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Abstract

Previous studies demonstrated that procyclic Trypanosoma brucei could be induced to 

die by culturing cells in the presence of the lectin Concanavilin A, and that throughout 

the three day death process de novo gene expression could be detected. The current 

study utilised a differential display reverse transcription polymerase chain reaction 

(DDRT-PCR) technique known as randomly amplified differentially expressed 

sequences (RADES) PCR to identify cDNAs whose expression levels fluctuated during 

the time-course of death. 64 PCR products were detected, of which 27 were re

amplified and sequenced. Database searches were conducted using the BLAST 

algorithm, identifying 17 significant matches with known genes in the database. 8 of 

these encoded novel T. brucei genes. Northern blot analysis was attempted in order to 

confirm expression patterns indicated by RADES-PCR. However, the data obtained 

was inconclusive due to lack of a marker constitutively expressed during cell death. 

Two genes identified during this study, QM and MOB1, were characterised further.

The human QM gene was first identified as a transcript upregulated in a non- 

tumourigenic Wilms' tumour microcell hybrid relative to the parental cell line, and 

subsequent experiments suggested that the QM gene encoded a transcription factor. 

More recent evidence indicates that QM is actually a ribosomal protein associated 

peripherally with the 60S ribosomal subunit. During the current study Southern blot 

analysis was conducted, indicating the presence of 2 copies of the T. brucei QM gene, 

one of which was isolated from a genomic X library. Sequence analysis revealed 60% 

amino acid identity between the T. brucei QM and QM homologues from diverse 

eukaryotes. A recombinant epitope-tagged QM was inducibly expressed in procyclic T. 

brucei. Indirect immunofluorescence microscopy revealed nuclear exclusion and co

localisation with GPI8, a component of the transamidase complex responsible for 

glycosylphosphatidylinositol (GPI) anchor attachment which is hypothesised to localise 

to the endoplasmic reticulum. Tagged QM in cellular extracts was demonstrated to be 

insoluble following lysis in a 1% Triton X-100 buffer, suggesting an association with a 

large protein complex. Taken together these results suggest that the T. brucei QM is a 

ribosomal protein. ?
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M0B1 is an essential yeast gene required for completion of mitosis and maintenance of 

ploidy. While a number of interacting partners have been identified for MOB1, the 

function of this protein remains unknown. During the current study Southern blot 

analysis showed the presence of 2 copies of the T. brucei MOB1 gene within 12 kb of 

each other. Both of these genes were isolated from a single genomic X clone and were 

named MOB 1-1 and MOB 1-2. Sequence analysis revealed that while >96% of the 

amino acid sequence encoded by MOB1-1 was conserved in the MOB 1-2 gene, the latter 

had a predicted N-terminal extension of 82 residues. Inducible expression of an 

antisense MOB1-1 mRNA in procyclic T. brucei resulted in a significant reduction in 

proliferation, indicating a role for MOB1 in cell cycle progression. A recombinant 

epitope-tagged MOB 1-1 was inducibly expressed in procyclic T. brucei. Indirect 

immunofluorescence microscopic analysis revealed a homogenous distribution 

throughout the cell, allowing no insight into function. A recombinant MOB 1-1 

polypeptide was produced in E. coli and used to inoculate rabbits. Resultant antiserum 

detected a T. brucei protein of the predicted size of MOB1-1. This antiserum will prove 

invaluable for future studies, allowing the subcellular location of native MOB 1-1 to be 

established, and purification of interacting partners through co-immunoprecipitation to 

be carried out.
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CHAPTER ONE

Introduction

“Biological phenomena are in part frozen remnants of complex evolutionary histories 

and cannot be completely explained teleologically merely in terms of energy efficiency 

and the most parsimonious mechanisms” (Simpson and Theimann, 1995)



1.1.1 Evolution of the kinetoplastids

Together with their sister group the euglenoids, the kinetoplastid protozoa represent the 

earliest extant group of eukaryotic organisms containing a mitochondrion (Sogin, 1991). 

Based on morphological differences, kinetoplastids are subdivided into two suborders: 

the biflagellate Bodonina containing the families Bodonidae and Cryptobiidae, and the 

uniflagellate Trypanosomatina with a single family Trypanosomatidae. While 

bodonids/cryptobiids include free-living and commensal organisms, ecto- and 

endoparasites of fish and some invertebrates as well as some fish blood parasites, 

trypanosomatids are all obligate parasites. Several genera of trypanosomatid are 

composed largely or wholly of monogenetic parasites of a diverse group of invertebrates, 

but are found predominantly in insects. Digenetic lifecycles occur in species from the 

genera Trypanosoma, Leishmania and Endotrypanum and involve cyclical transmission 

through an insect vector and a vertebrate host (Vickerman, 1994; Maslov and Simpson, 

1995; Lukes et al., 1997).

There are two major hypotheses for the origin and evolution of parasitism in 

kinetoplastids, and the debate has now been going for almost 100 years. Both theories 

agree that free-living bodo-like flagellates gave rise to the parasitic trypanosomatids, but 

disagree on the nature of the primary host. The ‘invertebrate first’ hypothesis was 

proposed by Leger in 1904 (cited in Maslov and Simpson, 1995), and assumes that 

parasitism by this group was first established in the digestive tract of Precambrian 

invertebrates. These primitive organisms went on to become the ancestors of modem 

insects and leeches, explaining the wide distribution of kinetoplastids among 

invertebrates today. Under this hypothesis digenetic lifecycles arose with the advent of 

haematophagy, parasites being inoculated into the vertebrate host during invertebrate
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feeding. If the invertebrate first hypothesis holds true then phylogenetic analysis should 

place monogenetic parasites of invertebrates on the earliest diverging branches of a tree, 

with digenetic parasites distributed amongst more recently evolving lineages (Maslov and 

Simpson, 1995).

The ‘vertebrate first’ hypothesis proposed by Minchin in 1908 (cited in Maslov and 

Simpson, 1995) states that parasitism first arose in the guts of vertebrates, and that 

parasitism of blood and tissues arose subsequently (Wallace, 1966). With the advent of 

haematophagous arthropods it is thought that blood-blood transmission was adopted by 

parasites, and gut infections became increasingly rare. If this hypothesis holds true then 

phylogenetic analysis should reveal that the monogenetic parasites of invertebrates arose 

from digenetic ancestors, explaining why most invertebrates that harbour 

trypanosomatids belong to haematophagous groups (Maslov and Simpson, 1995).

Phylogenetic trees based on nuclear small- and large-subunit rRNAs provide support for 

both hypotheses, with digenetic organisms interspersed with monogenetic ones. This led 

to the conclusion that digeneity evolved independently several times from monogenetic 

invertebrate parasites (Fernandes et al., 1993), further supported by the dissimilar 

immune evasion strategies employed by digenetic kinetoplastids within their vertebrate 

hosts. However, as the ‘vertebrate first’ hypothesis also relies on digeneity being a 

derived character this debate seems set to continue (Maslov and Simpson, 1995).
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1.1.2 Trypanosomiasis

The trypanosomiases are a group of diseases which affect both man (sleeping sickness 

and Chagas’ disease) and animals (nagana, surra, mal de caderas, murina, derrengadera 

and dourine) and are of both medical and economic importance throughout large areas of 

Africa, Asia and South America.

All members of the genus Trypanosoma (except T. equiperdum) are heteroxenous, or are 

at least transmitted by an animal vector. They are haemoflagellate parasites of all classes 

of vertebrates, living in the blood and tissue fluids although some, most notably T. cruzi, 

may occupy intracellular habitats as well. The majority are transmitted by blood-feeding 

arthropods, although exceptions to this rule do exist, as exemplified by T. equiperdum 

which can only be transmitted sexually, T. equinum which is primarily transmitted 

mechanically by tabanid flies but can also be transmitted by vampire bats, and T. cruzi 

which can be passed from donor to host during blood transfusions (Schmidt and Roberts, 

1989). Tsetse flies (genus Glossina) are the vectors of Trypanosoma brucei s.l. 

(subgenus Trypanozoon) which cause disease in both man and livestock in sub-Saharan 

Africa. Sleeping sickness, a disease thought to be well under control in the 1960's, has 

re-emerged in the last decade as a threat to the lives of the rural poor in several African 

countries. WHO estimate there are 55 million people at risk of sleeping sickness in 

Africa (25,000 cases were reported in 1995 but only 4 million people were under 

surveillance - if surveillance were adequate, WHO estimate there would be between 

300,000 and 500,000 cases per annum) (WHO web site at http://www.who.int/emc/ 

diseases/tryp/trypanoepidat.html).

4
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Figure 1.1 Phylogeny of salivarian trypanosomes
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There are three subspecies of T. brucei: T. b. brucei, T. b. rhodesiense and T. b. 

gambiense. All three subspecies are cyclically transmitted by blood-sucking tsetse flies, 

parasitise the blood and body fluids of their mammalian hosts and are morphologically,
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biochemically and serologically indistinguishable (Hajduk et al., 1992). Only T. b. 

rhodesiense and T. b. gambiense are able to infect man, and the distribution of these two 

subspecies is determined for the main part by the ecological and geographical distribution 

of the tsetse species that transmit them. T. b. rhodesiense is found mainly in East Africa, 

from Ethiopia and eastern Uganda south to Zambia and Zimbabwe. It is transmitted by 

woodland, savannah and riverine tsetse species including G. morsitans, G. pallidipes and 

G, fuscipes and is a zoonosis, having a reservoir in wild game animals as well as 

domestic livestock. It causes an acute disease, with the patient usually dying within a 

few months (Cheesbrough, 1987; Schmidt and Roberts, 1989). In contrast T. b. 

gambiense is found in West, western Central and Northern regions, from Senegal across 

to Sudan and down to Angola. It is transmitted by riverine and lakeside tsetse species 

including G. palpalis, G. fuscipes and G. tachinoides. Gambian sleeping sickness is 

predominantly an anthroponosis, although a reservoir in domestic pigs does exist 

(Cheesbrough, 1987; Schmidt and Roberts, 1989). The disease course is chronic with 

the initial phase involving the blood and lymphatic tissues lasting for several years.

Death is often from secondary causes such as malnutrition, pneumonia, other parasitic 

diseases or a severe fall (Cheesbrough, 1987; Schmidt and Roberts, 1989; Hajduk et a l, 

1992). The clinical differences between Gambian and Rhodesian sleeping sickness are 

not clear-cut and are mainly a question of time scale. Early in the disease there is high 

fever with persistent headache and joint pains. The lymph glands close to the site of 

inoculation become swollen; in T. b. gambiense infection the posterior cervical lymph 

nodes at the back of the neck are involved (Winterbottom’s sign), while in T. b. 

rhodesiense infections it is usually the glands under the jaw, in the arm-pit, at the base of 

the elbow or in the groin. As the disease progresses the spleen becomes enlarged and 

anaemia due to immune-complex-induced haemolysis is common. In the late stages the
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CNS may be invaded, inducing trembling, inability to speak properly, progressive mental 

dullness, apathy, excessive sleeping and incontinence. In the absence of chemotherapy, 

coma develops then death in almost all cases. These symptoms are more common in T. 

b. gambiense infections, as with T. b. rhodesiense the patient often dies from toxaemia 

or heart failure before symptoms can become fully developed (Poltera, 1985; Van 

Meirvenne and Le Ray, 1985).

The greatest limitation currently faced in the chemotherapy of African trypanosomiasis is 

the lack of a drug with activity against all stages of the disease and all species of the 

parasite. Chemotherapy for T. brucei spp relies heavily on the drugs pentamidine, 

suramin and melarsoprol, all of which have been in use for almost 60 years. Side effects 

of these drugs can be severe, with death occurring in approximately 5% of patients 

treated with the arsenical melarsoprol (Pepin and Milord, 1994; Gutteridge, 1985). The 

reasons behind the lack of more suitable drugs for the prophylaxis and treatment of this 

disease are both scientific and commercial. On the scientific front the problem relates 

mainly to getting any drug not only into the trypanosome itself, but also into the 

parasites’ microhabitat within the host. CNS involvement imposes a significant 

pharmacological barrier to many drugs, and is a problem yet to be solved. On the 

commercial front the costs involved in developing, testing and marketing a new drug are 

likely to be higher than the potential return (Gutteridge, 1985).

7



1.1.3 The lifecycle of T. brucei spp.

Trypanosoma brucei s.l. infections are transmitted by the infected bite of tsetse flies. On 

biting a host an infected tsetse injects metacyclic trypomastigotes in the dermal 

connective tissue, causing a local inflammatory reaction called a chancre to develop.

This lesion develops for a period of about two weeks, and after multiplying within it for 

several days the trypanosomes access the draining lymphatics and then the blood, where 

they multiply by binary fission as long slender trypomastigotes with a doubling time of 

about 6 hours.

Host parasitaemias are characterised by a gradual increase in the numbers of 

trypanosomes followed by antibody mediated decimation. Evasion of the host’s immune 

response is achieved by means of antigenic variation on the part of the parasites (Cross, 

1975; Vickerman, 1978). Long slender dividing trypomastigotes predominate during the 

ascending parasitaemia with the majority of the population belonging to a single 

antigenic type (the ‘homotype’). The IgM response mounted by the host against the 

homotype results in the parasite population going into remission as individuals of that 

variable antigenic type (VAT) are killed (Seed, 1977), with non-dividing short stumpy 

forms seen at the peak and during the declining parasitaemia (Brown et al., 1973). 

Serological studies have shown that as well as the homotype several other VATs, termed 

‘heterotypes’, coexist within the population. These continue to multiply during 

remission until one of them outgrows the others and becomes the new homotype, 

causing a recrudescence of the parasitaemia (Vickerman, 1985; Van Meirvenne and Le 

Ray, 1985).
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Figure 1.2 Schematic representation of the T. brucei life cycle
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Bloodstream form trypomastigotes possess a cell surface coat 12-15nm thick 

(Vickerman, 1969) consisting of more than 107 densely packed variable surface 

glycoprotein (VSG) molecules (Cross, 1975). Each VAT arises from the expression of a 

single VSG gene from a repertoire of approximately 1000, the majority of which are 

situated in large arrays in the interior of the larger chromosomes (Van der Ploeg et al., 

1982a). However, a subset of VSG genes are located at the telomeres of chromosomes, 

most notably the approximately 100 minichromosomes (Van der Ploeg et a l,  1982b; 

Agur eta l., 1989; Graham and Barry, 1996; Horn and Cross, 1997; Turner, 1997). VSG 

genes are expressed in one of many polycistronic telomeric expression sites along with at 

least eight expression site-associated genes (ESAGs) (Borst et a l, 1997; Cross et al.,

1998), all under the control of a polymerase I-like promoter situated 40-60 kb upstream 

of the VSG gene (Pays et al., 1989; Zomerdijk et al., 1990). The surface coat may be 

switched either by a DNA rearrangement (the creation of an expression-linked copy of a 

transcriptionally silent VSG gene and insertion of this into the currently active expression 

site, with concomitant destruction of the original VSG gene occupying that site), or by 

transcriptional activation of a second expression site already containing a different VSG, 

with concomitant deactivation of the originally active site (Graham and Barry, 1996; 

Rudenko et a l, 1996; Borst et a l, 1997; Cross et a l, 1998). Repression of transcription 

from all but one of the bloodstream-form expression sites is critical for mutually 

exclusive VSG expression and parasite survival in the mammalian host. Rate of switching 

between different VSG genes has been a matter of some debate, with syringe passaged 

(monomorphic) lines showing per capita rates of 107-10s switches/cell/generation 

(Lamont et al., 1986), while lines cyclically transmitted through tsetse can show rates of 

greater than 102 switches/cell/ generation (Turner, 1997). Switching appears to be

10



spontaneous, requiring neither the host’s immune system or other factors in the blood for 

induction (Hajduk et al., 1992).

1.1.4 Parasite development in the insect vector

When infected blood is ingested by a feeding tsetse fly, trypanosomes are taken up first 

into the crop and then the lumen of the midgut. Parasites face radical changes in their 

environmental conditions such as a drop in temperature from 37°C to about 25°C, tsetse 

digestive enzymes and a non-specific immune system. Furthermore glucose, the principal 

energy source of bloodstream form trypanosomes, disappears from the tsetse bloodmeal 

within about 15 minutes of ingestion, so a switch from utilisation of glucose to utilisation 

of proline is adopted (Evans and Brown, 1972). Under these conditions the long slender 

bloodstream form either dies or transforms into the short stumpy form in the anterior 

midgut. Short stumpy trypomastigotes are thought to be preadapted to these conditions 

and subsequently differentiate into the procyclic form, involving an increase in body 

length, expansion of the mitochondrion (Hecker et al., 1972), transformation of the 

glycosome from a branched to bacilliform structure and loss of the VSG coat (Overath et 

al., 1983). These changes all take place within 48-72 hours of ingestion (Vickerman, 

1985). The VSG coat is shed within about 4 hours of ingestion and is simultaneously 

replaced with an invariant coat made of procyclin (also called procyclic acidic repetitive 

protein or PARP) (Mowatt and Clayton, 1987; Richardson et al., 1988) attached to the 

plasma membrane by a C-terminal glycosylphosphatidyl-inositol (GPI) anchor (Field et 

al., 1991). There are approximately 5 x 106 PARP molecules coating each cell 

(comparable to VSG molecules in blood-stream forms), forming a protective glycocalyx 

around the parasite (Ferguson, 1997).
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From day four onwards the procyclic (insect form) parasites begin to invade the 

ectoperitrophic space (Evans and Ellis, 1983) - the space between the peritrophic 

membrane and the midgut epithelium. In the days following this invasion the 

ectoperitrophic space becomes packed with dividing trypanosomes, the substrate 

utilisation of which remains a mystery. Once an infection is established in a susceptible 

fly, procyclic trypanosomes will reside in the ectoperitrophic space for the life of the fly, 

which may be several months in a female tsetse. During this period the parasite 

population density remains remarkably constant (Welbum and Maudlin, 1997). Some 

parasites migrate towards the proventriculus growing in length as they do so and ceasing 

to divide. At this stage they are referred to as mesocyclic forms, and it is thought that it 

is these trypanosomes which go on to reinvade the endoperitrophic space, migrate via the 

oesophagus to the mouthparts and from there through the salivary ducts to the salivary 

glands (Vickerman, 1985). The main proliferative stage within the salivary gland is the 

epimastigote, which, like procyclic forms is coated by procyclin (Hehl et al., 1994; Roditi 

et al., 1998). Epimastigotes attach to the microvilli of the epithelial cells lining the gland 

lumen by means of outgrowths from the flagellum, termed ‘flagellipodia’, that wrap 

themselves around the microvilli, forming junctional complexes at focal points of contact. 

Epimastigotes differentiate into ‘premetacyclics’, retaining the branched mitochondrion 

and bacilliform glycosomes of the epimastigote together with the ability to proliferate, 

but with reduced flagellipodia. These in turn become ‘nascent metacyclics’ through 

cessation of cell division and acquisition of a VSG coat (Tetley and Vickerman, 1985). 

While still attached by means of the flagellum they now have the unbranched 

mitochondrion and spherical glycosome, preadapting the parasite for life in the 

mammalian bloodstream. Mature metacyclics inhabit the lumen of the salivary gland and
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are heterogeneous with respect to VAT (Vickerman, 1985; Tetley et a l , 1987). 

Metacyclic trypomastigotes express a distinct subset of VSG genes numbering no more 

than 27 (Turner et al., 1988), located at telomeric metacyclic-specific expression sites 

(Comelissen et al., 1985; Barry et al., 1990). These metacyclic VSGs are subject to life 

cycle stage-specific control of transcription initiation (Graham and Barry, 1995; Graham 

et al., 1998), a situation unique in Kinetoplastida, where all other genes are regulated, at 

least partly, post-transcriptionally (Graham, 1995).

1.1.5 The kinetoplast and RNA editing

Members of the Order Kinetoplastida all possess a kinetoplast, a differentiated region of 

the single mitochondrion, containing the mitochondrial genome (kDNA). This structure 

is unique in nature, and contains thousands of interlocked circular DNA molecules (see 

Borst and Hoeijmakers, 1979 for electron micrographs) that represent 5-30% of the total 

cellular DNA in an array that has been likened to chain mail (Stuart, 1983; Shapiro and 

Englund, 1995). These DNA circles are of two types: 25-50 maxicircles, each 20-40kb 

(depending on species) and 5000-27000 minicircles, each 0.46-2.5kb. Maxicircles all 

have the same DNA sequence and are the functional homologues of mitochondrial DNA 

of other eukaryotes, carrying genes for mitochondrial ribosomal RNAs and subunits of 

some proteins involved in electron transport and ATP synthesis, although it appears that 

they do not code for tRNAs. In contrast, minicircles are heterogenous in sequence and 

evolve rapidly within a given trypanosome stock. They make up 90-95% of the mass of 

the kDNA network and encode small (70 nucleotides) guide RNAs (gRNAs) involved in 

mRNA editing (Sturm and Simpson, 1990). The degree of heterogeneity of minicircles 

within species of trypanosomatid reflects the number of gRNAs required for editing 

(Borst, 1991; Shapiro and Englund, 1995).

13



Many mRNA transcripts within the kinetoplast of T. brucei require editing in order to 

form mature functional mRNAs (Arts and Benne, 1996), a process involving the 

insertion or deletion of uridine residues (Blum et al., 1990; Cruz-Reyes et al, 1998). In 

some cases more than half of the nucleotides within the open reading frame of a 

mitochondrially encoded mRNA require to be introduced during editing (Feagin et al., 

1988). gRNAs are antisense to portions of the edited mRNAs, and can form anchor 

duplexes with pre-edited mRNA just downstream of the sequence that is to be edited 

(Maslov and Simpson, 1992). It is generally agreed that mismatches between a gRNA 

and mRNA identify specific sites to be edited by a putative editosome, but the precise 

mechanism by which this occurs is not clear. After a stretch of mRNA has been edited 

the bound gRNA is removed, allowing subsequent gRNAs to bind and continue editing 

the upstream fragment of the transcript (Maslov and Simpson, 1992; Simpson and 

Theimann, 1995; Shapiro and Englund, 1995).

1.1.6 The nucleus and trans-splicing

The chromosomes of T. brucei, as visualised by pulsed field gradient gel electrophoresis, 

have been divided into three classes: minichromosomes number between 50 and 100 

copies, and are of 50-150 kb. Over 90% of the length of these chromosomes consists of 

tandem arrays of 177 bp repeats (Weiden et al., 1991), with non-transcribed basic copy 

VSG genes located at the telomeres. Intermediate length chromosomes range from 200- 

900 kb and are thought to be composed primarily of repeat units, with VSG expression 

sites located at their telomeres. The ploidy of mini- and intermediate chromosomes is 

currently unknown. Megabase chromosomes range in size from around one Mb to more 

than 5 Mb, and encode most (possibly all) of the housekeeping genes, as well as many 

basic copy VSG genes. Interestingly, while megabase chromosomes are diploid,
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homologues of a pair may be of significantly different sizes (Melville et al., 1998; 

Melville et al., 1999). The trypanosomes genome contains large numbers of repeated 

and transposable elements, and together with high levels of homologous recombination 

evolves rapidly (Van der Ploeg et al., 1984; Gull et al., 1998; Melville et al., 1999).

The chromosomes of trypanosomes do not condense during mitosis, possibly as a result 

of differences in the amino acid composition of their histones from those of higher 

eukaryotes (Burri et al., 1994). Electron microscopic analysis revealed that the mitotic 

spindle of T. brucei contained insufficient microtubules to provide a conventional 

centromere-microtubule interaction for each of the minichromosomes (Vickerman,

1994). A model has now been proposed whereby the minichromosomes congregate in 

the centre of the nucleus at the start of M-phase where they associate with the emerging 

central spindle. The mass of minichromosomes then divides into 2 clusters and 

separates, one moving to each spindle pole. This model is strongly supported by 

microscopic observations. However, it is still unknown whether this mechanism results 

in faithful segregation of minichromosomes (Ersfeld and Gull, 1997).

Protein encoding genes in higher eukaryotes are comprised of a number of introns (non

coding) and exons (protein encoding). Transcription is directed by a promoter situated 

in the 5’ flank of the gene, begins at an initiation site 5’ of the coding region and 

continues until a transcription termination site is reached in the 3’ flank of the gene 

(Alberts et al., 1994). Processing of primary transcripts involves the addition of an 

mGppp cap to the 5’ residue of the RNA, polyadenylation at a pre-determined site within 

the 3’ UTR and cis-splicing to remove introns, simultaneously joining adjacent exons. 

Genes are generally arranged as monocistronic units, that is, each gene is under the
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control of its own promoter. Consequently, one of the major determinants of the level of 

gene product within a cell is the activity of the promoter controlling transcription of that 

gene (transcriptional regulation). Manipulation of downstream events such as mRNA 

stability (post-transcriptional regulation), rate of translation (translational regulation) and 

protein turnover (post-translational regulation) may also be utilised in order to influence 

the final level of both mRNAs and proteins within the cell (Graham, 1995).

In contrast to the genetic organisation described above, trypanosomatid genes tend to be 

arranged in polycistronic transcriptional units, that is, several genes separated by short 

intergenic sequences under the control of a single 5’ promoter (Imboden et al., 1987; 

Muhich and Boothroyd, 1988). Transcription of such units yields polycistronic 

precursor RNA encoding several genes that may or may not have related functions 

(Imboden et al., 1987; Berberof et al., 1991; Paindavoine et al., 1992). Analysis of the 

entire 300 kb sequence ofZ,. major chromosome 1 revealed 79 putative protein encoding 

genes distributed between 2 coding units of 29 and 50 genes, arranged in head-to-head 

orientation on opposing strands. Genes were categorised by function and were 

determined not to display the operon-like clustering of prokaryotes. Whether the 2 

coding units observed represent large polycistronic units or contain promoter sites within 

them is currently unknown (Myler et al., 1999).

As a promoter drives transcription of all genes within a polycistron at the same rate, 

organisation of a genome into polycistronic units results in the inability to 

transcriptionally regulate individual genes. However, markedly different levels of gene 

expression have been reported for various members of the same array (Vanhamme et al.,

1999), indicating that control of gene expression in trypanosomes operates primarily at
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post-transcriptional levels in order to generate appropriate cellular concentrations of 

gene products (Graham, 1995; Vanhamme and Pays, 1995).

All known trypanosomatid genes lack introns (Graham, 1995; Ismaili e ta l ., 1999; Myler 

et al., 1999), and thus generation of mature transcripts does not require a cis-splicing 

mechanism (Graham, 1995). Instead, individual mRNAs are produced from 

polycistronic transcripts by trans-splicing of a common cap-bearing sequence termed the 

spliced leader (or mini-exon) to the 5’ end of primary transcripts (Sather and Agabian, 

1985; Murphy et al., 1986), and polyadenylation of their 3’ terminus (Huang and van der 

Ploeg, 1991) (for schematic representation see Graham, 1995). It is thought that trans

splicing and polyadenylation may be functionally linked, explaining the lack of a 

consensus signal for polyadenylation in trypanosomatids (Graham, 1995; Vanhamme and 

Pays, 1995).

The spliced leader (SL) sequence of mature trypanosome mRNAs was first discovered 

during the characterisation of cDNA clones encoding VSGs. It was identified as a 35 

nucleotide long stretch of DNA common to all VSG cDNA clones but absent in the basic 

copy genes (Boothroyd and Cross, 1982; Van der Ploeg et al., 1982b). It is now known 

that the SL sequence is in fact 39 nucleotides in length, is trans-spliced onto the pre- 

mRNA transcript 10-200 nucleotides upstream of the genes initiator methionine codon 

and is present in all known mature trypanosome mRNAs (Donelson and Zeng, 1990). A 

1.35kb repeat unit, present in at least 200 copies within the genome, encodes the SL 

sequence. The primary transcript of this unit, termed spliced-leader derived RNA (SL- 

RNA), is 141 nucleotides long and contains the 39 nucleotide SL sequence at it’s 5’ 

terminus (Parsons et al., 1984; Bonen, 1993; Pelle and Murphy, 1993a; Vanhamme and
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Pays, 1995). At the 5’ end of the SL-RNA is a ‘cap 4’ structure consisting of a 7- 

monomethylguanosine linked via a 5’-5’-triphosphate to four highly modified nucleosides 

(Perry et al., 1987). The presence of this cap structure on SL-RNA appears to be 

necessary for trans-splicing and may act as a recognition signal for components of the 

trans-splicing machinery (Bonen, 1993).

Many features of trans-splicing in trypanosomatids resemble the molecular mechanisms 

of cis-splicing in higher eukaryotes. Trans-splicing adds a SL from a SL-RNA to a pre- 

mRNA at a 5’ consensus splice acceptor site by means of a normal 3’-5’ phosphodiester 

bond. The 3 ’ end of the SL-RNA and the portion of the pre-mRNA upstream of the SL 

acceptor site are thus analogous to a fragmented intron in a cis-splicing system, and form 

a Y-branched structure analogous to the cis-splicing lariat. Trans-splicing in 

trypanosomes has been demonstrated to occur within large ribonucleoprotein complexes 

(as with cis-splicing in higher eukaryotes) which contain homologues of spliceosomal 

U2, U4, U5 and U6 small nuclear RNAs (snRNAs), primary cofactors of cis-splicing. A 

homologue for the U1 snRNA has also recently been discovered in trypanosomatids 

(Mottram etal., 1989; Agabian, 1990; Bonen, 1993; Dungan etal., 1996; Metzenberg 

and Agabian, 1996; Goncharov et al., 1998; Schnare and Gray, 1999).
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1.2.1 Discovery of apoptosis in mammals

The term apoptosis was adopted to define an active process of physiological cell death, 

and is derived from a Greek word meaning “a falling away” as of leaves from trees (Kerr 

et al., 1972). The earliest reports of apoptotic bodies (remnants of cells that have died 

by apoptosis) described them as being widely distributed in histological sections of many 

healthy tissues. This led to the proposition that apoptosis was an important mode of cell 

death, and that it may in fact be the only mode of controlled cell death contributing to the 

regulation of cell populations in a variety of tissues under physiological conditions (Kerr 

e ta l , 1972).

It is now generally accepted that the death of individual cells within a multicellular 

organism is, more often than not, essential for the continued life and development of that 

organism (Hardy, 1999; Abrams, 1999). Cell death forms an essential counterpoint to 

mitosis, and in embryological development, morphogenesis and metamorphosis is used to 

help shape and structure tissues, organs and organisms. Such processes as the 

transformation of caterpillars to butterflies (reviewed by Ellis et al., 1991) or the 

development of the pentadactyl limb through interdigital cell death (Garcia-Martinez et 

al., 1993; Zakeri et al., 1994) appear to be under genetic control.

Apoptosis as defined by Kerr et al. (1972) is a form of programmed cell death (PCD) 

with its own characteristic morphology. As a result apoptosis is commonly referred to as 

PCD, but the two terms should not be used synonymously as there are many cases when 

the death of cells by apoptosis is not predetermined (as is the case with PCD), but a 

response to changing environmental stimuli.
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1.2.2 Necrosis, apoptosis and mitosis

The word necrosis, like apoptosis, is derived from Greek and means “to make dead”. 

Necrosis is commonly caused by significant deviations from physiological conditions 

such as hypotoxia, major changes in temperature, exposure to toxins or disruption of cell 

membranes. It is characterised by huge increases in permeability of both plasma and 

organellar membranes with resultant osmotic swelling and eventual rupture of the cell.

In solid tissue it is typical for a number of contiguous cells to be involved simultaneously, 

and the debris produced following their rupture can lead to tissue inflammation and 

secondary necrosis of bystander cells. Debris is eventually removed by professional 

phagocytes (Wyllie et al., 1980; Martin, 1993; Hetts, 1998). The timeframe of cellular 

necrosis is typically short, and can occur within seconds (Willingham, 1999).

In contrast to necrosis, apoptosis within a tissue tends to affect single cells, which 

separate from their neighbours. Cytoplasmic condensation results in vacuolisation of the 

cell, while protuberances form on the cell membrane (often referred to as membrane 

blebbing). Characteristic changes can also be seen in the nucleus where the chromatin 

collapses into electron-dense masses that become marginated around the periphery of the 

organelle. Nuclear pores move away from the marginalised chromatin facilitating the 

dissolution of the nucleus into discrete fragments (Eamshaw, 1995). Cellular 

disassembly follows with the entirety of the contents being packaged into membrane- 

bound vesicles termed apoptotic bodies which are derived from the protuberances on the 

cell surface. Apoptotic bodies vary greatly in size and may even contain intact 

organelles. Changes in the makeup of surface proteins and lipids allows apoptotic bodies 

to be readily identified and engulfed by neighbouring cells, as well as professional 

phagocytes. Formation and removal of apoptotic bodies can take as little as 24 hours.
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As cellular constituents are not released directly into the intercellular matrix an 

inflammatory response does not occur, making this process suitable for tissue 

homeostasis. Throughout the entire process both the cell as a whole, and the resultant 

apoptotic bodies retain their membrane integrity (c.f. necrosis) (Wyllie et al., 1980; 

Eamshaw, 1995; Hetts, 1998). Apoptotic cell death is a slower process than necrosis, 

and can take from a few hours to several days (Willingham, 1999).

Apoptosis is particularly common in cells derived from highly mitotic cell lines, raising 

the possibility that apoptosis may be a type of abnormal or mis-timed mitosis (King and 

Cidlowski, 1998). Supporting this theory is the fact that apoptosis is frequently 

associated with disrupted growth factor production/reception (Liu and Zhu, 1999;

Napier et al., 1999), activation of oncogenes (Zomig and Evan, 1996) and involvement 

of cell-cycle regulatory genes (Choi et al., 1999) - all important in mitosis. 

Furthermore, in both apoptosis and mitosis cells become rounded, the plasma membrane 

becomes “blebbed”, the nuclear lamina disassembles and the chromatin condenses (King 

and Cidlowski, 1998). However, while chromatin condensation during mitosis is an 

active process requiring a number of cell-cycle-related kinases, this is not thought to be 

the case in apoptosis, where condensation appears to be the result of loss of structural 

integrity of several nuclear components (Hendzel e ta l ., 1998).

Apoptotic cell death occurs in two distinct phases, widely termed the commitment and 

execution phases. The commitment phase is of extremely variable length and consists of 

the time between which the cell receives an apoptotic stimulus (which may be either 

intrinsic or extrinsic) and the onset of apoptotic morphology. Transition to the execution 

phase follows, during which the morphological features of apoptosis are observed over a
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predetermined period of time (Eamshaw, 1995). Apoptotic signals are diverse, including 

DNA damage (Uberti et al., 1999), withdrawal of trophic factors (Mesner et al., 1992; 

Syroid etal., 1999) and parasitic (Seydel and Stanley, 1998; Leguizamon etal., 1999) 

and viral infection (Allsopp et al., 1998).

For several years after its discovery apoptosis was thought of as a form of cellular 

“suicide”. This view derived from the fact that early studies on rodent thymocytes and 

T-cell hybridomas under diverse apoptotic stimuli demonstrated that inhibitors of RNA 

and/or protein synthesis could abrogate death. Continuing macromolecular synthesis 

therefore seemed to be an essential part of the apoptotic process, indicating that these 

cells had control over their own demise (Wyllie et al., 1981; Wyllie et al., 1984). The 

validity of this observation has however been called into question as there are now 

numerous reports of systems in which apoptosis is either not blocked, is enhanced, or 

may be triggered directly as a result of RNA or protein synthesis inhibitors (reviewed in 

Martin, 1993). Consequently, mechanisms leading to apoptotic cell death may be 

divided into three distinct groups: induction mechanisms (those that required protein 

synthesis), transduction mechanisms (those that did not require protein synthesis), and 

release mechanisms (those in which the proteins required for apoptosis were constantly 

held in check and interruption of protein synthesis resulted in cell death) (Cohen et al., 

1992).
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1.2.3 Methods of detecting apoptosis

There are several problems involved in the detection and accurate quantitation of 

apoptosis. These derive partly from the fact that the majority of cell populations studied 

are asynchronous, and many of the processes operating in apoptotic cells are transient.

As a result cells that have been dead for a period of time are unlikely to share the same 

biochemical or morphological characteristics as cells currently undergoing apoptosis or 

those in the commitment phase. Furthermore, apoptotic bodies are phagocytosed by 

neighbouring cells, and in populations where apoptosis and proliferation occur 

simultaneously, determining the number of cells that have died can be problematic. 

Consequently, while multiple factors that influence apoptosis in cell populations have 

been discovered and studied, very little is known about how an individual cell decides to 

activate its cell death machinery or the biochemical sequence of events that follows.

Methods for the detection and measurement of apoptosis fall into three classes: 

biochemical (DNA fragmentation, activation of caspases and cell viability assays), altered 

cellular characteristics (including observations on cell morphology, chromatin status 

within the nucleus, DNA content, in situ end labelling, and the surface expression of 

phosphatidylserine), and following the fate of an individual cell over time (Table 1.2).
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Table 1.1 Summary of the various techniques available for detection of apoptosis

Technique Advantages Disadvantages

Biochemical Usually simple Asynchronous populations

- DNA fragmentation Journals usually require demonstration 
of this hallmark for publication

Identity of nuclease(s) involved uncertain. 
Oligonucleosomal fragmentation may be non
specific and/or nonessential. Difficult to 
generate from asynchronous cells. Prone to 
artefacts.

- Proteolytic assays Caspases strongly implicated in 
apoptosis. Many kits commercially 
available to detect cleaved substrates.

No clear proof that many substrates of caspases 
involved directly in apoptosis. Caspase 
activation does not necessarily imply 
apoptosis. Only practical with cell cultures.

- Viability assays Easy and rapid. Allows informed 
choice to be made of time points to be 
used for further experiments.

Loss of membrane permeability is a late event. 
Apoptotic bodies exclude vital dyes. Viability 
assays do not differentiate between apoptosis 
and necrosis.

Cellular

- Chromatin status Can be observed with either light or 
electron microscope. Variety of 
dyes/stains give good results.

Apoptotic and necrotic nuclei iook very similar 
if inexperienced.

- DNA content Apoptotic cells contain sub-Gl content, 
and this can be determined with flow 
cytometer.

- in situ end labelling Easy to use on fixed sections. Reveals 
degradation status of individual nuclei.

False positives and negatives have been 
reported.

- Phosphatidylserine In mammalian systems this molecule is 
“flipped” to the outer membrane during 
apoptosis where it is detected by 
macrophages. Annexin V binds 
specifically and can be detected by 
flow cytometry.

Only applicable to living cells, not fixed tissue 
sections. Occurs in less than 1/3 of cells 
within a population. Detects necrotic cells 
when membranes rupture.

Time lapse 
photography

Allows systematic morphologic 
analysis of individual cells over time. 
Differences between apoptosis and 
necrosis obvious.

Requires specialised equipment. Slow 
acquisition of data. Limited sample size. 
Quantitation difficulties. Only applicable to 
adherent cultured cells.

Based on McCarthy and Evan (1998) and Willingham (1999)

1.2.4 DNA fragmentation

Degradation of DNA is the most characteristic feature of apoptosis and occurs at 3 

levels. In some cell systems large DNA fragments have been observed (50-300kb), 

possibly corresponding to chromatin loops on the nuclear scaffold (Filipski et al., 1990). 

Cleavage of DNA between linker regions on histones resulting in a characteristic regular 

ladder of fragments of 180-200bp is the most frequent marker while the third type of
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fragmentation comprises single-strand breaks, although its relevance in respect to 

apoptosis remains unknown (Wyllie, 1980; Bortner et al., 1995). Several endogenous 

endonucleases have been implicated in DNA cleavage in different cell death systems; 

DNase I (Pietsch et al., 1993), DNase II (Barry and Eastman, 1993), NUC18 (Gaido and 

Cidlowski, 1991), various cyclophilins (Montague etal., 1997), NUC70 (Urbano etal.,

1998) and caspase-activated deoxyribonuclease (Enari et al., 1998; Liu et al., 1999). It 

is possible that different cell types utilise different nucleases (Eamshaw, 1995).

The significance of DNA fragmentation in the apoptotic process remains uncertain and in 

some cases fragmentation has not been detected. The time at which DNA fragmentation 

becomes evident varies with both cell type and apoptotic stimulus, in some cases 

appearing early after receipt of the appropriate stimulus and in other cases manifesting as 

a late phenomenon. DNA fragmentation appears to mark a point of no return, as cells 

which have initiated cleavage cannot be recovered by removal of the apoptotic stimulus 

(Bortner et al., 1995).

1.2.5 Caenorhabditis elegans death genes and their mammalian homologues

Cell death during the developmental process of the nematode Caenorhabditis elegans 

organism is extremely precise, involving elimination of 131 of the original 1090 somatic 

cells (Ellis et al., 1991) though the action of specific genes which are conserved 

throughout animal evolution (Cohen, 1997). ced-3 and ced-4 have been shown to be 

essential for execution of the apoptotic pathway, while expression of a third gene, ced-9, 

has shown an inhibitory effect on the process (Hengartner and Horvitz, 1994b). When 

CED-4 receives an appropriate signal it binds to and activates pro-CED-3 to mature 

CED-3, which in turn cleaves a number of cellular proteins, ‘death substrates’, which
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include DNA repair enzymes, components of the nuclear membrane and endonucleases. 

CED-9 acts upstream of this, binding CED-4 and thus preventing activation of pro-CED- 

3 (Eamshaw, 1995; Hetts, 1998). These three C. elegans death genes have homologues 

in mammals which display both sequence conservation and conserved function. The 

mammalian homologue of ced-3, interleukin-lp converting enzyme (ICE), induced 

apoptosis in fibroblasts if ectopically expressed (Miura et a l, 1993). ICE has since been 

shown to be a member of a large group of genes called caspases (cysteine proteases). 

There are now 10 known members of this family in man, and all have homology to ced-3, 

the only member of this family to have been found in the nematode. There is also a 

mammalian homologue of the C. elegans gene ced-4 called apoptotic protease activating 

factor-1 (.Apaf-1) and which seems to serve a very similar function to its C. elegans 

counterpart (Zou et al., 1997). When cytochrome c is released from the mitochondrion 

it binds to the C-terminus of Apaf-1, enabling the caspase recruitment domain of Apaf-1 

to bind pro-caspase 9 (a CED-3 homologue). Apaf-1 also has the ability to self

associate, allowing aggregation of pro-caspase-9, facilitating autoactivation (Green,

1998; Srinivasula et al., 1998). An ATP binding domain has recently been discovered in 

Apaf-1, offering an explanation as to why the energy status of a cell plays a critical role 

in its mode of death (Zou et al., 1999). In mammals members of the Bcl-2 gene family 

are homologues of the C. elegans anti-apoptotic gene ced-9 (Hengartner and Horvitz, 

1994a). The function of some of the Bcl-2 family members parallels that of their 

nematode counterpart, binding Apaf-1 (CED-4) and in so doing preventing activation of 

ICE (CED-3) (Hu et al., 1998a; Pan et al., 1998). However, other family members fulfil 

a pro-apoptotic role in mammals (Korsmeyer et al., 1993).
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1.2.6 Apoptosis and yeast

Database searches using the BLAST algorithm have demonstrated categorically that the 

yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe do not possess 

proteins with significant sequence homology to either caspases, members of the Bcl-2 

family or Apaf-1 (Goffeau et al., 1996; Madeo et al., 1999). Furthermore, apoptosis has 

not been reported in yeast. Despite this apparent lack of endogenous apoptotic effectors, 

or possibly because of it, recent years have seen a significant body of work compiled 

assessing overexpression of several Bcl-2 family members in yeast. Pro-apoptotic 

members, namely Bax and Bak, result in killing of both Saccharomyces cerevisiae and 

Schizosaccharomyces pombe. Anti-apoptotic members, namely Bcl-2 and Bc1-Xl, are 

capable of abrogating the action of their pro-apoptotic counterparts, allowing cell 

survival (Zha et al., 1996; Manon et al., 1997; Tao et al., 1997; Ligr et al, 1998; Xu et 

al., 1999). The phenotype associated with Bax overexpression in yeast is currently the 

source of much contention, with authors debating its apoptotic nature.

Phosphatidylserine extemalisation, chromatin condensation, DNA fragmentation, a 

degree of plasma membrane blebbing, and cytoplasmic vacuolisation have been reported 

by various authors (Zha et al., 1996; Madeo et al., 1997; Ligr et al., 1998; Xu et al.,

1999). Oligonucleosomal DNA fragmentation has not been observed in yeast cells 

overexpressing Bax, but this phenotype is not universal in mammalian apoptosis (Collins 

et al., 1991; Oberhammer et al., 1994) and has been observed during cases of necrosis 

(Dong et al., 1997). Contradictory data have not helped to resolve this issue, with some 

groups reporting margination of chromatin within the nucleus (Ligr et al., 1998), others 

describing foci of condensed chromatin distributed throughout this organelle (Madeo et 

al., 1999), while still others report no detectable chromatin condensation (Zha etal.,

1996). Interestingly, both Tetrahymena thermophila (Davis et al., 1992) and
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Dictyostelium discoideum (Comillon et al., 1994) demonstrate chromatin condensation 

during macronuclear and stalk cell death respectively, morphology integral to the 

programmed events occurring within the cells. Furthermore, while cytoplasmic 

vacuolisation is not a characteristic normally associated with apoptosis, it has been 

reported during both D. discoideum programmed cell death (Comillon et al., 1994) and 

Bax-induced death of mammalian cells in the presence of caspase inhibitors (Xiang et al.,

1996).

