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versus 230Th/234]j ac îvity ratio for whole-rock 
samples.

Figure 4.17: Plot of 226Ra /230xh activity ratio versus 161
230Th/234jj activity ratio for sample CQ1 from 
Craignair quarry, Dalbeattie.

Figure 4.18: Plots of REE concentrations versus distance 170
from the fracture face in rock section CQ1 from 
Craignair quarry, Dalbeattie.

Figure 4.19: Plot showing the ratio of REE concentrations in 173
(a) 1-2 cm, (b) 3-4 cm and (c) 5-6 cm sections to 
concentrations in 8-9 cm section in the reduced 
rock of section CQ1 from Craignair quarry, Dalbeattie.

x



Figure 4.20: Chondrite-normalised REE patterns for sliced 175
samples in rock section CQ1 from Craignair quarry,
Dalbeattie.

Figure 4.21: Chondrite-normalised REE patterns for sliced 176
sample at 8-9 cm in the reduced rock of the 
rock section CQ1 from Craignair quarry and 
sample HB-056 from the Criffel pluton 
(Stephens et al., 1985).

Figure 4.22: Plot of uranium  concentration versus distance 179
from the fracture face for rock section CQ2 
from Craignair quarry, Dalbeattie.

Figure 4.23: Plot of thorium  concentration versus distance 179
from the fracture face for rock section CQ2 from 
Craignair quarry, Dalbeattie.

Figure 4.24: Plot of U /T h  concentration ratio versus distance 180
from the fracture face for rock section CQ2 from 
Craignair quarry, Dalbeattie.

Figure 4.25: Plot of 234u/238lJ activity ratio versus distance 180
from the fracture face for rock section CQ2 from 
Craignair quarry, Dalbeattie.

Figure 4.26: Plot of 230xh/234u activity ratio versus distance 181
from the fracture face for rock section CQ2 from 
Craignair quarry, Dalbeattie.

Figure 4.27: Plot of 234-q /238u  activity ratio versus 181
230Th/238u activity ratio for whole-rock 
samples from rock section CQ2 from 
Craignair quarry, Dalbeattie.

Figure 4.28: Plot of 226Ra /230 rh  activity ratio versus 182
distance from the fracture face for rock 
section CQ2 from Craignair quarry, Dalbeattie.

Figure 4.29: Plot of 226Ra /230Th activity ratio versus 182
230Th/234u activity ratio for sample CQ2 from 
Craignair quarry, Dalbeattie.

Figure 4.30: A diagramatic sketch showing uranium  migration 193
and retardation in fractured crystalline rock.

xi



Figure 4.31: Plots of REE concentrations versus distance 
from the fracture face in rock section CQ2 
from Craignair quarry, Dalbeattie.

Figure 4.32: Chondrite-normalised REE patterns for sliced 
samples in rock section CQ2 from Craignair 
quarry, Dalbeattie.

Figure 4.33: Plot of uranium  concentration as a function
of depth (cm from rock surface) for granite core 
sam ple from Kinharvie.

Figure 4.34: Plot of thorium  concentration as a function
of depth (cm from rock surface) for granite core 
sam ple from Kinharvie.

Figure 4.35: Plot of U /T h concentration ratio as a function 
of depth (cm from rock surface) for granite core 
sam ple from Kinharvie.

Figure 4.36: Plot of 234u/238lJ activity ratio as a function
of depth (cm from rock surface) for granite core 
sam ple from Kinharvie.

Figure 4.37: Plot of 230rh /234u  activity ratio as a function 
of depth (cm from rock surface) for granite core 
sam ple from Kinharvie.

Figure 4.38: Plot of apparent percentage uranium  loss versus 
depth for granite core GR from Kinharvie.

Figure 4.39: Plot of 234 |j/238u  activity ratio versus 
230xh/238u activity ratio for whole-rock 
samples for granite core from Kinharvie.

Figure 4.40: Plot of 226Ra /230xh activity ratio as a function 
of depth (cm from rock surface) for granite core 
sam ple from Kinharvie.

Figure 4.41: Plot of 226Ra /2 3 0 jh  activity ratio versus
230Th/234lJ activity ratio from granite core 
sam ple GR from Kinharvie.

Figure 4.42: Plots of REE concentrations versus distance 
from the fracture face in granite core GR 
from Kinharvie, southwest Scotland.

197

200

204

204

205

205

206

206

207

207

208 

215

xii



Figure 4.43: Plot showing the ratio of REE concentrations 218
in (a) 1-2 cm, (b) 9-10 cm and (c) 13-14 cm 
sections to concentrations in 17-18 cm section in the 
reduced rock of the granite core GR from Kinharvie.

Figure 4.44: Chondrite-normalised REE patterns for sliced 220
samples in granite core GR from Kinharvie, 
southwest Scotland.

Figure 4.45 Chondrite-normalised REE patterns for sliced 222
sample at 17-18 cm in the reduced rock of the 
granite core GR from Kinharvie and sample MB-272 
from the Criffel pluton (Stephens et al., 1985).

Figure 4.46: Plot of uranium  concentration as a function 224
of depth (cm from rock surface) for granodiorite 
core sample GD from Clifton.

Figure 4.47: Plot of thorium  concentration as a function of 224
depth (cm from rock surface) for granodiorite core 
sample GD from Clifton.

Figure 4.48: Plot of U /T h  concentration ratio as a function 225
of depth (cm from rock surface) for granodiorite 
core sample GD from Clifton.

Figure 4.49: Plot of 234y /238u  activity ratio as a function of 225
depth (cm from rock surface) for granodiorite core 
sample GD from Clifton.

Figure 4.50: Plot of 230 rh /234u  activity ratio as a function 226
of depth (cm from rock surface) for granodiorite 
core sample GD from Clifton.

Figure 4.51: Plot of apparent percentage uranium  excess/ 226
deficiency versus depth for granite core GR from 
K inharvie.

Figure 4.52: Plot of 234u /238u  activity ratio versus 227
230Th/238u activity ratio for whole-rock 
samples of granodiorite core sample GD 
from Clifton.

Figure 4.53: Plot of 226Ra /230xh activity ratio as a function 227
of depth (cm from rock surface) for granodiorite 
core sample GD from Clifton.

xiii



Figure 4.54: A diagramatic sketch showing a complex series 
of redox fronts in granodiorite core GD from 
Clifton, southwest Scotland.

Figure 4.55: Plot of 226Ra /230xh activity ratio versus
2 3 0 jh /2 3 4 u  activity ratio from granodiorite core 
sample GR from Clifton.

Figure 4.56: Plots of REE concentrations versus depth from
the weathered rock surface in granodiorite core GD 
from Clifton, southwest Scotland.

Figure 4.57: Chondrite-normalised REE patterns for sliced 
samples in granodiorite core GD from Clifton, 
southwest Scotland.

Figure 4.58: Uranium and 40r  count rates over abandoned 
quarry at Beeswing, southwest Scotland.

Figure 4.59: Plots of uranium  and thorium  concentrations 
versus depth for soil cores (i) A, (ii) B and 
(iii) C from Beeswing. Leaching results for samples 
from top, m iddle and bottom sections are indicated.

Figure 4.60: Plots of U /T h  concentration ratio versus depth
for soil cores (i) A, (ii) B and (iii) C from Beeswing.

Figure 4.61: Sketch showing distribution of uranium  in soil 
along A-C cross-section, Beeswing.

Figure 4.62: Plots of 226Ra concentration profiles for soil 
cores (i) A, (ii) B and (iii) C from Beeswing.

Figure 4.63: Plots of 210pb concentration profiles for soil 
cores (i) A, (ii) B and (iii) C from Beeswing.

Figure 4.64: Plots of ^ 4 q s and 137(^s concentration profiles
for soil cores (i) A, (ii) B and (iii) C from Beeswing.

Figure 4.65: Uranium  and thorium concentrations of river
water samples around the Criffel pluton, southwest 
Scotland.

Figure 4.66: U /T h  concentration ratio of river water samples 
around the Criffel pluton, southwest Scotland.

228

229

235

238

241

244

245

249

250

252

253 

257

257

xiv



List of plates page

Plate 2.1: Photograph of the Craignair quarry study site 73
showing the location from which samples 
were collected.

Plate 2.2: Photograph of the Craignair quarry study site 73
showing the location from which sample 
CQ2 was collected.

Plate 2.3: Photograph of sample CQ1 showing the Fe^+/  75
Fe3+ redox front about 4.0 cm from the fracture 
face. Sample collected from about 2 m from 
the surface.

Plate 2.4: Photograph of sample CQ3 showing a thin 79
coating of iron-oxyhydroxides along the 
fractures. Sample collected from about 20 m 
from the surface.

Plate 2.5: Photograph of sample CQ4 showing V-shaped 79
iron-oxyhydroxides infilling fractures. Sample 
collected from mid level of the Craignair quarry.

Plate 2.6: Photograph showing granite core GR from 82
K inharvie.

Plate 2.7: Phograph of granodiorite core GD from Clifton 83
showing complex frature system.

Plate 2.8: Photograph of portable Nal detector used in 84
locating uranium  veins at Beeswing.

Plate 2.9: Photograph of the Beswing study site showing 84
location of uranium  veins.

Plate 4.1: Matched thin-section (a) and fission track 152
image on plastic film (b). Fission track print 
showing association of uranium  w ith sphene 
grain.

Plate 4.2: Matched thin-section (a) and fission track image 153 
on plastic film (b). Fission track print showing 
association of uranium  with obdurate minerals 
(altered rock sample but showing unaltered 
intergrow th sphene).

xv



Plate 4.3: Matched thin-section (a) and fission track
image on plastic film (b). Fission track print 
showing association of uranium  along the 
boundary of biotite minerals.

Plate 4.4: Matched thin-section (a) and fission track image 
on plastic film (b). Fission track print showing 
association of uranium  w ith infilling fracture 
minerals, Fe-Mn oxyhydroxides.

154

163

xvi



Acknowledgem ents

I wish to thank the following people whose assistance to get this 
thesis m oving and keep it on the rails throughout this work is 
appreciated and hereby acknowledged:

Prof. M.J. Russell and Dr. A. B. MacKenzie who diligently supervised 
the entire work and for introducing me to the subject and inspiring a 
sense of appreciation of the challenges and complexities in a natural 
analogue study. Their constant advice, suggestions, criticisms and 
encouragem ent were of immense help.

Dr. G. D. Couples, Dr. R. Jemielita and Dr. P. McDonald for their 
advice on the fieldwork.

Dr. W. E. Stephens of St. Andrews University for providing me with 
the archived pow dered rock sam ples from different zones of the 
Criffel pluton and his helpful discussions.

Dr. A. N. W hitton for reading the m anuscript of the early version of 
Chapters 1 and 2 .

Mr. Henderson who kindly gave permission to sample for soils and 
rocks for analysis from his land in Beeswing.

Mr. W ard of Tarmac Construction Co. for his perm ission to collect 
granite samples from the Craignair quarry, Dalbeattie.

The Forestry  Com m ission for allow ing access to the forestry 
properties in Nithsdale and Castle Douglas districts.

xvii



Technicians of the Department of Geology and Applied Geology and 
the Scottish Universities Research and Reactor Centre, East Kilbride, 
for their technical assistance. My special thanks to Mr. R. Morrison 
for his unending help, Mr. D. Maclean for all photographic work, 
Mr. Kavanagh for his help in the use of computing facilities, Mr. A. 
Russell for his assistance in collecting soil and w ater samples and 
Messrs. J. Thomson, C. Robertson, J. M orrison, R. M acDonald, J. 
Gallagher, P. A insw orth, A. Jones, D. Turner, K. Roberts and M. 
MacLeod for their assistance in the laboratory analyses.

Mrs. T. M. Shim m ield for perform ing the rare earth  elem ents 
analyses for rocks and water samples.

The Governm ent of Malaysia for awarding me financial support for 
my Ph.D. study at the University of Glasgow. Thanks are due to the 
Public Services D epartm ent (Kuala L um pur) and M alaysian 
S tudents' D epartm ent (London and Glasgow) for provid ing  the 
adm inistration facilities. Also, I wish to thank the Director General 
of the Nuclear Energy Unit, Malaysia for granting me a study leave.

Finally, my family for their patient, encouragem ent and continual 
support. We shared m any things together including ’burning the 
m idnight oil' in the course of this thesis. To my wife, Haya and my 
children Faiz and Farid, I wish to thank you, and prom ise that it will 
probably be a long time before I may try another venture like this 
again. Appropriately, this thesis is dedicated to them.

xviii



SUMMARY

This thesis describes a study utilising natural decay series radionuclides and 

rare earth elements in the granitic rocks of the Criffel pluton, southwest 

Scotland, in an investigation of processes affecting radionuclide transport 

and retardation  in the environm ent. The w ork was perform ed in the 

context of a natural analogue study of relevance to radioactive waste 

disposal on the basis that m any of the processes which govern the long 

term performance of a deep geological repository for radioactive waste also 

take place and can be characterised in nature. Such an analogue study can 

p lay  an im p o rtan t role in va lida ting  the im portance  of far-field 

radionuclide retardation  m echanism s in the case of radioactive waste 

disposal in crystalline bedrock where fracture flow will be the dom inant 

m ode of radionuclide transport upon failure of the near field barriers.

N atural decay series analyses were perform ed on the whole rock samples 

obtained from different zones of the pluton, giving results consistent with 

the expected geochemical behaviour of these two elements in igneous rock. 

Thus, uranium  was observed to be highly susceptible to oxidation-induced 

d isso lu tion  and is consequently  rela tively  m obile, w hereas thorium  

exhibited an extremely low solubility and is effectively immobile. The 

study shows that the Criffel pluton has experienced removal of between 20 

and 30 percent of the uranium  from the upperm ost section of the granite, 

with a removal probability for uranium  dissolution of 1.9 x 10" 5 y-1. There 

is no significant 'whole rock' re-deposition of uranium  within the pluton. 

H ow ever, it is evident that m atrix diffusion, so rp tion /scaveng ing  by 

fracture lining minerals and redox front trapping processes are potentiallly 

very im portant for uranium  retardation in the pluton.
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All sam ples from the p lu ton  displayed Ẑ U / ^ U  ratios about unity, 

whereas ^ ^ T h / ^ U  ratios were greater than unity. This suggests that the 

pluton has experienced a recent and rapid removal of uranium  from the 

upperm ost section of the granite (i.e. since the end of the last glaciation), 

whereas thorium  has remained relatively immobile. The activity ratio data 

of a representative granite core in the pluton indicate that the average rate 

of dow nw ards movem ent of the weathering front is about 12 m in 10^ y. 

This observation suggests that the postulated m axim um  rate of far-field 

m ovem ent of a repository-related redox front of about 50 m in 10^ y is a 

realistic value for use in models.

Concentrations and activity ratios of natural decay series radionuclides 

w ere stud ied  in two rock sections that traversed  redox fronts and 

intersecting w ater-bearing fractures in C raignair quarry  in the pluton. 

Investigation of natural redox fronts in the quarry revealed that both redox 

sensitive (U) and non-redox sensitive (Ra and REE) elements are subjected 

to dissolution and re-deposition processes in the vicinity of the front. 

U ranium  concentrations are depleted in the oxidised rock, whereas slight 

enrichm ents are observed in the reduced rock close to the redox front. 

There is also some uranium  re-deposition on the oxidised side of the front 

which w ould not be expected from a simple therm odynam ic viewpoint. 

The 226Ra/2K>rh ratios displayed disequilibrium , reaching a value above 

unity on the oxidised side of the front but dropping to less than unity in the 

reduced rock. This situation indicates that radium  is readily removed from 

the reduced rock bu t is re-deposited in the oxidised rock. Taken together, 

the radium , REE and uranium  distributions indicate that both advection
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and diffusion processes control the distribution of radionuclides about the 

front.

Fission track studies revealed that uranium  is associated w ith fracture- 

infilling m inerals, suggesting uptake by iron-m anganese oxyhydroxides, 

clays and carbonate minerals during fracture flow. Also, uranium  mobility 

apparent in rocks adjacent to fractures implied a depth of matrix diffusion 

of at least 7 cm. It was also observed that uranium  concentrations in 

fracture-lining minerals increased w ith depth, suggesting that uptake of 

uranium  by such minerals is not a perm anent process.

The rare earth element data reveal a general loss of these elements from 

the rock section close to the front, but w ith some re-deposition in the 

ox id ised  rock, in association  w ith  Fe-M n oxyhydrox ides. This 

phenom enon indicates that both diffusion and scavenging processes 

probably control the re-distribution of rare earth elements about the front.

Analyses of uranium  and thorium  clearly show evidence that a uranium  

vein at Beeswing on the northern edge of the pluton has been subject to two 

phases of uranium  distribution i.e. (i) long - term leaching with preferential 

loss of 234y relative to 238|j; and (ii) recent, rapid loss of uranium  with a 

probability of dissolution of uranium  from the vein of about 5.2 x 10"5 y l  

(upper limit). Uranium  and radium  were again observed to be relatively 

mobile, whereas thorium  was found to be effectively immobile. Caesium 

(134Cs . attributed to Chernobyl fallout; ^ ^ C s  - from Chernobyl accident and 

nuclear weapons testing), is relatively mobile in the soil, while the mobility 

of lead is extremely low, probably because of strong retention properties of
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soil organic m atter, clay minerals and iron-manganese sesquioxides. This 

observation clearly has implications for radioactive waste disposal in the 

context of far-field m ovem ent of soluble nuclides, and highlights the 

importance of characterising radionuclide retardation by processes related to 

g roundw ater flow in soils (i.e. final com ponent of far-field barrier) eg. 

up take of rad ionuclides by organic m atter, clay m inerals and iron- 

manganese sesquioxides.

U ranium  analyses perform ed on river w aters draining from the pluton 

clearly show that uranium  concentrations in w ater are about three orders of 

m agnitude less than  tha t of the pred icted  value from m odels. This 

observation thus suggests that the models are conservative.

In conclusion, the study of natural decay series radionuclides and rare earth 

elements from the Craignair quarry in the Criffel pluton revealed that three 

distinct retardation  processes affect these elem ents during  groundw ater 

transport in the environment, namely scavenging by Fe-Mn oxyhydroxides, 

redox fronts trapping and matrix diffusion. The study of natural decay 

series radionuclides and radiocaesium  isotopes from Beeswing revealed 

that these elements are removed from groundw ater by complexing with 

soil organic matter and scavenging by Fe-Mn sesquioxides or sulphides. In 

the context of radioactive waste disposal, operation of these processes 

w ould be of significance in both far-field and near-field transport and 

retardation of radionuclides released from a repository. The study revealed 

that the very near surface rocks (weathered zone) and overlying soil act as a 

potentially im portant site of deposition and as such constitute the final 

barrier in the multi-barrier systems for radioactive waste disposal.
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CHAPTER 1 

INTRODUCTION

1.1 O verview

This thesis describes a study of natural decay series radionuclides and rare 

earth elements in the Criffel pluton, southwest Scotland, in the context of a 

natural analogue study of processes of relevance to radioactive waste 

disposal. Particular em phasis is placed upon geochemical aspects of 

m igration and retardation  processes affecting these species w ithin the 

bedrock environment. The geochemical processes studied are of relevance 

to radioactive waste disposal since they are comparable to those that will 

influence the migration of radionuclides after escape from a repository.

Safe disposal of radioactive waste presents a major challenge to the nuclear 

pow er and other industries (eg. phosphate production and rare earth 

element extraction) and such waste m ust be m anaged in a way that will not 

endanger public health and safety or environm ental quality. By far the 

largest quantity of radioactive waste is produced from the spent fuel rods of 

nuclear reactors, which may either be disposed of directly or after re­

processing to recover unused fissile material. Other industries, however, 

do produce significant quantities of radioactive waste as a consequence of 

the concentration of radionuclides during  industria l processing. In 

M alaysia, for instance, thorium  wastes are produced as a result of the 

extraction of rare earth elements from m onazite and xenotime minerals 

which contain substantial amounts of natural uranium  and thorium. Such 

operations result in the production of thorium  hydroxide cake (about 2000
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tonnes per year) containing thorium (about 14% Th02) and a small quantity 

of uranium  (IAEA, 1988). These thorium  hydroxide cakes are, at present, 

stored in drum s in a tem porary facility, pending a final decision as to 

whether to continue to store the waste or dispose of it.

Effluent control technologies are em ployed in nuclear power production 

and industria l processes to lim it the release of radionuclides to the 

env ironm en t, b u t residual rad ioactive  w aste  m ateria ls from  such 

operations must be controlled for the time within which they could present 

a hazard. Consequently the nuclear industries in m any countries are 

planning to dispose of high level, long-lived radioactive waste by deep 

burial in underground repositories using a m ultiple barrier system to retain 

the radionuclides in the repository or surrounding rock for a suitable time 

to allow their decay to non hazardous levels. In such a scheme, the waste, 

either in the form  of unprocessed, spent fuel rods (pellets of UO2 in 

zircaloy) or as a borosilicate glass containing reprocessing waste, will be 

encapsulated in a canister (eg. steel or copper), surrounded by a buffer 

material (eg. bentonite-clay) and concrete, and placed in a stable part of the 

geosphere (eg. crystalline rocks) at a depth of 1 km or more. The area 

hosting such a repository  should be one w here tectonic disturbance, 

volcanic activity and deep erosion are unlikely; with rocks which have a 

low perm eability and a high capacity for sorbing dissolved materials and; 

where topography is suitable for a large engineering operation.

The principal aim of a repository is to isolate the radioactive waste for a 

sufficiently long time to ensure that in any eventual m igration of 

radionuclides to the biosphere, the concentration levels will be low enough 

to ensure that there is no unacceptable level of risk to public health and 

safety or environmental quality (NAGRA, 1985). In all geological disposal
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schemes, however, it m ust be assum ed that groundw ater will eventually 

come in contact w ith the waste and dissolve radionuclides, resulting in 

their release to the surrounding rock, where many complex variables may 

affect their m igration or retardation. The assessm ent of the optim um  

design and overall long-term safety of a repository involves the evaluation 

of potential mechanisms of failure of the engineered barriers, migration 

and retardation processes influencing radionuclides in the geosphere and 

possible disruption scenarios. Such assessments involve the use of complex 

conceptual and m athem atical models to predict these various aspects of 

repository perform ance and safety, and large data bases, incorporating 

theoretical considerations and inform ation from laboratory  and field 

experiments, are required for this purpose. One of the major limitations in 

such assessments is that the time period over which laboratory experiments 

can be perform ed to produce the necessary data is extrem ely short 

compared w ith the time period required for isolation of the waste to ensure 

its safe disposal. Moreover, the relatively simple conditions that apply to a 

laboratory experim ent are often inadequate to account for the complex 

physical, chemical and biological conditions that exist in the natural 

env ironm en t.

M any of the processes and phenom ena that govern the long-term  

performance of a deep geological repository for radioactive waste also take 

place in natural geological systems, and the use of 'natural analogues' has 

becom e an im portan t aspect of reposito ry  perform ance and safety 

assessments. In particular, such studies can give assurance that the most 

im portant processes, phenomena and scenarios have been included in the 

models and can be used to test the models under realistically complex 

conditions over 'geological' tim escales (Chapm an et al., 1984). Such 

analogue studies can provide direct information on the cumulative effects
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of transport and retardation processes over timescales commensurate with 

the half-lives of the radionuclides of concern in waste disposal.

For some of the nuclides in high level waste the obvious analogues are 

sim ply non-radioactive isotopes of the same elem ents, eg. strontium , 

caesium, iodine and rare earth elements. Technetium and the transuranic 

elements (notably neptunium , plutonium  and americium), however, have 

no non-rad ioactive  isotopes in natu re , therefore su itab le  chemical 

analogues are required which exhibit similar physico-chemical properties. 

For instance, uranium , thorium  and rare earth elements can be taken as 

analogues for p lu ton ium  and am ericium . P lutonium  occurs in three 

valence states, Pu^+, Pu^+ and Pu^+, and suitable analogues for these states 

are U^+, Th^+ and rare earth elements (eg. N d^+) respectively. Similarly 

Nd^4* is an acceptable analogue for Am^+ (Chapman and Smellie, 1986). 

The natural decay series radionuclides are also of direct relevance to 

radioactive waste disposal since they are actually present in, or will grow in 

to, high level waste in a repository.

Investigation of radioactive disequilibrium  in the natural decay series 

provides a powerful m ethod for investigating the mechanisms and rates of 

migration and retardation of these natural radionuclides (eg. fracture flow, 

sorption and redox front processes) on a geological time scale (Smellie et al., 

1986; Come and Chapman, 1987; Alexander et al., 1988; MacKenzie et al., 

1991). In addition evidence of the migration or retardation of radionuclides 

in natural geological systems can be obtained over distances of centimetres 

to hundreds of metres, and time periods from days up to about 1 x 10^ y. 

Assessment of the radionuclide retention capability of a repository and the 

su rro u n d in g  rock is difficult because it d epends on com plex and 

in terdependent processes which m ust be envisaged on large scales (> 1



km^), long times (10^ to 10? y), and because some nuclides such as the 

transuran ium  elements are norm ally absent in significant quantities in 

nature. Such assessm ent can be satisfactorily tackled by combining 

laboratory and field experim ents, and m odelling of natural analogues. 

N atural analogues are the only means by which very slow mechanisms can 

be identified and by which long-term predictions of models can be tested 

(Chapman et al., 1984; Smellie et al., 1986; McKinley, 1989; MacKenzie et al., 

1991).

The p resen t study  involved an investigation of natural decay series 

radionuclide disequilibrium , and rare earth  elem ent behaviour in the 

granitic rock of the Criffel pluton in southwest Scotland (Figure 1.1). The 

results are used in the investigation of processes involved in elemental 

m igration /retardation  in the rock. As part of this work detailed studies 

were carried ou t on the d istribution of radionuclides and rare earth 

elements at redox fronts associated with water-bearing fracture systems, and 

of w eathered /unw eathered  granite and granodiorite core samples. Also 

fission track analysis was carried out to investigate the spatial distribution of 

uran ium  and its m ode of occurrence in relation to redox fronts and 

fracture-lining m inerals in the pluton. A further aspect of the work 

involved the investigation of uranium  dispersion in the vicinity of a 

pitchblende vein in an attem pt to provide an im proved understanding of 

m igration/retardation of uranium in the soils of the study site.
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Figure 1.1: Location of the Criffel pluton study site and simplified 
geological m ap of southwest Scotland.
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1.2 The geochemistry of uranium  and thorium

A brief review of uranium  and thorium  geochemistry is presented in this 

section since it is of fundam ental importance in understanding geosphere 

transport and retardation of these species as well as natural decay series 

disequilibrium .

U ranium  and thorium  are prim ordial radionuclides which are distributed 

th roughou t the Earth and oceans as a function of their geochemical 

properties. They are members of the actinide series of elements and both 

exist in the 4+ oxidation state in unw eathered igneous rocks and minerals. 

Their ions have similar radii (U^+ = 1.00A; Th^+ = 1.05A) (Katz et al., 1986), 

and they can consequently substitute extensively for each other in minerals, 

which explains their geochemical coherence (Rogers and Adams, 1970).

U ranium  can show changes from one oxidation state to another under 

environm ental conditions. The possible valence states of uranium  are 3+, 

4+, 5+ and 6+ (Rogers and Adams, 1970), but only the 4+ and 6+ states are of 

geological and environm ental importance. The transition from the 4+ to 

6+ oxidation state occurs at a redox potential w ithin the norm al range 

encountered in geological environments:

3U 02 + 2H20  + 0 2 ----------- > 3(U 02)2+ + 4 0 H ‘ +

E0 = 0.27 volts (Langmuir, 1978)

U nder oxidising conditions uranium  can therefore be oxidised to the 6 + 

oxidation state to form the soluble uranyl ion which plays an

im portan t role in uranium  transport during  w eathering. U ranium  is 

therefore a mobile element under oxidising conditions, and can be separated
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from thorium  which exists only in the 4+ state and has extremely low 

solubility in most natural waters.

U ranium  and thorium  are relatively highly concentrated in igneous rocks 

and, in particu la r, silicic rocks such as g ran ite  in w hich typical 

concentrations of 1 to 10 ppm  uranium  and 5 to 40 ppm  thorium  are 

observed. These concentrations are up to two orders of m agnitude higher 

than  those of basaltic  rocks. A lthough  u ran iu m  and  thorium  

concentrations increase from basaltic rocks to granitic rocks, the T h /U  

concentration ratios remain virtually constant, ranging from 3 to 6 . The 

constancy of this value among many different igneous rock types indicates 

the general lack of fractionation of the two elements during magmatic 

processes.

In the course of partial melting and fractional crystallisation of magma, 

uranium  and thorium  are concentrated in the liquid phase and become 

incorporated into late crystallising magmas and residual solutions because 

their large ionic radii preclude their incorporation in early crystallising 

silicates such as olivine, pyroxenes and plagioclase. It is for this reason, that 

igneous rocks of granitic composition are strongly enriched in uranium  and 

thorium  compared to rocks of basaltic or ultramafic composition.

Uranium  and thorium  are distributed in three ways in igneous rocks: (i) by 

direct cation substitution in the silicate lattice of the major rock-forming 

m inerals which have uniformly low uranium  and thorium  concentrations, 

of the order of a few ppm  or less, (ii) is  m inor or major components of 

accessory m inerals such as apatite, m onazite and xenotime (phosphates); 

uraninite and thorianite (oxides); zircon, thorite and allanite (silicates); and 

sphene (titano-silicate), and (iii) by adsorption on the surfaces of lattice
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defects or crystal and grain boundaries (Gascoyne, 1982; Faure, 1986).

U ranium  and thorium  concentrations vary m arkedly betw een different 

sedim entary rocks depending upon the geochemical conditions in the 

depositional environment. The T h /U  concentration ratios of sedimentary 

rocks are sim ilar to those of igneous rocks, w ith the exception that 

sedimentary carbonates have a T h /U  concentration ratio of about 0.8 (Faure, 

1986). The uranium  concentration of carbonate rocks of about 2 ppm  results 

from the fact that uranium  occurs in the ocean as the soluble uranyl ion 

which co-precipitates w ith calcium carbonate, while thorium  is almost 

exclusively transported bound in insoluble, obdurate detrital minerals or 

adsorbed on the surface of clay minerals. Uranium  is found to be strongly 

enriched in certain organic sedim ents, particularly  those form ed from 

humic substances, such as coal (10 - 600 ppm).

The prim ary source of uranium  and thorium in the geochemical cycle is the 

weathering of felsic igneous rocks where they are present almost entirely as 

U ^ 1" and Th^+. During surficial chemical weathering processes uranium  is 

oxidised to soluble uranyl ions, (UC>2)2 +, whereas thorium  exists only in the

4+ state, in com pounds generally insoluble in water. The degree of their 

so lub ility  in a given env ironm ent is dep en d en t on a num ber of 

geochemical variables, especially the Eh-pH conditions, the availability and 

concentration of complexing ions, and tem perature and pressure (Mason 

and Moore, 1982). The dom inant factor giving rise to the difference in 

solubility between uranium  and thorium  however, is the difference in their 

values of ionic potential, which is defined as the ratio of ionic charge to 

ionic radius (A) and which controls the degree of hydration, hydrolysis, 

complex formation and particle or surface reactivity of an ion in solution. 

Table 1.1 shows ionic radii, ionic potentials and general solubility



Table 1.1. Ionic potentials, radii and general solubility characteristics of some 
selected elements (Henderson, 1982; Mason and Moore, 1982; Greenword and 
Earnshaw, 1984).

Ion Radius (A) Ionic Potential General Solubility
____________________________________  Characteristics

Cs+ 1.67 0.60
N a+ 1.02 0.98
Ra2+ 1.48 1.35
Sr2+ 1.12 1.69
Eu2+ 1.17 1.71
Mn2+ 0.83 2.41
Fe2+ 0.78 2.56
Co2+ 0.745 2.68
La^- 1.14 2.60
AC3+ 1.12 2.68
Zn2+ 0.740 2.70
N i2+ 0.690 2.90
Ce3+ 1.01 2.97
N d3* 0.987 3.00
Sm3+ 1.04 3.00
Am 3+ 0.98 3.06
Eu3+ 0.947 3.17
Y b^ 0.86 3.50
Lu3+ 0.85 3.50
Sb3* 0.76 3.95
Th4+ 0.94 4.25
Po4+ 0.94 4.25
Ru3+ 0.68 4.41
lj4+ 0.89 4.49
Ce4̂ 0.87 4.60
Pu4+ 0.86 4.65
Fe3+ 0.645 4.65
Co34- 0.61 4.92
Pb4* 0.775 5.16
Zr4+ 0.72 5.55
Tc4+ 0.645 6.20
Pa3*- 0.78 6.41
Np5+ 0.75 6.66
Pu3* 0.74 6.76
Mn4+ 0.53 7.55
U6+ 0.73 8.22
pu6+ 0.71 8.45

Generally soluble

Generally insoluble

Intermediate solubility

Soluble
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characteristics for uranium , thorium and other elements of interest in this 

study.

In oxidising groundw ater systems uranium  transport occurs mainly as U^+ 

species, commonly as (U0 2 )2+ in the form of highly stable complexes with 

ligands such as fluoride (UC^F)"1", phosphate [U0 2 (HPC>4 )]2", hydroxyl 

{[U0 2 (0 H )]+ and [(U0 2 )3(OH)5]+}, silicate [U0 2Si0 3 (0 H )3]+, sulphate 

[(UO2XSO4)]0, carbonates [(U02)(C03)]0; [(U02)(C03)2]2-; [(U C ^X C C ^4’ and 

organic complexes (Garrels and Christ, 1965; Langmuir, 1978). The most 

significant uranyl complexes in natural w aters betw een pH  4 to 10 are 

uranyl carbonates and uranyl phosphates (Langmuir, 1978; Tripathi, 1979), 

as indicated in Figures 1.2, 1.3 and 1.4. Furthermore, Hostetler and Garrels 

(1962) have shown that uranyl carbonate complexes exhibit considerable 

stability even under slightly reducing conditions. The formation of such 

complexes greatly increases the solubility and m obility of uranium  in 

surface and ground waters.

Conversely, in reducing groundw ater environments U^+ is reduced to U4_l" 

and precipitates as uraninite (UO2) and coffinite [U(SiC>4)] (Langmuir, 1978;

Boyle, 1982; Ivanovich and Harm on, 1982), as in sedim entary uranium  

deposits (Hostetler and Garrels, 1962; Nash et al., 1981; Brookins, 1984).

4U 02(C03)34‘ + HS" + 15H+ ------ > 4U 02 + S042' -1- I2CO2 + 8H20

Moreover, uranium  in solution can also be removed by sorptive materials 

such as zeolite, clay, lim onite and organic m atter (D em ent'yev and 

Syromyatnikov, 1968; Doi et al., 1975; Andreyev and Chuvachenke, 1964; 

Milodowski et al., 1990; Lovely et al., 1991). As a result of precipitation and 

sorption processes, the uranium  content of natural waters may decrease
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Figure 1.3: D istribution o f  uranyl com plexes plotted against pH at
25°C  for a total U concentration o f  10‘8 M, in the presence o f  other 
ions: F = 0.3 ppm, Cl = 10 ppm, SO4 = 100 ppm, P 0 4 = 0.1 ppm, and Si0 2  = 
30 ppm (from Tripathi, 1979).
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Figure 1.4: Eh-pH diagram in the UO2 - CO2 - H 2Q system 
at 25°C for Pcc>2 = 10-2: atm. Uraninite, UO^ (c), solution 
boundaries are draw n at 1 0 - M (0.24 ppm) dissolved uranium 
species (Langmuir, 1978).
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drastically in response to varying geochemical conditions.

Ranges of uranium  concentrations in natural waters of the world have been 

tabu lated  by Rogers and Adams (1970). In seaw aters, the uranium  

concentration is almost constant, at 3.2 pp b  (Henderson, 1982). However, 

the uranium  content of fresh water is highly variable, depending on local 

conditions such as rock types, flow rate of water, evaporation and physico­

chemical conditions of the environm ent (Barker and Scott, 1958; Cohen, 

1964; Lopatkina, 1964; Langmuir, 1978; M oham ad, 1980; Dominik et al., 

1991). Typical ranges of uranium  concentrations in rocks and waters in the 

hydrological cycle are shown in Figure 1.5 (Gascoyne, 1982; Henderson, 

1982).

1.3 The Natural Radioactive Decay Series

2 3 8 ^  235pj and 2 3 2 ^  are the parents of the three natural radioactive decay 

series shown in Figure 1.6. Investigation of the systematics of radioactive 

disequilibrium  within these decay chains provides a powerful method of 

defining the rates and mechanisms of natural environm ental processes. 

Before describing such studies it is helpful to outline the radioactive decay 

and growth processes which apply to disequilibrium situations affecting the 

decay series nuclides in natural systems. The basic equation describing the 

rate of decay of an unsupported radionuclide is:

At = A o e '^    1.1

where, A0 is the activity at time zero, At is the activity at time t and X  

is the decay constant (such that X  =  In 2 / 11/2).



Figure 1.5: Typical ranges of 234u /238u  activity ratios and uranium  
concentrations of waters and rocks (from Gascoyne, 1982).
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In the case of a pure fraction of a parent nuclide X that decays to form a 

daughter nuclide Y, if no atoms of Y are present initially, and closed system 

conditions apply, the activity of Y at time t is given by:

Ay

(Ay), =   (Ax)0 (e - e ’V )    1.2

y * *

In the case of more than two radioactive products in one chain, the solution 

is given by the Bateman equation (Friedlander et al., 1981).

If (ti/px *s much greater than (t1 ̂ )y then Ax will be much smaller than A , 

therefore,

and e " ^  ~ 1, and for values of t small relative to (t1/2)x, Ax will be 

effectively constant.

Thus, equation 1.2 reduces to:

(Ay)t = A x d - e - y )    1.3

As t becomes large relative to ( t^ )^  the system will come to a condition of

radioactive equilibrium, known as secular equilibrium, in which the rate of 

decay of the daughter is equal to that of its parent:

If the half life of the parent radionuclide is only slightly greater than that of
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its daughter ( i.e. is slightly less than Xy), the approximations used above 

for secular equilibrium do not apply, and as t becomes large relative to (t1/2)y 

a state of transient equilibrium is reached in which

Ay Xy
—  = .............. .................... 15
Ax Xy - Xx

In a geological system which has remained closed for at least 10^ y, secular 

equilibrium  will be established in the three decay series and the specific 

activity (Bqkg"l) of all daughter nuclides will be equal to that of the parent 

member of the chain. Thus, the activity ratio of paren t/daugh ter pairs (eg. 

