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Sum mary

Interplanetary scintillation (IPS) is a phenomenon that has been known of and used as 

a measuring technique for nearly four decades. The aim of this thesis is to explore the 

practical capacity of IPS as a tool for probing the solar wind.

The radio waves from distant sources (radio galaxies, quasars, etc.) must pass through 

the turbulent interplanetary medium (IPM) before being detected on Earth. Plasma 

density variations in the IPS cause scintillation of these radio waves. By careful analysis 

of the signal, the scintillating component can be extracted, and the amount of scintillation 

quantified. This relates to variations in the density of the plasma through which the radio 

waves have passed. The velocity of the solar wind can also be determined from IPS.

By observing thousands of scintillating sources across the whole sky, an all-sky image of 

the solar wind can be created. Of course, scintillation can occur at any point along the line 

of sight to the source. Careful modeling can calculate where the dominant contribution to 

scintillation takes place, enabling a 3-dimensional image of plasma density to be inferred. 

In this thesis, a large IPS data set has been examined and evaluated, to reveal large scale 

structure in the inner heliosphere over a 5-year period.

Chapter 1 introduces the history and theory of IPS, and the different applications to 

which it can be applied. The theory is first presented as a simplified approximation, and 

then developed to a more complex form, closer to reality. The solar wind itself is also 

discussed, as well as the different phenomena on the Sun that affect the properties of 

the solar wind. The areas of solar-terrestrial relationships and geomagnetic storms are 

explored.

Chapter 2 focuses on the gathering of IPS information for the Cambridge 1990-94 

IPS survey. The 3.6 hectare Cambridge IPS array is described, along with the observing 

procedure for the survey. The new computer software that processed the raw data is



described and the algorithms discussed.

Chapter 3 begins the task of quantifying the scintillation of each source. It examines 

the algorithm written to fit a template over the scintillating flux recorded for each source 

for every day of the survey. The density and velocity parameters computed for the whole 

survey are then thoroughly checked and analyzed. Finally, all sky maps are made to 

display the computed parameters for one day at a time.

The verification of the Cambridge data set by comparison with other experimental data 

is the main theme of chapter 4. Measurements of plasma density and velocity taken by in- 

situ spacecraft are available on the Internet. Data from the IMP-8 , SAMPEX and GOES 

satellites, from the Ulysses spacecraft and from ground-based facilities are correlated with 

the Cambridge data set. Though it is difficult to make direct comparisons of two different 

observing systems, some satisfying correlation is found.

After verification of the data set, chapter 5 begins to apply this data to a number of 

different situations. Initially, the issue of 3-dimensional interpretation of the 2-dimensional 

maps is explored and modelled carefully. The trends observable over the solar cycle are 

then investigated, particularly those trends that depend on heliographic latitude. The 

ability of IPS to track large-scale structure in the IPM, and therefore to predict geomag­

netic storms is also investigated in chapter 5, with some specific examples being researched. 

Lastly, IPS data is used to help verify the existence of a pulsar planet.

Chapter 6 draws some conclusions about the research that has taken place, and the 

successes achieved, before giving some suggestions for improvements and future work.
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Chapter 1

An introduction to IPS and the  

solar wind

“0  wild West Wind, thou breath of Autumn’s being,

Thou, from whose unseen presence the leaves dead 

Are driven, like ghosts from an enchanter fleeing...”

P. B. Shelley - Ode to the West Wind

1.1 Introduction

Emanating continuously from the Sun, the dynamic solar wind has a huge influence on 

conditions in the interplanetary medium. Interplanetary scintillation (IPS) can be used 

as a diagnostic tool for studying structures in the solar wind. This project involves the 

analysis of the data set from the five-year Cambridge IPS survey, 1990-94. Prom this data 

set, it is hoped that new understanding will be gained into how IPS information can be 

exploited, in conjunction with other data sources, to investigate the solar wind.

In this chapter, the history, applications and theory of IPS will be explored. Then, the 

solar wind will be studied, the influence the Sun has on its composition, and the enormous 

effects that it can have on Earth and the near Earth space environment.

1
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1.2 The history of IPS

IPS has been studied at Cambridge since the 1960s. It began with a series of radio obser­

vations carried out in June 1962 and July 1963 at a frequency of 178 MHz, to determine 

accurate positions for a number of sources [17]. It was noticed by Clarke that that certain 

radio sources appeared to scintillate, i.e., the measured intensity was observed to fluctu­

ate in a random manner [37], see Figure 1.1. Further investigations revealed that this 

phenomenon only occurred for radio sources of very small angular size, less than 1".

Figure 1.1: Early IPS recordings made at Cambridge by Hewish et al. [37].

This scintillation is due to refractive index variations in the interplanetary medium 

(IPM), along the line of sight to the radio source, which themselves are caused by density 

inhomogeneities in the solar wind. A source having an angular extent greater than 1" acts 

as a number of point sources all creating similar but displaced and overlapping diffraction 

patterns on the ground. Therefore, the fluctuations are smeared out, and sufficiently 

extended sources exhibit practically no interplanetary scintillation at all. This is analogous 

to the optical case, where a star (point source) will twinkle due to distortion in the Earth’s 

atmosphere, while a planet (extended source) will not.

The degree to which a source exhibits IPS is dependent on its angular structure, hence, 

IPS measurements can be used to measure the angular extent of distant radio sources, 

in the range 0.1" to 1". Early results of radio source structure using IPS at 178 MHz 

were published by Little and Hewish [52], [53], as well as a detailed description of the 

scintillation dependency on source structure. To further these efforts, the Cambridge 

IPS array was purpose-built, completed in 1967, and operating at the lower frequency of
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81.5 MHz. The first survey is described by Hewish and Burnell [36], with initial results 

published in 1972 by Burnell [8], who found 163 scintillating sources. In 1974, Readhead 

and Hewish [66] reported that 60% of the ~  1500 4C sources (fourth Cambridge radio 

survey) between declinations of —12° and +90° were observed to scintillate, and thus, 

structural information was calculable.

After further analysis of data from the IPS array, some cosmological implications were 

drawn about the angular size of extragalactic radio sources by Readhead and Longair [69] 

in 1975, and by Readhead and Hewish [67] in 1976. Since then, the role of IPS in radio 

source structural studies has been largely superseded by long baseline interferometry, 

although only recently (with the low-frequency modifications to the VLBA) has VLBI 

matched its resolution at metre wavelengths.

The scintillation (in the interplanetary medium) of radio sources has been extensively 

used to probe the IPM itself. Tappin [89] has studied the relationship between scintillation 

and the density of the material causing that scintillation. After careful analysis, he arrived 

at a direct relationship, detailed in Section 3.1, allowing the determination of the density 

of the solar wind over the whole sky by observing the scintillation of a large number of 

radio sources.

The all-sky view afforded by IPS has a huge advantage over the limited information 

available from in-situ spacecraft taking measurements of their immediate environment. 

IPS allows the whole sky to be imaged, from a ground based radio telescope. Thus it is 

possible to see the first appearance of a large scale structure in the solar wind, then to 

track its movement, and help predict whether it will arrive at and affect the near-Earth 

environment.

Tappin et al. [90] have modelled a disturbance in the IPM, and the IPS variations 

caused by it. This has been matched with some success to real observations. Gapper et 

al [25] presented density maps (g-maps) made using the Cambridge IPS array in 1978, and 

interpreted some of the features as interplanetary disturbances. The origin of transients 

in the solar wind has been a controversial issue for a long time.

Hewish and Bravo [35] were able to contribute to this discussion with their analysis of 

ninety-six disturbances mapped during August 1978 to September 1979 using the Cam­

bridge IPS array. By back-projection to the Sun, they concluded that the sources of all 

the disturbances were associated with coronal holes. Sometimes, there was also flaring
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and other activity near the source, which could have been related to the interplanetary 

disturbance as a peripheral event, but often there was no such activity. CMEs of the 

“curved-front” variety were often located above coronal holes, suggesting that they too 

can be related to the same activity which results in interplanetary disturbances and shocks.

Multi-station IPS can be used to determine the velocity of the solar wind. The basic 

idea is to measure the scintillation pattern simultaneously at a number of spaced receivers, 

and then to estimate the time delays between the observations at the different locations. 

Then, taking into account the orientation of the baseline, and the direction of the wind, 

the time delay is used to calculate the solar wind velocity. This method was first applied 

to the solar wind by Dennison and Hewish [22].

1.2.1 IPS around the world

Both single-station and multi-station IPS observations have been made by groups all over 

the world. Coles [19] has reviewed different radio propagation methods for revealing solar 

wind structure, including IPS observations at UCSD and Nagoya. Figure 1 .2  shows an 

example of simultaneous recordings made at the three different observing stations, at a 

frequency of 103 MHz, by the P.N. Lebedev Radioastronomical Institute, at Puschino and 

other sites in Russia [94].

A three-antenna system operating at 73.8 MHz was established at UCSD (University of 

California at San Diego) in 1969. Though now suspended, this system was used for multi­

station IPS observation, and discovered a lot about the large scale velocity structure of 

the solar wind. Rickett and Coles [72] describe sixteen years of these observations, and 

the solar cycle trends that they found.

Operated by the University of Nagoya, Japan, three antennae operating at 327 MHz 

are dedicated to multi-station IPS observation [45]. See S ection  4 .2 .3  for more details.

The Ooty radio telescope in India (327 MHz) [6] has been used for a novel single­

station IPS method of measuring the velocity of the solar wind, using spectral methods. 

See S ection  3 .2 .5  for a description of this work. Using this method, Manoharan [55] has 

found excellent agreement with the velocity data recorded by the multi-station use of the 

Nagoya telescope. Figure 1 .3 shows some of his results, the solar wind velocity is plotted 

as a function of heliographic latitude, for two different periods near solar minimum and 

solar maximum. Gothoskar and Khobragade [27] have employed the technique of neural
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F ig u re  1.2: Simultaneous recordings made at three different stations at Puschino by Vitkevich and 
Vlasov [94].

networks to analyse the scattering power spectra obtained at Ooty to identify normal, 

disturbed and strong IPS spectra.

The EISCAT (European Incoherent SCATter) telescopes (933 MHz) have been regularly 

used for IPS observations [13], in the multi-station mode, to obtain solar wind velocity 

measurements. Some results of such observations are discussed by Breen et al. [14].

Although the Cambridge IPS array is currently out of commission, these other tele­

scopes around the world are continuing to make IPS observations. There is much analysis 

to be done on the 1990-94 data set from the Cambridge array. The purpose of this thesis 

is to exploit this data set, and thereby prove to a further extent the usefulness of this kind 

of IPS observation.

1.3 Scintillation theory

Radio waves from a distant source must pass through the IPM before they are detected 

on Earth. The dynamic density variations in the IPM cause refractive index fluctuations 

which serve to diffract the radio waves as they pass through. To describe this diffraction,
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Figure 1.3: The solar wind velocity determined by single-station IPS methods at Ooty, plotted against 
heliographic latitude. The left hand graph represents solar minimum, where the velocity has a marked 
dependency on latitude, while the right hand graph is for a period near solar maximum and the same 
dependency is not at all clear.

we shall first develop the theory for a general, infinitely-distant, incoherent, point source 

illuminating a thin sinusoidal phase screen, as has been explained by Hewish [32]. Subse­

quently, this theory will be extended to include extended sources illuminating a random 

phase screen, as summarised neatly by Codona [18].

By the time they arrive in the solar system, the radio waves from a distant point source 

can be considered to be plane waves. Of course, an extended source will be emitting plane 

waves over a spread of angles, 0 , but initially, we shall only consider plane waves coming 

from one angular direction, i.e., from a point source. The plasma in the IPM acts as a 

phase-changing screen, i.e., by passing through, the phase of the plane wave is changed in 

the plane perpendicular to the propagation direction due to the refractive index variations.

1.3.1 W eak scattering o f the waves from a point source by a thin, sinu­

soidal, phase-changing screen

Consider the plane wave incident on the screen in the xy-plane,

A(x,t)  =  , (1.1)

where k is the wavenumber of the incident radiation, and 2 is the spatial distance in the 

direction of travel of the wave, see Figure 1.4. After passing through the phase-changing 

screen, the phase of the incident wave front is modulated by up to A0. We assume that 

the screen varies sinusoidally, with a wavenumber k, giving an emerging wave of complex
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Figure 1.4: Scintillation by a sinusoidal phase-changing screen. On the left, the phase change is small, 
A(j) <  1 radian, causing “weak scattering”. The theory for this type of scattering is developed in this 
section. On the right, A <j> >  1 radian. This is strong scattering and it will not be described in detail.

amplitude

A(x,t)  =  , (1 .2)

in the plane 2 =  0 . As A(f> < 1 radian, we can simplify this to

A(x, t) ~  (1 +  iA(f) sin Kx)e~tui . (1.3)

Hewish [32] shows that the effect of a thin, sinusoidal phase-changing screen is to 

introduce a pair of additional waves of complex amplitude where A<p < 1 radian, and 

inclined at ± sin -1  jr to the 2-axis. These extra waves are shown in Figure 1.4. This 

follows because two, unit amplitude, plane waves travelling at angles of 9 and —9 to the 

2-axis have a resultant

2 sin(kx sin 9) cos(kz cos 9 — cot), (1.4)

where 9 =  ±s in- 1 Assuming the spatial scale of the screen is much greater than a 

wavelength, i.e. n k, we can say that 9 =  jr.

The case of strong scattering, A(f> > 1 radian, applies to our IPS observations (at

81.5 MHz) only when the elongation of the source is less than 30° from the Sun (due to 

the increased plasma density there). The mathematical treatment is more involved, and 

will not be developed here.

As the three emergent waves propagate out from the screen, they will interfere with 

each other. At a certain distance from the screen, called the Fresnel distance, they will 

first be in phase and the diffraction pattern becomes fully developed.
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Thin, sinusoidal 
phase-changing screen

CX>

l = z  /  cos 0

Ground
Figure 1.5: From the phase-changing screen, the main wave emerges, with one beam on either side, 
sepaxated by 6.

The phase difference between the scattered and unscattered waves varies with distance 

from the screen. The unscattered wave travels a distance z, while the scattered wave 

travels a distance I = z/cos$, as can be seen in Figure 1.5. The unscattered wave can 

be written as elkz, and the scattered as Thus, the path difference, AL between

the two waves can be written as

(1.5)\  cos 9 2 /

The extra |  is a result of the extra i in the expression for the scattered wave.

kz IT
¥
2

A L  — kz -  ----- ^  ^  (1-6)
1 — o- L

-  k z - k z ( l  + y )  +  |  (1-7)

=  - k z 6-  +  |  (1 .8)

Now substitute for 9 =

2, K TT ,

A L  = ~ k Z 2 & + 2 (L9)
K2Z 7T / .  - x

2k 2 ( '

So we can say that the component in phase with the unscattered waves has amplitude
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where A<fi is the amplitude of the phase modulation, and sui(kx) accounts for the inter­

ference caused by the sinusoidal phase screen of wavenumber k . The term sin is

known as the “Fresnel filter” . This is very important, as it determines where along z that 

the diffraction pattern will be strongest. It too varies sinusoidally, with increasing z. The 

characteristic distance, z =  is called the Fresnel distance, and it denotes where the 

intensity modulation in the Fresnel diffraction pattern first becomes fully developed.

As well as being dependant on z and k, the Fresnel filter is proportional to /c2, which has 

the effect of reducing the influence of long wavelength perturbations in refractive index, 

i.e., large scale variations in refractive index are not as important as smaller ones. The 

Fresnel filter appears again in the next section where IPS theory is extended to cover the 

real, rather than the simplified situation.

1.3.2 W eak scattering of the waves from an extended source by a thin, 

random , phase-changing screen

Hewish assumed a sinusoidal phase-changing screen which would in turn produce a si­

nusoidal intensity pattern on the ground. As can be seen from equation  1 . 12 , it is a 

characteristic of weak scattering that the spatial scale of the phase fluctuations in the 

scattering screen is the same as the spatial scale of the diffraction pattern on the ground.

In reality, the screen is made up of many different sizes and shapes of plasma structures. 

Because of this random and unpredictable nature of the plasma fluctuations, the diffraction 

pattern will have rather a random shape. Also, as the plasma is moving (at the speed of 

the solar wind), then on the ground we observe a drifting pattern.

If the source is extended, then instead of just one plane wave passing through the screen 

and producing three emergent beams, we get many waves passing from the different parts 

of the source, and creating many more emergent beams. The combination of all these 

waves of different phase makes the intensity pattern on the ground even more complex.

To quantify the IPS phenomenon under these conditions, it is instructive to think in 

terms of correlation. We will describe the intensity of the diffraction pattern on the ground 

in terms of the scintillating flux density, as measured by the Cambridge IPS array. The 

random flux density pattern will be described by S(x ), where a; is a positive vector in the 

observation plane. The two-point intensity correlation can be written as

Cs(a) = (S(x)S(x + a ) ) , (1-13)
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where angle brackets denote ensemble averaging over the fluctuations in the IPM. S(x ) 

will be very similar to ^(rc +  a) when a is very small compared to the typical distance over 

which the intensity pattern changes. If the intensity pattern is quite smooth, then Cs(a) 

will be large for all values of a, so we can say that the pattern is highly correlated. But 

when the intensity pattern varies rapidly, the correlation falls.

To describe the pattern contrast, the “scintillation index”, m, is defined as the fluctu­

ation in the rms flux density, normalized by the mean flux density

2 ( A S f  _  ( ( S - ( S ) ) 2) _  Cg(0) — Cs(oo)
(g )2 (g )2 Cs(oo) ' ’

m  will be large when there is a big difference between the correlation at no separation 

and the correlation at a separation of infinity, i.e., if the flux density pattern is heavily 

modulated. If the scintillation is low, then the intensity pattern will not be varying as 

much, and the scintillation index will be correspondingly lower. Note that m  is always 

less than 1 .

We also define two other important quantities similar to m.

<A g )2 f115)
((AS)2) ' 1 J

A  describes the scintillating flux density squared, normalized by the mean scintillating flux 

density squared for that source over a long period of time (> 1 year). In the Cambridge IPS 

data set, a value of A  can usually be found for every source, for every observation. This is 

done by measuring the squared fluctuation in flux density for the source on any particular 

day, and then dividing this by the square of the five-year average value of fluctuation, 

(AS).

We can also define

9 = E(AS)  ' ^ ' 16^

g is the fluctuation of the flux density, this time normalized by the expected value of AS,  

E(AS)  for the observing geometry. The expected value of A S  will change for a particular

source during the course of the year, because the source will be at different elongations

from the Sun during the year. This means that the line of sight will be passing through 

dense plasma close to the Sun at one time, and then through plasma of lower density far 

away from the Sun at another time. We characterize this behaviour by averaging over 3° 

elongation bins for each source, over the course of the five-year survey, and assembling



CHAPTER 1. A N  INTRODUCTION TO IPS AND THE SOLAR WIND 11

graphs showing scintillation as a function of elongation. Chapter 3 discusses this process 

in more detail.

Scintillation is caused by small fluctuations in plasma refractive index, 77. In interplan­

etary conditions, 77 can be expressed as

v2 =  1 -  j f  , (1.17)

where v is the frequency of the radiation and vv is the plasma frequency. The plasma 

frequency is the frequency below which waves cannot propagate in a plasma, and which is 

up to a few tens of KHz in the IPM. It is expressed as

9 1 nee2
"P =  r ~2 - L18F An* eome

where n e is the electron density, e is the charge on an electron, eo is the permittivity of 

free space, and me is the mass of an electron.

Now we can write the refractive index as

J/2
A/1 __ p_V V2

1 _ 1
2 v2 ’

1 1 nee2
2^2 47r2 eo77ie

1 nee2
87T2 eQm ei>2 '

(1.19)

(1.20)z u~

because v vp. Now, filling in for vp

*  =  ( L 2 1 )

= 1 - sL ^ 3 -  (1-22)

The fluctuations in 77 can be expressed as

h(t) =  77(1:) -  (77), (1.23)

where 77 (r) is the refractive index at a position r in space, and (77) is the mean of 77. We

can relate /i{r) directly to density at a particular point, ne(r) and to the mean density,

{ne)-

nM = (1 -  J _ Mr)e2N| _ ( t _ J_ M e 2 \  (124)
I 8tt2 eomcu2 )  \  87r2 eom ei/2)

1 e2 (ne) -  7ie(r) 
87r2 eom e u2 (1.25)
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So if we have a technique for measuring /i(r), then we can determine the deviation in 

density at a particular point. IPS is such a technique, as will be explained in this section.

The fluctuations in the random phase-changing screen can be described by a power 

spectrum. It can be calculated by taking the Fourier transform of the autocorrelation of 

the index of refraction fluctuations, as given by the Wiener-Khinchin theory (see chapter 

12 of Numerical Recipes [64]).

1 r°°
M k ) =  (2^ j3 J  +  r))e~lK rd3r , (1.26)

where k, is a three-dimensional wave vector, (/u(ro)/z(ro +  r)) is the autocorrelation of the

refractive index fluctuations and is a normalization factor.(27rr
We will assume that the turbulence spectrum can be described by a Kolmogorov tur­

bulence spectrum

4>p (k) a  C£ « -11/3  , (1.27)

where C% is the turbulence structure constant, determining the overall “power” in the 

spectrum.

Because it is an extended source, we must add up the individual flux density patterns, 

Spw(z), caused by each plane wave to get the total flux density pattern, giving

/oo
B{0)Spw{x + z0)d2G, (1.28)

-oo

where B(0) is the brightness distribution of the source. Because of the extra zO factor, 

the resulting flux density pattern on the ground is smudged somewhat. If 9 is too large 

(in our case, 6 > 1"), then the flux density pattern will be too smeared out to detect.

We write the correlation of the flux density pattern of two points on the ground, sepa­

rated by a, assuming a plane wave illumination of the screen, as

Cpwip̂ ) = (Spwix^Spyjix -(- o) ) . (1.29)

We can now sum over all values of 6 to take into account that it is an extended source to 

give

Cs(a) = [  B (0i)B (02)Cp!„(a -  z(<h ~ h  ))d2<M202 . (1.30)
J J  — OO

The power spectrum of the flux density can be found by again using the Wiener- 

Khinchin theorem [64], i.e., by finding the Fourier transform of the correlation, Cs(a)

1 r°°
</>*(*) = P T G  Cs(a)e-'*"*d2a,  (1.31)(27r( j _<*,
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where k  is the two-dimensional “spatial frequency”. We can expand this out by taking 

the Fourier transform of C's(a), leading to

(J)s {k ) = (2Tr)i \B(zK)\2(j)pw{K) , (1.32)

where B ( z k ) is the Fourier transform of the brightness distribution with respect to 6, and 

4>pw(k) is the transform of Cpw(a).

<Ppw(k ) is the flux density spectrum for a plane wave incident on a weakly scattering 

thin phase screen as derived earlier, and it is well known [32]

<Ppw(k ) = 6(k ) + Snk2l sin2 (^ j^ J  M K) > (1.33)

where I is the thickness of the screen, k = 2 n / \  and A is the wavelength of the radiation.

The factor sin2 is the square of the “Fresnel filter” , as described in equation  1 .1 2

(it is squared because equation 1 .1 2  was calculated for amplitudes, while here we are 

dealing with intensity).

To find the flux density spectrum for an extended source, we substitute equation  1 .33 

into equation  1.32, and using S'tot =  (27r)2B(0), we obtain

<j>s (K) = 5t2ot(5(/c) +  {2ir)*87rk2l\B{zK)\2 sin2 ■ (L34)

The second term here is the flux density spectrum. Taking the inverse Fourier transform, 

we get the flux density spatial correlation function. Noting that the total flux density is 

equal to the mean flux density, equation 1.34 can be used in equation  1.14 to give the 

scintillation index,

m 2 =  r  s in 2 ( MK ) d 2K (135)J-oo |B(0)|2 V 2f c y W  ' v '
In this expression, the 8irk2l term is for normalization and the “Fresnel filter” is as before. 

\B(z k )\2 /\B(0)\2 is the factor that accounts for the blurring of an extended source. 0^(k) is 

the power spectrum of refractive index variations, as previously defined in equation  1.27.

What we have found is the thin screen expression. It can be extended to a thick screen 

by summing the contributions to m 2 from all the screens along the line of sight.

Utilizing equation 1.35, it should be possible to predict the scintillation index pro­

duced by any particular spectrum of refractive index variations, m  itself is measured 

using the first part of equation 1.14. m  depends on the power spectrum of refractive in­

dex variations, which themselves depend on the electron number density variations in the
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plasma (see equation 1.25). Therefore, m  will give a measure of the density fluctuations 

of the plasma in the IPM. In this project, the parameter A  is measured, which is related 

to m.

We have seen that the refractive index is frequency dependent (equation 1.25). This 

means that the phase modulation is proportional to the wavelength. So at smaller 

wavelengths, there will be less scintillation caused by the same screen. Therefore, the 

changeover from weak to strong scattering takes place much closer to the Sun for shorter 

wavelengths. Thus, at higher frequencies, IPS can probe closer to the Sun. For example, 

the EISCAT facility observes at a frequency of 931.5 MHz, and so it can observe as close 

as 18 solar radii, whereas the Cambridge IPS array at 81.5 MHz can only observe as close 

as 120 solar radii.

1.4 The solar wind

The solar wind is a continuous, rapid expansion of the solar corona into interplanetary 

space, and it is a natural consequence of the high coronal temperature. The photosphere 

(the visible surface of the Sun) is at a mere 6000 K, while the temperature of the corona 

(the atmosphere) has been measured to be ~  106 K from coronal emission lines [9]. At 

such high temperatures, the ionization of hydrogen in the corona is almost complete, so 

the corona is composed of a proton-electron gas, with small proportions of ions of other 

elements. The electrons in this mixture scatter the photospheric light so that the “white 

light” corona is visible in coronographs or during eclipses.

The presence of the solar wind is evident in a variety of phenomenon. The ionic tail of 

a comet always points away from the Sun, because it is “blown” back by the solar wind. 

The Aurora (or Northern Lights) is caused by plasma carried from the Sun as the solar 

wind, and entering the Earth’s atmosphere at the poles.

At 1 AU, the average speed of the wind is ~400km s-1 , and the typical number density 

is about 10 cm-3 . It is thought that at about 100 AU, the solar wind has thinned out 

to become indistinguishable from interplanetary space. The mass loss from the Sun due 

to the solar wind is only about 5 x 1016kg per year, only 2.5 x 10-14  of the solar mass 

itself [62].

In the early days, before the solar wind was recognised, Biermann (1953) tried to
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explain why parts of a comet’s tail would occasionally show accelerations along the tail’s 

length. He proposed that it was due to a continuous outflow of ions from the Sun. In 

1954, Chapman [16] put forward his idea of coronal extension into interplanetary space, by 

assuming that the solar atmosphere was in a state of hydrostatic equilibrium, i.e., that the 

gas pressure was balanced by gravity. Unfortunately, this model leads to plasma densities 

at the Earth that are far too large, and there are more difficulties at large heliospheric 

distances, in blending into the interstellar background.

Recognizing these problems, Parker concluded that “probably it is not possible for the 

solar corona, or, indeed, perhaps the atmosphere of any star, to be in complete hydrostatic 

equilibrium out to large distances” [58]. He then considered a new possibility, that the 

Sun’s gravitation could not hold back the pressure force of the extremely hot coronal gas, 

leaving the corona free to steadily expand. So, instead of hydro static equilibrium, the 

Sun would be in a state of hydro dynamic equilibrium. An important factor was that he 

assumed a constant temperature in the corona.
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Figure 1.6: Velocity of the solax wind as a function of distance, for different temperatures.