Whether the morphology described in yeast expressing Bcl-2 family members is 

apoptotic in nature remains an open question, although it is thought that these proteins 

are likely to be acting in a manner similar to that documented in mammalian systems 

(Madeo et al., 1999). This is supported by the fact that Bax-expressing cells release 

cytochrome c from their mitochondria (Manon et al., 1997). Because yeast are known 

to be devoid of endogenous homologues of the principal effectors of mammalian 

apoptosis (caspases, Bcl-2 family members, Apaf-1), they could make an ideal model for 

dissection of the interactions between these proteins. By over-expressing a mutant form 

of Bc1-Xl in this system it has already been demonstrated that Bcl-X L is capable of 

counteracting the effects of Bax through some mechanism other than physical 

interaction. This finding suggests that the theory of a direct stoichiometric relationship 

between Bcl-2 family members determining cell fate may be overly simplistic (Tao et al.,

1997). Another study has shown that overexpression of Ced-4 in S. cerevisiae results in 

the death of cells, with morphology reminiscent of apoptosis, despite the absence of Ced- 

3/caspase homologues with which to interact. Furthermore, Ced-4 mutants that were no 

longer capable of dimerisation failed to induce cell death (Tao et al., 1999). This then
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raises the possibility that a cell death role may exist for Ced-4/Apaf-1 in addition to its 

documented activation of Ced-3/caspase-8 in C. elegans and mammals.

1.2.7 Programmed cell death in single celled eukaryotes

In recent years it has become evident that mammalian cells undergo PCD not only as a 

physiological control mechanism or in response to irreparable damage, but also as a 

result of encounters with both parasites and viruses. Upon infection with a virus many 

mammalian cells respond by undergoing apoptosis, thereby preventing proliferation of 

the virus and protecting neighbouring cells from infection (Miller, 1997; Seshagiri and 

Miller, 1997; Fleck et al., 1999; reviewed in Edwards et al., 1999). To counter this 

strategy many viruses have developed the ability to produce molecules that mimic 

components of the host apoptotic machinery, influencing the cellular response in favour 

of maximising viral proliferative capacity (Miura et al., 1993). Similarly, a variety of 

mammalian cell types are prevented from undergoing apoptosis when parasitised by the 

coccidian Toxoplasma gondii (Nash et al., 1998; Goebel et al., 1999), as are host cell 

macrophages infected by the trypanosomatid L. donovani (Moore and Matlashewski, 

1994). By contrast, CD4+ (but not CD8+) T-cells are induced to undergo apoptosis by 

Trypanosoma cruzi, resulting in immunosuppression of the host (Lopes et al., 1995; 

Lopes and DosReis, 1996).

An active cell death process has been shown to be crucial to the development and 

homeostasis of multicellular organisms, but while the importance of programmed cell 

death in metazoans is now universally recognised, the evolutionary origin of the process 

remains unclear 27 years after its initial discovery. The need to develop an altruistic cell 

suicide pathway has been associated with selective pressures that apply specifically to
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multicellular organisms, and was thus assumed to have arisen in phylogenies after the 

onset of multicellularity. The discovery of a PCD pathway in the slime mould 

Dictyostelium discoideum (Comillon et al., 1994) has resulted in the strict association 

between multicellularity and PCD being called into question, as this organism displays 

both single- and multi-cellular stages, dependent upon environmental conditions. 

Furthermore, macronuclear death in the protozoan Tetrahymena thermophila has been 

reported as having similarity to the nuclear changes observed during apoptotic death in 

mammals (Davis et al., 1992; Christensen et al., 1995; Christensen et al., 1998). These 

discoveries have led to the inevitable suggestion that a common PCD mechanism may 

have arisen prior to the advent of multicellularity (Comillon et al., 1994). This begs the 

question "why?". In what way could a single celled organism possibly benefit from its 

own suicide? The answer lies in the relationship between individual cells. The 

evolutionary constraints which favour altruistic death at the level of the multicellular 

organism could also be applied to unicellular organisms at the level of the multicellular 

colony (Ameisen et al., 1995). Therefore, whenever unicellular organisms constitute a 

multicellular colony, the altruistic death of an individual cell within that colony can be 

genetically advantageous if it ensures the survival of closely related individuals. This 

scenario could certainly be applied to protozoa belonging to the genera Trypanosoma 

and Leishmania where parasitic populations in both the insect vector and mammalian 

host are largely clonal (Tibayrenc et al., 1990).

PCD in metazoa serves to control cell populations. Due to the fact that digenetic 

kinetoplastids of the genera Trypanosoma and Leishmania must establish and maintain a 

proliferative cell population within their insect vectors, the idea of a system of social 

control of cell numbers is appealing. Studies on the dynamics of trypanosome infections
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in tsetse flies have revealed that the majority of parasites ingested with the bloodmeal 

die, despite having successfully differentiated to procyclic form cells (Maudlin and 

Welbum, 1987; Welbum etal., 1989; Dale et al., 1995). Dying procyclic cells display 

characteristics of apoptosis in metazoans, including condensation of nuclear DNA and 

vesiculation of the plasma membrane (Welbum et al., 1989). This cell death occurs 

within the midgut of the fly, prior to establishment of an infection within the 

ectoperitrophic space, and can be prevented by addition of glucosamine to tsetse feeds 

(Maudlin and Welbum, 1987). This led to the hypothesis that this sugar competitively 

binds a tsetse midgut lectin, inhibiting the ability of the fly to induce parasite death. 

Following establishment of a midgut infection a substantial period of time elapses before 

infective metacyclic trypomastigotes are detected within the salivary gland (if at all), 

typically 2-3 weeks for T. brucei (Dale et al., 1995). During this time the number of 

trypanosomes occupying the ectoperitrophic space of the tsetse midgut remains 

remarkably constant despite the fact that proliferation is continuous (Welbum and 

Maudlin, 1997). Maintenance of a stable population of parasites is of advantage to the 

trypanosome, as competition with the tsetse for an energy source is ongoing, and too 

great a parasite burden could result in death of the vector prior to transmission. This led 

to the suggestion that T. brucei could be regulating their own population density, 

balancing proliferation against altruistic death, in order to maintain a viable population 

within this environment (Welbum et al., 1997).

An analogy has been drawn between the death of T. brucei induced by tsetse midgut 

lectin in vivo, and in vitro death induced by culturing cells with a tetrameric lectin, 

concanavalin A (ConA), derived from the Jack bean Canavalis ensiformis (Welbum et 

al., 1996). Transition electron microscopy revealed that cell death induced by this lectin
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presented morphological changes similar to those observed in cells dying within the 

tsetse midgut - namely membrane vesiculation and condensation of chromatin into 

electron dense masses that accumulated at the periphery of the nucleus. Further studies 

on cultured cells revealed that plasma membrane integrity was maintained throughout the 

72 hours of the death process, and that an oligonucleosomal DNA fragmentation pattern 

was generated by 72 hours post-treatment (Welbum et al., 1996).

PCD has recently been described in several members of the parasitic protozoa: 

Trypanosoma cruzi (Ameisen etal. 1995); T. brucei rhodesiense (Welbum etal. 1996); 

Leishmania amazonenis (Moriera et al. 1996) and Plasmodium falciparum (Picot et al.

1997). In metazoa, the distinction between apoptotic cell death and necrosis often relies 

on experimentally demonstrating the formation of oligonucleosomal DNA fragmentation 

patterns on an agarose gel (Montague and Cidlowski, 1996). All four of these parasitic 

protozoans were demonstrated to display this phenomenon, leading to the suggestion 

that a conserved cell death mechanism may be operating in these parasites (Welbum et 

al., 1996; Picot et al. 1997). Further research in this area is of particular interest as these 

organisms represent the most primitive eukaryotes in which such a phenomenon has been 

described. A better understanding of the degree to which the cell death programmes of 

these organisms correspond to those of their metazoan counterparts has implications for 

our understanding of the origins of PCD in eukaryotic cell survival.

Apoptosis in metazoans is an active process induced by intra- or extra-cellular signalling 

and culminating in characteristic morphological and biochemical alterations in the target 

cell. Changes in gene expression are almost inevitable in cells undergoing such a drastic 

process, and detection of mRNA transcripts differentially expressed during apoptotic
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death has been the focus of significant research (Wang et al., 1997; Baudet et al., 1998; 

Choi et al., 1998; Backert et al., 1999; Fournier et al., 1999). Differentially expressed 

genes identified to date include the cell cycle inhibitor p21 (Backert et al., 1999), the 

transcription factor DIO-1 (Garcia-Domingo et al., 1999), members of the Bcl-2 family 

(Gillardon et al., 1994; Marx et al., 1997; Wang et al., 1998), the proto-oncogene c- 

Myc (Gillardon et al., 1994) and the tumour suppressor p53 (Wang et al., 1998; Kaya et 

al., 1999). It is clear that these genes are not acting in isolation and that the pathways 

leading to cell death are complex.

It has previously been shown that trypanosome death induced with Con A is associated 

with de novo gene expression (Murphy & Welbum 1997, Welbum & Murphy 1998).

The identification of genes involved in the death of these unicellular organisms is 

essential to address issues such as the social control of cell survival and the degree of 

conservation between unicellular and multicellular PCD pathways (Ameisen 1996, 

Welbum et al, 1997). Characterisation of genes involved in regulation of PCD in T. 

brucei will therefore be of value both from the above perspective, and as a potential 

therapeutic target for selective induction of parasite death.

To provide an overview of the genetic changes occurring during the execution of the cell 

death program in T. b. rhodesiense, this project used a differential display method 

[Randomly Amplified Developmentally Expressed Sequences-PCR (RADES-PCR)] for 

the identification of genes demonstrating differentially expression in cells which had been 

induced to die. These differentially expressed genes and their encoded products may be 

implicated directly or indirectly in the cell death mechanism in Trypanosoma brucei s.l.
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CHAPTER 2

Materials and methods



2.1 Culturing, harvesting and cryopreservation of trypanosomes

Trypanosoma brucei rhodesiense stock D. Obwang (isolated from a patient during a 

sleeping sickness epidemic in S. E. Uganda, 1990) were used for all experiments 

involving treatment with Concanavilin A. Procyclics were cultured at 27°C in 

Cunninghams medium (Cunningham, 1977) containing 17.5% heat inactivated foetal 

bovine serum [Gibco BRL] and 10 ng/ml gentamycin [Sigma].

Trypanosoma brucei brucei stock EATRO 795 stably transfected with plasmid construct 

pHD449 (Biebinger etal., 1997) was used for all expression studies. Procyclics were 

cultured at 27°C in complete SDM 79 (Brun et al., 1979) prepared by Gibco BRL (10% 

heat inactivated FBS, 10 ng/ml gentamycin, 20 ng/ml zeocin [Invitrogen]).

Cells were harvested by centrifugation at 1000 x g for 10 minutes at room temperature, 

following which they were washed in an equal volume of sterile PBS. Subsequent to a 

second centrifugation cells were ready for downstream applications.

Trypanosomes were harvested as described previously then resuspended in an equal 

volume of fresh medium containing 5% dimethyl sulfoxide (DMSO) [Sigma]. The 

culture was aliquoted into 1 ml cryovials and slow-frozen at -70°C for 24 hours.

Aliquots were then transferred to liquid nitrogen for long term storage.

2.2 Concanavilin A treatment of trypanosomes

Log phase trypanosomes (1 x 107/ml) were harvested as described previously then 

resuspended in an equal volume of fresh Cunninghams medium containing 17.5% heat 

inactivated FBS, 10 ng/ml gentamycin and 10 ng/ml Concanavilin A (ConA) type V
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[Sigma]. The culture was aliquoted appropriately and maintained at 27°C. At 

designated time-points cells were harvested and pellets placed at -70°C for storage. 

Control cultures were harvested at the beginning of each experiment and were not 

treated with Con A.

2.3 Preparation of total and poly[A]+ RNA

Isolation of total RNA from trypanosomes was based on the method of Chomczynski 

and Sacchi (1987), with improvements by Puissant and Houdebine (1991). Briefly, cells 

were harvested as described previously then resuspended at lxlO9 cells/ml in RNA 

denaturation solution by vigorously vortexing. 2M sodium acetate pH 4.0, water 

saturated phenol and chloroform were added to final concentrations of 87 mM, 43% v/v 

and 9% v/v respectively. The lysate was vortexed for 20 seconds, placed on ice for 10 

minutes with occasional mixing, then centrifuged at 4°C in a microfuge for 10 minutes 

at 14000 rpm. The aqueous upper layer containing RNA was extracted to a fresh 

Eppendorf tube, an equal volume of isopropanol was added, and the solution was placed 

at -70°C for 10 minutes. The solution was centrifuged as previously and the supernatant 

discarded, following which the pellet was re-dissolved in 400 pi RNA denaturation 

solution by heating to 50°C and vortexing. 1 ml ice cold ethanol was added and after 

mixing the tube was placed at -70°C for 10 minutes. Centrifugation was as described 

previously, the supernatant was discarded and the pellet was washed with ice cold 70% 

ethanol. The pellet was dried at 50°C for 5 minutes following which it was dissolved in 

200pl RNase free water and placed at -70°C for storage.

Poly[A]+-enriched RNA was prepared directly from harvested trypanosomes using the 

PolyATract System 1000 [Promega] as specified by the manufacturer. This kit purifies
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messenger RNA by utilizing the high affinity interaction between a biotinylated 

oligo(dT) probe and streptavidin-bound magnetic particles. While the manufacturer 

recommends samples used with this protocol to be as fresh as possible it was found to 

be more convenient to store samples at -70°C for a period of time prior to RNA 

extraction.

2.4 RNA gel electrophoresis and Northern blotting

RNA gel electrophoresis was carried out according to the protocol of Pelle and Murphy 

(1993b). Briefly, gel tanks, gel combs and gel formers were all immersed in 0.5% SDS 

for 30 minutes followed by a thorough rinse in distilled water. A 1.4% (w/v) agarose 

gel was made by boiling multi purpose agarose [Boehringer Mannheim GmbH] in 

running buffer consisting of 10 mM sodium phosphate (pH 6.8) containing 0.1 pg/ml 

ethidium bromide. 1 - 10  M-g RNA in a total volume of 10 [d was rapidly denatured prior 

to running by addition of 2 îl 6 x RNA loading buffer followed by incubation at 75°C 

for 5 minutes. Samples were centrifuged then placed on ice prior to loading onto the 

submarine gel together with size markers (0.363-9.488 kb [Promega]). Gels were 

electrophoresed at 3 - 7 V/cm with constant recirculation of buffer. Progress of the 

migrating RNA was monitored by visualisation with medium-wave UV light.

Following electrophoresis RNA was transferred directly to Hybond N+ membrane 

[Amersham] by blotting overnight using 20x SSC as the transferrant as outlined in 

Sambrook et a l (1989). RNA was then fixed using a CL-1000 Ultraviolet Crosslinker 

[Genetic Research Instrumentation Ltd.] set at 120 J/cm2.
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2.5 Preparation and amplification of first strand cDNA

First strand cDNA was synthesised from both total and poly[A]+ RNA using the Reverse 

Transcription System [Promega] as directed by the manufacturer. Briefly, 1 pg RNA 

was heat denatured at 70°C for 10 minutes in the presence of 0.5 pg 01igo(dT)i5 primer 

in a final volume of 13 pi, then incubated at 42°C for one hour with 20U recombinant 

RNasin® ribonuclease inhibitor, 15U avian myeloblastosis virus (AMV) reverse 

transcriptase, 1 mM dNTPs, reverse transcription buffer and 5 mM MgCl2. Heat 

inactivation of the AMV reverse transcriptase was carried out at 99°C for 5 minutes. 

Single-stranded cDNA was stored at -20°C then used directly in downstream 

applications.

First strand cDNA was amplified by the polymerase chain reaction (PCR) using 

01igo(dT)15 and nucleotides 16 - 39 of the conserved 5’ miniexon sequence of 

trypanosomes as primers (this primer contained a 5’ Not I site). PCR reactions were 

carried out in 100 pi final volume containing lOOng cDNA template, 2.5U Taq DNA 

polymerase [Promega], Taq DNA polymerase reaction buffer, 2 mM MgCl2, 100 ng of 

each aforementioned primer, and dNTPs (4 pi from 5mM stock). The reaction mixture 

was overlaid with mineral oil [Sigma]. Reactions were carried out using 500 pi 

eppendorf tubes in a PTC-100™ Programmable Thermal Controller [MJ Research, Inc.], 

Cycling conditions were 94°C for 1 minute, 55°C for 1 minute, 72°C for 2 minutes for 40 

cycles followed by 5 minutes at 72°C for primer extension. Enzyme, buffer, primers and 

dNTPs were removed from products by ultrafiltration using Centricon 30 columns 

[Amicon, Inc.] as directed by the manufacturer. Products were diluted to 20 ng/pl in TE 

buffer, aliquoted and stored at -20°C.
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2.6 Differential display PCR

Differential display PCR was carried out according to the method of Murphy and Pelle 

(1994) using two different template concentrations. The reaction mix was as follows: 1 

pi template (20 ng/pl and 2 ng/pl), 20 ng single arbitrary 10-mer primer, 2.5U Taq DNA 

polymerase [Promega], Taq DNA polymerase reaction buffer, 3 mM MgCl2, dNTPs (1 

pi from a 5 mM stock) and sterile distilled water to 20 pi. The reactions were carried out 

in 500 pi eppendorf tubes as described previously with cycling conditions as follows: 

94°C for 45 seconds, 40°C for 1 minute, 72°C for 1 minute for 40 cycles followed by 5 

minutes at 72°C for primer extension.

A 2% (w/v) agarose gel was made by boiling multi purpose agarose [Boehringer 

Mannheim GmbH] in TAE buffer containing 0.1 pg/ml ethidium bromide. 2 pi 6 x 

loading buffer [Promega] was added to 10 pi PCR products which were then loaded 

onto the submarine gel together with size markers (100 bp PCR Molecular Ruler [Bio 

Rad]) and electrophoresed at 8 V/cm. Progress of the migrating DNA was monitored by 

visualisation with medium-wave UV light.

Gel plugs were taken from differentially expressed bands and boiled in 50 pi water for 

10 minutes, following which 1 pi was taken as template for re-amplification using the 

PCR conditions described above. In order to facilitate subsequent T-vector cloning re

amplified PCR products underwent terminal addition of dATP as follows. The PCR 

reaction mix was heated to 95°C for 20 minutes then cooled to 4°C. 2U Taq DNA 

polymerase and 5 pi 2 mM dATP were added. The reaction was then heated to 72°C for 

20 minutes. Products were electrophoresed as described above and appropriate bands
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excised. DNA was extracted from the gel slices using an SL-8520 Nucleon® GX kit 

[Scotlab Bioscience] as directed by the manufacturer.

2.7 Cloning of PCR products

PCR products generated as described previously were ligated into either pGEM®-T or 

pGEM®-T Easy vectors [Promega], subject to availability and according to the 

manufacturers guidelines. Ligations were used to transform heat-shock competent 

JM109 cells and transformants selected by their ability to grow on LB (Luria-Bertani) 

agar plates supplemented with 50 pg/ml ampicillin. Presence of PCR products was 

initially determined by blue/white selection of colonies (0.5 mM isopropylthio-fl-D- 

galactodise [IPTG], 80 pg/ml 5-Bromo-4-chloro-3-indoyl-P-D-galactoside [X-gal]), 

following which positives were screened either by colony PCR using SP6 and T7 RNA 

Polymerase Promoter Sequencing Primers [Promega], or by restriction enzyme 

digestion.

2.8 Procedures involving Escherischia coli

2.8.1 Production of heat-shock competent JM109

Heat-shock competent JM109 (el4-(McrA-), recAl, endAl, gyrA96, thi, /w<iR17(rk-, 

mk+), supEAA, relAl, delta(/<zc-/?roAB), [F', traD36, pro AB+, /acHZdeltaMIS]} were 

used for cloning of all plasmids. Cells were made competent as follows: a single JM109 

colony was picked from a streaked plate, inoculated into 10 ml LB medium and grown 

in an orbital shaker at 37°C overnight. 500 pi of the overnight culture was used to 

inoculate 50 ml fresh LB medium, then grown to an OD600 of 0.7. Cells were incubated 

on ice for 10 minutes then centrifuged at 1800 x g for 15 minutes at 4°C. The 

supernatant was discarded and the pellet gently resuspended in 16 ml sterile solution
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RF1. Cells were again incubated on ice for 15 minutes then centrifuged at 1600 x g for 

15 minutes at 4°C. The supernatant was discarded and the cells gently resuspended in 4 

ml sterile solution RF2. Cells were incubated on ice for one hour, aliquoted, snap 

frozen in liquid nitrogen then stored for up to 2 months at -70°C.

2.8.2 Transformation of heat-shock competent JM109

Competent JM109 cells were removed from storage at -70°C and incubated on ice for 5 

minutes. An appropriate amount of plasmid or ligation was added to 50 pi thawed cells 

and the incubation on ice continued for a further 30 minutes. Cells were heat-shocked 

in a 42°C waterbath for 45 seconds then returned to ice for 2 minutes. 1 ml LB medium 

supplemented with 100 pl/ml 1M glucose was added to the cells, which were then 

transferred to an orbital shaker at 37°C for 1 hour. Cells were plated on appropriately 

selective LB agar plates and cultured overnight at 37°C.

2.8.3 Colony PCR

Following overnight growth on plates recombinant bacterial colonies were screened for 

DNA insertion into the multiple cloning sites of plasmids as follows: using a 200 pi 

pipette tip a small amount of bacterial material was taken from the periphery of colonies 

and suspended in 18.3 pi distilled water. To this was added 5 pmol of each primer, 1U 

Taq DNA polymerase, 3 pi 10 x Taq DNA polymerase reaction buffer, 2 mM MgCh, 

and dNTPs (lpl from 5 mM stock). Reactions were carried out in 500 pi eppendorf 

tubes as described previously with cycling conditions as follows: 94°C for 1 minute, 

55°C for 1 minute, 72°C for 1 minute for 30 cycles followed by 72°C for 5 minutes for 

primer extension. PCR products were analysed on an agarose gel as described 

previously.
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Clones of interest were used to inoculate 5 ml of appropriately selective LB medium. 

Cells were cryopreserved by addition of 150 pi glycerol to 850 pi overnight bacterial 

culture, thorough mixing then slow-freezing to -70°C. Cells were maintained at this 

temperature for long term storage.

2.8.4 Plasmid preparation

Plasmid preparation methodology was dependent on downstream applications.

Plasmids destined for sequencing were purified using the Qiagen Plasmid Mini Kit 

[Qiagen]. For subsequent transfection of trypanosomes, plasmids were purified using 

the Wizard® PureFection Plasmid DNA Purification System [Promega]. Plasmids to be 

used for restriction enzyme digestion purposes were purified using Wizard® Plus 

Minipreps [Promega], QIAprep Spin Miniprep kit [Qiagen], or by the alkaline lysis 

method (Sambrook et al., 1989) depending on availability and the number of samples to 

be processeed.

2.8.5 Y1090

E. coli strain Y1090 were made competent for infection by bacteriophage X as described 

by Sambrook et al. (1989). Briefly, 50 ml LB medium supplemented with 0.2% 

maltose, 10 mM MgCh and 50 pg/ml ampicillin was inoculated with a single bacterial 

colony and incubated in an orbital shaker at 37°C overnight. The culture was 

centrifuged at 4000 x g for 10 minutes at room temperature, resuspended in 20 ml 10 

mM MgCb and stored at 4°C for up to 2 weeks.
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2.8.6 Production and purification of a MOB1-MBP fusion protein

Production of MBP-Mobl fusion protein in E. coli was basically as directed by the 

manufacturer with minor alterations. Briefly, 1 litre of LB medium supplemented with 

2 g glucose and 100 pg/ml ampicillin was inoculated with 10 ml of an overnight culture 

of pMobMFPMAL and incubated in an orbital shaker at 37°C until an optical density of 

A6oo 0.5 was achieved. IPTG was added to a final concentration of 0.1 mM, and the 

culture incubated in an orbital shaker for a further 6 hours at 30°C. Cells were chilled to 

4°C, harvested by centrifugation at 4000 x g for 20 minutes at 4°C, resuspended in 50 ml 

column buffer and frozen overnight at -20°C. Cells were thawed in cold water then 

sonicated in an ice water bath for 3 minutes with 5 second pulses using a Vibra Cell™ 

VC100 [Sonics and Materials Inc., West Kenosia Avenue, Danbury, Conneticut, USA]. 

Following centrifugation of the crude lysate at 8000 x g for 40 minutes at 4°C, the 

supernatant was collected and diluted 1:5 with column buffer. Soluble lysate was 

placed at 4°C for temporary storage.

An affinity column was prepared at 4°C as follows; a 25 ml pipette was employed as the 

barrel of the column and its tip plugged with sterile glass wool. 10 ml amylose resin 

[New England Biolabs] was introduced into the column. After being allowed to settle 

the column was washed with 80 ml de-gased column buffer.

240 ml soluble bacterial lysate was loaded onto the column at 4°C at a rate of 

approximately 1 ml/minute. The column was then washed with a further 150 ml column 

buffer. Elution of the MBP-MOB1 fusion protein was by addition of 20 ml column 

buffer containing 10 mM maltose. Protein from 1 ml fractions collected throughout the



elution was detected using a DC Protein Assay [Bio Rad]. Fractions containing greater 

than 0.5 mg/ml protein were pooled and placed at 4°C for temporary storage.

2.9 Screening of bacteriophage lambda libraries

103 plaque forming units (pfu) from a quantified phage stock were added to 100 pi 

competent Y1090, vortexed and incubated at 37°C for 15 minutes. 8 ml molten (47°C) 

top agarose was added to the cells and the tube was inverted 3 times to mix the contents. 

The cells were immediately poured onto the centre of a 14 cm petri dish containing 80 

ml hardened NZCYM bottom agar supplemented with 50 pg/ml ampicillin, being 

careful to avoid introduction of bubbles. Plates were closed and stored at room 

temperature for 1 hour before being inverted and incubated at 37°C overnight.

Confluent plates were placed at 4°C for 2 hours to ensure solidity of top agarose. A 

Protran BA 85 nitrocellulose disc [Schleicher and Schuell] labelled with indelible 

marker was laid onto each plate, orientation marks added with Indian ink, and the plates 

returned to 4°C for a further 15 minutes. Filters were removed from plates, placed in 

DNA denaturation solution for 10 minutes, fixed using a CL-1000 Ultraviolet 

Crosslinker [Genetic Research Instrumentation Ltd.] set at 120 J/cm , placed in DNA 

neutralisation solution for 10 minutes then fixed as previously. Plates were returned to 

4°C for storage.

Filters were prehybridised for 4 hours in hybridisation solution 1 then hybridised 

overnight at 65°C. Washes with 2 x SSC, 0.1% SDS were carried out at 65°C with 

intermittent monitoring to determine background. Following autoradiographic detection 

plates were aligned with film and positive plaques removed as plugs into 500 pi SM



medium with 50 pi chloroform. Subsequent storage was at 4°C. Tenfold serial dilutions 

were made of the liquid phase of stored plugs, 1 pi of each then being used to infect 100 

pi competent Y1090 as described previously. Dilutions giving approximately 100 

plaques per plate were used for subsequent screens.

2.10 Preparation of bacteriophage lambda DNA for subcloning

Approximately 104 pfu bacteriophage were used to infect 100 pi competent Y1090 cells. 

The mixture was incubated, plated and cultured overnight as described previously. 10 ml 

SM medium was added to the confluent plate and incubation at 37°C resumed for a 

further 1 hour with gentle agitation. The SM medium was decanted from the plate into a 

corex tube, and 0.5 volumes of DEAE-sephacyl [Pharmacia Biotech] added. The 

mixture was incubated at room temperature on a roller for 1 hour, following which it 

was centrifuged at 8000 x g for 15 minutes in a Beckman J-21 with a swing bucket rotor. 

The supernatant was transferred to a clean corex tube and Tris-HCl (pH 7.5), NaCl and 

PEG 6000 added to final concentrations of 25 mM, 1 M and 10% respectively. The 

mixture was incubated on ice for 15 minutes then centrifuged at 8000 rpm as previously, 

at 4°C. The supernatant was decanted leaving a pellet of phage, which was resuspended 

in 400 pi SM medium and extracted with an equal volume of chloroform. The solution 

was treated with 100 pg/ml RNaseA at room temperature for 1 hour, then SDS and 

EDTA added to final concentrations of 0.05% and 4 mM respectively. Two extractions 

were performed with phenol/chloroform, following which the DNA was precipitated 

with 2 volumes of ice cold absolute ethanol. DNA was washed once with 70% ethanol 

before being resuspended in 100 pi TE buffer.
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2.11 Subcloning of T. b. brucei genomic DNA from bacteriophage X gtll

Bacteriophage Xgtl 1 DNA prepared as described previously was quantified 

spectrophotometrically at 260 nm. 20 pi EcoR I buffer [Promega] was added to 25 pg 

DNA and the volume made to 193 pi with TE buffer (pH 8.0). 7 pi EcoR 1(12 U/pl) 

[Promega] was added and the digest pipetted briefly to mix, before being incubated at 

37°C for 3 hours. DNA fragments resulting from the digest were analysed on a 0.7% 

agarose gel (w/v) as described previously.

T. b. brucei DNA excised from bacteriophage Agtl 1 was in the range 2-6 kb. DNA was 

extracted from agarose gel slices using an SL-8520 Nucleon® GX kit [Scotlab 

Bioscience] as directed by the manufacturer. Purified fragments were quantified by 

running on a 1% (w/v) agarose gel with known amounts of standard.

10 pg pBluescript was digested with 20U EcoR I in a final volume of 50 pi for 1 hour at 

37°C, following which 0.2 U calf intestine alkaline phosphatase [Promega] was added 

and the incubation continued for a further 15 minutes. The solution was extracted once 

with phenol/chloroform, precipitated with 3 volumes of ice cold ethanol and 

resuspended in 20 pi cffl^O. Linearised plasmid was quantified by running on a 1% 

(w/v) agarose gel with known amounts of standard.

200 ng genomic DNA was ligated into either 100 ng pBluescript (prepared as described 

above) or 100 ng commercial pUC18 Eco RI/BAP [Pharmacia Biotech] using a Rapid 

DNA Ligation Kit [Boehringer Mannheim] as directed by the manufacturer. Heat-shock 

competent JM109 were transfected and screened for inserts as described previously.



2.12 32P random-primed labelling of DNA

DNA was labelled using the Prime-It® II random primer labelling kit (Stratagene) as 

directed by the manufacturer. This kit utilises random 9-mer primers and exonuclease- 

deficient Klenow polymerase in association with [32P]dCTP (Dupont) to generate 

labelled fragments of 500-1000 nucleotides in length. Unincorporated nucleotides were 

separated from labelled probes using NucTrap® probe purification columns (Stratagene) 

together with a Push Column Beta Shield Device (Stratagene) as directed by the 

manufacturer.

2.13 Automated sequencing of DNA

Sequencing of cloned DNA was performed by the University of Glasgow Molecular 

Biology Support Unit. Sequencing reactions were carried out with a Dye Terminator 

Cycle Sequencing Ready Reaction kit [Perkin-Elmer Applied Biosystems], and the 

products analysed on a Perkin-Elmer ABI 373 Stretch DNA Sequencer.

2.14 DNA sequence analysis

Raw sequence data was imported into EditSeq [DNASTAR, Madison, Wisconsin, USA] 

for editing, following which individual sequence fragments were compiled into contigs 

using SeqMan II [DNASTAR]. Homology searching was carried out against nucleotide 

sequences lodged in non-redundant GenBank, EMBL, DDBJ, PDB and EST databases 

using the Basic Local Alignment Search Tool (BLAST) programme through the 

National Centre for Biotechnology Information (NCBI) [http://www.ncbi.nlm.nih.gov]. 

Homology searches were also carried out against kinetoplastid databases through the 

Parasite Genome BLAST Server [http://mercury.ebi.ac.uk/parasites/parasite_blast_ 

server.html].
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2.15 Transfection of T. brucei

10 ml procyclic cells in mid-log phase (6 x 106 / ml) were pelleted at 1000 x g for 10 

minutes at room temperature then resuspended in 1 ml Zimmerman post-fusion medium 

(ZPFM). Cells were pelleted as previously and again resuspended in 1 ml ZPFM. 5 -  

100 pg DNA resuspended in sterile cffi^O was added to 0.5 ml cells in a 0.4 cm pulse 

cuvette [Bio Rad] and electroporated at 1500 volts / 25 pF twice using a Gene Pulser™ 

[Bio Rad] with the Pulse Controller disconnected. Cells were immediately transferred 

to 5 ml pre-warmed complete SDM 79 and allowed to recover overnight at 27°C. 

Following recovery transfected cells were selected by addition of hygromycin B 

[Boehringer Mannheim GmbH] to 50 pg / ml and cloned immediately by limiting 

dilution.

2.16 Induction of construct expression

Stably transfected clonal cell lines were grown to mid-log phase, pelleted at 1000 x g 

then resuspended in an appropriate volume of complete SDM 79 medium containing 50 

pg/ml hygromycin B and 20 ng/ml tetracycline [Sigma]. Cells were cultured overnight 

at 27°C then harvested as described previously.

2.17 Analysis of proteins

2.17.1 Electrophoresis of proteins

Glycine and tricene SDS-PAGE gels were made as indicated in Appendix ID using a 

Mini-PROTEAN II cell with 0.75 mm spacers [Bio Rad]. Cell pellets were resuspended 

in 75 pi 0.25% Triton®-X 100 by vortexing and repeated passage through a 21 gauge 

needle. 25 pi 4 x Laemmli buffer [Sigma] was added, following which samples were



heated at 100°C for 5 minutes. 20 pi samples were loaded onto gels with appropriate 

standards and electrophoresed as indicated in Appendix IE until the dye front reached 

the bottom of the gel.

2.17.2 Coomassie staining of gels

Protein gels were simultaneously fixed and stained by immersion in 50% methanol, 10% 

acetic acid, 0.125% Coomassie Brilliant Blue G 250 for 1 hour at room temperature.

Gels were destained with several changes of 50% methanol, 10% acetic acid until 

optimum staining / background was observed, following which they were washed in 

several changes of distilled water and vacuum dried.

2.17.3 Western blotting of gels and immuno-detection of proteins

Protein gels were equilibrated in Western transfer buffer for 10 minutes, then blotted 

onto Hybond-C Super [Amersham] using a Mini Trans-Blot cell [Bio Rad] set at either 

200 mA for 2 hours or 50 mA overnight at 4°C. After transfer of proteins the membrane 

was incubated with 5% Marvel dried skimmed milk powder [Premier Beverages] in 

TBST for 1 hour at room temperature or overnight at 4°C. Membranes were incubated 

with primary antibody in 0.5% Marvel / TBST on a roller for 1 hour at room 

temperature, washed 3 x with 5 ml 0.5% Marvel / TBST for 5 minutes each then 

incubated with secondary antibody / HRP conjugate [Promega] in 0.5% Marvel / TBST 

as previously. Membranes were washed 3 x with 5 ml TBST for 2 minutes each then 

incubated with 2 ml TBST, 300 pi SuperSignal® Chemiluminescent Substrate Stable 

Peroxide Solution [Pierce, Rockford, Illinois, USA] and 300 pi SuperSignal® 

Chemiluminescent Substrate Luminol/Enhancer [Pierce] for 5 minutes on a roller at 

room temperature. Membranes were encased in cling-film and exposed to X-Ray film
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for 5 minutes. Subsequent exposure times were based on the initial autoradiograph, 

light emission from membranes remaining stable for up to 1 hour.

2.18 Immunofluorescence microscopy

Log-phase procyclic cells were harvested and washed as described previously then 

resuspended in PBS. Cells were spread on slides and allowed to settle until an 

appropriate cell density was achieved, following which slides were sequentially fixed in 

methanol and acetone for 3 minutes each at -20°C. After drying, wells were marked on 

slides using a rolling ball-point paint marker, and subsequent hybridisation performed in 

individual wells. Wells were blocked for 30 minutes with PBS / 0.5 % Marvel dried 

skimmed milk powder, then treated for 30 minutes with PBS / 0.5 % Marvel / primary 

antibody. Wells were washed thoroughly with PBS / 0.5 % Marvel then treated for 30 

minutes with PBS / 0.5 % Marvel / secondary antibody / 2 pg/ml 4, 6-diamidino-2- 

phenylindole (DAPI) [SigmaJ in the dark. Following thorough washing with PBS slides 

were mounted with PBS / 50 % glycerol containing 2.5 % 1, 4- 

diazabicyclo[2.2.2]octane (DABCO) [Sigma] as antifade. Microscopy was carried out 

using a Zeiss Axioplan [Carl Zeiss Inc., Thomwood, NY, USA] at 1000 x 

magnification. Images were captured using a Hamamatsu C4742-95 cooled digital CCD 

camera and processed using Openlab 2.02 (Improvision, University of Warwick Science 

Park, Coventry).

2.19 Preparation of T. brucei genomic DNA

1 x 109 mid-log cells were harvested as described previously, resuspended in 5 ml ice 

cold DNA digestion buffer and pelleted at 1500 x g for 10 minutes at 4°C. Cells were 

resuspended in 5 ml digestion buffer then SDS and RNAse A [Sigma] added to 1% and
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100 pg/ml respectively. The solution was incubated at 50°C for 1 hour, following which 

proteinase K [Sigma] was added to 1 mg/ml and incubation resumed at 55°C for a 

further 2 hours with periodic gentle inversions. The solution was extracted twice with 

50:50 phenol/chloroform and once with chloroform as described in Sambrook et a l 

(1989). 1/20 volume 3 M sodium acetate and 2 volumes absolute ethanol were added 

sequentially with mixing, and precipitated DNA extracted with a sealed pasteur pipette 

hook. DNA was repeatedly washed in 70% ethanol, air-dried briefly then dissolved in 

an appropriate volume of TE buffer. DNA was quantified spectrophotometrically at 260 

nm and stored at 4°C.

2.20 Southern blotting

Southern blotting (Southern, 1975) was carried out as described by Sambrook et al. 

(1989). Briefly, following agarose gel electrophoresis of restriction digested DNA a 

photograph was taken of the gel with a ruler laid alongside. The gel was immersed in 

0.25 M HC1 for 15 minutes, following which it was immersed in 0.5 M NaOH, 1.5 M 

NaCl twice for 15 minutes each. The gel was washed thoroughly in dHzO then 

immersed in 1 M Tris-HCl pH 8.0, 1.5 M NaCl twice for 15 minutes each. The DNA 

was transferred onto Hybond N+ membrane [Amersham] by blotting overnight using 

20x SSC as the transferrant. DNA was then fixed using a CL-1000 Ultraviolet 

Crosslinker [Genetic Research Instrumentation Ltd.] set at 120 J/cm2.
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2.21 Culture media and solutions

Ampicillin

Stock solution lOOmg/ml in dH20 . Storage at -20°C

BBL Bottom agar

BBL Trypticase peptone 1% (w/v)

NaCl lOOmM

Agarose 1% (w/v)

Autoclave and store at room temperature

BBL Top agarose

BBL Trypticase peptone 1% (w/v)

NaCl lOOmM

MgCl2 12mM

Agarose 0.7% (w/v)

Autoclave and store at room temperature

Column buffer

Tris-HCl (pH 7.4) 20 mM

NaCl 200 mM

EDTA 1 mM

Sodium azide 0.05% (w/v)

Cunninghams medium (Cunningham, 1977)

mg/100 ml

NaH2P 04 53

MgCl2.6H20 304

MgS04.7H20 370

KC1 298

CaCl2 15

Glucose 70
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Fructose 40

Sucrose 40

L-Malic acid 67

a-Ketoglutaric acid 37

Fumaric acid 5.5

Succinic acid 6

p-Alanine 200

DL-Alanine 109

L-Arginine 44

L-Asparagine 24

L-Aspartic acid 11

L-Cysteine HC1 8

L-Cystine 3

L-Glutamic acid 25

L-Glutamine 164

Glycine 12

L-Histidine 15

L-Isoleucine 9

L-Lysine 9

DL-Methionine 20

L-Phenylalanine 20

L-Proline 690

DL-Serine 20

L-Taurine 27

DL-Threonine 10

L-Tryptophan 10

L-Tyrosine 20

L-Valine 21

BME Vitamin mixture (lOOx - Gibco BRL) 0.2 ml

The above components were combined, a small amount of phenol red indicator was 

added, and the pH was adjusted to 7.4 with 2 M NaOH. The medium was filter 

sterilised through 0.22 pm filters, aliquoted and frozen.
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Denhardts (50x)

Ficol 5 g

Polyvinylpyrrolidone 5 g

BSA 5 g

Sterile distilled water to 500 ml, then filter sterilise

DNA denaturation solution

NaCl 1.5 M

NaOH 0.5 M

DNA digestion buffer

Tris-HCl (pH 7.5) 10 mM

EDTA 1 mM

NaCl 100 mM

DNA loading buffer (6x)

Ficoll 15 % (w/v)

Orange G 0.2 % (w/v)

Xylene cyanol 0.1% (w/v)

DNA neutralisation solution

NaCl 1.5 M

Tris (pH 7.2) 0.5 M

Ethidium bromide

lOmg/ml stock solution in dH20

Hybridisation solution (Church Gilberts)

Na2HP04 0.34 mM

NaH2P 04.H20  0.16 mM

SDS 7 % (w/v)

EDTA (pH 8.0) 1 mM
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Laemmli sample buffer (4x)

SDS 4 % (w/v)

Glycerol 10 % (v/v)

2-mercaptoethanol 10 % (v/v)

Trizma base (pH 6.8) 0.125 M

Bromophenol blue to colour

Luria-Bertani (LB) medium

g/litre

Bacto-tryptone 10

Bacto-yeast extract 5

NaCl 10

Solutes were dissolved in 950 ml deionized water and the pH adjusted to 7.0 with 5 M 

NaOH. The volume was adjusted to 1 litre prior to autoclaving.

LB agar

LB medium as described above with addition of 15 g/litre bacto-agar.

LSG

MOPS (pH 7.2) 50 mM

NaCl 100 mM

EDTA 0.1 mM

EGTA 0.1 mM

NaOVanadate 1 mM

NaF 10 mM

Triton X-100 1 % (v/v)

Glycerol 10 % (v/v)

LSGI

LSG 10 ml

Phenanthroline 20 pi from 500 mM stock

Pepstatin 50 pi from 1 mg/ml stock

Leupeptin 100 pi from 10 mg/ml stock
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PMSF 

Pefabloc SC

50 pi from 10 mg/ml stock 

50 pi from 100 mg/ml stock

Phosphate buffered saline (PBS)

KH2PO4/K2HPO4 (pH 7.4) 10 mM

NaCl 137 mM

PBST

PBS 1 x

Tween-20 1% (v/v)

Pfu DNA polymerase reaction buffer

KC1 50 mM

Tris-HCl (pH 9.0) 10 mM

Triton®X-100 0.1% (v/v)

Reverse transcription buffer

Tris-HCl (pH 9.0) 10 mM

KC1 50 mM

Triton®X-100 0.1% (v/v)

RF1

RbCl

MnCl2.4H20

KAc

CaCl2.2H20

Glycerol

Solution was adjusted to

RF2

MOPS (pH 6.8) 10 mM

RbCl 10 mM

CaCl2.2H20  75 mM

100 mM 

50 mM 

30 mM 

10 mM 

15% (v/v)

pH 5.8 with 0.2 M acetic acid and filter sterilised.
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Glycerol 15% (v/v)

Solution was filter sterilised.

RNA denaturation solution

Guanidinium thiocyanate 4M

Sodium citrate pH 7.0 25 mM

Sarkosyl 0.5% (v/v)

p-mercaptoethanol 0.1 M

RNA loading buffer (6x)

Bromophenol blue 0.25% (w/v)

Xylene cyanol 0.25% (w/v)

Glycerol 30% (v/v)

SDS 1.2% (w/v)

Sodium phosphate (pH 6.8) 60 mM

SM medium

NaCl 5.8 g

M gS04.7H20  2 g

1 M Tris (pH 7.5) 50 ml

2% Gelatin 5 ml

Sterile distilled water to 1 litre

TAE (1 x)

Tris-acetate 40mM

EDTA ImM

Taq DNA polymerase reaction buffer

KC1 50 mM

Tris-HCl (pH 9.0) 10 mM

Triton®X-100 0.1%
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TBST

Tris-HCl (pH 8.0)

NaCl 

Tween 20

Western transfer buffer

Tris

Glycine

Methanol

ZPFM medium

NaCl

KC1

Na2HP04

KH2PO4

(C 2H 30 2 )2 M g 4 H 2 0  

Ca(C2H30 2)2 H20

10 mM 

0.15 M 

0.05% (v/v)

5 mM 

2 mM 

20% (v/v)

132 mM 

8 mM 

8 mM

1.5 mM

1.5 mM 

90 pM
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2.22 Abbreviations

bp Base pairs

ConA Concanavilin A type V

DABCO 1, 4-diazabicyclo[2.2.2]octane

DAPI 4,6-diamidino-2-phenylindole

DMSO Dimethyl sulfoxide

DNA Deoxyribonucleic acid

FBS Foetal bovine serum

HRP Horse radish peroxidase

IPTG Isopropyithio-P-D-galactodise

kb Kilobase pairs

PCR Polymerase chain reaction

RNA Ribonucleic acid

rpm Revolutions per minute

SDS Sodium dodecyl sulphate

SSC Salt, sodium citrate

TEMED N,N,N’,N’-tetramethylethylenediamine

X-gal 5-Bromo-4-chloro-3-indoyl-|3-D-galactoside

ZPFM Zimmerman post-fusion medium
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Chapter 3

Identification, cloning and sequence analysis of Trypanosoma brucei rhodesiense 

mRNA transcripts differentially expressed during ConA induced cell death
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3.1 Introduction

Alteration in gene expression is the core regulatory mechanism that controls cell 

biology. The repertoire of genes expressed by a population of cells at any given time 

influences processes such as development and differentiation, homeostasis, cell cycle 

regulation, ageing and programmed cell death (Laing and Pardee, 1992). Consequently, 

isolation and characterisation of genes that are differentially expressed between cell 

populations in response to varying stimuli can provide insights into the biological 

processes occurring within those cells.