234U/238U, 230fh/234u, 226Ra/Z30rh) wiH be unity. Thus we may expect that 

such equilibrium  should obtain in the unw eathered rocks of the Criffel 

pluton, the focus of the present study, which was emplaced 397 ± 2 x 10^ y 

ago. Any disequilibrium  of natural decay series p a ren t/d au g h te r pairs 

found here would therefore indicate that rock-water interaction has taken 

place within the last 1 x 10^ y. In contrast, in open systems that are exposed 

to w eathering and groundw ater circulation, separation of paren t and 

daughter members in the decay chains can occur by dissolution of soluble 

nuclides in groundw ater. The differences in chemical and physical 

properties of the various descendants of 238^ 235]j ancj 232rpb [ n  the natural 

decay series (Figure 1.6) give rise to differences in their solubilities; 

pronounced radioactive disequilibria are consequently observed in natural 

waters. Uranium  (6+), radium  and radon are generally soluble, whereas the 

other decay chain nuclides are highly insoluble. For example, 230fb is 

much less soluble in normal, neutral groundwaters than is its parent 234u. 

If the rock is fractured, as in granitic rocks, and groundw ater percolates 

through it, uranium  will tend to be preferentially leached from the rock,
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with the result that the 230ph/234u activity ratio will increase above the 

equilibrium  value of unity  (230rh/234]j > i). if the groundw ater then 

encounters varying geochemical conditions (eg. reducing zone) along its 

flow path, re-deposition of the uranium  can occur, resulting in a 230rh/234u 

activity ratio in the precipitate below its equilibrium value of unity. Such a 

230fb/234u activity ratio can thus be taken to indicate recent deposition of 

uranium  in a rock. Radioactive disequilibrium in the natural decay series 

can be used to investigate natural processes such as m igration/retardation 

of nuclides in a bedrock environment. Other established applications of the 

natural decay series radionuclides include geochronological studies, 

uranium  prospecting techniques, hydrological investigations and marine 

chem istry studies (Ivanovich and Harm on, 1982; Faure, 1986). These 

applications lie outside the scope of the present study.

D uring chemical w eathering relatively large scale fractionation of the 

isotopes 238jj anc[ 234]j can occur as a result of preferential leaching into 

solution of 234fj relative to 238u. Two mechanisms are assum ed to be 

involved in the enhancem ent of the 234-Q /238U  activity ratio in the 

aqueous phase: (i) direct alpha-recoil of 234ph across the so lid /liqu id  

interface w hen 238u decays close to the surface of a m ineral and (ii) 

preferential leaching of m inerals along alpha particle dam age tracks 

produced by the decay of 238]j (Fleischer and Raabe, 1978; Fleischer, 1982a; 

1982b). Consequently the 234u /238u  activity ratio of natural waters and of 

secondary uranium -bearing minerals precipitated less than 106 y ago is 

generally greater than unity, whereas that of weathered rocks is generally 

less than  un ity  (Chalov, 1959; Chalov et al., 1964; Kigoshi, 1971; 

Cherdyntsev, 1971; Kobashi et al., 1979; Gascoyne, 1982). 234u/238|j activity 

ratios in groundw ater have been obseived to vary from 1 to about 10
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(Osmond and Cowart, 1976), and the corresponding range in river waters is 

between 1 and 2 (Thurber, 1965; Cherdyntsev, 1971). Ocean water has a fairly 

constant activity ratio of about 1.14 (Thurber, 1962). Typical

ranges of 234u /238 u  activity ratios of the hydrological cycle are shown in 

Figure 1.5 (Gascoyne,1982).

The parents of the two uranium decay series 23®U anj  235u are chemically 

equivalent and do not undergo fractionation in norm al geochemical 

processes. Their isotopic abundance ratio (238jj/235u) in naturally occurring 

m inerals is constant at an atomic ratio of 137.5 ± 0.5, the only known 

exception to this being in the uranium deposits of Precambrian age at Oklo 

in Gabon, Africa (IAEA, 1978). The uranium deposits here are significantly 

depleted in 233u  because this isotope was consumed by neutron-induced 

fission when the deposits became natural fission reactors about 1.8 x 10^ y 

ago (Lancelot et al., 1975; Kuroda, 1982). The isotopic abundance of 235jj in 

the ore mined at Oklo is as low as 0.3% compared to the 0.72% in normal 

uranium  ores or minerals.

Detection of disequilibrium between any parent-daughter nuclide pair in a 

rock not only shows that migration of one of the nuclides has occurred (and 

therefore indicates the physical and chemical conditions in the rock) but can 

also indicate the time interval over which this migration has taken place. 

For instance, disequilibrium  between 238U and 234U indicates differential 

migration of these isotopes within the last 106 y. Any migration prior to 

this w ould not be observed today because radioactive equilibrium would 

have been re-attained. In addition, other daughter-parent activity ratios can 

be applied to different timescales, eg. 23CW 234U can show migration within 

the last 3.5xl05y and 226R a /230Th within the last 8.0xl03 y (five half-lives of 

the daughter nuclide). Schwarcz et al. (1982) have presented qualitative
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interpretations of natural decay series disequilibrium data, indicating the 

order of m agnitude of the interval that has elapsed between events based 

upon the departure of the activity ratio from unity for the pairs ^ U / ^ U ,  

230rh/234u and ^R a/Z K frh  (Figure 1.7).. A highly convenient m ethod of 

presentation of natural decay series analytical data for rock samples is in the 

form of a graph plotting one radionuclide activity ratio against another. For 

example, Latham and Schwarcz (1987a, b, c) have utilised plots of 234 u /238u 

against 23*3T h/234u and 226R a/23̂ Th against 230 r h /234u to illustrate the 

effects of various removal and deposition processes affecting uranium  and 

radium  in rocks.

Thiel et al. (1983) dem onstrated  tha t d ifferent types of uranium  

mobilisation or deposition can be mathematically modelled using a linear 

plot of the ^ U / ^ U  activity ratio versus the 23(3T h/23®U activity ratio for 

rock samples. This method has been adopted and extended by Scott et al. 

(1992). In such an approach, it is assumed that the rock initially exists with 

the natural decay series radionuclides in a state of secular equilibrium, and 

that its equilibrium  is then disturbed by the addition of uranium  from 

groundw ater, or removal of uranium  to groundw ater, either in a single 

event or in a continuous process. Thorium  is assum ed to be highly 

insoluble. The 23^U /23̂ U versus 230rh/238u plot can be divided into 

various sectors representing the effects of different uranium  deposition or 

removal processes as shown in Figure 1.8. The different sectors of the graph 

correspond to (i) a uranium  removal area (A) involving either continuous 

or sudden removal of uranium , and a uranium  removal area (A') which 

can only be attained by sam ples which have undergone rem oval of 

uranium  in a single rapid event and cannot be attained by samples subject 

to continuous removal of uranium , (ii) a uranium  deposition sector (B) 

involving either continuous or sudden deposition of uranium , and a
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Figure 1.7: Behaviour of model systems which have been disturbed at 
various past times. Interpretations of the isotopic data indicating the 
order of m agnitude of the interval that has elapsed betwen events (from 
Schwarcz et al., 1982).
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Figure 1.8: Regions o f uranium deposition and removal in
a plot o f  2 34u /238u  versus 2 3 0 p h /2 3 8 u  for w h o le-ro ck  
sam ples based upon Thiel et al. (1983); A lexander et al. 
(1989); Scott et al. (1992).
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uranium  deposition area (B') which can only be attained by samples which 

have undergone deposition of uranium in a single rapid event and cannot 

be attained by samples subject to continuous deposition of uranium , and 

(iii) two regions (C) in the plane which are inaccessible by any single process, 

and these sectors are consequently classed as "forbidden" or "complex 

process" areas. The arrows in Figure 1.8 represent the result of sudden 

uranium  accum ulation or removal and the system , as it returns to 

equilibrium, trace out curves in the plane. The simplest cases of sudden 

deposition or removal w ithout 234U/238U disequilibrium  are shown in 

Figure 1.8, which indicates that the return to equilibrium merely proceeds 

back to the origin along the x-axis. Details of mathematical modelling 

involving 23&U decay series disequilibrium are given in Alexander et al. 

(1989) and Scott et al. (1992). Plots of this type will be used in interpretation 

of the uranium  decay series analysis data from the Criffel pluton study.

1.4 Geochemistry of the rare earth elements

This section presents a brief review of the geochemistry of the rare earth 

elements of relevance to their geosphere transport and retardation as they 

can occur as fission products in high level waste and are also used as 

analogues for trivalent actinides.

The rare earth elements, lanthanum  to lutetium (La-Lu), are members of 

Group IIIA in the periodic table, and ail have very similar chemical and 

physical properties. They generally exist in the 3+ oxidation state, and 

exhibit systematically decreasing radii with increasing atomic number, from 

1.14A for lanthanum  (z = 57) to 0.85A for lutetium  (z = 71). The ionic
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potentials of the rare earth elements consequently show a systematic 

1 increase with increasing atomic number, and this affects their geochemical 

properties, resulting in increasing reactivity with respect to hydrolysis, 

adsorption and precipitation and a corresponding decrease in solubility with 

■ increasing atomic num ber (Table 1.1). Thus, despite the general similarity 

in their chemical behaviour, these elements can be fractionated by 

petrological and mineralogical processes during the formation of igneous 

rocks, and by w eathering processes in open systems. There are two 

exceptions to the general 3+ oxidation state for the REE, namely cerium and 

europium, which in addition to the 3+ state can exist in the 4+ and 2+ 

oxidation states respectively. As a consequence of these changes in 

oxidation state, cerium  and europium  can exhibit different solubility 

characteristic to the other REE as a function of redox potential. Thus Eu^+ is 

generally more soluble, while Ce^+ is generally less soluble than the other 

REE, and this can result in europium  and cerium enrichment or depletion 

in m inerals as a resu lt of ro ck /w ater interactions. Details of the 

geochemistry of the rare earth elements are given in Henderson (1984).

In geochemical studies, analytical data for the rare earth elements are 

normally presented in a graphical form in which the concentrations are 

normalised to those of the corresponding elements in a chosen reference 

material, eg. chondrite or shale (Henderson, 1982). The advantages of this 

approach are that any variation between rare earth elements of odd and 

even atomic num ber is elim inated and enrichment or depletion of rare 

earth elements relative to the reference material is easily seen.

Igneous rocks generally contain several hundred ppm  of the rare earth 

elements, d istribu ted  across both the major and accessory minerals 

(Henderson, 1984). The light rare earth elements, i.e La-Sm (LREE) are
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usually concentrated in plagioclase, K-feldspar, apatite and biotite, whereas 

pyroxenes, amphiboles and garnet commonly concentrate the heavy group 

of the rare earth elements, i.e Eu-Lu (HREE). The ability of amphiboles to 

fractionate HREE has been shown by Arth and Barker (1976) in dacitic rocks 

of northern Minnesota. In granitic rocks the REE are mainly concentrated 

in accessory minerals such as sphene, apatite and monazite, which tend to 

preferentially concentrate the LREE. Stephens et al. (1985) have investigated 

the REE distribution in the Criffel pluton and observed a progressive 

decrease in total REE concentrations towards the centre of the pluton i.e. 

from granodiorite to granite zones. The REE distribution patterns also 

correlated strongly with Sr (S^Sr/^Sr) an^ O isotope data. The LREE/HREE 

and La/Yb values showed considerable variations over the pluton, with a 

distinct trend of increasing La/Yb in the granodiorite towards the biotite- 

bearing granite, followed by a marked drop and continuing decrease in the 

muscovite-bearing granites. The studies of Stephens and Halliday (1980) 

and Stephens et al. (1985) led to the presently accepted classification of the 

zoning of the pluton as described in section 1.7.

In sedimentary rocks, the REE content varies markedly depending upon the 

composition of the sediment. For instance, in oceanic carbonates and shales 

clay m inerals are usually present in abundance and such sediments 

consequently have high REE concentrations. The REE concentration 

patterns in various shales are very similar to each other, being enriched in 

LREE relative to HREE (Henderson, 1984), and shales have therefore been 

used for normalising REE concentrations for sediment samples. In contrast, 

sandstones usually  have low REE concentrations due to low REE 

concentrations in the major constituent minerals of sandstone, eg. quartz. 

However, in some sandstones, obdurate detrital grains of minerals such as 

apatite, zircon or monazite, are present in abundance, and sandstones of
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this type are rich in REE. In metamorphic rocks, garnet is a very efficient 

concentrator of the HREE as reported by Schnetzler and Philpotts (1970) for 

gneissic rocks. In addition, White et al. (1972) have analysed both garnet 

and pyroxene in eclogite from New Zealand, and found that the heavier 

REE tend to concentrate more in the garnet.

The rare  earth  elem ents occur in high concentrations in several 

economically im portant minerals such as bastnaesite (CeFCOg), monazite 

[(Ce,La,Nd,Th)P0 4 ] and cerite [(Ca,Mg)2(Ce)g(SiC>4)7.3H2C)]. They also occur 

as trace elements in common rock-forming minerals in which they replace 

major ions in the crystal structure, and may also reside in inclusions of 

accessory m inerals such as apatite , zircon, xenotim e and allanite 

(Henderson, 1984). M onazite found in Malaysia, for instance, typically 

consists of 25% Ce2 0 g, 2% Sn^Og, 2% Y2O3, 27% phosphate, 6% ThC>2 and 

0.2% UgOg, whereas xenotime consists of 35% Y2 0 g, 4% Dy2 0 g, 4% Yb2 0 g, 

29% phosphate, 0.7% Th0 2  and 1.6% UgOg (Sulaiman, 1991). So it appears 

that both REE and actinides exist together in these minerals, reflecting their 

geochemical coherence, and thus strongly supporting the use of REE as 

analogues for actinides.

During weathering only a very small proportion of the total REE content of 

the rock goes into solution during rock-water interaction as they have a 

generally low level of solubility. In general preferential dissolution of the 

light REE (except Ce which is present in the less soluble 4+ valence state) 

occurs and this can result in fractionation between the REE during 

weathering (Fleet, 1984). The small fraction of the REE that is dissolved is 

highly susceptable to re-deposition in secondary minerals such as iron and 

manganese oxyhydroxides or adsorption onto clay minerals. For example, a 

study of altered granodiorite in Victoria, Australia (Nesbitt, 1979 ) has shown
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that REE concentrations were depleted, and fractionation of light and heavy 

REE was observed as a result of preferential uptake of HREE in the exfoliate 

and friable zones of vermiculite (alteration product of biotite) and Fe-Ti 

oxyhydroxides (alteration products of hornblende and biotite), while 

kaolinite and illite (alteration products of feldspars) may accommodate the 

LREE. In the marine environment, Elderfield and Greaves (1982) observed 

fractionation between light and heavy 3+ REE in seawater from the North 

Atlantic Ocean where the surface-water was found to be highly enriched in 

light REE relative to the base of the mixed layer, whereas the HREE were 

slightly depleted. Fractionation of the heavy and light REE (except Ce) was 

found to be a maximum at the base of the mixed layer (-100 m depth), 

indicating that surface removal processes are effective in that zone.

Rare earth elements have been used in a num ber of natural analogue 

studies. For exam ple Lei et al. (1986) observed that lanthanum  and 

neodym ium  are practically immobile in the Morro Do Ferro Th/REE 

deposit in Brazil, and concluded that this observation gives some assurance 

that the long-lived isotopes of curium and americium in high level waste 

would decay in-situ if emplaced under similar conditions to those which 

exist there. In addition, Krauskopf (1986) has observed low concentrations 

of lanthanum  and neodym ium  in groundw ater and surface water in the 

vicinity of the M orro do Ferro m ineralisation and has concluded that 

neither americium nor curium  w ould escape from a breached high level 

radioactive waste repository.
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1.5 Radioactive waste disposal

This section presents a general overview of the origin, and types of 

radioactive wastes and of proposed methods for their disposal. Particular 

emphasis is placed upon the mined repository option which is the method 

currently being considered by many countries for the disposal of high level 

waste.

1.5.1 Origin and types of radioactive wastes

Radioactive waste arises from the use and handling of radioactive materials 

in nuclear power production, industry, defence, medicine and research 

activities. The nuclear industry  gives rise to the largest quantities of 

radioactive waste, where it arises at all stages of the nuclear fuel cycle as 

shown in Figure 1.9. Mining, milling, purification, and fuel fabrication 

stages produce wastes that are not too difficult to manage because they 

contain only naturally occurring radionuclides at relatively low levels. By 

far the major concern of radioactive waste m anagem ent is therefore 

connected with irradiated fuel and the highly radioactive wastes that arise 

from the processing of such material.

There have been m any attem pts to develop quantitative systems of 

classification of rad ioactive  w astes according to activity, but the 

heterogeneous nature of the wastes and their varied origins can make this 

very difficult. For operational purposes radioactive wastes are generally 

classified into low (LLW), interm ediate (ILW) and high (HLW) level 

catagories, but there is no rigorous, internationally accepted, definition of 

these levels. In the United Kingdom the LLW/ILW division is at 4 GBq/1
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Figure 1.9: Schem atic diagram show ing the major
steps in the nuclear fuel cycle and main radioactive 
w aste  stream s g en erated  w hich  require d isp osa l 
(from NEA/OECD, 1977).
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for alpha activity, and 12 G Bq/t for beta-gamma activity (Chapman and 

McKinley, 1987). LLW generally includes material from power stations, 

hospitals, research laboratories and industry , such as contam inated 

laboratory clothing and activated plant and equipment. ILW consists of 

irradiated fuel-cladding, reactor components and chemical process residues. 

The term HLW is reserved specifically for reprocessed nuclear fuel wastes or 

spent unreprocessed fuel itself. The composition of HLW is therefore 

relatively well defined, but shows some variation according to the type of 

reactor and fuel reprocessing involved. The specific activity of this waste is 

so high that it generates significant heat and special provision has to be 

made for cooling. Initially, the waste is stored as a liquid in high integrity 

tanks with m ultiple cooling systems and located inside massive concrete 

shielded cells. After a delay of a few decades to allow some of the shorter- 

lived radionuclides to decay, it is intended that the waste will be vitrified, by 

incorporation into large glass blocks which will then be encased in stainless 

steel canisters. Some of the radionuclides of potentially major radiological 

significance in high level waste are shown in Table 1.2 (Chapman, 1984; 

Chapman and Smellie, 1986). The actinides are very significant in waste 

management terms since some have long half-lives such as 237Np (2.04 x 

106 y), 239pu (2.44 x 104 y), 243Am (7.4 x 103 y) and 247Cm (1.64 x 107 y), and 

many are a-em itters (consequently presenting a potentially high biological 

hazard). Figure 1.10, which shows the toxicity index (or activity) of various 

radionuclides in HLW as a function of time after unloading, reveals that 

the major isotopes of plutonium  and americium will decay appreciably 

within about 105 y. A few very long-lived nuclides, such as % & N p , 129I, ^T c 

and daughter products of uranium  will, however, be present at significant 

levels of activity for more than 10^ y. Any safe form of disposal of high 

level radioactive w aste m ust, therefore, ensure its isolation from the 

biosphere for at least lO^y.
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Table 1.2: Some im portant radionuclides of high-level waste (from
Chapman et al., 1984; Chapman and Smellie, 1986).

Element Isotopes of Interest Half-life (y)

C 14 5.7x103
Ca 41 1.3 xlO5
N i 59 8.0 x 104
Se 79 6.5 x 104
Zr 93 1.5 xlO6
Mo 93 3.5 x 103
Tc 99 2.1 x 105
Pd 107 6.5 x 106
Sn 126 1.0 xlO5
I 129 1.6 xlO7
Cs 135 2.3 x 106
Ra 226 1.6x103
Th 229,230 7.3x103; 7.5
Pa 231 3.3 xlO4
U 233, 234 1.6x105; 2.4

235, 236 7.0 x 108; 2.3
238 4.5 xlO9

Np 237 2.1 x 106
Pu 239,242 2.4xlO4; 3.8
Am 241, 243 7.4 x 103
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Figure 1.10: Toxicity index of high level waste
as a function of time (from NAGRA, 1985).
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1.5.2 Methods of disposal

There are two fundam ental options available for disposal of radioactive 

waste: either to keep it in the same place for as long as necessary, (i.e. 

concentrate and confine), or to allow natural processes to mobilise and 

disperse it to harmless levels (i.e. disperse and dilute). The first option 

means that the waste radionuclides remain a potential hazard at one place 

over a long period of time, since their concentrations are only slowly 

reduced by decay, w hereas the latter option w ould allow for waste 

radionuclide mobilization and transportation by natural processes, resulting 

in their dilution in a widely dispersed form at concentration levels low 

enough to present no significant hazard.

The conventional method for disposal of solid low level radioactive waste 

(LLW) is by burial near the land surface. Because of the comparatively low 

levels of activity involved, the degree of construction required for LLW 

disposal is not high and it is common practice to use concrete lined trenches 

(IAEA, 1981) such as at Drigg near the BNFL Sellafield nuclear fuel 

reprocessing plant. However, more serious problems are encountered with 

ILW and HLW because of the higher activity levels involved and the 

presence of long half-life and a-em itting nuclides. A number of options 

have been considered for disposal of ILW/HLW (IAEA, 1982; Chapman and 

McKinley, 1987; NEA/OECD, 1984a) including: (a) disposal in space (b) 

disposal in an ice sheet (c) disposal in the sea, and (d) mined geologic 

disposal.

By far the greatest effort internationally has been devoted to investigation of

(d), the mined repository option since the other options (a-c) listed are 

considered to be too expensive, to present too great a risk, to be beyond the
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present state of technical knowledge or to be politically unacceptable. For 

instance, deep sea disposal appears to present a safe, practical and 

economical option for waste disposal but the international aspect of any 

resu ltan t con tam ina tion  has rendered  this approach  politically  

unacceptable, and treaties banning such disposal are currently in force, eg. 

the London D um ping C onvention of 1975 (NEA /O ECD , 1984a). 

Consequently, geological disposal is the method currently being adopted in 

all countries where HLW disposal is planned (NEA/OECD, 1984b; WHO, 

1982) and a w ide range of potential ’host rocks' is being considered for 

repository development. For instance, salt deposits are being studied by the 

Federal Republic of Germany; crystalline rock in Switzerland, Sweden, 

France, Canada and the United Kingdom; tuff in the United States of 

America; argillaceous rock in Italy, Belgium, France, Switzerland and the 

United Kingdom (Brookins, 1984; Chapman and McKinley, 1987; USDOE, 

1988; NEA/OECD, 1984b).

The following points are generally considered to be of major importance in 

evaluating the functional requirem ents of any disposal system for 

ILW/HLW (Chapman and McKinley,1987).

(a) the extremely long periods over which isolation is required

(b) assurance of low release rates once the required period of isolation is 

complete ;

(c) removal of the wastes from the effects of man's activities or catastrophic 

natural events;

(d) the technology to implement disposal should be available, and the task 

should be achievable at reasonable cost;

(e) it must be possible to model, with an acceptable degree of confidence, 

those processes which control the long-term performance of the chosen
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Proposals for disposal of radioactive waste in underground repositories 

have attem pted to address these points by development of a multi-barrier 

system in an attem pt to guarantee the safe isolation of radioactive wastes 

from the biosphere. In this concept it is recognised that there are numerous 

mechanisms by which radionuclides could possibly return to the biosphere, 

but m ost of these are of low probability (although they w ould be 

catastrophic), eg. earthquakes and volcanoes. By far the most probable 

transport m echanism  leading to return of waste radionuclides to the 

biosphere would be by groundwater transport (i.e. this is by far the most 

probable critical pathway as shown in Figure 1.11), and this could present a 

radiological hazard if: (i) contaminated groundwater entered lakes, streams 

or rivers, with a radiological impact via fishing, irrigation, agriculture or 

drinking water, or (ii) groundwater resources were used directly by future 

generations via deep wells. The multi-barrier concept has been developed 

to guard the waste from perm eating groundwater, and to minimise the 

quantity and rate of release of radionuclides should water eventually reach 

the waste. A schematic diagram showing a typical plan of safety barriers 

(indicating both the near- and far-field zones) in a repository for high-level 

waste is shown in Figure 1.12. The near-field zone is generally taken to be 

the repository itself and the zone altered by the presence of the emplaced 

waste, comprising all the engineered barriers (i.e. waste form, canister and 

backfill materials) and extends a small way into the host rock itself. On the 

other hand, the far-field zone (i.e. geologic barriers), which is the most 

im portant of the barriers to waste m igration, extends through the 

undisturbed host rock and the surrounding geological formations. In 

multi-barrier designs, the details of individual barriers may differ from one 

disposal system to another, but the purposes of the individual barriers



Figure 1.11: Probable critical pathway to the discharge
of underground high level waste.
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Figure 1.12: Schematic  il lustration o f  the mult i ­
barrier system for high level waste (from McKinley,  
1989; Chapman and McKinley, 1987).
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remain basically the same as described below.

(a) The first barrier is the waste package, consisting of the waste form 

in a container. The waste form is designed to be resistant to leaching by 

groundwater, the prim ary agent for transport of radionuclides from the 

waste to the hum an environment. For example, in the case of high-level 

wastes, the waste form could be a special glass matrix of very low solubility 

containing im m obilised radionuclides. Upon the eventual ingress of 

groundwater, glass degradation would form an extensive suite of secondary 

minerals which should ideally incorporate radionuclides and form a 

diffusion barrier.

(b) The second barrier is the container in which the wastes are placed. 

This is constructed of materials (eg. steel or copper) which are resistant to 

corrosion in the chemical and physical environment expected in the waste 

repository. W hen all the canister m aterials have been corroded, the 

corrosion products are expected to have very low permeability and a high 

retardation/adsorption capacity for many radionuclides. In particular iron 

oxyhydroxides resulting from corrosion may buffer both pH and redox 

conditions (ensuring a chemically reducing environment, thus keeping the 

actinides in their less soluble forms) and strongly sorb many radionuclides, 

and thus would provide a site for scavenging of radionuclides dissolved 

from the waste form.

(c) The third barrier consists of backfill material (eg. dry bentonite 

clay) placed around the waste containers. The backfill initially prevents 

ingress of water, and bentonite is ideally suited to this purpose, having a 

high capacity for uptake of water which results in swelling, giving low 

permeability and sealing fractures in the surrounding structure. After the
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waste form has been breached by groundwater, the low permeability and 

high ion exchange capacity of the bentonite should restrict the rate of release 

of radionuclides from the repository.

(d) The fourth barrier consists of a concrete structure containing the 

bentonite, canister and the waste form. The concrete delays ingress of water 

and eventually, after ingress, gives high pH  conditions favouring hydroxide 

precipitation.

(e) The final barrier is the host rock, the function of which is to 

provide isolation of the waste and to give long periods of time for transport 

of escaped radionuclides to the biosphere if the engineered barriers were to 

eventually fail. In safety and perform ance assessm ents pessim istic 

assumptions are made about the time within which each of the engineered 

barriers will fail, with the result that the geosphere barrier becomes the key 

component of the multi-barrier design (McKinley and Haderm ann, 1984; 

NAGRA, 1985).

It is assumed that after closure of a radioactive waste repository water will 

penetrate zones of the host rock which have been drained during 

construction, then the backfill, and eventually come into contact with the 

canister which will begin to corrode. At some point canister failure will 

occur due to corrosive penetration or mechanical effects eg. due to external 

hydrostatic pressure or backfill swelling pressure, and finally water will 

come into contact w ith the waste itself. The waste will then begin to 

degrade and radionuclides will be released, either into solution or as 

particulates or colloids, and begin to migrate through the near-field and far- 

field and finally into the biosphere. It has been suggested that, following the 

ingress of groundwater into a repository, radiolytic decomposition of water
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could lead to the development of oxidising conditions, initially within the 

repository but, eventually, encroaching into the far-field especially along 

water-bearing fractures (Neretnieks and Aslund, 1983a and b). A schematic 

diagram showing the radiolytic development of oxidising conditions within 

a repository (near-field) and the extension of the oxidised zone into far-field 

is shown in Figure 1.13. However, in several disposal concepts the effects of 

oxidation are assumed to be buffered by the presence of (a) elemental iron 

in the canister material, and (b) ferrous minerals present in the host rock 

and the backfill (Hadermann and Rosel, 1985). It is therefore essential to 

characterise processes involved in far field radionuclide transport and 

retardation as described below.

Transport of radionuclides in crystalline rock (eg. granite) is assumed to 

occur predom inantly in water bearing discontinuities, eg. fractures and 

shear zones. In such transport it is assumed for modelling purposes that 

the two most im portant retardation mechanisms affecting the radionuclides 

are 'sorption ' on the fracture surface and 'matrix diffusion' into the 

structure of the rock on either side of the fracture (McKinley, 1989). 

Dissolved radionuclides will interact w ith the m inerals (eg. chlorite, 

montmorillonite, iron and manganese oxyhydroxides and sulphides) lining 

the fracture surface which have high adsorption capacity as reported by 

Smellie et al. (1986), Alexander et al. (1988) and MacKenzie et al. (1989). 

Modelling studies (Hadermann and Rosel, 1985) have shown that sorption 

alone can provide a significant barrier when a discontinuity is massive (eg. 

wide shear-zone or a large clay-rich channel). Interaction of radionuclides 

with the m ineral surface can be further subdivided into (a) 'reversible' 

sorption (i.e. ion-exchange, physical sorption), and (b) 'irreversible' 

deposition (i.e. mineralisation) as shown in Figure 1.14. The effects of (a) 

sre to slow down the rate of movement of radionuclides, whereas (b) will
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Figure 1.13: Schematic diagram of movement of a redox front along a 
fracture in the near-field of a radioactive waste repository (after canister 
failure and radiolysis of water have occurred).
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Figure 1.14: Schematic representation of the many possible 
retardation mechanisms that result from interaction between a 
rock surface and radionuclides in solution, particulate and 
colloidal form. 'R' represents the radionuclide species (from 
McKinley, 1989; Chapman and McKinley; 1987).
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give perm anent immobilisation.

'Matrix diffusion’ (or 'dead-end pore diffusion') is considered to occur 

when a concentration gradient is established betw een the fissure 

groundw ater and the reservoir of water in the dead-pores (or micro­

fissures) along the fractures of the main body of the rock. Under such 

conditions dissolved radionuclides will diffuse dow n concentration 

gradients into the pores (Figure 1.14). This is also a retardation rather than 

permanent immobilisation mechanism but is potentially so efficient that it 

could cause most radionuclides released from a HLW repository to decay to 

insignificant levels before they are released to the biosphere (Neretnieks, 

1980 and 1986). Matrix diffusion is a key component of far field transport 

m odels, and the effects of retardation are greatest when the water 

transporting feature is small eg. narrow fissures, perhaps only pm across 

(Hadermann and Rosel, 1985). The potential effects of 'matrix diffusion' to 

retard m igration of radionuclides in fractured granitic rock have been 

investigated by Smellie et al. (1986), Alexander et al. (1988), and a depth of at 

least 3 cm was suggested for the extent of migration of radionuclides from 

fracture fluids into the 'pore-space' w ithin the saturated  rock. The 

efficiency of 'matrix diffusion' depends critically upon the volume of 

accessible, hydraulically connected 'pore-space' in the rock on each side of 

the fracture but, in this context, matrix diffusion is still poorly understood at 

present.

In summary the net effect of the 'sorption' processes described above is to 

retard the movement of radionuclides released from a repository so that 

they lag behind the flow of groundwa.er. The other im portant process 

which can cause 'retardation' but does not directly fall into any of the 

catagories above is 'precipitation' which is primarily a function of aqueous



chemistry yet the kinetics of which may be dependent on the availability of 

particular surfaces. Additionally redox process, a potentially important 

factor in transport and retardation of radionuclides in the bedrock 

environment, will be discussed in the next section.

1.6 Natural Analogues

As indicated above the complexity and timescale of processes of relevance to 

modelling repository performance places considerable uncertainty upon the 

valid ity  of using theoretical considerations and laboratory  based 

experiments. Consequently there has been extensive development over the 

last decade of natural analogue studies for use in performance assessments. 

Such analogue studies can: (a) provide information for input to models, (b) 

be used to develop (or confirm) conceptual geochemical models and (c) test 

models. A review of some of the major applications of natural analogue is 

presented below. Such studies, although related primarily to radioactive 

waste disposal, can often provide information of fundamental geological 

im portance, for example on aspects of the developm ent of the low- 

temperature ore deposits (Mohamad et al., 1992).

1-6.1 Analogue studies for the waste form

In this case the main objective of analogue studies is to evaluate the long 

term stability of the waste form with respect to dissolution as a result of its 

reaction with perm eating groundwater and to determine the leach rate of 

specific elements.
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For waste vitrified in borosilicate glass the analogue can be natural glasses 

like obsidian or basalt glass. Naturally occurring obsidian and other glasses 

are, under many terrestrial conditions, stable for up to about 107 y (Lutze et 

ah, 1987; Zhou et al., 1987). Supporting evidence for the use of natural 

glasses as analogues for vitrified waste has been provided by Zhou et al. 

(1987) who have shown, in laboratory leaching experiments, that both the 

waste form and natural (basaltic and rhyolitic) glasses exhibit similar 

corrosion behaviour, forming hydration layers composed dom inantly of 

amorphous m aterial enriched in magnesium that may act as a barrier to 

further reaction. It was observed that both natural and synthetic glass 

exhibit comparable corrosion rates averaging about 2 x 10^  kg m ' 7 d"l (2.5 

(im/1000 y) (Lutze et al. 1987; Heimann, 1987).

The obvious analogue for an unreprocessed fuel element is a deposit of the 

same com pound in natu re  i.e. the common uranium  ore m ineral 

uraninite, or the less pure variety pitchblende. The waste form is, however, 

somewhat different from the natural material in that the waste contains 

elements not present in the natural mineral and its crystal structure will be 

partly disorganised by the intense radiation field and hence may be 

somewhat more soluble. Despite these differences the study of uraninite 

ore and its surroundings should provide clues as to the behaviour of spent
i

fuel, in particular its stability in a repository environment. At Oklo in 

Gabon, Africa, a uranium  deposit operated as a natural nuclear reactor 

about 2 x 109 y ago, over a period of 10^ to 10^ y (Brookins, 1984), during 

which time fission products and transuranics were produced. The 

uraninite ore has survived with little evidence of dissolution over the very 

long time since the reaction stopped. It is estimated that about 6 to 12 

tonnes of 7^LJ underw ent fission, and while the original radionuclides 

produced have long since disappeared, the stable isotopes such as lead and



48

bism uth resulting from their decay are readily detectable (Chapman and 

McKinley, 1987). At several places in the Oklo mine the products of a 

nuclear fission reaction were generated underground and then remained in 

a groundwater environment for some 2 x 109 y. Thus studies at the 'Oklo 

Natural Reactor' site show an ability of the surrounding rocks (i.e. shale and 

sandstone) to retain fission products, actinides and actinide-daughter 

products over a time of 109 y.

In addition  to the Oklo studies uranium  behaviour has also been 

investigated at other major deposits eg. Cigar Lake in Canada, Pocos de 

Caldas in Brazil and Alligator River in Australia. These ore bodies have 

been shown to have existed as stable features in a variety of rock types over 

very long times, eg. (a) Cigar Lake uranium deposit: located in sandstone of 

age about 1.3 x 109 y (Cramer, 1987); (b) Alligator River uranium  deposit: 

primary mineralisation comprising uraninite veins within^ sheared zone of 

quartz-diorite-schists of age about 1.6 x 109 y and secondary mineralisation 

in weathered schists of age greater than 1 x 10^ y (Deurden, 1990); and (c) 

Pocos de Caldas uranium  deposit (5 x 107 y): located in alkaline intrusive 

rock of age about 8 x 107 y (Waber et al., 1990).

The study of the rate of deposition and dissolution of uranium  in the 

natural environm ent was also carried out within the Pocos de Caldas 

project which focussed on uranium  nodules that occurred on both sides of a 

redox front in a uranium  orebody (MacKenzie et al., 1991). In this study, 

pitchblende nodules (~2cm and 4cm) were found near the redox front in the 

reduced rock and growth rates have been established at 1.8 - 2.6 cm in lO^y 

j (MacKenzie et al., 1991). The uranium nodules that occurred initially on 

the reduced side of the front were estimated to undergo dissolution after the 

redox front has moved and passed them m a time of the order of 10^ to 10^
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y .  On the basis of 2 3 0 T h / 2 3 4 u  a n c j  2 3 4 u / 2 3 8 u  d iseq u ilib riu m  

considerations Scott et al. (1992) derived 238u removal probabilities of 0.36 x 

10' 6 and 1.7 x 10"6 y"1 for the reduced and oxidised rock respectively. In 

addition natural 23^Pu, which only occurs in very few places in the world, 

was also found in a nodule from the reduced rock at Pocos de Caldas. The 

concentration of plutonium  in the nodule was measured as 2.3±0.7xl0^ 

atoms per gram, consistent with a state of secular equilibrium between 238jj 

and 239pu. Judging from the P u /U  ratio of the nodule we can summise that 

the two elements have resided unfractionated in the deposit for the last 10  ̂

y. The study thus reveals that uranium (plus daughters) and plutonium are 

chemically stable in the form of a nodule on the reduced side of a redox 

front in rock for at least 10^ y which would allow approximately 95% decay 

of 239pu in a repository.