Figure 1 .6  shows Parker’s predicted velocity of the solar wind at varying distances 

from the Sun, for different isothermal coronal temperatures. Taking, for example, the
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curve for a temperature of 2 x 106 K, the wind speed at 1AU will be ~700km s-1 , which is 

far above the sound speed for this temperature (about 150 km s-1 ), so the flow is definitely 

supersonic. Finally, direct spacecraft measurements became possible in the early 1960s 

and clearly confirmed Parker’s supersonic expansion model.

An important aspect of the solar wind influence is that it carries out with it the magnetic 

field of the corona. This is because the magnetic field lines are “frozen into” the plasma 

of the corona, so, when it expands, the field lines are drawn out into interplanetary space. 

Because the Sun rotates, the field lines emerge as spirals. Though the plasma expands 

radially (to an observer at Earth), the field lines are wound up in an Archimedean spiral, 

with their footpoints back on the Sun, see Figure 1.7.

s o la r  w ind  
'  v e loc ity

m a g n e tic  field 
\  lines

Figure 1.7: The solar wind velocity is always directed radially out from the Sun, as shown by the short 
arrows. Because the Sun rotates, the magnetic field lines emerge as spirals.

1.4.1 Coronal holes

The velocity of the solar wind depends, to a large extent, on the part of the corona that 

it emerged from. The magnetic field lines at a coronal hole are open, so the plasma from 

these areas is not so bound to the Sun, and can flow out more freely, and faster. Section

4 .2 .4  discusses coronal holes again in more detail. Figure 4 .7  shows an image of a
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coronal hole. A long lived coronal hole can cause a co-rotating high speed stream, which 

describes a spiral out from the Sun. Due to solar rotation, this fast moving stream can be 

observed with a period of about 27 days at the Earth.

Two recurrent high speed streams evident in 1974 were seen by the Vela and IMP 

near-Earth spacecraft, shown in F ig u re  1.8. 1974 was the declining phase of the solar 

cycle, when coronal holes tend to be larger and longer-lasting. Bame et al. [5] suggest 

that this is due to the greater number of transients during solar maximum, which disrupt 

long-living streams from forming. During solar minimum, the Sun is quieter, so long-lived 

streams have more of a chance to develop.

A long lived high speed stream will inevitably catch up with the slower wind in front, 

creating an interacting region, where plasma compression may lead to the formation of 

shock waves both upstream and downstream of the interface. (A shock wave is character­

ized by a very steep density gradient over a short distance, called the shock front.) These 

interplanetary shocks form the boundary of a corotating interaction region (CIR).
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Figure 1.8: Some solar wind velocities measured by Vela and IMP spacecraft between 1967 and 1974, in 
63 day intervals. Two well-defined, high speed streams are very obvious in 1974, probably related to two 
coronal holes seen by the Skylab mission.
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1.4.2 Transient events affecting the solar wind

If the Sun was a constant, never-changing star, then the solar wind would also be ho­

mogenous and invariable. But, as we have already seen with coronal holes, this isn’t the 

case. Because of the 11 year sunspot cycle, the Sun goes through its active phase at cycle 

maximum, when many transient events occur, and then it experiences the lull of solar 

minimum, when activity is very low. The solar wind can have a very different charac­

ter, depending on the stage of the solar cycle. Some of the different types of transient 

event that happen at the Sun include solar flares, prominences and coronal mass ejections 

(CMEs).

Coronal mass ejections

A CME occurs when the corona releases a huge amount of mass, up to 1012 kg, and 

this travels out into interplanetary space at speeds that can be anything between 20 and 

2000kms_1 [30]. They are usually associated with erupting prominences on the Sun 

(where a filament at the limb is seen to erupt upward, with a large release of energy), see 

Figure 1.9. They can have a huge influence on the solar wind, creating shocks as they 

may be travelling faster than the material in front. On average over the solar cycle, one 

CME will happen every day, but there is a tendency for more CMEs at solar maximum, 

and fewer at minimum [38].

CMEs were first observed in 1973 [92] by the Orbiting Solar Observatory - 7 (OSO- 

7), and they have been closely observed by many instruments since, for example, see 

Figure 1 .9. Initially, the Navy Research Laboratory’s Solwind [81] and the High Altitude 

Observatory’s coronagraph/polarimeter (C/P) on SMM (Solar Maximum Mission) [54] 

made many observations in the 1980s, as reported by Howard et al. [40]. Currently, the 

LASCO coronograph on SoHO (SOlar Heliospheric Observatory) [23] is recording CMEs 

in fine detail as the next solar activity maximum approaches in 2000 / 2001 .

Because they are so faint compared to the disk of the Sun, CMEs emerging from the Sun 

can only be viewed by using coronagraphs, which block out the disk of the Sun. Therefore, 

it is usually only the CMEs ejected from near the limb of the Sun that are observed, so, 

even though a CME is emitted about once per day, that doesn’t mean that it is possible 

to observe one every day. Occasionally, a CME that is emitted off-limb is large enough, 

and dense enough to be still visible once it has travelled beyond the obscuring disk of the
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Figure 1.9: A com posite image of a CME recorded on 5 October 1989. The disk of the Sun is a H -a 
picture, the inner corona is imaged in white light by the M auna Loa M K-III coronagraph, and the outer 
corona is a white light image taken by the Solar Maximum Mission (SMM). The CME is emerging from 
the corona a t the top right of this image. Behind it, a huge eruptive prominence extends far out into the 
corona. This prominence was captured by the M auna Loa H -a prominence monitor.
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coronagraph (as viewed from Earth). If this kind of CME is observed to be encircling the 

Sun, then it is called a halo CME, and it is most likely heading in the direction of the 

Earth, and there causing geomagnetic effects. Schwenn et al. [78] discuss one such CME 

observed by Solwind in November 1979.

Unfortunately, there was no orbiting coronograph during the course of our IPS survey, 

so no direct comparisons can be made between IPS observations of proposed CMEs and 

transients seen in an orbiting coronagraph. The Mauna Loa coronagraph was indeed 

operating at this time, but it does not give continuous coverage due to rotation of the 

Earth, and adverse weather conditions.

CMEs happen very quickly, so it is not always possible to detect them on IPS g-maps. 

For a CME emitted at the limb, by the time it is beyond 30° elongation, the CME itself is 

often too tenuous to cause an appreciable increase in scintillation. But it might be possible 

to view the high density, fast moving shock front that builds up in front of it. Chapter 5 

discusses specific examples in more detail.

A thorough review of the physics of CMEs was given in 1987 by Kahler [42] and 

references therein. More recently, Vilmer [93] has examined the current understanding of 

CMEs and other solar activity that can affect the solar-terrestrial environment. When a 

CME is detected in interplanetary space, away from the Sun, Vilmer has described them 

as ICMEs (Interplanetary CMEs) to distinguish them from what we see in a coronograph.

Solar flares

A solar flare has been classified, by Svestka, as “a rapid, temporary heating of a restricted 

part of the solar corona and chromosphere” [86]. From the highly-stressed magnetic fields 

of the solar atmosphere, a flare releases up to 1025 J of energy, over a wide range of electro­

magnetic radiation, in some tens of minutes. Energetic particles are also produced by the 

acceleration of protons and electrons. Normally, the amount of flare activity follows the 

sunspot cycle. The search continues for a theory covering all aspects of flaring behaviour, 

though important strides have been made [87]. In the context of this report, we wish to 

know whether or not they affect appreciably the solar wind.

It is possibly through the acceleration of energetic particles that flares can mostly af­

fect the IPM, and sometimes the terrestrial environment. In 1973, OSO-7 first detected
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nuclear 7 -radiation coming from flares, and since then, the Compton Gamma Ray Ob- 

setvatory (CGRO) has been finding events with 50-100 MeV 7 -ray production lasting for 

several hours [44]. These particles are carried along by the solar wind, following the spiral 

magnetic field lines, and sometimes arriving at Earth.

Solar activity: Connection between CMEs and flares?

All forms of solar activity have one thing in common, they are all related to magnetic 

fields. A CME is thought to be the result of a large-scale departure from equilibrium, 

when the magnetic and gravitational forces no longer counter the coronal gas expansion, 

and thus the CME lifts off with constant speed, either slow or fast. Solar flares are caused 

by magnetic reconnection.

It is therefore reasonable to ask if there is a connection between the two events. Does 

one precede, and cause the other? Harrison and Sime [30] presented a number of cases 

where preconceived ideas had damaged the interpretation of coronal mass onsets. Taking 

these into account, Harrison [29] later investigated both phenomena and attempted to draw 

conclusions from a few large data sets. He pointed out the obvious bias in observational 

techniques for the two different phenomena: CMEs are usually detected at the solar limb, 

whereas flare investigations stay away from the limb to avoid the effects of foreshortening. 

There are so many free parameters (velocity, expansion, acceleration, etc.) that a CME 

could be back-projected to almost any active region desired, or if there is no convenient 

flare site, then perhaps it happened to be beyond the limb.

Harrison concluded that CMEs generally precede the flare onset, but a flare does not 

always follow a CME. Figure 1 .1 0  shows his theory relating the lift-off of a CME to 

X-ray flaring activity, with this associated flaring commonly lying to one side of the CME 

span.

In 1992, Kahler [43] made it clear that a flare (H-a or X-ray) is not a necessary condition 

for a CME to occur. The two different types of event often occur around the same time, 

but not necessarily. This lack of definite association is important when interpreting IPS 

studies of transient events in chapter 5.
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Figure 1.10: The graph on top shows the X-ray intensity from a precursor, and then from a flare, while 
also displaying the lift-off of a CME. Note that the CME is launched well before the flare (some tens of 
minutes). Underneath, we see how the flare appears at the foot of the arch.

Shocks and energetic particles

As we have seen, a fast moving CME can create a transient interplanetary shock by 

stacking up the slower moving material in front of it. Between 1979 and 1982, Sheeley et 

al. [80] investigated the CMEs observed by the Solwind spacecraft and the in-situ plasma 

measurements made by the Helios-1 spacecraft. They found 80 interplanetary shocks in 

the Helios data, out of which 50% could be definitely associated with a big, bright CME 

seen by Solwind. 24% were possible associations, and with 25% of the shocks, there wasn’t 

enough data coverage to ascertain whether or not a respectable and suitably-timed CME 

might have occurred. This is strong evidence that most CMEs can produce a shock front 

that is measurable at 1 AU.

For many years it was believed that all solar energetic particles (SEPs) were acceler­

ated by solar flares, part of Gosling’s “solar flare myth” [26]. But since the discovery of 

CMEs, it is believed that most major proton energetic events result from particle acceler­

ation occurring in the outer corona and in interplanetary space at shocks driven by fast 

CMEs [70]. These types of events show a gradual rise, perhaps over a day, and typically 

persist at high intensity levels for several days or more.
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In contrast, there is a different kind of energetic particle event that shows a sharp, 

impulsive rise in its time profile, as measured by orbiting spacecraft at the Earth. These 

events are usually associated with solar flaring on the west side of the Sun, from where 

magnetic connection with the Earth is best. These impulsive events are usually of far less 

intensity and duration (only a few horns) than the gradual events. It can be said, therefore, 

that major particle events are most often of the gradual type which are associated with 

CMEs and shocks. Gosling [26] concludes that “all of the available observational evidence 

indicates that gradual events are the product of the shock acceleration of coronal and solar 

wind particles in interplanetary space”.

An alternative theory of shock formation has been put forward by Bravo and Perez- 

Enriquez [12]. They re-examined the 49 CMEs that were confidently linked to interplane­

tary shocks by Sheeley et al. In doing so, they found that in most of those cases, a coronal 

hole was present within 30° of longitude of the limb where the CME was observed, and 

many were a lot closer than this.

From this evidence, they suggest that a shock is formed when a coronal hole undergoes 

rapid changes linked with solar activity, perhaps the ejection of a CME. Intermittent 

changes in the coronal hole’s structure may lead to rapid changes in the characteristics 

of the solar wind emerging from the hole, including a sudden, large increase in velocity, 

as explained by Bravo [11]. This huge jump in speed could lead to the formation of an 

interplanetary shock, and the acceleration of particles to relativistic energies.

This theory is employed in chapter 5 when examining IPS maps during times of inter­

planetary disturbances.

1.5 Solar-terrestrial interactions

In the previous section I have attempted to describe some of the more important factors 

which influence the solar wind. Now, we shall investigate how these phenomena can affect 

the near Earth environment. This topic has become known as “space weather”.

The Earth is protected from the worst affects of the solar wind by its dipolar magnetic 

field. This is distorted in shape because the solar wind pushes it on the sunward side 

(creating the magnetopause), and stretches it out on the other side (forming the mag- 

netotail), to make the tear-drop-shaped magnetosphere, see Figure 1 .1 1  [73]. As the
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solar wind flows at supersonic speeds, a shock wave, the bow shock, forms in front of the 

magnetosphere.
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Figure 1.11: The structure of the magnetosphere, in a noon-midnight meridian cross-section.

W ith this arrangement, 99.9% of the incident ionized particles are deflected from enter­

ing the E arth ’s atmosphere. Most of those that enter do so at the poles, causing auroral 

displays and geomagnetic activity.

The aurorae (aurora borealis at the north pole, and the aurora australis at the south 

pole) are luminous phenomena in the upper atmosphere of the Earth, between 100 km and 

1000 km, caused by solar charged particles that excite the atoms of the air. The colour 

of the curtain-like streamers can be green, red and blue, corresponding to emission lines 

from oxygen and nitrogen.

Some solar wind particles are trapped in radiation belts around the Earth, the Van 

Allen belts. These are doughnut shaped rings around the Earth, one about 4000 km above 

the E arth ’s surface, the other at 16000 km. Further up again, at 60000 km, a ring-current 

of electrons circles the Earth. All of these particles cause problems for orbiting satellites 

and spacecraft, but the conditions in the belts are well known and don’t normally fluctuate
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very much. Therefore, measures can be taken to withstand the dangers posed here. It is 

the intermittent nature of intense geomagnetic storms which poses the greatest threat.

We have seen that events at the Sun can cause temporary enhancements in the solar 

wind density, velocity and its population of energetic particles. When the changes in 

the solar wind are dramatic enough, this can lead to a geomagnetic storm, defined as a 

large decrease in the horizontal component of the Earth’s magnetic field. The Ap index 

increases dramatically during a geomagnetic storm. Averaged over a planetary scale, Ap 

measures the fluctuations of the magnetic field about its normal diurnal drifts. Figure 

1.12 shows a huge increase in Ap on 23 March 1991, due to a severe geomagnetic storm 

caused by a strong interplanetary shock.
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Figure 1.12: Provided by NGDC, these data for March 1991 include the daily sunspot number, the 
10.7 cm flux, the Kp sum index and the Ap index. Note the huge jump in Ap on 23 March.

During a geomagnetic storm, high fluxes of energetic particles can severely damage 

satellites, by upsetting the electronics in an SEU (single event upset), as explained by 

Baker [3]. In a microelectronics circuit, an SEU is caused by an individual charged particle, 

usually a heavy ion, when it deposits enough charge at a sensitive portion of the circuit to 

change the state of that circuit, see Figure 1.13. The smaller a circuit, the more likely 

an SEU will occur. The trend for making integrated circuits smaller and faster is also
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opening up the possibility for more SEU failures.

Single Event Upset Mechanism 
Direct Ionization

ion track

I *Ja .' ■

Charge collected in this 
region during particle 
transist can trigger a 
change of state pMhe 
memory

nduced ionization along the 
particle track

Figure 1.13: The mechanism of a single event upset in a microelectronics device. Often, the depletion 
region is the most sensitive to SEUs. In a flip-flop circuit, an SEU can cause a change of state , possibly 
leading to spurious commands in the satellite.

These anomalies can lead to spurious commands on satellite onboard computers, and 

possibly the disruption of communications with Earth. The worst case scenario would 

end with the complete loss of the satellite. Miniaturization of electronics and the smaller 

overall size of satellites means that modern satellites are increasingly vulnerable, especially 

as more and more satellites are sent into orbit.

In January 1994, the ANIK E-l and E-l communications satellites had major problems 

with attitude control, causing a huge, and very costly interruption in its communications 

services, see F igure 1.14. This failure has been attributed to greatly elevated populations 

of high energy electrons, as measured by the SAMPEX and GOES spacecraft. The solar 

wind speed measured by IMP-8 rose to 750kins-1 during this time.

In January 1997, AT&T lost contact with its Telstar 401 satellite, again leading to 

expensive losses. During the March 1991 storm (F igure 1.12), the magnetopause was 

compressed by the shock wave from its nominal 10 Earth radii position to inside the 6.6 

Earth radii geosynchronous orbit [49]. This led to huge increases in particle flux, and many 

spacecraft experienced difficulties. Thirty seven SEUs were reported for six geostationary 

satellites.
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Figure 1.14: Some newspaper headlines after the failure of the ANIK E-l and E-l communications 
satellites, due to the elevated intensity of high energy electrons in the Earth’s outer magnotosphere.

Geomagnetic storms can severely disrupt radio communications on Earth, due to dis­

turbances in the ionosphere. Also, electrical power grids can be affected by GICs, geo- 

magnetically induced currents [1]. In 1989, a severe geomagnetic storm left six million 

people without electrical power in Quebec, Canada [7]. The economic consequences of 

such a blackout are highly significant, and have prompted electric utilities to invest in 

research for developing means for protecting electric power systems against the effects of 

these storms.

Another danger from geomagnetic storms is for humans either working in space, or trav­

elling in polar-crossing aircraft. Having adequate warning of dangerously high radiation 

levels is absolutely essential for their safety.

Often, days of high geomagnetic activity (Ap>30) will recur after ~  27 days, i.e., there 

is a 27 day periodicity in the occurrence of enhanced geomagnetic activity. As 27 days 

is approximately the rotation period of the Sun at low latitudes, this has been linked 

to coronal holes. The fast flowing plasma from these holes travels out into the IPM 

along a streamline, possibly forming a shock at the leading edge. This streamline rotates 

around to meet the Earth every 27 days. Here, the shock front can cause the increased 

geomagnetic activity. The link between coronal holes and geomagnetic storms has been
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firmly established by Hewish [31].

The August 1972 events were investigated by Houminer and Hewish [39]. This period of 

intense geomagnetic activity and energetic proton events had been associated with solar 

flares. Using Cambridge IPS data, in-situ plasma recordings and Nagoya multi-station 

IPS velocity measurements, Houminer and Hewish put forward a convincing argument 

that the root cause of all the activity at the Earth was actually a coronal hole undergoing 

an eruption and producing a shock wave driven by high velocity coronal plasma.

Hapgood has investigated the 27 day recurrence of geomagnetic activity [28], and has 

concluded that the recurrence is very apparent during the declining phase of the solar 

cycle, and it is strongest for the even numbered cycles, i.e., there is a double solar cycle 

in the 27 day pattern of activity.

A southward-pointing field in the solar wind is known to favour magnetic reconnection 

processes on the Earth’s frontside magnetosphere which leads to increased geomagnetic 

activity [77]. Therefore, it is usually only when there is a southward IMF (interplanetary 

magnetic field) that the strongest geomagnetic storms can occur.

For ground-based systems, orbiting spacecraft and for people in high-risk locations (in 

a spacecraft, on an EVA (extra-vehicular activity), or in a polar crossing flight), it is of 

extreme importance to be able to predict the arrival of shocks, large populations of en­

ergetic particles and the onset of geomagnetic storms. There is increasing technological 

ability to gather information for the science of space weather forecasting, with more satel­

lites observing the Sun and taking measurements in the IPM and geospace. IPS too can 

play its part in this field, by providing all-sky maps of density and velocity in the inner 

heliosphere.

If geomagnetic storms are successfully predicted, then satellites in danger can take pre­

cautionary measures by carrying out evasive manoeuvres or by going into “sleep” mode. 

Another, more robust approach, is to better understand the kinds of disturbances that oc­

cur in near-Earth space, and then to build satellites that are shielded enough to withstand 

these effects.
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1.6 Conclusions

This chapter has reviewed the topics needed to fully understand the aims and achievements 

of this project. The history of IPS has been explored, along with a short survey of some 

IPS facilities around the world. An insight into the theory of IPS revealed how it can be 

used to probe the solar wind. This data can be seen in context when the solar wind itself 

and its causes and effects are appreciated.



Chapter 2

The data set

“ When I  was young, I  used to scintillate,

Now I  only sin till ten past three. ”

Ogden Nash

2.1 Introduction

The project is centred around a large data set, so it is essential to understand how and 

where the data were collected, and how they were subsequently processed. This chapter 

describes in detail the Cambridge IPS array, the structure of the data produced by it, and 

how these data were reduced to the analysis stage.

2.2 The 3.6 hectare Cambridge IPS array

All the data for this survey were taken by the Cambridge IPS array between April 1990 

and November 1994. On a research visit to Cambridge in May 1997, Dr Woan and I 

examined the telescope in detail. Though presently out of commission, it was still possible 

to make many important measurements, characterizing the shape and orientation of the 

array. This is very important for knowing in what direction the telescope was “looking”.

There are many published descriptions of the IPS array, from its original format, 

through the many modifications [36], [65].

The array operates as a radio interferometer. The basic unit is a full-wave dipole

30
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antenna, of length 3.68 m, therefore it is in resonance at 81.5 MHz,

c 3 x 108 msv =  -  = ----——-------- =  81.5 MHz .
A 3.68 m

(2 .1)

The antenna turns the incident radiation into a corresponding electric signal. It is an 

effective absorber of radiation polarized parallel to the dipole, over an area defined roughly 

by the length of the dipole and a width of A/2 centred on it. Each dipole has an impedance 

of 2500 fi. Groups of eight dipoles are arranged along a resonant open-wire feeder, giving 

a resultant impedance of
2500 Q

-  3 0 0 0 . (2.2)

The array can be “steered” in declination to respond to radiation from a particular 

direction by introducing the appropriate phase delays between dipole rows before their 

outputs are combined.

To the Hut

(8 dipoles) x 16 = 128

Underground Cables Catenary 
(Hanging Cables)

White Box

8 Dipoles, each 1 wavelength

N
A

North
Half -16 Rows

South
Half -16 Rows

Figure 2.1: Layout of the Cambridge IPS Array, at Lord’s Bridge, Cambridge.

Altogether, the array consists of 4096 full-wave dipoles. As can be seen in Figure 2.1, 

these dipoles are arranged in 32 rows of 128 dipoles per row. The array is split up into
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a northern half of 16 rows, and a southern half (16 rows), to make a north-south phase- 

switching interferometer. To collect together the signals from each dipole in the correct 

manner involves precise wiring to ensure that the phase is properly recorded.

With a spacing of 0.65A between the rows, there is a total geometric collecting area of 

36,055 m2. This is about half the area of the Arecibo radio telescope in Puerto Rico, the 

largest radio telescope in the world in terms of collecting area.

There are 128 dipoles along each row, separated from electrical contact by insulators. 

The dipoles are attached to wooden posts, and in each row, there is one wooden post for 

every eight dipoles. The dipoles are also supported from above by a cable which runs 

the whole length of the row. Prom each dipole runs an open-wire feeder, linking together 

sixteen dipoles into a pre-amplifier. There are therefore eight amplifiers along each row.

Cables carry the amplified signal from each amplifier to a catenary, see Figure 2.1. 

There is one catenary for each quarter of the array. Prom the middle of each catenary, a 

bundle of cables runs underground to one of the two white boxes on the N/S centre line 

of the array. The white boxes therefore collect all of the signals coming from the 16 rows 

in their half of the array.

Prom there, the 2 x 16 cables are sent to the wooden hut at the side of the array, where 

they are fed into Butler matrices [15]. The Butler matrices perform an action which is 

basically the analogue equivalent of a fast Fourier transform. For each half of the array, 

16 rows are phase shifted in 16 different ways to get 16 beams on the sky. This is done 

by using selected cable lengths, which are all multiples of A/16, and are chosen so as to 

insert a constant phase difference of 27rn/16 between adjacent rows.

Now we have 16 beams on the sky, at different pre-set declinations, covering the sky 

from approximately —10° to 80°. The array observes at meridian transit, hence taking 

one sidereal day to survey the whole sky. The declination of peak response for each beam 

is given by

S0(N) = 52.16° -I- arcsin > (2-3)

where the beam number, N, goes from 1 to 16. 52.16° is the latitude of the Cambridge 

array [83].

Inserting a phase gradient in the north-south direction across the array has the effect of 

shifting the whole pattern by half a beamwidth. This means that intermediate declination 

beams can be observed. For the purposes of this survey, it was not done, but it was



CHAPTER 2. THE DATA SET 33

employed at other stages, e.g. in the 1978-81 survey which produced the list of sources 

that is used in the current project [65].
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Figure 2.2: The power response of the Cambridge IPS array as a function of declination. In the second 
graph, we can see that the main response of beam 1 is at —8°, but that it also has a secondary response 
102° away at +94°.

Figure 2 .2 shows the response pattern for each beam, including the secondary re­

sponses of some of the beams [82]. Also, the intermediate beams are included.

There is a horizontal reflecting screen A/4 under the dipole array. It has been shown [88] 

that the declination power response, D , of the antenna follows that expected for an array 

of dipoles at A/4 above a flat, horizontal reflecting screen, i.e.

J l t - n  n s  2

D = ( aD 0 sin2 [(jr/2) cos <f>] s™ W )  j  ;
sin ) (2.4)
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where
i> = ^ l + { N ^ 10K

A lb

<f) = 52.16 - 5 ,  (2.6)

d is the spacing between the rows and Do is the peak response. It is this function that is 

plotted out in Figure 2.2.

The time taken by each source to transit is dependent on its declination, 8. The half 

power transit time, Ttr, in seconds is

Tir = — S , (2.7)cosd

so sources at higher declinations will take longer to transit.

At the next stage, each signal is mixed with a local oscillator signal of frequency 

92.2 MHz. This shifts the frequency of the beam signals down to an intermediate fre­

quency of 10.7 MHz. The 2 x 16 I.F. signals are then sent by underground cable to the 

laboratory.

At the laboratory, the beams from the north half of the array are interfered with those 

from the south, using phase-switching receivers, giving sine and cosine output signals in 

phase quadrature. These outputs are combined in a “total-power scintillometer” [24],

which includes a high-pass filter that only allows through the scintillating signal (and

receiver noise). These signals are squared, added and then integrated in software with a 

time constant of 10 s. The output is now proportional to the mean square scintillating flux 

density, multiplied by the square of the antenna power response. This output is recorded 

by computer on 5 ^  disks.

2.3 The original data format

The survey was carried out over 1687 days, from 4 April 1990, to 16 November 1994. A 

day’s worth of data (24 hours) fitted conveniently onto one disk, so there is one disk per 

day, each containing 8 files of 3 hours duration. The name of each file is of the format: 

a_j 49576.499 

where:

49567 is the Mean Julian Day Number (MJDN)
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.499 is the fraction of the day, i.e. 0.499 refers to just before 12pm.

Before any detailed analysis could be done, the data set had to be prepared from its 

primitive state into a readily-usable format. The first task was to transfer all of the data 

from the 5^" disks onto the hard drive of a Sparc workstation.

This was done using a personal computer, by FTP (File Transfer Protocol). It involved 

inserting every individual disk into the PC and then transferring the information across 

to the Unix cluster. Each disk took about 5 minutes to process, taking care that all had 

gone smoothly, and noting any missing or corrupted data. The task of going through all 

the disks took about a month to complete.

Some processing software already existed, written in Pascal for the PC, but it was 

decided to use the C programming language here, due to its greater power and portability, 

and my own previous experience. Nevertheless, some of the old Pascal programs were used 

extensively to devise the structure of the new C programs.