Analysis of gene expression can be conducted at either the mRNA or protein level. As 

protein is one of the “final products” of the cell, analysis of fluctuation in cellular 

protein constituents would seem to be the ideal method for monitoring changes in gene 

expression. While proteome analysis using two dimensional gel electrophoresis has 

become more widespread over recent years (Byrjalsen et al., 1999; Costa et al., 1999; 

Jungblut et al, 1999), most studies monitoring differential gene expression focus on 

variations in the level of mRNA. Several techniques have been developed for the 

comparison of mRNA expression between cell populations, including subtractive 

hybridisation (Sargent, 1987; Diatchenko et al., 1996; Konietzko and Kuhl, 1998), 

differential display reverse transcriptase polymerase chain reaction (DDRT-PCR)

(Liang and Pardee, 1992; Murphy and Pelle, 1994; Dimopoulos et al., 1996; Feghali 

and Wright, 1999), the use of cDNA microarrays (Schena et al., 1995; Schena et al., 

1996; Amundson et al., 1999), and serial analysis of gene expression (Velculescu et al., 

1997).

Subtractive hybridisation was one of the earliest techniques developed for identification 

of differentially expressed genes (Sargent, 1987). Annealing of control cDNA from one
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cell population with experimental mRNA from another is followed by separation of 

unhybridised mRNA from the cDNA/mRNA hybrids. After several rounds of such 

hybridisation, cloning and sequencing of the surviving mRNA is carried out.

Drawbacks to subtractive hybridisation include technical difficulty, requirement for a 

relatively large amount of template mRNA, inability to detect transcripts that are 

downregulated with respect to the control and the restriction of comparing only two 

samples during each screen.

The use of cDNA microarrays provides a sensitive and semi-quantitative method for 

screening thousands of transcripts in a single hybridisation, identifying those that are 

both up- and downregulated with respect to the control. This is a very involved 

technique requiring amplification of cDNA clones from a control population by PCR, 

construction of a microarray and screening with labelled mRNA from the experimental 

population (Schena et a l, 1995; Amundson et al., 1999). The inherent limitation of this 

technique is of course that the mRNA expression levels of experimental populations 

may only be compared with the control, and not directly with each other.

Serial analysis of gene expression (SAGE) allows identification and quantitation of all 

mRNA being expressed within a cell population. With this technique short ESTs (9-11 

bp) are generated from double stranded cDNA, annealed together to form concatemers 

then sequenced. Identity and frequency of ESTs can then be determined (Velculescu et 

al., 1997). The major drawback of this technique is its a priori requirement for 

complete genome sequence, thus limiting the number of species to which it can be 

applied currently.



Differential display PCR is the most commonly used method for identifying mRNAs 

that are differentially expressed between different populations of cells. Variations of 

this technique abound (Welsh et al., 1992; Murphy and Pelle, 1994; Mathieu-Daude et 

al., 1998), but the general principle underlying them remains the same. mRNA is 

converted to first strand cDNA, and is then amplified by PCR using one or more 

primers to produce a variety of products that are visualised by electrophoresis. 

Differential display PCR is a relatively uninvolved and sensitive technique that allows 

comparison of multiple samples, identifying transcripts that are both up- and 

downregulated. However, drawbacks include a bias towards more abundant transcripts 

(Bertioli et al., 1995), a requirement for high quality template mRNA, and an 

abundance of false positive results (Zhang et al., 1996; Poirier et al., 1997).

Randomly amplified differentially expressed sequences PCR (RADES-PCR) was 

designed specifically for the identification of differentially expressed transcripts from 

trypanosomes (Murphy and Pelle, 1994). Like other differential display PCR 

techniques, the first steps of the RADES-PCR protocol involve isolation of RNA from 

cells, followed by reverse transcription to produce first strand cDNA. cDNA is then 

amplified by PCR using primers specific to the fixed 5’ spliced leader and 3’ poly[A]+ 

tail of all trypanosome mRNAs studied to date (Parsons et al., 1984). This 

trypanosome-specific amplification step facilitates analysis of samples contaminated 

with material from either host or vector, and allows utilisation of very small amounts of 

template in numerous differential screens. Differential display PCR is carried out with a 

single 10-mer primer, producing a fingerprint that is resolved by agarose gel 

electrophoresis (Murphy and Pelle, 1994).



In recent years a number of studies have been undertaken with the aim of identifying 

transcripts that were differentially expressed within a particular apoptotic system. The 

goal of such research has been a better understanding of the control of gene expression, 

and by association cellular events, occurring throughout this process, presumably with a 

view to manipulating elucidated pathways in the future. While 2 groups have identified 

novel Bcl-2 family members (Thomson et al., 1997; Fournier et al., 1999), the majority 

of genes identified thus far (such as a ribosomal protein, a-tubulin, monocyte 

chemotactic protein-1, Sm protein G or aldolase C) had not had previous links to 

apoptosis (Chen et al., 1998; Choi et al, 1998).

In the current work the RADES-PCR technique was utilised to identify differential gene 

expression in procyclic T. brucei undergoing ConA-induced cell death. 27 putatively 

differentially expressed transcripts were identified and sequenced. Three of these were 

subjected to Northern blot analysis. Phase microscopy and DAPI staining were 

conducted on ConA-treated cells, revealing a phenotype dissimilar to apoptosis in 

metazoans.
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3.2 Results

3.2.1 Identification of transcripts displaying differential expression during

ConA-induced cell death of T. brucei 

5 x 10s trypanosomas in mid-log phase were harvested, then resuspended at 2 x 106/ml 

in fresh Cunninghams medium containing 10 ng/ml ConA. Cells were equally 

distributed between five culture flasks and incubated at 27°C for 4, 8, 24, 48 or 72 

hours, following which trypanosomes were harvested and placed at -70°C for storage. 

1 x10  control cells were not subjected to ConA treatment.

Poly[A]+-enriched RNA was prepared directly from trypanosome cell pellets and 

resuspended in 50 nl RNase free dH20. First strand cDNA was synthesised and 

amplified as described previously (Section 2.5). Successful amplification o f cDNA was 

verified by electrophoresis of 10 1̂ of each sample (from 100 ja.1) on a 1.5% agarose gel 

(Figure 3.1). Enzymes, buffer, primers and dNTPs were removed from samples by 

ultrafiltration as described previously (Section 2.5). The concentration of cDNA was 

determined spectrophotometrically, following which samples were diluted to 20 ng/^1 

with TE buffer. Aliquoted cDNA was stored frozen at -20°C.

RADES-PCR was carried out on samples as described in Section 2.6 using a total of 36 

arbitrary primers (kindly supplied by N. Murphy, ILRI, Nairobi). Sequences of RADES 

primers can be found in Table 3.1. PCR reactions on each sample were, where possible, 

carried out at two template concentrations in order to detect more accurately those 

products displaying a reproducible pattern, thus reducing the probability of selecting 

artefactual bands. PCR products were electrophoresed on 2% agarose gels and progress 

of the migrating bands monitored by medium-wave UV transillumination. RADES gels 

are displayed in Figure 3.2.
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Figure 3.1 Amplified cDNA electrophoresed on a 1.5 % agarose gel
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cDNA derived from ConA treated trypanosom es was subjected to agarose gel electrophoresis to verify 

successful reverse transcription and PCR amplification. Lanes 1-6 represent samples derived from cells 

cultured in the presence o f ConA for 0, 4, 8, 24, 48, and 72 hours respectively. Numbers on the left 

denote molecular weight in kb.

Table 3.1 Sequences of arbitrary RADES primers

Primer number Primer sequence Primer number Primer sequence
101 CGA G CA CA A TG 1205 ACGCCGGGGC
505 CGGA CGTCGC 1206 GCGGTCG GCG
508 CGGCCCCTGT 1209 GGCCCCCGCT
509 TGGTCAGTGA 1213 CGCGCGGGGA
524 CGCGCCCGCT 1216 ATGGCTCGGC
526 G CCGTCCGAG 1281 CCGGGCCG TG
527 G CGCGCAGCG 1285 TCGCGCGCCG
539 CG GCGGAGCT 1297 CCGTCGGCCC
540 GAGGGG GCGT 1298 CGAGACGGAG
541 G CGGCTGCCA 1300 CA GTCGGGTC
542 GGGTGCGCGG 1365 CG AGCACAAT
543 GTGTCCGGCG 1384 GAAGG CTGCG
867 CG TTCCCCGC 1387 GCTAGGGCGG
873 CA TGTGCAGG 1499 AAGCGAGCCG
875 GTCCGTGAGC 1501 CGGCCGGTCA
921 CGGCTA CGGG 1504 GGAGACGCCC
1197 GCTCTGGGTC 1505 GCCTG TGAGG
1201 CCCAGCCCCA 1506 ACGGTGCGCC
1204 GACGGCGCAA 1508 CCACATACCC
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Significant changes in banding pattern were sought, including bands which either 

appeared/disappeared or were judged to demonstrate greater than 3-fold 

increase/decrease across the time course. Where two template concentrations were 

employed products were required to be present in both lanes in order to be selected. On 

occasions where PCR was carried out at only one template concentration such a 

safeguard against artefacts was not possible. Failure of the PCR on one or more 

samples was not uncommon (Figure 3.2: primer 527, lane 5; primer 1501, lane 3) and 

was taken into account when seeking differentially expressed bands. Each primer 

produced a unique fingerprint, and significant variation in the number of amplified 

products was observed. PCR products ranged in size from 100 bp to 2 kb, but were 

generally in the range of 300 bp to 1 kb.

Plugs were taken from selected bands using a 200 pi pipette tip with the terminal 5 mm 

removed, resulting in a bore of approximately 1 mm. Gel plugs were expelled into 50 pi 

dH20 , boiled for 10 minutes in a water bath, then used as template for re-amplification 

as described in Section 2.6. The resulting PCR products were electrophoresed on a 2% 

agarose gel as previously and appropriate bands excised. Examples of re-amplified 

products are presented in Figure 3.3. Multiple bands were often produced during re

amplification, indicating that the template DNA had consisted of several PCR products. 

Co-migrating bands have previously been reported as one of the major causes of false 

positive results when using differential display PCR (Laing et al., 1993; Murphy and 

Pelle, 1994; Zhang et al., 1998), so this phenomenon was not unexpected. Of the 64 

bands identified during the course of this study, 49 (77%) were successfully re

amplified. There was a tendency for small RADES products (300 -  800 bp) to re- 

amplify more successfully than larger ones (> 1 kb) under the conditions employed. In 

theory it would have been possible to optimise reamplification conditions for each
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amplicon, but due to the number of products detected during this study such an 

approach was not deemed to be necessary.

Re-amplified RADES-PCR products were T-vector cloned as described in Section 2.7. 

The presence of inserts in bacterial colonies was determined by colony PCR using 

commercial SP6 and T7 RNA polymerase promoter sequencing primers [Promega]. Of 

the 49 products which re-amplified, 27 (55%) were successfully cloned. The size of 

cloned products was confirmed prior to sequencing by restriction enzyme digestion of 

plasmids (Not IINco I for pGEM-T or Eco RI for pGEM-T easy), followed by agarose 

gel electrophoresis. On several occasions fragments of disparate size were cloned from 

the same re-amplified product. On all but two occasions it was possible to determine by 

size alone which were the products of interest, and which re-amplification artefacts. 

However, both 1499(3) and 1504(4) produced 2 clones, each of which contained an 

insert approximating the predicted amplicon size, but of noticeable different sizes to 

each other. As it was not possible to determine which clones represented the original 

amplicon, both clones, henceforth referred to as pl499(3)/pl499(3a) and 

pl504(4)/pl504(4a) respectively, were sequenced in each case. Sequencing was with 

commercial SP6 and T7 RNA polymerase promoter sequencing primers. Sequence data 

was edited using the EditSeq programme [DNASTAR] then used to homology search 

databases using the BLAST algorithm. Sequence data is lodged in Appendix I.



Figure 3.2 RADES-PCR products from ConA treated trypanosomes

RADES-PCR was carried out on ConA treated procyclic trypanosomes, using the 

primers indicated above each image. Numbers above each photograph denote time in 

hours post-treatinent of cells with ConA. Where two lanes are indicated as 

corresponding to a single time-point, the first represents a template concentration of 20 

ng/pl and the second 2 ng/|xl. Numbers in the left margin denote size in kb. Numbered 

arrows (£ ) denote products that were successfully cloned and sequenced. Arrows 

without numbers (^1) denote bands that were selected as being differentially expressed 

but which failed at either the re-PCR or cloning step.
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Figure 3.3 Re-amplified RADES-PCR products
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Re-amplified RA D ES-PCR products were electrophoresed on a 2% agarose gel. Appropriate bands were 

identified (indicated by white arrows) and excised for T-vector cloning. Bands that were successfully 

cloned and sequenced are labelled above, corresponding to am plicons indicated in Figure 3.2. Numbers 

on the left denote size in kb.

BLAST searches were carried out using the programmes pre-set parameters. A Score 

(in bits) and a statistical significance for the match (e-value) accom panied each BLAST 

alignment. The Score indicated the search space needed to be exam ined in order to find 

a match as good as the one presented by chance alone. Larger bit scores indicated more 

significant alignments, and were independent of the size of the database in which a 

matching sequence was found. The “Expect” value gave an estimate of the statistical 

significance of the Score and was based on both the size of the query sequence and the 

size of the database. A Score o f  30 and an Expect value of 2e-05 would therefore 

indicate that a search space of 1 billion bits (230) would have to be exam ined in order to 

find, by chance alone, a match as good as the one presented, and that on a database of 

the size searched 2 x 10 5 matches with a Score of 30 would be expected by chance 

alone.
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Comparison of sequence data derived from RADES-PCR products with that held on 

internet databases was carried out primarily using the BLAST-X programme. This 

translated the experimental nucleotide sequence in all six reading frames then compared 

these with the 6-frame translation of sequences on the database. The output from 

BLAST-X searches using the T7 sequence of amplicon 3, Primer 875 [875(3)T7], and 

the SP6 sequence of amplicon 5, Primer 1499 [1499(5)SP6] are presented in Figures 3.4 

and 3.5 respectively as examples. At the top of each results page was a list of definition 

lines that referred to alignments arranged sequentially further down the page. The 

alignments in both Figures 3.4 and 3.5 were from the first sequence listed. Alignments 

were preceded by a definition line containing information such as the database on which 

the target sequence was lodged (sp, dbj, emb etc.), the sequence accession number, a bit 

Score, and an Expect value. The sequence identity (Identities), similarity (Positives) 

and nucleotide reading frame were also provided. On the alignment itself the query line 

referred to the sequence being compared against database entries, and the subject line 

gave the sequence of the database match. The intervening sequence denoted residues 

that were identical (letters) or conserved (+).

A bit Score greater than 50 and an Expect value lower than 1 x 10'5 were required in 

order for a match to be deemed significant. Sequence 875(3)T7 (Figure 3.4) returned a 

high Score of 31 and a corresponding Expect of 3.1. In accordance with the 

aforementioned parameters this match was therefore not classed as significant. By 

contrast, sequence 1499(5)SP6 (Figure 3.5) returned a high Score of 179 and a 

corresponding Expect of 6 x 1CT45. This match was therefore highly significant. Figure 

3.7 contains BLAST results from all sequences derived from RADES-PCR of ConA
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treated cells. Of the 29 clones analysed, 17 returned significant matches from one or 

both sequences.

BLAST-N searches, comparing nucleotide query sequences directly with sequences on 

the database, were carried out on sequences that did not produce significant BLAST-X 

matches. No additional significant matches were revealed by employing the BLAST-N 

programme.



Figure 3.4 BLAST-X alignments derived from sequence 875(3)T7

Sequence 875(3)T7 was used to homology search the nr database using the BLAST-X 

algorithm. This sequence returned matches to a variety of envelope glycoprotein 

sequences from the human immunodeficiency virus. Values for Score and Expect were 

low, indicating that these were not significant matches. The alignment denoted by the 

first of the definition lines is presented. This match was of reasonable quality, but was 

short.



Score E
Sequences producing significant alignments: (bits) Value

gi 11336634 (U57788) envelope glycoprotein 120 [Human immuno... 31 3.1

pir || A40218 envelop glycoprotein gpl20 - human immunodefici... 31 3.1

gi 12853990 (AF041129) envelope glycoprotein [Human immunode... 31 4.0

gi| 1495956 (U27401) envelope glycoprotein [Human immunodefi... 30 9.0

gi 1818222 (U23487) env glycoprotein [Human immunodeficiency... 30 9.0

gi 13114552 (AF005494) envelope polyprotein [Human immunodef... 30 9.0

gi| 1336634 (U57788) envelope glycoprotein 120 [Human immunodeficiency virus 

type 1] Length = 536 

Score = 31.3 bits (69), Expect = 3.1 

Identities = 13/30 (43%), Positives = 19/30 (63%)

Frame = -3

QUERY: 270 I I R A A E K I W I  S F F Y L H P F F L P F S P V Y F C A S 1 8 1  

I R A A E K + W  + + + Y P + + F C A S

SBJCT: 27 I C R A A E K L W V T V Y Y G V P V W K E A T T T L  F C A S  56



Figure 3.5 BLAST-X alignments derived from sequence 1499(5)SP6

Sequence 1499(5)SP6 was used to homology search the nr database using the BLAST- 

X algorithm. This sequence returned matches to the 60S ribosomal protein L10 of 

Drosophila melanogaster, Oryza sativa, Solarium melongena and Homo sapiens. The 

same region of the sequence also matched a QM family protein from S. melongena and 

O. sativa, and a putative protein from Arabidopsis thaliana. Values for Score and 

Expect were high, indicating that these were significant matches. The alignment 

denoted by the first of the definition lines is presented. This match was of high quality, 

and was relatively long.



Score E
Sequences producing significant alignments: (bits) Value

emb|CAB39087.1| (AL034358) predicted using hexExon; L4830.9... 179 6e-45

sp|P45635|R101_ORYSA 60S RIBOSOMAL PROTEIN L10-1 (PUTATIVE ... 143 3e-34

dbj|BAA19414| (AB001582) QM family protein [Solanum melongena] 143 5e-34

sp|P93847|RL 10_SOLME 60S RIBOSOMAL PROTEIN L10 (EQM) >gi|19... 143 5e-34

gi|1305525 (U55212) Wilms' tumor-related protein QM [Oryza ... 143 5e-34

gb|AAD14497| (AC005508) 29621 [Arabidopsis thaliana] 142 6e-34

sp|P45633jRL10_MAIZE 60S RIBOSOMAL PROTEIN L10 (QM PROTEIN ... 141 le-33

emb|CAB39087.1| (AL034358) predicted using hexExon; L4830.9, 60S Ribosomal 

protein L10, len: 214 aa; Similarity to 60S ribosomal protein L10. 

D.melanogaster 60S ribosomal protein (SW:RL10_DROME) BLAST Score: 

740, sum P(l) = 1.7e-73; 66% iden...Length = 213 

Score =179 bits (449), Expect = 6e-45 

Identities = 84/97 (86%), Positives = 90/97 (92%)

Frame = +3

QUERY: 3 K E C F H M R I R A H P F H V L R I N K M L S C A G 80

K + F H M R R A H P F H V L R I N K M L S C A G

SBJCT: 82 K D V F H M R T R A H P F H V L R I N K M L S C A G 107

QUERY: 81 A D R L Q T G M R Q S Y G K p N G N C A R V R I G Q 158

A D R L Q T G M R + + G K p N G C A R V R I G Q
SBJCT: 108 A D R L Q T G M R G A F G K p N G V c A R V R I G Q 133

QUERY: 159 I L L S M R T K D T Y V P Q A L E S L R R A K M K F 236

I L L S M R T K + Y V P Q A E + L R R A K M K F

SBJCT: 134 I L L S M R T K E A Y V P Q A F E A L R R A K M K F 159

QUERY: 237 P G R Q I I V I S K Y W G F T N L I R 293

P G R Q I I V + S K Y W G F T N L I R

SBJCT: 160 P G R Q I I V M S K Y W G F T N L I R 178
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Six of the significant matches returned encoded ribosomal protein homologues, 5 of 

which had previously been identified as Trypanosoma brucei ESTs (pl01(l), p508(l), 

p527(l), pl501(2) and pl504(4a)), and one which represented a novel T. brucei gene 

but which had a T. cruzi homologue (p 1499(5)). Matches to T. brucei sequences never 

displayed 100% identity. Differences were likely to have resulted either from 

introduced errors (RADES-PCR reactions were carried out using relatively high MgCb 

concentrations, and were thus of low fidelity) or from strain differences between 

trypanosome isolates. The RADES products encoding ribosomal proteins were all 

identified as being upregulated in ConA treated cells with respect to the control 

(respective bands in Figure 3.2), although variation in the interval between treatment 

and upregulation was noted. 101(1) was present in all experimental samples but absent 

in the control. 508(1) became evident at 24 hours, while 527(1), 1499(5) and 1504(4a) 

were not observed until 48 hours post treatment. 1501(2) did not appear until 72 hours 

after addition of ConA to trypanosomes.

Analysis of two RADES clones identified sequences encoding proteins associated with 

the mitochondrion. Amplicon 101(2) was identified as a transcript present at 48 hours 

in ConA treated trypanosomes but absent in control cells and at previous time points 

(Figure 3.2). BLAST data revealed a significant match between pl01(2) and previously 

identified ESTs from T. brucei and T. cruzi that had significant homology to a family of 

mitochondrial transporter proteins. The major difference between p 101(2) and the T, 

brucei EST AA186249 was a temporary loss of alignment due to a frameshift, believed 

to be the result of sequence errors introduced either during RADES-PCR or during 

sequencing.



Amplicon 526(1) was identified as a transcript that was present in control cells and 

ConA-treated 4 and 8 hour timepoints, but that was absent at 24 and 48 hours post 

treatment (Figure 3.2). BLAST data demonstrated a significant match between the T7 

sequence of clone p526(l) and a human cDNA clone (Score 59, Expect 3 x 10"8). The 

human transcript encoded a homologue for the peptide chain release factor 2 of 

Streptomyces coelicolor (Score 62, Expect 2 x 10'9). Direct comparison between clone 

p526(l) and S. coelicolor revealed a match that was not significant (Score 41, Expect 

0.002). The SP6 sequence of clone p526(l) failed.

Amplicon 1209(4) was identified as a transcript present in ConA treated cells at all time 

points, but absent from the control (Figure 3.2). BLAST data revealed a significant 

match between the T7 sequence of clone p i209(4) and a T. brucei EST encoding the 5’ 

end of arginine kinase. This enzyme is a member of the phosphagen kinase family, 

responsible for the reversible transfer of a high energy phosphoryl group from ATP to a 

phosphagen such as creatine or arginine, effectively buffering ATP levels within active 

cells (Stryer, 1988). The SP6 sequence from p i209(4) did not produce a database 

match.

Amplicon 1365(2) was identified as a transcript that was present in control lanes and 

which gradually increased in experimental cells over the first 24 hours following ConA 

treatment. The transcript was not evident at 48 or 72 hours (Figure 3.2). BLAST 

analysis of the T7 sequence of clone p i365(2) did not reveal any database matches. 

However, SP6 sequence data displayed a significant match with a cDNA clone from 

Dictyostelium discoideum with homology to MOB1 sequences from various organisms. 

Direct comparison between the SP6 sequence of p i365(2) and MOB1 sequences from 

Arabidopsis thaliana, Homo sapiens, Caenorhabditis elegans, Schizosaccharomyces
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pombe and Saccharomyces cerevisiae revealed significant matches to all, with Score 

and Expect values ranging from 91 : 5 x 10'18 to 69 : 2 x 10'11 respectively. To date the 

MOB1 protein has only been characterised in S. cerevisiae, where it is involved in 

completion of mitosis and maintenance of ploidy. MOB1 is an essential yeast 

phosphoprotein that has been shown to display two-hybrid interaction with two protein 

kinases, MPS1 (Luca and Winey, 1998) and DBF2 (Komamitsky et al., 1998). The 

function of MOB 1 is currently unknown, although a role during late mitosis has been 

demonstrated (Komamitsky et al., 1998; Luca and Winey, 1998). A further analysis of 

the T. brucei MOB1 is presented in Chapter 5.

Amplicon 1499(2) was identified as a transcript that was present in control cells and at 

4, and 8 hours in ConA treated cells, but absent in the 24, 48 and 72 hour timepoints 

(Figure 3.2). BLAST analysis of both the T7 and SP6 sequence data derived from clone 

pl499(2) revealed a significant match to cyclophilins from various organisms, the best 

Score and Expect being against a cDNA encoding cyclophilin 2 of Oryza sativa. 

Cyclophilins are ubiquitous proteins that are highly conserved in bacteria, fungi, plants 

and vertebrates. Cyclophilins are members of the immunophilin group of peptidyl- 

prolyl cis-trans isomerases that catalyse the interconversion of peptidyl-prolyl imide 

bonds in peptide and protein substrates (reviewed in Gothel and Marahiel, 1999).

Amplicon 1499(4) was present in ConA treated cells at the 24 hour timepoint, but was 

not evident in other samples (Figure 3.2). The T7 sequence derived from clone 

pGEM1499(4) returned a significant match to a T. brucei putative protein (S33475) of 

unstated function. Significant matches were also made with Leishmania donovani 

putative pteridine transporters FIT - FT6 (consecutive accession numbers AAD52046-

13AAD52051 respectively), with Score and Expect values ranging from 64 : 1 x 10' to
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45 : 3 x 10' . The T. brucei putative protein also demonstrated a highly significant 

match to the L. donovani sequences. Trypanosomatid protozoans lack a de novo 

pathway for the biosynthesis of pteridines (pterins and folates)(Scott et al., 1987). 

Consequently, a sophisticated salvage pathway has arisen within these organisms 

involved in scavenging pteridines from the host (Nare et al., 1997). The lack of identity 

between the insert of clone p 1499(4) and the T. brucei putative protein S33475 suggests 

that the former represents a novel pteridine transporter family member in this organism.

Amplicon 1501(4) was identified as a transcript present at 72 hours in ConA treated 

cells, but not evident at earlier time points (Figure 3.2). BLAST analysis revealed a 

significant match between both T7 and SP6 sequences of clone p i501(4) and the 

trypanosome homologue of a receptor for activated protein kinase C (TRACK).

TRACK had been identified during a previously RADES-PCR screen as a transcript 

upregulated in T. brucei undergoing ConA-induced cell death, and was confirmed as 

such by Northern blot analysis (Welbum and Murphy, 1998). RACKs are components 

of protein kinase C (PKC) signalling, binding active PKC via a PKC site distinct from 

the substrate binding site (Mochly-Rosen et al., 1992). RACK family members have 

been identified in all eukaryotic species studied to date (Taladriz et al., 1999).

Amplicon 1504(1) was identified as a transcript that was gradually upregulated from 4 

to 24 hours post treatment with ConA (Figure 3.2). This transcript was not evident 

within the control lanes, or at 48 and 72 hours post-treatment. Data derived from the 

950 bp insert of clone p i504(1) revealed identity with two different T. brucei 

sequences. The T7 sequence matched AF102980, encoding the full length T. brucei 

apocytochrome cl, the precursor of cytochrome cl. The SP6 sequence matched 

AA701839, a T. brucei EST with no significant homology to other sequences currently
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lodged on databases. Alignments revealed that both T7 and SP6 sequences matched 

their corresponding clones in a 5’ —» 3’ direction, suggesting that the PCR product 

cloned within pl504(l) was likely to be an artefact. Whether this clone represented the 

originally identified amplicon is unknown.

BLAST analysis of two RADES clones returned significant matches to database entries 

that encoded transcripts of as yet unknown function. Amplicon 541(1) was present in 

experimental trypanosomes at 8 hours post treatment, but was absent at other 

timepoints. Both T7 and SP6 sequences derived from clone p541(l) demonstrated a 

significant match to a Mus musculus EST isolated from a male Soares mouse mammary 

gland library. This EST did not return significant matches to any other sequences 

currently lodged on the databases searched. Amplicon 1504(4) was present in ConA 

treated trypanosomes at the 48 hour timepoint, but was not evident in other samples. 

Both T7 and SP6 sequences derived from clone p i504(4) demonstrated identity with a 

T. brucei EST, and significant homology to a novel brain specific protein, CGI-38, from 

Homo sapiens (Score 54, Expect, 2 x 10'7). The role of this protein is unknown.

Analysis of 12 RADES clones did not return significant BLAST matches, suggesting 

that either the amplicons they represent derive largely or wholly from the 3’ 

untranslated regions of T. brucei mRNAs, or that they represent proteins for which 

homologues in other organisms do not exist or have yet to be discovered. The former 

possibility is favoured for the most part, as much of the T. brucei sequence data 

currently available is in the form of ESTs, which by definition represent only the 5’ 

terminus of cDNAs. Furthermore, the non-coding region of T. brucei ESTs would not 

be expected to produce database matches to DNAs from other species. However, 

bearing in mind that the kinetoplastids are evolutionarily divergent from other

85



eukaryotic groups (McLaughlin and Dayhoff, 1973), and that many sequencing projects 

are ongoing (http://parsunl.path.cam.ac.uk), the latter possibility is not without merit.

3.2.2 Northern blot analysis of T. brucei transcripts identified during

RADES-PCR

In order to confirm differential expression of T. brucei transcripts identified during the 

RADES-PCR screen described in Section 3.2.1, procyclic cells were treated with 10 

pg/ml ConA and harvested at 0, 4, 8, 24, 48 and 72 hours post treatment. Total RNA 

was prepared from cell pellets and relative concentration of samples determined by 

agarose gel electrophoresis. Approximately 10 pg RNA from each sample was 

subjected to agarose gel electrophoresis, following which nucleic acid was transferred to 

Hybond-N+ membrane and fixed by UV cross-linking. The membrane was subjected to 

Northern blot analysis using the 411 bp QM RADES product [1499(5)] as a probe, and 

signal was detected autoradiographically. The QM probe was removed from the 

membrane by immersion in boiling 0.1% SDS, following which the same membrane 

was subjected to Northern blot analysis using the 957 bp open reading frame of the 

TRACK gene (Welbum and Murphy, 1998) as a probe. Signal was again detected 

autoradiographically. Results are displayed in Figure 3.6.

Hybridisation to the QM transcript clearly reduced throughout the time-course (Figure 

3.6, plate B), contrary to the fact that the QM RADES products was identified as being 

upregulated at 48 and 72 hours in ConA-treated cells. The TRACK gene, previously 

reported to be upregulated during cell death of procyclic T. brucei induced by ConA 

(Welbum and Murphy, 1998) and identified in the present study as upregulated at 72 

hours, was used as a positive control on this blot (plate C). This also demonstrated a

http://parsunl.path.cam.ac.uk


Figure 3.6 Northern biot analysis of total RNA from ConA-treated
procyclic T. brucei

24 48 72

0.24
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1.3 B
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Mid-log phase procyclic cells were treated with 10 pg/ml ConA then harvested at 0, 4, 8, 24, 

48 and 72 hours post treatment. Total RNA was prepared from cell pellets. 10 jig RNA from 

each sample was electrophoresed on a 1.4% agarose gel, photographed (plate A) then 

transferred to Hybond-N+. Northern blot analysis was carried out using the 411 bp QM  

RADES-PCR product [ 1499(5)] (plate B) or the 957 bp TRACK open reading frame (plate C) 

as probes. Numbers on the left denote transcript size in kb. Numbers along the top denote 

post-treatment time in hours.
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notable reduction in hybridisation signal over the time-course. This led to two 

conflicting hypotheses. Firstly, that levels of QM and TRACK transcripts genuinely 

reduced during the course of ConA induced cell death (contrary to the results of 

RADES-PCR with primer 1499 and the published profile of TRACK). Secondly, that 

levels of mRNA in the experimental cells gradually reduced throughout the time-course 

relative to total RNA, resulting in an artefactual reduction in hybridisation relative to 

control cells.

In order to address this question cells were treated with ConA as previously, and 

poly[A]+ RNA prepared from pellets. RNA was quantified spectophotometrically and 

lpg from each sample was subjected to agarose gel electrophoresis, following which 

nucleic acid was transferred to Hybond-N+ membrane and fixed by UV cross-linking. 

The membrane was sequentially subjected to Northern blot analysis using probes 

derived from (1) the 411 bp QM RADES product [1499(5)], (2) the 693 bp MOB1 

RADES product [1365(2)] and (3) a 600 bp PCR product corresponding to the open 

reading frame of T. brucei p-tubulin gene (kindly supplied by A. Osanya). The 

membrane was stripped between each hybridisation as described previously, and 

removal of probe confirmed by autoradiographic analysis. Results are displayed in 

Figure 3.7.

Neither QM (Figure 3.7, plate B) nor MOB1 (plate C) displayed differential 

hybridisation throughout the ConA-treatment time-course. p-tubulin, used as a control 

on this blot, was expected to hybridise equally at all time-points, but demonstrated a 

significant reduction in the level of detectable transcript (plate D). Phospho-imaging 

data acquired using a BAS-1500 phosphoimager together with MACBAS v2.02 

software (FUJI) confirmed this as a 3-fold reduction in hybridisation signal between 0
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Figure 3.7 Northern blot analysis of poly[A]+ RNA from ConA-treated
procyclic T. brucei

Mid-log phase procyclic cells were treated with 10 p.g/ml ConA then harvested at 0, 4, 8, 24, 48 and 

72 hours post treatment. Poly[A]+ RNA was prepared from cell pellets. 1 |Lig RNA from each sample 

was electrophoresed on a 1.4% agarose gel, photographed (plate A) then transferred to Hybond N+ 

membrane. Northern blot analysis was carried out using the 411 bp QM  RADES-PCR product 

(1499(5)] (plate B), the 693 bp MOB1 RADES-PCR product [1365(2)] (plate C), or the 3-tubulin gene 

open reading frame (plate D) as probes. Numbers on the left denote size o f  transcripts in kb.

Numbers along the top denote post-treatment time in hours.
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and 72 hours. These results conflicted with both the Northern blot analysis of total 

RNA and the RADES-PCR data, and led to two mutually exclusive hypotheses. Firstly, 

that the results of the poly[A]+ Northern blot were directly representative of the mRNA 

in respective samples. Consequently, neither QM nor MOB1 were differentially 

expressed during ConA induced death, and P-tubulin was downregulated. Secondly, 

that mRNA on the gel was not evenly loaded, a distinct possibility considering the high 

level of rRNA contamination in these preparations (Figure 3.7, plate A). The 

suggestion would then be that the P-tubulin transcript was evenly expressed at all time- 

points, and that the QM and MOB1 transcripts were correspondingly up-regulated. As 

both the QM and TRACK transcripts demonstrated down-regulation on the total RNA 

Northern (Figure 3.6, Plates B and C), this would lead to the supposition that TRACK 

was in reality up-regulated, fitting with the published data. The results of the Northern 

blot analysis were therefore inconclusive and due to time constraints were not pursued 

further during this study.

3.2.3 Microscopic analysis of ConA-treated procyclic T. brucei

5 x 108 trypanosomes in mid-log phase were harvested, then resuspended at 2 x 106/ml 

in fresh Cunninghams medium containing 10 pg/ml ConA. Cells were equally 

distributed between five culture flasks and incubated at 27°C for 4, 8, 24, 48 or 72 

hours, following which trypanosomes were harvested and resuspended in an equal 

volume of PBS. 20 pi cells were immediately spotted onto slides, allowed to air-dry, 

then fixed sequentially in 70% methanol and 100% acetone for 3 minutes each. Cells 

were prepared for fluorescence microscopy as described in Section 2.18, incubating 

slides with DAPI/PBS for 30 minutes in a dark chamber, washing thoroughly, then 

mounting with PBS/glycerol/DABCO. Results are displayed in Figure 3.8.
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Figure 3.8 Microscopic analysis of procyclic T. brucei treated with ConA

Procyclic T. brucei cells cultured with 10 pg/ml ConA cells were observed at 4, 8, 24, 

48 and 72 post-treatment. Controls (0 hours) were not subjected to ConA treatment. At 

each time cultured cells were observed using an inverted microscope and phase contrast 

microscopy in order to establish the general "fitness" of cells. Trypanosomes were then 

harvested, fixed, permeabilised and incubated with DAPI. Slides were examined by 

both phase contrast (columns 1 and 3) and fluorescence (columns 2 and 4) microscopy. 

Numbers in the right margin denote time in hours post-treatment with ConA. Bar at the 

top of each tile denotes 10 pm.



1 2 3 4
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Control cells observed in culture were very active and free-swimming. Cellular 

aggregates were rare and consisted of no more than 2-3 cells. Phase contrast 

microscopy of fixed cells revealed a morphology stereotypical of procyclic T. brucei 

(Figure 3.8, column 1, 0 hours). Fluorescence microscopy showed most cells to contain 

a single kinetoplast and a single nucleus (IK, IN), while a minority possessed 2K, IN 

or 2K, 2N DNA content (column 2 ,0  hours).

At 4 hours post treatment cells remained very active, but cellular aggregates had 

increased both in frequency (column 1, 4 hours) and in the number of cells constituting 

each (column 3, 4 hours). Although an accurate count was not possible, it was 

estimated that 80-90% of all cells in culture were aggregated. Analysis of cellular DNA 

content by fluorescence microscopy became more problematic when cells formed large 

aggregates, as it proved difficult to distinguish individual trypanosomes by phase 

contrast and to then correlate with the DAPI stained image (columns 3 and 4, 4 hours). 

Analysis of smaller aggregates and a few non-aggregated cells suggested an increase in 

the proportion of 2K, IN and 2K, 2N cells within the population relative to the control, 

although the number of cells amenable to such scrutiny was sufficiently low as to 

prevent accurate quantitation.

At 8 hours post treatment cells in culture had settled out of solution, forming what 

appeared to be a uniform blanket across the bottom of the flask. All cells within the 

culture were observed to be associated in large aggregates. Despite the fact that cells 

were aggregated the overall level of physical activity within the culture at this time 

remained high. Phase contrast microscopy of fixed cells revealed few cells extraneous 

to aggregates. Where the outline of individual cells could be discerned, morphology



appeared normal. DNA content of individual cells could not be determined at this time 

(columns 3 and 4, 8 hours).

At 24 hours post treatment most cells in culture were still observed to constitute large 

aggregates, although a few cells could be observed either individually of as part of 

smaller aggregates. Physical activity within the culture was markedly reduced with 

respect to the control and consisted mainly of locomotion of free flagellae, the "bodies" 

of trypanosomes remaining relatively motionless. Phase contrast microscopy revealed 

that the majority of free cells displayed a grossly distorted surface (column 1, 24 hours), 

with multiple flagellae detected on several occasions. Fluorescence microscopy 

detected a marked increase in ploidy, with some cells possessing 4 discrete nuclei 

(column 2, 24 hours). Kinetoplasts were more difficult to identify in these cells than 

had been the case in controls, a phenomenon that could either be the result of an 

increased nuclear mass obscuring them, or a reduction in number of kinetoplasts relative 

to nuclei. The "lumpy" cell surface morphology revealed by phase contrast is thought 

to be related directly to the increased ploidy revealed by DAPI staining .

At 48 hours cultured cells appeared extremely lethargic, although a degree of flagellar 

movement was detectable in most. Distribution of cells within the culture was not 

noticeable altered from the 24 hour time-point. Phase contrast microscopy revealed that 

the majority of cells remained bound in large agglutinated masses, while a minority of 

free cells could be detected. Few apparently normal cells were observed, the majority 

tending to have gross morphological defects such as massive blebbing of the cell 

surface and multiple flagellae. The individual portrayed in column 1 (48 hours) was a 

prime example, exhibiting 6 detectable flagellae and a distorted cell surface. 

Fluorescence microscopy of the same cell (column 2) revealed 8 clearly defined nuclei,
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a four-fold increase on the normal maximum number. The majority of individual cells 

observed displayed a similar increase in number of nuclei, possessing either 4 or 8 and 

indicating that division of nuclear DNA remained a co-ordinated event. DAPI staining 

of cell clusters (column 4) revealed a huge increase in quantity of DNA relative to 

earlier time-points (staining procedure and fluorescent exposure were constant for all 

slides), consistent with the observations made for individual cells.

Observation of cells in culture at 72 hours post treatment with ConA revealed that the 

large agglutinated masses reported at previous times had now broken down into smaller 

cell clusters. Physical activity within the culture at this time was scarce, with a minority 

of trypanosomes displaying any flagellar movement. Phase contrast observation of 

fixed cells revealed that the morphological abnormalities reported at 48 hours were now 

detectable in all cells observed. In addition, fluorescence microscopy showed the nuclei 

of many cells to be less distinct than at previous times, possibly indicating nuclear 

degradation.



3.3 Discussion

The work carried out in this chapter was based on the premise that procyclic T. brucei 

treated with ConA die by a process akin to apoptosis in metazoan cells (Welbum et al., 

1996), and that de novo mRNA synthesis continues throughout this process. The aim of 

this work was to identify transcripts that were differentially expressed during the 72 

hour death period, with a view to better understanding the mechanisms and significance 

of this phenomenon in a protozoan parasite.

Apoptosis in metazoans involves a series of morphological and biochemical changes 

within the cell, culminating in the removal of specific cells from a population without 

the induction of bystander death (Wyllie et al., 1980; Duvall and Wyllie, 1986). 

Stereotypical apoptotic cells become rounded, display a reduction in volume and 

dissociate from both substrate and neighbouring cells (Kerr et al., 1972). Concurrent 

condensation and margination of chromatin within the nucleus, blebbing of the plasma 

membrane and the eventual formation of apoptotic bodies containing degraded cellular 

components (and often intact organelles) all typify the morphology of apoptotic cell 

death (Kerr et a l, 1972). At the biochemical level, activation of caspases, 

oligonucleosomal DNA fragmentation and extemalisation of phosphatidylserine are all 

normally associated with this mode of death [although DNA laddering has not been 

detected in all cases of apoptosis and has been detected in some cases of necrosis (Dong 

et al., 1997)]. It is this precisely controlled combination of events that differentiates 

between this and other forms of cell death.

Induction of cell death in the kinetoplastids Trypanosoma brucei (Welbum et al., 1996) 

Trypanosoma cruzi (Ameisen et al., 1995) and Leishmania amazonensis (Moreira et al., 

1996) has been achieved by addition of the tetrameric lectin ConA, starvation and heat
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shock respectively, and in each case produced both morphological and biochemical 

features similar to apoptosis in metazoans. In all three systems cells displayed a loss of 

mobility and rounding. Condensation and margination of chromatin within the nucleus 

was also common to all three models. However, while such nuclear morphology has 

been widely reported in apoptotic cells, the direct relationship between this phenotype 

and apoptosis is unclear. It has recently been suggested that chromatin condensation 

may in fact not be actively associated with apoptotic cell death, but rather represents a 

passive phenomenon associated with a loss of structural integrity of the euchromatin, 

nuclear matrix and nuclear lamina (Hendzel et al., 1998).

Terminal deoxytransferase-mediated dUTP nick end labelling (TUNEL) and terminal 

deoxynucleotidyl transferase (TdT) labelling of T. cruzi and T. brucei respectively 

revealed DNA fragmentation late in the cell death process of both (Ameisen et al.,

1995; Welbum et al., 1996). While these labelling techniques were not carried out in 

the L. amazonensis study, oligonucleosomal DNA fragmentation patterns were detected 

in both L. amazonensis and T. brucei (Moreira et al., 1996; Welburn et al., 1996). 

Interestingly, in both cases the minicircle kDNA remained intact, indicating that 

nuclease activity was restricted to the nucleus. The integrity of cytoplasmic organelles 

also remained intact throughout the death process (as determined by light microscopy) 

in both T. brucei and L. amazonensis, again in agreement with apoptosis in metazoans. 

Oligonucleosomal DNA fragmentation was demonstrated in T. cruzi, but only after 

addition of complement. This result was interpreted as being indicative of an apoptotic 

phenotype, but, as the complement membrane attack complex creates channels through 

the plasma membrane, degradation of DNA in this experiment could equally have been 

the result of secondary activation of endonucleases as has been demonstrated in necrotic 

cells (Dong et al., 1997).
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A major difference between the death of cells studied in these three systems was the 

occurrence of membrane blebbing, a hallmark of apoptosis in metazoans (Kerr et al., 

1972). Electron microscopic study of T. brucei revealed a degree of plasma membrane 

vesiculation, but no blebbing (Welbum et al., 1996). Observations of dying L. 

amazonensis similarly failed to detect plasma membrane blebbing (Moreira et al.,

1996). In both cases the presence of a rigid cytoskeleton composed of subpellicular 

microtubules was proposed as a mechanistic barrier for expression of this phenotype. 

