ambiguity about 

what constitutes a ‘m ode’, since the Fourier transform, by which this is usually 

defined, is not meaningful. The method set out below shows how this difficulty can 

be circumvented, and deeper physical understanding introduced a t the same time.

Suppose a wave propagation problem is governed by an n th  order differential 

equation. We can express this as a system of n first order equations, which may be
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written

y ' =  My , (3.5.5)

where / denotes differentiation with respect to z, the independent variable in the 

problem. If the vector of dependent variables is now transformed by setting y  =  Au 

and the equation pre-multiplied by A-1 , then the system becomes

u ' =  A-1 MAu -  A_ 1A'u . (3.5.6)

If the transformation A is chosen so that A-1 MA is diagonal, then the first term 

in Eq. 3.5.6 is particularly simple. For this to happen, A must be a m atrix of 

eigenvectors of M. The associated position-dependent eigenvalues, A,(z), which 

occur along the diagonal of A- 1 MA, then have a special significance. If the final 

term  in Eq. 3.5.6 is negligible, then the system of equations may be easily solved 

to give

(3.5.7)tt,(z) =  Ci exp Ai(s)ds

where Ci is an arbitrary constant, so that the eigenvalues are effectively wavenum- 

bers in this limit. The A,- are very useful for understanding non-uniform wave 

propagation because of this property of being ‘generalised wavenumbers*. The last 

term in 3.5.6 is not diagonal, and can be viewed as modelling the coupling of the 

n different modes together, with the ( i , j )  element of A- 1A; giving the coupling of 

mode i with mode j .  This can be made more precise by examining the form of 

these elements in terms of the eigenvalues. In fact, these can be shown to be,

A - X '  V '  1 A -  .V -  A>) ,3 5 8 .
“  t h # Ai ~  A‘ ’ ~  IK = 1 .» * A  -  **) ’ ( )

for the diagonal and off-diagonal terms respectively. From these expressions, it can 

be seen th a t mode coupling is large either when the gradient in the eigenvalues is 

large, or when two modes have nearly equal eigenvalues. The latter case is physically 

reasonable if we remember th a t two waves which are close in ‘local wavenumber’ 

are likely to  couple strongly. Note, however that the concept of local wavenumber 

introduced here has been consistently arrived at by manipulation of the governing 

equations, whereas th a t in the previous section was introduced through the ad hoc 

assumption of an inverse Fourier transform. It is intriguing to note also, th a t writing 

out the coupled system for n =  2 , gives

“ i  +
Ai — Ai

Ai — A2

a;
2Ai -  A2 +A ;

A'2
«i =  - t — r U2»A1 — A2

u2 =  ~  Ai -  A2Ul ’ 3̂ '5‘9^
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which is of a similar form to the coupled equations derived by the m ethod of Cairns 

and Lashmore-Davies. However, once again, our prescription is to be preferred, 

since it derives couplings from the original equation and retains all the physical 

information found there.

Later, we will use an equivalent description to Eq. 3.5.8, though one derived a 

little more directly from the governing equations.

The description given in terms of eigenvalues does not solve the problem: that 

is done by applying the WKB method. But the foregoing is more than  just re­

labelling, since it enables an intuition for the problem to be formed, and the con­

sideration of expressions like Eq. 3.5.8 shows which couplings are im portant in a 

particular parameter range, and which may be neglected. Of course, these are only 

general indicators of the behaviour to be expected. Diver (1986) gives one example 

where eigenvalues cross but negligible mode conversion occurs and another where 

the eigenvalues approach but do not cross, where a lot of mode conversion occurs.

In summary, the WKB method, when used with care and understanding, is a 

valuable and consistent tool in the analysis of wave motion in mildly non-uniform 

media.
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C h ap ter 4

W aves In H elical E quilibria

In this chapter some preliminaries to the analysis of mode conversion are discussed. 

Linear waves in a cold, multi-fluid plasma are investigated by the usual technique 

of assuming a small perturbation from equilibrium and discarding any non-linear 

terms. To commence the analysis it is necessary to find out what the equilibrium 

electric fields and currents are. In the more familiar analysis of waves in a uniformly 

magnetised plasma, this stage is trivial: since V x B„ is zero, there is no current, 

no equilibrium velocity, and hence no electric field. In the non-uniform case, equi­

librium flows always exist, and can be expected to modify the wave modes possible 

in the plasma.

4.1 A Consistent Equilibrium

Consider equilibria with a helical magnetic field, viz.

B„ =  B „ (0 ,/(r) ,s i(r))  . (4.1.1)

(From this point onwards cylindrical polar coordinates are used.) Any field of this 

form will give a helical structure, barring where /  or g are zero or singular. Using 

the cold plasma model of Chapter 2, with two species, ions and electrons, gives



where s takes the values i , and e. For simplicity, assume that E 0 =  0, n os = 

constant, and that =  0 , then the equations above reduce to:

V • v 04 =  0 , (v 0, • V) v os =  — Vos x B„ ,
m ,

V X B 0 =  HoJo > Jo — ^   ̂QsTlosVos • (4.1.3)
s

A completely general solution of these equations would be rather complex. The 

first implies that vosr =  constan t/r, but we are interested in finding a particular 

solution which fits our needs, rather than a catalogue of every possible solution, so 

the constant is chosen to be zero. After a little reduction, this leaves four equations 

to determine the electron and ion equilibrium velocities. Assuming the electrons 

and ions to have charges —e and Ze  respectively, where Z  is the atomic number of 

the ion species, gives

si eB0 , ^  Z e B 0 t A
-  sz f )  , —f  =  {teg -  t z f ) ,

where,

r m e r m,-
se =  Z t e -  x 6 , sz =  Z t z -  x z , (4.1.4)

s — vot , t  =  v 0i , x  = — ^— V x B 0 . (4.1.5)
ti0n0e

From these a quadratic equation for t$ may be found, with discriminant 

4 m,c4 f2e
A =  — m,

where ' denotes Again, what is required is a fairly simple solution, rather than a 

comprehensive one, therefore we assume that A =  0, so that the two solutions of the 

quadratic merge and we obtain the relatively simple condition on the equilibrium 

magnetic field:

9>2 ~  [rgg' +  /  ( r / ) ']  =  0 . (41.7)

Where the scale length L has been defined as

L =  —  ( l  + ^ z A  7  , (4.1.8)Up \  mi J

*
and the plasma frequency, utp =  ‘ has been introduced. The quantity L  will

become all too familiar in later pages, so it is appropriate to give its value for a 

number of familiar plasma situations, where the quantity ^ Z 2 has been regarded
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cis negligible:

Type of plasma n (m -3) u)p (rad s x) >L =  £  (m )

Fusion 1 0 19 -  1 0 22 2  x 1 0 11 - 6  x 1 0 12 5 x 10“ 5 -  1.5 x 10“ 3

Solar Corona 1 0 10 — 1 0 14 5 x 106 -  6  x 108 0 .5 -6 0

Solar Atmosphere 1 0 19 -  1 0 21 2  x 1 0 11 - 2  x 1 0 12 1.5 x 10~4 -  1.5 x 10” 3

Interstellar 1 0 4 - 1 0 6 6  x 1 0 3 -  6  x 1 0 4 5 x 103 -  5 x 104

Solving for the electron and ion velocities is now easy, and gives,

m i\0i +  Zm e\ oe = 0 . (4.1.9)

Physically, we have assumed th a t the momenta of the electron and ion fluids balance 

at every point, so th a t there is zero net equilibrium momentum in the plasma. If this 

assumption is made, and Eq. 4.1.7 holds then a consistent equilibrium situation has 

been achieved which takes into account both the electron and ion species. Equation

4.1.7 constrains, but does not determine, the magnetic field. The more common 

force-free field assumption, in which V x B is parallel to B, is equivalent to the 

term in square brackets in Eq. 4.1.7 being zero.

To further particularise the problem, it is assumed that:

/  =

On substitution, this gives a pair of odes for /  and g:

(4.1.10)

I - * 1
K2 +  g — o ,

(4.1.11)

where p =  and ' now denotes The first equation may be solved in terms of 

special functions (Abromowitz & Stegun, 1964), and substituted into the second to 

obtain

9 =  ArvJ„ Q  +  Br*y„ Q  ,

/  =  - A r " ^  0  -  B r T . . ,  ( I )  , (4.1.12)

where A  and B  are arbitrary constants, J„ and Y„ are Bessel functions of the first 

and second kinds of order v, and v  =  This analytic solution includes as special

cases,

f  =  —»4 sin ( ~ )  i 9 — - - 4 c°s ( ^ )

for v =  |  (i.e. k =  L),

f  =  0  , g = constant ,

(4.1.13)

(4.1.14)
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for k —► oo, with L remaining arbitrary, and

f  = A h  ( 0  , j  =  A?o 0  , (4.1.15)

for L 0, with k remaining arbitrary. Since v  =  0 corresponds to the force-free 

field situation, this last field is also that which occurs in a reversed-field pinch, 

relaxing to its state of minimum energy (Taylor, 1974). It is clear, then that a well- 

known equilibrium situation has been generalised. Later, attention will be focussed 

on Eq. 4.1.13.

4.1.1 M agnetic Field Lines

We know th a t the magnetic field solutions found are helical, but to find out more 

information, we need to explicitly find the equations of the field lines. This involves 

solving the system of equations

x  =  B 0 , (4.1.16)

where ' denotes differentiation with respect to s, a parameter which varies along 

the field line, and x is a position vector. This implies that

or, using Eq. 4.1.1,

Integrating this gives

rd6 dz 
BnO B n.

rd9 dz
f (r )  g(r) '

(4.1.17)

(4.1.18)

* =  +  (4-1.19)
A H

for the equation of a typical field line, where C depends on the line chosen. This is 

the equation of a helix whose pitch varies with radius. There are two degenerate 

cases: when g(r) =  0 , the field is purely azimuthal, while when / ( r )  =  0 , it is a 

uniform field in the z-direction. A graph showing the field vector as a function of x

and y is given in Figure 4.1, while Figure 4.2 shows the change in pitch of the helix 

with radius.

4.2 Linear Wave Solutions

Wave solutions to Eq. 4.1.2 may now be sought. Fourier transforming in time 

replaces ^  with —iui. A spatial Fourier transform in the coordinates along which 

quantities do not vary is also possible, but since the primary interest here is in
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Figure 4.1: Variation of B field with x and y
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radially travelling waves, for instance in the context of heating tokamak plasmas, 

we simply assume the azimuthal and z wave numbers to be zero. A radial Fourier 

transform may in principle be carried out, but its utility is likely to be very limited: 

transforming a linear ode with constant coefficients in this way gives an algebraic 

equation, but if the ode has coefficients which are functions of the independent

variable there may be no way of proceeding further.

The equations for linear waves, assuming the ion motion to be negligible, are

—iuin +  n 0V • v +  Vn • \ 0 = 0 ,

m e [—iwv + (v0 • V) v +  (v • V) v0] =  - e  [E +  v 0 x B +  v x B 0] ,
u 2

V x V x E =  iu>u03 H— r-E ,
cz

J  =  _ e (n0v +  n v 0) , (4-2.1)

where the subscript o denotes an equilibrium quantity, and perturbations are de-
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Figure 4.2: Variation of field line pitch with radius

noted by unsubscripted quantities. Notice the complexity of the terms involving v 0, 

which are absent in the uniform field case. The two Maxwell curl equations have 

been combined into a wave equation for E. To complete the derivation, we clearly 

require values for n and v, expressed in terms of E, from the first two equations. 

One complication which arises is that the cyclotron frequency e | B | / m e is now a 

function of position. It is convenient to define Q0 = eB0/ m e and b  =  (0, / ,  g). 

If consistency is sacrificed for the moment and the equilibrium flows are assumed 

negligible, then by using the momentum equation, together with its dot and cross 

products with B 0, it is straightforward to show that,

Q0 f t2
E +  t —E x b  j b  (E • b) (4.2.2)

m(uj2 — Cl~) _ iuj u)2

where Q2 = fi2( / 2 4- g2) which is just what would be expected from the simple- 

minded generalisation of Eq. 2.5.2. Using the variable p = and eliminating E r
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from the resulting equation gives

Ee -  P f g E

E z -  pfgEe- w r + j ?

where / denotes and

=  0

=  0

P =
2) '

(4.2.3)

(4.2.4)
(u>2 — Q,2 — U)p;

Notice th a t Eqs. 4.2.3 do not have any singularity caused by the electron cyclotron 

resonance, in contrast to Eq. 4.2.2. Only the upper hybrid resonance occurs here. 

However, because of the variation of cyclotron frequency with radius, Eq. 4.2.3 will 

usually be singular at one or more values of radius, although perfectly well behaved 

outwith this set of points. In the analysis of waves in a uniformly magnetised plasma 

resonances occur a t every point, or nowhere, so th a t a t certain frequency values, 

the model may break down. In this case, resonant surfaces will have to be dealt 

with in any general attem pt to solve Eq. 4.2.3. It is possible to avoid this difficulty 

entirely, by choosing the magnetic field given by Eq. 4.1.13, which gives Bo a 

constant m agnitude and corresponds to choosing k = L.  The coupled equations for 

electric field then take the form,

i  (pEe)'j +  [a +  ^ -f ^ cos (2/>)j E» -  ^ sin (2p) Ez =  0 ,

i  [/>£']' +  [o +  ^ ^ cos (2p)j Ez -  ^ sin (2p) Ee =  0 , (4.2.5)

where a =  (w2 — u p) / u p and b = p.