All the a_j files begin with a 256 byte header containing important information which 

describes the data in the file. This header is split up as follows:

• Selsis header - 128 bytes, containing technical detail, as defined in the Selsis hand­

book [51], but not relevant to how the data are organized (SEL is the Space Envi­

ronment Laboratory in Boulder, now the Space environment center (SEC), where 

some of the old IPS software was written).

• IPS Header - 128 bytes altogether, described in Table 2.1.

Interpreting the header was essential to understanding the structure of the data set as 

a whole. It provides parameters about the data contained later in the file, such as the 

starting and finishing times, and the structural layout of the data. A program was written 

which could extract the header information from the file. If the information was organized 

as it should be (according to Table 2.1), then it was a good indication that the file was 

not corrupted.

As soon became apparent, the method of storing numbers is different for the two ma­

chines. The PC uses a low-byte high-byte combination to store 4 byte numbers, while the 

workstation uses high-byte low-byte. This conflict was solved by reading in the numbers 

byte-by-byte, then recombining them in the correct format.
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Type Name Comment

Longlnt MJDN Mean Julian Day Number

Longlnt RT .Start Initial time index, in jiffies 
[Note: 18.2 jiffies =  1 second ]

Longlnt RT -Finish Final time index

Word TicksPerSample Sample every lOsecs, so 
TicksPerSample =  10 x 18.2 =  182

Word Scan_Length 18 channels, 4 bytes per 
channel, plus time tag of 4 bytes 
Scan_Length =  (18 x 4) -1- 4 =  76

Word Num_Scans Number of scans in a 3 hour file 
=  6 x 60 x 3 =  1080

Word Num.Channels Number of channels =  18

Integer Array Channel_List Code describing the channels

Boolean DIO-Present False

Byte Pack Pack to end with Zeros

Word Array Packlnt Pack to end with Zeros

Table 2.1: The IPS Header
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2.4 The new format

Once it was certain that the original files were not corrupted, and that the format of the 

headers, number storage etc. was fully understood, the next task was to rewrite the whole 

data set in a new format, appropriate for a Unix environment, and more easily accessible 

for further processing.

The new files were produced by the program days_head.c. This takes a list containing 

the names of all the a_j files as input, and concatenates up to 8 (or possibly more) files 

per day, to make a binary output file for each day, called d4****.raw. The 4**** part 

represents the five digit Mean Julian Day Number (MJDN) of the observations.

This output file contains a header (64 bytes), which is composed of:

• MJDN (long, 4 bytes)

• Number of Scans for the day (long, 4 bytes)

• Channel code, which indicates the type of channel list in which the data were 

recorded (long, 4 bytes)

• The rest of the header is filled with zeros.

The channel list explains the way in which the information was fed out through the 

different channels to the recording computer, and records times in the data set when gain 

changes can be expected, due to the reconfiguration of the data requisition hardware.

The data are stored in scans of 76 bytes in size. Each scan contains the time-tag 

(fraction of the day, in hours, represented as a 4-byte number) and the outputs of the 

18 beams (each a 4-byte number). Only 16 actual beams are recorded by the telescope. 

The last two “beams” recorded are actually containing diagnostic information that is not 

strictly relevant to the current analysis.

(1 +  18) x 4 =  76bytes. (2.8)

A “scan” is generated every 10 seconds, so a typical day will have 6 x 60 x 24 =  8640 

scans, thus making the total size of the average d.raw file 64 +  (76 x 8640) =  656704 bytes. 

In practice, most days have a few extra or fewer scans due to variations in timing, and 

sometimes the data can be corrupted.
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When the program had completed all the d.raw files, some of these new files were 

checked with a hexadecimal editor. They were exactly as expected, so only the new d.raw 

files were used in subsequent analysis.

2.5 Identification of sources

To relate the telescope output to particular sources in the sky, and later to make precise 

maps, it is essential to know where exactly the telescope is pointing at any time. The 

precision in declination is limited to the size of each beam in the sky, but if a source 

appears in two adjacent beams, it is possible to calculate better its declination from the 

relative strength of the signal in each beam. This method was employed in an algorithm 

used by Purvis et al. in their IPS survey [65]. The size of each beam has previously been 

discussed S ection  2.2.

The accuracy in Right Ascension (RA) is dependent on the array geometry, and comes 

from Equation 2.7. At the equator, the transit time for beam 2 is 107s. Therefore, the 

width of the beam in RA is

360°
107 s x —— —— —  = 0.45° =  27'. (2.9)

24 x 60 x 60 s

The issue here is to know exactly where the telescope is looking, i.e. is the line of

beams on the sky that the telescope sees exactly co-incident with the local meridian?

Unfortunately the telescope is slightly skewed, so corrections had to be made for this, as

for other matters dealt with in the next section.

2.5.1 C orrecting for precession and skewing o f the array

The original list of sources used for previous surveys [65] was given with epoch 1950 co­

ordinates, so it needed to be precessed to the epoch of the present data for comparison. 

Also, because our survey took place over 5 years, the sources had to be precessed over the 

course of this period. A precession-nutation function, called sla_prenut, was taken from 

the STARLINK software library, SLALIB, to do all this.

Another factor to be taken into account is that the array is not quite on the Green­

wich Meridian. Therefore, everything will not transit at their sidereal time in RA, but 

earlier than this. As the telescope’s site at Cambridge (Lord’s Bridge) is 0°2'26" East of 

Greenwich, the sources transit 2 +  (26/60)) x 4 =  9.73 seconds early.
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Also, as mentioned earlier, the array is not perfectly aligned east-west, or in the other 2 

dimensions. The tiny deviations were carefully measured using a theodolite, a measuring 

tape, a compass and the reference point of the adjacent One Mile Telescope track as a 

perfect east-west line. Figure 2.3 shows how the array should be, in perfect alignment 

with the cardinal points and the horizon. The reality is shown in Figure 2.4, with the 

telescope skewed about the three principle axes.

Zenith

West

South
North

East

Nadir
Figure 2.3: Geometry showing the array as it would be if it were perfectly aligned to the cardinal points 
and to the horizon.

These slight angular deviations were used to set up rotation matrices. The co-ordinates 

of all the sources were rotated using these matrices in a program src_out.c to make a new, 

corrected source list. This list predicts the exact time that a source will transit, so it is 

used when labelling any source. This program needed to be carefully tested and the final 

tests showed that the sources seen in the telescope output were consistent with existing 

low-frequency sky surveys.
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Figure 2.4: Geometry showing the axray as it is, skewed from perfect alignment.

2.5.2 P lo ttin g  the data for a set tim e period

The most user-friendly way to present the raw binary data was in plots of beam output 

against sidereal time. Initially, these plots were done using “gnuplot”, but soon I switched 

to “pgplot”, as it is far more powerful, especially in terms of axis labeling. Also, it could 

be called from a C program, which is where most of the processing was done

The original version of pgplot uses routines written in Fortran, but recently a special 

version was made which is callable from C. The C-binding information, and the software 

itself was downloaded from the website at Caltech, noting the differences between the 

manner in which Fortran and C handle parameters and arrays for functions, and how the 

function itself is called.

Because the sidereal day is ~  4 minutes shorter than the civil day, the daily d.raw files 

start at different sidereal times as the year progresses. This increases the complexity of 

the programming. For the final resulting program, p lo ta ll.p g .c , the input parameters 

are the MJDN, the Beam Number, the Centre RA (in sidereal time), and the width in 

RA that we want to plot. The output is then a PostScript (PS) file of the graph of beam 

output for the time required. An example is in Figure 2.5. The sources are labelled



CHAPTER 2. THE DATA SET  41

with their name, and their A S  (mean scintillating flux density, in janskys, at 90° solar 

elongation).

49259 to 49260 — Beam No. 7

3O~o
o0)Cd
EoQ>

CD

8

S

GST (hours)

Figure 2.5: A typical plot produced by p lo ta ll.p g .c , running over two hours from one day to the next, 
through ‘midnight’ in RA. The strong source (labelled 0134+32), 3C48 can easily be seen. The two smaller 
adjacent peaks are sharp interference peaks. Most of the other sources in the plot axe below the noise 
level, thus indistinguishable.

plo tall_pg .c  can look into the day before or after the day with the central RA, but no 

more days than this. The maximum width is 3 hrs, but this can be extended by enlarging 

the storage arrays. This program can handle the situation when the time goes from 23h, 

through 0h, and onwards into the next day. It also converts from the fraction of a day 

to sidereal time, which is important for finding the correct source at its transit time, i.e., 

when it crosses the meridian. It labels the output graphs at the bottom with the source 

names, taken from one of the lists of corrected co-ordinates, source_4 * * * * .tx t. There 

is a different source list for every 200 days, to deal with precession over the course of the 

survey.
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2.6 Gray scale plots over many days

2.6.1 Gray-scaling the beam  outputs

A grey scale map of the beam outputs over a number of days is a useful diagnostic for 

locating sources. Pgplot has a grey scaling function that was used in the program grey2 . c 

to produce informative diagnostic plots such as Figure 2.6. Each day is shown as a 

horizontal strip running from 0h to 24h in GST (Greenwich Sidereal Time). In this strip, 

there are 8640 sections for each of the 10 s data outputs. Each section is given a grey 

scale value corresponding to this output, where light grey means the output is at the 

background level, and black is a very strongly scintillating source.

When the Sun is on or near the meridian, it is such a strong radio source that it appears 

in all of the beams. Therefore, the Sun can be seen on the grey scale plot for any beam. 

Throughout the year, the Sun’s sidereal time of transit will change, so that it appears 

almost as a perfect diagonal trace on our grey scale plots. It appears in Figure 2 .6 at 

a GST of 2h at the beginning of the plot, and it then moves westwards in GST and 365 

days later, it is again seen at 2h.

As these plots use sidereal time, any scintillating radio source will appear at the same 

position every day, to form a dark vertical line on the plot. Of course, the intensity of this 

line will change from day to day, depending on the amount of scintillation measured for 

that source, and over the course of the year, according to its elongation from the Sun.

At ~  6h25m in Figure 2.6, a strongly scintillating source, 0624-04, is seen. It is 

noticeably darker when near to the Sun, and it is less intense when far from the Sun. 

This behaviour is well understood [25], and is referred to as the A(e) curve, where A is a 

measure of the scintillation for the source relative to its mean level, and e is the elongation 

of the source from the Sun. This is further discussed in sec tio n  3 .2 .7 .

For beam 1, Equation 2.3 shows that the declination of peak response is at —7.767°. 

The transit time (Equation 2.7) is therefore 107.99 s. So on the grey scale plot, the width 

of the trace for any source in this beam should be under two minutes. This is consistent 

with the width of 0624-04 in Figure 2.6.

Spurious spikes of interference are apparent, many of them followed by an undershoot 

showing up in white. Interference is particularly apparent at the middle of the day, i.e. 

near to the Sun, because this time corresponds to a maximum in human activity, e.g. the
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switching on of electrical equipment and the passage of cars. The horizontal white strips 

correspond to missing data.

There are two very strong sources that are also seen in all the beams. Cassiopeia A 

is seen at approximately 23h30m. It is the brightest radio source in the sky at 81.5 MHz, 

other than the Sun. Cygnus A (of comparable brightness) is at 20h. Both are too strong 

to be useful for day-to-day IPS studies as they usually saturate the receivers. Their 

traces are very wide on the grey scale plots, with sidelobes. At certain times, e.g. from 

approximately 48081 to 48088, they both appear to disappear from the plot. In fact, at 

these times, they’re probably overloading the IPS receivers.

Every 6 hours, the beams are decorrelated for about three minutes, so that the telescope 

isn’t looking in any particular direction. The signal received at this time is a measure of 

the system noise, and is useful for later analysis. There are no scintillating sources to be 

seen at these times, and it appear as a bland, whitish section, with well defined dark sides, 

e.g., just after 18h in Figure 2.6. The dark sides are because of a spike before and just 

after the decorrelation occurs. There are other decorrelation events after 0h, 6h and 12h.

At 14h10m there is a strong, broad source. Because it takes so long to transit, it must 

be a high latitude source. For example, a source in beam 15 takes over 11 minutes to 

transit (Equation 2.7). This source is actually in the secondary response of beam 1, so, 

its true declination is not —7.767°, but 102° away from that, at 86° in declination, at the 

other side of the pole, as seen in Figure 2.2.

There is a strong source at this position, 0221+80 or 4C77.03, which has a mean 

scintillating flux density at 90° solar elongation of 3.62 Jy, according to the survey of 

Purvis et al. Note that the A(e) curve is opposite to what would be expected for a source 

in Beam 1. If the trace for it were slid from 14h10m back to 12 hours before that (where 

it actually is), at 02h10m, then the A(e) curve would indeed show stronger scintillation 

nearer the Sun, and weaker scintillation away from the Sun.

Figure 2.7 plots out beam 14 for the same time period. The Sun appears in exactly 

the same position. The sources take about 6 minutes to transit. This makes it appear 

that there are more sources, and that they are stronger. This is not necessarily the case. 

In fact, at such a high declination, 75°, the area in the sky covered by this beam is much 

smaller than for a lower declination beam.

Grey scale maps such as these have been generated for all the beams, for the whole
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Figure 2.6: Made with the program grey2.c, this plot reveals m any scintillating radio sources over a 
period of one year, for beam 1. The date is represented on the vertical axis, in MJDN (Mean Julian Day 
Number). The date runs from 48000 at the bottom  (19 April 1990) to 48365 at the top (19 April 1991). 
The tim e of day is shown on the horizontal axis, in GST (Greenwich Sidereal Time), going from 0h to 
24 1. In the grey scale plot itself, black represents a strongly scintillating source a t th a t GST, on th a t day, 
and light grey represents the background. The sources are the uneven darkened lines running vertically 
up. The Sun’s trace is the diagonal line, as it moves westwards in GST as the year progresses. There is a 
slight wobble in this diagonal trace, which is explained by taking the Equation of Time into account.
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Figure 2.7: For the same tim e period as F igure  2.6, this plot shows beam  14. The higher latitude 
sources take much longer to transit.
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course of the survey. They have been an extremely helpful diagnostic during many stages 

of the analysis. For example, to check when there were gaps in the data, to determine 

roughly the elongation of a source on a particular day and to see how badly the data were 

affected by interference and/or any changes in the gain of the system. From November 

1993 to June 1994, the second Cambridge pulsar search [82] was carried out with the IPS 

array. This necessitated the loss of many days for IPS studies, as can be seen by the many 

gaps in the grey scale plots for this period.

They have also revealed a slow deterioration of the array’s performance, and of the 

radio environment. A significant degradation is clearly seen towards the end of the survey.

2.7 Concluding remarks

The origin of the data for this survey has been well studied and understood. The data set 

itself has been processed in preparation for the subsequent analysis, and this processing 

has been checked and verified by the extremely useful grey scale plots.



Chapter 3

M apping the IPM

“Do I  dare

Disturb the universe?

In a minute there is time

For decisions and revisions which a minute will reverse. ”

T.S. Eliot - The love song of J. Alfred Prufrock

3.1 Introduction

The production of density enhancement maps (g-maps) and velocity maps is one of the 

most fundamental parts of this project. The IPS technique is intrinsically noisy, so it is 

important to extract as much information from the scintillation data as possible. Unless 

all the major factors that affect the measurements are taken into account, the resulting 

analysis will not be useful.

The disturbance factor, g, for any particular source on a chosen day, describes the 

amount of scintillation being experienced by the radio waves from that source, as they 

travel through the IPM. g would be:

~  1 for a source whose radio waves are experiencing normal, average scintillation 

< 1 for waves undergoing decreased scintillation 

> 1 for waves experiencing enhanced scintillation.

When many sources across the sky are observed during a day, a map can be plotted 

using each individual g at each source’s position. After some interpolation and smoothing,

47
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this map can reveal areas of sky showing similar scintillation. As shown by Tappin [89], g 

is related to the electron number density, n,

where the units of n  are cm-3 . We can thus infer the large-scale density structure of the 

solar wind.

Of course, these maps can only show a 2-D projection of a 3-D structure. It is therefore 

im portant to know where along the line-of-sight to a source that most of the scintillation 

occurs. This problem has been well modelled by Woan [97], whose IPS weighting function 

shows the maximum contribution occurring in a shell around the earth, of radius 0.5 AU, as 

shown in F igure 3.1. It is the material in this shell that causes most of the scintillation. 

This problem is further discussed in S ec tio n  5.2.

relative contributions to IPS variance

Earth

a AU

Figure 3.1: The IPS weighting function, K(r , e) is plotted out for a point a t a distance r  from the Sun 
at solar elongation e. As seen by an IPS instrum ent on Earth , most of the scintillating m aterial along a 
line of sight to  a source is concentrated in the darker areas. This can be taken to be a shell around the 
E arth  of radius 0.5 AU. Any source th a t is w ithin an elongation of 30° from the Sun is excluded, due to 
the strong scattering th a t happens there.

The velocity, v , is calculated from measuring the timescale, r s, over which the scin­

tillation occurs. Knowing the typical scalelength, a, of the fluctuations, we can use the
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timescale to get the velocity of the wind. This scalelength is estimated at ~200 km, so the 

velocity is indirectly proportional to the timescale,

v =  (3.2)
TS

v <x l / r s. (3.3)

3.2 Steps involved

The scintillation enhancement factor, g, is expressed as the square root of the ratio of the 

observed, A , to the expected, A e , rms scintillating flux density,

for each source on any particular day.

A number of stages are needed to extract daily p-maps from the raw data.

3.2.1 Averaging over the whole survey

The expected scintillation, A e , is derived from two elements: the average scintillation of 

the source over the whole survey, and the manner in which the source behaves as its solar 

elongation, e, changes during the course of the year.

Using the program clean2.c , a file was created which stores the average of each time 

slot along each beam over all the 5 years of the survey. This averaged file, called THE. avg, 

was subsequently used to extract the expected scintillating power, as a function of e, for 

each source.

THE. avg was made as follows. The IPS array outputs one data point per beam every 

10s. Therefore, the day is divided up into 8640 bins for each beam, each 10s wide.

6 x 60 x 24 =  8640. (3.5)

When a data point is dropped into the appropriate bin, it is added to the total there. 

c lean 2 . c employs a certain degree of interference rejection before allowing any particular 

data point to be used in calculating the average. Before being accepted into a time slot 

bin, each point of raw data is passed through a simple interference filter which gets rid of 

sporadic spikes of interference which have nothing to do with the scintillating signal.
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This filter depends on the square-gradient of the time series,

f ( x t) -  f ( x t - i ) n2
I f M V  = x% %t— 1

where f (x t)  is the value of the time series at time xt. The data point is rejected if

(3.6)

[ f ' M ?  > ( / ')i\2m ax j (3.7)

where ( /O m a x  1S an empirically set specified threshold. Once all the days have been 

processed, the collecting bin for each time slot is normalized by the number of observations 

it contains. The more data points within a particular time slot, the better the resulting 

averaged profile.

48730. Beam Number 5

■3 °

s
i

03 00 50 40" 30m 

GST (hours)

20 10" 02
noflllt 2 —S e p - 1998  17:06

Figure 3.2: A one hour section of raw data from a typical day for Beam 5.

Figure 3 .2  shows the output for one hour from beam five on a typical day. The 

individual sources are named from the original survey of Purvis et al. [65]. Interference, 

noise and the intrinsic scintillation make it difficult to determine the type of signal being 

received from each of the sources, i.e. whether there is enhanced or decreased scintillation.

Looking at F igure 3.3, we see the same hour for 7 beams taken from the averaged 

file. The interference has been removed, and most of the noise and day-to-day variation of
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Figure 3.3: Taken from THE. avg, this figure shows one hour of Right Ascension, averaged over the whole 
1631 days of the survey, for seven of the telescope’s beams.

scintillation has been smoothed out by averaging over such a large data set. What remains 

is an average scintillation template for each of the sources.

3.2.2 Defining each source’s profile

When the radio waves from a compact source enter one of the telescope’s beams, the 

output of that beam, the scintillating flux (A5), will increase and show a maximum at 

the transit of the source across the meridian. To determine how much scintillation those 

waves are experiencing, a profile of that source is fitted to the raw data.

Previous efforts to find how much scintillation is occurring have taken the simple average 

of the observed A S  for the time that the source is in the beam [89]. This does not take 

into account that scintillation is intrinsically varying, and thus it is not an accurate model. 

A large spike caused by scintillation might cause the interpretation of those data to be far 

higher than it should be.

But with the novel method of template-fitting tha t’s used here, mistakes such as above 

would not be so easy to make. This is because this method looks at all the data for a 

source together, and fits the template in the best manner by taking all the data points
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into account.

The starting and finishing points of the profile need to be defined from the averaged 

file, THE. avg. This will then be the “window” around the source. The program window. c 

automatically selected the starting, finishing, and maximum points for each of the 1749 

sources. The extreme edges were chosen to be where the data dropped below the noise 

level, or where there was a minimum between two sources close together. These profiles 

were also checked by eye, as window. c was not always able to select the best window.

When the declination of a source places it between two adjacent beams, it will appear 

in both beams. The profile of this source is best chosen from the beam where it appears 

strongest. The text file, s r c 2 .tx t  contains a list of sources with their profile boundaries 

extracted from the entire THE. avg file.

Having calculated the average profile for each source, the next task is to determine how 

to fit a source profile to the raw data on any particular day, and then use this method to 

characterise the behaviour of each source as its solar elongation changes.

3.2.3 F ittin g  the profile to  the beam  data

An algorithm was written which can fit a source profile to any corresponding section of 

data. This fitting process yields A , the factor by which the profile is multiplied to fit the 

beam data. For each source, A  is therefore proportional to the mean square scintillating 

power. This fitting procedure is carried out over all the days of the survey, to give an A 

value for every source, for every day. Thus, an A(e) curve can be drawn for each source. 

This curve usually peaks at e ~  30° (Figure 3.12). This feature will be discussed later 

in S ection  3 .2 .7 .

For each source, the A  values from the whole survey are binned into 60 different solar 

elongation bins. Each bin is 3° wide (3° x 60 =  180°). When these bins are normalized, 

we have the average or expected degree of scintillation for that source for any elongation 

from the Sun.

The program maxL. c fits a profile of a source, derived from the average file, to the raw 

data for that source, on a particular day. It then returns three parameters, A , rs and s.

• A  is the multiplicative factor for fitting the profile onto the data. When A = 1, the 

source is undergoing the expected amount of scintillation. Otherwise, it is experi­

encing enhanced, or decreased scintillation, see Figure 3.4.
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MJDN 48666, Beam 5, Scintillation factor: 0.24, 3 rejected.

53

— Raw Data 
Expected beam

-  Fitted beam
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Figure 3.4: The subroutine i t e r a te  has fitted the beam profile to the raw data for this source, which is 
undergoing reduced scintillation. Its A  value has been calculated as a quarter the usual. Three spurious 
data points have been rejected, and marked with a triangle. The best-fit was found to shift the profile to 
the left. No rs could be calculated, as the scintillation is too low.

• rs is the characteristic scintillation timescale. For IPS at a frequency of 81.5 MHz, 

this should be approximately 0.5 s. If there is ionospheric scintillation, then rs will 

be greater, as the pattern for ionospheric scintillation moves slower than that for 

IPS, as explained by Hewish [32].

• s is the shift of the profile, in time, for best fit. The profile sometimes fits better if 

displaced slightly to one side, in increments of 10 s. This is because distortions in 

the Earth’s ionosphere cause the positions of the sources to appear to move about. 

These distortions are called TIDs (Travelling Ionospheric Disturbances) [91]. s can 

be either 1 for the centre position, 0 for a -10 s displacement, or 2 for a +10 s 

displacement.

The data points, for the average profile of a particular source, are taken out of the 

averaged file THE.avg, using the boundaries stored in s r c 2 .tx t .  The section of raw data 

corresponding to that source, D{, is retrieved from the dayfile for a particular day. The 

fitting procedure uses the subroutine i t e r a te  to get the best fit of the profile onto the 

data, and hence determine a value for A. A flowchart showing the structure of the main
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MJDN 48474, Beam 5, Scintillation factor: 2.10, 1 rejected.

Raw Data 
Expected beam 
Fitted beamoo
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no«ll« 2 3 -S * p -1 9 9 9  14:22

Figure 3.5: A different day for the same source as in Figure 3 .4 . Here, it ’s scintillating a lot more 
strongly, more than twice the normal. The rs was calculated as 0.536 s.

fitting algorithm is seen in F ig u re  3 .6

The fitting algorithm works as follows. According to Woan [96], the scintillation datum,

Di, has x2 distribution, with 2n degrees of freedom, i.e.,

p{Di) = 6XP ( S t )  ■ (3'8)
The a2 term has two components, one from the system noise, cr^, and one from the

scintillating signal, o \ .  The system noise is related to the constant offset, yo, by

2 ncr% =  y0 (3.9)

and the scintillating component can be expressed as

2nag = Abi, (3.10)

where hi is the expected value from the profile, for the zth data point.

After substituting these values into eq u atio n (3 .8), and taking the natural log of both 

sides, the result is
n  n n ^

Inp = L = — In A + ^  (n — 1) In Di — ^  n In (Abi +  yo) ~ T l  ^  • (3-n )
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 ̂ If # rejects < (chunk/2)j Îf # rejects > (chunk/2) j.

Block A

(Find A using “ iterate”)
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No Yes

^Repeat Block A for s=0j- 

^Repeat Block A for s=l)

Find I s  using “Ts_rtbis”

Main Fitting Algorithm

Choose best s position using “sanalysis” 
then take A, Ts and Ms parameters from here.

Is |A - old A | < 0.0025 
AND |Ts - oldTs| < 0.01 
AND |Ms - oldMs| < 0.1 ?

Get data chunk from

- raw data file, d i
- averaged file, b i

Îs # iterations of Main Loop < 10 ?j

“find_misfits”, with small margin 
“ iterate”
“Ts_rtbis”

For each source, for each day:

For first position, s=-l

Cut out obvious interference by using 
“ find_misfits” with a large error margin

Main Loop

number of

No A available

Figure 3.6: Flowchart describing the main fitting algorithm.
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L, the log-likelihood, is used as the estimator for A. To get the best-fitting A, L is 

maximized. This maximization is done using Hessian Matrix theory (see chap ter 10 in 

Numerical Recipes [64]). Any function, F (L ), can be expressed as a Taylor series around 

A q:

F (L ) =  F (A 0) + (AX)F'U„ +  i ^ - F " \ Ao + .. (3.12)

Take the derivative with respect to A A

dF
dAA ~  F ' Uo +  (AA)F" l-4» (3'13)

At a maximum, eq u ation (3.13) equals zero. Therefore

i s i , )

To run the subroutine i te r a te ,  an initial A q value of 1 (i.e. average scintillation) is 

fed into the algorithm. It then produces a A A  value, which is added to the original A q. 

This process is continued until the percentage change in A  is less than 0.1%. If there’s no 

convergence after 25 iterations, then the subroutine stops. This non-convergence could be

caused by a small number of outliers which are corrupting the data. Figure 3 .7 shows a

flowchart of how i t e r a t e  works.

3.2.4 R ejecting the least-likely data points

If a good value of A  can’t be found, then the problem might be caused by interference 

spikes. To get rid of such outliers, the residual minimization subroutine, f  ind_misf i t s  

finds the least-likely data point, and rejects it. If the ith datum is a perfect fit, then

Abi + yo = Di (3.15)

and Li would be a maximum, L ^maxy  For corrupt data, the difference between Li and 

its corresponding Z/i(max) would be greatest for the least-likely data point. This point can 

then be rejected, and A  evaluated again.