However, the study carried out on T. cruzi revealed substantial membrane blebbing in 

dying cells (Ameisen et al., 1995), negating this hypothesis.

In the current study procyclic T. brucei undergoing death induced by ConA were 

examined by both phase contrast microscopy and DAPI staining. Due to the facts that 

ConA is a tetrameric lectin that binds mannose residues (Wassef et al., 1985; Solis et 

al., 1987), and that the N-linked glycan of EP procyclin terminates in a mannose residue 

(Roditi et al., 1998), it is perhaps not surprising that T. brucei thus treated agglutinate. 

The occurrence of large aggregated masses of trypanosomes made this study more 

difficult than it may otherwise have been as it rendered the vast majority of cells 

unavailable for individual analysis. However, at most time-points a minority of cells 

were observed extraneous to aggregates, and it was these that were observed most 

closely. Phase contrast microscopy revealed that over time cells developed gross 

defects in surface morphology, becoming lumpy and swollen. By 48 hours post

treatment multiple flagellae were apparent on many cells. Fluorescence microscopy of 

DAPI-stained cells revealed multiple nuclei in many at 48 and 72 hours post-treatment. 

Taken together these results suggest that rather than the cell cycle arrest and cellular 

shrinkage commonly reported in apoptotic cells, procyclic T. brucei treated with ConA



maintain an active cell cycle in the absence of cytokinesis. It would thus appear that T. 

brucei do not possess a cell cycle checkpoint preventing initiation of mitosis in the 

absence of a previous round of cytokinesis. The lack of a conventional mitosis to 

cytokinesis checkpoint in T. brucei has previously been suggested (Ploubidou et al., 

1999). Interestingly, cells at 24 and 48 hours exhibited either 2, 4 or 8 nuclei, indicating 

that karyokinesis in ConA-treated T. brucei remained a co-ordinated event. It would be 

of interest to determinate whether other cellular components (kinetoplast, parabasal 

body, mitochondrion, flagellum) were also duplicated with such fidelity in these cells. 

During the current study it was not possible to quantify kinetoplasts using DAPI 

staining of cells during the later stages of ConA treatment due to the comparatively 

large amount of nuclear DNA present. Transition EM, while providing very detailed 

images, can only give data pertaining to a section through a cell, rendering such an 

approach inappropriate for the quantitation of organelles. Thus, it is proposed that 

immunofluorescence microscopy coupled with organelle specific antibodies would be 

the approach of choice, as cells could be viewed in their entirety and organelles counted. 

Monoclonal antibodies detecting the T. brucei paraflagellar rod (Robinson and Gull, 

1991; Bastin etal., 1998; Kohl et al., 1999) basal bodies (Robinson and Gull, 1991) and 

mitochondrial HSP70 (Tyler et al., 1997) have been used in previous studies with 

considerable success.

A recent mutagenesis study conducted on procyclic T. brucei identified the N-glycan 

group of EP PARP as a likely target for ConA binding (Hwa et al., 1999). However, 

agglutination of cells was demonstrated to be non-essential for induction of death, as the 

dimeric lectin succinyl-ConA, which did not cause cellular agglutination, induced death 

as efficiently as its tetrameric counterpart (Hwa et al., 1999). Taken together with the 

findings presented in this chapter, it is proposed that ConA (or succinyl-ConA) binds to
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and cross-links the N-glycan residue of EP PARP, creating a mechanistic barrier to 

cytokinesis. Following several cell cycles without physical division cells enter crisis 

and die by an as yet undefined process that produces oligonucleosomal fragmentation of 

DNA. It seems unlikely that this process is akin to apoptosis in metazoans, although a 

degree of cellular participation cannot currently be ruled out. In light of these findings, 

significant changes in gene expression throughout the time-course of death would be 

expected.

All forms of mRNA differential display are prone to artefacts, and differential display 

PCR is no exception. The PCR reaction can (and often does) produce artefactual bands, 

and products that are genuinely differentially expressed may co-migrate with species 

that do not display differential expression. Subsequent re-amplification can then 

artefactually select for products that formed minority constituents of the original band. 

Consequently, confirmation of all differential display products is imperative, either by 

Northern blot or by semi-quantitative RT-PCR.

The work carried out in the present study utilised a technique specifically designed for 

use with kinetoplastids, amplifying first strand cDNA with oligo-dT and spliced-leader 

specific primers prior to differential amplification with a single arbitrary decamer 

primer. This meant that minimal template material could be utilised for multiple PCR 

reactions. An added refinement was the differential amplification of each sample at two 

different template concentrations, minimising the probability of artefactual bands being 

identified as differentially expressed. While this safeguard reduced selection of 

artefactual amplicons to a minimum, re-amplification artefacts were observed as a 

persistent factor during this study. On several occasions heterologous DNA species 

were cloned from PCR products thought to constitute a single re-amplified DNA
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fragment (as determined by agarose gel electrophoresis). In such cases the cloned insert 

that approximated the original amplicon most closely was assumed to be the product of 

interest. However, on two occasions an informed choice was not possible due to the 

size similarity between products. These results highlight the problems posed by co- 

migrating bands and artefactual re-amplification of DNA. Furthermore, they raise the 

possibility that several of the sequences produced during this study may in actuality 

represent PCR products that were artefactually re-amplified, and not the originally 

identified amplicon.

Northern blot analysis of 2 genes identified during this study, QM  and MOB1, together 

with the genes TRACK and P-tubulin as controls, failed to substantiate differential 

expression patterns identified by RADES-PCR. The main drawback faced by this work 

was the lack of a reliable control with which to compare experimental samples. The 

TRACK transcript had previously been reported to be up-regulated over the time-course 

of ConA-induced cell death of T. brucei, but displayed down-regulation when 

investigated in the current study. P-tubulin, a transcript commonly used to confirm 

equal loading on Northern blots, also displayed down-regulation during this study. It 

was therefore concluded that the behaviour of genes commonly used as controls for 

Northern blots were likely to be unreliable in dying cells. Coupled with severe time 

constraints and a lack of template material it was decided that further Northern blot 

analysis of clones identified by RADES-PCR would not be pursued. Despite not having 

validated RADES-PCR as a system for identifying transcripts displaying differential 

expression during cell death, this project proved to be a useful "gene fishing" exercise, 

identifying a number of novel T. brucei genes.



A modification of the RADES-PCR protocol has been envisaged, and is laid out in 

Figure 3.9. Briefly, the initial stages of the protocol would be as previously with 

mRNA prepared followed by 1st strand cDNA synthesis and amplification using oligo 

dT and spliced leader specific primers. Addition of Pfu or comparable proof-reading 

DNA polymerase to the amplification reaction would be of value to ensure 

representative amplification of larger transcripts. Cycling conditions would have to be 

altered accordingly. The differential display reaction would be conducted as previously, 

but 35S incorporated into the reaction mix. PCR products would then be resolved by 

electrophoresis on a polyacrylamide gel. The resultant increase in resolution should 

significantly reduce the phenomenon of co-migrating species, and hence artefactual re

amplification, although co-migrating products have been reported as remaining a major 

cause of artefacts when polyacrylamide gels are utilised (Zhang et al., 1998). Following 

autoradiographic detection precise sections of the gel would be excised and DNA 

extracted. This would then be stored at -20°C until required. Once sufficient samples 

had been accumulated, DNA from each would be spotted onto replicate membranes and 

hybridised with 32P-labelled cDNA. In this way the expression pattern of selected 

amplicons could be confirmed prior to the cumbersome tasks of cloning and 

sequencing. Re-amplification of DNA species of interest would also be modified to 

further reduce artefacts. Ten to twenty rounds of thermal cycling would be carried out, 

in contrast to the 40 used previously, reducing the probability of skewing the relative 

proportions of co-migrating bands and amplicon of interest. Re-amplification would 

utilise a single primer consisting of (from 5' to 3') 5 random bases, 6 bases 

corresponding to an Eco RI restriction site, and the 10 bases of the decamer primer used 

in the differential amplification. Restriction enzyme digestion of the entire PCR 

reaction and precipitation of DNA would precede sticky-end cloning of products into an 

appropriate plasmid vector. It is recognised that digestion of re-amplification products
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Figure 3.9 Flow diagram depicting proposed DDRT-PCR protocol

Procyclic T. brucei culture 
treated with ConA

I
mRNA

I
1st strand cDNA

I
Amplification with spliced- ________  Random primed labelling
leader and oligo dT primers of cDNA with 32P

I
Differential display PCR with single 
decamer primer and 35S incorporation

I
Electrophoresis on aery 1 amide gel 

followed by autoradiographic detection

I
Identification and excision of bands

I
-----------  Elution of DNA

I
Application of DNA to 

membranes (6 replicates)

I  M
Autoradiographic detection

Re-amplification of products 
using modified primers

I
Restriction enzyme digestion 

followed by cloning

I
Sequencing _______________► Northern blot analysis

of sequences of interest



prior to cloning would, in some cases, result in cleavage within the amplicon rather than 

purely within the primer sites at the termini. While this phenomenon may reduce the 

number of products cloned in their entirety, it is thought that the ease of sticky-end 

cloning (compared to T-vector) combined with the predicted reduction in artefacts make 

this protocol better than that used in the current study. Sequencing of inserts would be 

as previously, and Northern blot analysis of genes of interest conducted.



CHAPTER FOUR

Isolation and characterisation of the Trypanosoma brucei homologue of the 60S

ribosomal protein QM
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4.1 Introduction

The QM gene was first identified by subtractive hybridisation as a cDNA transcript 

elevated in a non-tumourigenic Wilm’s tumour microcell hybrid relative to the 

tumourigenic parental cell line (Dowdy et al., 1991). Subsequent Southern blot analysis 

on both human and mouse DNA indicated that QM was a member of a multi-gene 

family, although to date QM is the only member of the family known to be expressed. 

QM cDNAs have now been cloned from 17 eukaryotic species (not including the 

current work) representing all eukaryotic kingdoms. The human and yeast genes both 

encode hydrophilic, basic proteins with predicted molecular weights of 24.7 kDa 

(Dowdy et al., 1991) and 25.4 kDa (Koller et al., 1996) respectively, and which are 

highly conserved with 63-65% identity over their whole length.

The QM peptide does not contain any obvious membrane spanning or membrane 

associated regions, nor does it contain any glycosylation sites or active site motifs. A 

putative nuclear localisation signal is located towards the N-terminus (Dowdy et al., 

1991). During a phage display search for proteins that interacted with the transcription 

factor c-Jun (Jifs) Monteclaro and Vogt (1993) identified the chicken homologue of QM 

which they named Jif-1. It was reported that Jif-1 could bind c-Jun in vitro, and in so 

doing inhibit the ability of c-Jun to bind DNA. Subsequent work by Inada et al. (1997) 

confirmed the c-Jun/QM interaction and demonstrated that Zn ions were required for 

binding (although QM does not possess any known zinc-binding motif). Jif-l/QM has 

therefore been proposed to be a negative regulator of the transcription factor c-Jun 

(Monteclaro and Vogt, 1993), a role that fits well with both its elevation in the non- 

tumourigenic Wilm’s tumour microcell hybrid and its putative nuclear localisation 

signal.
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Tron et al. (1995) identified the yeast homologue of QM (QSR1) during a screen for 

mutants requiring the otherwise non-essential QCR6, a nuclear gene encoding subunit 6 

of the cytochrome bcl complex. QSR1 was found to encode an essential yeast protein 

which is concentrated in the cytoplasm, and which appears to be subject to nuclear 

exclusion. Later work by Dick et al. (1997) showed that while QCR6 is retained in the 

mitochondria of qsrl-1 mutants, the QSR1 protein remains purely cytosolic. The nature 

of the relationship between QSR1 and QCR6 remains uncertain, although it has been 

suggested that other metabolic factors may be involved (Nika et al., 1997). Roller et al. 

(1996) characterised a yeast temperature-sensitive mutant of GRC5 (QSR1/QM), finding 

aberrant phenotypes related to cell morphology, cell growth and cell proliferation.

Immunofluorescent staining of mammalian cells with antibodies directed against QM 

reveal a perinuclear cytoplasmic pattern indicative of association with the endoplasmic 

reticulum (Loftus et al. 1997; Nguyen et al., 1998; Mills et al., 1999). Subcellular 

fractionation experiments carried out in both mammalian cells (Loftus et al., 1997) and 

yeast (Dick et al., 1997) confirm that QM is localised on the cytoplasmic face of the 

rough endoplasmic reticulum. Further analysis by Dick et al. (1997) revealed that 

QSR1 was a ribosomal protein peripherally associated with the 60S subunit. Through 

addition of a hemagglutinin epitope tag to the C-terminus of GRC5, a two-dimensional 

mobility shift assay of purified 60S ribosomal subunits revealed GRC5 to be the yeast 

ribosomal protein L9 (Nika et al., 1997). The sequence of GRC5 corresponds to that of 

the rat ribosomal protein L10 (Chan et al., 1996). Through work with QSR1 

temperature sensitive mutants Eisinger et al. (1997) went on to demonstrate that this 

protein is essential for joining of the 40S and 60S subunits to make a functional 80S



ribosome, with protein synthesis significantly reduced in mutant cells at the restrictive 

temperature.

Mills et al. (1999) analysed QM expression patterns during mouse embryogenesis using 

whole mount in situ hybridisation and whole mount immunohistochemistry. They 

observed expression in numerous tissues of the midgestation embryos, which became 

more restricted throughout development. Moreover, levels of expression were not 

necessarily highest in actively differentiating cells as had previously been reported 

(Dowdy et al., 1991) but tended to be linked to cells involved in protein production 

(with the notable exception of haematopoietic cells). This observation fits well with the 

ribosomal role of QM in translation, but is contradictory to the earlier hypothesis that 

QM is a negative regulator of the transcription factor c-Jun - cells that are actively 

producing protein would be expected to have elevated levels of transcription. It has 

therefore been proposed by various authors (Loftus et al., 1997; Mills et al., 1999) that 

the interaction between QM and c-Jun is an in vitro artefact and plays no role in vivo. 

This is further supported by the cellular localisation of these proteins, with QM being 

specifically excluded from the nucleus (Nguyen et al., 1998; Mills et al., 1999).

A trypanosome QM gene was isolated during the RADES-PCR screen described in 

chapter 3. The aim of the work presented in this chapter was to characterise the 

Trypanosoma brucei homologue of QM. Southern blot analysis of genomic DNA was 

carried out in order to determine copy number of the QM gene. A recombinant epitope- 

tagged QM protein was overexpressed in T. brucei and the stability/turnover of this 

protein was investigated by Western blot analysis. Indirect immunofluorescence



microscopy and subcellular fractionation were used to determine the sub-cellular 

location of the epitope-tagged QM.

4.2 Results

4.2.1 Isolation and sequence analysis of the T. brucei QM

Sequence analysis of clone p 1499(5), isolated during a RADES-PCR screen of ConA- 

treated procyclic trypanosomes (Section 3.2.1), revealed strong homology to the QM 

(QSR1/GRC5IJif-1) gene of other organisms. The full length T. brucei QM gene was 

obtained by screening a T. brucei Xgtll library, as described in Section 2.9, using the 

insert from plasmid p 1499(5) as a probe. A 2.2 kb insert was excised from clone 

A,G3QM by restriction digestion with Eco RI, sub-cloned into pBluescript to produce 

plasmid pG3QM and sequenced. The 642 bp open reading frame of the gene was 

sequenced in both directions in order to improve the accuracy of the data (Figure 4.1). 

1553 bp of sequence was obtained from the 2.2 kb clone, and is presented in Figure 4.2 

with the position of the RADES product, open reading frame and flanks indicated. 

Figure 4.3 represents the nucleotide sequence of the T. brucei QM open reading frame 

and the deduced amino acid sequence. The open reading frame of the T. brucei QM 

encodes a protein with a predicted mass of 24.8 kDa, consisting of 213 residues. The 

protein is rich in highly charged amino acids (23%), and has a predicted isoelectric 

point of 10.56. These data fit well with earlier reports from human, mouse and yeast 

(Dowdy et al., 1991; Eisinger et al., 1993; Tron et al., 1995).
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Figure 4.2 Sequence of QM open reading frame and flanks

GAATTCCGTGCACAGTGAATCCTCC ATCCATTGTGATGTT AACATAACTTTTTCCTCACAT 61 

CTTTCCTCTCTTTCTCTTTGTCTGTACTTTCTTATACTTCTTGTTTCTGCAGTGGTTTGATCG 124 

GCC AAA AG ATTC GTC ATGGCTCGCCGTCCCGCACGTTGCTACCGCTTCTGCA AGA AC 181 

AAACCGTATCCTAAGTCACGCTTCTGTCGTGGTGTACCGGACCCGAGGATTCGCACC 238 

TTCGACATTGGTAAGCGCCGTGCGCCAGTGGATGAGTTCCCCGTGTGTGTCCATGTT 295 

GTGTCCCGTGAACTAGAGCAAATCTCATCTGAGGCATTGGAAGCTGCCCGTATTCAG 352 

GCTAACAAGTATATGGTGAAGCGTGCCAACAAGGAATGTTTCCACATGCGTATCCGC 409 

GCCCATCCGTTCCACGTACTTCGCATCAACAAAATGCTTTCGTGTGCTGGCGCCGAT 466 

CGTCTGCAGACGGGCATGCGGCAGTCGTACGGCAAACCGAATGGGACCTGCGCCCG 522 

CGTGCGGATTGGTCAGATCCTCTTGTCTATGAGGACAAAGGACACATACGTCCCACA 579 

GGCACTGGAGTCTCTTCGCCGTGCTAAGATGAAGTTCCCTGGTAGGCAAATCATTGT 636 

GATATCGAAATATTGGGGCTTCACAAACATCCTCCGAAATGAGTACGAGGAGTTACG 693 

TGACGCAGGGAAGTTGCAACAACGCGGCCTCCACGTGAAGCTGATCACACCAAAGG 749 

GTAAGATCACCCCATACAACATCATGGCCTAAACGACCACGGCTCTTTTGCTCGATTGA 808 

GCGTTCATTTCTACTTTITTGCTGCTTAATGTITTTTTTAATGATTTTTGCGTTTGTCGTCTT 871 

GTGGTGCAACGTTCrrTGGACTCTCATGCTGGAACGCAGGGTGTTTGCTAGCATTTATATTT 932 

C A C T 'n T rcrcr 'rn T r ,rri'rrccGC'rcTCTCTCTrrc:cTrrTG cCccccccccccTTCA ATTTA AC 996 

ATArCGACCATCTTTTGATGATATTATGTGTGCTTGCCACTGGTGGAAAGGGgAACCAAA 1056 

G G G G C C \\A ( C TTG aiA A A A A A TT C X ^G G G G G A A G G T G G T C T V rA G T A TC rT G A T T G C T TG C  1116 

GAACTGTAGTGTCATATTTTGAC’ATTCCATGTACAAGGAGACrACTATGACACCCATACA 1176 

TGGC.TATACirTCiCCCiGTTCTTTTGACAAATGGTGGGTATGCGTCGATGCTGTCCGTCATC 1237 

AGC.GCTCTTGGGCGGCTTGATCAAACAAGCGAACGTGTCTTTGGTAACATTGAACAGGCT 1297 

GTTGAGCGGTCACGCGAAACACTGGAGCAACTTCAGGGACGCATCGCGGTTTGTGCTGAT 1357 

CAAGTCGAGCAGCTTCAAGGACGGAGGGAGGCGATGGTGGTGAAGAGTAGGGTTCGATT 1416 

TCCAAAACAAAAACACTACACGCTTCCAATAGGGCGCGCACCGTGTGAGGATCGAGGCT 1475 

GTGTGCCAAAAAGGGCGTATGCCATGCCAGCAATCATTCAAGCAGATGATTCGGGTGCAT 1535 

CACCAGTGGTGGGCAGTA 1553

T. brucei QM gene sequence based on data derived from subclone pG3QM. The open reading frame is in 

bold, the sequence of the RADES product is underlined, and regions flanking the open reading frame are 

denoted by grey. Numbers on the right refer to base pairs. Letters in lower case denote ambiguity in base 

identity. The open reading frame was sequenced fully in both directions.



Figure 4.3 Nucleotide and deduced amino acid sequences of the T. brucei QM  open 

reading frame

1 ATG GCT CGC CGT CCC GCA CGT TGC TAC CGC TTC TGC
M A R R P A R C Y R F C 12

37 AAG AAC AAA CCG TAT CCT AAG TCA CGC TTC TGT CGT
K N K P Y P K S R F C R 24

73 GGT GTA CCG GAC CCG AGG ATT CGC ACC TTC GAC ATT
G V P D P R I R T F D I 36

109 GGT AAG CGC CGT GCG CCA GTG GAT GAG TTC CCC GTG
G K R R A P V D E F P V 48

145 TGT GTC CAT GTT GTG TCC CGT GAA CTA GAG CAA ATC
C V H V V S R E L E Q I 60

181 TCA TCT GAG GCA TTG GAA GCT GCC CGT ATT CAG GCT
S S E A L E A A R 1 Q A 72

217 AAC AAG TAT ATG GTG AAG CGT GCC AAC AAG GAA TGT
N K Y M V K R A N K E C 84

253 TTC CAC ATG CGT ATC CGC GCC CAT CCG TTC CAC GTA
F H M R I R A H P F H V 96

289 CTT CGC ATC AAC AAA ATG CTT TCG TGT GCT GGC GCC
L R I N K M L S C A G A 108

325 GAT CGT CTG CAG ACG GGC ATG CGG CAG TCG TAC GGC
D R L Q T G M R Q S Y G 120

361 AAA CCG A AT GGG ACC TGC GCC CGC GTG CGG ATT GGT
K P N G T C A R V R I G 132

397 CAG ATC CTC TTG TCT ATG AGG ACA AAG GAC ACA TAC
Q I L L S M R T K D T Y 144

433 GTC CCA CAG GCA CTG GAG TCT CTT CGC CGT GCT AAG
V P Q A L E S L R R A K 156

469 ATG AAG TTC CCT GGT AGG CAA ATC ATT GTG ATA TCG
M K F P G R 0 I I V I S 168

505 AAA TAT TGG GGC TTC ACA AAC ATC CTC CGA AAT GAG
K Y W G F T N 1 L R N E 180

541 TAC GAG GAG TTA CGT GAC GCA GGG AAG TTG CAA CAA
Y E E L R D A G K L Q Q 192

577 CGC GGC CTC CAC GTG AAG CTG ATC ACA CCA AAG GGT
R G L H V K L I T P K G 204

613 AAG ATC ACC CCA TAC AAC ATC ATG GCC TAA
K 1 T P Y N I M A * 214

The nucleotide sequence (black) and deduced amino acid sequence (red) o f the T. brucei QM  open reading 

frame are shown. The position o f the nucleotides is displayed in the left margin, and the position o f the 

amino acid residues is displayed in the right margin.



The open reading frame of the T. brucei QM was used to search databases for homology 

using the BLAST programme. Homologous genes from other organisms were 

identified and peptide sequences acquired for comparative alignment using the 

MegAlign programme [DNASTAR, Madison, Wisconsin, USA], The resultant 

alignment between the trypanosome QM and homologues from 17 other species was 

produced without the introduction of gaps and is displayed in Figure 4.4. The extremely 

high level of conservation between the sequences of this gene from different organisms 

is immediately evident, with greater than 60% peptide identity between Trypanosoma 

brucei, Saccharomyces cerevisiae, Arabidopsis thaliana, Drosophila melanogaster and 

Homo sapiens (Table 4.1). Not surprisingly the intraspecific conservation within 

phylogenetically distinct groups such as the kinetoplastids, plants or mammals is 

markedly higher than the interspecific conservation between such groups. As has 

previously been reported the high level of conservation displayed by this gene is 

concentrated in the N-terminal 175 residues of the protein (Farmer et al., 1994), with a 

total of 74 amino acids (42%) demonstrating complete conservation between the 18 

species analysed. The C-terminal region of the protein, which spans between 38 and 53 

residues, demonstrates a far higher degree of divergence and contains only two residues 

conserved throughout the species analysed.

Conserved motifs within the QM protein were sought using the T. brucei peptide 

sequence as template in conjunction with both PROSITE (http://expasv.hcuge. 

ch/sprot/prosite.html) and MOTIF (http.V/www.motif.genome.ad.ip) programmes. A 

putative protein kinase C phosphorylation site thus identified, consisting of S-x-R and 

situated between residues 137-139 inclusive, was conserved in all 18 species and is 

indicated in Figure 4.4. This fits well with the reported ability of protein kinase C to

http://expasv.hcuge
http://http.V/www.motif.genome.ad.ip


Figure 4.4 Alignment of QM peptide sequence from diverse species

The peptide sequences of QM homologues from diverse organisms were obtained by 

homology search using the BLAST programme. Consensus sequence runs along the top. 

Numbers in the left margin denote sequences from:

(1) Trypanosoma brucei

(2) Leishmania mexicana [4493745]

(3) Saccharomyces cerevisiae [1172812]

(4) Schizosaccharomyces pombe [4107323]

(5) Euglena gracilis [2500352]

(6) Arabidopsis thaliana [4262180]

(7) Solanum melongena [2500354]

(8) Oryza sativa [2500353]

(9) Zea mays [1172809]

(10) Pinus taeda [2317762]

(11) Caenorhabditis elegans [1172807]

(12) Gallus gallus [1172808]

(13) Sus scrofa [2500351]

(14) Bos taurus [4929242]

(15) Mus musculus [1172810]

(16) Homo sapiens [5174431]

(17) Drosophila melanogaster [3123839]

(18) Bombyx mandarina [4063389]

Numbers in the right margin denote position of the terminal residue. Residues that match 

the consensus exactly are denoted by *. Non-conservative substitutions are boxed. Gaps 

within the sequence represent missing or ambiguous data. The motif highlighted in red 

denotes a conserved putative protein kinase C phosphorylation site. Numbers in 

parentheses (above) denote protein sequence identifiers (http://www.ncbi.nlm.nih.gov).

http://www.ncbi.nlm.nih.gov
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Table 4.1 Percentage peptide identity between QM homologues from diverse species

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
2 85
3 61 61
4 61 64 71
5 54 56 60 58
6 61 63 63 63 59
7 61 64 64 64 61 88
8 60 63 64 64 61 85 88
9 60 62 65 63 61 86 89 90
10 58 61 61 61 59 82 85 81 81
11 63 64 64 63 59 66 69 67 69 66
12 60 61 63 66 59 65 66 66 65 65 69
13 50 51 54 55 49 55 56 55 55 54 59 78
14 61 63 65 67 60 66 68 67 67 66 72 93 84
15 61 63 65 68 60 67 68 68 67 66 73 94 84 99
16 61 63 65 68 60 67 68 68 67 66 73 94 83 99 99
17 63 65 63 66 57 67 67 65 65 67 68 76 64 77 77 77
18 62 63 64 66 60 66 67 65 66 67 71 77 66 79 79 79 88

Table indicating percentage identity between QM homologues from 18 different species, 

as calculated by the Megalign programme. Numbers in the margins denote:

(1) Trypanosoma brucei

(2) Leishmania mexicana [4493745]

(3) Saccharomyces cerevisiae [1172812]

(4) Schizosaccharomyces pombe [4107323]

(5) Euglena gracilis [2500352]

(6) Arabidopsis thaliana [4262180]

(7) Solarium melongena [2500354]

(8) Oryza sativa [2500353]

(9) Zea mays [1172809]

(10) Pinus taeda [2317762]

(11) Caenorhabditis elegans [1172807]

(12) Gallus gallus [1172808]

(13) Sus scrofa [2500351]

(14) Bos taurus [4929242]

(15) Mus musculus [1172810]

(16) Homo sapiens [5174431]

(17) Drosophila melanogaster [3123839]

(18) Bombyx mandarina [4063389]

116



phosphorylate QM in vitro (Inada et al., 1997). Despite the high level of conservation 

demonstrated by this gene no other conserved motifs were found.

4.2.2 Southern blot analysis of T. brucei QM

In order to determine the number of copies of QM in the T. brucei genome 10 pg 

genomic DNA was subjected to double digestion with Bam HI/Bgl II, Bgl II/Pst I, Bgl 

IVSph I or Pst l/Sph I. Following agarose gel electrophoresis Southern blots were 

hybridised with a 32P-labelled probe, derived from the insert of plasmid pTyQMGEM-2, 

(Section 4.2.3) which constituted the open reading frame of QM. Sequence analysis 

revealed that Pst I cut 27 bases 5’ of the open reading frame and again at base 334 of 

the open reading frame. Sph I cut at base 344 of the open reading frame. No sites are 

evident for either Bam HI or Bgl II within the 1553 bases sequenced (Figure 4.1).

Signal was detected autoradiographically and is presented in Figure 4.5.

Digestion with Bam W B g l  II produced DNA fragments of 6.3 and 5.8 kb (lane 1) 

indicating the presence of either two copies of QM in the genome or a single copy gene 

with variable flanks. Digestion with Bgl II/Pst I produced DNA fragments of 3.1, 1.0 

and 0.36 kb (lane 2). Sequence analysis predicted the presence of the 360 base pair 

fragment (see above). The remaining fragments are the result of either Bgl II or Pst I 

cutting at the denoted distances 3’ of the open reading frame, and as above indicate 

either that there are two copies of the QM gene or that there is a single copy with further 

variation in the flanking region. Digestion with Pst I/Sph I (lane 4) produced fragments 

of the same size as resulted from the Bgl IVPst I digest, indicating that in both cases the 

banding pattern was the result of Pst I digestion alone. Bgl II sites must therefore lie 

outwith the Pst I sites. Digestion with Bgl ll/Sph I (lane 3) produced fragments of 9.0,



Figure 4.5 Southern blot analysis of 7. brucei QM

1 2  3 4

9.0

6.0 8

3.0 —

1.0 — •

0.5 —

Southern blot analysis o f T. brucei DNA dem onstrating the presence o f multiple DNA fragments 

hybridising to the probe. 10 jag o f genom ic DNA was subjected to double digestion with (1) Bam 

Hl/Bgl II, (2) Bgl U/Pst I, (3) Bgl ll/Sph I or (4) Pst I/Spli I as denoted, blotted, and hybridised with 

a 32P-labelled probe derived from plasmid pTyQM GEM -2 and representing the open reading frame 

o f the gene. M arkers denote DNA fragm ent size in kilobases.



5.9, 4.8, 2.7 and 1.5 Kb. As Sph I cuts once within the open reading frame (see above) 

the data suggest the T. brucei genome contains are two copies of QM, with variation for 

Sph I in one of the flanks of one of these genes.

4.2.3 Introduction of an epitope tag sequence to the T. brucei QM

In order to gain insight into the function of the T. brucei QM and its location within the 

cell, it was decided to add an epitope tag to the protein. Inducible overexpression in the 

appropriate T. brucei cell line could then be carried out and the behaviour of the 

epitope-tagged protein under various conditions monitored. Due to time constraints this 

approach was preferable to the production of a recombinant QM protein and subsequent 

raising of polyclonal antisera. The epitope tag used in this study was a 10 amino acid 

section from the major structural protein of the Saccharomyces cerevisiae Tyl virus

like particle. Two monoclonal antibodies are available which recognise this epitope, 

and which have been used in conjunction with trypanosomes without cross-reaction 

(Bastin et al., 1996).

Based on the reduced conservation of residues in the C-terminus of QM proteins 

compared to the N-terminus (Figure 4.4), coupled with the fact that a previous study had 

produced functional GRC5 with a C-terminal HA tag (Nika et al., 1997), it was decided 

that introduction of the Ty epitope tag sequence would be appropriate at the 3’ end of 

the QM gene. Oligonucleotides pr4-12 and pr4-13 were designed for this purpose and 

are detailed in Figure 4.6. PCR amplification of the QM gene contained in plasmid 

pG3QM was carried out using Pfu proof reading DNA polymerase [Stratagene] in order 

to minimise the probability of introduced errors.
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Figure 4.6 Oligonucleotide sequences for introduction of Ty epitope tag into 

T. brucei QM, and schematic representation of PCR product

Forward primer (pr4-12)

5 A G A A A A G C T TA TG G C TC G C C G TC C C G C A C G  3’

Reverse primer (pr4-13)

5 G T A G A G G A TC C TT A G T C A A G r̂ T O A T C C ^G G T T A G T A T G G A C C T C G G C C T A G

ATG TTG T ATGGG GTG-  3 ’

PCR product

Start

p r4 -12

Hind III

QM  ORF Epitope tag sequence Stop

p r4 -13

Bam HI

Oligonucleotide sequences for the introduction o f a Ty epitope tag into the T. brucei QM was based upon 

sequence analysis o f the open reading frame o f the gene (section 4.2.1) and the published sequence o f the 

T y l epitope (Bastin et al., 1996). Regions in red denote restriction enzym e sites [Hind III in forward and 

Bam HI in reverse], regions in blue denote the start and stop codon, the region in pink denotes sequence 

encoding the Ty epitope tag and regions in green denote regions matching the QM  gene sequence 

respectively.

Following PCR amplification T-vector cloning was facilitated by addition of dATP to 

the product. The single product was cloned into pG E M @-T Easy vector, and ligations 

used to transform competent JM 109 cells. Following blue/white colour selection four



white colonies were grown overnight in LB medium supplemented with 50 pg/ml 

ampicillin.

Plasmid clones pTyQMGEM 1-4 were digested with Bam HI and Hind III in order to 

release the insert for sub-cloning into the expression vector, then subjected to agarose 

gel electrophoresis. Clone pTyQMGEM 1 failed to produce an insert, while clones 

pTyQMGEM 2-4 all produced an insert of the predicted size. Inserts were excised from 

the gel and purified. Plasmid pHD675 (Biebinger et al., 1997) was digested with Bam 

HI and Hind III, then subjected to agarose gel electrophoresis together with uncut 

plasmid in order to confirm that digestion was complete. Plasmid DNA was excised 

and purified. Quantitation of purified fragments (both pHD675 and inserts) was by 

agarose gel electrophoresis with known amounts of DNA ladder. Inserts from 

pTyQMGEM 2-4 were ligated with pHD675 using a Rapid DNA Ligation Kit 

[Boehringer Mannheim] as directed by the manufacturer. Competent JM109 were 

transformed, plated on LB agar plates supplemented with 50 pg/ml ampicillin and 

cultured overnight.

Five colonies from each plate were screened for the presence of insert by colony PCR 

using the oligonucleotides pr4-12 and pr4-13 (Figure 4.6). Results are shown in Figure 

4.7. All but 2 clones (insert 2 clone 4 and insert 3 clone 3) produced PCR products of 

the predicted size.



Figure 4.7 Colony PCR for plasmids containing epitope-tagged QM  insert

2 3 4 5

Insert 2 < —  660 bp

Insert 3 660 bp

Insert 4 £ 2 C iZ iZ 3 E 3  ^ —  660

PCR am plification (pr4-12 and p r4 -13) of inserts from 5 colonies (1-5) derived from ligation o f inserts 

from pTyQM GEM  2-4 into pHD675. These clones will henceforth be referred to as pTyQM HD675 (2- 

4)(clones 1-5).

Sequence data derived from plasmid stocks pTyQ M G EM  2-4 was of insufficient quality 

to determine with certainty whether errors had been introduced during PCR 

amplification of the epitope tagged insert. However, sequence analysis did reveal a 

significant flaw in the amplification and cloning approach employed thus far. The DNA 

sequence of the Ty tag detailed in Figure 4.6 was found to have a Bam  HI site within it. 

Consequently, the pTyQM HD675 plasmids, which had been cloned using Bam  HI, were 

all found to be missing a portion of the epitope tag and the stop codon. In order to 

correct the defect two oligonucleotides were designed (Figure 4.8) encoding the missing 

region of the epitope tag, the stop codon, a unique Xho I site and Bam HI ends.



Figure 4.8 Oligonucleotides designed for replacement of 3’ end of Ty-tag

Oligonucleotide pr4-14
5’ 3’

GAT CCA CTT GAC TAA CTC GAG G

3>GT GAA CTG ATT GAG CTC CCT AG5, 

Oligonucleotide pr4-15

Oligonucleotides used to insert part of the Ty tag and stop codon into pTyQMHD675-2 clone 1. Pink 

denotes the fragment of the Ty tag absent in pTyQMHD675-2 clone 1. Blue denotes the stop codon. 

Black denotes the unique Xho I site. At each ends are overhangs compatible with Bam HI digested DNA.

In order to anneal oligonucleotides pr4-14 and 4-15 together, 200 pi dT^O containing 1 

nanomole of each oligonucleotide was heated to 96°C for 5 minutes and then allowed to 

cool to room temperature overnight. Ligations were set up containing 15 pmol, 5 pmol 

and 0.5 pmol annealed oligonucleotides with 20 ng Bam HI linearised pTyQMHD675-2 

clone 1. A control ligation was set up consisting of Bam HI linearised pTyQMHD675-2 

clone 1 without oligonucleotides. Ligations were used to transform competent JM109, 

and cells were plated on LB agar supplemented with 50 pg/ml ampicillin.

The plate corresponding to the control ligation produced more than 100 colonies while 

those corresponding to the experimental ligations produced around 40 each. This result 

had been predicted as the non-phosphorylated oligonucleotide doublet was expected to 

reduce ligation efficiency. 30 colonies from the 15 pmol plate were screened for 

presence of insert in the correct orientation by colony PCR using pr4-15 and pr4-16 as 

primers. Following agarose gel electrophoresis of PCR products five colonies were 

determined to be positive. These were cultured overnight in LB broth supplemented
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with 50 jig/ml ampicillin and plasmid DNA prepared as described previously. pHD675 

contains a unique Not I site 858 bases upstream of the multiple cloning site, and 

pTyQMHD675-2 clone 1 containing the oligonucleotide doublet had a unique Xho I site 

immediately downstream of the QM open reading frame. Accordingly, plasmids were 

digested with Not VXho I to confirm oligonucleotide insertion. Agarose gel 

electrophoresis demonstrated that all 5 colonies produced an insert of the predicted size. 

Sequencing of one of these clones (henceforth referred to as pTyQMHD675-2 clone 1- 

1) confirmed presence of the oligonucleotide doublet in the correct orientation.

Plasmid pTyQMHD675-2 clone 1-1 was prepared as described previously, linearised by 

digestion with Not I, cleaned twice with phenol/chloroform then ethanol precipitated. 

Following resuspension in sterile dF^O DNA was quantified spectrophotometrically at 

260 nm. Linearised plasmid was subjected to agarose gel electrophoresis together with 

uncut control in order to determine whether digestion was complete. Linear plasmid 

was then used to transfect Trypanosoma brucei brucei stock EATRO 795 stably 

transfected with plasmid construct pHD 449 (Biebinger et al., 1997)(kindly supplied by 

J. Hellemond). Following overnight recovery populations were cloned by limiting 

dilution with appropriate antibiotic selection.

4.2.4 Inducible expression of Ty-tagged QM in T. brucei

Six tTyQM cell lines from a 96-well plate survived antibiotic selection and were 

therefore deemed clonal. Phenotypic analysis was carried out on clones tTyQM-2, -3 

and -5. Following overnight induction with 20 ng/ml tetracycline as described in 

section 2.16, 1 x 108 cells were harvested and whole cell lysate prepared. Protein from 

1 x 107 trypanosomes was subjected to SDS-PAGE and Western blotting, using the

124



mouse monoclonal BB2 a -T y  as the primary antibody (Bastin et a l ., 1996) and a -  

mouse IgG/HRP conjugate [Promega] as secondary antibody. Detection of antibody 

was through use o f  the SuperSignal® system [Pierce].

Figure 4.9 Immunoblot analysis of procyclic clonal populations stably transfected 

with pTyQMHD675-2 clone 1-1

1 2 3 5 6 7
30 kDa  fc-

22 kDa  fc.

+ +

4 — TyQM

f < -  Tetracycline

Clone 2 Clone 3 Clone 5

Immunoblot o f total protein from 1 x 107 procyclic trypanosom es / lane probed with monoclonal antibody 

BB2. Cells were (1) untransfected control, (2) tTyQM -2 minus induction, (3) tTyQM -2 with induction, 

(4) tTyQM-3 minus induction, (5) tTyQM-3 with induction, (6) tTyQM -5 minus induction and (7) 

tTyQM -5 with induction.

The predicted size of the TyQ M  protein is 26 kDa. As can be seen in Figure 4.9 tTyQM 

clones 2 and 3 both produced protein which was detected at this size, and produced 

significantly higher levels of  tagged protein in the induced cells compared to uninduced 

cells. The BB2 antibody did not cross react with proteins from untransfected control 

cells (lane 1), confirming previously published results (Bastin et al., 1996). Clonal 

population 5 did not produce any tagged protein in either induced or non-induced cells 

(lanes 6 and 7).
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Stability of TyQM in vivo

In order to determine the stability of  the Ty-tagged QM  protein within procyclic 

trypanosomes, tTyQM  clones 2 and 3 were induced to produce protein overnight by 

addition of 20 ng/'ml tetracycline. Cells were harvested, washed once with fresh SDM 

79 to remove tetracycline then resuspended at 1 x 106 cells/ml in fresh complete SDM  

79. At timepoints 0, 2, 4, 6, 12 and 24 hours after removal of tetracycline 1 x 108 cells 

were harvested and frozen at -20°C  for temporary storage. Control cells were of the 

same cell line as experimental cells but were not exposed to tetracycline induction. 

Protein was subjected to electrophoresis, Western blotting and immunodetection as 

described previously.

Figure 4.10 Turnover of TyQM protein within procyclic cells over time

Control 0 2 4 6 12 24 hours

Clone 2

Clone 3

tTyQM clones 2 and 3 were induced overnight, harvested, washed and resuspended at 1 x 106 cells/ml in 

fresh complete SDM 79. At timepoints 0, 2, 4, 6, 12 and 24 hours after removal o f tetracycline 1 x 108 

cells were harvested and frozen at -20°C  for temporary storage. Protein equivalent to 1 x 107 

trypanosom es was subjected to immunoblot analysis. Controls were from the same clonal line as 

experimental cells, but were not subjected to tetracycline induction.
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The TyQM protein expressed by tTyQM clones 2 and 3 appears very stable (assuming 

de novo synthesis of tagged protein ceases shortly after removal of tetracycline), with no 

detectable reduction for 12 hours following removal of induction signal (Figure 4.10).

It should be noted that an equal volume of cells were harvested at each time-point. 

Consequently, the reduced level of protein observed in both clones at 24 hours may in 

part be due to dilution of tagged protein rather than turnover, as cell density had 

increased almost 3-fold by this time-point.

Cell fractionation analysis of TyQM protein

tTyQM clone 2 cells were induced to express protein overnight by addition of 20 ng/ml 

tetracycline. 2 x 108 cells were harvested, pelleted and resuspended in 1 ml LSGI for 30 

minutes on ice. Lysate was centrifuged at 100 000 x g for 45 minutes at 4°C in a 

Beckman Optima™ TL Ultracentrifuge. Supernatant was aspirated and stored for later 

use and the pellet washed 4 times with 1 ml LSGI before being resuspended in 75 pi 

0.25% Triton-X 100 and 25 pi 4 x Laemmli buffer. Protein from total cell extract, the 

soluble fraction and the insoluble fraction equivalent to 5 x 106 cells was subjected to 

protein gel electrophoresis then Western blotting and immunodetection with a-Ty 

monoclonal antibody BB2.
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Figure 4.11 Cell fractionation analysis of TyQM protein

tTyQM  clone 2 cells were induced to express TyQM  protein overnight by adition o f 20 ng/ml 

tetracycline. Cells were harvested, lysed in LSGI then fractionated by ultracentrifugation at 100 000 x g. 

Protein equivalent to 5 x 106 trypanosom es from (1) total cell lysate, (2) soluble fraction and (3) insoluble 

fraction was subjected to immunoblot analysis with the BB2 a-T y  antibody.

The tagged QM protein was found to be present in total cell lysate (lane 1) and the 

insoluble fraction (lane 3), but not in the soluble fraction (lane 2) resulting from the 

S100 fractionation (Figure 4.11). As LSGI contains 1% Triton-X 100, membranes 

throughout the trypanosome should be dispersed during lysis, effectively making 

soluble all cellular constituents not part of large complexes. Following 

ultracentrifugation these soluble components should remain within the supernatant, 

while large protein complexes such as ribosomes form the pellet. The fact that the 

TyQM  locates purely in the pellet suggests that it is part of such a large complex.
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4.2.5 Immunofluorescence microscopic analysis to determine subcellular 

location of the TyQM protein

Despite the fact that tTyQM clone 2 gave the higher level of induced expression (Figure

4.9, lane 3) it was decided that immunofluorescence work focus on tTyQM clone 3, 

based on its lower level of background expression (Figure 4.9, lane 4). 