A natural analogue study centred upon uranium dissolution has also been 

carried out on the southern edge of the Criffel pluton at an exposed 

uranium  m ineralised vein close to an ancient sea arch known as The 

Needle's Eye (MacKenzie et al., 1989). The age of the pitchblende vein was 

reported (Darnley et al., 1962) to be 185 ± 20 x 106 y, which is more recent 

than the age of the pluton of 397 ± 2 x 10^ y (Halliday et al., 1980). On the 

basis of 230Th/234]j and 234pj/238u disequilibrium considerations Scott et 

al. (1991) derived a removal probability of 5.2 x 10"3 y-l for dissolution of 

uranium  from the vein on the assum ption that leaching has been 

continuous since the end of the last glaciation (about 12000 y ago). On the 

other hand a uranium removal probability of 4.3 x 10"  ̂y"^ was estimated on 

the assum ption  tha t leaching has been going on th roughou t the 

Quarternary period, perhaps with temporary, short (relative to the 230ph 

half-life) in teruptions due to conditions under the ice-sheet. These 

estimates thus implied that uranium is being physically removed from the
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dissolution from the vein were identified, namely (a) long term, slow 

leaching (probably by reducing groundwater) with preferential loss of 234U 

relative to 238u, and (b) rapid, contemporary dissolution by oxidising 

groundw ater (MacKenzie et al., 1991) The uranium  in fissure water 

flowing from the area of the vein was found to be predominantly present 

(over 90%) in the 6+ oxidation state (Whitton et al., 1992). However, 

although oxidising w ater was in contact with the vein, only limited 

enrichment of uranium  was observed in fissure water (1 - 2.4 B ql'l) 

suggesting that the weathered vein material is probably relatively stable and 

forms a protective layer which retards d issolution of the deeper 

unweathered pitchblende.

1.6.2 Analogue studies for canister materials

In this case, the purpose of analogue studies is to establish rate of corrosion 

of potential canister materials eg. iron and copper.

Studies of archaeological artefacts have become accepted in analogue 

|  investigations for canister m aterials. Num erous examples of objects 

manufactured from copper or iron, which were widely used by primitive 

I  societies and in ancient civilizations, have been recovered after periods of 

burial of hundreds to thousands of years and are available for corrosion 

I  study. One example of such an analogue study of corrosion processes 

involved a bronze cannon, with a copper content of 96.3%, salvaged from 

the Swedish w arship "Kronan" which sank in the Baltic Sea in 1676 

(Hallberg et al., 1987). The cannon was embedded in a vertical position in 

the sediment with the top part exposed to oxidising conditions while the
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bottom  p a rt w as bu ried  in reducing  sedim ent (largely illites and 

montm orillonite) which was m oderately well compacted and was thus 

analogous to the bentonite clay barrier around canisters in a repository 

system. This study indicated that the rate of loss of copper has been about 4 

mg cm-2 over a period of some 300 years, resulting in a rate of corrosion of 

1.0 x 10"3 mm y 'l. Thus copper canisters with 10 cm thick walls for waste 

disposal should be able to w ithstand corrosion for more than 103 y if they 

experience a sim ilar rate  of corrosion. A dditionally  the Swedish 

experimental work on the corrosion behaviour of copper as a canister 

material for high level radioactive waste has been evaluated and confirmed 

that copper canisters with walls 10 cm thick would not be breached in 103 y 

at least (KBS, 1983).

Even longer survival times for copper canisters are suggested by studies of 

native copper deposits. For example, a study of the W hite Pine copper 

deposits of northern Michigan (White, 1968) has revealed that the native 

metal has rem ained intact during exposure to groundwater for a time of at 

least 970 x 106 y (Chaudhuri and Faure, 1967), since the late Precambrian. 

Native iron does not occur in rocks and the closest analogue for steel 

canisters are iron meteorites (composed of F e/N i alloys), which have been 

found at or near the Earth's surface and have survived for up to 2 x 104 y 

(Chapman and McKinley, 1987).

Preserved Rom an iron objects from  oxidising environm ents show 

corrosion rates between 0.1 and 10 pm y ' 1 (Chapman and McKinley, 1987), 

and this suggests that corrosion w ould  not breach thick-walled iron 

canisters (~10 cm) for at least 103 y. Laboratory studies (Marsh, 1982) of 

corrosion of iron show  com patible results w ith the data derived from 

archaeological studies. Moreover, high corrosion rates were observed at the



5 2

initial stage, and the rate decreased with time suggesting the formation of a 

protective layer of corrosion products. The study of uranium  migration 

and retardation in the Cigar Lake deposit (Cramer et ah, 1987) has indicated 

that ferric-oxyhydroxide phases at the clay-ore contact are strongly enriched 

in uranium, suggesting iron corrosion products can act as effective reducing 

and scavenging agents. In sum m ary, natural analogue studies relating to 

the tw o p roposed  canister m aterials i.e copper and iron provide 

confirmation of their durability  under actual environm ental conditions 

over time periods appropriate for HLW disposal.

1.6.3 Analogue studies for bentonite backfill

The main objective of analogue studies of relevance to bentonite backfill is 

to investigate its stability and to provide information on its capacity to 

retard radionuclide movement.

Bentonite clay exists in beds as old as mid-Palaeozoic (eg. Kinnekulle 

bentonite in Sweden) and there is ample evidence for its long-term stability 

at low tem peratures (Smellie and Papp, 1988). However, bentonite can 

change to illite at tem peratures above 100°C, if a sufficient source of K+ is 

present (Chapm an and McKinley, 1987). Nevertheless, studies of buried, 

smectite-rich sediments (i.e. closest analogue of bentonite; eg. Gulf zone of 

United States) have shown that the transformation of bentonite clay to illite 

is sluggish provided tem peratures do not rise far above 100° C (Krauskopf,

1988). The change to illite may not be seriously damaging to a repository, 

but it w ould certainly m ake the clay som ewhat more permeable, less 

expansive and less sorptive. This should not present a problem in the use 

bentonite in repositories where the expected tem peratures will be kept
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below 100°C. As we know that in these conditions the bentonite will 

remain chemically and physically intact for more than 106 y eg. Sweden and 

Switzerland (Smellie and Papp, 1988). Moreover natural hydrothermal 

systems show that even at 100 - 200°C and with a sufficient supply of K+, 

alteration occurs only slowly, in the order of 106 y (Chapman and McKinley, 

1987).

A study of elem ental m igration in the post-glacial sediments of Loch 

Lomond in West Scotland is of direct relevance to elemental migration in 

backfill clays (MacKenzie et al., 1983; Hooker et al., 1985). The sediment of 

Loch Lomond contains a distinct band of material of marine origin in the 

middle of freshwater sediments which is attributable to the differential rates 

of changing sea level and isostatic recovery of the land after the last ice age. 

The marine incursion has been dated to approximately between 6900 and 

5400 y ago by dating (Dickson et al., 1978). The principle of this study is 

that the marine sediment (and associated pore water) are chemically in 

disequilibrium with the overlying and underlying freshwater sediment and 

the dissolution of marine deposited materials provides a source of ions in 

solution, allowing quantitative characterisation of diffusion processes into 

freshwater sediment. This diffusion is analogous to that of radionuclides 

from a waste package into a clay backfill or an argillaceous host rock and can 

be modelled by techniques used in repository safety assessment given 

appropriate input data (timescales, sorption constants and porosity). The 

results of the study showed that, in general, the observed mobility of Br 

I (effective diffusion coefficient of about lO"'7 cm^ s'^) was compatible 

with laboratory data which were used in modelling studies. It would be 

expected that diffusion coefficients in bentonite backfill would be lower 

since it would be more compacted and would have a greater sorption 

capacity than the Loch Lomond sediments which contain only about 30%
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clay.

The investigation of uranium  migration and retardation at the Cigar Lake 

uranium deposit also provides an analogue study of relevance to clay 

backfill since a clay-rich halo (between 30 and 80% of illite plus kaolinite ) 

surrounds the uranium  ore (Cramer et al., 1987). In this case the clay was 

found to have acted as an im portant barrier to movement of dissolved 

radionuclides, as indicated by the presence of enriched uranium, thorium, 

radium, lead and lanthanides in the first few metres into the clay zone from 

the contact with the ore.

In Belgium extensive analogue experiments have been performed in the 

Boom clay which underlies the Mol nuclear research site. This Tertiary 

plastic clay formation (~3 x 10^ y) is about 100 m thick and lies between 190 

and 300 m below the surface (NEA/OECD, 1984b). The main investigation 

has concerned the physical, chemical and hydrogeological properties of the 

clay (via in situ and laboratory experiments). The downward hydraulic 

gradient was from 1 to 2% across the clay layer, thus indicating a very slow 

flow rate of water. A trial shaft and experimental underground laboratory 

have been constructed in the clay at a depth of over 200 m and this provides 

information on the techniques which will be required in construction of a 

mined repository in plastic clays as well as data for safety assessments 

purposes.

1.6.4 Analogue studies for far field radionuclide movement

The m ain objective of analogue studies for far field radionuclide 

movement is to investigate processes cor sidered to be of importance in the
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context of the geosphere migration of waste radionuclides following the 

eventual failure of the engineered near-field barriers. During far-field 

radionuclide transport along hydraulically connected fracture systems 

radionuclides in solution will be subject to retardation mechanisms such as 

sorption, matrix diffusion and deposition at redox fronts. Some of the 

major applications of natural analogue studies in this context are presented 

below.

Schwarcz et al. (1982) have used natural decay series disequilibrium 

techniques to study the m igration and dispersion of radionuclides in 

crystalline rocks (i.e. Atikokan granite) in the Canadian Shield. They 

observed that radium  and uranium  have migrated on a scale of at least a 

few centimetres in deep granite (from 0.5 to 1 km depth), over the past few 

thousands to tens of thousands of years. Thiel et al. (1983) have undertaken 

similar studies, in conjunction with fission track analysis, of Precambrian 

consolidated conglom erate sediments in South Africa and found that 

uranium remobilisation (uranium gain or loss) has occurred on a micron- 

to metre-scale within the last 10^ y.

Natural decay series radionuclides have been used to study transport and 

retardation processes affecting radionuclides in water-bearing fractures in 

crystalline rocks (Smellie et al., 1986; Alexander et a l, 1988). Smellie et al.

(1986) noted that uranium migration was observed for distances of the order 

of 40 cm in Swedish granite on a timescale of 10^ y, while thorium is 

practically immobile under the same conditions. Fracture lining-materials, 

mostly hematite, FeOOH-oxides, chlorite and clay minerals, showed a high 

affinity for radionuclides, and were strongly enriched in uranium as a result 

°f sorption a n d /o r  scavenging processes. A limit of ~3 cm has been 

suggested (Smellie et al., 1986; Alexander et al., 1988) for the migration of
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radionuclides from fracture fluids into the adjacent saturated rock (i.e. 

matrix diffusion processes) and it has been suggested that this may 

correspond to a zone of enhanced matrix porosities (Norton and Knapp, 

1977; Skagius and Neretnieks, 1982) resulting from earlier hydrothermal 

activity along the same channels. These studies therefore demonstrated 

that uranium  retardation occurred during fracture flow as a result of 

adsorption onto fracture-lin ing m aterials and m atrix diffusion and 

provided quantitative data for modelling such processes. The low value of 

thorium observed in the fracture-lining materials suggests that this element 

has probably been immobile and has retained in its original location in the 

granite for at least 10^ y.

A detailed study of uranium  migration and retardation in the vicinity of 

redox fronts was carried out within the Pocos de Caldas Project in Brazil by 

MacKenzie et al. (1992). The study site consisted of an eroded caldera at an 

altitude of 1300 - 1600 m that was initially formed some 8 x 107 y ago. Redox 

fronts with a sharp colour change, marking the Fe^+ to Fe^+ transition, 

were observed in the walls of the open cast uranium mine at depths of the 

order of 100 m below ground surface, with a preferential downward 

extension of oxidised conditions around major fissures. This pattern is the 

consequence of the established long-term flow of oxidising groundwater 

(Holmes et al., 1990). This study demonstrated that the redox fronts act as 

an effective retardation barrier as indicated by deposition of uranium and 

other elements on both sides of the front. The deposition of uranium 

occurs in the reduced rock as a result of the reduction of U^"1" to U^+, and in 

the oxidised rock as a result of scavenging by Fe oxides, giving a bimodal 

distribution about the fronts. Thus, in a HLW repository scenario, 

development of a redox front (section 1.5.2) would initially lead to the 

beneficial effect of radionuclide retardation but if such a front were to
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penetrate a sufficient distance through the far field, it could result in the 

undesirable effect of a breakthrough of a pulse of high radionuclide 

concentration to the near-surface zone. Natural decay series disequilibrium 

investigations indicated that the general rate of movement of the redox 

front at Pocos de Caldas is of the order of 2 - 20 m in 106 y which is 

consistent with the rate of regional erosion, although in places the front has 

been stationary for at least the last million years. This provides support for 

the proposal by Neretnieks and Aslund (1983a and b) of a rate of far-field 

movement of repository-related redox fronts of up to 50 m in 10^ y, for use 

in far-field transport models. The Pocos de Caldas study additionally 

revealed that 226>Ra, which is not an inherently redox-sensitive element, 

had moved over distances of the order of 10 m from the reduced to the 

oxidised rock on a timescale of 1C)3 y, suggesting deposition as a result of 

scavenging from solution by secondary iron oxyhydroxides close to the 

redox front. The observed deposition of uranium  and radium  in the 

oxidised rocks of the Pocos de Caldas studies represents a potentially 

important radionuclide retardation process which would not be predicted 

on the basis of purely therm odynam ic considerations. Investigation of 

uranium m igration from the Cigar Lake uranium  deposit (Cramer et al., 

1987) has also indicated that ferric-oxyhydroxide phases in the clay halo are 

highly effective scavenging uranium from solution.

Natural analogue studies centred upon uranium dispersion and retardation 

in the far-field environment have also been carried out at Needle’s Eye and 

Broubster in Scotland, Alligator River in Australia and the Oklo uranium 

deposits in Gabon. The pitchblende \eins at The Needle's Eye, which 

outcrop on the cliff marking the edge of the pluton (Miller and Taylor, 1966; 

Basham et al., 1989) act as a source of uranium and the study has included 

an investigation of the dispersion and retardation of uranium in the post­
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glacial sediments stretching below the cliff (MacKenzie et al. 1989). There 

are two main inputs of dissolved uranium into this sediment system, i.e. 

surface flow of groundw ater from the exposures of the mineralisation in 

the cliff, and upw ard flow from the bedrock below (MacKenzie et al. 1989). 

The fixation of uranium  in the sediments is controlled by organic matter 

(humic layers and roots) and uptake on iron and manganese oxides 

(Basham et al. 1989; MacKenzie et al. 1989). Uranium  was found to 

accumulate at two distinct levels in the sediment profile, i.e at around 50 

cm depth where it was associated with humified organic matter with 

fixation due to reduction, and between 100-150 cm, where it was located 

almost exclusively within discrete plant root structures (Basham et al.,

1989).

Milodowski et al. (1989) have undertaken a similar study at Broubster in 

northeast Scotland where the Caithness Middle Old Red Sandstone contains 

a laminated limestone (lamellae of limestone and siltstone of age 4 x 10^ y, 

enriched in uranium  up to 30 ppm) which acts as a source of uranium to 

groundwater. A peat bog (-10^ y), containing about 0.1 wt.% U (Gallagher et 

al., 1971; Michie et al., 1972) about 100 m away was observed to act as a sink 

for the uranium transported by groundwater. This study has shown that 

uranium is removed from solution by complexing with organic matter, as 

well as by scavenging by iron-sesquioxi ies, resulting in the occurrence of 

anomalously high uranium  in the peat bog.

In the Alligator River studies (Duerden, 1990), uranium and thorium were 

!°und to concentrate principally in the iron minerals whereas radium 

concentrated in the clay-quartz phases. The Oklo natural reactor studies 

(Curtis et al., 1987) have revealed that fission products and transuranic 

dements were mostly contained in crystalline uraninite within the reactor



zone, i.e. they remained where they were formed. This is evidence that the 

movement of these elements is restricted, even in the 2 x 109 y since the 

early Precambrian as demonstrated in Oklo.

Thus observations of fission products and transuranic elements behaviour 

in and around ore deposits and in the far-field environment give added 

assurance that long-distance migration of these elements away from spent 

fuel in a repository will be subject to retardation, and it is reasonable to 

assume that the waste radionuclides would experience similar processes.

1.7 The Study Area

The Criffel pluton study site is located in a glaciated terrain on the northern 

side of the Solway Firth, southwest Scotland (Figure 1.1). The pluton 

measures about 27 x 10 km and has an elongate shape, with the axis 

inclining northeast-southwest. Most of the area is upland and exposure of 

rock is generally very good. The highest peak within the pluton is Criffel 

(569 m asl) which is found at the eastern end of the pluton.

The main surface water drainage from the area is towards the south, by the 

Rivers Nith, Urr Water, Kirkgunzeon Lane, Fairgirthlane burn, Southwick 

burn and Glensone burn which drain into the Solway Firth. The area 

experiences a temperate climate and about 50% is covered by forest, with the 

femaining land being used for cattle farming and agriculture. Along the 

Solway Coast are extensive floodplain and intertidal silt and mud deposits. 

The salt marsh areas of the floodplain, which are known locally as Merse 

Were laid down in the past 10000 y or so upon bedrock comprising Silurian



hornfelsed siltstone faulted against Carboniferous limestone, grits and 

shales.

The Criffel pluton intruded sedimentary rocks of Lower Palaeozoic age and 

forms a marked physiographic feature, standing out above the greywacke 

and shale in which it is emplaced. The geology of the Criffel pluton and the 

surrounding area is reported in detail by MacGregor (1937 and 1938), Phillips 

(1956), Stephens (1972), Halliday et al., (1980), Phillips et al (1981), Courrioux

(1987) and Craig (1991). Rb-Sr dating has revealed that the pluton was 

emplaced towards the end of the Caledonian orogeny some 397 ± 2 x 10^ y 

ago (Halliday et al., 1980), and was intruded into Ordovician and Silurian 

greywackes, siltstones and shales. The sediments were deposited along a 

destructive oceanic margin. They were strongly folded about a NE-SW axis 

prior to igneous activity. When the foldbelt stabilised the Lower Palaeozoic 

rocks in the Dalbeattie area were subjected to contact metamorphism and 

hydrothermal alteration, on intrusion of the Criffel granodiorite. During, 

and shortly after the emplacement of this granodiorite, large numbers of 

NW-trending granite porphyry and porphyrite dykes were emplaced in both 

the intrusion and its surrounding aureole (Phillips, 1956).

A detailed petrological study of the western part of the pluton was first 

attempted by MacGregor (1937, 1938), who suggested that the quartz-diorite 

complex found in the hills west of the main pluton may have been formed 

by the process of granitisation. Phillips (1956), Stephens (1972) and Stephens 

and Halliday (1980) extended this work and divided the pluton into two 

main parts comprising a discontinuous outer ring of granodiorite and an 

asymmetrically placed inner core of granite i.e. the pluton is complex with a 

margin comprised of more basic rock than the core. Stephens (1972) also 

demonstrated that steeper gradients in chemical composition occur in the



boundary zone between the granite and granodiorite. Stephens et al. (1985) 

further refined the description of the pluton, dividing it into five zones on 

the basis of petrographic studies, rare earth element distributions and Sr and 

O isotope data. This classification, indicating inner to outer progression is 

summarised as follows (Figure 1.15): (i) Biotite muscovite granite (BM), (ii) 

Muscovite biotite granite (MB), (iii) Biotite granite (B), (iv) Hornblende 

biotite granodiorite  (HB), and (v) Clinopyroxene hornblende biotite 

granodiorite (CHB).

The modes and petrologic ranges in the Criffel pluton for typical 

granodiorite and granite are shown in Tables 1.3 and 1.4 respectively 

(Stephens and H alliday, 1980). Sphere and apatite are the common 

accessory minerals in granodiorite. Xenoliths are common near the outer 

contact of the granodiorite where it is also well foliated, whereas the granite 

itself is structurally more isotropic. K-feldspar megacrysts are a feature of 

the granite and prim ary muscovite is present only near the centre of the 

pluton.

There have been many geological investigations and mineral exploration 

programmes in southw est Scotland since the early part of this century

because this area contains several types of mineralisation; and the metal
(

ores of Pb, Zn, Cu, Ni and uranium  have been recorded. Details of the 

uranium mineralisation as well as of the Pb-Zn-Cu and barite veins can be 

found in Miller and Taylor (1966), Gallagher et al., (1971), Russell (1985), 

 ̂raig (1991). The exploitation of metalliferous minerals in Scotland came to 

a standstill in 1953 with the closure of Gasswater barite mine in Ayrshire. 

Mining at Leadhills, the best-know n lead-zinc district in Scotland, 

continued in a small way after the second world war until 1958, but 

ulsewhere in southwest Scotland there has been negligible recent mining
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Figure 1.15: Map of the petrological types of the 5 zones in the Criffel 
pluton. Letters used are: B, biotite; M, muscovite; H, hornblende; C, 
clinopyroxene (Based on Stephens et al., 1985).
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Table 1.3: Modes for typical granite and granodiorite of the Criffel 
pluton, southwest Scotland (from Stephens and Halliday,1980).

Mineral Granite
(Sample No. BM/MB-165)

Granodiorite
(Sample No: CHB-155)

Quartz 24.0 19.8
Alkali feldspar 30.3 15.0
Plagioclase 39.4 48.1
Biotite 5.0 9.6
Muscovite 0.0 0.0
Hornblende 0.0 6.1
Diopside 0.0 0.4
Magnetite <0.1 0.5
Sphene <0.1 0.6



64

Table 1.4: Petrologic range for typical BM-, MB- and B-granite and HB- and 
CHB-granodiorite of the Criffel pluton, southwest Scotland (from 
Stephens and Halliday, 1980).

Sample no. BM-174 MB-272 B-205 HB-244 CHB-244

SiC>2 72.00 71.60 68.70 64.70 66.80
TiC>2 0.01 0.08 0.41 0.45 0.55
AI2O3 14.75 15.05 15.74 15.62 14.76
Fe2P3 0.49 1.30 1.73 1.80 1.95
FeO 0.30 0.64 0.99 1.66 1.58
MnO 0.02 0.04 0.06 0.05 0.05
MgO 0.43 1.14 1.55 2.45 2.40
CaO 0.68 1.33 1.42 3.97 3.05
Na2 0 4.00 4.10 3.80 4.40 4.10
K2O 5.30 4.40 4.80 3.40 3.70
P P 5 0.08 0.17 0.25 0.31 0.26
Thornton 
and Tuttle
index 91.66 87.52 84.10 72.76 76.29
Rb (ppm) 259 184 181 121 145
Sr (ppm) 152 338 585 922 648
^ R b ^ r 4.952 1.576 0.8963 0.3805 0.6478
^ S r / M S r 0.73487 0.71538 0.71104 0.70736 0.70929
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activity (Gallagher et al., 1971).

In a survey for economic deposits of uranium, Miller and Taylor (1966) 

located 60 m ineralised structures/veins along the southern edge of the 

Criffel pluton and identified 13 of them as containing visible amounts of 

pitchblende. The uraniferous veins generally occupy NW faults and 

outcrop at various localities in the cliffs between Balcary Point and 

Caulkerbush. The localities showing strong radioactivity are at Portling to 

Sandyhills Bay, Pow brade Burn, Marbruie Cove, Steps, Lot's Wife and 

Needle's Eye, with some weakly radioactive sites located at Balcary Point, on 

the shore south of Rockcliff, at Castle Point and opposite Guther's Isle. 

Gallagher et al. (1971) have also identified two to three discontinuous 

uraniferous quartz veins which were exposed in a small quarry near 

Beeswing, just outside the granodiorite contact. The Beeswing veins occur 

in hornfelsed Silurian greywackes and the radioactive mineral is mainly 

uraninite.

Most of the uranium -bearing veins in the cliffs between Balcary Point and 

Caulkerbush are structurally comparable to, but probably later than, the 

larger Pb-Zn-Cu and barite deposits further west (Miller and Taylor, 1966; 

Gallagher et al., 1971). They occupy lines of tectonic disturbance which 

range from simple parallel-sided open-fissures to brecciated zones a metre 

or so wide. In open fissures the mineralisation displays a crustified, vuggy 

texture, but in the brecciated zones it forms a cement between the 

component fragments of country rock. The dominant gangue minerals in 

the veins are quartz and dolomite with smaller amounts of calcite and 

barite. Pitchblende most commonly occurs as colloform bands up to 20 mm 

In width either adjacent to vein walls or mantling fragments of country 

rock in vein breccias. It also forms sub-spherical grains up to 5 mm in
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diameter within dolomite, and occasionally coats dolomite rhombs (Miller 

and Taylor, 1966; Basham et al. 1989). The predom inant U mineral is 

pitchblende, which is associated with hydrocarbon, chalcopyrite, native 

bismuth and hematite in a carbonate-quartz gangue (Darnley et al. 1962). 

The chemical composition of pitchblende from Sandyhills analysed by 

Darnley et al. (1962) is as follows : U3O s (82.19%), T h 0 2 (0.007%) and Pb

(2.17%); and x-ray fluorescence showed: (U) major; (Pb) minor; and (Fe, Y, 

Dy, Gd, Sm, Zr, Bi, Ce, Mn, Nd, Cu, Er) trace.

Uranium and copper minerals also occur late in the paragenetic sequence in 

some vein lead-zinc deposits in Scotland (Tyndrum and Inverneil) and in a 

pyritiferous portion of the lead-zinc vein at Great Laxey in the Isle of Man 

(Davidson and Bowie, 1951; Darnley et al., 1962; Miller and Taylor, 1966;). 

The uranium  and copper ( plus iron) sulphide minerals often occur 

associated with hydrocarbons. Such is the case too in the 185x10° y veins 

along the southern margin of the Criffel granite though, here, earlier galena 

and sphalerite appear to be absent (Miller and Taylor, 1966). Instead there is 

some pyrite and strong developments of hematite. Perhaps bacteriogenic 

reduction of the U^+ and Cu^+ complexes is combined with the oxidation of 

iron sulphide to the hematite, as well as oxidation of the hydrocarbons to 

CC>2 (Lovely et. al., 1991) and hydrogen to water (Levinson, 1977); the

complexes themselves may have been finally delivered to the reducing sites 

in the last, oxidizing stages of large scale free convection cells some 160 x 

U)6y after pyrite deposition (Russell, 1983).

Three main features appear to have controlled the localization of the 

uranium mineralisation in the Criffel area; (i) the aureole of the Criffel 

granodiorite; (ii) the NE coastal fault; and (iii) the juxtaposition of 

Carboniferous beds and hornfels along this belt (Miller and Tavlor, 1966).
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The Criffel uranium  veins are remarkably homogeneous both in physical 

characteristics and mineralogical content. At Needle's Eye the early quartz 

and main carbonate-quartz phases both occur within a structure which cuts 

the youngest ( L. Carboniferous) rocks in the area. The field evidence 

implies that both phases are post-Lower Carboniferous but it defines no 

minimum age. Pitchblende from Step's vein in the Sandyhills area has 

been dated by the U-Pb method as 185 ± 20 x 10^ y (U.Triassic to L. Jurasic), 

whereas the barite deposits are probably Carboniferous, i.e. ~ 360 x 10^ y 

(Darnley et al., 1962; Pattrick and Russell, 1989). Generally, the Criffel 

mineralisation is similar to the other uranium deposits in Scotland and the 

Isle of Man (Gallagher et al.,1971).

1.8 Objectives of the study

The objective of this research is to provide information on the distribution 

of natural radionuclides and rare earth elements in the environment of the 

Criffel pluton and to assess the behaviour of these species during geosphere 

transport in the context of an analogue study of relevance to far-field 

transport of radionuclides released from an underground repository. 

Specific objectives were:

a. To evaluate variations in the distribution of uranium  and 

thorium and natural decay series disequilibrium  in rock samples from 

different zones of the Criffel pluton in an attempt to define migration and 

retardation processes affecting uranium  in the bedrock environment of the 

individual zones as well as the entire pluton.

b. To investigate the distribution and geochemical behaviour of 

natural decay series radionuclides and rare earth elements about redox
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fronts associated with water-bearing fracture systems from Craignair quarry. 

In this case the aim was to use the data to investigate the mechanisms of 

migration and retardation (fracture flow, sorption, matrix diffusion and 

redox front processes) of these species in a water bearing fracture.

c. To assess the spatial distribution of uranium in thin sections of 

rock from the Craignair quarry by fission track mapping in order to provide 

information on the mineralogical associations of uranium in the vicinity of 

the water-bearing fracture and redox front.

d. To investigate the distribution and geochemical behaviour of 

natural decay series radionuclide and rare earth elements in core samples 

from surficially weathered granite and granodiorite from Kinharvie and 

Clifton respectively, in order to evaluate the geochemical behaviour of 

these elements during weathering, in particular as a result of intensive 

weathering since the end of the last glacial period 12000 years ago.

e. To investigate the distribution of uranium, 210pb and 226pa [ n  

soil in the vicinity of the pitchblende vein at Beeswing in an attem pt to 

provide an im proved understanding of the m igration and geochemical 

associations of these species in soil.
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CHAPTER 2 

SAMPLING AND ANALYTICAL METHODS

2.1 Summary of samples analysed

Samples of rock, soil and water from the Criffel pluton and adjacent areas 

were studied during the course of this research. The samples collected 

comprised: four sections of rock traversing water-bearing fractures from 

different locations of Craignair quarry; granite and granodiorite samples, 

including both weathered and unweathered sections, from Kinharvie and 

Clifton; stream water samples from seven selected streams in the pluton; soil 

samples from Beeswing. The localities of the sampling sites are shown in 

Figure 2.1. In addition to the above 169 archived powdered rock samples 

from different zones of the pluton, provided by Dr. E. Stephens of St. 

Andrews University, were also used in this study.

2.1.1 Granite and granodiorite samples from different zones of the Criffel 

pluton

169 rock samples from various zones of the Criffel pluton, which were 

collected on the basis of the Ordnance Survey one kilometre grid by Dr. E. 

Stephens in the late 1960s, were used in the present study (Figure 2.2). Only 

fresh looking' samples were collected using a chisel w ith geological and 

sledge hammers. A composite sample from a few parts of each exposure was 

normally taken. In order to remove weathered surfaces the samples were 

split in the laboratory using a hydraulic press with hardened steel jaws. Only 

fresh fragments were taken for analysis (Stephens, 1972).
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Figure 2.1: Location of sampling sites, Criffel pluton, southwest Scotland.
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Figure 2.2: Location map and simplified map of the Criffel igneous rocks, 
southwest Scotland. Letters used represent: B, biotite; M, muscovite; H, 
hornblende; C, clinopyroxene (Based on Stephens, 1972 and Stephens et 
al., 1985).
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150 of these sam ples were analysed for their uranium  and thorium  

concentrations using instrum ental neutron  activation analysis. The 

remaining 19 samples, selected from different zones of the pluton were 

analysed for their uranium  and thorium concentrations and activity ratios 

using alpha spectrometry.

2.1.2 Fracture and redox front samples from Craignair quarry, Dalbeattie

The Craignair quarry has been operated for more than 30 years by the Tarmac 

Construction Company and blasting is usually carried out fortnightly. The 

quarry is being worked in three levels (upper, middle and lower levels, each 

of about the same depth), to a total depth of approximately 30 m (Plate 2.1). 

The granodiorite is highly fractured, and the fractures are normally coated 

with infilling-fracture materials of iron oxides (hematite).

Penetration of oxidising groundwater down fissures in the rock has resulted 

in oxidation adjacent to the fissures, giving rise to narrow V-shaped oxidised 

zones extending downwards into the granite. The redox fronts between the 

oxidised and reduced rock were clearly visible as a change from red to grey 

marking the Fe^+/Fe^1' transition (Figure 2.3). Three sections of HB- 

granodiorite rock, traversing such water-bearing fractures, were collected 

horn the upper (CQ1 and CQ2) - and m iddle (CQ3) - level of the quarry. 

Samples CQ1, CQ2 (Plate 2 .2) and CQ3 were collected from about 2, 8 and 20 m 

from the top of the quarry respectively. The colour change marking the 

Fe2+/Fe3+ transition for samples CQ1 (Plate 2.3 and Figure 2.4) and CQ2 

(Figure 2.5) occurred at distances of about 4 cm and 1 cm respectively into the 

rock samples from the fracture wall. In both cases the fracture surface had a 

coating of iron and manganese oxyhydroxides (FeOOH; MnOOH), clay
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Plate 2.1: Photograph of the Craignair quarry study site showing 
the location ffom which samples were collected.

Plate 2.2: Photograph of the Craignair quarry study site showing 
the location from which sample CQ2 was collected.
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Plate 2.3: Photograph o f  sample CQ1 showing the Fe^+/F e ^ +
redox front about 4 .0  cm from the fracture face. Sample
collected from about 2 m from the surface.
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Figure 2.4: Sketch showing relation of rock sample from location CQ1 in Craignair quarry, to 
fracture face and subsequent division of sample into 1 cm slices.
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Figure 2.5: Sketch showing relation of rock sample from location CQ2 in Craignair 
quarry, to fracture face and subsequent division of sample into 1 cm slices.
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minerals (determ ined by the scanning electron m icroscopy method) and 

carbonate minerals (reaction with dilute hydrochloric acid). Sample CQ3 was 

'fresh looking’ and had only a thin coating of iron on the fracture walls (Plate 

2.4).

Samples CQ1 and CQ2 were cut into 1 cm slices working away from, and 

parallel to, the fracture face. The slices of rock were pow dered for natural 

decay series (U, Th, Ra) and rare earth element (REE) analyses in order to 

investigate the distribution of these species in the rocks in relation to the 

fractures and redox fronts. In addition surface scrapings of fracture-infilling 

materials from the fissures in samples CQ1 and CQ2 were also analysed for 

natural decay series radionuclides. Thin sections were prepared from the 

remainder of the rock sections for mineralogy and fission track analyses to 

investigate the spatial d istribu tion  of u ran ium  and its m ineralogical 

associations in and around the fractures and redox fronts. In addition to the 

above a block of rock sam ple (CQ4) containing V-shaped fractures with 

infilling-minerals (Plate 2.5; Figure 2.6) was collected from the upper level of 

the quarry for spatial distribution studies of uranium  using fission track 

analysis.

2.1.3 W eathering profile samples of granite and granodiorite

Granite and granodiorite rock samples were collected from Kinharvie and 

Clifton respectively (Figure 2 .1) in o rder to investigate the extent of 

weathering since the last period of glaciation (-12000 y BP) . These samples 

were taken from natural outcrops in the escarpments of the pluton. Blocks 

or granite (GR) and granodiorite (GD) measuring about 30 cm (1) x 25 cm (w) x 

22 cm (h) and 30 cm x 20 cm x 45 cm respectively were extracted from the site
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Plate 2.4: Photograph o f  sample CQ3 show ing a thin
coating o f  iron-oxyhydroxides along the fractures. Sample  
collected from about 20 m from the surface.

Plate 2.5: Photograph o f  sample CQ4 show ing V-shaped
iron -oxyhydroxides  in f i l l in g  fractures. Sam ple co llec ted  
from mid level o f  the Craignair quarry.
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Figure 2.6: Sketch of rock sam ple from location CQ4 in
Craignair quarry showing V-shaped fractures containing iron- 
manganese oxyhydroxides.
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using a chisel and a sledge hamm er. Both samples were fractured, the 

granodiorite sample particularly so (Plate 2.6), surface alteration (i.e bleaching 

and friable nature), becoming less intense away from the exposed faces of the 

samples and from fractures. Fracture-filling materials included iron oxides 

(hematite) and clay minerals.

Cores were extracted from the samples, working in at 90° to the weathered 

surface using "Pacera" coring machine with a 51mm (2") diameter diamond 

drill bit. The cores were sliced into 1 cm thick sections working in from, and 

parallel to the weathered surface. Twenty four slices of granite (Plate 2.7) and 

44 slices of granodiorite were obtained in this way. Eight granite and 12 

granodiorite samples were selected and powdered for analyses to investigate 

the distribution of uranium , thorium, radium  and REE in order to establish 

the extent of penetration of weathering and, by implication, the ingress of 

water since the end of the last glaciation.

2.1.4 Soil samples and radioactivity survey at Beeswing

A radioactivity survey over an area at Beeswing on the northern edge of the 

pluton know n to contain two to three im persistent uraniferous veins 

(Gallagher et al., 1971) was carried out in February, 1990. The veins occur in 

hornfelsed Silurian greyw ackes and the radioactive m ineral is mainly 

uraninite. During Pleistocene times the area was glaciated, and glacial till 

and fluvioglacial deposits of sand and gravel cover much of the bedrock. The 

location of the veins (i.e. source of uranium ) was determ ined using a 

portable 2" x 2" N al gamma detector (Plate 2.8) by traversing along the edge of 

an abandoned quarry (Kirkcudbright - Sheet 5; map reference: 885681) on a 

sampling grid of 1 m spacing. The quarry was closed about 50 years ago
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Plate 2.7: Phograph o f  granodiorite core.GD from Clifton
showing com plex frature system.
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Plate 2.8: Photograph o f  portable Nal detector used in
locating uranium veins at Beesw ing.

Plate 2.9: Photograph o f  the B^swing study site showing
location o f  uranium veins.
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(Henderson, 1991), and was backfilled with quarry spoil, the backfill itself 

now covered with a peaty silty clay which acts as a potential sink for uranium 

transported by groundwater flow from the veins (Plate 2.9). This area and its 

vicinity are grass covered and the fields are used for grazing cattle and sheep.

Cores of soil were collected in November 1991 from 3 localities close to the 

uranium vein at Beeswing. The cores, of lengths 24, 36 and 46 cm, were 

collected with a hand corer from locations A, B and C respectively shown in 

Figure 2.7. The cores were sliced into 2 cm thick vertical sections which were 

transferred to polythene bags and taken back to the laboratory for uranium, 

thorium, radium , 210pb/ 134^s anc[ 1 3 7 q s  analysis.

2.1.5 Stream water samples

One litre samples of stream water were collected in polyethylene bottles from 

seven locations (Back b u rn , Fairgirth  Lane burn , Southwick burn, 

Prestonmill burn , Drum burn , Glaisters burn  and Kinharvie burn) in 

November 1991 and April 1992. The sampling locations are shown in Figure 

2.1. The w ater sam ples were filtered in the laboratory using a 0.2|im 

millipore filter to remove suspended particulates (predominantly silty sand) 

and were analysed for uranium  and thorium  by ICP-MS as described in 

section 2.2.4.

In addition a 20 litre water sample was collected in a polyethylene bottle from 

Kinharvie burn  in N ovem ber 1991 for analysis of uranium  and thorium 

concentrations and activity ratios. The sample was acidified with 1M nitric 

acid (~20 ml) in order to prevent precipitation or sorption of cations during 

storage (Robertson, 1968). Upon return to the laboratory the sample was
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Figure 2.7: Schematic diagram of the Beeswing study site showing 
the location of uranium  veins, surface transect and soil sections.
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filtered using a W hatman N o.l filter paper to remove suspended sediment.