Simplified as they are, Eq. 4.2.5 are not trivial to solve. From their general 

form solutions in terms of any of the familiar special functions of analysis cannot 

be expected: the presence of sin and cos in the coefficients means th a t solutions 

in terms of hypergeometric functions are not possible. If the coupling terms are 

ignored, both of Eq. 4.2.5 have the form of Mathieu equations, but this similarity 

is not enough to produce a solution in terms of Mathieu functions.

The next section explains one analytic method which may be applied.

4.3 A sym p totic  Solutions

The technique used here is similar to that explained in Diver, Laing, Sellar (1989), 

where an exact dispersion relation is obtained for waves in a spatially sheared mag­

netic field. This is no coincidence as, far from the origin, the field lines may be 

approximated as simply sheared.
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If the dependent variables are changed to,

X  — y/pE,  , Y    yfpEz ,

then the equations 4.2.5 are put into standard form and become,

(4.3.1)

X "  +

y" +

a +  r  +  -  cos (2p) -
b b
2 +  2 
b _  b 
2 2

3 ‘
X  =

6 .
-  sin

Ap2 2
1 6 .

y  = -  sin
4 p2 m 2

(4.3.2)

Ignoring terms of order 1/p2, and changing to variables R  and S,  defined by,

R  = eip {X + i Y ) , 5  =  e~ip ( X  -  iY)  , (4.3.3)

Eq. 4.3.2 becomes

R"  -  2iR! +  R  

S"  + ‘US' + S

0 + - - 1 +  2 S  _  ° ’

+ - R  = 0 (4.3.4)

The equations now have constant coefficients, and so may be Fourier transformed 

by setting R  =  metap and S  =  netap to produce a dispersion relation. In addition 

the quantity m /n  may be determined in terms of <r, giving

r2 _=  a + - + l ± V 4a +  T
+  2 b ,

m
n

(4.3.5)

(4.3.6)
2<r2 — 4<t — 2a — b +  2

The number of travelling wave solutions for each set of values of a and b can now 

easily be found by requiring that a  is real, and that <r2 >  0. Figure 4.3 shows this 

information about spatial behaviour of harmonic waves graphically. One solution 

here corresponds to two physical solutions, travelling in opposite directions.

Although it is convenient to use the parameters a and 6, it is im portant to relate 

these quantities to the physical parameters u  and Q0. Not all choices of a and b 

give harmonic time dependances. The condition for u> to be real, is

, .2
a = —  — 1 > —1.  

u r
(4.3.7)

All other a values give imaginary frequencies, corresponding to  waves which are 

exponentially damped or amplified. In addition, for physical results, the cyclotron 

frequency must be positive, and if we use the easily provable fact that

abQ2
2 ~  
PU> 6 - 1  ’

(4.3.8)
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Figure 4.3: Number of travelling wave solutions in regions of parameter space
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then, for a >  0, all 6 values in the range [0,1] are unphysical, while for a < 0, all b 

values outwith this interval are unphysical. The position of these exceptional ranges 

of frequency are shown in Figure 4.4.

Retracing our steps, the form found for the asymptotic behaviour of Eg and E z

is

1 4 '
Eg =  ——  ^ 2  CjelcrjP [(1 +  dj) cos p +  i (1 -  dj) sin p] , 

l y p j=i

e , = ^ 2  Cjet(7iP [(1 — dj) cosp +  ?' (1 +  dj) sinp] . (4.3.9)

where the quantities aj are the four solutions to Eq. 4.3.5, and dj =  mj/r ij  (which 

is a function of crj ). These formulae have a rich structure, and we can expect them 

to display a wide range of behaviour as the parameters are varied.

Some care is needed when interpreting these results. They were derived under
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Figure 4.4: Unphysical regions in terms of a and 6
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the assumption that

|a +  b cos2 p\
4 p7

, |a +  6sin2p| >
1

4 p1
(4.3.10)

Applying the triangle inequality to these, and noting that |c o sz |, |sinz| < 1, for all 

z, we obtain
.“t 1

(4.3.11)M  +  \ b \ >  A _2V  ’ lal + l6l >  4p2 ’

since p > 0. Adopting the stronger of the two constraints and deleting the unnec­

essarily precise numerical factor gives the handy condition

P2 [M +  | 6 | ] » l , (4.3.12)

for the validity of the asymptotic solutions given here. The accuracy of these ap­

proximations, compared with more direct ways of solving the equations, is assesed 

in the next chapter.

4.4 C onsistent W ave Equations

One of the objectives of this work was to examine consistently derived wave equa­

tions, so that the full effects of plasma non-uniformity could be included in analyses 

of waves. The derivation of a fully consistent set of wave equations for E  is now 

considered.
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The objective is to obtain a corresponding equation to Eq.4.2.3, but with equi­

librium flows included. Examination of Eq.4.2.1, with v 0 ^  0, reveals an extra term 

on the RHS of the momentum equation, which will succumb to the same analysis 

as given in the inconsistent case, a term in the equation for current density, which 

means the number density, n, must be calculated and the convective terms on the 

LHS of the momentum equation, which are probably the most awkward to deal 

with. Taking dot and cross products of the momentum equation with B„, r, and 

z, and once more ignoring azimuthal and z wavenumber, one can show that the 

solution for the velocity is

X2 +  x x 2 r ■ x31 ) fio Afi„ . , OI
v  =  — < — —— e — — z  x X3 -f  -—— x i  +  , o  \

A  |  B 0 A B 0 iuiB0 ( A  — • b  x  n  )

where,

A  =  - i u  -  ^  (f20 -  Ag) ,
iw

xi = b x e  -f — (Az — f i 0b ) b  • e ,
iu>

(4.4.1)

X2 =  -/X  +  —IU>
b • u  — A / .,  ̂ _ . .

b x / j --------- ;--------(Az — f20b)

X3 =  —e + 7 ^ b x «  — ^  (Az — f2„b) b  • e ,
IL) U>2

e =  E +  v „ x B ,  A = ^ ,  / .  =  ( 0 , « U - ^ y « )  • (4-4.2)

This is a generalisation of Eq. 4.2.2, which may be recovered by putting A =  0 and 

H = 0 . Note that v 0 here is the electron velocity: the ion contribution would be 

of order smaller and has been ignored. These equations can be used to define v 

in terms of E, albeit with some labour. The number density is then given by

n =  - ^ ( r Vr)/ • (4.4.3)ujr

Clearly, the derivative involved here will give an expression of great complexity. To 

complete the derivation, substitute the expressions obtained into

uj2
V x V x E  j E  =  —iu>fi0e (n0v  -f n \ 0) , (4.4.4)

in order to find the final ode for E. We do not pursue the fully consistent equations

further, because of the complexity of this procedure, and because the flows are often

negligible. Returning to Eq. 4.1.3, it is found that

J 0 =  i - V  x B 0 , J 0 =  - n 0e (1 +  Z 2 — )  v oe . (4.4.5)
Ho \  m  J
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Using the expression for V x , and the definition of L, gives

B 0 f Q dg_ 1 d{r f)
fi0n 0e( 1 +  \  dr r dr

=  . (4.4.6)
\  dr r dr J

Referring back to the table of L values shows that, for a fusion plasma, or in the 

solar atmosphere, this is a very small quantity. In these cases at least, we are 

justified in ignoring equilibrium flows.

In the following chapter, we examine in detail the solutions of Eqs. 4.2.5, in 

the belief that this will shed light on the mode conversion occurring in our model 

plasma.
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C h ap ter  5

T h e Solu tion  O f 

N on -u n iform  W ave  

E quations

We now wish to solve a specific problem. In the physical examples of interest 

discussed in Chapter 1 (the postulated structure of coronal loops, for instance ), 

there is a confined structure, surrounded by a region where the field is uniform, 

or nearly so. In view of this, in the rest of this thesis, a magnetic field structure 

will be studied in which a central helical region is surrounded by a uniform region. 

This may give insight into what happens when a wave propagates from a region of 

uniform field where its wavenumber is well-defined, into a structured region where it 

is a function of position. The external part being uniform makes it easy to identify 

modes in this region with the familiar motions examined in Section 2.5. In the 

external region, then, we will have an analytic form for the normal modes. In the 

internal region we must solve the governing odes to obtain them.

5.1 The Frobenius M ethod

In order to solve the field equations in a complete and orderly manner it is im portant 

to know what type of singularities occur, and where. Ince (1926) describes the 

classification of singularities and shows in particular that a singularity will be regular 

if, at p =  p0, the differential equation may be expressed in the form

u(„) +  *M £)u<»-i) +  . . .  +  f l» - i(p )u, P M U =  0  ( 5  L1)
p p n ~ l p n V '
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where n is the order of the equation, and P\, ■ ■ •, Pn are all analytic functions of 

p at p0. The significance of a regular singularity at p0 is that it does not prevent 

well-behaved solutions being found in a neighbourhood of p0. It is a straightforward 

m atter to eliminate one of the variables from Eq.4.2.5, and to show that the resulting 

fourth order equation is of the form Eq.5.1.1. Having verified this, solutions may be 

found using the Frobenius method, which involves assuming a power series solution 

to the equation in question, and then substituting this in to obtain a set of coupled 

equations involving the unknown coefficients and the power of the leading term. The 

first member of this set is known as the indicial equation and is used to determine 

the power of p with which the series starts. The indicial equation is a polynomial of 

the same order as the ode being solved, so that in this case it is of fourth order and 

has four solutions. If these solutions do not differ by an integer, then constructing 

the series solutions is simple, however, in this case, the indicial equation produced 

by considering a fourth-order equation for u is,

(m +  l)(m  — l)(m  — 3)2 =  0 . (5.1.2)

Ince (ibid. p396) shows that this need be no obstacle. Introducing new terms 

which are powers of log(p) multiplied by new power series which can be found from 

the existing ones can alleviate the problem. In the present case, if the computer 

algebra package REDUCE (Hearn, 1991) is used to minimise error, we find that the 

following can be taken as linearly independent solutions to the original equation.

uA = 

vA =

Ub  =

VB  =

UC =

Vc =

Ud =

P ~ S P +  24
& a /

3 8 — p5 +  o ( p 7) ,

(5.1.3)

b 3 b 
8P 192

3a +  6 y

, a ,  1
1 _ 4 P“ +  l6

6

P5 +  0 ( P7) ,  

P4 +  0 ( P6 ) , (5.1.4)

uB log(p) +
4 (a + b) 1 P +  4 48 +  36 27 54 +  144

p5 +  0 (p 7)}  ,

vB log(p) +  1
1

32(a +  6)
z ., .. b .— (a +  b) + b(a +  - )

/ , x i 1 (fl +  i )  o

<o + » ) i - 2 ' + L i r ^ - h a  +  5)2 +  5

(■' +  £ > ( / ) ,  (5-1.5)

p5 + 0(p7) j log(p)  +  t  +
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b - U a  + b f P H------H 288
- ( a  +  6)3 +  b(a +  4 6 - 4 ) p5 + o ( P7) ,

VD = {- | +  + 6V4 + °(?<i)}’ lo«(/>) + j {J + ^liT^4 + of/,6')} ’
(5.1.6)

where we have written u for E$, v for E z , and a and 6 are as defined in Eq. 4.2.5. 

These solutions satisfy the differential equation, but not necessarily the boundary 

conditions. Clearly, by the nature of cylindrical vector fields, E$ must be zero at 

p =  0, in order that the electric field vector is uniquely defined there, and we put 

E z \p-o =  E zo, E'z |p=0 =  E zo, Eg\p=o =  Eg0 . Assuming that any solution may be 

written

A ua +  B ub +  C u e  +  D ud , A va +  B vb +  Cvc  +  Dvp  , (5.1.7)

then the four conditions give, respectively,

A ' O A B ' O A C ' O a B ’ o o  — 0 ,

6
A  +  B  — C  • oo D • — — E zo ,

4
A  • 0 +  B ’ 0 +  C  • oo +  D  • 0 =  E^q , 

6 A  +  B  • 0 +  C  • —— ;—— — D • oo — Eg0 . (5.1.8)
4(a +  6)

To m aintain consistency, we require D  =  0, C  — 0. The third equation shows that 

E zo =  0, which is a result of the assumption of variation with p alone. The second 

and fourth then yield A  =  Eg0, B  = E Z0 — Ego. An arbitrary solution which satisfies 

the boundary conditions can then be written as

E$0ua +  [Ezo — E '9o] ub , E o0va +  [Ezo — Eg0] vb • (5.1.9)

This expression was used to avoid the singularity at the origin when numerical so­

lutions were sought to Eq. 4.2.5. By specifying E zo and E%0, the correct admixture 

of ua and ub could be found. The power series were then used to provide an ap­

proximation to the required solution up to p =  e, where e was a suitably chosen 

small number. Numerical solution of the odes was then attem pted using field values 

at this point as new internal boundary values.
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5.2 The Equilibrium

We obtain this by using the form of magnetic field Eq. 4.1.13,‘for the interior field, 

and splicing this onto a uniform field at p =  R.  Thus, we have

I Ro(0,sinp,cosp) , p < R  
B 0 = < (5.2.1)

{ B 0(0, 0 ,1) ,  P > R

Both of these expressions satisfy the conditions for an equilibrium, as derived in 

Chapter 4. However, on the boundary the field, will, in general, suffer a discon­

tinuous jum p. This means that a sheet current must flow along the boundary. 