If f  ind_misf i t s  rejects more than half the data points, then the data are considered 

too badly corrupted to get a meaningful value for A, so no information is then available 

for that source, for that day. See Figure 3 .8 for a flowchart of the subroutine.
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[A  = | A  - (g/h) | ]

Yes

(If [oldA - A| > 0.001 ) ( i f  |o ld A - A |<  0.001 )

[Output a ]

iterate

N o A  available

Set parameters to initial values 
oldA=A; g=0; h=0

Are the number o f  iterations less than the m aximum allowed (25) ?

Figure 3.7: Flowchart describing the operation of the subroutine ite r a te .

3.2.5 D eterm ining the scintillation tim escale

The characteristic timescale of IPS is ~  0.5 s, and our integration time is 10 s. Therefore, 

there are, on average, only 20 scintillations per integration. With a typical transit time of 

only two minutes, this makes it very difficult to get a reliable estimate of rs.

In order to estimate the characteristic timescale of the scintillation observed, the data 

are assumed to consist of two separate parts: the system noise and the scintillating signal. 

Each of these has an associated own coherence time, tn and rs respectively, tn is taken 

as being 0.1s, which is the best estimate derived from the instrument parameters during 

the survey.

To take both of these into account, we use the Gaussian limit of equation 3.11, by 

assuming the integration time, T is much longer than both rn and rs, as explained by 

Woan [96]. A Gaussian probability density function can be written

/ ( x )  =  ^ k e x p ( - 1 ^ ) ’ (3-16)

where /i is the mean and o is the standard deviation of the distribution. Equation 3.11



CHAPTER 3. MAPPING THE IPM 58

find misfits

■(Find worst fitting point}'

misfit = L(worst fitting point)

X  L(all other points)

[misfit > mparam) [ misfit < mparam)

Reject worst 
fitting point

Retain worst 
fitting point

X
Are most data points far smaller than the fit 1

Yes Nc

Reject worst
fitting point

I

Is # rejects < (chunk/2) 
AND misfit > mparam ?

Find a new A  
using “ iterate”

No
JL

Yes

Return to main

Figure 3.8: Flowchart describing the operation of the subroutine f  ind_misf i t s .

therefore becomes

p(Di\A) =
^2wA?(A, rs) ^  V 2A.?( ^ S) 

where A?(A, rs) is the data variance, which is dependent on A  and the two noise coherence 

times.

A?(A,t8) can be found by modelling the noise spectra as Lorentzian, with e-folding 

times of tn and rs respectively. The e-folding time of ts is simply the time over which 

the autocorrelation of the scintillating flux drops by a factor of e. We assume that the 

autocorrelation of the scintillating flux is of the form

f{t) = e ~ ^ .  (3.18)

(D i -  A bi -  2/o): (3.17)
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Taking the Fourier transform, we get the power spectrum

2_

=  T T —2 - (3 '19>3 + “ '
's

with a half width at half power of Figure 3 .9 shows a diagram of this power spectrum.

Power

f(co) =  2/ t

T—

CO1/x

Figure 3.9: The scintillation power spectrum. The half width at half power is

The data variance has been calculated by Woan [96] as

A ? ( A , t s )  =  \  ( v o T s  +  A2bfrs +  4y0Abi TN J S \  . (3 .20)
I \  TN +  Ts)

To determine the most likely value of ts, we take the natural log of equation  3.17, giving

Z  =  - E l n A ^ r , )  -  ±  ( D \ $ ~ y o ) 2  • (3 .21 )
i i i 5 S/

In reality, the second term in eq u a tio n (3 .21) dominates, so the first term can be ignored.

L, therefore, has a “chi-squared” form, and its most probable value is equal to the 

number of data points, n. To find rs, the bisection method (see chap ter 9 in Numerical 

Recipes [64]) is used to solve

L - n  =  0 .  (3 .22)

The bisection method works as follows. It is assumed that a function changes sign within 

a certain interval, therefore, it must pass through zero at least once. The function is 

evaluated at the interval’s midpoint, and its sign examined. The midpoint then replaces
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Yes

^Output this Ts j

Ts rtbis

Is accuracy <0.01 ?

Is root inside these bounds? 
i.e. Tmin < T < Tmax

Newton-Raphson method for finding roots, 
for honing in on the precise Ts.

Evaluate root (not more than 40 tim es):

* Between these bounds, find the centre
* Check where it changes sign
* Then fix the new bounds

Figure 3.10: Flowchart describing the operation of the subroutine Ts_rtbis.

whichever limit has the same sign. This is continued until the the root is contained within 

a sufficiently small interval.

This method is implemented in the subroutine T s_rtb is, illustrated by the flowchart 

in Figure 3.10. This subroutine keeps iterating to find rs until the accuracy to which rs 

is known is less than 0.01 s. If this does not converge after 40 iterations, the attempt is 

abandoned.

Later, when doing statistical studies of the computed parameters, it became apparent 

that this method resulted in the rs values being quantized, with a period of 0.00732 s. 

This period is exactly the size of the smallest bounded interval that the bisection method

worked with. So, to home in on the exact answer, within these bounds, the Newton-

Raphson method was put to use (see chapter 9 in Numerical Recipes [64]) :

   F{ x n) fo ooN
x n+1 — x n JP/(X ) ’ (3.23)
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where xn, the first guess, leads to x n+ \, the next best guess. Only one iteration was needed 

to get the accuracy desired.

Now that it is known how to evaluate rs , the velocity of the solar wind can be calculated. 

If we assume that the typical scalelength, a, of refractive index fluctuations in the IPM is 

constant, then the velocity is simply

cl

V  =  . (3.24)
Trms

An alternative single site IPS velocity determination

Though the technique described in the last section is novel, there have been other attempts 

to determine solar wind velocity using single-site IPS facilities, by relying on spectral 

analysis. Scott et al. [79] made an extensive series of observations near the Sun from 

September to October 1974 with single antennae at Nancay, France at 1420 MHz and at 

Owens Valley, California at 8085 MHz. By model-fitting to the observed spectrum, solar 

wind velocities were obtained, and they compared well with velocity data from spaced 

receiver observations made at Goldstone, California at a frequency of 2295 MHz.

Manoharan and Ananthakrishnan [56] have also employed the method of spectral fitting 

on single-station IPS measurements made by the Ooty telescope in southern India, at 

327 MHz. Their data correlated well with the multi-station velocity data obtained by the 

Nagoya telescope during the same period, from 1986 to 1988.

As previously discussed in sec tio n  1 .3 .1 , the spectrum of scintillation is dependent 

on the Fresnel filter. The Fresnel filter can be written as

sin , (3.25)

where z is the spatial distance from the phase changing screen to the observer, k is the 

wavenumber of the turbulence spectrum of the screen and k is the wavenumber of the 

incident radiation. The diffraction pattern is well formed when the Fresnel filter is close 

to 1, i.e., when
27. K. 7r

(3.26)2k 2

At the Fresnel distance from the screen, the first diffraction pattern forms. It can be 

expressed, using the previous equation, as
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Figure 3.11: The spectra modelled for three different solar wind velocities, by Manoharan and Anan- 
thakrishnan [56]. The spectrum expands for a higher velocity, and contracts for a lower velocity.

2 depends strongly on k . The cutoff value of k, below which all wavenumbers axe blocked,

* = / ? •  <3-28>
This filter has the effect of cutting out very large scale modulations in the refractive 

index, i.e., only the modulations of a small wavelength have an effect on the scintillation 

spectrum observed at the Earth. Wavenumbers (in the thin screen’s turbulence spectrum) 

below a certain value determined by the Fresnel filter (equation 3.28 ) will be blocked 

out. This causes a “Fresnel knee” in the typical temporal spectrum of a compact source. 

This spectrum will have a flat portion at low frequency (low wavenumbers are not blocked), 

followed by an asymptotic fall above the Fresnel knee.

The temporal frequency of the Fresnel knee is dependent on the velocity of the medium,

because the frequency, / ,  and the wavenumber, k of the spectrum are related to the

velocity, V  as

V  = ^ I .  (3.29)

A change in velocity affects the Fresnel knee, and therefore the shape of the spectrum 

changes. The whole spectrum expands or contracts, depending on whether the velocity
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Figure 3.12: For a typical source, the A(e) curve is the solid line, showing a maximum around 30°. For 
0 <  r s <  5, the A value is plotted as a circle whose radius is proportional to the associated r s. There are 
only a few cases where the associated r s is greater than  5 s or is undeterm ined. The plot shows th a t a lot 
of the high A values, especially at large elongations, are associated with long scintillation times, perhaps 
suggesting the slower ionospheric scintillation.

increases or decreases. F igure 3.11 shows three different model spectra for three different 

solar wind velocities [56].

This method is comparable to the single-site velocity determination used in this survey. 

Our method approximates the temporal scintillation spectrum by a Lorentzian, and y  is 

taken as the half width at half maximum of this power spectrum, similar to F igure 3.9.

3.2.6 Displacing the beam

In some cases, the profile fits better if it is displaced to one side by one time slot of 

10 s each. This sliding about of sources could be caused by TIDs (Travelling Ionospheric 

Disturbances). Therefore, the parameters A  and rs are found for the centre position, and 

also for the cases where the profile is slid one slot to either side. The best of these three 

is chosen, and the shift, s, is saved with the other parameters.
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3.2.7 M aking A(e) curves

The amount of scintillation a source’s radio waves exhibit depends on the turbulence of 

the heliosphere. If the electron density here was dropping off smoothly with distance from 

the Sun, then the expected scintillation picture would show A  decreasing smoothly with 

elongation, e, from the Sun. However, at solar elongations less than 30°, the electron 

density is sufficient for strong scattering to dominate. At the observing frequency of 

81.5MHz, the bandwidth of this scintillation is very narrow. Unless the receiver has an 

extremely small bandwidth, the scintillation will be smeared out and unobservable.

The observing bandwidth used by the Cambridge array is far too wide, and all the 

detail is smeared out, as explained by Gapper et al. [25]. Therefore the A  values peak at 

~  30°, and then drop off at elongations less and greater than this.

During the year, different sources cover different elongation ranges. Therefore, when 

the A  values for a particular source are plotted against elongation, e, the typical A{e) 

curve results, showing a peak at ~  30°.

The program AvE4. c fits a profile to each source for every day of the survey. A file is 

created for each source, containing all these A  values, such as Sa0729+44.ave. The A(e) 

curve can be plotted by plotAvE. c for each source from its file, as shown in Figure 3.12.

The expected scintillation of a source, E(A), for a particular elongation bin (chosen to 

be 3° wide) is calculated as the geometric mean of all the A  values falling within this bin 

over the course of the survey.

3.3 Testing the algorithms: M onte Carlo Simulations

To test out the accuracy of the beam-fitting algorithms, a series of Monte Carlo simula­

tions were carried out. The scintillating behaviour of a source is simulated, with known 

parameters of A  and rs. Then the algorithms are used on the resulting test beam data. 

The accuracy with which the algorithms can reproduce the original parameters is a good 

indicator of how useful the algorithms are, and how much faith can be put in their results. 

It also gives a good estimation of errors for the p-maps and rs-maps.

The data are modelled using the expression for data variance from equation  3.20

A -(A,rs) =  i  (y lrn  +  A 2b2rs +  4y0Abi— ^ ~ ]  ■ (3.30)
j- \  7N +  Ts J
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For a particular data point in a source,

D{ =  Ab{ +  2/0 > (3 .3 1 )

we add to it a random number, Q , multiplied by the square root of the variance

Di = Abi + ya + { Q ^ k 2i (A,Ts)). (3.32)

to give simulated data with a known A  and rs.

Histogram Random Numbers, for 500000  points
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Figure 3.13: The histogram created by the random number generator, rani. A Gaussian curve is plotted 
over the histogram, and it fits perfectly.

The random number generator used, ran i, was taken from chap ter 7 in Numerical 

Recipes [64], and it creates a Gaussian distribution, as shown in Figure 3.13. The curve 

plotted is the corresponding Gaussian, H(x),

H (x ) =  N- e~x2/2 
1 j ^  ’

(3 .3 3 )

where N  is the number of random numbers used to generate the histogram.

In a similar manner, large interference spikes can be introduced to test the rejection 

procedure.
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Source 1 4 5 3 —0 7 , 1 00 0  * 100 sim ulations, T s = 0 .6 0 , A = 0 .8 0

5x ,xx*  „.ix

10

SNR

Figure 3.14: The set A is kept at 0.8. Each point is the average of 100 simulations at the same SNR. 
As the SNR is increased, the fractional error in A decreases.

3.3.1 Evaluating the A  param eter

The program monte3. c implements the simulations, and, after some small adjustments, 

the algorithms gave statistically consistent results.

In Figure 3.14, we can see the effect of varying the SNR of the simulated data. 

The fractional error in A tends to level out after SNR ~  5, after which, the error is 

approximately 7%. There is a lower error for higher SNR because the signal is easier to 

distinguish from the noise, and the fitting algorithm therefore works better, producing 

lower errors. This is because, with a stronger signal, there is less margin for error in 

working out A. The underlying template is more apparent if the signal is far above the 

noise.

If all the A  values are used to make the subsequent g-maps, then the error in A  is at 

most, only 15%. If the A  values with an SNR< 2 are discarded, then the resulting map 

would be accurate to at least 10%. In practice, dropping the A  values with an SNR< 2 

means losing a lot of data, causing many gaps in the g-maps. So all the A’s are taken, 

and the error is estimated as 15%.

This fitting can be even more accurate if a higher latitude source is used, as in
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Source 0 3 3 0 + 7 3 , 1 0 0 0  *  100 sim ulations, T s = 0 .6 0 , A = 0 .8 0
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Figure 3.15: For a higher latitude source, the fractional error in A is lower still, and with less spread.

Figure 3.15. This is because a higher latitude source takes longer to transit, so it is 

observed for a longer period, and thus more information is gathered.

Next, simulations were carried out using a wide spread of input A  values, to see how 

the algorithm performed. The resulting A’s are plotted on a histogram, see Figure 3.16. 

This simulation tests the statistical performance of the beam-fitting algorithm over a large 

number of input cases.

In Figure 3.16, the SNR is set to 0.5. A  is increased in steps of 0.025 from 0.1 to 

2.6, and the beam is simulated 200 times for each A. All of these simulations are tested 

with the beam-fitting algorithm, and the resultant A  values are plotted on the histogram 

below. At higher values of set A, the algorithm performs somewhat worse.

When the profile from a higher latitude source is used, as in Figure 3.17, this tailing 

off at high A  values is not as significant. This again, is because the source is in the 

telescope beam for longer, and more data produce more trustworthy analysis.

If the input A  is set to just one value for all of the simulations, then what is the resulting 

spread of computed A’s? In Figure 3.18, the set A  is kept at 0.8, and it can be seen 

that after 20000 simulations, the computed A values are spread around the centre value
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Source 0316+16 , 20000 simulations, SNR=0.50 r  =0.5s

16640 successfully evaluated A values

Figure 3.16: Using the profile of a low latitude source, and an SNR of 0.5,

Source 0431+61, 20000 simulations, SNR*0.50 t  » 0 .5 s

17536 successfully evaluated A values

Figure 3.17: A higher latitude source profile is used, and the resultant A’s axe more similar to the input 
A’s.
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Source 0316+ 16, 20000 simulations, SNR=0.50 t #« 0 .5 s

16735 successfully evaluated A values

Figure 3.18: A low latitude source profile, and an SNR of almost zero, gives quite a wide spread in 
computed A ’s.

Source 0 4 3 1 + 6 1 , 20000 simulations, SNR=0.50 Tt = 0 .5 s

17381 su ccess fu lly  eva lu a ted  A values

Figure 3.19: Using a high latitude source profile decreases the spread in computed A ’s, and increases 
significantly the number of successful evaluations.
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Source 0316+16, 20000 simulations, SNR=5.00 + ,=0 .53

1.5 2

16442 successfully evaluated A values

F ig u r e  3.20: With a high SNR, and a low latitude source profile, the computed A  spread is small.

of 0.8, and the FWHM (full width at half maximum) is ~0.24. We can say that A  has 

been evaluated as 0.8 ±  0.12, therefore, the error in A  is 0.12/0.8 =  15%, exactly as what 

is predicted in Figure 3.14 for a low latitude source with a very low SNR.

Performing the same simulation with a high latitude source, as in Figure 3.19, we see 

that the spread of computed A’s is less, with an FWHM of ~0.17. With more data to 

work with, the fitting algorithm can more easily home in on the set A.

Then, using a low latitude source with a higher SNR, see Figure 3.20, the spread is 

also quite tight around the centre, with an FWHM of ~0.15.

In summary, the beam fitting algorithm performs better with a higher SNR, as ex­

pected. Limiting the SNR cuts out too many data points, so it will not be a deciding 

factor in rejecting A  values. Here, and in the previous simulations, it was shown that the 

maximum error in A  is ~  15%, which is quite acceptable.

Overall, these simulations were very helpful in finding bugs in the algorithms, and 

making them more reliable and efficient.
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Source 1303+08 , 100 *100  simulations, r  = 0 .6s , A =1.4
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Figure 3.21: 10000 simulations, with an increasing SNR. The fractional error levels off to about 50% as 
the SNR is greater than 5.

Source 0431+ 61 , 100 *100 simulations, t 3= 0 .6 s , A=1.4
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Figure 3.22: Now, with a high latitude source, the fractional error in rs has reduced to ~  40% after an 
SNR of 5.
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3.3.2 Evaluating the ts param eter

It is much more difficult to measure the rs parameter. This is because of the small number 

of scintillations over which each source is measured. The characteristic timescale for IPS 

is ~  0.5 s, and each data point has been integrated over 10 s. This means that there are 

only about 20 scintillations in each data point. A low latitude source might only be in the 

beam for 2 minutes, whereas a high latitude source can be observed for up to 10 minutes. 

This means that there will be a significant difference in the quality of the rs value taken 

from a high latitude source, to one taken from a low latitude source.

Looking at Figure 3.21, we see that the error in rs is quite high for a low SNR. It 

is only at a SNR higher than ~  5 that the error levels off at ~  50%. Even with a high 

latitude source (Figure 3.22), the error in determining rs is still ~  40% when the SNR 

is greater than 5.

x*■T3£

0 0.5 1 1.5 2 2.5 3

Set T a

0 0.5 1 1.5 2 2.5 3

16712 successfully evaluated t# values

Figure 3.23: Using a low latitude source, and inputting just one value of rs, the spread in resulting rs 
values is quite wide, and the peak is lower than 0.5 s.

In Figure 3.23, 20000 cases have been simulated , all with a rs of 0.5s, resulting 

in a spread of computed rs values. If a higher latitude source is used as a template, 

as in Figure 3.24, then the rs spread is tighter, as would be expected. Both of these 

simulations use a SNR of 5.

Source 1303+08, 20000 simulations, SNR=5.00 A=0.80

T  -------   '------- '------- 1------- '------- -------- '-------   1------- i— i— i------- --------1-------»— i------- 1------- 1-------T

J  .____   .____ .____ I____ _____ .____ i__________ I____ _____   .____ .____ L
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Source 0431+61, 20000 simulations, SNR=5.00 A=0.80

0 0.5 1 1.5 2 2.5 3

16559 successfully evaluated r ,  values

Figure 3.24: Now, using a higher latitude source, the resulting rs spread is more narrow, and centred 
around the target of 0.5 s..

In making rs-maps, it is therefore essential to discard rs values with an SNR less than 5. 

Unfortunately, this only leaves a handful of strong sources, giving only a limited number 

of data points over the all-sky map.

It is possible to group together two or three adjacent weak sources, and use the signals 

together to get a better estimate for rs. But, to understand the performance statistically, 

it is helpful to concentrate on individual strong sources. If the velocities gained from 

the strong sources are proved to be reliable, then it will validate this novel method of 

determining the velocity of the solar wind. The way to achieve this validation is to 

compare the resulting velocities with in-situ spacecraft, as in chap ter 5.

3.4 Statistical analysis of the com puted data

Accepting that the algorithms won’t produce exact results, due to the noisy nature of the 

data, we need to examine the quality and reliability of the parameters computed. Thus, 

a statistical examination was carried out.
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3.4.1 A nalysis of the g values
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Histogram of g values, for 160 0  days, starting 4 8 0 0 0 . Found 191 6391  points. Mean: 0 .0 0 3
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Figure 3.25: Covering most of the survey, this histogram shows that the mean value of all the g values 
is approximately 1 (ln(l) =  0).

The g parameter has been normalized with respect to a five year average, and also with 

respect to the elongation of each source. Therefore, the geometric average value of g has 

to be approximately 1. To check this, a histogram of 1 n(p) for all the valid g values was 

plotted in Figure 3.25. The plot shows a skewed distribution with an off-centre peak. 

Even though the mean g is 1, the mode is slightly greater. This requires some explanation.

When the arithmetic mean of all the ln(<?) values is worked out, it gives 0.003, i.e. 

practically 0. (The arithmetic mean of ln(g) is the same as the geometric mean of g.) So 

overall, the “average” g is 1. But the peak of the plot is 0.2, so the most probable g, the 

mode, is ~  1.22 (because ln(1.22) =  0.2).

This can be explained as follows. It is more probable that g is very small, than that g 

is very big. This explains why there are more values for the extreme left of Figure 3.25 

than for the extreme right. This could be because a limit was placed on extremely high 

g values, and for low g values, the error increased (because the SNR decreased). These 

factors combine to give the skewed distribution seen in the histogram.

Interestingly, if the survey is divided up into periods of 400 days each, the g histogram
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Histogram  of g values, for 4 0 0  days, starting 4 8 0 0 0 . Found 5 9 4 2 6 5  points. Mean: 0 .081
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Figure 3.26: Covering the first 400 days of the survey, this histogram shows that the mean value of all 
those g values is approximately 0.081, and the mode is 0.2.

Histogram of g values, for 400 days, starting 49200. Found 247782  points. Mean: -0 .3 7 9
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Figure 3.27: Covering the last 400 days of the survey, this histogram shows that the mean value of all 
those g values is approximately —0.379 and the mode is -0.25.
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will look different for different periods, corresponding to the solar cycle. In the very 

first period (48000 to 48400), the mode is at ~  0.2 while the mean is very nearly 0, see 

Figure 3.26, which is similar to the results for the second period.

In contrast, the last period (49200 to 49600) looks vastly different, see Figure 3.27. 

Although there are many fewer good g values, due mostly to interference and the telescope 

being off-line for weeks on end, both the mean and the mode are far below 0. So it seems 

that in the time of solar minimum, the typical g is much less than that at solar maximum.

In the histogram that incorporates all the survey, Figure 3.25, we see the effect of 

adding together the histograms for all of these different intervals. The mean is almost at 

zero, while the mode is slightly greater than this. When interpreting the g-maps, it must 

be taken into account that the most probable g is slightly greater than 1.

3.4.2 A nalysis o f the rs values

Ts Histogram, for 1400 days, from 48000. 997183 points where 0.10<g<4.00 and SNR>0.10

n o .l l .  2 2 - F .b —1999 11:52Scintillation Timescale (s)

Figure 3.28: Histogram of rs values where no extra criteria have been applied to the selection of rs.

We know that the characteristic timescale of IPS is 0.5 s. Therefore, a histogram of 

thousands of computed t s values should peak at 0.5 s. Initially, this was not the case at 

all. Instead, the histogram showed a curve that rose exponentially as it approached zero, 

as in F igure 3.28. This is because all the rs values were included, no matter how reliable
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the data they were taken from. As there is a limited amount of information contained in 

a brief scan of a source, then that scan must be under the best possible conditions, i.e. 

with a high SNR.

Ts Histogram, for 1400 days, from 48000. 26208 points where 0.00<g< 10.00 and SNR>5.00

1 1.5 2

Scintillation Timescale (s) n o .l l .  2 6 -M a r—1999 17:47

Figure 3.29: Histogram of t s values where stringent criteria have been applied to the selection of r s . But 
setting the SNR cutoff at 5 means that a lot of the high speed (and low density) wind is excluded, pushing 
the peak up from 0.5 s.

As shown in the last section, the rs value only begins to become reliable with an SNR 

greater than 5. By cutting out the rs values with an SNR less than 5, this preferentially 

excludes the lower g values. This is because a source undergoing depressed scintillation 

will have a weak scintillation flux signal, and a correspondingly low SNR. In effect, this 

approach is less sensitive to the high speed wind that is often associated with low density 

flow. This will result in the peak of the rs histogram being greater than 0.5 s, as in 

Figure 3.29.

For these evaluations, the SNR is defined as:
4- h p a m  4 - h p a m  , i l / I i

(3.34)SNR =  signal = A x  (b e a m m ax-i + beammax + beammaJI+i)/3
noise yo

where the noise is equal to the average background level yo- The signal is not simply 

taken as the beam output at the profile maximum as the source transits. Instead, it is 

the average of the three beam outputs around this maximum. This averaged signal is 

multiplied by the A  value for the source on that day.
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Ts Histogram, for 1400 days, from 48000. 18872 points where 0 .1 0 < g < 4 .0 0  and SNR>10.00

f
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Scintillation Timescale (s) no.ll. 22-F.b-1B8g 12:06

Figure 3.30: Histogram of rs values where the SNR cut-off is increased to 10. Note the peak has moved 
to ~  1.3 s.

Interestingly, when the SNR cut-off is increased to 10, the histogram peak moves to 

even higher rs values, see Figure 3.30. This is further evidence that the higher the SNR 

cutoff, the slower will be the resulting flow, because the low density, high speed flow has 

been discarded. This trend would seem to validate the method of finding rs and hence the 

velocity of the solar wind.

Notice the similarity between Figure 3.24 and Figure 3.30. The simulated data 

for a high latitude source in Figure 3.24 show the same distribution curve as that for 

the real data at a high SNR cut-off in Figure 3.30. It would be instructive to study the 

differences between these two types of graphs, as they are caused by the spread in actual rs 

values that are in the real data. Both graphs incorporate system noise, but the simulated 

data don’t include the intrinsic noise in the real wind. It might be possible to obtain the 

spectrum of rs values from a comparison such as this. This study is outside the scope of 

the present analysis.

IPS theory assumes that the measured scintillation comes mostly from the plasma in 

a sphere around the Earth, with a radius of about 0.5AU [97], see Figure 3.1. As the 

elongation, e, of the line-of-sight to a source changes, we read a different projection of the 

velocity. The method of IPS measures the velocity tangential to the line-of-sight, which is
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To Source V Sin(0)

Sun A = 1 AU

Figure 3.31: Most of the measured scintillation occurs in a sphere around the earth, of ~  0.5 AU radius. 
The velocity calculated using IPS is tangential to this sphere, so the measured velocity is a projection of 
the true velocity, except when e =  60°. This figure shows the plane of the ecliptic, with ecliptic north up. 
Therefore (j> corresponds to ecliptic latitude. This diagram would also be valid if the view was from the 
north downwards, because the maximum scintillation occurs in a 3-D sphere centred on the Earth.

reduced from the true velocity of the solar wind by a fraction, sin0, where 6 is the angle 

between the line-of-sight and the radially outwards flow of the solar wind from the Sun. 

This is seen in Figure 3.31, where the point of maximum scintillation is called the P 

point.

Apart from the case where 0 = 90° (when e = 60°), the velocity reading will always be 

reduced from the true velocity. It is therefore essential to account for this when working 

out velocities from the rs values.

This weighting function is determined from the geometry of the diagram in Figure 3.31. 

The triangle composed of Sun-Earth-P point yields the Sine rule:

sinW =  sin^) 
a A

Rearranging,
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Now separate out the arguments to sin(e +  6),

sin(0) =  — [sin(e) cos(0) +  cos(e) sin(0)l . 
a

(3.39)

Bring sin(0) terms to l.h.s.

sin(0)

Bring all 6 terms to l.h.s.