2.2 Analytical Methods

Five analytical techniques, namely instrumental neutron activation analysis 

(INAA), radiochemical analyses of uranium and thorium by a-spectrom etry, 

direct gamma spectroscopy analysis, fission track analysis and inductively 

coupled plasma-mass spectrometry (ICP-MS) were employed in this work.

2.2.1 Instrum ental N eutron Activation Analysis

Instrum ental neutron  activation analysis has been extensively used to 

m easure u ran ium  and thorium  concentrations in geological samples 

(Gordon et al., 1968; Brunfelt and Steiness, 1969; DeSoete et al., 1972; Topping 

and MacKenzie, 1988). In the present study it was used to quantify the 

concentrations of uranium  and thorium  in the granite and granodiorite 

samples from the different zones of the pluton and in soil samples from 

Beeswing. Details of the principles and theory underlying neutron activation 

analysis and gamma spectroscopy can be found in Adams and Dams (1970), 

Friedlander et al. (1981) and Keller (1988).

In the present work uranium  concentrations were derived by measuring the 

induced activity of ^^N p:

23.5 m 2.35 d
238u + n --------> 239y  > 23Sfcfp ---------> 239pu  (2.1)

239Np has a half life of 2.35 d and has photopeaks at 277.5 keV (14.1%), 228.2
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keV (10.7%) and 210.0 keV (3.4%) (Friedlander et al., 1981). The 277.5 keV 

photopeak has the highest intensity and is free from any gamma-ray 

interferences and w as, therefore, used for evaluation of the uranium  

contents of the samples. The 210 keV photopeak was not used since it has 

the lowest intensity and was not detected in many samples. The 228.2 keV 

photopeak was not used either since, although it gives high count rates, it 

has a possible interference from the 229 keV gamma-ray of 182pa.

Thorium contents of the rock samples were derived by m easuring the 

induced activity of 233pa:

22.3 m 27.4 d
2 3 2 T h  +  n -------> 233Th --------> 233pa --------->  (2.2)

233Pa has a half-life of 27.4 d and its photopeak at 311.9 keV (intensity 36%) is 

free from significant interferences (Friedlander et al., 1981).

Uranium and thorium  standard solutions were prepared from analytical 

grade u ra n y l n itra te  [(U0 2 (N0 3 )2-6H2 0 )] and  th o riu m  n itra te  

[(Th(N0 3 )4.4H2 0 ] respectively and their concentrations, given in Table 2.1, 

were determ ined by alpha spectrometry. Uranium and thorium standards 

were prepared for irradiation by drying 0.1 ml of the standard solutions on 

0.2g of acid-washed sand which was then wrapped in aluminium foil. Blank 

washed sand was also included for the measurement of background uranium 

and thorium  values present in the sand. Reference materials, IAEA Soil-7 

(IAEA, 1984) and Edinburgh Clay prepared by the Royal Museum of Scotland 

(Tate, pers. comm.) were included to evaluate the accuracy of the analysis.

About 0.2 g of each of the finely powdered (250 mesh size fraction) samples
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Table 2.1. Results of alpha spectroscopic analyses of uranyl nitrate 
and thorium  nitrate for preparation of uranium and thorium 
standards for instrumental neutron activation analysis.

Sample No Uranium (mg 1"1) Thorium (mg 1*1)

13.8 ±0.5 14.5 ± 0.6

14.1 ± 0.5 14.8 ± 0.6

Mean values 13.9 ±0.5 14.7 ±0.6
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and reference materials was weighed and wrapped in aluminium foil (12 x 12 

mm). Small variations occur in the neutron flux experienced by individual 

samples, standard and reference materials, during the irradiation. In order to 

compensate for this, flux monitors of Specpure iron wires weighing about 

0.02 g were attached to all samples and standards. Each sample, standard and 

reference m aterial was again w rapped in aluminium foil, to hold the flux 

monitors and as a secondary containment in case of rupture of the first 

aluminium layer. The sam ple identification code was m arked on the 

aluminium foil. Batches of 12 samples, washed sand, uranium and thorium 

standards and reference materials, were packed together for irradiation in a 

boron carbide tube in order to minimise activation by thermal neutrons 

(Brunfelt and Steiness, 1969; Hanna and Al-Shahristani, 1977).

All irradiations were perform ed in the central vertical stringer (cvs) of the 

UTR-300 nuclear reactor of the Scottish Universities Research and Reactor 

Centre (SURRC) for six hours at a neutron flux of 3 x lO^2 n cm-2 sec'l. The 

samples were left to 'cool' for a period of four days before processing to allow 

decay of short-lived nuclides such as 24Na, 28A1 and 42K, so that they were 

radiologically safe to handle. They were then unwrapped behind lead 

shielding, transferred to labelled polythene bags and stored behind lead prior 

to counting. A high resolution intrinsic Ge gamma-ray detector (EG and G 

Ortec GAMMA-X; 80 cm3 active volume, resolution 1.8 keV at 663 keV) was 

used for uranium  and thorium determinations and a smaller Ge(Li) detector 

(25 cm3 active volum e, resolution 1.9 keV at 663 keV) was used for 

determ ining the induced activities in the flux monitors. The gamma 

spectroscopy system comprised an EG & G 918 ADCAM multichannel buffer 

interfaced with a computer, and spectra were analysed by the Ortec software 

package MINIGAM 2. All samples, standards and reference materials were 

held on a perspex sample holder during y  - spectroscopy analysis to give a
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highly reproducible geometry at a height of 2 cm above the detector with a 

suitable dead time (< 10%). In order to minimise background, 4" Pb shielding 

was used and only the sample which was being counted was in the counting 

room. Counting times of samples varied between 1 and 3 hours to give 

suitable counting statistics.

Neutron flux variations were corrected for by assuming that the specific 

activity induced in the flux monitor for each sample is proportional to the 

neutron fluence that it experienced. The iron wires were counted in a 

standard geometry and in each case the ^^Fe count rate was calculated at a 

defined reference time. The observed gamma spectroscopy results for both 

uranium and thorium were, during subsequent computer based calculations, 

normalised to an average flux based upon the flux monitor results.

The elem ent concentrations were calculated using the SURRC neutron 

activation analysis programme NAA (Harris, 1989) which takes the output 

file from the Ortec MINIGAM 2 programme directly from disc and performs 

a conventional activation analysis calculation based upon the following 

equation (Adams and Dams, 1970; Friedlander et al., 1981):

Weight of X in sample Count rate of Y in sample
---------------------------------- =   (2.3)
Weight of X in standard Count rate of Y in standard

X + n  > Y  >

where, X = element of interest
Y = isotope of element produced by activation

This program m e decay corrects observed count rates to a defined reference 

time and allows for decay during counting. Apriori errors to allow for 

uncertainties in counting geometry (2%), weights and systematic errors due
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to flux variations, are included in calculation of the overall analytical 

uncertainties. The final results are expressed as concentrations in "ppm". 

The results for analysis of the IAEA Soil-7 and Edinburgh Clay standard 

reference materials are given in Tables 2.2 and 2.3 respectively, and show a 

generally satisfactory accuracy and precision for the method.

2.2.2 Direct gamma spectroscopy analysis

Direct gamma spectroscopy analysis can be applied to the determination of 

specific activities of gam m a-em itting radionuclides in geological and 

environm ental m aterials w ithout chemical processing of the samples 

(MacKenzie et al., 1979; MacKenzie and Scott, 1982; Smellie et al., 1986; 

BenShaban, 1989). The technique was adopted in this study for the analysis 

of 226Ra in rock samples from the Craignair Quarry, Dalbeattie and also for 

the analysis of 226pa  ̂ 137cs  ̂^^Cs and 210pb in soil samples from Beeswing. 

The high resolution Ge detector with 4" Pb shielding described above for 

INAA was used for analysis of the radionuclides and spectra were analysed 

using the EG and G Ortec software package, MINIGAM 2, as described above. 

The photopeaks used for analysis of 210pb, 226Ra, 134£s, and -^C s were 47 

keV, 59.9 keV, 186 and 609 keV, 604 keV and 662 keV, respectively (Adams 

and Dams, 1970).

Two types of calibration of the detector were carried out for direct y  - 

spectroscopy analysis of radionuclides, namely energy calibration and 

detection efficiency calibration. The energy calibration was regularly 

performed using a standard sealed solid source of ^ R a .  Under normal 

cicumstances the detector was highly stable and showed negligible drift of 

peak positions over a long period of time. The detection efficiency
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Table 2.2. Results of neutron activation analyis of IAEA standard 
reference material Soil-7 along with certified values (IAEA, 1984).

Uranium  (ppm) Thorium (ppm)

Certified values 2 .6 io  -2_ 8.2 i '  3>

Observed values

1 2.3 ± 0.1 6.5 ± 0.4
2 3.0 ± 0.2 7.3 ± 0.4
3 3.0 ± 0.3 7.6 ± 0.3
4 2.8 ±0.4 7.1 ±0.7
5 2.5 ±0.1 6.7 ±0.5
6 3.0 ± 0.2 7.5 ± 0.4
7 2.9 ± 0.2 6.5 ± 0.4
8 3.5 ±0.2 7.7 ±0.2
9 2.5 ± 0.2 7.5 ± 0.5
10 2.2 ±0.2 6.5 ±0.3
11 2.7 ±0.2 7.5 ±0.6
12 2.8 ±0.1 6.6 ±0.4
13 2.3 ± 0.2 6.8 ± 0.5
14 2.9 ± 0.2 6.8 ± 0.6
15 2.9 ± 0.2 ‘ 7.9 ± 0.6

Avg. 2.7 ±0.2 7.1 ±0.5
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Table 2.3. Results of neutron activation analysis of 'Edinburgh 
Clay' standard reference material along with recommended values 
(Topping and MacKenzie, 1988).

Uranium  (ppm) Thorium (ppm)

Recommended 3.4 12.8
values

Observed values

1 3.0 ± 0.2 9.9 ± 0.5
2 3.7 ±0.2 10.1 ±0.5
3 3.8 ±0.3 10.8 ±0.4
4 3.7 ±0.4 10.5 ±0.7
5 3.3 ±0.2 10.8 ±0.7

Avg. 3.5 ± 0.3 10.4 ±0.6
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calibration for rock samples was carried out using the standard reference 

material DL-la (CANMET, 1983) while for soils, standards were prepared by 

dropwise addition of known activities of standard solutions of 210pb, ^ R a ,  

134cs and 137Cs to materials which resembled the sample composition.

About 20g of each of the finely powdered rock samples from Craignair quarry, 

Dalbeattie and standard reference material DL-la (CANMET, 1983) were 

weighed into polythene containers and wrapped with cling film. They were 

then placed directly on the top face of the Ge detector, giving a highly 

reproducible geometry and low dead time (< 0.1 %), and counted for at least 

four days to give suitable counting statistics. Longer counting times of up to 

seven days were normally employed for samples with low activity. The 

specific activity of the radionuclides in the sample were calculated using the 

equation:

A
x C Bqkg‘1  (24)

B

cps/g  of sample 
cps/g  of standard
activity of the radionuclide in the standard 
(Bq kg-1)

Wet weights of the soil samples from Beeswing were recorded after which 

they were dried in an oven at about 100° C; the dry weights being recorded 

after drying. The samples were pounded using a mortar and pestle after 

which sub-samples of about 0.2 g were weighed and ashed in a furnace at 

500°C for about three hours, with the weight loss on ignition being taken as 

the organic content. The organic content of the soil samples range between

Activity

where,
A
B
C
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about 30% (top layer) and 5% (bottom layer), with most values being about 

15%. These data were used to prepare appropriate mixtures of organic 

(cellulose) and inorganic (Si0 2 ) com ponents to resem ble the sample

composition for use in efficiency calibration of the detector. The standards 

were prepared by dropwise addition of known activities of 210Pb, ^ R a ,  

and 137Cs tracers to the appropriate mixture of cellulose and SiC>2 (Table 2.4).

About 8 g of each of the samples and standards were weighed and counted in 

the same geometry, and from the observed counting rates the energy- 

detection efficiency relationship was found. The activities of 210pbr ^ R a . ,  

134Cs and ^ 3 7 q s  jn ^ e  samples were calculated using equation 2.4.

2.2.3 Radiochemical analysis of uranium  and thorium

2.2.3.1 Whole rock analysis

Determination of uranium  and thorium concentrations and activity ratios in 

rock sam ples entails four major steps: dissolution, co-precipitation, 

separation and a-spectrom etry analysis. In the present study the natural 

decay series analyses were based upon methods described by Bacon and 

Rosholt (1982), MacKenzie et al., (1986), Smellie et al., (1986) and Alexander 

and Shimmield (1990). Full details are provided below. All samples were 

ground to a fine powder (250 mesh) using a Tema mill for about 5 minutes. 

Two sets of samples were weighed (about 0.5g each) into teflon digestion 

vessels. To the first set of samples about 3 ml aqua regia, 1ml 40% 

hydrofluoric acid and a known quantity of 232u/228rh spike were added. The 

second set of samples was treated identically excepting the 232^ / 2287^ spike, 

io allow the m easurem ent of actual 2 2 8 7 ^ /2 3 2 7 7  activity ratios in the 

samples.
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Table 2.4: Activities of 210Pb, 226Ra, 134Cs and 137Cs tracers in standard 
solution used in soil analysis.

Isotopes Activity (Bq/0.1 ml) Date

210pb 6.31 22.10.90

226Ra 2.27 14.3.91

134Cs 186.48 16.3.89

137Cs 1.0 1.11.87
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The digestion vessels were sealed with tight fitting screw-on lids and the 

samples were then digested in a microwave oven at maximum power in a 

fume cupboard for 5 minutes after which they were left to cool for about 1 

hour (Alexander and Shimmield, 1990). The samples were then transferred 

to PTFE beakers and evaporated to dryness on a hot plate. Further aqua regia 

plus 40% hydrofluoric acid digestions were performed on a hot plate in a 

fume cupboard until total dissolution was obtained, after which the samples 

were then evaporated to dryness, re-dissolved in 6M hydrochloric acid and 

transferred into plastic centrifuge tubes.

Uranium and thorium  were scavenged from solution by dropwise addition 

of ammonium hydroxide to the sample solutions to precipitate Fe(OH)3 

using the natural iron in the sample as a carrier. The Fe(OH)3 precipitate was 

separated from the supernatant liquid by centrifuging and decanting. The 

precipitate was then re-dissolved in 9M hydrochloric acid and the iron 

extracted with di-isopropyl ether.

To separate uranium  from thorium the sample was passed through a 6 cm x 

1 cm^ column of anion exchange resin {Bio Rad AG1-X8, 100 - 200 mesh 

chloride form) preconditioned with 2 x 15 ml (1M) and 2 x 15 ml (9M) 

portions of hydrochloric acid. Uranium and iron are strongly held by the 

resin under these conditions whereas thorium, radium and the alkali and 

alkaline earth elements pass through. The resin was washed with 40 ml of 

9M hydrochloric acid and the combined hydrochloric acid washings were 

kept for thorium analysis as described below. Uranium was eluted from the 

resin with 1M hydrochloric acid (4 x 30 ml) and the solution was evaporated 

to dryness. The residue was re-dissolved in 9M hydrochloric acid and a 

second anion exchange purification was carried out as described above. The 

uranium solution was evaporated to dryness and re-dissolved in 9M



hydrochloric acid for a further iron extraction using di-isopropyl ether. 

About 2 ml of 5% (w /v ) NaHS0 4  solution was added to the uranium

solution which was evaporated to dryness, and then re-dissolved in 10% 

(w/v) (NH4 )2SC>4 solution for uranium eiectrodeposition.

The thorium solution was evaporated to a volume of about 25ml and then 

co-precipitation of thorium  was perform ed by addition of concentrated 

ammonia solution to precipitate Al(OH)3, using the natural aluminium in

the sample as a carrier. It is essential at this stage to remove all Cl" from the 

sample to avoid formation of uncharged TT1CI4. The precipitate was washed

thoroughly with distilled deionised water and shaken vigorously to totally 

disaggregate it and avoid physical trapping of Cl". The sample was then 

centrifuged, the aqueous washings discarded and the precipitate containing 

the thorium  re-dissolved in 8M nitric acid. The thorium co-precipitation 

with Al(OH)3 and washing were repeated after which the precipitate was re­

dissolved in 8M nitric acid and the solution was passed through a Bio Rad 

AG1-X8 anion exchange column, preconditioned with 2 x 15ml (1M) and 2 x 

15ml (8M) nitric acid. Thorium, in the form of [Th(N0 3 )5]2_, is strongly held

by the resin under these conditions. Elution of thorium was carried out by 

passing 9M hydrochloric acid (6 x 25ml) through the column. About 2ml of 

5% (w /v) NaHS0 4  solution was added to the thorium solution which was

then evaporated to dryness after which it was re-dissolved in 10% (w /v) 

XTa2SC>4 solution for eiectrodeposition.

If the uranium  or thorium  residue (i.e. after addition of NaHSCXj. and 

evaporation to dryness) appeared brown in colour, it was boiled to dryness 

under reflux with about 5 ml of aqua regia to remove organic materials that 

u^ay have been derived from the sample or decomposed resin.
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Uranium and thorium  were electrodeposited from the solutions described 

above onto 2.5 cm diameter stainless steel discs (planchettes) based upon the 

method described by Hallberg et al. (1960). Electrolysis was carried out for 

about 2.5 hours at a voltage of 10 to 15 V and a current of 1.8 Amps, using an 

electrolysis cell consisting of a cylindrical perspex body, 6 cm in diameter and 

10 cm in depth with a screw fitted to a brass base which acts as a sink for the 

heat produced during the plating process. A platinum wire was used as the 

anode and the stainless steel disc as the cathode. The plating cell was sealed 

by use of a teflon coated rubber ring fitted between the cell body and the 

planchette. At the end of the deposition the solution was made alkaline by 

adding about 1 ml of concentrated amm onia solution to prevent re­

dissolution of the uranium  or thorium when the current was switched off. 

The source was then removed, rinsed with distilled water and acetone and 

dried on a hot plate. Counting of samples was carried out using a Canberra 

Quad Alpha alpha spectrom eter under high vacuum (10"1 mbar), with a 

counting efficiency of about 30%. Counting times of the samples varied 

between three and seven days to give suitable counting statistics.

A blank experiment was carried out with all chemicals and resin used in the 

uranium and thorium  analyses for the samples. The results showed that 

uranium and thorium were undetectable.

The uranium  and thorium concentrations and the activity ratios (234u/238u; 

230rh/234u; 230ph/238u) 0f the samples were determined from the alpha 

spectra using the following equations.
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Specific activity (S.A) of uranium  or thorium:

Specific activity (dpm g"l)
N sample Aspike
—  -------  X ------
^spike ws

(2.5)

where, sample observed count rate of UorTh isotope in sample (cts) 
observed count rate of U or Th in spike (cts) 
spike activity constant of 232j  or 228ph (dpm) 
weight of sample (g)

Concentrations of uranium  and thorium in ppm were calculated as 
follows:

U concentration = (S. A .)of238u x 1.34 (ppm)
Th concentration = (S. A.) of 23^Th x 4 y 2  (ppm)

The uncertainties were calculated as follows:

% Uncertainties of S.A = [ ( %  uncertainty Nsampie)2 + ( %  uncertainty NSpike)^]^ + 1% 
Assuming 1% uncertainty for spike calibration and negligible uncertainty for 
mass.

where, N = observed activity of respective isotope (cts.) 
therefore,

Error = (S. A) x % uncertainty of (S. A)

Activity ratio (A.R) of uranium  and thorium isotopes were calculated as

(N)l/2
The % uncertainty for each isotope = — x 100%

N

follows:

n a

Activity Ratio (A.R)
. (26 )

NB
where,

n a
N b

observed count rate of isotope A (cts). 
observed count rate of isotope B (cts).
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The uncertainties for A.R:

% uncertainty of A. R. = [(% uncertainty of isotope A)2 + (% uncertainty of isotope B)2]1/ 2 

therefore,

Error = (A.R) x % uncertainty of A. R.

The accuracy of the technique was evaluated by analysis of the standard 

reference material DL-la from the Canadian Centre for Mineral and Energy 

Technology, Ottawa. The certified (CANMET, 1983) and experimentally 

derived values shown in Table 2.5, indicate a satisfactory level of accuracy for 

the procedure. The precision of the method was evaluated by analysing 

triplicate fresh rock sample (collected from Craignair quarry, Dalbeattie) and 

the results, given in Table 2.6., show a satisfactory level of consistency.

2.2.3.2 Soil leaching analysis

Three soil samples (top, m iddle and bottom of the cores) were taken from 

locations A, B and C at Beeswing (Figure 2.7) to investigate the geochemical 

association of uranium  and thorium (i.e. leachable and resistate forms). Two 

sets of samples were weighed (about 0.5g each) in a beaker, and boiled under 

reflux with about 50 ml aqua regia on a hot plate at a medium setting for 

about three days. Additional aqua regia was added to the samples as 

necessary to maintain the volume. The samples were left to cool for one day 

and separation of the residue and supernatant liquid was carried out by 

centrifuging and decanting. A known quantity of ^^U /^^T h  spike was 

added to the supernatant liquid from the first set of samples. About 3 mis 

aqua regia, 1 ml 40% hydrofluoric acid and a known quantity of 232U /228Th 

spike were added to the residue portion in a teflon digestion vessel. The 

second set of samples were treated identically, but without addition of
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Table 2.5. Results of alpha spectroscopic analyses of standard reference 
sandstone DL-la along with certified values (CANMET, 1983).

238u 234u 230rh
(BqKg'l) (BqKg'l) (BqKg'1)

Observed 1380 ±27 1399 ± 26 1398 ±33
values

Certified 1400 1400 1400
values

DL-la: Canadian Centre for Mineral and Energy Technology 
Standard Reference Material (sandstone) - CANMET.
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232u/228Th spike, to allow m easurem ent of actual 228T h /232Th activity 

ratios of the samples. The rest of the procedure, i.e. dissolution, co­

precipitation, separation, electroplating and a-spectrometry analysis, were 

carried out as described above.

2.2.3.3 Water analysis

1 ml of iron chloride solution (-40 mg of iron) and a known quantity of 

232u/228rrh spike were added to the 20 litre volume of filtered water sample 

from Kinharvie burn. The resulting solution was shaken to allow the 

232u/228rpi1 tracer to equilibrate with the uranium  and thorium in the 

sample, after which ammonium hydroxide was added to produce a brown 

precipitate of Fe(OH)3 which scavenged the uranium  and thorium  from

solution (Gascoyne, 1979). After the precipitate had settled the floe was 

separated from the supernatant liquid by decanting and centrifuging. The 

hydroxide precipitate was dissolved in 9M hydrochloric acid (-25 ml) and 

iron was extracted into di-isopropyl ether. Further treatment, i.e separation, 

plating and a-spectrom etry  analysis of the sample, was carried out as 

described above.

2-2.4 Fission track analysis

The feasibility of uranium  determination using induced fission tracks in a 

suitable detector was first demonstrated by Price and Walker (1963). Since 

then many applications of the technique have been reported, especially in the 

study of the geochemistry of uranium in various rock types and individual
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minerals (Kleeman and Lovering, 1967; Hashimoto, 1971; Thiel et al., 1972; 

Grauert et al., 1974; Basham, 1981; Guthrie, 1989) and in dating of minerals 

(Wagner, 1968; Poupeau, 1981; Hurford and Green, 1982; Yim et al., 1985).

Induced nuclear fission comes about when heavy nuclei are bombarded by 

neutrons, which, as uncharged particles, experience no repulsion from the 

target nucleus. 235u  fission can be induced by exposure to thermal neutrons 

(< 0.025 eV), whereas 238u anj  232^^ undergo fission when irradiated by 

epithermal (0.025 to 1 keV) and fast neutrons (> 1 keV) (Friedlander et al., 

1981). Irradiation in the present work thus used therm al neutrons to 

selectively induce fission of 235u [ n  the absence of 232jh fission. The fission 

fragments produced in this way move in various directions, leaving tracks of 

damage on an atomic scale in the material through which they pass. The 

tracks can be preserved in m any non-conductive solid m aterials (eg. 

muscovite, polycarbonate and many plastic materials) and they can be 

enlarged to microscopically visible dimensions by etching with a suitable 

reagent.

Fission track m apping is an established technique in the study of uranium 

migration during weathering (Tieh et al., 1980; Guthrie and Kleeman, 1986). 

In the present work a fission track mapping technique based upon Fleischer 

(1966) was used to investigate the distribution of uranium about the redox 

fronts associated with water-bearing fractures in the granodiorite samples 

from Craignair quarry. In particular the spatial distribution of uranium was 

investigated in: (i) w eathering-resistan t accessory m inerals (resistate 

uranium); (ii) grain boundaries of major m inerals, particularly biotite 

(intergranular uranium); (iii) infilling fractures, where it is associated with 

Fe-OOH and Mn-OOH; and (iv) weathered feldspar and biotite (i.e. sericite 

and chlorite). The "uranium maps" were used to provide complementary
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information to the natural decay series analyses with regard to the migration 

and retardation of uranium  about the redox fronts.

Determination of the spatial distribution of uranium in rock samples using 

fission track analysis involves four steps: sample preparation, irradiation, 

etching and analysis. In the present study thin sections of each of the 

granodiorite samples from Craignair quarry were cleaned with distilled water 

and a 1mm thick polycarbonate plastic sheet of comparable size was placed on 

the surface of the section and taped in place. The sample identification code 

was marked on both section and plastic detector so that the fission tracks of 

uranium produced in the detector could accurately be matched with the 

mineral d istribution  in the rock section simply by superim posing the 

respective section and detector.

The sections and detectors were placed in a plastic container and irradiations 

(with a neutron fluence of 6 x 10^  neutrons per square centimetre) were 

carried out in the thermal column of the SURRC UTR 300 reactor. After 

irradiation the samples were left to cool for about four weeks to allow the 

decay of nuclides such as ^ N a  and so that they were radiologically safe to 

handle. The plastic detectors were subsequently removed from the thin 

sections and etched with 6N NaOH for 1.5 hours at 40°C to enlarge the fission 

tracks to microscopically visible sizes (Fleisher, 1966). The plastic detectors 

were superim posed on the thin sections to allow microscopic comparison of 

the fission track distribution with the mineralogy of the rock.

2-2.5 Inductively coupled plasma - mass spectrometry (ICP-MS)

Inductively couple plasma-mass spectrometry was developed about ten years
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ago and can be used to determ ine major, minor, trace and ultra-trace 

elemental concentrations in a single sample. The technique is capable of 

routinely determ ining more than 65 elements with precision of 2 to 5%. 

Some of the applications of ICP-MS in the geological and environmental 

sciences are: petrogenetic studies of orebodies (Hall and Plant, 1992); rare 

earth element (REE) patterns in sediments (Roelands and Deblonde, 1992); 

analysis of ostracod shells to reconstruct ancient lake environments (Holmes 

et al., 1992); the study of potential effects of acid rain on soils (Beauchemin et 

al., 1992); and analysis of uranium  in marine sediment pore water (Toole et 

al., 1990).

Figure 2.8 shows a schematic diagram of an ICP-MS. The principles of 

operation of such an instrument are described in detail in Riddle et al., (1988), 

Date and Gray (1989), Hall (1989) and Jarvis et al. (1990, 1991). They can be 

summarised as follows: The ICP-MS employs an Ar plasma to produce (M+) 

ions w hich are extracted via a series of vacuum  stages into a mass 

spectrometer for analysis. The plasma is generated from radio-frequency (RF) 

magnetic fields induced by a copper coil which is wound around the top of 

the glass torch of the ICP. The plasma gives very high temperatures of 6000 - 

10000° K resulting in efficient atomisation and consequently very small 

chemical interferences.

The sample is first nebulised to form a fine aerosol and is then introduced 

into the ICP torch. The aerosol is transported into the centre of the ICP 

(usually only 1 - 2% of the sprayed solution reaches the ICP) where it rapidly 

undergoes desolvation, vaporisation to molecular level and dissociation into 

atoms, some of which are ionised. The ;ons are extracted from the plasma 

into a mass spectrometer and measured using an ion detector. This process 

of mass selection is rapid and the instrument is able to obtain a spectrum for
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Figure 2.8: A schematic diagram of the VG PlasmaQuad (PQ1) 
used in this study (VG Isotopes, 1988).
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the entire mass range from 7Li to in, about 1 minute (Jarvis and Jarvis, 

1992).

In the present study REE concentrations in 8 granite and 12 granodiorite core 

samples and 19 other granodiorite samples from Craignair Quarry, Dalbeattie 

were determ ined using the ICP-MS technique based upon the procedure 

described by Jarvis (1988) as follows:

About 0.15 g of each of the finely powdered (250 mesh size fraction, 4.0 pm) 

samples and standard  references m aterials was weighed into a teflon 

digestion vessel. The standard reference materials used for granite and 

granodiorite analyses are G-2 from Westerly Granite, Rhode Island (USA) 

and GSP-1 from  Silver Plum e Q uarry, Colorado (USA), respectively 

(Govindaraju, 1989). About 3 ml aqua regia and 1 ml 40% hydrofluoric acid 

were added to the samples which were then digested in a microwave oven at 

maximum pow er for five m inutes and left to cool for about one hour 

(Alexander and Shimmield, 1990). The samples were then heated on a hot 

plate at a very low setting for about seven days after which they were 

transferred into PTFE beakers and evaporated to dryness. More aqua regia 

and 40% hydrofluoric acid were added as necessary until total dissolution was 

obtained. The samples were heated to dryness and re-dissolved twice in 

concentrated nitric acid (Prim ar grade) and finally the residues were 

dissolved in 100 ml 2% nitric acid (Primar grade), and clear solutions were 

obtained. The final solutions were made in dilute nitric acid because most 

elements are stable in solution in nitric acid and it is also the preferred acid 

matrix for ICP-MS analyses, since it avoids the addition of excess chloride 

which can cause severe interference for some elements (Totland et al., 1992). 

total dissolved solid (TDS) content was kept to less than 2000 pg 1 TDS



(0.2%) in order to minimise signal loss due to cone blockage in the ICP-MS 

(Jarvis, 1988; Jarvis et al., 1991; Williams and Gray, 1988). The samples were 

stored in polypropylene bottles and kept in a refridgeration prior to REE 

analysis.

The REE analyses were performed using a Plasmaquad ICP-MS (Model PQ1 

from VG Isotopes). To 10 ml of each of the samples, reference material and 

standard solutions, 100 pi (100 ppm) l ^ n ,  lOOpl (lOppm Ru) and lOOpl 

(lOppm Re) were added and the solutions were analysed directly by the ICP- 

MS. H5[n was used as an internal standard to correct for instrument drift 

during runs; both Ru and Re were used as internal standards for the REE 

analysis of the rock samples. Spectra were analysed and concentrations 

calculated using standard VG software.
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CHAPTER 3 

RESULTS

The results of analyses of various types of sample (i.e. rock, soil and water) 

from the Criffel pluton and adjacent areas performed during the course of 

this research are presented in Tables 3.1 to 3.K b  . The concentrations of 

natural decay series radionuclides in rock samples determined by the a  - 

spectroscopy method are given in ppm, while 210pb, 137q s  ̂ 134(^s ancj 226pa 

in soil samples measured by^direct y spectroscopy technique are given in Bq 

k g 'l . Rare earth elements (determ ined by ICP-MS) and uranium and 

thorium (measured by INAA technique) concentrations in rock samples are 

given in ppm , whereas uranium  and thorium  concentrations in water 

samples (determined by ICP-MS) are given in ppb. The errors shown with 

each analysis are from the counting statistics as follows: the natural decay 

series radionuclide - mostly within ± 5%; 210pb, 137cS/ 134^s and 22^Ra - 

mostly within ± 10%; uranium  and thorium concentrations determined by 

INAA method mostly below ± 15%.
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Table 3.1: Uranium and thorium concentrations of granite and 
granodiorite samples from Criffel Pluton, southwest Scotland.

N o Code Uranium  (ppm) Thorium (ppm) T h/U

1

BM-granite

174 2.9 ± 0.4 8.6 ± 0.7 3.0 ±0.4
2 221 2.5 ± 0.4 8.2 ±0.7 3.3 ± 0.6
3 274* 4.7 ±0.1 11.5 ±0.4 2.5 ±0.1
4 220 3.3 ± 0.4 7.4 ± 0.9 2.2 ±0.3
5 218 4.2 ± 0.4 7.1 ± 0.9 1.7 ±0.2
6 263 5.0 ± 0.5 10.0 ±0.7 2.0 ± 0.2
7 210* 3.8 ±0.1 10.7 ±0.4 2.8 ± 0.1

8

MB-granite

246* 2.9 ± 0.1 14.5 ±0.7 5.0 ±0.3
9 130 6.0 ± 0.4 18.7 ±0.5 3.1 ±0.2
10 136 2.5 ± 0.4 10.8 ± 1.8 4.3 ± 0.9
11 245 3.2 ±0.4 14.1 ± 2.0 4.4 ±0.8
12 179 2.4 ± 0.4 14.7 ±1.6 6.1 ± 1.2
13 197 4.6 ±  0.3 16.4 ±0.9 3.6 ±0.3
14 242 2.8 ±0.4 9.4 ±1.0 3.4 ± 0.6
15 272* 4.6 ±0.1 14.0 ± 0.4 3.0 ±0.1
16 276 4.2 ±0.4 10.0 ±0.4 2.4 ± 0.2
17 273 2.3 ± 0.5 11.0 ±1.5 4.8 ±1.2
18 165 4.0 ±0.6 14.8 ±1.6 3.7 ±0.6
19 267 4.8 ± 0.4 11.5 ±1.1 2.4 ± 0.3
20 219* 7.8 ±0.2 12.8 ± 0.8 1.6 ± 0.1
21 190 3.4 ±0.6 11.5 ± 2.1 3.4 ±0.8
22 175 3.2 ±0.4 14.8 ±1.2 4.6 ± 0.7
23 115 4.3 ± 0.4 12.8 ± 0.9 3.0 ±0.3
24 162* 5.0 ±0.1 12.8 ± 0.4 2.6 ± 0.1
25 185 3.2 ±0.3 12.2 ±0.9 3.8 ±0.4
26 176 2.8 ±0.3 14.7 ±0.4 5.3 ±0.6
27 271 3.0 ±0.3 15.5 ± 0.8 5.2 ±0.5
28 268 3.2 ±0.6 10.0 ± 0.8 3.1 ±0.6
29 247 2.3 ± 0.3 14.5 ± 0.8 6.3 ±0.9
30 208 2.2 ± 0.4 11.1 ±1.7 5.1 ± 1.2
31 161 2.5 ± 0.5 13.6 ± 2.0 5.4 ±1.3
32 246 3.0 ±0.5 10.1 ± 1.6 3.4 ±0.7
33 164 3.2 ±0.5 14.1 ±2.0 4.4 ±0.9
34 143 3.2 ± 0.8 13.7 ±2.0 4.3 ±1.2
35 117 3.7 ±0.5 14.0 ±1.6 3.8 ± 0.6
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B-granite

36 212 4.9 ±0.5 12.4 ±1.2 2.5 ±0.3
37 123 3.2 ±0.5 10.9 ±1.4 3.4 ±0.6
38 104 5.2 ±0.5 12.5 ±0.7 2.4 ±0.2
39 241 4.7 ±0.7 15.7 ±1.6 3.3 ±0.6
40 236 5.2 ±0.5 13.2 ±1.3 2.5 ± 0.3
41 209 3.5 ±0.5 11.6 ±1.2 3.3 ±0.6
42 203 5.7 ±0.8 15.4 ±1.5 2.7 ±0.4
43 261 5.2 ±0.4 9.2 ±1.0 1.8 ±0.2
44 264 5.9 ±0.9 20.1 ± 2.0 3.4 ±0.6
45 183 4.0 ±0.5 12.5 ±1.6 3.1 ± 0.5
46 116 2.3 ±0.6 9.7 ±1.0 4.2 ±1.0
47 139* 3.2 ±0.1 14.8 ±0.4 4.6 ±0.2
48 177 4.3 ±0.7 19.1 ± 2.0 4.4 ±0.2
49 142 5.3 ±0.9 15.2 ±1.5 2.9 ±0.5
50 157 5.7 ±0.9 11.6 ±2.0 2.1 ± 0.4
51 254 5.2 ±0.8 11.5 ±1.1 2.2 ±0.4
52 173 7.5 ±0.6 14.9 ± 0.9 2.0 ±0.2
53 253 4.1 ±0.8 15.3 ± 2.0 3.7 ±0.7
54 158* 4.6 ±0.1 15.2 ±0.4 3.3 ±0.1
55 129 5.2 ±0.7 12.2 ±1.2 2.4 ±0.4
56 103 5.6 ±0.5 11.5 ±0.8 2.1 ± 0.4
57 213 4.5 ±0.6 13.1 ± 2.0 2.9 ±0.5
58 196 4.5 ± 0.7 13.2 ± 2.0 2.9 ± 0.5
59 194 6.4 ±0.6 11.9 ±0.7 1.9 ±0.2
60 211 4.8 ±0.9 14.3 ±1.9 3.0 ±0.2
61 205* 3.9 ±0.1 18.9 ±0.8 4.9 ±0.2
62 163 4.1 ±0.3 19.3 ±1.3 4.7 ±0.2
63 252 5.2 ±0.4 13.3 ± 0.9 2.6 ±0.2
64 187 4.0 ±0.3 10.0 ± 0.7 2.5 ±0.3