Integrating the Maxwell ‘curl B’ equation over a surface spanning the boundary 

gives,

J  V x B 0 ■ dS  =  p 0 j  3 0 • dS  . (5.2.2)

Using Stokes’ theorem, this is equal to §c  B 0 • dl. If the surface extends between 

R  — A p  and R  +  A p , and subtends an angle 9, then

9R [B0e{R  +  Ap) -  Boe(R -  Ap)] =  p 0 J J 0 dS  . (5.2.3)

Letting Ap —► 0, and performing the 9 integral on the RHS of Eq. 5.2.3, we find

= ( 5 ' 2 4 )

Where [• • •] denotes the jum p in value of a quantity at the boundary. If the jum p is 

non-zero, then the integrand on the RHS of Eq. 5.2.4, must contain a delta function 

at p = R.  This is the sheet current referred to  above. It is straightforward to show 

th a t the extra term required in the expression for Jzo is

sin R, .. . .
 6(p — R).  (5.2.5)

Alo

Clearly, if R  is a multiple of 2tt, then there will be no such surface current, corre­

sponding to the two forms of magnetic field joining smoothly on to one another. 

We wish to study effects arising from a structured, but continuous magnetic field, 

and a current sheet is an unnecessary complication which we accordingly avoid by 

setting R =  2tt from now on.

5.3 Conversion And R eflection Coefficients

Since our model of plasma waves is linear, we can Fourier analyse any incoming 

disturbance into harmonic waves, and need only solve the problem for such cases.
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Given the possible channels available in the model, we expect this incoming wave 

to be partially reflected to give an outgoing wave of the same type, and partially 

converted and reflected to give an outgoing wave of the other type.

The normal modes in the uniform field case are easily obtained by mapping 

sin i—► 0 and cos i—► 1 in Eqs. 4.2.5. This gives the equations

E § +
E m + Eff =  0 ,

.  1a +  b  s-
P i

E z H h aEz =  0 ,
P

which have solution

Ee OC Ji{pp) ,Yi(pp) , E z oc J0(qp) ,Y0(qp) ,

(5.3.1)

(5.3.2)

where p =  \ /a  +  b and q =  y/a. Note that, since v = E z, a solution for v with 

it =  0 corresponds to an O-mode, while a solution for it with v =  0 corresponds to 

an X-mode. An X-mode solution means a non-zero value for E r also, but we have 

eliminated this variable in favour of E$ and Ez . The Y s  must be included, because 

we are not applying this solution a t the origin. If we suppose th a t we can somehow 

find a set of linearly independent normal modes for the interior region, then we can 

assume that the following interior and exterior solutions correspond,

interior exterior

mi M  Ji(pp)  +  B]Yi{pp)

Mi C iJ G(qp) +  DiY0(qp)

u2 A 2J i (pp) +  B 2Y1 (pp)

v2 C2J0{qp) +  D 2Y0(qp)

where the subscripts 1 ,2  distinguish between the two internal modes present. 1 It 

is the coefficients of the Bessel functions here which contain information about the 

conversion and reflection coefficients. To satisfy continuity of electric field and its 

gradient, the following conditions must hold at p = R,

ui  =  A iJ i (p R )  +  BiYi(pR)  

mi =  Ci J0(qR) +  D iY0(qR) 

u2 =  A 2Ji(pR)  +  B 2Yi(pR)  

v2 =  C2J0{qR) +  D2Y0(qR)

m'i =  AiJ[{pR)  +  BiY{{pR)  , 

v[ = CiJ'0(qR) + D i Y ' ( q R ) ,  

m'2 =  A 2J[{pR)  +  B 2Yl(pR)  , 

v'2 = C2J f0( q R ) A D 2Y ' ( q R ) , (5.3.3)

where 1 denotes Equations 5.3.3 may be straightforwardly solved for A i , B \ , • • •, C2, D 2,

1OnIy two o f the potential four solutions are admissible, as described in Eq. 5.1.
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to obtain

A l = [tn, Yi(pfl)] , a 2 =  f w  [u2, Yi(pje)] ,

Bx =  ~ W  [tti, JUpiJ)] , B 2 =  ~ W  [u2, JiipR)] ,

C l =  [»!, y 0(«K)] , C2 = ^ W  K  Y„(qR)] ,

Dx =  - ^ W  [»!, J.(qR)\  , D 2 =  ~ W  [v2, U q R ) ]  , (5.3.4)

where W[- • •] is the Wronskian , defined as W[< ,̂ xp] =  <pxp' — xp<p*, and we have used 

the fact that W  [J„(z),Yu(z)] = £  for all complex z (Watson, 1944). A general 

internal solution for u and v may be written using the arbitrary quantities a  and /? 

as

a tti +  0U2 , (5.3.5)

otvi +  (3v2 , (5.3.6)

and, using the table above, this will correspond to an external solution of the form

(aAi  + /?A 2)Ji(p/>) +  (aBi  + PB2)Yi(pp) ,

( a C i + 0 C 2)Jo(qp) +  {<*Di+0D2)Yo(qp).  (5.3.7)

It is of interest to distinguish between incoming and outgoing waves in the uniform 

field region, so it is more appropriate to use the ffankel functions (Watson, 1944) 

and therefore the external solution may also be considered as follows. The Hankel 

functions bear the same relation to Bessel functions as complex exponentials do to 

sin and cos, and are defined as = J„ + iYv, — J v — iY„. W ith our choice

of e~twi for the time dependence, is an outgoing and H an incoming wave. 

An arbitrary combination of outgoing and incoming waves then gives, for u and v 

respectively,

p H ^  +  v H[2) =  (p +  u)J\  +  i(p -  v)Y\  ,

<rH^  -I- t H ^  =  (cr +  t )J0 +  i(a -  t )Y0 . (5.3.8)

Here, p, i/, <r and r  are quantities which we can associate with the admixtures 

of outgoing X-mode, incoming X-mode, outgoing O-mode and incoming O-mode 

respectively. The two forms for the external electric field (Eqs. 5.3.7 and 5.3.8) 

must hold simultaneously for all points p > R,  and so we may equate the coefficients 

of the Bessel functions and obtain:

p  +  v  =  a A i  +  p A 2 , i(p — v) = a B i  +  /?B2 ,

cr +  r  =  aCi  +  0C2 , i(cr — r)  =  aD i  +  /?Z>2 • (5.3.9)
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If we regard the incoming amplitudes as given quantities, then it is possible to 

eliminate a  and /? and solve for the amplitudes of outgoing O-modes (r) and X- 

modes (u), viz.

2ifi(CiD2 — C*2^i) +  c  [B2 D 1 — B 1 D 2 +  A 2 C 1 — A 1 C 2 +  i{B\C2

—B2C1 +  A2D1 — A \ D 2 )\

A 2 C 1 — A , C 2 +  B 1 D 2 — B 2 D 1 i(BiC2 — B 2 C 1 +  A 1 D 2 — A 2 D 1 )

H [B2D1 — B1D2 - f  A2C1 — A1C2 — i(B\C 2 — B2C1 — A 2D 1 — A1D2)]

A 2 — B 2 A 1 )

A 2C\ — A1C2 +  B1D2 — B2D1 +  i (BiC 2 — B2C1 +  A , D 2 — A2D1)

(5.3.10)

The above derivation does not depend on the choice of u and v, as long as linearly 

independent modes are used. This fact is reflected in the absence of a  and /? from 

Eqs. 5.3.10. To put things another way: if the admixtures of modes 1 and 2 were

scaled by constants C\ and C2 respectively, then, since each term in 5.3.10 carries

subscripts 1 and 2, the factor C1 C2 would cancel off throughout.

5.3.1 Some Special Cases

Conversion between modes will be particularly well defined if only one type of 

incoming wave is present. If the incoming wave is purely an O-mode, then the 

coefficient of the incoming X-mode, u is zero. Using Eqns. 5.3.10, we can show that 

the ratio of reflected to incident O-mode is given by

cr ^  B2D1 — B1D2 +  ^ 2C i  — .A1C2 +  i{B\C2 ~  B2C1 +  A 2D x — A1D2)
t  A 2 C 1 — A 1 C2  +  B 1 D 2 — B 2 D 1 +  i(B\C2 — B 2 C 1 -(- A 1 D 2 — A 2 D 1 )

(5.3.11)

and the ratio of converted X-mode to incident O-mode is

2i(Biu4.2 — B 2 A 1 )
t  A 2 C 1  — A 1 C 2  + B 1 D 2  — B 2 D 1  +  i ( B i C 2 — B 2 C 1  + A 1 D 2  — A 2 D \ )

(5.3.12)

While, if there is only an incoming X-mode (cr =  0), then the coefficient of the 

incoming O-mode is zero, giving t — 0, and we can show that the ratio of reflected
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to incident wave is

p =  ____________________________ ‘2 i(C1D 2 - C 2Di)____________________________

v A2 C 1 — A 1 C 2 4- B 1 D 2 — B 2 D 1 -F i (B \C 2 — -S2 C1 +  A 1 D 2 — A 2 D 1 )
(5.3.13)

and the ratio of converted to incident wave is

<r _  B2 D\  — B1D2 +  A 2C 1  — .A1C2 +  i(B2C\  — B1C2 +  A 1D2 — A2D1)
v A 2 C 1 — A 1 C 2 +  B 1 D 2 — B 2 D 1 +  i{B \C 2 — B 2 C 1 +  A 1 D 2 — A 2 D\)

(5.3.14)

5.4 C om putational Issues

A number of FO R T R A N -77 programs were written to tackle this problem. A list­

ing of the most im portant can be found in Appendix A. The program odeadam .for 

was written to calculate the boundary values of u \ t2 and v \ t2 needed to use the 

formulae for reflection and conversion coefficients above. It uses an Adams method 

from the Nag fortran library (Numerical Algorithms Group, 1988), to numerically 

integrate the differential equations over the range [0,27t]. The separate modes are 

distinguished by the values of E z and E'e at the origin, viz.

mode no. E'eo E ,0

1 0.0 1.0

2 1.0 0.0

The program finds boundary values for these starting values for a range of frequency 

values. The Frobenius expansions discussed in Section 5.1 are used in the vicinity 

of the singular point at the origin. The expansions are used up to a matching point, 

and the values found for the fields at this point used to  provide starting data for 

the numerical integration. The position of the matching point should be chosen so 

that the power series still converges well, but the ordinate is far enough past the 

singularity for the numbers involved in the integrating routine to be manageable. 

This position was found by choosing parameter values which reproduced the un­

coupled equations, with solutions in terms of Bessel functions. The matching point 

was varied until the values found were as close as possible to Bessel function values 

found from tables. The value finally chosen was p =  0.01.

Frequencies are all measured in units of a>p. This is both natural, in view of 

the length scale L — introduced in Chapter 4, and physically more sensible (one
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expects significant things to happen when uj =  £l0, irrespective of the numerical 

values of these quantities). This choice of units leaves the two parameters u  and 

to define conditions in the plasma. Notice that fixing the cyclotron frequency fixes 

B 0, the magnitude of the equilibrium magnetic field.

To check on the accuracy of these calculations, a program using a Runge-Ivutta 

method from the Nag library, and otherwise identical, was written. The results 

from both programs were stored in unformatted files to minimise the propagation 

of any errors which had occurred. Results from the two simulations were compared 

by examining the fractional differences of the two sets of electric field values (i.e. the 

quantities \(E^K — E ^ D) /E ^ K |, in an obvious notation). By choosing a suitably 

high tolerance in the input to the Nag routines, these deviations could be made 

consistently small and less than about 1 x 1 0 - 8 , so that these two differing numerical 

routines give answers which agree to at least single precision accuracy. 2

The programs concoefo . f o r  and co n c o e fx .fo r  implement the formulae 5.3.11, 

5.3.12 and 5.3.13, 5.3.14 respectively. They take boundary values from odeadams . f  o r 

and evaluate the reflection and conversion coefficients. The admixture of modes

5.3.8 holds for the entire external region, so that these quantities are not peculiar 

to the boundary, but hold for all p > R.

The invariance with respect to the normal modes chosen was also investigated. 

The field values for each mode were multiplied by arbitrarily chosen real numbers 

after being read in to the programs concoefo . f o r  and co n co e fx .f  or. The conver­

sion and reflection coefficients were found to be invariant, except very close to the 

upper hybrid resonance, where, of course, the model used does not apply.