Divide r.h.s. by ~

Leading to:

sin(0)

1 A1  cos(e)
a

= — sin(e) cos(0).

sin(0) _  £  cos(e)
cos(0) 1 — A cos(e)

... sin(e) 
tan(0) =  „ _  cQs(e) .

{ _i f sin(e) 11
tan   7T > .

A  -cos(e). J

(3.40)

(3.41)

(3.42)

(3.43)A - cos(e).
This function is plotted out in Figure 3.32. Note that sin(0) =  1 at e =  60°, where 

the line-of-sight to the source is exactly perpendicular to the wind direction, and hence 

there is no distortion. Everywhere else, this factor has to be taken into account.

Sin(fl) vs. €
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Figure 3.32: The weighting function, sin(0), as a function of elongation, e.

Without using sin(0), a plot of rs values versus elongation looks like Figure 3.33, where 

the solid line represents the average of the valid rs values. Only elongations greater than
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t s Vs. e for 231 4+04 . 450 good Ts values with SNR>5.0

e, Elongation (°)

Figure 3.33: All the rs values for this typical source, plotted versus their elongation, with the SNR cutoff 
set at 5. The size of each marker is proportional to the value of the corresponding A. Also, the geometric 
average is drawn in. The weighting function is not being employed here, so we see that the timescale is 
greater at the two extremes of elongation i.e. no correction is being made for the different orientation of 
the wind direction and the perpendicular to the line of sight. Therefore, the velocity of the solar wind 
measured away from t  — 60° is too small.

t  Vs. e for 231 4+04 . 450 good Ts values with SNR>5.0, using Sin(0).
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Figure 3.34: Similar to Figure 3.33, but now the weighting function is used, and the average rs remains 
approximately the same until ~  130°, after which it falls off gradually with increasing elongation.
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30° are important here, as inside 30° is the region of strong scattering, where the IPS signal 

gets smeared out and is useless for our purposes. The average line tends to dip down at 

mid elongations, then rises again at higher elongations. This can be interpreted as follows. 

As the weighting factor isn’t being used, the speed of the wind is being underestimated i.e. 

the coherence time is too long. There is no need for adjustment at e =  60°, as previously 

explained, however, at other elongations, the error becomes significant.

With this weighting factor being used, the plot is shown in Figure 3.34. Here, the 

average rs line is relatively steady until after ~  130° where it gradually falls off . This 

implies that on average the solar wind speed doesn’t change much in the near Earth 

environment. At large elongations, almost behind the Earth in relation to the Sun, the 

speed seems to increase according to this analysis. This is by no means certain, as 0 is so 

small, and there is a larger margin of error in determining the solar wind speed from the 

small factor VSin(0).

This extra factor was of course taken into account in the previous statistical analysis. 

It is further discussed in chap ter 5, along with a three dimensional interpretation of the 

measured IPS parameters.

3.5 Assem bling daily maps

After the algorithms and their resulting parameters have been thoroughly tested and error 

estimates made, the next step is to use these parameters to make daily maps.

3.5.1 The g-maps

All the g values for a day need to be calculated from the source files and gathered into 

one file per day. This is done by get_gday.c, creating files such as G48800.dat. This file 

contains 1649 rows, one for each source. Each row has 4 figures: A , g , rs and s.

The Interactive Data Language (IDL) was chosen to plot the g-maps, because of its 

superior graphical ability, and the control one can have over the axes and other parameters. 

Instead of simply plotting g, we plot ln(g) because the process of scintillation enhancement, 

or reduction, is a multiplicative one, and therefore better described using a logarithmic 

display rather than a linear one.
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As seen in F igure 3.35, these g-maps show the whole sky, from —10° to 80° in dec­

lination, in Hammer-Aitoff projection. The Sun is always positioned at the centre of the 

map. Two curves are drawn around the Sun at elongations of 30° and 90°. Lines of 

constant right ascension are drawn, at 60° intervals, while the lines of declination are 

drawn 30° apart. The Sun travels on the ecliptic, which is offset from the celestial equator 

(declination =  0°).

The sky is divided into 1296 pixels, each 5° square.

360 90
—  x — =  1296. (3.44

5 5

Initially the values of ln(y) from all good sources for the day are added to a bin for the 

appropriate pixel. Each bin is then averaged over the number of good sources that have 

been added to it. Each pixel across the map will contain one figure, which is represented 

as a particular colour, according to the colour table chosen for the map.

The sources are not spread evenly across the sky, and data for each source are not 

always determinable, so there will be gaps in the pixelated map. To fill in some of these 

gaps, empty pixels are evaluated by interpolating from the surrounding pixels. Only if 

an empty pixel is surrounded by at least 4 non-empty pixels, will it be filled in by the 

geometric mean of those nearest neighbours. Therefore, instead of many little dots with 

gaps between, the map can begin to show coherent structures.

Before final presentation, the ^-map is smoothed. This helps to remove erratic data, 

and thus produce a clearer image of what’s happening.

3.5.2 Extra criteria for the rs-maps

From the statistical analysis of all the rs values found, it seems that we need to have extra 

criteria for sorting valid rs values from all the invalid ones. This criterion comes from 

using the SNR for a source for that day. Only if the SNR is greater than 5 will it then 

be included in the rs-map. We know that the error in rs is still quite large. However, 

the validity of the technique will be determined in chapter 4, by comparing the IPS data 

with in-situ spacecraft measurements of solar wind speed. This cutoff in the SNR means 

that there are only a few sources per day that give reliable estimates of rs, and hence the 

Ts-maps are more sparsely populated than the p-maps.
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3.5.3 M aking m ovies

Once g- and rs-maps can be made for a sequence of days, these images can be linked 

together to form a movie. Watching an animation lasting several days makes it much 

easier to see the overall dynamic situation, and particular structures such as shocks and 

co-rotating interaction regions as they move outwards from the Sun.

The IDL program movies .pro creates an interactive widget, providing the opportunity 

to make maps for certain days, and then combine them together into a sequence of several 

days. This sequence can then be stored, and played as an animation on the XInteranimate 

tool.

3.6 Conclusions

The work described in this chapter has brought the data set to life, by making the anima­

tions. To obtain the parameters that make up these maps, some complex, iterative algo­

rithms were written and used in a computer program. Once these computed parameters 

were tested and proven to be valid, it was possible to incorporate them in 2-dimensional 

maps of the IPM, see Figure 3.35.
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Figure 3.35: g-map and rs map for a typical day. The spread of g is from 0.5 to 2. The colour table at 
the top right explains th a t g < 0.5 is represented by dark blue, 1 is represented by green, and any g > 2 is 
represented by red. The red areas therefore show regions of enhanced scintillation, i.e., increased plasma 
density. No data have been put in the region less then 30° from the Sun, and other black areas indicate 
areas where there were no data determinable. In the rs map, there is very sparse d a ta  due to the difficulty 
in obtaining good r s values.



Chapter 4

Validating and interpreting the  

maps

4.1 Introduction

Before utilizing the Cambridge IPS maps to their full potential, it is imperative to prove 

that they are indeed giving a true measure of interplanetary plasma density and solar 

wind speed. The best way to achieve this is to compare the maps with corresponding data 

from other experiments, as other data sets have been tested in the past [71], [50], [59].

These data sets are available from internet databases, such as the World Data Centre. 

Data from the IMP, Yohkoh and Ulysses spacecraft and ground based observations from 

the Nagoya Radio Array were compared with the Cambridge IPS data. A brief description 

of each of these experiments, and the data sets they each provided, is included below.

Unfortunately, the period of the survey is one for which there are few concurrent data 

sources. The Solar Maximum Mission satellite (SMM) was responsible for many advances 

in solar physics [21], but it ceased operations in 1989, just before the start of the Cambridge 

IPS survey.

The Solar and Heliospheric Observatory (SOHO) has given many spectacular views of 

CMEs and other solar phenomena, but was launched in 1995, after the end of the Cam­

bridge IPS survey. The Transition Region and Coronal Explorer (TRACE) was launched 

in 1998 and has produced extremely detailed images of the corona, though much too late 

to be used for any comparisons with the Cambridge IPS data.

A sound procedure for comparing the various data sets is to perform a detailed analysis

86
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of a small number of events. Although a variety of different phenomena can be investigated 

through the IPS maps, it is instructive to start with the type of event that is most easily 

observed and interpreted.

The interpretation of long-lasting, co-rotating streams should be particularly straight­

forward. The stability of such structures over a long period of time means that it is easier 

to make comparisons with other experimental data. Even though the two data sets might 

not be observing the exact same part of the IPM, it is probable that the IPM conditions 

in adjacent areas of the sky are similar.

Also, for low density streams, the maps are less corrupted by ionospheric interference. 

If there were any such interference, it would show up as increased, but never reduced scin­

tillation. In the case of one such stream, see Section 4 .4 .1 , the data are examined from 

the many different sources, and a good correlation is found of the solar wind parameters. 

For example, there is evidence found on the Yohkoh images for a coronal hole being the 

source of a fast flowing stream.

Though the rs-maps don’t offer the same amount of detail as the ^-maps they can 

nevertheless be used effectively, especially for areas of high density flow by using sources 

that give a large scintillating flux.

Transient events can happen far too quickly to be detected with any great certainty 

by the IPS array. This is because the radio sources are each observed only once per day. 

However, impulsive events such as solar flares and CME’s might create a disturbance which 

travels out with the solar wind, and might be detected in our maps.

4.2 Outside data sources

4.2.1 The Interplanetary M onitoring Platform

The Interplanetary Monitoring Platform (IMP-8), Figure 4.1, was one of a series of 

Earth-orbiting satellites, developed to measure the radiation environment in interplanetary 

space. The instrumentation is described in a paper by Lazarus [50]. It was launched in 

1973, into a 12-day orbit of the Earth at 35Re , where it spends 7 to 8 days of each orbit 

in the solar wind. This, unfortunately, leads to gaps in the data when the spacecraft is 

within the Earth’s magnetopause.

Among the measurements it provides are those of density and velocity of the solar wind.
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Figure 4.1: The Interplanetary Monitoring Platform (IMP-8).

These in-situ data can be compared with the Cambridge IPS data at 1AU, i.e. 90° from 

the Sun. Figure 4.24 shows the daily-averaged density and velocity of the solar wind, as 

measured by IMP in April 1992.

4.2.2 The U lysses spacecraft

The Ulysses spacecraft was launched in October 1990 as a joint ESA/NASA mission to 

study the properties of the Sun and solar wind as a function of solar latitude [84], [95]. Its 

path took it as far as 5 AU from the Sun. There, it used a Jupiter swingby in February 

1992 to transfer to a heliospheric orbit with high heliocentric inclination. This orbit took 

it over the rotational south pole of the Sun in mid-1994 at 2 AU, and over the north pole 

in mid-1995. Ulysses will again visit the poles in 2000 and 2001 on its second solar orbit.

On board Ulysses are SWOOPS (Solar Wind Observations Over the Poles of the Sun) 

and SWICS (Solar Wind Ion Composition Spectrometer) which, among other things, mea­

sure the density and velocity of the solar wind at the spacecraft. As the position of Ulysses 

is continually changing, it is not always possible to make a direct comparison with IPS 

measurements, but there are some instances when this is successful, e.g. Section 4 .4 .2 .

Also aboard is the URAP (Unified Radio And Plasma waves experiment) which can 

record radio waves from 1kHz up to 1MHz. Type III solar radio bursts are frequently 

detected, and these are often caused by solar flares or other solar activity.
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All IMP and Ulysses data come from NSSDC, the National Space Science Data Centre.

4.2.3 The Nagoya UH F radio telescopes

SUGADAIRA
rn (EI38*19' N36A31' HlSOOm)

(El 37*38’ N35*48' HlllOm)

FUJI
(£138*37’ N3S*26' HlOOOnt)

TOYOKAWA 

(E137P22‘ N 34*50' H 20m)

Figure 4.2: The locations of the four antennae of the Nagoya telescope.

The Solar-Terrestrial Environment Laboratory at Nagoya University, Japan operates 

the STE Laboratory UHF radio telescope. By using the four large cylindrical parabolic re­

flector antennae located as shown in Figure 4 . 2 , multi-station IPS velocity measurements 

are carried out daily, at a frequency of 327 MHz. At this frequency, the Nagoya telescope 

can look much closer to the Sun than the Cambridge array, operating at 81.5 MHz.

The public database extends from 1973 up to the present day, so it covers the whole 

length of the Cambridge IPS survey. Unfortunately, the Nagoya telescope is not operated 

in the winter months, so there are gaps in the data from about November to February.

The IPS velocity technique involves recording the scintillation signal of a certain source 

at two different stations, separated by a baseline of a certain length. The time delay needed 

for maximum correlation is used to calculate the velocity of the scintillation pattern across 

the ground. Then, allowing for the orientation of the baseline in relation to the wind 

direction, the solar wind velocity is found at the point along the line-of-sight of the closest 

approach to the Sun. This method is well described by Kojima et al. [46].
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Projection onto Ecliptic Plane

View from Earth

-m-iAu

—i—i—i—i I i—i—i—t-OlAua —J— I— I— (-H— jW
i .1  ̂ iAu

-MAU
s

AU

S u n

D ale 1992/D4/Q2 (DOY; 93)
No. Soivxm UT Vhw{km/i)

1 2203-18  0.1 300 + / -  1
2 3C44# 0.3  Z70 4 / -  1
3 2 308-10  1.2 3 1 1 + / “  2
4 2 3 1 8 -1 8  1.7 4 7 1 + / -  17
8  2 347-02  2.0 347 + / -  0
8  3043 3.4 817 4 / -  15
7  3C48 3 J  #17 + / -  47 
B 0221+27 4 3  507 + / -  3
B3C110 8.7 402 4 / -  3

10 3C138 7.4  388 4 / -  20
11 3C14T 8.0  389 4 / -  10
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Figure 4.3: A T-map for 2 April 1992. Each number on the first diagram represents the position of a 
scintillating source, as viewed from Earth. The second diagram shows the view from above, looking down 
onto the plane of the ecliptic. The dots on the line-of-sight to each source are the ‘P ’ points, which indicate 
the maximum point of the IPS weighting function, i.e. where most of the scintillation is taking place.

The Nagoya public database holds the velocity measurements made for different sources 

during each day. These are usually good, strong sources, which are observed for 10 or 15 

minutes each. Most of the scintillation is assumed to occur at a particular ‘P ’ point, which 

is found by using a weighting function along the line-of-sight to the source [46]. Then, the 

individual velocity data points can be plotted on a map, with the Sun at centre. This is 

called a T-map, as in Figure 4.3. As well as showing their positions in relation to the 

Sun, the T-map also displays their orientation as one looks down onto the ecliptic.

The wind speed measured from the scintillation of a particular source can be directly 

compared with velocity measurements made by the Cambridge IPS array.

It is possible to use the Nagoya data to make synoptic maps of the wind speed on the 

surface of the Sun over a number of rotations. This is done by taking an IPS velocity 

measurement, and then mapping it back onto the source surface along an Archimedean 

spiral, i.e., a stream line, but this does not consider the stream-stream interaction. Velocity 

data is built up over a number of rotations, then displayed as in Figure 4.27. Here, we can 

see that between —30° and +30° latitude, there is an average velocity of about 350 km s-1 ,
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except for the small areas of fast wind which probably indicate the presence of coronal 

holes.

4.2.4 The Yohkoh satellite

Figure 4.4: The Yohkoh SXT image for 7 July 1993. Note the coronal hole extending down from the 
North pole, and crossing the equator to join up with the southern coronal hole.

The Yohkoh satellite was launched in August 1991 from Japan, into a low Earth orbit 

with a period of 97 minutes. It carries a number of instruments, among them the soft 

X-ray telescope (SXT) which is sensitive to an energy band of 0.25 to 4keV. The corona 

is at a temperature of several million degrees, emitting X-rays in this energy region, by 

a complex mixture of thermal bremstrahlung and line emission. Full-disk images of the 

corona taken daily by the SXT are available and from these, coronal holes can be studied.

In a coronal hole, the magnetic field is predominantly open, i.e. the region is threaded by 

magnetic field lines that have been drawn out into interplanetary space by the dynamical
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forces of the coronal plasma. The electron density in a coronal hole is much lower than in 

a closed region of the corona.

In an isothermal plasma dominated by bremstrahlung, the coronal emission depends on 

the square of the electron density, as shown by Crannell [20]. The isothermal bremsstrahlung 

spectrum can be written as

/(e) =  1.3 x 10- 42{n2V ) e - 1A{kBT ) - 0Ae - e/ kBT (photons/cm 2/s/keV ), (4.1)

Therefore, soft X-ray and EUV emission from open, low density coronal regions are 

very low compared to the dense closed corona that surrounds them. Coronal holes appear 

clearly on Yohkoh SXT images as white regions, see F igure 4 .4 . This image, and the 

others like it, comes YDAC, the Yohkoh Data Archive Centre, held at MSSL, Mullard 

Space Science Laboratory.

Solar particles 
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and at high speedsCoronal holes 

can last several 
solar rotations. 
As they rotate 
around they 
produce 
recurring 
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at Birth \  
every I

days

Coronal Hole

solar particles 
flow out slowly 
- impeded by 
sun 's magnetic 
field

Figure 4.5: The magnetic field lines of the Sun, at a coronal hole, and elsewhere.

Coronal holes are believed to be the source of the fast solar wind [48], [100]. Because 

the holes are regions of open magnetic field lines, fast, free outflow of the solar wind 

is possible, see F igure 4.5. The long lived streams caused by stable coronal holes are
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interesting to IPS observations, as explained later, and the Yohkoh STX images can help 

in the interpretation of the Cambridge IPS data.

4.2.5 The He 10830 A Spectroheliogram

p i r 3. .

Figure 4.6: The He I spectroheliograph images of the full solax disk, taken on 7 July 1993, the same day 
as the SXT image in F igure 4 .4 . The position of the coronal hole in the SXT image can also be traced 
as the w hiter area on this image.

Coronal holes are routinely monitored at the National Solar Observatory on K itt Peak, 

by a spectroheliogram which takes a whole disk image of the Sun, in a Helium I line. This 

absorption line has a wavelength of 10830 A, and is an excellent tracer of coronal holes.
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Figure 4.7: Synoptic He I map of Carrington rotation 1871, 3 - 30 July 1993. Heliographic longitude 
runs from 0° at the left to 360° at the right. The meridional strip  at the centre of the Sun is recorded each 
day, and then stacked up together to form this plot. The meridional strip  for the first day of the rotation 
(3 July) is at the extreme right, and the strip for the last day (30 July) is a t the  extrem e left. The centre 
strip, at a longitude of 180° corresponds to the central meridian strip  at the middle of the rotation (16 
July). Heliographic latitude runs from —90° at the bottom  (south pole) to +90° at the top (north pole). 
The coronal hole extending from the north pole a t the beginning of the rotation (to the right of the map) 
is the same one seen in the previous whole disk images.

Because chromospheric helium is excited by the coronal soft X-ray emission, the spatial 

extent of coronal holes may be obtained from any monochromatic He picture. F igure 4 .6  

shows a He I image for the same day as the SXT image in F igure 4 .4 . The same features 

can be observed in both images, especially the coronal hole. N SO /K itt Peak data used 

here are produced cooperatively by NSF/NOAO, NASA/GSFC, and NOAA/SEL.

Also available are synoptic plots of coronal hole boundaries over a whole rotation. 

F igure  4 .7  shows a coronal hole reaching down from the North pole at the beginning of 

the rotation, and a southern hemisphere coronal hole near to it. These same two holes 

seem to be joined up in the corresponding SXT picture, F igure  4 .4 .

4.2.6 The GOES space environm ent m onitor

NOAA (National Oceanic and Atmospheric Administration) operates a series of mete­

orology observing satellites called Geosynchronous Operational Environmental Satellites 

(GOES), orbiting the Earth at an altitude of 35000 km. GOES satellites carry onboard a 

space environment monitor subsystem, that measures X-rays, energetic particles and the 

magnetic fields at the spacecraft, as described by Joselyn et al. [41].
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Solar Energetic Particles (SEPs) axe often produced and then accelerated to very high 

velocities by the explosive release of energy associated with a solar flare, or the ejection 

of a CME. The travel times to Earth can be very short, depending on the location of the 

flare (or CME) on the face of the Sun presented to the Earth. The SEPs travel along the 

Sun’s magnetic field lines [77], following an Archimedean spiral, due to the Sun’s rotation. 

If the SEPs are ejected along a streamline that joins the Sun to the Earth (i.e. they are 

magnetically connected to the Earth), this enables the particles to arrive at the Earth 

promptly [26], perhaps within two hours, where they can be detected by GOES. If the 

location of the flare on the Sun is far from the streamline joined to the Earth, then the 

SEPs won’t arrive at Earth until 2 hours after the Sun has rotated sufficiently for the flare 

location to be at the foot of the Earth-Sun streamline. This could be a matter of many 

days.

Also, energetic particles can be generated by particle acceleration at the front of an 

interplanetary shock wave [34]. The shock wave could be caused by high speed solar wind 

plasma emerging from a coronal hole. GOES should also be able to measure the energy 

and density of these particles.

Available online at NGDC (National Geophysics Data Centre) is a list of the solar 

proton events that have affected the Earth environment from 1976. This list is a start­

ing point when searching for disturbances in the near-Earth environment, which led to 

enhanced geomagnetic activity.

4.2.7 The SA M PEX  satellite

The Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) was launched 

by NASA in July 1992 into a near-polar, low Earth orbit, at an inclination of 82°. SAM­

PEX measures energetic electrons as well as ion composition of particle populations from 

~0.4 M eV/nucleon to hundreds of MeV/nucleon. It can therefore record interplanetary 

fluxes of solar energetic particles (as well as galactic cosmic rays, which cause a known 

residual background rate) over the polar portions of its orbit. The intensities plotted in di­

agrams such as Figure 5.13 are obtained by averaging over the two polar cap passes (i.e. 

above 70° invariant latitude) of each orbit. The spacecraft and its mission are described 

by Baker et al. [4].

Similar to GOES, SAMPEX data can be used to discover when the Earth is affected
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by SEPs.

4.2.8 The M etsahovi Radio Observatory

The Metsahovi radio observatory is operated by the University of Helsinki in Finland. 

The 14m diameter radio telescope operates at frequencies of 5 - 120 GHz. About 25% 

of telescope time is spent on solar research [63]. From these observations, a solar flare 

catalogue has been compiled, detailing radio burst events caused by solar flares. The unit 

of radio emission from the Sun is the solar flux unit (sfu), where

1 sfu = 104 Jy =  10-22 W m-2 Hz- 1 . (4.2)

During a radio burst, the measured flux can be as high as 500 sfu relative to the quiet Sun 

level. The solar flare catalogue is useful because it covers the entire period of the Cam­

bridge IPS survey, and can indicate times of solar activity, which might lead to transients 

in the IPM.

4.3 D irect comparison of Cambridge data w ith other sources

The Cambridge IPS data can be compared with near-simultaneous observations made by 

other instruments. This comparison is a very good way of validating a new technique. 

Unfortunately, it is very difficult to make an exact match between the Cambridge data 

and any other data set, because no other instrument observed exactly the same part of 

the sky at the same time as the Cambridge IPS array.

The results of data set comparisons are instructive, and follow in the rest of the chapter.

4.3.1 Cam bridge IPS density data versus IM P density data

Tappin [89] has compared IMP density values to IPS g values, and arrived at a relationship 

between g and the density, n (measured in particles per cm3),

In doing so, Tappin was very careful to select days when both instruments were measuring 

approximately the same portion of solar wind material, i.e., since IMP is at a distance of 

1AU, its data can only be compared with IPS data corresponding to material at 1AU.
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Figure 4.8: IMP density data plotted with the Cambridge IPS density (extracted from the g values using 
Tappin’s relationship) for 100 days in 1990. The solid line represents the IMP density measurements. The 
dashed line shows the average density measured from sources east of the Sun by the IPS array, while the 
dotted line represents the Western IPS sources. When the IPS data drops to 1 (e.g. days 48019 to 48028), 
this means that there were no data taken on this day.

This same relationship is expected to come out of the present comparison of the 1990-94 

data set, but it was difficult to emulate. This was due mainly to problems in determining 

where along a line-of-sight to a source the greater amount of the scintillation is occurring, 

and the possible disruption to the average g caused by a small amount of transient material.

Out of each 12-day orbit, the IMP spacecraft spends only 7 or 8 days actually in the 

solar wind, and the remainder within the Earth’s magnetopause. This leads to regular 

gaps in the data set, and hence reduces the amount of possible correlations.

There is also a problem of where each instrument measures the density. IMP measures 

solar wind parameters at 1AU, at the position of the Earth. But the IPS array, when 

looking towards a source at an elongation of 90°, is observing the scintillation at 1AU 

from the Sun, but at 0.5AU from the Earth, as previously seen in Figure 3.1. It is 

therefore difficult to determine when both experiments are observing the same portion of 

the solar wind simultaneously.

Figure 4 .8  shows a straight comparison of the IMP density values and the IPS values, 

over 100 days. The IMP value is the average for that day of all the measurements, so by
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taking this average, some transient activity could be missed.

The IPS density parameter is worked out by taking the average of all the g values from 

sources ~  90° elongation east and west of the Sun, for each day.

80° < e < 100° (4.4)

and

Declination < 25°. (4.5)

The density was inferred using Tappin’s relationship, see eqn. 4.3. It can be seen that the 

IPS measurements generally follow the IMP measurements, especially the eastern sources. 

Because there is a time delay between the material arriving at the IPS observation point 

and the Earth (for IMP observation), there is some difficulty in correlating the IMP and 

IPS data points in time. Also, in this first comparison, no attempt was made to select 

only the days where the solar wind was uniform over the volume of IPM observed.

The best way to account for this time delay is to only take into account the days when 

the Earth is bathed in a long-lasting stream of material. Then, the material observed by 

IMP should be the same as that observed by the IPS array. Even though the solar wind 

travels radially out from the Sun, the rotation of the Sun means that we observe material 

to be moving out in an Archimedean spiral. It is therefore best to choose only the sources 

to the east of the Sun, as that is where the material appears first.

Taking these extra factors into account, the program SCDcDi.c was written. In the 

chosen area (~  90° eastern elongation), all the valid g values from their respective sources 

are used to calculate the geometric average. Then, the gs are examined again, and any 

that show more than 50% deviation from the mean are discarded, and the geometric mean 

is recalculated. To ensure that it is the same material being observed by both instruments, 

the IMP density value is compared with the density on the preceding and following days. 

If these values are within a range showing ~  10% deviation, then it may be considered to 

be a long lasting stream. Now it can be compared with the IPS density average for that 

day. Another condition applied was a maximum cutoff for the standard deviation of the 

g values.

Despite all these criteria, it proved to be very difficult to automatically choose the 

appropriate days for comparison. Figure 4 .9  shows the correlation for the first year,

1990, and a chi-squared straight line fit. Also shown is a dashed straight line plot of
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1990 : 47 matching values out of 266 days. Standard Deviation < 0 .250  
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Figure 4.9: A scatter plot of IMP density data compared to the Cambridge IPS g values for 1990. The 
vertical error bars are the standard deviations from the sets of g values used. The solid line (not the g = l  
axis) is a chi-squared fit to the data, and the dashed line is the relationship between density and g, as 
deduced by Tappin.

1991 : 31 matching values out of 365  days. Standard Deviation < 0 .250
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Figure 4.10: IMP density data compared to the Cambridge IPS g values for 1991.
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1992 : 37 matching values out of 365  days. Standard Deviation < 0 .250
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Figure 4.11: IMP density data compared to the Cambridge IPS g values for 1992.

1993 : 55 matching values out of 365 days. Standard Deviation < 0 .250
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Figure 4.12: IMP density data compared to the Cambridge IPS g values for 1993.
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1994 : 33 matching values out of 268 days. Standard Deviation < 0 .250
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Figure 4.13: IMP density data compared to the Cambridge IPS g values for 1994.