Immunofluorescence microscopy was carried out as described in section 2.18 using the 

mouse BB2 (a-Ty) as primary antibody, and goat a-mouse IgG/FITC conjugate 

[Sigma] as secondary antibody. Because of the predicted association between QM and 

the endoplasmic reticulum colocalisation was carried out using a primary antibody 

against T. brucei BiP, an Hsp70 family member located in the lumen of the endoplasmic 

reticulum (Bangs et al., 1993; Matlack et a l, 1999). The BiP primary antibody was 

derived from rabbits (Bangs et al., 1993), so goat a-rabbit/TRITC conjugate [Sigma] 

was used as the secondary antibody. In both cases primary antibody was used at a 

dilution of 1:50, while secondary antibody was used at 1:100. Control cells were treated 

with secondary antibody only.

The TyQM protein displayed a cytoplasmic distribution with distinct nuclear and 

kinetoplast exclusion (Figure 4.12, tiles 3 and 5). The punctate pattern is suggestive of 

endoplasmic reticulum (ER) localisation. Comparable levels of TyQM were observed 

in cells representing all stages of the cell cycle (as determined by nucleus and 

kinetoplast content). One cell was observed which did not express protein detected by 

the BB2 a-Ty antibody (Figure 4.12, tile 3, white arrow), indicating that tTyQM clone 2 

cells were no longer clonal at the time of this experiment. BiP displayed a similar 

distribution throughout the cell to that demonstrated by TyQM, although the two were 

not a perfect match (tiles 4 and 6). Furthermore, BiP was not as completely excluded



Figure 4.12 Immunolocalisation of TyQM protein in T. brucei with BiP

Fixed permeabilised procyclic cells were treated with mouse a-Ty and 

rabbit a-BiP as primary antibodies, then goat a-mouse/FITC conjugate and 

goat a-rabbit/TRITC conjugate as secondary antibodies. DAPI was added 

to cells during incubation with secondary antibody. Tiles are;

(1) phase contrast

(2) DAPI

(3) BB2 a-Ty

(4) a-BiP

(5) BB2 a-Ty merged with DAPI

(6) BB2 a-Ty merged with a-BiP

White arrow indicates trypanosome which does not express protein detected 

by BB2 a-Ty antibody
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from nucleus or kinetoplast as was the case for QM, although in most cells its levels 

appeared lower in these regions. The lack of co-localisation between the TyQM and 

BiP was possibly the result of QM being concentrated in ribosomes on the cytoplasmic 

face of the rough ER while BiP was ER luminal. Alternatively, it is possible that due to 

overexpression the stable tagged QM protein (Figure 4.10) accumulated in the 

cytoplasm and that the pattern of expression observed was not related to ER 

localisation. However, were this the case a more homogenous distribution of protein 

throughout the cytoplasm of the cell would be expected, rather than the distinctly 

punctate pattern observed. In order to further investigate these possibilities a second 

round of co-localisation was carried out with antibody raised to the Leishmania 

mexicana ER associated protein, GPI8 (kindly supplied by J. Hilley). The a-GPI8 is a 

polyclonal antibody raised in rabbits against a recombinant L  mexicana GPI8 protein. 

While the specificity of this antibody has not been fully characterised it is known to 

detect a T. brucei protein of 36 kDa, the predicted size of the L. mexicana GPI8. 

Preparation of samples for immunofluorescence was exactly as described previously, 

with rabbit a-GPI8 and BB2 used as primary antibodies.

The cytoplasmic distribution of Ty-tagged protein was found to be the same as 

previously described (Figures 4.12 and 4.13), with nuclear and kinetoplast exclusion 

(Figure 4.13, tiles 3 and 5). The fluorescent signal produced by the (X-GPI8 antibody 

overlapped to a large degree the TyQM (tiles 3, 4 and 6), indicating clearly that the 

target of the a-GPI8 antibody co-localises very closely with the TyQM. This result 

suggests that the pattern observed for TyQM is not the result of random aggregation of 

protein within the cytoplasm. However, it does raise the possibility that the (X-GPI8 

antibody is cross-reacting with over-expressed TyQM. To investigate this possibility
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Figure 4.13 Immunolocalisation of TyQM protein in T. brucei with GPI8

Fixed permeabilised procyclic cells were treated with mouse a-Ty and rabbit a-GPI8 

as primary antibodies, then goat a-mouse/FITC conjugate and goat a-rabbit/TRITC 

conjugate as secondary antibodies. DAPI was added to cells during incubation with 

secondary antibody. Tiles are;

(1) phase contract

(2) DAPI

(3) BB2 a-Ty

(4) a-GPI8

(5) BB2 a-Ty merged with DAPI

(6) BB2 a-Ty merged with a-GPI8
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the two fractions from the QM  S I 00 assay (Figure 4.11) were subjected to immunoblot 

analysis, using the a -G PI8  as primary antibody, and a-rabb it /H R P conjugate as 

secondary. This resulted in detection of protein at approximately 32 and 37 kDa in the 

insoluble fraction (Figure 4.14, lane 2) as compared to the single band of 26 kDa 

previously reported for TyQM  (Figure 4.11). Unless the fixation conditions employed 

for immunofluorescence microscopy result in alternative TyQ M  epitope presentation, 

the a -G PI8  antibody does not cross-reacting with the TyQM . This result does not rule 

out cross-reaction between the a -G PI8  and another ribosomal protein, or ribosome- 

associated protein.

Figure 4.14 Immunoblot analysis of TyQM S100 assay with ct-GP18 antibody

4 ------ 37 kDa

< ------ 32 kDa

Soluble (lane 1) and insoluble (lane 2) fractions from the TyQM S I 00 assay (Figure 4.11) were 

subjected to immunoblot analysis with rabbit a-G PI8 antibody raised against recombinant 

Leishmania mexicana GPI8 protein. Secondary antibody was goat a-m ouse/H RP conjugate.
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4.3 Discussion

At the time of its discovery by Dowdy et al. (1991) QM was a novel gene with no 

sequence homologues on any DNA databases. During the intervening eight years 17 

sequences with extremely high homology to the human QM have been published on 

various databases, and span vertebrates, invertebrates, plants and yeast. The human QM 

encodes a 214 amino acid basic protein (Dowdy et al., 1991) with a predicted pi of 10.5 

and a predicted mass of 24 kDa (Stanbridge et al., 1994). In agreement with these data 

the T. brucei homologue of the human QM gene encodes a 213 amino acid protein with 

a predicted pi 10.56 and a predicted mass of 24.6 kDa .

Multiple alignment of all published QM sequences confirmed the extremely high 

conservation displayed by this gene throughout evolution. Sequence analysis revealed 

the presence of a conserved putative protein kinase C phosphorylation site in the middle 

of the protein, but despite the presence of several blocks of complete identity between 

diverse organisms this was the only conserved motif detected. Furthermore, as had 

previously been reported for the human QM (Farmer et al., 1994) no matches were 

found between domains of the T. brucei homologue and any other non-QM proteins 

currently lodged on mainstream public databases. While the data suggest that the 

function of the QM protein is likely to have been conserved throughout evolution, the 

sequence of the gene itself does not give any indication as to what that function may be.

Southern blot analysis of both human and mouse genomes demonstrated QM to be part 

of a multi gene family (Dowdy et al., 1991). By contrast, the Drosophila and yeast 

homologues of QM are single copy genes (Tron et al., 1995: Koller et al., 1996:

Nguyen et al., 1997). Sequence analysis of three additional members of the human QM



family showed that all were the result of retrotranspositional events, that all maintained 

the complete QM open reading frame and that at least one had a bias against mutations 

resulting in codon change (Stanbridge et al., 1994). However, there is currently no 

tangible evidence to suggest that any but the originally identified QM is expressed.

Southern blot analysis of the T. brucei genome has revealed evidence in favour of the 

presence of 2 copies of the QM gene. There is currently no evidence to suggest whether 

both copies of the gene are actively transcribed, or whether one represents a pseudogene 

or a homologue. While sequencing of additional lambda clones could be used for 

immediate clarification of the situation, the T. brucei sequencing projects currently 

underway are likely to resolve the issue before long.

In the current work the T. brucei QM was amplified by PCR using a primer 

incorporating the Tyl epitope tag into its 3’ terminus, cloned into an inducible 

expression vector and used to transfect procyclic trypanosomes expressing the 

tetracycline repressor protein (tetr). Following antibiotic selection and cloning, cells 

were induced to express protein by addition of tetracycline. Three clones were 

investigated, of which 2 produced significantly higher levels of protein when induced 

compared to uninduced controls. The variation in levels of inducible expression 

between clonal populations is likely to be the result of a combination of factors. Firstly, 

constitutive expression of the tetr protein is likely to impose a metabolic burden on cells. 

While the presence of the zeocin resistance gene within the same construct allows for 

initial selection of successfully transfected trypanosomes, continuing zeocin selection 

will only act to preserve the integrity of the zeocin resistance gene, and not of the 

construct as a whole. Thus, over time a disparity may arise in levels of tetr protein



produced by trypanosomes within the same culture. This in turn will result in differing 

levels of ‘leaky’ expression of the protein of interest (in this case TyQM), as differing 

levels of tetr production between different clones will result in various levels of 

promoter suppression. Higher levels of non-induced expression may then result in a 

second metabolic burden, selecting for cells which either possess tighter control of 

construct expression, or which manage to eliminate physically or functionally part of 

the construct encoding the protein of interest while retaining the hygromycin resistance 

gene. This hypothesis fits well with the observed lack of TyQM expression exhibited 

by tTyQM clone 5 (Figure 4.9, lanes 6 and 7), and the single trypanosome in Figure 

4.12 which is plainly visible under phase contrast, DAPI and a-BiP, but which is not 

detected by a-Ty.

Once expressed the TyQM protein was demonstrated to be very stable over a 24 hour 

period in both clones investigated. As the cell cycle of exponentially growing T. brucei 

procyclic cells is around 8.5 hours (Matthews and Gull, 1994), turnover of TyQM is not 

cell cycle regulated. This data is in stark contrast to a Ty-tagged version of the T. 

brucei cell cycle-regulated cyclin 2, TyCyc2, which was demonstrated to be stable for 6 

hours but completely degraded by the proteosome within 9 hours post induction (J. Van 

Hellemond, personal communication).

The Western blot analysis of TyQM stability was non-quantitative. In order to 

investigate the half-life of TyQM in vivo a pulse-chase experiment would have to be 

carried out, whereby cells would be incubated in medium containing 35S-methionine 

during overnight tetracycline induction. Following removal of tetracycline/35S- 

methionine, cells would be harvested at time-points as previously and TyQM
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immunoprecipitated. Quantitation would be with a liquid scintillation counter.

Negative control cells would be incubated in 35S-methionine without tetracycline 

induction.

Work on QSR1, the yeast homologue of QM, demonstrated that the protein encoded by 

this gene was associated with 60S ribosomes (Dick et al., 1997). Concurrent work by 

another research group confirmed this result and went on to show that QSRlp associates 

peripherally on the cytoplasmic face of the rough endoplasmic reticulum (Loftus et al.,

1997). Subsequently it was discovered that the QSRlp is required for joining of the 

60S subunit to its 40S counterpart to form a functional 80S ribosome. Furthermore, 

mutation of QSRlp did not result in failure of the entire 60S subunit to assemble (as is 

the case for most 60S ribosomal protein subunits), consistent with QSRlp being a 

peripheral 60S ribosomal protein (Eisinger et al., 1997). Immunofluorescent analysis of 

QM expression in both yeast and mammalian cells has clearly demonstrated that the 

gene product has a punctate perinuclear localisation within the cytoplasm, with distinct 

nuclear exclusion (Loftus et al., 1997: Nguyen et al., 1998: Mills et al., 1999). This 

localisation pattern is indicative of association with the endoplasmic reticulum. The 

nuclear exclusion observed for the QM protein is inconsistent with its proposed function 

as a transcription factor, but is consistent with a protein added at a late stage of 60S 

ribosome assembly (core ribosomal proteins are assembled in the nucleolus (Woolford, 

1991: Melese and Xue, 1995)). It is now suspected that the interaction between QM 

and c-Jun was an in vitro artefact (Loftus et al., 1997: Mills et al., 1999).

Indirect immunofluorescence microscopy was carried out on procyclic T. brucei 

induced to produce TyQM. A punctate distribution of protein throughout the cytoplasm



was observed with distinct nuclear and kinetoplast exclusion. This observation 

confirms previous immunofluorescence studies of QM at the cellular level in both 

mammals (Nguyen et al., 1998: Mills et al., 1999) and yeast (Loftus et al., 1997) where 

a perinuclear staining pattern and nuclear exclusion were observed. The similarity 

between these observations alone is enough to suggest that the tagged T. brucei QM is 

localising to the endoplasmic reticulum. If, as suspected, this protein is interacting with 

ribosomes, the nuclear exclusion observed mirrors the behaviour of homologues in other 

species, being added to the ribosome at a late stage of assembly (Nguyen et al., 1998).

Additional evidence for a ribosomal location was provided by subcellular fractionation 

studies. Cells induced to produce tagged protein were lysed using a buffer containing 

1% Triton X-100, following which lysates were subjected to ultracentrifugation at 100 

000 x g. Immunoblot analysis of the fractions revealed the TyQM to be present in only 

the insoluble phase, as had been described in previous studies with both mammalian and 

yeast cells (Loftus et al., 1991: Dick et al., 1997). As cell membranes are dispersed by 

the lysis buffer, an association between the TyQM and a large protein complex is 

suggested. While this result fits well with the observations of QM associating with 

ribosomes, it could equally indicate association with another large protein complex or 

even formation of insoluble aggregates. Collection of a greater range of fractions (for 

example 1,000, 5,000, 20,000 and 100,000 x g) would be a first step in resolving this 

issue. Alternatively, purification of ribosomes from these cells would enable a more 

precise determination of the relationship between the tagged QM and 40S, 60S and 80S 

ribosomal subunits. The ideal for future work would be to obtain an antibody specific 

for a T. brucei 60S ribosomal protein, enabling confirmation (or not) of co

sedimentation with the tagged QM under a variety of experimental conditions. One



such condition worthy of investigation would be the ability of either 1 M NaCl or 0.5 M 

KC1 to dissociate the tagged QM from the protein complex with which it associates. 

This approach has been employed previously in both yeast (Dick et a l , 1997: Eisinger 

et al., 1997) and mammalian cells (Loftus et al., 1997) to demonstrate the peripheral 

association between QM and ribosomes.

Co-localisation of the TyQM with BiP, a luminal ER associated protein, failed to 

produce an identical match. While the expectation was for both proteins to be localised 

to the ER, a perfect match between them was not predicted. QM has been reported as 

associating with ribosomes on the cytoplasmic face of the ER (Loftus et al., 1997), 

while BiP is sequestered within the lumen of the ER (Vogel et al., 1990). The 

localisation pattern of BiP was as had been expected, and is reported as “characteristic 

of the ER morphology of trypanosomes” (McDowell et al., 1998). The pattern 

displayed by the tagged QM, while of a very similar nature to that of BiP, fails to match 

at certain ‘hot spots’, as evidenced by the merged images (Figure 4.12, tile 6). This 

could result either from the aforementioned differences between the ER lumenal 

location of BiP and the presence of QM on the ER cytoplasmic face, or could represent 

QM associating with aggregations of free ribosomes in the cytoplasm (no evidence for 

this has as yet been published).

The GPI8 protein is part of a transamidase complex responsible for addition of 

glycosylphosphatidylinositol (GPI) anchors to newly synthesised proteins in the ER 

(Benghezal et al., 1996). In yeast GPI8 is a membrane glycoprotein located on the 

luminal face of the ER (Benghezal et al., 1996). The sub-cellular location of GPI8 in T. 

brucei is currently unknown, but is suspected to be similar to its homologue in yeast (J.
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Hilley, personal communication). An a-GPI8 antibody raised to a recombinant L. 

mexicana protein was used to co-localise the tagged QM to the ER membrane. By 

merging the tagged QM and GPI8 expression patterns (Figure 4.13, tile 6) it was 

determined that these proteins share an almost identical distribution throughout the cell, 

with the notable exception of the nucleus. While the TyQM is distinctly excluded from 

this organelle, the a-GPI8 antibody does detect protein within this compartment, albeit 

at lower levels than elsewhere in the cell. There are two likely interpretations of these 

data. Firstly, co-localisation may be a result of TyQM residing in ribosomes on the 

cytoplasmic face of the rough ER, while the GPI8-transamidase complex is most 

abundant on corresponding areas of the ER luminal face. Such an association between 

the cells’ protein synthesis machinery and a complex involved in processing a subset of 

the resultant protein is not unreasonable. However, this does not explain why the a- 

GPI8 antibody detects protein within the nucleus, an organelle in which detection of 

GPI8 would not be predicted. A second possibility is that the a-G PI8 antibody cross- 

reacts with a ribosomal protein other than QM. This would explain the almost identical 

patterns of expression throughout the cytoplasm, as well as the lack of identity with 

respect to the nucleus. As ribosomal subunits are assembled within the nucleolus 

(Woolford, 1991) detection of ribosomal proteins within this organelle would be 

expected. The data gathered during the course of this work are insufficient to determine 

which of these hypotheses holds greatest merit. However, the current data are 

consistent with evidence gathered in both the mammalian and yeast systems, leading to 

the suggestion that TyQM localises to the endoplasmic reticulum where it associates 

with large protein complexes, most probably ribosomes.
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In summary, a T. brucei homologue of QM has been identified and sequenced, 

demonstrating a high level of conservation with QM from other species. An epitope tag 

was added to the T. brucei QM, which was then overexpressed. Subcellular 

fractionation indicated an association between the TyQM and a large protein complex. 

Immunofluorescence microscopy revealed a punctate distribution within the cytoplasm 

and nuclear exclusion, as had previously been reported for QM in both yeast and 

mammals.



CHAPTER 5

Isolation and characterisation of the Trypanosoma brucei homologue of the 

Saccharomyces cerevisiae gene MOB1
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5.1 Introduction

5.1.1 The eukaryotic cell cycle

The term cell cycle refers to the progression of a cell through cell growth, DNA 

replication and cell division. This cycle consists of four consecutive phases; a gap 

phase (Gl), a DNA synthesis phase (S) during which the entire nuclear DNA content of 

the cell is duplicated, a second gap phase (G2) and a mitotic phase (M) during which the 

cell undergoes karyokinesis then cytokinesis, resulting in two daughter cells. The 

length of each phase of the cell cycle depends not only on the cell type but also on the 

environmental conditions in which the cell is growing (Alberts et al., 1994). Due to the 

complexity of eukaryotic cells, a precise ordering of events throughout the cell cycle is 

necessary (Alberts et al., 1994: Stillman, 1996). In recent years it has become evident 

that the mechanisms governing progression through the cell cycle are conserved 

between divergent eukaryotes. Protein kinases are central to this control, participating 

in complex pathways of protein phosphorylation. The cyclin dependent kinases (CDKs) 

are a conserved family of serine-threonine kinases that play a major role in cell cycle 

regulation (and possibly other cellular control processes), and which rely on binding of 

a cyclin partner to regulate their activity. The yeast Saccharomyces cerevisiae 

possesses 22 cyclins, each of which binds one of five CDKs (see tables in Pines, 1995 

and Andrews and Measday, 1998). By contrast, nine CDKs and 16 cyclins have so far 

been identified in mammalian cells (reviewed in Johnson and Walker, 1999), only some 

of which are known to participate in cell cycle transitions. The greater number of CDKs 

in mammalian cells is thought to correspond to the greater complexity of the cell cycle 

in higher eukaryotes.



5.1.2 The cell cycle in trypanosomes

To date five CDKs (TBCRK1-5) and three cyclins (CYC1-3) have been identified in 

Trypanosoma brucei, with the ongoing T. brucei sequencing project expected to identify 

more in the near future. It has been remarked that this is a surprisingly large number for 

a unicellular eukaryote (Mottram and Smith, 1995), and could correspond to the 

complexity of the T. brucei lifecycle. The roles of each CDK have yet to be determined 

both during the trypanosome cell cycle and throughout its digenetic lifecycle. As yet 

only one CDK-cyclin interaction has been demonstrated, between CRK3 and CYC2 (J. 

van Hellemond, personal communication).

Control of cell division in the kinetoplastids differs slightly from that in other 

eukaryotes in that the cell must not only duplicate and segregate its nuclear DNA, but 

must also co-ordinate the duplication and accurate segregation of its other single copy 

organelles (Woodward and Gull, 1990). Furthermore, digenetic trypanosomatids must 

also control the interplay between cell cycle progression and differentiation, as parasites 

alternate between proliferative and non-proliferative stages throughout the lifecycle. 

Procyclic form T. brucei have been studied in detail and the timing of a number of 

characteristic cell cycle events established (Sherwin and Gull, 1989; Gull et al., 1990; 

Woodward and Gull, 1990) Trypanosoma brucei cells in early G1 have a single copy of 

the nucleus, the kinetoplast (mitochondrial genome), the basal body and the flagellum. 

Initiation of replication of kinetoplast DNA closely precedes that of nuclear DNA 

(Woodward and Gull, 1990). The first ultrastructurally detectable cell cycle event is the 

maturation of the probasal body, which occurs almost coincidently with initiation of 

nuclear S-phase (Sherwin and Gull, 1989; Woodward and Gull, 1990). Outgrowth of a 

daughter flagellum from the newly elongated basal body begins shortly thereafter, as
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does generation of a new probasal body for each of the two mature basal bodies now in 

the cell. Daughter flagellum elongation continues for a large portion of the cell cycle 

(Robinson et al., 1995). Nuclear and kinetoplast G2-phases overlap for a short while 

before basal body segregation occurs. Due to a structural link between the basal body 

and the kinetoplast, segregation of these organelles and the flagellae are concomitant 

(Robinson and Gull, 1991), and occur before the daughter flagellum has extended to its 

mature length (Kohl and Gull, 1998). Nuclear G2 phase continues for a while before 

the chromosomes are segregated. Segregation of the large chromosomes involves the 

action of kinetochore microtubules, while the minichromosomes segregate by another 

method that may involve the action of microtubule motor proteins (Ersfeld and Gull,

1997). Karyokinesis follows and the 2 daughter nuclei move apart. A cleavage furrow 

is initiated at the anterior end of the cell and proceeds to the posterior, producing 

daughter cells with one each of the single copy organelles (Sherwin and Gull, 1989; 

Robinson et al., 1995).

A checkpoint can be thought of as a cellular surveillance system responsible for 

temporarily halting progression through the cell cycle in response to a perceived defect 

within the cell, such as DNA damage or the faulty alignment of chromosomes on the 

spindle (Paulovich et al., 1997). During the ensuing arrest cells have time to rectify the 

defect prior to continuation of the cell cycle. Disruption of microtubule-mediated 

events in many eukaryotes results in a mitotic block and thus inhibition of cytokinesis. 

However, this appears not to be the case in T. brucei where treatment of cells with the 

antimicrotubule agent rhizoxin results in mis-segregation of the nucleus during 

cytokinesis and the formation of cells with either 1 kinetoplast and 2 nuclei (1K2N) or 1 

kinetoplast and no nuclei (IKON). Additionally, under this drug regimen some cells fail
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to undergo mitosis entirely with the formation of seemingly normal 1K1N cells 

following cytokinesis, together with their aploid IKON partners. It therefore seems 

possible that the microtubule-related checkpoints of other eukaryotes are either altered 

or absent in T. brucei (Robinson et al., 1995).

5.1.3 The spindle assembly checkpoint of budding yeast

The spindle assembly checkpoint of budding yeast detects defects in the spindle pole 

body (equivalent of the centrosome), microtubules, kinetochore proteins, centromeric 

DNA or microtubule motors (Rudner and Murray, 1996). Upon activation, the 

checkpoint inhibits exit from mitosis by preventing activation of a ubiquitin ligase, the 

anaphase promoting complex (APC), the function of which is to catalyse ubiquination 

of proteins such as the mitotic cyclin CLB2, thus targeting them for proteolysis 

(Murray, 1995). Reduction of CLB2/CDC28 kinase activity is known to be a 

prerequisite for exit from mitosis (Surana et a l, 1993). Studies carried out over the past 

decade have revealed a number of interacting proteins involved in the spindle 

checkpoint, and work is currently underway to further characterise their mode of action. 

MPS1 is a dual specificity protein kinase essential for duplication of the spindle pole 

body (SPB) during G1 phase of the cell cycle (Winey et al., 1991). Unlike other 

proteins involved in SPB duplication (KAR1, NDC2, MPS2 and CDC31), MPS1 also 

plays a non-essential role in the spindle assembly checkpoint during M-phase (Weiss 

and Winey, 1996). MPS1-1 mutants are therefore observed not only to fail in 

duplication of the SPB, but also to fail to arrest the cell cycle in response to this defect, 

the result being polyploid cells whose increasing DNA content rapidly becomes lethal. 

Overexpression of MPS1 results in mitotic arrest due to constitutive activation of the 

checkpoint, rather than in response to any spindle deficit. This arrest is prevented by
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mutation in any of MAD 1-3 (mitotic arrest deficient) or BUB 1-3 (budding uninhibited 

by benzimidazole), suggesting that these otherwise non-essential genes function 

downstream of MP31 at the spindle checkpoint. MAD1 has been shown to be an in 

vivo substrate for MPS1 kinase (Hardwick et al., 1996), and also to interact physically 

with MAD2 (Chen et al., 1999). BUB3 has been shown to physically interact with and 

be a substrate for the protein kinase BUB1 (Roberts et al., 1994). Taken together with 

the fact that the vertebrate homologues of MAD2 and BUB 1 both locate to the 

kinetochore (Chen et al., 1996; Taylor and McKeon, 1997), it has been proposed that 

the MAD and BUB proteins, in association with MPS1, may form a spindle-monitoring 

complex at this location (Rudner and Murray, 1996; Farr and Hoyt, 1998). The 

mechanism by which this putative complex blocks cell cycle progression is thought to 

be through the action of phosphorylated MAD2, which binds to and inactivates the 

CDC20/APC, preventing targeting and degradation of PDS1 or mitotic cyclins and thus 

blocking mitotic exit (Hwang et al., 1998).

Several lines of evidence exist to suggest that BUB2 acts in a checkpoint pathway 

distinct to that described above. Firstly, unlike other MAD and BUB proteins, BUB2 is 

not required for the cell cycle delay caused by impaired kinetochore function (Wang 

and Burke, 1995). Secondly, of the checkpoint associated genes BUB2A alone prevents 

the mitotic arrest induced in cdc2Cfs cells (Shirayama et al., 1998). Finally BUB2 has 

been localised to the SPB (Fraschini et al., 1999), as opposed to the other checkpoint 

proteins which are thought to be present on the kinetochore. BUB2 activity negatively 

regulates the DBF2 protein kinase (Fesquet et al., 1999) and overexpression of MPS1 

also inhibits DBF2 kinase activity. It has therefore been suggested that BUB2 may not
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participate in an entirely separate checkpoint pathway, but may in fact be a member of a 

novel branch of the existing pathway under the control of MPS1.

DBF2 kinase activity is required for progression through late mitosis, and becomes 

essential in the absence of its homologue DBF20 (Toyn et al., 1991). The substrate(s) 

for DBF2 and its precise cellular roles are currently unknown, but it has been shown to 

interact physically with members of the transcription regulatory CCR4 complex, 

including CCR4 and CAF1 (Liu et al., 1997), suggesting a role in regulation of 

transcription as well as cell cycle.

5.1.4 The MOB1 protein

Knockout experiments have revealed MOB1 to be an essential gene in Saccharomyces 

cerevisiae, and mutational analysis demonstrated it to be required for completion of 

mitosis, with conditional mutants arresting as large budded cells with a 2N DNA 

content when moved to the restrictive temperature (Luca and Winey, 1998). When 

maintained at the permissive temperature these cells retained a stable haploid phenotype 

if the mutant gene was expressed from a low copy plasmid, but stable integration into 

the genome resulted in apparent diploidisation of cells. MOB1 is therefore also 

implicated as possessing a role in maintenance of ploidy (Luca and Winey, 1998).

The MOB1 protein was first discovered during a 2-hybrid screen aimed at identifying 

interacting partners of MPS1 (Luca and Winey, 1998), or DBF2 (Komamitsky et al.,

1998). In both cases the 2-hybrid interaction was confirmed by immunoprecipitation. 

MOB1 has been shown to be a phosphoprotein in vivo and a substrate for MPS1 kinase 

activity in vitro (Luca and Winey, 1998). Furthermore, MOB1 has been shown to
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interact with DBF2 in vivo, and to have 2-hybrid interactions with several members of 

the CCR4 transcription regulatory complex, namely CAF1, CAF16 and CAF17 

(Komamitsky et al., 1998). Several observations suggest that MOB1 function during M 

phase is facilitated through its interaction with DBF2. Firstly, overexpression of DBF2 

complements moblts mutant phenotype, but is incapable of complementing MOB1A. 

Secondly, overexpression of MOB 1 complements both defects associated with dbf2ts 

mutants, and also lethality associated with DBF2A/DBF20A. Finally, moblts and dbf2ts 

double mutants result in lethality (Komamitsky et al, 1998).

Mutations in MOB1 exhibit lethality when combined with several other mutant genes 

possessing similar late mitotic arrest phenotypes to itself. These include the protein 

kinases CDC5 and CDC15 and the GDP/GTP exchange factor LTE1 (Luca and Winey,

1998). Genetic interactions have been demonstrated between various combinations of 

CDC5, CDC14, CDC15, DBF2 and TEM1, suggesting a functional link between many 

of these genes during mitosis. Furthermore, an assay carried out to quantify APC 

cyclin-ubiquitin ligase activity in arrested mutant strains revealed that levels were 

negligible (except in cdcl4-l mutants), indicating that these late mitotic proteins are 

required for activation of the APC toward mitotic cyclins (Jaspersen et al., 1998).

The function of the MOB1 protein in vivo remains unclear, either in its association with 

MPS1 or during late mitosis. The aim of the work described in this chapter was to clone 

and characterise the MOB1 gene of T. brucei. Southern blot analysis was carried out in 

order to determine copy number of the MOB1 gene. Two MOB1 genes were identified 

and sequences ascertained. A recombinant epitope-tagged protein was overexpressed in 

T. brucei and its stability/turnover investigated by Western blot. Indirect



immunofluorescence microscopy and subcellular fractionation were employed to 

determine the sub-cellular location of the epitope-tagged MOB1. Inducible expression 

of both antisense and double-stranded RNA was used in attempt to disrupt gene 

function, and alterations in phenotype sought. A recombinant MOB1 polypeptide was 

produced, and polyclonal antisera raised.
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5.2 Results

5.2.1 Southern blot and sequence analysis of T. brucei MOB1 

Sequence analysis of clone p 1365(2), isolated during a RADES-PCR screen of ConA- 

treated procyclic trypanosomes (Section 3.2.1), revealed strong homology to the MOB 1 

gene of other organisms. To isolate a full length T. brucei MOB 1 gene, a T. brucei 

>,gtl 1 library was screened as described in Section 2.9, using the insert of plasmid 

pl365(2) as a probe. A single positive plaque was isolated and a 4.3 kb insert excised 

by restriction digestion with Eco RI. This was subcloned into pUC18 to give plasmid 

pMOBl. Sequencing was carried out with commercial M l3-20 and M l3 reverse 

primers, and with internal primers based on the sequence of p 1365(2). While the 

internal primers extended the gene sequence to 1.4 kb, the commercial primers failed on 

two occasions and were abandoned. At this stage the known sequence encoded the 

majority of the open reading frame (as determined by comparison to MOB1 sequences 

from other organisms) and 800 bp of the 3' UTR. Sequencing reactions in a 3' —» 5' 

orientation (i.e. from the MOBJ ORF towards the 5' flank) repeatedly failed. 

Consequently, 5' RACE was carried out using internal primer pr5-33 in conjunction 

with the spliced leader primer (Appendix II) on 1st strand cDNA using Pfu DNA 

polymerase. A single fragment of 910 bp was detected following agarose gel 

electrophoresis (Figure 5.1). This amplicon was used as template for a nested PCR 

using a second internal primer, pr5-34, in conjunction with the spliced leader primer. A 

single fragment of the predicted size of 190 bp was detected, confirming the identity of 

the original amplicon, which was then T-vector cloned into pGEM-T Easy vector 

[Promega] to give plasmid pMOBME, and sequenced using T7 and SP6 primers to 

identify the splice acceptor site and start codon of the MOB 1 gene (Figure 5.1).
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Figure 5.1 Results of MGB1 5’ RACE utilising nested PCR primers

A

M O B  1

100 bp

n c D N A
L r
i— - — 1

Spliced , -► 4-  pr5-5
leader b

'primer "  -► 4 ~' p r5 -11

B C

4-  b

4 - a

AGC ATT GTGGT A A A AT A A ATTCCAC
A A GC GG C A TA G A A A A A TA TTCTTC
ATGGAAAAGCATAAGGAAGGAAC
TGAACGTTACAACCTCCACAAGT
TTGCCAAATCACTTGTGCGCTCA
GGTGACCTCAGTGCTGCTGTAAA
GCTACCGCAAGGCACAGATCTGA
ATCATTGGCTTTCCGTACACACTG
TAGATTTCTACAACATCACTAATG
TTTTGTACGGCTCTCTAACAGAGT
TTTGCACGAACAGCAGTTGTCCT
GTCATGTCGTCAGGTCCACGCTA
TGAGTATTTATGGCGTGACCCGC
CGGAATATCC

5 ’ RACE was earned  out (plate A) using the spliced leader primer in 

conjunction with nested primers p r5 -11 and pr5-5 on first strand cDN A 

template. Results are presented (plate B). Sequence data derived from 

fragment (a) is presented (plate C) with the splice acceptor site denoted by 

red, the 5 ’ UTR denoted by grey and the open reading frame denoted by 

black. Primer sequences are in Appendix II.
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Sequence data pertaining to the open reading frame of MOB 1 derived from pMOBl and 

the 5' RACE was confirmed by subsequent sequencing of pPCR23Mob (see later in this 

Section) and was used as the basis for later experiments.

The failure to sequence the full MOB1 ORF contained within plasmid pMOBl led to 

two hypotheses: either pMOBl contained tw oMOB1 ORFs, each with a different 5' 

terminus, but common termination site and 3' UTR, or the insert of pMOBl contained 

substantial levels of secondary structure coinciding with the 5' terminus of the gene. In 

order to address these possibilities the number of copies o f MOB J in the T. brucei 

genome was investigated by subjecting genomic DNA to a variety of single and double 

restriction enzyme digests. Following agarose gel electrophoresis Southern blots were 

hybridised with a P-labelled probe, derived from the insert of plasmid pTyMobGEM-1 

(Section 5.2.3), which contained the open reading frame o f MOB 1. Results are 

displayed in Figure 5.2 and Table 5.1.

Digestion with Bel I alone produced a fragment of approximately 12 kb. Single digests 

with Cla I, Hae II, Mlu I and Pvu II all produced two bands, indicating that either there 

were two copies of the MOB1 gene, or that all four of these enzymes cut within the open 

reading frame. Digestion with Fok I failed to produce any bands that hybridised with 

the probe, indicating very frequent cutting by this enzyme to produce fragments that ran 

off the bottom of the gel, possibly as the result of multiple recognition sites within the 

open reading frame or star activity. Double digestion with Mlu I/Pst I produced 

fragments of 5.0 and 1.9 kb. As digestion with Mlu I alone produced fragments of 5.0 

and 3.0 kb this result indicated that Pst I cut within the smaller of the two Mlu I
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Table 5.1 Sizes of genomic DNA fragments corresponding to the MOB1 gene 

following restriction enzyme digestion

Be
l 

I

Cla
 

I a

Ml
u 

I a
a
£

Bel I 12.0

Cla I 7.5
2.5

Hae II 3.3
2.9

Mlu I 5.0
3.0

Pvu II 2.8
2,3

Pst I 5.0
1.9

Apa I 3.3
2.9

N col 2.8
2.3

Pvu I 5.0
3.0

Sal I 2.8
2.3

Bgi n 3.0
0.2

Eco RI 2.8
2.3

Bam HI 2.3
1.8

Hind III 2.8
2.3

Pst I 2.8
1.7

Fragment sizes of T. brucei genomic DNA subjected to both single and double digestion 

with a selection of restriction enzyme prior to hybridisation with a MOB1-specific 

probe. Numbers in the table denote fragment sizes in kb.
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fragments, but probably not within the open reading frame (or at least not near its 

centre). Digestion with Hae IVApa I produced fragments of 3.3 and 2.9 kb. As these 

were the fragment sizes produced by Hae II alone this result indicated that Apa I cut 

out-with the Hae II fragments. Double digestion with Pvu II/Nco I, Pvu II/Sal I, Pvu 

lUEco RI and Pvu ll/Hind III all produced fragments of 2.8 and 2.3 kb, the size 

produced by single digestion with Pvu II. This indicated sites for Pvu II flanking the 

MOB1 gene(s) in closer proximity than Nco I, Sal I, Eco RI and Hind III. Furthermore, 

Nco I, Sal I, Eco RI and Hind III did not cut within the open reading frame of the gene. 

Double digestion with Mlu VPvu I produced fragments of 5.0 and 3.0 kb, the same size 

as were produced by single digestion with Mlu I. This indicated that Mlu I cut closer to 

the gene(s) than Pvu I. Double digestion with Mlu I/Bgl II produced fragments of 3.0 

and (approximately) 0.2 kb (not shown). The result of this particular digest was not 

fully understood, but was indicative of a site(s) for Bgl II in the larger of the Mlu I 

fragments. Double digestion with Pvu HIHind III produced fragments of 2.3 and 1.8 kb, 

indicating either that Hind III cut within 500 bp of one end of each of the Pvu II 

fragments, or that it cut at 1 kb into the larger of the two Pvu II fragments. Double 

digestion with Pvu lUPst I produced fragments of 2.8 and 1.7 kb, indicating a 

recognition site for Pst I within 400 bp of one of the termini of the smaller Pvu II 

fragment.

These data digests indicated very strongly that there were two copies of the MOB1 gene 

within the T. brucei genome, or one copy with a close homologue. Furthermore, these 

genes were demonstrated to be within the 12 kb of the Bel I fragment. However, 

insufficient data was collected to allow more informative restriction mapping to be 

carried out. At this stage it was decided that screening of a genomic lambda library,
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sequencing of the two (putative) MOB1 genes and subsequent restriction mapping of 

genomic DNA based on these sequences would be an appropriate approach.

A T. brucei library consisting of ILTat 1.2 genomic DNA partially digested with Sau 

3A, size selected for fragments of 11-19 kb and cloned into LambdaGEM-12 (produced 

by N. Burman) was screened for clones hybridising to a P-labelled probe 

corresponding to the insert of clone pl365(2) (Section 3.2.1). 10 positive clones were 

identified, and phage DNA prepared from 4 of these. Agarose gel electrophoresis of 

purified phage DNA indicated that only one of the 4 clones, subsequently referred to as 

XGEMMob, had produced a yield of DNA suitable for subsequent analysis. Based on 

Southern blot data (Figure 5.2, Table 5.1), phage DNA was digested with Pvu n . 

Restriction digested DNA was analysed by agarose gel electrophoresis, and revealed 

two fragments of approximately 2.8 kb and one fragment of approximately 2.3 kb (in 

addition to a variety of other fragments, the sizes of which were not calculated). The 

2.8 kb fragments will subsequently referred to as 2.8L and 2.8S for the Larger and 

Smaller fragments respectively. Restriction mapping (MapDraw) of the arms of 

LambdaGEM-12 demonstrated that no fragments within the range 1.9 - 3.7 kb would be 

produced by Pvu II digestion of the vector, indicating that the 2.8 and 2.3 kb fragments 

were derived from the insert DNA. Appropriate bands were excised from the gel and 

DNA purified. 1 pi purified DNA from each band together with 100 ng pl365(2) were 

heat denatured then spotted onto Hybond-N+ membrane. DNA was fixed by UV cross- 

linking then hybridised with a 32P-labelled probe derived from the insert of pl365(2). 

Autoradiographic detection (Figure 5.3) revealed that the probe had hybridised to the 

control, the 2.8L and the 2.3 kb fragments. This confirmed, as had been indicated by
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Bel I digestion of T. brucei genomic DNA, that the MOB1 genes were located in close 

proximity to each other in the genome.

Figure 5.3 M OBl fragments excised from AGEMMob

A B
Control 2.8L 2.8S 2.3

■

(A) 5 pg A.GEMMob was digested with Pvu II then electrophoresed 

on a 1% agarose gel. Numbers on the left denote size o f molecular 

weight markers in kb. 2.8L, 2.8S and 2.3 kb fragments are 

indicated on the right. (B) DNA corresponding to 2.8L, 2.8S and 

2.3 kb fragments was heat denatured at 95°C for 5 minutes then 

spotted into Hybond-N+ membrane. Following UV cross-linking 

the membrane was hybridised with a 22P-labelled probe derived 

from the insert o f p i 365(2). Control was 100 ng p i 365(2). 

Autoradiographic detection followed.

Pvu II digested DNA has blunt ends. Consequently, the 2.8L and 2.3 kb fragments were 

cloned into the S rf  I site of PCR-Script™ Amp [Stratagene] according to the 

manufacturers guidelines to produce plasmids pPC R 28M obl and pP C R 23M obl. 

Plasmid DNA was prepared, and the presence of inserts confirmed by digestion with 

Eco RI/Not I (cloning of 2.8L and 2.3 kb fragments was carried out in collaboration 

with M. McLaughlin). The full length of pPC R 23M obl and pPC R 28M obl were
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sequenced as indicated in Figures 5.4 and 5.5 respectively. The full length of the MOB1 

open reading frame contained within pPCR23Mobl was sequenced fully on both 

strands. The MOB1 open reading frame contained in pPCR28Mobl was sequenced 

only partially in both directions (i.e. not complete sequence on both strands) due to time 

constraints. The open reading frames contained within pPCR23Mobl and 

pPCR28Mobl were demonstrated to have notable differences (Figures 5.8 and 5.9), and 

will henceforth be referred to as MOB1-1 and MOB1-2 respectively. Subsequent work 

centred around the sequence of MOB1-L

2316 bp of sequence data was derived from clone pPCR23Mobl, and is presented in 

Figure 5.6 with the position of the RADES product, open reading frame and flanks 

indicated. The nucleotide and deduced amino acid sequences of the MOB1-1 open 

reading frame are presented in Figure 5.7. Sequence data pertaining to pPCR28Mobl is 

lodged in Appendix IV. A schematic comparison of the pPCR23Mobl and 

pPCR28Mobl sequences is presented in Figure 5.8. The MOB1 open reading frame 

encoded by pPCR23Moblwas highly conserved in the pPCR28Mobl clone, with both 

sequences sharing a common stop codon. The immediate 5' and 3' flanks were 

dissimilar. At the 5' terminus of each clone was another highly conserved section of 

DNA, but homology searches failed to produced a matches between this and sequences 

currently lodged on databases.