One obvious test on the calculations is to check that the divergence of the 

magnetic field is zero. However, further thought reveals that this is not useful, 

since we have assumed that =  0 and ■&§ =  0. Therefore, for the perturbed 

magnetic field,

=  (5.4.1)
r

and since B r = \ — ^ 7 -] =  0, the divergence of B within this model is, a

priori, zero.

2This was the ‘worst case’ value. Typical values were a few orders of m agnitude less
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5.4.1 Comparison W ith A sym ptotic Approxim ations

In section 4.3, it was shown that asymptotic solutions to our equations could be 

found, of the form

field value =  —=  [combination of travelling waves] . (5.4.2)
VP

To see how accurate this was, a selection of numerical solutions produced by the 

program odeadams. fo r  were Fourier transformed and the result examined by a 

standard graphics package. 3 The results were multiplied by yj~p beforehand, so 

that the travelling wave terms above would give a discrete set of spikes in Fourier 

space whose position could be compared with the values predicted by Eq. 4.3.5. A 

2048-point discrete transform was used, and the solutions plotted over a range of 0 

to 647T (much longer than the interval used previously, in order to pick out slowly 

varying ‘bea t’ phenomena). Spectra were produced, consisting of well- defined peaks 

and a low level of background ‘noise’ of other components. In particular, there was 

no evidence of aliasing in the highest bins (Figure 5.2 shows only the first 200 of 1024 

bins), so that the fields are very unlikely to contain frequencies higher than those 

found. A sample output and the relevant part of its Fourier spectrum are shown 

in Figures 5.1 and 5.2, while a table comparing the wavenumbers from numerical 

simulations and the asymptotic form, for a variety of values of a and b, is given 

below. The quantity plotted in Figure 5.2 is in fact the modulus of the discrete

3Easyplot Version 2.21
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Fourier transform, which is a complex quantity.

a b
Wavenumber 

from numerics

Wavenumber from 

asymptotic solution Eq. 4.3.5

-0 .8 0.2 unstable oscillations 4 complex

-0 .2 0.8 0.469 0.531 1.469 2.469 0.476 0.531 1.469 2.476

0.0 0.5 0.531 1.469 2.500 0.510 0.532 1.469 2.510

1.0 -2 .0 0.406 1.000 2.406 0.414 1.000 2.414

1.0 -1 .0 0.750 1.000 2.750 0.732 1.000 2.732

1.0 0.0 1.000 1.000 3.000

1.0 1.0 1.000 1.250 3.340 1.000 1.236 3.236

1.0 2.0 1.000 1.469 3.469 1.000 1.449 3.449

1.0 5.0 1.000 2.000 1.000 2.000 4.000

2.0 -2 .0 unstable oscillations 2 real, 2 complex

2.0 -1 .0 1.000 1.250 3.531 1.000 1.236 3.236

2.0 0.0 1.406 0.586 1.414 3.414

2.0 1.0 0.469 1.594 3.594 0.454 1.546 1.589 3.589

2.0 2.0 0.375 1.625 1.750 3.750 0.372 1.628 1.758 3.758

Note that the asymptotic wavenumber in the table is cr ±  1, in the notation of 

Section 4.3. The values from the numerical Fourier spectra are of fairly modest 

accuracy. More precise calculations would require a lot more time and effort than 

this section deserves. Despite this the agreement is very good, both in terms of the 

values in the table, and in the absence of significant amounts of other frequencies 

in the Fourier spectrum. Not all the ‘spectral lines’ listed in this table occur with 

equal, or even vaguely equal amplitude, and some of those listed had only a tiny 

amplitude. This corresponds to the real-space solution having only a very small 

admixture of certain of the allowed frequencies. Presumably, the ‘missing’ values 

in the numerical column of the table corresponds to admixture so small as to be 

undetectable. Significantly, although some values are predicted but not observed, 

no values are observed which are not very close to solutions predicted by Eq. 4.3.5. 

The unstable behaviour in the first and tenth examples here is to be expected from 

a consultation of Figure 4.3, which shows that in these situations, there are no 

travelling solutions and one travelling solution respectively.

In the next section, we consider the possibility of finding a conservation law, 

which would act as a useful check on the numerical results obtained.
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Figure 5.1: y/pEz for a = b = 2
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5.5 Conservation Laws

Naturally, we expect energy to be conserved in this non-dissipative system, and 

for this to be reflected in the expressions for reflection and conversion coefficients, 

representing as they do the amplitude of plasma waves.

5.5.1 D ielectric M aterials And N onlocal Behaviour

Defining the energy density of an inhomogeneous plasma is far more complex than 

one might suppose. In fact, there is no general procedure for doing this. Since plas­

mas may exchange momentum over large distances, we expect that, in general, only 

the overall system has a well defined energy (see Auerbach, 1979). However, if we 

can ‘summarise’ the influence of far-off points of the plasma on a particular element 

using electric and magnetic field vectors, then a local energy density involving these 

quantities may be consistently defined.

In order to produce a representation of the total energy in a plasma the plasm a’s 

response to an applied field must be included. This is done by introducing the
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Figure 5.2: Detail of the Fourier transform of the last graph
1000

100

2001500 50 100

Bin number

electric displacement vector, which can be defined as

D(x,<) =  ^ -  j  j  e ( x , t , x ' , t ' )  ■ ,t')d-x!dt' , (5.5.1)

where the dielectric tensor e , describes the contribution to the plasma response 

from electric fields at each point of space and time. This expression requires only 

linearity of response for its validity, and is consequently very general. If a homo­

geneous plasma is specified, then the response will depend only on differences in 

position and time, and not on absolute values. Clearly, a homogeneous plasma may 

also be solved by Fourier transforming all variables of interest. This gives the rather 

more familiar expression

D(u>, k) =  e (uj, k) • E(u;, k) , (5.5.2)

for the displacement vector. These two approaches are equivalent, as demonstrated 

in Stix (1992). It should be noted that the Fourier transformed version still includes 

nonlocal responses. Of course, all real plasmas are, to some extent, inhomogeneous, 

so that the more general form shown in Eq. 5.5.1 should be used. However, if the 

time and space variations are slow compared with the rates of change of the wave’s 

electric and magnetic fields, i.e. on Fourier transforming the plasma structure, one
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would obtain a distribution spanning values in Fourier space which were less than 

u> and k, then the variation may be looked upon as adiabatic, and we may continue 

to use Eq. 5.5.2, with the dielectric tensor written as e (x,<,u>,k) with reasonable 

accuracy. In the present case, the plasma has no inhomogeneity in time, so that 

we may Fourier transform in time with a clear conscience. The spatial variation of 

magnetic field, however, means that the use of Eq.5.5.2 may be restricted to cases 

where the ‘wavelength’ is small compared with the characteristic scale of magnetic 

field variation. Since we are using the cold plasma model, the dielectric tensor has 

no dependance on k, so that, inasmuch as the medium is uniform, the response can 

be modelled as being local.

5.5.2 Conserved Quantities From Differential Equations

One approach which can be used to find conserved quantities in wave propagation 

problems is to examine the equations which govern the oscillatory motion. In simple, 

second order systems of equations where the dependent variable is y, the invariant 

quantities are y*y and W (y*,y). This result has been extended to fourth order 

systems (Diver, Laing (1990) ), and has im portant implications for their behaviour, 

the main point being that the invariant quantities produced depend on the physical 

parameters appearing in the coefficients of the fourth order equation. However, the 

simple algebraic method given there applies only when the equations have constant 

coefficients and gives no information when the coefficients are functions of position, 

although it seems probable that the explicit dependence on physical parameters 

may also occur in the more general case.

5.5.3 Poynting’s Theorem

We use the following version of Maxwell’s equations:

V x E  =  - § ,  V x H  =  f  , (5.5.3)

where H =  and D =  e E. Note that the effects of current are included in D, 

in this formulation. The Poyniing vector is defined as

Taking the divergence of P  and using the vector identity for the divergence of a 

cross product, gives

P  =  E x H  . (5.5.4)

V - P  =  H • (V x E) -  E • (V x H)

(5.5.5)
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The last equality gives a general version of Poynting’s Theorem. Using the defini­

tions of H and D , and Fourier transforming in time, we obtain

V • P  =  za;/i0B 2 +  iue0E • e • E  . (5.5.6)

Using the cold plasma dielectric tensor gives

E  • t  • E  =  e„ [S(E* +  E l)  + P E 2] , (5.5.7)

where the Hermitian property of the dielectric tensor has resulted in a purely real 

result for this term. Therefore, we have

//0V ■ ( E x B )  =  („ [SEl  +  PE%] , (5.5.8)

where,

B =  B 0 +  - V x E
tui
iQ

Er = W )  Êe C°S 9 ~ Ez Sin ̂  ' 5̂'5'9̂
Since all these quantities are available, this potential conservation law can be 

checked by numerical integration. We must remember, however, that the use of 

the uniform cold plasma approximation means this expression is valid only for sit­

uations close to uniform, i.e. where the contribution of the current to the dielectric 

tensor can be neglected. The code odeadam s.for, described in Section 5.6 was 

modified to test Eq. 5.5.8, by evaluating the supposed invariant at a succession 

of points through the plasma. The results obtained were somewhat inconclusive, 

although for parameter ranges close to the uniform plasma regime, the quantity on 

the LHS of Eq. 5.5.8, when evaluated, was an order of magnitude or so less than 

its constituent parts. The poor results here suggest th a t the equilibrium currents 

may be more im portant than we predicted in Section 4.4.

5.6 R esults

Results from the simulations described above are now given for a range of parameter 

values. First, results for an incoming O-mode are shown in figures 5.3 to 5.10, then 

results for an incoming X-mode are shown in figures 5.11 to 5.18. The results are 

given in terms of the amplitude and phase shift of each coefficient, and the scales 

are normalised by dividing by the amplitude of the incident wave: t in the case 

of an incoming O-mode, and v  for an incoming X-mode. e.g., for we plot |^-| 

and arctan [Q (^)/9^(^)]. Frequencies are expressed in units of ujp. Each curve
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Figure 5.3: Phase changes for incoming O-mode, Q0 =  0 . l u p.
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Figure 5.4: Amplitudes for incoming O-mode, Q,0 =  0.1 U n .
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Figure 5.5: Phase changes for incoming O-mode, =  0.5u>p
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Figure 5.6: Amplitudes for incoming O-mode, Q0 =  0.5wp.
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Figure 5.7: Phase changes for incoming O-mode, Cl0 = u>p .
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Figure 5.8: Amplitudes for incoming O-mode, =  u>p.
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Figure 5.9: Phase changes for incoming O-mode, Q0 =  3w.
LO

05

O

Q_

Q_O —B

o

o
-o ■o

O ',

O
c\j o

I

60

re
fle

ct
io

n 
ph

as
e 

ch
an

ge



Figure 5.10: Amplitudes for incoming O-mode, Q0 =  3 u p.
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Figure 5.11: Phase changes for incoming X-mode, =  0.1 u>p.
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Figure 5.12: Amplitudes for incoming X-mode, Q0 =  0.1 u>p.
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Figure 5.13: Phase changes for incoming X-mode, =  0.5u p.
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Figure 5.14: Amplitudes for incoming X-mode, =  0.5 up.
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Figure 5.15: Phase changes for incoming X-mode, Cl0 — u p.
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Figure 5.16: Amplitudes for incoming X-mode, Q0 =  u>p.

67

co
/co

.



Figure 5.17: Phase changes for incoming X-mode, Q0 =  3u>p
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Figure 5.18: Amplitudes for incoming X-mode, U0 = Zu)p

e
.3

69

CO/CO



was produced using 400 points, though, for clarity, only every fifth point has been 

plotted. The range of frequencies plotted was chosen to show the structured region 

to advantage in each case. Initially, most cases were examined with a greater range 

of frequency, but no structure was found apart from that illustrated.

The graphs clearly have a complex structure, so that, even with our compara­

tively simple model of wave propagation, a wide range of possible outcomes may be 

identified. In most cases, there is some form of correlation between the curves for 

reflected and converted waves, although the relationship between the two is not as 

simple as the sum of the squares of the two amplitudes being one, as we discussed 

in the last section. The modes have different intrinsic energies due to their differing 

wavenumbers, so that, for instance, an increase in the amplitude of a mode whose 

wavenumber is decreasing might result in no increase in the overall energy.

It should be noted that the external solutions may be uniquely identified with 

harmonic waves, because of the asymptotic form of the Bessel functions. Explicitly, 

we have

H i % p )  ~

H [ % p )  ~

H ? \q p )  ~

H[2\p p )  ~

In all the cases given, for frequencies well above all characteristic frequencies in 

the plasma, the converted component falls to zero and the reflected tends to one, 

while the phase change for the reflection tends to zero. This is a reasonable result, 

since, in this case, the incident wave has too high a frequency to couple to any mode 

in the internal region, and the only available channel for the wave’s energy is to be 

totally reflected. The zero phase change is what one might expect, given that we 

have a ‘free’ end (i.e. electric field not set to zero).