Tappin’s relationship between density and g. Then the following four figures show the 

plots for the next four years.

The chi-squared fit is quite diffferent from Tappin’s relationship, but there is a definite 

trend in the data. It implies that Tappin’s relationship can still be used on the current 

data set, with a certain degree of confidence. If each g value had been chosen separately on 

its individual merit, rather than by an automatic process, then the fit could be expected 

to be better.

4.3.2 Cambridge IPS density data versus U lysses density data

In a similar manner, we can compare the Cambridge IPS density data with the data 

recorded by Ulysses. This is particularly the case when Ulysses was near to the Earth, e.g. 

in the two months after Ulysses was launched. Figure 4.14 shows the direct comparison 

from the day that Ulysses began to take plasma measurements on 18 November 1990 until 

the end of 1990.

Soon after launch, on 18 November, Ulysses was only 1.15 AU from the Sun, and close 

to the Earth. Therefore, the plasma parameters recorded by Ulysses are very similar, in



CHAPTER 4. VALIDATING AND INTERPRETING THE M APS 102

spatial terms, to that measured by the IPS array.

There is a much greater probability that the plasma will retain the same properties 

in the short time between measurements. Indeed, the Ulysses density plot follows almost 

exactly the pattern of the east line for the first eight days. (As explained in the last 

section, the better correlation should be for the eastern sources rather than the western 

sources because the plasma coming out from the Sun is seen first to the east. )

After this, the Ulysses plot gradually falls behind the plot for the eastern sources, until 

there is a time lag of about three days at the end of the year. At this time, Ulysses has 

travelled to 1.51 AU. The average velocity measured over the last five days in December 

by Ulysses is about 339 km s-1 , which corresponds to 0.196 AU per day.

The solar wind will travel approximately 3 x 0.196 AU=0.59 AU in three days. This is 

consistent with the previously deduced three day time lag between measurements at the 

Earth (1 AU) and at 1.51 AU from the Earth. The Ulysses data are therefore consistent 

with the densities measured by the Cambridge IPS array.

1990.
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Figure 4.14: Ulysses density data axe represented by the solid line. It is plotted against the average 
density measured by the Cambridge IPS array, from sources east (dashed line) and west (dotted line) of 
the Sun.
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Figure 4.15: IMP density data plotted against the corresponding velocity measured by IMP on the same 
day, over 1994. The fastest wind is definitely the lowest density wind.

4.3.3 D ensity  versus velocity

As a general trend, it is usually low density material that travels fastest. Therefore, a 

plot of density versus velocity will show the velocity decreasing as the density increases. 

Figure 4.15 plots the density measured by IMP versus the velocity measured on the same 

day, over 1994. The decrease in velocity with increasing density is evident.

F igure 4.16 plots the same parameters at solar maximum in 1990, and this trend 

isn’t quite as obvious. This trend is not as strong at a peak of solar activity, where the 

interplanetary medium can get very complex and unpredictable. Fast wind can be as often 

high density as low density.

Now we look at the same relationship for the Cambridge data set, compared with the 

Nagoya velocity data. In this case, just one source is examined. Because both experiments 

are using IPS as their measuring tool, it might be thought that they are observing the 

same portion of the solar wind. However, the radio sources are observed at different times 

during the day, so the solar wind along the line-of-sight may have changed significantly 

during the period. This is because the Cambridge array is a meridian transit telescope, 

while the Nagoya telescope is steerable and can hence look at any part of the sky when
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Figure 4.16: IMP density data plotted against the corresponding velocity measured by IMP on the same 
day, over 1990, the solar maximum. The relationship between velocity and density is not as clear-cut.

required.

In Figure 4.17, data are taken for the source 3C119, from the Cambridge and Nagoya 

data sets, in the year 1993. The density measured by Cambridge is plotted against the 

velocity as measured by Nagoya. The velocity/density trend is apparent, as would be 

expected during the relative quiet of solar minimum in 1993. The low density wind is seen 

to be moving faster.

But in Figure 4.18, the same parameters are plotted for 1990, the maximum in solar 

activity. This plot is more “confused”, with no clear relationship between velocity and 

density, as would be expected.

So it has been shown that the Cambridge data set can be used in conjunction with 

Nagoya velocity data to display the same trends that are apparent in single-instrument 

IMP-8 studies.

4.3.4 Cambridge velocity versus Nagoya velocity  data

As we discussed in the previous chapter, the errors in the Cambridge IPS timescale data 

are much larger than those in the density data. This is because the timescale algorithm 

needs a much longer integration time than is available with the Cambridge meridian transit

5 10

IMP Density (cm-3) rto«ll* 2 8 - J u n - 1 M 9  18:33
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1993. Source #4: 0429+ 41  /  3C119, with 48 matching days from 365.

Cambridge IPS Solar Wind Density (cm  3)

Figure 4.17: Cambridge IPS density data for one source plotted against the velocity from the same 
source measured by the Nagoya instrument on the same day, over 1993, after solar maximum. The velocity 
is certainly decreasing with increasing density.

1990. Source #4: 0429+ 41  /  3C119, with 69 matching days from 266.

5 ■+

5 10

Cambridge IPS Solar Wind Density (cm -3 )

20

Figure 4.18: Cambridge IPS density data against Nagoya velocity, over 1990, the solar maximum. The 
velocity/density relationship is unclear, as would be expected for the complex solar wind during maximum 
solar activity.
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telescope to obtain a respectable signal-to-noise ratio. But for high declination sources, 

the transit time is longer, so the algorithms have a lot more data to work with, and hence 

produce more accurate results.

There are about 22 strongly scintillating sources that regularly give reasonable timescale 

data, and which can be used to determine velocity information. Following Readhead et 

al [68].

velocity =  — , (4.6)
r

where the scale length, a(r), is the characteristic spatial coherence length over which the

plasma density fluctuates, and r is the distance from the Sun. The expression for a(r) has

two forms, depending on r,

a = 175r0'5 km for (0.1 AU < r < 0.6 AU) (4.7)

a =  250r1-25 km for (0.6 AU < r < 1 AU) (4.8)

1992. Source 0 9 0 6 + 4 3  /  3C216, with 15 matching days from 365. SNR>5.0.

g: 0 .00  —> 0 .50  
g: 0 .50 - >  1.00  
g: 1.00 - >  1.50  
g: 1.50 - >  2 .00  
g: 2.00

a) to

0 0.5 1 1.5

1 / t , Reciprocal of Scintillation Coherence Time (s)

Figure 4.19: The reciprocal of Cambridge IPS timescale against Nagoya velocity, over 1992, for 3C216. 
The g value corresponding to each timescale measurement is represented by the type of symbol, as explained 
on the graph. The velocity is inversely proportional to the timescale, so we expect a straight line graph, 
as indeed observed here.

Figure 4.19 looks at the data for 3C216, a high declination source. The scintillation 

timescale has been worked out by the rs algorithm from data measured by the Cambridge
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IPS array. Its reciprocal is plotted against the velocity measured by the multi-station 

Nagoya IPS telescope. There are only a limited number of days that both instruments 

observed the same source, and recorded reliable data with a good SNR.

As predicted, the timescale is inversely proportional to the velocity. The plot is expected 

to show reduced correlation because the source is usually observed at different times of 

the day by each telescope. This means that each telescope is sampling a slightly different 

portion of the solar wind.

Data recorded for this source, 3C216, were consistent with prediction. Unfortunately, 

there were practically no data that could be compared in the next two years for this source. 

This was because the few days that Nagoya observed the source didn’t coincide with the 

days that the Cambridge observations were of high enough SNR for the rs algorithm to 

work properly. And other sources, most of lower declination, gave inconclusive results.

More work needs to be done to prove that this novel, single-station method provides 

sound information on scintillation timescale, and hence velocity. Using a steerable tele­

scope would mean that sources can be observed for much longer, thus making the rs 

algorithm more effective in calculating the true velocity. But for the meantime, the values 

worked out by the rs algorithm will continue to be used, though always keeping in mind 

that there are errors involved. Only when a large number of sources are consistently pro­

viding similar output on a daily rs-map can we believe that we’re seeing the true picture 

of conditions in the IPM.

4.4 Study of specific events

4.4.1 Observations of a long-lived solar wind stream

Before studying a particular event, it is essential to understand the geometry of how a 

co-rotating stream appears on a p-map. If the Sun were not rotating, the geometry of 

the IPM, and how the solar wind interacts with it would be much simpler. The corona 

would just expand out radially, as seen from Earth. But, because of the Sun’s rotation, 

the streamline that follows material coming from the same section of the Sun is a Parker 

spiral, as seen in Figure 4.20. The speed of the wind determines just how tightly wound 

this spiral is. A slow wind would have a tightly wound spiral, while for a fast wind, the 

spiral would be looser.
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Figure 4.20: Parker ecliptic spirals for a solar wind at an average velocity of about 400 kms-1 , which 
corresponds to 0.25 AU day-1 . The numbers 22-27 show the approximate position of an enhancement front 
on consecutive days, when the thickness of this front is approximately the same as the distance between 
two adjacent spirals.
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Figure 4.21: Synoptic plots covering Carrington rotations 1850 to 1855, when a long-lived stream was 
very prominent. It is seen as the recurrent, low-density section towards the middle of each rotation.
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During a solar rotation, a long-lived, co-rotating stream will first appear to the east of 

the Sun and from there it will tend to spread out to greater eastern elongations. Then, as 

seen on day 25 in Figure 4.20, the stream will sweep across the Earth, and later appear 

to the west of the Sun. This is indeed what can be seen in the p-maps, as explained in 

the following example.

From Carrington rotation 1849 to 1856, a long-lived solar wind stream was observed 

by the Cambridge IPS array, as well as other experiments. This is very obvious in the 

synoptic plots made by Woan [97]. These plots divide the sky into 5° wide elongation 

strips. In each strip, the scintillation is averaged, and given a grey-scale value. This is 

then plotted for each strip, on a synoptic plot, for each day over a long time period. The 

co-rotating stream showed up as a low scintillation section, recurring every 27 days. It 

can be seen in Figure 4.21 to the middle of the Carrington rotation sequence.

During this interesting period, a large polar coronal hole was seen to extend to equa­

torial regions, sometimes even crossing the equator itself. On the He 10830 A spectro­

heliogram maps, this extension of the polar coronal hole is located between heliographic 

longitudes of about 240° to 300°, as in Figure 4.22

|
ID

Figure 4.22: Coronal hole boundaries from the He 10830 A spectroheliogram maps, for rotations 1846 
to 1855. Carrington longitude runs from right to left.

This coronal hole can also be seen on the Yohkoh SXT image from April 3rd 1992, in 

Figure 4.23. The white areas are emitting fewer soft X-rays, and are therefore indicative 

of open magnetic field lines. Areas of high emission indicate closed field lines. As previously 

explained in sec tio n  4 .2 .4 , a coronal hole is where the field lines are open, and material 

is streaming out into space. The white area extending from northern polar regions down 

to the equator in Figure 4.23 is the coronal hole that is contributing a great amount of 

fast moving, low-density material to the IPM. The material moves out quickly from the 

Sun to reach the Earth a few days later.

The high-speed, low density stream from the coronal hole is observed on the Cambridge

CR 1S48
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Figure 4.23: Yohkoh SXT image on 3 April 92. Intense soft X-ray emission shows up as the darker 
areas. The white, low emission areas represent coronal holes.

g-maps and r s-maps covering the period 1 to 9 April 1992. The low density plasma first 

appears to the east of the Sun (shown in F igure 4 .28  on 2 April 1992), and over the 

course of a few days, it moves outwards from the Sun to dominate the IPM to large 

elongations.

Clumped together in front of this high speed wind is a large expanse of high-density 

material - this is seen on 2 April 1992, in F igure 4.28, as the red area taking up most 

of the g-map. But also on this day we begin to see the low-density plasma flow. This 

is the \ow-g area directly to the east of the Sun, at an elongation of about 40° to 60° in 

F igure 4.28.

This same low-density flow is observed to travel outwards on the succeeding days. On 

the next day, 3 April, it has reached about 80°, as seen in F igure 4.29. By 4 April, 

F igure 4.30, it has progressed to an elongation of > 90° and has therefore reached the
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Earth. In Figure 4.31 we can see it on both sides of the Sun on 5 April. This low-density 

stream continues to dominate for some time.

Looking at the limited rs information that is also on these maps, it seems to agree 

generally with the high-speed stream hypothesis. The rs measurements which correspond 

to increased scintillation are more reliable because the scintillating flux is far above the 

noise level for many of the sources. In the case of low scintillation, there are very few 

sources whose scintillating flux is high enough above the noise level.

In Figure 4.28, there are a lot of sources with low rs readings, i.e., fast wind, at 

elongations of 90° to 120° to the east and at low latitude. This is the dense material 

that has been clumped up by the fast flow behind it, and now is moving rapidly itself. 

Similarly on 3 and 4 April, there are still many low rs measurements in this area. By 5 

April, there are low g values in this particular area, leading to very few rs measurements, 

so no reliable wind speed values are available in that area.

If we now look to the west of the Sun, and concentrate on the areas where there is 

high scintillation, we see evidence again that the clumped-up material is moving rapidly. 

Even when the rs data are quite sparse on 5 April, almost all the measurements are low 

rs, indicating a fast wind.

Comparison with IMP data

Unfortunately, the IMP data for these dates are incomplete, but they can give us some 

indication of the conditions at 1 AU from the Sun. Figure 4.24 shows that on 2 April, 

the wind speed at IMP increases slightly, but then there are no further data until 7 April. 

By this time, the speed has reached over 600kms_1, and falls gradually to 300kms_1 by 

11 April. Also, the density is very low on 7 April, and stays low for at least a further eight 

days. This is consistent with the interpretation of the IPS data above, and supports the 

idea of a long-lived, high-speed stream.

4.4.2 Observations o f a transient event

This section describes a transient event observed by a number of instruments that took 

place in November 1990. The Cambridge IPS array observed a density enhancement with 

a g of at least twice the normal, moving outwards from the Sun and up out of the ecliptic 

plane. This enhancement front was very likely caused by a CME.
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Near-Earth Heliosphere Data (OMNI) by OMNIWeb
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Figure 4.24: Density and velocity parameters as measured by IMP during April 1992. Though incom­
plete, the data here still match the conditions as found by the Cambridge IPS array.

On 19 November, there is some enhanced scintillation north of the Sun, but it is not 

very structured, as seen in Figure 4.32. Then, on 20 November a well-defined “arch” of 

high density material has formed, linking from the east to the west of the Sun, centred 

on approximately 60° solar elongation, as in Figure 4.33. In this arch, the g value is at 

least twice the normal, so the density is about four times the ambient. (Remember that 

n oc g2.)

This arched structure has travelled out to ~  90° from the Sun by 21 November 

(Figure 4.34), still retaining its arched shape. On 22 November, the structure seems 

to have moved on and left behind a void which can be seen as the reduced scintillation 

to the east of the Sun (Figure 4.35). The enhancement front itself has diffused a great 

deal to a degree that it is almost unobservable to the IPS array. Perhaps there is a faint 

trace of it in the slightly enhanced material at ~  90° west, and at ~  145° east.

If we now concentrate on the rs maps, there is much evidence that this enhancement 

front was moving fast. On 20 November, there are only sources with a short scintillation 

timescale in the area of the sky where the front is, while any other sources are showing a 

longer timescale. Then on 21 November, the only the sources showing short rs values are 

those at higher declinations (about 90° north of the Sun) where the front is observed. All
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these short timescales would indeed suggest a fast moving enhancement front.

It is possible to do a crude calculation of the front velocity just from its position on 

successive days. Roughly, if we look along the north-south centre line, the elongation of 

the middle of the front is ~  60° on 20 November. On the following day, it has moved to 

~  90°. That means a difference of 30° over one day, corresponding to |  AU per 24 hours.

i  x 1.496 x 108 km , , x
■2— — —— —------ =  577 km s " 1. 4.9)

24 x 60 x 60 s

This is an approximated estimate of the velocity. If a different part of the structure were 

tracked, then a slightly different velocity would have ensued.

The movement of this structure leads us to believe that it was actually a transient, 

rather than a long-lived co-rotating stream. It appears in the sky at both eastern and 

western elongations at the same time. Then, instead of swinging westwards as a co-rotating 

stream would, this structure moves northwards, and retains its shape for two days at least. 

It is most likely to be a large, fast-moving CME, pushing together interplanetary material 

in front of it to form an enhancement front.

More evidence comes from other instruments. Unfortunately, the IMP spacecraft pro­

vides no information for the dates of this particular event, but Ulysses was in a favorable 

position, and was taking measurements.

Comparison with Ulysses plasma data

Figure 4.25 shows the plasma density and velocity as measured by the Ulysses space­

craft in November 1990. At that time, it was approximately 1 AU from the Sun, so it is 

appropriate to use these data as if they were taken in the IPM near to the Earth. The 

spacecraft was at 1.17 AU on 20 November. In fact, Ulysses only started to take plasma 

measurements on 18 November 1990, so that was just in time to observe the passage of 

this interplanetary transient.

There is an obvious increase in density on 20 November, from about 3 to 8 particles 

cm-3 . After two days, the density returns to normal. At the same time on 20 November, 

the measured velocity jumps from an average speed of about 425 km s-1 to over 510 km s-1 . 

This is what would be expected for the passage of a CME. After two days, the velocity 

has returned to the ambient level, but continues to fall over the next five days, going as 

low as 300kms_1. This low velocity could be associated with the aftermath of the CME.
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On 27 November, there is an even greater rise in density, and in velocity. This can be 

supported by features observed on the corresponding g maps. From 24 to 26 November, 

there is a high-density feature growing larger to the north-east of the Sun. On 27 Novem­

ber, most of the sky is showing enhanced scintillation, as this transient feature engulfs the 

Earth. Then it passes away northwards. Possibly this was another, larger CME.

This second transient was observed by IMP, as seen in Figure 4.26. There is a sizable 

increase in density on 27 November, from about 5 particles cm-3 to 30 particles cm-3 , 

and lasting just over one day. The velocity also jumps from approximately 330kms_1 to 

575 km s-1 on 27 November, and there are very sparse data in the following days.

U lysses Hourly Interplanetary Param eters by COHOWeb
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Figure 4.25: Ulysses plasma data from November to December 1990.

Ulysses &: Metsahovi radio bursts

For most of 22 November, and from 10:20 to 16:00 on 23 November, Ulysses recorded a 

series of type III radio bursts. The maximum flux was 5.1 sfu (solar flux units). These 

type III bursts might be associated with solar flares or some other solar activity related 

to the CME.

Also, at 11:42, the Metsahovi radio telescope recorded a strong, 8-minute burst, with 

a flux of >20sfu, supposedly related to a flare at latitude N15°, and longitude W28°. 

Perhaps these radio bursts were associated with the same activity on the Sun as that
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Figure 4.26: IMP plasma data from November to December 1990.

which caused the transients. It has been known for flares to be associated with the ejection 

of a CME, though it is certainly not always the case. It is very difficult ascertain this for 

certain, due to the small amount of evidence available.

4.5 Conclusions

It would not be feasible to have in-situ spacecraft all over the IPM to measure the solar 

wind parameters. Instead, the Cambridge IPS array is an ideal remote sensing device 

producing good quality, all-sky g-maps. The all-sky maps can be used to understand the 

physical processes in the IPM, as has been proved by comparisons with other data sources, 

when available.

The single-station method applied for calculating the velocity of the solar wind is not 

as accurate due to the very short observing time for each source. But if a large number 

of pixels across the sky are approximately the same colour, then many of the sources are 

correlated, so more confidence can be had in the velocity measurements.



CHAPTER 4. VALIDATING AND INTERPRETING  THE M APS 116

SOLAR WIND SPEED SYNOPTIC CHART 
FROM IPS MEASUREMENTS 
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Figure 4.27: A synoptic velocity map, made over two rotations, using the Nagoya radio telescope. The 
faster wind located north of the equator, and between longitudes of 230° and 320°, is suggestive of a low 
latitude coronal hole.

Scintillation T m e s c a l e  f O < T s < 2 s |

Figure 4.28: Cambridge IPS maps for 2 April 1992. On the ^-m ap, the expansive red area to the East 
of the Sun indicates increased scintillation, i.e. high density m aterial. In the rs-map, there are many green 
and blue pixels also to the East of the Sun. These indicate a short scintillation timescale, and hence fast 
moving wind.
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Figure 4.29: Cambridge IPS maps for 3 April 1992.

Scirtillat'on T'm escale  [ 0 < r s < 2 s l

Figure 4.30: Cambridge IPS maps for 4 April 1992.
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Figure 4.31: Cambridge IPS maps for 5 April 1992

S c i r t i l i o i i o n  T m e s c o l e  1 Q < t s < 2 s ]

Figure 4.32: Cambridge IPS maps for 19 November 1990.
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Figure 4.33: Cambridge IPS maps for 20 November 1990.

Figure 4.34: Cambridge IPS maps for 21 November 1990.



CH APTER 4. VALIDATING AND TNTERPRETING THE M APS 120

9 - m a p  f0 .5<q r< 2l  for 2 2 / 1 1 / 1 9 9 0  ( 4 8 2 1 7 )

Figure 4.35: Cambridge IPS maps for 22 November 1990.



Chapter 5

A pplications of the Cambridge 

IPS data set

“He is wise who knows how little he knows”

Socrates

5.1 Introduction

The Cambridge IPS data set has been developed and verified so that it is now ready to be 

applied in different ways, for various different purposes. But firstly, it is very important 

to understand how the 2-dimensional maps relate to 3-dimensional structures in the solar 

wind. Next, the average density and velocity of the solar wind, as measured by IPS, are 

examined as they change throughout the solar cycle. Then, the IPS maps are used to 

obtain an overall picture of conditions in the IPM during times of geomagnetic activity. 

Lastly, IPS data are used to provide more evidence for the existence of a pulsar planet.

5.2 Image interpretation: 3-dimensional structure from 2- 

dimensional imagery

To fully appreciate the structure of the interplantary medium, it is essential to interpret 

the 2-dimensional maps into three dimensions. This is always going to be difficult as it is 

never certain exactly where along the line-of-sight to a source the dominant scintillation

121
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is taking place. As mentioned earlier in chapter 3, this problem has been modelled by 

Woan [97]. The IPS weighting function, K(r, e) is plotted out in Figure 3.1, for a source 

size of 0.5”. K  depends on r, the distance from the Sun and e, the solar elongation.

To a reasonable approximation, most of the scintillation takes place in a shell around 

the Earth, of radius 0.5 AU, as is obvious in Figure 3.1. The point along a line of sight to 

a source where most of the scintillation takes place is called the P  point. Another school 

of thought places the P  point along the line of sight at the point of closest approach to 

the Sun [72], i.e., the line joining the Sun to the P  point is perpendicular to the line of 

sight, see P I in Figure 5.1. From Woan’s scintillation model [97], it is known that this 

scenario is valid only for a point source.

To Source

P 2

Sun A = 1 AU

Shell of maximum

scintillation

Figure 5.1: PI is the P  point given by c l90 , and P2 is that given by Woan’s model. The discrepancy is 
not very significant for this analysis.

For a point source, P I  dominates the diffraction pattern observed at the Earth. But 

for a source of appreciable angular extent, the more distant contributions are blurred out 

and scintillation from material closer to the Earth dominates. This can be understood 

from the weak, thin screen approximation for scintillation, in which the spatial scale of 

the scintillation pattern seen on Earth equals that of the diffracting screen. A screen at 

a distance z from the Earth will give a pattern on Earth that is blurred by a length 6z
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(where 6 is the angular size of the source) and will therefore have a reduced contribution to 

the scintillating signal. The greater the angular size of the scintillating source, the closer 

to Earth the P  point will be. The weighting function in Figure 3.1 shows where the P  

point will be for many lines of sight for a source of 0.5” angular extent.

To Source
Ecliptic North

0  = 90°

= 30 Plane of  
the EclipticSun A = 1 AU

Shell of maximum

scintillation

Figure 5.2: The geometry of the interplanetary medium, showing the shell where most scintillation takes 
place. This figure shows the limit of the wind direction from the Sun which still intersects the shell. This 
occurs at 0  =  30° and e =  60°. In this figure, ecliptic north is up. Therefore, <f) corresponds directly to 
ecliptic latitude.

When the geometry of this shell and the line of sight are considered, it is found to 

restrict the possible extent of observations of the solar wind by the Cambridge IPS array. 

Figure 5.2 is a modification of Figure 3.31. The view is along the plane of the ecliptic, 

and ecliptic north is at the top of the page.

The figure shows the maximum ecliptic latitude from where the wind can emerge, and 

still intersect the shell of maximum scintillation around the Earth. Any wind emerging 

from latitudes higher than this will not intersect the shell, and will therefore be invisible 

in scintillation. The range of ecliptic latitude that can be “seen” is therefore limited to 

< 60° from the ecliptic.

Ecliptic latitude does not correspond to heliographic latitude, as the north pole of the 

Sun is tilted by 7° 15' with respect to the ecliptic north, i.e. the inclination of the solar
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Figure 5.3: The geometry of the Sun’s rotational axis in relation to the ecliptic, with ecliptic north up. 
0 =  7° 15'. This orientation shows the heliographic north pole pointing towards the Earth, at least, as 
close as it gets to pointing towards the Earth. This only happens once per year, when the Sun is at an 
ecliptic longitude of 344°.

equator to the ecliptic is 7° 15' (see Figure 5.3). The ecliptic longitude of the ascending 

node is

Aan =  74° 22' +  84'T , (5.1)

where T  is the epoch in centuries from 1900.0 [2]. A particular source will always be at 

the same heliographic latitude, but its heliographic longitude will change over the course 

of a solar rotation. To calculate heliographic longitude, the solar rotation period is taken 

as 25.38 days, which is the sidereal rotation period at the equator.

For the purposes of this analysis, we are interested in the heliographic latitude on 

the solar surface of the source of enhanced or reduced scintillation. The material that is 

contributing most to the total line of sight scintillation from a source is situated at the 

P  point, as introduced earlier in this section. Even though the heliographic latitude of 

a source is constant, the heliographic latitude of its corresponding P  point will change 

depending on the relative orientation of the Earth and the Sun.

To determine the heliographic latitude of the P  point for a particular IPS observation 

of a source on a particular day, a Fortran subroutine was acquired from Dr A. Breen of 

the University of Aberystwyth, and this subroutine, called c!90, was incorporated into
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my C programs.

The cl90 subroutine works out the P  point as being the point along the line of sight at 

the closest approach to the Sun. This is different from Woan’s shell model which is more 

realistic as it accounts for sources of appreciable angular extent (which includes most of the 

observed scintillating sources in our survey). There is only a slight discrepancy between 

the two methods, so the cl90 subroutine can be used comfortably for the current analysis, 

as in the next section.

5.3 Trends from solar maximum to minimum

The Sun goes through huge changes from the peak to the trough of its activity cycle. At 

maximum, the Sun’s magnetic field is “tangled-up” and complicated. There are many 

more sunspots, loops, flares and prominences than are seen during the quieter minimum. 

In the minimum stage of the cycle, the magnetic field is much simpler, and the polar 

coronal holes can extend down far enough to reach the equator. This leads to well-defined 

high speed flow from low heliographic latitudes.

Rickett and Coles [72] have explored the evolution of solar wind structure from 1972 

(the declining phase of solar cycle number 20) to 1986 (the end of solar cycle 21), using 

the 73.8 MHz three antenna system at UCSD (University of California, San Diego). These 

multi-station IPS velocity measurements are plotted out as three-year averages, as a func­

tion of heliographic latitude. Their results show that during solar minimum, the velocities 

at the higher latitude ranges are far greater than the velocities at lower latitudes. And at 

solar maximum, slow speed wind is observed at all latitudes, as expected.