The open reading frame of MOB 1-1 encoded a protein consisting of 208 residues with a 

predicted mass of 24.6 kDa and isoelectric point of 7.0. The open reading frame of 

MOB 1-2 encoded a protein of either 290, 265 or 226 residues corresponding to 3 

putative start codons at the 5' terminus of the ORF. None of the putative start codons of



Figure 5.6 Sequence of M O B l-l open reading frame and flanks

rCC \CG( CTGA \( \ \ACCAGT \ \CCG \GTAATTGTTGTGGTTGATTGAAAGTTTGCGA 58
A(x:a \ \tc i \( :c \cc:rT(: \< it rGTc> rcxn r(. rcx \( x xiaac :c tc tc g g ti  rc:acjtc jaai i 17 
g i rc }tc }tc k n c. \ rcc s tt  iu  :tttc  x : t t t tc  :tttc  ; r rc i n k  x n rc :tttc  x x . k jtc :a ta tc  178
TCCTCTC1 rTTCCTCGAACAGATGATGTTTA rCGATTTCGAGACTTACTCACACTTGAG 237 
GCTCCTGCGACCAGGACCCTCTTTCCTGTTTTTTCTGGATGGTGGAGGATTTATGAATC 296 
ATTGTGGCTGTGCAACATATCTGTTTAACACCTCTACTGCACTCATCGTCCCTCCACAA 355 
TT ATGTTCCGTTGTTTCCTT AATTTGCTTTTAGAA AGGT A AGCTCTGGT AGTCGTTTGCT 415 
CTTCAC AAT ATGTCGGGG A AACAT ATTTTCACTTGTT ATGACGATGCTGCTGCTTGCTT 474 
TTGCGTTGAGCAAATCAATCACCCGTCGCAACACTGTTAAAACTAAACTGTGACGCGA 532 
G AAC A AA ACCAC ACT ACCAGT ACGCTCiG AGGTGTTGTTTTGCATGCCTAAATGT ATCT 590 
GTAAACCAAAGCTGGTGAATGCTCCGTACCTAAATGTGAAAAAGTTGGATGTGCAAG 647 
G AGGCAGCT AGCT AGCTTATCTCCTAGCGAGTCGGATCTTCTT AAT AT ATTTCTTCTCT 706 
TTCCCATAATGACGTTCAATGCGAGCACTCGGGC ACAAGAAAAAAAAGAATGTTCCCT 764 
ACTTTCATCCCTCCCTTTATTCAATTTGTTT AAAATAAAAGCATTGTGGTAAAATAAAT 823 
TCCACAAGCGGCATAGAAAAATATTCTTC ATGGAAAAGCATAAGGAAGGAACTGAA 879 
C G TTA C A A C C TC C A C A A G TTTG CCA A A TCA CTTG TG CG CTCA G G TG A CCTCA G TG  934 
CTG CTG TA A A G CTA CCG CA A G G CA CA G A TCTG A A TCA TTG G CTTTCCG TA CA CA C 989 
TG TA G A TTTCTA CA A CA TCA CTA A TG TTTTG TA C G G CTCTCTA A CA G A G TTTTG CA  1045 
C G A A C A G C A G TTG TC C TG TC A TG TC G TC A G G TC C A C G C TA TG A G TA TTTA TG G C G  1100 
TG A CCCG CCG G A A TA TCCA A A A G CA A CG A A G G TG A G CG CA CCG G A G TA TG TG A G  1154 
A TTG TTG A TG G A G TG G A TCG A A CG G CA G A TCA A TG A TG A A C G TG TG TTTCCG TCT 1209 
G A G G A TC G TA A TCCCTA TCCA CCA G A TTTCG CG G A TA G G G TG A A G G CG TG CTTC 1263 
A A G C G A CTG TTCCG CG TTTA TG CA CA CG TTTA CTA TTCCCA CTTTG CG A A G A TTC 1318 
CrTG A G TTGCAGGAGGAATCTCACATCAACACCGCACTGAAACATTTTATGTATTT 1373 
TG TG TG G G A G TTTG A TC TG A TTC C TC G TG A G G A G G TG TC TC C G C TG C G TG A A TTG  1428 
CTGGTAAACTTAATGGGTCAGCGCGCGAAGGAAAAGTTGGAGGTTCCGTAAAC A 1482 
AT••nTnXiTGCGCGCCCT'rGlXj'nX.iG'IXiCX T \ 'C \ ••IX^rAGC^AGGGATGATTTTTGCTCA'nT 1542 
TTTAATAAATCGAAGTGCACATCCTrGTTGGTTGATGG TAATGTTGGTCCCTGAATGTT 1601
A 'r r rc  rc -1 ~ rr .\r i  A A r c / \AT'i’ r r rc iG /\c j 1 x j , \ ( ' a a t t g g t a g a g c a a g t g a t g g g t t g a t  1660 
'rCAAAGCCTTCACTTTXGTCCCAACrCACGCACi'ITA'r'rAAl’GATGGTGAAATCTTITTT 1719 
'r'rAAA,rC’ACTGACCGGAGAAGAACCACTGGGT'rGCrlTTACCTTTCATACACCTTCX.iTT,r 1778 
TGCi l \ rGGCGAAGCC I GAAAC r rCTGTC C'G(X"I1 ACAAAAACjGCTGTTI CC’ATTCACTT 1837
K  K  TTTTATATTC iA1 IX XK AA(' T( X iATTTTTATl ('»(iA I A I I ( i I I ( i I ( i I T( iC'.(i( ' l'( ( i( jAC 1897
( K 1C JTC ■ I A A 11 AATAC>TCXXi( i \T( 1ACC.(iTTC JTTCIK .( ,(’AC jAATC 1C jAC \ I ( jTTTCK jCTTC i 1955
I AC( j AC iC K JAC jAC iC jTTTC jTAC A( X K XITC ill I (’AC A l( X 'TT ITT A( X JTAATTC i I I (X' \  A I (' 2014
GTAAAGTC . A A I ITATTTTC3TCK1ATCiATCtCK iA K j I \< h , A( X1AACXJTCiACK xACJTCX. I TT 2072
ATAC jAC : \ rc it rc itc x iaaac k :tc x ’a cg g tg  rc. \ \( x x jttc :taac jtc x x x k t k  in  m  \ 2130
AC iAC i IX . A AC (iC. AT IT A AK X ,T A A( i IX11C iC' K X TA( TTGC. K X i A I AC iTGTCAC X iT I A I T 2188
TTTCGCAGAAGGGGTGCCTCTATTTGTGC ’AGTGCACATTGATTTATGCCCTTGATAGGA 2247 
A AT I T ATC.TATA I ( ATT A AT K i I I < iA FTGA \AAAC iAAAAATTAGTTTCXX TC( \( \( iA 2305
CTC rrCAGGGG 2316

T. brucei M O B l - l  gene sequence based on data derived from subclone pP C R 23M obl. The open reading 

frame is in bold, the sequence of the RADES product is underlined, the regions flanking the open reading 

frame are denoted by grey. Numbers on the right refer to base pairs. Letters in lower case denote 

ambiguity in base identity. The splice acceptor site is denoted in red.



Figure 5.7 Nucleotide and deduced amino acids sequences of the T. brucei MOB 1-1

open reading frame

1 ATG GAA AAG CAT AAG GAA GGA ACT GAA CGT TAC AAC
M E K H K E G T E R Y N 12

37 CTC CAC AAG TTT GCC AAA TCA CTT GTG CGC TCA GGT
L H K F A K S L V R S G 24

73 GAC CTC AGT GCT GCT GTA AAG CTA CCG CAA GGC ACA
D L S A A V K L P Q G T 36

109 GAT CTG AAT CAT TGG CTT TCC GTA CAC ACT GTA GAT
D L N H W L S V H T V D 48

145 TTC TAC AAC ATC ACT AAT GTT TTG TAC GGC TCT CTA
F Y N I T N V L Y G S L 60

181 ACA GAG TTT TGC ACG AAC AGC AGT TGT CCT GTC ATG
T E F C T N S S C P V M 72

217 TCG TCA GGT CCA CGC TAT GAG TAT TTA TGG CGT GAC
S S G P R Y E Y L W R D 84

253 CCG CCG GAA TAT CCA AAA GCA ACG AAG GTG AGC GCA
P P E Y P K A T K V S A 96

289 CCG GAG TAT GTG AGA TTG TTG ATG GAG TGG ATC GAA
P E Y V R L L M E W I E 108

325 CGG CAG ATC AAT GAT GAA CGT GTG TTT CCG TCT GAG
R Q 1 N D E R V F P S E 120

361 GAT CGT AAT c c c TAT CCA CCA GAT TTC GCG GAT AGG
D R N p Y P P D F A D R 132

397 GTG AAG GCG TGC TTC AAG CGA CTG TTC CGC GTT TAT
V K A C F K R L F R V Y 144

433 GCA CAC GTT TAC TAT TCC CAC TTT GCG AAG ATT CGT
A H V Y Y S H F A K I R 156

469 GAG TTG CAG GAG GAA TCT CAC ATC AAC ACC GCA CTG
E L Q E E S H I N T A L 168

505 AAA CAT TTT ATG TAT TTT GTG TGG GAG TTT GAT CTG
K H F M Y F V W E F D L 180

541 ATT CCT CGT GAG GAG GTG TCT CCG CTG CGT GAA TTG
I P R E E V S P L R E L 192

577 CTG GTA AAC TTA ATG GGT CAG CGC GCG AAG GAA AAG
L V N L M G Q R A K E K 204

613 TTG GAG GTT CCG TAA
L E V P 208

The nucleotide sequence (black) and deduced amino acid sequence (red) o f the T. brucei MOB 1-1 open 

reading frame is based on data derived from subclone pPC R 23M obl. The position o f the nucleotides is 

displayed in the left margin, and the position of the amino acid residues is displayed in the right margin.
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Figure 5.9 Alignment of MOB1 protein sequences from diverse species

The protein sequences of M OB 1 homoiogues from diverse species were obtained by 

hom ology search using the BLAST programme. Consensus sequence runs along the 

top. Num bers in the left margin denote sequences from:

(1) Trypanosom a brucei (MOB 1-1)

(2) Trypanosoma brucei (MOB 1-2)

(3) Leishm ania m ajor

(4) Saccharom yces cerevisiae  [731855]

(5) Schizosaccharom yces pom be  [3947877]

(6) D ictyostelium  discoideum  [2282525]

(7) A rabidopsis thaliana  [2832633]

(8) Gossypium  hirsutum  [5048261]

(9) C aenorhabditis elegans  [4262618]

(10) Homo sapiens [3342738]

(11) Paralichthys olivaceus  [5039530]

(12) Saccharom yces cerevisiae  Mob2 [1175942]

Numbers in the right margin denote position of the terminal residue. Residues that 

match the consensus exactly are denoted by *. Non-conservative substitutions are 

boxed. Gaps represent missing sequence data. Dashes (-) represent gaps introduced to 

improve the alignment. The motif highlighted in red denotes a conserved putative 

casein kinase II phosphorylation site. Numbers in parentheses [above] denote sequence 

identifiers (http://www.ncbi.nlm .nih.gov). The T. brucei M OB 1-2 sequence is 

displayed from the first of the putative methionine start residues.
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Table 5.2a Percentage amino acid identity between MOB1 homologues from 

diverse species

1____  2 3 4 5 6 7 8 9  10 11
2 69
3 59 47
4 35 28 31
5 40 28 35 41
6 50 35 40 42 50
7 47 34 40 42 52 62
8 39 30 42 36 43 53 73
9 32 35 32 28 30 35 35 30
10 34 36 31 26 32 34 36 30 45
11 35 25 29 28 32 41 38 37 36 44
12 20 20 23 28 30 27 29 22 22 24 22

Table 5.2 b Percentage amino acid identity between conserved region of MOB1 

homologues from diverse species

1 2 3 4 5 6 7 8 9 10 11
2 94
3 61 67
4 41 40 35
5 42 40 35 48
6 51 50 41 49 51
7 49 50 42 49 54 65
8 41 39 41 42 44 52 74
9 47 48 44 38 44 50 49 43
10 49 48 43 38 46 49 52 43 63
11 47 45 38 43 43 52 51 41 52 81
12 25 29 26 33 37 35 38 29 29 33 36

Tables indicating percentage identity between protein sequences of MOB 1 homologues from 10 different 

species, together the Saccharomyces cerevisiae MOB2 sequence. Table 5.2a indicates identity between 

entire protein sequences, as determined by the number of identical residues divided by the number of 

residues in the larger of two sequences. Table 5.2b indicates identity between the consensus region of 

proteins, as determined by the number of identical residues within the consensus region divided by the 

number of residues within this region (the consensus region of 202 residues is indicated in Figure 5.9). 

Identities for sample 11 (Paralichthys olivaceus) in Table 5.2b were calculated on the basis of 157 being 

encoded by the consensus region, as sequence data pertaining to the first 45 residues of the consensus 

were not available. Numbers in the margins denote:

(1) Trypanosoma brucei (MOB 1-1) (7) Arabidopsis thaliana [2832633]

(2) Trypanosoma brucei (MOB 1-2) (8) Gossypium hirsutum [5048261]

(3) Leishmania major (9) Caenorhabditis elegans [4262618]

(4) Saccharomyces cerevisiae [731855] (10) Homo sapiens [3342738]

(5) Schizosaccharomyces pombe [3947877] (11) Paralichthys olivaceus [5039530]

(6) Dictyostelium discoideum [2282525] (12) Saccharomyces cerevisiae MOB2 [1175942]
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MOB 1-2 corresponded to the start methionine of MOB 1-1. Due to the fact that only 

single pass sequencing was conducted over this region the data must be interpreted with 

caution.

The open reading frame of the T. brucei MOB1-1 was used to homology search 

databases using the BLAST algorithm. Amongst the sequences identified was a 

Leishmania major EST [AI034929], originally isolated during a screen of a 

promastigote cDNA library (Cambridge Institute for Medical Research), encoding the 5' 

terminus of the Leishmania major MOB1 homologue. A XZAP-II clone containing the 

full-length L. major cDNA was kindly supplied by J. Blackwell through the WHO 

Leishmania Genome Initiative. Single pass sequencing of the insert was conducted in 

conjunction with M. McLaughlin using primers Leish 1-3 (Appendix II).

Homologous sequences from a variety of organisms were identified and protein 

sequences acquired for comparative alignment using the MegAlign programme. The 

resultant alignment is presented in Figure 5.9. The extreme N- and C-terminal regions 

of the proteins were dissimilar. A consensus region consisting of 202 residues is 

indicated and covers the conserved portion of the gene. Percentage identities between 

MOB1 (and MOB2) sequences were calculated for both the whole gene and the 

consensus region, and resultant data are presented in Tables 5.2a and 5.2b respectively. 

Comparison of the T. brucei MOB 1-1 and MOB 1-2 sequences revealed 78% identity 

between the proteins, with 94% identity over the consensus region. Analysis revealed 5 

residue substitutions (not including the start residue of MOB1-1), 2 ambiguous residues 

in MOB 1-2, and 6 residues of MOB 1-2 within the consensus region but prior to the N- 

terminal residue of MOB 1-1. Of the residue substitutions all but one are conservative,
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the exception being serine-161 of MOB1-1 substituted as phenylalanine-244 of MOB1- 

2. The full length sequence of both the Dictyostelium discoideum and the Paralichthys 

olivaceus proteins were not available. The sequence of the Saccharomyces cerevisiae 

MOB2 protein was included for comparison. Data pertaining to P. olivaceus (sequence 

11) are included for completeness, but are of limited value due to the absence of the 

proteins N-terminus and will not be discussed further. Data derived from comparison of 

the consensus region displays (predictably) a higher percentage identity than data 

derived from whole sequence comparisons. Values from the former range from 35% 

between the L. major sequence and those of S. cerevisiae and Schizosaccharomyces 

pombe, and 67% between the L. major and T. brucei MOB 1-2.

Conserved motifs within the MOB1 protein were sought using T. brucei MOB 1-1 

peptide sequence as a template in conjunction with both PROSITE (http://expasy.hcuge. 

ch/sprot/prosite.html) and MOTIF (http://www.motif.genome.ad.jp) programmes. A 

putative casein kinase II phosphorylation site was discovered, consisting of S/T-x-x- 

D/E, where x denotes any non-basic residue. This site was situated between residues 

65-68 inclusive of the consensus and was conserved between all M0B1 homologues. 

This site was not present on the S. cerevisiae M0B2 sequence. No other conserved 

motifs were found.
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5.2.2 Production of a construct for expression of MOB1-1 antisense RNA in 

71 brucei

Antisense RNA is complementary to, and forms duplexes with, either mature or 

precursor mRNA. Interaction between these two molecules is gene specific, involving 

base pairing between the antisense molecule and its target. mRNA transcripts bound in 

such RNA:RNA hybrids are blocked at one of the several translatory steps involved in 

protein synthesis. Gene function is therefore interrupted (Weiss et al., 1999). 

Antisense-mediated gene silencing by expression of antisense RNA in transfected cells 

has become a complementing alternative to gene disruption or gene knockouts by 

homologous recombination (Lichtenstein and Nellen, 1997). This approach is now 

commonly used where no other gene disruption technique is available or complete gene 

knockout may result in a lethal phenotype.

Due to the fact that 2 copies of the T. brucei MOB 1 gene {MOB 1-1 and MOB 1-2) had 

been detected by Southern blot analysis it was not possible to conduct conventional 

gene knockouts immediately as a full map and sequence of the whole MOB 1-1 and 

MOB 1-2 loci was not available. Consequently, it was decided that inducible expression 

of an antisense MOB 1-1 fragment would be attempted in order to inhibit production of 

MOB 1-1 protein. It was hoped that subsequent phenotypic analysis would give insights 

into gene function. Sequence data pertaining to MOB 1-2 was unavailable at this stage 

of the work, so all experimentation involving antisense (and subsequently double 

stranded) constructs was carried out using MOB 1-1 as the template sequence.

Primers pr5-23 and pr5-24 were designed to amplify bases 32-544 of the MOB 1-1 open 

reading frame (this represented the only region of the open reading frame for which
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double stranded sequence was available at the time). Oligonucleotide sequences are 

detailed in Figure 5.10. PCR amplification of the MOB 1-1 fragment was carried out 

withiyw DNA polymerase, using plasmid pPCR23Mobl as template.

Following PCR amplification a single band at the predicted size (526 bp) was cloned 

into pGEM®-T Easy vector to give plasmid pAntiMobGEM. Plasmid DNA was 

produced from an overnight culture and digested sequentially with Apa I and Bam HI, 

producing fragments which were confirmed to be the correct size by agarose gel 

electrophoresis. The identity of the insert within plasmid pAntiMobGEM was 

confirmed by sequencing. The insert from pAntiMobGEM was cloned into the Apa I 

and Bam HI sites of plasmid pHD675 (Biebinger et al., 1997). This produced construct 

pAntiMobHD675 in which the insert was in an antisense orientation with respect to the 

promoter, as detailed in Figure 5.10.
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Figure 5.10 Schematic representation of subunits constituting pAntiMobHD675

Bam  HI

Promoter \  /  Promoter

p  \ /  p HYG

pr5-23 5 G G A T C C A C A A C C T C C A C A A G T T T G C C 3'
2

pr5-24 5 G G G C C C T T A C A T A G G A A T C A G A T C A A A C T C C C 3’

pr5-23

MOB 1-1

pr5-24

Apa  I Bam  HI

Promoter

_ R _
Promoter

Antisense MOB 1-1
/ p

HYG

Schematic representation o f (1) the multiple cloning site o f plasmid pHD675 with respect to the PARP 

promoter and HYG resistance gene. (2) Oligonucleotide sequences based upon analysis o f the MOB1-1 

gene sequence. Regions in red denote restriction enzyme sites [Barn HI in pr5-23 and Apa I in pr5-24], 

and regions in blue denote sequence matching the open reading frame o f the gene. (3) MOB1-1  gene with 

PCR primers aligned. (4) 514 bp PCR product cloned into the multiple cloning site o f pHD675 in an 

antisense orientation (pAntiM obHD675).
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Introduction and inducible expression of plasmid pAntiMobHD675 in T. brucei

pAntiMobHD675 was linearised by digestion with Not I, extracted twice with 

phenol/chloroform then ethanol precipitated. Following resuspension in sterile dFLO 

DNA was quantified spectrophotometrically at 260 nm. 20 pg linear pAntiMobHD675 

was used to transfect T. b. brucei stock EATRO 795 containing integrated construct 

pHD449 (Biebinger et al., 1997). Following overnight recovery populations were 

cloned by limiting dilution with appropriate antibiotic selection.

Two clonal populations survived selection, and will henceforth be referred to as 

tAntiMob clone 1 and 2. Cells from each population, together with untransfected 

controls, were induced overnight by addition of 20 ng/ml tetracycline to medium.

Living cells were observed by phase contrast light microscopy at 200 x magnification. 

No obvious differences were detected between induced, non-induced or untransfected 

control cells. Cells from the same populations were harvested and slides prepared for 

viewing by DAPI staining as described previously. Fluorescence microscopy revealed 

no difference between cellular DNA content of induced, non-induced or untransfected 

controls.

In order to determine if growth rate was affected by expression of antisense MOB 1-1, a 

24 well plate was set up containing 6 replicates each of the following; tAntiMob clone 

1, tAntiMob clone 2, cells containing construct pHD449, and cells containing constructs 

pHD449 and pHD675 (kindly supplied by T. Hammarton). Density in each well at the 

start of experimentation was 2 x 105 cells/ml. Three replicates from each clone were 

induced with 50 ng/ml tetracycline, while the other three replicates were not induced.
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Cell density in each well was quantified daily using a haemocytometer. The experiment 

was terminated on the 6 th day after initiation. Results are displayed in Figure 5.11.

Figure 5.11 Graphical representation of cell numbers over time in tAntiMob and 

control populations +/- tetracycline induction
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Cells were cultured in com plete SDM 79 containing either 50 ng/ml tetracycline (first column o f each 

doublet) or no tetracycline (second column o f each doublet). Each colum n represents the mean value of 

three replicates. Error bars represent standard deviation. Blue colum ns represent control cells containing 

construct pHD449. Green columns represent control cells containing constructs pHD449 and pHD675. 

Purple columns represent tAntiM ob clone 1. Red columns represent tAntiM ob clone 2.

Statistical significance of the data was determined using a Repeated Measures Analysis 

Of Variance (RM ANOVA). This test can be used to determine not only whether there 

is a significant difference between data sets, but also whether that difference changes 

with time. For control cells containing construct pHD449 the effect of tetracycline
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induction on cell density was not significant (Fit4 = 1.789, p = 0.825). Similarly, control 

cells containing both constructs pHD449 and pHD675 showed no significant difference 

in cell density between induced and non-induced cells (Fi,4 = 0.251, p = 0.643). By 

contrast, both tAntiMob clone 1 and tAntiMob clone 2 displayed significantly fewer 

cells in induced populations relative to non-induced counterparts (Fi,4 = 18.813, p = 

0.012 and Fi,4 = 37.496, p = 0.004 respectively). Furthermore, in both tAntiMob clone 

1 and tAntiMob clone 2 the difference between induced and non-induced populations 

was shown to increase with time (F5,2o= 18.832, p < 0.001 and F5,2o= 10.837, p < 0.001 

respectively). This data demonstrates clearly that expression of MOB1-specific 

antisense RNA in T. brucei results in a reduction in population growth rate, indicating 

that MOB 1-1 and/or MOB 1-2 protein is required for normal growth of procyclic T. 

brucei. (Statistical analysis courtesy of S. Humphries).

The phenotype observed in this experiment was not as pronounced as had been hoped, 

taking 4-6 days to reach levels where it was readily detected. Consequently, it was 

decided that inducible expression of MOB 1-1 double-stranded RNA in T. brucei would 

be attempted.
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5.2.3 Production of a construct for expression of MOB 1-1 

double-stranded RNA in T. brucei

The action of double-stranded RNA (dsRNA) has been demonstrated to be a gene- 

specific phenomenon, resulting in silencing of expression in C. elegans (Fire et al., 

1998), T. brucei (Ngo et al., 1998) and plants (Waterhouse et al., 1998). Furthermore, 

in both C. elegans and plants the effect of dsRNA, termed RNA interference (RNAi), 

has been shown to be a far more potent inhibitor of gene expression than its antisense 

RNA counterpart (Fire et al., 1998; Waterhouse et al., 1998). The mode of action of 

dsRNA remains a subject of conjecture, although current evidence points away from 

non-reversible alteration in cellular DNA (Montgomery et al., 1998) and towards 

targeted mRNA degradation (Ngo et al., 1998; Waterhouse et al., 1998).

Ngo et al. (1998) describe plasmid pGFPFAT which contains, amongst other things, 

two complete copies of the T. brucei a-tubulin 5’ UTR (113 bp each) in a head-to-head 

configuration, separated by a 700 bp sequence unrelated to a-tubulin. Transient 

expression of this plasmid in T. brucei resulted in cells becoming rounded, possessing 

multiple nuclei and kinetoplasts and displaying pronounced ruffling on the cell surface. 

It was proposed that expression of plasmid pGFTFAT produced a transcript that formed 

a dsRNA stem consisting of the complementary a-tubulin UTRs, and a single-stranded 

RNA loop corresponding to the 700 bp insert. Subsequent analysis involving 

transfection of cells with in vitro synthesised a-tubulin-specific dsRNA revealed that 

the aforementioned morphology was related to specific degradation of a-tubulin 

mRNA.
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In order to inducibly express a MOB1-1 dsRNA construct in T. brucei, primers pr5-25 

and pr5-26 were designed to amplify bases 4-227, and primers pr5-27 and pr5-28 to 

amplify bases 4-624, of the MOB1-1 open reading frame. Oligonucleotide sequences 

are detailed in Figure 5.12. PCR amplification of the MOB1 fragments was as described 

previously, using Pfu DNA polymerase together with pPCR23Mobl as template. PCR 

products of the correct size were isolated and cloned into pGEM-T vector to produce 

plasmids p240dsMobGEM and p640dsMobGEM respectively. The identity of the 

inserts was confirmed by sequence analysis.

The Hind III/Apa I insert from p240dsMobGEM was sub-cloned into the Hind III/Apa I 

sites of pHD675, as shown in Figure 5.12, to produce plasmid p240dsHD675. The Mlu 

I/Bam HI insert from p640dsMobGEM was sub-cloned into the Mlu I/Bam HI sites of 

p240dsHD675, as shown in Figure 5.12, to give plasmid pRNAiMobHD675.
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Figure 5.12 Schematic representation of subunits constituting pRNAiMobHD675

Apa I Bam HI
H int

Promoter

P
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h y g

pr5-25 5'CG A AG CTTG A AA A G CA TA AG G A AG G A ACTG 3'

pr5-26 5 CG G G GCCCGG A CTTG A CG ACA TG A CA G G 3

pr5-27 5CG A G CG CTTTA CG GA A CCTCCA A CTTTTCC3'

pr5-28 5 CGG G ATCCG A AA A G CA TAA G G A AG G A ACTG 3

pr5-25

pr5-28

pr5-26

pr5-27

Hind III Apa  I Mlu I Bam HI

PromoterPromoter

4 Sense Antisense H Y G

Schem atic representation o f ( I)  the multiple cloning site o f plasmid pHD675 with respect to the PARP 

prom oter and HYG resistance gene. (2) Oligonucleotide sequences based upon analysis o f M O B l - l  gene. 

Regions in red denote restriction enzyme sites [Hind III, Apa I, Mlu I and Bam HI respectively], and 

regions in blue denote sequence matching the open reading frame o f the gene. (3) M O B l - l  gene with 

PCR primers aligned. (4) 220 and 620 bp M O B l - l  fragments within the m ultiple cloning site o f pHD675 

in a head-to head orientation (pRNAiM obHD675).
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Introduction and inducible expression of plasmid pRNAiMobHD675 in T. brucei

Plasmid pRNAiMobHD675 was linearised by digestion with Not I, extracted twice with 

phenol/chloroform, ethanol precipitated and resuspended in sterile dFkO at 2 mg/ml. 30 

pg linear pRNAiMobHD675 was then used to transfect T. b. brucei stock EATRO 795 

containing construct pHD449. Following overnight recovery populations were cloned 

by limiting dilution with appropriate antibiotic selection.

Two clonal populations survived selection, and were named tRNAiMob clones 1 and 2. 

Cells from each population, together with untransfected controls, were induced 

overnight by addition of 20 ng/ml tetracycline to medium. Phase contrast and 

fluorescence microscopy were carried out on cells as describes previously for tAntiMob 

clones 1 and 2. No differences were detected between controls and induced cells under 

these conditions.

Total RNA was prepared from 1 x 109 cells from populations of tRNAiMob clones 1 

and 2 and untransfected controls +/- tetracycline induction. RNA was quantified 

spectophotometrically and 10 pg subjected to agarose gel electrophoresis. RNA was 

blotted onto Hybond N+ membrane, UV cross-linked then hybridised with a 32P- 

labelled probed derived from the insert of clone pTyMobGEMl and representing the 

open reading frame of MOB1-1. Signal was detected with autoradiograph film. Results 

are displayed in Figure 5.13.

Levels of hybridisation were relatively constant between both experimental and control 

groups, the exception being a reduction in signal detected from control cells without 

tetracycline (Figure 5.13, lane 1). It is thought that this was a result of slightly lower
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Figure 5.13 Northern blot analysis of tRNAiMob clones 1 and 2 +/- tetracycline

2 .0 - ►  *

Total RNA was prepared from 

tR NA iM ob clones 1 and 2 

following overnight culture in the 

presence or absence o f 20 ng/ml 

tetracycline induction. Control 

cells o f the parental cell line 

contained construct pHD449, and 

w ere also subjected to culture +/- 

tetracycline. 10 pg total RNA from 

each sample was subjected to 

agarose gel electrophoresis (upper 

image), then blotted and hybridised 

with a 32P-labelled probe derived 

from  the insert o f clone 

pTyM obG EM  and containing the 

open reading fram e o f M O B l -1 . 

Signal was detected 

autoradiographically (lower 

image). Lanes were (1) control, (2) 

control + tetracycline, (3) 

tRNA iM ob clone 1, (4) tRNAiM ob 

clone 1 + tetracycline, (5) 

tRN A iM ob clone 2 and (6) 

tR NA iM ob clone 2 + tetracycline. 

N um bers on the left denote sizes in 

kp.
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loading of RNA in this lane, as indicated by reduced intensity of rRNA bands detected 

by EtBr staining. The marginal differences observed in hybridisation between 

experimental lanes indicated that either the RNAi had not been expressed, or that 

expression had occurred without effecting levels of MOB1-1 or MOB1-2 mRNA. One 

observation of note was the increase in relative intensity of smaller to larger transcript 

when compared to previous analysis (Figure 3.8, Plate C). The reason for this shift in 

relative transcript abundance in these cells is not known, but could be related to cell 

lineage.
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5.2.4 Production and inducible expression of a Ty-tagged

MOB 1-1 protein in T. brucei

Sequence encoding a Ty-1 epitope tag (Bastin et aL, 1996) was added into the 3’ 

terminus of the T. brucei MOB1-1 gene (Figure 5.14). Oligonucleotides for this purpose 

were designed and PCR amplification of the MOB1-1 open reading frame carried out 

using Pfu proof reading DNA polymerase in order to minimise the probability of 

introduced errors, together with genomic DNA as template and primers pr5-29 and pr5- 

30. The single PCR product of 670 bp was cloned into pGEM®-T Easy vector to give 

plasmid pTyMobGEM.

Plasmid pTyMobGEM was digested with Hind III and Mlu I in order to release the 670 

bp insert for subcloning into Hind UUMlu I digested plasmid pHD675, producing 

plasmid pTyMobHD675.

Plasmid pTyMobGEM was sequenced using commercial T7 and SP6 RNA polymerase 

primers [Promega]. Sequence data derived from the T7 primer was of good quality, 

corresponded to the 3’ end of the gene, and indicated that no errors had been introduced 

into the sequence during PCR amplification. Sequence data derived from the SP6 

primer was of insufficient quality to determine with certainty whether errors had been 

introduced into the 5’ end of the gene. Due to time constraints it was decided to 

proceed with work on plasmid pTyMobHD675 in the absence of sequence confirmation.
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Figure 5.14 Oligonucleotide sequences for introduction of Ty-1 epitope tag into 

T. brucei MOB 1-1

Forward primer (pr5-29)

5’c g a a g c t t a t g g a a a a g c a t a a g g a a g g a a c t g 3’

Reverse primer (pr5-30)

5 C G A C G C G TTTA G TC A A G TG G A TC C TG G TTA G TA T G G A C C TC C G G A A

C C TC C A A C TTT TC C T TC G 3

PCR product

Start MOB1-1 ORF Epitope tag sequence Stop

pr5-29 pr5-30

Hind III Mlu I

Oligonucleotides for the introduction of  sequence encoding a Ty-1 epitope tag into the T. brucei MOB1-1  

was based upon analysis of the open reading frame of the gene (Section 5.2.1) and the published sequence 

of the Ty-1 epitope (Bastin et al., 1996). Regions in red denote restriction enzyme sites [Hind III in 

forward and Mlu I in reverse], regions in blue denote the start and stop codon, the region in pink denotes 

sequence encoding the Ty-1 epitope tag and regions in green denote the terminal 5 ’ and 3 ’ bases o f  the 

MOB 1-1 open reading frame respectively.
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Introduction and expression of construct pTyMobHD675 in T. brucei

Plasmid pTyMobHD675 was linearised by digestion with Not I, extracted twice with 

phenol/chloroform, ethanol precipitated and resuspended at 2 mg/ml in sterile dtkO. 20 

Hg linear pTyMobHD675 was used to transfect a clone of T. b. brucei stock EATRO 

795 containing a copy of construct pHD 449 (Biebinger et al., 1997) stably integrated 

into its genome. Following overnight recovery populations were immediately cloned by 

limiting dilution with appropriate antibiotic selection.

Phenotypic analysis was carried out on three clonal populations (from a total of five). 

Following overnight induction with tetracycline 1 x 108 cells were harvested. Protein 

equivalent to 2 x 105 trypanosomes was subjected to glycine SDS-PAGE and Western 

blotting, then immunodetection using the mouse monoclonal BB2 a-Ty as the primary 

antibody (Bastin et a l, 1996) and a-mouse IgG/HRP conjugate [Promega] as secondary 

antibody. Detection of antibody was through use of the SuperSignal® system [Pierce]. 

Results are in Figure 5.15 below.
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Figure 5.15 Immunoblot analysis of clonal procyclic populations transfected with 

construct pTyMobHD675

1 2 3 4 5 6 7

26 kDa — Ty-M O B l-1

+ + +

control Clone 2 Clone 3 Clone 4

Immunoblot o f  total protein from 2 x 103 procyclic trypanosomes / lane probed with monoclonal antibody 

BB2. Cells were (1) uninduced EATRO 795 containing construct pHD 449, (2) induced clone 2, (3) 

uninduced clone 2, (4) induced clone 3, (5) uninduced clone 3, (6) induced clone 4 and (7) uninduced 

clone 4.

The predicted size o f  the T y M O B l protein was 26 kDa. As can be seen in Figure 5.15 

each induced population gave a band of the correct size, while uninduced cells did not 

produce detectable levels of the protein. As described previously the BB2 antibody did 

not cross-react with proteins from untransfected control cells (lane 1). Clonal cell lines 

2, 3 and 4 will henceforth be referred to as tTyMob clones 2, 3 and 4 respectively.

Stability of TyMOBl-1 in vivo

In order to determine the stability of the T yM O B l-1  protein within procyclic 

trypanosomes, tTyM ob clones 3 and 4 were induced to produce protein overnight. Cells 

were harvested, washed once with fresh SDM 79 to remove tetracycline then 

resuspended at 1 x 10° cells/ml in fresh complete SD M  79. At timepoints 0, 2, 4, 6, 12
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and 24 hours after removal of tetracycline 1 x 108 cells were harvested and frozen at -  

20°C for temporary storage. Control cells were of the same cell line as experimental 

cells but were not exposed to tetracycline induction. Protein equivalent to 4 x 105 cells 

was subjected to glycine SDS-PAGE, Western blotting and immunodetection as 

described previously. Results are presented in Figure 5.16.

The stability of the TyMOBl-1 protein expressed by tTyMob clones 3 and 4 was 

comparable to that reported in the previous chapter for TyQM (Section 4.2.3). No 

detectable reduction in protein levels was observed in either clone during the first 12 

hours post induction, and the decrease observed thereafter is likely to be due in part to 

the increase in cell numbers relative to tagged protein. The unknown factor in this 

experiment is of course the stability of the mRNA encoding the tagged protein - a 

stable transcript could result in persistence of translation for several hours after removal 

of induction, thus interfering with determination of protein stability.
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Figure 5.16 Turnover of TyMOBl-1 protein within procyclic cells over time

HoursControl 2

Clone 3

Clone 4

Procyclic tTyMob clones 3 and 4 were induced overnight, harvested, washed and resuspended at 1 x 106 

cells/ml in fresh complete SDM 79. 1 x 10s cells were harvested at tirne-points 0, 2, 4, 6, 12 and 24 hours 

after removal of tetracycline. Protein equivalent to 4 x 105 trypanosomes was subjected to immunoblot 

analysis with BB2 monoclonal antibody. Controls were from the same stock as experimental cells.

Cell fractionation analysis of TyMOBl-1 protein

Procyclic tTyMob clone 4 cells were induced to express protein overnight. 2 x 1 0  cells 

were harvested as described previously, pelleted then resuspended in 1 ml LSGI 

(Section 2.21) for 30 minutes on ice. Lysate was centrifuged at 100 000 x g for 45 

minutes at 4°C in a Beckman Optima™ TL Ultracentrifuge. Supernatant was aspirated 

and stored on ice, and the pellet washed 4 times with 1 ml LSGI before being 

resuspended in 75 pi 0.25% Triton-X 100 and 25 pi 4 x Laemmli buffer. Protein from 

the soluble fraction and insoluble fractions equivalent to 5 x 105 cells was subjected to 

glycine SDS-PAGE, Western blotting and immunodetection. Results are presented in 

Figure 5.17.
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Figure 5.17 Cell fractionation analysis of TyMOBl-1

26 kDa Ty-M O B l-1

tTyMob clone 4 cells were lysed in LSGI then fractionated by ultracentrifugation at 100 000 x g. Protein 

equivalent to 5 x 105 trypanosomes from (1) soluble fraction and (2) insoluble fraction was subjected to 

immunoblot analysis using BB2 a-Ty.

Following disruption of cells in LSGI buffer and ultracentrifugation at 100000 x g the 

TyM O B l-1  protein was found to be present in the soluble fraction alone (lane 1). The 

soluble nature of this protein suggests that it is either not part of a large complex, or that 

it is peripherally associated with such a complex and that this interaction is disrupted by 

LSGI which contains 1% Triton X-100.

Indirect immunofluorescence microscopic analysis to determine subcellular 

location of the TyMOBl-1 protein in vivo

Due to the fact that all tTyMob populations analysed produced similar levels of tagged 

protein coupled with undetectable non-induced expression, immunofluorescence 

analysis was carried out on a single cell line, tTyMob clone 4. Cells were induced to 

express protein overnight by incubation with 20 ng/ml tetracycline, following which 

slides were made as described in Section 2.18. Imm unofluorescence microscopy was 

carried out using the mouse BB2 (a-Ty) as primary antibody, and goat a-m ouse  

IgG/FITC conjugate [Sigma] as secondary antibody.
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The level of fluorescence detected within cells was low, requiring relatively long 

exposure times to be detected. As a consequence, fluorescence with relation to the cell 

cycle was not thoroughly investigated. At the subcellular level the TyMOBl-1 protein 

appeared to display a homogenous distribution, with the possibility of slightly elevated 

levels proximal to the nucleus (Figure 5.18). This lack of localisation within the cell led 

to 3 hypotheses. Firstly, that there was localisation of the tagged protein within the cell, 

but that overexpression resulted in “swamping” of the signal. Secondly, that 

introduction of the Ty-1 epitope tag into the C-terminus of the protein resulted in 

disruption or loss of a localisation signal, causing the tagged protein to localise 

differently to its native counterpart. Finally, that the native MOB 1-1 protein also 

exhibited a generalised distribution throughout the cell.

In order to investigate the first of these hypotheses, immunofluorescence microscopy 

was carried out as described above, using 5 ng/ml tetracycline to induce cells instead of 

the customary 20 ng/ml. It was hoped that by lowering the level of the induction signal, 

lower levels of protein would be produced, thus allowing any localisation to be more 

easily detected. As can be seen in Figure 5.19, reduced levels of protein were observed 

within cells under this induction regimen, as compared to the previous study (Figure 

5.18). However, while a more punctate pattern was observed, distribution indicative of 

organellar localisation was not detected. Washing tetracycline away from cells and 

performing microscopy at later time-points also failed to detect any distribution other 

than cytoplasmic. If localisation of TyMOBl-1 did occur within cells, it was not 

detectable under the conditions employed in this study.
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Figure 5.18 Immunofluorescence microscopic analysis of procyclic

T. brucei induced to overexpress TyMOBl-1 with 20 ng/ml tetracycline

tTyMob clone 4 cells were cultured overnight in the presence of 20 ng/ml

tetracycline to induce overproduction of Ty-Mobl-1 protein. Cells were 

fixed, permeabilised and treated with the mouse monoclonal BB2 a-Ty as 

primary antibody, then goat a-mouse/FITC conjugate as secondary antibody. 

Control cells were from the same parental cell line and contained construct 

pHD449 but not pTyMobHD675. DAPI was added to cells during incubation 

with secondary antibody. Tiles are (1) phase contrast, (2) DAPI, (3) a-Ty 

and (4) a-Ty merged with DAPI. Tiles (5) and (6) are phase contrast and a- 

Ty with control cells. The bar at the top of each tile denotes 5 um.
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Figure 5.19 Immunofluorescence microscopic analysis of procyclic

T. brucei induced to overexpress TyMOBl-1 with 5 ng/ml tetracycline

Procyclic cells of tTyMob clone 4 were cultured overnight in the 

complete SDM79 supplemented with 5 ng/ml tetracycline. Cells were 

fixed, permeabilised and treated with mouse monoclonal BB2 a-Ty as 

primary antibody then goat a-mouse/FITC conjugate as secondary 

antibody. Control cells were from the same parental cell line as 

experimental cells, and contained construct pHD449 but not construct 

pTyMobHD675. DAPI was added to cells during incubation with 

secondary antibody. Tiles are (1) phase contrast, (2) DAPI, (3) a-Ty 

and (4) a-Ty merged with DAPI. Tiles (5) and (6) are phase contract 

and a-Ty with control cells. The bar at the top of each tile denotes 5 

um.
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In order to answer the question of whether the subcellular distribution of TyMOBl-1 

was similar to that of its native MOB 1-1 counterpart, an antibody specific to the native 

protein was required. Production and purification of a recombinant protein for this 

purpose is described in the Section 5.2.5.

5.2.5 Production of a MOB 1-maltose binding protein fusion protein

In order to produce an antibody to the T. brucei MOB1, it was necessary to first produce 

and purify a recombinant MOB 1-1 protein for injection into rabbits. The system used to 

achieve this was the pMAL protein fusion and purification system [New England 

Biolabs]. The principle behind this system is that the gene of interest (in this case 

MOB 1-1) is cloned into the pMAL vector immediately downstream of the malE gene, 

which encodes maltose binding protein (MBP). Following induction of expression with 

IPTG Escherischia coli could produce up to 100 mg of the MBP-MOB1 fusion protein 

per litre of culture. This can be affinity purified from other cellular constituents by 

passing soluble cell lysate through a column containing amylose resin, washing 

thoroughly then eluting by addition of 10 mM maltose. The MBP-MOB1 fusion protein 

contains a factor Xa recognition site (I-E/D-G-R) in the linker region between the MBP 

and the protein of interest, allowing cleavage and subsequent purification of protein by 

one of several possible methods.

At this stage of the project sequence data pertaining to the 5' terminus of the MOB 1-1 

ORF was not available. Consequently primers pr5-31 and pr5-32 were designed to 

amplify the 3’ terminal 408 bp of the MOB1-1 gene (Figure 5.20). This MOB1-1 

sequence encodes a predicted MOB 1-1 peptide of 17 kDa. PCR amplification was 

performed with PJu DNA polymerase, primers pr5-31 and pr5-32 and pMOBl as
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template. A single fragment of the predicted size of 438 bp cloned into pGEM®-T Easy 

vector to give plasmid pM obM BPGEM . Plasmid DNA was digested sequentially Bam 

HI and Hind III then sub-cloned into Bam HI/Hmd III cut plasmid pMAL™-c2 to give 

plasm id pM obM BPM A L. The identity of the insert within plasmid pM obM BPG EM  

was confirmed by sequence analysis.

Figure 5.20 Primers for amplification of the 3’ terminus of the T. brucei MOB1 

gene

Forward primer (p r5-31)

5’g g a t c c t c g t c a g g t c c a c g c t a t g a g 3’

Reverse primer (pr5-32)

5 A A G C TTG C G C A C A C A A A TTG T TTA C G G 3

Primer sequences for amplification of  the 3 ’ terminal 408 bp of the T. brucei MOB1-1 gene were based 

upon sequence analysis of  the open reading frame of  the gene (Section 5.2.1). Regions in red denote 

restriction enzyme sites [Bam HI in forward and Hind III in reverse], region in blue denotes the stop 

codon, regions in green denote bases corresponding to the M O B l- l  open reading frame and the region in 

black denotes the MOB1 3 ’ flank.

M BP-M OB1 fusion protein was prepared as described in Section 2.8.6. A trial factor 

Xa cleavage was carried out in order to determine that the M BP-M OB1 fusion protein 

would indeed cleave, and that the factor Xa did not cleave at non-canonical sites within 

the MOB1 protein fragment. Trial cleavage was as suggested in the pM A L protein 

fusion and purification system instruction manual (NEB). Briefly, 0.2 pig factor Xa was
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added to 20 pg affinity purified fusion protein in a final volume of 21 pi. 5 pi aliquots 

were placed in each of 4 tubes, which were then incubated at room temperature for 2, 4, 

8 or 24 hours. At the indicated time points 5 pi 2 x Laemmli sample buffer was added 

to the appropriate tube, which was then transferred to 4°C for temporary storage. Once 

all time points had been collected samples were subjected to glycine SDS-PAGE, 

together with an un-cleaved control and appropriate standards. The gel was coomassie 

stained and is displayed in Figure 5.21.

Cleavage of the MBP-MOB1 fusion protein by factor Xa was successful under the 

conditions employed, converting the 60 kDa fusion protein into its respective 42 kDa 

MBP and 17 kDa MOB1 fragments as predicted. The level of cleavage observed within 

24 hours, while not complete, was deemed acceptable for preparation of protein on a 

larger scale. Consequently, 100 pg factor Xa was added to 10 mg affinity purified 

MBP-MOB 1 fusion in a final volume of 5 ml and incubated at room temperature for 24 

hours. Glycine SDS-PAGE and coomassie staining of a 5 pi aliquot determined the 

percentage cleavage at this time to be comparable to that demonstrated in Figure 5.21 

(lane 5). A fine precipitate was observed subsequent to cleavage. In order to determine 

the nature of this material 100 pi cleaved protein was centrifuged at 14000 rpm for 1 

hour at 4°C in a micro-centrifuge. Supernatant was collected and stored on ice, and the 

pellet was washed twice in 100 pi 20 mM Tris-HCl (pH 8.0), before being resuspended 

in 50 pi of the same buffer. Supernatant, washes and pellet material were subjected to 

tricene SDS-PAGE and coomassie staining. Results can be seen in Figure 5.22.
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Figure 5.21 Trial cleavage of MBP-fusion protein with factor Xa

MBP-fusion protein at 1 mg/ml was cleaved by addition of 1% w/w factor Xa. 