Also marked on the graphs are values of frequency at which significant bound­

aries in the CMA diagram are crossed, and hence where the types of wave present 

may be expected to change. These boundaries are, in the Stix notation, R  = 0, 

L =  0, P  =  0 and 5 = 0  (the upper hybrid resonance). The latter is a case where 

the cold plasma model breaks down and further physical content (the effect of tem­

perature, for instance) is needed in order to produce any meaningful predictions 

at this frequency. The spikes which occur in some graphs at this value (namely

—  exp i ( q p -  j )  ,
7rqp 4

—  exp i(pp -  ^ )  , 
7T p p  4

2 7r exp i ( -q p  -  - )  ,
irqp 4

2 . .  7T
 exp i(—pp + - )  .
irpp 4

(5.6.1)
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Figure 5.19: The sign of R L /S
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U! = x A i + n i ) ,  are caused by this shortcoming.

5.6.1 R elation To Cold Plasm a M odes

Some insight into this behaviour can be gained by viewing it in terms of the CMA 

diagram. Since the uniform field joins smoothly onto the helical field, the uniform 

cold plasma predictions for uniform magnetic field should be approximately valid 

near the edge of the structured region. Thus we can predict whether an incoming 

wave will excite internal oscillations, although this quasi-linear approximation (we 

have tacitly assumed that the modes are P(p), R(p)L(p)/S(p)  ) cannot predict 

what happens when they propagate inwards. Broadly speaking, it can be predicted 

whether reflection or conversion will dominate, but we cannot expect to predict 

exact values.

The choice of £l0/u> = constant in these graphs implies that, in the notation of 

the CMA diagram,

Y  = constant-v/X . (5.6.2)

Figures 5.19 and 5.20 show how the the signs of R L / S  and P  change throughout 

the CMA diagram (shown in Figure 2.1). The dashed curve in each case is an
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example of the path traced out with one choice of the constant in Eq. 5.6.2. Note 

that low frequency corresponds to the right, and high frequency to the left of these 

graphs. Because of the way these parabolae cut boundaries in the CMA diagram we 

can distinguish five regions, the boundaries between which correspond to a mode 

changing from propagation to evanescence, or vice versa. The qualitative reasons 

for the structure of each of these regions are now considered.

B e tw een  u> = 0 a n d  th e  cu rv e  L = 0

Both modes are evanescent, so one would expect firing in either to give rise to 

negligible conversion. This is true for the converted wave, but with an incoming 

O-mode, there is a small, but non-zero reflection coefficient, which scales with the 

value of cyclotron frequency. L = 0, where the X-mode becomes propagating, 

corresponds to the first peak in the reflection coefficient.

B etw een  th e  cu rv es L = 0 a n d  P = 0

The X-mode propagates, but the O-mode is evanescent. We would expect an in­

coming X-mode to be entirely reflected, and this is seen in the numerical results 

for this case, but with some deviations: towards P  =  0 there is some conversion,

Figure 5.20: The sign of P
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and a narrow region occurs where reflection sharply dips and conversion peaks (see 

Figure 5.8, for instance). Firing in the evanescent O-mode gives a more complex 

pattern. There is little conversion, but reflection varies considerably, with a number 

of sharp peaks. One should remember that the coefficients here are normalised to 

the amplitude of an exponentially damped wave, so that even a large result may 

mean a small reflection or conversion. O-mode results have a peak in the reflection 

at the cutoff P = O.

B etw een  th e  cu rves P = 0 a n d  5  =  0

Both modes propagate. There is no overall constraint on which scattering channel 

is used, so this argument will predict nothing about this region, which the graphs 

above show to be very complex.

B e tw een  th e  cu rv es 5  =  0 a n d  R  =  0

The X-mode is evanescent, and the O-mode propagates. Firing in an X-mode gives 

negligible reflection or conversion, while an incoming O-mode gives a reflection 

which is large near the resonance, 5  =  0, and becomes smaller towards R  =  0, with 

negligible conversion.

B e tw een  R  =  0 a n d  uj =  oo

Both modes propagate. For high enough u j , the argument outlined in Section 5.6 

applies.

5.6.2 F itting Waves Into The Region

One simple explanation of the peaks observed in the graphs is that they occur at 

frequencies for which an exact number of wavelengths, or half wavelengths, fit into 

the inner region.

Suppose we require that an integral number of half wavelengths fit into the range 

27r, then, using the uniform modes, and taking E z as an example, we must satisfy

J0{2irq) =  0 . (5.6.3)

There is an infinite set of solutions to this equation, the lower valued of which are 

tabulated in Abromowitz & Stegun. Denoting the sth solution by J 0,a, we can 

substitute for q and then solve for w, to produce
1 / 2



The first few of these quantities were calculated, as well as the corresponding quan­

tities derived from fitting Eg into the same interval. They were found to bear no 

relation to the peaks or troughs of the graphs. The process was then repeated, 

assuming that a maximum was at the boundary, so that the condition on the fre­

quencies involved the zeros of the derivatives of Bessel functions, but with no better 

results.

The principle involved here may well be sound, in fact, but the uniform modes 

are poor approximations for the actual wave behaviour. Finding the precise way in 

which the ‘wavelengths’ fit into the region is a much more complex problem. Section 

5.4.1 shows that the internal behaviour is well approximated by harmonic waves with 

an amplitude of 1 /y/p, so that the wavenumbers do not vary with radius. However, 

the coupling of Eg and Ez means that both must be considered to obtain the result. 

The dependence of coupling on characteristic frequencies gives the variation of the 

coefficients shown in the Figures.

The upshot of this section is that the plasma we are modelling has strongly 

coupled electric field components which behave very differently from uniform ap­

proximations.

5.7 Relevance To Plasm a H eating

An im portant parameter for a tokamak or other fusion device is the quantity

/ » = ^ .  (5.7.D

which measures the relative sizes of the magnetic pressure and ordinary fluid pres­

sure. Too high a value of (3 leads to instabilities, but for economic reasons, it 

is desirable to have (3 as high as possible (magnetic pressure is more expensive 

to generate than thermodynamic). Because of this, most fusion experiments have 

0.01 < (3 < 0.1. Eq. 5.7.1 can be rewritten by substituting for pressure and mag­

netic field in terms of cyclotron and plasma frequency and noting that e0fj,0 = 1 /c2:

^  2k T  ^ 4  /  kinetic energy \  / ^ p  V  ^
c2m e \Q,0 J 3 vrest mass energy J \Cl0 J

The ratio of energies is about 0.02 for current JE T  experiments (the electron tem­

perature reaches lOkeV and the electron rest mass is 511 keV), and for projected 

fusion reactors is still only about 0.2 (assuming electron temperatures of around 

lOOkeV). Putting these together with current JE T  values of (3 = 0.05 and taking
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/? =  0.1 for future reactors gives

up _  ( 1.06 JET

^ 0 1 1.20 future reactor

Therefore, we can take ~  as being typical of fusion plasmas. The relevant 

graphs are therefore Figures 5.7, 5.8, 5.15, 5.16.

We have concentrated on finding the behaviour external to a structured plasma, 

while other authors have focussed on purely internal behaviour. However, given a 

certain admixture of modes at a particular radius then our analysis can be applied 

to the plasma within this radius, though, of course, the outgoing modes resulting 

from the scattering will be further coupled at larger radii, rather than propagating 

with no further change.

In this connection, we might also mention the ray tracing technique, which 

assumes th a t the variation of plasma waves with radius results from resolving the 

electric field along the changing direction of magnetic field, and that substituting 

in the radial dependence of the plasma parameters into the wavenumbers of the 

uniform modes. This type of argument has been used extensively to predict paths 

of plasma waves within a tokamak. However, applying a ray tracing argument 

to our plasma will give results of little interest, since, within this approximation, 

the wavenumbers P, and R L / S  are constant across the structured region. This is 

because they can be expressed purely in terms of w2, and f}2 oc sin2 p +  cos2 p = 1, 

so there can be no cutoffs or resonant surfaces. Note also th a t our model does 

not include any of the mechanisms discussed in Section 1.3.1 and so conversion 

to kinetic modes is not included. Despite this apparent lack of potential for mode 

conversion, our simulations show th a t the coefficients of outgoing waves are anything 

but constant as we move through parameter space. In particular, the region between 

the 5  =  0 and P  =  0 curves in Fig. 5.8 shows a number of distinct peaks which 

reach significantly above 1. At these points, the inner plasma region will act as an 

effective reflector or combined reflector/convertor for incoming waves, and so we 

expect penetration of waves at these param eter values to be minimal.

Another noteworthy feature is the rapid variation of the phase change in most of 

the examples above. This means th a t if we superpose many different frequencies to 

produce a wavepacket then they are likely to suffer a wide variety of different phase 

changes. If these form an approximately random distribution, we anticipate a large 

degree of cancellation so that the resultant outgoing wave motion in the external 

region will be very small.

(5.7.3)
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C h ap ter  6

C om parison  W ith  O ther  

T echniques

The most commonly used solution technique for non-uniform propagation problems 

is the WKB method. It is therefore of interest to consider the numerical solutions 

obtained from the coupled equations in the light of a consistent eigenvalue and WKB 

analysis of the same equations, as outlined in Chapter 3. To attack the problem of 

the last chapter, we need to produce appropriate differential equations for both the 

internal, helical region and the external uniform region.

We also briefly consider application of the Cairns, Lashmore-Davies technique.

6.1 Eigenvalue Analysis Of Coupled Equations

Tackling the helical region first, we carry out the eigenvalue analysis of Chapter 3, 

but, rather than starting from a fourth order equation, we use the system 4.2.5, 

which is already in almost the correct form.

The equations for electric fields in our helical plasma, as derived in Chapter 4, 

can be written in matrix form as

y =

0 - ( a  +  |  +  |  cos 2p —

1 0

0 |  sin 2p

0  0

•) 0 |  sin 2 p

0  0

0 - ( a +  |  -  fco s2 p  +

1 0

where

y i  =  y'n, y? =  E e \ f p ,  so =  w i» v* =  E i V p -

( 6 .1. 1)

(6 . 1.2 )
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In the notation of Chapter 3, the 4 x 4  matrix above is M, and we define

0 k 0 m

1 0 0 0
M =

0 m 0 n

0 0 1 0

1 satisfy 

-A  k 0 m

1 -A 0 0

0 m -A n

0 0 1 -A

(6.1.3)

=  0 (6.1.4)

which may be reduced to

(A2 — fc)(A2 — n) — m 2 =  0 (6.1.5)

Clearly, if the coupling is ignored entirely, then m  = 0 and the eigenvalues are 

± V k  , ±y/n.  In the general case, the eigenvalues are

A =  ± y ±  i y / ( k - n ) 2 + 4m 2 ,

with the associated eigenvector being proportional to

mA m
(- , - A ,  1 )

( 6 . 1 .6 )

(6.1.7)
k -  A2 ’ k -  A2

The four roots given in Eq. 6.1.6 are given subscripts 1 —4 according to the choice 

of sign in that equation:

root 1st sign 2nd sign

Ai + +

^2 + -

A3 - +

a4 - -

It can easily be seen that

A i  — — A 3  , A2  =  — A^ (6 .1 .8 )

Using these relations, and evaluating A 1A/ using REDUCE we find th a t the cou­

pling matrix has the structure

J—  t\ —2L

Ai — As 
O'
b

A1+A2

Ai — Ag

c
_ _ 2 __Ai +Aa

P

Ai +A2 

€

6
Ai — Aj

A1+A2

P
 2_Ai — Aj

c

(6.1.9)
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where

a  =

7  =

C =

y  y_A_ 3 = - - 2.
2Ai ’ 2A2

- ( * _ A 2 ) 3 m ' - ( *  -  Al)(* -  Af) m
2mX1( k -  A2) k -  A2. 2mAi U-A|J

{ [2mAifc' — 2m'Xi(k — A2) — mX[(k + 3A2)] (k — Aj) + (k — Â )2 mA'1} 

2mAi(fc-A 2 )(A2 - A 2) ’

{ [2mA2 fc/ -  2m'X2(k -  A2) -  mA'2(Jfc + 3A2)] (k -  A2) + (k -  A%)2 mA'2} 
2mX2{k — A2 )(A2 — A2)

(6 .1 .10)

so that the relative sizes of Ai and A2 play a key role in the coupling of the dependent 

variables. Note that the pairs of variables a  and /?, and e and £ can be obtained 

from one another by interchanging Ai and A2.

6.2 Em bedded System s And W K B

It is possible to attem pt a WKB solution of the complete set of equations 6.1.10, but 

the method is very complex and no less laborious than solution of the complete set by 

numerical means, as we have done. The main point of this analysis, therefore, is to 

identify cases where an embedded system of equations occurs which may be soluble 

by the WKB formalism, with a view to eventually finding connection formulae that

correspond to the results in Chapter 5. If a second order system can be consistently

isolated, then we can manipulate it as follows.