HB-granodiorite

65 195 4.0 ±0.7 12.3 ± 2.0 3.1 ± 0.3
66 128 4.4 ±0.9 14.3 ±1.4 3.3 ± 0.3
67 151 3.4 ±0.6 16.4 ±1.9 4.8 ±0.5
68 146 3.9 ±0.4 17.3 ±1.7 4.4 ±0.4
69 144* 3.2 ±0.1 15.2 ±0.4 4.7 ± 0.2
70 200* 4.0 ±0.1 15.2 ±0.4 3.8 ±0.1
71 199 5.3 ±0.5 14.9 ±1.0 2.8 ±0.3
72 126 4.0 ±0.4 14.5 ± 0.6 3.6 ±0.3
73 181 3.7± 0.1 11.1 ±0.5 3.0 ±0.2
74 184* 4.0 ±0.1 16.5 ±0.8 4.1 ± 0.1
75 248 2.8 ±0.1 10.6 ±0.4 3.8 ± 0.3
76 172 3.0 ±0.3 10.8 ±0.5 3.6 ±0.3
77 231 5.3 ± 0.4 19.6 ± 0.8 3.7 ± 0.2
78 228 7.1 ±0.5 24.8 ±0.9 3.5 ± 0.3
79 227 4.6 ± 0.4 22.1 ± 0.9 4.8 ± 0.5
80 135* 3.8 ±0.1 15.7 ±0.8 4.1 ±0.2
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88
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90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
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111
112
113
114
115
116

117
118
119
120
121
122
123
124
125
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132 5.2 ±0.5
229 7.8 ± 0.6
056* 6.2 ± 0.2
235 5.8 ±0.5
159 7.8 ± 0.5
215 4.8 ±0.3
192 8.0 ± 0.6
153 3.6 ±0.6
202 3.1 ± 0.3
105 3.9 ±0.5
238 3.3 ± 0.2
240 4.2 ±0.3
147 2.7 ±0.3
145 5.6 ± 0.4
188 4.0 ± 0.5
204 4.5 ± 0.4
207 3.5 ±0.2
278 3.2 ± 0.3
275 3.9 ± 0.3
119 5.1 ± 0.4
198 2.0 ± 0.1
201 3.5 ± 0.3
120 3.7 ±0.3
118 4.0 ± 0.4
156 5.7 ±0.5
125 3.6 ± 0.3
180 3.9 ± 0.4
237 2.6 ± 0.2
149 2.0 ± 0.2
189 3.1 ±0.3
112 4.0 ± 0.4
249 2.7 ±0.2
250 4.1 ±0.4
101 3.0 ±0.3
216 3.5 ± 0.3
182 7.0 ± 0.4

B-granodiorite

262 5.2 ±0.6
244* 3.0 ±0.1
154 3.2 ± 0.3
168 2.4 ± 0.3
137 4.2 ±0.3
193 3.0 ±0.4
169 2.2 ± 0.1
131 4.1 ±0.3
133 4.5 ± 0.2
251 6.2 ± 0.4
256 3.2 ±0.2

23.6 ± 0.9
20.5 ±1.2
14.8 ±0.4
12.0 ± 0.9
13.6 ±0.7
14.4 ± 0.9
12.4 ±0.7
9.4 ±0.7

10.8 ± 0.8
11.1 ±0.9
9.0 ±0.7

12.2 ±1.1
8.5 ±1.0

11.5 ±0.8
12.9 ±1.1 
12.0 ± 1.0
7.3 ± 0.5
9.1 ±0.7 
9.7 ±0.5

10.0 ± 0.6
10.3 ±1.1
11.9 ±1.2 
12.1 ± 1.2
17.5 ±1.7 
14.1 ±1.4
14.7 ±1.3
14.3 ±1.4
10.9 ±1.1 
6.9 ±0.8
9.2 ±0.9 

17.0 ±1.6
11.7 ± 1.2
19.6 ±2.0
9.2 ±0.8

10.3 ±0.9
12.7 ±0.7

10.1 ± 1.8
14.8 ±0.4
17.3 ±1.8 
9.9 ±1.0

17.8 ±0.9 
15.1 ± 0.8
10.0 ±0.4
11.3 ±0.5 
12.5 ±0.5
11.4 ±0.5
10.0 ±0.5
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3.3 ± 0.2 14.8 ±0.7 4.5 ± 0.3
129 260 3.5 ± 0.3 11.8 ±0.5 3.4 ±0.2
130 257 5.5 ± 0.3 15.3 ± 0.6 2.8 ± 0.2
131 259* 2.3 ± 0.1 13.2 ±0.4 5.7 ±0.2
132 122* 3.1 ±0.1 13.2 ±0.4 4.3 ± 0.2
133 233 4.7 ±0.4 19.5 ±0.8 4.1 ± 0.4
134 166 4.7 ±0.4 16.1 ± 1.0 3.4 ± 0.4
135 225 5.1 ± 0.4 20.6 ± 0.7 4.0 ± 0.3
136 171 3.3 ± 0.3 19.0 ±1.0 5.8 ± 0.6
137 226 4.0 ± 0.2 19.0 ±0.8 4.8 ± 0.5
138 140 3.9 ±0.2 19.4 ±0.8 4.9 ± 0.5
139 234 5.8 ±0.7 24.7 ±1.0 4.3 ± 0.5
140 138 5.8 ±0.3 20.6 ± 0.8 3.6 ±0.4
141 127 5.6 ± 0.3 20.1 ± 0.8 3.6 ± 0.3
142 160 5.4 ± 0.8 15.2 ±0.6 2.8 ± 0.2
143 206* 2.6 ± 0.1 14.0 ±0.4 5.4 ± 0.3
144 113 5.9 ± 0.6 22.8 ± 0.9 3.9 ± 0.3
145 266 5.6 ±0.7 19.5 ±0.8 3.5 ± 0.3
146 148 5.4 ±0.6 19.3 ± 0.8 3.6 ± 0.4
147 230* 4.3 ±0.1 15.7 ±0.4 3.7 ±0.2
148 186 3.4 ±0.3 19.2 ±1.5 5.6 ± 0.7
149 106 3.5 ± 0.3 10.8 ± 0.8 3.1 ± 0.4
150 111 2.9 ± 0.3 8.0 ± 0.8 2.8 ± 0.4
151 217 3.0 ± 0.4 7.8 ±1.0 2.6 ± 0.3
152 277 3.3 ± 0.3 10.5 ±1.0 3.2 ± 0.5
153 152 2.8 ±0.3 14.8 ±1.4 5.3 ± 0.6
154 121 5.2 ±0.3 9.3 ±0.5 1.8 ± 0.1
155 239 4.5 ± 0.3 7.7 ± 0.4 1.7 ±0.1
156 107 3.1 ±0.3 7.4 ± 0.4 2.4 ± 0.1
157 167 2.4 ± 0.2 13.7 ±0.9 5.7 ±0.4
158 255 2.6 ± 0.3 11.4 ±1.3 4.4 ± 0.6
159 124 2.4 ± 0.3 14.1 ±1.7 5.9 ± 0.7
160 265 3.8 ± 0.4 11.9 ±1.2 3.1 ± 0.5
161 223 3.5 ± 0.3 11.8 ± 1.8 3.4 ±0.5
162 178 2.2 ± 0.2 9.6 ±1.1 4.4 ± 0.6
163 222 3.6 ± 0.4 13.9 ±1.5 3.9 ±0.6
164 224 6.8 ± 0.4 23.8 ± 1.8 3.5 ± 0.3
165 270 2.7 ±0.3 12.5 ±1.4 4.6 ± 0.6
166 110 3.2 ±0.4 11.5 ±1.4 3.6 ± 0.5
167 214 2.7 ±0.3 13.5 + 1.6 5.0 ±0.8
168 191 2.5 ± 0.2 11.0 ± 1.0 4.4 ± 0.5
169 243 5.6 ±0.4 22.7 ± 2.0 4.1 ± 0.5

AVERAGE 4.1± 0.4 13.6 ±1.2 3.3 ± 0.4

Note: * analysed by a  - spectrometry



117

Table 3.2: Uranium and thorium concentrations and activity ratios for 
granitic rock samples from the Criffel pluton, southwest Scotland.

Smple U (ppm) Th (ppm) 234U/23&U 23(>r h / 234u 230r h/238U
No. Act. Ratio Act. Ratio Act. Ratio

BM-274 4.7±0.1 11.510.4 1.0410.03 1.3610.04 1.4110.04
BM-210 3.8±0.1 10.710.4 1.0210.06 1.1310.05 1.1510.06
MB-246 2.9±0.1 14.510.7 1.0310.04 1.3810.07 1.4210.07
MB-272 4.6±0.1 14.010.4 1.1010.04 1.6210.06 1.7810.06
MB-162 5.0±0.1 12.810.4 0.9710.04 1.2410.02 1.2010.03
MB-219 7.8±0.2 12.810.8 1.0310.04 1.1110.05 1.1410.05
B-205 3.9±0.1 18.910.8 1.0310.05 1.2610.06 1.3010.07
B-139 3.2±0.1 14.810.4 1.0710.04 1.2910.02 1.3810.05
B-158 4.6±0.1 15.210.4 0.9210.03 1.1110.04 1.0210.04
HB-184 4.0±0.1 16.510.8 0.9610.06 1.1410.06 1.0910.07
HB-056 6 .2±0.2 14.810.4 0.9810.06 1.0410.05 1.0210.05
HB-144 3.210.1 15.210.4 1.0110.07 1.1910.04 1.2010.04
HB-200 4.010.1 15.210.4 0.9810.03 1.0810.04 1.0610.04
HB-135 3.810.1 15.710.8 0.9810.04 1.4510.06 1.4210.06
CHB-206 2.610.1 14.010.4 0.9310.04 1.5910.06 1.4810.05
CHB-244 3.010.1 14.810.4 1.0010.05 1.4710.07 1.4710.07
CHB-122 3.110.1 13.210.4 1.0410.03 1.1510.04 1.2010.04
CHB-259 2.310.1 13.210.4 1.0410.05 1.1910.05 1.2410.05
CHB-230 4.310.1 15.710.4 1.0110.03 1.2310.04 1.2410.04

Note: 1. BM - Biotite Muscovite Granite
2. MB - Muscovite Biotite Granite
3. B - Biotite Granite
4. HB - Hornblende Biotite Granodiorite
5. CHB - Clinopyroxene Hornblende Biotite

Granodiorite
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Table 3.3. Uranium and thorium concentrations, concentration ratios and activity 
ratios for sliced samples (increasing distance from fracture face) in rock section CQ1 
from Craignair Quarry, Dalbeattie, southwest Scotland.

No. Dis U Th U/Th ^ T h /^ V  2% h /238U ^ a / ^ h
(cm) (ppm) (ppm Con. ratio Act. ratio Act. ratio Act. ratio Act. ratio

0 0 11.0+0.1 ND - 1.73±0.04 1.53±0.06 2.64±0.11 -

1 0-1 3.1 ±0.1 14.6 ±0.8 0.21 ± 0.013 1.12 ±0.04 1.43 ±0.06 1.62 ±0.10 0.96 ±0.21

2 1-2 3.0 ±0.1 14.2 ± 0.5 0.21 ±0.010 1.16 ±0.03 1.93 ±0.08 2.24 ±0.09 0.71 ±0.21

3 2-3 3.2 ±0.2 16.6 ±0.7 0.19 ±0.014 1.12 ±0.03 1.45 ±0.05 1.62 ±0.06 0.83 ± 0.19

4 3-4 3.6 ±0.1 15.9 ±0.7 0.23 ±0.012 1.09 ±0.03 1.40 ±0.05 1.52 ±0.06 0.95 ±0.23

5 4-5 4.1 ±0.1 15.0 ±0.5 0.27 ±0.011 1.10 ±0.03 1.40 ±0.05 1.54 ±0.05 0.99 ± 0.23

6 5-6 4.1 ±0.1 14.7 ±0.4 0.28 ± 0.010 1.12 ±0.03 1.20 ±0.05 1.34 ±0.05 1.01 ±0.28

7 6-7 3.6 ±0.1 13.6 ±0.4 0.26 ±0.011 1.09 ±0.04 1.38 ±0.06 1.50 ±0.06 0.56 ±0.26

8 7-8 3.7 ±0.1 15.0 ± 0.6 0.24 ± 0.012 0.99 ± 0.03 1.47 ±0.06 1.43 ±0.06 0.81 ± 0.24

9 8-9 3.7 ±0.1 14.1 ±0.5 0.30 ±0.013 1.01 ±0.03 1.27 ±0.05 1.29 ±0.05 0.81 ± 0.30

10 9-10 3.7 ±0.1 14.6 ±0.1 0.25 ±0.011 0.98 ± 0.03 1.28 ±0.05 1.25 ±0.06 0.70 ±0.25

11 10-11 3.7 ±0.1 14.1 ±0.5 0.25 ±0.011 0.97 ±0.03 1.31 ±0.05 1.28 ±0.05 0.85 ± 0.25
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Table 3.5: Uranium and thorium concentrations, concentration ratios and 
activity ratios for sliced samples (increasing distance from fracture face) in 
rock sectionCQ2 from Craignair Quarry, Dalbeattie, Scotland.

No. Dist. U Th U /T h 2MU/238U 230rh/Z38u 2 3 0 ^ /2 % 226Ra/Z30rh
(cm) (ppm) (ppm) Cone.

Ratio
Act. Ratio Act. Ratio Act. Ratio Act. Ratio

0 0 162± 5 1 3 .6 ± 2 .4 1 1 .9 1
2 .13

0 .6 4 1 0 .0 2 0 .1610.01 0 .2410 .02 -

1 0-1 3 .5± 0 .1 1 1 .5 ± 0 .5 0 .3 0 1
0.016

0 .9 5 1 0 .0 3 1 .0 8 1 0 .0 4 1 .1410 .04 1 .1810.06

2 1-2 5 .3 ± 0 .2 13 .4 ± 0 .5 0 .3 9 1
0.015

0 .9 5 1 0 .0 3 1 .1210 .03 1 .1810 .04 1.0110.03

3 2-3 4 .9± 0 .1 1 4 .1 ± 0 .5 0 .3 5 1
0 .014

0 .9 6 1 0 .0 2 1 .4010 .04 1 .4610 .04 0 .8010.03

4 3-4 4 .9 ± 0 .2 1 3 .5 ± 0 .3 0 .3 6 1
0.015

0 .9 5 1 0 .0 3 1 .1710 .02 1 .2310 .03 0 .9410.03

5 4-5 4 .8 ± 0 .2 1 2 .9 1 0 .5 0 .3 7 1
0 .015

1 .0 0 1 0 .0 3 1 .0810 .04 1 .0810 .04 1 .0310.04

6 5-6 4 .9 ± 0 .2 1 1 .7 1 0 .4 0 .4 2 1
0.022

o 00 1+ p o OJ 1 .0510 .03 1 .0710 .03 0 .9010.03

7 6-7 4 .8± 0 .1 1 3 .1 1 0 .5 0 .3 7 1
0.015

0 .8 7 1 0 .0 2 1 .0010 .03 1 .1510 .04 0 .9610 .04

8 7-8 4 .7 ± 0 .2 1 1 .8 1 0 .4 0 .4 0 1
0.021

0 .9 3 1 0 .0 4 1 .1 2 1 0 .0 4 1 .2010 .04 0 .8910 .04
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Table 3.11: Results of radioactivity survey of U and 4QK over a 
uraniferous vein at Beeswing (Map Ref. 885681), Scotland 
(c.f. Figure 2.7).

Distance
(m)

U
(cpm)

40K
(cpm)

Remarks

0 2678 284
2 2736 224
3 3150 322
4 3134 220
5 3570 312
6 4430 510 Location of small vein
7 3114 350
8 2470 272
9 5040 512
9.5 21470 1346 Location of main vein
10 3326 226
11 2338 52
12 672 44
13 602 70
14 772 54
15 588 60
16 874 60
17 718 40
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( Table 3.16: Uranium and thorium concentrations and concentration and activity ratios 
of stream water samples around the Criffel pluton, southwest Scotland.

Nov. 1991 April 1992

Location U (ppb) Th (ppb) U/Th U (ppb) Th (ppb) U/Th

Back bum 0.512 0.082 6.3 0.654 0.059 11.1
Fairgirth lane bum 0.765 0.056 14.3 1.305 0.111 11.8
Southwick bum 0.048 0.016 3.0 0.109 0.012 9.1
Prestonmill bum 0.047 0.013 3.6 0.097 ND -
Drum bum 0.046 0.013 3.6 0.087 0.009 9.7
Glaisters bum 0.517 0.033 16.7 0.830 0.042 19.6
Kinharvie bum 0.438 0.052 8.3 1.256 0.068 18.5

Uranium concentration:
Maximum value 
Minimum value 
Mean value

1.305 ppb 
0.046 ppb 
0.437 ppb

U (ppb) 234U723 8u 230rh

Kinharvie bum (*) 0.657±0.030 1.22±0.03 ND

^ote: (i) All samples were analysed by ICP-MS, except sample marked (*).
(ii) ND - not detected.
(iii) (*) - determined by alpha spectrometry method.
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CHAPTER 4 

DISCUSSION AND CONCLUSION

In discussion of the results, the various aspects of the work will be 

considered as follows: (i) uranium  and thorium  concentrations and 

distributions and natural decay series disequilibrium in the different zones 

of the Criffel pluton; (ii) natural decay series radionuclide and REE 

behaviour in fissures and at redox fronts in rock sections from Craignair 

quarry, Dalbeattie; (iii) na tu ra l decay series radionuclide and REE 

distributions in granite and granodiorite cores from outcrops subject to 

post-glacial w eathering ; (iv) u ran ium  tra n sp o rt/re ta rd a tio n  and 

geochemical associations and the distribution of 210pb, 226rS/ 134q s  ancj 

137Cs in soil from the vicinity of the uranium  m ineralised vein at 

Beeswing; (v) uranium  and thorium  studies in stream water around the 

Criffel pluton; (vi) general conclusions.

4-1 Uranium and thorium concentrations and distributions and natural 

decay series disequilibrium in the different zones of the Criffel pluton.

As described in detail in section 1.7, the Criffel pluton consists of an upland 

area reaching an elevation of 569 m with a gradation from Biotite- 

Muscovite (BM) granite at the centre of the pluton, through concentric 

Muscovite-Biotite (MB) granite, Biotite (B) granite and Hornblende-Biotite 

(HB) granodiorite zones to an outer section of Clinopyroxene-Hornblende- 

Biotite (CHB) granodiorite. This area was heavily glaciated with the most 

recent period of glaciation ending about 12000 years ago. It has been 

estimated that around 10 m of rock was removed from the summit of the
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pluton and perhaps up to 30 m from the lower areas around it by ice action 

during the last glaciation Sardine, 1993). The glacial erosion would have 

removed the surficial, weathered rock from the pluton, leaving an exposed 

surface of fresh rock and it is reasonable to assume that intense weathering 

of the newly exposed rock surface started when the ice retreated. Under 

such conditions it is likely that uranium  could be preferentially dissolved 

relative to thorium  and that natural decay series disequilibrium  in the 

near-surface rock of the pluton would develop rapidly. The possibility 

must also be considered, however, that some weathering occurred as a 

result of percolating water in the rock below the ice cover or that the rock 

retains a residual signature of much older (10^y time-scale) disequilibrium.

The uranium  and thorium  contents of the 169 archived samples analysed 

are given in Table 3.1 and the sampling locations are shown in Figure 2.2. 

The average uranium  and thorium  concentrations and their maximum 

and minimum values and T h /U  concentration ratios for different zones of 

the Criffel pluton are given in Table 4.1. An examination of Table 4.1 and 

Figure 4.1 reveals that both uranium  and thorium concentrations in the 

samples from different zones of the pluton do vary to a certain extent. For 

instance, the BM- a n d ^ ^ o n e s  have a lower average uranium content than
qrt*v.r4«-

the other zones. The B-Sone has a distinct maximum with a systematic 

decrease thereafter towards the edge of the pluton. Uranium is apparently 

enriched in the B-granite zone (4.8 ppm U) compared to the other zones in 

the pluton (Table 4.1 and Figure 4.1), suggesting that more uranium  

probably occurs in crystal inclusions such as zircons within biotite, as well 

as along grain boundaries of biotite (i.e. intergranular uranium ), in 

addition to uranium  that is present in accessory minerals such as sphene, 

monazite and apatite. In the case of thorium concentrations there is a 

distinct minimum for the BM-zone with a suggestion of a slight increase
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Figure 4.1: Average uranium and thorium concentrations of samples 
from different zones of the Criffel pluton (from centre to the edge 
of the pluton).
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Figure 4.2: Average U/Th concentration ratios of samples from 
different zones of the Criffel pluton (from centre to the edge 
of the pluton).
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Note:

BM : Biotite-muscovite granite zone 
MB : Muscovite-hiotite granite zone 
B : Biotite zone
HB : Homblende-biotite granodiorite zone 
CHB: Clinopyroxene-homblende-biotite zone
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^ r«rvi+e_
from MB-feone tow ards the edge of the pluton (Figure 4.1). The plot of 

U/Th concentration ratios shows relatively constant values for all zones 

(Figure 4.2), ranging from 0.27 to 0.37 (c.f. average U /Th concentration ratio 

for the pluton of 0.30 ± 0.04), which is characteristic of many granitic rocks
£ ) rrtw»' 3V2,VV 0<t'* O’-'

(Rogers and Adams, 1970). Figure 4.2 shows that the MB-^and CHB-£ones 

have the lowest U /T h  concentration ratios and that the HB-zone is slightly 

elevated relative to the BM- and Boones.

H istogram s of u ran iu m  and thorium  concentrations and T h /U  

concentration ratios for each zone are depicted in Figures 4.3, 4.4 and 4.5 

respectively from which it can be seen that the values do vary slightly from 

one zone to another (summarised in Table 4.1). Uranium values for the 

pluton in general range from 2.0 to 7.8 ppm (average value is 4.1 ± 0.4 ppm) 

and the thorium  values from 6.9 to 24.8 ppm (average value is 13.6 ±1.2  

ppm), values typical of many granitic rocks (Rogers and Adams, 1970). The 

Th/U concentration ratios lie in the range 1.6 to 6.3 (average value is 3.3 ± 

0.4). The histograms of uranium , thorium and T h/U  concentration ratios 

(Figures 4.3f, 4.4f and 4.5f) for the complete set of samples from the pluton 

appear generally to be skewed tow ards higher values. They also 

demonstrate that most of the values obtained for each element and T h/U  

concentration ratios are clustered closely around their average values.

The relationships between thorium and uranium for each zone are shown 

on scatter diagrams in Figure 4.6 in which the best fitting straight lines and 

the correlation coefficients are indicated. An examination of Figure 4.6 

indicates that there is no relationship between uranium and thorium in the 

B-zone (r = 0.10) but a weak positive correlation in the MB (r = 0.35) and HB 

tr = 0.48) - zones and a slightly stronger correlation in BM (r = 0.52) and CHB 

(r = 0.59) - zones. A t-test of uranium and thorium for each zone indicates
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Figure 4.3: Histograms of u ran iu m  concentrations for samples from
(a) BM-granite, (b) MB-granite, (c) B-granite, (d) HB-granodiorite, (e)
CHB-granodiorite and (f) Criffel p luton (all samples) (c.f. Table 4.1).
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Figure 4.4: Histograms of tho rium  concentrations for samples from (a) BM-
granite, (b) MB-granite, (c) B-granite, (d) HB-granodiorite, (e) CHB-grano-
diorite and (f) Criffel p luton (all samples) (c.f. Table 4.1).
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Figure 4.5: Histograms of T h /U  concentration ratios for samples from
(a) BM-granite, (b) MB-granite, (c) B-granite, (d) HB-granodiorite, (e)
CHB-granodiorite zones and (f) Criffel pluton (all samples) (c.f. Table 4.4).
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Figure 4.6: Uranium versus thorium concentrations for samples from (a) BM-grenite,
(b) MB-granite, <c) B-granite, (d) HB-granodiorite, (e) CHB-granodiorite and
(f) Criffel pluton (all samples).
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that the results for both HB- and CHB-£ones are significant at the 95% 

confidence level (P < 0.05) whereas the values are not significant in the BM, 

MB- and B-^zones. This observation could be interpreted as reflecting 

increasingly sim ilar geochemical behaviour of uranium  and thorium  

towards the edge of the pluton. The lack of correlation in the three inner 

zones and the dissim ilarity  of the distributions in the preceeding 

histograms could be taken to indicate different mineralogical associations of 

uranium and thorium  in the inner three zones, while perhaps the same 

mineral(s) may host both metals in the outer zones. The overall data set for 

uranium and thorium for all samples from the pluton (Figure 4.6f) suggests 

a weak positive correlation (r = 0.42) and a t-test indicates that the results are 

significant at the 95% confidence level (P < 0.05), indicating a systematic 

trend in uranium  and thorium distributions in the pluton as a whole.

So consideration of uranium  and thorium  concentrations reveals some 

differences betw een different zones in the pluton, although it is not 

possible, on the basis of the present data, to draw conclusions about 

uranium  or thorium  m obility, loss and re-deposition. A dditional 

information is required to identify such processes and this is provided by 

the natural decay series results as discussed below.

The results of °c- spectrometric analyses of 19 samples from different zones 

of the pluton are given in Table 3.2 and the sampling locations are shown 

in Figure 2.2. All samples from the pluton display 234u /Z 3£>U ra{-ios about 

unity, whereas 23(>rh/234U activity ratios are greater than unity, indicating 

uranium loss as a result of recent rock-water interaction. It can be seen 

from Table 3.2 that only one of the samples analysed has a 230rh/234u 

activity ratio  w ith in  error of equilibrium , and in some cases the 

disequilibrium between and is large, notably for samples MB-



146

272 (1.62), HB-135 (1.45), CHB-206 (1.59) and CHB-244 (1.47). The 230rh/234u 

data could be taken to indicate that the minerals in the M B/ HB- and CHB- 

'zones are more susceptible to uranium  loss than the other two zones but, 

when uncertainties are considered, it is apparent that the average values of 

the 230rh/234u activity ratio (Figure 4.7) for samples from different zones 

of the p luton are effectively constant (i.e. BM-granite = 1.24± 0.05; MB- 

granite = 1.34 ± 0.06; B-granite = 1.22 ± 0.05; HB-granodiorite = 1.28 ± 0.06; 

and CHB-granodiorite = 1.32 ± 0.07). This observation reveals that 

approximately 30% of the uranium  has been lost from the surface rocks in
n ^  none AforiV e.

the M B / ,  HB- and CHB -^zones of the pluton and that less uranium has
grai*i4o-

been rem oved from the B- and BM-Zzones; here the average loss of 

uranium is about 22% and 24% respectively. Thorium has apparently 

remained immobile. The fact that in all cases the 234u/Z38u activity ratio is 

within error of unity while the 230ph/234u activity ratios are systematically 

greater than unity dem onstrates rapid  removal of uranium  (i.e. bulk 

dissolution of minerals w ith equal removal of and 238jj). These 

observations indicate that effectively all of the samples have undergone 

significant, recent uranium  loss, i.e. they should be regarded as weathered, 

rather than fresh, samples. This is an im portant observation, which 

highlights the difficulty in collecting fresh geological samples and suggests 

that the potential effects of weathering should be considered in any similar 

geochemical study.

If the original uranium  content before weathering is assumed to be about 5

mg kg"l and uranium  loss is estimated at about 1 mg kg'-I (20% loss) from 
,fKe smrpflce, <?.{
the pluton in the last 12000 years, the resulting regional loss of uranium 

from the rock to depths of 1 cm, 10 cm and 20 cm over the total extent of
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Figure 4.7: Distribution of 230TW234U activity ratios for samples from 
different zones of the Criffel pluton (from centre to the edge of the pluton).
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the pluton (27 x 10 km) is estimated to be 6.2 x 10^ g (7.4 x lO^2 Bq), 6.2 x 107 

g (7.4 x lO 13 Bq) and 1.24 x 103 g (7.4 x 1 0 ^  Bq) respectively (assuming that 

the density of granite is about 2650 kg m -3). On this basis, values for the 

probability of uranium  removal by dissolution can be derived by assuming 

a value of 12000 y, corresponding to the end of the last period of glaciation, 

for the time during which leaching of uranium  has occurred. If it is 

assumed that leaching follows first order kinetics then,

Ct = C0e 'kt

where Ct = concentration of uranium at time t = 4.00 mg kg 'l
Cq = initial concentration of uranium = 5.00 mg kg 'l
k = removal probability for uranium (y"l)
t = time (assumed to be 12000 y in this case)

This calculation gives a removal probability for uranium dissolution of 1.9 

x 10"3 y l  for the rocks of the Criffel pluton in general, comparable to the 

value of 5.2 x 10'3 y"l derived by Scott et al. (1991) for uranium  dissolution
i

from the bulk vein material of the Needle's Eye mineralisation.

The uranium  and thorium  isotopic data for each zone of the pluton are 

presented in a plot of the 234 u /233U activity ratio against the 23^Th/233U 

activity ratio in Figure 4.8. An examination of Figure 4.8 reveals that these 

plots show similar patterns for all zones, with almost all samples lying on 

or close to the ^ U / ^ U  =  1.00 line in positions to be expected from recent, 

rapid dissolution of uranium  from the pluton w ithout fractionation. This 

interpretation is more clearly illustrated in Figure 4.8f (i.e. for all samples 

hom the pluton) where the positions of data points with respect to the 

^ U / 23̂  activity ratios generally lie close to unity (average value of 

234U /238U is 1.01 ± 0.05) while 23(>Th/238U activity ratios are greater than 

unity.
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Figure 4.8: Plots of 234U/238U activity ratio versus 230TW238U activity 
ratio for vhole-rock samples from (a) BM, (b) MB, (c) B, (d) HB and 
CHB zones and (f) Criffel pluton (all samples).
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Figure 4.8 (f): Plot of 234U/238U activity ratio versus 230Th/238U activity 
ratio for whole rock samples from Criffel pluton.
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Fission track  stud ies of sam ples from  the H B -granodiorite  zone from  

Craignair quarry  indicate that uranium  is m ainly distributed  in tw o ways. 

Firstly, it is found in association w ith accessory m inerals such as sphene, 

apatite, m onazite and  zircon (especially sphene m inerals - Plates 4.1 and 

4.2) suggesting that it has been retained in obdurate m inerals despite recent 

w eathering. This confirm s that these m inerals incorporate  u ran ium  by 

crystal lattice substitution and  consequently show  a high retention capacity 

of uranium . From Plates 4.1 and 4.2 it can be seen that no, or relatively 

little, alteration is visible in sphene grains themselves. Gascoyne (1986) has 

observed conditions of secular equilibrium  in the natural decay series for 

sphene m inera ls  from  C anada , also ind ica tin g  th a t no  rad io n u c lid e  

m igration had  occurred over periods of at least 10^ y. Thus in the context 

of a na tu ra l analogue s tudy , it is im portan t to note th a t a m ineral like 

sphene can re ta in  u ran iu m  over 10^ y tim escale u n d e r a varie ty  of 

geochemical conditions, including  recent (12000 y) exposure to oxidising 

groundw ater i.e. if a waste form  of com parable durability can be produced 

then re ten tion  for 10^ to 10^ y w ould  be obtained. Secondly, u ran ium  is 

found d istrib u ted  along crystal boundaries of biotite or at boundaries of 

crystal inclusions, such as zircons, w ithin biotite (Plate 4.3).

The 'w hole-rock ' dep le tion  of u ran iu m  observed in the sam ples of the 

Criffel p lu to n  m ay be a ttrib u ted  to the follow ing m echanism s: (i) a

significant p roportion  of the w hole grains of the obdurate m inerals m ay be 

rem oved du rin g  w eathering, and (ii) interstitial u ran ium  is probably  lost
g m in  b o u r td « r 'ie s

from altered  b io tite /an d  feldspar ec^ets and  their associated alteration 

products (chlorite and  clay minerals).

In sum m ary, analyses clearly indicate uranium  losses from  all parts of the 

p lu ton  w h ereas  th o riu m  is re ta in ed ; co n sis ten t w ith  the expected
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Plate 4.1: Matched thin-section (a) and fission track image
on plastic film (b). Fission track print showing association o f  
uranium with sphene grain.

b



153

Plate 4.2: Matched thin-section (a) and fission track image
on plastic film (b). Fission track print showing association o f  
uranium with sphene (altered granite sample but show ing  
unaltered obdurate minerals).

I t  IV.
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Plate 4.3: Matched thin-section (a) and fission track image
on plastic film (b). Fission track print showing association
of uranium with biotite (tracks around biotite minerals).

♦ •
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geochemical behaviour of these two elements in igneous rock i.e. uranium  

is suscep tib le  to ox ida tion -induced  d isso lu tion  and is, consequently, 

relatively m obile, w hereas thorium  is effectively immobile. The isotopic 

results also reveal the loss of uranium  relative to 2:% h  and show that the 

uranium  loss has been rap id , and  the time was insufficient to allow the 

development of detectable disequilibrium  betw een 234u ancj 238u

Sur-Ĵ ce jparV C>-j
So we can say that the/p lu ton  has lost betw een 20 and 30% of its uranium  

over the last 12000 y. The sim ilarity betw een observed uranium  behaviour 

in the d ifferent zones of the p lu ton  suggests that there is no significant 

'whole-rock' re-deposition  w ithin  any zone. Thus this suggests that the 

whole-rock structure of the p luton presents a negligible barrier to uranium  

migration on a scale of 10 km over a time of about 12000 y. Thus the only 

probable sites of retardation  of uranium  w ould appear to be in fractures 

and at redox fronts. This point will be rejoined in detail in sections 4.2 and

4.3. This observation clearly has implications for radioactive waste disposal 

in the context of far-field m ovem ent of soluble nuclides, and highlights the 

importance of characterising radionuclide retardation by processes related 

to fissure flow (eg. sorption, m atrix diffusion and advection), redox fronts 

and groundw ater flow vectors.



156

4.2 N atural decay series radionuclide and REE behaviour in fissures and 

at redox fronts in rock sections from Craignair quarry, Dalbeattie

4.2.1 CQ1 rock section studies

4.2.1.1 N atural decay series studies

The concentrations and activity ratios of natural decay series radionuclides 

in samples from rock section CQ1, w hich was obtained approximately 2m 

from the top of the quarry  in the HB-granodiorite zone, are given in Table

3.3. The redox front in this section of rock was visually obvious as a clearly 

defined, sharp colour change m arking the transition from Fe2+ to Fe^+ at a 

distance of 4 cm into the rock from  the fracture wall as shown in Fig. 2.4. 

Full details of the sam ple and the quarry are provided in section 2.1.1. Plots 

of U and  Th concen trations, U /T h  concentration ratios, 2 3 4 u /2 3 8 u ,  

2 3 0 jh /2 3 4 u  an j  2 2 6 p a /230x}1 activity ratios versus distance from the 

fracture face, 234-q /2 3 8 u  activity ratios versus 2 3 0 jh /2 3 8 u  activity ratios 

and 2 2 6 p a /2 3 0 q ’}1 activity ratios versus 230j]1/2 3 4 u  activity ratios are 

shown in Figures 4.9 to 4.15 and 4.17.

The plot of u ran ium  concentration against distance for section CQ1 (Figure 

4.9) show s th a t u ran iu m  is strongly  enriched at the fracture (11 ppm  

relative to a m ean value of 4.3 ppm  for the HB-granodiorite), indicative of 

uptake in the iron- and m anganese-oxyhydroxides, carbonates and clay 

fracture-lining m inerals. This suggests that uranium , which is leached 

from the bulk  rock, is partia lly  re-deposited on fracture-lining minerals 

during g roundw ater transport. U ranium  accumulates either by sorption or 

co-precipitation, w ith  iron-oxyhydroxides which are recognised as good
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Figure 4.9: Plot of uranium concentration versus distance from the fracture 
face for rock section CQ1 from Craignair quarry, Dalbeattie.
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Figure 4.10: Plot of thorium concentration versus distance from 
the fracture face for rock section CQ1 from Craignair quarry, 
Dalbeattie.
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Figure 4.11: Plot of U/Th concentration ratio versus distance from the 
fracture face in rock section CQ1 from Craignair quarry, Dalbeattie
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Figure 4.12: Plot of 234U/238U activity ratio versus distance from the 
fracture face in rock section CQ1 from Craig nair quarry, Dalbeattie
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Figure 4.13: Plot of 230Th/234U activity ratio vs distance from  the 
fracture face in  rock section CQ1 from  Craignair quarry, Dalbeattie
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Figure AAA\ Plot of 234U/238U activity ratio versus 230TW238U 
activity ratio for vhole-rock samples from rock section CQ1 from 
Craignair quarry, Dalbeattie.
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Figure 4.15: Plot of 226Ra/230Th activity ratio versus distance 
from the fracture face in rock section CQ1 from Craig nair quarry, 
Dalbeattie.
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Figure 4.16: Regions of addition and removal of both uranium and 
radium in a plot of 226RaJ230Th activity ratio versus 230TO234U 
activity ratio for whole-rock samples.

Ra add 
No Us

Ra addition or rei 
U addition \

U addition \

ition
dd,tl°n Ra addition 
™val U removal

/  U removal
No radium addition y ' 
or removal /

Ra removal r9 rerr 
U addition No U r 

or addi

\  No Ra removal 
or addition

^Ra removal 
oval u removal 
emoval 
tion

1.0

230Th/234U



22
6R

a/
23

0T
h

161

Figure 4.17: Plot of 226Ra/230Th activity ratio versus 230Th/234U 
activity ratio in sam ple CQ1 relative to secular equilibrium  (the axes), 
C raignair quarry, Dalbeattie.
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scavengers of trace m etals in geological systems (Means et al., 1978; Kroom 

et al., 1980). Sim ilarly clay m inerals are well know n for their high ion 

exchange capacity  (Grim, 1962). In add ition  the p resen t of carbonate 

m inerals in fracture-infillings suggested that these m inerals act as sites for 

uranium  re tardation  during  fissure flow  of groundw ater, consistent w ith 

the find ings in the N eedle 's  Eye s tu d y  (MacKenzie et al., 1991). This 

ob serv a tio n  of h ig h  u ran iu m  concen tra tio n s  in the  frac tu re-lin ing  

m inerals dem onstrates that these m aterials act as a retardation  barrier for 

radionuclide m ovem ent. This is clearly indicated by fission track studies of 

the D albeattie sam ples that u ranium  is distributed in infillings in fractures, 

w here it is associated  w ith  FeOOH and M nO O H  (Plate 4.4). Similar 

observations of increases in u ran ium  m arginal to fractures have been 

reported in fracture-lining m aterials of granite from Krakem ala granite in 

Sweden (Smellie et al., 1986) and the Eye-Dashaw Lakes p luton, Canada 

(Kamaneni, 1986; Gascoyne and  Schwarcz, 1986).