A review paper by Kojima and Kakinima [46] examines this solar cycle dependence 

for both the UCSD and Nagoya telescopes. The same conclusions are reached about the 

velocity-latitude profile over the solar cycle.

Nagoya synoptic maps on the internet make these differences obvious. F ig u re  5.40 

shows the synoptic map made from all the velocity measurements made over 1990. It 

covers the whole “surface” of the Sun, from —90° to +90° in heliographic latitude, and 0° 

to 360° in Carrington longitude. The speed of the wind is represented on a colour scale 

going from red (300kms_1) to blue (800kms_1). The map is mostly red, so it can be said 

that 1990 was dominated by slow wind at all heliographic latitudes.
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The map for 1994, Figure 5.41, is decidedly different, as it’s in the declining phase of 

the solar cycle. The slow wind is confined to a narrow band at the equator, at heliographic 

latitudes less than ~  ±25°. There is fast wind to be found much nearer the equator than 

before. At Carrington longitude 60°, there is a coronal hole as low as 35° N, where the 

wind is streaming out at ~  700 km s-1 .

These changes are readily observable in the IPS data set, as will be demonstrated below.

5.3.1 Trends observed in the Cambridge IPS data set

The program THLat. c was written to plot out the average values of g and rs for all good

sources, as a function of the heliographic latitude of their P  points, eg. Figure 5.4. Over

a certain time interval, the g and rs parameters were binned with respect to heliographic 

latitude, and then the geometric mean was taken. Only the t s values from observations 

with a SNR > 5 were taken into account. The heliographic latitude of the P  point for each 

observation was worked out using the cl90 subroutine. At Cambridge, latitude 52.16°, 

the furthest south of the ecliptic that it is possible to observe with the radio array is about 

10°. But, because of the motion of the Earth around the Sun, the range in heliographic 

latitude was quite large, from about —60° to 65°.

The error bars on the average g and rs values represent the standard deviation of the 

mean, crm, and hence are dependent on the number of data points as well as the standard 

deviation of the parameters themselves. am is calculated with the following formula [85]:

2 _  ^ Xi ~  fr 2\
N ( N  -  1) ’ ( ' }

where X{ is any particular observation, and N  is the number of observations.

It is clear that the error bars are greater at negative heliographic latitudes. This is 

because the Earth and Sun only spend a little time aligned so that the observed P  points 

match with low heliographic latitudes, and therefore the data available are sparse. The 

error bars on the g points are much lower than those for the rs points because the rs 

points were only included in this analysis if their SNR was sufficiently large (SNR>5). 

This restriction is not necessary for the g data points, hence there are many more of them.

Figure 5 .4  shows an example for the last 265 days in 1990. Concentrating mostly on 

positive heliographic latitude (as this is where most of the data points are to be found), the 

general trend is for an average g of approximately 1 at the equator, and a slightly higher
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g and Ts against Heliographic Latitude, for 265  days, from 47991.
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Figure 5.4: For an interval in 1990 (the last 265 days), the average g and rs values axe plotted against 
the heliographic latitude of the corresponding P  points. Only the observations in the range 30° <  e <  100° 
were used. The g value is approximately 1 over the whole range in latitudes. The rs values at very low 
heliographic latitudes axe not very reliable as only a few data points were found at these latitudes, as is 
can be seen from the large error baxs.

average away from it. The rs average is not showing a definite trend, but it is slightly 

decreasing further away from the equator. The error bars are quite large south of the solar 

equator (negative heliographic latitudes), so even though I have included this part of the 

plot, it should not be taken as a significant trend that rs is greater to the south. In 1990, 

solar maximum, we do not expect to see organized structure with heliographic latitude, 

so this figure is consistent with that.

Figure 5 .8 shows the same plot for 1994, when solar activity was declining. The rs 

average is certainly decreasing with heliographic latitude especially after 40°. The average 

velocity of the wind is therefore greater with increasing distance from the solar equator. 

This is what would be expected at solar minimum, as discussed earlier.

If we look at the intervening years, 1991 to 1993, we can see a gradual change from a 

disorganized rs profile in 1991 (Figure 5.5), to one that is decreasing with heliographic 

latitude in 1993 (Figure 5.7).

It is quite obvious that the g values in 1994 (Figure 5.8) are far lower than for 1990
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g and Ts against Heliographic Latitude, for 365 days, from 48257.
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Figure 5.5: For 1991, the average g and rs values axe plotted against the heliographic latitude of the 
corresponding P  points.

g and Ts against Heliographic Latitude, for 366 days, from 48622.
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Figure 5.6: For 1992, the average g and rs values axe plotted against the heliographic latitude of the 
corresponding P  points.
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g and Ts against Heliographic Latitude, for 365 days, from 48988 .
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Figure 5.7: For 1993, the average g and rs values axe plotted against the heliographic latitude of the 
corresponding P  points.

g and Ts against Heliographic Latitude, for 269 days, from 49353.
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Figure 5.8: For an interval in 1994, the average g and rs values are plotted against the heliographic 
latitude of the corresponding P  points.
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(Figure 5.4). Therefore, it can be said that the typical density in 1994 was lower than in 

1990. This is possibly because there were more coronal holes in 1994, with fast, low density 

streams flowing out. At solar maximum, in 1990, there are fewer, less-stable coronal holes, 

therefore the solar wind is, on average, slower and more dense.

IM P -6  d e n s ity  m e a s u r e m e n ts  fo r  3 6 5  d a y s  in 1 9 9 1 .

IW
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Figure 5.9: The IMP-8 density measurements for the whole of 1991, with a running 18-day average 
(broken line).

This trend can also be seen in IMP-8 density measurements. Figure 5.9 shows the 

density measured by IMP-8 over the whole of 1991, at solar maximum. The average 

density value is over 10cm-3 . But in 1994, seen in Figure 5.10, the average density is 

much lower, typically about 5 cm-3 .

The Cambridge IPS results have agreed with the observations of Rickett and Coles [72] 

and with those made by the Nagoya telescope. The velocity of the wind shows a tendency 

to increase with heliographic latitude in the declining phase of the solar activity cycle. 

This is consistent with the theory that coronal holes dominate the IPM structure more at 

solar minimum than at maximum.

5.4 The link between IPS imaging and geom agnetic storm s

In this section, specific events are investigated which caused a notable geomagnetic effect 

at the Earth. In conjunction with other experiments, the evidence provided by the IPS
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IMP-8 density m easurem ents for 270 days in 1994.
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Figure 5.10: For an interval of 270 days in 1994, IMP-8 density measurements axe plotted.

maps contribute to our understanding, but make it clear just how difficult it can be to 

piece together the precise chain of events that can cause geomagnetic disturbances.

5.4.1 The A ugust 1992 events

The events of August 1992 did not lead to a major geomagnetic storm - the Ap index only 

rose to 40 - yet it is still an active, interesting period.

The Yohkoh satellite observed a large solar flare on 3 August, 1992 (Figure 5.11) 

near the eastern limb, and reaching a maximum soft X-ray intensity at a UT of 0706. On 

Figure 5.11, a coronal hole can be seen at the centre of the disk, extending from the 

north pole to the equator. This coronal hole is also evident in the He 10830 A spectro- 

heliogram map for this Carrington rotation (1858) shown in Figure 5.12. On 4 August, 

the SAMPEX satellite recorded a sharp increase in proton levels in the near-Earth IPM, 

especially in the high-energy protons (20-29 MeV), shown in Figure 5.13. The maximum 

was reached on 6 August.

GOES also noted the passage of this disturbance, as seen in Figure 5.14. The proton 

levels begin to rise on 3 August, and reach their peak on 6 August. This event is named 

as one affecting the Earth environment, in the GOES list. In this list, it is associated with
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Figure 5.11: Yohkoh SXT image for 3 August 1992. Note the large active, flaring region near the eastern 
limb, just below the equator. Also apparent is a significant coronal hole towards the centre of the visible 
disk, reaching down to the equator.
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Figure 5.12: The Helium 10830 A image for Carrington rotation 1858. Heliographic longitude runs from 
0° at the left to 360° a t the right. Heliographic latitude runs from —90° a t the bottom  (south pole) to 
+90° at the top (north pole). The coronal hole seen in the Yohkoh image is also apparent here at easterly 
longitudes, reaching down to a heliographic latitude of +30°.
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Figure 5.13: The SAMPEX Energetic Particle record for August 1992, measured in-situ at the geographic 
poles (averaged over the two polar cap passes, i.e., above 70° invariant latitude, of each orbit). Note the 
significant increases from 3 to 9 August.
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a flare on the Sun at 9° south and 68° east, that was observed on 3 August, the same one 

observed by Yohkoh in Figure 5.11.

Both GOES and SAMPEX show a gradual build-up to the peak proton intensity. This is 

not consistent with the flare association. If SEPs (solar energetic particles) are emitted by 

a flare on the west side of the Sun, there would be an almost direct magnetic connection 

to the Earth, and the particles would have arrived almost all at once, causing a sharp 

discontinuity in the proton flux profile. If the source of the SEPs is a flare on the eastern 

side of the Sun, then the SEPs would not arrive for a few days, due to poor magnetic 

connection.

In this case, the flare was at the east, and the SEPs started to arrive on the day of 

the flare. Therefore the flare association for these energetic particles is less plausible. Of 

course, this is merely a general trend for a regular magnetic structure of the Sun. In 

reality, the magnetic lines can get very tangled and complicated, especially during solax 

maximum.

More indications of the interplanetary conditions in this period are observable on a 

series of IPS maps, which shows a disturbance travelling out from the Sun. Figure 5.42 

to Figure 5.45 show the evolution of this disturbance, possibly a CME that was related 

to the same active region that produced the flare and the SEPs. But if it is a CME, then 

it was emitted far too early to be associated with the flare. On 2 August, it had already 

travelled to ~  60° According to Harrison [29], CMEs are ejected no more than one hour 

before a flare if the two are to be associated.

Another possibility is that this enhanced scintillation is caused by a shock front pro­

duced by a sudden increase in the speed of the outflow from the coronal hole seen in the 

Yohkoh image, Figure 5.11, and also in the He 10830 A spectroheliograph, Figure 5.12. 

This would follow from the postulation of Bravo that shock fronts are caused by intermit­

tent eruptions from coronal holes [11]. We shall explore this hypothesis in the following 

analysis.

In the IPS g maps from 28 July to 3 August, there is a low density region very apparent 

to the east of the Sun. This is probably the fast, low density plasma coming from the 

central coronal hole. It is moving out from the Sun. On 2 August, an enhanced scintillation 

region appears at about 60° elongation. This could be caused by changes in the coronal 

hole configuration leading to a rapid increase in flow from the hole. This high speed plasma
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Figure 5.14: The GOES Energetic Particle record for August 1992, measured in-situ and displayed as 
daily averages. The top line, E l, represents electrons with energy >2 MeV. The next seven lines down the 
plot show protons of increasing energy, from II >1 MeV to I7>100M eV. There is a significant significant 
increase in proton levels from 3 to 9 August.

has created a shock front, and this is what we see in Figure 5.42.

By 3 August, this enhancement front has moved out further from the Sun, and is seen at 

about 80° east in Figure 5.43. On 4 August, the high density shock is totally dominating 

the near Earth environment, as in Figure 5.44. This dominance continues on 5 August, 

see Figure 5.45, suggesting that it is a very large disturbance. By 6 August, it has moved 

off to the west.

This high density material was observed by the IMP spacecraft. The first graph of 

Figure 5.15 shows the plasma density rising on 4 August, reaching a dramatic peak at 

the middle of the day, the same day that the g maps show a large density enhancement 

near the Earth. The wind is also increasing in speed on 4 August, after decreasing from 

a high at the beginning of the month caused, perhaps, by the coronal hole. Again, the 

speed increases on 5 August. Then there is a gap in the solar wind data as IMP travels
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Figure 5.15: The IMP record for August 1992, showing solar wind density, velocity and high energy 
(>10 MeV) proton flux.

into the magnetopause.

The last plot in Figure 5.15 shows the proton flux over 10 M eV. This begins to rise on 

4 August, then jumps to a maximum on 6 August, as IMP is entering the magnetopause, 

and at the same time that GOES and SAMPEX reach a maximum in high energy proton 

flux. It seems that all these different instruments are corroborating each other’s high 

energy particle evidence.

Evidence that the disturbance was moving very fast is found in the Nagoya IPS velocity 

data. Figure 5.16 shows that on 4 August, the velocity of material east of the Sun was 

averaging at about 700kms_1 for some sources. These high speeds are also seen on the 

next day, 5 August (Figure 5.17), but for sources farther out from the Sun, proving 

that this is fast-flowing material moving away from the Sun. On 6 August, more ambient 

speeds were recorded by the Nagoya telescope, showing that the disturbance had passed 

on by this time.

These observations suggest the following scenario. A coronal hole at longitude ~  80° 

was allowing the escape of fast flowing, low density material into the solar wind. This
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Figure 5.16: Map of Nagoya IPS velocity values for 4 August 1992. The typical wind speed to the east 
of the Sun is about 700 k m s-1 for sources 10, 11 and 12. This corresponds to a fast moving disturbance, 
pushing out a shock front ahead of it. The high density shock can be seen clearly in Figure 5.44, the 
corresponding Cambridge IPS g map. This material is moving slower, at about 400 km s- 1 , as can be seen 
for sources 13, 17 and 18.

hole appeared on the eastern limb of the visible solar disk in the middle of July 1992. The 

low density stream emerging from the hole was apparent as it moved westwards across 

the Sun, forcing the streamlines into an Archimedean spiral. A shock front was created 

by changes in the coronal hole structure which led to a huge increase in the velocity of 

the material emerging from it. This shock front swung into view for us at the Earth on 2 

August, and totally engulfed the Earth from 4 to 5 August.

Also, this shock front created energetic particles by acceleration. Hewish et al. have 

explored this idea of particle acceleration by interplanetary shock fronts [34]. Using the 

cn-particle flux in the range 9-70 MeV from the GMS/SEM satellites, they found that the 

largest particle events caused by shock passage can increase the flux by a factor of ~  103.

There is the possibility that the energetic particles seen by GOES, SAMPEX and IMP
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Figure 5.17: Map of Nagoya IPS velocity values for 5 August 1992. The very fast wind can still be seen 
for sources 12 and 15, which show a velocity of about 700 km s- 1 . Sources closer to the Sun (9, 10 and 11) 
show slower speeds of almost 500 km s- 1 , which show that the solar wind is returning to “normal” after 
the passage of this transient.

to maximize on 6 August could be caused by the flare of 3 August. But energetic particle 

fluxes from a flare are usually characterized by a short timescale [70], [26], only a few 

hours, rather than a few days, as was the case here. Also, the high density disturbance 

that arrived at the Earth on 4 August clearly indicates the arrival of a shock front that 

is capable of generating these particles. The evidence from IPS confirms that the shock 

front was most probably associated with a co-rotating stream emanating from Carrington 

longitude ~  80°.

5.4.2 The March 1991 events

In late March 1991, there was a severe, well-studied geomagnetic storm. F igure  1.12 

has shown that the Ap index rose to more than 150 on 24 March. Because of the severe
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geomagnetic effects, this period has been extensively examined. A whole issue of Geophys­

ical Research Letters was devoted to its study, e.g., Wenzel and Smith [95] and Phillips et 

al. [61].

There were extremely high fluxes of energetic particles measured by orbiting satellites 

during the storm. The measurements made by the GOES satellite are shown in Figure 

5.18. They show a huge and sudden flux increase just before midday on 23 March. 

The IMP-8 satellite also observed a sharp increase in proton flux (> 10 MeV) just before 

midday on 23 March (Figure 5.19). Both of these satellites showed that the energetic 

particle flux had returned to near ambient conditions by 25 March 1991.
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Figure 5.18: The GOES data for high energy electrons (E l) and protons (II to 17) in March 1991. The 
huge increase on 23 March heraalded the beginning for a severe geomagnetic storm.

Sanderson et al. [74] have explained the origin of these SEPs in terms of a series 

of intense solar flares, occurring in a very active region 20° south of the solar equator. 

These flares were also recorded as strong radio bursts at 37 GHz by the Metsahovi Radio 

Observatory, and are detailed in their flares catalogue.

Another possibility is that the energetic particles were created by a shock front travel­

ling in the IPM. At this time, the Sun was extremely active, and many different phenomena
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Figure 5.19: IMP-8 measurements of solar wind density and speed in March 1991, not including the 
period of interest, 22-25 March, when a geomagnetic storm occured. There are high energy proton flux 
recordings available in the third graph. These show an enormous increase in protons of energy >10M eV  
on 23 March.

were happening at the same time, so it is very difficult to pick out exactly what occurrence 

on the Sun caused any particular geomagnetic effect. It appears however that there was 

one very fast and powerful shock which had a huge influence on the IPM. This shock front 

was observed by both the Cambridge IPS array, and by Ulysses which was ~2.5 AU from 

the Sun at this time.

First, we examine how the IPM was structured before this shock occurreded. On the 

IPS p-map for 17 March 1991, a relatively slow-moving, high density disturbance was 

observed to the east of the Sun (Figure 5.46). There is evidence to suggest that this is 

the co-rotating stream observed on the two previous months, see the IPS synoptic plots 

by Woan [97]. Moving slightly faster than the material preceding it, it compresses the 

material in front to form a high density, co-rotation interaction region (CIR). This is what 

we see as a density enhancement in the IPS g maps from 17 to 22 March.

On subsequent days, it moved slowly eastwards, dominating the IPM at 90° east on 20 

March (Figure 5.47), and covering the whole sky on 21 March (Figure 5.48), before 

moving off to the west on 22 March. On 20 March, the density of the solar wind measured 

by IMP at 1 AU was about twice the average, peaking at 20 cm-3 , see Figure 5.19. The
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velocity measured by IMP was nothing out of the ordinary, peaking at ~  425 km s-1 on 

20 March.

Already on 21 March, another disturbance can be seen coming from the east of the 

Sun (Figure 5.48). This is the large, fast-moving shock noted earlier. It could have been 

caused by a sudden change in a coronal hole, resulting in the rapid outflow of low density 

plasma, or by a CME. Because it is moving in the rarefaction created by the CIR, there 

is not so much material in front of it to slow it down, as might occur normally. But it is 

still able to create a shock front, where the remaining material has been swept up. The 

leading edge of this shock front can be seen on 22 March at 90° east of the Sun (Figure

5.49).

On its Earth orbit, IMP would normally have entered the magnetopause on 21 March, 

and therefore, there is no solar wind data recorded on the OMNIWEB database. However, 

because this shock front was so powerful, the magnetopause was pushed in from its usual 

extent at 10 Earth radii to inside 6.6 Earth radii [49], making some solar wind measure­

ments available. Through a private communication (A. Lazarus), it was learned that IMP 

recorded solar wind velocities over 1000 km s-1 on 24 March. At that speed, the shock 

front only took ~  42 hours to reach the Earth from the Sun, i.e.

1 AU
travel time = --------------r  =  41.7 h rs . (5.3)

1000 km s" 1
Of course, this is only a rough estimate, as the angular extent and direction of travel of 

the shock are not exactly known.

This very fast shock seems to have had a dramatic effect on the preceding CIR, driving 

it to even higher speeds. Prom ~  425 km s-1 at 1 AU, it arrived at Ulysses at a velocity 

of over 600 km s-1 , in the form of a shock. Ulysses recorded this shock late on 23 March 

(Figure 5.20), where a large increase in velocity from ~  400 km s-1 to ~  600 km s-1 is 

followed by a decrease in plasma density. A travel time of four days (from 18 March to 23 

March) is consistent with a disturbance travelling 1.5 AU at a speed of ~  600km s-1 .

Meanwhile, back at Earth, the IPS g map for 23 March (Figure 5.50) shows the 

leading edge of the big shock front to have moved beyond 90° eastern elongation. On 

24 and 25 March, it totally dominates almost the whole sky as seen by the IPS array 

(Figure 5.51 and Figure 5.52). By the 28 March, this disturbance has left the near- 

Earth environment, and a low density rarefaction follows in its wake for at lease four days, 

see Figure 5.53.
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Figure 5.20: The solax wind velocity and density as measured by the Ulysses spacecraft at 2.5 AU in 
March 1991.

To further illustrate the shape and movement of the shock front from IPS g measure­

ments, Figure 5.21 plots out g as a function of eastern elongation, on 23 March. The 

shock front can be very clearly seen with its leading edge at 90°. Figure 5.22 plots out 

the same graph for 24 March. The shock front has moved on by then, and the sharp 

leading edge is not so apparent.

Of course, we cannot dismiss the influence of the ionosphere on the IPS maps. During 

such a severe geomagnetic storm, the ionosphere is likely to be highly disturbed, leading 

to ionospheric scintillation and thus contamination of the g maps. This could account 

for some of the very high g values obtained from 24 to 25 March, especially at very 

large elongations. However, Figure 5.21 clearly shows the shape of the leading edge of 

the shock front, leading to the belief that at least that day was free from ionospheric 

scintillation.

Ulysses detected the arrival of the big shock on 25 March, with an increase in speed 

from ~  600km s-1 to ~  900 km s-1 . This is to be as expected, as the leading edge of the 

shock was observed on a g map to be at 1AU at about 1800 hrs on 22 March (Figure

5.49), and Ulysses was at 2.5 AU during this period. The travel time between these radii 

is 62.5hrs at a speed of 1000km s-1 . 62.5hrs after 1800hrs on 22 March corresponds to
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Figure 5.21: g versus elongation for all sources east of the Sun on 23 March 1991. The leading edge of 
the shock front is very apparent as the g value drops sharply at e =  90°.

g as a function of eastern elongation, for 48339
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Figure 5.22: g versus eastern elongation on 24 March 1991. The wide spread in g for large elongations 
is suggestive of ionospheric interference.
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early on 25 March, which is exactly when Ulysses observed this second, more powerful 

shock.

The body of evidence presented here suggest that the geomagnetic storm must, have 

been caused by this huge, fast moving shock. At such a large velocity (~1000km s-1 ), the 

shock was able to accelerate a large number of particles to high energies, and thus generate 

the record-high fluxes that were recorded by GOES and IMP. Sanderson et al. [74] have 

noted the depletion in low energy particle flux at Ulysses during the shocks, suggesting 

that the high energy particles were indeed shock accelerated and not of direct flare origin.

NSO HEI CORONAL HOLE ESTIMATE 
CARRINGTON ROTATION 1840

LONGITUDE

Figure 5.23: The Helium 10830 A map for Carrington rotation  1840, from 11 March to 7 April 1991. 
Heliographic longitude runs from 0° at the left to 360° a t the right. Heliographic la titude runs from —90° 
at the bottom  (south pole) to +90° at the top (north pole). A lot of coronal holes are apparent. The 
central longitudes of this map correspond to the meridian passage on 24 March.

The powerful flaring going on at the Sun could be just another symptom of a very 

active period for the Sun, rather than the cause of the high fluxes of energetic particles. 

Perhaps the flaring was caused by large scale magnetic reconnection which also resulted in 

the ejection of a CME, and a sudden increase in velocity from a coronal hole. This type of 

velocity discontinuity would explain the big shock front. Looking at the Helium 10830 A 
map for this rotation (Figure 5.23), there are indeed many coronal holes that could be 

the source of the high speed solar wind.

Considering all the relevant observations, it is clear that the event of March 1991 was 

a very complex and unusual affair, and perhaps the exact sequence of events will never be 

totally determined. Despite this complexity, the global IPS data have added significantly
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to our understanding of the period, identifying the most likely trajectory of the powerful 

shock and the complex interplanetary environment through which it propagated.

5.4.3 The M ay 1992 events

Another major geomagnetic storm occurred in May 1992, when the Ap index rose to almost 

200 on 10 May, see Figure 5.24. The GOES spacecraft recorded a sudden increase in 

energetic particles at about 12:00 UT on 9 May (Figure 5.25).

^  Indices  Data  May 1 9 9 2  SPIDR

Daily S u n s p o t  N u m b e r 10 .7cm  Flux Adi to  1 AU
F 150
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Figure 5.24: Data for May 1992 provided by NGDC, including the daily sunspot number, the 10.7 cm 
flux, the Kp sum index and the Ap index. Note the huge jump in Ap from 9 to 11 May.

According to Kozuka et al. [47], this geomagnetic storm was initiated by a shock wave 

associated with a disappearing filament on 7 May. They monitored the speed of this shock 

wave using the multi-station IPS array at Nagoya, and found that its initial speed was 

over 1000km s-1 , before deceleration nearer to the Earth.

The IMP measurements show a shock wave arriving at the Earth late on 9 May, at 

nearly 900kms-1 , while the density of the solar wind increases from 20 cm-3 to 30cm-3 

on the same day (Figure 5.26). The arrival of this shock wave was accompanied by 

a huge increase in proton flux of energy >10MeV. These energetic particles were also 

observed by GOES.
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Figure 5.25: The GOES high energy particle flux in May 1992. Fluxes for all particles increase dramat­
ically on 9 May.

By studying the Yohkoh soft X-ray images for this period, Kozuka et al. found a 

transient coronal hole appearing on 7 May in the same south-eastern quadrant as the 

disappearing filament, and lasting about 17 hours. They suggest that it was fast outflow 

from this coronal hole which was responsible for driving out the shock wave. The same 

magnetic reconfiguration that caused the filament to disappear could also have caused this 

coronal hole to appear. In the Yohkoh image for 7 May (Figure 5.27), we can just see this 

coronal hole to the east of the active arcade associated with the filament disappearance.

Looking carefully at the GOES plots for 9 May (Figure 5.25), we could split the data 

into two separate shock waves. In fact, there were two separate sudden commencements 

(SCs) on 9 May, the first at 15:41 UT and the second at 19:56 UT. And in the IMP 

density plot, there are two well-defined peaks late on 9 May (Figure 5.26). Kozuka et 

al. suggest that this second shock was related to a solar flare at S26E08 at 15:12 UT on 

8 May. If this were the case, it would mean a shock velocity of about 2000km s-1 , which 

is uncomfortably high.

Next, the Cambridge IPS g maps will be investigated. As we saw in sec tio n  4 .4 .1 , 

there was a long-lived CIR emanating from a coronal hole from September 1991 to May
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Figure 5.26: The IMP-8 recording in May 1992, of solar wind density and velocity, and high energy 
proton flux (>10M eV ).

1992, and evident in the g maps as it passed by the Earth every solar rotation. The 

coronal hole can be seen in the Helium 10830 A spectroheliograph plot for this rotation, 

in Figure 5.28. It is at the centre of the diagram, reaching down to about 20° north of 

the equator, and the central longitude here corresponds to the meridian passage on 7 May.

On 7 May, the enhanced density interaction region at the leading edge of the CIR has 

reached 1 AU, and is obvious in the g map (Figure 5.54). This density enhancement 

was also recorded by IMP on 7 May (Figure 5.26). It totally dominates the eastern sky 

on 8 May (Figure 5.55). On 9 May (Figure 5.56), it is more intense at all eastern 

elongations, and western elongations are also showing density enhancements.

On 7 and 8 May, most of the rs values at the location of the density enhancement 

are quite low, suggesting a fast moving disturbance. On 9 May, there are even more rs 

values and they are lower again. It was late on 9 May that the previously mentioned 

shocks arrived at Earth, according to IMP and GOES. From the evidence, it is possible 

that these fast moving shocks collided into the CIR, and speeded it up, while at the same 

time accelerating many particles to give the huge fluxes of high energy particles that were
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Figure 5.27: Yohkoh SXT image for 7 May 1992.