Following incubation at room temperature samples were collected at 2 ,4 , 8 and 

24 hours. Samples were subjected to glycine SDS-PAGE, together with an un

cleaved control and appropriate standards, and coomassie stained. Lanes are 

(1) uncleaved, (2) 2 hours, (3) 4 hours, (4) 8 hours and (5) 24 hours incubation. 

Numbers in the left margin denote the size of protein standards in kDa.

Figure 5.22 Investigation of precipitate produced during MBP- 

fusion protein cleavage

Following cleavage of MBP-fusion protein with factor Xa, precipitate from 100 

pi sample was pelleted, washed twice and resuspended in 50 pi 20 mM Tris-HCl 

(pH 8.0). Lanes are (1) soluble material, (2) wash 1, (3) wash 2 and (4) insoluble 

material. Numbers in the left margin denote the size of protein standards in kDa.



Figure 5,21

Fusion

MOB 1-1
fragment

Figure 5.22
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M OB 1-1 
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Following cleavage from its MBP partner the MOB 1-1 fragment, together with several 

contaminant proteins, became insoluble. As affinity purification following cleavage 

was not feasible without first making the MOB1-1 fragment soluble, it was decided that 

gel purification of protein was a more practical option. Consequently, 600 p,g cleaved 

protein in a final volume of 300 pi was subjected to tricine SDS-PAGE together with 

appropriate pre-stained standards. Protein was detected by immersion of the gel in 100 

ml 4 M sodium acetate for 30 minutes. This treatment caused SDS within the gel to 

precipitate, highlighting protein as clear bands on a cloudy background. The 

appropriate region was excised from the gel and washed in 3 changes of 100 ml dFkO 

for 15 minutes each. The gel slice was frozen and ground to a fine powder under liquid 

nitrogen using a mortar and pestle. Powdered acrylamide/protein was collected and the 

volume made to 1 ml with dE^O. This suspension was passaged through a 25-gauge 

needle until it flowed freely, then divided into 4 x 250 pi aliquots and frozen. 

Acrylamide/protein was sent to the Scottish Antibody Production Unit (Law Hospital, 

Carluke, Lanarkshire) for inoculation into rabbits. The above procedure was repeated a 

second time in order to produce sufficient protein to inoculate 2 rabbits 4 times each (8 

x 250 pi).

Rabbits R753 and R754 were injected with acrylamide/protein at 28 day intervals 

following the initial immunisation, and were bled on the seventh day following each 

injection. Serum resulting from bleeds was analysed by Western immunoblot analysis 

for its ability to detect both MOB1-1 fusion protein and native MOB1-1 of T. brucei. 

Serum resulting from the first bleed of each rabbit (35 days after initial immunisation) 

was able to detect the MOB 1-1 fusion protein, but did not detect a band of the size 

predicted for T. brucei MOB 1-1 in trypanosome lysates. Furthermore, extremely high
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background signal was encountered when using the blotting and immunodetection 

protocol detailed in Section 2.17.3.

Serum resulting from the second bleed of R754 contained evidence of a significant 

amount of haemolysis and was not analysed further. Serum from the second bleed of 

rabbit R753 was subjected to immunoblot analysis based on the method outlined in 

Section 2.17.3 with modifications. Hybond-C Super membrane was substituted with 

PolyScreen® PVDF Transfer Membrane (NEN™ Life Science Products, Inc., Boston, 

USA). TBST was substituted with PBST. The remainder of the protocol was as 

previously described. A glycine SDS-PAGE gel was run with procyclic T. brucei 

extracts, and factor Xa-cleaved MBP-MOB 1 fusion protein. Results are in Figure 5.23.

When the factor Xa-cleaved MBP-MOB 1 fusion protein was subjected to immunoblot 

analysis with serum from R753 as primary antibody (Figure 5.23, lane 3), protein was 

detected at both 17 kDa and 120 kDa. The protein at 17 kDa coincided with the 

predicted position of the recombinant MOB1 fragment. The identity of the band of 

approximately 120 kDa is unknown. The 17 kDa and 120 kDa proteins were not 

detected following pre-incubation of the primary antibody with fusion protein (lane 4), 

demonstrating that the reaction was specific.

Immunoblot analysis of procyclic T. brucei cell extracts with serum from R753 resulted 

in detection of major proteins at 20 kDa and 80 kDa, and minor proteins at 40 kDa and 

50 kDa (lane 1). Only the 20 kDa protein was specifically blocked by pre-incubation 

with the fusion protein (lane 2). As the predicted size of the T. brucei MOB 1-1 is 24.6
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Figure 5.23 Western immunoblot analysis of polyclonal antiserum 

against both trypanosome lysate and MBP-MOB1 fusion protein
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kDa, the protein estimated at 20 kDa that was present in lane 1 but not in lane 2 is likely 

to represent this protein.

Due to the presence of antibodies in the serum of R753 that cross-reacted with T. brucei 

proteins other than MOB 1-1, it was considered that affinity purification of the a- 

MOB1-1 antibody should be carried out prior to subsequent immunofluorescence 

microscopy. Due to time constraints this work could not be carried out within the 

current study and is being persued by colleagues.
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5.3 Discussion

MOB1 is an essential gene of the budding yeast S. cerevisiae, participating in 

completion of mitosis and implicated in maintenance of ploidy (Luca and Winey, 1998). 

It was first identified in 1998 as a protein that interacted with MPS-1, a dual specificity 

protein kinase involved in both spindle pole body duplication and mitotic checkpoint 

(Luca and Winey, 1998). Subsequent work demonstrated that MOB1 also interacts with 

DBF2, a protein kinase with a role in late mitosis (Komamitsky et al., 1998).

Both Southern blot and sequence analysis revealed that the T. brucei genome contains 2 

copies of the MOB1 gene, which for the purposes of this study were referred to as 

MOB1-1 and MOB1-2. These 2 genes are likely to have arisen as the result of a 

duplicative event involving a region of the genome containing at least one other putative 

gene, represented as a conserved region approximately 200-300 bp 5' of each MOB1. 

The immediate flanks of the MOB1 genes are not conserved, indicating that duplication 

was not a recent event. Furthermore, MOB 1-2 possesses at least 17 (and possibly as 

many as 82) residues in its N-terminus that are not encoded by the MOB 1-1 gene. The 

implications of this finding are currently not clear. Sequence analysis of the MOB1-1 

gene was carried out completely on both strands. However, due to time constraints the 

ORF of the MOB 1-2 gene was only sequenced partially in both directions, with the 5' 

and 3' termini having only single read sequence. Two ambiguous bases in the 3' region 

resulted in the translation of 2 ambiguous residues in the C-terminus of MOB 1-2. Both 

genes shared a common stop codon. The identity of the start codon for MOB 1-2 is 

currently unknown, with three candidates. It is suggested that the most logical means of 

determining which of these is correct would be to identify the splice acceptor site of
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M0B1-2 by means of PCR using a MOB1-2 specific primer in conjunction with the 

spliced leader primer (detailed in Appendix II) and cDNA template. Cloning and 

sequencing of the PCR product would not only provide data clarifying the identity of 

the start codon, but would also provide valuable sequence confirmation for this region.

Southern blot analysis of genomic DNA revealed that MOB1-1 and MOB1-2 were 

situated within 12 kb of each other. This result was substantiated by identification of 

both genes within a single LambdaGEM-12 clone. Sequence analysis revealed a single 

Bel I recognition site in the 3' flank of MOB 1-2, indicating that MOB1-1 was located in 

a region 5' of MOB 1-2. As polycistronic transcription units are a common feature of 

kinetoplastid genome organisation (Graham, 1995; Myler et al., 1999), it is suspected 

that the MOB1-1 and MOB1-2 genes are arranged in a head-to-tail orientation, probably 

as part of a single polycistronic unit. However, this is currently speculation. In order to 

determine the relative orientation and spacing of the MOB1 genes further restriction 

mapping of the X clone would be required. Additional sequence analysis of the MOB1 

locus would also be of value prior to any knockout attempt, as related genes in tandem 

array have previously been reported as being interspersed with unrelated genes in 

Leishmania mexicana (Wiese, 1998).

Northern blot analysis of procyclic RNA identified MOB1 transcripts of approximately 

1.6 and 2 kb. A high level on sequence identity at the nucleotide level between MOB1- 

1 and MOB 1-2 suggests that the MOB1-1 probe employed should detect both genes. 

Northern blotting with a 32P-labelled probe derived from the 5' sequence unique to 

MOB 1-2 could be used to determine the identity of each transcript. It would also be of 

interest to determine whether the production of stable MOB1 transcripts is related to T.



brucei lifecycle by investigating expression in both long slender and short stumpy 

bloodstream-form cells.

Analysis of MOB 1 peptide data from diverse organisms revealed a putative casein 

kinase II (CK2) phosphorylation site conserved in all species examined, yet absent from 

the Saccharomyces cerevisiae MOB2. Both MOB 1-1 and MOB 1-2 possess this motif. 

CK2 is a ubiquitous enzyme that phosphorylates the serine/threonine residue of the 

sequence S/T-x-x-D/E (Pinna, 1990). CK2 is a heterotetramer, composed of two 

catalytic a  and two regulatory P subunits, that phosphorylates proteins involved in 

signal transduction, gene expression, protein synthesis, metabolism and cell cycle 

progression (Pinna and Meggio, 1997; Bhatia et al., 1998). The degenerate nature of the 

CK2 recognition motif means that it is likely to be detected in a multitude of proteins, 

but may not be functional in all. While it is known that the S. cerevisiae MOB1 is a 

phosphoprotein in vivo, and that it is a substrate for MPS1 in vitro (Luca and Winey, 

1998), the kinase(s) responsible for phosphorylation of MOB 1 in vivo is currently 

unknown. Consequently, the significance of a conserved motif in MOB1 putatively 

recognised by CK2 is currently unknown.

In order to characterise the T. brucei MOB 1-1, sequence encoding a Ty-1 epitope tag 

(Bastin et al., 1996) was inserted into the 3' terminus of the MOB1-1 ORF and the 

recombinant protein overexpressed under inducible control in procyclic T, brucei.

Three clonal populations were analysed by Western blotting, and were determined to 

produce comparable levels of a 26 kDa protein, the size predicted for the Ty-tagged 

MOB 1-1. Stability of the TyMOBl-1 protein in vivo was investigated by 

overexpression followed by removal of tetracycline. Western blotting of samples
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collected at subsequent time-points revealed the TyMOBl-1 to be a stable protein in 

both clones investigated (as was the case for TyQM), displaying little or no reduction 

for the first 12 hours post induction, and remaining detectable for at least 24 hours. As 

discussed in the previous chapter such stability is not a direct consequence of the Ty- 

tag, as TyCyc2 is turned over relatively rapidly in procyclic T. brucei under the same 

conditions employed in the current study (J. Van Hellemond, personal communication). 

The stability of the mRNA transcript encoding TyMOBl-1 is currently unknown, and 

could undoubtedly influence apparent stability of the protein. Consequently, Northern 

blot analysis of induced cells over the time course could be used to monitor both MOB1 

and TyMOBl-1 transcript levels throughout this experiment. This approach would also 

be valid for the study carried out on TyQM. The Western blot analysis carried out in 

the present study of TyMOBl-lwas not quantitative. The pulse-chase approach 

described in the previous chapter could also be implemented to quantify stability of 

TyMOBl-1.

In order to determine whether TyMOBl-1 demonstrated subcellular 

compartmentalisation, indirect immunofluorescence microscopy was conducted on 

fixed procyclic cells of tTyMob clone 4. Overexpressed TyMOBl-1 had a homogenous 

distribution, with no organellar localisation detected. Subcellular fractionation analysis 

of the TyMOBl-1 suggested that this protein is not part of a large protein complex in 

vivo. The subcellular distribution of MOB1 in yeast has not yet been determined. 

However, due to its association with completion of mitosis (Luca and Winey, 1998), 

coupled with physical interaction with subunits of the CCR4 transcription regulatory 

complex (Komamitsky et al, 1998), the predicted outcome of the current study had been 

the detection of nuclear localisation. While this was clearly not the case it is recognised
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that the results of any epitope tag study must be interpreted with caution due to the 

potential for the tag to interfere with protein function/targeting. In order to demonstrate 

conservation of function of tagged proteins in vivo inducible expression in the null 

mutant may be attempted.

In order to address the question of localisation of native protein within procyclic T. 

brucei it was necessary to generate antibody to the MOB1 protein. At the time that this 

work was initiated data pertaining to the 5' terminus of the MOB 1-1 gene was not 

available, and no sequence data was available for MOB 1-2. Consequently, a fusion 

protein was produced consisting of the C-terminus of MOB 1-1 and maltose-binding 

protein. The choice of MBP for this fusion was due to a combination of factors such as 

its superior ability to promote the solubility of polypeptides to which it is fused (Kapust 

and Waugh, 1999), yield, ease of purification with amylose resin and cleavage with 

Factor Xa. Yield of fusion protein by this system was indeed high, and the vast 

majority proved soluble. One problem encountered during the current work was the 

poor level of purity of fusion protein that could be achieved by passing soluble bacterial 

extract through an amylose column. High levels of contaminating protein were 

encountered on all occasions, despite alteration of flow rates during loading and 

excessive washing of bound fusion. Cleavage of the MOB1-MBP fusion was 

successful, but the resultant MOB1 polypeptide was insoluble, which made it difficult 

to purify further. Consequently, cleaved protein was electrophoresed on an SDS-PAGE 

gel and protein/acrylamide used to inoculate rabbits.

Serum from the second bleed of rabbit R753 identified a T. brucei protein of 20 kDa, 

approximating the predicted size of MOB 1-1. The specificity of this interaction was
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confirmed by competitive binding of serum with MBP-MOB1 fusion protein prior to 

application to Western blots. It is recognised that this approach did not rule out cross

reaction between a T. brucei protein and an antibody raised to MBP. Other T. brucei 

proteins detected by the serum from R753 demonstrated no such inhibition, indicating 

that they represented non-specific cross-reaction with antibodies innate to the rabbit. 

Due to the high level of amino acid identity between the region of MOB 1-1 used in 

production of the fusion protein and the comparable region of MOB 1-2, it had been 

predicted that a-MOBl-1 antiserum would detect MOB 1-2. The predicted molecular 

weight of MOB 1-2 is 26.9, 31.3 or 34.3 kDa, depending on the identity of the start 

codon, but specific hybridisation to a protein of this size was not detected by Western 

blotting with serum from rabbit R753. This result indicated either that translation of 

MOB 1-2 did not occur or that it was not detected by antibody under the hybridisation 

conditions employed. It should be reiterated that this was the second bleed from R753, 

terminal exsanguination having been carried out subsequent to a fourth 

protein/acrylamide inoculation. In theory the titre of antibody specific to MOB 1-1 (and 

MOB 1-2) should be higher within this terminal sample than was the case in previous 

bleeds. MOB 1-2 may therefore be detected in future Western blots. Due to the level of 

cross-reaction observed between serum from the second bleed of R753 and T. brucei 

proteins, affinity purification is recommended prior to use in immunofluorescence 

microscopy.

Endogenous expression of antisense RNA has been successfully utilised in the study of 

gene function in a variety of systems, including plants (Bhalla et al., 1999), mammals 

(Barden et al., 1997) and the protozoan parasites Toxoplasma gondii (Nakaar et al., 

1997) and Entamoeba spp. (Alon et al., 1997; Ankri et al., 1999). In order to gain



insight into the function oiMOBl-1  and/or MOB1-2, an inducible antisense RNA 

approach was adopted. At the time that this study was initiated the 5' terminus of the 

MOB 1-1 gene had not been sequenced, as was the case for the entire MOB 1-2 gene. 

Consequently, bases 32-544 of the MOB 1-1 ORF were amplified by PCR and cloned 

into the inducible expression vector pHD675 in an antisense orientation relative to the 

promoter. The nucleotide identity between this region of MOB 1-1 and the 

corresponding region of MOB1-2 is 98%, there being 10 base substitutions of which 2 

are ambiguous bases in MOB 1-2. Antisense inhibition of MOB 1-1 expression incurred 

by induction of construct pAntiMobHD675 was as therefore also likely to affect MOB1- 

2. Following induction of the construct in two independent clonal populations, 

alterations in phenotype with relation to uninduced controls were sought using a 

combination of phase contrast microscopy on both living and fixed cells, and 

fluorescence microscopy on fixed cells stained with DAPI. Since the MOB1 of 

Saccharomyces cerevisiae is associated with completion of mitosis and maintenance of 

ploidy, cell cycle related deficits such as arrest, altered morphology or an increase in 

ploidy might have been observed. Unfortunately, no such defects were detected. This 

led to three hypotheses: that the phenotypic changes occurring in trypanosomes were 

more subtle than could be detected under this regimen, that MOB1 was not important 

for cell cycle progression, or that levels of MOB1 remained unchanged during this 

experiment. In order to address the first of these hypotheses the effect of induction 

upon growth rate of cells was observed over time, revealing that induced cells 

containing the pAntiMobHD675 construct grew at a slower rate than non-induced 

counterparts. While the phenotype observed was not spectacular, it was proven to be 

statistically significant. This result suggested that expression of the T. brucei MOB 1-1
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and/or MOB 1-2 was necessary for normal cell cycle progression, but did not give any 

indication as to what role may be played by these proteins.

There are several possible reasons why the reduction in growth rate observed during this 

study was so small. Firstly, it is possible that only a small quantity of MOB1-1 

antisense RNA was actually transcribed upon induction, resulting in a limited antisense 

effect. It has been noted both in this study and in previous work that levels of inducible 

expression using pHD675 vary between both clonal populations (Section 4.2.4; J. Van 

Hellemond, personal communication) and genes of interest (QM vs. MOB1). Secondly, 

that antisense MOB1-1 RNA was transcribed at a relatively high rate, but that the 

transcript was unstable, being degraded by the cell relatively rapidly. Northern blot 

analysis of tAntiMob clones could be used to investigate both the second and third 

hypotheses. A third possibility is that either the antisense MOB1-1 RNA or MOB1- 

11MOB 1-2 mRNAs possess secondary structure that prevents efficient duplex formation 

between the partners, thus reducing any phenotype that would result from a reduction in 

protein expression. Fourthly, it is possible is that the antisense MOB1-1 concentrates in 

a different subcellular compartment than either MOB 1-1 or MOB 1-2 mRNAs. This 

would reduce the likelihood of physical interaction between the prospective partners 

and thus of an antisense effect. Such a scenario could be investigated by in situ 

hybridisation of induced cells with both sense and antisense MOB 1-1 probes. Finally, it 

is possible that that the transcription of antisense RNA was successful, and that 

expression of either or both of the MOB1 genes was successfully inhibited. The lack of 

a major phenotypic change would therefore indicate that MOB1 was not an essential 

gene in T. brucei, its function(s) being covered by other genes (such as a MOB2).

Based on the importance of MOB1 in Saccharomyces cerevisiae and its degree of



conservation between species this last possibility is currently thought to be the least 

likely. Observation of the level of native transcripts by Northern blot analysis, coupled 

with Western blotting for native protein, could be used to address this possibility.

Based on the fact that the reduction in growth rate following expression of antisense 

MOB1-1 was slight, further studies on tAntiMob clones were not carried out. Rather, a 

switch was made from an anti sense RNA to an RNA interference (RNAi) approach to 

disruption of MOB1 expression. RNAi has been demonstrated to be more a more potent 

inhibitor of gene function than antisense RNA in both the nematode C. elegans (Fire et 

al., 1998) and plants (Waterhouse et al., 1998). Furthermore, in vivo expression of gene 

specific RNAi in T. brucei was able to halt expression of a-tubulin, causing a 

cytokinesis block in cells (Ngo et al., 1998). While the mechanism by which RNAi 

induces gene silencing remains uncertain, it appears to be post-transcriptional 

(Montgomery et al, 1998) and to involve specific mRNA degradation (Ngo et al., 1998; 

Waterhouse et a l, 1998).

The MOB1 RNAi construct produced in the inducible vector pHD675 consisted of two 

copies of the 5' terminus of MOB1-1 (223 bp each) in a head-to-head configuration, 

separated by 397 bases from the centre of the MOB 1-1 ORF in an antisense orientation 

with relation to the promoter. Two independent trypanosome clones were obtained 

following selection, but induction of these failed to result in any change in phenotype, 

as determined by phase contrast microscopy on both cultured and fixed cells, and 

fluorescence microscopy on fixed cells stained with DAPI. Northern blot analysis of 

both experimental cells and controls revealed that degradation of MOB1 mRNA had not 

occurred in this system. Furthermore, no additional product representing the double
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stranded RNA was detected by Northern blotting. It is thus suggested that expression of 

the construct failed on this occasion, possibly as a result of loss of all or part of its 

MOB 1-specific portion during the antibiotic selection process. This possibility could be 

investigated by Southern blotting of restriction digested genomic DNA.

In summary, the current work has demonstrated the presence of two MOB1 genes in the 

T. brucei genome that are hypothesised to be the result of a duplicative event. Evidence 

derived from overexpression of a Ty-1-tagged MOB 1-1 suggested it is a soluble protein 

with a cytoplasmic distribution. No evidence indicating a function was gained, although 

a phenotype associated with cell cycle progression was detected through inducible 

expression of antisense RNA. Polyclonal antiserum was raised to a recombinant 

MOB 1-1 protein, and specifically detected a single T. brucei protein following Western 

blotting. Once purified, this antibody will facilitate future experimentation on the 

MOB1 protein and its role in the trypanosome.
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Chapter 6

Discussion



6.1 Validity of the use of RADES-PCR

The aim of the current project was to identify genes involved in the ConA-induced cell 

death of T. brucei. To this end a differential display PCR technique was employed, 

aimed at identifying transcripts displaying altered levels of expression throughout the 

time-course of death. This approach was chosen for two main reasons, namely that:

1. Differential display reverse transcription-PCR (including RADES) is probably the 

least involved method currently available that allows comparison of expressed 

transcripts from multiple samples. Furthermore, this technique has less of a bias 

towards high copy number transcripts than is the case for subtractive hybridisation, 

and does not have a prerequisite for complete sequence information of the 

organisms genome, as is required for serial analysis of gene expression (SAGE).

2. Due to the utilisation of random primers for DDRT-PCR, many novel transcripts 

may be identified from organisms whose genomes are incompletely characterised. 

Of the 29 transcripts identified during the current study, 16 had not been previously 

identified in T. brucei. However, with the progress currently being made by the T.

brucei genome project the probability of detecting novel transcripts is rapidly

diminishing, raising the likelihood that such "gene fishing" exercises will become 

obsolete in the not to distant future.

There also are a number of arguments against the use of DDRT-PCR for the study of 

trypanosome cell death, which run as follows:

1. DDRT-PCR is renowned for being prone to artefacts, requiring confirmation of each

result either by Northern blot or semi-quantitative RT-PCR. However, in T. brucei

cells that are dying there is no marker that is known to be constitutively expressed 

that may be used as a control for such experiments, rendering any results open to 

interpretation. This issue has yet to be resolved.
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2. A common obstacle faced by researchers investigating apoptosis in metazoan cells 

is the asynchronous nature of the cultures with which they work. As many of the 

events occurring during the apoptotic process are transient, detection and 

quantitation of them is often problematic (Willingham, 1999). As no satisfactory 

method has been described to synchronise trypanosome cultures (Mutomba and 

Wang, 1996) no attempt was made to do so in the current study. Consequently, 

transient changes in gene expression were unlikely to be detected, potentially 

skewing the data set towards genes displaying alterations over a prolonged period 

and of greater magnitude.

3. The premise for the current work was that death of T. brucei induced by Con A was 

programmed, possessing apoptotic-like biochemical and morphological features 

(Welbum et al., 1996). Apoptotic cell death in many metazoan cells relies heavily 

on a proteolytic cascade of cellular constituents, rather than on de novo gene 

expression. This is not to say that de novo gene expression does not play a role in 

apoptotic cells, but rather that that role may be relatively minor and unlikely to 

involve many of the key components. Consequently, any attempt to investigate 

cellular processes involved in such a system should ideally involve proteomics, 

rather than the detection of differentially expressed mRNA transcripts. Such an 

approach is currently not feasible for any but the most specialised laboratories, but is 

likely to become more accessible for future studies.

4. Successful DDRT-PCR requires high quality template material in order to minimise 

the production of both artefactual bands and background smear. If an asynchronous 

cell population is induced to die there will come a transitional period towards the 

end of the process whereby some of the cells are living while others have died. The 

mRNA of dead cells will be partially degraded, resulting in reduced quality of
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cDNA produced from such cultures. Differential display PCR carried out on these 

samples will theoretically produce banding patterns that are less reproducible. Such 

a phenomenon was noted on occasion (48 and 72 hours post-treatment) in the 

current study.

Taken as a whole these arguments point to the fact that the application of DDRT-PCR 

to ConA-treated T. brucei, with the aim of gaining insight into the cellular processes 

occurring during death, was not completely satisfactory. However, having considered 

the alternative approaches that could have been utilised, it is concluded that at the time 

this project was initiated differential display PCR was the most appropriate techinque to 

adopt. It is clear that further experimentation in this field should not be initiated until a 

suitable constitutively expressed marker for Northern blots is established that correlates 

with the DDRT-PCR data during death, a-tubulin is one possible candidate, although 

there is no reason to assume that this will be any more reliable than the p-tubulin 

employed in the current study. The use of actin has also been suggested (S. Graham, 

personal communication), and has previously been utilised as a control during a 

differential display screen of apoptotic cells (Chen et al., 1998).

6.2 The genes identified

The transcripts identified during the course of this study were drawn from a variety of 

cellular processes including protein synthesis (ribosomal proteins and peptide chain 

release factor), energy metabolism (arginine kinase and cytochrome cl), cell signalling 

(receptor for activated protein kinase C), cell cycle (MOB1) and intracellular transport 

(mitochondrial transporter, pteridine transporter). 14 of the transcripts identified are
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currently classified as "unknown", either because they did not match any database 

entries, or because the database entries that they matched had unknown function.

6.3 Characterisation of QM

At the time of its isolation in the current study, available evidence suggested that QM 

was likely to be a transcription factor, with putative links to tumour suppression. Based 

on the obvious link between tumour suppression and programmed cell death (Kaelin, 

1999) it was decided that QM would make a prime candidate for further 

characterisation. While the current work was in progress, several groups provided 

evidence that QM was unlikely to act as a transcription factor due to its nuclear 

exclusion (Tron et al., 1995; Mills et al., 1999), and was in fact associated peripherally 

with the 60S ribosomal subunit (Dick et al., 1997). Analysis of the T. brucei QM gene 

and derived protein sequence revealed approximately 60% amino acid identity with QM 

homologues from highly diverged eukaryotes. A conserved putative protein kinase C 

phosphorylation site was identified. Indirect immunofluorescence microscopy provided 

evidence of a ribosomal subcellular location for the epitope-tagged QM, and distinct 

nuclear exclusion of the protein was noted. A ribosomal association was substantiated 

by the insoluble nature of the TyQM protein from trypanosome lysate under Triton X- 

100 fractionation conditions. Taken together these results strongly suggest that the T. 

brucei QM is likely to be a functional homologue of the QM proteins of other 

eukaryotes.



6.4 Characterisation of MOB1

When the RADES product encoding the MOB1 cDNA fragment was first isolated it had 

homology to sequences from several organisms lodged on various internet databases, 

but the function of these proteins was at that time unknown. In 1998 the yeast MOB1 

was identified as a gene whose product interacted with both MPS1 and DBF2, protein 

kinases associated with the yeast cell cycle (Luca and Winey, 1998; Komamitsky et al., 

1998). Characterisation of MOB1 in Saccharomyces cerevisiae revealed a role for this 

protein in completion of mitosis and maintenance of ploidy (Luca and Winey, 1998). 

During the current study extensive Southern blot and sequence analysis was carried out, 

revealing the presence of two non-identical MOB1 genes in T. brucei. Identity between 

MOB 1 amino acid sequences from diverse eukaryotes ranged from approximately 30- 

50% when comparing the entire deduced protein sequences, and between 40-60% when 

comparing only the central consensus region. A conserved putative casein kinase II 

phosphorylation site was identified in all MOB1 sequences analysed.

In order to gain insight into gene function, disruption was attempted by the inducible 

expression of either antisense RNA or RNAi. Based on the essential nature of the S. 

cerevisiae gene and the mitotic arrest associated with its temperature sensitive alleles at 

the restrictive temperature (Luca and Winey, 1998), it was hypothesised that disruption 

of T. brucei MOB1 expression may result in arrest of the cell cycle. The antisense 

approach resulted in a reduction in cellular proliferation, indicating a role for MOB1 in 

progression of the cell cycle. While this result was shown to be statistically significant, 

the phenotype was relatively minor, indicating either that the T. brucei MOB1 is not an 

essential gene, or that expression of antisense MOB1 was less successful than had been 

hoped with respect to disruption of MOB 1 expression. Analysis of MOB 1 levels in



induced/control cells by Western blot analysis using serum from R753 could be used to 

evaluate these possibilities. Inducible overexpression of MOB1-specific RNAi failed to 

produce a detectable phenotype, and Northern blot analysis revealed that MOB1 

transcript levels did not vary between induced, non-induced or untransfected cells. 

Furthermore, the RNAi transcript was not detected by Northern blot, leading to the 

conclusion that either the construct was not expressed, or that expression was at a level 

too low to be detected by analysis of total RNA. While it is known that the portion of 

construct pRNAiMobHD675 encoding the hygromycin resistance gene became stably 

integrated within the clones examined (i.e. they were resistant to hygromycin B), 

Southern blot analysis would be necessary in order to determine if this was the case for 

the MOBl-KNAi encoding portion. A recombination event resulting in the loss of this 

region would explain the observed results.

Indirect immunofluorescence microscopy to an epitope tagged MOB 1-1 was employed 

with the aim of detecting subcellular localisation of the protein. Distribution throughout 

the cell was shown to be homogenous, a result negating the possibility of commenting 

on potential function at this stage. The subcellular location of MOB 1 in yeast has yet to 

be established, but based on its involvement in completion of mitosis and maintenance 

of ploidy (Luca and Winey, 1998), coupled with two hybrid interactions with the 

mitotic kinases MPS1 (Luca and Winey, 1998) and DBF2 (Komamitsky et al., 1998), 

and with elements of the CCR4 transcription regulatory complex (Komamitsky et al., 

1998), a nuclear localisation could be hypothesised. Such localisation was not detected 

in the current study, possibly resulting from the fact that the overexpressed MOB 1-1 

protein bore a C-terminal epitope tag which could potentially interfere with targeting to



the nucleus. Antiserum from rabbit R753, raised to recombinant MOB 1-1 polypeptide, 

could be used to investigate localisation of native MOB 1-1/MOB 1-2 protein.

6.5 Future experiments

The subcellular fractionation of TyQM carried out in Section 4.2.4 indicated only an 

interaction with a large protein complex which was assumed to be the ribosome. 

Consequently, ribosomes could be purified using a sucrose gradient, and the fractions 

analysed by Western blot as described by Dick et al. (1997) using the BB2 a-Ty 

antibody to detect tagged QM. A literature search failed to find reference to antibodies 

specific to known T. brucei ribosomal proteins that could be used as markers for this 

experiment. Antibodies to ribosomal proteins from other eukaryotes, such as the 

Saccharomyces cerevisiae 60S ribosomal protein L3 (Dick et al., 1997) or the human 

QM (Loftus et al., 1997) have been published and could be utilised to co-localise signal 

from TyQM.

MOB1 is an essential gene in S. cerevisiae, but its status in T. brucei is currently 

unknown. It is therefore suggested that complete sequencing of the trypanosome MOB1 

locus be carried out, then MOB1-1 and MOB 1-2 knocked out both individually and in 

combination using homologous recombination and selectable markers to establish 

whether the genes are essential. Successful replacement of the genes can be confirmed 

by Southern blot analysis, and any phenotypic alterations in cell populations can be 

analysed.

During the current study a recombinant MOB 1-1 polypeptide was used to raise 

antiserum. This antiserum specifically detected a T. brucei protein approximating the



size of MOB 1-1 on a Western blot. As non-specific cross-reaction to T. brucei proteins 

was also detected, affinity purification of this antiserum using immobilised MBP- 

MOB1 should be carried out prior to use in downstream applications. As mentioned 

previously, there is a possibility that the Ty-1 epitope tag of TyMOBl-1 interfered with 

subcellular localisation of this protein. One potential use of an a-MOBl-1 antibody 

would be determination of the subcellular localisation of native MOB 1-1 by 

immunofluorescence microscopy. Another application for this antibody would be 

immunoprecipitation of native MOB 1-1, together with any proteins associated with it in 

vivo. Micro-sequencing could then be used to identify interacting partners.
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Appendix I

Sequence data derived from RADES-PCR products

101(1)T7

CGAGCACAATGCAGAAGTGATGTCAGAGTCACCAACATCCGTAATGGAAAGTACGCAAGCA

CGGAAATGCCTCCCGCATGCCGTTCCAAGGTCAAGGTTGTTGCCGCTGTAGCGGTGAATTGG

CGTCTTGCTTAAAGTGCAGTAGTACTCAATCTCCGCCTTGCGGATCGGCGGGCAGTTAGCGG

AAATGACNACNAGTTTACTGCGGCCCTGACNAAGTGTCTTGAGTGTCTGCTGCGTCCCGAGA

ACGTATTTGCCGGATTTCATCACCAGTTGGATCTTGGTGTTGATGGTGTCCACCTTCGACTTG

ACC

101(1)SP6

GGTCAAGTCGAAGGTGGACACCATCAACACCAAGATCCAACTGGTGATGAAATCCGGCAAA

T ACGTTCTCGGGACGC AGC AGAC ACTC A AG AC ACTTCGTC AGGGCCGC AGT AAACTCGTCGT

CATTTCCGCTAACTGCCCGCCGATCCGCAAGGCGGAGATTGAGTACTACTGCACTTTAAGCA

AGACGCCAATTCACCGCTACAGCGGCAACAACCTTGACCTTGGAACGGCATGCGGGAGGCA

TTTCCGTGCTTGCGTACTTTCCATTACGGATGTTGGTGACTCTGACATCACTTCTGCATTGTG

CTCG

101 (2)T7

TCGAGCACAATGGGCAGACGTACCGGTCTATTTACAGAGCTGTGGGTGTGATATGGAAGGA

AG AGGG ATTGCGTGCTCTCTTTCGTGG ATGTC ACGTTGCGGT ATTGGGGGCTGTTGT AGCGT

GGGGTGTGT AC ATGTTCGT AT ATC ACGCGCTGTGCG ACCTGT AC ATCCC A AC AAGT A AC AAA

AGAGCGGGGGACGATTTCTTGTTTCGCACTGTTCTTTCCAGTATTGCCAGTTGCAGTTGCGCA

GTCGTGGGAAACCCTATTTGGCTCCTAAAAACTCGGATGCAGATCGAGGAAAATCGCCTCAC

GTGAGGCGGCAGTGGCTGGAGCTTCTATCTTTCGAAACAGCAAAAATTACACGTCATTCTTT

GGTGGGTTAAAGATACGCTATTCAAACTGACGGTGTTTTGTTCNCTGTGGCGTTGGTGTCTCC

CGCACAGGTCCTGCTAGGTTTACCGAACGCACTTAACTTTCCCGCTTATGANGCACTGAAAT

CGTTCTGGTTGCAGCGCAATGACCGAANAACCCCTTTACAGTTATGAAGCGTGCATTTGTTC

AACAGCCAGCAAAACTGCCGTTTCNATTATCNGGTTTCCCCTACACNTTTTTTNANACAAGA

ATGCCAGATCNGANA

101(2)SP6

GGCGACTTCTCTGATCTTGC ATTCTTGTCTT AAC AACGTGT AGGGGAT ACCCGAT AATCGAA

ACCGCAGTTTTGCTTGGCTGTTGAACAAATGCACGCCTCATAACTGTAAAGGGGTTCTCGGT

CACTGCGCTGCAACCAGAACGACTTCAGTGCCTCATAAGCGGGAAAGTTAAGTGCGTTCGGT

AAACCTAGCAGGACCTGTGCGGAGACACCACGCCACAGCGACAAAACACCGTCAGTTTGAA

T AGCGT ATCTT A ACCC ACC A A AG AATG ACGTGT A ATTTTTGCTGTTTCGA A AGAT AG A AGCT

CCAGCCACTGCCGCCTCACGT



508(1)T7

GCTTTTGAAGCGCCTGCGTGAGGCGAANAAGAACGTGAAGGCCGGTGAGAAACCAAAAGCT 

GTGAAGACACACCTCCGTGATGTTGTGATCACGCCTGAGATGGTGGGTTCTGTTGTGGGAAT 

CT AC AATGGTCGCC AGTTT AATGCGGTGGAGATC AAGGGTGAGATGATTGGCCATT ATCTTG 

GAGAGTTCTCGCTGACGTACAAACCTGTCGCTCACGGCCGCCCCGGTTTTGGTGCGACTCAC 

TCTTCTCGTTTCATTCCCCACAAGTAGTGAAGCATCGAGAGTTGAATGGGATGCAATCCATG 

ACTT GTTT GGTCTT GTTTTT ATTTTC ATTTCT GTG AC AGGGGCCG

508(1)SP6

TCGGCCCCTGTCACAGAAAATGAAAATAAAAACAAGACCAAACAAGTCATGGATTGCATCC

CATTCAACTCTCGATGCTTCACTACTTGTGGGGAATGAAACNAGAAGAGTGAGTCGCACCAA

AACCGGGGCGGCCGTGAGCGACAGGTTTGTACGTCAGCGAGAACTCTCCAAGATAATGGCC

AATCATCTCACCCTTGATCTCCACCGCATTAAACTGGCGACCATTGTAGATTCCCACAACAG

AACCCACCATCTCAGGCGTGATCACAACATCACGGAGGTGTGTCTTCACAGCTTTTGGTTTCT

CACCGGCCTTCACGTTCTTCTTCGCCTCACGCAGGCGCTTCAAAAGCAATCCCGCGGCCAT

526(1 )T7

G ATTGCCGTCC’GAGT AGTTGTTTGCCTGTTTTT AA AAGTGCGTTGTTC A AT AGAA AGT ACTTT 

TTCAGGGAGGCAGATCTAACGGAAGATAGTACGCTCGGTCGTGGTCCTgGGGGGCAGACAA 

CGAACAGGCGGAAACAGACGGCTATTGTGAAGCATGTGCCAACTGGAATTACCGTGAAGTT 

CAGCAAGTTTCCCTCTTACTGGCTTAACAGGAGGGCTGCACGGGATGTCCTCAACCTGCAGC 

TGGAGGAACGTATGCTCGGG

527(1 )T7

TGCGCGCAGCGTCACAACTGCTACCGTAACGAGCGCCGCTTCACGGTGTTGGGTAACATGTG

CAAACACGTTGGATGGAAGTACAGCGACGTTGTGGAGAAACTTGAGGCAGCCCGTATTGAA

AAGTCCGGGCGTCACCACAAGAAGATGGAAAAGGTTCGCGTCGCTTGGAAGAATGCCCGCA

AGGAGGCCCTCAAGAAGATGCCCCAGAAGAATGTGGAGGTTCTCAAGAAGTTTGGTCTTGC

GTAATTCACATGGGATTCACTGAGAAGTCTCTGCCGTANAAGCGTGGCTGAGGTGCCGTCTG

AAAGGTCTAATCTCTCTCTAATTTTGTTCATTTACTACTCATTTCTTGTTTCANAAAGNAAAA

AAAAAGAGACGATATTTTTGCTTGTACGGTTGCTTCACCCAGCAACTGTGGCACCATCGTTG

GTTGCGGGTCCTGCACTGATGATTCGCTGCGCGC

527(1 )SP6

GCGCGCAGCGAATCATCAGTGCAGGACCCGCAACCAACGATGGTGCCACAGTTGCTGGGTG 

A AGC AACCGT AC AAGC AA AA AT ATCGTCTCTTTTTTTTTCTTTTTGAAAC AAGAAATGAGT A 

NT AA ATG A AC AAAATT AG AGAG AGATTAGACCTTTC AGACGGC ACCTC AGCC ACGCTTCT AC 

GGCAGANACTTCTCAGTGAATCCCATGTGAATTACGCAAGACCAAACTTCTTGAGAACCTCC 

ACATTCTTCTGGGGCATCTTCTTGAGGGCCTCCTTGCGGGCATTCTTCCAAGCGACGCGAACC 

TTTTCCATCTTCTTGTGGTGACGCCCGGACTTTTCAATACGGGCTGCCTCAAGTTTCTCCACA



ACGTCGCTGTACTTCCATCCAACGTGTTTGCACATGTTACCCAACACCGTGAAGCGGCGCTC 

GTT ACGGT AGC AGTTGTGACGCTGCGCGC A

541(1)T7

CCAACCTCAGCCCCTGCCGGTTACCCCACGAGCCATTAATAACCCGCCCACTTAAACCAACC

GCCGATCCGACCAGCGGAACCCCATTTGAGTCAACAGTAGTTGAGTCAACCCCACGCGCCTT

CCTCATGAGCTGACAAAACTGGTTGTAGAGTAACTCCCCTTCACTTTTCCCCACCAATGCATG

AAACTGCACATTCCGACCCTTCAATTTTCCCCCAAGTGACGCCTGTGGTACGATAAGCACAT

CAGCTGAGGGGAAGCTGCTTAAAGAGTCGGAAGATCGTGGCAGCCGC

541(1)SP6

GCGGCTGCCACGATCTTCCGACTCTTTAAGCAGCTTCCCCTCAGCTGATGTGCTTATCGTACC 

ACAGGCGTCACTTGGGGGAAAATTGAAGGGTCGGAATGTGCAGTTTCATGCATTGGTGGGG 

AAAAGTGAAGGGGAGTTACTCTACAACCAGTTTTGTCAGCTCATGAGGAAGGCGCGTGGGG 

TTGACTCAACTACTGTTGACTCAAATGGGGTTCCGCTGGTCGGATCGGCGGTTGGTTTAAGT 

GGGCGGGTT ATT AATGGCTCGTGGGGT AACCGGC AGGGGCTGAGGTTGG

875(3)T7

CAAAAAGAAAAAAGGAAGTAAAACGTTCCTACTTCCCTACATAAGAAAAAAAAATTGCTCC 

AT AA AC ATCT A AGATGCTTTCTTTTTGCG ACC AGAA AGC ATCGG A A ACGC ATGTGAGGGTTC 

CT ATCGGG ACGCTCGTTTGTGT AGATGCCTCTGC A AT AGTC AGC ATTGTCTC A AAAA AG AGG 

CACAAAAATAAACAGGAGAAAAGGGTAAAAAGAATGGATGAAGGTAAAAGAACGAGATCC

AGCC ATC AT AT A ATTGCTC ACGG A AC A ATC ACT A ATTGC AG AT AG A AGCTCC AGC

875(3)SP6

A ATT AT ATG ATGGCTGTC ATTGGA ACCGC AGG ATTTGCC AGCTTGATTCT ATT ATCCGTGCCG 

CAgAAAAAATATGGATCTCGTTCTTTTACCTTCATCCATTCTTTTTACCCTTTTCTCCTGTTTAT

CGATAGGAACCCTCACATGCGTTTCCGATGCTTTCTGGTCGCAAAAAGAAAGCATCTTAGAT 

GTTT ATGGAGC AATTTTTTTTTCTT ATGTaGGGAAGT AGGAACGTTT

1209(2)T7

GCGGCCGCGAATTCWTTWTTGATTTGGCCCCGCWTCATTGGAWATAAGGTWWGAGTGCCA 

TGGACWGCGTAAACAAGGCACTCGTGAGGACCGAGTTTCCCGTCTCCTGATGTCACWACAG 

T ATCC AT ATCTTCT A A ATC A ACT ATCTG ACCCTCGCC A AGTGGTCCGG AGCCGTGAT A ACWT 

GGACT ATCGATGGCGTAC AACTTTCCATGATGAAGCYW AWCTGTGAT AWACCGGTWGGGT 

TCCTCAAGGAGGAWGTGAGCGCGGTTGCGTTGTTGACGGAGCCGCTC ATACT ACC AACCGT 

CGT ACWTGTGCTTTCCC ACC ATGCGGCTTCACTCCTT ACT A



1209(3)T7

CGGTCGCGAATTCWCTWGTGATTGGTCCCCGCYCCCACTATTTCCTCATGTTGCATMACCCT

TTTGATTTATCTACGGATGGCATTTGATATGTCTTCCTGTTGGTGGAGACGTGTCTGGAGTTC

CGCAGGGGAATGCCGGTGCCGTGGCGTTACTTCTTTGATGGACGCCCACTAATCGTCGTGAT

GCTTTTTTTTGT AC ACTCCT ACGTCCT ATATCGCTGCWCC ATGCWAGGGT ATTCACAGTTGA

GTGGTTCCTCAAGCGACGAAAACWTCGTTCATCCACTGTCTTCGGATGGTWACACTGTGAC

AATCAGCCCGACTTACACGT

1209(4)T7

GCGGTCGCGAATTCACTAGTGATTGGTCCCCGCTGGATCTGATGGACAATTCTTTGAATCAG 

CTTTGGACGGCTTGTCCATGGGTTTTGAYGATCCGAAGCCCATWTCTTTTTTGTTTCGTGTGC 

TCTGGT AGATGTTGTGAGTGCTT ACTC AAT AC AAAAATTGCTGTCGGT AGT ATGGTTTCTTCT 

GGTTGTAAAACTGTYGCCTTTTTTCTGTTCGCTAGTGGTGGTTGC

1209(4)SP6

GGAGGTCTCCCATAGGGTCGACCYGCAGGCGGNCGCGAATTCAGTATTGATTTGGTTCCCGC 

TCGGT ACG ACYTTTTTCTTCGTTGT ACC ATCC AATCTCTAWGAGGACHGATGAGATAATGGA 

CTGAAGCTWCTGCAAGAACWCGCATGTCGGTWCGCTATTTCCATCACACGACWGTTAGCCC 

CGAAATTTTTGTCMTTACTGATGAAACTCATAMGAAWGATGTTAAGCTGYMAGCWGTCTCG 

A ATTCGGC ATGGC AWC ATTTTTCTCCCCTCTT AGCTC ATT ATGCTCCTTTCGCCCTT ACGGTG 

GACWCAAGTCGCATTCACCACCG

1365(1)T7

TCCTCAACCTGCAGCTGGAGGAAACGTATGCTCGGGTCGAAATCGGAGCTCGGCCGTATACA

GGATCTGCGAGAGAGGCGGCGTTTGTGGCGGCTCAGAACAACGTGTAAATTAGTAGAAAGG

GCAAGTAAAATCGCTGCAAAACGTAGTCAGAGACATGAGTTCCATTCTGTACTTACCAACCA

ACAACCCCTTTCCCGCGTGGCGGTTCTGCAGTTGGACCTTGACCAAAGTAAACAGCCGATGT

ACTTGTCTGACCTCTTCGATAGGGAGTGCGGGCAGTGGTGGCCGTTGCTTTCGAAAGCCTTC

GTGAGAATAAATGCTGAATCATCGAATGAAAAAAGCGCTAAAGTACCGGATATATTGTTCT

ACACGTTCCCTTCAGTTCGCAGGCACGGCGAAAGTGTAACTTCCGTCGAGCAGTATGAGATG

AACCAGGTTAAAAAATGTGCCGCCGATGAAGTATGCCTCGCGAATGTGAAACGTGCGTTGA

AGTGCTTTGTTGAACTGTTTGGTCTTCGGTTGTACGAgAAGCCAGCGACAACCGCAAAAAAC

TGT AgTGTTTTGGTGCTCGGACG

1365(1)SP6

CGTCCGAGCACCAAAACACTACAGTTTTTTGCGGTTGTCGCTGGCTTCTCGTACAACCGAAN 

ACCAAACAGTTCAACAAAGCACTTCAACGCACGTTTCACATTCGCGAGGCATACTTCATCGG 

CGGC AC ATTTTTT A ACCTGGTTC ATCTC AT ACTGCTCG ACGGAAGTT AC ACTTTCGCCGTGCC 

TGCGAACTGA AGGGAACGTGT AG A AC AAT AT ATCCGGT ACTTT AGCGCTTTTTTCATTCGAT 

GATTCAGCATTTATTCTCACGAAGGCTTTCGAAAGCAACGGCCACCACTGCCCGCACTCCCT
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ATCGAAGAGGTCAGACAAGTACATCGGCTGTTTACTTTGGTCAAGGTCCAACTGCANAACCG 