In Diver (1986) it is shown that if we have the system

u[ -  k i(x )u i  = C12u2 ,

v!2 -  k2(x)u2 = C2\ui  , (6 .2 .1 )

then one variable can be eliminated to produce

u'l — ( $  - ( -  ^ ) w i  ■+■ (k \k 2 +  ki$> —■ — C \2C 2\)u\ — 0  ,

*  =  , 3> =  ^  . (6 .2 .2 )
C i2

Transforming to normal form by setting v = u iexp{ — f / ( $  +  ty d s }  will then 

produce the equation

v — +  k +  C i2 C2 i] v — 0  ,

(6.2.3)
1

K = 2
Ci2 k + k—------M T ^ 2
O l2
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which is a suitable candidate for solution by the WKB method. By examining the 

wave potential, we can now say whether significant mode conversion will occur, 

and if so, where. Connection formulae can then be derived, either by applying 

the full-blooded WKB method with consideration of Stokes and anti-Stokes lines, 

branch points and so on, or more simply, by forcing the equation into the form of 

a standard equation whose asymptotic behaviour is well-documented. It should be 

remembered that this will give connection formulae in terms of the u,- and not the 

y i ,  so that, for instance, u \  being constant means that a linear combination of the 

yiS is constant, and does not in itself imply constancy of any one of the original 

variables. The last step in the derivation would be to transform back to the physical 

variables in the problem.

If the m atrix 6.1.10 is examined, then six obvious cases where some of the 

denominators in Eq. 6.1.10 diverge present themselves; Ai -f A2 =  0, Ai — A2 =  0, 

Ai —► 0, A2 —1► 0, k — Ai =  0 and k — \ \  = 0. The possibility of Ai +  A2 =  0 can be 

eliminated because Ai and A2 must both be positive, by definition. The other cases 

are considered in turn.

Ai =  As

Let us pursue the case where Ai =  A2 . This means that large couplings between the 

iq may be expected, arising from the presence of the difference of these eigenvalues 

in the denominator of many entries of the m atrix 6.1.9. Putting Ai — A2 =  A, and 

keeping only terms in A -1 , gives a  = 0 ,  y  z= S, e =  £  =  7 / A and we obtain the 

much simpler matrix

!_
A

1 1 0 0

- 1 1 0 0

0 0 1 1

0 0 - 1 1

(6.2.4)

where the considerable complexity of a fourth order system has been replaced by 

two coupled second order equations. To reduce these to a form amenable to WKB 

solution, we need to convert each into an equation of the form 3.5.1. Comparing 

these two embedded systems with Eq. 6.2.1 gives

equations for Ul,2 U3,4

h X
A

X
A

X
A

X
A

C 12 - X
A

_ X
A

C21 X
A

X
A
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Where, for consistency, A1 2  have been ignored compared to objects of 0 (A  *),

giving the same coefficients for both embedded systems. Therefore, if we carry out
/ a/this procedure for the system involving r/^2 , we find ^ f r o m  which it

is easy to see that,
1 r*.,/ A 11 a /

(6.2.5)

(6 .2 .6 )

1

* = 2

r
L T

*L
2A

Therefore,

k? +  k +  C 12C 21 —
A 2

3 .  ' 2  1 A A " 2- A  J -  -A A  -  7 1
4 2 '

while the change of variables from ui to v gives

v = u \exp
1 /  2 7  — A

d s }  = u i^ /K  exp {-! ■ds (6.2.7)

To be consistent with the original assumption (Ai «  A2 ), Eq. 6.1.6 shows that we 

must have

(k — n ) 2 +  4m^ 0 ,

This implies that we must set k «  n and m «  0 for consistency. Pursuing the 

second condition, we see that either 6 =  0  or sin 2 /? =  0 , so that either the system is 

completely uncoupled, which we have already considered, or the equation we have 

derived is only valid near zeros of sin 2 p, so we do not have a single form valid for 

the whole interval 0 < p < r. To further illustrate this point, if we pursue the 

argument for the moment, then, using 6 .2 .6 , expanding in k — n and m and keeping 

only the largest terms produces the equation

' 2
v + ■v = 0  . ( 6 .2 .8 )

16(fc — n ) 2

Clearly, the wave potential is always > 0, so that ‘cutoffs’ occur at the zeros of 

n , but there is no region of evanescence, and hence little mode conversion can be 

expected. The wave potential is given by

Q = h
bp3 sin 2 p — i "1 2

(6.2.9)p — bp3 cos 2 p_

Obviously, we must have sin 2p =  0, but, depending on which zero of sin we are close 

to, either cos2p = 1 or cos2p =  —1 may occur. This point may seem trivial, but 

it means that two different forms for the wave equations alternate in the internal 

plasma region, not to mention the fact that, in between zeros of sin, 6.2.9 may not 

apply at all, and it is not even certain that such a second order system of equations 

can be found.
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Ai —► 0

where,

0, and e fa —a  so that

—a _  JL 
A2

a JL
As

A- 1A# » A2
0 j_

As 0
j

a JL
A2

—a _  JL 
As

j_  
- A 2 0 A 2 0

( f j k * f. —

/ m 
vfc —A7 )'* (*2

- A 2)

2mAi(fc - X I )  '
0  —

2mAi

( 6 . 2 . 1 0 )

(6 .2 .11)

so that this is still coupled in too complex a manner to be of any use. 

A2 —»• 0

is leads to a fa 0, 7  fa 0, e fa 0, <5 f

r 0

A_ 1A' fa

where

P = ~

and (  ~ —0. Therefore

0  0 0

- 0  0 0
0  0 0

J

P 0 - 0  _

1
£ 

V
10 

r 
-

( 6 .2 . 12)

(6.2.13)

so that U2,4 couple to each other, while the other two amplitudes are uncoupled. 

This set of equations can be tackled by WKB. Following the procedure outlined in 

Section 6.2, we produce the equation in normal form,

v " =  ( j A  V , (6.2.14)

where only the terms of largest order in I/A 2 have been retained, and

/  a2 \ 1 / 2
v = u2 [ ~ 2 y )  • (6.2.15)

Once again, we have O > 0, and little mode conversion is anticipated. The wave

potential here is complex, and there seems little prospect of forcing it into the 

canonical form of the hypergeometric equation. We do not pursue this argument 

further.

k -  A2 =  0

From the form of A1 , A2 , this can only happen if n — A2 =  0, so that this is just the 

uniform field case, which will produce Bessel functions as solutions (Section 5.3.2).
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k -  X22 =  0

This gives Q « 0 , / i « 0 ,  f « 0  and

0 2 .
A 0 7

A1+A 2
6
A c 5

A1+ A2 0

0 7 0 2L
A1+A2 A

6
A1+A2 0 6

A c

which, once again is too complex to fit into the form 6 .2 .1 .

6.3 A ssessm ent

Most examples in the literature consider only equations with polynomial coefficients 

and have a simply defined wave potential: our example is less tractable. In order 

to reduce the order of the governing equation, we make assumptions about the 

eigenvalues which impose conditions on the radius values at which the reduced 

equation holds. In general, this means that our analysis is only valid near certain 

points (which may depend on the plasma parameters), so, strictly we cannot use the 

equation for the whole range of radii 0 < p < 2ir. Even if we gloss over this difficulty, 

there remains the question of the ode for the external region. Although this is simple 

to find, and we expect the resulting wave potential to join continuously on to th a t 

in the internal region, the first and second derivative of the wave potential may not 

be continuous, so that the error terms in Eq. 3.5.2 are not well defined. This does 

not mean we need to abandon the method completely, but we are clearly straying 

into deeper waters. The presence of the condition also means that the result of this 

rather complex procedure is valid for a certain range of plasma parameters, and 

would, at best, corroborate only a small part of the results in Chapter 5.

6.4 Cairns, Lashm ore-Davies

This technique, revieved in Section 3.3.2, is another method which we might com­

pare with the present analysis. The basic premise here is that propagation of modes 

is independent, apart from a confined region where coupling occurs. In other words, 

we want the graphs of local wavenumber to approach each other closely, then di­

verge. Plotting the eigenvalues of the coupled system of equations using Eq. 6.1.6 

will give the same information. This was done for a variety of values of the param ­

eters a and b. A typical plot is shown in Figure 6.1. Although there is a relatively
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Figure 6.1: Square of eigenvalues against radius 
 1 ' 1 > 1 '------3.0
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Radius

well-defined point of closest approach, the eigenvalues remain almost as close, for a 

large distance. In fact, Ai and A2 tend to constants as p becomes large, so the dis­

tance between the eigenvalues tends to a constant also. Therefore, if the two modes 

couple, they do so, to some extent, at a wide range of points and not a localised 

region. We conclude that the Cairns, Lashmore-Davies approach is not applicable 

here.
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C h ap ter  7

C onclusions A nd  Future  

W ork

We have found the normal modes of a helically structured plasma by means of direct 

numerical solution of a set of odes derived from the cold plasma model which we 

expect to be very accurate for fusion plasmas. This contrasts with the sometimes 

ad hoc assumptions of other approaches to mode conversion. Asymptotic solutions 

have also been derived and found to be surprisingly good approximations to  the 

numerical solutions. The situation where the structured region is joined onto a 

uniform magnetic field has been studied and the coefficients of plasma modes in 

the external region consistently derived using the assumption of continuity of the 

electric field and its derivative at the boundary.

The results found show a rich structure as we move through parameter space 

and indicate th a t complex mode conversion events may occur without the resonant 

layer inside the plasm a which is given prominence in some other theories of mode 

conversion.

This method of analysis is straightforward, given modern computing facilities, 

yet utilises a more sophisticated model of non-uniform wave propagation than many 

other theories. The WKB method, when applied here, poses analytic problems of 

great complexity. The fitting of the helical onto the uniform field is only one of a 

number of similar problems which could be solved in a broadly similar way.

We now examine some ways in which this work may be extended.
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7.1 Equilibrium  Flows

This is probably the most desirable generalisation that can be made of the present 

work, given that the driving force behind this thesis was to study consistently the 

wave motion of a non-uniform plasma. Although we have shown that, for many cases 

of interest, the effect of the equilibrium flows is negligible, it is still intriguing as a 

point of principle to see what happens when the full effect of plasma inhomogeneity 

is considered. W ith a little help from REDUCE and Eqs. 4.4.1 and 4.4.2, one can 

show that the odes for the electric field values have the form

cl\Eq +  CL2 E 0 +  a3Eg +  a$Ez +  <2 5E z +  (leEz = 0  ,

b\Eg +  b2Ee +  b3Ee +  b^Ez +  b$Ez +  bsEz =  0 , (7.1.1)

where a \ ,- - - ,a 6  and 6 1 , • • • , 6 6  are functions of the quantities x i, X2 , X3 , A, p, 

defined in Eq. 4.4.2. In our previous work, the first equation could be considered 

as being for Eg, with a driving term which coupled to Ez , and the second as for

Ez with a driving term proportional to Eg, but this viewpoint can no longer be

sustained, and there is now no clear distinction between Eg and Ez .

Although in principle no different to the system of equations solved earlier, the 

extra terms and more complex coefficients mean that tackling these equations is 

a serious undertaking. The possibility of error in transcribing and manipulating 

the complex expressions for the coefficients means that the solution would be best 

attem pted by using a computer algebra package to generate the equations and then 

producing output suitable for inclusion in a numerical simulation directly from this. 

The computer time taken to produce the results would rise dramatically in this case, 

perhaps by a factor of ten. Although one numerical integration would be quite 

feasible, the 400 or so needed to produce the figures in Chapter 5, would be a large 

undertaking (when solving the present equations, each of the graphs in Chapter 5 

took about 15 minutes to generate on a 486-PC), but one which is quite possible 

with today’s computers. One possible compromise would be to study equilibria 

where the flows are small. The equilibrium quantities in the final equations do not 

all occur to the same order and including only the lowest order terms present would 

provide a useful stepping stone on the road to a consistent solution.

7.2 Arbitrary Wave Num ber

Setting the perturbed quantities in section 4.2 to be proportional to exp(—iu>t +  

kz  4 - md), where k and m  are now non-zero, and retaining the other assumptions
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of that section, will give rise to a set of equations which are of the same order as 

those already considered, but contain extra terms which couple the electric field 

components together more intimately. The final odes are of the same form as Eq. 

7.1.1, though with coefficients which are now functions of k and m also.

7.3 O ther Equilibrium  Fields

We have used the form 4.1.13 for the equilibrium magnetic field, for practical rea­

sons. It avoids singularities arising from a position dependent cyclotron frequency, 

and expressions for sin and cos are readily available. It is worth remembering that 

it is only one choice, however, and by excluding the singular fields, we may be ne­

glecting cases of great physical interest. If we use Eqs. 4.2.3, then the existence of 

the upper hybrid resonance is the most obvious issue to tackle. This is done by re­

taining only terms which are resonant, to produce a new differential equation, valid 

very close to the resonant layer in the plasma (if we retain the other assumptions 

about variation with p alone, this is a cylindrical shell). To carry this out for Eqs. 