CH APTER 5. APPLICATIONS OF THE CAMBRIDGE IPS DATA SE T 149

NSO HEI CORONAL HOLE ESTIMATE 
CARRINGTON ROTATION 1855

LONGITUDE

Figure 5.28: Helium 10830 A spectroheliograph for Carrington rotation 1855. Heliographic longitude 
runs from 0° at the left to 360° at the right. Heliographic latitude runs from —90° at the bottom (south 
pole) to +90° at the top (north pole).

measured by GOES and IMP in the latter half of 9 May.

On 10 May, very high densities are seen almost all over the sky (F ig u re  5.57). This 

day was the peak in the geomagnetic storm, according to the Ap index. There is surely 

some ionospheric interference in this map as the ionosphere is bound to be disturbed by 

such a strong geomagnetic storm. F ig u re  5 .29 shows the profile of g values as a function 

of eastern elongation for 9 May. The shock front can be seen as the decrease in g values 

at ~  110°. Yet the profile for the next day, 10 May (F ig u re  5.30), has a wide spread of 

g values for elongations greater than ~  80°. This lack of any structure could be caused by 

ionospheric scintillation.

On 11 May, the disturbance is seen moving off to the west (F ig u re  5 . 5 8 ) .  The g map 

for 12 May shows the low density rarefaction in the wake of the high density disturbances 

(F ig u re  5.59), which continues for four more days.

During April to May 1992, the Cambridge IPS array was used in a coordinated cam­

paign with the Ooty radio telescope, located in southern India [57]. The Ooty telescope is 

a large, steerable, cylindrical paraboloid (530 m x 30 m), working at 327 MHz. For the co­

ordinated campaign, the Ooty telescope observed about 150 scintillating sources between 

—45° and +45° in declination, and obtained a g value and a velocity estimate for each.

F ig u re  5 .31 shows the g values recorded from 7 to 10 May 1992, by the Ooty telescope
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Figure 5.29: g versus elongation for all sources east of the Sun on 9 May 1992. The leading edge of the 
shock front is apparent as the g value drops at e =  110°.
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Figure 5.30: g versus elongation for all sources east of the Sun on 10 May 1992. At elongations greater 
than ~  80°, there is no apparent structure in the g values. This confusion could be caused by ionospheric 
scintillation.
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Figure 5.31: The g values measured by the Ooty telescope axe on top, and those recorded by the 
Cambridge IPS array are on the bottom. The g values are plotted as a function of eastern elongation for 
four days, from 7 to 10 May 1992.

(on top) and the Cambridge array (on bottom), as a function of eastern elongation. This 

was taken from a paper by Manoharan et al. [57]. They were using the less accurate 

Cambridge g values that were computed at the time of the survey, rather than those 

calculated in this project. But comparison of the Cambridge g profiles in Figure 5.31 

for 9 and 10 May with the g profiles made during this project, Figure 5.29 and Figure 

5.30, shows that they are not too dissimilar.

It is clear from Figure 5.31 that the g values obtained from the two different instru­

ments are comparable, especially when considering the range of g obtained. On 7 May, 

for both instruments, 0.6 < g < 2, though the Cambridge data show a general increase at 

higher elongations due to the passage of the CIR which, by then, was out of the observa­

tional range of the Ooty telescope. On 8 May, the range in g increases dramatically, where 

g rises to > 3 for both telescopes, indicating the passage of the large, high density shock 

wave. Enhanced scintillation is maintained on 9 May, before almost ambient conditions 

return for both telescopes on 10 May.

Of course, the Ooty and Cambridge telescopes observe the same sources, but at different 

times of the day, therefore making it difficult to do a direct comparison, and some spread of 

values is to be expected. It is satisfying that approximately the same results are obtained
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by very different instruments at different sides of the world, confirming the validity of the 

IPS technique over the period of interest.

In this section, rather than attempt to fully explain the source of the shocks from the 

Cambridge IPS evidence alone, I have presented the evidence gathered by other investiga­

tors, together with that available from our g maps. The g maps help trace the evolution of 

interplanetary disturbances in the solar wind beyond 30°. Even with this new evidence, it 

is often difficult to determine the course of events, especially when the IPM is perturbed by 

more than one major disturbance. IPS can only give a 2-dimensional representation of the 

solar wind density structure. A complete understanding of complex events such as these 

will only be available once three-dimensional data (from spacecraft such as STEREO) are 

available.

Despite these issues, the g and rs maps have been useful in the investigation of certain 

events, by illuminating just how complex the chain of events is, and how it is not often as 

simple and clear-cut as might be first thought.

5.5 Pulsar planet detection

In 1967, the Cambridge IPS array was used in the discovery of pulsars [33]. Their trace is 

evident in IPS plots, as pulsars axe intrinsically variable (or “pulsating”). The difference 

between pulsars and other “normal” scintillating sources is that pulsars will show a flatter 

A{e) curve. The response of the scintillometer is NOT caused solely by diffraction in the 

solar wind, therefore their scintillation is less strongly affected by elongation from the 

Sun. This section will not deal with the detection of pulsars themselves, but with the 

planets that have recently been discovered to be in orbit around a pulsar, and how IPS 

can contribute to the verification of the existance of these planets.

In 1992, Wolszczan [99] announced the presence of two Earth-mass planets in orbit 

around the pulsar PSR B1257+12. This deduction came from highly sensitive timing 

observations of the pulse TOAs (Time Of Arrival of pulses) with the 350 m Arecibo radio 

telescope. The proposed planetary masses around the pulsar lead to reflex motion of 

the pulsar itself, which means that the light-travel times for the pulses arriving from the 

pulsar are disturbed. The timing residuals between the predicted and actual TOAs, reveal 

periodicities corresponding to planetary orbits. Two planets were observed to have highly
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Figure 5.32: The positions of the Pioneer 10 spacecraft and the pulsar PSR B1257+12 in relation to the 
Earth and its orbit around the Sun.

stable, nearly sinusoidal periodicities at 66.6 and 98.7 days.

It is important to note that no other millisecond pulsars routinely observed at Arecibo 

with the same data acquisition equipment showed a similar affect in their timing residuals. 

Also, it appears that the periodicities are independent of radio frequency, implying that 

they are really caused at the source of the radio waves, and not by dispersive propagation 

effects along the line of sight to Earth.

In 1994, further TOA observations of PSR B1257+12 revealed a third planet with a 

25.34 day orbit [98], referred to as planet A. The perturbations caused by this Moon-sized 

planet were weaker and had been more difficult to detect.

But later, in 1997, Scherer et al. [76] revealed evidence that the 25.34 day periodicity in 

the pulsar’s TOA data was not caused by a planet in orbit around it. They suggested that 

the radio pulses from the pulsar were affected by their passage through the IPM, and hence 

showed a periodicity similar to the Sun’s rotation. This same effect was observed with 

the Pioneer 10 spacecraft, whose radio carrier wave for Doppler data showed a 25.3 day 

periodicity over a long time span (nine months). They concluded that the 25.34day 

periodicity seen in the TOA pulsar data was not caused by a planet A, but instead by 

electron density variations in the IPM.

It could be a mere co-incidence that the two periodicities are the same. The fact that
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they are so similar actually raises suspicion. The IPM is a very turbulent place, with 

different phenomena dominating at different times, and structures being “swallowed up” 

by faster moving streams catching up with them. The pulsar PSR B1257+12 and Pioneer 

10 are at very different longitudes (see Figure 5.32), and so the line of sight to each goes 

through different parts of the IPM. Therefore it is very unlikely that the same phenomenon 

(electron density variations in the solar wind) will affect the radio waves coming from both 

in exactly the same way, and leading to the exact same periodicity, to the precision of a 

few hours (a tenth of a day).

Scherer et al. claim that the periodicity in the Pioneer 10 Doppler data is caused by 

density variations in the IPM. IPS is another method which can observe density variations 

in the IPM, and the Pioneer 10 measurements occurred within our survey period. IPS 

should therefore be able to reveal the same periodicities seen by Scherer et al. We shall 

see that the IPM data do not confirm Scherer’s claim, but rather undermine it.

When Pioneer 10 is in conjunction with the Sun, as viewed from Earth, it is impossible 

to carry out these Doppler experiments, due to solar noise. But there is a nine month 

window of opportunity, centred on solar opposition, when the Doppler observations can 

be carried out (see Figure 5.32). In 1993, solar opposition occurred around Dec. 4th, 

so, Scherer et al. analyzed the Pioneer 10 Doppler data from July 1993 to April 1994.

To obtain the Doppler data, a signal is sent from Earth at a frequency of 2.1 GHz. It 

is transponded by Pioneer 10, and then received back at Earth hours later. To determine 

the Doppler shift, the Doppler data are coherently referenced to hydrogen-maser frequency 

standards at Deep Space Network (DSN) stations in California, Australia and Spain.

Because they travel only in the IPM, the radio waves are affected by the plasma density 

variations along the ray path there. Changes in refractive index along the line of sight 

cause variations in optical path length that appear in the Doppler data.

One of the best ways to search for periodicities in a data set is to produce a periodogram. 

The periodogram, discussed in chapter 13 of Numerical Recipes [64], estimates the power 

spectrum of a time series. It can search through the Doppler data and find any periodicities 

in the data set.

Systematic effects were removed by Scherer et al. from the Doppler data taken during 

these nine months, and the resulting periodogram is in Figure 5.33. The strongest 

periods appeared at 25.3 and 13.3 days, both sharp peaks at a confidence level > 95%.



CHAPTER 5. APPLICATIONS OF THE CAMBRIDGE IPS DATA SET 155

13.325.3
18.5

0 0.1Frequency {1/days)

Figure 5.33: Scherer’s periodogram for Pioneer 10 Doppler data, covering the nine month interval centred 
on solar opposition. The confidence level for each particular frequency is plotted. The strongest period is 
at 25.3 days.

There were three other periods with confidence levels > 50%. These were at 18.5, 11.2 and 

52.9 days, in decreasing strength of confidence. Only the strongest period at 25.3 days is 

explained by Scherer et al., and is interpreted as being due to solar rotation.

Periodicity searches in in-situ data

Pioneer 10 itself took in-situ density measurements, which should display the same pro­

posed periodicities if the argument holds and, more importantly, if the same structure is 

“frozen in” to the IPM. If the structure is not “frozen in”, then it would be highly unlikely 

that the same periodicities would be observed for lines of sight that were almost 180° away 

from each other, as are the lines of sight to Pioneer and the pulsar, see F igure 5.32.

From NSSDC (National Space Science Data Centre), I have downloaded the Pioneer 10 

density measurements for the same nine month period that was dominated by the 25.3 day 

period, according to the Doppler data. Figure 5.34 shows a Lomb-Scargle periodogram 

made from these data.

Spectral analysis on unevenly sampled data can be difficult. The Lomb-Scargle method 

for finding periods is a variant of the classical periodogram, i.e. the discrete Fourier 

periodogram (see chapter 13 in Numerical Recipes [64]). It is particularly good with 

data sets with many missing data because it is invariable to a shift in the origin of time.
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Figure 5.34: The Lomb-Scargle periodogram for Pioneer 10 in-situ density measurements, covering the 
nine month interval centred on solar opposition. The confidence level (vertical axis) is plotted for each 
particular frequency, given as on the horizontal axis .
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Figure 5.35: The Lomb-Scargle periodogram for Ulysses in-situ density measurements, covering the nine 
month interval centred on solar opposition.
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It is described by Scargle [75] and applied by Black and Scargle [10] for detecting periodic 

signals in astrometric data. Because of the many gaps in the present data set, it is quite 

suitable for our purposes. It is available in a Starlink package called Period.

The strongest frequency in Figure 5.34 is at 0.0202 corresponding to a period of 

49.5 days. The closest peak to a period of 25.3 days is at 27.5 days (frequency =  0.036 g ^ ) ,  

but this peak is much weaker than that for the 49.5 day period. So this evidence does not 

support the Doppler data for an exact 25.34 day period. This is probably explained by 

the fact that Pioneer 10 is measuring the density very far from the Sun, at the far reaches 

of the solar system (at 58 AU in 1993), while the Doppler carrier wave is travelling all the 

way through the IPM from Pioneer 10 to Earth and back again, thus sampling quite a 

different portion of the solar wind.

Scherer et al. also saw an electron density variation with solar rotation for the mea­

surements made by Ulysses during these nine months. I have analyzed the Ulysses density 

data, and have found a strong peak at 25.13 days, and another at 12.63 days (see Figure 

5.35). This first period is very close to the 25.3 days required, but the difference here is 

that Ulysses was measuring the IPM at a far removed location from what either the pulsar 

or Pioneer 10 measured. The pulsar and Pioneer 10 were at low heliographic latitudes 

(17° and —3° respectively). At the beginning of this interval, Ulysses was at a heliographic 

latitude of —35°, and at the end it was was —60°. The solar rotation at these latitudes 

is far longer than for the latitudes of the pulsar or Pioneer 10, so a 25.13 day periodicity 

might not be directly linked to solar rotation.

According to Phillips [62], the sidereal rotation period of the Sun (using large regular 

sunspots) at 0° latitude is 25.1 days. At 10° it is 25.2 days, at 20° it is 25.6 days, at 30° 

it is 26.4 days and at 40° it is 27.3 days So, Pioneer 10 (at —3°) should “see” a period 

of about 25.1 days. The pulsar (at 17°) should “see” a period of about 25.6 days. And 

Ulysses will experience a periodic fluctuation in density measurements with a period of 

greater than 27.6 days. This does not match with the 25.1 day period seen in Figure 

5.35. But it does highlight the fact that it is very difficult to predict what solar rotation 

period will be “felt” by radio waves in a certain direction. Also, it makes it difficult to say 

for certain that if two different lines of sight reveal the same periodicities, that they are 

reacting to the same IPM.
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Figure 5.36: The graph of average g against time measured in Mean Julian days, over the same nine 
month interval as in Figure 5.34. All of the sources chosen to get the average g axe near the position in 
the sky of Pioneer 10. Unfortunately, there axe laxge gaps in the second half of the data (in 1994), due to 
the IPS axray being out of action.

IPS g values axe determined by the electron density variations along a line of sight to 

a radio source. Therefore, they should contain the same periodicities as seen by Scherer 

et al., if they are real and indeed caused by solar rotation.

To analyse the IPS g values, a program p lo tp e r . c was written. A number of strong 

sources (16) were chosen near to the direction of interest, i.e. close to the pulsar, or to 

Pioneer 10. The g values were extracted from each source over a number of days. The 

geometric average was taken for each day, and plotted out over time, as in Figure 5.36.

The data for sources near to Pioneer 10 are then used to make a periodogram, Figure 

5.37. The strongest peak here is for a period of 52.63 days. Perhaps the 52 day period is 

caused by a large gap in the data set, of about 50 days. The Lomb-Scargle method might 

not be able to deal with such a large amount of the data being missing (a gap of 50 days 

out of 274). Two other significant periods are at 17.21 and 26.11 days. The 26.11 period 

is quite close to the 25.3 day period seen in the Pioneer 10 Doppler data taken during 

this interval. As for the other peaks, there will always be some rogue periodicities in a 

periodogram of any time series that is not a perfect sine wave.
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Figure 5.37: The Lomb-Scargle periodogram for IPS g values, for sources in the same direction as Pioneer 
10, over the nine month interval.
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Figure 5.38: The Lomb-Scargle periodogram for IPS g values, for sources in the same direction as the 
pulsar PSR B1257+12, over the nine month interval.
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Figure 5.39: The Lomb-Scargle periodogram for IPS g values, for sources in the same direction as the 
pulsar PSR B1257+12, over the three months (April, July and August 1993) that the TOA data show a 
25.34 day periodicity.

It is not possible to do similar analysis for the Ulysses spacecraft for this interval, 

because it was too far south of the ecliptic where the Cambridge IPS array cannot observe.

The periodogram for the same time interval for the sources nearby the pulsar is shown 

in Figure 5.38. Here, the strongest period is at 56.50 days, and there is only a weak 

peak at 23.70 days (frequency = 0.042 g ^ ) -  This ~  50 day period might also be caused 

by the large data gap, which is the same as for the sources near Pioneer 10.

Figure 5.39 shows again the periodogram for the sources near the pulsar, but over a 

shorter time interval of just three months, April, July and August 1993. It was during 

this time that Wolszczan directly measured the 25.34 day period in the TOA data. The 

periodogram here looks slightly different to that in Figure 5.38. The strongest period is 

still around 50 days (53.19 to be precise), but the nearest peak to 23.70 is at 24.63 days. 

So over this shorter timescale, the shape of the periodogram has changed, and Wolszczan’s 

periodicity of 25.34 days has not been found, at least not to the precision and certainty of 

Scherer’s claim.

If the pulsar’s TOA data have continuously been giving a period of exactly 25.34 days 

for a long observational time, then this must be a good argument that it is really caused 

by a planet in a stable orbit. The IPM on the other hand, is far from stable, and the IPS 

evidence confirms that it is unreasonable to associate the Pioneer data with Wolszczan’s
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observations as they do not correspond to the same line of sight. It has not been possible 

to totally disprove Scherer’s argument, but it is clear how difficult it is to find exact 

periodicities in the parameters of the IPM.

5.6 Conclusions

In this chapter, the Cambridge IPS data set has been exploited to gain insights into the 

structure of the IPM. By providing an overall view of a large part of the solar wind, 

disturbances have been tracked by IPS, leading to a better understanding of the types of 

structures in the solar wind, such as interplanetary shocks, co-rotation interaction regions, 

CMEs and other transients. The effects of these disturbances on the near Earth space 

environment has been evaluated by monitoring the output from different spacecraft and 

satellites.

The statistical analysis of trends in the solar cycle, and the search for periodicities in 

the solar wind parameters has shown how variable the IPS measurements can be, but yet 

the underlying characteristics are still to be seen, if they are indeed real.
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SOL-F WIND SPEED SYNOPTIC CHART 
FROM IPS MEASUREMENTS 

SUPERPOSED CARRINGTON ROTATION NUMBERS: 1827 -  1836 
1 9 9 0

1 0  30 60  90 120 1 SO 130 210 240 270 300 330 360
Carring to n  lo ng itude  (d eg )

SOLAR-TERRESTRIAL ENVIRONMENT LAEOLATORY, NAGOYA UNIVERSITY

Figure 5.40: Nagoya synoptic map for 1990. At solar maximum, slow wind dominates all over the Sun.
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Figure 5.41: Nagoya synoptic map for 1994. The slow wind is only found in a narrow band near the 
equator, in the declining phase of the solar cycle.
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Figure 5.42: The g and r s maps for 2 August 1992. Of interest here is the area of enhanced material to 
the east of the Sun, a t low latitudes, and a t an elongation of about 60° on this day.

( / - m o p  f 0 . 5 < q < 2 l  f o r  3 / 8 / 1 9 9 2  ( 4 8 8 3 7 )

Scintillation T 'm esca le  f O < T s < 2 s l

Figure 5.43: The g and r s maps for 3 August 1992. The density enhancem ent seen on the previous day 
has moved further east, and is now showing as at least double the am bient density (red m eans a g of 2 or 
more).
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Figure 5.44: The g and r s maps for 4 August 1992. The disturbance has reached E arth  (at elongations 
of 90 ) and can be seen both east and west of the Sun.

7 - m a o  f 0 . 5 < g < 2 l  f o r  5 / 8 / 1 9 9 2  ( 4 8 8 3 9 )
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Figure 5.45: The g and rs maps for 5 August 1992. The high density disturbance is still dominating 
the local IPM at Earth.
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Figure 5.46: The g  and rs maps for 17 March 1991
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Figure 5.47: The g  and rs maps for 20 March 1991.
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Figure 5.48: The g and rs maps for 21 March 1991
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Figure 5.49: The g  and rs maps for 22 March 1991.
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F igu re 5.50: The g  and rs maps for 23 March 1991.

( , - m a o  | 0 . 5 < q < 2 l  f o r  2 4 / 3 / 1 9 9 1  ( 4 8 3 3 9 )
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Figure 5.51: The g and r s maps for 24 March 1991.
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F igu re  5.52: The g and rs maps for 25 March 1991.

3 / 1 9 9 '  ( 4 8 3 4 3 )

Figure 5.53: The g and r s maps for 28 March 1991.
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Figure 5.54: The g and rs maps for 7 May 1992.
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Figure 5.55: The g and rs maps for 8 May 1992.
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Figure 5.56: The g and rs maps for 9 May 1992.
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Figure 5.57: The g and r s maps for 10 May 1992.
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F ig u re  5.58: The g and rs maps for 11 May 1992.
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Figure 5.59: The g and r s maps for 12 May 1992.



Chapter 6

Conclusions and future work

“I  found I  was all out of exit lines, so said nothing.

...I  also found a zinc bucket by kicking it. The symbolism didn’t appeal to me.”

A.E. Roy - Deadlight

6.1 Overview

The aims of this project have been to extract as much information as possible from the 

1990-95 Cambridge IPS survey, and thus to investigate the ability of IPS techniques to 

probe the solar wind. This has been done by a careful analysis of the data set. When the 

survey was in progress, it wasn’t possible to process the data as an ensemble and derive 

the five year averages needed for different computations. Therefore, this present analysis 

has been more thorough than previous attempts.

The more powerful computing power available during the course of this project has 

meant that for the first time, the whole data set can be stored together, and manipulated 

all at once. This has made a huge difference to the quality of the analysis possible. The 

maps that result are much more detailed than the early maps made during the course of 

the survey, and directly afterwards [97].

It was a rather big task to process over 1 Gb of raw data to a stage where it could be 

easily accessed and worked with. This was an essential undertaking which dictated the 

quality of the rest of the project. The resulting analysis would have been worthless if the 

data processing before it had been flawed, or done using unsound assumptions.

173
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The subsequent work verified the integrity of the data set and provided a valuable 

diagnostic tool in the form of grey-scale synoptic plots for each beam. This also proved that 

the raw data files had been read correctly, with the timing of each observation computed 

in the right manner.

Probably the most vital stage of the project was the writing of the algorithms which 

determined the g and rs parameters in the presence of noise. It was difficult at the time 

to say that they were working as they should, but when the all sky maps were made, the 

overall structure showed the coherent density enhancements and reductions as expected. 

Monte Carlo simulations and statistical analysis of the computed g and rs values gave 

further proof of their credibility.

By comparisons with other data sources, the IPS maps displayed the same general 

conditions in the IPM as observed by other instruments. Furthermore, the Ooty radio 

telescope in southern India, was shown to observe comparable g values in a co-ordinated 

campaign in 1992 [57] and the present analysis has confirmed this correlation. It was not 

an easy task to compare IPS with IMP observations, because IMP was taking a localized, 

in-situ measurement, while the IPS array was observing thousands of sources during the 

course of a day. Only a few of those sources would be in the correct relative position so 

that the dominant scintillation along the line of sight occurred close to where IMP was 

situated. Nevertheless, some good correlation was found between the two data sources.

6.2 Outcome

The objective of this thesis has been to demonstrate the usefulness of IPS, and to search 

for new limits to its interpretative abilities. Has this been achieved? Certainly, the IPS 

maps are an improvement on the original ones and they have been successfully used to 

investigate particular events and disturbances in the solar wind. The all sky view afforded 

by these maps is invaluable for tracking transients and other disturbances in the IPM. 

When they arrive in the near Earth space environment, this is very obvious, as huge areas 

of scintillation enhancement cover the sky at 1AU.

The root causes of disturbances in the IPM have been explored, with the help of other 

instruments, both ground-based and in space. Interplanetary shock fronts seem to be 

responsible for many of the geomagnetic effects. These shock fronts might be driven by
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a sudden increase in velocity of the flow from a coronal hole [12]. It is only through 

collaboration with other instruments that all the secrets of solar activity and its influence 

on the solar wind will be revealed. IPS certainly has its part to play here.

In the search for trends in the solar cycle, it was found that the typical velocity of 

the solar wind had a much stronger dependency on heliographic latitude at the declining 

phase of the solar cycle, rather than at the maximum of solar activity. This trend had 

been observed before, e.g. by the Nagoya telescope.

In the pulsar planet question, the Cambridge IPS data were able to provide evidence to 

refute the argument of Scherer et al. [76] who claimed that the planet A (orbiting around 

pulsar PSR B1257+12) did not exist.

On the question of solar wind velocity, a novel technique was introduced to obtain the 

velocity with a single IPS station previously only able to make density measurements. 

This was done by measuring the timescale over which the scintillation typically occurs. 

This was successful only to a certain degree. There were large errors involved, but overall, 

statistically, the method showed good results. It was only when a lot of nearby sources 

were giving consistent velocity measurements that they could be considered valid.

6.3 Future work

One of the main problems with the new velocity determination technique was that the 

time of observation was much too short for the algorithm to work effectively on the IPS 

recording. It was noted that sources at higher declinations, and thus with a longer transit 

time, were giving more reliable estimations, thereby proving that a longer observation 

time allows the algorithm to produce better results. Therefore, to investigate this further, 

a different type of telescope needs to be used. A steerable telescope that can track any 

source would be ideal. Siting a new telescope at a more southerly latitude would mean 

that more of the sky could be observed.

When tracking disturbances in the IPM, one major difficulty was the fact that only 

one IPS image was produced per day. This long time resolution meant that some fast 

transients were not observed at all. To specifically study the dynamic structures in the 

solar wind, an IPS instrument would have to be steerable, and able to make all sky maps 

more quickly. This would mean that it has to be more sensitive and therefore able to obtain
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a measurable scintillating signal even from weak sources. With this kind of telescope, IPS 

would be practically useful for real-time space weather predictions.

Ionospheric scintillation is a problem for IPS observations, but there are ways to deal 

with it. These two different types of scintillation have different characteristic timescales, 

which helps in eliminating ionospheric interference.

Travelling ionospheric disturbances (TIDs) sometimes cause refractive distortions, mak­

ing the position of a source to appear to move about. This “wobbling” was allowed for in 

the fitting algorithm, in that the fit was tried for slightly offset positions. The shift that 

gave the best fit was chosen and recorded. An analysis of these shifts could provide some 

insight into the nature of TIDs.

For a more complete diagnostic of the solar wind, data from IPS, spacecraft and other 

experiments can be used together. This sort of international collaboration has already got­

ten underway with initiatives such as the International Solar Terrestrial Physics (ISTP) 

program, a joint project involving the United States, ESA and Japan. ISTP brings to­

gether a variety of spacecraft that are studying the Sun-Earth system, including SOHO, 

Geotail, Wind, Polar and ground-based observatories. For example, Peredo et al. [60] 

describe the events of 6-11 January 1997 as being the first observed by many of the in­

struments of the ISTP “Observatory” from “cradle to grave”, i.e. from the origins of the 

disturbance (a CME) at the Sun, until it was past the Earth.

The proposed STEREO mission should give a valuable stereoscopic view of the prop­

agation of CMEs and other disturbances as they travel from the Sun to the Earth. If it 

goes ahead, STEREO will consist of two identical spacecraft orbiting the Sun at 1AU, one 

leading the Earth by 20°, and the other lagging the Earth by 30°. It will be able to mea­

sure the type II radio bursts (very low frequency) from interplanetary shocks, and thus, 

by triangulation, the position of the shock can be determined. These sort of data would 

be invaluable to an IPS station that was also tracking the interplanetary disturbance, and 

in the pursuit of a viable space weather forecast.

6.4 Final words

The 3.6 hectare Cambridge IPS array was not built specifically to study the solar wind, 

but despite its shortcomings in this department, it has made significant contributions to
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the study of IPS and the IPM. The analysis contained in this thesis has helped to prove 

this. Now, in 1999, the Cambridge array has been switched off, and it is slowly decaying, 

leaving IPS in the new millennium to the next generation of radio telescopes!
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