In the m ain  body of the rock, away from  the fracture and the redox front, 

uranium  concentrations are generally depleted in both the oxidised (-3.0 

ppm) and  reduced (-3 .7  ppm ) portions. The uranium  concentration in the 

reduced rock close to the front exhibits a weak m axim um  of 4.1 ppm , bu t is 

still dep leted  relative to the m ean concentration of 4.3 ppm  of uranium  in 

the H B -granodiorite zone. This observation is consistent w ith a general 

dissolution and rem oval of u ranium  from  the portion of rock adjacent to 

the fracture w ith partial re-deposition in the reduced rock close to the front. 

The in tensity  of u ranium  enrichm ent at the redox front is probably related 

to the volum e of rock th rough  w hich the groundw ater has passed before 

reaching the front: the w eak enhancem ent observed here, giving no net 

enrichm ent relative to the surrounding  rock, is consistent w ith the recent
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Plate 4.4: Matched thin-section (a) and fission track image on 
plastic film (b). Fission track print showing association of 
uranium with infilling fracture minerals, Fe-Mn oxyhydroxides.
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developm ent of this redox front system  and, the relatively small volum e 

of rock being traversed by the groundw ater. The uranium  concentrations 

thus suggest that there has been general removal of uranium  from the rock 

adjacent to the fractures but that the redox front acts as a retardation barrier 

for u ran ium .

In co n tras t to u ran iu m , tho rium  has a ra th er d ifferent d istrib u tio n  

throughout the section (Figure 4.10), w ith concentrations ranging betw een 

13.6 and  16.6 ppm  relative to a mean concentration of thorium  in the HB- 

granodiorite  of 13.4 ppm . Thorium  is thus generally enriched in this 

section, consisten t w ith  its highly im m obile behaviour. Thorium  w as 

undetectable in the fracture-surface scraping sample, again consistent w ith 

negligible g roundw ater concentrations and the high degree of immobility.

The p lo t of U /T h  concentration ratios against distance from the fissure 

(Figure 4.11) again suggests that U has been rem oved from the w hole rock 

section, w ith  som e re-deposition  on the reduced  side of the  front. 

Retardation of this type is of potential im portance in far-field radionuclide 

transport b u t the efficiency of such retardation has not been established. In 

the p resen t case a m ass balance was calculated by com parison of the 

uranium  concentration in the fracture-lining m inerals and  in the 4-6 cm 

rock section (showing slight uranium  enrichm ent of 4.1 ppm ) with the 7-10 

cm section (show ing constant uranium  concentration value of 3.7 ppm). 

In each case, the area involved is about 100 cm^ and the total m ass of 

uranium  in un it volum e of rock was calculated (assuming a density of 2.65 

g cm '3). O n this basis the am ount of uranium  being retarded  along the 

flow p a th  in unit area can be estim ated to be about 0.0156 pg cm 2 and 

0.0007 jig cm“2 at the fracture surface and at the redox front respectively in 

this rock section. These results therefore indicate that uranium  retardation
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in the fracture-lining m inerals is relatively more efficient than at the redox 

front. H ow ever, the am ount of uranium  being deposited in the fracture- 

lining m inerals and at the redox front (4-6 cm section) are calculated to be

4.2 mg and 184.0 mg respectively in the rock section. It is apparent that the 

am ount of u ranium  deposited in the fracture is an order of m agnitude less 

than that deposited  at the redox front since the fracture com prises only a 

very thin layer while the redox front involved a relatively large volum e of 

rock.

Further inform ation on the processes associated w ith the redox front and 

fracture flow  is p rov ided  by the isotopic analyses of natural decay series 

radionuclides. Plots of 234u /238 i j  and 230ph /234u  activity ratios over the 

length of the rock section are show n in Figures 4.12 and 4.13 respectively. 

The 2 3 4 u /2 3 8 ]j ratios exhibit disequilibrium  from the fracture to a depth  of 

7 cm into  the rock w ith  a m axim um  value of 1.73 at the fracture-surface. 

These resu lts  reveal tha t uranium  has been recently (relative to the 234-q  

half-life of 2.5 x 105 y) deposited in all samples over a distance of 7 cm into 

the rock from  the fracture, indicating that there m ust be interconnected 

porosity  in the rock over at least this distance to allow this degree of 

uranium  re-distribution. This suggests that diffusive transport of species 

in so lu tio n  in g ro u n d w a te r can take place over this d istance, an 

observation of direct significance for matrix diffusion modelling. A similar 

conclusion was reached in a study of granite cores from Sweden, in which a 

limit of about 3 centim etres was suggested for the extent of radionuclide 

m igration into saturated  rocks via matrix diffusion (Smellie et al., 1986).

In conjunction w ith  the u ran ium  concentration results the 2 3 4 p j/2 3 8 u  

activity ra tio  data indicate that while dissolution of uranium  has occurred 

as the resu lt of interaction of oxidising w ater w ith the rock, re-deposition
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has also taken place in both the reduced rock and the oxidised rock. The 

similarity of the 2 3 4 u /2 3 8 u  values from 1 to 7 cm section suggests that the 

deposition of u ran ium  has taken place at approxim ately the sam e time 

throughout this section of rock and this is consistent w ith the suggestion of 

the process being post-glacial. If it is assumed that the observed 2 34]j/238u  

activity ra tio  of 1.73 for the fracture-lining m inerals is equal to that of 

g roundw ater and  th a t add ition  of u ranium  to rock initially  in secular 

equilibrium  has generated the whole rock activity ratio values of 1.11, then 

the 'excess' u ran ium  deposited throughout the 1-7 cm section can readily 

be calculated as 0.003 m g cm“2. This represents a total deposition of 525 mg 

(0.75 m g cm"3) in the 7 cm section of rock adjacent to the fracture.

The plo t of the 2 3 0 x h /2 3 4 u  activity ratios against distance is show n in 

Figure 4.13 from  which it can be seen that the values for all of the sam ples 

are greater than  unity, indicating a substantial loss of 234{j relative to 23^Th 

th roughou t the rock. This observation once m ore indicates tha t there 

m ust be interconnected porosity in the rock system to allow m igration of 

uranium  from  the rock. As w ith the 2 3 4 |j /2 3 8 u  data, the 230ph/234lJ 

results suggest that at least 7 centim etres of rock is available for m atrix 

diffusion. This observation thus suggests that the w eathering front has 

probably penetrated  to at least this far but the Fe2+ /F e3 + is observed at 4 

cm. Thus the redox gradient extends over a significant area of rock or else 

there is a kinetic control of Fê "*" oxidation i.e. the Eh conditions have 

increased bu t an insufficient time has elapsed for the oxidation reaction to 

occur. The fron t is therefore m ore extensive than it appears. The 

^30,pti/234u activ ity  ra tio  for the fracture  surface m inerals sam ple, 

however, has a value of 1.53, revealing that the coatings m ust have been 

deposited a long tim e ago on a 10^ y timescale (since 230ph had come to



equilibrium  w ith U), bu t there has been recent loss of uranium  (eg. from 

an old fracture-lin ing , perhaps form ed under reducing conditions, w ith 

recent ingress of oxidising water). In contrast, the 2 3 4 u /2 3 8 u  data indicate 

deposition of uranium  at the fracture surface. So the system is complex.

The u ra n iu m  and  th o riu m  isotopic da ta  for rock section CQ1 are 

sum m arised  in a p lo t of ^ U / 238!! activity ratios against 2% ’h / 238U 

activity ratios in Fig. 4.14. Four of the samples (8, 9, 10 and 11) just lie in 

the u ran ium  rem oval sector of the diagram  and have 234U /238U ratios that 

are generally  close to unity. These ratios could be taken to indicate 

removal of u ran ium  at near isotopic equilibrium . The rem ainder p lot in 

positions for which complex processes are responsible. The high 

activity ratio  for the surface-lining minerals (sample 0) reveals that the re­

d ep o sited  u ra n iu m  h ad  been  d isso lved  in a re la tive ly  slow  n o n ­

equilibrium  process eg. under reducing conditions. The following general 

trends can be observed in the positions of the samples in this plot: (i) The 

sam ples closest to the fracture generally  lie fu rthest from  the (1,1) 

equilibrium  position, consistent w ith the effects of oxidising groundw ater 

spreading ou t from the fracture w ith time, (ii) all of the sam ples from the 

oxidised rock (sam ples 1-5, including the fracture surface, i.e. sam ple 0) lie 

in the com plex process sector indicating  both  u ran ium  rem oval and 

deposition, (iii) the sam ples from  the reduced rock close to the front 

(samples 6-7) lie in the complex process sector closer to equilibrium , and 

(iv) the sam ples from  the reduced rock, beyond the front (samples 8-11) lie, 

w ithin error, of the rapid , equilibrium  uranium  rem oval line indicating 

that even at this distance from the fracture these samples have probably 

been affected by the advancing redox front. Thus this observation indicates 

that at least 11 cm of the rock is available for matrix diffusion.
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With the exception of sam ples 5 and  6, the 226R a/230rh activity ratios 

(Figure 4.15) are less than unity, suggesting general removal of ^ R a  from  

the rock section and indicating migration of ^ R a  over distances of up  to 5 

cm or m ore. In general loss of radium  is observed from the reduced rock 

beyond 6 centim etres from the fracture. This observation suggests that the 

redox front extended further into the rock than is indicated m erely by the 

Fe2 + /F e3 +  colour change at 4 centimetres from the fracture. This is also 

consistent w ith  the and 230T h /234U activity ratio data. On this

basis the average ra te  of m ovem ent of the redox front into the rock is 

estim ated to be about 7 cm in 12000 y or 5.8 m in 10^ y, bu t it is expected 

much faster along fractures.

U ranium  and  rad iu m  deposition and  removal can be illustrated using a 

plot of 226 R a /230Th activ ity ratios versus 2 3 0 x h /2 3 4 u  activity ratios and 

this d iag ram  can be div ided  into four sectors representing the effects of 

uranium  an d  rad ium  addition  or rem oval processes as show n in Figure 

4.16. In such an approach it is assum ed that the rock initially exists w ith 

the natural decay series radionuclides in a state of secular equilibrium  and 

that it is then  d istu rb ed  by the addition  of uranium  and radium  from 

g ro u n d w ate r, or rem oval of u ran ium  and rad ium  to g ro u n d w ater. 

Thorium is assum ed to be highly immobile. The plot of 22^ R a /2^^T h 

versus 230T h /2 3 4 u  for sam ples from rock section CQ1 is show n in Figure 

4.17 w hich reveals the sam ples either lying in positions indicative of net 

uranium  and  radium  loss (2, 3, 7, 8, 9, 10 and 11), or uranium  loss w ithout 

radium  loss (1, 4, 5 and 6), providing comfirmation of the net rem oval of 

these nuclides by the ingress of oxidising groundwater.
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4.2.1.2 Rare earth element studies of rock section CQ1

In add ition  to the natural radionuclide studies described above, sam ples 

from rock section CQ1 w ere also analysed for rare earth elem ents. The 

results of these analyses and chondrite norm alised values are given in 

Table 3.4. The follow ing discussion of this work describes the behaviour of 

REE in the rock section and these results are com pared w ith the uranium  

and th o riu m  d is tr ib u tio n  p a tte rn s  in an a ttem p t to p ro v id e  m ore 

inform ation on the processes occurring at the redox front.

All of the  plots of REE concentrations against distance from the fracture 

surface (Figures 4.18a to m) exhibit generally similar trends, w ith m axim a 

in the oxidised rock near the fracture and in the reduced rock from about 9 

to 11 cm aw ay, and low er values generally occuring in the section from 3 to 

7 cm. This observation suggests a general removal of the REE from the rock 

close to the front and possibly partial re-deposition in the oxidised rock via 

scavenging by iron-m anganese oxyhydroxides. In general, loss of REE is 

observed from  the reduced rock up to 6.5 cm and this observation suggests 

that the redox front has probably extended further into the reduced rock 

than is ind ica ted  by the Fe^ + /F e ^ + colour change at 4.0 cm from  the 

fracture, consistent w ith  the conclusion derived above on the basis of the 

natural decay series data. Again, this suggests an average rate of m ovem ent 

of the redox front of about about 6.5 cm in 12000 y or 5.4 m in 10^ y.

Com parison of the uranium  and thorium  data w ith those of he REE data 

indicates: (i) there is a slight uranium  m axim um  over the area w here the 

REE m inim a occur ; (ii) thorium  maxima occur over the sam e areas as the

s
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Figure 4.18: Plots of REE concentrations versus distance 
from  the  fracture face in  rock section CQ1 from  Craignair 
quarry, Dalbeattie.

1UU -
(a) La

100 -
~7 \  (b) Ce

80 “ 80 -
\ a  /

60 - 60 - w

40 - 40 "

20 '  

o -1---------1------1------1------1----- T-----

20 " 

0 H 1 1 1 1 1
0 2 4 6 8 10 12 0 2 4 6 8 10 12

(d) N d

30 -

20 -

10 -

0 2 4 6 8 10 12

10
,  (c)Pr

8

6

4

2

0
0 2 4 6 8 10 12

2.0

0.5 -

0.0
0 2 4 6 8 10 12

10
(e) Sm

8

6

2

0
0 2 4 6 8 10 12

Distance (cm)



C
on

ce
nt

ra
tio

n 
(p

pm
)

171

Fig. 4.18 (Cont.)
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REE m axim a, indicating geochemical coherence betw een thorium  and REE; 

(iii) the U /T h  concentration ratio  exhibits m axim a over the sam e area as 

the REE m inim a, and (iv) loss of REE is observed up  to 6 - 7 cm, consistent 

w ith the ex ten t of 2 3 4 U /2 3 8 u  and d iseq u ilib riu m , thus

suggesting that the redox front has probably encroached that distance into 

the rock from  the fracture.

Europium  show s no evidence of redox induced effects in the concentration 

profile show n in F igure 4.18f and does not exhibit any m ajor deviation  

from  the b eh av io u r of the o ther REE in  this rock section. The Ce 

concentration exhibits a slight enrichm ent relative to other REE in sam ple 5 

of the rock section at 4 - 5 cm from  the fracture. Thus, if this is taken to 

indicate Ce dissolution on the reduced side of the front and  re-deposition  

following oxidation to C e^+ in the oxidised side, it again suggests that the 

redox front is at about 6 cm from the fracture.

In an a ttem pt to identify  possible dissolution and  re-deposition effects, it
i

was assum ed that the 8-9 cm section represented  unaltered  rock and  the 

REE concentrations in the 1-2 cm and 3-4 cm (oxidised rock) and 5-6 cm 

(probable position  of w eathering front) were d iv ided  by those of 8-9 cm 

section and plotted  in Figure 4.19. It is clear from Figure 4.19 that section 5-6 

cm is depleted  in the REE relative to the reduced rock at 8-9 cm section and 

that all REE show  abou t the same degree of depletion, except Ce w hich is 

slightly less dep le ted . The 3 - 4 cm section show s a sim ilar p a tte rn  of 

relative REE abundance to those observed for the 5 - 6  cm section and slight 

enrichm ent of heavy REE (Dy-Lu). The 1-2 cm section show s a general 

depletion of the  heavy REE (Dy-Lu) relative to the reduced  rock and  an 

enrichm ent of the ligh t REE (La-Tb) w ith  the exception of N d  w hich is 

slightly dep leted . This observation suggests that the REE have been lost



C
on

ce
nt

ra
tio

n 
ra

tio
173

Figure 4.19: Plot showing the ratio of REE concentrations in (a) 1-2 cm, 
(b) 3-4 cm and (c) 5-6 cm sections to concentrations in 8-9 cm section 
(assumed unaltered) in the reduced rock of the rock section CQ1 from 
Craignair quarry, Dalbeattie.
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from the red u ced  rock; the ligh t REE are partia lly  re -deposited  in the 

oxidised rock while the heavy REE are probably partially re-deposited nearer 

the front. This is a significant observation since the REE (except Eu and  Ce) 

are not inheren tly  redox-sensitive elem ents. This suggests th a t REE are 

released to solution in the reduced rock bu t are scavenged from  solution in 

the oxidised rock, probably by Fe-Mn oxyhydroxides.

Chondrite norm alised concentration plots for the REE are show n in Figure 

4.20, from  w hich  it is im m ediately  obvious th a t there is p ro n o u n ced  

depletion of the REE concentrations in sam ples 5, 6 and 7 (m inim a in 

sam ple 6) rela tive to the o ther sam ples. H ow ever, the trends for each 

sample in this rock section are generally sim ilar both in the reduced  and  

oxidised rock. This observation  im plies that passage of the redox front 

through the rock resu lts in d issolution bu t w ith little fractionation of the 

REE. There is a w eak effect evident on the redox-sensitive REE Ce, w ith  

evidence of enrichm ent of Ce in sample 5 (Figure 4.18b), suggesting fixation 

of Ce as a resu lt of oxidation of Ce to the 4+ oxidation state at this location.

As discussed in section 1.4, Stephens et al. (1985) used REE distributions in 

their classification of the zones of the Criffel p luton. The REE da ta  for 

sample 9 of rock section CQ1 from C raignair quarry  are com pared  w ith  

those of S tephens et al. (1985) for sam ple HB-056 (Table 3.4) w hich was 

located n e a r  the q u a rry  in  F igure 4.21. The ch o n d rite -n o rm alised  

concentration  da ta  are  fo und  to be alm ost com parab le  a lth o u g h  the 

concentrations of the REE in the data from this study are generally higher 

(except Sm and  Yb) than those of Stephens et al. (1985).

Iri sum m ary the REE data reveal a general loss of these elem ents from  the 

rock close to the front, bu t w ith  some re-deposition in the oxidised zone.
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Figure 4.20: Chondrite-normalised REE patterns for sliced samples in rock 
section CQ1 from Craignair quarry, Dalbeattie.
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Figure 4.21: Chondrite-normalised REE patterns for sliced sample (a) at 8-9 cm 
in the reduced rock section CQ1 from Craignair quarry and (b) sample HB-056 
from the Criffel pluton analysed by Stephens et al. (1985).
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This observation  is im portan t for two reasons: firstly, the REE, apart from  

Ce and Eu, w hich are non-redox sensitive elem ents (i.e. they are invariably 

in 3+ oxidation state) are partially dissolved in oxidising groundw ater and; 

secondly the apparen t re-deposition of REE in the oxidised rock represents a 

potentially  im portan t rad ionuclide re tardation  process. In the context of 

rad ioactive  w aste  d isposal, operation  of such a process w o u ld  be of 

significance in both far-field and near-field transport w here the presence of 

iron oxyhydroxides could result in scavenging of dissolved radionuclides. 

Fractionation of Ce from  the other REE is observed. The estim ated rate of 

m ovem ent of the redox front of up to 5.2 m  in 10^ y derived  here suggests 

that the p roposed  rate of far-field m ovem ent of a repository-related redox 

front of u p  to 50 m in 10^ y (N eretneiks and  A slund , 1983a, b) is a 

conservative value for inclusion in far-field transport m odels. In addition , 

the results have im plications for sam pling of rocks for REE studies, since if 

fresh rock sam ples are to be obtained, in this case they m u st be extracted 

from at least 8-9 cm from  the nearest fractures.

j
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4.2.2 CQ2 rock section studies

4.2.2.1 N atu ral decay series studies

The results for natural decay series radionuclide analyses of sam ples from  

rock section CQ2 collected from the HB-granodiorite zone approxim ately 8 

m from  the  top of the C raignair quarry  are given in Table 3.5. The 

Fe2+/pe3+ redox front in this section of rock is visually obvious as a clearly 

defined, sh arp  colour change from red to grey at a distance of about 1 cm 

into the rock from  the fracture wall as show n in Figure 2.5. Relative to 

section CQ1 the redox front in section CQ2 has therefore extended a sm aller 

d istance in to  the rock (i.e the  fron t is m ore recent assum ing  sim ilar 

perm eability ). The na tu ra l decay series analytical d a ta  w ere trea ted  

sim ilarly to those for section CQ1, and plots are show n in Figures 4.22 to 

4.29.

The plot of u ran ium  concentration against distance for section CQ2 (Figure 

4.22) show s that u ran ium  is strongly enriched (162 ppm  relative to a m ean 

of 4.3 pp m  in  the H B-granodiorite) in fracture-surface scrapings of iron- 

and m anganese- oxyhydroxides and  clay m inerals. The p ro n o u n ced  

increase of u ran iu m  concentrations in fracture-surface scrapings by 1-2 

orders of m agnitude relative to the rest of the sam ples again illustrates that 

the u ran iu m , w hich has been  leached from the rock, is p artia lly  re ­

deposited on fracture-lining m inerals during  groundw ater transport. The 

u ran ium  concen tra tion  in the fracture-lin ing m inerals from  CQ2 is an 

o rder of m ag n itu d e  greater than tha t for CQ1, p rov id ing  evidence of 

u ra n iu m  p re c ip ita tio n  d u r in g  d o w n w a rd  flow s of the  o x id is in g  

groundw ater. The am ount of uranium  deposited on fracture-lining
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Figure 4.22: Plot of uranium concentration versus distance from 
the fracture face in rock section from Craignair quarry, Dalbeattie.
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Figure 4.23: Plot of thorium concentration versus distance from the 
fracture face in rock section CQ2 from Craignair quarry, Dalbeattie.
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Figure 4 . 2 4 :  Plot of U7Th concentration ratio versus distance from the 
fracture face in rock section CQ2 from Craignair quarry, Dalbeattie.
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Figure 4.25: Plot of 234U/238U activity ratio versus distance from the 
fracture face in rock section CQ2 from Craignair quarry, Dalbeattie
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Figure 4.26: Plot of 230Th/234U activity ratio versus distance from 
the fracture face in rock section CQ2 from Craignair quarry, Dalbeattie.
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Figure 4.27: Plot of 234U/238U activity ratio versus 230TW238U activity 
ratio for vhole-rock samples from rock section CQ2 from Craignair quarry, 
Dalbeattie.
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Figure 4.28: Plot of 226Ra/230Th activity ratio versus distance from 
the fractue face in rock section from Craignair quarry, Dalbeattie.
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Figure 4.29: Plot of 226RaJ230Th activity ratio versus 230TW234U 
activity ratio in sample CQ2 relative to secular equilibrium (the axes), 
Craignair quarry, Dalbeattie.
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minerals can be estimated here to be 0.0296 mg cm-2 which is about a factor 

of two higher than the corresponding estimate for section CQ1 (0.0156 mg 

cm"2).

In conjunction with the natural decay series studies, fission track m apping 

revealed tha t w ithin the area of fractures uranium  is associated with 

secondary fracture-infilling minerals of Fe-Mn oxyhydroxides (Plate 4.4). 

This is consistent w ith the conclusion derived by natural decay series 

studies above in which uranium  was found to be enriched in the surface 

scrapings, in particular for the section CQ2, which contains about 162 ppm 

uranium  i.e. about 1 order of m agnitude greater than that of the average 

concentration of uranium  in the HB-zone of about 4.3 ppm . This 

observation suggests that the surface-active am orphous iron-m anganese 

oxide weathering products have a high affinity for radionuclides. Thus, in 

the context of radioactive waste disposal, operation of such a process would 

obviously be of significance in both far-field and near-field transport; the 

presence of iron-m anganese oxyhydroxides could resu lt in in tense 

uptake/scavenging of dissolved radionuclides.

Figure 4.22 also reveals that uranium  is slightly depleted in the oxidised 

rock (3.5 ppm ) and slightly enriched in the reduced rock (5.3 ppm) close to 

the redox front. This observation suggests that the uranium  distribution 

here reinforce the implied position of the redox front from the Fe2 + /Fe^ + 

colour change. It appears that uranium is removed from the oxidised rock 

but is re-deposited in the reduced rock close to the front, as observed by 

MacKenzie et al. (1992) in redox fronts at Pocos de Caldas in Brazil. There is 

generally more uranium  in the rock close to the front in sample CQ2 (5.3 

Ppm) than in CQ1 (4.1 ppm), consistent with downwards advective flow of
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w ater in the fracture and lateral diffusive penetration of oxidising 

conditions into the rock with associated transport of uranium. As with the 

rock section CQ1, a mass balance calculation was also carried out for section 

CQ2. On the basis of the uranium  concentration at the redox front (5.3 

ppm ) in the rock section CQ2 and the average value for the HB- 

granodiorite zone (4.3 ppm), the amount of uranium being retarded at the 

front can be estimated to be 0.0032 pg cm '2 which is about a factor of five 

higher than the corresponding estimate for section CQ1 (0.0007 pg cm '2). 

In the reduced rock away from the redox front the uranium concentration 

is relatively constant at about 5 ppm  which is slightly higher than the 

mean concentration of uranium  of 4.3 ppm  in the HB-granodiorite zone, 

possibly indicating that uranium  has been re-deposited throughout this 

section of reduced rock or that the 'average' result represents samples that 

have experienced uranium  loss as described in section 4.1. On the whole, 

the uranium  concentration data in section CQ2 revealed that uranium  is 

removed of from the oxidised rock and re-deposited in the reduced rock 

where enrichment is observed to be most pronounced close to the front.

In contrast to u ranium , thorium  is relatively uniform ly d istribu ted  

throughout the section (Figure 4.23), with concentrations ranging between 

11.5 and 13.6 ppm; similar to the mean thorium concentration in the HB- 

granodiorite  of 13.4 ppm . These results are, once m ore, force the 

conclusion that a significant degree of mobility of uranium  and effective 

immobility of thorium. There is, however, a higher 232Th concentration 

in the CQ2 fracture material than CQ1, probably because of the presence of 

some country rock minerals in the CQ2 fracture scrapings.

The trend in the plot of the U /T h  concentration ratio against distance 

(Figure 4.24) again indicates U enrichment (0.37) in the reduced portion of
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the rock section; slightly higher than the mean U /T h concentration ratio in 

the HB-zone of 0.30. These data are, therefore, entirely consistent with 

dissolution and rem oval of uranium  from the oxidised rock and  re­

deposition in the reduced rock close to the front. Again, this observation 

indicates that the uranium  distribution supports the implied position of 

the redox front from the Fe2+ /F e ^ + colour change. In addition, the plot 

shows that U /T h  concentration ratios for all of the samples in the reduced 

rock are greater than that of the 'average' U /T h concentration ratio for the 

HB-zone, suggesting that either uranium has probably been lost from the 

'average' samples or uranium  has been deposited in the reduced portion of 

the rock section.

Plots of the 234uy238lJ and 230xh/234u  activity ratios for the rock section 

CQ2 are shown in Figures 4.25 and 4.26 respectively. Figure 4.25 shows that 

the 23 4 u /2 3 8 u  activity ratio 0.64 is very low for the fracture-lining 

m inerals. As u ran ium  precip ita ted  from solution is isotopically  

hom ogeneous, in itia lly  deposited  23 4 u  and 23 8 u  will not undergo  

fractionation. Thus the original population of atoms of 23 4 |j w ould have 

to be substantially replaced to produce this ratio. The value of 0.64 for the 

2 % / 2 %  activity ratio requires that at least 40% of the 23 4 u  atom s 

produced by decay of 2^ 8 u  are being preferentially lost to the aqueous 

phase. Thus it can be inferred that uranium  must be present at this 

location as a thin coating on the surface of fracture materials. This low 

value also indicates that the rate of bulk dissolution of uranium  m ust be 

low relative to the rate of preferential recoil loss of 2^^U, but the 234pj 

atoms ejected m ust clearly remain in solution for a sufficient length of 

time to ensure their total removal from this environm ent. On the 

assum ption of an initial unity value for the ^ U / 23̂  activity ratio and 

50% loss of atoms formed in situ and also no loss other than by



decay, a lower age limit can be estimated for uranium in the fracture-lining 

minerals as follows:

where,
A A0 e "^t
A activity of uranium at time t = 0.64
Ao initial activity of uranium  to = 0.50

^234u = 2.8 x 10'6 y _1
t time for uranium deposited in the

lining material (i.e. giving
minimum age)

This calculation gives a minimum age limit of 4.6 x 10^ y for uranium  in 

the fracture-lining minerals for rock section CQ2.

Similar observations of pronounced deficiency of have been reported 

in fracture-fillings at 170 m depth from the Eye-Dashaw Lake pluton in 

Canada (Gascoyne and Schwarcz, 1986) and in the proximity of the Needle's 

Eye m ineralisation on the southern edge of the Criffel pluton (MacKenzie 

et ah, 1989). Similarly in uranium  mineral deposits at Pocos de Caldas in 

Brazil (MacKenzie et al., 1992) and in red beds (Hoffmann, 1991) very low 

values have again been observed. Thus, there is considerable evidence that 

uranium  deposited  from groundw ater can rem ain in situ for times 

approaching 10^ y. This is clearly an important point for radioactive waste 

considerations in that uranium , probably deposited only as a very thin 

layer in association with secondary iron minerals, has remained immobile 

despite being in contact with groundwater for 10^ - 10^ y. This provides 

support for the concept that massive steel containers will provide long­

term stability for the waste form. However recoil loss is clearly efficient 

under these conditions and effects of this type m ust be considered in any 

sequential decay in radioactive waste. This observation reveals that the 

disequilibrium  in the uranium  decay series is a consequence of both old
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and 'post glacial' processes.

Figure 4.25 also shows that ^ U / ^ U  disequilibrium  exists, with values 

less than unity, w ithin the 3.5 cm section of rock closest to the fracture 

surface - evidence that preferential loss of 234U has occurred. This 

observation suggests that the rock must be permeable over a distance of at 

least 3.5 cm to allow this degree of uranium  re-distribution; again carrying 

the implication that at least this volume of rock will be available for matrix 

diffusion. In contrast the ^ U / ^ U  activity ratios for the corresponding 

positions in section CQ1 exhibit disequilibrium, with values greater than 

unity - evidence that deposition of ^ U h a s  occurred. Further into the rock 

from the fracture, samples 5 and 6 attain equilibrium between and

2 % , but samples 7 and 8 again show activity ratios of less than

unity, possibly indicating the influence of another fissure deeper in the 

rockbody. This is p a ra lle l to visual observation at the site of weathering in 

all directions around a complex series of fractures that are interconnected 

in three dimensions.

The plot of 230Th/234u rati0 against distance is shown in Figure 4.26, from 

which it can be seen that, with one exception (surface scrapings sample), 

the 230T h /234U ratios are greater than unity. These values are particularly 

significant since they reflect a substantial depletion of relative to

230Th, suggesting that uranium loss has occurred throughout the rock, not 

just from the oxidised section. This observation shows that there is net 

loss of uranium  from the rock with only partial retardation in the fracture 

and at the redox front. The fracture lining sample has a very low value for 

the 2 3 \ ] / ' 2^ U  activity ratio as described above, suggesting ancient uranium  

deposition. On the other hand the low 230T h /234u vaiue suggests



188

relatively recent uranium  deposition. These observations mean that this is 

a system in which an ancient precipitate of uranium  in the fracture has 

been recently perturbed by an ingress of oxidising water, probably since the 

last period of glaciation. It can be concluded that uranium  has been 

dissolved and re-deposited w ithout 230Th but with a ^ U / 23̂  activity 

ratio of 0.64 and subsequent ingrowth (in situ growth of daughter 230Th as 

an oxide) of 23 ̂ Th. From these assumptions it is possible to calculate a 

maximum possible age of uranium deposition as follows:

ATh Au (1 - e _̂ 230Tht)
0.16 1 " e "̂ l230Tht
t 1 .8x l04 y

w here,

> H tr II activity of 23C*Th
Au = activity of 233U

^230Th ~ 9.2 x 10‘6 y 1
t time for uranium deposited in the 

fracture-lining minerals (i.e. giving 
maximum age).

This calculation gives a maximum age limit of 1.8 x 104 y for uranium  in 

the fracture-lining minerals for rock section CQ2.

The uranium  and thorium  isotopic data for section CQ2 are summarised in 

a plot of 234u/238u activity ratios against 2% h / 238U activity ratios in 

Figure 4.27. It can be seen that sample 0 (surface scraping minerals) lies in 

the complex process zone of the diagram whereas the rest of the samples all 

plot in positions that correspond to uranium  loss from the rock, either 

non-equilibrium loss as in samples 1, 2, 3, 4, 7 and 8 (i.e. w ith preferential 

loss of 2 %  which involves a longer timescale); or recent, rapid loss as in 

samples 5 and 6 from a system in which the 2 3 % /2 %  activity ratio was
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initially less than unity. The 234U /233U data for samples closest to the 

major fracture (samples 1, 2, 3 and 4) as well as the minor fracture (sample 

8) generally lie furthest from the (1,1) equilibrium position, indicating the 

effects of the oxidising groundwater spreading out from the fracture with 

time. The samples from the reduced rock (samples 5 and 6) lie close to the 

2 M u/28u  unity  line, which could be taken to represent recent, rapid 

processes w ith near equilibrium  removal of uranium . W hereas the 

position of sample 7 indicates preferential loss of probably resulting 

from«-.-recoil. Sample 0 shows a strikingly low ^ U / 23̂  activity ratio of

0.64 and 23^T h/233U activity ratio of 0.16, suggesting two possibilities for the 

routes for uranium  deposition in the fracture-lining minerals: firstly, if the 

uranium  represented by sample that was deposited with / ^ \ J  = 1.00 

and no 23^Th the route described on the plot would be along path 'a' 

(Figure 4.27), and ; secondly, if the uranium was deposited with ^ U / 23̂  

= 0.84 and no 23^Th the route described on the plot would be along path ’b’ 

(Figure 4.27). H ow ever, the classical assum ptions of initial secular 

equilibrium do not apply to fracture-lining samples, so the use of a normal 

Thiel's plot as described in section 1.3 is probably inappropriate.

The 226Ra/230rh activity ratios display disequilibrium  (Figure 4.28)
i

reaching a m axim um  value of 1.18 on the oxidised side of the front, 

indicating deposition of 22^Ra in the oxidised rock. But the drop to 0.8 in 

the reduced rock close to the front, suggests a removal of 22^Ra. These 

results, indicating that ^^Ra is removed from the reduced rock but is re­

deposited in the oxidised rock, are consistent with the observations of 

MacKenzie et al. (1992) in the more mature and developed redox fronts at 

Pocos de Caldas in Brazil. This is significant for two reasons: firstly,

radium  m igration is in the opposite direction to that ol uranium  (i.e. 

removal from oxidised rock and re-deposition in reduced rock) at the front,
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suggesting that the control of radionuclide movement at the front is by 

diffusive transport driven by concentration gradients which develop in 

groundw ater at or near the front; secondly, radium  is not an inherently 

redox-sensitive element (i.e. it is always restricted to the 2+ oxidation state) 

and it is present in groundwaters at concentrations that are many orders of 

m agnitude lower than any solubility limitation level. This suggests that 

radium  is released to solution in the reduced rock but is scavenged from 

solution in the oxidised rock. Either the Fe2+ /F e 3+ and M n ^ / M n ^  

systems or the S2"/S0 4 2" system  could be invoked to explain this

observation via scavenging of ^ R a  by iron-manganese oxyhydroxides or 

the formation of secondary sulphates (from sulphides) in the oxidised rock.

The 226 R a /230xh activity ratio versus 230 T h /234U activity ratio diagram  

for sam ples from rock section CQ2 rock section is shown in Figure 4.29. 

Interpretation of the results is based upon the diagram portrayed in Figure 

4.16. Figure 4.29 reveals that sam ples 3, 4, 6, 7 and 8 lie in the 

rad ium /u ran ium  removal sector whereas samples 2 and 5 lie in positions 

corresponding to uranium  loss without accompanying removal of radium.

In conclusion deposition of uranium in sections CQ1 and CQ2 occurs in the 

reduced rock as a result of the reduction of U^+ to U4+. This observation 

demonstrates that the redox fronts act as an effective retardation barrier as 

indicated by deposition of uranium  on the reduced side of the fronts. 

Similarly, uranium  enrichment have been reported for the reduced side of 

the m ore developed, m atured and large-scale redox fronts at Pocos de 

Caldas in Brazil although here the enrichm ent is m ore extensive 

(MacKenzie et al., 1992). Thus, in a HLW repository scenario, development 

of redox fronts would be expected to lead to retardation of radionuclides
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released from a repository.

The above observations i.e. enrichm ent/deposition  of uranium  in the 

reduced rock close to the fronts have wider significance, including parallels 

with form ation of low-temperature mineral deposits (Maynard, 1983), viz, 

redox controlled roll-front uranium deposition. These deposits are usually 

formed either by lateral groundwater flow that oxidises a mildly reduced, 

uranium -bearing sandstone aquifer, or by downward-percolating, oxidising 

ground waters invading somewhat reduced, uranium-rich crystalline rock, 

dissolving uranium  in its path and re-precipitating it on the reduced side 

of the slowly migrating redox 'barrier' (Nash et al., 1981). For instance, the 

uranium  m ineralisation at Pocos de Caldas is richest at the strongly 

developed redox fronts. These are formed as dow nw ard-percolating, 

oxidising g round  w aters invade som ew hat reduced, u ran ium -rich  

phonolites. G roundw ater can percolate to depth in crystalline terrains 

where the horizontal deviatoric stress is high (Russell, 1988; Russell and 

Skauli, 1991). Even in terrains where it is held near the surface in 

horizontal joints, groundw ater can gravitate to depth  w hen vertical 

fractures are rejuvenated or w here recent drilling provides such an 

opportunity (Pine and Batchelor, 1984).

Although, as dem onstrated above, some of the uranium  is caught in the 

redox fronts, a proportion is presumably carried down mega-joints where 

their walls are oxidised. The geometry of the fracture-associated redox 

fronts is that of an extremely acute arrow pointing downwards, and we can 

imagine that, at least along significantly permeable structures, the point of 

that arrow  would eventually follow the shape of the flow lines of open 

convection systems. Thus, it seems feasible to assume that this study 

provides us with a microcosm of the process that, under appropriate
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conditions, can lead to precipitation of uranium and other redox-sensitive 

elements at the discharge points of large-scale hydrotherm al convection 

cells w here sulphides, hydrocarbons or even hydrogen act as the electron 

donors for redeposition, a process likely to involve bacteria (Loveley et al.,

1991). A lthough the uranium  will eventually leak through in a small 

proportion of those natural hydrothermal systems where the source rocks 

have a relatively high oxidation state in the first place, it appears from both 

radiogenic age dating and structural studies that it would take at least 

100x1 y for the leading edge of such a front to move through the rocks 

and back to the surface, by this time a benign addition to the upperm ost 

crust (Mohamad et al., 1992).