4.2.3, without assuming any particular form for the equilibrium, put

^u/ l (Po)  dUuh.
= 1 + 77, P =  p o +  / , X 

W Wu h (po)

To zeroth order in 77, both equations give

(7.3.1)

gEe -  fEz =  0 , (7.3.2)

which is equivalent to £ r = 0. However this does not determine Eq and Ez, and 

to do this we must proceed to first order in 77. On using the condition obtained for 

zeroth order to eliminate Ez, we obtain

E/) +
po 9 \ f

+

It A * r Ee + - E s + A ‘ 
P L2 Po

A f  ( g \  ( g \  f  K 2 A 2 a

m ! \ 7 )  + { j )

E$ =  0 ,

Eg =  0 ,

(7.3.3)

where ' now denotes a derivative with respect to 77. The terms in Eq can be 

eliminated in Eqs. 7.3.3 to give

' 6 L ( ! S  +  L ( i \ " + #
Po9 \ f j  9 \ f j  Po

E q  = 0 (7.3.4)

We also have to expand /  and g to first order in 77 to obtain a final answer. This 

means that the second derivative of g / f  in Eq. 7.3.4 is zero, the first derivatives

8 6



give constants, and so we can write

(;f ) + AEa A
Eg 2po i  ^  c3r] +  c4

9

9 Cl^ +  C2 ,  rv

giving the solution

Eg oc exp( —r]) [c3r] +  c4](c2_£^ ±) . (7.3.6)
C3

The solutions to this equation would be joined onto numerical approximations just 

before and just after the resonant radius to produce a complete solution. The 

exponential factor raises a number of interesting possibilities. For suitable choices 

of ci and c3 the Eg solutions may grow very rapidly or very slowly in this layer 

near the resonance, giving rise to enormously different values on either side of the 

singular surface. The Bessel function field, Eq. 4.1.15 is probably the most obvious 

choice for use as an equilibrium field, as it has served in the past as a model for the 

field in a reversed field pinch, and so an obvious application already exists.
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A p p en d ix  A

Fortran C odes

A .l  Finding Independent Internal M odes

c  . . . o d e a d a m . f o r . . .

c  S o l u t i o n  o f  o u r  o d e s  u s i n g  NAG r o u t i n e  d 0 2 c b f  ( v a r i a b l e  o r d e r ,  

c  v a r i a b l e  s t e p ,  A d a m s  m e t h o d .  T h i s  v e r s i o n  p r o d u c e s  b o u n d a r y  v a l u e s

c  f o r  a  r a n g e  o f  p l a s m a  p a r a m e t e r s ,  a s  i n p u t  f o r  c o n c o e f f . f o r

r e a l  t o l ,  x ,  x e n d ,  a ,  b ,  e z o ,  e t o d ,  h ,

& o m ,  w c ,  P I ,  s t a r t f ,  e n d f

i n t e g e r  i f a i l ,  j ,  n ,  i r ,  i ,  n p t s ,  m o d e n o ,  n v a l s ,  c o u n t  

p a r a m e t e r  ( n = 4 ,  i r = 0 ,  n p t s = 4 0 ,  t o l =  1 . 0 d - 1 4 ,  n v a l s =  4 0 0 )  

r e a l  w ( 2 3 + 2 1 * n ) ,  y ( n )  

e x t e r n a l  f e n ,  o u t  

c o m m o n  / s t u f f /  x e n d ,  h ,  i  

c o m m o n  / p a r a m s /  a , b  

c h a r a c t e r * 8  o f i l e

c a l l  d c l o c k < D (  s t a r t  )

c o u n t  =  0

o f i l e  = » d 0 _ 5 _ 0 _ 5 ’

P I  =  a c o s ( - l . O )  

w c  =  2 . 5  

x e n d  = 2 . 0 + P I



s t a r t !  =  0 . 0 1  

e n d !  =  5 . 0  

c  O p e n  t h e  ! i l e  ! o r  o u t p u t

o p e n (  1 4 ,  f i l e = ’ b o u n d a r y V / / o f i l e ,  f o r m =  ’ u n f o r m a t t e d ’ )

d o  4 0  j = 0 , n v a l s

c  R e p e a t  c a l c u l a t i o n  f o r  a  r a n g e  o f  f r e q u e n c i e s ,  f r o m  s t a r t f  t o  e n d f  

c  i n  n v a l s  s t e p s .  F r e q u e n c y  i s  i n  u n i t s  o f  w p .

o m  = s t a r t f  +  r e a l ( j ) * ( e n d f - s t a r t f ) / r e a l ( n v a l s )  

a  =  o m * * 2  -  1 . 0

b  =  - ( w c * * 2 ) / ( o m * * 2  -  w c * * 2  -  1 . 0 )

w r i t e  ( 1 4 )  x e n d ,  o m ,  w c

c  I n i t i a l  v a l u e s  o f  t h e  f i e l d s  s e t  a c c o r d i n g  t o  t h e  m o d e  r e q u i r e d  

d o  3 0  m o d e n o = l , 2

i f (  m o d e n o . e q . l )  t h e n  

e z o  = 1 . 0  

e t o d  = 0 . 0  

e n d  i f

i f (  m o d e n o . e q . 2 )  t h e n  

e z o  = 0 . 0  

e t o d  = 1 . 0  

e n d  i f

x  =  1 . 0 d - 2

c  S e t  s t a r t i n g  v a l u e s  a t  x ( n o n - z e r o )  t o  a v o i d  

c  s i n g u l a r i t y  a t  t h e  o r i g i n

y ( 1 )  = e t o d * ( x  -  a * x * * 3 / 8 . 0  +  ( 1 . 0 / 2 4 . 0 ) * ( b / 3 . 0  +

& ( a / 8 . 0 ) * ( a - b )  ) * x * * 5  ) +  ( e z o - e t o d ) * b * (  x * * 3 / 8 . 0  -

& ( 1 . 0 / 1 9 2 . 0 ) * ( 3 . 0 * a  + b  + 1 6 . 0 / 3 . 0 ) * x * * 5  )

y ( 2 )  =  e t o d * ( l . 0  -  a * x * * 2 / 4 . 0  + a * * 2 * x * * 4 / 6 4 . 0 )  +

& ( e z o - e t o d ) * ( i . 0  -  a * x * * 2 / 4 . 0  +  ( a * * 2 / 4 . 0  -  b ) * x * * 4 / 1 6 . 0 )
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y ( 3 )  =  e t o d * ( 1 . 0  -  3 . 0 * a * x * * 2 / 8 . 0  + ( 5 . 0 / 2 4 . 0 ) * ( b / 3 . 0  +

& ( a / 8 . 0 ) * ( a - b ) ) * x * * 4  ) +  ( e z o - e t o d ) * b * (  3 . 0 * x * * 2 / 8 . 0  -

ft ( 5 . 0 / 1 9 2 . 0 ) * (  3 . 0 * a  +  b  +  1 6 . 0 / 3 . 0 ) * x * * 4  )

y ( 4 )  =  e t o d * (  - a * x / 2 . 0  + a * * 2 * x * * 3 / 1 6 . 0  + ( 1 . 0 / 6 . 0 ) * (

& a * b / 8 . 0  -  b / 3 . 0  -  a * * 3 / 6 4 . 0  ) * x * * 5  )  +  ( e z o - e t o d ) * (

& - a * x / 2 . 0  +  0 . 2 5 * ( a * * 2 / 4 . 0  -  b ) * x * * 3  +  ( 1 . 0 / 4 8 . 0 ) * ( b * * 2  +

& 8 . 0 * b / 3 . 0  +  5 . 0 * a * b / 2 . 0  -  a * * 3 / 8 . 0 ) * x * * 5  )

h  =  ( x e n d  -  x ) / n p t s  

i  = n p t s  -  1 

i f a i l  =  0

c  T h i s  i s  t h e  a c t u a l  i n t e g r a t i n g  r o u t i n e

c a l l  d 0 2 c b f ( x ,  x e n d ,  n ,  y ,  t o l ,  i r ,  f e n ,  o u t ,  w ,  i f a i l  ) 

i f  ( t o l . I t . 0 )  w r i t e  ( 6 ,  9 9 4 )  

i f  ( i f a i l . n e . O )  w r i t e  ( 6 ,  9 9 6 )  

c o u n t  =  c o u n t  +  1 

c  U n f o r m a t t e d  o u t p u t

w r i t e  ( 1 4 )  y

i f  (  m o d (  c o u n t ,  1 0 ) . e q . 0  )  t h e n

w r i t e (  6 ,  * )  ’ P e r f o r m i n g ’ , n v a l s , ’ i n t e g r a t i o n s , ’ ,

& c o u n t ,  ’ c o m p l e t e ’

e n d  i f  

3 0  c o n t i n u e

4 0  c o n t i n u e

c  C l o s e  t h e  o u t p u t  f i l e  

c l o s e (  1 4  )

c a l l  d c l o c k < 9 (  f i n i s h  )

w r i t e ( 6 ,  * ) ’ t i m e  t a k e n = ’ , n i n t ( ( f i n i s h - s t a r t ) / 6 0 . 0 ) ,

& ’ m i n u t e s ’ , m o d (  i n t ( f i n i s h - s t a r t ) , 6 0 ) ,  ’ s e c o n d s ’ 

s t o p

9 9 9  f o r m a t  ( 6 4 h  x  y ( l ) = E t  y ( 2 ) =  E z  y ( 3 ) = E t ’

& y ( 4 ) = E z ’ )
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9 9 6  f o r m a t  ( 8 h  i f a i l =  , I I )

9 9 4  f o r m a t  ( 2 4 h  R a n g e  t o o  s h o r t  f o r  t o l )

e n d

s u b r o u t i n e  f c n ( t ,  y ,  f )  

r e a l  t , f  ( 4 ) ,  y ( 4 ) , a ,  b  

r e a l  c o s ,  s i n  

c o m m o n  / p a r a m s /  a ,  b  

f ( l )  = y ( 3 )

f ( 2 )  =  y ( 4 )

f ( 3 )  =  - y ( 3 ) / t  -  ( a  +  b * c o s ( t ) * * 2  -  1 . 0 / t * * 2  ) * y ( l )  +

& ( b / 2 . 0 ) * s i n ( 2 . 0 * t ) * y ( 2 )  

f ( 4 )  = - y ( 4 ) / t  -  ( a + b * s i n ( t ) * * 2 ) * y ( 2 )  +

& ( b / 2 . 0 ) * s i n ( 2 . 0 * t ) * y ( l )  

r e t u r n  

e n d

s u b r o u t i n e  o u t ( x ,  y  ) 

r e a l  x ,  y ( 4 ) ,  h ,  x e n d  

i n t e g e r  i

c o m m o n  / s t u f f /  x e n d ,  h ,  i

x  =  x e n d  -  r e a l ( i ) * h

i  = i  -  1

r e t u r n

e n d

A .2 Finding Conversion And R eflection Coeffi­

cients

A .2.1 Incoming O-M ode 

c  . . . c o n c o e f o . f o r . . .

c  C o d e  t o  t a k e  f i e l d  v a l u e s  a t  t h e  i n t e r f a c e  a n d  p r o d u c e  c o n v e r s i o n  

c  / r e f l e c t i o n  c o e f f i c i e n t s .
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r e a l  R ,  u l , u 2 ,  u l d ,  u 2 d ,  v l ,  v 2 ,  v l d ,  v 2 d ,  j ,  y ,  k ,  i ,  o m ,

& w c ,  w e e ,  b i g ,  p h i r e f ,  p h i c o n ,  r r e f ,  r c o n ,  t e s t ,  m o d e l ( 4 ) ,

& m o d e 2 ( 4 ) ,  p f a c t o r ,  q f a c t o r ,  k p ,  k q  

c h a r a c t e r * 8  i n f i l e

c o m p l e x  a l ,  a 2 ,  b l ,  b 2 ,  c l ,  c 2 ,  d l ,  d 2 ,  j O ,  j l ,  y O ,  y l ,  j O d ,  

& j l d ,  y O d ,  y l d ,  p ,  q ,  d e n ,  r e f c o e f f ,  c o n c o e f f  

i n t e g e r  n ,  n v a l s ,  n i n  

p a r a m e t e r  ( n v a l s = 4 0 0 ,  n i n = 1 4 )

P I  = a c o s ( - l . O )

c  w e e  i s  t o  s t o p  a r g u m e n t s  o f  B e s s e l  f u n c t i o n s  b e i n g  e x a c t l y  z e r o  

w e e  = 1 . 0 d - 1 5 0  

b i g  =  1 . 0 d l 5 0  

c  S e t  i n f i l e  t o  t h e  a p p r o p r i a t e  f i l e n a m e  

i n f i l e  = ’ d 6 _ 0 1 _ 5 ’

c  T a k e  b o u n d a r y  v a l u e s  f r o m  d i r e c t o r y ,  w e l l ,  b o u n d a r y .