CCACGCGGGAAAGGGGTTGTTGGTTGGTAAGTACAGAATGGAACTCATGTCTCTGACTACGT 

TTTGCAGCgATTTT ACTTGCCCTTTCT ACTA ATTT AC ACGTTGTTCTGAGCCGCCAC AAACGCC 

GCCTCTCTCGCAgATCCTGTATACGGCCGAGCTCCGATTTCGACCCGAGCATACGTTtCCTCC 

AGCTGCAgGTTGAGGA

1365(2)T7

CCGAGCCCAACACAACAATACCCAATAAAAATCGAGTTGCGAATCAATATAAAAGGGAAAG 

TGAATGGAAACAGCCTTTTTGTAAGGCGGACAGAAGTTTCAGGCTTCGCCATACCAAAACGA 

AGGTGTATGAAAGGTAAAGCAACCCAGTGGTTCTTCTCCGGTCAGTGATTTAAAAAAAGGTT 

TCACCATCATTAATAACTGCGTGAGTTGGGACGAAAGTGAAGGCTTTGAATCATCCCATCAC 

TTGCTCT ACC A ATTGTC ACTGC A AAA ATTGATT AAT AAAG AG A AAT A AC ATTCAGG ACC AAC 

ATT ACC ATC AACC AAC AAGAATNTTGCACTTCC ATTT ATT AAAA AATG AGC ANAAATC ATCC 

CCTGCTAAAANAAAGGCCCCCACCCCAGGGCGCGCCACACAAATTGTTTACGGAACTCCCA 

CTT

1365(2)SP6

GAGGATCGTAATCCCTATCCACCANATTTCGCGGATAGGGTGAAGGCGTGCTTCAAGCGACT

GTTCCGCGTTTATGCACACGTTTACTATTCCCACTTTGCGAAGATTCGTGAGTTGCAGGAGGA

ATCTCACATCAACACCGCACTGAAACATTTTATGTATTTTGTGTGGGAGTTTGATCTGATTTC

TTGTGAGGAGGTGTCTCCGCTGCGTGAATTGCTGGTAAACTTAATGGGTCAGCGCGCGAAGG

AAAAGTTGGAGGTTCCGTAAACAATTTGTGTGCGCGCCCTTGTGTTGGTGCCTTCTNCTAGC

ATGTTGGTCCTGAATGTTATTCTCTTTNATNAATCCAATTTTTGCANTGAACAATTGGTAAAA 

CCAGTGATGGGATNATTCCAAACCTTCCCTTTCGTCCCCAACCCNCCCAGTTATAATAANGN 

GA A ACCTTTTTTT AATCCCG A ACG A

1365(3)T7

CT AC AGTTTTTTGCGGTTGTCGCTGGCTTCTCGT AC AACCG A AG ACC A A AC AGTTC AAC A A A 

GCACTTCAACGCACGTTCACATTCGCGAGGCATACTTCATCGGCGGCACAWTTTTTTTAACC 

TGGTTCATCTCATACTGCTCGACGGAAGTTACACTTTCGCCGTGCCTGCGAACTGAAGGGAA 

CGTGTAGAACAATAT ATCCGGT ACTTtAGCGCTTTTTTCaTTCGaTGaTTCAGCATTTATTCTCA 

CGAAGGCTTTCGAAAGCAACGGCCACCACTGCCCACACT

1499(1)T7

CACATGGTGTCGATGATTTGATTCACAAGCACCGTTGAGCAGAGACCGAAGAATATGATGCC 

GATTAGGAGGTACGGAACTGATGCCACGCCGTATGCAGCGGTTTTCGCAGCAAACCGCACTT 

TGTTTCGTGTGGGCAACGCCAGAAATCCCCTGTTCCACAGCGTGTGCATTTCCTGAGCTTGAC 

GGGCGATGGCATACACAAGCTGTACCACGGCATAACTGGCTTTTCCCTCTCGTACGAGTGGT 

TGAA AT ATTTCCTTGACTGCTGCCTGGAG A A



1499(1 )T7

AAGCGAGCCGCGTGGAAATGGCTTGTTGCTGTTGATTGCGCAGAGCGAGGCAAGCGTCCAA 

CTCGTGACTAGTCCTGCCATCGAGGAGTACTTTGCAGAGCACTTTCTCCAGGCAGCAGTCAA 

GG A A AT ATTTC AACC ACTCGT ACG AG AGGG AAA AGCC AGTT ATGCCGTGGT AC AGCTTGTGT 

GTGCCATCGCCCGTCAAGCTCAGGAAATGCACACGTGTGGAACAGGGGATTTCTGGCGTT

1499(2)SP6

AAGCGAGCCGTGCGCGTTCGGCGAGCTGGAAGCCGTGCCGACCAGACCGGGTTTGTCGAAG 

AC AGAGGCCCTC ACCTCCTCCGGGGCGCTGAA AGT ACC ACC AT AGAT AGA A AGTTGTTCCGT 

CCCTCGCCCCGTTACAATATCACCTCCCTGAATTAAATACCCCTTCTCCACACGGTGGAAAGT 

GG AGTTTTTGT ACGTG AGCTGCGG AAGGGCGCTCTCCGAT ATC AGTTT ATCCCTGTTCCCCGA 

TTCATATGTGTCGGTCGAGACATTTCCACTACAGAGTTCAATAAAGTTCTTCACAGCTGATG 

GGCACTTCCGCGGAAAGAgTTTAAAGACGATCCTCCGCGGTGCTTTGGGTCcCgaaTGGCGAT 

ATCCATGAAGGCTCgCTCAGAAATGCGCATTAgTTGGCACCTCTCGACgGCCGgaNNGGCTCG 

CTT

1499(2)T7

AAGCGAGCCGCTCCGGCCGTCGAGAGGTGCCAACTAATGCGCATTTCTGAGCGAGCCTTCAT 

GG AT ATCGCC AttCGgG AcCC A AAGC ACCGCGGAGG ATCGTCTTT A AACTCTTTCCGCGG A AG 

TGCCC ATC AGCTGTGA AGA ACTTT ATTGAACTCTGTAGTGGAAATGTCTCGACCGACACATA 

TGAATCGGGGAACAGGGATAAACTGATATCGGAGAGCGCCCTTCCGCAGCTCACGTACAAA 

AACTCCACTTTCCACCGTGTGGAGAAGGGGTATTTAATTCAGGGAGGTGATATTGTAACGGG 

GCGAGGGACGGAACAACTTTCTATCTATGGTGGTACTTTCAGCGCCCCGGAGGAGgTGAGGG 

CCTCTGTCTTCgACAAACCCGGTCTGGTCGGCACGGCTTCCAGCTCGCCGAACGCGCACGGC 

TCGCTT

1499(3)T7

AAGCGAGCCGTANCAAGTTGGGCACATGGTGTCGATGATTTGATTCACAAGCACCGTTGAGC

AG AG ACCG A AG A AT ATG ATGCCG ATT AGG AGGT ACGG A ACTGAGGTC ACGCCGT ATGC AGC

GGTTTTCGCAGCAAACCGCACTTTGTTTCGTGTGGGCAACGCCAGAAATCCCCTGTTCCACA

GCGTGTGCATTTCCTGAGCTTGACGGGCGATGGCATACACAAGCTGTACCACGGCATAACTG

GCCTTTCCCTCTCGTACGANTGGTTTGAAATATTTCCTTGACTGCTGCCTGGAGAAAGTGCTC

TGC A A A AT ACTCCTCG ATGGC AGG ACT AGTC AC A AGTTTGGA ACGCTTGCCTCGCTCTTGCG

CAATTCAACAAGCATCAAGCCCATTTCCACCCGGCTCTCCCAATTCCCCAATCCAAACATTA

TTGG A ATTT AGC A A AGGCTCGGTTNGGGGNTNAT A A ACCC ANCTTTGGGGAACA AAGCCC A

ACTTCTTTTTCCCCCTCCAACGAAAATTGCATTTNTTCTATGGCCGTGCTCAAATTTCCATTCC

GGCTCCCCTTT



1499(3)SP6

AAGCGAGCCGAATGGAGATCGAGCAGGCCATAGACAAAATGCAATCTCCGTGTGAGGTGGA 

CATGTATGTTGTGCTTGTTCCCACAGTTGGTTATACCACGCCGAGAGCCTTTGCTAATTCCAT 

ACTGTTTGATTGGGGAATCGGAGAGCCGCGTGGAAATGGCTTGATGCTGTTGATTGCGCAAA 

GCG AGGC AAGCGTCC AACTTGTG ACT AGTCCTGCC ATCG AGG AGT ATTTTGCAGAGC ACTTT 

CTCC AGGC AGC AGTC AAGG AA AT ATTTC A ACC ACTCGT ACG AN AGGG AAAGGCC AGTT ATG 

CCGTGGT AC AGCTTGTGTATGCC ATCGCCCGTCAAGCTC AGGAAATGC AC ACGCTGTGG AAC 

AGGGGATTTCTGGCGTTGCCCACACNAAACAAAGTGCGGTTTGCTGCGAAAACCGCTGCATA 

CGGCGTGACCTCAGTTCCGTACCTCCTAATCGGCATCATATTCTTCGGTCTCTGCTCAACGGT 

GCTTGTTGAATCAAATCATCGACACCATGTNCCCAACTTGCTACGGCTCGCTT

1499(3a)T7

AAGCGAGCCGTANCAAGTTGGGCACATGGTGTCGATGATTTGATTCACAAGCACCGTTGAGC

AG AG ACCG A AG AAT ATGATGCCG ATT AGG AGGT ACGG A ACTGAGGTC ACGCCGT ATGC AGC

GGTTTTCGCAGCAAACCGCACTTTGTTTCGTGTGGGCAACGCCAGAAATCCCCTGTTCCACA

GCGTGTGCATTTCCTGAGCTTGACGGGCGATGGCATACACAAGCTGTACCACGGCATAACTG

GCCTTTCCCTCTCGTACGANTGGTTTGAAATATTTCCTTGACTGCTGCCTGGAGAAAGTGCTC

TGCAAAATACTCCTCGATGGCAGGACTAGTCACAAGTTTGGAACGCTTGCCTCGCTCTTGCG

CAATTCAACAAGCATCAAGCCCATTTCCACCCGGCTCTCCCAATTCCCCAATCCAAACATTA

TTGG AATTTAGC AAAGGCTCGGTTNGGGGNTNATAAACCCANCTTTGGGGAACAAAGCCCA

ACTTCTTTTTCCCCCTCCAACGAAAATTGCATTTNTTCTATGGCCGTGCTCAAATTTCCATTCC

GGCTCCCCTTT

1499(3a)SP6

AAGCGAGCCGAATGGAGATCGAGCAGGCCATAGACAAAATGCAATCTCCGTGTGAGGTGGA 

C ATGT ATGTTGTGCTTGTTCCC AC AGTTGGTT ATACC ACGCCGAGAGCCTTTGCT AATTCCAT 

ACTGTTTGATTGGGGAATCGGAGAGCCGCGTGGAAATGGCTTGATGCTGTTGATTGCGCAAA 

GCGAGGCAAGCGTCCAACTTGTGACTAGTCCTGCCATCGAGGAGTATTTTGCAGAGCACTTT 

CTCC AGGC AGC AGTC AAGG AAAT ATTTCAACC ACTCGT ACG AN AGGG AAAGGCC AGTT ATG 

CCGTGGT ACAGCTTGTGTATGCCATCGCCCGTCAAGCTCAGGAAATGCACACGCTGTGGAAC 

AGGGGATTTCTGGCGTTGCCCACACNAAACAAAGTGCGGTTTGCTGCGAAAACCGCTGCATA 

CGGCGTGACCTCAGTTCCGTACCTCCTAATCGGCATCATATTCTTCGGTCTCTGCTCAACGGT 

GCTTGTTGAATCAAATCATCGACACCATGTNCCCAACTTGCTACGGCTCGCTT

1499(4)T7

AAGCGAGCCGCGTCAGGACCTCTTGGGCGCGACCCCGTTGCCCTCCGCATTGGGTGTCACAT 

CGCTGTCCCCTTCACAGACAGTTTCTTTCCCCTCAGGGGAAAACATCAGCCGTCACCTTCCTC 

ACGGGTTTGCCGTCTCCATCCGACTCCTCGTCCATGCGAGCATCGGGGAGGAGAGTAAAGAT 

GAGAGGGATCTGAATGCACGGTGCCACGAAGCCGGAGATGAGCACAAGCCACTTTACATTG 

GCG A AGTC AC ATGGC ACC AGTGTTTTC AC AGGC A AAGC AT ATTCC AT ATGACTGACCC AAGG



GG A ACT ACCC ACCGTGCT ACCG AAATTGCTCGATGCAGC AAGAAAT AGCGT ACAC AGT ACT 

CTC ACTTCC ACG AGG AC AC A ACCGTGA A AGA A AT AATGGTT AACGGC ATCC AGTTC ATC ATC 

CCGATC AC AGGN AG AT ATGACGAC ATCGC AGC AG AA AGT A AATC AAGT AGTCGCTG ACGT A 

TGGCCGGTTCCATCGCATCACTATAATGAAATTCGAAAATGTTGGGAAACGATGAAGGAAC 

ACCNGTGTC A AG A A ANT AAGTC ATCCCG AT AAGTTCTTTTTTG

1499(5)T7

TGGTCGTTTAGGCCATGATGTTGTATGGGGTGATCTTACCCTTTGGTGTGATCAGCTTCACGT 

GGAGGCCGCGCTGTTGCAACCTCCCTGCGTCGCGTAACTCCTCGTACTCATTTCGGAGGATG 

TTTGTG AAGCCCC AAT ATTTCGAT ATC AC AATGATTTGCCT ACC AGGG AACTTCATCTT AGCA 

CGGCGAAGAGACTCCAGTGCCTGTGGGACGTATGTGTCCTTTGTCCTCATAGACAAGAgGAT 

CT G ACC A ATCCGC ACGCGGGC

1499(5)SP6

ACAAGGAATGTTTCCACATGCGTATCCGCGCCCATCCGATCCACGTACTTCGCATCAACAAA 

ATGCTTTCGTGTGCTGGCGCCGATCGTCTGCAGACGGGCATGCGGCAGTCGTACGGCAAACC 

GAATGGGACCTGCGCCCGCGTGCGGATTGGTCAGATCCTCTTGTCTATGAGGACAAAGGACA 

CAT ACGTCCC AC AGGC ACTGG AGTCTCTTCGCCGTGCT AAGATGAAATTCCCTGGT AGGC A A 

ATC ATTGTGAT ATCGAA AT ATTGGGGCTTCAC AA AC ATCCTCCGAAATGA

1501 ( 1)T7

CCCGCAACTTGCACAAAGCTATGGCGCCTTCTTTGTCAAGTTTCCGGTCCGCTTTGTATCTGT 

C AATTTTGT AACTCTCTTCGGAGGCGGAGGCCACTGCTGAGAAAAC AAGT AAT AT ATGACCA 

ATGCAAAGGGCGTTGTATGACATAGTGGCTTATATATCAACGCCAAGGGATACTTCCTTTTT 

TGTTGAGCCGTTTACTATTAGAGCTTTGACCGGCCG

1501(1)SP6

CGGCCGGTCAAAGCTCTAATAGTAAACGGCTCAACAAAAAAGGAAGTATCCCTTGGCGTTG 

AT AT AT A AGCC ACT ATGTC AT AC A ACGCCCTTTGC ATTGGTC AT AT ATT ACTTGTTTTCTC AG 

CAGTGGCCTCCGCCTCCGAAGAGAGTTACAAAATTGACAGATACAAAGCGGACCGGAAACT 

TGACAAAGAAGGNGCCATAGCTTTGTGCAAGTTGCGGG

1501(2)T7

CGGCCGGTC AC ATTTTTTC ACTTGCGCGAT ACCC ATCG AGTC ACGAAGTTGC ATGCC A AT AC 

GACTTGGTGAAAGCCCCTTTTTTGCCAACTTGCAAACGGCATCGATAACATCGCGGCTGGAG 

GATTTCAACCACGTCGGTGGTGTCCGGCGGTACGTCAAGGCCGATGCGGCCTTGCATGACCA 

TT ACC ATGC ATCCGC ACC A



1501(2)SP6

TTCAGGTTGACTGAGTGCTGCAAGCGCCGCGAAGAACGTTTACAGGAAGAGCGAGAGTACA 

ACGCCTACTTGGCCGAAAAGGAAGCAAAGGAGAAGGCAAAAAAAAAAAAAAAAAAAAGGC 

GCGCCT AGA AC AGTTTCTGT ACT AT ATTGAA AGGGAAGGTTTGTGGAGTTGCAGGC AATGGT 

GCGG ATGC ATGGT A ATGGTC ATGC AAGGCCGC ATCGGCCTTGCCGT ACCGCCGG AC ACC ACC 

GACGTGGTTGAAATCCTCCAGCCGCGATGTTATCGATGCCGTTTGCAAGTTGGCAAAA

1501 (3)T7

TCGGCCGGTCAGGACAGTTCGGGTGTGCACGAGCGCATGCCAGAGAATAAGCGTAAATGCA 

AT ATCT ACT ACC AAGT A AAGA A A A A AGGG AG AAGTGT AAAT AAGGC AGT AA AC AAAT AGTG 

TGAAAGGGTAGTGCATTCCAAAAGTAACAGGAAAATAAGTGAATAAAAACATTGAAGGGTG 

C A ATC ACT ACG AGTG AAA AC A AC ATT A AT AC A A AT A ACGAC AGT A AC A AT AC AGCCC AT AC 

AT AT AT AT A AG AGG A AGCTGGAG AGGGGG A AA A AGC AC AAC A AT AGC A ACT AAA AAC AC A 

AAACCGAATCAAAAACAATAAGGCGGAAGTTGAATCACAGCGTTAAGGT

1501(3)SP6

CGGCCGGTC AC ACG AT A A AT A A ATTCCCTTTGTG AT ACT AAAGCTGTC ACTGAT ACTGCTGC 

CGGTT ATGCCGCTGCT ACTTTTACGGCGTACTCACCCTGTTTGTGTTTTCTC ACGT ACTTCT AC 

CTT ACGCTGTGATTC ACTTCCGCCTT ATTGTTTTTGATTCGGTTTTGTGTnTT AGTTGCT ATT 

GTTGTGCTTTTTCCCCCTCTCCAGCTTCCTCTTATATATATGTATGGGCTGTATTGTTACTGTC 

GTT ATTTGT ATT AATGTTGTTTTCACTCGT AGTGATTGCACCCTTCAATGTTTTT ATTCACTT A 

TTTTCCTGTT ACTTTTGGAATGC ACT ACCCTTTC AC ACT ATTTGTTT ACTGCCTT ATTT ACACT 

TCTCCCTTTTTTCTTT ACTTGGT AGTT AN AT ATTGC ATTT ACGCTT ATTCTCTGGC ATGCGCTC 

CGTGCACACCCCGAAACTGTCCTGACCGGCCGA

1501(4)T7

TT ATTCTTGAGGAAACC AA AAAAAAA A A AAAAAAAAGAAGGCGCGCCT AGAAC AGTTTCTG 

T ACT AT ATTGCAAGCTGAGTAGCGCAAGGCT AACCGCTCT ATTTTCTGCCCAC AAATCATGG 

CTGTCGCTT ACGAAGGACAACTGACGGGTCACCGTGGCTGGGTT AC ATCCCTCGCCTGCCC A 

CAAACCCCTGAAACCGCAACGAAGGTGGTATCCACGTCCCGGGACAAGACCCTTCTTTCATG 

GGGCCCT A ACCCTG ACCGGCCGAATGGCGTTGAACGT ATGCTCGGG

1501(4)SP6

CCCGAGCATACGTTCAACGCCATTCGGCCGGTCAGGGTTAGGGCCCCATGAAAGAAGGGTC 

TTGTCCCGGGACGTGGATACCACCTTCGTTGCGGTTTCAGGGGTTTGTGGGCAGGCGAGGGA 

TGT AACCC AGCC ACGGTGACCCGTCAGTTGTCCTTCGTAAGCGACAGCCATGATTGTGGGCA 

G A A A AT AG AGCGGTT AGCCTTGCGCT ACTC AGCTTGC AAT AT AGT AC AG AA ACTGTTCT AGG 

CGCGCCTTCTTTTTTTTTTTTTTTTTTTTTTTTGCATTCACTCACTATCCATGTCTAAGGCGGAG 

TAGCAATGCAAGACGCGGCTTGGGACCGGCTGTATGTTAGATTAAAGCACTCACCACACCAC



CTTTGGAATT AAGGAAAT AACC AGACCTGGT AGGC AGC ACGTCCTTGTTTCCCCT ACCGCAA 

ACGGCT ACGAT AACACG

1501(5)T7

AACAGTTCCTGGGAACGCATTGCCATGCCAAAGACCGGTGCAAGATTTTCTGCAAACTTGGC 

ACGCAGCAGGAAAGGCGCATCAGTTCATTCGGCTTGCCAGAACACAGTTTCTCAATGACGGT 

TGTCTGAATCCAGCGCGCAGATCCTTCTGCCCCAGCATTGAGACAGCAACCCGCACGGAAGT 

G ATTTCGGA ATT A A AGGAGCGTGT ATTTGCC AGCCGC AGC AGGG AGATGAT AAGAGCCGTG 

TCCTGACTGATAATATCAGCCGCTTTGGTCAGGTCAAAATCATCTTCTTCCATCAG

1501(5)SP6

CTCTCCCATATGGTCGACCTGCAGGCGGCCGCACTAGTGATTCGGCCGGTCACACGCGGCGA

ACACAAAGTATCGCCCCTGAAGATCAATTACATTTCGCTTCTGAATCTGATGGAAGAAGATG

a t t t t g a c c t g a c c a a a g c g g c t g a t a t t a t c a g t c a g g a c a c g g c t c t t a t c a t c t c c c t g c

TGCGGCTGGCAAATACACGCTCCTTTAATTCCGAAATCACTTCCGTGCGGGTTGCTGTCTCAA

TGCTGGGGCAGAAGGATCTGACGCGCTGGATTCAGACAACCGTCATTGAGAAACTGTGTTCT

GGCAAGCCGAATGAA

1504(1)T7

GGAGACGCCCGCAACGATAAGTCAAATGGCGAAGGACGTCGTCAACTTCCTTCGGTGGTCT 

GCTGAGTCGGAGTACGACGACCGTCGCGTTATGTTTTGGAAGTGTTTCATTACACTGGGTCT 

GGT G A ACTGC ATTCT GCT AC ATT ACTGCC AG A AG A AC AC A A ACT GGCGC ATTT ACGG ACGG A 

C A ACCTTCCGCT ACTGG AAA A AGAC ATGGT AATGGTGT ATCGT ATGGAGCCTGT ATGATGTG 

GAGCGAGAGGGGAGAGGAGAGGTATTCGGGCAAAATGTCACCCGATGGAAATTATTCCTCC 

CCCTTTCT AATCTT ATTTTTTCCCGGCTGATCTGGCCGC

1504(1)SP6

GGAGACGCCCTCTTCAACATCTCAAGCACGTTTTGATGCCCCTTCAGTTCTCTCAACATTTCT 

TCCCTATTCCCGC AA ATTT ACGG AACTGCGCC ACTTGTTCGCAGC AAC A AGTTCCCCC AACC 

CTTC ATT ACG ACC A AGGCT AC ACCC ACCCCCGACC AC AC AGGT ACTTTC AT AT AC ATGCCTC 

C ATCT AATTTTCCTTGCT AT AGTCTCTTGCTT ATAATC ACTACTTTCCTCTCTCC AACTTCCGC 

CCCCTGAGCACTCACCCGCTTCCTTTCGTTGCCACCGGCCACCCCAAGTATATGCACGGTGTG 

CAT AT ATT AGC AC AGCCTGTTCCT ATTTGTTTTGGTGC AGTGC AT AT AAATGA AC AT ACTGCT 

AC

1504(3)T7

GG AGACGCCC AT ATTGC AGCCT AC A AGGGGAAGTGCGATGATTTTGTTCCCGGCGGAATGC 

AGTGGCACCGACGCCGTGAAACGGCTGGCCCTCGTTCTTGATGATGAAAACACAACTGATTT 

GGAGCGCTCGAAGGTGCACCGCCTTTTGAGTATCATCGACGATGGTGCCGCTACTGAGGATA 

TTCTCCCAGGACCAGCGGTAATGTGGTGGAGTGGTAAGCCACTTGATAGAAATGCAGATTTT
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ACCAAGTATGTCGGAAAGAATGAAAAAACAAAAATAACGGTGAAGCTGGCGGCCAAGGAT

GCACCTCCGCCACCACGCGAACCGGCTGTGGACGCCAAAACTCAGTCAGA

1504(3)SP6

GGAGACGCCC AAGC ACTGTT ACC AT AGGTGAGGTCCTCGTCTTCAATGAGTTTCTTCATTTCT 

TCCTGCTTTTTAAAGTAGAAAGCCATCATCTCTGACTGAGTTTTGGCGTCCACAGCCGGTTCG 

CGTGGTGGCGGAGGTGCATCCTTGGCCGCCAGCTTCACCGTTATTTTTGTTTTTTCATTCTTTC 

CGACATACTTGGTAAAATCTGCATTTCTATCAAGTGGCTTACCACTCCACCACATTACCGCTG 

GTCCTGGGAGAATATCCTCAGTAGCGGCACCATCGTCGATGATACTCAAAAGGCGGTGCACC 

TTCGAGCGCTCCAAATCAGTTGTGTTTTCATCATCAA

1504(4)T7

GGAGACGCCCACGAAGGATTCCAGATGGACAATGCCCATTTCTCCAAAATGTTAAAGGAGG

CTAAAATCATTGGCAAAACCTTCACCTCTACAGATGCCGACCTCCTCTTCAACAAGATCAAG

GCGAAGGGCGCCCGTAAAATCACCTTCACGGAGTTTAACACAAGAGCCCTCCCTGATATTGC

CACCAAGTTGAAGATGACACCCGAGCAGGTGGCTGAAATTCTCACGAAGGCATCACCCGCC

TCC AATTCC AC AAAAGC AG A AGCTGTT A AGTTCCATGACGAC AAC AATTCC ATCTCT AC ACG

GGCGTCTCCA

1504(4)SP6

GGAGACGCCCGTGTAGAGATGGAATTGTTGTCGTCATGGAACTTAACAGCTTCTGCTTTTGT

GGAATTGGAGGCGGGTGATGCCTTCGTGAGAATTTCAGCCACCTGCTCGGGTGTCATCTTCA

ACTTGGTGGCAATATCAGGGGAGGGCTCTTGTGTTAAACTCCGTGAAGGTGATTTTACGGGC

GCCCTTCGCCTTGATCTTGTTGAAGAGGAGGTCGGCATCTGTAGAGGTGAAGGTTTTGCCAA

TGATTTT AGCCTCCTTT AAC ATTTTGGAG AAATGGGC ATTGTCC ATCTGGAATCCTTCGTGGG

CGTCTCC

1504(4a)T7

GGAGACGCCCAAAGCTGCCATCAACGGAAAGTACATTGACCGCAAATGTCCTTTCACAAGC 

A ATGTGTCC ATTCGTGGCCGT ATCCTCCGTGGCGT AGTGCACTCCAC AAAX ATGCGCCGTTC 

C ATTGTC ATCCGCCGT A ACT ACCTGC ACTTC ATCCGT AAGT ACC AGCGTT ACC AG AAGCGCC 

ACCGCAATATTACCGTCCACTGCAGCCCCTGCTTCGACCCGAAGCCTGGTGATGAGGTGGTG 

GTTGGACAATGCCGCCCGTTGAGCAAAACAATCCGCTACAATGTGTTGCAGGGCGTCTCC

1504(4a)SP6

GGAGACGCCCTGCAACACATTGTAGCGGATTGTTTTGCTCAACGGGCGGCACTGTCCAACCA 

CCACCTC ATC ACC AGGCTTCGGGTCG AAGC AGGGGCTGCAGTGGACGGT AAT ATTGCGGTG 

GCGCTTCTGGTAACGCTGGTACTTACGGATGAAGTGCAGGTAGTTACGGCGGATGACAATGG 

AACGGCGCATCTTTGTGGAGTGCACTACGCCACGGAGGATACGGCCACGAATGGACACATT 

GCTTGTGAAAGGACATTTGCGGTCAATGTACTTTCCGTTGATGGCAGCTTTGGGCGTCTCC



1504(7)T7

GGAGACGCCCCAAGTCCAGCAAATTAATATTCTTGTTCAAGCACCGGATTACCGCTAGGCGC

CGCCAGGGGTTCGAAAAAAAGCGTGCTTGATCTCGACGTTGGTAACTGCAAATTTCAAATGC

GTTGCAAAgAATGCAGTTTAAGGGTTGGCACCCGGTGTCTGGAGGACCATCACCCCCCGCCA

CCAATCTGCGGCGATTGCCCAACTGATCCCGTGCCGCGGCTGCCAACCAATCCCTGCAGCAT

CCCTCTCCACTTATGATAGTACATTTCGCAACTCACATACGATCGGGTTGTGCGTTCCCTACT

GAT ATTGACATTG

1504(7)SP6

GG AGACGCCCG A AT ATT ACGGGTCGGTGAGTTT ACC AT AAT A A AGGGT AGGC AGTTTTTGT A 

TTTCA ATGTC AAT ATCC AGAGAC ACTATTCAGGCCAGTTGGTAGCTGTACGCAAAAAACTGT 

GCAGTAGGGGCCTTGAGAGTAGGGAACGCACAACCCGATCGTATGTGAGTTGCGAAATGTA 

CT ATC AT A AGTGGAG AGGGATGCTGC AGGGGATTGGTTGGCAGCCGCGGC ACGGGATC AGT 

TGGGCAATCGCCGCAGATTGGTGGCGGGGGGTGATGGTCCTCCAgACACCGGGTGCCAACCC 

TT AAACTGC ATTCT



Appendix II PCR primer sequences

Spliced leader T AGGCGCGCCT AG AAC AGTTTCTGT ACT AT ATTG

pr4-l ACTCATCCACTGGCGCACGG

pr4-2 TT AAGTTGGGT AACGCC AGG

pr4-3 GGTTTGCCGT ACG ACTGCCGC

pr4-4 CCGTGTGTGTCCATGTTGTG

pr4-5 T ACCCTTTGGTGTGATCAGC

pr4-6 AATGAACGCTCAATCGAGC

pr4-7 CT G AGGC ATT GG A AGCTGCC

pr4-8 T AGT ACG ACC ACCTTCCGCC

pr4-9 AGTTGCAACAACGCGGCCTCCACG

pr4-10 TTC AATTT AAC AT ACCGACC

pr4-11 CGATGCTGTCCGTC ATC AGG

pr4-12 AGA AAAGCTT ATGGCTCGCCGTCCCGC ACG

pr4-13 GT AG AGG ATCCTT AGTC AAGTGG ATCCTGGTT A-

-GT ATGGACCTCGGCCT AGATGTTGT ATGGGGTG 

pr4-14 G ATCC ACTTG ACT A ACTCG AGG

pr4-15 GTGAACTGATTGAGCTCCCTAG

pr4-16 CCGTGCGCC AGTGGATGAGTT

pr5-l T3

pr5.2 AG AT AAGCTAGCT AGCTGCC

pr5-3 GGATTT ATGA ATC ATTGTGGC

pr5-4 GGCAAACTTGTGAGGTTGTAACG

pr5-5 CAGATCTGTGCCTTGCGGTAGC

pr5-6 Spliced leader (see above)

pr5-7 TTGATCTGCCGTTCGATCCACTCC

pr5-8 AAAT AAATTCCAC AAGCGGC

pr5-9 T ACC AGC A ATTC ACGC AGCGG

pr5-10 TCATGTCGTCGGGTCCACGC

pr5-11 GTTGGGACGAAAGTG AAGGC
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pr5-12 T AA ACG ACTCCTC ACCTTCC

pr5-13 T7

pr5-14 T3

pr5“15 CACTTGAGGCTCCTGCGACC

pr5-16 CTTTGGTT ACGCTTTT AC ACGC

pr5-17 CCATCTTGTTGGCATCACGC

pr5-18 AATCACCAACACAAGGGCG

pr5-19 CC AC AC ACGCC ATTGTT AACG

pr5-20 CGTAGCTATCAATATCCTCGG

pr5-21 C ACCT A AACC A AGTTCCGCG

pr5-22 T7

pr5-23 GGATCCACAACCTCCACAAGTTTGCC

pr5-24 GGGCCCTTACATAGGAATCAGATCAAACTCCC

pr5-25 CG A AGCTTG AA A AGC AT AAGG AAGG AACTG

pr5-26 CGGGGCCCGGACTTGACGACATGACAGG

pr5-27 CG AGCGCTTT ACGG AACCTCC A ACTTTTCC

pr5-28 CGGG ATCCG AA A AGC AT A AGG A AGG AACTG

pr5-29 CGAAGCTTATGGAAAAGCATAAGGAAGG AACTG

pr5-30 CG ACGCGTTT AGTC AAGTGGATCCTGGTT AGT A-

-TGGACCTCCGG AACCTCC AACTTTTCCTTCG 

pr5-31 GGATCCTCGTC AGGTCC ACGCT ATGAG

pr5-32 AAGCTTGCGCACACAAATTGTTTACGG

pr5-33 C AGATCTGTGCCTTGCGGT AGC

pr5-34 GTTGGGACGAAAGTGAAGGC

Leishl GACCTCGGCCTTTGCATGCG

Leish2 CGTCAAGTCTGGCGACCTGCG

Leish3 AGGCGACGAGGGTGTCGGCG

T7 T AAT ACG ACTC ACT AT AGGG

SP6 ATTTAGGTGACACTATAG



Appendix III SDS-polyacrylamide gel electrophoresis conditions

Glycine SDS-PAGE

Resolving Gel
12% 10% 7.5%

dH20 3.35 ml 4.00 ml 4.85 ml
1.5 M Tris-HCl, pH 8.8 2.5 ml 2.5 ml 2.5 ml
10% (w/v) SDS 100 pi 100 pi 100 pi
Acrylamide/Bis (30%) 4.0 ml 3.3 ml 2.5 ml
10% ammonium persulfate 50 pi 50 pi 50 pi
TEMED 10 pi 10 pi 10 pi

Stacking Gel (4%)
dH20 6.1 ml
0.5 M Tris-HCl, pH 6.8 2.5 ml
10% (w/v) SDS 100 pi
Acrylamide/Bis (30%) 1.3 ml
10% ammonium persulfate 75 pi
TEMED 10 pi

10 x running buffer (11)

Glycine 144 g
SDS 10 g
Dissolve in 1 litre dH20  then pH to 6.3 with solid Tris 

Glycine SDS-PAGE gels were run at 10 mA.

Tricene SDS-PAGE

Resolving Gel Stacking Gel
Acrylamide/Bis (30%) 4.2 ml 1.2 ml
Gel buffer 3.3 ml 2.0 ml
Glycerol 1.0 ml -

dH20 1.5 ml 6.8 ml
10% ammonium persulfate 75 pi 80 pi
TEMED 7.5 pi 15 pi

5 x Anode buffer (bottom reservoir) 5 x Cathode buffer (top reservoir)

1 M Tris-HCl, pH 8.9 Tris 500 mM
Tricene 500 mM
SDS 0.5%

Gel buffer

Tris-HCl 3 M, pH 8.45
SDS 0.3%

Tricene SDS-PAGE gels were run at 80 V.
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Appendix IV Sequence of 2.8 kb MOB 1-2 clone

CTGTTCACGCCTGAACAAACCAGCAACCGAGTAATTGTTGTGGTTGATTGAAGGTTTGCGAA
GCAAATCTACCACCTTCAGTTGTGTCCTTGTGCACCGAACCTCTCGGTTTCAGTGAATGTTGT
GTGGTGACTGTTTTCTTTCCTTTTCTTTGTTCTTTTCGTTCTTTCCGTGTCATATCTCCTCCCTT
TTCCTCGGACAGATGATGTTTATCGATTTCGAGACTTACTCACACTTGAGGCTCCTGCGACCA
GGACCCTCTTTTCTGTTTTTTCTGGATGGTGGAGGATTTATGAATCATTGTGGCTGTGCAACA
TATCTGTTTAACACCTCTACTGCACTCATCGTCCCTCCACAATTATGTTCCGTTGTTTCCTTAA
TTTGCTTTT AGA AAGGT AAGCTCTGGT ATTCGTTTGCTCTTCAC AAT ATGTCGGGGAA AC AT A
TTTTCACTTGTTATGACGATATTATAGGGAGCTGCATGTGAAGGACTGCCGTTGTGGGTCCTC
GAGCGGCTGTGTGGAT AC AAT AATCTTTCGTT ACGCTTTT AC ACGC ACTTGCGCGC AT ATTTC
CTTCC ATCTTCTTCTTGCC ATGTGCCCGTCTTTTGCGGGTGCT ACGCT A ACTTGTCGGAAGGT
RTAGAATGTTGGCGACACAACRTACMTGTTTGGGGAGGTGGTTGATCCTGGATATTGCTGCT
CGGAGAW AT AACTCAGTT AAT ATGGT ATTGCGCCCTGGTACAATTACACACCGGAGAGATG
CCTGTTACCCATCTTGTTGGCATCACGCACTACTCACTCACCCCACCTTCACCAATCCGTCTA
TTCT AACAAGCCCT ATGAAGCGTTTTAAGGCAAAGCTCTTCGACTCCGACAGAACAT AC AAA
CCT AAG A A A AAGC AT A AGG A AGGAACTG AACGTT AC AACCTCC AC AAGTTTGCCAA ATC AC
TTGtGCGCTCAGGTGACCTCAGTGCTGCTGTAAAGCTACCGCAAGGTGCCGATCTGAATCATT
GGCTTtCCGTACACACTGTAGATTTCTACAACATCACTAATGTTTTGTACGGCTCTCTAACAG
AGTTTTGCACGAACAGCAGTTGTCCTGTCATGTCGTCAGGTCC ACGCT ATGAGT ATTT ATGGC
GTGACCCGCCGGAAT ATCC AAAAGC A ACGAAGGTGAGCGC ACCGGAGT ATGTGAGATTGTT
GATGGAGTGGATCGAACGGCAGATCAATGATGAACGTGTGTTTCCGTCTGAGGATCGTAATC
CCTATCCACCARATTTCGCGGATAGGGTGAAGGCGTGTTTCAAGCGACTGTTCCGCGTTTAT
GC AC ACGTTT ACT ATT YCC ACTTTGCGAAGATTCGTGAGTTGC AGGAGGA ATTTCAC ATCA A
CCAcCCCGCACTGAAACATTTTATGTATTTTGTGTGGGAGTTTGATCTGATTCCTCGTGAGGA
GGTGTCTCCGCTGCGTGAATTGCTGGT AAACTT AATGGGTCAGCGCGCG AAGGAAAAGTTGG
AGGTTCCGT A A AC A ATTTGTGTGCGCGCCCTTGTGTTGGTGATTTT ATTTC A ATCTGC AGTGC
TTCTCGAGTGCGCTCCGAAGGTTGTTTACATCATCGAAGAGGGTCTCTGTGTTTTCGTTCCCT
GT ATTTC ATGTTT ATTCTGTGGTGAT AT AGGTT AAAC AT AGTGCTGGGC ATT ATTCT AAGAGG
ACGAGCTGTAGGTAACGTATATTGTAGCGGTTCCCGTGTGATGTTTGGTGAGAAGGCAGTTC
CGATACATGCATACTATATGCATACATGTATTGGACTGCTGGCCGTCGTTGACGGGATCCGT
ACCGGTTCCTTGTAACGATTACTTGAAGTGACTT AAATTCTCGTT AAC AATTGGCGTGTGTGG
AGGAAGAGGGGGGAACGATGATATGCAGTGAGCCCGTGGCCCGTTCCGTTTGTGTGGTGGC
AGGACCTGTGCGTGTGCGTGTGTGTTGTATTCGGTGGACAGTAAAAAGATGTTTTGCAGGTG
TGT AGG ACGGCGT ATTGC ACCTC AGGC ATGTT ATTGTCTTCGCCGT AT ACTTCCC ACC A AC AG
TGTGTCTTTTCTCCCTTTACTTTTTTTCTTGAAAAAAAAAATTACAAAGTGCATTTGTCGGATT
GG AGC ACTGCCT AC ATGGCTGATC ATGAAGGTGT A ATTCGTCCC ATCCGT AG AGG ACCC AAT
GTTTT ATCGACCG AGG AT ATTGAT AGCT ACGTGAAGGAGCTACTGT AT AGTGC AGGGCGAAA
AAGGAACGCTGGGCAAAACTCTTTTAAAGGGAATGTGCAGCAGAAATCCCTGACAGTTGAG
T AT AT ACTTGAGAAAGTTT ACGGGAG ATTTTTC AATC A ATCGGGGC AATCTCCTTTTCCTGAT
GGTTT ACCCTTTGCTTTGAAGC AGATTCCATC AATTGCC AGAATTGCCGAACT AC AACTGAG
AGCTACAGCACTAGTTCAATCTGCAGTTGCCACACGGCCCGTCGTCACTCTTCATGAATTAG
AGTTGGAGGTTTGCAGTGCTGAAGGTGTTTCAATTTTCGCGGAACTTGGTTTAGGTGATTCAC
TGACCGCGTTGCCGTTTGTGCAGCACGCGTTCAATCTGCGGAGCTCAACAGGAGTTGTGGCC
CCT ATT ACC AGCG ACG ATTTTTT AC A ATTTTTGTTGTTTC ATGCTGACGCTGAA AT A ATGTTG
ACAAGCGGTGGGGACGCGGGGGATGCTGTACGTGCCTTTGCACAGTTTTACAAAAATGGCT
ACT ACACCCCTCTGCAG
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