In sum m ary the isotope results reveal that the processes operating at the 

redox fron t are m ore complex than merely the sim ple transport of 

u ranium  from oxidised to reduced rock. The fracture sam ples give 

evidence of ’old' process of uranium  deposition whereas the redox front 

results suggest recent process that have taken place since the end of the last 

period of glaciation (12000 y BP). A simple model is thus proposed to 

explain the d istribution  pattern  and m igration processes of uranium  

during fracture flow, and at the redox front, in the Craignair quarry as well 

as in the Criffel pluton as a whole, based upon isotopic data from analyses 

of samples CQ1 and CQ2 (Figure 4.30). The model basically delineates four 

major stages involved in the dissolution, transportation and retardation of 

uranium  during  fracture flow as follows: (i) slow, non-equilibrium

uranium  loss over long time periods, (ii) mobilisation of uranium  in 

groundw ater by surface and subsurface weathering, (iii) transportation of 

uranium  by penetration of oxidising groundwater down fissures and, (iv) 

uptake of uranium  on fracture-lining minerals by iron- and manganese- 

oxyhydroxides, clays and carbonate minerals during transportation and
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deposition of uranium  at redox fronts.

This model can be used to explain several features of uranium  distribution 

in the fracture system of the Craignair quarry, and is described below:

i. The model generally explains the mobility of the uranium  species 

which are liberated from the upper part of the pluton as a result of 

intensive weathering which is assumed to have taken place within the last 

12000 y. Uranium  is carried in solution via the penetration of oxidising 

groundwater down fissures as uranyl ion complexes and, during transport, 

it is partially removed from solution by adsorption on secondary minerals 

of iron-manganese oxyhydroxides as well as clays and carbonate minerals 

along the fractures. Also uranium  is partially removed from the solution 

into the rock by matrix diffusion processes. Upon encountering reducing 

conditions uranium , in solution in the 6+ oxidation state, is reduced to the 

4+ state  and  precip itated . These processes thus form  the prim e 

geochemical mechanisms that can result in retardation of uranium  during 

fracture flow. On the basis of the limited data presented here it appears that 

uranium concentrations in the surface scraping material increase with true 

depth from the top of the quarry i.e sample CQ2 (~ 8 m depth) and sample 

CQl (~2 m depth) contain 162 ppm and 11 ppm  of uranium  respectively. 

This suggests that uptake of uranium  is not perm anent; either the 

m ovem ent of u ran ium  dow n fissures is as a result of a series of
i

precip itation/d isso lu tion  processes that occurred extensively in the last 

12000 y, or an old 'stable' system (probably reduced) has recently been 

disturbed by ingress of oxidising water. However, the pronounced 

deficiency of 234U relative to 238U for surface scrapings material suggests 

preferential loss of 234U as a result of or - recoil, implying that dissolution 

and transport processes affecting uranium  have been operating here on a 

103 y timescale. In this case, uranium  has experienced a slow, non­
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equilibrium  loss over a long time period to give bulk rock that is slightly 

depleted in 234U. Following this re-deposition in other areas has either 

given (a) slightly enhanced 234U (as in section CQ1) or (b) thin deposits 

which lose 234U very efficiently giving 234u/238pj values as low as 0.64 (as 

in section CQ2).

ii. Penetration of oxidising groundwater has resulted in oxidation of 

the rock adjacent to fissures giving rise to narrow V-shaped oxidised zones 

extending dow nw ards into the rock. The redox fronts between the oxidised 

and reduced rock were clearly visible as a change from red to grey marking 

the Fe2+/Fe3+ transition. Under these conditions dissolution of uranium  

as oxidising water reacts with the reduced rock will generate a maximum 

uran ium  concentration in the groundw ater at the front resulting  in 

diffusion into both the reduced and oxidised rock. The dissolved uranium  

on the oxidised side of the front is inherently stable in solution but other 

processes as described above, in particular deposition of oxides of iron and 

m anganese, may lead to removal of uranium  from solution. Diffusive 

m ovem ent of u ran ium  away from the redox front into the reduced rock 

will result in reduction of uranium  to the 4+ oxidation state resulting in 

precipitation in the reduced rock just ahead of the front.

With regard to the HLW repository scenario the model illustrates that the 

diffusion of nuclides into the rock, the uptake of uranium  by fracture- 

lining m inerals and  at redox fronts are potentially im portant components 

in re tard ing  the far-field movem ent of radionuclides released from a 

repository.
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4.2.2.2 Rare earth element studies of rock section CQ2

The results for rare earth element analyses of samples from the rock section 

CQ2 are given in Table 3.6. The plots of REE concentrations against distance 

from the fracture surface for rock section CQ2 (Figures 4.31a to m) exhibit 

generally sim ilar trends where, in all cases, maxima are observed in 

reduced rock close to the redox front (1 - 2 cm) from the fracture and at 4 - 5 

cm except for Ho, Yb and Lu where the slight enrichment is displaced to 6 - 

7 cm from the fracture surface. Minima are observed in the oxidised rock 

close to the fracture (0 -1  cm) and in the reduced rock from about 2 to 4 cm 

and also in the 7 - 8 cm section.

Comparison of the REE data between sections CQ1 and CQ2 clearly indicates 

that the concentrations of light REE in CQ1 are about twice those of CQ2. 

This implies that the light REEs have been lost from the reduced rock in 

section CQ1 but have been partially scavenged from solution in the oxidised 

rock, probably by the Fe-Mn oxyhydroxides. Also samples from both 

sections CQ1 and CQ2 show identical trends for the REE distribution; i.e. a 

bim odal distribution of elements about the redox front (Figure 4.18 for 

section CQ1 and Figure 4.31 for section CQ2), similar to patterns in the Pocos 

de Caldas study (MacKenzie et al., 1992). Yet cerium and europium  show 

no obvious sign of redox induced effects in the concentration profiles 

shown in Figures 4.31b and f respectively, and also do not exhibit any major 

deviation from the behaviour of the other REE in this rock section.

Com parison of the uranium  and thorium data with those of the REE data 

indicates: (i) uranium  and U /T h concentration ratio maxima over the same 

area as the REE; and (ii) there is no similarity between thorium and REE
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Figure 4.31: Plots of REE concentrations versus distance from the fracture
face in the rock section CQ2 from Craignair quarry, Dalbeattie.
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Figure 4.31 (cont.)
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behaviour, indicating  that the REE, although not inheren tly  redox- 

sensitive, have been rem oved from reduced rock and are partially  re­

deposited in the oxidised rock, whereas thorium is relatively immobile; (iii) 

loss of REEs is observed up to 3.5 cm from the fracture, suggesting that the 

rock is permeable over at least that.

C hondrite  norm alised concentration plots are show n in Figure 4.32. 

N eodynium  is anom alous in sam ples 2, 4 and 5 in this rock section, 

presum ably indicating re-deposition at these sites. There is generally slight 

depletion of the REE concentrations apparent in samples 1, 4 and 8, relative 

to the other samples, indicating that the REE have probably been lost from 

the rocks represen ted  by these samples. Slight enrichm ent of REE 

concentrations were observed in samples 2 and 5, indicating that the REE 

have probably re-deposited at these sites as w ith the deposition of N d, as 

d iscussed  above. The trends for the chond rite-no rm alised  REE 

concentrations for all of the samples are very similar, except for N d and Eu, 

and this observation forces the conclusion that passage of the redox front 

through the rock section results in little fractionation of the REE. There is, 

how ever, an obvious evident effect on the redox-sensitive REE Eu in 

sam ples 1, 7 and 8 where significant depletion of Eu concentration is 

observed (Figure 4.32). This observation suggests that Eu, which is mobile 

in the 2+ oxidation state has been lost from the rock close to the fractures by 

these samples as a result of rock-water interaction.

In sum m ary fractionation of N d and Eu from the other REE is observed, 

notably in the reduced rock at about 4.5 cm from the fracture, suggesting re­

deposition of N d and Eu has taken place at the site. The observed 

deposition of N d and Eu at 4-5 cm reveals that the w eathering front has 

probably moved to about 4.5 cm in the rock from the fracture surface,
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Figure 4.32: Chondrite-normalised REE patterns for sliced samples in rock section 
CQ2 from Craignair quarry, Dalbeattie.
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consistent w ith the conclusion based on uranium  studies as described 

above. The observed deposition of REE in the reduced rock represents a 

potentially im portant radionuclide retardation process and, in the context 

of radioactive waste disposal, operation of such a process would obviously 

be of significance in both far-field and near-field transport of released 

radionuclides. The overall REE data, however, have revealed very little 

loss of these elements, except for Eu, indicating little mobilisation of these 

elements in this rock section. By analogy, this suggests that americium and 

curium , which also exist in 3+ oxidation state w ould also be expected to 

behave in similar fashion.



4.3 N atural decay series radionuclide and REE distributions in granite 

and granodiorite cores from outcrops subject to post-glacial weathering.

In section 4.1 it was demonstrated clearly that the rocks of the Criffel pluton 

in general have lost uranium . The isotopic data are consistent w ith this 

uranium  loss having taken place dominantly, bu t not entirely, during the 

last 12000 y. From an analogue viewpoint weathering of this type could be 

regarded as an extreme case of penetration of highly oxidising groundwater

elements is of interest in this context. Moreover, it is im portant from a 

geological view point to evaluate the extent of weathering into the rock if 

genuinely 'fresh' samples are to be obtained. In order to investigate this 

phenom enon, natural decay series radionuclide and rare earth elem ent 

d istribu tions were determ ined for core samples from a representative 

granite (GR) from Kinharvie and a granodiorite (GD) from Clifton.

4.3.1 W eathering profile study of a granite core sample from 

Kinharvie

4.3.1.1 N atural decay series radionuclide distributions

The resu lts for na tu ra l decay series analyses for sam ples from  the 

w eathering granite core from Kinharvie (section 2.1.3) are given in Table 

3.7. Plots of U and Th concentrations, U /T h  concentration ratios, 

2 3 4 u /2 3 8 u , 230ph/Z 34u aRj  226pa /230xh activity ratios versus distance 

from the w eathering surface as well as 2 3 4 u /2 3 8 ]J  activity ratio versus 

230T h / 238U activity ratio, and 226R a / 230Th activity  ratio  versus 

23^ T h /234U activity ratio, are shown in Figures 4.33 to 4.41. The rock 

section w as observed to be fractured and the fractures were filled with

r o c K
The behaviour of uranium , thorium, radium  and rare earth
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quartz, carbonate and clay m inerals and iron-manganese oxyhydroxides. 

But the sam ples themselves were collected from apparently fracture-free 

core (Plate 2.6).

The plot of uranium  concentration against depth for the sample shows a 

progressive increase from the weathering surface to the end of the core, 

ranging from 3.0 to 5.1 ppm  (Figure 4.33. The concentration of uranium  in 

samples GR-1, 2 and 3 is below the average value of 3.6 ppm  for this section 

of the granite (section 4.1), whereas the rem aining samples are above the 

average. The depletion of uranium  in the top three centimetres suggests 

that it has been leached from the rock by surficial weathering since the last 

period of glaciation (12000 y BP).). The results show relatively constant 

uranium  concentrations (about 4.0 ppm) from 6 cm to a depth of about 14 

cm, then an increase to a value of about 5.0 ppm from about 18 cm.

The thorium  concentrations in this rock section range from 13.4 to 18.8 

ppm  and all of the samples are above the average thorium  concentration 

(13.1 ppm ) for the MB-zone (Figure 4.34). However thorium  concentration 

was apparently depleted in samples GR-2 and 3 (probably im plying slight 

thorium  removal), but this is probably extremely low. Nonetheless this is 

not reflected in the U /T h  concentration ratios in samples from the top of 

the core to a depth of 14 cm, with a value which is within error constant, 

ranging between 0.22 and 0.24 and then rising to 0.27 for samples below 14 

cm depth (Figure 4.35). The results suggest that, if thorium  has rem ained 

immobile, and the thorium  variation in the core does indicate a variation 

in m ineralogy, then there has been a relatively constant loss of uranium  

relative to thorium  from the rock to a depth of about 15 cm. Thus the 

uran ium  and U /T h  data suggest that the w eathering front m ay have 

penetrated  to about 15 cm in the rock. There was, however, no visible
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Figure 4.33: Uranium concentrations as a function of depth (centimetres
from surface rocks) for granite core samples from Kinharvie.
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Figure 4.34: Thorium concentrations as a function of depth (centimetres 
from surface rocks) for granite core samples from Kinharvie.
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Figure 4.35: U/Th concentration ratio as a function of depth (centimetres
from rocks surface) for granite core samples from Kinharvie.
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Figure 4.36: 234U/23SU activity ratios as a function of depth (centimetres 
from rocks surface) for granite core samples from Kinharvie.
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Figure 4.37: 230TO234U activity ratios as a function of depth (centimetres
from rocks surface) for granite cores samples from Kinharvie.
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Figure 4.38: Plot of apparent %  uranium loss (based on U/Th concentration 
ratio and 230TW234U data) versus depth for granite core GR from Kinharvie.
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Figure 4.39: 234U/238U activity ratio versus 230TW238U activity ratio
diagram for granite core samples from Kinharvie.
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Figure 4.40: 226Raj'230Th activity ratios as a function of depth (centimetres 
from rocks surface) for granite core samples from Kinharvie.
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Figure A A V .  Plot of 226Ra^230Th activity ratio versus 230TW234U 
activity ratio in granite core sample GR relative to secular equilibrium 
(the axes), Kinharvie.
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evidence of an Fe^+ /F e ^ + redox front in the core section. If samples GR-18 

and 23 are taken to represent the original U /T h  concentration ratio of the 

rock then the results indicate that a loss of some 30% of the uranium  has 

occurred in this section of rock over 12000 y, consistent with the conclusion 

derived from  2 3 0 T h /2 3 4 |j ra{-jos [n section 4.1. This observation thus 

represents the effects of ingress of weathering conditions into the rock from 

effectively an instantaneously start about 12000 y ago. The results appear to 

show  effectively constant conditions of weathering to a depth of about 14 

cm, then a step change to unweathered rock. On this basis, the average rate 

of m ovem ent of the weathering front is estimated (if it is assumed that it is 

still progressing) to be about 14 cm in 12000 y (12 m in 10^ y), which is very 

sim ilar to the rate of m ovem ent observed at the m ore m ature and 

developed redox fronts at Pocos de Caldas of 12 m in 10^ y (MacKenzie et al.,

1992). The estimated rate of movement of the redox front of up to 12 m in 

10^ y derived here suggests that the proposed rate of far-field movement of 

a repository-related redox front of up to 50 m in 10^ y (Neretneiks and 

Aslund, 1983a, b) is a reasonable value for inclusion in far-field transport 

m odels.

Plots of 2 3 4 u /2 3 8 u  and 230xh /234u  activity ratios over the length of the 

core are shown in Figures 4.36 and 4.37 respectively. All of the samples 

from the core display 234u /  238y activity ratios of about unity but there is 

an indication of a systematic increase in the ratio towards the surface, with 

sample GR-1 showing a value of 1.06, suggesting some comparatively recent 

deposition of uranium  (Figure 4.36). The 2 3 4 |j /2 3 8 u  activity ratio of 

uranium  that has been deposited here is observed to be greater than unity, 

thus suggesting that it is not exclusively uranium  that has been mobilised 

by recent, rapid dissolution in equilibrium. There is a very smooth trend in
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the 2 3 4 u /2 3 8 ]j ^ ata except for sample GR-18 at 17 - 18 cm which has a 

h igher value than the other samples ir. this section of the rock. This 

observation again suggests that the w eathering front has penetrated to 

between 14 and 18 centimetres depth since it implies either less removal of 

uranium  at 18 cm or else some re-deposition.

The 2 3 0 T h /2 3 4 u  activity ratios (Figure 4.37) are greater than  unity  

throughout the core, indicating uranium  loss as a result of recent (relative 

to the 2 3 0 ^  hajf life) rock-water interaction. Only three samples, GR6, 

GR10 and  GR18 have 2 3 0 T h /2 3 4 u  activity ratios w ith in  error of 

equilibrium , whereas the disequilibrium between ^30jt\ and 234-q  [s qUite 

p ronounced  for other sam ples, notably for sam ples in the top three 

centim etres of the core, i.e. sam ples GR-1, 2 and 3 w hich d isplay 

23C>Th/234u activity ratios of 1.16, 1.15 and 1.11, respectively, revealing that 

10 - 20% of the uranium  has been lost from the surface rocks assuming that 

thorium  has rem ained immobile. So uranium  has been lost from the 

outerm ost 3 cm of the rock, but the most pronounced loss is observed in 

sample GR-14 (with a value of 1.23) at 13 - 14 cm. In contrast sample GR-18 

at 17 - 18 cm has a 230Th/234u ratio close to unity. These results, therefore 

provide strong evidence to support the suggestion of the existence of a 

w eathering front between 14 and 18 cm depth. Assum ing thorium  has 

rem ained immobile in the rock, values for apparent percentage uranium  

loss from the samples were calculated from (a) the U /T h  concentration 

ratio and (b) the 230xh/234u activity ratio. The plot of apparent percentage 

u ranium  loss versus distance is shown in Figure 4.38. The plot again 

suggests the existence of the w eathering front betw een 14 and 18 

centimetres depth. Thus, these results clearly show that the bulk rock does 

not act as a retardation barrier except at the very top of the core.



The u ran ium  and thorium  isotopic data  for the rock section are 

summarised in a plot of the 234]jy238jj activity ratio against the 230x^/238^ 

activity ratio in Figure 4.39, from which it can be seen that samples GR-6, 

10, 14, 18 and 23 lie in the uranium  removal sector of the diagram  while 

the rest of the samples (samples GR-1, 2 and 3) all plot in positions in the 

complex process sector. The results, plotted in this way, reinforce the above 

suggestion that the weathering front lies in a position between samples 

GR-14 and 18. Thus, sample GR-14 plots in a position indicative of rapid, 

recent near-equilibrium dissolution, consistent with being recently affected 

by oxidising conditions. Samples GR-18 and 23, from deeper within the 

rock, plot in positions relatively close to the equilibrium  (1,1) position 

suggesting that the influence of weathering has been slight at this depth. 

Above the putative weathering front, sample GR-10 also lies close to the 

(1,1) position which suggests that there has been re-deposition of uranium  

in a near equilibrium  at this position relative to sam ple GR-14. This 

observation is comparable to that at the Pocos de Caldas analogue site 

w here u ran ium  was effectively scavenged from groundw ater by iron 

oxyhydroxides forming on the oxidised sides of redox fronts. Nearer to the 

surface there is a systematic trend for samples GR-10, 6, 3, 2 and 1 which lie 

on a curve projecting into the upper complex process zone, with sample 

GR-1, which w ould have been first to be influenced by the w eathering 

front, lying furthest from equilibrium . The trend in the positions of 

samples GR-10 to 1 suggests that following m igration of the weathering 

front through the rock there is continuing re-distribution of uranium , with 

a trend towards 2 3 4 u / 2 3 8 ] _ j disequilibrium as the surface is approached. 

Since such disequilibrium evolves slowly relative to rapid  redox induced 

re-distribution this also speaks for sample GR-1 having been influenced by 

the re-distribution processes for the longest time.



Figure 4.40 shows that the 226Ra /230xh activity ratios of samples GR-1, 2, 3 

and 6 from 0 -1 0  cm section of the core show 22f>Ra to be out of equilibrium 

with 230xh. In these samples a considerable excess of 22^Ra (greater than 

20%) relative to ^ ^ T h  has been deposited within the last 8000 y, possibly as 

a resu lt of radium  being rem oved from the underlying reduced rock 

(although there is no evidence of radium  loss from deeper section of this 

core) and re-deposited in the oxidised rock in the top section of the core by a 

co-precipitation process involving iron-manganese oxides. The trend is 

therefore comparable with that exhibited by the ^ U / ^ U  activity ratio. 

Thus, taken together there is evidence of uptake of radium  and uranium  

near the surface of the rock, probably in secondary w eathering product 

m inerals such as iron-m anganese oxyhydroxides. H ow ever, the 

226Ra /2 3 0 x h  activity ratios from 10 cm dow nw ards lie w ithin error of 

secular equilibrium , suggesting that any loss of 226>Ra was tOG little to be 

detected by the analysis.

The 226Ra /230Th activity ratio versus 230xh /234u  activity ratio diagram  

for the core, shown in Figure 4.41, reveals that samples GR-1, 2, 3 and 6 lie 

in the radium  addition /uranium  removal sector; sample GR-23 lies in the 

u ra n iu m /ra d iu m  rem oval sector; sam ple GR-14 lies in a position  

corresponding to uranium  removal but no radium  removal; and samples 

GR-10 and 18 lie close to unity  indicating little loss of uranium  and 

radium . This observation indicates a weak tendency for 226Ra rem oval 

from the reduced rock, possibly from about 23 centimetres downw ards, in 

conjunction with re-deposition in the oxidised rock, whereas uranium  loss 

occurs to a depth of about 14 centimetres in the rock section. Thus, there is 

evidence that 226Ra, which is not an inherently redox-sensitive element, 

has m oved over distances of the order of 17 centimetres from the reduced



213

rock to the oxidised rock on a timescale of 10^ y. The observed deposition 

of uranium  and radium  in the oxidised recks of the granite core represents 

a potentially im portant radionuclide retardation process in the geosphere 

which w ould not be predicted on the basis of purely therm odynam ic 

considerations. Although as discussed previously in section 4.1, the bulk 

rock of the pluton does not present a retardation barrier, there is evidence 

here that the very near surface granite could act, to some extent, as sites of 

deposition.

In sum m ary, analyses of uranium  and thorium in the granite core sample 

(GR) from the Criffel pluton clearly showed evidence of uranium  loss to a 

dep th  of about 14 centim etres, thus suggesting the average rate of 

m ovem ent of the weathering front for the granite is about 12 m in 10^ y. 

In the context of radioactive w aste disposal the estim ated  rate of 

m ovem ent of the redox front of up to 12 m in 10^ y derived here suggests 

that the proposed rate of far-field movement of a repository-related redox 

front of up to 50 m in 10^ y (Neretneiks and Aslund, 1983a, b) is a realistic 

value for inclusion in far-field transport models. Uranium  loss is quite 

pronounced from the top 14 centimetres cf the pluton, thus suggesting that 

the surface rocks have undergone intense surficial w eathering since the 

last period of glaciation (-12000 y BP). In addition the results of uranium  

and thorium  in the core are consistent w ith the expected geochemical 

behav iou r of these two elem ents in igneous rock i.e. u ran ium  is 

suscep tib le  to oxidation-induced  dissolution and is, consequently , 

relatively mobile, whereas thorium is effectively immobile. The isotopic 

results clearly reveal the loss of uranium relative to ^^Th, consistent with
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the conclusion derived from section 4.1 that the Criffel p lu ton  has 

experienced a recent, rapid post-glacial removal of uranium  from the 

upperm ost section of the rock.

4.3.1.2 Rare earth element studies of granite core GR

The results for rare earth element analyses for samples from the granite 

core from Kinharvie and chondrite normalising values are given in Table 

3.8. The plots of REE concentrations against depth (Figures 4.42a to m) 

exhibit generally similar trends, with maxima in the oxidised rock from 0 to 

2 cm and at 13 - 14 cm, with generally lower values in the section from 2 to 

10 cm. This suggests the existence of a weathering front at approximately 14 

cm (probably 12 cm depth), consistent with the conclusion derived above 

from the natural decay series data. On this basis the average rate of 

movement of the weathering front can be estimated to be about 10 m in 10^ 

y, as w ith the uranium  (section 4.3.1.1).

Comparison of the REE data between the granite core GR with rock section 

CQ1 clearly indicates that the concentrations of light REE in GR are 

generally slightly less than those of CQ1, suggesting that the light REE have 

been lost from the reduced rock in section CQ1 but are partially scavenged 

from solution in the oxidised rock, probably by secondary minerals of Fe- 

Mn oxyhydroxides. This is consistent with visual observation that the 

sam ple contained a substantial am ount of Fe-Mn oxyhydroxides in the 

oxidised rock. In addition, sections CQ1 and CQ2 and granite core GR both 

show identical bimodal distributions of the REE about the redox fronts
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Figure 4.42: Plots of REE concentrations versus depth from  the weathered
surface in  granite core GR from  Kinharvie, southwest Scotland.
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Figure 4,42 (Cont.)
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(Figu res 4.18, 4.31 and 4.42 for section CQ1, CQ2 and granite core GR 

respectively). Again this is compelling evidence for dissolution of the REE 

at the weathering front with re-deposition on either side.

Europium  shows some evidence of redox induced effects as enrichment has 

been observed in 0-2 cm and 5-6 cm sections (Figure 4.42f). The enrichment 

at 5-6 cm section is taken to indicate Eu^+ dissolution on the reduced side of 

the fro n t and re-deposition , follow ing oxidation to Eu3 + upon  

encountering oxidising conditions. Ce shows a similar pattern to the other 

REE (Figure 4.42b), with general depletion observed in the rock from 2 to 10 

cm and some enrichment in the near surface samples (0-2 cm) and in the 

section of 13-14 cm. The enrichment pattern observed in the reduced rock 

close to weathering front suggests that Ce, which is leached from the bulk 

rock, is probably partially re-deposited at the front, presum ably due to 

oxidation of Ce to the 4+ oxidation state at this site. The enhancement of 

the Ce concentration in samples 1 and 2 is to be expected given preferential 

fixation of Ce in 4+ oxidation state in the oxidising conditions, in this case 

probably via scavenging by iron-manganese oxyhydroxides.

In an attem pt to identify possible dissolution and re-deposition effects of the 

REEs in the core it was assumed that the 17-18 cm section represented 

unaltered rock. So the REE concentrations in the 1-2 cm and 9-10 cm 

sections (represented oxidised rock) and 13-14 cm section (represented 

probable position of weathering front) were divided by those of 17-18 cm 

section and plotted in Figure 4.43. It is clear from this figure that the 9 -1 0  

cm section is depleted in the REE relative to the reduced ro^k at 17 - 18 cm, 

with a generally smooth trend and no fractionation of individual elements. 

The degree of depletion in this section decreases slightly along the series. 

The REE distribution in the 1-2 cm section shows some enrichment for the
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LREE (La - Tb) and depletion in the rest of the REE (the degree of depletion 

increases along the series with a distinct m inim um  for Lu) relative to the 

reduced rock in section 1 7 -1 8  cm. A distinct Eu anomaly is evident in this 

section, suggesting preferential loss of Eu^+ from the reduced rock and re­

deposition in the oxidised rock near the surface following oxidation to 

Eu3+. The 13-14 cm section shows general enrichment in REE throughout 

relative to the reduced rock in section 17-18 cm, with a maximum at N d 

and a m inim um  at Eu. This observation im plies the existence of the 

weathering front between 13 and 18 cm depth at this location.

C hondrite normalised concentration plots are shown in Figure 4.44 from 

which it may be seen that there is an enrichment of the REE in sample 14 at 

13-14 cm in the reduced rock close to the front, while sam ple 10 is depleted 

in REEs relative to the other samples. So again we see evidence (as with the 

uranium  data in section 4.3.1.1 that the penetration of the weathering front 

through the granite core can attain a distance of betw een 10 and 14 cm 

(probably at 12 cm) from the fracture wall. A part from Eu all the trends for 

the REEs in all of the samples are similar, im plying that the m igration of 

the weathering front through the rock section results in little disturbance in 

the relative REE concentrations. Obvious evidence of redox induced effects 

can be seen in sample 14 where significant depletion of Eu concentration is 

observed (Figure 4.44), suggesting that Eu in the 2+ oxidation state has been 

lost from this sample.

As discussed in section 1.4, Stephens et al. (1985) used the REE in the 

classification of the different zones of the pluton. In this context the REE 

data for sample 18 in the reduced rock at 17 - 18 cm section of the granite 

core from Kinharvie can be compared to those of Stephens et al. (1985) for 

sample MB-272 (Table 3.8) located near Kinharvie. The chondrite-

i



Ro
cW

Ch
or

td
rit

e
2 2 0

1000

100

10

Figure A A A :  Chondrite-normalised REE patterns for sliced samples in granite 
core GR from Kinharvie, southvest Scotland.

REE increasing atomic number



221

norm alised data are found to be comparable and their relationships is 

shown in Figure 4.45.

In sum m ary the REE data reveal a general loss of these elements from 

oxidised rock in the 2 to 10 cm section, but re-deposition in the reduced rock 

close to the front at about 14 cm depth; providing supporting evidence for 

the position of the front and also uptake of the REE in secondary minerals 

in the oxidised rock at the top of the core. These observations highlight 

potentially im portant radionuclide m obilisation/retardation processes. In 

the context of radioactive waste disposal, operation of these processes could 

result in radionuclide mobilisation from a repository and subsequent re­

deposition at redox fronts and in weathered materials in the oxidised rock. 

The estim ated rate of migration of the redox front of up to 10 m in 10^ y 

derived here again suggests that the proposed rate of far-field m ovem ent of 

a repository-related redox front of up to 50 m in 10^ y (Neretneiks and 

A slund, 1983a, b) is a realistic value for inclusion in the far-field transport 

model. Fractionation of Eu from the other REE is observed, notably in the 

reduced rock close to the front, suggesting that it has been leached from the 

bulk  rock in the 2+ oxidation state to be partially  re-deposited  on the 

oxidised side upon oxidation to Eu^+.
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4.3.2 W eathering profile study of a granodiorite core sample 

from Clifton

4.3.2.1 N atural decay series radionuclide distributions

The results for natural decay series radionuclide analyses of samples from 

the granodiorite core GD from Clifton are given in Table 3.9. Plots of U and 

Th concentrations, U /T h  concentration ratios, 234 |j/2 3 8 u , 230pj1/2 3 4 u  and 

2 2 6 R a /2 3 0 jh  activity ratios versus distance from the w eathering surface, 

2 3 4 u / 2 3 8 u  activity ratios versus 2 3 0 p h /2 3 8 u  activ ity  ratios and 

226Ra /230Th activity ratios versus 230xh/234|j- activity ratios are shown in 

Figures 4.46 to 4.53 and 4.55. The rocks in the section at Clifton were more 

highly fractured (Plate 2.7) than the granite cored from Kinharvie (section 

4.3.1), bu t the fractures too were filled with quartz, carbonate and clay 

minerals as well as iron-manganese oxyhydroxides.

The plot of uranium  concentration against depth (Figure 4.46) reveals small 

variations in the range 2.6 to 3.7 ppm  except for sam ple 20 which has a 

value of 6.7 ppm , suggesting that re-deposition of uranium  has taken place 

at this location. Apart from sample 20, all of the rem ainder have uranium  

concentrations that are depleted compared w ith the average value of 3.9 

ppm  for the CHB-zone. The most pronounced depletions of uranium  are 

observed in samples 1, 2, 10, 15 and 44. This observation suggests that 

u ran ium  has been leached from the rock as a result of intense surficial 

w eathering  since the last period of glaciation (~12000 y BP). This is 

particularly the case in the top two centimetres judging from those samples, 

which have experienced intense surface alteration (i.e. they are bleached 

and friable). The low uranium  values at depth probably result from
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Figure 4 . 4 6 : Uranium concentrations as a function of depth (centimetres
from rocks surface) for granodiorite samples from Clifton.
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Figure 4.47: Thorium concentrations as a function of depth (centimetres 
from rocks surface) for granodiorite samples from Clifton.

- 5 -

20
-20  -

26
- 25 -

- 30 -

- 35 -
40

- 40 - Average Th conc. 
for CHB-granoiliorite 
zone (14.7 ppm)

44

-4 5  -

-5 0
4030 35

T horium  (ppm )



De
pt

h 
(c

m
) 

De
pth

 
(c

m
)

2 2 5

Figure 4.48: Uranium/thorium concentrations ratio as a function of depth
(from rocks surface) for granodiorite samples from Clifton.
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Figure 4.49: 234U/238U activity ratios as a function of depth (centimetres 
from rocks surface) for granodiorite samples from Clifton.
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Figure 4.50: 230TW234U activity ratios as a function of depth (centimetres
from rocks surface) for granodiorite samples from Clifton.
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Figure 4.52: 234U/238U activity ratio versus 230Th'238U activity ratio
diagram for grenodiorite samples from Clifton.
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Figure 4.53: 226RaJ|230Th activity ratios as a function of depth (centimetres 
from rocks surface) for granodiorite samples from Clifton.
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Figure 4.54: A diagramatic sketch showing a complex series of redox fronts 
in granodiorite core samples from Clifton, southwest Scotland.
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Figure 4.55: Plot of 226Ra/230Th activity ratio versus 230Th/234U activity
ratio in granodiorite core sample GD relative to secular equilibrium (the
axes) from Clifton.
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rem oval of uranium  as a result of rock /g roundw ater interaction along 

fractures.

The concentration of thorium  varies w ithin the range 9.7 to 18.1 ppm , 

except sam ple 26 which contains 36.8 ppm  (Figure 4.47). The plot of U /T h 

concentration ratios against depth (Fig. 4.48) suggests that most of the 

sam ples are depleted in uranium  relative to the average for this section of 

the pluton. The U /T h  concentration ratio for sample 26 is very low (0.093), 

suggesting that a resistate thorium-bearing mineral is present. There is also 

evidence for uranium  deposition in sample 20 as indicated by its high U /T h  

concentration ratio of 0.44 relative to the average value of 0.27 for CHB- 

granodiorite zone.

Plots of 234|_j /238 u  and 230xh/234-[j activity ratios over the length of the 

core are show n in Figures 4.49 and 4.50 respectively. As shown in Figure 

4.49, samples 2, 3, 6, 10, 15 and 40 have 2 3 4 u /2 3 8 |j  ratios, w ithin error, of 

unity, suggesting either that negligible m igration of uranium  has occurred 

in the rocks represented by these samples within the last 10^ y, or that any 

process affecting them has been to rapid 'equilibrium '. As in the granite 

core the data do not exhibit a systematic trend. But there are two samples (1 

and 20) which have 2 3 4 u /2 3 8 |j  activity ratios significantly below  unity  

(Figure 4.49). The low values at 1 and 2.0 suggest slow, long term loss of 

23^U , i.e. this signature is retained despite the effects of any recent 

weathering. Thus there are three explanations for these 2 3 4 ]j/2 3 8 u  ratios;

(i) they m ay have been very low initially (i.e. at 12000 y); (ii) there has been 

little uranium  loss from these samples; a n d /o r  (iii) deposition of uranium  

wjth 2 3 4 |j /2 3 8 u  activity ratio less than unity has occurred. As discussed 

previously, the U /T h  concentration ratio for samples 1 and 20 are greater 

than the average value of the CHB-granodiorite zone, suggesting uranium
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deposition at these locations with low 2 3 4 ]j/2 3 8 u  activity ratio. On the 

other hand, samples 26, 30, 35 and 44 have 234]j/238u activity ratios greater 

than unity, suggesting accumulation of enriched 2 3 4 \ j  relative to 238|j

The plot of 2 3 0 jh /2 3 4 lJ  activity ratio against distance from the surface is 

show n in Figure 4.50. Samples 15, 20, 30, 35 and 44 have 230T h / 234U 

activity ratios, within error of equilibrium , whereas the rem ainder have 

ratios greater than unity, indicating uranium  loss as a result of rock-water 

in teraction . The disequilibrium  betw een 2 3 0 T h  ancj 2 3 4 jj  [ s highly 

pronounced for some of the samples, notably for 2, 3, 26 and 40 which 

display 2 3 0 jh /2 3 4 u  activity ratios greater than 2.00, indicating of extensive 

loss of uranium . Intense uranium  loss resulting from surface weathering 

appears to be most pronounced in the 0 - 3  cm range and decreases 

m arkedly about 10 cm from the surface. The intense loss of uranium  in 

sam ples 26 and 40 is probably related to m inor fractures.

Com parison of the 234u/238]j activity ratio and 230ph /234u  activity ratio 

da ta  here reveals rap id  dissolution and  equilibrium  loss of uranium  

because the 1-2 cm, 2-3 cm, 25-26 cm and 39-40 cm sections have 234u /238]j 

activity ratios near unity and 230ph/234u activity ratios significantly greater 

than 2.00.

A ssum ing thorium  has rem ained immobile in the rock and taking the 

average U /T h  concentration  ratio  for the CHB-zone to rep resen t 

'unw eathered ' rock, values for apparent percentage excess or deficiency of 

uranium  in the samples (ignoring sample 26 as anomalous) were calculated 

based upon (a) the U /T h  concentration jatio and (b) 2 3 0 p h /2 3 4 u  activity 

ratio. The plot of apparent percentage loss versus distance from the surface 

shown in Figure 4.51, again suggests that apart from sample 20, almost all of
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the sam ples are depleted in uranium  where the U /T h  concentration ratio 

indicates re-deposition. Also the high values of 230x h /2 3 4 u  activity ratio 

and thorium  content in sam ple 26 indicate that the sam ple has been 

h eav ily  w ea th e red  lead ing  to res is ta te  en rich m en t and Fe-M n 

oxyhydroxides along fractures (Plate 4.4).

The u ran ium  and thorium  isotopic data  for the rock section are 

sum m arised  in a p lo t of the 234u /238jj activity  ratios against the 

230rh/238(j activity ratios in Figure 4.52. Samples 1, 2, 3, 6 and 10 lie in a 

sequence indicative of recent equilibrium  rem oval/deposition  processes; 

samples 15 and 20 lie close to equilibrium as expected from the operation of 

long term processes; samples 2, 3, 26 and 40 lie in positions with ^ U / ^ u  

activity ratios close to equilibrium and 230^/238^  activity ratios greater 

than 2.00, indicating recent equilibrium  loss of uranium ; and samples 30 

and 44 lie in the accumulation sector of the diagram, indicating long term 

uranium  deposition in the order of 10^ y. As a whole, the isotopic ratios of 

uranium  and thorium  for the samples lie in all sectors of the diagram , 

suggesting that both m igration and accum ulation processes of uranium  

have occurred in rocks represented by these sam ples over the last 10^ y 

w ith recent, rapid perturbation.

The 226Ra /230Th results for the granodiorite core are plotted in Figure 4.53. 