o p e n  (  n i n ,  f i l e = ’ b o u n d a r y \ ’ / / i n f i l e ,  f o r m = ’ u n f o r m a t t e d ’ ) 

d o  1 0  n = 0 ,  n v a l s  

c  E n t e r  f i e l d  v a l u e s  a t  r h o  = R

r e a d  (  n i n  )  R ,  o m ,  w c

r e a d  (  n i n  )  m o d e l

r e a d  (  n i n  )  m o d e 2

u l  =  m o d e l ( l )  

v l  =  m o d e l ( 2 )  

u l d  = m o d e l ( 3 )  

v l d  = m o d e l ( 4 )  

u 2  =  m o d e 2 ( l )  

v 2  =  m o d e 2 ( 2 )  

u 2 d  = m o d e 2 ( 3 )  

v 2 d  = m o d e 2 ( 4 )  

c  A s s i g n  p  a n d  q  t o  t h e i r  c o m p l e x  v a l u e s

t e s t  = 1 . 0  +  (  1 . 0 - o m * * 2  ) / ( o m * * 2 * (  o m * * 2 - w c * * 2 - l . 0  ) )

i f  (  t e s t . g e . 0 . 0  ) t h e n

p  = c m p l x (  o m * s q r t ( t e s t ) , 0 . 0  )
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e l s e

p  =  c m p l x (  0 . 0 ,  o m * s q r t ( - 1 . 0 * t e s t )  ) 

e n d i f

i f  (  ( 1 . 0 - 1 . 0 / o m * * 2 ) . g e . 0 . 0  ) t h e n

q  =  c m p l x (  o m * s q r t (  1 . 0  -  1 . 0 / o m * * 2  ) ,  0 . 0  )

e l s e

q  =  c m p l x (  0 . 0 ,  o m * s q r t ( l . 0 / o m * * 2  - 1 . 0 )  ) 

e n d i f

c  D i f f e r e n t  a c t i o n  d e p e n d i n g  o n  p  b e i n g  p u r e  r e a l  o r  p u r e  i m a g i n a r y  

c  D e c i d e  w h e t h e r  B e s s e l  f u n c t i o n s  o r  m o d i f i e d  B F s  a r e  r e q u i r e d ,  

i f  (  a b s (  a i m a g ( p )  ) . l t . w e e  )  t h e n  

j l  =  c m p l x (  j ( 1 ,  r e a l ( p ) * R ) ,  0 . 0  ) 

y l  =  c m p l x (  y ( l ,  r e a l ( p ) * R + w e e ) , 0 . 0  ) 

j l d  =  c m p l x (  j ( 0 ,  r e a l ( p ) * R )  -  j ( l ,  r e a l ( p ) * R ) /  

k ( r e a l ( p ) * R ) , 0 . 0  )

y l d  = c m p l x (  y ( 0 ,  r e a l ( p ) * R + w e e )  -  

k  y ( l ,  r e a l ( p ) * R + w e e ) / ( r e a l ( p ) * R  +  w e e ) ,  0 . 0  )

p f a c t o r  = p  

e l s e

j l  =  c m p l x (  0 . 0 ,  i ( l ,  a i m a g ( p ) * R )  ) 

y l  =  - c m p l x (  i ( 1 ,  a i m a g ( p ) * R ) ,  ( 2 . 0 / P I ) * k ( l , 

k  a i m a g ( p ) * R + w e e )  )

j l d  = c m p l x (  0 . 0 ,  i ( 0 ,  a i m a g ( p ) * R  ) -  i ( l ,  a i m a g ( p ) * R )  

k / ( a i m a g ( p ) * R )  )

y l d  = - c m p l x (  i ( 0 ,  a i m a g ( p ) * R )  -  i ( 1 ,  a i m a g ( p ) * R ) /  

k  ( a i m a g ( p ) * R ) , ( - 2 . 0 / P I ) * (  k ( 0 ,  a i m a g ( p ) * R + w e e )  +

k  k ( l ,  a i m a g ( p ) * R + w e e ) / ( a i m a g ( p ) * R + w e e )  )  )

p f a c t o r  = a i m a g ( p )  

e n d i f

c  C o e f f i c i e n t s  o f  e x t e r i o r  m o d e s  w h i c h  u l ,  v l  , u 2 ,  v 2  m a t c h  o n t o  

c  I f  p  i s  p u r e  i m a g i n a r y ,  u s e  i m a g .  p a r t

a l = c m p l x ( P I * R / 2 . 0 ) * (  c m p l x ( p f a c t o r * u l ) * y l d - c m p l x ( u l d ) * y l  ) 

a 2 = c m p l x ( P I * R / 2 . 0 ) * (  c m p l x ( p f a c t o r * u 2 ) * y l d - c m p l x ( u 2 d ) * y l  )
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b l = c m p l x ( P I * R / 2 . 0 ) * (  c m p l x ( u l d ) * j l - c m p l x ( p f a c t o r * u l ) * j I d  ) 

b 2 = c m p l x ( P I * R / 2 . 0 ) * (  c m p l x ( u 2 d ) * j l - c m p l x ( p f a c t o r * u 2 ) * j I d  ) 

c  D i f f e r e n t  a c t i o n  d e p e n d i n g  o n  q  b e i n g  p u r e  r e a l  o r  p u r e  i m a g i n a r y  

c  D e c i d e  w h e t h e r  B e s s e l  f u n c t i o n s  o r  m o d i f i e d  B F s  a r e  r e q u i r e d .  

i f (  a b s (  a i m a g ( q )  ) . l t . w e e )  t h e n  

j O  = j ( 0 ,  r e a l ( q ) * R )  

y O  = y ( 0 ,  r e a l ( q ) * R + w e e )  

j O d  =  —j ( 1 ,  r e a l ( q ) * R )  

y O d  =  —y ( 1 ,  r e a l ( q ) * R + w e e )  

q f a c t o r  = q  

e l s e

j O  =  c m p l x (  i (  0 ,  a i m a g ( q ) * R ) ,  0 . 0  )

y O  = c m p l x (  - ( 2 . 0 / P I ) * k (  0 ,  a i m a g ( q ) * R  +  w e e ) ,

& i (  0 ,  a i m a g ( q ) * R )  )

j O d  =  c m p l x (  i (  1 ,  a i m a g ( q ) * R ) ,  0 . 0  )

y O d  =  c m p l x (  ( 2 . 0 / P I ) * k (  1 ,  a i m a g ( q ) * R  +  w e e ) ,

& i (  1 ,  a i m a g ( q ) * R )  )

q f a c t o r  = a i m a g ( q )  

e n d i f

c l = c m p l x ( P I * R / 2 . 0 ) * (  c m p l x ( q f a c t o r * v l ) * y 0 d - c m p l x ( v l d ) * y 0  ) 

c 2 = c m p l x ( P I * R / 2 . 0 ) * (  c m p l x ( q f a c t o r * v 2 ) * y 0 d - c m p l x ( v 2 d ) * y 0  ) 

d l = c m p l x ( P I * R / 2 . 0 ) * (  c m p l x ( v l d ) + j O - c m p l x ( q f a c t o r * v i ) * j O d  ) 

d 2 = c m p l x ( P I * R / 2 . 0 ) * (  c m p l x ( v 2 d ) * j 0 - c m p l x ( q f a c t o r * v 2 ) * j 0 d  )

c  T h i s  e v a l u a t e s  t h e  r e f l e c t i o n / c o n v e r s i o n  c o e f f s

i f (  a b s ( a l ) . g t . b i g . o r . a b s ( a 2 ) . g t . b i g . o r . a b s ( b l ) . g t . b i g . o r .  

& a b s ( b 2 ) . g t . b i g . o r . a b s ( c l ) . g t . b i g . o r , a b s ( c 2 ) . g t . b i g . o r .

& a b s ( d l ) . g t . b i g . o r . a b s ( d 2 ) . g t . b i g  ) g o t o  1 0

d e n  = - a l * c 2 + a 2 * c l + b l * d 2 - b 2 * d l  +  ( 0 . 0 , 1 . 0 ) *

& (  a l * d 2 - a 2 * d l + b l * c 2 - b 2 * c l  )

r e f c o e f f  =  (  a 2 * c l - a l * c 2 + b 2 * d l - b l * d 2  +  ( 0 . 0 , 1 . 0 ) *

& (  b l * c 2 - b 2 * c l - a l * d 2 - a 2 * d l  ) ) / d e n

c o n c o e f f  =  ( 0 . 0 , 2 . 0 ) * ( b l * a 2 - b 2 * a l ) / d e n
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i f (  r e a l ( r e f c o e f f ) . I t . w e e  ) t h e n  

p h i r e f  = P I / 2 . 0  

e l s e

p h i r e f  = a t a n (  a i m a g ( r e f c o e f f ) / r e a l ( r e f c o e f f ) ) 

e n d i f

i f (  r e a l ( c o n c o e f f ) . I t . w e e  )  t h e n  

p h i c o n  =  P I / 2 . 0  

e l s e

p h i c o n  = a t a n (  a i m a g ( c o n c o e f f ) / r e a l ( c o n c o e f f )  ) 

e n d i f

r r e f  =  s q r t (  r e a l ( r e f c o e f f ) * * 2  +  a i m a g ( r e f c o e f f ) * * 2  ) 

r c o n  = s q r t (  r e a l ( c o n c o e f f ) * * 2  +  a i m a g ( c o n c o e f f ) * * 2  )

w r i t e (  5 ,  9 9 9 )  o m ,  r r e f ,  p h i r e f ,  r c o n ,  p h i c o n  

c  i f  ( a i m a g ( q ) . g t . w e e . o r . a i m a g ( p ) . g t . w e e )  g o t o  1 0

c  T h e s e  g i v e  t h e  r e f r a c t i v e  i n d e x  s q u a r e d  ( u s e f u l  c h e c k )  

c  w r i t e ( 5  , * )  o m ,  r e a l ( p * p ) / ( o m * * 2 ) , r e a l ( q * q ) / ( o m * * 2 )

1 0  c o n t i n u e  

c  C l o s e  i n p u t  f i l e  

c l o s e  (  n i n  )

9 9 8  f o r m a t ( 1 7 h  R e s u l t s  w i t h  o m = , e l 0 . 3 , 4 h  w c = , e l 0 . 3 )

9 9 9  f o r m a t (  5 e l 3 . 5  )

e n d

c  F u n c t i o n s  t o  e v a l u a t e  B e s s e l  f u n c t i o n s  o f  o r d e r  0 , 1 ,  

c  a n y  r e a l  a r g u m e n t

r e a l  f u n c t i o n  j (  o r d ,  a r g )  

r e a l  a r g ,  o l d j , o l d e r j  

e x t e r n a l  s l 7 a e f ,  s l 7 a f f  

i n t e g e r  o r d ,  n  

c  D e a l  w i t h  n e g a t i v e  o r d e r s

95



n  = a b s ( o r d )  

c  F i n d  v a l u e s  o f  J O  a n d  J l

o l d e r j  =  s l 7 a e f (  a r g ,  0 )

o l d j  =  s l 7 a f f (  a r g ,  0 )

i f  (  n . e q . O  )  j  = o l d e r j

i f  (  n . e q . l  ) j  =  o l d j

i f  (  o r d . I t . 0  ) j  =  j * ( - l . 0 ) * * n

e n d

r e a l  f u n c t i o n  y (  o r d ,  a r g )  

r e a l  a r g ,  o l d y ,  o l d e r y  

e x t e r n a l  s l 7 a c f ,  s l 7 a d f  

i n t e g e r  o r d ,  i ,  n  

c  D e a l  w i t h  n e g a t i v e  o r d e r s  

n  =  a b s ( o r d )  

c  F i n d  Y O ,  Y l

o l d e r y  =  s l 7 a c f (  a r g ,  0 )  

o l d y  =  s l 7 a d f (  a r g ,  0 )  

i f  (  n . e q . O  ) y  =  o l d e r y  

i f  (  n . e q . 1 ) y  =  o l d y  

d o  2 0 ,  i =  2 ,  n

y  = 2 * ( r e a l ( i ) / a r g ) * o l d y  -  o l d e r y  

o l d e r y  = o l d y  

2 0  o l d y  = y

i f  (  o r d . I t . 0  ) y  = y * ( - 1 . 0 ) * * n  

e n d

c  F i n d  m o d i f i e d  B e s s e l  f u n c t i o n s  o f  o r d e r  0  a n d  1 

r e a l  f u n c t i o n  i (  o r d ,  a r g )  

r e a l  a r g ,  s l 8 a e f ,  s l 8 a f f  

i n t e g e r  o r d

i f  (  o r d . e q . O  ) i  = s l 8 a e f (  a r g ,  0 )  

i f  (  o r d . e q . l  ) i  = s l 8 a f f (  a r g ,  0 )  

e n d

r e a l  f u n c t i o n  k (  o r d ,  a r g )
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r e a l  a rg , s l 8 ac f ,  s l 8 adf 

in te g e r  ord

i f  ( o rd .eq .O  ) k = s l 8 ac f (  a rg , 0 ) 

i f  ( o r d . e q . l  ) k = s l 8 adf (  a rg , 0 ) 

end

A .2.2 Incom ing X-M ode

The program concoefx.for is used, which is the same as the last program, but with 

the definitions of r e f  c o e f f , concoeff replaced by

re f c o e f f  = - 1 . 0  + 2 . 0 *( a 2 * c l- a l* c 2  + ( 0 . 0 , 1 . 0 )*

& ( a l* d 2 - a 2 *dl ) )/d en

concoeff = ( 0 . 0 , 2 . 0 )* (d 2 * c l-d l* c 2 )/d en
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