M ost sam ples show pronounced deviations from equilibrium . 226Ra 

depletion is observed in samples 2, 3, 26 and 40, a trend sim ilar to that 

observed for uranium  loss. The comparable loss of Ra and U in samples at 

26 and 40 cm from the rock surface indicated by the 23 0 T h /23 4 u  and 

226 R a /230Th data may be explained by dissolution as groundw ater flows in 

fractures. In addition, these samples (2, 3, 26 and 40) have 226R a / 230xh 

activity ratios in the range 0.48 to 0.71, implying that at least 30% 226Ra
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atoms produced by decay of ^ O jf i  are being lost to the aqueous phase. This 

finding is consistent with the known high perm eability of the rock as 

indicated by a large number of fractures that exist in the sample. The loss of 

226Ra at 2-3 cm, 25-26 cm and 39-40 cm is anomalous as this situation is 

norm ally observed only on the reduced side of redox fronts. On the other 

hand a pattern of 22^Ra excess is also observed, notably in samples GDI, 10, 

15 and 44, suggesting that the dissolved 22^Ra is being deposited in the 

oxidised side of the rock by a co-precipitation process, probably by iron 

a n d /o r  manganese oxides. This observation indicates some deposition and 

removal of 22^Ra along the rock section represented by the core, perhaps 

because of a complex series of oxidised/reduced zones running through this 

highly fractured rock (Figure 4.54).

The 22^ R a /230Th activity ratio versus 23 0 x h /234u  activity ratio diagram  

for the core, shown in Figure 4.55, reveals that samples 1 and 10 lie in the 

rad ium  add ition /u ran ium  removal sector; sam ples 15, 20 and 44 lie in 

positions corresponding to radium  add ition /w ithou t u ranium  addition; 

sam ples 30 and 35 correspond to radium  rem o v a l/w ith o u t u ran ium  

addition , and; sam ples 2, 3, 6, 26 and 40 lie in the rad iu m /u ra n iu m  

removal sector. As a whole the plot indicates that the samples lie in both 

radium  add ition /rem oval sectors of the diagram , suggesting that both 

m igration and accumulation processes of radium  have occurred in these 

samples over the last 8000 y. Although it has been previously concluded in 

section 4.1, that the bulk rock of the pluton does not present a retardation 

barrier, there is evidence here that the very near surface rocks as well as the 

series of complex redox fronts running through this highly fractured rock 

could act together as limited sites of deposition.
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4.3.2.2 Rare earth element studies of granodiorite core GD

The results for rare earth elements analyses and chondrite norm alised 

values from the granodiorite core GD from Clifton are given in Table 3.10. 

The plots of REE concentrations against depth (Figures 4.56a to m) exhibit 

generally similar trends where maxima are observed in samples 1, 2, 3, 6, 26 

and 40 and minima are observed in samples 2, 15 and 35. The REE are 

d istributed irregularly in the core, perhaps either because of the original 

m ineralogy of the rocks which is variable with respect to REE content, or 

because of the results of weathering where REE experience removal as well 

as deposition throughout the core. The latter possibility again indicates the 

existence of a series of ox id ised /reduced  zones in the rock w here the 

maxima represent oxidised zone and the minima represent reduced zone

i.e. redox front positions (Figure 4.54), consistent w ith the conclusion 

derived above from the natural decay series data. The REE have therefore 

been rem oved from the reduced rock close to the front and are re-deposited 

in the oxidised rock via scavenging by secondary m inerals such as iron- 

m anganese oxyhydroxides and clay minerals.

Com parison of the uranium  and thorium  data with those of the REE data 

indicates: (i) uranium  m axima at REE m inim a; (ii) thorium  m axim a 

coinciding w ith the REE; (iii) the REE m axim a correspond to U /T h  

minim a, and (iv) pronounced enhancement of REE in samples 26 and 40, 

correlating with 2 3 0 x h /2^4U activity ratios greater than 2.00 relating to the 

fractures seen in the core (Plate 2.7).

E uropium  shows little or no evidence of redox induced effects in the 

concentration profile shown in Figure 4 .56 f and does not exhibit any major



De
pt

h 
(c

m
)

2 3 5

Figure 4,56: Plots of REE concentrations versus depth from the 
weathered rock surface in granodiorite core GD from Clifton, 
southwest Scotland.
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deviation from the behaviour of the other REE in this rock section. The Ce 

concentration exhibits a strong enrichm ent at 25-26 cm, suggesting re- 

deposition of Ce in the 4+ oxidation state at this location.

Chondrite normalised concentration plots are shown in Figure 4.57. Ce and 

Gd are anomalous in sample 26 in the core, a result of deposition at this 

site. It is apparent that there is a distinct depletion of the REE concentration 

in samples 2 and 15 relative to the other samples suggesting that the REE 

have probably been lost from rocks representing these samples. Perhaps 

there has been a migration of a complex series of redox fronts through the 

rock section resulting in some changes in the REE concentrations in the 

core.

In sum m ary, the REE are distributed irregularly in the core, suggesting 

rem oval/deposition in a complex series of redox fronts. A general loss of 

these elem ents is observed from reduced rock close to the front, but 

redeposition has taken place in secondary minerals such as iron-manganese 

oxyhydroxides and clay m inerals in the oxidised rock. The observed 

m obilisation and deposition of REE in the rock represent a potentially 

im portant radionuclide m obilisation/retardation processes. Thus, in the 

context of radioactive waste disposal, operation of such processes are of 

sign ificance in both  far-field  and  near-fie ld  tran sp o rt in w hich 

radionuclides in the 3+ oxidation state, such as curium and americium, in a 

radioactive waste repository, could be removed and mobilised while uptake 

by secondary minerals such as iron oxyhydroxides and clay m inerals and 

also at redox fronts could result in retardation of dissolved radionuclides.
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Figure 4.57: Chondrite-normalised REE patterns for sliced samples in granodiorite 
core GD from Clifton, soutlraest Scotland.
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4.4 Transport and distribution of radionuclides in soil in the vicinity of 

m ineralised uranium  veins at Beeswing.

In m ulti-barrier systems for radioactive waste disposal, it is assum ed that 

the radionuclides which have escaped from a repository will ultim ately 

m igrate through soils (i.e. soil is the final com ponent of the far-field 

barrier). Thus, it is important to characterise radionuclide behaviour in this 

environm ent as considerable variations in geochemical conditions occur in 

soils. Radionuclide m igration in soils is therefore of im portance in 

analogue studies as illustrated by investigation of uranium  m igration and 

retardation  in organic soils and silts in the vicinity of the Needle's Eye 

u ran ium  m ineralisation on the southern  edge of the Criffel p lu ton  

(Basham et al., 1989; MacKenzie et al., 1989; MacKenzie et al., 1991). A 

further opportunity for a study of this type in a different soil system from 

th a t at Needle's Eye was presented by the uranium  m ineralisation at 

Beeswing on the northern edge of the pluton and this part of the work 

describes an investigation of the distribution and geochemical behaviour of 

natural decay series radionuclides in the environm ent in the vicinity of 

these uranium  veins. The gamma spectroscopy techniques em ployed for 

determination also provided information on the distribution of man- 

m ade radiocaesium  isotopes and, for completeness, these results are also 

briefly considered here.

The veins occur in hornfelsed Silurian greywackes on the northern edge of 

the Criffel pluton (Figure 2.1 and Plate 2.9); the radioactive m ineral is 

m ainly uraninite (Gallagher et al., 1971). In the present study the location 

of the veins was determined using a portable 2" x 2" N al gamma detector. 

The results of the measurements are given in Table 3.11, and are shown
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graphically  in Figure 4.58. This w ork has established that the veins 

represent a possible source of uranium  for groundw ater flowing through 

the soil in the area and an attem pt was made to characterise the dispersion 

of u ran ium  into the surrounding  soils from  the line source of the 

uraniferous veins (Figure 2.7).

The results for natural decay series radionuclide analysis of bulk material 

from  the exposed section of the vein are given in Table 3.12. The 

concentrations of uranium  and thorium of the vein materials are about 67 

and 11 ppm  respectively. The sample displays a 234u /238u  activity ratio of

0.94, suggesting that the vein has experienced preferential loss of 234y 

relative to 238-q^ This observation suggests that at some time w ithin the 

last 10^ y, the vein has been subject to slow dissolution of uranium  to 

allow the development of this weak depletion in 234]j relative to 238u.

The 230xh/234lJ activity ratio exhibits pronounced disequilibrium , w ith a 

value of 1.62, indicating rapid uranium loss as a result of recent rock-water 

interaction, consistent with the observation that the sam ple consisted of 

weathered materials. Taken together the 234 jj/238u  and 230Th/234]j data 

suggest two different phases of uranium  dissolution i.e. the 2^0T h /2^4U 

ratio suggests recent, rapid loss of uranium whereas the 2 3 4 u /2 3 8 u  activity 

ratio suggests an older, slow dissolution of uranium . The analysis of the 

vein m aterial thus confirms that the vein at Beeswing acted as a recent 

source of uranium  to groundwaters in the area.

If it is assum ed that an initial state of secular equilibrium  applied to the 

vein material and that it has been disturbed by the onset of the leaching 

process, a value for the probability of uranium  removal by dissolution can
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Figure 4.58: Uranium and K-40 count rates over abandoned quarry 
at Bees w ig , sothvest Scotland.
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be derived following the procedure of Scott et al. (1991) by assum ing a 

value of 12000 y (i.e. corresponding to the end of the last period of 

glaciation) for the time during which leaching of uranium  has occurred. If 

it is assum ed that leaching follows first order kinetics then,

A t = A0e"kt

where Aj- = activity ratio of 230T h/234{j at time t = 1 . 6 2
Aq = initial activity ratio of ^ ^ T h /^ ^ U  = 1.00
k = removal probability for uranium  (y 'l)
t = time (assumed to be 12000 y in this case)

This calculation gives a removal probability for uranium  dissolution of 4.0 

x 10-5 y_l for the vein materials, comparable to the value of 5.2 x 10”5 y“l 

derived by Scott et al. (1991) for uranium  dissolution from the bulk vein 

m aterial of the Needle's Eye mineralisation in the southern edge of the 

Criffel pluton. The appropriate leaching time may in fact be greater than 

12000 years (as indicated by the 2 3 4 u /2 3 8 u  activity ratio) so this leaching 

value should be regarded as an upper limit.

The 226Ra /230xh activity ratio of the vein material exhibits pronounced 

disequilibrium , with a value of 1.50, suggesting re-deposition of the 226Ra 

rem oved from deeper in the rock. This observation is consistent w ith the 

behaviour of 226Ra at redox fronts as described in section 4.2, where 

rem oval of 226Ra is observed from reduced rock and re-deposition on the 

oxidised (weathered) side of the front. The 210P b /226Ra activity ratio of the 

vein m aterial also exhibits pronounced disequilibrium , w ith a value of 

1.38, suggesting either 226Ra loss (or less likely 210Pb deposition). Taken 

together, the 226R a / 230Th and 210P b / 226Ra activity ratios suggest a 

dynam ic regime for radium  involving both deposition and removal.
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The results of uranium , thorium , organic m atter content, 2 ^^Pb, 22^Ra, 

ancj 137(^s analyses for the soil cores A, B and C, along with the 

leaching results for natural decay series radionuclides of 9 soil samples (3 

samples from top, middle and bottom positions of each core), are shown in 

Tables 3.13, 3.14 and 3.15 respectively.

The distribution of uranium  and thorium  concentrations in the soil cores 

A, B and C at various levels is shown in (Figure 4.59(i), (ii) and (iii)}. In 

core A the uranium content is fairly constant (about 3.00 ppm) from the top 

to about 17 cm depth and then increases systematically with depth  to a 

m axim um  of 5.8 ppm  at 22 - 24 cm. The thorium content of the samples is 

irregular in the range 4.8 and 8.1 ppm, with a progressive increase from 5 

ppm  at the top to about 8 ppm  at 11 cm and then dropping to about 5 ppm  

at 17 cm. Below this, the thorium concentration increases again to 8 ppm  

w ith  a trend paralleling that of uranium  (Figure 4.59(i)). The increase in 

uranium  content at depth could be attributed to leaching of uranium  from 

veins in the outcrop and possibly in the bedrock by groundw ater, with 

subsequent downslope flow and associated uptake of uranium  by the soil at 

depth. A lternatively, the trends in this profile could be in terpreted  as 

show ing the physical re-distribution of uranium  rich m ineral or rock 

particles in the soil since the thorium concentration at depth increases in 

parallel w ith  the increase in uranium ’. Assum ing that thorium  has 

rem ained effectively insoluble, the U /T h  concentration ratio can be used to 

identify any differential geochemical movement of uranium  and thorium. 

It was observed that uranium  enrichm ent relative to thorium  was 

significant in the top 6 cm of the core and at depth from about 17 cm 

dow nw ards (Figure 4.60(i)). The high uranium  content in the shallow 

samples is consistent with the distribution of organic material in the soil



De
pth

 
(c

m
)

2 4 4

Figure 4.59: Plots of uranium and thorium concentrations versus depth for soil 
cores (i) A, (ii) B and (iii) C fromBeesving. Leaching results for samples from 
top, middle and bottom sections are indicated.
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Figure 4.60: Plots of U/Th concentration ratios versus depth for soil cores (i) A ,
(ii) B and (iii) C from Bees w ig .
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profile, suggesting uranium  association w ith soil organic m aterials, 

w hereas the deep samples indicate that the increased uranium  at depth 

does represent re-deposition of uranium  from groundw ater, probably 

associated with Fe-Mn sesquioxides.

In core B the uranium  distribution exhibits similar trends to those of core 

A. W ithin the analytical uncertainty the uranium  content is fairly 

constant at about 3 ppm  from the top to about 17 cm depth  and then 

increases progressively to about 7 ppm  in the deeper samples. The 

thorium  content in the samples is also irregular, in the range 4.4 to 7.8 

ppm . As in core A the high uranium  content in core B from 17 cm 

dow nw ards suggests that uranium  may have been re-deposited at depth 

(via scavenging by Fe-Mn sesquioxides and uptake by clay minerals) or 

alternatively may be due to the distribution of uranium  rich m ineral or 

rock particles since thorium  concentration also increases. The U /T h  

concentration ratio was observed to be slightly enriched in the top 6 cm of 

the core (U /Th > 0.5) and at depth from about 20 cm dow nw ards {Figure 

4.60(h)}, again indicating chemical re-deposition of uranium  rather than 

the physical re-distribution of uranium rich detrital minerals. In core C the 

uranium  content ranges from 2.4 to 4.8 ppm and generally decreases with 

dep th  {Figure 4.59(iii)}. The thorium  distribution in the sam ples is 

irregular in the range 6.1 to 10.6 ppm. Assuming thorium is immobile, the 

progressive decrease with depth of the U /T h concentration ratio {Figure 

4.60(iii)} suggests retention of uranium  in the upper sections of the core. 

The absence of uranium  enrichment at depth suggests that uranium  has 

been largely removed from groundwater before travelling this distance i.e. 

evidence that uranium  dissolved from the vein is relatively quickly taken 

up by soil materials.
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The results therefore indicate uranium  deposition at the surface and at 

depth in core A, at depth in core B and possibly in the surface of core C. 

This deposition pattern could be produced by a system involving two types 

of water flow: (a) occasional surface flow during high rainfall, and (b) more 

regular groundwater flow at depth. An im portant observation is that the 

pronounced increase in U /T h  ratio in the surface of core A is not seen in 

core B (about 19 m further from the veins). Thus, the surface flow of 

uranium  and uptake by organic matter is observed only close to the vein 

i.e. the results suggest highly efficient retardation of uranium  by organic 

m atter, resulting in movement over only a few metres, consistent w ith the 

conclusion from the Needle's Eye studies (MacKenzie et al., 1989; 

MacKenzie et al., 1991). Thus, these observations of uranium  retention in 

tw o different horizons indicate that the soil has a potentially im portant 

role as the final component in the geosphere barrier in retarding migration 

of radionuclides released from a repository.

The leaching experim ent revealed that a substantial am ount of the 

uranium  was readily leached from the samples (Tables 3.13, 3.14 and 3.15 

and (Figure 4.59(i), (ii) and (iii)} and this was more pronounced for cores A 

and B than for core C. The results therefore indicate that the majority of 

the uranium  in cores A and B is relatively labile, consistent with it having 

been recently deposited from groundwater. The lack of lability in core C 

suggests highly efficient retardation of uranium  probably by soil organic 

m atter.

The p lets-ef 2 3 4 u /2 3 8 ]j activity ratios against depth generally exhibit 

values about unity for the residual samples and slightly greater than unity 

for leached samples (Tables 3.13, 3.14 and 3.15). No 230Th was detected in
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any of the samples, confirming recent re-distribution of uranium  in the 

soil.

Figure 4.61 shows a schematic cross-section of the study site along A - C (cf. 

Figure 2.7). The uranium  content generally tends to be enriched at depth 

and near the surface. Uranium-rich soils are apparently located along the 

bedrock surface, indicating that uranium has been deposited here as a result 

of leaching of vein materials by groundwater. The U-enriched groundwater 

flows downw ards along the bedrock, thus resulting in slight enrichment of 

uranium  in soil profiles at depth.

The distributions of 22^Ra in the soil cores are shown in {Figures 4.62(i), (ii) 

and (iii)}. In core A the 22^Ra specific activity ranges from 69 to 195 Bq kg~l, 

w ith an enrichment observed from 17 cm dow nw ards. The high 22^Ra 

content at depth can probably be attributed to leaching of radium  from the 

outcrop and veins in the bedrock surface and retardation by uptake in the 

soil at depth  close to the veins. The 22^Ra distributions in cores B and C 

are irregular ranging from 82.1 to 119.9 Bq kg"l for core B and from 66.9 to 

158.8 Bq kg"l for core C. The 22^R a/23^U and 22^ R a/233U activity ratios of 

the soil cores exhibit pronounced disequilibrium  with values range from 

1.70 to 3.55. These observations indicate that 22^Ra is dissolved from the 

veins and is subject to relatively efficient retardation by uptake in the soil. 

N o 230Th was detected in these sam ples, thus indicating recent re­

d istribu tion  of uranium  and radium  in the soil. In add ition  this 

observation reveals another radium  deposition environm ent, which is its 

association with soil-materials (the other radium  deposition environm ent 

is in the rocks on the oxidised side of the front as discussed above and also 

in section 4.2).
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Figure 4.61: Sketch shoving distribution of uranium in soil along A-C 
cross-section, Beesving.
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Figure 4.62: Plots of Ra-226 concentration versus depth for soil cores (i) A , (ii) B and
(iii) C from Beesving.
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The results of analysis of 210pb for the three soil cores are given in Tables 

3.13, 3.14 and 3.15, and are shown graphically in {Figures 4.63(i), (ii) and 

(iii)}. 210Pb has three possible sources here: (a) from the vein; (b) from the 

decay of ^ ^ R n  in the atmosphere, and; (c) from 226pa -m  soq The 210pb 

d istribu tion  in all of the three cores exhibited sim ilar trends, w ith 

m axim um  activities of about 100 Bq k g 'l  near the surface (0-4 cm) and then 

a decrease more or less exponentially, with depth. This distribution is 

similar to that of organic matter in the soil profiles suggesting that 210pb is 

probably associated with the organic fraction of the soil. Benninger et al. 

(1975) found the same thing in their studies of 210pb distribution in soil and 

saltm arsh profiles from M aryland and Pennsylvania, U nited States of 

America. There they observed that the soil and saltm arsh investigated 

retained virtually ail of the 210pb supplied from the atmosphere. The low 

concentrations of 210pb below 4 cm at Beeswing indicate that the mobility of 

210pb is extremely low in the dissolved phase of the soils, probably because 

of the strong retention properties of soil organic matter. All of the core 

sam ples, except section 0-2 cm of each core, exhibit 210pb/226R a activity 

ratios less than unity. The surface soil sample of each core displays a 

210pb/226R a activity ratio greater than unity (Tables 3.13, 3.14 and 3.15), 

suggesting possible deposition of excess 2 10pb jn the surface samples 

whereas the other samples have 210pb/226pa activity ratios less than unity 

(ranging from 0.26 to 0.92; but mostly < 0.6). The clear implication here is 

that the 210pb can be attributed to in-growth from in-situ 226pa decay in the 

latter samples.

The results of analysis of the manmade radiocaesium isotopes for the three 

cores are presented in Tables 3.13, 3.14 and 3.15 and are shown graphically in 

{Figures 4.64(i), (ii) and (iii)}. The concentration of 137Cs decreases rapidly
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Figme 4.63: Pti-210 concentration profiles for soil cores (i) A, (ii) B 8nd C 
from Bees w ig .
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Figure 4.64: Cs-137 and Cs-134 concentration profiles for soil cores (i) A ,  (ii) B 
and (iii) C from Beesving.
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w ith depth, with high concentrations in the top 4 cm of the soil and low 

and fairly constant concentrations at greater depths. l ^ C s  is detectable to 

the bottom  of each core, suggesting that dow nw ards m igration of l ^ C s  jn 

the soil is probably quite efficient. The source of the radiocaesium in these 

sam ples is from atmospheric fallout, either from nuclear weapons testing 

(137cs only) or from Chernobyl accident ( l ^ C s  anct 137^s. May 1986 with 

l ^ C s / l ^ C s  _ q 55) being possible. l ^ C s  was detected in the top 4 cm of the 

soil cores A and C which is solely of Chernobyl origin. As l ^ C s  [ s  aiso 

observed to be concentrated in the top 4 cm of the soil, thus providing 

com firm ation that l ^ C s  contribution in these sam ples is m ostly of 

Chernobyl origin and probably negligible contribution from the nuclear 

weapons testing fallout.

In sum m ary analysis of uranium  and thorium  clearly show evidence that 

the uranium  vein has been subject to two phases of re-distribution i.e. (i) 

long - term leaching with preferential loss of 234u  relative to 238-Q; and (ii) 

recent, rap id  loss of uran ium  w ith the p robability  of geochem ical 

dissolution of uranium  from the vein being about 5.2 x 10"5 y-1 (upper 

limit). The observed general behaviour of uranium , thorium , radium , lead 

and caesium at the study site is consistent with the established geochemistry 

of these elements. Uranium  and rad ium  are relatively mobile whereas 

thorium  is effectively immobile; caesium is relatively m obile in the soil 

whereas the mobility of lead is extremely low, probably because of strong
m

reten tion  properties of soil organic m atter and  clay m inerals. These 

findings have implications for radioactive waste disposal in the context of 

far-field movement of soluble nuclides and highlights the im portance of
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characterising radionuclide retardation by processes related to groundwater 

flow in soils (i.e. final com ponent of far-field barrier) eg. uptake of 

rad ionuclides by organic m atter, clay m inerals and iron-m anganese 

sesquioxides.
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4.5 Uranium  and thorium studies in stream water around the edge of 

the Criffel pluton

In section 4.1 it was demonstrated that at least the near surface rocks of the 

Criffel pluton in general have lost uranium , particularly since the end of 

the last period of glaciation. The dom inant mechanism  of uranium  loss 

from  the pluton is by transport in groundw ater which interacts w ith the 

rock (described in sections 4.2 and 4.3) and then drains through fissures in 

the pluton and a portion eventually finds its way to rivers, lakes and the 

Irish Sea. The rivers thus represent the most readily accessible source of 

w ater likely to be fed with uranium  and are one of the routes for loss of 

uranium  from the pluton as a result of weathering. But some of the 

dissolved uranium  may simply migrate to depth  as part of a continuing 

major convective or at least advective system.

River w ater samples collected from 7 localities around the edge of the 

p lu ton  on two ocassions (November 1991 and April, 1992) were analysed 

for uranium  and thorium by ICP-MS and the analytical results are given in 

Table 3.16, along with the 234u/238{j activity ratio (determ ined by alpha 

spectroscopy) of a water sample from Kinharvie Burn. The concentrations 

of uranium  in the river water samples varied from 0.046 to 1.305 ppb with 

systematically higher values being observed for the samples collected in the 

April 1992 sampling than those collected in Novem ber 1991 (Figure 4.65). 

The increased uranium  concentrations for samples collected in April are 

possibly indicative of low rainfall resulting in low flow rates of the rivers 

and increased residence time of groundw ater in contact w ith the rock. In 

contrast, the low uranium  concentrations observed for Novem ber 1991 are 

indicative of higher rainfall, corresponding to higher flow rates and lower
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Figure 4.65: Uranium and thorium concentrations of river water samples
around the Criffel pluton, southwest Scotland.
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residence time of groundwater in contact with the rock and dilution of the 

u ranium  content in water. The results may indicate that the uranium  

concentration of the water is subject to control by the flow rates and in turn 

the rainfall. A sim ilar seasonal effect on uran ium  concentration in
e\r\d  *1. (  133 2")

groundw ater has been observed by MacKenzie et al. (1991 )/in studies at the 

N eedle's Eye uranium  mineralisation on the southern edge of the Criffel 

p lu ton .

The concentrations of uranium  in samples from the Back, Fairgaith lane, 

Glaisters and Kinharvie burns are, in general, higher by about 1 order of 

m agnitude, than sam ples from the Southwick, Prestonm ill and Drum 

burns. The high concentrations of uranium  in the former samples can be 

a ttribu ted  to leaching of the surrounding  rocks w hich are relatively 

enriched in uranium . For instance samples from Back and Fairgaith lane 

burns are located in the Sandyhills area which are close to the N eedle’s Eye 

and Lot's Wife uranium  veins. The high uranium  concentrations in river 

w aters from  Glaisters and K inharvie burns m ay be indicative of the 

existence of uranium  enrichment in the surrounding area.

The concentrations of thorium in the river water samples range from 0.013 

to 0.103 ppb with little or no seasonal or geographic variation and are low 

relative to uranium  as indicated by high U /T h  concentration ratios (Table 

3.16 and Figures 4.65 and 4.66). These values are to be expected considering 

the extremely low solubility of thorium in most natural w aters (Ivanovich 

and Harmon, 1982). Yet uranium  concentration of the river waters around 

the edge of the Criffel pluton are below the solubility lim its reported by 

Bruno and Sellin (1991) of 3 x 10"4 M (7.1 x 104 ppb) for granitic  

g roundw aters under oxidising condition. This observation reveals that 

uranium  dissolution is subject to both kinetic and therm odynam ic control
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i.e. solubility data used in m odels are conservative. In contrast the 

solubility limit for thorium is about 2 x 10"!0 M (0.046 ppb), comparable to 

thorium  concentrations of the river water samples from the pluton.

If the maximum (1.305 ppb), m inimum (0.046 ppb) and m ean (0.437 ppb) 

uranium  contents of the river water samples are taken in conjunction with 

the  total annual rainfall of 110 cm y ~1 for the p lu to n  from  the 

M eteorological Service Station at Portling Bay (W hitton et. al., 1992), the 

resulting regional loss of uranium  from the pluton in the last 12000 y are 

estimated to be 5.6 x 1016 g (6.7 x 1022 Bq), 2.0 x 1015 g (2.4 x 1021 Bq) and 1.9 

x 10^6 g (2.3 x 1022 Bq) respectively. The results indicate that the regional 

loss of uranium  is about twice the estimated values based on uranium  loss 

from rock to a depth of 20 cm (described in section 4.1). Considering a large 

scale of uranium  budget like this, the results are in reasonably good 

agreem ent and indicate that present day leaching over 12000 y could give 

the observed depletion.

T he river w ater sam ple from  K inharv ie  Burn h a d  a u ran iu m  

concentration of 0.657 ppb (analysed by alpha-spectrometry) and 234U / 238u 

activity ratio of 1.22, comparable with the observation of a value of 1.5± 0.5 

by MacKenzie et al. (1991) for a field drain near the N eedle's Eye natural 

analogue study site. The relative enrichment of 2^4U isotope over 238u
in

the water sample may be explained by alpha recoil or selective/preferential 

leaching of 2^4U or a combination of the two. 230Th was below  the 

detection limit, implying that uranium  is dissolved and transported in the 

virtual absence of thorium.
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In sum m ary uranium  concentrations in river w aters vary in response to 

the flow rates, the concentration being at a maximum at times of low flow 

rates and vice versa. The river waters in close proxim ity to the uranium  

veins exhibit by about 1 order of m agnitude higher uranium  content than 

those from other parts of the p luton indicating that the veins are a 

significant source of uranium  to the river waters. Uranium  concentrations 

in w ater are less than the predicted solubility values suggesting that the 

m odels are conservative.
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4.6 Conclusions

On the basis of the preceding discussion, the following major conclusions 

can be draw n from this study.

The analyses of uranium  and thorium  in samples from the Criffel pluton 

are consistent with the expected geochemical behaviour of these two 

elem ents in igneous rock, w hich is tha t u ran ium  is susceptib le to 

oxidation-induced dissolution and is, consequently, relatively mobile, 

whereas thorium  is effectively immobile. The study shows that the Criffel 

p lu ton  has experienced a recent, rap id  rem oval of uran ium  from the 

upperm ost section of the granite, with a removal probability for uranium  

dissolution of 1.9 x 10"^ y"l. The probability of removal of uranium  to 

solution in groundwater from the Beeswing vein is estim ated to be 4.0 x 10" 

5 y"l, comparable to the value of 5.2 x 10“5 y l  derived by Scott et al. (1991) 

for uranium  dissolution from the bulk vein m aterial of the Needle's Eye 

m ineralisa tion  on the sou thern  edge of the Criffel p lu ton . This 

observation indicates that with no protection whatsoever, pitchblende has 

been preserved for long time periods w ith a low probability for uranium  

dissolution.

U ranium  concentrations in river waters draining from the pluton vary in 

response to flow rate with maximum concentrations at times of low flow 

rate and vice versa. The river waters in close proximity to the uranium  

veins exhibited higher uranium  concentrations (by about 1 o rder of 

m agnitude) than those from other parts of the pluton, indicating that the 

veins are a significant source of uranium  to the river waters. This suggests 

th a t the control on uran ium  concentra tion  is k inetic  as well as
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therm odynam ic. U ranium  concentrations in w ater are less than  the 

p red icted  values from m odels, thus suggesting that the m odels are 

conservative.

The isotopic results for samples from the pluton clearly reveal the loss of 

uranium  relative to 230ph and show that the uranium  loss has been a rapid 

process, w ith insufficient time to allow the developm ent of detectable 

disequilibrium  between 234u ancj 238u (j e the ra te Gf bulk dissolution has 

been rapid relative to the rate of preferential loss of 234U). j h G pronounced 

disequilibrium  between 230ph ancj 2 2 A \ j  [ s  consistent with rapid post-glacial 

removal of uranium  (~ 12000 y).

On a regional basis the S u r fa c e -  of the pluton (to a  depth of

about 20cir^)has lost between 20 and 30% of its uranium  over the last 12000 

y. The absence of significant 'whole-rock' re-deposition w ithin any zone of 

the p luton suggests that the 'whole-rock' structure of the pluton presents a 

negligible barrier to uranium  migration on a scale of 10 km over a time of 

about 12000 y. However, there is evidence that the very near surface 

w eathered rocks and those adjacent to fractures and a series of complex 

redox fronts running through this highly fractured rock act as sites of 

radionuclide deposition. In the context of far-field m ovem ent of soluble 

nuc lides , this observation  confirm s the a ssu m p tio n  a d o p ted  in 

perform ance assessment modelling that the major features of the far-field 

barrier which result in radionuclide re tardation  will be sorption by 

fracture-lining minerals, matrix diffusion and deposition in the vicinity of 

redox fronts. In the case of the Dalbeadie quarry sam ples (rock section 

CQ1), a distance of 7 cm from the fracture was suggested for the extent of 

radionuclide migration into saturated rock via matrix diffusion.
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Fission track analyses of the samples from the Criffel pluton indicated that 

u ran ium  is m ainly d istributed  in two ways. Firstly, it is found in 

association with accessory minerals such as sphene, apatite, m onazite and 

zircon, suggesting that it has been retained in obdurate minerals despite 

recent weathering. This confirms that these minerals incorporate uranium  

by crystal lattice substitution and consequently show a high retention 

capacity of uranium . Thus in the context of a natural analogue study, a 

mineral such as sphene can retain uranium  over a 10^ y timescale under a 

variety of geochemical conditions, including recent (12000 y) exposure to 

oxidising groundwater i.e. if a waste form of comparable durability can be 

produced then retention for 104 to 10^ y w ould be obtained. Secondly, 

uran ium  is found distributed along crystal boundaries of biotite or at 

boundaries of crystal inclusions, such as zircons, within biotite. The fission 

track study suggests that the 'whole-rock' depletion of uranium  observed 

in the sam ples of the Criffel pluton may be attributed to uranium  loss 

during  chemical w eathering from interstitial uranium  w hich is present 

along crystal boundaries of biotite and in altered biotite and feldspars.

The activity ratio data for a representative granite core from the pluton 

suggest that the average rate of dow nw ards movem ent of the weathering 

front in the granite is about 12 m in 10^ y. In the context of radioactive 

waste disposal, this rate of movement suggests that the proposed rate of far- 

field m ovem ent of a repository-related redox front of up to 50 m in 106 y 

(Neretneiks and Aslund, 1983a, b) is a realistic value for inclusion in far- 

field transport models.

As expected, re-deposition of the dissolved uranium  occurs in the reduced 

rock close to the redox fronts in the rock sections at Dalbeattie as a result of 

the reduction of uranium  from the soluble U6+ to the insoluble U4 +. This
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observation thus dem onstrates that the redox fronts act as an effective 

retardation barrier, as indicated by deposition of uranium  on the reduced 

side of the fronts. In an advancing front re-dissolution w ould, however, 

occur as the front encroaches into the reduced rock. This is therefore a 

tem porary trapping rather than perm anent deposition. Thus, in a HLW 

repository scenario, development of redox fronts would be expected to lead 

to retardation  of radionuclides w ith insoluble reduced form s (eg. Pu) 

released from a repository.

The depth of oxidation in the highly fractured rock at Dalbeattie ranges 

from 1 to 10m below ground level and, the time-scale for developm ent of 

the fronts is probably of the order of 12000 y, i.e. since the end of the last 

glaciation. Uranium  is generally removed from the oxidised rock close to 

the redox front and accumulates just beyond the front in the reduced rock. 

However, some uranium  re-deposition is observed on the oxidised side of 

the front which would not be expected from a therm odynam ic view point 

and probably involves scavenging by Fe-oxyhydroxides - a process not 

conven tionally  incorporated  in reposito ry  perform ance assessm ent 

m odels. Also 226Ra and REE diffuse from the reduced  rock and 

accumulate in the oxidised rock, close to the redox front. Taken together, 

the 226Ra/ r e e  and uranium distributions indicate that both diffusion and 

advection processes probably control the distribution  of radionuclides 

about the front. The results are consistent with the Pocos de Caldas work 

by MacKenzie et al. (1992).

2 2 6 r s  a n d  REE re-distribution about the front is a significant observation 

for two reasons: firstly, net radium  and REE m ovem ent is in the opposite 

direction to that expected for uranium  at the front, suggesting that the 

control of radionuclide and REE m ovem ent at the front is both advective
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and diffusive; secondly, radium  and REE are not inherently redox-sensitive

(i.e. Ra is always restricted to the 2+ oxidation state and REE are always in

3+ oxidation state except Ce and Eu). This suggests that radium  and REE

are released to solution in the reduced rock bu t are scavenged from

solution in the oxidised rock. Either the F e ^ /F e ^ 4- and M n^+/M n 4f 

system  or the S ^ '/S O ^- system  could be invoked to explain  this

observation  via scavenging of ^^R a  and REE by iron-m anganese  

oxyhydroxides or the formation of secondary sulphates (from sulphides) in 

the oxidised rock.

The behaviour of elements at the redox front has implications not only for 

waste disposal, in the context of radionuclide retardation during far-field 

transportation, but also for genesis of mineral deposits. Thus, the observed 

enrichm ent of uranium  in the reduced rock close to the fronts indicates the 

m echanism of formation of low-tem perature mineral deposits such as roll- 

front uranium  deposits. Although some of the uranium  is caught in the 

redox fronts as evidenced in the rock sections at Dalbeattie, a proportion is 

presum ably carried down mega-joints where their walls are oxidised. The 

geom etry of the fracture-associated redox fronts is that of an extremely 

acute arrow  pointing downwards, and it is possible to imagine that, at least 

along significantly permeable structures, the point of that arrow  w ould 

eventually follow the shape of the flow lines of open convection systems. 

Thus, it seems feasible to assum e that this study  provides us w ith a 

microcosm of the process that, under appropriate conditions, can lead to 

p rec ip ita tion  of uranium  and other redox-sensitive elem ents at the 

d ischarge points of large-scale hydrotherm al convection cells w here 

sulphides, hydrocarbons or even hydrogen act as the electron donors for re­

deposition. A lthough the uranium  will eventually leak through in a
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sm all p roportion  of those natural hydrotherm al system s w here  the source 

rocks have a relatively high initial oxidation state, it appears  from  both 

radiogenic age dating and structural studies that it takes at least lOOxlO^ y 

for the leading edge of such a front to m ove through the rocks and back to 

the  su rface, by this tim e a ben ign  ad d itio n  to the u p p e rm o st crust 

(M oham ad et al., 1992).

The s tudy  of natural decay series and radiocaesium  isotopes from  Beeswing 

revealed  significant re-deposition of u ranium , rad ium  and lead in soils by 

u p take  in organic m aterials and secondary m inerals and  less re tardation  of 

caesium . This observation  has im plication  th a t the soil could  p lay  a 

significant role as the final re tardation  barrier for rad ionuclides released  

from  a repository.

In sum m ary , this study  has confirm ed the expected general behav iour of 

u ra n iu m  and  th o riu m  d u rin g  rock w a te r in te rac tio n s  an d  p ro v id e d  

quantita tive data  for the probability of u ran ium  dissolution from  bulk  rock 

an d  p itchb lende. The w ork verifies th a t the p rinc ipa l m echanism s of 

rad ionuclide  retardation  during  far-field transport are likely to be sorp tion  

on rock  o r frac tu re  lin ing  m inerals, m atrix  d iffusion  an d  redox  fron t 

trapp ing . The s tudy  indicates tha t these processes m ay be particu la rly  

effective in the near surface rock and further reveals the soil to be the final, 

ad d itio n a l site of rad ionuclide re tardation . The near surface w eathered  

zone is thus identified  as a potentially  im p o rtan t final b arrier to far-field 

m ig ra tion  of rad ionuclide released from  a reposito ry  - a fact not w idely  

recogn ised  in perform ance assessm ent m odelling  for rad ioac tive  w aste 

repositories.
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